
A Taxonomy and Reductions for Common
Register Automata Formalisms

Simon Dierl(B) and Falk Howar(B)

Department of Computer Science, TU Dortmund University, Dortmund, Germany
{simon.dierl,falk.howar}@cs.tu-dortmund.de

Abstract. Register automata model languages over infinite alphabets.
A number of publications define different register automata formalisms.
Equal expressiveness has been conjectured for many formalisms but a
formal analysis is still open. In this paper on the occasion of the 63rd

birthday of Bengt Jonsson we examine if these formalisms are equally
expressive. We define a taxonomy to describe the different formalisms. By
combining small-step reductions, we demonstrate that all models have
equal expressiveness. We link these to model-specific complexity results
for the NonEmptiness problem and decide which taxonomy features
determine the complexity of NonEmptiness. The taxonomy enables
formal classification of future models. The reductions permit transfer
of formalism-specific results to other formalisms.

Keywords: Register automata · Non-emptiness · Decidability ·
Expressiveness

1 Introduction

Finite state machines are a common tool for modeling languages over finite
alphabets and are amenable to algorithmic analysis. In recent years, the study
of automata operating on infinite alphabets has gained some attention, e.g., in
the field of automata learning [12]. The first extension of finite state machines
to infinite alphabets was proposed by Kaminski and Francez [15]. An exam-
ple of such a register automaton that can recognize strings in which a single
character is repeated is given in Fig. 1. Subsequently, register automata have
been extensively studied in literature. Many publications choose to use their
own register automaton models, or variants of existing models. These models
are more amenable to proofs or can express real-world concerns more succinctly.
The succinct canonical register automaton [5,6] in Fig. 2, for example, expresses
a fragment of the XMPP instant messaging protocol [21] in a way that is concise,
easily understood, and can be inferred algorithmically [13] from tests.

While occasionally, the expressiveness of such formalisms has been noted
to at least capture finite-memory automata (e.g., in [11]), no formal study of
the different models’ expressiveness has been conducted. Babari et al. provide a

c© Springer Nature Switzerland AG 2021
E.-R. Olderog et al. (Eds.): Jonsson Festschrift, LNCS 13030, pp. 186–218, 2021.
https://doi.org/10.1007/978-3-030-91384-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91384-7_10&domain=pdf
http://orcid.org/0000-0001-9730-9335
http://orcid.org/0000-0002-9524-4459
https://doi.org/10.1007/978-3-030-91384-7_10

A Taxonomy and Reductions for Common Register Automata Formalisms 187

Fig. 1. Nondeterministic finite-memory automaton recognizing inputs in which at least
one symbol occurs twice [15, Figure 1]. In the initial state q1 the automaton reads and
stores input until the duplicated symbol occurs. The symbol is recognized nondeter-
ministically and state q2 is entered. Input is read and stored until the saved symbol
reoccurs. Then, the accepting state q3 is reached.

taxonomy for extensions to the model of Kaminsky and Francez [1]. The com-
plexity of NonEmptiness for different models of register interaction (“regis-
ter disciplines”) was examined by Murawski et al. in [17,18]. Cassel et al. [6]
show that for some variants of their register automata that mimic restrictions
imposed by other register automata formalisms the size of the automaton rep-
resentation can blow up exponentially while expressiveness is not affected by
the restrictions. Correspondingly, different complexity results have been proven
for NonEmptiness: for Kaminsky and Francez’s finite memory automata [15],
the problem is NP-complete [22], for Murawski et al.’s more restricted model,
it is NL-complete [17,18] and for Demri and Lazić’s automata, it is PSPACE-
complete [11]. A formal relation of different types of register automata would not
only further our understanding of automata over infinite alphabets as a whole but
could also serve as a basis for implementing and porting existing algorithms, e.g.,
in libraries for automata learning algorithms like LearnLib [14] or RALib [4].
Learning algorithms have already been extended from register automata to some
classes of more expressive extended finite state machines [7]. A formal analysis of
the differences in expressiveness of different automata models (or lack thereof)
may serve as a basis for further extensions and help understanding limits of
expressivity.

In this paper on the occasion of the 63rd birthday of Bengt Jonsson, we
provide a four-feature-taxonomy describing the most common types of register
automata. For each feature, we define variants describing the types and indi-
vidual reductions between variants to prove their equal expressiveness. We also
present upper and lower bounds on the complexity of these reductions. Together
with results from the literature on the complexity of deciding NonEmptiness
in several register automaton models, we obtain a detailed characterization of
the subtle differences between automata models as well as their expressiveness
in relation to their size.

Outline. Section 2 will introduce data languages and provide a definition of
generic register automata that encompasses all definitions found in the literature.
Next, we will introduce a taxonomy of reductions in Sect. 3 and the taxonomy of
register automata in Sect. 4, which will be applied to register automata defini-
tions from the literature. Section 5 describes small-step reductions between the

188 S. Dierl and F. Howar

Fig. 2. Succinct Canonical Register Automaton that recognizes successful XMPP reg-
istrations and logins for a single user [5, Figure 1]. In the initial state q1, no user is
registered. By registering an account, state q2 is entered and the credentials stored. A
login with matching credentials enters state q3. The logged-in user can update their
password, log out or delete the account altogether.

taxonomy elements, including some lower complexity bounds; Sect. 6 combines
these to construct reductions and lower bounds between the existing models.
Section 7 summarizes our findings and describes possible extensions.

2 Preliminaries

We start by defining notation for some fundamental concepts.

Definition 1 (Power Set). Given a set S, P(S) = {S′ | S′ ⊆ S} is the power
set of S.

Definition 2 (Image). Given a function f : A → B, I(f) = {f(a) | a ∈ A}
denotes the image of f .

Register automata operate on a combination of a finite and an infinite alpha-
bet. The finite alphabet defines labels that are then combined with values from
the infinite alphabet. We now formally define these combinations.

Definition 3 (Data Universe, Symbol, Word, Language). A data uni-
verse is a tuple D = (Λ,D, a) with a finite set Λ of labels, an infinite set D of
(data) values, and an arity function a : Λ → Z≥0. For a given label λ, the vector
of formal parameters is Pλ = (p1, . . . , pa(λ)). A data symbol is a tuple (λ, �d)
with λ ∈ Λ and a vector of data values �d with |�d| = a(λ). We usually write a
symbol as λ(d1, . . . , da(λ)). A data word is a sequence of data symbols. A set of
data words from the same data universe is a data language.

Now, we provide a definition for register automata with equality and inequal-
ity comparisons. While in the literature, similar automata with more operations
(e.g., less-than comparisons) have been studied, their expressiveness and theo-
retical properties are different from classic register automata. Our definition is
designed to subsume all equality-based models present in the literature. These
will later be represented as constraints for the following definitions.

Definition 4 (Register Automaton). A register automaton (RA) is a tuple
A = (D, Q, q0, Q

+,X,XQ, χ0, Γ), defining

A Taxonomy and Reductions for Common Register Automata Formalisms 189

– a data universe D = (Λ,D, a),
– a finite set of states Q,
– an initial state q0 ∈ Q,
– accepting states Q+ ⊆ Q,
– a finite set of registers X that can store data values,
– a visibility function XQ : Q → P(X),
– an initial valuation χ0 : X → D ∪ {#} such that # /∈ D is the empty value

and for all x /∈ XQ(q0), χ0(x) = #, and
– a set Γ of transitions 〈q, q′, λ, g, u〉, each defining

• a source state q ∈ Q,
• a target state q′ ∈ Q,
• a label λ ∈ Λ,
• a guard g, i.e. a propositional logic formula with an equality relation

over free variables from XQ(q) ∪ Pλ, and
• an update u : XQ(q′) → (XQ(q) ∪ Pλ) that selects new values for the

registers visible in the target state, i.e., u(x) = v if the value of register
or parameter v is copied to x.

A transition 〈q, q′, λ, g, u〉 is always written as

λ(p1, . . . , p|a(λ)|) | g

u
,

where p1, . . . , p|a(λ)| are the formal parameters, g is the guard and u is a set
of parallel updates xi := v with v ∈ XQ(q) ∪ Pλ. If no explicit assignment to
a register xi ∈ XQ(q) ∩ XQ(q′) is given, the assignment xi := xi is implicitly
assumed.

Definition 5 (Deterministic Register Automaton). A register automaton
is deterministic if for each pair of transitions 〈q, q′

1, λ, g1, u1〉 and 〈q, q′
2, λ, g2, u2〉

with identical source state and label, (g1 ∧ g2) is unsatisfiable.

Note that our definition does not demand that a valid transition exists (i.e.,
the disjunction of all guards is a tautology), while e.g. [15, Definition 2] does.
This can be rectified by adding a trap state and “missing” transitions. Now, we
define how a register automaton processes words.

Definition 6 (State Transition). For a register automaton (D, Q, q0, Q
+,X,

XQ, χ0, Γ) with a transition γ = 〈q, q′, λ, g, u〉 ∈ Γ , a state transition T =
〈q, χ, λ(d1, . . . , da(λ)), q′, χ′〉 is a tuple of

– source and target state q, q′,
– a data symbol λ(d1, . . . , da(λ)) ∈ DD,
– a source valuation χ : XQ(q) → D ∪ {#} such that g is satisfied by the

valuation ν : XQ(q) ∪ Pλ → D ∪ {#} defined as

ν(v) :=

{
χ(v) if v ∈ XQ(q)
di if v = pi, and

190 S. Dierl and F. Howar

– a target valuation χ′ : XQ(q′) → D ∪ {#} such that χ′(x) = ν(u(x)).

Intuitively speaking, an RA automaton accepts a data word if there exists
a sequence of state transitions from the initial to an accepting state using the
word’s symbols.

Definition 7 (Acceptance Behavior). A register automaton A = (D, Q, q0,
Q+,X,XQ, χ0, Γ) accepts or rejects data words from its data universe. A data
word λ1(�d1) . . . λk(�dk) is accepted if a sequence of state transitions T1, . . . , Tk

exists such that

– the source state of T1 is q0,
– the source valuation of T1 is χ0,
– the target state of Tk is in Q+,
– for 1 ≤ i < k, the target state and valuation of Ti are the source state and

valuation of Ti+1, and
– for 1 ≤ i ≤ k, the data symbol of Ti is λi(�di).

A data word that is not accepted is rejected. The language of words accepted by
the automaton is L(A).

3 Reductions

In the previous section, we described a generic automaton model. Register
automata with additional, disparate constraints have been studied in the litera-
ture. We call a set of automata with identical constraints a class (of automata).
To transfer decidability and complexity results between classes, we define reduc-
tions between classes. If the specific type of reduction is apparent from the
context, we denote reducibility with the � operator.

Definition 8 (NonEmptiness-Turing Reduction). Given two classes C1

and C2 of register automata, C1 is NonEmptiness-Turing reducible (NETR)
to C2 if there exists an algorithm A that determines NonEmptiness for any
C1-automaton if A has access to an oracle that decides NonEmptiness for any
C2-automaton.

Definition 9 (Membership-Turing Reduction). Given two classes C1 and
C2 of register automata, C1 is Membership-Turing reducible (MTR) to C2 if
there exists an algorithm A that determines acceptance for any C1-automaton
and data word in its data universe if A has access to an oracle that decides
Membership for any C2-automaton and word from its data universe.

We also define a reduction’s complexity as the complexity of the underlying
algorithm:

Definition 10 (Reduction Complexity). Let R be a type of reduction. Given
a reduction of type R such that the algorithm a is computable with complexity
T , the reduction is a T -R.

A Taxonomy and Reductions for Common Register Automata Formalisms 191

Definition 11 (Turing Reduction). Given two classes C1 and C2 of register
automata, C1 is Turing reducible (TR) to C2 if it is both NonEmptiness-
and Membership-Turing reducible to C2. If it is T -NonEmptiness- and T -
Membership-Turing reducible for any complexity T , it is T -Turing-reducible
(T -TR).

These reductions are useful to prove lower bounds. We define a more con-
strained type of reduction as a transformation between automata and inputs
analogously to Post [20]. Since the input-modifying function of this model is
dependent on both automata’s data universes, it is defined as a family of func-
tions.

Definition 12 (Many-One Reduction). Given two classes C1 and C2 of reg-
ister automata, a many-one reduction (M1R) from C1 to C2 is a tuple (fA, fD,E

D�),
where

– D and E are variables for data universes,
– fA : C1 → C2 is the automaton reduction,
– fD,E

D� : C1 × D
�
D → D

�
E is a family of data reductions,

– given A ∈ C1 with data universe D such that fA(A) has data universe E,

w ∈ L(A) ⇐⇒ fD,E
D� (A,w) ∈ L(fA(A)), and

– L(A) = ∅ ⇐⇒ L(fA(A)) = ∅.

We will make this generic definition more specific, since the resulting automa-
ton does not need to resemble the original automaton and, given enough compu-
tation time, it is possible to “solve” the original automaton during the reduction
and create a trivial reduced instance. We define a more constrained reduction
type that requires all modifications to the input to be computationally inexpen-
sive. A linear time bound ensures that each symbol can be examined, but that no
non-trivial computation can be performed on it. Additionally, all changes to the
input must be independent of the source automaton and the surrounding sym-
bols. Automaton- or word-specific information can only be added to the word as
a prefix.

Definition 13 (Linear-Local Reduction). Given two classes C1 and C2 of
register automata, a linear-local reduction (LLR) from C1 to C2 is a tuple
(fA, fD,E

D , fE
P A , fD,E

P D), where

– D and E are variables for data universes,
– fA : C1 → C2 is the automaton reduction,
– fD,E

D : DD → D
�
E is a family of linear time computable data reductions,

– fE
P A : C1 → D

�
E is a family of linear time computable automaton prefix-

generating reductions, and
– fD,E

P D : D�
D → D

�
E is a family of linear time computable data prefix-generating

reductions

192 S. Dierl and F. Howar

such that (fA, fD,E
D�) with

fD,E
D� (A,w) = fE

P A(A)fD,E
P D (w)fD,E

D (w1) . . . fD,E
D (w|w|)

is a many-one reduction.

In some cases, we can omit the reduction functions to obtain an even simpler
reduction.

Definition 14 (Prefix Free). Given two classes C1 and C2 of register
automata, a prefix free reduction (PFR) from C1 to C2 is a tuple (fA, fD,E

D),
where

– D and E are variables for data universes,
– fA : C1 → C2 is the automaton reduction, and
– fD,E

D : DD → D
�
E is a family of linear-time-computable data reductions

such that (fA, fD,E
D , f ε

P A , f ε
P D) with

f ε
P A(A) = ε for all A ∈ C1 and f ε

P D (w) = ε for all w ∈ D
�
D

is a linear-local reduction.

Independently of the presence or absence of prefixes, some reductions do not
modify the input word itself, e.g., when constants are transformed into a prefix,
but the word is unchanged. We also formalize this property.

Definition 15 (Data Stable). Given two classes C1 and C2 of regis-
ter automata, a data stable reduction (DSR) from C1 to C2 is a tuple
(fA, fD

P A , fD,D
P D), where

– D is a variable for a data universe,
– fA : C1 → C2 is the automaton reduction,
– fD

P A : C1 → D
�
D is a family of linear-time-computable automaton prefix-

generating reductions, and
– fD,D

P D : D�
D → D

�
D is a family of linear-time-computable data prefix-generating

reductions

such that (fA, f id
D , fD

P A , fD,D
P D) with

f id
D (d) = d for all d ∈ DD

is a linear-local reduction.

Some reductions satisfy both properties, i.e., only the automaton structure
is modified.

Definition 16 (Automaton-Only Reduction). Given two classes C1 and
C2 of register automata, a automaton-only reduction (AOR) from C1 to C2 is a
function fA : C1 → C2 such that (fA, f id

D , f ε
P A , f ε

P D) is a linear-local reduction.

A Taxonomy and Reductions for Common Register Automata Formalisms 193

Fig. 3. The different types of reduction. Arrows indicate an is-a relation. If types are
horizontally adjacent, a reduction can be a member of any subset of them.

The complexity of the Membership problem is lower for deterministic regis-
ter automata, so we distinguish reductions that preserve the automaton’s deter-
minism.

Definition 17 (Determinism-Preserving). A many-one reduction (fA, fD,E
D�)

is determinism-preserving (DP) if for a deterministic register automaton A, fA(A)
is deterministic.

All types of reduction introduced in this section and their relations are out-
lined in Fig. 3.

4 Taxonomy for Register Automata Formalisms

This section describes the proposed taxonomy for RA models and applies it to
existing models from the literature.

4.1 Proposed Taxonomy

In the literature, more restricted models of register automata than that described
in Definition 4 have been studied. Each model adds constraints to certain aspects
of the automaton. To describe these classes of register automata, we introduce

194 S. Dierl and F. Howar

Table 1. The register automaton taxonomy.

Feature Variants

Data Universe Type (U-UL) Unlabeled
(U-LU) Labeled Unary
(U-LV) Labeled Variadic

Register Availability (R-UA) Update-Activated
(R-IN) Initialized
(R-IE) Initialized or Empty

Update Granularity (A-PS) Per State
(A-PT) Per Transition

Guard-Update Model (G-UP) Update-or-Present
(G-UA) Update-if-Absent
(G-FG) Full Guard with Single Update
(G-NR) No Register-Register Operations
(G-CC) Conjunction of Comparisons

a taxonomy using four features. It is outlined in Table 1. A class of automata
with a common feature variant is described by its variant label, e.g., (G-CC). An
intersection of feature variants is denoted with a plus, e.g., (A-PT)+(G-CC). If
each automaton in a class is automatically member of another, this is denoted
by the � operator, e.g., (G-NR) � (G-CC).

For each variant, deterministic and non-deterministic automata can be con-
structed. Since these are known to differ in expressiveness, we do not include
determinism in this taxonomy. The taxonomy is therefore “orthogonal” to the
question of determinism.

Data Universe Type. The first feature is the automaton’s type of data uni-
verse, i.e., the number of labels and their arities. The variants are:
Unlabeled (U-UL). The data universe has a single label λ with arity a(λ) = 1.

For brevity, the label is usually omitted.
Labeled Unary (U-LU). The universe contains an arbitrary number of labels,

each with arity one.
Labeled Variadic (U-LV). The universe has an arbitrary number of labels,

each with arbitrary arity.
By definition, (U-UL) � (U-LU) � (U-LV).

Register Availability. The second feature are the semantics of register avail-
ability, i.e., if registers are visible in every state and if initial values are pro-
vided for the registers. Three models are described in the literature:
Update-Activated (R-UA). Under this model, no registers are visible in the

initial state. Therefore, XQ(q0) = ∅ and χ0(x) = # for all x ∈ X. All
registers must be activated by an update operation before becoming visi-
ble. Since this will overwrite the register’s contents, the empty values are
effectively invisible to the automaton.

A Taxonomy and Reductions for Common Register Automata Formalisms 195

Initialized (R-IN). Registers are initialized to a non-empty value and all regis-
ters are visible in every state, so XQ(q) = X for all q ∈ Q and χ0(x) �= #
for all x ∈ X.

Initialized or Empty (R-IE). Registers are initialized to a data value or #
and are visible in every state. This is the only type of automaton that
can encounter the empty value during a guard evaluation.

By definition, (R-IN) � (R-IE).
Update Granularity. The third feature describes the scope of update rules.

Two models are present in the literature:
Per State (A-PS). For each state, there exists a single canonical update func-

tion. Each outgoing transition must either use the source state’s canonical
update function or keep all registers unchanged. As a result, all outgoing
transitions must discard their parameter or write to the same register.

Per Transition (A-PT). Each transition’s update can be arbitrarily defined.
By definition, (A-PS) � (A-PT).

Guard-Update Model. The fourth feature describes the form of guards and
updates. Five models are prevalent in the literature:
Update-or-Present (G-UP). This model ensures that no duplicate values

(except for #) can be present in the registers. Initial values – if present
– must be distinct as well. All data symbols must have arity one. This
invariant is maintained by the following transition semantics:
1. First, the update operation is executed. Four scenarios can occur:

(a) The value is not assigned to a register.
(b) The value v is assigned to a register xi, but there exists a register

xj �= xi with valuation χ(xj) = v. The assignment is then ignored.
(c) The value v is assigned to a register xi and χ(xi) = v. The assign-

ment has no observable effect.
(d) The value v is assigned to a register xi and χ(x) �= v for all x ∈ X.

The update then stores the value in xi.
2. Afterwards, the parameter is tested for equality with a single register,

i.e., contrary to our definition, the guard takes the update operation
into account. It can thereby check if a write operation was successful
under the no-duplicates rule outlined above.

Under this model, two types of transitions can be expressed. They can be
transformed to use guard-before-update semantics as follows:
1. The parameter p is assigned to xi, then xi is tested for equality with

p. This test succeeds if either p was not stored in any register and the
assignment was executed or if xi contained p previously. The previous
value of xi is therefore irrelevant. Using a source state q, this yields
following transition:

λ(p) |
∧

x∈XQ(q)\{xi}(p �= x)

xi := p

2. The parameter p is either not assigned or assigned to a register xj

with j �= i, then xi is tested for equality with p. This can only be

196 S. Dierl and F. Howar

the case if the value of p was already present in that register. If p
was assigned to xj , the assignment can therefore have had no effect.
Therefore, both cases yield the transition:

λ(p) | p = xi

−

Update-if-Absent (G-UA). This model also does not allow duplicate values
and all data symbols must have arity one. This invariant is maintained
by allowing two classes of transition:
1. The parameter is tested for equality with a single register. The def-

inition allows for multiple tests, but since no duplicates are present,
multiple comparisons cannot succeed:

λ(p) | p = xi

− .

2. Alternatively, an update operation is executed if the value is present
in no register. Two scenarios can occur:
(a) The value v is assigned to a register xi, but there exists a register

x ∈ X (including x = xi) with valuation χ(x) = v. The transition
fails.

(b) The value v is assigned to a register xi and χ(x) �= v for all x ∈ X.
The update then stores the value in xi.

Again, the definition allows multiple assignment, but only one
attempt can succeed. This can be expressed as:

λ(p) |
∧

x∈XQ(q)(p �= x)

xi := p
.

Full Guard with Single Update (G-FG). Duplicate values in registers are per-
mitted. The parameter must be compared (using = or �=) to every visible
register. The update may then write the parameter to a single register; no
register-to-register assignments aside from the implicit self-assignments
are permitted. For example, if X = {x1, x2, x3}, the following transition
satisfies these constraints:

λ(p) | (x1 = p) ∧ (x2 �= p) ∧ (x3 �= p)
x2 := p

.

No Register-Register Operations (G-NR). Guards are a conjunction of com-
parisons between the parameter and registers. The parameter does not
need to be compared to every register. The update may copy the param-
eter to multiple registers. For example, the following transition satisfies
these constraints:

λ(p) | (x1 = p) ∧ (x3 �= p)
x2 := p;x3 := p

.

A Taxonomy and Reductions for Common Register Automata Formalisms 197

Conjunction of Comparisons (G-CC). Guards are a conjunction of parameter-
to-parameter, parameter-to-register, and register-to-register comparisons.
Updates may copy data from parameters and registers. For example, the
following transition satisfies these constraints:

λ(p) | (x1 = p) ∧ (x2 = x3) ∧ (x3 �= p)
x2 := p;x3 := p

.

By definition, (G-UP) � (G-NR), (G-UA) � (G-NR), (G-FG) � (G-NR), and (G-
NR) � (G-CC). (G-UP), (G-UA), and (G-FG) are not contained in one another.

We do not allow several combinations of (U-LV) that are difficult to define
and are not present in the literature:

– (A-PS)+(U-LV) would require all outgoing updates to be identical. Given
transitions on λ(p1) and μ(p1, p2), p2 could not be assigned, since this update
would not match the formal parameters of λ.

– (U-LV)+(G-NR) would permit circumventing the lack of register-to-register-
comparisons by introducing “witness” parameters and using guards (x1 =
p) ∧ (x2 = p) to imply equality. Consequently, we also disallow (U-LV)+(G-
UP), (U-LV)+(G-UA), and (U-LV)+(G-FG).

When discussing reductions between automata classes, a reduction might
only be defined for a variant of a secondary feature and its supervariants. For
example, a reduction might reduce (A-PT) to (A-PS), but will only be defined for
automata that are at least (G-CC). A (A-PT)+(G-NR) automaton will be reduced
to a (A-PS)+(G-NR) one, while a (A-PT)+(G-CC) automaton will yield a (A-
PS)+(G-CC) one. We denote a reduction that requires a secondary feature and
preserves it in the transformed automaton, as (A-PT)+(G-NR)� to (A-PS)+(G-
NR)�.

4.2 Classification of Some Existing Models

This taxonomy can now be applied to models from the literature. The descrip-
tions are summarized in Table 2. For some of these models, complexity results
are present in the literature and are recapped below.

Finite-Memory Automata. Kaminsky and Francez were the first to define
a register automaton model [15]. They defined update-or-present semantics,
enforced identical updates per state and initialization with empty registers and
did not use labels. Bojańczyk et al. previously proved these automata to be
equivalent in expressiveness to G-automata [3]. The model is characterized as
(A-PS)+(U-UL)+(R-IE)+(G-UP).

Figure 4b shows a sample finite-memory automaton accepting the language D
(i.e., all single-symbol words). Note that the transition from q1 to q2 is unusable
since x1 always has value # in q1.

198 S. Dierl and F. Howar

Table 2. Taxonomy of automata models.

Automaton model Variant

Initialized finite-memory automata [17,18] (A-PS)+(U-UL)+(R-IN)+(G-UP)

Finite-memory automata [15] (A-PS)+(U-UL)+(R-IE)+(G-UP)

Neven-Schwentick-Vianu automata [19] (A-PT)+(U-UL)+(R-IE)+(G-UA)
Segoufin automata [23] (A-PT)+(U-LU)+(R-IN)+(G-FG)

Demri-Lazić automata [11] (A-PT)+(U-LU)+(R-IN)+(G-NR)

Succinct canonical register automata [5,6] (A-PT)+(U-LV)+(R-UA)+(G-CC)

Lemma 1 ([22, Theorem 1]). Membership of words in deterministic finite-
memory automata is P-complete.

Lemma 2 ([22, Theorem 2]). Membership of words in finite-memory
automata is NP-complete.

Lemma 3 ([22, Theorem 4]). NonEmptiness of finite-memory automata is
NP-complete.

Initialized Finite-Memory Automata. Murawski et al. remarked on a vari-
ant of finite-memory automata [17,18] in which all registers are initialized with
data values (i.e., no empty value # is used). The model is characterized as (A-
PS)+(U-UL)+(R-IN)+(G-UP).

Figure 4a shows a sample initialized finite-memory automaton accepting the
language (

D \ {a}
)

∪ {ba}.

In contrast to the automaton in Fig. 4b, all transitions are usable.

Lemma 4 ([17, Footnote 5]). NonEmptiness of initialized finite-memory
automata is NL-complete.

Neven-Schwentick-Vianu Automata. Neven et al. presented a slight mod-
ification of finite-memory automata [19]. Their model additionally permits ε-
transitions, i.e., transitions that do not consume input values. Additionally, it
requires every input word to start with a designated start symbol. We propose
this theorem, the proof of which is outside the scope of this paper:

Proposition 1. Every automaton satisfying the model by Neven et al. can be
transformed into a equivalent (A-PT)+(U-UL)+(R-IE)+(G-UA) automaton using
our notation.

Figure 4c shows a sample (transformed) Neven-Schwentick-Vianu automaton
accepting the language (

D \ {b}
)

∪
{
dd | d ∈ D \ {b}

}
.

A Taxonomy and Reductions for Common Register Automata Formalisms 199

Fig. 4. Sample automata demonstrating the expressiveness of existing models.

In comparison with Fig. 4b’s automaton, different assignment targets for tran-
sitions with the same origin are permitted and guards for assignments must
compare the value to the target register.

Segoufin Automata. Segoufin’s automaton model [23] extends finite-memory
automata with per-transition updates and labels, does forbid empty registers
and defines single update with full test semantics. The model is characterized as
(A-PT)+(U-LU)+(R-IN)+(G-FG).

Figure 4d shows a sample Segoufin automaton accepting the language{
μ(d) | d ∈ D \ {a, b}

}
∪ {λ(b)ν(b)}.

In contrast to the automaton shown in Fig. 4c, #-intialized registers are not
permitted. Guards and assignments can be used in arbitrary combinations,

200 S. Dierl and F. Howar

but guards must compare p to every register. This permits indirect register-
to-register comparisons using witness parameters, as exemplified by the q1-q2-
transition’s guard. In addition, data values are labeled under this model.

Demri-Lazić Automata. Demri and Lazić defined an automaton model [11]
for use in acceptance games. The model as-defined does not match this taxonomy,
but we again propose a theorem:

Proposition 2. Every automaton satisfying the model by Demri and Lazić can
be transformed into a equivalent (A-PT)+(U-LU)+(R-IN)+(G-NR) automaton
using our notation.

Figure 4e shows a sample Demri-Lazić automaton accepting the language{
μ(d) | d ∈ D \ {b}

}
∪

{
λ(b)ν(d) | d ∈ D

}
.

When comparing this to the automaton in Fig. 4d, it can be seen that the per-
missible guard statements do not need to compare every register.

Lemma 5 ([11, Theorem 5.1(a)]). NonEmptiness of Demri-Lazić automata
is PSPACE-complete.

Succinct Canonical Register Automata. Succinct canonical RAs [5] use
variadic labeled data, update-activated registers instead of initialized ones and
allow conjunctions of arbitrary comparisons in their guards. This model is char-
acterized as (A-PT)+(U-LV)+(R-UA)+(G-CC).

Figure 4f shows a sample succinct canonical register automaton accepting the
language {

μ(d) | d ∈ D \ {b}
}

∪
{
λ(d, d)ν() | d ∈ D

}
.

Note that in contrast to the other models such as the automaton in Fig. 4e,
guards can compare registers, i.e., the availability of the q1-q2 transition depends
on the values of p1 and p2 in the q0-q1-transition. Additionally, registers can
be #-initialized, but must be written to before reading. Data values can have
arbitrary arity, including arity zero.

5 Reductions Between Variants

In this section, we will examine reductions between the RA variants. While all
variants have equal expressiveness, two lower complexity bounds for reductions
as well as the non-existence of a specific reduction type are proven, outlining
differences between the variants. This section considers each automaton feature
in turn.

A Taxonomy and Reductions for Common Register Automata Formalisms 201

Fig. 5. Sample transformation from two (U-LV)+(G-CC)� transitions to multiple (U-
LU)+(G-CC)� transitions.

5.1 Data Universe Type

Theorem 1. There exists a determinism-preserving P-prefix free reduction from
(U-LV)+(G-CC)� to (U-LU)+(G-CC)�.

Note that (U-LV)+(G-CC)� = (U-LV), since (U-LV) is only defined for (G-CC).
Intuitively, this reduction replaces each symbol of arity k with k symbols of arity
one and modifies the automaton accordingly.

Proof Sketch. We construct a new input language in which we replace every
label λ with a(λ) labels λ1, . . . , λa(λ). The data reduction then replaces every
instance of λ(�d) with λ1(d1) . . . λa(λ)(da(λ)). The automaton reduction modifies
each state’s outgoing transitions. For every label present, a(λ) transitions to
intermediate states are created. Since guards and updates can only be safely
evaluated in the last transition, these transition only store their parameters in
cache registers. The automaton requires a total of maxλ∈Λ a(λ)−1 cache registers
XC . For each transition, a final step from the last intermediate state to the target
state is generated during which guards and updates are evaluated, substituting
cached values for the parameters.

For each word

λ1(d1, . . . , da(λ1)) . . . λk(d1, . . . , da(λk)) (LV)

accepted by the original, the word

λ1
1(d1) . . . λ

a(λ1)
1 (da(λ1)) . . . λ1

k(d1) . . . λ
a(λk)
l (da(λk)) (LU)

is accepted by the newly created automaton. The construction ensures that
each word accepted by the new automaton is of form LU, i.e., for each original
label, all partial labels are present in the word in correct order. Such words can
be reassembled into an input of form LV accepted by the original automaton,
preserving acceptance behavior. ��

The process is exemplified in Fig. 5. Note that in the example, the interme-
diate state q′ is shared between transitions to preserve determinism.

202 S. Dierl and F. Howar

Fig. 6. Sample transformation from two (U-LU) transitions to multiple (U-UL) transi-
tions.

Theorem 2. There exists a determinism-preserving P-many-one reduction from
(U-LU) to (U-UL).

Proof Sketch. The reduction designates data values as proxies for labels and
alternatingly reads a proxy and a “real” value. We require |Λ| data symbols as
label proxies. These proxies are stored in additional registers XΛ, with λi being
replaced by xΛ

i . The input word λ1(d)λ2(e) would then be replaced with xΛ
1 dxΛ

2 e.
The proxy values are then added as a prefix and are assigned to the registers
during an initialization before the first original transition. They must be selected
to differ from any value in the input so that (G-UP) and (G-UA) semantics are
retained, requiring access to both input and automaton.

For each label Λi present on a state’s outgoing transitions, the automaton
reduction creates a transition with guard p = xΛ

i and no assignment to an
intermediate state similar to Theorem 1. For each original transition, a second
transition from the matching intermediate state is created that uses the original
guard, update, and target. ��

If the automaton permits duplicate values in registers ((G-FG) and above),
the proxies can be chosen at random instead, yielding a narrower reduction type.

Corollary 1. There exists a determinism-preserving P-linear-local reduction
from (U-LU)+(G-FG)� to (U-UL)+(G-FG)�.

An example of the transformation is shown in Fig. 6. As with the last example,
the intermediate state q′ is shared between transitions to preserve determinism.

All results presented in this section are outlined in Fig. 11a.

5.2 Register Availability

Theorem 3. There exists a determinism-preserving LIN-automaton-only reduc-
tion from (R-UA) to (R-IN).

Proof Sketch. The automaton-only reduction sets XQ(q) := X for all q ∈ Q,
i.e., all registers are always visible. All updates are extended to assign the newly
visible registers to themselves and the initial valuation is set to random values.
Since these values are guaranteed to be overwritten before being accessed by a
guard, this does not change the automaton’s semantics. ��

A Taxonomy and Reductions for Common Register Automata Formalisms 203

Theorem 4. There exists a determinism-preserving LIN-data stable reduction
from (R-IE)+(G-FG)� to (R-IN)+(G-FG)�.

Proof Sketch. We employ the proxy value technique presented in Theorem 2.
The automaton reduction inserts an initial transition that reads a proxy value
for # that is distinct from all non-# initial values and stores it in every #-
initialized register and a new register, x#. If the proxy value is encountered in the
input, the automaton’s semantics could change. To preserve NonEmptiness, we
ensure that every such input is rejected by modifying every guard g to g ∧ (p1 �=
x#) ∧ · · · ∧ (pa(λ) �= x#). The data prefix-generating reduction selects a proxy
value from the data value set that does not occur in the remaining input. ��

We can demonstrate that under common assumptions about complexity
classes, more space-efficient reductions do not exist.

Theorem 5. If NL �= NP, there exists no NL-NonEmptiness-Turing reduction
from (R-IE) to (R-IN).

Proof. We demonstrate that the existence of such a reduction permits the cre-
ation of an NL algorithm for an NP-complete problem. Assume that an NL-
Turing reduction from (R-IE) to (R-IN) exists. Since NonEmptiness of initial-
ized finite-memory automata can be decided in NL, we obtain an NLNL algorithm
for NonEmptiness of finite-memory automata. Since the original problem is
NP-complete and NLNL = NL due to NL = coNL, NL = NP. ��

Theorem 6. There exists a determinism-preserving LIN-data stable reduction
from (R-IN) to (R-UA).

Proof Sketch. Again, we employ a proxy value technique to substitute values
for the initialization. We then use an existing result to demonstrate the automa-
ton’s emptiness is unchanged. The automaton reduction inserts initial steps that
reads |X| proxy values and assigns them to the correct registers, ensuring that
values that were equal in the initial valuation remain so. The automaton prefix-
generating reduction can write the original initialization to maintain the original
behavior.

We demonstrate that this reduction preserves NonEmptiness. For each word
accepted by the original automaton, the proxy values can be set to the original
initialization to create an accepting input. For the inverse direction, consider
a word accepted by the new automaton. It consists of a prefix of length |X|
that is used to initialize the registers and a remaining input word. We define
an automorphism on data values that maps the prefix’s values to the source
automaton’s initialization. Since a register automaton’s language is closed under
automorphisms on the data value set [15, Proposition 2], the new automaton will
accept the resulting word. By definition, this word must also have been accepted
by the original automaton. ��

All results presented in this section are outlined in Fig. 11b.

204 S. Dierl and F. Howar

Fig. 7. Sample transformation from two (A-PT)+(G-FG)� transitions to multiple (A-
PS)+(G-FG)� transitions.

5.3 Update Granularity

Theorem 7. There exists a determinism-preserving LIN-prefix free reduction
from (A-PT)+(G-FG)� to (A-PS)+(G-FG)�.

Proof Sketch. This reduction requires duplication of every input symbol. The
first instance is used to make a transition to an intermediate state, while the
second is used in the assignment.

The automaton reduction modifies all transitions. Given a transition

λ(p1, . . . , pa(λ)) | g

a
,

it introduces an intermediate state. The transition from intermediate to target
state is identical to the original and the transition from source to intermediate
state is

λ(p1, . . . , pa(λ)) | g

− .

Since all guards remain identical, determinism is preserved.
The data reduction duplicates every data symbol in the input word. Due to

the structure of the new automaton, an accepted word can be transformed to
an accepting word for the original by removing all symbols in odd positions,
preserving emptiness. ��

An example is shown in Fig. 7. For other guard-update models, the reduction
needs to be modified slightly.

Theorem 8. There exists a determinism-preserving LIN-prefix free reduction
from (A-PT)+(G-UP) to (A-PS)+(G-UP) and from (A-PT)+(G-UA) to (A-
PS)+(G-UA).

Proof Sketch. Due to the limited types of transitions available, the technique
used in the last proof needs to be adapted to these classes.

We alter the automaton by adding |Λ| additional scratch registers XΛ to the
automaton and initializing it to data values DΛ not present in the input. The

A Taxonomy and Reductions for Common Register Automata Formalisms 205

Fig. 8. Sample transformation from two (A-PT)+(G-UP) transitions to multiple (A-
PS)+(G-UP) transitions. The transitions to q2 and q3 both used label λ and now share
the intermediate state q′. The transition to q4 was labeled μ and is reached over a
separate state q′′.

reduction then introduces intermediate states similar to the proof of Theorem
7. However, we use the transition

λ(p) | p = xλ

−

to transit from source to intermediate state. Since these transitions are mutually
exclusive and transitions from the intermediate to the target state are copied
as-is, determinism is preserved.

The data reduction inserts ds before every data symbol in the input word.
Again, an accepted word can be transformed to an accepting word for the original
by removing all symbols in odd positions, preserving emptiness. ��

An example for this variant (using (G-UP) semantics) is given in Fig. 8. Dupli-
cation or insertion of dummy symbols is required to efficiently perform the reduc-
tion. If the data language is untouched, no efficient algorithm exists:

Theorem 9. There exists no determinism-preserving data stable reduction from
(A-PT) to (A-PS).

Proof Sketch. Intuitively, a (A-PT)+(G-NR) automaton can store information by
selecting an assignment’s target register. A (A-PS)+(G-NR) automaton is forced
to store the same information by transitioning to different states. This results in
a superpolynomial amount of required states for certain languages.

We provide a (U-LU) language that can be recognized by a (A-PT) automa-
ton of size k. Then, we prove by contradiction that a (A-PS) automaton
must have k! states to recognize the same language. The language uses labels
λ1, . . . , λ�, κ1, . . . , κ� to simulate an �-memory cell storage as follows:

206 S. Dierl and F. Howar

– Initially, all registers are empty.
– When reading λk(p), the k-th memory cell is overwritten with p.
– When reading κk, the k-th memory cell is compared to p.
– The language is the set of all instruction sequences for which all κ-comparisons

hold true.

A two-state deterministic (A-PT) automaton with k registers that implements
memory cells using registers can be constructed for this language.

Now, we define the permutations π : {1, . . . , k} → {1, . . . , k} and the family
of input strings Sπ := λπ(1)(p1)λπ(2)(p2) . . . λπ(k)(pk) for distinct p0, . . . , pk. We
now inductively show by contradiction that no two strings from this family can
cause a (A-PS) automaton to enter the same state.

Assume that two such strings Sπ, Sπ′
exist, π(1) �= π′(1) and that the

automaton enters the same state after both strings. Since the automaton started
in the same state, p1 must have been written to the same register x1 and must
not have been overwritten on any path (otherwise, κπ(1) and κπ′(1) cannot be
handled).

Now, assume the automaton reads κπ(1)(p1). It will accept after the input
Sπ and reject after Sπ′

. However, in that state, the guard

p = x1 ∧

⎛
⎝ ∧

x∈XQ(q)\{x1}
p �= x

⎞
⎠

and all more general guards will be satisfied after both inputs, while all other
(G-NR) guards will not be satisfied. Therefore, it must either accept or reject
after both Sπ and Sπ′

.
If we set π(1) = π′(1), the argument can be repeated for the second input

symbol. By induction, π = π′, i.e., no two different paths can merge. Since there
are k! permutations, we require at least as many states. ��

All results presented in this section are outlined in Fig. 11c.

5.4 Guard-Update Model

Theorem 10. There exists a determinism-preserving LIN-automaton-only
reduction from (G-UP) to (G-UA).

Proof Sketch. The reduction splits all transitions of form

λ(p) |
∧

x∈XQ(q)\{xi}(p �= x)

xi := p

into two transitions with the same source and target states:

λ(p) |
∧

x∈XQ(q)(p �= x)

xi := p
and

λ(p) | p = xi

− ,

which are equivalent to the original and compatible with (G-UA). Since the
transitions are mutually exclusive, the reduction preserves determinism. ��

A Taxonomy and Reductions for Common Register Automata Formalisms 207

Fig. 9. Sample transformation from a (G-CC) without (U-LV) transition to (G-UP)
transitions. For this example, the set of mapping functions are defined as →i:=〈
x1 = x̂j , q2 = x̂k | j = (i mod 3) + 1, k =

⌊
i−1
3

⌋
+ 1

〉
.

Theorem 11. There exists a determinism-preserving P-automaton-only reduc-
tion from (G-UA) to (G-FG).

Proof Sketch. The automaton reduction extends all guards to add the missing
comparisons to registers. While this would normally result in an exponential
number of transitions to describe all possible comparisons of parameters and
registers, (G-UA) guarantees that a parameter can be equal to at most one reg-
ister. A transition

λ(p) |
∧

x∈XQ(q)(p �= x)

a

already satisfies (G-FG), while one of form

λ(p) | p = xi

−

is equivalent to
λ(p) | p = xi ∧

∧
x∈XQ(q)\{xi}(p �= x)

− .

��

Theorem 12. There exists a determinism-preserving EXP-automaton-only
reduction from (G-CC) without (U-LV) to (G-UP).

Proof Sketch. The construction circumvents the lack of register-to-register oper-
ations by virtualizing the automaton’s registers. Each state of the resulting
automaton is associated with a register mapping, making register-to-register
operations essentially “free”.

To prepare the transformation, we add an additional register to the automa-
ton, resulting in the register set X̂ and define a family of functions f→ : X → X̂
that defines the register mapping. There is a maximum of |X||X|+1 such func-
tions, resulting in an exponential blow-up. For each function f→, we create a copy

208 S. Dierl and F. Howar

of the automaton’s states. A state q associated with the mapping f→ is called
q→. This permits conclusions about equality between registers. Two registers xi

and xj are equal if and only if f→(xi) = f→(xj). A register-to-register assign-
ment becomes a change in storage: xi := xj is modeled as f→(xi) := f→(xj).
Additionally, for each mapping function, a scratch register x̂s is identified that
is not in I(f→). This register becomes the sole target of write operations. The
initial state remains in the copy where f→ is the identity function.

Each source automaton’s transition 〈q, q′, λ, g, u〉 now needs to be translated
to account for the register virtualization. First, a copy of the transition is created
for each copy of its source, i.e., for every mapping f→. Next, we extend the guard
clause for each resulting copy, to ensure that the parameter p is compared to
every register in the original automaton. We refer to the registers that p is not
compared to as X̄. Now, we generate guards

(g ∧ p = x̄1 ∧ p = x̄2 ∧ · · · ∧ p = x̄|X̄|), (g ∧ p �= x̄1 ∧ p = x̄2 ∧ · · · ∧ p = x̄|X̄|),

(g ∧ p = x̄1 ∧ p �= x̄2 ∧ · · · ∧ p = x̄|X̄|), (g ∧ p �= x̄1 ∧ p �= x̄2 ∧ · · · ∧ p = x̄|X̄|),

. . . , (g ∧ p �= x̄1 ∧ p �= x̄2 ∧ · · · ∧ p �= x̄|X̄|)

and create a copy of the transition for each guard variant. We can now use
the knowledge that xi = xj ⇐⇒ f→(xi) = f→(xj) to check if register-to-
register comparisons are satisfied in the source state. If not, the transition copy
is discarded. Otherwise, redundant comparisons can be omitted, resulting in
either a single comparison p = xi or ∧x∈X(p �= xi).

In the first case, we can generate transitions

λ(p) | p = f→(xi)
− . (EQ1)

In the second case, the guard is always satisfiable in the original automaton, but
the value of p might still be stored in any register not ∈ I(f→) from a previous
write operation. For each register x̄ /∈ I(f→) ∪ {x̂s}, we create a transition

λ(p) | p = x̄i

− . (EQ2)

Finally, for the scratch register x̂s, we add the transition

λ(p) |
∧

x̂∈X̂\x̂s
(p �= x̂)

x̂s := p
. (NEQ)

Since the generated transitions are mutually exclusive, the resulting automaton
will be deterministic if the original automaton was.

Finally, the update is transformed into a new register mapping f→′ . The
transition’s target is then set to q′

→′ .

– For all registers that are not explicitly written to by the update, f→′ behaves
identically to f→.

A Taxonomy and Reductions for Common Register Automata Formalisms 209

Fig. 10. Sample transformation from two (G-CC) without (U-LV) transitions to multiple
(G-NR) transitions.

– For each register that is assigned another register’s values using xj := xi, the
mapping function is modified such that f→′(xj) := f→(xi).

– Each register that is assigned a parameter using xj := p must be handled
differently for the three types of transitions. For EQ1-transitions, we can
exploit that p = xi, yielding f→′(xj) := f→(xi). For EQ2-transitions, we
obtain f→′(xj) := x̄i. NEQ-transitions result in f→′(xj) := x̂s. ��

A small example for the transformation of a transition with an equality test
is given in Fig. 9. Note that the illustration assumes only two registers, for more,
an even larger blow-up would result.

Theorem 13. There exists a determinism-preserving P-many-one reduction
from (G-CC) without (U-LV) to (G-NR).

Proof Sketch. For each transition, the reduction introduces up to |X|2 “witness”
values into the input to replace register-register operations, making the data
reduction automaton dependent.

Given a transition with k register-to-register comparisons and � register-to-
register assignments, k+� intermediate states are created. The original transition
is stripped of all register-register operations. For each comparison xi = xj , an
additional transition

ω(p) | (p = xi) ∧ (p = xj)
−

is inserted and for each assignment xi := xj , a transition

ω(p) | p = xj

xi := p

210 S. Dierl and F. Howar

is created. The input is modified to include the “witness” values where required.
To preserve determinism, intermediate states with identical incoming transitions
can be merged. ��

Figure 10 illustrates the process.

Theorem 14. There exists a P-many-one reduction from (G-NR) to (G-FG).

Proof Sketch. The construction employs a technique similar to register virtual-
ization used in the proof of Theorem 12. However, we store the equality infor-
mation in registers and discard the actual values.

The reduction replaces the registers with |X|2 − |X| registers

x1,2, x̄1,2, x1,3, x̄1,3, . . . , x|X|−1,X , x̄|X|−1,X

that encode the equality half-matrix of original registers. We will maintain the
following invariants:

1. if in the original automaton for i < j, xi = xj , then xi,j = x̄i,j ,
2. if in the original automaton for i < j, xi �= xj , then xi,j �= x̄i,j ,
3. and for i < j and i′, j′ with i �= i′ or j �= j′, {xi,j , x̄i,j} ∩ {xi′,j′ , x̄i′,j′} = ∅.

To avoid unnecessary concern for register order, we will also refer to xi,j as xj,i.
Using these registers, we can compare xi = xj by using

λ(p) | (p = xi,j) ∧ (p = x̄i,j) ∧
∧

x∈XQ(q)\{xi,j ,x̄i,j}(p �= x)

−
and xi �= xj by using

λ(p) | (p = xi,j) ∧
∧

x∈XQ(q)\{xi,j}(p �= x)

− .

Storing equalities needs to take into account the previous state. We store xi = xj

using two parallel transitions:

λ(p) | (p = xi,j) ∧ (p = x̄i,j) ∧
∧

x∈XQ(q)\{xi,j ,x̄i,j}(p �= x)

−
is used if the registers were previously equal and

λ(p) | (p = xi,j) ∧
∧

x∈XQ(q)\{xi,j}(p �= x)

x̄i,j := p

is used if they were not. Storing an inequality xi �= xj is possible in one transition:

λ(p) |
∧

x∈XQ(q)\{xi,j}(p �= x)

x̄i,j := p
.

Now, all transitions need to be transformed. We distinguish two types of
transitions, those that guarantee the equality of the parameter and a register

A Taxonomy and Reductions for Common Register Automata Formalisms 211

(e.g., p = xi) and those that do not. In the first case, all other instances of p in
the guard can be replaced with xi. Since p = xi is always satisfiable, the guard
can be replaced with test of equalities between registers. Each such comparison
is done in a separate transition. The assignment is then done by updating all
relevant equalities.

If p is only compared negatively to some registers, the guard is always satisfi-
able and can be removed. However, it is unknown if p is equal to registers it was
not compared to. For each group of equal registers p might be equal to, we non-
deterministically select either equality or inequality and write the corresponding
information to the half-matrix. ��

We now demonstrate that under widely-held assumptions about complexity
classes, no efficient reduction between (G-NR) and (G-UP) can exist.

Theorem 15. If NP �= PSPACE, there exists no P-many-one reduction from
(G-FG) to (G-UP).

A similar result for deterministic (U-LV) automata has been proven by Cassel
et al. [6]. Here, we demonstrate that such a reduction would allow us to construct
an NP algorithm for a PSPACE-complete problem.

Proof. Assume that an NP-many-one reduction from (G-FG) to (G-UP) exists
(�). We can now construct an NP-algorithm for NonEmptiness of deterministic
Demri-Lazić automata.

The following sequence of reductions reduces the Demri-Lazić automaton to
a finite-memory automaton:

(A-PT)+(U-LU)+(R-IN)+(G-NR): Demri-Lazić automaton
Thm. 2

� (A-PT)+(U-UL)+(R-IN)+(G-NR)
Thm. 14

� (A-PT)+(U-UL)+(R-IN)+(G-FG)
(�)

� (A-PT)+(U-UL)+(R-IN)+(G-UP)
� (A-PT)+(U-UL)+(R-IE)+(G-UP)

Thm. 8
� (A-PS)+(U-UL)+(R-IE)+(G-UP): finite-memory automaton

The finite-memory automaton’s emptiness can be decided in NP; the result holds
for the original automaton. Since the original problem is PSPACE-complete,
NP = PSPACE. ��

By using Turing reductions in the proof, permitting multiple oracle queries,
we obtain statements conditional on the collapse of the polynomial hierarchy.
These corollaries can be extended to arbitrary hierarchy levels.

Corollary 2. If the polynomial hierarchy does not collapse, there exists no PH-
NonEmptiness-Turing reduction from (G-FG) to (G-UP).

Theorem 16. There exists a LIN-automaton-only reduction from (G-UA) to (G-
UP).

212 S. Dierl and F. Howar

Proof Sketch. For all transitions that store the parameter (e.g., using xi := p),
the reduction removes (p �= xi) from the guard, yielding a (G-UP) automaton.
This operation can remove determinism from the automaton. To demonstrate
that this does preserve NonEmptiness, consider an input that does “overwrite”
a register with its value. This would not be permissible in the original automaton.
We demonstrate that an accepted input must exist that does not overwrite a
value.

Let the register valuation prior to overwriting be χ, the previous state be q
and the overwritten value be d̄. Consider a modification of the register automaton
in which χ is the initial valuation and q the initial state. This register automa-
ton’s language is closed under automorphisms on the data value set [15, Propo-
sition 2]. Let d̄′ be a value not occurring in the remaining input and σ : D → D
be the automorphism defined by

σ(d) =

⎧⎪⎨
⎪⎩

d̄′ if d = d̄

d̄ if d = d̄′

d otherwise.

If σ is applied to the remaining input, it is still accepted, but no overwrit-
ing occurs. This process can be repeated for each instance of overwriting. The
resulting input is accepted by both the original and the newly created automa-
ton. ��

All results presented in this section are outlined in Fig. 11d.

6 Application to Existing Models

We now employ the feature-wise reductions from Sect. 5 to define reductions
between the existing models from Sect. 4.2.

Theorem 17. Every initialized finite-memory automaton is a valid finite-me-
mory automaton.

Theorem 18. There exists a determinism-preserving LIN-automaton-only
reduction from finite-memory to Neven-Schwentick-Vianu automata.

Proof. We apply the following sequence of reductions:

(A-PS)+(U-UL)+(R-IE)+(G-UP): finite-memory automaton
� (A-PT)+(U-UL)+(R-IE)+(G-UP)

Thm. 10
� (A-PT)+(U-UL)+(R-IE)+(G-UA): Neven-Schwentick-Vianu automaton

��

Theorem 19. There exists a determinism-preserving P-data stable reduction
from Neven-Schwentick-Vianu to Segoufin automata.

A Taxonomy and Reductions for Common Register Automata Formalisms 213

Fig. 11. Inequalities, reductions, and lower reduction complexity bounds between vari-
ants.

214 S. Dierl and F. Howar

Proof. We apply the following sequence of reductions:

(A-PT)+(U-UL)+(R-IE)+(G-UA): Neven-Schwentick-Vianu automaton
� (A-PT)+(U-LU)+(R-IE)+(G-UA)

Thm. 11
� (A-PT)+(U-LU)+(R-IE)+(G-FG)

Thm. 4
� (A-PT)+(U-LU)+(R-IN)+(G-FG): Segoufin automaton

��
Theorem 20. Every Segoufin automaton is a valid Demri-Lazić automaton.

Theorem 21. There exists a determinism-preserving LIN-data stable reduction
from Demri-Lazić to succinct canonical register automata.

Proof. We apply the following sequence of reductions:

(A-PT)+(U-LU)+(R-IN) +(G-NR): Demri-Lazić automaton
Thm. 6

� (A-PT)+(U-LU)+(R-UA)+(G-NR)
� (A-PT)+(U-LU)+(R-UA)+(G-CC)
� (A-PT)+(U-LV)+(R-UA)+(G-CC): succinct canonical RA

��
Theorem 22. There exists a determinism-preserving P-many-one reduction
from succinct canonical register automata to Demri-Lazić automata.

Proof. We apply the following sequence of reductions:

(A-PT)+(U-LV)+(R-UA)+(G-CC): succinct canonical RA
Thm. 1

� (A-PT)+(U-LU)+(R-UA)+(G-CC)
Thm. 3

� (A-PT)+(U-LU)+(R-IN) +(G-CC)
Thm. 13

� (A-PT)+(U-LU)+(R-IN) +(G-NR): Demri-Lazić automaton

��
Theorem 23. There exists a determinism-preserving EXP-many-one reduction
from succinct canonical register automata to finite-memory automata.

Proof. We apply the following sequence of reductions:

(A-PT)+(U-LV)+(R-UA)+(G-CC): succinct canonical RA
Thm. 7

� (A-PS)+(U-LV)+(R-UA)+(G-CC)
Thm. 1

� (A-PS)+(U-LU)+(R-UA)+(G-CC)
Thm. 2

� (A-PS)+(U-UL)+(R-UA)+(G-CC)
Thm. 3

� (A-PS)+(U-UL)+(R-IN) +(G-CC)
� (A-PS)+(U-UL)+(R-IE) +(G-CC)

Thm. 12
� (A-PS)+(U-UL)+(R-IE) +(G-UP): finite-memory automaton

��

A Taxonomy and Reductions for Common Register Automata Formalisms 215

Fig. 12. Reductions between models and the complexity of NonEmptiness.

Theorem 24. There exists a P-many-one reduction from Demri-Lazić to Segou-
fin automata.

Proof. Follows from Theorem 14.

Theorem 25. If the polynomial hierarchy does not collapse, there exists no
PH-NonEmptiness-Turing reduction from Segoufin to Neven-Schwentick-Vianu
automata.

Proof. Follows from Corollary 2.

Theorem 26. There exists a LIN-prefix free reduction from Neven-Schwentick-
Vianu to finite-memory automata.

Proof. We apply the following sequence of reductions:

(A-PT)+(U-UL)+(R-IE)+(G-UA): Neven-Schwentick-Vianu automaton
Thm. 8

� (A-PS)+(U-UL)+(R-IE)+(G-UA)
Thm. 16

� (A-PS)+(U-UL)+(R-IE)+(G-UP)
(A-PS)+(U-UL)+(R-IE)+(G-UP): finite-memory automaton

��

Theorem 27. If NL �= NP, there exists no NL-NonEmptiness-Turing reduc-
tion from finite-memory to initialized finite-memory automata.

216 S. Dierl and F. Howar

Proof. Follows from Theorem 5.

Three categories of model can be distinguished by the complexity of
deciding NonEmptiness: those for which the problem is NL-, NP-, and
PSPACE-complete. These match the “register disciplines” SF , S#0 , and MF
by Murawski et al. [17,18]. The resulting structure is shown in Fig. 12.

For finite-memory automata and above, deciding Membership is P-complete
for deterministic automata and NP-complete otherwise. P- and NP-hardness
were proven for finite-memory automata. For every model, the Membership
of a word can – depending on determinism – be verified in P or NP by “execut-
ing” the automaton. Reductions therefore are of little interest for deciding the
Membership problem.

7 Conclusion and Future Work

We have described a taxonomy for several register automaton features and suc-
cessfully applied it to several types of automaton in the literature. The examined
feature variants have been shown to be mutually reducible, as outlined in Fig. 11.
This shows that all variants have identical expressiveness. We also charted the
complexity of the NonEmptiness problem for different features and identified
three categories of automaton, those for which it is NL-, NP-, and PSPACE-
complete. The possibility of transition guards to be unsatisfiable for certain
register valuations defines the difference between the first two, while the ability
to store the same value in multiple registers defining the difference between the
latter1. This implies that the size of automaton required to recognize a language
varies between models, i.e., automata with PSPACE-complete NonEmptiness
require less size to recognize a language.

Some register automaton formalisms, such as M-automata [15] and the
automata defined by Benedikt et al. [2] cannot be described using our taxonomy.
The former bears more similarity to pebble automata [19], while the latter’s use
of states is dissimilar to any other model’s. In future work, our taxonomy could
be extended to capture these formalisms.

Semantic extensions that strictly increase expressiveness such as register
pushdown automata [9], fresh-register automata [24], register automata with
non-deterministic reassignment [16] or with linear arithmetic [8] and symbolic
register automata [10] have been proposed as extensions to the classical register
automaton model studied by us. Again, these extensions could be taxonomized
to permit the transfer of applicable results.

References

1. Babari, P., Droste, M., Perevoshchikov, V.: Weighted register automata and
weighted logic on data words. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016.
LNCS, vol. 9965, pp. 370–384. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46750-4_21

1 Segoufin mistakenly attributes this to the presence of labels in [23].

https://doi.org/10.1007/978-3-319-46750-4_21
https://doi.org/10.1007/978-3-319-46750-4_21

A Taxonomy and Reductions for Common Register Automata Formalisms 217

2. Benedikt, M., Ley, C., Puppis, G.: What you must remember when processing
data words. In: Laender, A.H.F., Lakshmanan, L.V.S. (eds.) Proceedings of the 4th
Alberto Mendelzon International Workshop on Foundations of Data Management.
CEUR Workshop Proceedings, vol. 619, pp. 11.1–11.8. CEUR-WS.org, Aachen
(2010). http://ceur-ws.org/Vol-619/paper11.pdf

3. Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets. Log. Meth-
ods Comput. Sci. 10(4), 1–44 (2014). https://doi.org/10.2168/LMCS-10(3:4)2014

4. Cassel, S., Howar, F., Jonsson, B.: RALib: a LearnLib extension for inferring
EFSMs. In: Proceedings of the 4th International Workshop on Design and Imple-
mentation of Formal Tools and Systems (2015). https://www.faculty.ece.vt.edu/
chaowang/difts2015/papers/paper_5.pdf

5. Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A succinct canonical
register automaton model. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS,
vol. 6996, pp. 366–380. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-24372-1_26

6. Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A succinct canonical
register automaton model. J. Log. Algebr. Methods Program. 84(1), 54–66 (2015).
https://doi.org/10.1016/j.jlamp.2014.07.004

7. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite
state machines. Formal Aspects Comput. 28(2), 233–263 (2016). https://doi.org/
10.1007/s00165-016-0355-5

8. Chen, Y.F., Lengál, O., Tan, T., Wu, Z.: Register automata with linear arith-
metic. In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pp. 1–12. IEEE, June 2017. https://doi.org/10.1109/LICS.2017.8005111

9. Cheng, E.Y.C., Kaminski, M.: Context-free languages over infinite alphabets. Acta
Inform. 35(3), 245–267 (1998). https://doi.org/10.1007/s002360050120

10. D’Antoni, L., Ferreira, T., Sammartino, M., Silva, A.: Symbolic register automata.
In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 3–21. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_1

11. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log. 10(3), 16:1-16:30 (2009). https://doi.org/10.1145/1507244.
1507246

12. Howar, F.: Active learning of interface programs. Ph.D. thesis, Technische Univer-
sität Dortmund, June 2012. https://doi.org/10.17877/DE290R-4817

13. Isberner, M., Howar, F., Steffen, B.: Learning register automata: from languages to
program structures. Mach. Learn. 96(2), 65–98 (2013). https://doi.org/10.1007/
s10994-013-5419-7

14. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4_32

15. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
329–363 (1994). https://doi.org/10.1016/0304-3975(94)90242-9

16. Kaminski, M., Zeitlin, D.: Finite-memory automata with non-deterministic reas-
signment. Int. J. Found. Comput. Sci. 21(05), 741–760 (2010). https://doi.org/10.
1142/S0129054110007532

17. Murawski, A.S., Ramsay, S.J., Tzevelekos, N.: Reachability in pushdown register
automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014.
LNCS, vol. 8634, pp. 464–473. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44522-8_39

http://ceur-ws.org/Vol-619/paper11.pdf
https://doi.org/10.2168/LMCS-10(3:4)2014
https://www.faculty.ece.vt.edu/chaowang/difts2015/papers/paper_5.pdf
https://www.faculty.ece.vt.edu/chaowang/difts2015/papers/paper_5.pdf
https://doi.org/10.1007/978-3-642-24372-1_26
https://doi.org/10.1007/978-3-642-24372-1_26
https://doi.org/10.1016/j.jlamp.2014.07.004
https://doi.org/10.1007/s00165-016-0355-5
https://doi.org/10.1007/s00165-016-0355-5
https://doi.org/10.1109/LICS.2017.8005111
https://doi.org/10.1007/s002360050120
https://doi.org/10.1007/978-3-030-25540-4_1
https://doi.org/10.1145/1507244.1507246
https://doi.org/10.1145/1507244.1507246
https://doi.org/10.17877/DE290R-4817
https://doi.org/10.1007/s10994-013-5419-7
https://doi.org/10.1007/s10994-013-5419-7
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.1142/S0129054110007532
https://doi.org/10.1142/S0129054110007532
https://doi.org/10.1007/978-3-662-44522-8_39
https://doi.org/10.1007/978-3-662-44522-8_39

218 S. Dierl and F. Howar

18. Murawski, A.S., Ramsay, S.J., Tzevelekos, N.: Reachability in pushdown register
automata. J. Comput. Syst. Sci 87, 58–83 (2017). https://doi.org/10.1016/j.jcss.
2017.02.008

19. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Logic 5(3), 403–435 (2004). https://doi.org/10.
1145/1013560.1013562

20. Post, E.L.: Recursively enumerable sets of positive integers and their decision prob-
lems. Bull. Am. Math. Soc. 50(5), 284–316 (1944). https://doi.org/10.1090/S0002-
9904-1944-08111-1

21. Saint-Andre, P.: Extensible messaging and presence protocol (XMPP): Core. RFC
6120, RFC Editor, March 2011. https://doi.org/10.17487/RFC6120

22. Sakamoto, H., Ikeda, D.: Intractability of decision problems for finite-memory
automata. Theor. Comput. Sci. 231(2), 297–308 (2000). https://doi.org/10.1016/
S0304-3975(99)00105-X

23. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In:
Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006).
https://doi.org/10.1007/11874683_3

24. Tzevelekos, N.: Fresh-register automata. In: Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
295–306. ACM, New York (2011). https://doi.org/10.1145/1926385.1926420

https://doi.org/10.1016/j.jcss.2017.02.008
https://doi.org/10.1016/j.jcss.2017.02.008
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1090/S0002-9904-1944-08111-1
https://doi.org/10.1090/S0002-9904-1944-08111-1
https://doi.org/10.17487/RFC6120
https://doi.org/10.1016/S0304-3975(99)00105-X
https://doi.org/10.1016/S0304-3975(99)00105-X
https://doi.org/10.1007/11874683_3
https://doi.org/10.1145/1926385.1926420

	A Taxonomy and Reductions for Common Register Automata Formalisms
	1 Introduction
	2 Preliminaries
	3 Reductions
	4 Taxonomy for Register Automata Formalisms
	4.1 Proposed Taxonomy
	4.2 Classification of Some Existing Models

	5 Reductions Between Variants
	5.1 Data Universe Type
	5.2 Register Availability
	5.3 Update Granularity
	5.4 Guard-Update Model

	6 Application to Existing Models
	7 Conclusion and Future Work
	References

