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Abstract. In embedded real-time systems, a functionality is often
implemented as a dataflow chain over a set of communicating tasks. An
important requirement in such systems is to restrict the amount of time
an input data requires to impact its corresponding output. Such tem-
poral requirements over dataflow chains also known as the end-to-end
latency constraints, are well-studied in the context of lock-based block-
ing inter-task communication. However, lock-based communication does
not preserve the functional semantics and complicates latency calcula-
tion due to its reliance on response times of the communicating tasks. We
propose to use non-blocking inter-task communications to preserve the
functional semantics. Unfortunately a naive method to compute the reac-
tion latency by adding worst-case delays between each write-read pair is
unsafe for systems with non-blocking communication. In this paper, we
study a non-blocking communication protocol. We present an algorithm
to compute the exact worst-case delay in a cause-effect chain, which pro-
vides a safe estimation of the worst-case cause-effect latency for systems
using this protocol for non-blocking communication.

1 Introduction

A simple use case in real-time embedded applications is a dataflow chain where
a sampler task samples an input data, passes the data to a controller task for
processing and the processed output is used by an actuator task. The specifica-
tion of the system often includes temporal constraints on such dataflow chains,
also known as the end-to-end timing or latency constraints. More specifically, a
latency constraint restricts the amount of time required before the input is taken
into account by the corresponding output. Latency constraints are important
temporal requirements in real-time systems implemented by multiple communi-
cating tasks with different periods. Proving that the implementation of a system
satisfies all such requirements is non-trivial but mandatory for safety-critical
reasons.

A widely used practice is to design a system using high-level model-based
designer tools such as Simulink [1] and verify all the functional requirements
using simulation. System design tools like Simulink commonly use specific func-
tional semantics such as the one for Synchronous-Reactive (SR) programming [3]
which assumes computation and communication time as zero. When such a
c© Springer Nature Switzerland AG 2021
E.-R. Olderog et al. (Eds.): Jonsson Festschrift, LNCS 13030, pp. 41–56, 2021.
https://doi.org/10.1007/978-3-030-91384-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91384-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-91384-7_3


42 J. Abdullah and W. Yi

design is implemented on a real platform using preemptive scheduling, the fol-
lowing problems related to inter-task communication arise in preserving any
functional semantics [4]:

– Data consistency: If preemption occurs in the middle of an input-output oper-
ation, data can get corrupted.

– Deterministic data transfer: Input-output operations of a task may occur at
different time points in different jobs depending on the point in the program
where preemption takes place. Similarly, non-determinism in execution times
creates variation in the timing of the data transfer operations.

The most widely used solution for inter-task communication is lock-based
communication. Lock-based communication in a complex embedded system such
as the Engine Management System (EMS) [5] makes the design inflexible to
change as the computation of end-to-end timing constraints depends on the exe-
cution times of all communicating tasks. Besides, lock-based protocols are not
designed to preserve any functional semantics [4]. It has been reported that
existing state-of-the-art tools for end-to-end timing constraint analysis (in the
automotive domain) ignore functional semantics preservation and model trans-
formations are required to ensure data consistency [6].

In a recent work [7], we have shown that non-blocking communication pre-
serving functional semantics is critical for the design of dynamically updatable
systems. In this context, we propose to use a wait-free inter-task communication
protocol called the DBP [4] in system implementation. DBP preserves functional
semantics similar to SR and its correctness does not depend on the execution
times of the tasks. This protocol is widely used for designing control systems in
the context of synchronous programming. In this work, we study the problem of
end-to-end latency computation under this protocol. Specifically, our interest is
in computing the reaction latency [8] of an input in a multi-rate dataflow chain
either initiated by a periodic or a sporadic task. Here the main challenge lies
in the multi-rate nature of the communication where a writer can write at a
higher or a lower rate compared to its reader. As a result, input data may not
propagate to output or may propagate multiple times.

We show that for tasks using DBP, a worst-case reaction latency computa-
tion algorithm that only considers the worst-case delay between releases of each
writer-reader pair in a chain provides an unsafe estimation. We also show that
the unsafeness of this naive approach originates from the effect of oversampling-
undersampling of data in the presence of read-write pairs with non-harmonic
periods. We give a safe worst-case reaction latency computation algorithm for
the input data that propagates to the output of the chain. This algorithm pro-
vides the exact worst-case delay between releases of the first job and the last job
in a cause-effect chain.

The rest of the paper is organized as follows. First, in Sect. 2, we review the
previous related work on end-to-end timing analysis in the context of multi-
rate systems and non-blocking communication. Next in Sect. 3, we give details
of the problem and the system model considered in this work. Our proposed
latency analysis method is described in Sect. 4 and evaluated in Sect. 5. Finally,
we conclude the paper with a summary together with future works in Sect. 6.
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2 Related Work

The analysis of latency constraints in multi-rate systems using asynchronous
(non-blocking) communication was first studied in the context of synthesizing
task parameters [9]. A renewed interest in such analysis stems from an indus-
trial publication [10] where the authors propose a framework to calculate end-
to-end latencies in automotive systems supporting the asynchronous commu-
nication model. Existing state-of-the-art tools for latency computation such as
Symta-S [11] are applicable at the implementation level and mostly based on the
availability of lock-based communication. Until recently, state-of-the-art latency
analysis techniques such as [12] did not consider the preservation of any func-
tional semantics. Recent research from Bosch [6] emphasized the preservation of
model-level functional semantics in end-to-end latency estimation. Similarly, the
industrial trend to replace traditional distributed embedded systems with fewer
multicore chips increases the potential of semantic preserving non-blocking com-
munication which is difficult to implement in distributed architecture [13].

Non-blocking asynchronous communication for real-time systems is first con-
sidered in [14] to meet the freshest value semantics, assuming the data validity
time as the worst-case response time of a reader. In [15], an asynchronous proto-
col that guarantees data consistency with the freshest-value semantics between
a writer and multiple readers is presented. This protocol needs hardware-
dependent compare and swap operations. This idea of data validity is also used
in [16] and [17] to optimize memory use while preserving the freshest value and
the SR semantics respectively. These protocols compute a maximum buffer size
by upper bounding the number of times the writer can produce new data while
a given data is considered valid by at least one reader.

In [18], a double buffer mechanism for one-to-one communication with SR
semantics is presented. In the case of uniprocessor systems, given that the code
that updates the buffer index variables are executed inside the kernel at task
release time, there is no need for a hardware mechanism to ensure atomicity
when swapping buffer pointers or comparing state variables. In [4], the Dynamic
Buffering Protocol (DBP) is defined for single-writer multiple-reader systems
with unit communication delay links, under the assumption that each job fin-
ishes before its next release. In [19], the communication scenario presented in [4]
is further generalized to handle arbitrary multi-unit communication delays and
multiple jobs of a task active at the same time. In [20], multi-task implementa-
tion is formulated as an MILP (Mixed Integer Linear Programming) optimiza-
tion problem which tries to minimize buffer places or total read-write delays in
the system to improve control performance. Commercial system design software
Simulink [1] provides a wait-free access control mechanism called the Rate Tran-
sition (RT) similar to DBP. In the case of communicating tasks with identical
phase and harmonic periods, the RT mechanism guarantees data consistency
and functional semantics preservation. However, all the above-mentioned works
do not consider the computation of latency values in multi-rate dataflow chains.

An alternative non-blocking communication concept called the logical execu-
tion time (LET) [21] assumes I/O as time-triggered zero execution time activity
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which is performed at the release time (read) and the deadline (write) of the
task. Although LET preserves time-triggered functional semantics independent
of scheduling methods, it increases the delay in data reading as a task can finish
computation of data long before the deadline of the current job which affects
the end-to-end latency [22].

Prelude [23] is an architecture language intended for the design of multi-rate
dependent control systems preserving functional semantics in communication. It
supports rate-transition operations similar to Simulink for the needs of multi-
rate real-time systems. The communication model assumed in Prelude is causal
where a reader is not allowed to start before the completion of its writer. Such
causal communication is considered as job-level dependencies where the con-
straint specifies which job of a writer task needs to finish its execution before
a job of the reader task can start. Job-level dependency is used in [24,25] for
computing latency constraints at the model-level.

3 Problem Formulation

In this section, we introduce the details of the end-to-end latency problem that
we solve and the system model that we use for it. Our considered model is based
on automotive software architecture AUTOSAR [8] and end-to-end latencies of
complex automotive software like EMS [5].

3.1 Execution Model

An automotive software system consists of multiple software components. The
software components that can not be decomposed further are called atomic soft-
ware components or runnables. In an implementation, a runnable can be imple-
mented as a function that is called whenever required, within the body of an
operating system (OS) task. Usually, there are many more runnables in a system
than the maximum number of tasks allowed by automotive operating systems.
So runnables having the same functional period according to control dynamics
are mapped into an OS task with the same period. In the simplest case, one
functionality is realized by a single runnable. However, complex functionalities
are typically implemented using several communicating runnables which can be
distributed on different OS tasks.

We assume runnables of a system S is implemented by a set of n periodic
or sporadic real-time tasks Γ = {τ1, τ2, ..., τn}. We denote a periodic task τi
by a tuple (Ci, Ti,Di) where WCET Ci =

∑
Cj

i , Ti is the period and Di is
the relative deadline. Interrupt service routines that are triggered by hardware
events are usually modeled as sporadic tasks in the system. In the case of a
sporadic task, Ti denotes the minimum inter-arrival time between consecutive
jobs. In automotive operating systems only one job of a recurring task can be
active at a time. This restriction implies all periodic or sporadic tasks to have
deadlines less than or equal to their respective periods.
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Tasks are scheduled by the operating system based on the assigned (fixed)
priorities. The scheduling policy may be either preemptive or cooperative. Pre-
emptive tasks may always preempt lower priority tasks, while cooperative tasks
may preempt a lower priority one only at runnable boundaries. Preemptive tasks
are assumed to have a higher priority than any cooperative task.

3.2 Communication Model

Communication between tasks is based on shared memory locations also known
as labels. A label can be a shared variable allocated in the memory or a register.
We assume tasks execute like read-execute-write, where the task reads all the
required data at the beginning of execution and writes at the end of its execution.

For accessing a label, AUTOSAR allows two different mechanisms. In explicit
or direct access, a runnable directly reads or writes memory location. As a
result, data may be overwritten before the reader finishes its reading result-
ing in data inconsistency. In a more frequently used communication mechanism
called implicit access, a task-local copy for data access is created. The copying
is performed at the beginning of the job execution and the modified data is
written back at the job’s termination. Using this mechanism the value of a used
label does not change during the runtime of a job and all runnables operate on
consistent data. This mechanism is a form of non-blocking communication but
does preserve any functional semantics.

In this paper, we use a different non-blocking communication protocol that
preserves functional semantics [4] similar to synchronous programming. The
principle of synchronous programming is based on the idea of zero time compu-
tation and communication. As a result, a data writer task computes and writes
its data at the same time when it is released. Then the data reader task can
always read the freshest data available at its release time. Here the release time
is the time when the job of a task becomes ready for execution.

Let tki represents the release time of the k-th job of task τi where tki ∈ R≥0.
Now job release times of the task τi forms a set Ri = {t1i , t

2
i , · · · } where tki < tk+1

i .
Given time t ≥ 0, we define ni(t) to be the maximum index of any job from τi
that has released before or at t. By definition, ni(t) = supk{k|tki ≤ t}. We denote
xk
i and yk

i to be the data that the k-th job of τi reads and writes respectively.
Now for inter-task communication between writer task τi and its reader task τj ,
synchronous semantics assumes:

xk
j = ym

i ,where m = ni(tkj ). (1)

As for the case when τi has not occurred yet, m = 0 and the reader task
should read a default value.

In a real execution, tasks do not have zero execution time. In the case of
preemptive scheduling, it may be the case that τj preempts τi before comple-
tion. As a result, the τi outputs may not be available for τj computations. To
overcome this problem, a high priority task should read the data written by the
job immediately before the latest released writer job as:
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xk
j = ym

i ,where m = max{0, ni(tkj ) − 1}. (2)

For systems where all tasks execute with the same period, synchronous
semantics is preserved when the tasks are executed according to their data depen-
dency order. In the case of multi-rate or multi-periodic systems, data may be
needed to be communicated between two tasks with different execution rates
or periods. The Dynamic Buffering Protocol (DBP) [4] is designed to preserve
synchronous semantics in multi-rate multi-task implementation.

We now briefly introduce the DBP protocol in the context of fixed-priority
real-time scheduling. The correctness of the protocol is dependent on the follow-
ing assumptions:

1. The taskset that executes functions communicating using synchronous seman-
tics is schedulable.

2. There is no cyclic communication between tasks without delayed data prop-
agation.

3. All the tasks in the taskset have their relative deadlines constrained by their
periods or minimum inter-arrival times.

4. Each pair of communicating tasks should have different fixed priority. In
general, the protocol works for any priority assignment policy which assigns
a fixed priority to a job during its release time.

To ensure deterministic communication between a writer and its reader tasks,
the DBP protocol uses the following rules:

1. A low priority reader job reads the data written by the latest job of its high
priority writer released before or with it.

2. A high priority reader job reads the data written by the predecessor job of the
latest job of its low priority writer that is released before or with the reader.

The protocol manages the buffer that is written by a writer task and later
read by a reader task. Whenever a job is released the kernel or runtime system
modifies the pointer to variables which the released task will use for reading and
writing. Similarly, when a reader finishes, the runtime marks the used buffer as
free. If a reader and a writer are released simultaneously then the pointer fixing
function for the writer should execute before the ones for the reader. The code
for the original software remains unchanged.

It has been shown that a writer with N readers requires maximum (N + 2)
buffer places using the DBP protocol [4]. This bound is intuitive as in the worst-
case situation, all the N readers may be still using the different data written by
the previous writer jobs when a new writer job is released, thus N buffer places
can be in use. The additional two buffer places are to keep the latest and the
one-before-latest data to be used by any future arrival of high and low priority
readers. Note that here the future release of any reader job means their previous
job is finished and one of the previously occupied N buffers is no longer in use.

Automotive software systems sometimes use co-operative scheduling. A low
priority co-operative task can block a high priority co-operative task if it starts
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executing before the release of the second one. However, as long as the tasks
are schedulable the DBP protocol does not fail as it is not dependent on the
finishing time of the jobs and the protocol ensures a reader job never reads from
a writer job that is released after it (Fig. 1).

3.3 Latency Requirements

τ1
t

τ2
t

τ3
t

Lr

Fig. 1. Reaction latency in a cause-effect chain τ1 → τ2 → τ3 comprising three periodic
tasks. The arrows indicate flow of data from one task to another one.

In automotive software, a complex functional requirement is often implemented
by a chain of runnables where each of these except the first one reads the data
written by its predecessor and writes data for its successor. The first runnable
in the chain is either released by an event (sporadic) or a periodic polling func-
tion. These type of chains are called event chains or cause-effect chains [8]. The
runnable that initiates an event chain is called its stimulus and the final runnable
in the chain is called its response. A simple example of an event chain is wherein
data is sensed by runnable for sensing, passed on to control runnables to compute
and finally output of the control runnable is used by the runnables for actuation.
A cause-effect chain does not contain any cyclic data dependency [5].

Each of these cause-effect chains is associated with an end-to-end latency
requirement. In this work, we are concerned with end-to-end latency from the
perspective of a stimulus also known as reaction latency. A reaction latency
constraint of L time units to a particular stimulus implies that the first response
should occur no later than L time units after that input. As each runnable is
mapped into a task and tasks execute in a read-execute-write pattern, we can
express reaction latency as the duration between the release time of the task with
the first runnable and the completion time of the task with the final runnable.

A cause-effect chain may consists of tasks executing at different rates or
periods. Such multi-rate dataflow chains thus often suffer from the effects of
undersampling or oversampling of data. Undersampling happens when a slow
reader reads from a fast writer and not all data will be read. Oversampling occurs
when a fast reader reads from a slow writer and an input data propagates to
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the output multiple times. With these effects, it is challenging to calculate the
reaction latency of multi-rate cause-effect chains due to the following reasons:

– If the chain contains any undersampling effect then the reaction latency cal-
culation should only consider the input data that reaches the output.

– If the chain contains any oversampling effect then the reaction latency calcu-
lation should only consider the delay of the first reader job (out of multiple
readers that reads the same data) which can propagate data to the next
segment of the chain.

Additionally, we have to consider the effect of DBP protocol in reaction
latency which preserves the functional semantics mentioned earlier.

3.4 Problem Statement

Given a cause-effect chain C = τ1 → τ2 → . . . → τN with either N synchronously
released periodic tasks or a sporadic task τ1 with N − 1 synchronously released
periodic tasks, we want to calculate worst-case reaction latency of any stimulus
of C in uniprocessor where tasks use fixed-priority preemptive scheduling and
non-blocking DBP communication protocol.

4 Reaction Latency Estimation

In this section, we present how to compute the worst-case reaction latency of
a cause-effect chain in a uniprocessor where tasks are communicating using the
non-blocking DBP protocol and scheduled using fixed priority scheduling. As
the definition of the worst-case reaction latency, we consider the maximum time
that an input data requires to reach the output for the first time by traversing
a cause-effect chain. Such an interval starts with the release time of the first job
in the chain and finishes with the finishing time of the last job that generates
the final output.

4.1 Reaction Latency in Non-blocking Communication

There are two cases of data flow between tasks with different priorities where
DBP uses different operations. According to DBP protocol, written data is valid
for high priority readers from the release time of the next writer job until the
moment before the release of a writer job after that. In the case of low priority
readers, the written data is only valid during the interval starting from the writer
job release until the moment before its next release. In both cases, the readers
released during the defined interval will read the data.

The above cases do not assume anything about periods of the communicating
tasks. If the tasks have fixed periods then the oversampling or undersampling
effects determine the latency of the propagated data. Note that, the use of a
non-blocking communication protocol ensures that the delay of data propagation
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from a writer to a reader does not depend on the response time of the writer
job. Instead, the time distance between the release times of a writer job and its
corresponding reader job determines how late the data reaches its final output
task. The only response times required to calculate reaction latency are the
response times of the jobs of the final task in the chain. So, first we consider
a naive way to calculate the worst-case reaction latency of a cause-effect chain
τ1 → τ2 → . . . → τN as

L1N =
N−1∑

i=1

Δi→i+1 + RN (3)

where Δi→i+1 is the worst-case data propagation delay between tasks τi and τi+1,
and RN is the worst-case response time (WCRT) [26] of the last reader task τN .
Here the data propagation delay means the time distance between release times
of a writer job and its corresponding reader job. RN can be calculated by the
smallest value of RN that satisfies the recursive equation

RNi
= Cr +

∑

j∈hp(i)

⌈
RNi

Tj

⌉

· Cj . (4)

Note that due to the effect of undersampling a data may not reach the output
of the chain. Similarly, due to the effect of oversampling, the job that propagates
the data may not be the first job that reads this data. As a result, Algorithm 1
may not give a safe overapproximation of the worst-case reaction latency of the
input data that reaches the output.

To show the problem of adding local worst-cases in delay computation, we
use a simple cause-effect chain τ1 → τ2 → τ3 with three periodic tasks as shown
in Fig. 3. We assume prior(τ3) < prio(τ1) < prio(τ2). As we see from the Figure,
due to the combination of low to high (oversampling) and high to low (under-
sampling) data propagation, the first job of τ2 that reads data from τ1 is not
propagating data to the next reader task τ3. Note that such an effect can only
happen when the writer and its reader task have non-harmonic periods. This
makes Algorithm 1 unsafe as it assumes that the first reader of any data is
always propagating it (Fig. 2).

We observe that if a cause-effect chain contains data exchange between a
fast writer and a slow reader then many of the writer jobs will not be able to
propagate data to its reader task. In the simplest case, we consider the cause-
effect chain consists of only two tasks executing at different rates or periods. In
a two task event chain, we have a writer task τw = (Cw, Tw,Dw) and a reader
task τr = (Cr, Tr,Dr). According to DBP protocol, a reader job only reads data
from two types of writer jobs released before or with it. The first type used
in high to low priority communication is the latest writer job that is released
before or with the release of the reader. If the reader job is released at time t
then the maximum index of a writer job released in the interval [0, t] is � t

Tw
�. In

case of low to high priority communication, the relevant job is the one released
immediately before the latest writer job. The index of such a job is � t

Tw
� − 1.
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τ1
t

τ2
t

τ3
t

Lr

Fig. 2. The effect of oversampling in reaction latency of a cause-effect chain. The
arrows indicate dataflow between tasks. The dashed arrow shows the first read that is
not propagated.

Based on the observations regarding data misses in a cause-effect chain, we
have an algorithm to compute delays of all data that reach from input to output.
The algorithm shown in Fig. 3 starts from the jobs of the final task in the chain
and computes indexes of the writer jobs that are propagating each of the data. All
possible job release combinations of a synchronous periodic taskset are present
in the hyperperiod of the taskset which is equal to the Least Common Multiple
(LCM) of all the periods in it. As DBP protocol also requires reading data
from the previous period of the writer, our algorithm needs to check job release
propagation in an interval of at least twice the length of the hyperperiod. This
requirement is necessary because the first two tasks in a chain can have low
to high priority communication. The algorithm works like this, we use a two-
dimensional matrix M where each row represents a task in the chain and each
column represents a data propagation path. Starting from the last row with job
indexes of the output task, we calculate the indexes of the writer jobs using
� t
Tw

�−1 or � t
Tw

� based on priorities of the reader and writer tasks where t is the
release time of the reader job. A special case happens when the calculated index
becomes negative. The origin of this negative value is low to high communication
in DBP. In it, the initial reader jobs are reading a default value due to the
absence of propagated data. We mark these indexes with −1 in the matrix. In
the computed matrix, a non-negative value in the item M [i][j] indicates the job
index of the job of task τi−1 that propagates data to (j − 1)-th job of the final
output task in the chain.

The output matrix of the algorithm in Fig. 3 captures information of all the
jobs that are included in any data propagation path of a cause-effect chain that
reaches the output. To get the maximum delay in any such path from M , we use
the algorithm in Fig. 4. This algorithm checks for each non-negative job index
of the input task τ0, the corresponding release distance of its reader job from
the output task τN−1. As we are only concerned with the first output of data,
the algorithm skips the input data that are read multiple times. The maximum
value among these distances is the maximum delay a data suffers reaching from
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1: C: chain {τ0, τ1, . . . , τN−1} of N tasks
2: M : N × (2 · P + 1) zero matrix where P = LCM(C)

TN

3: procedure End-to-end(T, M)
4: ci ← 0
5: for j = 0 to 2 · P do
6: M [N − 1][j] ← ci
7: ci ← ci + 1
8: for i = N − 1 to 1 do
9: for j = 0 to 2 · P do
10: t ← M [i][j] · Ti

11: if prio(τi) > prio(τi−1) then
12: w ← � t

Ti−1
� − 1

13: else
14: w ← � t

Ti−1
�

15: if (w · Ti−1 ≥ 0) then
16: M [i − 1][j] ← w
17: else
18: M [i − 1][j] ← −1
19: return M

Fig. 3. Algorithm for computing delays in all cause-effect chains where data reaches
the output

1: C: chain {τ0, τ1, . . . , τN−1} of N tasks
2: M : N × (P + 1) matrix from algorithm in Figure 3.
3: procedure Find-Max-Chain(T, M)
4: Max ← 0
5: V ← 0
6: Prev ← −1
7: for j = 0 to 2 · P do
8: if (M [0][j] ≥ 0) ∧ (M [0][j] �= Prev) then
9: V ← M [[N − 1][j] · TN−1 − M [0][j] · T0

10: Prev ← M [0][j]
11: if V > Max then
12: Max ← V
13: return Max

Fig. 4. Algorithm for finding maximum delay in cause-effect chains.
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S Task
t

P Task
t

λ

Tr − λ

Fig. 5. Worst-case situation in communication between a high priority sporadic writer
task and its periodic reader. The sporadic task is released λ > 0 time units after the
previous reader job.

the input to the output. Finally, a safe upper bound of the worst-case latency
can be calculated by adding the WCRT of the final task with the calculated
delay. We denote this latency computation method as Algorithm 2.

Note that the complexity of Algorithm 2 is linear in the size of the resulting
matrix M . This means our algorithm has a time-complexity linear in the size of
the hyperperiod of the tasks in a cause-effect chain. The hyperperiod is in the
worst-case exponential with respect to the number of tasks of the chain. However,
this worst-case happens when all the communicating tasks have co-prime periods
which is a rare case in practice.

4.2 Data Propagation Delay Between Sporadic Input
and Synchronous Periodic Output Tasks

Now we consider a special type of cause effect chain where the first task in the
chain is released sporadically with a minimum inter-arrival time. Similar to the
analysis of periodic tasks, we first consider the simple case of a sporadic writer
τw and a periodic reader task τr. As τw is sporadic, Tw is the minimum inter-
arrival time between two writer jobs. We assume a sporadic writer task is always
assigned higher priority than its reader task. This is reasonable considering the
fact that sporadic tasks are event-triggered for capturing input events (Fig. 5).

For Tw > Tr, the reader task will always read the latest data written by the
writer. Note that for Tw ≤ Tr, multiple sporadic writer jobs can release between
releases of two consecutive reader jobs. As the sporadic writer job with new data
can arrive indefinitely later after Tw, even the slowest periodic reader task will
oversample in the absence of new writer jobs. In that case, the delay suffered by
the first reader job determines the reaction latency of the sporadic writer. In the
worst-case, the latest sporadic writer releases immediately after the release of a
reader job to maximize the delay for the next release of the reader job that will
read the data for the first time. Hence the maximum delay between releases of
the periodic reader and sporadic writer is

Shl(τw, τr) = Tr − λ (5)
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where λ > 0 is the smallest granularity of time by which an operating system
can separate two consecutive job release events.

Suppose we have a cause-effect chain τ1 → τ2 → . . . → τN where τ1 is
sporadic and rest of the tasks are periodic. We calculate the maximum delay
D2N for the periodic part of the chain (τ2 to τN ) using either Algorithm 1 or
Algorithm 2. If prio(τ1) > prio(τ2), then using Eq. 5 we can calculate a safe
upper bound on worst-case reaction latency as

LS
1N = T2 − λ + D2N + RN . (6)

5 Evaluation

For evaluation, we implemented the algorithms described in Sect. 4 using Python
programming language. We consider cause-effect chains from the Bosch case
study of an EMS [5]. The case study is for a multi-core platform with a global
memory and local scratchpads. Interestingly, each core can access all the scratch-
pads via a crossbar connection. Although the chains in the case study allow
placing tasks in different cores, we consider all the tasks of a chain to execute
in the same processor. This is reasonable as we ignore memory access overhead
and the only effect of placing tasks in different core in our analysis is the change
of WCRT values of the final output task. In the case study, all the periodic tasks
have periods in milliseconds (ms) such as 1, 2, 10, 20, 50, 100, 200, 500 and 1000.
Sporadic tasks have their inter-arrival times specified in microseconds. All the
tasks in the case study are assigned unique priorities using rate-monotonic pol-
icy [27]. These priorities are positive integers where a large value means a high
priority.

In the evaluation, we used Algorithm 1 and Algorithm 2. We want to highlight
the unsafeness of Algorithm 1 and use the following result from [28]:

Δi→i+1 =

{
Ti + min(Ti, Ti+1) − gcd(Ti, Ti+1), if πi < πi+1

min(Ti, Ti+1) − gcd(Ti, Ti+1), if πi > πi+1

(7)

where πi represents priority of τi.
Figure 6 shows reaction latency computation of three chains with periodic

tasks. Here the first chain is from the case study [5]. Note that, as each pair
of tasks in the considered chains has harmonic periods, both of our algorithms
computed the same latency values. For the third chain, the reaction latency is
the WCRT of the output task because all the write-read pairs have high-to-low
data transfer.

Next, we compute reaction latency of cause-effect chain with sporadic stim-
ulus where we consider λ is 1µs. We use two such chains where minimum inter-
arrival times of sporadic input tasks are specified in microseconds. For calcula-
tion, we convert periods of the periodic tasks into microseconds. Figure 7 shows
the latency of two such chains where both of our algorithms give identical latency
due to the harmonic periods of the periodic tasks. Here the first sporadic chain
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Chain Periods Priority Latency Alg1 Latency Alg2
100 → 10 → 2 [1, 2, 3] 110 + R2 110 + R2

20 → 10 → 100 [2, 3, 1] 20 + R100 20 + R100

10 → 20 → 50 [3, 2, 1] R50 R50

Fig. 6. Reaction latency computations using Algorithm 1 and 2 where Ri is the WCRT
of task with period i.

Chain Periods Priority Latency
800 → 2000 → 50000 [3, 2, 1] 1999 + R50000

6660 → 10000 → 20000 [3, 2, 1] 9999 + R20000

Fig. 7. Reaction latency computations for chain with sporadic task where Ri is the
WCRT of task with period i.

Chain Periods Priority Latency Alg1 Latency Alg2
10 → 35 → 50 [3, 2, 1] 35 + R50 30 + R50

7 → 1 → 100 [2, 3, 1] 7 + R100 13 + R100

100 → 3 → 8 [1, 3, 2] 104 + R8 108 + R8

Fig. 8. Reaction latency computations with non-harmonic periods using Algorithm 1
and 2 where Ri is the WCRT of task with period i.

is from [5] and the second chain assumes an angle-synchronous task as sporadic
input.

Finally, Fig. 8 shows how reaction latencies computed by both algorithms
differ in the presence of non-harmonic periods between communicating tasks.
We used three chains each consisting of three periodic tasks where all write-read
pairs do not have harmonic periods. We see for the second and the third chain
of Fig. 8, Algorithm 1 computes unsafe lower delays compared to Algorithm 2.
As the differences in calculated delays are not so large, it is intuitive that the
usefulness of Algorithm 2 will be more evident in longer chains with more non-
harmonic read-write pairs. However, the maximum number of tasks in multi-rate
cause-effect chains is three in the case study [5].

6 Conclusion

In this paper, we have studied the problem of estimating the worst-case reaction
latency of a cause-effect chain in the multi-rate real-time system that uses non-
blocking inter-task communication. We have shown that any naive estimation
algorithm that combines the worst-case data propagation delays of each write-
read pair is unsafe. We provide an algorithm to compute the exact worst-case
data propagation delay between releases of a stimulus and its response in cause-
effect chains. Our algorithm does not depend on the response times of the data



Latency with Non-blocking Communication 55

writer jobs and only assumes the system to be schedulable. An evaluation based
on a realistic system [5] shows that our algorithm is able to remove the unsafeness
of the naive approach.

As future work, we want to provide a more efficient algorithm for reaction
latency computation that can construct the global worst-case situation without
enumerating paths of all reachable data. We will extend this work for multi-
core platforms and will evaluate the overheads of the considered non-blocking
communication protocol. Another interesting direction in latency computation is
to consider age latencies [8]. Age latencies are important for control performance
but these are more relevant in the system which can tolerate deadline misses.

Finally, we would like to thank authors Bengt Jonsson and Hans Hansson for
their seminal work [2] on temporal logic to check timing properties in probabilis-
tic chains. To the best of our knowledge, their work is one of the earliest known
contributions to check properties similar to the reaction latency. The problem is
still relevant in different settings and their pioneering work continues to inspire
us.
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