
Regular Model Checking: Evolution
and Perspectives

Parosh Aziz Abdulla(B)

Uppsala University, Uppsala, Sweden
parosh@it.uu.se

Abstract. We describe the main ideas behind the framework of regular
model checking in a tutorial-like manner. First, we recall the original
framework, and then describe an over-approximation scheme that we
have designed to make the method more scalable. Finally, we point to
some directions for future work.

1 Introduction

During the last two decades, a vast research effort has been devoted to extend-
ing the applicability of algorithmic verification to infinite-state systems, using
approaches based on abstraction, deductive techniques, decision procedures, etc.
One primary approach has been to extend the paradigm of symbolic model check-
ing [21] to new classes of models such as timed automata, push-down systems,
systems with unbounded communication channels, Petri nets, and systems that
operate on integers and reals (e.g., [13,18,22,23]).

Regular Model Checking (Rmc) is one such an extension. In Rmc, regular
sets represent sets of states and regular transducers represent transition rela-
tions. Such sets and relations are typically defined over finite or infinite words
or tree structures. Most initial works considered models whose configurations
can be represented as finite words of arbitrary length over a finite alphabet.
Such models include parameterized systems consisting of an arbitrary number
of homogeneous finite-state processes connected in a linear or ring-formed topol-
ogy, as well as systems that operate on queues, stacks, integers, and other linear
data structures. Regular model checking was first advocated by Kesten et al. [33]
and by Boigelot and Wolper [35], as a uniform framework for analyzing several
classes of parameterized and infinite-state systems. The idea was that regular
sets would provide an efficient representation of infinite-state spaces, and play a
role similar to the role that Binary Decision Diagrams (BDDs) used to play for
symbolic model checking of finite-state systems. We can then exploit automata-
theoretic algorithms for manipulating regular sets. Such algorithms have been
successfully implemented, e.g., in the Mona [31] system.

A generic task in symbolic model checking is to verify safety or liveness
properties by computing properties of the set of reachable states. For finite-state
systems, this is typically done by state-space exploration (which is guaranteed to

c© Springer Nature Switzerland AG 2021
E.-R. Olderog et al. (Eds.): Jonsson Festschrift, LNCS 13030, pp. 78–96, 2021.
https://doi.org/10.1007/978-3-030-91384-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91384-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-91384-7_5

Regular Model Checking: Evolution and Perspectives 79

terminate). For infinite-state systems, the procedure terminates only if there is a
bound on the distance (in number of transitions) from the initial configurations
to any reachable configuration. An analogous observation holds if we perform
reachability analysis backwards, by iteration-based methods [25,34] from a set
of target configurations. A parameterized or infinite-state system does not have
such a bound, and the model checking problem for such systems can even be
undecidable. In contrast to the deductive application of systems like Mona [14],
the goal in regular model checking is to verify system properties algorithmically
(automatically). One way to accomplish that is devising so-called acceleration
techniques that calculate the effect of an arbitrarily long sequence of transitions.
This problem has been addressed in regular model checking [11,20,32]. In gen-
eral, the effect of acceleration is not computable. However, computability have
been obtained for certain classes [32]. Analogous techniques for computing accel-
erations have successfully been developed for several classes of parameterized and
infinite-state systems, e.g., systems with unbounded FIFO channels [2,15,16,19],
systems with stacks [18,24,28,30], and systems with counters [17,26].

While Rmc, in its pure form, is an elegant and theoretically interesting frame-
work, it became eventually clear that the applicability of the method was lim-
ited. The main bottleneck was the automata representation which would not
scale beyond small examples. A main research direction has been to find over-
approximations that allow more light-weight symbolic representations than the
full class of regular languages, while still being sufficiently precise to successfully
carry out the verification of non-trivial examples.

In this tutorial, I will use two running examples to explain the main ideas
behind the two approaches.

2 Framework

We describe the framework of Rmc, using a running example, namely a simple
token passing protocol.

2.1 Regular Model Checking

In its simplest form, the Rmc framework represents a transition system in the
following manner.

– A configuration (state) of the system is a word over a finite alphabet Σ.
– Sets of configurations are represented by regular sets over Σ. In particular,

this applies to the set of initial configurations.
– The transition relation is a regular and length-preserving relation on Σ∗.

We represent the relation by a finite-state transducer T over (Σ × Σ). The
transducer T accepts all words (a1, a

′
1) · · · (an, a′

n) (of pairs of elements) such
that (a1 · · · an a′

1 · · · a′
n) is in the transition relation. Sometimes, the transition

relation is given as a union of a finite number of relations, each of which is
called an action.

80 P. A. Abdulla

In this paper, we often abuse notation and identify the transducer T with the
relation defined by T . We will apply the transducer relation on (regular) sets of
configurations. For a set C of configurations and a binary relation R on configu-
rations, let C ◦ R denote the set of configurations w such that w′ R w for some
w′ ∈ C. Let R+ denote the transitive closure of R and R∗ denote the reflexive
transitive closure of R.

The simple instance of Rmc, introduced in the previous paragraphs, is
already powerful and can model several interesting classes of systems. On exam-
ple is parameterized systems which consist of arbitrary numbers of linear or
ring-shaped collections of processes. We can do this by letting each position in
the word represent one process in the system. It is also possible to model pro-
grams that operate on linear unbounded data structures such as queues, stacks,
integers, etc. For instance, a stack can be modeled by letting each position in
the word represent the corresponding position in the stack.

For reachability properties, the requirement of the transducer to be length-
preserving is not a restriction. For instance, in the case of parameterized systems,
the length-preserving condition implies that we cannot dynamically create new
processes. However, the system can initially contain an arbitrary but bounded
number of processes which are “statically allocated”. We can then faithfully
model all finite computations of the system, by initially allocating sufficiently
many processes in their configurations. Thus, the restriction to length-preserving
transducers introduces no limitations for analyzing safety properties, but may
incur restrictions on the ability to specify and verify liveness properties of sys-
tems with dynamically allocated data structures. The latter follows from the fact
that liveness properties quantify over the set of infinite computations. Therefore,
restricting the lengths of the configurations makes it impossible to faithfully
model all infinite computations of the system.

2.2 Examples

In Fig. 1 we consider a token passing protocol: a simple parameterized system
consisting of an arbitrary (but finite) number of processes organized in a linear
fashion. Initially, the left-most process has the token. In each step, the process
currently having the token passes it to the right. A configuration of the sys-
tem is a word over the alphabet {t, n}, where t represents that the process has
the token, and n represents not having it. For instance, the word nntnn rep-
resents a configuration of a system with five processes where the third process
has the token. The set of initial configurations is given by the regular expres-
sion tn∗ (Fig. 1(a)), i.e., in an initial configuration, the left-most process, and
only the left-most process, has the token. The transition relation is represented
by the transducer in (Fig. 1(b)). For instance, the transducer accepts the word
(n, n)(n, n)(t, n)(n, t)(n, n), representing the pair (nntnn, nnntn) of configura-
tions where the token is passed from the third to the fourth process.

As a second example, we consider a system consisting of a finite-state process
operating on one unbounded FIFO channel. Let Q be the set of control states of
the process, and let M be the (finite) set of messages which can reside inside the

Regular Model Checking: Evolution and Perspectives 81

0 1

(a)

t

n

0 1 2

(b)

(n, t) (t, n)

(n, n) (n, n)

Fig. 1. The token passing protocol: (a) the set of initial configurations, (b) the trans-
ducer describing the transition relation.

channel. A configuration of the system is a word over the alphabet Q∪M ∪{⊥},
where the padding symbol ⊥ represents an empty position in the channel. For
instance the word q1⊥m3m1⊥⊥ corresponds to a configuration where the process
is in state q1 and the channel (of length four) contains the messages m3 and m1

in this order. The set of configurations of the system can thus be described by
the regular expression Q⊥∗M∗⊥∗.

By allowing arbitrarily many padding symbols ⊥, one can model channels of
arbitrary but bounded length. As an example, assume that the stack alphabet
is the set {a, b}. Then, the action where the process sends the message m to the
channel and changes state from q to q′ is modeled by the transducer in Fig. 2.

2.3 Verification Problems

We will consider two types of verification problems in this paper.
The first problem is verification of safety properties. A safety property is

typically of form “bad things do not happen during system execution”. A safety
property can be verified by solving a reachability problem. Formulated in the
regular model checking framework, the corresponding problem is the following:
given a set of initial configurations I, a regular set of bad configurations B, and
a transition relation specified by a transducer T , does there exist a path from
I to B through the transition relation T? This amounts to checking whether
(I ◦ T ∗) ∩ B = ∅. The problem can be solved by computing the set Inv = I ◦ T ∗

and checking whether it intersects B.
The second problem is verification of liveness properties. A liveness property

is of form “a good thing happens during system execution”. Often, liveness prop-
erties are verified using fairness requirements on the model, which can state that
certain actions must infinitely often be either disabled or executed. Since, by the
restriction to length-preserving transducers, any infinite system execution can
only visit a finite set of configurations, the verification of a liveness property can
be reduced to a repeated reachability problem. The repeated reachability problem
asks, given a set of initial configurations I, a set of accepting configurations F ,
and a transition relation T , whether there exists an infinite computation from
I through T that visits F infinitely often. By letting F be the configurations
where the fairness requirement is satisfied, and by excluding states where the

82 P. A. Abdulla

0 1 2

3

(q, q′)

(a, a)

(b, b)

(a, a)

(b, b) (⊥
, a
)

(⊥
, b
)

(⊥,⊥) (n, n)

Fig. 2. The push operation in a stack.

“good thing” happens from T , the liveness property is satisfied if and only if the
repeated reachability problem is answered negatively.

Since the transition relation is length-preserving, and hence each execution
can visit only a finite set of configurations, the repeated reachability problem
can be solved by checking whether there exists a reachable loop containing some
configuration from F . This can be checked by computing (Inv ∩ F)2 ∩ Id and
checking whether this relation intersects T+. Here Id is the identity relation on
the set of configurations, and Inv = I ◦ T ∗ as before.

Sets like I ◦ T ∗ and relations like T+ are in general not regular or even com-
putable (note that T could model the computation steps of a Turing machine).
Even if they are regular, they are sometimes not effectively computable. In
these cases, the above verification problems cannot be solved by the proposed
techniques. Therefore, a main challenge in regular model checking is to design
semi-algorithms which successfully compute such sets and relations for as many
examples as possible. We will look at this aspect in the next section.

3 Transducers

In Sect. 2, we mentioned that we can carry out verification by computing a
representation of I ◦ T ∗ (or T+) for some transition relation T and some set of
configurations I. Given a set of bad configurations B, we want to check whether
I ◦ T ∗ ∩ B �= ∅. Algorithms for regular model checking are usually based on
starting from I and repeatedly applying T . As a running illustration, we will
consider the problem of computing the transitive closure T+ for the transducer
in Fig. 1. A first attempt is to compute Tn, i.e., to compute the composition of T
with itself n times for n = 1, 2, 3, · · · . For example, T 3 is the transition relation
where the token gets passed three positions to the right. Its transducer is given
in Fig. 4.

A transducer for T+ is one whose relation represents that the token gets
passed an arbitrary number of times. There (infinitely) many transducers char-
acterizing this relation. One such a transducer is depicted in Fig. 3.

Regular Model Checking: Evolution and Perspectives 83

0 1 2 3 4
(t, n) (n, n) (n, n) (n, t)

(n, n) (n, n)

Fig. 3. Applying the token passing transducer relation three times.

0 1 2
(t, n) (n, n)

(n, n) (n, n) (n, n)

Fig. 4. A transducer characterizing the transitive closure of the token passing trans-
ducer.

The challenge is to derive (one of) these transducers algorithmically. Obvi-
ously, we cannot do this naively by simply computing the approximations Tn

for n = 1, 2, 3, · · · , since such a procedure would not converge. We can solve
the problem by applying acceleration or widening techniques that can compute
a representation of T+. Below, we present a technique based on acceleration to
illustrate the idea.

Acceleration techniques are usually based on quotienting of transducers that
represent approximations of Tn for some value(s) of n. This involves finding an
equivalence relation 	 on the states of approximations, and to merge equivalent
states, obtaining a quotient transducer. For instance, in the transducer that
represents T 3 above, we can define the states 1, 2, and 3 to be equivalent. By
merging them, we obtain the transducer T 3/ 	 which in this example happens
to be equivalent to T+.

One problem is that quotienting in general increases the language accepted
by a transducer: L (Tn) ⊆ L (Tn/), usually with strict inclusion. This problem
was resolved in [10,11,20,27] by characterizing equivalence relations 	 such that
T+ is equivalent to (T/)+ for any transducer T , i.e., the quotienting does
not increase the transitive closure of the transducer. To explain the idea, let us
first build explicitly a transducer for T+ as the union of transducers Tn for n =
1, 2, 3, · · · . Each state of Tn is labeled with a sequence of states from T , resulting
from the product construction using n copies of T . The result is called the
history transducer. The history transducer corresponding to the token passing
protocol is shown in Fig. 5. Recall minimization algorithms for automata. They
are based on building a forward bisimulation 	F on the states, and then carry out
minimization by quotienting. For instance, in the history transducer of Fig. 5, all
states with names of form 2i1 for any i ≥ 0 are forward bisimilar. Analogously,
we can find a backward bisimulation 	B . For instance, all states with names of
form 10i, i ≥ 0, are backward bisimilar. Dams et al. [27] showed how to combine
a forward 	F and a backward bisimulation 	B into an equivalence relation 	

84 P. A. Abdulla

0 1 2

(n, n) (n, n)

00 10 21 22

(n, n) (n, n)

000 100 210 221 222

(n, n) (n, n)

Fig. 5. The history transducer for the token passing protocol.

which preserves the transitive closure of the transducer. In [12], this result was
generalized to consider simulations instead of bisimulations. The simulations can
be obtained by computing properties of the original automaton T (as in [11,12]),
or on successive approximations of Tn (as in [27]).

From the results in [12] it follows for the history transducer that the states
with names in 2i1 can be merged for i ≥ 1, and the same holds for 10i. The
equivalence classes for that transducer would be 2+, 0+, 10+, 2+1 and 2+10+.
Hence, it can be quotiented to the transducer depicted in Fig. 6, which, in turn,
can be minimized to the three-state representation shown in Fig. 4.

4 Monotonic Abstraction

In this section, we present an approach that avoids using the full power of regular
languages and transducers. Instead, we compute an over-approximation of the
set of reachable configurations through a particular technique which we call
monotonic abstraction. We will instantiate the framework to a special class of
parameterized systems. In this section, a parameterized system consists of an
arbitrary number of identical processes each of which is a finite-state process.
The processes are organized as a linear array. In each step in the execution of
the system, one process, called the active process, changes state. The rest of

Regular Model Checking: Evolution and Perspectives 85

0+

10+ 2+10+ 2+1

1

2+

(t,
n)

(n, n) (n, n)

(n, n)

(n, n) (n, n
)

(n
,n

)

(n, n)

(n
, n

)
(n, n)

Fig. 6. The history transducer for the token passing protocol.

the processes, called the passive processes, do not change states. We call the
passive processes to the left of the active process the left context of the active
process. The right context is defined analogously. The active process may perform
a local transition in which it changes its state independently of the states of the
passive processes. The active process may also perform a global transition in
which it checks the states of the passive processes. A global transition is either
universally or existentially quantified. An example of a universal condition is that
all processes in the left context of the active process should be in certain states. In
an existential transition we require that some (rather than all) processes should
be in certain states.

We use a running example of a mutual exclusion protocol, among an array
of processes, where each process is of the form depicted in Fig. 7. The process
has four local states, namely the green, black, blue, and red states. We represent
these states by colored balls , , , and . Sometimes, when no confusion
arises, we refer to a process in a configuration by its state, so we say e.g. “the
red process” rather than “the process in its red state”.

Initially, all the processes are green (they are idle). When a process becomes
interested in accessing the critical section (which corresponds to the red state), it
declares its interest by moving to the black state. This is described by the global
universal transition rule t1 in which the move is allowed only if all the other
processes are in their green or black states. The universal quantifier labeling t1
encodes the condition that all other processes (whether in the left or the right
context – hence the index LR of the quantifier) of the active process should
be green or black. In the black state, the process may move to the blue state
through the local transition t2 (in which the process does not need to check the

86 P. A. Abdulla

Fig. 7. One process in the mutual exclusion protocol (Color figure online)

states of the other processes). Notice that any number of processes my cross
from the initial (green) state to the black state. However, once the first process
has crossed to the blue state, it “closes the door” on the processes which are
still in their green states. These processes will no longer be able to leave their
green states until the door is opened again (when no process is blue or red).
From the set of processes which have declared interest in accessing the critical
section (those which have left their green states and are now black or blue) the
leftmost process has the highest priority. This is encoded by the global universal
transition t4 where a process may move from its blue state to its red state only
subject to the universal condition that all processes in its left context are green
(the index L of the quantifier stands for “Left”). If the process finds out, through
the existential global condition, that there are other processes that are black,
blue, or red, then it loops back to the blue state through the existential transition
t3. Once the process leaves the critical section, it will return back to the black
state through the local transition t5. In the black state, the process chooses either
to try to reach the critical section again, or to become idle (through the local
transition t6).

Formally, we represent a parameterized systems P by a pair 〈Q,T 〉, where
Q is the set of the local states of the processes, and T is the set of transition
rules which define the behaviour of each process. In the above example, the set
Q consists of four states (green, black, blue, and red), while the set T consists
of six rules, namely three local rules (t2, t5, and t6), two universal rules (t1 and
t4), and one existential rule (t3).

4.1 Transition System

A parameterized system P = 〈Q,T 〉 induces a transition systems T = 〈C,−→〉,
where C is the set of configurations and −→ is a transition relation on C. A
configuration is a word in Q∗, where each element of the word represents the
local state of one process.

Regular Model Checking: Evolution and Perspectives 87

Let us consider the example of Fig. 7. The word represents a
configuration in an instance of the system with five processes that are in their
green, blue, red, blue, and black states, in that order. Since there is no bound
on the configuration sizes, the set of configurations is infinite. We define the
transition relation −→:= ∪t∈T

t−→, where t−→ is a relation on configurations
that captures the effect of the transition rule t. The definition of −→ depends
on the type of t (whether it is local, existential, or universal). We will consider
three transition rules from Fig. 7 to illustrate the idea.

The local rule t2 induces transitions of the form

t2−→

Here, the active process changes its local state from black to blue.
The existential rule t3 induces transitions of the form

t3−→

The blue process can perform the transition since there is a black process in
its left context. However, the transition is not enabled from the configuration

, since there are no red, blue, or black processes in the left context
of the process trying to perform the transition.

The universal rule t4 induces transitions of the form t4

t4−→

The active process can perform the transition since all the processes in its left
con- text are green. On the other hand, neither of the blue processes can perform
the transition form the configuration since, for each one of them,
there is at least one process in its left context which is not green. As usual, we
use ∗−→ to denote the reflexive transitive closure of −→. For sets C1 and C2 of
configurations, we use C1

∗−→ C2 to denote that there are configurations c1 ∈ C1

and c2 ∈ C2 such that c1
∗−→ c2.

An initial configuration is one in which all processes are in their initial (green)
states. In this section, we use Init to denote the set of initial configurations.
Examples of initial configurations are and corresponding to
instances of the system with two and four processes respectively. Notice that
there is an infinite set of initial configurations, namely one for each size of the
system.

As mentioned above, the protocol is intended to observe mutual exclusion.
In other words, we are interested in verifying a safety property. To do this we
characterize the set Bad of configurations: all configurations which contain at
least two red processes. Examples of configurations in Bad are , and

. Showing the safety property amounts to proving that the protocol,
starting from an initial configuration, will never reach a bad configuration. In
other words, we want to answer the question whether Init ∗−→ Bad .

88 P. A. Abdulla

4.2 Ordering

We define an ordering on configurations, which we use to define bad sets of
configurations, and hence also to formulate the class of safety properties which
we consider. For configurations c1 and c2, we use c1 � c2 to denote that c1
is a (not necessarily contiguous) subword of c2. For instance, we have �

. A set U of configurations is said to be upward-closed, if whenever
c ∈ U and c � c′ then c′ ∈ U . For a configuration c, we use ĉ denote the upward-
closed set U := {c′ | c � c′}, i.e., ĉ contains all configurations which are larger
than c w.r.t. the ordering �. In such a case, we call c the generator of U .

We are interested in upward-closed sets for two reasons. First, all sets of bad
configurations which we work with are upward-closed. For instance, in the above
example, the set Bad of configurations violating mutual exclusion are those which
contain at least two red processes. The set is upward-closed since whenever a
configuration contains two red processes then any larger configuration will also
contain (at least) two red processes. The second reason why we are interested in
upward-closed sets is that they have an efficient symbolic representation. In fact,
it can be shown that each upward-closed set can be characterized by a finite set of
generators. More precisely, for an upward-closed set U , there are configurations
c1, . . . , cn with U = ĉ1 ∪ · · · ∪ ĉn. For instance, the set Bad above has a single
generator, namely . Thus, operations which manipulate upward-closed sets
can be translated into operations which manipulate words. In this manner we
avoid using the full power of regular languages, when performing reachability
analysis. This makes monotonic abstraction more efficient in practice compared
to the automata-based methods such as the one we described in Sect. 3.

We will check safety properties using backward reachability analysis. For a
set C of configurations, we define Pre (C) := {c | ∃c′ ∈ C. c −→ c′}. In other
words, the set contains exactly all configurations from which a configuration in
C can be reached through a single application of the transition relation.

To solve the safety problem, we present a scheme for backward reach-
ability analysis. The scheme is an instantiation of the framework of well-
structured systems [3,29]. We start with the set Bad of bad configurations
which is upward-closed. Then, we apply the function Pre repeatedly generat-
ing a sequence U0, U1, U2, . . . of sets of configurations, where U0 = Bad , and
Ui+1 = Ui ∪ Pre (Ui), for i ≥ 0. We observe that the set Ui characterizes the
set of configurations from which the set Bad is reachable within i steps. We
would like the sets Ui to be upward-closed (so that we can represent them by
their finite sets of generators). In order to achieve that, we introduce a sufficient
condition, namely that of monotonicity. Monotonicity implies that Pre (U) is
upward-closed whenever U itself is upward-closed. Since U0 is upward-closed by
definition, monotonicity would imply that all the sets Ui are upward-closed.

A transition system is said to be monotone if � forms a simulation on the
set C of configurations. In other words, for all configurations c1, c2, c3, whenever
c1 −→ c2 and c1 � c3 then c2 −→ c4 for some c4 with c3 � c4.

Monotonicity implies that upward-closedness is preserved through the appli-
cation of Pre. The reasoning goes as follows. Consider an upward-closed set

Regular Model Checking: Evolution and Perspectives 89

U . Let c1 ∈ Pre (U) and let c2 � c1. We will show that c2 ∈ Pre (U). Since
c1 ∈ Pre (U), we know by definition that there is a c3 ∈ U such that c1 −→ c3.
By monotonicity it follows that there is a c4 such that c3 � c4 and c2 −→ c4.
From c3 ∈ U and c3 � c4 it follows that c4 ∈ U . This means that we have found
a configuration c4 ∈ U such that c2 � c4, which implies that c2 ∈ Pre (U).

4.3 Abstraction

We define an abstraction that generates an over-approximation of the transi-
tion system. The abstract transition system is monotone, thus allowing to work
with upward-closed sets. We first show that local and existential transitions are
monotone, and hence need not be approximated. Therefore, we only provide an
over-approximation for universal transitions. Consider the transition

c1 = t2−→ = c3

in which a process changes state from black to blue. Consider the configuration
c2 = that is larger than c1. Clearly, c2 can perform the local
transition

c2 = t2−→A = c4 � c3

In general, local transitions are monotone, since the active process in the small
configuration (the black process in c1) also exists in the larger configuration (i.e.,
c2). A local transition does not check or change the states of the passive processes;
and hence the larger configuration c2 is also able to perform the transition, while
maintaining the ordering c3 � c4.

Consider the existential transition

c1 = t3−→A = c3

We can divide the configuration c1 to three parts: the active process , the
left context , and the right context . Furthermore, the left context
contains a witness which enables the transition. Consider the configuration
c2 = that is larger than c1. Also, the configuration c2 com-
prises three parts: the active process , the left context , and the right
context . The left context of c2 is larger than the left context of c1, and
hence the former will also contain the witness , which means c2 can perform
the same transition

c2 = t3−→A = c4 � c2

While local and existential transitions are monotone, universal transitions are
not. To see the reason, we consider the transition

c1 = t4−→ = c3

The transition is enabled since all processes in the left context of the active
process satisfy the condition of the transition (they are green). Consider the

90 P. A. Abdulla

configuration c2 = . Although c1 � c2, the transition t4 is not
enabled from c2 since the left context of the active process contains processes
that violate the condition of the transition. This means that universal transitions
are not monotone.

In order to deal with non-monotonicity of universal transitions, we will work
with an abstract transition relation −→A that is an over-approximation of the
concrete transition relation −→. We call −→A the monotonic abstraction of
−→. We let t−→A coincide t−→ when t is a local or an existential transition. The
reason is that, in these two cases, the relation is monotone and hence no over-
approximation is needed. For the case when t is universal, we let c1

t−→A c2 if
there is a c′

1 � c1 with c′
1

t−→A c2. In other words, we allow c1 to first “transform”
to a smaller configuration from which it can perform the transition. For instance

t4−→

since
� t4−→

The abstract transition relation −→A is monotone also w.r.t. universal tran-
sitions, since for configurations c1, c2, c3, and a transition t, if c1 � c2 and
c1

t−→A c3 then, by definition c2
t−→A c3. Notice that the over-approximation

essentially deletes those processes in the configuration that violate the condition
of the universal transition. Since −→A is an over-approximation of the original
transition relation −→, it follows that if a safety property holds in the abstract
model, then it will also hold in the original model.

4.4 Backward Reachability

We present a backward algorithm for approximated reachability analysis. Here,
we compute the function Pre w.r.t. the abstract relation −→A rather than the
concrete relation −→. This means that we can work with upward-closed sets in
the scheme for backward reachability analysis that we presented earlier. Recall
that we generate a sequence U0, U1, U2, . . . of sets of configurations where U0 =
Bad , and Ui+1 = Ui∪Pre (Ui), for i ≥ 0. Since U0 is upward-closed by definition,
and −→A is monotone, all the sets Ui are upward-closed.

Recall that each set can be represented by its finite set of generators. Given a
configuration c, we show below how to compute the set of generators for the set
Pre (ĉ). This means that we only need to work with generators (configurations)
as a symbolic representation of the sets which arise in the algorithm.

Now, we show that the algorithm is guaranteed to terminate. Suppose that
the algorithm, during its execution, produces two generators c1, c2 such that
c1 � c2. Since ĉ2 ⊆ ĉ1, we can safely discard c2 from the analysis without the
loss of precision. In such a case, we say that c2 is subsumed by c1. Discarding
configurations in this manner makes it possible to apply the well-structured
framework [3,29]. According to the framework, termination of the algorithm is
guaranteed since � is a well quasi-ordering. That � is a well quasi-ordering

Regular Model Checking: Evolution and Perspectives 91

means that for any infinite sequence c0, c1, c2, . . . of configurations, there are
i < j such that ci � cj .

It remains to show that we can compute the generators of Pre (ĉ) for any
configuration c. We define Pre (ĉ) := ∪t∈TPret (ĉ) where Pret (ĉ) gives the gen-
erators of the set of configurations from which we can reach ĉ through one
application of the transition rule t. The definition of Pret depends on the type
of t (whether it is local, existential, or universal). We will consider the different
transition rules in Fig. 7 to illustrate how to compute Pret. For the local rule t5,
we have

Pret5

(

̂

)

:=
{ }

In other words, the predecessor set is characterized by one generator, namely
. Strictly speaking, the set contains also a number of other configura-

tions such as . However such configurations are subsumed by the original
configuration, and therefore we will not include them in the set.

For existential transitions, there are two cases depending on whether a wit-
ness exists or not in the configuration. Consider the existential rule t3 in Fig. 7.
We have

Pret3

(

̂

)

=
{ }

In this case, there is a witness, namely, in the left context of the active process
. On the other hand, we have

Pret3

(

̂

)

:=

⎧

⎨

⎩

,

,

,

⎫

⎬

⎭

In this case there is no witness available in the left context of the active process.
Therefore, we add a witness explicitly in each possible state (, , or), and
each possible place in the left context of the active process. Notice that the
sizes of the new generators (four processes) is larger than the size of the original
configuration (three processes). This means that the sizes of the configurations
generated by the backward algorithm may increase, and hence there is a priori no
bound on the sizes of the configurations. However, termination is still guaranteed
due to the well quasi-ordering of �. For universal conditions, let us consider the
universal rule t4 in Fig. 7. We have

Pret4

(

̂

)

= ∅

since there is a black process in the left context of the potential active process
(which is in state). On the other hand

Pret4

(

̂

)

=

since all processes in the left context of the active process are in their green
states.

92 P. A. Abdulla

4.5 Example

We show how the backward reachability algorithm runs on our example. We
start by the generator

g0 =

of the set of bad configuration. The only transition which can be enabled back-
wards from a red state, is the one induced by the rule t4. From the two red
processes in g0, only the left one can perform t4 backwards (the right process
cannot perform t4 backwards since its left context contains a process not satis-
fying the condition of the quantifier):

Pret4 (g0) =
{

g1 =
}

From g1, two rules are enabled backwards (both from the blue process): the
local rule t2

Pret2 (g1) =
{

g2 =
}

and the existential rule t3

Pret3 (g1) =
{

, ,
}

Since a witness is missing in the left context, we add it explicitly. All the three
generators in Pret3 (g1) are subsumed by g1. One rule is enabled backwards from
g2, namely the local rule t5 from the black process

Pret5 (g1) =
{

g0 =
}

Notice that the universal transition t1 is not enabled from the black process,
since there is another process (the red process) in the configuration that violates
the condition of the quantifier. At this point, the algorithm terminates, since it
is not possible to provide any new generators which are not subsumed by the
existing ones.

Since there is no initial configuration (with only green processes) in ĝ0 ∪
ĝ1 ∪ ĝ2, the set of bad configurations is not reachable from the set of initial
configurations in the abstract semantics. Therefore, we can conclude that the
set of bad configurations is not reachable from the set of initial configurations
in the concrete semantics, either.

5 Perspective and Future Work

Since its introduction [33,35], Rmc has played an important role in the develop-
ment of verification techniques for infinite-state systems.

In addition to the basic techniques we describe in this tutorial, the framework
has been developed in many directions [4]. We mention some of these extensions
in this paragraph. A broadcast transition is initiated by a process, called the

Regular Model Checking: Evolution and Perspectives 93

initiator. Together with the initiator, an arbitrary number of processes change
state simultaneously. In binary communication two processes perform a rendez-
vous changing state simultaneously.

We have also considered parameterized systems where the individual pro-
cesses operate on numerical variables over the natural numbers [5]. The con-
ditions on the numerical variables are stated as gap-order constraints: a logical
formalism which can express simple relations such as lower and upper bounds on
the values of individual variables; and equality, and gaps (minimal differences)
between values of pairs of variables.

Furthermore, we have studied abstraction techniques that approximate the
set of forward-reachable configurations [7] (rather than the set of backward-
reachable configurations as was the case with monotonic abstraction). The frame-
work is based on establishing a cut-off theorem. More precisely, it needs to
inspect only a small number of processes in order to show correctness of the
whole system. It relies on an abstraction function that views the system from
the perspective of a fixed number of processes. The abstraction is used during
the verification procedure in order to dynamically detect cut-off points beyond
which the search of the state space need not continue.

Interesting directions for future work include:

– Parameterized timed systems [6].
– Applying symbolic partial order techniques [9] to increase efficiency.
– Applying Rmc to concurrent programs that operate on weak consistency

models such as the release-acquire semantics [1].
– Refining the granularity of quantified transitions [8]

Acknowledgement. Bengt Jonsson introduced me to the world of research in com-
puter science. Since those early days, he has been my colleague, friend, and mentor. He
was a leader and influential in developing the frameworks of regular model checking
and well-structured systems. Many thanks, Bengt, for your support and for being an
inspiration throughout the years.

References

1. Abdulla, P.A., Arora, J., Atig, M.F., Krishna, S.N.: Verification of programs under
the release-acquire semantics. In: McKinley, K.S., Fisher, K. (Eds.) Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, Phoenix, AZ, USA, 22–26 June 2019, pp. 1117–1132.
ACM (2019)

2. Abdulla, P.A., Bouajjani, A., Jonsson, B.: On-the-fly analysis of systems with
unbounded, lossy FIFO channels. In: Hu, A.J., Vardi, M.Y. (eds.) Computer Aided
Verification, CAV 1998. LNCS, vol. 1427, pp. 305–318. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0028754

3. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: Proceedings of the LICS 1996 11th IEEE International
Symposium on Logic in Computer Science, pp. 313–321 (1996)

https://doi.org/10.1007/BFb0028754

94 P. A. Abdulla

4. Abdulla, P.A., Delzanno, G., Henda, N.B., Rezine, A.: Regular model checking
without transducers (on efficient verification of parameterized systems). In: Grum-
berg, O., Huth, M. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems, TACAS 2007. LNCS, vol. 4424, pp. 721–736. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1 56

5. Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized verification of infinite-state
processes with global conditions. In: Damm, W., Hermanns, H. (eds.) Computer
Aided Verification, CAV 2007. LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73368-3 17

6. Abdulla, P.A., Deneux, J., Mahata, P.: Multi-clock timed networks. In: 19th IEEE
Symposium on Logic in Computer Science (LICS 2004), 14–17 July 2004, Turku,
Finland, Proceedings, pp. 345–354. IEEE Computer Society (2004)

7. Abdulla, P.A., Haziza, F., Hoĺık, L.: Parameterized verification through view
abstraction. Int. J. Softw. Tools Technol. Transfer 18(5), 495–516 (2015). https://
doi.org/10.1007/s10009-015-0406-x

8. Abdulla, P.A., Ben Henda, N., Delzanno, G., Rezine, A.: Handling parameterized
systems with non-atomic global conditions. In: Logozzo, F., Peled, D.A., Zuck,
L.D. (eds.) Verification, Model Checking, and Abstract Interpretation, VMCAI
2008. LNCS, vol. 4905, pp. 22–36. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78163-9 7

9. Abdulla, P.A., Jonsson, B., Kindahl, M., Peled, D.: A general approach to partial
order reductions in symbolic verification. In: Hu, A.J., Vardi, M.Y. (eds.) Computer
Aided Verification, CAV 1998. LNCS, vol. 1427, pp. 379–390. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0028760

10. Abdulla, P.A., Jonsson, B., Mahata, P., d’Orso, J.: Regular tree model checking.
In: Brinksma, Ed., Larsen, K.G. (eds.) Computer Aided Verification, CAV 2002.
LNCS, vol. 2404, pp. 555–568. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45657-0 47

11. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J.: Regular model checking made
simple and effcient*. In: Brim, L., Křet́ınský, M., Kučera, A., Jančar, P. (eds.)
CONCUR 2002—Concurrency Theory, CONCUR 2002. LNCS, vol. 2421, pp. 116–
131. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45694-5 9

12. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J.: Algorithmic improvements
in regular model checking. In: Hunt, W.A., Somenzi, F. (eds.) Computer Aided
Verification, CAV 2003. LNCS, vol. 2725, pp. 236–248. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45069-6 25

13. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for real-time systems. In:
Proceedings of the Fifth Annual Symposium on Logic in Computer Science (LICS
1990), Philadelphia, Pennsylvania, USA, 4–7 June 1990, pp. 414–425. IEEE Com-
puter Society (1990)

14. Basin, D.A., Klarlund, N.: Automata based symbolic reasoning in hardware veri-
fication. Formal Methods Syst. Des. 13(3), 255–288 (1998)

15. Boigelot, B., Godefroid, P.: Symbolic verification of communication protocols with
infinite state spaces using QDDs. In: Alur, R., Henzinger, T.A. (eds.) Computer
Aided Verification, CAV 1996. LNCS, vol. 1102, pp. 1–12. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61474-5 53

16. Boigelot, B., Godefroid, P., Willems, B., Wolper, P.: The power of QDDs (extended
abstract). In: Van Hentenryck, P. (ed.) Static Analysis, SAS 1997. LNCS, vol. 1302,
pp. 172–186. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0032741

https://doi.org/10.1007/978-3-540-71209-1_56
https://doi.org/10.1007/978-3-540-73368-3_17
https://doi.org/10.1007/s10009-015-0406-x
https://doi.org/10.1007/s10009-015-0406-x
https://doi.org/10.1007/978-3-540-78163-9_7
https://doi.org/10.1007/978-3-540-78163-9_7
https://doi.org/10.1007/BFb0028760
https://doi.org/10.1007/3-540-45657-0_47
https://doi.org/10.1007/3-540-45657-0_47
https://doi.org/10.1007/3-540-45694-5_9
https://doi.org/10.1007/978-3-540-45069-6_25
https://doi.org/10.1007/3-540-61474-5_53
https://doi.org/10.1007/BFb0032741

Regular Model Checking: Evolution and Perspectives 95

17. Boigelot, B., Wolper, P.: Symbolic verification with periodic sets. In: Dill, D.L.
(ed.) Computer Aided Verification, CAV 1994. LNCS, vol. 818, pp. 55–67. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-58179-0 43

18. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model checking. In: Proceedings of the International Conference on
Concurrency Theory (CONCUR 1997). LNCS 1243 (1997)

19. Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of FIFO-channel sys-
tems with nonregular sets of configurations. In: Degano, P., Gorrieri, R., Marchetti-
Spaccamela, A. (eds.) Automata, Languages and Programming, ICALP 1997.
LNCS, vol. 1256, pp. 560–570. Springer, Heidelberg (1997). https://doi.org/10.
1007/3-540-63165-8 211

20. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking.
In: Emerson, E.A., Sistla, A.P. (eds.) Computer Aided Verification, CAV 2000.
LNCS, vol. 1855, pp. 403–418. Springer, Heidelberg (2000). https://doi.org/10.
1007/10722167 31

21. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L.: Symbolic model checking:
1020 states and beyond. Inf. Comput. 98, 142–170 (1992)

22. Burkart, O., Steffen, B.: Model checking for context-free processes. In: Cleaveland,
W.R. (ed.) CONCUR 1992, CONCUR 1992. LNCS, vol. 630, pp. 123–137. Springer,
Heidelberg (1992). https://doi.org/10.1007/BFb0084787

23. Burkart, O., Steffen, B.: Model checking the full modal mu-calculus for infinite
sequential processes. Theor. Comput. Sci. 221(1–2), 251–270 (1999)

24. Caucal, D.: On the regular structure of prefix rewriting. Theoret. Comput. Sci.
106(1), 61–86 (1992)

25. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specification. ACM Trans. Program. Lang.
Syst. 8(2), 244–263 (1986)

26. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger
arithmetic. In: Hu, A.J., Vardi, M.Y. (eds.) Computer Aided Verification, CAV
1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0028751

27. Dams, D., Lakhnech, Y., Steffen, M.: Iterating transducers. In: Berry, G., Comon,
H., Finkel, A. (eds.) Computer Aided Verification, vol. 2102. Lecture Notes in
Computer Science (2001)

28. Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In:
Berry, G., Comon, H., Finkel, A. (eds.) Computer Aided Verification, CAV 2001.
LNCS, vol. 2102, pp. 324–336. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44585-4 30

29. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere. Tech.
Rep. LSV-98-4, Ecole Normale Supérieure de Cachan (1998)

30. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model check-
ing pushdown systems (extended abstract). In: Proceedings of the Infinity 1997,
Electronic Notes in Theoretical Computer Science, Bologna, August 1997

31. Henriksen, J.G., Jensen, J., Jørgensen, M., Klarlund, N., Paige, B., Rauhe, T.,
Sandholm, A.: Mona: Monadic second-order logic in practice. In: Proceedings of
the TACAS 1995, 1th International Confererence on Tools and Algorithms for
the Construction and Analysis of Systems, vol. 1019, Lecture Notes in Computer
Science (1996)

https://doi.org/10.1007/3-540-58179-0_43
https://doi.org/10.1007/3-540-63165-8_211
https://doi.org/10.1007/3-540-63165-8_211
https://doi.org/10.1007/10722167_31
https://doi.org/10.1007/10722167_31
https://doi.org/10.1007/BFb0084787
https://doi.org/10.1007/BFb0028751
https://doi.org/10.1007/BFb0028751
https://doi.org/10.1007/3-540-44585-4_30
https://doi.org/10.1007/3-540-44585-4_30

96 P. A. Abdulla

32. Jonsson, B., Nilsson, M.: Transitive closures of regular relations for verifying
infinite-state systems. In: Graf, S., Schwartzbach, M. (eds.) Proceedings of the
TACAS 1900, 6th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, vol. 1785, Lecture Notes in Computer Science
(2000)

33. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking
with rich assertional languages. Theoret. Comput. Sci. 256, 93–112 (2001)

34. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) International Sympo-
sium on Programming, Programming 1982. LNCS, vol. 137, pp. 337–351. Springer,
Heidelberg (1982). https://doi.org/10.1007/3-540-11494-7 22

35. Wolper, P., Boigelot, B.: Verifying systems with infinite but regular state spaces. In:
Hu, A.J., Vardi, M.Y. (eds.) Computer Aided Verification, CAV 1998. LNCS, vol.
1427, pp. 88–97. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028736

https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/BFb0028736

	Regular Model Checking: Evolution and Perspectives
	1 Introduction
	2 Framework
	2.1 Regular Model Checking
	2.2 Examples
	2.3 Verification Problems

	3 Transducers
	4 Monotonic Abstraction
	4.1 Transition System
	4.2 Ordering
	4.3 Abstraction
	4.4 Backward Reachability
	4.5 Example

	5 Perspective and Future Work
	References

