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2 Université de Nantes/LS2N UMR CNRS, 6004 Nantes, France
benoit.delahaye@univ-nantes.fr

Abstract. Interval Markov chains (IMCs), as first introduced by Larsen
and Jonsson in 1991 are succinct specifications for probabilistic systems
that generalise Markov chains (MCs) by allowing state transition prob-
abilities to lie within an interval. In this work, we address the study
of IMCs in a quantitative setting by extending the notion of IMCs by
associating with each state a reward that is gained when leaving the
state. Specifically, we compare three different semantic interpretations
proposed in the literature (once-and-for-all, interval Markov decision
process and at-every-step) in the context of model-checking rPCTL, an
extension of PCTL where each path-formula is equipped with the spec-
ification of a bound on the accumulated reward. We prove that for the
full logic, the three semantics are not equivalent, but for the fragment
of reward-bounded reachability properties, the interval Markov decision
process semantics and the at-every-step semantics are equivalent. Finally,
we discuss model-checking algorithms for the three semantics by reduc-
tion to the model-checking problem for parametric Markov chains.

1 Introduction

The early work of Bengt Jonsson contains several contributions to the verifica-
tion of distributed systems [20]. This still very active research direction [7] has
been dominated by two schools: the North American school stressing automata
and temporal logics, and the European school with focus on process algebra
and behavioural equivalences. Both directions have their pros and cons with
respect to compositionality and refinement: in the process algebraic approach
compositional reasoning was guaranteed by congruence properties of the con-
sidered equivalences. However, specifications are typically very explicit being
single equivalence classes leaving no room for a stepwise refinement process.
In contrast, in the temporal logic approach logical implication between speci-
fications provides the basis for stepwise refinement. However, it is notoriously
hard to derive logical properties of composite systems from properties of their
components, see [2,30]. Within the process algebraic approach, the introduction
of Modal Transition Systems [27] (MTS) may be seen as a step towards sup-
port of a true stepwise refinement process. In MTS the transitions of a labelled
c© Springer Nature Switzerland AG 2021
E.-R. Olderog et al. (Eds.): Jonsson Festschrift, LNCS 13030, pp. 57–77, 2021.
https://doi.org/10.1007/978-3-030-91384-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91384-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-91384-7_4


58 G. Bacci et al.

transition system are classified as either mandatory (must) of optional (may)
leading to a modal refinement precongruence generalizing the strict behavioural
equivalences.

At the same time, probabilistic extensions of process algebra were introduced,
e.g. [15], including the introduction of probabilistic bisimulation [25,26]. In col-
laboration with the last author of this paper (during a nice sabbatical at SICS in
1990), Bengt Jonsson quickly followed up with a probabilistic extension of MTS
[22], originally termed Probabilistic Specifications, but by now better known as
Interval Markov Chains (IMC). It is fair to say that IMC has inspired much
subsequent research (including this paper).

On the temporal logical side, the introduction of PCTL in the seminal paper
[17,21] by Bengt Jonsson and Hans Hansson is by now considered a prime logic
for specifying properties of probabilistic systems. Since its introduction signifi-
cant effort has been made towards efficient model checking algorithms for PCTL.
However, there are still open problems foremost the question of decidability of
satisfiability. One research direction that we will pursue in this paper is that of
model checking PCTL with respect to IMC.

Our Contribution. We consider interval Markov reward models (IMRMs), a class
of models that extend interval Markov chains by assigning a (positive) reward
to each state. For regular IMCs, three distinct semantics have been proposed in
the literature: the once-and-for-all semantics [5], the interval Markov decision
process (IMDP) semantics [5,8,29] and the at-every-step semantics [22]. We
provide a natural extension of the three semantics to IMRMs and investigate the
differences between the three semantics in the context of model-checking. For this
we consider the logic Probabilistic CTL (PCTL) [18] with reward-bounded path-
formulae (rPCTL). For a given fragment of the logic, we say that two semantics
are equivalent if for some IMRM specification and rPCTL formula, whenever
there exists a satisfying model of one semantics, there exists a satisfying model
of the other semantics.

Our contribution is twofold. The first part of the paper concerns the com-
parison of the above mentioned semantics:

(i) we prove that the three semantics are not equivalent with respect to the full
fragment of rPCTL;

(ii) if one restricts the attention to probabilistic bounded reachability queries
(a) we show that the once-and-for-all semantics and the IMDP-semantics are
not equivalent, whereas (b) the IMDP-semantics and at-every-step semantics
are.

The result in (i) can be seen as a generalisation of a similar result by Bart et
al. [5] for IMCs against PCTL properties. In contrast to [5], where three IMCs
semantics where shown to be equivalent with respect to reachability queries, we
show that such an equivalence does not generalise to IMRMs.

In the second part of the paper we present algorithms for model-checking
IMRMs for the three semantics. For the full logic and the once-and-for-all seman-
tics, we present a reduction to the (existential) model-checking problem for para-
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metric Markov reward models [1] with interval-constraints on the parameters. As
for the IMDP semantics, we devise a reduction to the model-checking problem
of IMRMs using the once-and-for-all semantics.

Notably, thanks to the semantic equivalence result relative to reachability
queries mentioned earlier, such a reduction solves also the model checking prob-
lem against reachability queries when one interprets IMRMs using the at-every-
step semantics. However, model checking generic rPCTL properties with respect
to the at-every-step semantics still remains an open problem.

Related Work. Since their introduction by Jonsson and Larsen [22], IMCs have
been investigated from different perspectives. In particular, [12,13] tackles the
computational complexity of several decision problems, such as deciding whether
or not an IMC has an implementation (the consistency problem) and whether
the set of implementations of one IMC is entailed by the set of implementa-
tion by another IMC (thorough refinement). For model-checking, [6] considers
LTL model-checking w.r.t IMCs with the once-and-for-all semantics, while [8,29]
presents algorithms for verifying PCTL properties for both the once-and-for-all
semantics as well as the IMDP semantics. The work in [8] also considers gen-
eral ω-regular properties. From a computational complexity perspective, Chen et
al. [9] proved that the two variants of the PCTL model-checking problem w.r.t.
the once-and-for-all semantics and the IMDP semantics are both P-complete.

Another body of research is the work on parametric IMCs (PIMCs) [5,11,
14,28] where, instead of an interval, one can instead place a parameter. All the
problems for IMCs can then be re-cast in two variants for PIMCs, depending
on the quantification over the parameters (existential or universal). Closest to
our work is [5], in which the equivalence between the three different semantics
is investigated for IMCs. In the same paper, verifying a probabilistic reachabil-
ity property for a given PIMCs is reduced to solving a constraint satisfaction
problem.

2 Preliminaries and Notation

We denote by R, Q, and N respectively the set of real, rational, and natural
numbers. Given a binary relation R ⊆ X×Y and x ∈ X, we define the projection
of R on x as R(x) = {y ∈ Y | (x, y) ∈ R}, and we denote by R−1 the inverse of
R, i.e., R−1 = {(y, x) | (x, y) ∈ R}.

For a finite nonempty set X, μ : X → [0, 1] is a probability distribution on X
if

∑
x∈X μ(x) = 1. Moreover μ is extended to sets Y ⊆ X as μ(Y ) =

∑
y∈Y μ(y).

We write D(X) for the set of probability distributions on X. For μ ∈ D(X) we
define the support of μ as support(μ) = {x ∈ X | μ(x) > 0}.

3 Markov Reward Models

In this section we recall the definitions of Markov reward model (MRM), proba-
bilistic reward bisimulation, and Reward-Bounded Probabilistic CTL (rPCTL).

For the rest of the paper, we fix a countable set of atomic propositions A.
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Definition 1 (Markov Reward Model). A Markov reward model is a tuple
M = (S, s0, π, ρ, �) consisting of a finite set of states S, an initial state s0 ∈ S,
a transition probability function π : S → D(S), a state-reward function ρ : S →
N>0 assigning to each state a positive reward1 and a labelling function � : S → 2A

mapping states to atomic propositions.

Intuitively, if M is in state s it moves to state s′ with probability π(s)(s′),
thereby receiving the reward ρ(s). In this sense M can be seen as a state-machine
that generates paths of states starting from the initial state s0.

We denote by GM = (S,→) the underlying labelled graph of M, where
s, s′ ∈ S are connected by a labelled directed edge s

p,r−−→ s′ if and only if
p = π(s)(s′) > 0 and r = ρ(s). We will assume without loss of generality that
all states of M are reachable from the initial state s0 in its underlying graph.
For s ∈ S we define the set of successors of s as succ(s) = support(π(s)).

Example 1. Figures 1b–d depicts three MRMs. Consider the MRM Mo =
(To, t0, πo, ρo, �

Mo) in Fig. 1b. States To = {ti | 0 ≤ i ≤ 4} are visualised by
a circle split in two, with the name of a state ti at the top and the reward
ρo(ti) at the bottom. The initial state t0 is identified by a double-stroke bor-
der. State labels �Mo(ti) are visualised next to the state ti unless the set is
empty, in which case the set is omitted. From the underlying graph GMo

we
have succ(t0) = {t1, t2}, t0

0.3,1−−−→ t1 and t0
0.7,1−−−→ t2.

A path is an infinite sequence of states σ = s0, s1, . . . ∈ Sω; for j ∈ N, we denote
by σ[j] the (j +1)-th state of σ, i.e., σ[j] = sj and by W(σ)(j) =

∑j−1
i=0 ρ(si) the

accumulated reward of σ after j transitions. For a finite path σ = s0, . . . , sj ∈ S∗

we define the length of σ as |σ| = j.
To associate probabilities to measurable events, we adopt the classical cylin-

der set construction from [4, Chapter 10]. For w ∈ S∗, the cylinder set of w is the
set of all paths having prefix w, i.e., cyl(w) = wSω. Given an initial probability
distribution ι ∈ D(S), we define the probability space (Sω,ΣM,PM

ι ), where ΣM
is the smallest σ-algebra that contains all the cylinder sets, and P

M
ι is the unique

probability measure such that, for all w = s0 · · · sn ∈ S∗,

P
M
ι (cyl(w)) = ι(s0) · ∏

0≤i<n π(si)(si+1) .

When ι is the Dirac distribution pointed at s, i.e. ι(s) = 1, we write P
M
s , or

just Ps when M is clear from the context. Similarly, we may write P
M as a

shorthand for P
M
s0

when s0 is the initial state of M.

Definition 2 (Bisimulation). Let M = (S, s0, π, ρ, �) be an MRM. An equiva-
lence relation R ⊆ S×S is a probabilistic reward bisimulation for M if whenever
(s, t) ∈ R, then (i) ρ(s) = ρ(t), (ii) �(s) = �(t), and (iii) π(s)(C) = π(t)(C) for
all C ∈ S/R.

1 All results presented in this paper can be generalized to MRMs having positive
rational state rewards by multiplying the vector of rewards by a suitably large scaling
factor.
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Fig. 1. IMRM I1 and implementations Mo ∈ �I1�o, Md ∈ �I1�d and Ma ∈ �I1�a.

Two states s, s′ ∈ S are probabilistic bisimilar, written s ∼ s′, if they are related
by some probabilistic bisimulation. By abuse of notation we may write M ∼ M′

to indicate that the initial states of the MRMs M and M′ are bisimilar w.r.t.
their disjoint union.

We now present an extension of probabilistic CTL (PCTL) [18], namely
reward-bounded PCTL (rPCTL), where the next and the until operators are
equipped with the specification of a finite bound on the accumulated reward.
As any CTL-based logic, rPCTL allows for state formulae describing properties
about states in an MRM and path formulae describing properties about paths
in an MRM. State formulae Φ and path formulae Ψ are formed according to the
following abstract syntax:
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Φ ::= true | a | ¬Φ | Φ ∧ Φ | P��λ(Ψ)
Ψ ::= X�k Φ | ΦU�k Φ

where a ∈ A, 
� = {<,≤,≥, >}, � = {≤,=,≥}, λ ∈ Q ∩ [0, 1], and k ∈ N. We
denote by rPCTL the set of all rPCTL state-formulae.

Given an MRM M = (S, s0, π, ρ, �), a state s ∈ S, and a path σ ∈ Sω, we
write M, s |= Φ (resp. M, σ |= Ψ) to indicate that s satisfies the state formula
Φ (resp. the path σ satisfies the path formula Ψ). The satisfiability relation |= is
inductively defined as:

M, s |= true always
M, s |= a iff a ∈ �(s)
M, s |= ¬Φ iff M 
|= Φ

M, s |= Φ1 ∧ Φ2 iff M, s |= Φ1 and M, s |= Φ2

M, s |= P��λ(Ψ) iff Ps({σ ∈ Sω | M, σ |= Ψ}) 
� λ

M, σ |= X�kΦ iff ρ(σ[0]) � k and M, σ[1] |= Φ

M, σ |= Φ1U�kΦ2 iff ∃j ≥ 0.W(σ)(j) � k,

M, σ[j] |= Φ2 and
∀i < j.M, σ[i] |= Φ1.

As usual, we derive the operators false, ∨, and → as false := ¬true, Φ1 ∨ Φ2 :=
¬(¬Φ1 ∧ ¬Φ2), and Φ1 → Φ2 := ¬Φ1 ∨ Φ2. Moreover, we define the k-bounded
reachability operator as ♦�kΦ := trueU�k Φ.

The satisfiability relation extends naturally to finite paths: a finite path σ ∈
S∗ satisfies a path-formula Ψ if and only if all the infinite paths in the cylinder-
set cyl(σ) satisfy Ψ . If the MRM is clear from the context, we sometimes write
s |= Φ instead of M, s |= Φ. We may also write M |= Φ as a shorthand for
M, s0 |= Φ and P

M(Ψ) as a shorthand for P
M
s0

({σ ∈ Sω | M, σ |= Ψ}), where
s0 is the initial state of M.

Example 2. Consider the three MRMs Mo,Md and Ma depicted in Figs. 1b–d
and let Φ = P≥0.15(♦≤3 b). By rPCTL semantics we have Mo |= Φ, witnessed
by the path t0, t1, t4 and similarly, Md |= Φ and Ma |= Φ. If the probability
threshold is increased from 0.15 to 0.3, Mo and Md no longer satisfy the formula,
i.e. for formula Φ′ = P≥0.3(♦≤3 b), we have Mo 
|= Φ′, Md 
|= Φ′ but Ma |= Φ′.

For s, s′ ∈ S, we say that s and s′ are logically equivalent w.r.t. rPCTL, written
s ∼=rPCTL s′, if

∀Φ ∈ rPCTL.M, s |= Φ ⇐⇒ M, s′ |= Φ .

The following theorem states that probabilistic bisimilarity equals logical
equivalence w.r.t rPCTL.

Theorem 1. Let M = (S, s0, π, ρ, �) be an MRM and s, s′ ∈ S. Then, s ∼
s′ ⇐⇒ s ∼=rPCTL s′.
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4 Interval Markov Reward Models

In this section we introduce the notion of interval Markov reward model (IMRM)
and present three distinct semantic interpretations of IMRMs, comparing their
expressivity with respect to rPCTL.

Before defining IMRMs, it is convenient to introduce some notation. We write
I for the set of all non-empty closed interval subsets of [0, 1], and DI(X) = {f |
f : X → I} denotes the set of interval specifications on a finite set X. An interval
specification f ∈ DI(X) describes a family of probability distributions on X that
satisfy the specification i.e., �f� = {π ∈ D(X) | ∀x ∈ X.π(x) ∈ f(x)}.

Definition 3 (Interval Markov Reward Model). An interval Markov
reward model (IMRM) is a tuple I = (S, s0,Π,R, �) where

– S is a finite nonempty set of states,
– s0 ∈ S is the initial state,
– Π : S → DI(S) is the interval transition function,
– R : S → N>0 is the state-reward function, and
– � : S → 2A is the state-labeling function.

Given an IMRM I = (S, s0,Π,R, �) and state s ∈ S, Π(s) = Is is the interval-
specification for state s, defining for each state s′ ∈ S a probability interval
Is(s′), within which s moves to s′. By abuse of notation we may refer to MRMs
as particular cases of IMRMs having singleton intervals specifications. Hence, an
IMRM I is a succinct specification for a family of MRMs where the transition
function satisfies boundary conditions dictated by the interval transition function
Π. Hereafter, we will assume that all IMRMs we will be working with have non-
empty interval specifications, i.e., �Π(s)� 
= ∅ for all s ∈ S. In literature this
condition is known as (local) consistency [13]. The definition of paths, finite
paths and accumulated weight are defined similarly as for MRMs.

Example 3. Consider the IMRM I1 = (S, s0,Π,R, �I) depicted in Fig. 1a. For
any state si ∈ {s0, s1, s2, s3, s4}, the interval specification Π(si) is depicted by
edges connecting si to states in succ(si). These edges are labelled by the interval
assigned by Π(si)(sj). Singleton intervals [p, p] are simply represented by p.

In the literature [5,8,22,29], there have been proposed three different seman-
tic interpretations of IMRMs, namely, the once-and-for-all semantics, the inter-
val Markov decision process semantics (IMDP), and the at-every-step semantics.
We now present the three distinct semantics for IMRMs and some basic results
showing the relationship among the different semantics. To ease the presenta-
tion, we fix an MRM M = (T, t0, π, ρ, �M) and an IMRM I = (S, s0,Π,R, �I)
and we will implicitly refer to their components in the remainder of this section.

The once-and-for-all semantics [5], also called the Uncertain Markov Chain
semantics [29] is the simplest among the three semantics. It requires to choose for
each state of the IMRM a probability distribution satisfying the corresponding
interval specification.
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Definition 4 (Once-and-for-all semantics). An arbitrary MRM M satisfies
the IMRM I w.r.t. the once-and-for-all semantics, written M |=o I, if and
only if T ⊆ S, t0 = s0, and for all t ∈ T , ρ(t) = R(t), �M(t) = �I(t), and
π(t) ∈ �Π(t)�.

Example 4. Consider again the IMRM I1 in Fig. 1a. Figure 1b depicts an MRM
Mo that satisfies I1 with the once-and-for-all semantics.

In contrast to the once-and-for-all semantics, in the interval Markov decision
process semantics (IMDP semantics) [5,8,29], the choice of the transition prob-
ability distribution for a state s ∈ S is performed each time a state is visited.

Definition 5 (IMDP semantics). An MRM M satisfies the IMRM I w.r.t.
the IMDP semantics, written M |=d I, if and only if there exists a mapping
τ : T → S such that τ(t0) = s0, and for all t ∈ T , �M(t) = �I(τ(t)), ρ(t) =
R(τ(t)), and there exists δt ∈ �Π(τ(t))� such that for all t′ ∈ T , t′ ∈ succ(t)
implies that π(t)(t′) = δt(τ(t′)).

As its name suggests, the IMDP semantics is reminiscent of the way one
resolves nondeterminism in a Markov decision process (MDP) by means of a
deterministic memory-dependent scheduler (cf. [4, Ch10]). With respect to sim-
ilar semantic interpretations given for interval Markov chains [5,8,29], Defini-
tion 5 is more similar in spirit to that given in [5] for the fact that the MRM M
needs to be finite.

Example 5. The MRM in Fig. 1c satisfies the IMRM I1 in Fig. 1a w.r.t. the
IMDP semantics. To see this, consider the mapping τ(u0) = s0, τ(u1) =
s1, τ(u21) = τ(u22) = s2, τ(u3) = s3 and τ(u4) = s4. Note that u21 and u22

are two different implementations of the IMRM state s2.

Remark 1. Notice that M |=o I implies M |=d I and the mapping τ : T → S
witnessing this fact is the identity function, i.e., τ(t) = t for all t ∈ T .

The last semantic interpretation for IMRMs is the so-called at-every-step
semantics. Its definition is a simple extension of the original semantics given
for interval Markov chains by Jonsson and Larsen [22]. Its main feature consists
in generalizing the mapping τ : T → S from the IMDP semantics to a relation
R ⊆ T × S. This allows one to “aggregate” compatible states of the IMRM
into a single state of the MRM implementation, as well as “redistributing” the
successors of a state of the IMRM into multiple states.

Definition 6 (At-every-step semantics). An MRM M satisfies the IMRM
I w.r.t. the at-every-step semantics, written M |=a I if and only if there exists
a relation R ⊆ T × S such that (t0, s0) ∈ R and for all pairs (t, s) ∈ R we have
that �M(t) = �I(s), ρ(t) = R(s), and there exists a correspondence function
δ(t,s) : T → (S → [0, 1]) such that



Quantitative Analysis of Interval Markov Chains 65

1. for all t′ ∈ succ(t), δ(t,s)(t′) ∈ D(S).
2. for all s′ ∈ S,

(
∑

t′∈T

π(t)(t′) · δ(t,s)(t′)(s′)

)

∈ Π(s)(s′).

3. for all (t′, s′) ∈ T × S, if δ(t,s)(t′)(s′) > 0 then (t′, s′) ∈ R.

Example 6. The MRM Ma depicted in Fig. 1d is one possible at-every-step
implementation of the IMRM I1 of Fig. 1a. This is witnessed by the relation

R = {(v0, s0), (v1, s1), (v1, s2),
(v31, s3), (v32, s3), (v4, s4)}

and the following correspondence functions:

δ(v0,s0)(v1)(s1) = δ(v0,s0)(v1)(s2) = 1
2 ,

δ(v1,s1)(v31)(s3) = δ(v1,s1)(v32)(s3) = 1.

Note that the state v1 in Ma implements both s1 and s2, while the state s3 is
“redistributed” into v31 and v32. The example illustrates that one is allowed to
aggregate and split states under the at-every-step semantics.

As shown in Example 6, the at-every-step semantics allows one MRM state
to implement multiple IMRM states by aggregation. Next, we show that for any
MRM with such aggregated states, there exists an at-every-step implementation
with no aggregated states, which is probabilistic bisimilar to the MRM with
aggregated states. The result follows immediately from a similar result for IMCs
as presented in [5, Proposition 5]. To formalize the result, we borrow the notion
of degree of satisfaction from [5].

Definition 7. Let n ∈ N. The MRM M satisfies the IMRM I w.r.t. the at-
every-step semantics with degree of satisfaction n, written M |=n

a I, if there
exists a relation R ⊆ T × S witnessing M |=a I such that |R(t)| ≤ n for all
states t ∈ T .

Note that if an MRM M satisfies IMRM I with degree 1, all correspondence
functions δ(t,s) are Dirac distributions i.e. δ(t,s)(t′)(s′) > 0 =⇒ δ(t,s)(t′)(s′) = 1.

The following Lemma states that for any at-every-step implementation M of
the IMRM I, there exists an at-every-step implementation M′ of I with degree
1 that is probabilistic bisimilar to M.

Lemma 1. Let M |=n
a I for some n ∈ N. Then, there exists an MRM M′ such

that M ∼ M′ and M′ |=1
a I.

Remark 2. Note that M |=d I implies M |=1
a I, since the mapping τ : T → S

witnessing M |=d I induces a functional relation R = {(t, τ(t)) | t ∈ T} which
can be easily verified to be a witness for M |=1

a I.
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The following result identifies the properties that a relation R witnessing
M |=a I has when the MRM M satisfies also M |=d I.

Proposition 1. Let R ⊆ T × S be a relation witnessing M |=1
a I. Then,

M |=d I iff for all (t, s) ∈ R there exists no s′ ∈ succ(s) such that |R−1(s′) ∩
succ(t)| > 1.

We are now ready to establish some basic relationship between the three
semantics in terms of their expressivity. For any semantics x ∈ {o, d, a}, we
denote by �I�x = {M | M |=x I} the family of MRMs that satisfy the IMRM
I with respect to the semantic x.

The following result states that the three semantics presented in this section
have different expressivity, with the at-every-step semantics being the most
expressive semantics, followed by the IMDP semantics which in turn is more
expressive than the once-and-for-all semantics.

Proposition 2. For any IMRM I, �I�o ⊆ �I�d ⊆ �I�a and for some IMRM I ′

these inclusions are strict, i.e., �I ′�o ⊂ �I ′�d ⊂ �I ′�a.

Proof. �I�o ⊆ �I�d and �I�d ⊆ �I�a follow for the arguments sketched respec-
tively in Remarks 1 and 2. For the IMRM I1 in Fig. 1 in particular it holds that
Md ∈ �I1�d \ �I1�o and Ma ∈ �I1�a \ �I1�d. ��

5 Comparing Semantics Against rPCTL

In this section we investigate the IMRM semantics presented in Sect. 4 in the
context of rPCTL model-checking. The rPCTL satisfiability relation naturally
extends to IMRMs by requiring that an rPCTL formula is satisfied by some
MRM implementation.

Definition 8. We say that an IMRM I (existentially) satisfies the formula Φ ∈
rPCTL with respect to the semantics x ∈ {o, d, a}, written I |=x Φ, iff there
exists M ∈ �I�x such that M |= Φ.

The above definition is implicitly given in terms of the initial state s0 of I, but
can be generalized to arbitrary states s ∈ S, as I, s |= Φ by replacing s0 with s.

In the following, we compare the three different semantics with respect to
different classes of rPCTL formulae. To this end introduce a notion of semantic
equivalence.

Definition 9 (Semantic equivalence). For a fragment of rPCTL, L ⊆
rPCTL and two IMRM semantics x, y ∈ {o, d, a}, we say that the semantics
x and y are equivalent w.r.t. L if for any IMRM I and state formula Φ ∈ L,
I |=x Φ ⇐⇒ I |=y Φ.

The next result states that the at-every-step semantics is not equivalent to
the IMDP semantics w.r.t. the full logic.
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Fig. 2. IMRM I2 with at-every-step MRM implementation M2

Proposition 3. The at-every-step semantics is not semantically equivalent to
the IMDP semantics with respect to rPCTL.

Proof. Consider the IMRM I2 and MRM M2 depicted in Fig. 2. One can verify
that M2 |=a I2. Let Φ be the following rPCTL formula

Φ = P>0(X≤1Φ1) ∧ P>0(X≤1Φ2) ∧ P>0(X≤1Φ3),

where

Φ1 = P≥1(X≤1(¬Γ ∧ ¬Λ)), Φ2 = P≥1(X≤1Γ ) and Φ3 = P≥1(X≤1Λ).

Clearly M2 |= Φ as the three outgoing transitions serve to satisfy each of the
sub-formulae Φi (i ∈ {1, 2, 3}).

Consider an MRM M′ ∈ �I2�d. By IMDP semantics, M′ must have an
initial state with exactly two successors, say t′1 and t′2. Therefore there exists
i ∈ {1, 2, 3} such that M′, tj 
|= Φi for any j = 1, 2 as no single successor can
satisfy each Φi simultaneously. Hence, I2 
|=d Φ. ��

The above result is analogous to [5, Section 4.1], where it was proven that
for internal Markov chains the at-every-step semantics and the IMDP semantics
are not equivalent with respect to PCTL.

Reachability Queries. In the rest of the section we focus our attention on a
semantic comparison relative to reachability queries, namely, formulae of the
form P��λ(♦�kΓ ), for arbitrary Γ ∈ AP , k ∈ N>0, λ ∈ [0, 1], 
� ∈ {<,≤,≥, >},
and � ∈ {≤,≥}. We denote by Lreach the set of reachability queries and we
write L≤

reach (resp. L≥
reach) when we fix � = ≤ (resp. � = ≥).

Reachability properties are one of the fundamental questions for the quan-
titative analysis of systems. The atomic proposition Γ may represent a set of
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certain bad states which should be unlikely to be visited, or dually, a set of
good states which should rather be visited with high probability. In the context
of interval Markov chains, Bart et al. [5] have shown that the three semantic
interpretations are equivalent with respect to reachability queries.

In contrast, the ability to express bounds on the reward accumulated until
reaching a some goal state makes the IMPD semantics and the at-every-step
semantics, more expressive than the once-and-for-all semantics relative to reach-
ability queries.

Proposition 4. The once-and-for-all semantics is not equivalent to the IMDP
semantics w.r.t. Lreach.

Proof. Consider the IMRM I3 in Fig. 3 and the formula P>0.8(♦≤3Γ ). Figure 4
shows M3 ∈ �I�d witnessed by the mapping τ(t0) = τ(t′0) = s0 and τ(ti) = si

for 1 ≤ i ≤ 5. Clearly M3 |= P>0.8(♦≤3Γ ).
Figure 5 shows the once-and-for-all MRM implementation of I3, M4, that

maximizes the probability of reaching Γ without exceeding the weight budget of
3. One can see that M4 
|= P>0.8(♦≤3Γ ). ��

It remains to compare the at-every-step semantics and IMDP semantics w.r.t.
reachability queries. To this end we first present two technical lemmas.
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Lemma 2. Let I be an IMRM, M ∈ �I�a, Γ ∈ AP , and k ∈ N. Then, there
exist M≤,M≥ ∈ �I�d such that PM≤(♦≤kΓ ) ≤ P

M(♦≤kΓ ) ≤ P
M≥(♦≤kΓ ).

Proof (sketch). By Lemma 1 and Theorem 1 we can assume w.l.o.g. that M |=1
a

I. To construct M≤ and M≥ we proceed in two steps. We present the construc-
tion of M≤ and then explain how to adapt it for M≥.

(Step 1) We build an MRM M′ from M by unfolding its structure. The
unfolding of each path terminates when its accumulated weight exceeds k or
when a state satisfying Γ is reached. Then, the last state of each unfolded
path, say t, is replaced with an arbitrary once-and-for-all model of I with
initial state t.
Note that P

M(♦≤kΓ ) = P
M′

(♦≤kΓ ) since the probability value is obtained
as the sum over all the cylinders obtained from paths constructed in the
unfolding. Moreover, M′ |=1

a I because M |=1
a I and the unfolding does

not introduce any aggregation.
(Step 2) From M′ we construct M≤. Let R be the relation witnessing M′ |=1

a

I. If R satisfies the conditions of Proposition 1 we choose M′ = M≤. Other-
wise, for each state t of M such that (t, s) ∈ R and |R−1(s′) ∩ succ(t)| > 1
for some s′ ∈ succ(s) we proceed as follows. Let t′ ∈ R−1(s′) ∩ succ(t) be
the successor of t that minimizes the probability of reaching Γ within the
reward bound up to t′, i.e., PM′

t′ (♦≤k′Γ ) where k′ = k − W(σ)(|σ|) and σ
is the finite path from the initial state of M′ to t′. Then we redirect all the
probability mass that was from t to R−1(s′) ∩ succ(t) to the single state t′,
“disconnecting” the set of states (R−1(s′) ∩ succ(t)) \ {t′} from t.
Let M≤ be the MRM obtained from the above procedure. Note that M≤
satisfies the conditions of Proposition 1 and P

M≤(♦≤kΓ ) ≤ P
M′

(♦≤kΓ ).

As for the construction of M≥, (Step 1) is done in the same way while in
(Step 2) t′ is chosen as the one that maximizes P

M′
t′ (♦≤k′Γ ). ��

Lemma 3. Let I be an IMRM, M ∈ �I�a, Γ ∈ AP , and k ∈ N. Then, there
exist M≤,M≥ ∈ �I�d such that PM≤(♦≥kΓ ) ≤ P

M(♦≥kΓ ) ≤ P
M≥(♦≤kΓ ).

Proof (sketch). The proof proceeds in two steps analogously as for Lemma2.
By Lemma 1 and Theorem 1 we can assume w.l.o.g. that M |=1

a I. We
present the construction of M≤ and then explain how to adapt it for M≥.
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(Step 1) We build an MRM M′ from M by unfolding its structure. The
unfolding of each path terminates as soon as its accumulated weight exceeded
k. Then, the last state of each unfolded path, say t, is replaced with a once-
and-for-all model M′′ of I with initial state t such that PM′′

t (♦Γ ) ≤ P
M
t (♦Γ ).

The existence of M′′ is guaranteed by [5, Lemma 4].
Note that P

M′
(♦≥kΓ ) ≤ P

M(♦≥kΓ ) since the probability value is obtained
as the sum over all the cylinders obtained from paths constructed in the
unfolding. Moreover, M′ |=1

a I because M |=1
a I and the unfolding does

not introduce any aggregation.
(Step 2) From M′ we construct M≤ following the same procedure used for
(Step 2) in the proof of Lemma2.

As for the construction of M≥, in (Step 1) we need to choose M′′ such that
P

M′′
t (♦Γ ) ≥ P

M
t (♦Γ ) and (Step 2) is modified as done for Lemma2. ��

Theorem 2. The IMDP semantics and the at-every-step semantics are equiva-
lent w.r.t. Lreach.

Proof. Let I be an IMRM, Φ = P��λ(♦�kΓ ) ∈ Lreach and M ∈ �I�a such that
M |= Φ. We proceed by cases.

If � = ≤, we consider two sub-cases. If 
� ∈ {<,≤} then by Lemma 2 there
exists M≤ ∈ �I�d such that P

M≤(♦≤kΓ ) ≤ P
M(♦≤kΓ ). Therefore I |=d Φ. If


� ∈ {≥, >} then by Lemma 2 there exists M≥ ∈ �I�d such that PM≥(♦≤kΓ ) ≥
P

M(♦≤kΓ ). Hence I |=d Φ.
If � = ≥ we use the same arguments as before by using Lemma 3 in place of

Lemma 2. ��

6 Model-Checking Algorithms

In this section we turn our attention to model-checking different fragments of
rPCTL. By the results of the previous section, each IMRM semantics requires its
own treatment for the full logic rPCTL. For the important fragment of reach-
ability queries in Lreach, we need two algorithms, one for the once-and-for-all
semantics and one for the IMDP semantics. In the following, we restrict ourselves
to formulae with only upper bounds on path-formulae and similar to L≤

reach, we
denote by rPCTL≤ the set of all rPCTL formulae with only upper bounds on the
path formulae.

For the once-and-for-all semantics we reduce the model-checking problem
w.r.t rPCTL≤ to the (existential) model-checking problem for parametric Markov
reward models (PMRMs) [1] with interval constraints on the parameters. Effi-
cient procedures for model-checking PMRMs against various logics have received
a lot of attention in recent years and are now supported by modern tools such as
PRISM [24], PARAM [16] and PROPhESy [10]. For the IMDP semantics we
exploit the fact that all rewards are strictly positive to devise a reduction to the
model-checking problem for the once-and-for-all semantics. For the at-every-step
semantics we leave the model-checking problem for fragments containing L≤

reach

open. We proceed by treating each semantics in turn.
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6.1 Once-and-for-all Semantics

For the fragment rPCTL≤ we present a reduction to the (existential) model-
checking problem for PMRMs with interval constraints on the parameters. We
first recall the definition of PRMMs and then present the reduction. PMRMs
extend MRMs by allowing the transition probabilities to take values in a finite
nonempty set P of parameters. Thus, for any finite nonempty set X, the function
μP : X → [0, 1] ∪ P is a parametric distribution. The set DP (X) is then the set
of all parametric distributions.

Definition 10 (Parametric MRM). A parametric Markov Reward Model
(PMRM) is defined as a tuple MP = (S, s0, ρ, πP , �M) where S, s0, ρ and �M

are defined as for MRMs and for each s ∈ S, πP ∈ DP (S) is the parametric
probability transition function.

A given PMRM gives rise to a set of MRMs by interpreting the parameters as
rational values and making sure that the resulting distribution are probability
distributions (i.e. sum up to 1). Formally, a valuation function κ : Q>0∪P → [0, 1]
is a function such that for all r ∈ Q>0, κ(r) = r, for all p ∈ P , κ(p) > 0 and
for all states s ∈ S,

∑
s′∈S κ(πP (s)(s′))) = 1. We abuse notation and for any

PMRM MP write κ(MP ) for the MRM induced by κ.

Existential Model-Checking. We consider the following decision problem for
PMRMs: given a PMRM MP and formula Φ ∈ rPCTL≤, does there exist a
valuation function κ such that κ(MP ) |= Φ?

The problem is extended with interval-constraints on the parameters as fol-
lows: for all (s, s′) ∈ S × S let Is,s′ = [ls,s′ , us,s′ ] ∈ I be some interval. The
parameter valuation function κ must then also satisfy the following constraints:

∧

(s,s′)∈S×S

κ(πP (s)(s′)) ∈ Is,s′ .

The Reduction. Let I = (S, s0,Π,R, �I) be an IMRM and Φ ∈ rPCTL≤ an arbi-
trary formula. We now construct a PMRM MP and a set of interval constraints
such that if there exists a valuation function κ where κ(MP ) |= Φ, while κ
satisfies the given interval constraints, then I |=o Φ.

Let MP be the PMRM identical to I except that each interval Π(s)(s′) is
replaced by a parameter ps,s′ . For each ps,s′ , the interval constraint that κ must
satisfy, is given by Π(s)(s′) i.e. any parameter valuation function κ must satisfy
the following interval constraints:

∧

(s,s′)∈S×S

κ(ps,s′) ∈ Π(s)(s′).

Assume that there exists a valuation function κ such that κ(MP ) |= Φ in
addition to satisfying the above interval constraints. Without loss of generality,
we assume that all states in κ(MP ) are reachable as all states of any MRM have
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to be reachable. If that is not the case, one can simply remove all unreachable
states as they do not influence satisfiability. By construction, it is clear that
κ(MP ) ∈ �I�o as κ induces a probability distribution for each state s that
satisfies the interval-specifications Π(s) given by I, while preserving rewards
and labels of each state.

Interpreting rPCTL≤ on PMRMs. In literature, papers on PCTL model-checking
for PMRMs only consider step-bounded or unbounded until-formulae, in contrast
to the reward-bounded until formulae in rPCTL≤. This is not a restriction since
any PMRM that contains a state s with a reward greater than 1 can be replaced
by a sequence of states with reward 1. Hence, any upper bound on the formula
can be interpreted as a step-bound in this (larger) model. In the same way,
it is possible to “unroll” the model to reduce (step)-bounded reachability to
unbounded reachability [23, Remark 4]. Thus, any technique for model-checking
PCTL where the until is step-bounded or unbounded on PMRMs can be used
for rPCTL≤ [3,10,16,23,24]. In the case of unbounded until, the model-checking
problem for PMRMs is in PSPACE [19].

6.2 IMDP Semantics

Our approach for verifying properties with the IMDP semantics is based on
the fact that the IMDP semantics is a simple extension of the once-and-for-all
semantics, where one is allowed to choose a different probability distribution
each time a state is visited. Recall that every reward in the model is strictly
positive and we have concrete upper bounds on all path-formulae. Hence, even
if one is allowed to choose a different distribution each time a state is visited,
for the purpose of verifying Φ, we can bound the number of times a different
probability distribution needs to be chosen for any IMDP implementation that
satisfies Φ. Hence, one can do a bounded unfolding of the IMRM that preserves
interval specifications, to encode all possible implementations that may satisfy
Φ. The unfolding itself is an IMRM, where the set of states is the set of all
non-empty finite paths, S+, bounded by a given depth k. Interval-preservation
is ensured by letting the transitioning between any two such states be defined
by the transitioning between their two last states in the original IMRM.

Definition 11 (IMRM k-unfolding). For any IMRM I = (S, s0,Π,R, �I)
and k ∈ N, let I↓k = (Sk, s0,Πk, Rk, �I↓k) be the interval specification preserving
k-unfolding of I, defined as follows2:

– Sk = {σ ∈ S+ | W(σ)(|σ|) ≤ k,

∀0≤i<|σ|.Π(σ[i], σ[i + 1]) 
= [0, 0]}.

– For all σ ∈ Sk ∪ {ε}3 and s, s1 ∈ S, Πk(σs, σss1) = Π(s, s1).
– For any path σ = s1, . . . , sn in Sk, Rk(σ) = R(sn) and �I↓k(σ) = �I(sn).

2 Technically, self-loops must be added for states that represent maximal paths w.r.t
k in order for the unfolding to be a proper IMRM.

3 Where ε is the empty string.
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As any MRM M can be seen as an IMRM with singleton intervals, we abuse
notation and write M↓k for the k-unfolding of the MRM M.

The following two lemmas prove two key properties of our unfolding defini-
tion. The first lemma states that for an IMRM I with initial state s0, if any
successor s0s

′ of s0 in the k-unfolding of I satisfies a given formula Φ, then this
can be verified by changing the initial state to s′ and performing a (k − R(s0))-
unfolding of I where R(s0) is the reward assigned by I to s0. The second lemma
states that whenever an MRM is an IMDP implementation of an IMRM I then
the k-unfolding of M is an once-and-for-all implementation of the k-unfolding of
I. This implies that if from any formula Φ ∈ rPCTL≤ we can define a k ∈ N such
that the k-unfolding of I includes all the paths needed for verifying Φ, we can
reduce the model-checking problem using the IMDP semantics to model-checking
using the once-and-for-all semantics on the k-unfolding of I, I↓k.

Lemma 4. For any two IMRMs defined as Is0 = (S, s0,Π,R, �I) and Is′
=

(S, s′,Π,R, �I) with s′ ∈ succ(s0), k ≥ R(s0), Φ ∈ rPCTL≤ and semantics
x ∈ {o, d, a}, it holds that

Is0↓k, s0s
′ |=x Φ =⇒ Is′↓k−R(s0), s

′ |=x Φ.

Proof. The lemma follows easily from the definition of unfolding and rPCTL
semantics. The condition k ≥ R(s0) ensures that s0s

′ is a state in Is0 .

Lemma 5. For any IMRM I, MRM M and k ∈ N, if M ∈ �I�d then M↓k ∈
�I↓k�o.

Remark 3. Strictly speaking, Lemma5 only holds up to isomorphism as M by
the IMDP semantics may contain states not in I. In this case, the states of M↓k

is not a subset of the states of I↓k as required by the once-and-for-all semantics.

For any formula Φ ∈ rPCTL≤ we define the reward-depth denoted by
K(Φ) ∈ N, on the structure of Φ. For a probabilistic reward-bounded reach-
ability objective of the form Φ = P��λ(♦≤kΓ ), K(Φ) = k implies that only paths
with an accumulated reward of at most k is of interest. Hence, a k-unfolding of
I is sufficient for the purpose of verifying Φ.

Definition 12 (Reward-depth). For every property Φ ∈ rPCTL≤, the reward-
depth, K(Φ) ∈ N is defined inductively on the structure of Φ:

K(true) = 0
K(a) = 0
K(¬Φ) = K(Φ)
K(Φ1 ∧ Φ2) = max{K(Φ1),K(Φ2)}
K(P��λ(X≤kΦ)) = k + K(Φ)
K(P��λ(Φ1U≤kΦ2)) = k + max{K(Φ1),K(Φ2)}



74 G. Bacci et al.

s0

1
s6

1
s7

1

{Γ}

s1

1
s8

1
s9

1

{Γ}

s2

1
s3

1
s4

1
s5

1

{Λ}

[0, 1]

[0, 1]

[0, 1]

[0, 1] [0, 1]

[0, 1]

[0, 1] [0, 1] [0, 1]

1

1

1

Fig. 6. IMRM I4

Example 7. Consider the IMRM I3 in Fig. 3 and formula Φ = P>0.8(♦≤3Γ ). By
definition, K(Φ) = 3 + max{K(true),K(Γ )} = 3. Notice that I3 |=d Φ if and
only if k ≥ 3, with the witnessing implementation being the MRM in Fig. 4.
Consider now the IMRM I4 in Fig. 6 and the property Φ′ = P≥λ1(Φ1 U≤2 Φ2)
where Φ1 = P≥λ2(♦≤2 Γ ), Φ2 = P≥λ3(♦≤3 Λ) and λ1, λ2, λ3 ∈ [0, 1]. For any
semantics x ∈ {o, d, a} it is clear that I4↓k 
|=x Φ′ if k < 5, irrespective of
the concrete values for λ1, λ2 and λ3, as the path s0, s1, s2, s3, s4, s5 must be
preserved. By definition, K(Φ′) = 5 i.e. if one performs an unfolding of I with
a reward-depth less than K(Φ′), one cannot hope to find any implementation
satisfying any concrete instantiation of Φ′.

As indicated by Example 7, K(Φ) is the reward-depth required for the veri-
fication of Φ. Hence, unfolding to a reward-depth greater than K(Φ) should not
influence the satisfaction of Φ. The following lemma proves this monotonicity
property.

Lemma 6 (Monotonicity). For any MRM M, formula Φ ∈ rPCTL≤, k ≥
K(Φ) and ε > 0,

M↓k |= Φ =⇒ M↓k+ε |= Φ.

The next lemma states that if an MRM M satisfies Φ, then the K(Φ)-
unfolded model M↓K(Φ) also satisfies Φ i.e. unfolding to a reward-depth of at
least K(Φ) is sufficient to verify Φ.

Lemma 7. For any MRM M ∈ �I�d and formula Φ ∈ rPCTL≤,

M |= Φ =⇒ M↓K(Φ) |= Φ.

We now present the main theorem of this section, stating that rPCTL model-
checking for IMRMs with the IMDP semantics can be reduced to model-checking
using the once-and-for-all semantics on an IMRM constructed by unfolding to
the reward-depth required by the given formula of interest.
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Theorem 3. For IMRM I and formula Φ ∈ rPCTL≤,

I |=d Φ =⇒ I↓K(Φ) |=o Φ.

Proof. We assume I |=d Φ, hence ∃M ∈ �I�d.M |= Φ. By Lemma 7, M |=
Φ =⇒ M↓K(Φ) |= Φ and by Lemma 5 we get M ∈ �I�d =⇒ M↓K(Φ) ∈
�I↓K(Φ)�o. Hence, I↓K(Φ) |=o Φ as required. ��
Complexity. For any IMRM I = (S, s0,Π,R, �I) let Rmin = mins∈S R(s) be
the smallest reward present in I. The unfolded model, I↓K(Φ) is then a model

of size O
(
|S|	 K(Φ)

Rmin

), as each state of I↓K(Φ) is a leaf of the underlying K(Φ)-

bounded unfolding of I which is a tree with branching factor O(|S|) and height
O

(
�K(Φ)

Rmin
�
)
.

Remark 4. By Theorem 2, for any Φ ∈ L≤
reach the approach presented in Sect. 6.2

is valid also for model checking Φ w.r.t. the at-every-step semantics.

7 Conclusion and Future Work

We investigated model-checking questions relative to IMRMs specifications inter-
preted according to three semantics: once-and-for-all, interval Markov decision
process, and at-every-step. This work builds on the results of [5] on interval
Markov chains by introducing an additional ingredient: rewards. We showed
that by introducing rewards the one-at-for-all semantics is no longer expressive
enough to answer (existential) reachability queries with respect to the other two
semantics. Nevertheless, the IMDP semantics and the at-every-step semantics
are still logically equivalent with respect to the reward-bounded reachability
fragment of rPCTL.

We then presented how to algorithmically solve the model-checking problem
for IMRMs by proposing different reductions to the model-checking problem for
parametric Markov reward models (PMRMs). First, we presented a reduction to
the model-checking problem of PMRMs for model checking IMRMs interpreted
over the once-and-for-all semantics. Then, for the IMDP semantics, we presented
a reduction to the model-checking problem for the once-and-for-all semantics,
via a finite unfolding of the model. Crucial for our reduction is that the state
rewards are positive. Notably, this reduction can also be used also to answer
reward-bounded reachability queries for IMRMs interpreted according to the
at-every-step semantics.

As future work, we plan to further investigate the model-checking problem
with respect to the at-every-step semantic interpretations of IMRMs.
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