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register(p1, p2) | true
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Preface

The traditional measure of quality assurance is testing. Verification, or even the
synthesis of programs were considered the “higher art” of achieving system reliability,
accomplished via so-called formal methods. Practice has shown, however, that there
are no ways around test-based quality assurance: the verification problems are typically
undecidable, and even if they were decidable, they would only cover a certain level of
abstraction and not the entire system as it runs in its productive environment.

This Festschrift, dedicated to Bengt Jonsson on the occasion of his 60th birthday,
indicates such a return to the basics. While the beginning of Bengt’s career was clearly
devoted to verfication, later he became interested in test-based methods, which of
course he approached in a truly formal methods-based fashion. And always with the
goal to reach the stars, or, more technically expressed, to do battle with the limits of
decidability. The nine invited contributions and the corresponding wealth of references
to Bengt’s work provided in this Festschrift illustrate the style and influence of his
trendsetting efforts.

Ernst-Rüdiger Olderog
Bernhard Steffen

Wang Yi
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Model Checking, Synthesis, and Learning
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Abstract. Reliability is a central concern of software system develop-
ment. It can be approached in three ways, in a post-mortem fashion via
verification of an unknown artefact, by construction applying correctness
preserving steps, and via testing of the final product. In this paper, we
introduce the nine contributions to the Festschrift dedicated to Bengt
Jonsson on the occasion of his 60th birthday. Verification is addressed
here from the model checking perspective, correctness by construction
via synthesis, and testing as both a means and a as by-product of active
automata learning while reflecting on the impact Bengt had on these
developments.

Keywords: Linear-time temporal logic · Büchi automata ·
Verification · (Regular) Model checking · Petri-nets · Petri games ·
Model synthesis · Timed systems · Probabilistic systems · Markov
chains · Automata learning · Register automata

1 Bengt Jonsson: A Multi-talent

In the 1980s, we met Bengt and were amazed by his many talents. The first
meeting took place during an Advanced Course on Logics and Models for Ver-
ification and Specification of Concurrent Systems organized by Krzysztof Apt
in the beautiful La Colle-sur-Loup, France, in October 1984. I, Ernst-Rüdiger,
was among the 17 lecturers and Bengt was in the audience. I was lecturing on
what I called Specification-oriented Programming in TCSP, a topic that grew
out of my research on communicating processes that started during a postdoc-
toral stay at the Programming Research Group in Oxford led by Tony Hoare.
Bengt had returned to Uppsala, Sweden, from studies at Stanford University. We
were both fascinated by the presentation of Jay Misra on his work with Mani
Chandy on Quiescent Properties in Distributed Computations, which addressed
asynchronous communication in networks rather than the synchronous commu-
nication that is at the heart of Hoare’s CSP. Willem Paul de Roever, also one
of the lecturers, suggested to Bengt in his usual style: “You should visit Ernst-
Rüdiger in Kiel.” This is what happened.
c© Springer Nature Switzerland AG 2021
E.-R. Olderog et al. (Eds.): Jonsson Festschrift, LNCS 13030, pp. 1–7, 2021.
https://doi.org/10.1007/978-3-030-91384-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91384-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-91384-7_1


2 E.-R. Olderog et al.

During the period 1984–1987 Bengt visited several times Kiel to discuss
semantic issues of quiescent traces in asynchronous networks. Most notable is
his first visit to Kiel in December 1984. His arrival coincided with the start of
a longer research stay of Dr. Vitaliy Zubenko from Kiev University, Ukraine,
in Kiel. Dr. Zubenko was to visit my supervisor Prof. Hans Langmaack, but it
turned out that initially he could speak neither German nor English, a difficult
start when lot of formal documents need to be filled. At this stage, Bengt admit-
ted that he can speak a little bit of Russian. Well, it turned out that he spoke
fluently Russian, at least fluently enough to serve as a perfect interpreter during
the first crucial day of Dr. Zubenko in Kiel.

In the evening of that day, the Langmaacks invited the visitors and his assis-
tants, among them Bernhard Steffen, to a dinner in their home. Mrs Annemarie
Langmaack is a great violin player and talked to Bengt. He admitted that he can
play piano. Then the guests of that evening were fascinated by Bengt playing
pieces of Chopin on Langmaack’s piano. Also present at the meeting was Maja,
a lady from Ukraine. She turned out to be a gifted singer who would present
Ukrainian songs. It was a most beautiful closing of a busy day. Bengt had sur-
prised us with his talents for languages and music. Our scientific meetings also
progressed well.

Bengt quickly picked up some suggestions and published his very first paper
entitled A Model and Proof System for Asynchronous Networks at the renowned
ACM Symposium on Principles of Distributed Computing in 1985 [28]. Two
years later, he defended his PhD thesis on Compositional Verification of Dis-
tributed Systems at Uppsala University.

Scientifically, Bengt Jonsson has made major contributions covering a wide
range of topics including verification and learning. His works on verification,
infinite-state systems, learning, testing, probabilistic systems, timed systems,
and distributed systems reflect both the diversity and the depth of his research.
This is witnessed also by his receiving the CAV Award 2017:

“Parosh Abdulla, Alain Finkel, Bengt Johnsson, and Philippe Schnoebelen
receive the CAV Award 2017 for the development of general mathemati-
cal structures leading to general decidability results for the verification of
infinite-state transition systems.”

Besides being an excellent scientist, Bengt is also a leader who has greatly influ-
enced the careers of his students and his colleagues. In the remainder of this
paper, we will sketch central elements of Bengt’s work along nine invited contri-
butions.

2 Model Checking, Synthesis, and Learning

Scientifically, Bengt’s work started with verification [28,29]. The first contribu-
tion to this Festschrift refers to a later paper [34]. In From Linear Temporal
Logics to Büchi Automata: The Early and Simple Principle, Moshe Vardi and
Yih-Kuen Tsay reflect on the key principle of linear-time model checking, the
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translation into Büchi automata, while, in particular, considering the extension
to past-time operators [36].

Considering time seems like a natural extension to systematic system anal-
ysis. The second contribution to the volume, Cause-Effect Reaction Latency In
Real-Time Systems [1] by Wang Yi and Jakaria Abdulla, relates to [22,23]. It
considers the impact of latency constraints, i.e., of the maximum time an input
is allowed to impact a corresponding output. In particular, it provides an algo-
rithm for the safe estimation of the worst-case cause-effect latency for systems
following a protocol for non-blocking communication.

Dealing with uncertainty is another natural extension of the scope of verifi-
cation. The third contribution, Quantitative Analysis of Interval Markov Chains
[9] by Kim Larsen, Giovanni Bacci, Benoit Delahaye, and Anders Mariegaard
bases on [30] where Interval Markov chains (IMCs) were introduced. The paper
extends IMC with rewards and compares three corresponding semantics in the
context of model checking, shows their equivalence in a reward-bounded setting,
and provides corresponding model checking algorithms.

The step moving from regular systems to systems whose state space can be
described in a regular fashion generalizes model checking to a verification dis-
cipline for infinite systems. The fourth contribution, Regular Model Checking:
Evolution and Perspectives, by Parosh Abdulla sketches the development of reg-
ular model checking in a tutorial-like fashion, providing also direktions to future
research. The presented development is strongly linked to contributions of Bengt
Jonsson [3,5,6,14,33].

Conceptually different is the step from model checking to model synthesis: it
is the step from ‘post-mortem’ verification to correctness by construction. The
fifth contribution, Regular Model Checking Revisited by Philipp Rümmer and
Anthony Lin [35], is also based on seminal work by Bengt Jonsson et al. on
regular model checking [2,4,7]. It shows that a reformulation of regular model
checking with length-preserving transducers in terms of existential second-order
theory over automatic structures enables powerful synthesis techniques that have
been extensively studied in the software verification community.

Also the sixth contribution, High-Level Representation of Benchmark Fam-
ilies for Petri Games by Ernst-Rüdiger Olderog and Manuel Gieseking [21],
addresses synthesis, this time in a game-based fashion based on Petri Nets. Novel
is the study of representing benchmark families for the synthesis of distributed
systems modeled with Petri games by specifying an entire benchmark family as
one parameterized high-level net.

The shift from verification/synthesis to model (automata) learning is rad-
ical. Neither correctness nor completeness can be guaranteed. In practice,
automata learning rather provides a systematic, and in a sense optimal, con-
tinuous improvement process. Bengt was torn into this field from two sides: The
connection to model-based testing [10], and the treatment of potentially infinite
sets of data [11,12,18,25,26], an aspect discussed in more detail in the eight
contribution to the volume from the perspective of expressiveness.
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The seventh contribution to this volume, Towards Engineering Digital Twins
by Active Behaviour Mining by Tiziana Margaria and Alexander Schieweck [8],
applies automata learning for deriving a digital twin for a small cyberphysical
system. The paper illustrates the approach and draws a connection towards
verification via model checking of the learned digital twin and feature-based,
incremental requirement specification [31,32].

The eighth contribution, Never-Stop Context-Free Learning by Bernhard
Steffen and Markus Frohme [20], elaborates on the fact that the continuous
improvement cycle of automata learning [13] of realistic systems typically never
ends. The approach is unique in that it treats context-free systems, which, in fact,
turn out to be well-suited to deal with the enormous length of monitoring-based
counter examples.

The final contribution, A Taxonomy and Reductions for Common Register
Automata Formalisms by Falk Howar and Simon Dierl [24], explores the expres-
siveness of a number of formalisms for specifying automata models over infi-
nite alphabets [15–17,19,27]. Combining a number of small-step reductions it is
shown that all the considered languages for modelling various notions of register
automata are equally expressive.

3 Closing Remark

Bengt as an orienteering racer does not fear hurdles and hardly gets lost. When
he wants to achieve something nobody would stop him. When I (Bernhard)
started to collaborate with him on automata learning, he immediately aimed
at looking at data and infinite alphabets. I am used to jogging and hiking,
but some of the routes Bengt took were beyond my zone of comfort. Years
later we (this time together with Falk Howar) converged again, establishing a
very natural notion of register automata for which active automata learning was
still effective. Of course, Bengt immediately started to push further towards the
regions of undecidability. This is Bengt, restless, and never satisfied with what
he has achieved, two properties that guarantee progress and success.
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Abstract. The automata-theoretic approach advocates reducing prob-
lems in an application domain to those in automata theory. When there
are multiple paths for the reduction, leaving the realm of application and
entering that of automata as early as possible should be preferred, to take
full advantages of the abundant algorithmic techniques from the latter.
This makes the entire reduction simpler for intuitive understanding and
easier for correctness proofs. Indeed, for linear-time temporal logic model
checking, there are quite a few ways for translating a temporal formula
into an equivalent Büchi automaton. They all go through one or more
types of automata as intermediaries, with various interspersing formula
manipulation and automaton generation along the way. Among them,
translations via alternating automata apparently better adhere to the
aforementioned “early and simple” principle. When it comes to trans-
lating temporal formulae with past operators, algorithms following the
principle generalize more easily by using a two-way alternating automa-
ton as the first intermediary.

In this paper, we give a tutorial presentation of two translation algo-
rithms adhering to the early and simple principle, one for formulae with
only future operators and the other for formulae with both future and
past operators. They are adaptations of existing works, with a substan-
tially different exposition, further improving simplicity for understanding
and easiness for proofs. In particular, we have tried wherever possible to
avoid using types of automata or notations that are less common. The
relevant notion of a very weak automaton is introduced with two equiva-
lent defining conditions, each offering its unique advantage in a suitable
context. Finally, we discuss the role of minimization in such an approach
to translation of temporal formulae.
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1 Introduction

The automata-theoretic approach advocates reducing problems in an application
domain to those in automata theory. In the mid 1980’s, Vardi and Wolper [33]
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proposed such an approach to the automatic verification of concurrent finite-
state systems by model checking, where the correctness of a system with respect
to a specification is reduced to the emptiness of a product automaton repre-
senting the intersection of the system and the negation of the specification.
Model-checking algorithms derived from their approach tend to be simpler and
cleaner than tableau-based algorithms. An even more important advantage of
the approach is generalizability, to different specification languages or systems
and even beyond verification to synthesis as conceived by the seminal work of
Pnueli and Rosner [24].

When there are multiple paths for the reduction, leaving the realm of appli-
cation and entering that of automata as early as possible should be preferred,
to take full advantages of the abundant algorithmic techniques from the latter.
This makes the entire reduction simpler for intuitive understanding and easier
for correctness proofs. Indeed, for linear-time temporal logic model checking,
there are quite a few ways for translating a temporal formula into an equiv-
alent Büchi automaton, e.g., [6,8–14,27]. They all go through one or more
types of automata as intermediaries, including particularly generalized Büchi
automata [4], with various interspersing formula manipulation and automaton
generation along the way. Among them, translations via alternating automata
apparently better adhere to the aforementioned “early and simple” principle.

Alternating automata extend nondeterministic automata to allow and-
branching, which may be used to force simultaneous acceptance from a selected
set of states. Boolean combinations in the input temporal formula can therefore
be treated directly by alternation, rather than by restructuring automaton-states
when only nondeterminism is available. Consequently, why the constructed inter-
mediate automaton is equivalent to the input temporal formula becomes much
clearer. When it comes to translating temporal formulae with past operators,
algorithms following the early and simple principle generalize more easily by
using a two-way alternating automaton as the first intermediary.

In this paper, we give a tutorial presentation of two translation algorithms
adhering to the early and simple principle, one for formulae with only future
operators, namely LTL formulae, and the other for formulae with both future
and past operators, namely PTL formulae. They both use alternating automata
as the first intermediary and, for PTL formulae, the additional machinery of
a two-way automaton is employed. The extension of the first algorithm to the
second for this part is nearly effortless. Although the subsequent conversions of
automata are harder when two-way movements of the read head on the input
word are involved, we have much to borrow from the algorithmic techniques
developed in automata theory.

The algorithms are adaptations of existing works, specifically those of
Vardi [31], Gastin and Oddoux [11,12], and De Wulf, Doyen, Maquet, and
Raskin [7], with a substantially different exposition, further improving simplicity
for intuitive understanding and easiness for correctness proofs. In particular, we
have tried wherever possible to avoid using types of automata or notations that
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are less common. The relevant notion of a very weak automaton is introduced
with two equivalent defining conditions, each offering its unique advantage in a
suitable context. Finally, we discuss the role of minimization in such an approach
to translation of temporal formulae.

Before we embark on the exposition, a few words about past temporal opera-
tors are in order. We have considered past operators for their several advantages,
as also having been pointed out by many other researchers, e.g., [18,20]. Though
expressively equivalent to LTL, PTL is more intuitive. For example, to say “a
grant has to be preceded by a request”, one may write �(g → −© −�r) instead
of ¬(¬r U g); the semantics of temporal operators is given in the preliminar-
ies section. To say “assume �p, guarantee �q”, one may write �( ∼© −�p → q)
(or equivalently, �( ∼© −�p → −�q)) [16] instead of ¬p R q. (Note: �( ∼© −�p →
q) ∧ �( ∼© −�q → p) implies �p ∧ �q; this is a well-known mutual induction
technique in modular reasoning.) Past operators are also instrumental for clas-
sification. For example, ¬p W q and �(p → −�q) are equivalent, but the latter
is clearly a safety formula judging from its form; �(p → �q) (p “leads-to” q)
is equivalent to ��(¬p B q), which is a recurrence property [21]. PTL can be
exponentially more succinct than LTL [18]. In some cases, however, temporal
formulae using past operators may be longer and their translation may result in
larger automata.1

A Brief History. The remainder of this section is a brief historical account of
research on translation of linear temporal formulae into Büchi automata. Such
research works predated the proposal of the automata-theoretic approach by
Vardi and Wolper. In particular, the work of Wolper [34] on the expressiveness of
linear temporal logic contains a tableau-based decision procedure, which may be
adapted to obtain a translation algorithm into generalized Büchi automata. The
tableau-based algorithm of Lichtenstein and Pnueli [19] for checking that a sys-
tem satisfies a linear temporal specification may also be adapted for translation.
Extension of such algorithms to handle past operators was quite straightforward
and one extension was presented in [19] and also in a related work of Lichtenstein,
Pnueli, and Zuck [20] that promotes past operators. The problem is that, with the
main purpose of proving an upper bound, these algorithms always get the worst-
case exponential blow-up on the number of automaton-states. Nevertheless, these
early works established very basic techniques in translation: (automaton-)states
represent formulae, and a formula with a leading next operator relates two states
such that a transition goes from one state for the formula to the other state for
the same formula with the next operator removed.

Another related work is by Wolper, Vardi, and Sistla [35] who investigated
variants of linear temporal logic with the same expressive power as Büchi
automata. To solve the standard decision problems for those logics, they resorted
to translation into Büchi automata. In the interest of expressiveness, however,

1 The equivalence between two temporal formulae can be conveniently checked with,
e.g., the GOAL tool [29].
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their temporal logics use automaton structures in place of temporal operators.
It is not immediately clear how their translation algorithms could be used to
treat formulae with real temporal operators.

The simple on-the-fly algorithm of Gerth, Peled, Vardi, and Wolper [13]
is probably the most well-known and influential translation algorithm. It uses
generalized Büchi automata as an intermediary. Starting with a single node for
the input formula, the algorithm proceeds in a depth-first manner, recursively
splitting an existing node or generating new nodes as the formula represented by
the current node is expanded and processed. The technique may be categorized as
an “incremental” tableau construction according to Kesten, Manna, McGuire,
and Pnueli [17], who earlier proposed an incremental (but not quite on-the-
fly) translation algorithm for formula with past operators. For an incremental
construction, past operators posed some difficulty and required multiple passes
as opposed to a single pass for future operators. This is in contrast with the
“declarative” tableau constructions in [19,20], which are more intuitive, but
always suffer from the worst-case exponential blow-up.

Several subsequent works, including Daniele, Giunchiglia, and Vardi [6], Cou-
vreur [5], Somenzi and Bloem [27], Etessami and Holzmann [8], and Gian-
nakopoulou and Lerda [14] use the on-the-fly algorithm of Gerth et al. as a
basis. Couvreur proposed to compute node expansions symbolically and impose
acceptance conditions on transitions. The work of Daniele et al. employs a uni-
form presentation using the notion of a cover, which is essentially a break-down
of the alternatives to satisfy a formula. They also investigated contradiction and
redundancy detection relying only on the syntax of temporal formulae. Gian-
nakopoulou and Lerda followed the same line, but chose to get closer to the
usual convention of labeling input symbols on the transitions for which some
simulation relation and hence redundancy is easier to detect; they also chose
to impose acceptance conditions on transitions. The improvements by Somenzi
and Bloem and by Etessami and Holzmann were mainly about reducing the
number of automaton-states using formula rewriting and simulation relations
in intermediate automata. Analysis of the acceptance set and the structure of
the transition graph was also considered. All these algorithms deal only with
future operators and an extension to past operators is not immediately clear, as
experienced by Kesten et al. in an incremental construction.

Using alternating automata as the first intermediary in translation was
proposed by Vardi [31]. Boolean combinations in the input temporal formula
were treated directly by alternation in the intermediate automaton, and the
equivalence between the constructed automaton and the input temporal for-
mula became much clearer. With the standard construction of Miyano and
Hayashi [23] for alternating automata into Büchi automata conversion, the cor-
rectness of the entire translation algorithm follows immediately. However, it
would take another few years for the notion of a very weak automaton to be
discovered by Rohde [25] and later exploited by Gastin and Oddoux [11] to
obtain a translation algorithm competitive enough for practical uses. Further
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improvements using simulations were subsequently proposed by Fritz [9,10]. In
another branch of work, De Wulf, Doyen, Maquet, and Raskin [7] proposed to
use a symbolic representation of the alternating automaton from a temporal
formula, which suffices for setting up fix-point calculations for satisfiability or
model checking and avoids the immediate exponential blow-up in an explicit
representation of the transitions.

The use of two-way automata to handle past operators was also proposed by
Vardi [30,32]. Gastin and Oddoux [12] adopted the idea to generalize their trans-
lation algorithm for LTL to one for PTL. Their algorithm takes a PTL formula
as input, translates it into a two-way alternating automaton which is very weak,
converts the alternating automaton into a generalized Büchi automaton (with
acceptance conditions on the transitions), and then to Büchi automaton. The
correspondence between the input formula and the first intermediate automaton
is clear as expected, though subsequent conversions are a bit involved.

2 Preliminaries

2.1 Symbols, Words, and Languages

A word (or string) is a sequence of symbols taken from some finite alphabet and
a language is just a set of words. An infinite word is a word of infinite length, i.e.,
an infinite sequence of symbols. Inputs to Büchi automata and other ω-automata
are infinite words. They also serve as models for interpreting temporal formulae,
when one regards the symbols in a word as truth assignments to the propositions
in a formula. The words accepted by an automaton form a language and so do
those satisfying a temporal formula. An automaton and a temporal formula are
equivalent when they specify the same language.

For a symbol to represent a truth assignment to the propositions in a tem-
poral formula, in this paper we always take 2AP to be the finite alphabet, where
AP is the set of atomic propositions from which temporal formulae are built. If
AP = {p, q}, then the alphabet is 2AP = {∅, {p}, {q}, {p, q}}, where the symbol
{p} for instance is the truth assignment in which p is true and q is false. So, a
symbol, as an element of 2AP , has some structure in it rather than just a plain
letter.

The set {∅, {p}, {q}, {p, q}} may also be written as {¬p¬q, p¬q,¬pq, pq},
where the absence of a proposition in a subset of {p, q} is explicitly spelt out
with the use of ¬ (negation). This representation is convenient; e.g., when we
want to focus on the symbols/assignments where p is true, we may simply write
p instead of {pq, p¬q} or {{p}, {p, q}}. In the same vein, true alone means the
whole of 2AP . We use either of the two representations for symbols, whichever
is more convenient.

Formally, let Σ, the alphabet, be 2AP for some given finite set AP of atomic
propositions; each element in Σ is called a (propositional) symbol. An infinite
word over Σ is a map from N (the set of natural numbers, including 0) to Σ.
Given a word w, we write wi instead of w(i) and call it the symbol at position i
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of w, where i ≥ 0. Σω denotes the set of all infinite words over Σ. An ω-language,
or simply language, is a subset of Σω.

2.2 Temporal Logics

We define in this section the full Propositional (Linear) Temporal Logic, namely
PTL [1,12,22,26]. LTL is just the subset of PTL without the past operators2.
Despite a recent trend of enforcing negation normal form (NNF) directly in the
syntax, we still follow the classic definition of syntax because after all that is the
syntax in real use. In a subsequent section, we invoke as a lemma the possibility
of converting every PTL formula into an equivalent formula in NNF and then
start the translation with an input formula in NNF.

PTL formulae over a set AP of atomic propositions are constructed by apply-
ing Boolean and temporal operators to elements from AP . Temporal operators
are classified into future operators and past operators. Future operators include
© (next), � (eventually or sometime), � (always), U (until), and R (release).
Past operators include −© (previous), ∼© (before), −� (once), −� (so-far), S (since),
and T (toggle, or toggled). The ∼© operator is a weaker version of −©, to be
explained after the formal semantics is given.

A variant of PTL [21] adopts a weaker version of U , namely W (wait-for),
and a weaker version of S (since), namely B (back-to), in place of R and T
respectively. We consider R and T , as they are more commonly used in the
model checking community. The W and B operators may be treated with the
same translation techniques that are presented in subsequent sections. We leave
them out for brevity.

Definition 1 (Syntax of PTL). Let AP be a set of atomic propositions.

– Every p ∈ AP is a PTL formula (over AP).
– If f and g are PTL formulae, then so are ¬f , f ∨ g, f ∧ g, ©f , �f , �f ,

f U g, f R g, −©f , ∼©f , −�f , −�f , f S g, and f T g.

All operators associate to the right (e.g., “f U g U h” should be parsed as
“f U (g U h)”) and the unary operators have precedence over the binary ones.
Parentheses may be used to override precedence or just to avoid confusion. We
also use common abbreviations: ¬f ∨g is written as f → g and (f → g)∧(g → f)
as f ↔ g.

A PTL formula over AP is interpreted on an infinite word σ over Σ = 2AP

relative to a position i in σ. The semantics of PTL in terms of (σ, i) |= f (read “f
holds at position i of σ”) is given below. For a pure propositional formula ϕ that
does not contain a temporal operator, we write σi |= ϕ as usual to mean that
the symbol σi satisfies ϕ in the propositional logic sense; recall that a symbol
represents a truth assignment as described in the previous subsection.
2 The name LTL follows the naming convention in model checking [3]. In other con-

texts, LTL may refer to the temporal logic of Manna and Pnueli [21,22] with past
operators, variables of infinite domains, and quantification. On the other hand, the
name PTL was used instead of LTL in some early works on propositional linear
temporal logics without past operators, e.g., [34].
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Definition 2 (Semantics of PTL). Let σ be an infinite word over Σ = 2AP

and i a natural number.

– For an atomic proposition p ∈ AP,
• (σ, i) |= p ⇐⇒ p ∈ σi (also as σi |= p).

– For Boolean operators,
• (σ, i) |= ¬f ⇐⇒ (σ, i) |= f does not hold.
• (σ, i) |= f ∨ g ⇐⇒ (σ, i) |= f or (σ, i) |= g.
• (σ, i) |= f ∧ g ⇐⇒ (σ, i) |= f and (σ, i) |= g.

– For future temporal operators,
• (σ, i) |= ©f ⇐⇒ (σ, i + 1) |= f .
• (σ, i) |= �f ⇐⇒ for some j ≥ i, (σ, j) |= f .
• (σ, i) |= �f ⇐⇒ for all j ≥ i, (σ, j) |= f .
• (σ, i) |= f U g ⇐⇒ for some j ≥ i, (σ, j) |= g and for all k, i ≤ k < j,

(σ, k) |= f .
• (σ, i) |= f R g ⇐⇒ for all j ≥ i, (σ, j) |= g or for some k, i ≤ k < j,

(σ, k) |= f . (Or equivalently, for all j ≥ i, if (σ, k) �|= f for all k, i ≤ k < j,
then (σ, j) |= g. In words, g must hold if f has been false up to the
previous position, i.e., g may become false only after f has become true
in the previous position.)

– For past temporal operators,
• (σ, i) |= −©f ⇐⇒ i > 0 and (σ, i − 1) |= f .
• (σ, i) |= ∼©f ⇐⇒ i = 0 or (σ, i − 1) |= f .
• (σ, i) |= −�f ⇐⇒ for some j, 0 ≤ j ≤ i, (σ, j) |= f .
• (σ, i) |= −�f ⇐⇒ for all j, 0 ≤ j ≤ i, (σ, j) |= f .
• (σ, i) |= f S g ⇐⇒ for some j, 0 ≤ j ≤ i, (σ, j) |= g and for all k,

j < k ≤ i, (σ, k) |= f . (So, f S g is the past counterpart of f U g.)
• (σ, i) |= f T g ⇐⇒ for all j, 0 ≤ j ≤ i, (σ, j) |= g or for some k,

j < k ≤ i, (σ, k) |= f . (Or equivalently, for all j, 0 ≤ j ≤ i, if (σ, k) �|= f
for all k, j < k ≤ i, then (σ, j) |= g. So, f T g is the past counterpart of
f R g.)

Note that, for i > 0, ∼©f or −©f holds at position i if and only if f holds at
position i−1. The difference between ∼©f and −©f occurs at position 0: ∼©f always
holds at position 0, where −©f never holds. Below are two example formulae, the
first in LTL and the second in PTL.

– �(r → �g), which intends to mean “every request is eventually granted”.
– �(g → −© −�r), which intends to mean “a grant is issued only if there has been

a request”.

We say that an infinite word σ satisfies a PTL formula f or σ is a model of
f , denoted σ |= f , if (σ, 0) |= f .

Definition 3 (Language Defined by a PTL Formula). The set of all models
(infinite words) that satisfy a PTL formula f is called the language of f , or the
language specified by f , denoted L(f).
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Two formulae are said to be equivalent if they have the same set of models.
Congruence is a stronger notion of equivalence. Two formulae are congruent if
they have the same set of “relativized” models/words, or words with a relative
position i ≥ 0. That is, f and g are congruent, denoted f ∼= g, if, for all σ ∈ Σω

and all i ≥ 0, (σ, i) |= f if and only if (σ, i) |= g.
A PTL formula is said to be in negation normal form (NNF) if the negation

applies only to atomic propositions. Let AP denote the set of negated atomic
propositions. PTL formulae in NNF over AP are those built from elements in
AP∪AP , called literals, using disjunction (∨), conjunction (∧), and the temporal
operators. Every PTL formula can be rewritten into an equivalent formula in
NNF using De Morgan’s laws and the congruences for duality stated below.

Lemma 1 (Congruences for Duality [3,12,22]). For all PTL formulae f
and g, the following congruences hold:

¬©f ∼= ©¬f

¬�f ∼= �¬f
¬�f ∼= �¬f

¬(f U g) ∼= (¬f) R (¬g)
¬(f R g) ∼= (¬f) U (¬g)

¬ −©f ∼= ∼©¬f
¬ ∼©f ∼= −©¬f
¬ −�f ∼= −�¬f
¬ −�f ∼= −�¬f

¬(f S g) ∼= (¬f) T (¬g)
¬(f T g) ∼= (¬f) S (¬g)

Lemma 2 (Rewriting into NNF [3,12,22]). Every PTL formula has an
equivalent formula in NNF.

2.3 Labeled DAGs

We define in this section infinite labeled directed acyclic graphs (DAGs), with
one or more source nodes. They are convenient generalizations, which allow
node sharing, of labeled trees or forests for describing the computations of an
alternating automaton when run on an infinite word.

Given a possibly infinite set D, a D-labeled DAG G = (V,E) is a directed
graph that does not contain a directed cycle and is augmented with a labeling
function lG : V → D. We consider only DAGs that have one or more, but a
finite number of, source nodes that do not have an incoming edge. For a node
u ∈ V , let E(u) denote the set of all nodes v ∈ V such that (u, v) ∈ E, called the
successors of u. We extend this to let E(U) denote

⋃
u∈U E(u). An infinite path

of a DAG is a path from a source node that goes to infinity without reaching an
end.

A DAG is said to be leveled if V =
⋃

i≥0 Vi, where Vi’s are pair-wise disjoint,
and (u, v) ∈ E only when u ∈ Vi and v ∈ Vi+1 for some i ≥ 0. A node in Vi is
said to be at level i. In a leveled DAG, the nodes in E(u) are all at the same
level for every u ∈ V ; same for E(U), if all nodes in U ⊆ V are at the same
level. Consequently, all the paths from some source node to a designated node
have the same length, which equals the level of the designated node.
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2.4 Büchi and Other ω-Automata

Büchi automata and more generally ω-automata have the same structure as
classic finite-state automata but operate on infinite words [2,15,28]; automata
on infinite trees are not considered here. We define in this section different types
of ω-automata in one collective definition, to avoid repetitions of shared features.
For alternating automata, we include both an implicit (symbolic) and an explicit
representations of the transition function and the initial states, allowing for a
finer modular division in the translation procedure. In the symbolic presentation,
B+(AP∪AP∪X) denotes the set of all positive Boolean formulae over AP∪AP∪
X, where true and false are also allowed, i.e., all Boolean formulae built from
elements in AP ∪ AP ∪ X ∪ {true, false} using disjunction (∨) and conjunction
(∧). For Y ⊆ AP ∪ X and θ ∈ B+(AP ∪ AP ∪ X), we say that Y satisfies θ or
Y |= θ if, with the truth assignment that assigns true to elements in Y and false
to elements in (AP ∪ X) \ Y , the formula θ evaluates to true; similarly for the
simpler B+(X).

Definition 4 (Syntax of ω-Automata). An ω-automaton is a 5-tuple
〈Σ,Q, δ, I,Acc〉 and a two-way ω-automaton is a 6-tuple 〈Σ,Q, δ, I,QE ,Acc〉:

– Σ is the finite alphabet. We assume Σ to be 2AP for some given finite set
AP of atomic propositions.

– Q is the finite set of states/locations.
– δ is the transition function:

• nondeterministic: δ : Q × Σ → 2Q.
• alternating: δ : Q × Σ → 22

Q

.
• symbolic alternating: δ : Q → B+(AP ∪ AP ∪ Q).
• two-way alternating: δ : Q × Σ → 22

Q×2Q .
• symbolic two-way alternating: δ : Q → B+(AP ∪ AP ∪ (Q × {−,+})).

The transition function δ is also seen as a relation whose members are called
transitions (to be elaborated following this definition).

– I ⊆ Q is the set of initial states, for nondeterministic automata; I ⊆ 2Q

is the set of initial sets of states, for alternating automata; and I ∈ B+(Q)
is a positive Boolean constraint on the initial sets, for symbolic alternating
automata.

– QE ⊆ Q is either empty or a singleton {qE}; qE is called the end state, which
has no outgoing transition, i.e., δ(qE , a) = ∅ for every a ∈ Σ or symbolically
δ(qE) = false.

– Acc is the acceptance condition:
• Büchi: Acc is a set F ⊆ Q, containing the accepting states.
• Co-Büchi: Acc is a set F ⊆ Q, containing the “bad” states.
• Generalized Büchi (transition-based): Acc is a set of sets {F1, F2, · · · ,

Fk}, where every acceptance set Fi ⊆ δ (with δ seen as a set of transi-
tions).

For a nondeterministic automaton, when q′ ∈ δ(q, a) holds for some q, q′ ∈
Q and a ∈ Σ, we also write it as (q, a, q′) ∈ δ and call the triple (q, a, q′) a
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transition. For an (explicit) alternating automaton, when Q′ ∈ δ(q, a) holds for
some q ∈ Q, a ∈ Σ, and Q′ ⊆ Q, we also write it as (q, a,Q′) ∈ δ and call the
triple (q, a,Q′) a transition, which is an “and-branching” from q to all states
in Q′. For a symbolic alternating automaton, a ∪ Q′ |= δ(q) is treated as Q′ ∈
δ(q, a) in the explicit representation. For a two-way alternating automaton, when
(Q−, Q+) ∈ δ(q, a) holds for some q ∈ Q, a ∈ Σ, and Q−, Q+ ⊆ Q, we also write
it as (q, a, (Q−, Q+)) ∈ δ and call the triple (q, a, (Q−, Q+)) a transition. For a
symbolic two-way alternating automaton, a ∪ (Q− × {−}) ∪ (Q+ × {+}) |= δ(q)
is treated as (Q−, Q+) ∈ δ(q, a) in the explicit representation.

Given the current state and the next input symbol, an alternating automaton
may have zero, one, or more possible and-branching transitions, among which
it selects one nondeterministically (which is “or-branching”) as the next step.
Two special cases, namely δ(q, a) = {{}} (or a ∪ {} |= δ(q)) and δ(q, a) = {} (or
a∪Q′ �|= δ(q) for any Q′ ⊆ Q), may be confusing and are worth noting. The first
case intuitively means that there is no further requirement on the remainder of
the input after symbol a, while the second means that the input word will not
be accepted no matter what its remainder is.

Different combinations of transition function and acceptance condition give
rise to different types of ω-automata. Following a conventional system of
acronyms, the types of ω-automata we need in this paper are:

– NBW: nondeterministic Büchi (word-)automaton (on words, as opposed to
that on trees),

– TNGBW: transition-based nondeterministic generalized Büchi automaton,
– ACW: alternating co-Büchi automaton,
– SACW: symbolic ACW,
– 2ACW: two-way ACW,
– S2ACW: symbolic 2ACW, and
– ABW: alternating Büchi automaton (whose conversion into NBW is discussed

for motivating the conversion of ACW or 2ACW into TNGBW).

An automaton either accepts or rejects (does not accept) an input word and
the set of words that it accepts constitute the language it specifies/recognizes,
to be formally defined shortly. In Fig. 1(a) is an NBW that is equivalent to
�(r → �g) (they specify the same language), while in Fig. 1(b) is another NBW
that is equivalent to �(g → −© −�r). In both diagrams, an initial state is indicated
by an incoming arrow without a label, while a state in the acceptance set is
double-circled.

An infinite word as input drives an ω-automaton to go in every step from
one state to one or several others, producing runs. An automaton accepts an
input word if there exists a run of the automaton on the word that follows the
repetition patterns prescribed by the acceptance condition.

A word is accepted by an NBW if and only if there exists a run of the NBW
on the word that passes through at least one accepting state infinitely often. A
word is accepted by a TNGBW if and only if there exists a run of the TNGBW
on the word that passes through each acceptance set infinitely often.



18 Y.-K. Tsay and M. Y. Vardi

q0 q1

¬r, g

¬gr

g

¬g

q0 q1

¬g¬r

¬gr

true

(a) (b)

Fig. 1. (a) An NBW equivalent to �(r → �g). The single g as a label on the transition
edge from q0 to itself or from q1 to q0 is a shorthand for gr, g¬r, i.e., {g, r}, {g}. So,
either edge actually represents two transitions, one labeled with gr (i.e., {g, r}) and
the other with g¬r (i.e., {g}); analogously for the ¬g-labeled and ¬r-labeled edges.
(b) An NBW equivalent to �(g → −© −�r). True means all possible input symbols, so
the true-labeled edge actually presents four transitions.

Definition 5 (Semantics of NBW and TNGBW). For an NBW A =
〈Σ,Q, δ, I, F 〉, where F ⊆ Q, or a TNGBW B = 〈Σ,Q, δ, I, F 〉, where F =
{F1, F2, · · · , Fk} with every Fi ⊆ δ, a run on an infinite word w = w0w1w2 · · · ∈
Σω is an infinite sequence of states q0q1q2 · · · ∈ Qω s.t. q0 ∈ I and for every
i ≥ 0, (qi, wi, qi+1) ∈ δ. Given a run ρ on word w, let inf(ρ) denote the set of
states that appear infinitely many times in ρ and infδ(ρ) denote the set of tran-
sitions that appear infinitely many times in ρ, i.e., all (q, a, q′) ∈ δ that equals
(qi, wi, qi+1) for infinitely many i ≥ 0.

For NBW A, a run ρ on a word is accepting if inf(ρ) ∩ F �= ∅; and, for
TNGBW B, a run ρ on a word is accepting if, for every Fi, infδ(ρ) ∩ Fi �= ∅.

For an alternating automaton, a run on a given input word is a labeled
DAG. Let us first consider one-way automata, for which the set of states Q
serves as the set of labels. A transition (q, a,Q′) produces for a q-labeled node
as many successors as the number of states in Q′, each labeled with a distinct
state in Q′. The “branches” to the successors are and-branching. For knowing
which symbol of the input word the automaton is reading, the DAG is leveled.
The level of a node reflects the current position of the read head on the input
and also the number of steps/transitions that have been taken so far. An input
word typically induces multiple runs, due to the nondeterminism present in the
transition function. A run DAG dies if some of its paths cannot continue while
complying with the transition function. A run DAG is accepting if every infinite
path is accepting with respect to the acceptance condition. An infinite path is
accepting for a co-Büchi acceptance condition if it eventually stays outside of F
(i.e., inside of Q \ F ) and never returns to F (i.e., remains in Q \ F ).

For an infinite path ρ in a run DAG, let inf(ρ) be the set of states that appear
infinitely many times in ρ.

Definition 6 (Semantics of ACW and SACW). For an ACW or SACW
A = 〈Σ,Q, δ, I, F 〉, a run of A on an infinite word w = w0w1w2 · · · ∈ Σω is a
leveled Q-labeled DAG G = (V,E), where
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– for some Q′ ∈ I or Q′ |= I, |Q′| equals the number of source nodes in G and
for every q ∈ Q′ there is a source node s with lG(s) = q, and

– for every node u at level i ≥ 0, if lG(u) = q, then, for some Q′ ⊆ Q s.t.
Q′ ∈ δ(q, wi) or wi ∪Q′ |= δ(q), we have |E(u)| = |Q′| and, for every q′ ∈ Q′,
there is a node v ∈ E(u) s.t. lG(v) = q′.

A run on a word is accepting if every infinite path ρ of the run is accepting,
satisfying inf(ρ) ∩ F = ∅.

Note that a run of an alternating automaton may contain some finite paths,
each ending with a node at some level i and labeled with some state q such that
{} ∈ δ(q, wi) or wi ∪ {} |= δ(q). Also, every run DAG may be made minimal, by
forcing node sharing, i.e., disallowing distinct nodes on the same level to have
the same label. When a run DAG is minimal, there can be at most |Q| nodes on
a level. In the other extreme, without any sharing, the leveled run DAG becomes
a tree or forest. All these variations in node sharing do not affect the existence
of an accepting run on the input word.

For a two-way alternating automaton, every node in the run DAG is labeled
with a pair of state and position (of the input word, where the automaton’s read
head is reading the next symbol). Like in a one-way alternating automaton, for
a transition (q, a, (Q−, Q+)), the branches to the states in Q− ∪ Q+ are and-
branching. A branch to a state in Q− is accompanied by a left move of the read
head on the input word, and a branch to a state in Q+ is accompanied by a
right (usual) move of the read head. A special end state, if it exists, permits the
read head to go left beyond position 0 while entering the end state.

Definition 7 (Semantics of 2ACW and S2ACW). For a 2ACW or
S2ACW A = 〈Σ,Q, δ, I,QE , F 〉, a run of A on an infinite word w =
w0w1w2 · · · ∈ Σω is a Q × (N ∪ {−1})-labeled DAG G = (V,E) where

– for some Q′ ∈ I or Q′ |= I, |Q′| equals the number of source nodes in G and,
for every q ∈ Q′, there is a source node s with lG(s) = (q, 0), and

– for every node u ∈ V , if lG(u) = (q, j) with j ≥ 0, then, for some Q−, Q+ ⊆ Q
s.t. (Q−, Q+) ∈ δ(q, wj) or wj ∪ (Q− × {−}) ∪ (Q+ × {+}) |= δ(q), we have
|E(u)| = |Q−| + |Q+| and

• for every q ∈ Q−, there is a node v ∈ E(u) s.t. lG(v) = (q, j − 1), and
• for every q ∈ Q+, there is a node v ∈ E(u) s.t. lG(v) = (q, j + 1).

The position part of a label may not go below 0, i.e., become −1, except in
the case of (qE ,−1), where qE is the end state designated in QE.

A run on a word is accepting if every infinite path ρ of the run is accepting,
satisfying inf(ρ) ∩ F = ∅.

Note that a run DAG of a 2ACW or S2ACW is not necessarily leveled. The
level of a node is unimportant here, as the current position of the read head is
recorded in the label (not the level) of a node, unlike in the case of an ACW.
Still, one may choose to have a leveled run DAG such that the level of a node
reflects the number of steps that have been taken so far.
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Definition 8 (Language Defined by an ω-Automaton). An input word is
accepted by an ω-automaton A if there is an accepting run of A on the word. The
set of words accepted by A is called the language of A, or the language recognized
by A, denoted L(A).

All these variants of ω-automata, except nondeterministic co-Büchi
automata, are expressively equivalent to NBW. For further information, the
reader is referred to the book by Grädel, Thomas, and Wilke [15].

2.5 Very Weak Automata

The first intermediate automaton that we construct for a linear temporal formula
in the translation has a simpler structure than just an arbitrary automaton. It
is called a “very weak” automaton. We give defining properties for such simpler
structures.

The transition graph of an automaton is a directed graph whose nodes repre-
sent states and edges show the one-step reachability relation among the states as
dictated by the transition function. In particular, for an alternating automaton,
every possible branch in a transition from a state to another counts as a directed
edge. This is formalized as follows.

For a nondeterministic automaton, when (q, a, q′) is a transition, we call q′ a
successor state of q. For an alternating automaton, when (q, a,Q′) is a transition,
we call every q′ ∈ Q′ a successor state of q; analogously for a symbolic alternating
automaton. For a two-way alternating automaton, when (q, a, (Q−, Q+)) is a
transition, we call every q′ ∈ Q− ∪ Q+ a successor state of q; analogously for a
symbolic two-way alternating automaton.

Definition 9 (Transition Graph of an ω-Automaton). The transition
graph of an ω-automaton A is a directed graph GA = (V,E), where V equals
the set of states and (q, q′) ∈ E if q′ is a successor state of q.

Very weak automata may be defined using any of several equivalent criteria.
Below we give two of them that are used in this paper.

Lemma 3 (Equivalence of Conditions for Very-Weakness). For every
ω-automaton, the following conditions (for very-weakness) are equivalent:

C1 Every strongly connected component (SCC) of the transition graph contains
only one state.

C2 There is a partial order � on the set of states s.t. if q′ is a successor state
of q, then q′ � q. (The partial order may be replaced by a total order that is
compatible with the partial order.)

Proof. (C1 implies C2): The SCCs of the transition graph, which is directed,
form a SCC graph where the SCCs are the nodes and an edge connects one SCC
to another if a state in the former SCC has a successor state in the latter. For
any directed graph, its SCC graph is a DAG, which induces a partial order on
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the SCCs. Now that every SCC contains only one state (C1), the induced partial
order on the SCCs and hence on the states provides what is needed for C2.

(C2 implies C1): A partial order is antisymmetric, i.e., q � q′ and q′ � q
imply q = q′. So, C2 implies that every cycle in the transition graph is a self
loop, which is equivalent to C1. ��

Definition 10 (Very Weak Automaton). An ω-automaton is said to be very
weak if the conditions in Lemma 3 hold for the automaton.

For very weak automata, Büchi and co-Büchi acceptance conditions are
expressively equivalent. This is so, since visiting a state infinitely many times,
i.e., self-looping on a state, is the same as staying away from all the other states
forever and hence a Büchi condition F is equivalent to a co-Büchi condition Q\F
for a very weak automaton. Automata from LTL/PTL formulae are naturally
very weak, as shown in subsequent sections. Their simpler structures allow for
more efficient constructions of the next intermediate automata. We need four
types of ω-automata that are also very weak:

– VWACW: very weak ACW,
– SVWACW: symbolic VWACW,
– VW2ACW: very weak 2ACW, and
– SVW2ACW: symbolic VW2ACW.

3 Preprocessing of the Input Formula for Translation

There are quite a few possible ways to go from an LTL/PTL formula (in NNF) to
an equivalent NBW. All existing translation algorithms, including the very early
tableau decision procedures, share several basic ideas, requiring fundamental
manipulations on the input temporal formula and its subformulae in prepara-
tion of a translation. In particular, to convey the semantics of a temporal formula
to that of an automaton, the temporal formula is expanded to divide the require-
ments it imposes on the input word into two parts: the requirements on the cur-
rent position (to be checked by transitions from the current automaton-state)
and those on the remainder of the input (left for some next automaton-states
to check) and, if a past temporal operator is present, also on the input starting
from the previous position (left for some next automaton-states to check, but
moving the read head backward by one position). This expansion is carried out
iteratively on the subformulae of the input wherever needed.

Before looking into the expansion of a temporal formula, let us first find out
what parts of the input temporal formula constitute the automaton-states. With
the power of alternation that comes from the targeted intermediate automaton,
this becomes rather straightforward. We need the notion of an elementary for-
mula. A PTL formula is said to be an elementary formula if it is not a disjunction
or conjunction of other formulae, i.e., it is either a literal or a temporal formula
with a temporal operator as the outmost operator. The term “elementary” is
to signify that these formulae are the “elements” which may be composed by
Boolean combinations to enforce non-elementary/composite requirements.
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Definition 11 (Elementary Subformula). Given a PTL formula ϕ (in
NNF) over AP, the set esform(ϕ) of all elementary subformulae of ϕ is defined
as follows, where f and g are PTL formulae, ∗ ∈ {©,�,�, −©, ∼©, −�, −�}, and
◦ ∈ { U , R , S , T }:

esform(ϕ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{ϕ} if ϕ ∈ AP ∪ AP
esform(f) if ϕ = (f)
esform(f) ∪ esform(g) if ϕ = f ∨ g
esform(f) ∪ esform(g) if ϕ = f ∧ g
{ϕ} ∪ esform(f) if ϕ = ∗f
{ϕ} ∪ esform(f) ∪ esform(g) if ϕ = f ◦ g

So, the definition of esform excludes subformulae that are a mere disjunction
or conjunction of others, i.e., not elementary, perhaps even ϕ itself. An elemen-
tary subformula is said to be maximal if it is not a subformula of another longer
elementary subformula. In the alternating automaton that is to be constructed
for a temporal formula, only the elementary subformulae get represented by a
distinct state. Boolean combinations contained in the input formula or resulted
from expansion of the formula are handled by alternation.

Next, let us return to the issue of how a temporal formula is expanded to
convey its semantics to that of an automaton. We start by examining how each
temporal operator as the outmost operator of a formula is expanded.

Lemma 4 (Congruences for Expansion [12,22]). For all PTL formulae f
and g, the following congruences hold:

�f ∼= f ∨ ©�f

�f ∼= f ∧ ©�f
f U g ∼= g ∨ (f ∧ ©(f U g))
f R g ∼= g ∧ (f ∨ ©(f R g))

−�f ∼= f ∨ −© −�f
−�f ∼= f ∧ ∼© −�f

f S g ∼= g ∨ (f ∧ −©(f S g))
f T g ∼= g ∧ (f ∨ ∼©(f T g))

The formula on the right hand side of a congruence is called the expan-
sion formula for that particular temporal operator. These expansion formulae
are essential building blocks in obtaining the transition function of the target
automaton in the translation of a PTL formula. Take �p ∼= p∨©�p as an exam-
ple. The formula �p requires that either p holds right at the current position
of the input word (the first disjunct) or the entire requirement be postponed
till the next position (the second disjunct); an additional acceptance condition
should be imposed to forbid postponing indefinitely. There are also congruences
for simplification, which is important but not the main concern of this paper.

We now may apply the primitive expansions in Lemma 4 for the temporal
operators to an arbitrary PTL formula, as below. This “one-step” expansion
separates the requirements of the formula into those on the current position and
those on the rest of the input word and, if a past temporal operator is present,
also on the input relative to the previous position.
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Definition 12 (One-Step Expansion). Given a PTL formula ϕ (in NNF)
over AP, its one-step expansion exp(ϕ) is defined as follows:

exp(ϕ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ if ϕ ∈ AP ∪ AP
(exp(f)) if ϕ = (f)
exp(f) ∨ exp(g) if ϕ = f ∨ g
exp(f) ∧ exp(g) if ϕ = f ∧ g
distr(ϕ) if ϕ = ©f
exp(f) ∨ ©�f if ϕ = �f
exp(f) ∧ ©�f if ϕ = �f
exp(g) ∨ (exp(f) ∧ ©(f U g)) if ϕ = f U g
exp(g) ∧ (exp(f) ∨ ©(f R g)) if ϕ = f R g
distr(ϕ) if ϕ = −©f or ∼©f
exp(f) ∨ −© −�f if ϕ = −�f
exp(f) ∧ ∼© −�f if varphi = −�f
exp(g) ∨ (exp(f) ∧ −©(f S g)) if ϕ = f S g
exp(g) ∧ (exp(f) ∨ ∼©(f T g)) if ϕ = f T g

distr(ϕ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(distr(©f) ∨ distr(©g)) if ϕ = ©(f ∨ g)
(distr(©f) ∧ distr(©g)) if ϕ = ©(f ∧ g)
(distr( −©f) ∨ distr( −©g)) if ϕ = −©(f ∨ g)
(distr( −©f) ∧ distr( −©g)) if ϕ = −©(f ∧ g)
(distr( ∼©f) ∨ distr( ∼©g)) if ϕ = ∼©(f ∨ g)
(distr( ∼©f) ∧ distr( ∼©g)) if ϕ = ∼©(f ∧ g)
ϕ otherwise

Note that ©, −©, ∼© are distributed over a disjunction or conjunction wherever
possible so that these three “one-step” operators may only precede an elementary
subformula (which corresponds to an automaton-state) in the expanded formula.

Lemma 5 (Formula and Its One-Step Expansion (cf. [6,12])). If ϕ is a
PTL formula (in NNF) and exp(ϕ) is the one-step expansion of ϕ as defined in
Definition 12, then exp(ϕ) is congruent to ϕ.

Proof. The lemma can be proven by structural induction on ϕ, using simpler
congruences such as those in Lemma 4 for individual temporal operators and
those for distributivity of ©, −©, ∼© over disjunction and conjunction. ��

Now, having done all the needed manipulations on PTL formulae, we con-
clude this section by envisioning an “expanded-subformulae collection” of the
input formula: for each elementary subformula ψ of the input formula, the collec-
tion contains the one-step expansion exp(ψ) of ψ. These expanded-subformulae
correspond to “covers” as in a tableau-based translation and are the formulae
needed for the construction of the first intermediate automaton.

4 From Temporal Formulae to Alternating Automata

With the expanded-subformulae collection of the input formula ready, we show
how it is translated into an alternating automaton, which is very weak.
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4.1 LTL to VWACW

Given an LTL formula (in NNF) preprocessed, we construct first a symbolic
alternating automaton and then covert it into an explicit alternating automaton;
both are very weak. Symbolic alternating automata suffice for setting up fix-
point calculations for satisfiability or model checking [7]. They are adopted as
intermediary automata here mainly to show that the immediate exponential
blow-up in the explicit representation of transitions can be avoided if it is not
needed.

LTL to SVWACW. In the symbolic representation of the transition function
of an SACW, a literal may occur as a constraint on the input symbol or the
name of a next state. To distinguish the two different occurrences, we introduce
the quote function that puts a formula inside a pair of double quotes, when the
formula is intended as an automaton-state, and extend it for a set of formulae.

Construction 1 (From LTL to SACW). Given an LTL formula ϕ (in NNF)
over AP, an SACW Aϕ = 〈Σ,Q, δ, I, F 〉 is defined as follows:

1. Σ = 2AP . (This can be represented by listing the elements in AP.)
2. Q = quote(esform(ϕ)). (This is the set of elementary subformulae of ϕ, each

put inside a pair of double quotes; a state that is neither an initial state nor
the target of any transition may be removed.)

3. δ : Q → B+(AP ∪AP ∪Q), where, for every quote(f) ∈ Q, let δ(quote(f)) be
strans(exp(f)), which is exp(f) with every maximal elementary subformula
of the form ©g replaced by quote(g), as formalized below.

strans(ψ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψ if ψ ∈ AP ∪ AP
(strans(g)) if ψ = (g)
strans(g1) ∨ strans(g2) if ψ = g1 ∨ g2
strans(g1) ∧ strans(g2) if ψ = g1 ∧ g2
quote(g) if ψ = ©g

4. I = ϕ with every maximal elementary subformula quoted.
5. F contains exactly quote(f) of every f ∈ esform(ϕ) that has � or U as the

outmost operator.

Note that, by definition, esform(ϕ) does not contain ϕ if the input ϕ is a
disjunction or conjunction, i.e., it is not elementary. I is defined such that it
is a positive Boolean combination of the states corresponding to the maximal
elementary subformulae of ϕ, in exactly the same way as ϕ is a positive Boolean
combination of its maximal elementary subformulae. An elementary subformula
that is neither a maximal elementary subformula of the input (an initial state)
nor preceded by © in some expansion (the target of a transition) is not useful as
a state; such elementary subformulae are always just literals and can be enforced
by putting appropriate symbols on the relevant transitions.
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To understand Construction 1 better, let us work out a simple case of trans-
lating the LTL formula ��p, where p is an atomic proposition, into an SACW.
The input formula ��p has three elementary subformulae: ��p itself, �p, and
p. We expand them as follows; literal p needs no expansion.

exp(��p) = exp(�p) ∧ ©��p
= (p ∨ ©�p) ∧ ©��p

exp(�p) = p ∨ ©�p

With the expanded-subformulae, the components of the symbolic alternating
automaton for ��p can now be defined as follows.

1. Σ = 2{p} = {{}, {p}}.
2. Q = {“��p”, “�p”}. (The state “p” is neither an initial state nor the target

of a transition, so it has been removed.)
3. δ : Q → B+({p} ∪ {¬p} ∪ Q), where

{
δ(“��p”) = (p ∨ “�p”) ∧ “��p”
δ(“�p”) = p ∨ “�p”

4. I = “��p”.
5. F = {“�p”}.

State “�p” is included in the acceptance set, as a bad state, for co-Büchi
acceptance condition, because the corresponding formula �p has � as the out-
most operator.

Why are SACWs from LTL very weak? From the symbolic transition function
obtained from expanded-subformulae, we observe the following:

– Every transition/branch from a state for some formula ϕ either
1. is a self-loop back to the same state for ϕ or
2. goes to another state representing an elementary subformula of ϕ, or to

nothing (meaning that no further requirement needs to be met).
– The “is-an-elementary-subformula-of” relation as induced by esform is a par-

tial order, which is the needed partial order on states for very-weakness.

Lemma 6 (Very-Weakness of Automata from LTL [7,11]). For every LTL
formula ϕ (in NNF), the SACW Aϕ obtained from Construction 1 is very weak.

Theorem 1 (Correctness and Complexity of Construction 1 [7,11]). If
ϕ is the LTL formula (in NNF) given as input to Construction 1 and Aϕ =
〈Σ,Q, δ, I, F 〉 is the SACW obtained, then L(Aϕ) = L(ϕ), |Q| ≤ |esform(ϕ)|,
|δ| = O(|esform(ϕ)||ϕ|), and |F | = k, where k is the number of formulae in
esform(ϕ) that have � or U as the outmost operator.
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SVWACW to VWACW. The symbolic representation in an SACW can be
easily translated into an explicit representation, and the fact that the number of
transitions may be exponential in the number of atomic propositions becomes
apparent.

Before looking into the detailed conversion, let us make the SACW for ��p
explicit as an exercise. From state “��p”, with p true, there are two transitions:

– (“��p”, {p}, {“��p”}), as {p} ∪ {“��p”} |= δ(“��p”) = (p ∨ “�p”) ∧
“��p”, which is equivalent to (p ∧ “��p”) ∨ (“�p” ∧ “��p”), and

– (“��p”,{p}, {“�p”, “��p”}) (and-branching), as {p} ∪ {“�p”, “��p”} |=
δ(“��p”);

and, with p false, one transition (“��p”, {}, {“�p”, “��p”}) (and-branching),
as {} ∪ {“�p”, “��p”} |= δ(“��p”). Note again that the symbol {p} is also
written as p and {} as ¬p.

From state “�p”, with p true, there are two transitions:

– (“�p”, {p}, {}), as {p} ∪ {} |= δ(“�p”) = (p ∨ “�p”), and
– (“�p”, {p}, {“�p”}), as {p} ∪ {“�p”} |= δ(“�p”)

and, with p false, one transition (“�p”, {}, {“�p”}), as {}∪{“�p”} |= δ(“�p”).
The set of initial states equals {{“��p”}}, as {“��p”} |= “��p”. The explicit
automaton is depicted in Fig. 2, where a box-shaped connector is used to repre-
sent and-branching.

Construction 2 (From SACW to ACW). Given an SACW A =
〈Σ,Q, δ, I, F 〉, an ACW B = 〈Σ,Q′, δ′, I ′, F ′〉 is defined as follows.

1. Q′ = Q.
2. δ′ : Q′ × Σ → 22

Q′
, where Q′′ ∈ δ′(q, a) iff a ∪ Q′′ |= δ(q), for every q ∈ Q′

and a ∈ Σ.
(If Q1, Q2 ∈ δ′(q, a) and Q1 ⊆ Q2, then Q2 may be removed.)

3. I ′ contains exactly every Q′ ⊆ Q s.t. Q′ |= I.
(If Q1, Q2 ∈ I and Q1 ⊆ Q2, then Q2 may be removed.)

4. F ′ = F .

The construction of the explicit transition function may be carried out by
rewriting the symbolic constraint in DNF and accounting for each conjunctive
clause separately, as we have hinted when making the SACW for ��p explicit,
where (p ∨ “�p”) ∧ “��p” is rewritten as (p ∧ “��p”) ∨ (“�p” ∧ “��p”).

Lemma 7 (Preservation of Very-Weakness by Construction 2). If the
SACW given as input to Construction 2 is very weak, then the ACW obtained
is also very weak.

Proof. By Construction 2, in particular Q′′ ∈ δ′(q, a) iff a ∪ Q′′ |= δ(q), the
transition graph of the ACW obtained is identical to that of the input SACW.
If the SACW is very weak, then so is the ACW. ��
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“��p” “�p”

p

p,¬p

p,¬p

p

Fig. 2. An ACW for ��p. The and-branching of transition (“��p”, p, {“��p”, “�p”})
is represented by an arrow from state “��p” to a box-shaped connector and
then to the two states “��p” and “�p” respectively; analogously for transition
(“��p”, ¬p, {“��p”, “�p”}). State “�p” belongs to the acceptance set and is enclosed
in a double circle.

Theorem 2 (Correctness and Complexity of Construction 2). If A =
〈Σ,Q, δ, I, F 〉 is the SACW given as input to Construction 2 and B =
〈Σ,Q′, δ′, I ′, F ′〉 is the ACW obtained, then L(B) = L(A), |Q′| = |Q|, and
|F ′| = |F |.

Proof. For every word w ∈ Σω, if A has an accepting run on w, then B also has
an accepting run on w, and vice versa, according to Definition 6 and Construc-
tion 2, in particular Q′′ ∈ δ′(q, a) iff a∪Q′′ |= δ(q). So, L(B) = L(A). |Q′| = |Q|
and |F ′| = |F | are obvious. ��

4.2 PTL to VW2ACW

We next turn to dealing with the past temporal operators. With the machinery
of a two-way automaton that we target, past temporal operators do not pose
particular technical difficulty. Best of all, they do not bring new acceptance
conditions. We just need to specify for them that the read head should move
to the left on the input word. For ∼©, we allow the alternative to transit to the
special end state qE ; if the transition is taken right at position 0 of the input
word during a run, then the corresponding path in the run is finite.

Like in the case of LTL, we obtain first a symbolic two-way alternating
automaton and then covert it into an explicit two-way alternating automaton;
both are very weak.

PTL to SVW2ACW. For an S2ACW, the next state in a constraint of the
transition function always appears in the form of (q, +) or (q,−) and there is no
confusion of a literal occurring as a constraint on the input symbol or the name
of a next state. So, the quote function is not needed, unlike in the translation
of LTL into SACW. Below are the details of the construction, followed by an
illustrative example.

Construction 3 (From PTL to S2ACW) Given a PTL formula ϕ (in NNF)
over AP, an S2ACW Aϕ = 〈Σ,Q, δ, I,QE , F 〉 is defined as follows:
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1. Σ = 2AP .
2. Q = esform(ϕ) ∪ {qE}. (As in the case of LTL, a state that is neither an

initial state nor the target of any transition may be removed.)
3. δ : Q → B+(AP ∪ AP ∪ (Q × {−,+})), where

– for every f ∈ esform(ϕ), let δ(f) be strans(exp(f)) with strans as defined
below.

strans(ψ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ if ψ ∈ AP ∪ AP
(strans(g)) if ψ = (g)
strans(g1) ∨ strans(g2) if ψ = g1 ∨ g2
strans(g1) ∧ strans(g2) if ψ = g1 ∧ g2
(g,+) if ψ = ©g
(g,−) if ψ = −©g
((g,−) ∨ (qE ,−)) if ψ = ∼©g

– δ(qE) = false.
4. I = ϕ.
5. QE = {qE}. (If ∼© never occurs in the one-step expansion of any elementary

subformula of the input, then the end state qE is not reachable and may be
removed from QE as well as Q.)

6. F contains exactly every f ∈ esform(ϕ) that has � or U as the outmost
operator.

An elementary subformula that is neither a maximal elementary subformula
of the input (an initial state) nor preceded by ©, −©, or ∼© in some expansion
(the target of a transition) is not useful as a state. In the construction of δ, for
the case of ∼©g in the definition of strans, (qE ,−) is introduced to reflect that ∼©g
is a weaker version of −©g. A formula of the form ∼©g should evaluate to true at
position 0 of the input word, no matter what g is. The constraint (qE ,−) serves
exactly that purpose. It prescribes a transition/branch that can be correctly
taken only at position 0 of the input word, after which the corresponding finite
path in the run is completed, according to the semantics of a (symbolic) two-way
alternating automaton (Definition 7). Going into state qE at any position other
than 0 will cause the run to be killed, as δ(qE) = false.

Let us follow Construction 3 to work out the case for �−�p. The input formula
�−�p has three elementary subformulae: �−�p itself, −�p, and p. We expand them
as follows; literal p needs no expansion.

exp(� −�p) = exp( −�p) ∧ ©� −�p
= (p ∨ −© −�p) ∧ ©� −�p

exp( −�p) = p ∨ −© −�p

With the expanded-subformulae, the components of the symbolic two-way
alternating automaton for � −�p can be defined as follows.

1. Σ = 2{p} = {{}, {p}}.
2. Q = {� −�p, −�p}. (The elementary subformula p is neither an initial state nor

the target of a transition, so it has been removed; qE has also been removed,
as ∼© does not occur in any expanded-subformula.)
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3. δ : Q → B+({p} ∪ {¬p} ∪ (Q × {−,+})), where
{

δ(� −�p) = (p ∨ ( −�p,−)) ∧ (� −�p,+)
δ( −�p) = p ∨ ( −�p,−)

4. I = � −�p.
5. QE = {}. (The end state qE has been removed, as explained above.)
6. F = {}. (The acceptance set is empty, as no elementary subformula has either

� or U as the outmost operator.)

Very-weakness of the constructed S2ACW is clear to see, by defining a partial
order on the states in the same way as in the case of SACW from LTL except
with the additional special end state qE taken as the least element. So, every
SCC of the transition graph of the S2ACW has only one node/state. In addition,
the self-loops of a state move the read head either forward (right) or backward
(left), but never both. This is so, because self-loops are produced by expansion
of an elementary formula and every temporal operator is either future or past,
but never both.

When in state q with a “forward self-loop” and about to read at position i,
the automaton either

– stays in q, moving the read head forward to position i + 1, or
– goes to another state and will never return to q.

Analogous scenarios can be argued for a “backward self-loop”. So, an
SVW2ACW from PTL enjoys two additional properties, which are equivalent
for SVW2ACW and useful for the construction of the next intermediate automa-
ton [12]:

– loop-free (w.r.t. state-position pairs): a pair of state and read head position
never repeats along a path of a run, and

– progressing : the read head advances towards infinity in every infinite path of
a run.
(Moving backward beyond position 0, i.e., to position −1, will kill a run unless
it is accompanied by a transition to the special end state qE , which completes
a finite path in the run.)

Lemma 8 (Properties of Two-Way Automata from PTL [12]). For every
PTL formula ϕ (in NNF), the S2ACW Aϕ obtained from Construction 3 is very
weak and progressing.

Theorem 3 (Correctness and Complexity of Construction 3 [12]). If
ϕ is the PTL formula (in NNF) given as input to Construction 3 and
Aϕ = 〈Σ,Q, δ, I,QE , F 〉 is the S2ACW obtained, then L(Aϕ) = L(ϕ), |Q| ≤
|esform(ϕ)| + 1, |δ| = O(|esform(ϕ)||ϕ|), and |F | = k, where k is the number of
formulae in esform(ϕ) that have � or U as the outmost operator.
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SVW2ACW to VW2ACW. The symbolic representation in an S2ACW, like
in the case of SACW, can be easily translated into an explicit representation.
Before looking into the detailed construction, let us try to make the S2ACW for
� −�p explicit.

From state � −�p, with p true, there are two transitions:

– (� −�p, {p}, ({}, {� −�p})), as {p} ∪ {(� −�p,+)} |= δ(� −�p) = (p ∨ ( −�p,−)) ∧
(� −�p,+)), which is equivalent to (p∧ (� −�p,+))∨ (( −�p,−)∧ (� −�p,+)), and

– (� −�p, {p}, ({ −�p}, {� −�p})), as {p} ∪ {( −�p,−), (� −�p,+)} |= δ(� −�p),

and, with p false, one transition (� −�p, {}, ({−�p}, {� −�p})), as {} ∪
{(−�p,−), (�−�p,+)} |= δ(�−�p).

From state −�p, with p true, there are two transitions:

– (−�p, {p}, ({}, {})), as {p} ∪ {} |= δ(−�p) = p ∨ (−�p,−), and
– (−�p, {p}, ({−�p}, {})), as {p} ∪ {(−�p,−)} |= δ(−�p),

and, with p false, one transition (−�p, {}, ({−�p}, {})), as {}∪{(−�p,−)} |= δ(−�p).
Figure 3 depicts the automaton.

� −�p −�p

p

p,¬p

p,¬p

p

Fig. 3. A 2ACW for � −�p. The read head moves to the left when a dashed transi-
tion/branch is taken.

Construction 4 (From S2ACW to 2ACW). Given an S2ACW A =
〈Σ,Q, δ, I,QE , F 〉, a 2ACW B = 〈Σ,Q′, δ′, I ′, Q′

E , F ′〉 is defined as follows.

1. Q′ = Q.
2. δ′ : Q′ ×Σ → 22

Q′ ×2Q
′
, where (Q−, Q+) ∈ δ′(q, a) iff a∪ (Q− ×{−})∪ (Q+ ×

{+}) |= δ(q), for every q ∈ Q′ and a ∈ Σ.
(If (Q−

1 , Q+
1 ), (Q−

2 , Q+
2 ) ∈ δ′(q, a), Q−

1 ⊆ Q−
2 , and Q+

1 ⊆ Q+
2 , then (Q−

2 , Q+
2 )

may be removed.)
3. I ′ contains exactly every Q′ ⊆ Q s.t. Q′ |= I.

(If Q1, Q2 ∈ I and Q1 ⊆ Q2, then Q2 may be removed.)
4. Q′

E = QE.
5. F ′ = F .

So, Construction 4 is almost identical to Construction 2, except the slight
adaptation for the new type of transition function.

Lemma 9 (Preservation of Properties by Construction 4). If the S2ACW
given as input to Construction 4 is very weak and progressing, then the 2ACW
obtained is also very weak and progressing.
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Proof. By Construction 4, in particular (Q−, Q+) ∈ δ′(q, a) iff a∪ (Q− ×{−})∪
(Q+ ×{+}) |= δ(q), the transition graph of the 2ACW is identical to that of the
S2ACW. Also, the read head movement of every self-loop in the transition graph
of the 2ACW is the same as that of the corresponding self-loop in the transition
graph of the S2ACW. Therefore, if the S2ACW is very weak and progressing,
then so is the 2ACW. ��

Theorem 4 (Correctness and Complexity of Construction 4). If A =
〈Σ,Q, δ, I,QE , F 〉 is the S2ACW given as input to Construction 4 and B =
〈Σ,Q′, δ′, I ′, Q′

E , F ′〉 is the 2ACW obtained, then L(B) = L(A), |Q′| = |Q|, and
|F ′| = |F |.

Proof. For every word w ∈ Σω, if A has an accepting run on w, then B also has
an accepting run on w, and vice versa, according to Definition 7 and Construc-
tion 4, in particular (Q−, Q+) ∈ δ′(q, a) iff a∪ (Q− ×{−})∪ (Q+ ×{+}) |= δ(q).
So, L(B) = L(A). |Q′| = |Q| and |F ′| = |F | are obvious. ��

5 From Alternating Automata to Büchi Automata

We first review the construction of Miyano and Hayashi [23] for the conversion of
an ABW into an NBW, to get the basic ideas for simulating the and-branching
in a transition and enforcing the acceptance condition on every infinite path of
a run. We then exploit very-weakness to produce simpler and smaller automata.
Note that their construction assumes a Büchi acceptance condition, which is
expressively equivalent to co-Büchi acceptance condition for very weak automata
as we have explained earlier.

A state of the target NBW includes (among other things) a subset of states
of the ABW, representing an entire level of a run DAG (with node sharing).
Nondeterminism of the NBW provides the power of guessing the “right” run
DAG to follow. Below are the main steps in the conversion of an ABW into an
NBW:

– The NBW maintains a pair (U, V ) of subsets of states of the ABW such that
U ∪ V represents the current level of the guessed run DAG.

– U records the set of states yet to visit an accepting state since last reset,
which is a state with U empty. That is, when a state in U transits via and-
branching to several other states, the accepting ones are moved to V , while
the non-accepting ones are kept in U .

– The accepting set contains exactly every possible reset.

In an accepting run DAG of the ABW, different paths may visit an accepting
state at different times. Requiring that there are infinitely many levels with
all accepting states would be too strong as an acceptance condition. This is
illustrated in an example subsequently but in the setting of co-Büchi acceptance
condition. The additional set U of states is needed in the conversion to keep
track of the progresses of the different paths that visit an accepting state at
different times.
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5.1 VWACW to TNGBW

For a VWACW, once a path in a run leaves a state (good or bad), it never returns.
Thanks to this very-weakness, the conversion of a VWACW into a TNGBW can
be simpler. Below are the basic ideas:

– The TNGBW maintains just a subset of states of the VWACW, representing
the current level of the guessed run DAG.

– For each bad state in the VWACW, define an acceptance set in the TNGBW
containing every possible transition that stays away or “subsumes” an escape
from the bad state.

Let us elaborate with an example. In Fig. 4 is a run DAG (which happens to
be a tree) of the ACW in Fig. 2 on input word p, p, p, · · · (or {p}, {p}, {p}, · · · ).
There is only one infinite path in the run DAG, which always stays in q0 and
never enters the bad state q1; all the other paths from the source node are finite,
each eventually escaping from q1 upon reading symbol {p} as the final step. The
run DAG thus is accepting, and yet every level from level 1 onward contains the
bad state q1. So, a simple acceptance condition based on the states of a level
would not work. This also explains why, without very-weakness, a pair of states
is needed in the construction of Miyano and Hayashi.

q0 q0

q1

q0

q1

q0

q1

q0

q1

...

...

{q0} {q0, q1} {q0, q1} {q0, q1} {q0, q1} ...

p p p p p

Fig. 4. A run DAG of the ACW in Fig. 2 on input word p, p, p, · · · (or {p}, {p}, {p}, · · · ),
along with a simulating run sequence of the target TNGBW. States q0 and q1 represent
“��p” and “�p” respectively.

However, we observe that the occurrence of q1 in each level from level 1
onward is spawned by the and-branching transition from q0 rather than the q1
in the previous level. A newly spawned q1 disappears thanks to the escaping tran-
sition (q1, {p}, {}) which can be taken upon reading symbol {p}. If we account
for the infinitely many escapes from state q1, then we can conclude, thanks to
very-weakness, that every path eventually stays away from the only bad state q1
(and never returns to q1) and thus the run is accepting. In general, a run (made
minimal with forced node sharing) of a VWACW is not accepting only if one
or more infinite paths get stuck at a bad state. So, if for each bad state we see
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infinitely many stay-away or escape-subsuming transitions in the simulating run
of the target TNGBW, then the simulated run of the VWACW is accepting.

The escape (q1, {p}, {}) from q1 of the original VWACW is considered to
be “subsumed” by ({q0, q1}, {p}, {q0, q1}) in the TNGBW, because the input
symbol {p} enabling the former transition also enables the latter transition and
q1 �∈ {} ⊆ {q0, q1}. When the transition ({q0, q1}, {p}, {q0, q1}) is taken, the
current occurrence of q1 in the original run DAG disappears and a new occurrence
of q1 is spawned on a different path, though this is not directly observable in the
simulating run sequence of the TNGBW underneath the run DAG.

To facilitate the conversion and its presentation, we define a basic product
operation (which is associative and commutative) on sets of subsets of states. For
R1, R2 ⊆ 2Q, let R1 ⊗ R2 = {Q1 ∪ Q2 | Q1 ∈ R1 and Q2 ∈ R2}. So, the product
produces another set of subsets of states, including every subset of states that
is the union of a subset from R1 and another subset from R2.

Construction 5 (From VWACW to TNGBW). Given a VWACW A =
〈Σ,Q, δ, I, F 〉, a TNGBW B = 〈Σ,Q′, δ′, I ′, F ′〉 is defined as follows:

– Q′ = 2Q.
– δ′ : Q′ × Σ → 2Q′

, where δ′(U, a) =
⊗

q∈U

δ(q, a) for U ∈ Q′ and a ∈ Σ.

(If V, V ′ ∈ δ′(U, a) and V ⊆ V ′, then V ′ may be removed.)
– I ′ = I. (Every set U ⊆ Q in I is a state in I ′.)
– F ′ contains, for every qi ∈ F , a set Fi that contains exactly all of the following

transitions:
• (U, a, V ) ∈ δ′ s.t. qi �∈ V and
• (U, a, V ) ∈ δ′ s.t. qi ∈ U and, for some V ′ ∈ δ(qi, a), qi �∈ V ′ and V ′ ⊆ V .

Note that a state of the VWACW may have several possible successor-sets
of states (cf. DNF), one of which is picked and joined with the selection of every
other state on the same level (in a run DAG). So, when V ∈ δ′(U, a), V is one
of the possible next levels that may occur following U after reading symbol a.
In the construction of F ′, the first type of transitions are those staying away
from the bad state qi, while the second type of transitions are those subsuming
an escape from qi. The subsumption of an escape ensures that the occurrence of
qi in U disappears and a new occurrence of qi, if any, in V is spawned by some
other state than qi in U .

Theorem 5 (Correctness and Complexity of Construction 5 [11]). If
A = 〈Σ,Q, δ, I, F 〉 is the VWACW given as input to Construction 5 and B =
〈Σ,Q′, δ′, I ′, F ′〉 is the TNGBW obtained, then L(B) = L(A), |Q′| = 2|Q|, and
|F ′| = |F |.

5.2 VW2ACW to TNGBW

The case of converting a VW2ACW into a TNGBW is a bit more involved,
while the treatment of the acceptance condition remains analogous to that for
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VWACW. Fortunately, a VW2ACW from PTL is loop-free and progressing,
as we have shown earlier. Thanks to loop-freedom (w.r.t. state-position pairs),
a leveled run DAG of a progressing VW2ACW may be condensed as a run
DAG where nodes labeled with the same position value are aligned without
introducing loops. In Fig. 5 is a leveled run DAG (which is also a tree) of the
progressing VW2ACW for � −�p in Fig. 3 over the input word p,¬p,¬p,¬p, · · ·
(or {p}, {}, {}, {}, · · · ). The leveled run DAG is condensed as a run DAG as
shown in Fig. 6.

q0, 0 q0, 1 q0, 2

q1, 0

q0, 3

q1, 1

q0, 4

q1, 2

q1, 0

q0, 5

q1, 3

q1, 1

...

...

...

...

p ¬p

¬p

¬p

¬p

p

¬p

¬p

¬p

¬p

¬p

¬p

p

¬p

¬p

¬p

¬p

Fig. 5. A leveled run DAG of the VW2ACW for � −�p in Fig. 3 over the input word
p, ¬p, ¬p, ¬p, · · · (or {p}, {}, {}, {}, · · · ). States q0 and q1 represent �−�p and −�p respec-
tively.

q0, 0 q0, 1 q0, 2

q1, 0

q0, 3

q1, 1

q0, 4

q1, 2

q0, 5

q1, 3

...

q1, 4

{q0, q1} {q0, q1} {q0, q1} {q0, q1} ...

p ¬p

¬p

¬p

¬p

p

¬p

¬p

¬p

¬p

¬p

¬p

¬p

¬p

¬p

¬p

Fig. 6. A run DAG condensed from the leveled run DAG in Fig. 5, along with a “run
sequence” it induces.
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The condensed run DAG is not leveled, as a node may be reached from
the source node by multiple paths with different lengths. However, the graph is
drawn in such a way that two pairs of state and position are aligned if they have
the same position value. The states at the same aligned level are exactly those
states that the VW2ACW will be in (for this run) when reading the input word
at the corresponding position. So, the run DAG can be seen as inducing a run
sequence Q0, Q1, Q2, . . . of sets of states, where Qi is the set of all possible states
when the read head position is at i, i ≥ 0. The target TNGBW tries to produce
that run, but in a slightly indirect way.

So, the main ideas for converting a VW2ACW into a TNGBW are as follows:

– To produce the run sequence Q0, Q1, Q2, . . ., the TNGBW tries to antici-
pate/guess all possible combinations of states for the Qi, i ≥ 0, on the fly.

– To check inducibility of the run sequence from some run DAG of the
VW2ACW, the TNGBW keeps track of the previous and the current lev-
els of the guessed run DAG that has been condensed and aligned according
to the read head position. For example, if starting with ({qE}, Q0), the actual
run produced is

({qE}, Q0), (Q0, Q1), (Q1, Q2), . . . .

– A pair (Qi, Qi+1) legally follows (Qi−1, Qi) if Qi−1 includes one possible set
of successor states of Qi that are accompanied with a left move of the read
head and Qi+1 includes the corresponding set of successor states of Qi that
are accompanied with a right move of the read head.

To facilitate the conversion and its presentation, we extend the basic product
operation, defined for the case of VWACW to TNGBW, to a product operation
on binary relations on the set of subsets of states. For R1, R2 ⊆ 2Q × 2Q, let
R1 ⊗ R2 = {(Q−

1 ∪ Q−
2 , Q+

1 ∪ Q+
2 ) | (Q−

1 , Q+
1 ) ∈ R1 and (Q−

2 , Q+
2 ) ∈ R2}. So,

the product produces from R1 and R2 another binary relation, where a pair of
subsets of states are related if the first (resp. second) subset is the union of the
first (resp. second) subset of a pair from R1 and the first (resp. second) subset
of another pair from R2.

Construction 6 (From Progressing VW2ACW to TNGBW). Given a
progressing VW2ACW A = 〈Σ,Q, δ, I,QE , F 〉, a TNGBW B = 〈Σ,Q′, δ′, I ′, F ′〉
is defined as follows:

– Q′ = 2Q × 2Q.
– δ′ : Q′ × Σ → 2Q′

, where (V1, V2) ∈ δ′((U1, U2), a) if V1 = U2 and, for some
(Q−, Q+) ∈

⊗

q∈U2

δ(q, a), Q− ⊆ U1 and Q+ ⊆ V2.

– I ′ = {(Q−1, Q0) | Q−1 ⊆ QE and U0 ⊆ Q0 for some U0 ∈ I}. (Recall that
I ⊆ 2Q and I ′ ⊆ Q′ = 2Q × 2Q.)

– F ′ contains, for every qi ∈ F , a set Fi that contains exactly all of the following
transitions:

• ((U1, U2), a, (V1, V2)) ∈ δ′ s.t. qi �∈ V2 and
• ((U1, U2), a, (V1, V2)) ∈ δ′ s.t. qi ∈ U2 (= V1) and, for some (Q−, Q+) ∈

δ(qi, a), Q− ⊆ U1, qi �∈ Q+, and Q+ ⊆ V2.
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In the construction of δ′, the condition V1 = U2 says that the current level U2

should become the previous level V1 after the transition. The condition Q− ⊆ U1

says that U1 has been a sufficient guess as the previous level, as it includes
one possible set of successor states accompanied with a left move of the read
head from the current level; and the condition Q+ ⊆ V2 says that the next
current level V2 should include at least the corresponding set of successor states
accompanied with a right move of the read head from the current level. Note
also that, in the construction of F ′, an escape from a bad state (designated for
some elementary subformula whose outmost operator is � or U , both of which
are future operators) in F is always accompanied with a right move of the read
head, which is why only qi �∈ Q+ is needed.

Theorem 6 (Correctness and Complexity of Construction 6 [12]). If
A = 〈Σ,Q, δ, I,QE , F 〉 is the progressing VW2ACW given as input to Construc-
tion 6 and B = 〈Σ,Q′, δ′, I ′, F ′〉 is the TNGBW obtained, then L(B) = L(A),
|Q′| = 22|Q|, and |F ′| = |F |.

We note that Construction 6 may contain a great deal of redundancy. When
(U2, V2), (U2, V

′
2) ∈ δ′((U1, U2), a) and V2 ⊆ V ′

2 , either V2 is insufficiently guessed
or V ′

2 is overly guessed; analogously, when (Q−1, Q0), (Q−1, Q
′
0) ∈ I ′ and Q0 ⊆

Q′
0. An incremental construction with backtracking, by adapting the saturation

procedure in [12], would eliminate insufficiently or overly-guessed states.

5.3 TNGBW to NBW

Finally, we present a construction for converting a TNGBW into an NBW. The
main idea is analogous to that of the well-known construction for converting a
usual generalized Büchi automaton into an NBW. A state is augmented with
an index that keeps track, in a round-robin manner, of the latest acceptance set
visited.

Construction 7 (From TNGBW to NBW) Given a TNGBW A =
〈Σ,Q, δ, I, F 〉, where F = {F1, F2, · · · , Fk} with every Fi ⊆ δ, an NBW
B = 〈Σ,Q′, δ′, I ′, F ′〉 is defined as follows:

– Q′ = Q × {0, 1, 2, · · · , k}
– δ′ : Q′ × Σ → 2Q′

, where (q′, x′) ∈ δ′((q, x), a) if
• q′ ∈ δ(q, a), (q, a, q′) �∈ Fi, and x = x′ = i − 1,
• q′ ∈ δ(q, a), (q, a, q′) ∈ Fi, x = i − 1, and x′ = i, or
• q′ ∈ δ(q, a), x = k, and x′ = 0.

– I ′ = I × {0}.
– F ′ = Q × {k}.

An improvement may allow the index to increment by more than one, when
the transition taken belongs to consecutive acceptance sets, as in [11]. Also, a
pair (q, i) is not reachable and may be removed if q cannot be reached via a
transition in Fi.
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If it is preferred to have just one single initial state for the NBW, an additional
state may be created to act as the initial state. It simulates the first move by the
initial states of the TNGBW and is never entered again. After the first move,
the new NBW behaves according to the construction above.

Lemma 10 (Correctness and Complexity of Contruction 7 [11]). If
A = 〈Σ,Q, δ, I, F 〉 is the TNGBW given as input to Construction 7 and B =
〈Σ,Q′, δ′, I ′, F ′〉 is the NBW obtained, then L(B) = L(A), |Q′| = (|F | + 1)|Q|,
and |F ′| = |Q|.

6 Summary

We now have all the necessary building blocks for translating a linear temporal
formula into a Büchi automaton. Below are the chains of constructions consti-
tuting two complete translation algorithms, one for LTL and the other for PTL:

1. Preprocessing of the input temporal formula: Lemmas 2 and 5,
2. Translation into alternating automaton:

– LTL to very weak alternating co-Büchi automaton: Constructions 1 and 2,
– PTL to progressing very weak two-way alternating co-Büchi automaton:

Constructions 3 and 4,
3. Alternating automaton into generalized Büchi automaton:

– very weak alternating co-Büchi automaton into transition-based general-
ized Büchi automaton: Construction 5,

– progressing very weak two-way alternating co-Büchi automaton into
transition-based generalized Büchi automaton: Construction 6,

4. Generalized Büchi automaton into Büchi automaton: Construction 7.

To sum up, we have the following two theorems.

Theorem 7 (LTL to NBW). For every LTL formula ϕ (in NNF), there is an
equivalent NBW with at most (k + 1)2|esform(ϕ)| states and 2|esform(ϕ)| accepting
states, where k is the number of formulae in esform(ϕ) that have � or U as
the outmost operator.

Theorem 8 (PTL to NBW). For every PTL formula ϕ (in NNF), there is an
equivalent NBW with at most (k + 1)22(|esform(ϕ)|+1) states and 22(|esform(ϕ)|+1)

accepting states, where k is the number of formulae in esform(ϕ) that have �
or U as the outmost operator.

7 Discussion: Optimization

We have focused on the simplicity of the main chain of translation and
hardly addressed the issue of minimization/optimization, except exploiting very-
weakness. We note that the numbers of states and transitions in the intermediate
and final automata, as having been investigated by many other researchers, may
be greatly reduced by:



38 Y.-K. Tsay and M. Y. Vardi

– formula rewriting, either on the whole or the parts, and
– simplification using simulation relations.

There are also miscellaneous techniques that cannot be easily categorized,
e.g., analysis of the acceptance set and the structure of the transition graph. All
these techniques may be developed as add-on modules and inserted into wherever
appropriate in the main chain of translation.
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9. Fritz, C.: Constructing Büchi automata from linear temporal logic using simula-
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of LTL Formulae to Büchi Automata. In: Peled, D.A., Vardi, M.Y. (eds.) Formal
Techniques for Networked and Distributed Sytems — FORTE 2002, FORTE 2002.
LNCS, vol. 2529, pp. 308–326. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-36135-9 20
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Abstract. In embedded real-time systems, a functionality is often
implemented as a dataflow chain over a set of communicating tasks. An
important requirement in such systems is to restrict the amount of time
an input data requires to impact its corresponding output. Such tem-
poral requirements over dataflow chains also known as the end-to-end
latency constraints, are well-studied in the context of lock-based block-
ing inter-task communication. However, lock-based communication does
not preserve the functional semantics and complicates latency calcula-
tion due to its reliance on response times of the communicating tasks. We
propose to use non-blocking inter-task communications to preserve the
functional semantics. Unfortunately a naive method to compute the reac-
tion latency by adding worst-case delays between each write-read pair is
unsafe for systems with non-blocking communication. In this paper, we
study a non-blocking communication protocol. We present an algorithm
to compute the exact worst-case delay in a cause-effect chain, which pro-
vides a safe estimation of the worst-case cause-effect latency for systems
using this protocol for non-blocking communication.

1 Introduction

A simple use case in real-time embedded applications is a dataflow chain where
a sampler task samples an input data, passes the data to a controller task for
processing and the processed output is used by an actuator task. The specifica-
tion of the system often includes temporal constraints on such dataflow chains,
also known as the end-to-end timing or latency constraints. More specifically, a
latency constraint restricts the amount of time required before the input is taken
into account by the corresponding output. Latency constraints are important
temporal requirements in real-time systems implemented by multiple communi-
cating tasks with different periods. Proving that the implementation of a system
satisfies all such requirements is non-trivial but mandatory for safety-critical
reasons.

A widely used practice is to design a system using high-level model-based
designer tools such as Simulink [1] and verify all the functional requirements
using simulation. System design tools like Simulink commonly use specific func-
tional semantics such as the one for Synchronous-Reactive (SR) programming [3]
which assumes computation and communication time as zero. When such a
c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-91384-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91384-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-91384-7_3


42 J. Abdullah and W. Yi

design is implemented on a real platform using preemptive scheduling, the fol-
lowing problems related to inter-task communication arise in preserving any
functional semantics [4]:

– Data consistency: If preemption occurs in the middle of an input-output oper-
ation, data can get corrupted.

– Deterministic data transfer: Input-output operations of a task may occur at
different time points in different jobs depending on the point in the program
where preemption takes place. Similarly, non-determinism in execution times
creates variation in the timing of the data transfer operations.

The most widely used solution for inter-task communication is lock-based
communication. Lock-based communication in a complex embedded system such
as the Engine Management System (EMS) [5] makes the design inflexible to
change as the computation of end-to-end timing constraints depends on the exe-
cution times of all communicating tasks. Besides, lock-based protocols are not
designed to preserve any functional semantics [4]. It has been reported that
existing state-of-the-art tools for end-to-end timing constraint analysis (in the
automotive domain) ignore functional semantics preservation and model trans-
formations are required to ensure data consistency [6].

In a recent work [7], we have shown that non-blocking communication pre-
serving functional semantics is critical for the design of dynamically updatable
systems. In this context, we propose to use a wait-free inter-task communication
protocol called the DBP [4] in system implementation. DBP preserves functional
semantics similar to SR and its correctness does not depend on the execution
times of the tasks. This protocol is widely used for designing control systems in
the context of synchronous programming. In this work, we study the problem of
end-to-end latency computation under this protocol. Specifically, our interest is
in computing the reaction latency [8] of an input in a multi-rate dataflow chain
either initiated by a periodic or a sporadic task. Here the main challenge lies
in the multi-rate nature of the communication where a writer can write at a
higher or a lower rate compared to its reader. As a result, input data may not
propagate to output or may propagate multiple times.

We show that for tasks using DBP, a worst-case reaction latency computa-
tion algorithm that only considers the worst-case delay between releases of each
writer-reader pair in a chain provides an unsafe estimation. We also show that
the unsafeness of this naive approach originates from the effect of oversampling-
undersampling of data in the presence of read-write pairs with non-harmonic
periods. We give a safe worst-case reaction latency computation algorithm for
the input data that propagates to the output of the chain. This algorithm pro-
vides the exact worst-case delay between releases of the first job and the last job
in a cause-effect chain.

The rest of the paper is organized as follows. First, in Sect. 2, we review the
previous related work on end-to-end timing analysis in the context of multi-
rate systems and non-blocking communication. Next in Sect. 3, we give details
of the problem and the system model considered in this work. Our proposed
latency analysis method is described in Sect. 4 and evaluated in Sect. 5. Finally,
we conclude the paper with a summary together with future works in Sect. 6.
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2 Related Work

The analysis of latency constraints in multi-rate systems using asynchronous
(non-blocking) communication was first studied in the context of synthesizing
task parameters [9]. A renewed interest in such analysis stems from an indus-
trial publication [10] where the authors propose a framework to calculate end-
to-end latencies in automotive systems supporting the asynchronous commu-
nication model. Existing state-of-the-art tools for latency computation such as
Symta-S [11] are applicable at the implementation level and mostly based on the
availability of lock-based communication. Until recently, state-of-the-art latency
analysis techniques such as [12] did not consider the preservation of any func-
tional semantics. Recent research from Bosch [6] emphasized the preservation of
model-level functional semantics in end-to-end latency estimation. Similarly, the
industrial trend to replace traditional distributed embedded systems with fewer
multicore chips increases the potential of semantic preserving non-blocking com-
munication which is difficult to implement in distributed architecture [13].

Non-blocking asynchronous communication for real-time systems is first con-
sidered in [14] to meet the freshest value semantics, assuming the data validity
time as the worst-case response time of a reader. In [15], an asynchronous proto-
col that guarantees data consistency with the freshest-value semantics between
a writer and multiple readers is presented. This protocol needs hardware-
dependent compare and swap operations. This idea of data validity is also used
in [16] and [17] to optimize memory use while preserving the freshest value and
the SR semantics respectively. These protocols compute a maximum buffer size
by upper bounding the number of times the writer can produce new data while
a given data is considered valid by at least one reader.

In [18], a double buffer mechanism for one-to-one communication with SR
semantics is presented. In the case of uniprocessor systems, given that the code
that updates the buffer index variables are executed inside the kernel at task
release time, there is no need for a hardware mechanism to ensure atomicity
when swapping buffer pointers or comparing state variables. In [4], the Dynamic
Buffering Protocol (DBP) is defined for single-writer multiple-reader systems
with unit communication delay links, under the assumption that each job fin-
ishes before its next release. In [19], the communication scenario presented in [4]
is further generalized to handle arbitrary multi-unit communication delays and
multiple jobs of a task active at the same time. In [20], multi-task implementa-
tion is formulated as an MILP (Mixed Integer Linear Programming) optimiza-
tion problem which tries to minimize buffer places or total read-write delays in
the system to improve control performance. Commercial system design software
Simulink [1] provides a wait-free access control mechanism called the Rate Tran-
sition (RT) similar to DBP. In the case of communicating tasks with identical
phase and harmonic periods, the RT mechanism guarantees data consistency
and functional semantics preservation. However, all the above-mentioned works
do not consider the computation of latency values in multi-rate dataflow chains.

An alternative non-blocking communication concept called the logical execu-
tion time (LET) [21] assumes I/O as time-triggered zero execution time activity
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which is performed at the release time (read) and the deadline (write) of the
task. Although LET preserves time-triggered functional semantics independent
of scheduling methods, it increases the delay in data reading as a task can finish
computation of data long before the deadline of the current job which affects
the end-to-end latency [22].

Prelude [23] is an architecture language intended for the design of multi-rate
dependent control systems preserving functional semantics in communication. It
supports rate-transition operations similar to Simulink for the needs of multi-
rate real-time systems. The communication model assumed in Prelude is causal
where a reader is not allowed to start before the completion of its writer. Such
causal communication is considered as job-level dependencies where the con-
straint specifies which job of a writer task needs to finish its execution before
a job of the reader task can start. Job-level dependency is used in [24,25] for
computing latency constraints at the model-level.

3 Problem Formulation

In this section, we introduce the details of the end-to-end latency problem that
we solve and the system model that we use for it. Our considered model is based
on automotive software architecture AUTOSAR [8] and end-to-end latencies of
complex automotive software like EMS [5].

3.1 Execution Model

An automotive software system consists of multiple software components. The
software components that can not be decomposed further are called atomic soft-
ware components or runnables. In an implementation, a runnable can be imple-
mented as a function that is called whenever required, within the body of an
operating system (OS) task. Usually, there are many more runnables in a system
than the maximum number of tasks allowed by automotive operating systems.
So runnables having the same functional period according to control dynamics
are mapped into an OS task with the same period. In the simplest case, one
functionality is realized by a single runnable. However, complex functionalities
are typically implemented using several communicating runnables which can be
distributed on different OS tasks.

We assume runnables of a system S is implemented by a set of n periodic
or sporadic real-time tasks Γ = {τ1, τ2, ..., τn}. We denote a periodic task τi
by a tuple (Ci, Ti,Di) where WCET Ci =

∑
Cj

i , Ti is the period and Di is
the relative deadline. Interrupt service routines that are triggered by hardware
events are usually modeled as sporadic tasks in the system. In the case of a
sporadic task, Ti denotes the minimum inter-arrival time between consecutive
jobs. In automotive operating systems only one job of a recurring task can be
active at a time. This restriction implies all periodic or sporadic tasks to have
deadlines less than or equal to their respective periods.
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Tasks are scheduled by the operating system based on the assigned (fixed)
priorities. The scheduling policy may be either preemptive or cooperative. Pre-
emptive tasks may always preempt lower priority tasks, while cooperative tasks
may preempt a lower priority one only at runnable boundaries. Preemptive tasks
are assumed to have a higher priority than any cooperative task.

3.2 Communication Model

Communication between tasks is based on shared memory locations also known
as labels. A label can be a shared variable allocated in the memory or a register.
We assume tasks execute like read-execute-write, where the task reads all the
required data at the beginning of execution and writes at the end of its execution.

For accessing a label, AUTOSAR allows two different mechanisms. In explicit
or direct access, a runnable directly reads or writes memory location. As a
result, data may be overwritten before the reader finishes its reading result-
ing in data inconsistency. In a more frequently used communication mechanism
called implicit access, a task-local copy for data access is created. The copying
is performed at the beginning of the job execution and the modified data is
written back at the job’s termination. Using this mechanism the value of a used
label does not change during the runtime of a job and all runnables operate on
consistent data. This mechanism is a form of non-blocking communication but
does preserve any functional semantics.

In this paper, we use a different non-blocking communication protocol that
preserves functional semantics [4] similar to synchronous programming. The
principle of synchronous programming is based on the idea of zero time compu-
tation and communication. As a result, a data writer task computes and writes
its data at the same time when it is released. Then the data reader task can
always read the freshest data available at its release time. Here the release time
is the time when the job of a task becomes ready for execution.

Let tki represents the release time of the k-th job of task τi where tki ∈ R≥0.
Now job release times of the task τi forms a set Ri = {t1i , t

2
i , · · · } where tki < tk+1

i .
Given time t ≥ 0, we define ni(t) to be the maximum index of any job from τi
that has released before or at t. By definition, ni(t) = supk{k|tki ≤ t}. We denote
xk
i and yk

i to be the data that the k-th job of τi reads and writes respectively.
Now for inter-task communication between writer task τi and its reader task τj ,
synchronous semantics assumes:

xk
j = ym

i ,where m = ni(tkj ). (1)

As for the case when τi has not occurred yet, m = 0 and the reader task
should read a default value.

In a real execution, tasks do not have zero execution time. In the case of
preemptive scheduling, it may be the case that τj preempts τi before comple-
tion. As a result, the τi outputs may not be available for τj computations. To
overcome this problem, a high priority task should read the data written by the
job immediately before the latest released writer job as:
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xk
j = ym

i ,where m = max{0, ni(tkj ) − 1}. (2)

For systems where all tasks execute with the same period, synchronous
semantics is preserved when the tasks are executed according to their data depen-
dency order. In the case of multi-rate or multi-periodic systems, data may be
needed to be communicated between two tasks with different execution rates
or periods. The Dynamic Buffering Protocol (DBP) [4] is designed to preserve
synchronous semantics in multi-rate multi-task implementation.

We now briefly introduce the DBP protocol in the context of fixed-priority
real-time scheduling. The correctness of the protocol is dependent on the follow-
ing assumptions:

1. The taskset that executes functions communicating using synchronous seman-
tics is schedulable.

2. There is no cyclic communication between tasks without delayed data prop-
agation.

3. All the tasks in the taskset have their relative deadlines constrained by their
periods or minimum inter-arrival times.

4. Each pair of communicating tasks should have different fixed priority. In
general, the protocol works for any priority assignment policy which assigns
a fixed priority to a job during its release time.

To ensure deterministic communication between a writer and its reader tasks,
the DBP protocol uses the following rules:

1. A low priority reader job reads the data written by the latest job of its high
priority writer released before or with it.

2. A high priority reader job reads the data written by the predecessor job of the
latest job of its low priority writer that is released before or with the reader.

The protocol manages the buffer that is written by a writer task and later
read by a reader task. Whenever a job is released the kernel or runtime system
modifies the pointer to variables which the released task will use for reading and
writing. Similarly, when a reader finishes, the runtime marks the used buffer as
free. If a reader and a writer are released simultaneously then the pointer fixing
function for the writer should execute before the ones for the reader. The code
for the original software remains unchanged.

It has been shown that a writer with N readers requires maximum (N + 2)
buffer places using the DBP protocol [4]. This bound is intuitive as in the worst-
case situation, all the N readers may be still using the different data written by
the previous writer jobs when a new writer job is released, thus N buffer places
can be in use. The additional two buffer places are to keep the latest and the
one-before-latest data to be used by any future arrival of high and low priority
readers. Note that here the future release of any reader job means their previous
job is finished and one of the previously occupied N buffers is no longer in use.

Automotive software systems sometimes use co-operative scheduling. A low
priority co-operative task can block a high priority co-operative task if it starts
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executing before the release of the second one. However, as long as the tasks
are schedulable the DBP protocol does not fail as it is not dependent on the
finishing time of the jobs and the protocol ensures a reader job never reads from
a writer job that is released after it (Fig. 1).

3.3 Latency Requirements

τ1
t

τ2
t

τ3
t

Lr

Fig. 1. Reaction latency in a cause-effect chain τ1 → τ2 → τ3 comprising three periodic
tasks. The arrows indicate flow of data from one task to another one.

In automotive software, a complex functional requirement is often implemented
by a chain of runnables where each of these except the first one reads the data
written by its predecessor and writes data for its successor. The first runnable
in the chain is either released by an event (sporadic) or a periodic polling func-
tion. These type of chains are called event chains or cause-effect chains [8]. The
runnable that initiates an event chain is called its stimulus and the final runnable
in the chain is called its response. A simple example of an event chain is wherein
data is sensed by runnable for sensing, passed on to control runnables to compute
and finally output of the control runnable is used by the runnables for actuation.
A cause-effect chain does not contain any cyclic data dependency [5].

Each of these cause-effect chains is associated with an end-to-end latency
requirement. In this work, we are concerned with end-to-end latency from the
perspective of a stimulus also known as reaction latency. A reaction latency
constraint of L time units to a particular stimulus implies that the first response
should occur no later than L time units after that input. As each runnable is
mapped into a task and tasks execute in a read-execute-write pattern, we can
express reaction latency as the duration between the release time of the task with
the first runnable and the completion time of the task with the final runnable.

A cause-effect chain may consists of tasks executing at different rates or
periods. Such multi-rate dataflow chains thus often suffer from the effects of
undersampling or oversampling of data. Undersampling happens when a slow
reader reads from a fast writer and not all data will be read. Oversampling occurs
when a fast reader reads from a slow writer and an input data propagates to
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the output multiple times. With these effects, it is challenging to calculate the
reaction latency of multi-rate cause-effect chains due to the following reasons:

– If the chain contains any undersampling effect then the reaction latency cal-
culation should only consider the input data that reaches the output.

– If the chain contains any oversampling effect then the reaction latency calcu-
lation should only consider the delay of the first reader job (out of multiple
readers that reads the same data) which can propagate data to the next
segment of the chain.

Additionally, we have to consider the effect of DBP protocol in reaction
latency which preserves the functional semantics mentioned earlier.

3.4 Problem Statement

Given a cause-effect chain C = τ1 → τ2 → . . . → τN with either N synchronously
released periodic tasks or a sporadic task τ1 with N − 1 synchronously released
periodic tasks, we want to calculate worst-case reaction latency of any stimulus
of C in uniprocessor where tasks use fixed-priority preemptive scheduling and
non-blocking DBP communication protocol.

4 Reaction Latency Estimation

In this section, we present how to compute the worst-case reaction latency of
a cause-effect chain in a uniprocessor where tasks are communicating using the
non-blocking DBP protocol and scheduled using fixed priority scheduling. As
the definition of the worst-case reaction latency, we consider the maximum time
that an input data requires to reach the output for the first time by traversing
a cause-effect chain. Such an interval starts with the release time of the first job
in the chain and finishes with the finishing time of the last job that generates
the final output.

4.1 Reaction Latency in Non-blocking Communication

There are two cases of data flow between tasks with different priorities where
DBP uses different operations. According to DBP protocol, written data is valid
for high priority readers from the release time of the next writer job until the
moment before the release of a writer job after that. In the case of low priority
readers, the written data is only valid during the interval starting from the writer
job release until the moment before its next release. In both cases, the readers
released during the defined interval will read the data.

The above cases do not assume anything about periods of the communicating
tasks. If the tasks have fixed periods then the oversampling or undersampling
effects determine the latency of the propagated data. Note that, the use of a
non-blocking communication protocol ensures that the delay of data propagation
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from a writer to a reader does not depend on the response time of the writer
job. Instead, the time distance between the release times of a writer job and its
corresponding reader job determines how late the data reaches its final output
task. The only response times required to calculate reaction latency are the
response times of the jobs of the final task in the chain. So, first we consider
a naive way to calculate the worst-case reaction latency of a cause-effect chain
τ1 → τ2 → . . . → τN as

L1N =
N−1∑

i=1

Δi→i+1 + RN (3)

where Δi→i+1 is the worst-case data propagation delay between tasks τi and τi+1,
and RN is the worst-case response time (WCRT) [26] of the last reader task τN .
Here the data propagation delay means the time distance between release times
of a writer job and its corresponding reader job. RN can be calculated by the
smallest value of RN that satisfies the recursive equation

RNi
= Cr +

∑

j∈hp(i)

⌈
RNi

Tj

⌉

· Cj . (4)

Note that due to the effect of undersampling a data may not reach the output
of the chain. Similarly, due to the effect of oversampling, the job that propagates
the data may not be the first job that reads this data. As a result, Algorithm 1
may not give a safe overapproximation of the worst-case reaction latency of the
input data that reaches the output.

To show the problem of adding local worst-cases in delay computation, we
use a simple cause-effect chain τ1 → τ2 → τ3 with three periodic tasks as shown
in Fig. 3. We assume prior(τ3) < prio(τ1) < prio(τ2). As we see from the Figure,
due to the combination of low to high (oversampling) and high to low (under-
sampling) data propagation, the first job of τ2 that reads data from τ1 is not
propagating data to the next reader task τ3. Note that such an effect can only
happen when the writer and its reader task have non-harmonic periods. This
makes Algorithm 1 unsafe as it assumes that the first reader of any data is
always propagating it (Fig. 2).

We observe that if a cause-effect chain contains data exchange between a
fast writer and a slow reader then many of the writer jobs will not be able to
propagate data to its reader task. In the simplest case, we consider the cause-
effect chain consists of only two tasks executing at different rates or periods. In
a two task event chain, we have a writer task τw = (Cw, Tw,Dw) and a reader
task τr = (Cr, Tr,Dr). According to DBP protocol, a reader job only reads data
from two types of writer jobs released before or with it. The first type used
in high to low priority communication is the latest writer job that is released
before or with the release of the reader. If the reader job is released at time t
then the maximum index of a writer job released in the interval [0, t] is � t

Tw
�. In

case of low to high priority communication, the relevant job is the one released
immediately before the latest writer job. The index of such a job is � t

Tw
� − 1.
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Fig. 2. The effect of oversampling in reaction latency of a cause-effect chain. The
arrows indicate dataflow between tasks. The dashed arrow shows the first read that is
not propagated.

Based on the observations regarding data misses in a cause-effect chain, we
have an algorithm to compute delays of all data that reach from input to output.
The algorithm shown in Fig. 3 starts from the jobs of the final task in the chain
and computes indexes of the writer jobs that are propagating each of the data. All
possible job release combinations of a synchronous periodic taskset are present
in the hyperperiod of the taskset which is equal to the Least Common Multiple
(LCM) of all the periods in it. As DBP protocol also requires reading data
from the previous period of the writer, our algorithm needs to check job release
propagation in an interval of at least twice the length of the hyperperiod. This
requirement is necessary because the first two tasks in a chain can have low
to high priority communication. The algorithm works like this, we use a two-
dimensional matrix M where each row represents a task in the chain and each
column represents a data propagation path. Starting from the last row with job
indexes of the output task, we calculate the indexes of the writer jobs using
� t
Tw

�−1 or � t
Tw

� based on priorities of the reader and writer tasks where t is the
release time of the reader job. A special case happens when the calculated index
becomes negative. The origin of this negative value is low to high communication
in DBP. In it, the initial reader jobs are reading a default value due to the
absence of propagated data. We mark these indexes with −1 in the matrix. In
the computed matrix, a non-negative value in the item M [i][j] indicates the job
index of the job of task τi−1 that propagates data to (j − 1)-th job of the final
output task in the chain.

The output matrix of the algorithm in Fig. 3 captures information of all the
jobs that are included in any data propagation path of a cause-effect chain that
reaches the output. To get the maximum delay in any such path from M , we use
the algorithm in Fig. 4. This algorithm checks for each non-negative job index
of the input task τ0, the corresponding release distance of its reader job from
the output task τN−1. As we are only concerned with the first output of data,
the algorithm skips the input data that are read multiple times. The maximum
value among these distances is the maximum delay a data suffers reaching from
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1: C: chain {τ0, τ1, . . . , τN−1} of N tasks
2: M : N × (2 · P + 1) zero matrix where P = LCM(C)

TN

3: procedure End-to-end(T, M)
4: ci ← 0
5: for j = 0 to 2 · P do
6: M [N − 1][j] ← ci
7: ci ← ci + 1
8: for i = N − 1 to 1 do
9: for j = 0 to 2 · P do
10: t ← M [i][j] · Ti

11: if prio(τi) > prio(τi−1) then
12: w ← � t

Ti−1
� − 1

13: else
14: w ← � t

Ti−1
�

15: if (w · Ti−1 ≥ 0) then
16: M [i − 1][j] ← w
17: else
18: M [i − 1][j] ← −1
19: return M

Fig. 3. Algorithm for computing delays in all cause-effect chains where data reaches
the output

1: C: chain {τ0, τ1, . . . , τN−1} of N tasks
2: M : N × (P + 1) matrix from algorithm in Figure 3.
3: procedure Find-Max-Chain(T, M)
4: Max ← 0
5: V ← 0
6: Prev ← −1
7: for j = 0 to 2 · P do
8: if (M [0][j] ≥ 0) ∧ (M [0][j] �= Prev) then
9: V ← M [[N − 1][j] · TN−1 − M [0][j] · T0

10: Prev ← M [0][j]
11: if V > Max then
12: Max ← V
13: return Max

Fig. 4. Algorithm for finding maximum delay in cause-effect chains.
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Fig. 5. Worst-case situation in communication between a high priority sporadic writer
task and its periodic reader. The sporadic task is released λ > 0 time units after the
previous reader job.

the input to the output. Finally, a safe upper bound of the worst-case latency
can be calculated by adding the WCRT of the final task with the calculated
delay. We denote this latency computation method as Algorithm 2.

Note that the complexity of Algorithm 2 is linear in the size of the resulting
matrix M . This means our algorithm has a time-complexity linear in the size of
the hyperperiod of the tasks in a cause-effect chain. The hyperperiod is in the
worst-case exponential with respect to the number of tasks of the chain. However,
this worst-case happens when all the communicating tasks have co-prime periods
which is a rare case in practice.

4.2 Data Propagation Delay Between Sporadic Input
and Synchronous Periodic Output Tasks

Now we consider a special type of cause effect chain where the first task in the
chain is released sporadically with a minimum inter-arrival time. Similar to the
analysis of periodic tasks, we first consider the simple case of a sporadic writer
τw and a periodic reader task τr. As τw is sporadic, Tw is the minimum inter-
arrival time between two writer jobs. We assume a sporadic writer task is always
assigned higher priority than its reader task. This is reasonable considering the
fact that sporadic tasks are event-triggered for capturing input events (Fig. 5).

For Tw > Tr, the reader task will always read the latest data written by the
writer. Note that for Tw ≤ Tr, multiple sporadic writer jobs can release between
releases of two consecutive reader jobs. As the sporadic writer job with new data
can arrive indefinitely later after Tw, even the slowest periodic reader task will
oversample in the absence of new writer jobs. In that case, the delay suffered by
the first reader job determines the reaction latency of the sporadic writer. In the
worst-case, the latest sporadic writer releases immediately after the release of a
reader job to maximize the delay for the next release of the reader job that will
read the data for the first time. Hence the maximum delay between releases of
the periodic reader and sporadic writer is

Shl(τw, τr) = Tr − λ (5)
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where λ > 0 is the smallest granularity of time by which an operating system
can separate two consecutive job release events.

Suppose we have a cause-effect chain τ1 → τ2 → . . . → τN where τ1 is
sporadic and rest of the tasks are periodic. We calculate the maximum delay
D2N for the periodic part of the chain (τ2 to τN ) using either Algorithm 1 or
Algorithm 2. If prio(τ1) > prio(τ2), then using Eq. 5 we can calculate a safe
upper bound on worst-case reaction latency as

LS
1N = T2 − λ + D2N + RN . (6)

5 Evaluation

For evaluation, we implemented the algorithms described in Sect. 4 using Python
programming language. We consider cause-effect chains from the Bosch case
study of an EMS [5]. The case study is for a multi-core platform with a global
memory and local scratchpads. Interestingly, each core can access all the scratch-
pads via a crossbar connection. Although the chains in the case study allow
placing tasks in different cores, we consider all the tasks of a chain to execute
in the same processor. This is reasonable as we ignore memory access overhead
and the only effect of placing tasks in different core in our analysis is the change
of WCRT values of the final output task. In the case study, all the periodic tasks
have periods in milliseconds (ms) such as 1, 2, 10, 20, 50, 100, 200, 500 and 1000.
Sporadic tasks have their inter-arrival times specified in microseconds. All the
tasks in the case study are assigned unique priorities using rate-monotonic pol-
icy [27]. These priorities are positive integers where a large value means a high
priority.

In the evaluation, we used Algorithm 1 and Algorithm 2. We want to highlight
the unsafeness of Algorithm 1 and use the following result from [28]:

Δi→i+1 =

{
Ti + min(Ti, Ti+1) − gcd(Ti, Ti+1), if πi < πi+1

min(Ti, Ti+1) − gcd(Ti, Ti+1), if πi > πi+1

(7)

where πi represents priority of τi.
Figure 6 shows reaction latency computation of three chains with periodic

tasks. Here the first chain is from the case study [5]. Note that, as each pair
of tasks in the considered chains has harmonic periods, both of our algorithms
computed the same latency values. For the third chain, the reaction latency is
the WCRT of the output task because all the write-read pairs have high-to-low
data transfer.

Next, we compute reaction latency of cause-effect chain with sporadic stim-
ulus where we consider λ is 1µs. We use two such chains where minimum inter-
arrival times of sporadic input tasks are specified in microseconds. For calcula-
tion, we convert periods of the periodic tasks into microseconds. Figure 7 shows
the latency of two such chains where both of our algorithms give identical latency
due to the harmonic periods of the periodic tasks. Here the first sporadic chain
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Chain Periods Priority Latency Alg1 Latency Alg2
100 → 10 → 2 [1, 2, 3] 110 + R2 110 + R2

20 → 10 → 100 [2, 3, 1] 20 + R100 20 + R100

10 → 20 → 50 [3, 2, 1] R50 R50

Fig. 6. Reaction latency computations using Algorithm 1 and 2 where Ri is the WCRT
of task with period i.

Chain Periods Priority Latency
800 → 2000 → 50000 [3, 2, 1] 1999 + R50000

6660 → 10000 → 20000 [3, 2, 1] 9999 + R20000

Fig. 7. Reaction latency computations for chain with sporadic task where Ri is the
WCRT of task with period i.

Chain Periods Priority Latency Alg1 Latency Alg2
10 → 35 → 50 [3, 2, 1] 35 + R50 30 + R50

7 → 1 → 100 [2, 3, 1] 7 + R100 13 + R100

100 → 3 → 8 [1, 3, 2] 104 + R8 108 + R8

Fig. 8. Reaction latency computations with non-harmonic periods using Algorithm 1
and 2 where Ri is the WCRT of task with period i.

is from [5] and the second chain assumes an angle-synchronous task as sporadic
input.

Finally, Fig. 8 shows how reaction latencies computed by both algorithms
differ in the presence of non-harmonic periods between communicating tasks.
We used three chains each consisting of three periodic tasks where all write-read
pairs do not have harmonic periods. We see for the second and the third chain
of Fig. 8, Algorithm 1 computes unsafe lower delays compared to Algorithm 2.
As the differences in calculated delays are not so large, it is intuitive that the
usefulness of Algorithm 2 will be more evident in longer chains with more non-
harmonic read-write pairs. However, the maximum number of tasks in multi-rate
cause-effect chains is three in the case study [5].

6 Conclusion

In this paper, we have studied the problem of estimating the worst-case reaction
latency of a cause-effect chain in the multi-rate real-time system that uses non-
blocking inter-task communication. We have shown that any naive estimation
algorithm that combines the worst-case data propagation delays of each write-
read pair is unsafe. We provide an algorithm to compute the exact worst-case
data propagation delay between releases of a stimulus and its response in cause-
effect chains. Our algorithm does not depend on the response times of the data
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writer jobs and only assumes the system to be schedulable. An evaluation based
on a realistic system [5] shows that our algorithm is able to remove the unsafeness
of the naive approach.

As future work, we want to provide a more efficient algorithm for reaction
latency computation that can construct the global worst-case situation without
enumerating paths of all reachable data. We will extend this work for multi-
core platforms and will evaluate the overheads of the considered non-blocking
communication protocol. Another interesting direction in latency computation is
to consider age latencies [8]. Age latencies are important for control performance
but these are more relevant in the system which can tolerate deadline misses.

Finally, we would like to thank authors Bengt Jonsson and Hans Hansson for
their seminal work [2] on temporal logic to check timing properties in probabilis-
tic chains. To the best of our knowledge, their work is one of the earliest known
contributions to check properties similar to the reaction latency. The problem is
still relevant in different settings and their pioneering work continues to inspire
us.
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Abstract. Interval Markov chains (IMCs), as first introduced by Larsen
and Jonsson in 1991 are succinct specifications for probabilistic systems
that generalise Markov chains (MCs) by allowing state transition prob-
abilities to lie within an interval. In this work, we address the study
of IMCs in a quantitative setting by extending the notion of IMCs by
associating with each state a reward that is gained when leaving the
state. Specifically, we compare three different semantic interpretations
proposed in the literature (once-and-for-all, interval Markov decision
process and at-every-step) in the context of model-checking rPCTL, an
extension of PCTL where each path-formula is equipped with the spec-
ification of a bound on the accumulated reward. We prove that for the
full logic, the three semantics are not equivalent, but for the fragment
of reward-bounded reachability properties, the interval Markov decision
process semantics and the at-every-step semantics are equivalent. Finally,
we discuss model-checking algorithms for the three semantics by reduc-
tion to the model-checking problem for parametric Markov chains.

1 Introduction

The early work of Bengt Jonsson contains several contributions to the verifica-
tion of distributed systems [20]. This still very active research direction [7] has
been dominated by two schools: the North American school stressing automata
and temporal logics, and the European school with focus on process algebra
and behavioural equivalences. Both directions have their pros and cons with
respect to compositionality and refinement: in the process algebraic approach
compositional reasoning was guaranteed by congruence properties of the con-
sidered equivalences. However, specifications are typically very explicit being
single equivalence classes leaving no room for a stepwise refinement process.
In contrast, in the temporal logic approach logical implication between speci-
fications provides the basis for stepwise refinement. However, it is notoriously
hard to derive logical properties of composite systems from properties of their
components, see [2,30]. Within the process algebraic approach, the introduction
of Modal Transition Systems [27] (MTS) may be seen as a step towards sup-
port of a true stepwise refinement process. In MTS the transitions of a labelled
c© Springer Nature Switzerland AG 2021
E.-R. Olderog et al. (Eds.): Jonsson Festschrift, LNCS 13030, pp. 57–77, 2021.
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transition system are classified as either mandatory (must) of optional (may)
leading to a modal refinement precongruence generalizing the strict behavioural
equivalences.

At the same time, probabilistic extensions of process algebra were introduced,
e.g. [15], including the introduction of probabilistic bisimulation [25,26]. In col-
laboration with the last author of this paper (during a nice sabbatical at SICS in
1990), Bengt Jonsson quickly followed up with a probabilistic extension of MTS
[22], originally termed Probabilistic Specifications, but by now better known as
Interval Markov Chains (IMC). It is fair to say that IMC has inspired much
subsequent research (including this paper).

On the temporal logical side, the introduction of PCTL in the seminal paper
[17,21] by Bengt Jonsson and Hans Hansson is by now considered a prime logic
for specifying properties of probabilistic systems. Since its introduction signifi-
cant effort has been made towards efficient model checking algorithms for PCTL.
However, there are still open problems foremost the question of decidability of
satisfiability. One research direction that we will pursue in this paper is that of
model checking PCTL with respect to IMC.

Our Contribution. We consider interval Markov reward models (IMRMs), a class
of models that extend interval Markov chains by assigning a (positive) reward
to each state. For regular IMCs, three distinct semantics have been proposed in
the literature: the once-and-for-all semantics [5], the interval Markov decision
process (IMDP) semantics [5,8,29] and the at-every-step semantics [22]. We
provide a natural extension of the three semantics to IMRMs and investigate the
differences between the three semantics in the context of model-checking. For this
we consider the logic Probabilistic CTL (PCTL) [18] with reward-bounded path-
formulae (rPCTL). For a given fragment of the logic, we say that two semantics
are equivalent if for some IMRM specification and rPCTL formula, whenever
there exists a satisfying model of one semantics, there exists a satisfying model
of the other semantics.

Our contribution is twofold. The first part of the paper concerns the com-
parison of the above mentioned semantics:

(i) we prove that the three semantics are not equivalent with respect to the full
fragment of rPCTL;

(ii) if one restricts the attention to probabilistic bounded reachability queries
(a) we show that the once-and-for-all semantics and the IMDP-semantics are
not equivalent, whereas (b) the IMDP-semantics and at-every-step semantics
are.

The result in (i) can be seen as a generalisation of a similar result by Bart et
al. [5] for IMCs against PCTL properties. In contrast to [5], where three IMCs
semantics where shown to be equivalent with respect to reachability queries, we
show that such an equivalence does not generalise to IMRMs.

In the second part of the paper we present algorithms for model-checking
IMRMs for the three semantics. For the full logic and the once-and-for-all seman-
tics, we present a reduction to the (existential) model-checking problem for para-
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metric Markov reward models [1] with interval-constraints on the parameters. As
for the IMDP semantics, we devise a reduction to the model-checking problem
of IMRMs using the once-and-for-all semantics.

Notably, thanks to the semantic equivalence result relative to reachability
queries mentioned earlier, such a reduction solves also the model checking prob-
lem against reachability queries when one interprets IMRMs using the at-every-
step semantics. However, model checking generic rPCTL properties with respect
to the at-every-step semantics still remains an open problem.

Related Work. Since their introduction by Jonsson and Larsen [22], IMCs have
been investigated from different perspectives. In particular, [12,13] tackles the
computational complexity of several decision problems, such as deciding whether
or not an IMC has an implementation (the consistency problem) and whether
the set of implementations of one IMC is entailed by the set of implementa-
tion by another IMC (thorough refinement). For model-checking, [6] considers
LTL model-checking w.r.t IMCs with the once-and-for-all semantics, while [8,29]
presents algorithms for verifying PCTL properties for both the once-and-for-all
semantics as well as the IMDP semantics. The work in [8] also considers gen-
eral ω-regular properties. From a computational complexity perspective, Chen et
al. [9] proved that the two variants of the PCTL model-checking problem w.r.t.
the once-and-for-all semantics and the IMDP semantics are both P-complete.

Another body of research is the work on parametric IMCs (PIMCs) [5,11,
14,28] where, instead of an interval, one can instead place a parameter. All the
problems for IMCs can then be re-cast in two variants for PIMCs, depending
on the quantification over the parameters (existential or universal). Closest to
our work is [5], in which the equivalence between the three different semantics
is investigated for IMCs. In the same paper, verifying a probabilistic reachabil-
ity property for a given PIMCs is reduced to solving a constraint satisfaction
problem.

2 Preliminaries and Notation

We denote by R, Q, and N respectively the set of real, rational, and natural
numbers. Given a binary relation R ⊆ X×Y and x ∈ X, we define the projection
of R on x as R(x) = {y ∈ Y | (x, y) ∈ R}, and we denote by R−1 the inverse of
R, i.e., R−1 = {(y, x) | (x, y) ∈ R}.

For a finite nonempty set X, μ : X → [0, 1] is a probability distribution on X
if

∑
x∈X μ(x) = 1. Moreover μ is extended to sets Y ⊆ X as μ(Y ) =

∑
y∈Y μ(y).

We write D(X) for the set of probability distributions on X. For μ ∈ D(X) we
define the support of μ as support(μ) = {x ∈ X | μ(x) > 0}.

3 Markov Reward Models

In this section we recall the definitions of Markov reward model (MRM), proba-
bilistic reward bisimulation, and Reward-Bounded Probabilistic CTL (rPCTL).

For the rest of the paper, we fix a countable set of atomic propositions A.
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Definition 1 (Markov Reward Model). A Markov reward model is a tuple
M = (S, s0, π, ρ, �) consisting of a finite set of states S, an initial state s0 ∈ S,
a transition probability function π : S → D(S), a state-reward function ρ : S →
N>0 assigning to each state a positive reward1 and a labelling function � : S → 2A

mapping states to atomic propositions.

Intuitively, if M is in state s it moves to state s′ with probability π(s)(s′),
thereby receiving the reward ρ(s). In this sense M can be seen as a state-machine
that generates paths of states starting from the initial state s0.

We denote by GM = (S,→) the underlying labelled graph of M, where
s, s′ ∈ S are connected by a labelled directed edge s

p,r−−→ s′ if and only if
p = π(s)(s′) > 0 and r = ρ(s). We will assume without loss of generality that
all states of M are reachable from the initial state s0 in its underlying graph.
For s ∈ S we define the set of successors of s as succ(s) = support(π(s)).

Example 1. Figures 1b–d depicts three MRMs. Consider the MRM Mo =
(To, t0, πo, ρo, �

Mo) in Fig. 1b. States To = {ti | 0 ≤ i ≤ 4} are visualised by
a circle split in two, with the name of a state ti at the top and the reward
ρo(ti) at the bottom. The initial state t0 is identified by a double-stroke bor-
der. State labels �Mo(ti) are visualised next to the state ti unless the set is
empty, in which case the set is omitted. From the underlying graph GMo

we
have succ(t0) = {t1, t2}, t0

0.3,1−−−→ t1 and t0
0.7,1−−−→ t2.

A path is an infinite sequence of states σ = s0, s1, . . . ∈ Sω; for j ∈ N, we denote
by σ[j] the (j +1)-th state of σ, i.e., σ[j] = sj and by W(σ)(j) =

∑j−1
i=0 ρ(si) the

accumulated reward of σ after j transitions. For a finite path σ = s0, . . . , sj ∈ S∗

we define the length of σ as |σ| = j.
To associate probabilities to measurable events, we adopt the classical cylin-

der set construction from [4, Chapter 10]. For w ∈ S∗, the cylinder set of w is the
set of all paths having prefix w, i.e., cyl(w) = wSω. Given an initial probability
distribution ι ∈ D(S), we define the probability space (Sω,ΣM,PM

ι ), where ΣM
is the smallest σ-algebra that contains all the cylinder sets, and P

M
ι is the unique

probability measure such that, for all w = s0 · · · sn ∈ S∗,

P
M
ι (cyl(w)) = ι(s0) · ∏

0≤i<n π(si)(si+1) .

When ι is the Dirac distribution pointed at s, i.e. ι(s) = 1, we write P
M
s , or

just Ps when M is clear from the context. Similarly, we may write P
M as a

shorthand for P
M
s0

when s0 is the initial state of M.

Definition 2 (Bisimulation). Let M = (S, s0, π, ρ, �) be an MRM. An equiva-
lence relation R ⊆ S×S is a probabilistic reward bisimulation for M if whenever
(s, t) ∈ R, then (i) ρ(s) = ρ(t), (ii) �(s) = �(t), and (iii) π(s)(C) = π(t)(C) for
all C ∈ S/R.

1 All results presented in this paper can be generalized to MRMs having positive
rational state rewards by multiplying the vector of rewards by a suitably large scaling
factor.
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Fig. 1. IMRM I1 and implementations Mo ∈ �I1�o, Md ∈ �I1�d and Ma ∈ �I1�a.

Two states s, s′ ∈ S are probabilistic bisimilar, written s ∼ s′, if they are related
by some probabilistic bisimulation. By abuse of notation we may write M ∼ M′

to indicate that the initial states of the MRMs M and M′ are bisimilar w.r.t.
their disjoint union.

We now present an extension of probabilistic CTL (PCTL) [18], namely
reward-bounded PCTL (rPCTL), where the next and the until operators are
equipped with the specification of a finite bound on the accumulated reward.
As any CTL-based logic, rPCTL allows for state formulae describing properties
about states in an MRM and path formulae describing properties about paths
in an MRM. State formulae Φ and path formulae Ψ are formed according to the
following abstract syntax:
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Φ ::= true | a | ¬Φ | Φ ∧ Φ | P��λ(Ψ)
Ψ ::= X�k Φ | ΦU�k Φ

where a ∈ A, 
� = {<,≤,≥, >}, � = {≤,=,≥}, λ ∈ Q ∩ [0, 1], and k ∈ N. We
denote by rPCTL the set of all rPCTL state-formulae.

Given an MRM M = (S, s0, π, ρ, �), a state s ∈ S, and a path σ ∈ Sω, we
write M, s |= Φ (resp. M, σ |= Ψ) to indicate that s satisfies the state formula
Φ (resp. the path σ satisfies the path formula Ψ). The satisfiability relation |= is
inductively defined as:

M, s |= true always
M, s |= a iff a ∈ �(s)
M, s |= ¬Φ iff M 
|= Φ

M, s |= Φ1 ∧ Φ2 iff M, s |= Φ1 and M, s |= Φ2

M, s |= P��λ(Ψ) iff Ps({σ ∈ Sω | M, σ |= Ψ}) 
� λ

M, σ |= X�kΦ iff ρ(σ[0]) � k and M, σ[1] |= Φ

M, σ |= Φ1U�kΦ2 iff ∃j ≥ 0.W(σ)(j) � k,

M, σ[j] |= Φ2 and
∀i < j.M, σ[i] |= Φ1.

As usual, we derive the operators false, ∨, and → as false := ¬true, Φ1 ∨ Φ2 :=
¬(¬Φ1 ∧ ¬Φ2), and Φ1 → Φ2 := ¬Φ1 ∨ Φ2. Moreover, we define the k-bounded
reachability operator as ♦�kΦ := trueU�k Φ.

The satisfiability relation extends naturally to finite paths: a finite path σ ∈
S∗ satisfies a path-formula Ψ if and only if all the infinite paths in the cylinder-
set cyl(σ) satisfy Ψ . If the MRM is clear from the context, we sometimes write
s |= Φ instead of M, s |= Φ. We may also write M |= Φ as a shorthand for
M, s0 |= Φ and P

M(Ψ) as a shorthand for P
M
s0

({σ ∈ Sω | M, σ |= Ψ}), where
s0 is the initial state of M.

Example 2. Consider the three MRMs Mo,Md and Ma depicted in Figs. 1b–d
and let Φ = P≥0.15(♦≤3 b). By rPCTL semantics we have Mo |= Φ, witnessed
by the path t0, t1, t4 and similarly, Md |= Φ and Ma |= Φ. If the probability
threshold is increased from 0.15 to 0.3, Mo and Md no longer satisfy the formula,
i.e. for formula Φ′ = P≥0.3(♦≤3 b), we have Mo 
|= Φ′, Md 
|= Φ′ but Ma |= Φ′.

For s, s′ ∈ S, we say that s and s′ are logically equivalent w.r.t. rPCTL, written
s ∼=rPCTL s′, if

∀Φ ∈ rPCTL.M, s |= Φ ⇐⇒ M, s′ |= Φ .

The following theorem states that probabilistic bisimilarity equals logical
equivalence w.r.t rPCTL.

Theorem 1. Let M = (S, s0, π, ρ, �) be an MRM and s, s′ ∈ S. Then, s ∼
s′ ⇐⇒ s ∼=rPCTL s′.
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4 Interval Markov Reward Models

In this section we introduce the notion of interval Markov reward model (IMRM)
and present three distinct semantic interpretations of IMRMs, comparing their
expressivity with respect to rPCTL.

Before defining IMRMs, it is convenient to introduce some notation. We write
I for the set of all non-empty closed interval subsets of [0, 1], and DI(X) = {f |
f : X → I} denotes the set of interval specifications on a finite set X. An interval
specification f ∈ DI(X) describes a family of probability distributions on X that
satisfy the specification i.e., �f� = {π ∈ D(X) | ∀x ∈ X.π(x) ∈ f(x)}.

Definition 3 (Interval Markov Reward Model). An interval Markov
reward model (IMRM) is a tuple I = (S, s0,Π,R, �) where

– S is a finite nonempty set of states,
– s0 ∈ S is the initial state,
– Π : S → DI(S) is the interval transition function,
– R : S → N>0 is the state-reward function, and
– � : S → 2A is the state-labeling function.

Given an IMRM I = (S, s0,Π,R, �) and state s ∈ S, Π(s) = Is is the interval-
specification for state s, defining for each state s′ ∈ S a probability interval
Is(s′), within which s moves to s′. By abuse of notation we may refer to MRMs
as particular cases of IMRMs having singleton intervals specifications. Hence, an
IMRM I is a succinct specification for a family of MRMs where the transition
function satisfies boundary conditions dictated by the interval transition function
Π. Hereafter, we will assume that all IMRMs we will be working with have non-
empty interval specifications, i.e., �Π(s)� 
= ∅ for all s ∈ S. In literature this
condition is known as (local) consistency [13]. The definition of paths, finite
paths and accumulated weight are defined similarly as for MRMs.

Example 3. Consider the IMRM I1 = (S, s0,Π,R, �I) depicted in Fig. 1a. For
any state si ∈ {s0, s1, s2, s3, s4}, the interval specification Π(si) is depicted by
edges connecting si to states in succ(si). These edges are labelled by the interval
assigned by Π(si)(sj). Singleton intervals [p, p] are simply represented by p.

In the literature [5,8,22,29], there have been proposed three different seman-
tic interpretations of IMRMs, namely, the once-and-for-all semantics, the inter-
val Markov decision process semantics (IMDP), and the at-every-step semantics.
We now present the three distinct semantics for IMRMs and some basic results
showing the relationship among the different semantics. To ease the presenta-
tion, we fix an MRM M = (T, t0, π, ρ, �M) and an IMRM I = (S, s0,Π,R, �I)
and we will implicitly refer to their components in the remainder of this section.

The once-and-for-all semantics [5], also called the Uncertain Markov Chain
semantics [29] is the simplest among the three semantics. It requires to choose for
each state of the IMRM a probability distribution satisfying the corresponding
interval specification.
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Definition 4 (Once-and-for-all semantics). An arbitrary MRM M satisfies
the IMRM I w.r.t. the once-and-for-all semantics, written M |=o I, if and
only if T ⊆ S, t0 = s0, and for all t ∈ T , ρ(t) = R(t), �M(t) = �I(t), and
π(t) ∈ �Π(t)�.

Example 4. Consider again the IMRM I1 in Fig. 1a. Figure 1b depicts an MRM
Mo that satisfies I1 with the once-and-for-all semantics.

In contrast to the once-and-for-all semantics, in the interval Markov decision
process semantics (IMDP semantics) [5,8,29], the choice of the transition prob-
ability distribution for a state s ∈ S is performed each time a state is visited.

Definition 5 (IMDP semantics). An MRM M satisfies the IMRM I w.r.t.
the IMDP semantics, written M |=d I, if and only if there exists a mapping
τ : T → S such that τ(t0) = s0, and for all t ∈ T , �M(t) = �I(τ(t)), ρ(t) =
R(τ(t)), and there exists δt ∈ �Π(τ(t))� such that for all t′ ∈ T , t′ ∈ succ(t)
implies that π(t)(t′) = δt(τ(t′)).

As its name suggests, the IMDP semantics is reminiscent of the way one
resolves nondeterminism in a Markov decision process (MDP) by means of a
deterministic memory-dependent scheduler (cf. [4, Ch10]). With respect to sim-
ilar semantic interpretations given for interval Markov chains [5,8,29], Defini-
tion 5 is more similar in spirit to that given in [5] for the fact that the MRM M
needs to be finite.

Example 5. The MRM in Fig. 1c satisfies the IMRM I1 in Fig. 1a w.r.t. the
IMDP semantics. To see this, consider the mapping τ(u0) = s0, τ(u1) =
s1, τ(u21) = τ(u22) = s2, τ(u3) = s3 and τ(u4) = s4. Note that u21 and u22

are two different implementations of the IMRM state s2.

Remark 1. Notice that M |=o I implies M |=d I and the mapping τ : T → S
witnessing this fact is the identity function, i.e., τ(t) = t for all t ∈ T .

The last semantic interpretation for IMRMs is the so-called at-every-step
semantics. Its definition is a simple extension of the original semantics given
for interval Markov chains by Jonsson and Larsen [22]. Its main feature consists
in generalizing the mapping τ : T → S from the IMDP semantics to a relation
R ⊆ T × S. This allows one to “aggregate” compatible states of the IMRM
into a single state of the MRM implementation, as well as “redistributing” the
successors of a state of the IMRM into multiple states.

Definition 6 (At-every-step semantics). An MRM M satisfies the IMRM
I w.r.t. the at-every-step semantics, written M |=a I if and only if there exists
a relation R ⊆ T × S such that (t0, s0) ∈ R and for all pairs (t, s) ∈ R we have
that �M(t) = �I(s), ρ(t) = R(s), and there exists a correspondence function
δ(t,s) : T → (S → [0, 1]) such that
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1. for all t′ ∈ succ(t), δ(t,s)(t′) ∈ D(S).
2. for all s′ ∈ S,

(
∑

t′∈T

π(t)(t′) · δ(t,s)(t′)(s′)

)

∈ Π(s)(s′).

3. for all (t′, s′) ∈ T × S, if δ(t,s)(t′)(s′) > 0 then (t′, s′) ∈ R.

Example 6. The MRM Ma depicted in Fig. 1d is one possible at-every-step
implementation of the IMRM I1 of Fig. 1a. This is witnessed by the relation

R = {(v0, s0), (v1, s1), (v1, s2),
(v31, s3), (v32, s3), (v4, s4)}

and the following correspondence functions:

δ(v0,s0)(v1)(s1) = δ(v0,s0)(v1)(s2) = 1
2 ,

δ(v1,s1)(v31)(s3) = δ(v1,s1)(v32)(s3) = 1.

Note that the state v1 in Ma implements both s1 and s2, while the state s3 is
“redistributed” into v31 and v32. The example illustrates that one is allowed to
aggregate and split states under the at-every-step semantics.

As shown in Example 6, the at-every-step semantics allows one MRM state
to implement multiple IMRM states by aggregation. Next, we show that for any
MRM with such aggregated states, there exists an at-every-step implementation
with no aggregated states, which is probabilistic bisimilar to the MRM with
aggregated states. The result follows immediately from a similar result for IMCs
as presented in [5, Proposition 5]. To formalize the result, we borrow the notion
of degree of satisfaction from [5].

Definition 7. Let n ∈ N. The MRM M satisfies the IMRM I w.r.t. the at-
every-step semantics with degree of satisfaction n, written M |=n

a I, if there
exists a relation R ⊆ T × S witnessing M |=a I such that |R(t)| ≤ n for all
states t ∈ T .

Note that if an MRM M satisfies IMRM I with degree 1, all correspondence
functions δ(t,s) are Dirac distributions i.e. δ(t,s)(t′)(s′) > 0 =⇒ δ(t,s)(t′)(s′) = 1.

The following Lemma states that for any at-every-step implementation M of
the IMRM I, there exists an at-every-step implementation M′ of I with degree
1 that is probabilistic bisimilar to M.

Lemma 1. Let M |=n
a I for some n ∈ N. Then, there exists an MRM M′ such

that M ∼ M′ and M′ |=1
a I.

Remark 2. Note that M |=d I implies M |=1
a I, since the mapping τ : T → S

witnessing M |=d I induces a functional relation R = {(t, τ(t)) | t ∈ T} which
can be easily verified to be a witness for M |=1

a I.
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The following result identifies the properties that a relation R witnessing
M |=a I has when the MRM M satisfies also M |=d I.

Proposition 1. Let R ⊆ T × S be a relation witnessing M |=1
a I. Then,

M |=d I iff for all (t, s) ∈ R there exists no s′ ∈ succ(s) such that |R−1(s′) ∩
succ(t)| > 1.

We are now ready to establish some basic relationship between the three
semantics in terms of their expressivity. For any semantics x ∈ {o, d, a}, we
denote by �I�x = {M | M |=x I} the family of MRMs that satisfy the IMRM
I with respect to the semantic x.

The following result states that the three semantics presented in this section
have different expressivity, with the at-every-step semantics being the most
expressive semantics, followed by the IMDP semantics which in turn is more
expressive than the once-and-for-all semantics.

Proposition 2. For any IMRM I, �I�o ⊆ �I�d ⊆ �I�a and for some IMRM I ′

these inclusions are strict, i.e., �I ′�o ⊂ �I ′�d ⊂ �I ′�a.

Proof. �I�o ⊆ �I�d and �I�d ⊆ �I�a follow for the arguments sketched respec-
tively in Remarks 1 and 2. For the IMRM I1 in Fig. 1 in particular it holds that
Md ∈ �I1�d \ �I1�o and Ma ∈ �I1�a \ �I1�d. ��

5 Comparing Semantics Against rPCTL

In this section we investigate the IMRM semantics presented in Sect. 4 in the
context of rPCTL model-checking. The rPCTL satisfiability relation naturally
extends to IMRMs by requiring that an rPCTL formula is satisfied by some
MRM implementation.

Definition 8. We say that an IMRM I (existentially) satisfies the formula Φ ∈
rPCTL with respect to the semantics x ∈ {o, d, a}, written I |=x Φ, iff there
exists M ∈ �I�x such that M |= Φ.

The above definition is implicitly given in terms of the initial state s0 of I, but
can be generalized to arbitrary states s ∈ S, as I, s |= Φ by replacing s0 with s.

In the following, we compare the three different semantics with respect to
different classes of rPCTL formulae. To this end introduce a notion of semantic
equivalence.

Definition 9 (Semantic equivalence). For a fragment of rPCTL, L ⊆
rPCTL and two IMRM semantics x, y ∈ {o, d, a}, we say that the semantics
x and y are equivalent w.r.t. L if for any IMRM I and state formula Φ ∈ L,
I |=x Φ ⇐⇒ I |=y Φ.

The next result states that the at-every-step semantics is not equivalent to
the IMDP semantics w.r.t. the full logic.
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Fig. 2. IMRM I2 with at-every-step MRM implementation M2

Proposition 3. The at-every-step semantics is not semantically equivalent to
the IMDP semantics with respect to rPCTL.

Proof. Consider the IMRM I2 and MRM M2 depicted in Fig. 2. One can verify
that M2 |=a I2. Let Φ be the following rPCTL formula

Φ = P>0(X≤1Φ1) ∧ P>0(X≤1Φ2) ∧ P>0(X≤1Φ3),

where

Φ1 = P≥1(X≤1(¬Γ ∧ ¬Λ)), Φ2 = P≥1(X≤1Γ ) and Φ3 = P≥1(X≤1Λ).

Clearly M2 |= Φ as the three outgoing transitions serve to satisfy each of the
sub-formulae Φi (i ∈ {1, 2, 3}).

Consider an MRM M′ ∈ �I2�d. By IMDP semantics, M′ must have an
initial state with exactly two successors, say t′1 and t′2. Therefore there exists
i ∈ {1, 2, 3} such that M′, tj 
|= Φi for any j = 1, 2 as no single successor can
satisfy each Φi simultaneously. Hence, I2 
|=d Φ. ��

The above result is analogous to [5, Section 4.1], where it was proven that
for internal Markov chains the at-every-step semantics and the IMDP semantics
are not equivalent with respect to PCTL.

Reachability Queries. In the rest of the section we focus our attention on a
semantic comparison relative to reachability queries, namely, formulae of the
form P��λ(♦�kΓ ), for arbitrary Γ ∈ AP , k ∈ N>0, λ ∈ [0, 1], 
� ∈ {<,≤,≥, >},
and � ∈ {≤,≥}. We denote by Lreach the set of reachability queries and we
write L≤

reach (resp. L≥
reach) when we fix � = ≤ (resp. � = ≥).

Reachability properties are one of the fundamental questions for the quan-
titative analysis of systems. The atomic proposition Γ may represent a set of



68 G. Bacci et al.

s0

1
s1

2
s2

1

{Γ}
s3

1

s4

1

{Γ}

s5

1

[0, 0.8] 1

1

0.2

[0, 0.8]

0.9

0.1

1
1

Fig. 3. IMRM I3

t0

1
t1

2
t2

1

{Γ}

t0

1
t3

1

t4

1

{Γ}

t5

1

0.8 1

1
0.2

0.8

0.2

0.9

0.1

11

Fig. 4. MRM M3 such that M3 |= P>0.8(♦≤3Γ )

certain bad states which should be unlikely to be visited, or dually, a set of
good states which should rather be visited with high probability. In the context
of interval Markov chains, Bart et al. [5] have shown that the three semantic
interpretations are equivalent with respect to reachability queries.

In contrast, the ability to express bounds on the reward accumulated until
reaching a some goal state makes the IMPD semantics and the at-every-step
semantics, more expressive than the once-and-for-all semantics relative to reach-
ability queries.

Proposition 4. The once-and-for-all semantics is not equivalent to the IMDP
semantics w.r.t. Lreach.

Proof. Consider the IMRM I3 in Fig. 3 and the formula P>0.8(♦≤3Γ ). Figure 4
shows M3 ∈ �I�d witnessed by the mapping τ(t0) = τ(t′0) = s0 and τ(ti) = si

for 1 ≤ i ≤ 5. Clearly M3 |= P>0.8(♦≤3Γ ).
Figure 5 shows the once-and-for-all MRM implementation of I3, M4, that

maximizes the probability of reaching Γ without exceeding the weight budget of
3. One can see that M4 
|= P>0.8(♦≤3Γ ). ��

It remains to compare the at-every-step semantics and IMDP semantics w.r.t.
reachability queries. To this end we first present two technical lemmas.
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Lemma 2. Let I be an IMRM, M ∈ �I�a, Γ ∈ AP , and k ∈ N. Then, there
exist M≤,M≥ ∈ �I�d such that PM≤(♦≤kΓ ) ≤ P

M(♦≤kΓ ) ≤ P
M≥(♦≤kΓ ).

Proof (sketch). By Lemma 1 and Theorem 1 we can assume w.l.o.g. that M |=1
a

I. To construct M≤ and M≥ we proceed in two steps. We present the construc-
tion of M≤ and then explain how to adapt it for M≥.

(Step 1) We build an MRM M′ from M by unfolding its structure. The
unfolding of each path terminates when its accumulated weight exceeds k or
when a state satisfying Γ is reached. Then, the last state of each unfolded
path, say t, is replaced with an arbitrary once-and-for-all model of I with
initial state t.
Note that P

M(♦≤kΓ ) = P
M′

(♦≤kΓ ) since the probability value is obtained
as the sum over all the cylinders obtained from paths constructed in the
unfolding. Moreover, M′ |=1

a I because M |=1
a I and the unfolding does

not introduce any aggregation.
(Step 2) From M′ we construct M≤. Let R be the relation witnessing M′ |=1

a

I. If R satisfies the conditions of Proposition 1 we choose M′ = M≤. Other-
wise, for each state t of M such that (t, s) ∈ R and |R−1(s′) ∩ succ(t)| > 1
for some s′ ∈ succ(s) we proceed as follows. Let t′ ∈ R−1(s′) ∩ succ(t) be
the successor of t that minimizes the probability of reaching Γ within the
reward bound up to t′, i.e., PM′

t′ (♦≤k′Γ ) where k′ = k − W(σ)(|σ|) and σ
is the finite path from the initial state of M′ to t′. Then we redirect all the
probability mass that was from t to R−1(s′) ∩ succ(t) to the single state t′,
“disconnecting” the set of states (R−1(s′) ∩ succ(t)) \ {t′} from t.
Let M≤ be the MRM obtained from the above procedure. Note that M≤
satisfies the conditions of Proposition 1 and P

M≤(♦≤kΓ ) ≤ P
M′

(♦≤kΓ ).

As for the construction of M≥, (Step 1) is done in the same way while in
(Step 2) t′ is chosen as the one that maximizes P

M′
t′ (♦≤k′Γ ). ��

Lemma 3. Let I be an IMRM, M ∈ �I�a, Γ ∈ AP , and k ∈ N. Then, there
exist M≤,M≥ ∈ �I�d such that PM≤(♦≥kΓ ) ≤ P

M(♦≥kΓ ) ≤ P
M≥(♦≤kΓ ).

Proof (sketch). The proof proceeds in two steps analogously as for Lemma2.
By Lemma 1 and Theorem 1 we can assume w.l.o.g. that M |=1

a I. We
present the construction of M≤ and then explain how to adapt it for M≥.
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(Step 1) We build an MRM M′ from M by unfolding its structure. The
unfolding of each path terminates as soon as its accumulated weight exceeded
k. Then, the last state of each unfolded path, say t, is replaced with a once-
and-for-all model M′′ of I with initial state t such that PM′′

t (♦Γ ) ≤ P
M
t (♦Γ ).

The existence of M′′ is guaranteed by [5, Lemma 4].
Note that P

M′
(♦≥kΓ ) ≤ P

M(♦≥kΓ ) since the probability value is obtained
as the sum over all the cylinders obtained from paths constructed in the
unfolding. Moreover, M′ |=1

a I because M |=1
a I and the unfolding does

not introduce any aggregation.
(Step 2) From M′ we construct M≤ following the same procedure used for
(Step 2) in the proof of Lemma2.

As for the construction of M≥, in (Step 1) we need to choose M′′ such that
P

M′′
t (♦Γ ) ≥ P

M
t (♦Γ ) and (Step 2) is modified as done for Lemma2. ��

Theorem 2. The IMDP semantics and the at-every-step semantics are equiva-
lent w.r.t. Lreach.

Proof. Let I be an IMRM, Φ = P��λ(♦�kΓ ) ∈ Lreach and M ∈ �I�a such that
M |= Φ. We proceed by cases.

If � = ≤, we consider two sub-cases. If 
� ∈ {<,≤} then by Lemma 2 there
exists M≤ ∈ �I�d such that P

M≤(♦≤kΓ ) ≤ P
M(♦≤kΓ ). Therefore I |=d Φ. If


� ∈ {≥, >} then by Lemma 2 there exists M≥ ∈ �I�d such that PM≥(♦≤kΓ ) ≥
P

M(♦≤kΓ ). Hence I |=d Φ.
If � = ≥ we use the same arguments as before by using Lemma 3 in place of

Lemma 2. ��

6 Model-Checking Algorithms

In this section we turn our attention to model-checking different fragments of
rPCTL. By the results of the previous section, each IMRM semantics requires its
own treatment for the full logic rPCTL. For the important fragment of reach-
ability queries in Lreach, we need two algorithms, one for the once-and-for-all
semantics and one for the IMDP semantics. In the following, we restrict ourselves
to formulae with only upper bounds on path-formulae and similar to L≤

reach, we
denote by rPCTL≤ the set of all rPCTL formulae with only upper bounds on the
path formulae.

For the once-and-for-all semantics we reduce the model-checking problem
w.r.t rPCTL≤ to the (existential) model-checking problem for parametric Markov
reward models (PMRMs) [1] with interval constraints on the parameters. Effi-
cient procedures for model-checking PMRMs against various logics have received
a lot of attention in recent years and are now supported by modern tools such as
PRISM [24], PARAM [16] and PROPhESy [10]. For the IMDP semantics we
exploit the fact that all rewards are strictly positive to devise a reduction to the
model-checking problem for the once-and-for-all semantics. For the at-every-step
semantics we leave the model-checking problem for fragments containing L≤

reach

open. We proceed by treating each semantics in turn.
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6.1 Once-and-for-all Semantics

For the fragment rPCTL≤ we present a reduction to the (existential) model-
checking problem for PMRMs with interval constraints on the parameters. We
first recall the definition of PRMMs and then present the reduction. PMRMs
extend MRMs by allowing the transition probabilities to take values in a finite
nonempty set P of parameters. Thus, for any finite nonempty set X, the function
μP : X → [0, 1] ∪ P is a parametric distribution. The set DP (X) is then the set
of all parametric distributions.

Definition 10 (Parametric MRM). A parametric Markov Reward Model
(PMRM) is defined as a tuple MP = (S, s0, ρ, πP , �M) where S, s0, ρ and �M

are defined as for MRMs and for each s ∈ S, πP ∈ DP (S) is the parametric
probability transition function.

A given PMRM gives rise to a set of MRMs by interpreting the parameters as
rational values and making sure that the resulting distribution are probability
distributions (i.e. sum up to 1). Formally, a valuation function κ : Q>0∪P → [0, 1]
is a function such that for all r ∈ Q>0, κ(r) = r, for all p ∈ P , κ(p) > 0 and
for all states s ∈ S,

∑
s′∈S κ(πP (s)(s′))) = 1. We abuse notation and for any

PMRM MP write κ(MP ) for the MRM induced by κ.

Existential Model-Checking. We consider the following decision problem for
PMRMs: given a PMRM MP and formula Φ ∈ rPCTL≤, does there exist a
valuation function κ such that κ(MP ) |= Φ?

The problem is extended with interval-constraints on the parameters as fol-
lows: for all (s, s′) ∈ S × S let Is,s′ = [ls,s′ , us,s′ ] ∈ I be some interval. The
parameter valuation function κ must then also satisfy the following constraints:

∧

(s,s′)∈S×S

κ(πP (s)(s′)) ∈ Is,s′ .

The Reduction. Let I = (S, s0,Π,R, �I) be an IMRM and Φ ∈ rPCTL≤ an arbi-
trary formula. We now construct a PMRM MP and a set of interval constraints
such that if there exists a valuation function κ where κ(MP ) |= Φ, while κ
satisfies the given interval constraints, then I |=o Φ.

Let MP be the PMRM identical to I except that each interval Π(s)(s′) is
replaced by a parameter ps,s′ . For each ps,s′ , the interval constraint that κ must
satisfy, is given by Π(s)(s′) i.e. any parameter valuation function κ must satisfy
the following interval constraints:

∧

(s,s′)∈S×S

κ(ps,s′) ∈ Π(s)(s′).

Assume that there exists a valuation function κ such that κ(MP ) |= Φ in
addition to satisfying the above interval constraints. Without loss of generality,
we assume that all states in κ(MP ) are reachable as all states of any MRM have
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to be reachable. If that is not the case, one can simply remove all unreachable
states as they do not influence satisfiability. By construction, it is clear that
κ(MP ) ∈ �I�o as κ induces a probability distribution for each state s that
satisfies the interval-specifications Π(s) given by I, while preserving rewards
and labels of each state.

Interpreting rPCTL≤ on PMRMs. In literature, papers on PCTL model-checking
for PMRMs only consider step-bounded or unbounded until-formulae, in contrast
to the reward-bounded until formulae in rPCTL≤. This is not a restriction since
any PMRM that contains a state s with a reward greater than 1 can be replaced
by a sequence of states with reward 1. Hence, any upper bound on the formula
can be interpreted as a step-bound in this (larger) model. In the same way,
it is possible to “unroll” the model to reduce (step)-bounded reachability to
unbounded reachability [23, Remark 4]. Thus, any technique for model-checking
PCTL where the until is step-bounded or unbounded on PMRMs can be used
for rPCTL≤ [3,10,16,23,24]. In the case of unbounded until, the model-checking
problem for PMRMs is in PSPACE [19].

6.2 IMDP Semantics

Our approach for verifying properties with the IMDP semantics is based on
the fact that the IMDP semantics is a simple extension of the once-and-for-all
semantics, where one is allowed to choose a different probability distribution
each time a state is visited. Recall that every reward in the model is strictly
positive and we have concrete upper bounds on all path-formulae. Hence, even
if one is allowed to choose a different distribution each time a state is visited,
for the purpose of verifying Φ, we can bound the number of times a different
probability distribution needs to be chosen for any IMDP implementation that
satisfies Φ. Hence, one can do a bounded unfolding of the IMRM that preserves
interval specifications, to encode all possible implementations that may satisfy
Φ. The unfolding itself is an IMRM, where the set of states is the set of all
non-empty finite paths, S+, bounded by a given depth k. Interval-preservation
is ensured by letting the transitioning between any two such states be defined
by the transitioning between their two last states in the original IMRM.

Definition 11 (IMRM k-unfolding). For any IMRM I = (S, s0,Π,R, �I)
and k ∈ N, let I↓k = (Sk, s0,Πk, Rk, �I↓k) be the interval specification preserving
k-unfolding of I, defined as follows2:

– Sk = {σ ∈ S+ | W(σ)(|σ|) ≤ k,

∀0≤i<|σ|.Π(σ[i], σ[i + 1]) 
= [0, 0]}.

– For all σ ∈ Sk ∪ {ε}3 and s, s1 ∈ S, Πk(σs, σss1) = Π(s, s1).
– For any path σ = s1, . . . , sn in Sk, Rk(σ) = R(sn) and �I↓k(σ) = �I(sn).

2 Technically, self-loops must be added for states that represent maximal paths w.r.t
k in order for the unfolding to be a proper IMRM.

3 Where ε is the empty string.
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As any MRM M can be seen as an IMRM with singleton intervals, we abuse
notation and write M↓k for the k-unfolding of the MRM M.

The following two lemmas prove two key properties of our unfolding defini-
tion. The first lemma states that for an IMRM I with initial state s0, if any
successor s0s

′ of s0 in the k-unfolding of I satisfies a given formula Φ, then this
can be verified by changing the initial state to s′ and performing a (k − R(s0))-
unfolding of I where R(s0) is the reward assigned by I to s0. The second lemma
states that whenever an MRM is an IMDP implementation of an IMRM I then
the k-unfolding of M is an once-and-for-all implementation of the k-unfolding of
I. This implies that if from any formula Φ ∈ rPCTL≤ we can define a k ∈ N such
that the k-unfolding of I includes all the paths needed for verifying Φ, we can
reduce the model-checking problem using the IMDP semantics to model-checking
using the once-and-for-all semantics on the k-unfolding of I, I↓k.

Lemma 4. For any two IMRMs defined as Is0 = (S, s0,Π,R, �I) and Is′
=

(S, s′,Π,R, �I) with s′ ∈ succ(s0), k ≥ R(s0), Φ ∈ rPCTL≤ and semantics
x ∈ {o, d, a}, it holds that

Is0↓k, s0s
′ |=x Φ =⇒ Is′↓k−R(s0), s

′ |=x Φ.

Proof. The lemma follows easily from the definition of unfolding and rPCTL
semantics. The condition k ≥ R(s0) ensures that s0s

′ is a state in Is0 .

Lemma 5. For any IMRM I, MRM M and k ∈ N, if M ∈ �I�d then M↓k ∈
�I↓k�o.

Remark 3. Strictly speaking, Lemma5 only holds up to isomorphism as M by
the IMDP semantics may contain states not in I. In this case, the states of M↓k

is not a subset of the states of I↓k as required by the once-and-for-all semantics.

For any formula Φ ∈ rPCTL≤ we define the reward-depth denoted by
K(Φ) ∈ N, on the structure of Φ. For a probabilistic reward-bounded reach-
ability objective of the form Φ = P��λ(♦≤kΓ ), K(Φ) = k implies that only paths
with an accumulated reward of at most k is of interest. Hence, a k-unfolding of
I is sufficient for the purpose of verifying Φ.

Definition 12 (Reward-depth). For every property Φ ∈ rPCTL≤, the reward-
depth, K(Φ) ∈ N is defined inductively on the structure of Φ:

K(true) = 0
K(a) = 0
K(¬Φ) = K(Φ)
K(Φ1 ∧ Φ2) = max{K(Φ1),K(Φ2)}
K(P��λ(X≤kΦ)) = k + K(Φ)
K(P��λ(Φ1U≤kΦ2)) = k + max{K(Φ1),K(Φ2)}
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Fig. 6. IMRM I4

Example 7. Consider the IMRM I3 in Fig. 3 and formula Φ = P>0.8(♦≤3Γ ). By
definition, K(Φ) = 3 + max{K(true),K(Γ )} = 3. Notice that I3 |=d Φ if and
only if k ≥ 3, with the witnessing implementation being the MRM in Fig. 4.
Consider now the IMRM I4 in Fig. 6 and the property Φ′ = P≥λ1(Φ1 U≤2 Φ2)
where Φ1 = P≥λ2(♦≤2 Γ ), Φ2 = P≥λ3(♦≤3 Λ) and λ1, λ2, λ3 ∈ [0, 1]. For any
semantics x ∈ {o, d, a} it is clear that I4↓k 
|=x Φ′ if k < 5, irrespective of
the concrete values for λ1, λ2 and λ3, as the path s0, s1, s2, s3, s4, s5 must be
preserved. By definition, K(Φ′) = 5 i.e. if one performs an unfolding of I with
a reward-depth less than K(Φ′), one cannot hope to find any implementation
satisfying any concrete instantiation of Φ′.

As indicated by Example 7, K(Φ) is the reward-depth required for the veri-
fication of Φ. Hence, unfolding to a reward-depth greater than K(Φ) should not
influence the satisfaction of Φ. The following lemma proves this monotonicity
property.

Lemma 6 (Monotonicity). For any MRM M, formula Φ ∈ rPCTL≤, k ≥
K(Φ) and ε > 0,

M↓k |= Φ =⇒ M↓k+ε |= Φ.

The next lemma states that if an MRM M satisfies Φ, then the K(Φ)-
unfolded model M↓K(Φ) also satisfies Φ i.e. unfolding to a reward-depth of at
least K(Φ) is sufficient to verify Φ.

Lemma 7. For any MRM M ∈ �I�d and formula Φ ∈ rPCTL≤,

M |= Φ =⇒ M↓K(Φ) |= Φ.

We now present the main theorem of this section, stating that rPCTL model-
checking for IMRMs with the IMDP semantics can be reduced to model-checking
using the once-and-for-all semantics on an IMRM constructed by unfolding to
the reward-depth required by the given formula of interest.
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Theorem 3. For IMRM I and formula Φ ∈ rPCTL≤,

I |=d Φ =⇒ I↓K(Φ) |=o Φ.

Proof. We assume I |=d Φ, hence ∃M ∈ �I�d.M |= Φ. By Lemma 7, M |=
Φ =⇒ M↓K(Φ) |= Φ and by Lemma 5 we get M ∈ �I�d =⇒ M↓K(Φ) ∈
�I↓K(Φ)�o. Hence, I↓K(Φ) |=o Φ as required. ��
Complexity. For any IMRM I = (S, s0,Π,R, �I) let Rmin = mins∈S R(s) be
the smallest reward present in I. The unfolded model, I↓K(Φ) is then a model

of size O
(
|S|	 K(Φ)

Rmin

), as each state of I↓K(Φ) is a leaf of the underlying K(Φ)-

bounded unfolding of I which is a tree with branching factor O(|S|) and height
O

(
�K(Φ)

Rmin
�
)
.

Remark 4. By Theorem 2, for any Φ ∈ L≤
reach the approach presented in Sect. 6.2

is valid also for model checking Φ w.r.t. the at-every-step semantics.

7 Conclusion and Future Work

We investigated model-checking questions relative to IMRMs specifications inter-
preted according to three semantics: once-and-for-all, interval Markov decision
process, and at-every-step. This work builds on the results of [5] on interval
Markov chains by introducing an additional ingredient: rewards. We showed
that by introducing rewards the one-at-for-all semantics is no longer expressive
enough to answer (existential) reachability queries with respect to the other two
semantics. Nevertheless, the IMDP semantics and the at-every-step semantics
are still logically equivalent with respect to the reward-bounded reachability
fragment of rPCTL.

We then presented how to algorithmically solve the model-checking problem
for IMRMs by proposing different reductions to the model-checking problem for
parametric Markov reward models (PMRMs). First, we presented a reduction to
the model-checking problem of PMRMs for model checking IMRMs interpreted
over the once-and-for-all semantics. Then, for the IMDP semantics, we presented
a reduction to the model-checking problem for the once-and-for-all semantics,
via a finite unfolding of the model. Crucial for our reduction is that the state
rewards are positive. Notably, this reduction can also be used also to answer
reward-bounded reachability queries for IMRMs interpreted according to the
at-every-step semantics.

As future work, we plan to further investigate the model-checking problem
with respect to the at-every-step semantic interpretations of IMRMs.
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Abstract. We describe the main ideas behind the framework of regular
model checking in a tutorial-like manner. First, we recall the original
framework, and then describe an over-approximation scheme that we
have designed to make the method more scalable. Finally, we point to
some directions for future work.

1 Introduction

During the last two decades, a vast research effort has been devoted to extend-
ing the applicability of algorithmic verification to infinite-state systems, using
approaches based on abstraction, deductive techniques, decision procedures, etc.
One primary approach has been to extend the paradigm of symbolic model check-
ing [21] to new classes of models such as timed automata, push-down systems,
systems with unbounded communication channels, Petri nets, and systems that
operate on integers and reals (e.g., [13,18,22,23]).

Regular Model Checking (Rmc) is one such an extension. In Rmc, regular
sets represent sets of states and regular transducers represent transition rela-
tions. Such sets and relations are typically defined over finite or infinite words
or tree structures. Most initial works considered models whose configurations
can be represented as finite words of arbitrary length over a finite alphabet.
Such models include parameterized systems consisting of an arbitrary number
of homogeneous finite-state processes connected in a linear or ring-formed topol-
ogy, as well as systems that operate on queues, stacks, integers, and other linear
data structures. Regular model checking was first advocated by Kesten et al. [33]
and by Boigelot and Wolper [35], as a uniform framework for analyzing several
classes of parameterized and infinite-state systems. The idea was that regular
sets would provide an efficient representation of infinite-state spaces, and play a
role similar to the role that Binary Decision Diagrams (BDDs) used to play for
symbolic model checking of finite-state systems. We can then exploit automata-
theoretic algorithms for manipulating regular sets. Such algorithms have been
successfully implemented, e.g., in the Mona [31] system.

A generic task in symbolic model checking is to verify safety or liveness
properties by computing properties of the set of reachable states. For finite-state
systems, this is typically done by state-space exploration (which is guaranteed to
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terminate). For infinite-state systems, the procedure terminates only if there is a
bound on the distance (in number of transitions) from the initial configurations
to any reachable configuration. An analogous observation holds if we perform
reachability analysis backwards, by iteration-based methods [25,34] from a set
of target configurations. A parameterized or infinite-state system does not have
such a bound, and the model checking problem for such systems can even be
undecidable. In contrast to the deductive application of systems like Mona [14],
the goal in regular model checking is to verify system properties algorithmically
(automatically). One way to accomplish that is devising so-called acceleration
techniques that calculate the effect of an arbitrarily long sequence of transitions.
This problem has been addressed in regular model checking [11,20,32]. In gen-
eral, the effect of acceleration is not computable. However, computability have
been obtained for certain classes [32]. Analogous techniques for computing accel-
erations have successfully been developed for several classes of parameterized and
infinite-state systems, e.g., systems with unbounded FIFO channels [2,15,16,19],
systems with stacks [18,24,28,30], and systems with counters [17,26].

While Rmc, in its pure form, is an elegant and theoretically interesting frame-
work, it became eventually clear that the applicability of the method was lim-
ited. The main bottleneck was the automata representation which would not
scale beyond small examples. A main research direction has been to find over-
approximations that allow more light-weight symbolic representations than the
full class of regular languages, while still being sufficiently precise to successfully
carry out the verification of non-trivial examples.

In this tutorial, I will use two running examples to explain the main ideas
behind the two approaches.

2 Framework

We describe the framework of Rmc, using a running example, namely a simple
token passing protocol.

2.1 Regular Model Checking

In its simplest form, the Rmc framework represents a transition system in the
following manner.

– A configuration (state) of the system is a word over a finite alphabet Σ.
– Sets of configurations are represented by regular sets over Σ. In particular,

this applies to the set of initial configurations.
– The transition relation is a regular and length-preserving relation on Σ∗.

We represent the relation by a finite-state transducer T over (Σ × Σ). The
transducer T accepts all words (a1, a

′
1) · · · (an, a′

n) (of pairs of elements) such
that (a1 · · · an a′

1 · · · a′
n) is in the transition relation. Sometimes, the transition

relation is given as a union of a finite number of relations, each of which is
called an action.
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In this paper, we often abuse notation and identify the transducer T with the
relation defined by T . We will apply the transducer relation on (regular) sets of
configurations. For a set C of configurations and a binary relation R on configu-
rations, let C ◦ R denote the set of configurations w such that w′ R w for some
w′ ∈ C. Let R+ denote the transitive closure of R and R∗ denote the reflexive
transitive closure of R.

The simple instance of Rmc, introduced in the previous paragraphs, is
already powerful and can model several interesting classes of systems. On exam-
ple is parameterized systems which consist of arbitrary numbers of linear or
ring-shaped collections of processes. We can do this by letting each position in
the word represent one process in the system. It is also possible to model pro-
grams that operate on linear unbounded data structures such as queues, stacks,
integers, etc. For instance, a stack can be modeled by letting each position in
the word represent the corresponding position in the stack.

For reachability properties, the requirement of the transducer to be length-
preserving is not a restriction. For instance, in the case of parameterized systems,
the length-preserving condition implies that we cannot dynamically create new
processes. However, the system can initially contain an arbitrary but bounded
number of processes which are “statically allocated”. We can then faithfully
model all finite computations of the system, by initially allocating sufficiently
many processes in their configurations. Thus, the restriction to length-preserving
transducers introduces no limitations for analyzing safety properties, but may
incur restrictions on the ability to specify and verify liveness properties of sys-
tems with dynamically allocated data structures. The latter follows from the fact
that liveness properties quantify over the set of infinite computations. Therefore,
restricting the lengths of the configurations makes it impossible to faithfully
model all infinite computations of the system.

2.2 Examples

In Fig. 1 we consider a token passing protocol: a simple parameterized system
consisting of an arbitrary (but finite) number of processes organized in a linear
fashion. Initially, the left-most process has the token. In each step, the process
currently having the token passes it to the right. A configuration of the sys-
tem is a word over the alphabet {t, n}, where t represents that the process has
the token, and n represents not having it. For instance, the word nntnn rep-
resents a configuration of a system with five processes where the third process
has the token. The set of initial configurations is given by the regular expres-
sion tn∗ (Fig. 1(a)), i.e., in an initial configuration, the left-most process, and
only the left-most process, has the token. The transition relation is represented
by the transducer in (Fig. 1(b)). For instance, the transducer accepts the word
(n, n)(n, n)(t, n)(n, t)(n, n), representing the pair (nntnn, nnntn) of configura-
tions where the token is passed from the third to the fourth process.

As a second example, we consider a system consisting of a finite-state process
operating on one unbounded FIFO channel. Let Q be the set of control states of
the process, and let M be the (finite) set of messages which can reside inside the
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(n, t) (t, n)

(n, n) (n, n)

Fig. 1. The token passing protocol: (a) the set of initial configurations, (b) the trans-
ducer describing the transition relation.

channel. A configuration of the system is a word over the alphabet Q∪M ∪{⊥},
where the padding symbol ⊥ represents an empty position in the channel. For
instance the word q1⊥m3m1⊥⊥ corresponds to a configuration where the process
is in state q1 and the channel (of length four) contains the messages m3 and m1

in this order. The set of configurations of the system can thus be described by
the regular expression Q⊥∗M∗⊥∗.

By allowing arbitrarily many padding symbols ⊥, one can model channels of
arbitrary but bounded length. As an example, assume that the stack alphabet
is the set {a, b}. Then, the action where the process sends the message m to the
channel and changes state from q to q′ is modeled by the transducer in Fig. 2.

2.3 Verification Problems

We will consider two types of verification problems in this paper.
The first problem is verification of safety properties. A safety property is

typically of form “bad things do not happen during system execution”. A safety
property can be verified by solving a reachability problem. Formulated in the
regular model checking framework, the corresponding problem is the following:
given a set of initial configurations I, a regular set of bad configurations B, and
a transition relation specified by a transducer T , does there exist a path from
I to B through the transition relation T? This amounts to checking whether
(I ◦ T ∗) ∩ B = ∅. The problem can be solved by computing the set Inv = I ◦ T ∗

and checking whether it intersects B.
The second problem is verification of liveness properties. A liveness property

is of form “a good thing happens during system execution”. Often, liveness prop-
erties are verified using fairness requirements on the model, which can state that
certain actions must infinitely often be either disabled or executed. Since, by the
restriction to length-preserving transducers, any infinite system execution can
only visit a finite set of configurations, the verification of a liveness property can
be reduced to a repeated reachability problem. The repeated reachability problem
asks, given a set of initial configurations I, a set of accepting configurations F ,
and a transition relation T , whether there exists an infinite computation from
I through T that visits F infinitely often. By letting F be the configurations
where the fairness requirement is satisfied, and by excluding states where the



82 P. A. Abdulla

0 1 2

3

(q, q′)

(a, a)

(b, b)

(a, a)

(b, b) (⊥
, a
)

(⊥
, b
)

(⊥,⊥) (n, n)

Fig. 2. The push operation in a stack.

“good thing” happens from T , the liveness property is satisfied if and only if the
repeated reachability problem is answered negatively.

Since the transition relation is length-preserving, and hence each execution
can visit only a finite set of configurations, the repeated reachability problem
can be solved by checking whether there exists a reachable loop containing some
configuration from F . This can be checked by computing (Inv ∩ F )2 ∩ Id and
checking whether this relation intersects T+. Here Id is the identity relation on
the set of configurations, and Inv = I ◦ T ∗ as before.

Sets like I ◦ T ∗ and relations like T+ are in general not regular or even com-
putable (note that T could model the computation steps of a Turing machine).
Even if they are regular, they are sometimes not effectively computable. In
these cases, the above verification problems cannot be solved by the proposed
techniques. Therefore, a main challenge in regular model checking is to design
semi-algorithms which successfully compute such sets and relations for as many
examples as possible. We will look at this aspect in the next section.

3 Transducers

In Sect. 2, we mentioned that we can carry out verification by computing a
representation of I ◦ T ∗ (or T+) for some transition relation T and some set of
configurations I. Given a set of bad configurations B, we want to check whether
I ◦ T ∗ ∩ B �= ∅. Algorithms for regular model checking are usually based on
starting from I and repeatedly applying T . As a running illustration, we will
consider the problem of computing the transitive closure T+ for the transducer
in Fig. 1. A first attempt is to compute Tn, i.e., to compute the composition of T
with itself n times for n = 1, 2, 3, · · · . For example, T 3 is the transition relation
where the token gets passed three positions to the right. Its transducer is given
in Fig. 4.

A transducer for T+ is one whose relation represents that the token gets
passed an arbitrary number of times. There (infinitely) many transducers char-
acterizing this relation. One such a transducer is depicted in Fig. 3.
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Fig. 3. Applying the token passing transducer relation three times.
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Fig. 4. A transducer characterizing the transitive closure of the token passing trans-
ducer.

The challenge is to derive (one of) these transducers algorithmically. Obvi-
ously, we cannot do this naively by simply computing the approximations Tn

for n = 1, 2, 3, · · · , since such a procedure would not converge. We can solve
the problem by applying acceleration or widening techniques that can compute
a representation of T+. Below, we present a technique based on acceleration to
illustrate the idea.

Acceleration techniques are usually based on quotienting of transducers that
represent approximations of Tn for some value(s) of n. This involves finding an
equivalence relation 	 on the states of approximations, and to merge equivalent
states, obtaining a quotient transducer. For instance, in the transducer that
represents T 3 above, we can define the states 1, 2, and 3 to be equivalent. By
merging them, we obtain the transducer T 3/ 	 which in this example happens
to be equivalent to T+.

One problem is that quotienting in general increases the language accepted
by a transducer: L (Tn) ⊆ L (Tn/ 	), usually with strict inclusion. This problem
was resolved in [10,11,20,27] by characterizing equivalence relations 	 such that
T+ is equivalent to (T/ 	)+ for any transducer T , i.e., the quotienting does
not increase the transitive closure of the transducer. To explain the idea, let us
first build explicitly a transducer for T+ as the union of transducers Tn for n =
1, 2, 3, · · · . Each state of Tn is labeled with a sequence of states from T , resulting
from the product construction using n copies of T . The result is called the
history transducer. The history transducer corresponding to the token passing
protocol is shown in Fig. 5. Recall minimization algorithms for automata. They
are based on building a forward bisimulation 	F on the states, and then carry out
minimization by quotienting. For instance, in the history transducer of Fig. 5, all
states with names of form 2i1 for any i ≥ 0 are forward bisimilar. Analogously,
we can find a backward bisimulation 	B . For instance, all states with names of
form 10i, i ≥ 0, are backward bisimilar. Dams et al. [27] showed how to combine
a forward 	F and a backward bisimulation 	B into an equivalence relation 	



84 P. A. Abdulla

0 1 2

(n, n) (n, n)

00 10 21 22

(n, n) (n, n)

000 100 210 221 222

(n, n) (n, n)

Fig. 5. The history transducer for the token passing protocol.

which preserves the transitive closure of the transducer. In [12], this result was
generalized to consider simulations instead of bisimulations. The simulations can
be obtained by computing properties of the original automaton T (as in [11,12]),
or on successive approximations of Tn (as in [27]).

From the results in [12] it follows for the history transducer that the states
with names in 2i1 can be merged for i ≥ 1, and the same holds for 10i. The
equivalence classes for that transducer would be 2+, 0+, 10+, 2+1 and 2+10+.
Hence, it can be quotiented to the transducer depicted in Fig. 6, which, in turn,
can be minimized to the three-state representation shown in Fig. 4.

4 Monotonic Abstraction

In this section, we present an approach that avoids using the full power of regular
languages and transducers. Instead, we compute an over-approximation of the
set of reachable configurations through a particular technique which we call
monotonic abstraction. We will instantiate the framework to a special class of
parameterized systems. In this section, a parameterized system consists of an
arbitrary number of identical processes each of which is a finite-state process.
The processes are organized as a linear array. In each step in the execution of
the system, one process, called the active process, changes state. The rest of



Regular Model Checking: Evolution and Perspectives 85

0+

10+ 2+10+ 2+1

1

2+

(t,
n)

(n, n) (n, n)

(n, n)

(n, n) (n, n
)

( n
,n

)

(n, n)

(n
, n

)
(n, n)

Fig. 6. The history transducer for the token passing protocol.

the processes, called the passive processes, do not change states. We call the
passive processes to the left of the active process the left context of the active
process. The right context is defined analogously. The active process may perform
a local transition in which it changes its state independently of the states of the
passive processes. The active process may also perform a global transition in
which it checks the states of the passive processes. A global transition is either
universally or existentially quantified. An example of a universal condition is that
all processes in the left context of the active process should be in certain states. In
an existential transition we require that some (rather than all) processes should
be in certain states.

We use a running example of a mutual exclusion protocol, among an array
of processes, where each process is of the form depicted in Fig. 7. The process
has four local states, namely the green, black, blue, and red states. We represent
these states by colored balls , , , and . Sometimes, when no confusion
arises, we refer to a process in a configuration by its state, so we say e.g. “the
red process” rather than “the process in its red state”.

Initially, all the processes are green (they are idle). When a process becomes
interested in accessing the critical section (which corresponds to the red state), it
declares its interest by moving to the black state. This is described by the global
universal transition rule t1 in which the move is allowed only if all the other
processes are in their green or black states. The universal quantifier labeling t1
encodes the condition that all other processes (whether in the left or the right
context – hence the index LR of the quantifier) of the active process should
be green or black. In the black state, the process may move to the blue state
through the local transition t2 (in which the process does not need to check the
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Fig. 7. One process in the mutual exclusion protocol (Color figure online)

states of the other processes). Notice that any number of processes my cross
from the initial (green) state to the black state. However, once the first process
has crossed to the blue state, it “closes the door” on the processes which are
still in their green states. These processes will no longer be able to leave their
green states until the door is opened again (when no process is blue or red).
From the set of processes which have declared interest in accessing the critical
section (those which have left their green states and are now black or blue) the
leftmost process has the highest priority. This is encoded by the global universal
transition t4 where a process may move from its blue state to its red state only
subject to the universal condition that all processes in its left context are green
(the index L of the quantifier stands for “Left”). If the process finds out, through
the existential global condition, that there are other processes that are black,
blue, or red, then it loops back to the blue state through the existential transition
t3. Once the process leaves the critical section, it will return back to the black
state through the local transition t5. In the black state, the process chooses either
to try to reach the critical section again, or to become idle (through the local
transition t6).

Formally, we represent a parameterized systems P by a pair 〈Q,T 〉, where
Q is the set of the local states of the processes, and T is the set of transition
rules which define the behaviour of each process. In the above example, the set
Q consists of four states (green, black, blue, and red), while the set T consists
of six rules, namely three local rules (t2, t5, and t6), two universal rules (t1 and
t4), and one existential rule (t3).

4.1 Transition System

A parameterized system P = 〈Q,T 〉 induces a transition systems T = 〈C,−→〉,
where C is the set of configurations and −→ is a transition relation on C. A
configuration is a word in Q∗, where each element of the word represents the
local state of one process.
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Let us consider the example of Fig. 7. The word represents a
configuration in an instance of the system with five processes that are in their
green, blue, red, blue, and black states, in that order. Since there is no bound
on the configuration sizes, the set of configurations is infinite. We define the
transition relation −→:= ∪t∈T

t−→, where t−→ is a relation on configurations
that captures the effect of the transition rule t. The definition of −→ depends
on the type of t (whether it is local, existential, or universal). We will consider
three transition rules from Fig. 7 to illustrate the idea.

The local rule t2 induces transitions of the form

t2−→

Here, the active process changes its local state from black to blue.
The existential rule t3 induces transitions of the form

t3−→

The blue process can perform the transition since there is a black process in
its left context. However, the transition is not enabled from the configuration

, since there are no red, blue, or black processes in the left context
of the process trying to perform the transition.

The universal rule t4 induces transitions of the form t4

t4−→

The active process can perform the transition since all the processes in its left
con- text are green. On the other hand, neither of the blue processes can perform
the transition form the configuration since, for each one of them,
there is at least one process in its left context which is not green. As usual, we
use ∗−→ to denote the reflexive transitive closure of −→. For sets C1 and C2 of
configurations, we use C1

∗−→ C2 to denote that there are configurations c1 ∈ C1

and c2 ∈ C2 such that c1
∗−→ c2.

An initial configuration is one in which all processes are in their initial (green)
states. In this section, we use Init to denote the set of initial configurations.
Examples of initial configurations are and corresponding to
instances of the system with two and four processes respectively. Notice that
there is an infinite set of initial configurations, namely one for each size of the
system.

As mentioned above, the protocol is intended to observe mutual exclusion.
In other words, we are interested in verifying a safety property. To do this we
characterize the set Bad of configurations: all configurations which contain at
least two red processes. Examples of configurations in Bad are , and

. Showing the safety property amounts to proving that the protocol,
starting from an initial configuration, will never reach a bad configuration. In
other words, we want to answer the question whether Init ∗−→ Bad .
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4.2 Ordering

We define an ordering on configurations, which we use to define bad sets of
configurations, and hence also to formulate the class of safety properties which
we consider. For configurations c1 and c2, we use c1 � c2 to denote that c1
is a (not necessarily contiguous) subword of c2. For instance, we have �

. A set U of configurations is said to be upward-closed, if whenever
c ∈ U and c � c′ then c′ ∈ U . For a configuration c, we use ĉ denote the upward-
closed set U := {c′ | c � c′}, i.e., ĉ contains all configurations which are larger
than c w.r.t. the ordering �. In such a case, we call c the generator of U .

We are interested in upward-closed sets for two reasons. First, all sets of bad
configurations which we work with are upward-closed. For instance, in the above
example, the set Bad of configurations violating mutual exclusion are those which
contain at least two red processes. The set is upward-closed since whenever a
configuration contains two red processes then any larger configuration will also
contain (at least) two red processes. The second reason why we are interested in
upward-closed sets is that they have an efficient symbolic representation. In fact,
it can be shown that each upward-closed set can be characterized by a finite set of
generators. More precisely, for an upward-closed set U , there are configurations
c1, . . . , cn with U = ĉ1 ∪ · · · ∪ ĉn. For instance, the set Bad above has a single
generator, namely . Thus, operations which manipulate upward-closed sets
can be translated into operations which manipulate words. In this manner we
avoid using the full power of regular languages, when performing reachability
analysis. This makes monotonic abstraction more efficient in practice compared
to the automata-based methods such as the one we described in Sect. 3.

We will check safety properties using backward reachability analysis. For a
set C of configurations, we define Pre (C) := {c | ∃c′ ∈ C. c −→ c′}. In other
words, the set contains exactly all configurations from which a configuration in
C can be reached through a single application of the transition relation.

To solve the safety problem, we present a scheme for backward reach-
ability analysis. The scheme is an instantiation of the framework of well-
structured systems [3,29]. We start with the set Bad of bad configurations
which is upward-closed. Then, we apply the function Pre repeatedly generat-
ing a sequence U0, U1, U2, . . . of sets of configurations, where U0 = Bad , and
Ui+1 = Ui ∪ Pre (Ui), for i ≥ 0. We observe that the set Ui characterizes the
set of configurations from which the set Bad is reachable within i steps. We
would like the sets Ui to be upward-closed (so that we can represent them by
their finite sets of generators). In order to achieve that, we introduce a sufficient
condition, namely that of monotonicity. Monotonicity implies that Pre (U) is
upward-closed whenever U itself is upward-closed. Since U0 is upward-closed by
definition, monotonicity would imply that all the sets Ui are upward-closed.

A transition system is said to be monotone if � forms a simulation on the
set C of configurations. In other words, for all configurations c1, c2, c3, whenever
c1 −→ c2 and c1 � c3 then c2 −→ c4 for some c4 with c3 � c4.

Monotonicity implies that upward-closedness is preserved through the appli-
cation of Pre. The reasoning goes as follows. Consider an upward-closed set
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U . Let c1 ∈ Pre (U) and let c2 � c1. We will show that c2 ∈ Pre (U). Since
c1 ∈ Pre (U), we know by definition that there is a c3 ∈ U such that c1 −→ c3.
By monotonicity it follows that there is a c4 such that c3 � c4 and c2 −→ c4.
From c3 ∈ U and c3 � c4 it follows that c4 ∈ U . This means that we have found
a configuration c4 ∈ U such that c2 � c4, which implies that c2 ∈ Pre (U).

4.3 Abstraction

We define an abstraction that generates an over-approximation of the transi-
tion system. The abstract transition system is monotone, thus allowing to work
with upward-closed sets. We first show that local and existential transitions are
monotone, and hence need not be approximated. Therefore, we only provide an
over-approximation for universal transitions. Consider the transition

c1 = t2−→ = c3

in which a process changes state from black to blue. Consider the configuration
c2 = that is larger than c1. Clearly, c2 can perform the local
transition

c2 = t2−→A = c4 � c3

In general, local transitions are monotone, since the active process in the small
configuration (the black process in c1) also exists in the larger configuration (i.e.,
c2). A local transition does not check or change the states of the passive processes;
and hence the larger configuration c2 is also able to perform the transition, while
maintaining the ordering c3 � c4.

Consider the existential transition

c1 = t3−→A = c3

We can divide the configuration c1 to three parts: the active process , the
left context , and the right context . Furthermore, the left context
contains a witness which enables the transition. Consider the configuration
c2 = that is larger than c1. Also, the configuration c2 com-
prises three parts: the active process , the left context , and the right
context . The left context of c2 is larger than the left context of c1, and
hence the former will also contain the witness , which means c2 can perform
the same transition

c2 = t3−→A = c4 � c2

While local and existential transitions are monotone, universal transitions are
not. To see the reason, we consider the transition

c1 = t4−→ = c3

The transition is enabled since all processes in the left context of the active
process satisfy the condition of the transition (they are green). Consider the
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configuration c2 = . Although c1 � c2, the transition t4 is not
enabled from c2 since the left context of the active process contains processes
that violate the condition of the transition. This means that universal transitions
are not monotone.

In order to deal with non-monotonicity of universal transitions, we will work
with an abstract transition relation −→A that is an over-approximation of the
concrete transition relation −→. We call −→A the monotonic abstraction of
−→. We let t−→A coincide t−→ when t is a local or an existential transition. The
reason is that, in these two cases, the relation is monotone and hence no over-
approximation is needed. For the case when t is universal, we let c1

t−→A c2 if
there is a c′

1 � c1 with c′
1

t−→A c2. In other words, we allow c1 to first “transform”
to a smaller configuration from which it can perform the transition. For instance

t4−→

since
� t4−→

The abstract transition relation −→A is monotone also w.r.t. universal tran-
sitions, since for configurations c1, c2, c3, and a transition t, if c1 � c2 and
c1

t−→A c3 then, by definition c2
t−→A c3. Notice that the over-approximation

essentially deletes those processes in the configuration that violate the condition
of the universal transition. Since −→A is an over-approximation of the original
transition relation −→, it follows that if a safety property holds in the abstract
model, then it will also hold in the original model.

4.4 Backward Reachability

We present a backward algorithm for approximated reachability analysis. Here,
we compute the function Pre w.r.t. the abstract relation −→A rather than the
concrete relation −→. This means that we can work with upward-closed sets in
the scheme for backward reachability analysis that we presented earlier. Recall
that we generate a sequence U0, U1, U2, . . . of sets of configurations where U0 =
Bad , and Ui+1 = Ui∪Pre (Ui), for i ≥ 0. Since U0 is upward-closed by definition,
and −→A is monotone, all the sets Ui are upward-closed.

Recall that each set can be represented by its finite set of generators. Given a
configuration c, we show below how to compute the set of generators for the set
Pre (ĉ). This means that we only need to work with generators (configurations)
as a symbolic representation of the sets which arise in the algorithm.

Now, we show that the algorithm is guaranteed to terminate. Suppose that
the algorithm, during its execution, produces two generators c1, c2 such that
c1 � c2. Since ĉ2 ⊆ ĉ1, we can safely discard c2 from the analysis without the
loss of precision. In such a case, we say that c2 is subsumed by c1. Discarding
configurations in this manner makes it possible to apply the well-structured
framework [3,29]. According to the framework, termination of the algorithm is
guaranteed since � is a well quasi-ordering. That � is a well quasi-ordering
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means that for any infinite sequence c0, c1, c2, . . . of configurations, there are
i < j such that ci � cj .

It remains to show that we can compute the generators of Pre (ĉ) for any
configuration c. We define Pre (ĉ) := ∪t∈TPret (ĉ) where Pret (ĉ) gives the gen-
erators of the set of configurations from which we can reach ĉ through one
application of the transition rule t. The definition of Pret depends on the type
of t (whether it is local, existential, or universal). We will consider the different
transition rules in Fig. 7 to illustrate how to compute Pret. For the local rule t5,
we have

Pret5

(

̂

)

:=
{ }

In other words, the predecessor set is characterized by one generator, namely
. Strictly speaking, the set contains also a number of other configura-

tions such as . However such configurations are subsumed by the original
configuration, and therefore we will not include them in the set.

For existential transitions, there are two cases depending on whether a wit-
ness exists or not in the configuration. Consider the existential rule t3 in Fig. 7.
We have

Pret3

(

̂

)

=
{ }

In this case, there is a witness, namely, in the left context of the active process
. On the other hand, we have

Pret3

(

̂

)

:=

⎧

⎨

⎩

,

,

,

⎫

⎬

⎭

In this case there is no witness available in the left context of the active process.
Therefore, we add a witness explicitly in each possible state ( , , or ), and
each possible place in the left context of the active process. Notice that the
sizes of the new generators (four processes) is larger than the size of the original
configuration (three processes). This means that the sizes of the configurations
generated by the backward algorithm may increase, and hence there is a priori no
bound on the sizes of the configurations. However, termination is still guaranteed
due to the well quasi-ordering of �. For universal conditions, let us consider the
universal rule t4 in Fig. 7. We have

Pret4

(

̂

)

= ∅

since there is a black process in the left context of the potential active process
(which is in state ). On the other hand

Pret4

(

̂

)

=

since all processes in the left context of the active process are in their green
states.
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4.5 Example

We show how the backward reachability algorithm runs on our example. We
start by the generator

g0 =

of the set of bad configuration. The only transition which can be enabled back-
wards from a red state, is the one induced by the rule t4. From the two red
processes in g0, only the left one can perform t4 backwards (the right process
cannot perform t4 backwards since its left context contains a process not satis-
fying the condition of the quantifier):

Pret4 (g0) =
{

g1 =
}

From g1, two rules are enabled backwards (both from the blue process): the
local rule t2

Pret2 (g1) =
{

g2 =
}

and the existential rule t3

Pret3 (g1) =
{

, ,
}

Since a witness is missing in the left context, we add it explicitly. All the three
generators in Pret3 (g1) are subsumed by g1. One rule is enabled backwards from
g2, namely the local rule t5 from the black process

Pret5 (g1) =
{

g0 =
}

Notice that the universal transition t1 is not enabled from the black process,
since there is another process (the red process) in the configuration that violates
the condition of the quantifier. At this point, the algorithm terminates, since it
is not possible to provide any new generators which are not subsumed by the
existing ones.

Since there is no initial configuration (with only green processes) in ĝ0 ∪
ĝ1 ∪ ĝ2, the set of bad configurations is not reachable from the set of initial
configurations in the abstract semantics. Therefore, we can conclude that the
set of bad configurations is not reachable from the set of initial configurations
in the concrete semantics, either.

5 Perspective and Future Work

Since its introduction [33,35], Rmc has played an important role in the develop-
ment of verification techniques for infinite-state systems.

In addition to the basic techniques we describe in this tutorial, the framework
has been developed in many directions [4]. We mention some of these extensions
in this paragraph. A broadcast transition is initiated by a process, called the



Regular Model Checking: Evolution and Perspectives 93

initiator. Together with the initiator, an arbitrary number of processes change
state simultaneously. In binary communication two processes perform a rendez-
vous changing state simultaneously.

We have also considered parameterized systems where the individual pro-
cesses operate on numerical variables over the natural numbers [5]. The con-
ditions on the numerical variables are stated as gap-order constraints: a logical
formalism which can express simple relations such as lower and upper bounds on
the values of individual variables; and equality, and gaps (minimal differences)
between values of pairs of variables.

Furthermore, we have studied abstraction techniques that approximate the
set of forward-reachable configurations [7] (rather than the set of backward-
reachable configurations as was the case with monotonic abstraction). The frame-
work is based on establishing a cut-off theorem. More precisely, it needs to
inspect only a small number of processes in order to show correctness of the
whole system. It relies on an abstraction function that views the system from
the perspective of a fixed number of processes. The abstraction is used during
the verification procedure in order to dynamically detect cut-off points beyond
which the search of the state space need not continue.

Interesting directions for future work include:

– Parameterized timed systems [6].
– Applying symbolic partial order techniques [9] to increase efficiency.
– Applying Rmc to concurrent programs that operate on weak consistency

models such as the release-acquire semantics [1].
– Refining the granularity of quantified transitions [8]
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Abstract. In this contribution we revisit regular model checking, a pow-
erful framework—pioneered by Bengt Jonsson et al.—that has been suc-
cessfully applied for the verification of infinite-state systems, especially
parameterized systems (concurrent systems with an arbitrary number of
processes). We provide a reformulation of regular model checking with
length-preserving transducers in terms of existential second-order theory
over automatic structures. We argue that this is a natural formulation
that enables us to tap into powerful synthesis techniques that have been
extensively studied in the software verification community. More pre-
cisely, in this formulation the first-order part represents the verification
conditions for the desired correctness property (for which we have com-
plete solvers), whereas the existentially quantified second-order variables
represent the relations to be synthesized. We show that many interest-
ing correctness properties can be formulated in this way, examples being
safety, liveness, bisimilarity, and games. More importantly, we show that
this new formulation allows new interesting benchmarks (and old reg-
ular model checking benchmarks that were previously believed to be
difficult), especially in the domain of parameterized system verification,
to be solved.

1 Introduction

Verification of infinite-state systems has been an important area of research in
the past few decades. This is one of the (many) areas to which Bengt Jonsson
has made significant research contributions. In the late 1990s and early 2000s, an
important stride advancing the verification of infinite-state systems was made
when Jonsson et al. spearheaded the development of an elegant, simple, but
powerful framework for modelling and verifying infinite-state systems, which
they dubbed regular model checking, e.g., [1–3,12,25].

Regular model checking, broadly construed, is the idea of reasoning about
infinite-state systems using regular languages as symbolic representations. This
means that configurations of the infinite systems are encoded as finite words
over some finite alphabet Σ, while other important infinite sets (e.g. of initial
and final configurations) will be represented as regular languages over Σ. The
transition relation Δ ⊆ Σ∗ × Σ∗ of the system is, then, represented as a finite-
state transducer of some sort.
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Example 1. As a simple illustration, we have a unidirectional token passing pro-
tocol with n processes p1, . . . , pn arranged in a linear array. Here n is a parame-
ter, regardless of whose value (so long as it is a positive integer) the correctness
property has to hold. This is also one reason why such systems are referred to
as parameterized systems. Multiple tokens might exist at any given time, but at
most one is held by a process. At each point in time, a process holding a token
can pass it to the process to its right. If a process holding a token receives a
token from its left neighbor, then it discards one of the two tokens. Each con-
figuration of the system can be encoded as a word w1 · · · wn over Σ = {�,⊥},
where wi = � (resp. wi = ⊥) denotes that process pi holds (resp. does not hold)
a token. The set of all configurations is, therefore, Σ∗, i.e., a regular language.
Various correctness properties can be mentioned for this system. An example of
a safety property is that if the system starts with a configuration in �⊥∗ (i.e.
with only one token), then it will never visit a configuration in Σ∗�Σ∗�Σ∗ (i.e.
with at least two tokens). An example of a liveness property is that it always
terminates with configurations in the regular set ⊥∗(⊥ + �). ��
This basic idea of regular model checking was already present in the work of
Pnueli et al. [27] and Boigelot and Wolper [47]. However, a lot of the major
development of regular model checking—the term which Jonsson et al. coined
in [12]—was spearheaded by Jonsson et al. These include fundamental contri-
butions to acceleration techniques (including the first [12,25]) for reachability
sets and reachability relations, which could successfully verify interesting exam-
ples from parameterized systems. His works have made the works of subsequent
researchers in regular model checking (including the authors of the present paper)
possible. A lot of the initial work in regular model checking focussed on devel-
oping scalable algorithms (mostly via acceleration and widening) for verifying
safety, while unfortunately going beyond safety (e.g. to liveness) posed a signif-
icant challenge; see [3,45]. It is now 20 years since the publication of Jonsson’s
seminal paper [12] on regular model checking. The area of computer-aided ver-
ification has undergone some paradigm shifts including the rise of SAT-solvers
and SMT-solvers (e.g. see the textbooks [13,28]), as well as synthesis algorithms
[5]. In the meantime, regular model checking was also affected by this in some
fashion. In 2013 Neider and Jansen [37] proposed an automata synthesis algo-
rithm for verifying safety in regular model checking using SAT-solvers to guide
the search of an inductive invariant. This new way of looking at regular model
checking has inspired a new class of regular model checking algorithms, which
could solve old regular model checking benchmarks that could not be solved
automatically by any known automatic techniques (e.g. liveness, even for proba-
bilistic distributed protocols [30,34]), as well as new correctness properties (e.g.
safety games [38] and probabilistic bisimulation with applications to proving
anonymity [24]). Despite these recent successes, these techniques are rather ad-
hoc, and often difficult to adapt to new correctness properties.

Contributions. We provide a new and clean reformulation of regular model
checking inspired by deductive verification. More precisely, we show how to
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express RMC as satisfaction of existential second-order logic (ESO) over auto-
matic structures. Among others, this new framework puts virtually all interesting
correctness properties (e.g. safety, liveness, safety games, bisimulation, etc.) in
regular model checking under one broad umbrella. We provide new automata
synthesis algorithms for solving any regular model checking problem that is
expressible in this framework.

In deductive verification, we encode correctness properties of a program as
formulas in some (first-order) logic, commonly called verification conditions, and
then check the conditions using a theorem prover. This approach provides a clean
separation of concerns between generating and checking “correctness proofs,”
and underlies several verification methodologies and systems, for instance in
deductive verification (with systems like Dafny [29] or KeY [4]) or termination
checkers (e.g., AProVE [21] or T2 [14]). For practical reasons, the most attrac-
tive case is of course the one where all verification conditions can be kept within
decidable theories. We propose to use first-order logic over universal automatic
structures [8–10,15] for the decidable theories expressing the verification con-
ditions. Furthermore, we show that the correctness properties can be shown as
satisfactions of ESO formulas over automatic structures, where the second-order
variables express the existence of proofs such that the verification conditions
are satisfied. Finally, we show that restricting to regular proofs (i.e. proofs that
can be expressed by finite automata) is sufficient in practice, and allows us to
have powerful verification algorithms that unify the recent successful automata
synthesis algorithms [24,30,34,37] for safety, liveness, reachability games, and
other interesting correctness properties.

Organization. Section 2 contains preliminaries. We provide our reformulation of
regular model checking in terms of existential second-order logic (ESO) over
automatic structures in Sect. 3. We provide a synthesis algorithm for solving
formulas in ESO over automatic structures in Sect. 4. We conclude in Sect. 5
with research challenges.

2 Preliminaries

2.1 Automata

We assume basic familiarity with finite automata (e.g. see [41]). We use Σ to
denote a finite alphabet. In this paper, we exclusively deal with automata over
finite words, but the framework and techniques extend to other classes of struc-
tures (e.g. trees) and finite automata (e.g. finite tree automata). An automaton
over Σ is a tuple A = (Q,Δ, q0, F ), where Q is a finite set of states, Δ ⊆ Q × Q
is the transition relation, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final
states. In this way, our automata are by default assumed to be non-deterministic.
The notion of runs of A on an input word w ∈ Σ∗ is standard (i.e., a function
π : {0, . . . , |w|} → Q so that π(0) = q0, π(|w|) ∈ F , and the transition relation
Δ is respected. We use L(A) to denote the language (i.e. subset of Σ∗) accepted
by A.
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2.2 Regular Model Checking

Regular Model Checking (RMC) is a generic symbolic framework for modelling
and verifying infinite-state systems pioneered and advanced by Jonsson et al.
[3,12,25]. The basic principle behind the framework is to use finite automata
to represent an infinite-state system, and witnesses for a correctness property.
For example, an infinite set of states can be represented as a regular language
over Σ∗. How do we represent a transition relation → ⊆ Σ∗ × Σ∗? In the
basic setting (as described in the seminal papers [12,25] of Jonsson), we can
use length-preserving transducers for representing →. A length-preserving trans-
ducer A is simply an automaton over the alphabet Σ ×Σ. Given an input tuple
t = (u1 · · · un, v1 · · · vn) ∈ Σn × Σn, an acceptance of t by A is defined to be
the acceptance of the “product” word (u1, v1) · · · (un, vn) ∈ (Σ × Σ)n by the
automaton A. In this way, a transition relation → can now be represented by
an automaton.

In this paper, we will deal mostly with systems whose transition relations
can be represented by length-preserving transducers. This is not a problem
in practice because this is already applicable for a lot of applications, includ-
ing reasoning about distributed algorithms (arguably the most important class
of applications of RMC), where the number of processes is typically fixed at
runtime. That said, we will show how to easily extend the definition to non-
length-preserving relations (called automatic relations [8–10,15]) since they are
needed in our decidable logic. This is done by the standard trick of padding the
shorter strings with a special padding symbol. More precisely, given two words
v = v1 · · · vn and w = w1 · · · wm, we define the convolution v ⊗w to be the word
u = (u1, u

′
1) · · · (uk, u

′
k) ∈ (Σ⊥ × Σ⊥)∗ (where Σ⊥ := Σ ∪ {⊥} and ⊥ /∈ Σ) such

that k = max(n,m), ui = vi for all i ≤ |v| (for i > |v|, ui := ⊥), and u′
i = wi

for all i ≤ |w| (for all i > |w|, u′
i = ⊥). For example, ab ⊗ abba is the word

(a, a)(b, b)(⊥, b)(⊥, a). Whether (v, w) is accepted by A now is synonymous with
acceptance of v ⊗ w by A. In this way, transition relations that relate words of
different lengths can still be represented using finite automata.

2.3 Weakly-Finite Systems

In this paper, we will restrict ourselves to transition systems whose domain is a
regular subset of Σ∗, and whose transition relations can be described by length-
preserving transducers. That is, since Σ is finite, from any given configuration
w ∈ Σ∗ of the system there is a finite number of configurations that are reachable
from w (in fact, there is at most |Σ||w| reachable configurations). Such transition
systems (which can be infinite, but where the number of reachable configurations
from any given configuration is finite) are typically referred to as weakly-finite
systems [19]. As we previously mentioned, this restriction is not a big problem in
practice since many practical examples (including those from distributed algo-
rithms) can be captured. The restriction is, however, useful when developing a
clean framework that is unencumbered by a lot of extra assumptions, and at the
same time captures a lot of interesting correctness properties.
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2.4 Existential Second-Order Logic

In this paper, we will use Existential Second-Order Logic (ESO) to reformulate
RMC. Second-order Logic (e.g. see [31]) is an extension of first-order logic by
quantifications over relations. Let σ be a vocabulary consisting of relations (i.e.
relational vocabulary). A relational variable will be denoted by capital letters
R,X, Y , etc. Each relational variable R has an arity ar(R) ∈ Z>0. ESO over σ
is simply the fragment of second-order logic over σ consisting of formulas of the
form

ψ = ∃R1, . . . , Rn. ϕ

where ϕ is a first-order logic over the vocabulary σ′ = σ∪{Ri}ni=1, where Ri is a
relation symbol of arity ar(Ri). Given a structure S over σ and an ESO formula
ψ (as above), checking whether S |= ψ amounts to finding relations R1, . . . , Rn

over the domain of S such that ϕ is satisfied (with the standard definition of
first-order logic); in other words, extending S to a structure S′ over σ′ such that
S′ |= ϕ.

3 RMC as ESO Satisfaction over Automatic Structures

As we previously described, our new reformulation of RMC is inspired by deduc-
tive verification, which provides a separation between generating and checking
correctness proofs. The verification conditions should be describable in decidable
logical theories. As a concrete example, suppose we want to prove a safety prop-
erty for a program P . Then, a correctness proof would be a finitely-representable
inductive invariant Inv that contains all initial states of P , and is disjoint from
the set of all bad states of P . The termination of a program can similarly be
proven by finding a well-founded relation Rank that subsumes the transition
relation of a program. In both cases, a correctness proof corresponds to a solu-
tion for existentially quantified second-order variables that encode the desired
correctness property; in the spirit of Sect. 2.4, the correctness of a proof can be
verified by evaluating just the first-order part ϕ of a formula. The generation
of the candidate proofs will then be taken care of separately, which we will talk
about in the next section. Suffice to say for now that the counterexample guided
inductive synthesis (CEGIS) framework [5] would be appropriate for the proof
generation. In this section, we provide a reformulation of RMC in the aforemen-
tioned framework for software verification.

3.1 Automatic Structures

What is the right decidable theory to capture regular model checking? We ven-
ture that the answer is the first-order theory of an automatic structure [8–10,15].
An automatic structure over the vocabulary consisting of relations R1, . . . , Rn

with arities r1, . . . , rn is a structure S whose universe is the set Σ∗ of all strings
over some finite alphabet Σ, and where each relation Ri ⊆ (Σ∗)ri is regular,
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i.e., the set {w1 ⊗ · · · ⊗ wri : (w1, . . . , wr) ∈ Ri} is regular. The following well-
known closure and algorithmic property is what makes the theory of automatic
structures appealing.

Theorem 2. There is an algorithm which, given a first-order formula ϕ(x̄) and
an automatic structure S over the vocabulary σ, computes a finite automaton
for [[ϕ]] consisting of tuples w̄ of words, such that S |= ϕ(w̄).

The algorithm is a standard automata construction (e.g. see [42] for details),
which is indeed similar to the standard automata construction from the weak
second-order theory of one successor [22]. [In fact, first-order logic over automatic
structures can be encoded (and vice versa) to weak second-order theory of one
successor via the so-called finite set interpretations [18], which would allow us
to use tools like MONA to check first-order formulas over automatic structures.]

Automatic structures are extremely powerful. We can encode the linear inte-
ger arithmetic theory 〈N; +〉 as an automatic structure [15]. In fact, we can even
add the predicate x|2y (where a|2b iff a divides b and a = 2n for some natural
number n) to 〈N; +〉, while still preserving decidability. This essentially implies
that ESO over automatic structures is undecidable; in fact, this is the case even
when formulas are restricted to monadic predicates.

We are now ready to describe our framework for RMC in ESO over automatic
structures:

(i) Specification:
Express the verification problem as a formula

ψ := ∃R1, . . . , Rn. ϕ

in ESO over automatic structures.
(ii) Specification Checking:

Search for regular witnesses for R1, . . . , Rn that satisfy ϕ.

Note that while the specification (Item (i)) would provide a complete and faithful
encoding of the verification problem, our method for checking the specification
(Item (ii)) restricts to regular proofs. It is expected that this is an incomplete
proof rule, i.e., for ψ to be satisfied, it is not sufficient in general to restrict to reg-
ular relations. Therefore, two important questions arise. Firstly, how expressive
is the framework of regular proofs? Numerous results suggest that the answer
is that it is very expressive. On the practical side, many benchmarks (espe-
cially from parameterized systems) have indicated this to be the case, e.g., see
[3,17,24,30,33,34,37–39,45]. On the theoretical side, this framework is in fact
complete for important properties like safety and liveness for many classes of
infinite-state systems that can be captured by regular model checking, including
pushdown systems, reversal-bounded counter systems, two-dimensional vector
addition systems, communication-free Petri nets, and tree-rewrite systems (for
the extension to trees), among others, e.g., see [7,23,32,35,42,43]. In addition,
the restriction to regular proofs is also attractive since it gives rise to a sim-
ple method to enumerate all regular proofs that check ϕ. This naive method
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would not work in practice, but smart enumeration techniques of regular proofs
(e.g., using automata learning and CEGIS) are available, which we will discuss
in Sect. 4.

3.2 Safety

We start with the most straightforward example: safety. We assume that our
transition system is represented by a length-preserving system with domain
Dom ⊆ Σ∗ and a transition relation Δ ⊆ Dom × Dom given by a length-
preserving transducer. Furthermore, we assume that the system contains two
regular languages Init ,Bad ⊆ Dom, representing the set of initial and bad states.
As we mentioned earlier in this section, safety amounts to checking the existence
of an invariant Inv ⊆ Dom that contains Init but is disjoint from Bad . That is,
the safety property holds iff there exists a set Inv ⊆ Dom such that:

– Init ⊆ Inv
– Inv ∩ Bad = ∅
– Inv is inductive, i.e., for every configuration s ∈ Inv , if (s, s′) ∈ Δ, then

s′ ∈ Inv .

The above formulation immediately leads to a first-order formula ϕ over the
vocabulary of 〈Δ, Init ,Bad , Inv〉. Therefore, the desired ESO formula over the
original vocabulary (i.e. 〈Δ, Init ,Bad〉) is

∃Inv . ϕ,

where ϕ is a conjunction of the three properties above.

Example 3. Fix Σ = {0, 1}. Consider the transition relation Δ ⊆ Σ∗ × Σ∗

generated by the regular expression ((0, 0) + (1, 1))∗(1, 0)(0, 1)((0, 0) + (1, 1))∗.
Intuitively, Δ nondeterministically picks a substring 10 in an input word w and
rewrites it to 01. Let Init = 0Σ∗1 and Bad = 1∗0∗. Observe that there is a
regular proof Inv for this safety property: Inv = Init . Note that this is despite
the fact that post∗(Init) in general is not a regular set.

3.3 Liveness

A second class of properties are liveness properties, for instance checking whether
a program is guaranteed to terminate, guaranteed to answer requests eventually,
or guaranteed to visit certain states infinitely often. In the context of RMC, live-
ness has been studied a lot less than safety, and methods successful for proving
safety usually do not lend themselves to an easy generalisation to liveness.

For simplicity, the special case of program termination is consider, which can
be generalized to full liveness. As before, we assume that a transition system is
defined by a domain Dom ⊆ Σ∗, a transition relation Δ ⊆ Dom × Dom, and a
set Init ⊆ Dom of initial states. Proving termination amounts to showing that
no infinite runs starting from a state in Init exist; to this end, we can search
for a pair 〈Inv ,Rank〉 consisting of an inductive invariant and a well-founded
ranking relation:
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Fig. 1. Lexicographic ranking relation for Example 4

– Init ⊆ Inv ;
– Inv is inductive (as in Sect. 3.2);
– the relation Rank covers the reachable transitions: Δ ∩ (Inv × Inv) ⊆ Rank ;
– Rank is transitive: (s, s′) ∈ Rank and (s′, s′′) ∈ Rank imply (s, s′′) ∈ Rank ;
– Rank is irreflexive: (s, s) �∈ Rank for every s ∈ Dom.

The last two conditions ensure that Rank is a strict partial order, and therefore
is even well-founded on fixed-length subsets Dom ∩ Σn of the domain. All five
conditions can easily be expressed by a first-order formula ϕ over the relations
〈Δ, Init , Inv ,Rank〉. Now, for length-preserving relations R, expressing in first-
order logic that a transitive relation is well-founded is simple: it is not the case
that there are words x, y such that (x, y) ∈ R and (y, y) ∈ R. This “lasso” shape
is owing to the fact that in every finite system every infinite path always leads
to one state that is visited infinitely often. In summary, termination of a system
is therefore captured by the following ESO formula:

∃Inv ,Rank . ϕ

where ϕ is the first-order part that encodes the aforementioned verification con-
ditions.

Example 4. We consider here the same example as Example 3, but we instead
want to prove termination. It is quite easy to see that every configuration will
always lead to a configuration of the form 0∗1∗, which is a dead end. Termination
of the system can be proven using the trivial inductive invariant Inv = Dom,
and a lexicographic ranking relation Rank , represented as a transducer with two
states and shown in Fig. 1. Using the algorithms proposed in Sect. 4, this ranking
relation can be computed fully automatically in a few milliseconds.

3.4 Winning Strategies for Two-Player Games on Infinite Graphs

We only need to slightly modify the ESO formula for program termination, given
in the previous section, to reason about the existence of winning strategies in
a reachability game. Instead of a single transition relation Δ, for a two-player
game we assume that two relations Δ1,Δ2 ⊆ Dom×Dom are given, encoding the
possible moves of Player 1 and Player 2, respectively. A reachability game starts
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in any configuration in the set Init ⊆ Dom. The players move in alternation, with
Player 2 winning if the game eventually reaches a configuration in Final ⊆ Dom,
whereas Player 1 wins if the game never enters Final . The first move in a game
is always done by Player 1.

As in the previous section, we formulate the existence of a winning strategy
for Player 2 (for any initial configuration in Init) in terms of a pair 〈Inv ,Rank〉
of relations. The set Inv now represents the possible configurations that Player 1
visits during games, whereas the ranking relation Rank expresses progress made
by Player 2 towards the region Final .

– Init ⊆ Inv ;
– Rank is transitive and irreflexive (as in Sect. 3.3);
– Player 2 can force the game to progress: for every s ∈ Inv \ Final , and every

move (s, s′) ∈ Δ1 of Player 1 with s′ �∈ Final , there is a move (s′, s′′) ∈ Δ2

of Player 2 such that s′′ ∈ Inv and (s, s′′) ∈ Rank .

It is again easy to see that all conditions can be expressed by a first-order formula
over the relations 〈Δ1,Δ2, Init ,Final , Inv ,Rank〉, and the existence of a winning
strategy as an ESO formula:

∃Inv ,Rank . ϕ.

A similar encoding has been used in previous work of the authors to reason
about almost-sure termination of parameterised probabilistic systems [30,34]. In
this setting, the two players characterise non-determinism (demonic choice, e.g.,
the scheduler) and probabilistic choice (angelic choice, e.g., randomisation).

Example 5. We consider a classical take-away game [20] with two players. In the
beginning of the game, there are n chips on the table. In alternating moves, with
Player 1 starting, each player can take 1, 2, or 3 chips from the table. The first
player who has no more chips to take loses. It can be observed that Player 2 has
a winning strategy whenever the initial number n is a multiple of 4.

Configurations of this game can be modelled as words (p1+p2)1∗0∗, in which
the first letter (p1 or p2) indicates the next player to make a move, and the
number of 1s represents the number of chips left. To prove that Player 2 can
win whenever n = 4k, we choose Init = p1(1111)∗0∗ as the initial states, and
Final = p10∗, i.e., we check whether Player 2 can move first to a configuration
in which no chips are left. The transitions of the two players are described by
the regular expressions

Δ1 = (p1, p2) (1, 1)∗ (
(1, 0) + (11, 00) + (111, 000)

)
(0, 0)∗

Δ2 = (p2, p1) (1, 1)∗ (
(1, 0) + (11, 00) + (111, 000)

)
(0, 0)∗

The witnesses proving that Player 2 indeed has a winning strategy are shown
in Fig. 2 and Fig. 3, respectively. The ranking relation Rank in Fig. 3 is similar to
the one proving termination in Example 4, and expresses that the number of 1s
is monotonically decreasing. The invariant Inv in Fig. 2 expresses that Player 2
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Fig. 2. Set Inv of reachable configura-
tions of the take-away game in Exam-
ple 5

Fig. 3. Relation Rank in Example 5

should move in such a way that the number of chips on the table remains divisible
by 4; Rank and Inv in combination encode the strategy that Player 2 should
follow to win. The witness relations were found by the tool SLRP, presented in
[34], in around 3 s on an Intel Core i5 computer with 3.2 GHz.

3.5 Isomorphism and Bisimulation

We now describe how we can compare the behaviour of two given systems
described by length-preserving transducers. There are many natural notions of
“similarity”, but we target isomorphism, bisimulation, and probabilistic bisimu-
lation (or variants thereof). All of these are important properties since they show
indistinguishability of two systems, which are applicable to proving anonymity,
e.g., in the case of the Dining Cryptographer Protocol [16]. Isomorphism can also
be used to detect symmetries in systems, which can be used to speed up regular
model checking [33]. Here, we only describe how to express isomorphism of two
systems. Encoding bisimulation and probabilistic bisimulation for parameterized
systems is a bit trickier since we will need infinitely many action labels (i.e. to
distinguish the action of the ith process), but this can also be encoded in our
framework; see the first-order proof rules over automatic structures in the recent
paper [24].

We are given two systems S1, S2, whose domains are Dom1,Dom2 ⊆ Σ∗ and
whose transition relations R1 and R2 are described by transducers. We would
like to show that S1 and S2 are the same up to isomorphism. The desired ESO
formula is of the form

∃F.ϕ

where ϕ says that F ⊆ Dom1 × Dom2 describes the desired isomorphism
between S1 and S2. To this end, we will first need to say that F is a bijective
function. This can easily be described in first-order logic over the vocabulary
〈Dom1,Dom2, R1, R2〉. For example, F is a function can be described as

∀x, y, z. (F (x, y) ∧ F (x, z) → y = z).

Note that y = z can be described by a simple transducer, so this is a valid
first-order formula over automatic structures. We then need to add some more
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conjuncts in ϕ saying that F is a homomorphism and its reverse is also a homo-
morphism. This is also easily described in first-order logic, e.g.,

∀x, x′, y, y′. (R1(x, y) ∧ F (x, x′) ∧ F (y, y′) → R2(x′, y′))

says that F is a homomorphism.

Example 6. We describe the Dining Cryptographer example [16], and how to
prove this by reasoning about isomorphism. [There is a cleaner way to do this
using probabilistic bisimulation [24].] In this protocol there are n cryptographers
sitting at a round table. The cryptographers knew that the dinner was paid by
NSA, or exactly one of the cryptographers at the table. The protocol aims to
determine which one of these without revealing the identity of the cryptographer
who pays. The ith cryptographer is in state ci = 0 (resp. ci = 1) if he did not
pay for the dinner. Any two neighbouring cryptographers keep a private fair
coin (that is only visible to themselves). There is a transition to toss any of the
coins (in this case, probability is replaced by non-determinism). Let us use pi
to denote the value of the coin that is shared by the ith and i + 1 (mod n)st
cryptographers. If the ith cryptographer paid, it will announce pi−1 ⊕pi (here ⊕
is the XOR operator); otherwise, it will announce the negation of this. We call
the value announced by the ith cryptographer ai. At the end, we take the XOR
of a1, . . . , an, which is 0 iff none of the cryptographers paid.

This example can easily be encoded by a length-preserving transducer R. For
example, the domain is a word of the form

(c1p1a1) . . . (cnpnan)

where ci ∈ {0, 1} and pi, ai ∈ {?, 0, 1}. Here, the symbol ‘?’ is used to denote that
the value of pi is not yet determined. In the case of ai, the symbol ‘?’ means
that it is not yet announced. Although it is a bit cumbersome, it is possible
to describe the dynamics of the system by a transducer. The desired property
to prove then is whether there is an isomorphism between 0100m and 0010m

for every m ∈ N, i.e., that the first cryptographer, who did not pay, cannot
distinguish if it were the second or the third cryptographer who paid. There is
a transducer R′ describing the isomorphism that maps 0100m to 0010m, which
is done by inverting the value of p2.

4 How to Satisfy Existential Second-Order Quantifiers

We have given several examples for the Specification step in Sect. 3.1, but
the question remains how one can solve the Specification Checking step and
automatically compute witnesses R1, . . . , Rn for the existential quantifiers in
a formula ∃R1, . . . , Rn. ϕ (where the matrix ϕ is first-order, as introduced in
Sect. 2.4). We present two solutions for this problem, two approaches to automata
learning whose respective applicability depends on the shape of the matrix ϕ.
Both methods have in previous work proven to be useful for analysing complex
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parameterised systems. On the one hand, it has been shown that automata
learning is competitive with tailor-made algorithms, for instance with Abstract
Regular Model Checking (ARMC) [11], for safety proofs [17,44]; on the other
hand, automata learning is general and can help to automate the verification of
properties for which no bespoke approaches exist, for instance liveness properties
or properties of games.

4.1 Active Automata Learning

The more efficient, though also more restricted approach is to use classical
automata learning, for instance Angluin’s L∗ algorithm [6], or one of its vari-
ants (e.g., [26,40]), to compute witnesses for R1, . . . , Rn. In all those algorithms,
a learner attempts to reconstruct a regular language L known to the teacher
by repeatedly asking two kinds of queries: membership, i.e., whether a word w
should be in L; and equivalence, i.e., whether L coincides with some candidate
language H constructed by the learner. When equivalence fails, the teacher pro-
vides a positive or negative counterexample, which is a word in the symmetric
difference between L and H.

This leads to the question how membership and equivalence can be imple-
mented in the ESO setting, in order to let a learner search for R1, . . . , Rn. In
general, it is clearly not possible to answer membership queries about R1, . . . , Rn,
since there can be many choices of relations satisfying ϕ, some of which might
contain a word, while others do not; in other words, the relations are in general
not uniquely determined by ϕ. We need to make additional assumptions.

As the simplest case, active automata learning can be used if two properties
are satisfied: (i) the relations R1, . . . , Rn are uniquely defined by ϕ and the struc-
ture S; and (ii) for any k ∈ N, the sub-relations Rk

i = {w ∈ Ri | |w| ≤ k} can
be effectively computed from ϕ and S. Given those two assumptions, automata
learning can be used to approximate the genuine solution R1, . . . , Rn up to any
length bound k, resulting in a candidate solution RH

1 , . . . , RH
n . It can also be

verified whether RH
1 , . . . , RH

n coincide with the genuine solution by evaluating
ϕ, i.e., by checking whether S, RH

1 , . . . , RH
n |= ϕ. If this check succeeds, learn-

ing has been successful; if it fails, the bound k can be increased and a better
approximation computed. Whenever the unique solution R1, . . . , Rn exists and is
regular, this algorithm is guaranteed to terminate and produce a correct answer.

In the setting of weakly-finite systems, assumption (ii) is usually satisfied,
since only finitely many configurations are reachable for any k ∈ N. In particular,
for the examples in Sect. 3, the sub-relations Rk

1 , . . . , R
k
n can be computed using

standard methods such as symbolic model checking [36]. Assumption (i) is less
realistic, because witnesses to be computed in verification are often not uniquely
defined. For instance, a safe system (Sect. 3.2) will normally have many inductive
invariants, each of which is sufficient to demonstrate safety.

What can be done when assumption (i) does not hold, and the relations
R1, . . . , Rn are not unique? Depending on the shape of ϕ, a simple trick can
be applicable, namely the learning algorithm can be generalised to search for
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a unique smallest or unique largest solution (in the set-theoretic sense) of ϕ,
provided those solutions exist. This is the case in particular when ϕ can be
rephrased as a fixed-point equation

〈R1, . . . , Rn〉 = F (R1, . . . , Rn)

for some monotonic function F ; for instance, if ϕ can be written as a set of Horn
clauses. We still require property (ii), however, and need to be able to compute
sub-relations Rk

i = {w ∈ Ri | |w| ≤ k} of the smallest or largest solution to
answer membership queries.

In order to check whether a solution candidate RH
1 , . . . , RH

n is correct (for
equivalence queries), we can as before evaluate ϕ, and terminate the search if
ϕ is satisfied. In general, however, there is no way to verify that RH

1 , . . . , RH
n is

indeed the smallest solution of ϕ, which affects termination and completeness in
a somewhat subtle way. If the smallest solution of ϕ exists and is regular, then
termination of the overall search is guaranteed, and the produced solution will
indeed satisfy ϕ; but what is found is not necessarily the smallest solution of ϕ.

This method has been implemented in particular for proving safety [17,44]
and probabilistic bisimulations [24] of length-preserving systems, cases in which
ϕ is naturally monotonic, and where active learning methods are able to compute
witnesses with hundreds (sometimes thousands) of states within minutes.

4.2 SAT-Based Automata Learning

L∗-style learning is not applicable if the matrix of an ESO formula ∃R1, . . . , Rn. ϕ
does not have a smallest or largest solution, or if the sub-relations Rk

1 , . . . , R
k
n

(for some k ∈ N) cannot be computed because a system is not weakly finite. An
example of such non-monotonic formulas are the formulas characterising winning
strategies of reachability games presented in Sect. 3.4; indeed, multiple minimal
but incomparable strategies can exist to win a game, so that in general there
is no smallest solution. A more general learning strategy to solve ESO formulas
in the non-monotonic case is SAT-based learning, i.e., using a Boolean encoding
of finite-state automata to systematically search for solutions of ϕ [34,37,46].
SAT-based learning is a more general solution than active automata learning for
constructing ESO proofs, although experiments show that it is also a lot slower
for simpler analysis tasks like safety proofs [17].

We outline how a SAT solver can be used to construct deterministic finite-
state automata (DFAs), following the encoding used in [34]. The encoding
assumes that a finite alphabet Σ and the number n of states of the automaton
are fixed. The states of the automaton are assumed to be q1, . . . , qn, and without
loss of generality q1 is the unique initial state. The Boolean decision variables
of the encoding are (i) variables {zi} that determine which of the states are
accepting; and (ii) variables {xi,a,j} that determine, for any letter a ∈ Σ and
states qi, qj , whether the automaton has a transition from qi to qj with label a.

A number of Boolean constraints are then asserted to ensure that only well-
formed DFAs are considered: determinism; reachability of every automaton state
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from the initial state; reachability of an accepting state from every state; and
symmetry-breaking constraints.

Next, the formula ϕ can be translated to Boolean constraints over the decision
variables. This translation can be done eagerly for all conjuncts of ϕ that can
be represented succinctly:

– a positive atom x ∈ R in which the length of x is bounded can be translated
to constraints that assert the existence of a run accepting x;

– a negative atom x �∈ R can similarly be encoded as a run ending in a non-
accepting state, thanks to the determinism of the automaton;

– for automata representing binary relations R(x, y), several universally quanti-
fied formulas can be encoded as a polynomial-size Boolean constraint as well,
including:

Reflexivity: ∀x.R(x, x)
Irreflexivity: ∀x.¬R(x, x)

Functional consistency: ∀x, y, z. (R(x, y) ∧ R(x, z) → y = z)
Transitivity: ∀x, y, z. (R(x, y) ∧ R(y, z) → R(x, z))

Other conjuncts in ϕ can be encoded lazily with the help of a refinement
loop, resembling the classical CEGAR approach. The SAT solver is first queried
to produce a candidate automaton H that satisfies a partial encoding of ϕ. It
is then checked whether the candidate H indeed satisfies ϕ; if this is the case,
SAT-based learning has been successful and terminates; otherwise, a blocking
constraint is asserted that rules out the candidate H in subsequent queries.

It should be noted that this approach can in principle be implemented for
any formula ϕ, since it is always possible to generate a näıve blocking constraint
that blocks exactly the observed assignment of the variables {zi, xi,a,j}, i.e.,
that exactly matches the automaton H. It is well-known in Satisfiability Modulo
Theories, however, that good blocking constraints are those which eliminate as
many similar candidate solutions as possible, and need to be designed carefully
and specifically for a theory (or, in our case, based on the shape of ϕ).

Several implementations of SAT-based learning have been described in the
literature, for instance for computing inductive invariants [37], synthesising state
machines satisfying given properties [46], computing symmetries of parameter-
ized systems [33], and for solving various kinds of games [34]. Experiments show
that the automata that can be computed using SAT-based learning tend to be
several order of magnitudes smaller than with active automata learning methods
(typically, at most 10–20 states), but that SAT-based learning can solve a more
general class of synthesis problems as well.

4.3 Stratification of ESO Formulas

The two approaches to compute regular languages can sometimes be combined.
For instance, in [34] active automata learning is used to approximate the reach-
able configurations of a two-player game (in the sense of computing an inductive
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invariant), whereas SAT-based learning is used to compute winning strategies;
the results of the two procedures in combination represent a solution of an ESO
formula ∃A,Rank . ϕ with two second-order quantifiers.

More generally, since the active automata learning approach in Sect. 4.1 is
able to compute smallest or greatest solutions of formulas, a combined approach
is possible when the matrix ϕ of an ESO formula ∃R1, . . . , Rn. ϕ can be stratified.
Suppose ϕ can be decomposed into ϕ1[R1] ∧ ϕ2[R1, . . . , Rn] in such a way that
(i) ϕ1 has a unique smallest solution in R1, and (ii) ϕ2 contains R1 only in liter-
als x ∈ R1 in negative positions, i.e., underneath an odd number of negations. In
this situation, one can clearly proceed by first computing a smallest relation R1

satisfying ϕ1, using the methods in Sect. 4.1, and then solve the remaining for-
mula ∃R2, . . . , Rn. ϕ2 given this fixed solution for R1. The case where ϕ1 has a
greatest solution, and ϕ2 contains R1 only positively can be handled similarly.

We believe that this combined form of automata learning is promising, and
in [34] it turned out to be the most efficient method to solve reachability games
as introduced in Sect. 3.4. Further research is needed, however, to evaluate the
approach for other verification problems.

5 Conclusions

In this paper, we have proposed existential second-order logic (ESO) over auto-
matic structures as an umbrella covering a large number of regular model check-
ing tasks, continuing a research programme that was initiated by Bengt Jonsson
20 years ago. We have shown that many important correctness properties can
be represented elegantly in ESO, and developed unified algorithms that can be
applied to any correctness property captured using ESO. Experiments showing
the practicality of this approach have been presented in several recent publica-
tions, including computation of inductive invariants [17,37,44], of symmetries
and simulation relations of parameterised systems [33], of winning strategies of
games [30,34], and of probabilistic bisimulations [24].

Several challenges remain. One bottleneck that has been identified in several
of the studies is the size of alphabets necessary to model systems, to which the
algorithms presented in Sect. 4 are very sensitive. This indicates that some anal-
ysis tasks require more compact or more expressive automata representations,
for instance symbolic automata, and generalised learning methods; or abstrac-
tion to reduce the size of alphabets. Another less-than-satisfactory point is the
handling of well-foundedness in the ESO framework. When restricting the class
of considered systems to weakly finite systems, as done here, well-foundedness
of relations can be replaced by acyclicity, which can be expressed easily in ESO
(as shown in Sect. 3.3). It is not obvious, however, in which way ESO should be
extended to also handle systems that are not weakly finite, without sacrificing
the elegance of the approach.
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trees. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 67–77.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74456-6 8

36. McMillan, K.L.: Symbolic Model Checking. Kluwer, Dordrecht (1993)
37. Neider, D., Jansen, N.: Regular model checking using solver technologies and

automata learning. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS,
vol. 7871, pp. 16–31. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38088-4 2

38. Neider, D., Topcu, U.: An automaton learning approach to solving safety games
over infinite graphs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS,
vol. 9636, pp. 204–221. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49674-9 12

39. Nilsson, M.: Regular model checking. Ph.D. thesis, Uppsala Universitet (2005)
40. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.

Inf. Comput. 103(2), 299–347 (1993)
41. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company,

Boston (1997)
42. To, A.W.: Model checking infinite-state systems: generic and specific approaches.

Ph.D. thesis, School of Informatics, University of Edinburgh (2010)
43. To, A.W., Libkin, L.: Algorithmic metatheorems for decidable LTL model checking

over infinite systems. In: Ong, L. (ed.) FoSSaCS 2010. LNCS, vol. 6014, pp. 221–
236. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12032-9 16

44. Vardhan, A., Sen, K., Viswanathan, M., Agha, G.: Learning to verify safety prop-
erties. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol.
3308, pp. 274–289. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30482-1 26

45. Vojnar, T.: Cut-offs and automata in formal verification of infinite-state systems.
Habilitation thesis, Faculty of Information Technology, Brno University of Tech-
nology (2007)

46. Walkinshaw, N., Taylor, R., Derrick, J.: Inferring extended finite state machine
models from software executions. Empir. Softw. Eng. 21(3), 811–853 (2016)

47. Wolper, P., Boigelot, B.: Verifying systems with infinite but regular state spaces.
In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 88–97. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0028736

https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-49122-5_22
https://doi.org/10.1007/978-3-319-41540-6_7
https://doi.org/10.1007/978-3-540-74456-6_8
https://doi.org/10.1007/978-3-642-38088-4_2
https://doi.org/10.1007/978-3-642-38088-4_2
https://doi.org/10.1007/978-3-662-49674-9_12
https://doi.org/10.1007/978-3-662-49674-9_12
https://doi.org/10.1007/978-3-642-12032-9_16
https://doi.org/10.1007/978-3-540-30482-1_26
https://doi.org/10.1007/978-3-540-30482-1_26
https://doi.org/10.1007/BFb0028736


High-Level Representation of Benchmark
Families for Petri Games

Manuel Gieseking(B) and Ernst-Rüdiger Olderog(B)
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Abstract. Petri games have been introduced as a multi-player game
model representing causal memory to address the synthesis of distributed
systems. For Petri games with one environment player and an arbi-
trary bounded number of system players, deciding the existence of a
safety strategy is EXPTIME-complete. This result forms the basis of the
tool AdamSYNT that implements an algorithm for the synthesis of dis-
tributed controllers from Petri games. To evaluate the tool, it has been
checked on a series of parameterized benchmarks from manufacturing
and workflow scenarios.

In this paper, we introduce a new possibility to represent bench-
mark families for the synthesis of distributed systems modeled with Petri
games. It enables the user to specify an entire benchmark family as one
parameterized high-level net. We describe example benchmark families as
a high-level version of a Petri game and exhibit an instantiation yielding a
concrete 1-bounded Petri game. We identify improvements either regard-
ing the size or the functionality of the benchmark families by examining
the high-level Petri games.

1 Introduction

Automatically creating a program from a formal specification without any
human programming involved, is of great interest for the implementation of
correct systems. A synthesis algorithm either automatically derives an imple-
mentation satisfying a given formal specification or states the non-existence of
such an implementation [3]. For reactive systems, i.e., system which continuously
interact with their environment, the synthesis problem is often described as a
game between the environment and the system. In this game-theoretic approach
the specification is given as a winning condition of the game and a correct imple-
mentation is a strategy for the system players which satisfies the given winning
condition against all moves of the environment. The synthesis approach funda-
mentally simplifies the development of complex systems by defining only the
possible actions of the system and specifying the winning condition over these
actions. This puts the development process on a more abstract level and avoids
the error-prone manual coding.
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For the monolithic synthesis, where the system can be seen as one unit with
a central controller as the strategy, there is a growing number of tools [1,2,4,19]
solving nontrivial applications. However, for the synthesis of distributed systems,
i.e., systems composed of multiple independent processes possibly distributed
over wide distances, the tool support is restricted. This is mainly due to the high
complexity of the solving algorithms or the undecidability results for the general
problem. In the two well-established models, the Pnueli/Rosner model [25] and
Zielonka’s asynchronous automata [28], the complexity is in general nonelemen-
tary [14,15,22] or even undecidable [13,25]. For the class of Zielonka automata
with acyclic communication architectures the control problem has been shown to
be decidable, with nonelementary complexity in general and EXPTIME for the
special case of architectures of depth 1 [23]. For Petri games [11,12], reasonable
subclasses can be solved with affordable costs and suitable tool support [7–9].

This paper extends the work on Petri games and presents a model for repre-
senting benchmark families for the synthesis of distributed systems in a concise
way. Petri games model the distributed synthesis problem as a game between
two teams: the environment players, representing external influences (the uncon-
trollable behavior), and the system players, representing the processes (the con-
trollable behavior). In Petri games each player is modeled as a token of an under-
lying place/transition Petri net. The places of the net are partitioned between
the teams. All players remember their own causal past and communicate this
knowledge to every player participating in a joint transition. An example can be
seen in Fig. 1.

Benchmark families depend on parameters which define a set of problems
with increasing complexity. The new representation is based on schemata of
Colored Petri Nets [16,18] rather than place/transition Petri nets, to intuitively
deal with the parameters and sets of problems. We use places with individual
tokens ranging over predefined domains of parametric size, transitions labeled
with conditions that guard their fireability, and arcs labeled with expressions
stating the result of the firing. Conditions and expressions may have variables
ranging over the predefined domains. This enables the user to specify the entire
benchmark family as one parametric high-level net rather than introducing a set
of instances of the family and descriptions how to generalize these Petri games.
Generally, the individual elements of a benchmark family (e.g., robots, work
pieces, tools, humans, etc.) can be modeled by parametric sets of individual
tokens and are processed by the transitions according to the semantics. Figure 4
serves as an example for a set of alarm systems and locations of a burglary.

In this paper, we introduce a new parameterized high-level representation
of Petri games based on high-level Petri nets for a concise and clear definition
of benchmark families. We apply the new definition to some of the existing
benchmark families and show the correspondence of the high-level version to an
example instantiation. During the application we identified improvements (either
in size or functionality) of these benchmark families.

The remainder of the paper is structured as follows. Section 2 recaps the ideas,
results, and solving techniques of Petri games and informally motivates the new
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high-level representation by an example. The formal definition of the high-level
representation is given in Sect. 3. In Sect. 4 we illustrate the new approach by
presenting two examples from the manufacturing domain and depicting for each
example both the high-level representation and an instantiation.

Dedication. Ernst-Rüdiger Olderog dedicates this paper to Bengt Jonsson in
memory of scientific and social meetings in Kiel in the 1980s. During the period
1984–87 we discussed the research by Jay Misra and Mani Chandy on asyn-
chronous networks that led to Bengt’s first publication [20] and his PhD the-
sis [21]. While visiting Kiel in December 1984, Bengt surprised us with his
many talents: speaking Russian he served as an interpreter for a newly arrived
Ukrainian visitor of Hans Langmaack, and playing the piano he delighted us with
pieces of Chopin in the home of Annemarie and Hans Langmaack. This made
an unforgettably impression on all those who were present at these occasions.

2 Petri Games for the Synthesis of Distributed Systems

In this section a brief overview of Petri games [11,12] is given. We illustrate
the model via an instantiation of the benchmark family of an distributed alarm
system from [8] and motivate the new high-level representation for a concise
and clear presentation of the family. Basic knowledge about Petri nets [24,26] is
assumed. We fix the notation of a Petri net N = (P,T,F, In), with places P,
transitions T, a flow relation F ⊆ (P ∪ T) × (T ∪ P), and an initial marking
In ⊆ P.

2.1 Petri Games

A Petri game G = (PS ,PE ,T,F, In,B) models the distributed synthesis prob-
lem as a multi-player game where the tokens of an underlying Petri net N rep-
resent the players of the game. The players act in two teams: the uncontrollable
players (environment players) are the token residing on environment places PE

(depicted as white circles) and controllable players (system players) are the token
residing on the system places PS (depicted as gray circles). Those sets are the
disjoint union of the places of the underlying Petri net, i.e., P = PE ∪̇PS .
The uncontrollable players are used for modeling external influences on the sys-
tem, whereas the controllable ones represent its processes. Each player knows
its own causal past, i.e., the places and transitions which had been used to reach
the current place. This information is exchanged with all players participating
at a joint transition. These intricate causal dependencies (and independencies)
are naturally represented by the unfolding of the underlying Petri net [5,6]. An
unfolding represents the behavior of a Petri net by unrolling each loop of the
execution and introducing copies of a place p ∈ P for each join of transitions
in p. Hence, each transition of the unfolding represents a unique instance of a
transition t ∈ T during an execution. The system players have to cooperate
to win the game, i.e., to avoid reaching certain bad places p ∈ B (depicted as
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Fig. 1. Two distant locations A and B are secured by the alarm systems represented
by the token initially residing in SA and SB . The alarm system in location X can state
that there should be a burglary at location Y by putting a token at place XY (for
X,Y ∈ {A,B}). The goal is that no system produces a false alarm, or, in case of an
intrusion, indicates the wrong intrusion point.

double circled places). To satisfy this safety objective, the players can solely use
their locally available information.

A strategy is a local controller for each system player which only decides on
its current view and available information about the whole system. A strategy
can be obtained by removing certain system controlled branches of the unfolding.
That is, transitions and their complete future are removed which are considered
as not be taken from the system. We search for deterministic strategies, where
in every situation no two transition are enabled for a single system player, and
deadlock-avoiding strategies, i.e., whenever the system can proceed in G there
must also be a continuation in the corresponding situation in the strategy. Fur-
thermore, no purely environment behavior is allowed to be restricted and when-
ever a system player refuses an instance of a transition t ∈ T in a place p of the
strategy, all instances of t have to be refused in p. This means, in each state the
system player can only allow or disallow all instances of a transition of the Petri
game, because, due to its local knowledge, these instances are indistinguishable
for the player.

We illustrate the model with an example of two system players and one
environment player, modeling a distributed alarm system from [11], visualized
in Fig. 1.

Example 1 (Distributed Alarm System for Two Locations). We consider an
alarm system for two locations A and B distributed over two system compo-
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nents securing one location each. Location A is depicted in the left part and
location B in the right part of Fig. 1. The system components are represented
by the tokens in the system places called SA and SB . In case of a burglary at
any of these locations, modeled by the environment in place Env putting its
token via transition iA into place CA (choose location A) or via iB into CB
(choose location B), each alarm system component should indicate the correct
intruding point despite their distribution over different locations. That is, for
an intrusion in location Y ∈ {A,B} the token of each component X ∈ {A,B}
should eventually reach place XY .

Note that the environment can at any moment choose one of the transi-
tions iA or iB leading to the places CA or CB , without participation of any of
the two system players in SA and SB . While the token is in place CA or CB ,
the alarm system is not yet aware of the burglary. This is the case only after the
synchronization transition tA or tB is taken, which puts one token in the system
place DA (burglary in A detected) or DB (burglary in B detected) and a second
token in the environment place IA or IB (recording that the intruder is in A or
B, respectively).

Each alarm system component has also the possibility to trigger a false alarm,
i.e., setting off an alarm without any detection of a burglary, or to give an incom-
plete report, i.e., indicating its own detection of the burglary without informing
the other system component. These incorrect behaviors can occur by taking tran-
sition faX or irX for X ∈ {A,B}, respectively. The intended correct behavior is
that each alarm system component SX for X ∈ {A,B} waits until a burglary has
been detected and then informs the other component Y (via transition infoY ),
or waits for getting informed by the other component (via the synchronization
transition infoX). Generally, the system should only take a decision (and the
right one) when it is informed well enough.

The dashed, gray transitions to the places Good or Bad are enabled and
taken when the alarm system behaved correctly or incorrectly, respectively. For
example, tokens in the places CA and AA enable a transition to place Bad
because the system raised an alarm without detecting the burglary in location A.
Admittedly, the graphic representation of these transition is too crowded. It will
become very clear in the high-level version of this Petri game shown in Fig. 4.

The unfolding of the Petri game is shown in Fig. 2, where we omit all instances
of the places Good or Bad and the transitions leading to them in order to enhance
the readability. This unfolding displays the causal history of every place in it. In
particular, the place pA of the original Petri game is unfolded into four copies
denoted by pA1, pA2, pA3, and pA4. Likewise, pB is unfolded into pB1, pB2, pB3,
and pB4. The places pA1 and pA2 represent the knowledge that the alarm system
component chose the erroneous transitions irA and faA, respectively. Place pA3

represents the knowledge that the alarm system component in site A detected
a burglary in location A and informed the other system component in site B
via the synchronization transition infoB of this burglary. Place pA4 represents
the knowledge that the alarm system component in site A has been informed
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Fig. 2. Unfolding and winning strategy of the Petri game from Fig. 1. The places Bad
and Good and the corresponding transitions are omitted for readability reasons. The
winning strategy for the system players is visualized by the solid elements.

by the other system component via the synchronization transition infoA that a
burglary in location B has been detected.

The intended correct behavior of the alarm system is achieved by the strat-
egy depicted as the part of the unfolding in Fig. 2 that is highlighted by solid
elements. It is obtained from the unfolding by deleting system choices that lead
to a bad place. Thus only the good system choices are kept in the strategy. For
example, from place pA3 the transition leading to place AA is chosen, represent-
ing the knowledge that location A knows that a burglary at location A has been
detected. Correspondingly, from place pB4 the alarm system at B chooses the
transition leading to place BA, representing the knowledge that also location B
knows (via the synchronization transition infoB) that a burglary at location A
has been detected. This strategy is winning because it avoids reaching any bad
place representing a wrong information of the burglary at location A or B. �

2.2 Solving Petri Games

There are four major results on finding winning strategies for Petri games with
safety objectives. Firstly, deciding the question whether it exists a strategy for
the system players for Petri games with one environment player and an arbitrary
but bounded number of system players and a safety objective is EXPTIME-
complete [12]. The strategy can be obtained in single-exponential time. Secondly,
interchanging the players, meaning the setting of n ∈ N distributed environment
players and one system player, yields the same complexity results [10]. Thirdly,
for unbounded underlying Petri nets the question is undecidable [12]. Finally,
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Fig. 3. A schematic overview of the symbolic game solving algorithm for Petri games
with one environment and a bounded number of system players with a safety objective.

the paper [7] introduces a bounded synthesis approach which limits the size of
the strategy. This constitutes a semi-decision procedure which is optimized in
finding small implementations.

In the following we briefly recap the idea of the decision procedure for one
environment player and n ∈ N system players on a Petri game with a safety
objective. The algorithm consists of four major steps: Firstly, the input Petri
game is reduced to a two-player game over a finite graph G with complete infor-
mation. Secondly, the question of the existence of a strategy in G is answered
with standard symbolic game solving algorithms and a strategy for G is con-
structed. Thirdly, the strategy of G is used to extract a common strategy for
the system players of G. Fourthly, this strategy is distributed into one local con-
troller for each process. A schematic overview of the approach is visualized in
Fig. 3.
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The algorithm starts with a Petri game in the upper left corner, which
consists of one environment, a bounded number of system players, and places
denoted as bad. Note that system players can still be created and terminate
infinitely often, as long as there is one upper bound on the number players for
all states. The game is then reduced to a two-player game over a finite graph with
complete information, i.e., both players know in any point in time everything
about the opponent. Player 0 (depicted as the white rectangles) represents the
one environment player and Player 1 (depicted as the gray rectangles) represents
all system players together. The states are enriched markings of the Petri game.
Each system player has a set of transitions (called commitment set) to deter-
mine their next move or the special symbol � to indicate that the immediate
next move must be the choice of a commitment set. Furthermore, the system
players have a Boolean flag indicating whether they progress infinitely without
any synchronization with the environment (0) or not (1). The key idea of the
reduction is that a scheduling is fixed such that the behavior of the environment
player is delayed until no system player can move without any interaction with
the environment (or never depend on the environment anymore). This ensures
that each system player will be informed of the environment’s last position dur-
ing their next movement. Since deterministic strategies are built, the players
are also informed about the other system player’s behavior until their next syn-
chronization with the environment. All this allows to consider the players to be
completely informed about all actions in the game.

A two-player game over a finite graph with complete information can be
solved with standard game solving techniques. Furthermore, the existence of a
strategy already yields the existence of a memoryless strategy, i.e., a strategy
which is only dependent on the current state and not on the previous states of
the run. In [11] it is shown that a strategy for the system players of the Petri
game exists if and only if a strategy for Player 1 exists in the two-player game.
Thus, we achieve a memoryless strategy for the system players such that they can
cooperatively play without encountering any bad behavior against all possible
actions of an hostile environment. By traversing the winning strategy of the two-
player game over the finite graph in breadth-first order, a finite Petri net can be
constructed which is a winning strategy of the system players of the Petri game.
Finkbeiner and Olderog [11] showed that for a concurrency-preserving strategy,
i.e., the number of ingoing arcs is equal to the number of outgoing arcs for each
transition, this common strategy of the system players can be distributed into
local strategies. This yields one controller for each player.

In AdamSYNT [8,9] this algorithm is implemented for 1-bounded Petri
games, i.e., in every situation of the underlying Petri net there is at most one
player residing on each place, with a symbolic game solving algorithm utilizing
BDDs for the representation of the state space.
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N = {1, . . . , n}
var x, y, z, v, a, b : N

F : N → P (N) , x �→ N \ {x}
G : N → P (N × N) , x {→� (z, x) | z ∈ N}

Burglary

Comm. Alarm

Fig. 4. Parameterized high-level Petri game for a benchmark family of an alarm system
for n locations. The parameter is n ∈ N. The low-level Petri game of Fig. 1 can be seen
as an instantiation of the benchmark family with n = 2.

2.3 Motivating the High-Level Representation

The beauty of the high-level representation of Petri games, formally defined in
the following section, stems from the conciseness and clarity of the illustration
of the system’s behavior. This can be seen in Fig. 4, where the Petri game of an
alarm system for two locations of Example 1 is extended to a benchmark family
of an alarm system for n locations.

All locations have to be informed about the burglary and trigger the alarm
accordingly. This means that new intrusion points and new alarm system com-
ponents are introduced by adding copies of the corresponding places and tran-
sitions. Using P/T Petri nets only, the exact description of a benchmark family
requires a high amount of precise descriptive texts but nevertheless bears the risk
of introducing misunderstandings. Also an instantiation, e.g., the one in Fig. 1,
cannot show the details appropriately. For example, it does not clarify whether in
this benchmark family the alarm system component at the burglarized location
informs the other alarm system components synchronously or in any sequential
order. But visualizing the family for three locations is already quite unwieldy,
especially for the transitions leading into the bad place. By contrast, the high-
level representation in Fig. 4 allows for a concise, parametric definition of the
benchmark family.
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In a high-level Petri game, individual tokens can reside in places and can
be moved individually by the transitions. To this end, the ingoing and outgoing
arcs of transitions can be labeled by expressions built up from typed variables
that upon firing of the transitions are locally bound to values of these types.
These values represent the individual tokens that are transported when firing
the transitions. Furthermore, the firing of transitions can be restricted by guards
shown in dashed boxes attached to the transitions.

We introduce the concept by the example presented in Fig. 4 before providing
the technical details in the following section.

Example 2 (Parameterized Alarm System). Here, the parameter is the number n
of locations. The desired “good” behavior of an alarm system for n locations
is that a burglary detected at one of the locations, say m, should be correctly
notified by triggering an alarm in each location 1, . . . , n. Correct means that each
location gets informed that the burglary was detected at location m. In the high-
level Petri game in Fig. 4, n individual tokens, with n ∈ N, representing n alarm
system components at different locations initially reside in the system place
Sys. The burglar, represented by the black token in the environment place Env ,
can intrude any of the n locations via the transition named i. By firing this
transition, any value m ∈ N = {1, . . . , n} (representing a location) is bound to
the variable x at the outgoing arc of i and put into the place C (location chosen).

Next, only the corresponding alarm system component at that location can
detect the intrusion by transition t, because both ingoing arcs are labeled with
the same variable x that needs to be bound to the same location, which is the
value m residing in place C. By firing t, this location value is put into the places D
(burglary detected) and I (intrusion recorded). In any case, every alarm system
component can trigger a false alarm by transition fa. After detecting an intrusion,
an alarm system component can synchronously inform all other components by
firing transition info or do not report the intrusion at all by firing ir . Note that
the ingoing arcs of transition info are labeled with x and F(x). Since place D
stores the unique location m where the burglary has been detected, x is bound
to this value m and thus F(x) evaluates to the set N \ {m} of all remaining
locations. So transition info empties the place Sys and puts all location values
into the place P .

Finally, the alarm system can decide by transition al which alarm to trig-
ger. It is bad if one alarm system component z decides to trigger an alarm for
location v, by putting (z, v) into Alarm, but another location has been intruded
(transition ⊥2 leading to place Bad) or if some alarm is triggered, but no intru-
sion has ever been detected (transition ⊥1 leading to place Bad). If all alarm
system components have detected the intruded location correctly, the place Good
can be reached. �

By replacing the transition info according to Fig. 5, we can easily switch from
a synchronously informing of the other systems to an arbitrary sequential order
of information dissemination. Note that the strategy of each alarm system can
decide which other system should be informed next. The last informed system
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Fig. 5. The left figure shows the synchronously informing of the burglary of Fig. 4.
The right one introduces a possible replacement of the transition info, such that after
one system detected the intruding or got informed about the intrusion, it informs an
arbitrary other system. Thus, the systems can inform one another in any arbitrary
order.

can take transition ir because no other system has to be informed anymore.
The guard x �= y has no effect on the behavior of the system but allows to
omit the n dead transitions which otherwise would automatically be created
(cp. Sect. 3.3). This yields n · (n − 1) transitions in the low-level version one for
each combination of x and y ranging over N, minus those satisfying x = y), in
contrast to the n transitions in the synchronous case. Such differences are more
complex to visualize in the low-level presentation because the difference can only
be recognized for n > 2.

3 Parameterized High-Level Petri Games

In high-level Petri nets values may appear as individual tokens in places [27].
Such a value is also referred to as a “color”, leading to the terminology of
Coloured Petri Nets [18]. In high-level Petri nets, the ingoing and outgoing arcs
of transitions are labeled by expressions that specify which of the individual
tokens are withdrawn from the preset and which ones are added to the places
in the postset of the transition. Additionally, Boolean expressions labeling the
transitions serve as guards.

In this section, we use these concepts to introduce high-level Petri games.
We constrain ourselves to high-level Petri games that have sets (rather than
multisets) of individual tokens in their places. We consider parameterized high-
level games where the size of the sets of individual tokens that may appear in
the places depends on parameters.

3.1 Preliminaries

We consider parameters, with typical letters k,m, n, ranging over the set N of
natural numbers and write par k,m, n : N to declare that k,m, n are parameters.
There may be a constraint added to the parameters like m ≤ n. An instantiation
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assigns a fixed natural number to each parameter. Parameters may appear in
set expressions S, defined inductively by the following syntax:

S ::= {1, . . . , n} | {•} | S1 × · · · × Sn | P(S)

Here {1, . . . , n} is a finite set of parametric size n, the symbol • denotes the
black token used in normal Petri nets, × denotes Cartesian product, and P the
power set. Set expressions are used as (parametric) types. An instantiation of
the parameters turns each set expression into a fixed set. Constants, with typical
letters K,M,N, are used as abbreviations for set expressions. We write K = S to
declare that K abbreviates the set expression S.

We consider variables, with typical letters x, y, z, ranging over set expres-
sions and write var x, y, z : S to declare that x, y, z are variables of type S. We
write ty(x) to denote the type of a variable x. We consider function symbols, with
typical letters F,G, and write F : S1 −→ S2 to declare that F is a symbol standing
for a function from elements of S1 to elements of S2, for set expressions S1, S2.

Out of parameters, constants, variables, and function symbols we construct
Boolean expressions and expressions of set type. We shall not define the syntax of
these expressions in detail here, but give typical examples. Suppose par m,n : N
and var x, y, x′, y′ : S1 and F : S1 −→ S2. Then m < n, x �= y, and x = x′∧y = y′

are Boolean expressions, the pair (x, y) is an expression of type S1 × S1 and the
function application F(x) is an expression of type S2. To define the function
denoted by F we write a maplet x �→ e, where x is a variable of type S1 and e is
an expression of type S2 containing x as a free variable. For a given instantiation,
the maplet describes how F assigns to a given element d of type S1 a value of
type S2 by evaluating e with d substituted for x in e.

3.2 High-Level Petri Games

In high-level Petri games values may appear as individual tokens in addition to
the black tokens of normal Petri nets. Syntactically, a high-level Petri game is a
structure

H = (PH
S ,PH

E ,TH ,FH , InH ,BH , ty , g, e, in),

where the following components are as in 1-bounded Petri games:

– PH
S is a set of system places,

– PH
E is a set of environment places,

– PH is the set of all places: PH = PH
S ∪ PH

E ,
– TH is a set of transitions,
– FH ⊆ (PH × TH) ∪ (TH × PH) is the flow relation,
– InH ⊆ PH is the set of initially marked places,
– BH ⊆ PH is the set of bad places.

Additionally, the following components represent the high-level structure:

– ty is a mapping that assigns to each place p ∈ PH a type ty(p) in the form
of a set expression, describing the set of individual tokens that may reside in
p during the game,
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– g is a mapping that assigns to each transition t ∈ TH a Boolean expression
g(t) serving as a guard describing when t can fire,

– e is a mapping that assigns to each ingoing arc (p, t) ∈ FH and each outgoing
arc (t, q) ∈ FH of a transition t ∈ TH an expression e(p, t) and e(t, q) of set
type, respectively, describing which tokens are withdrawn by t from p and
which tokens are placed by t on q when t is fired,

– in is a mapping that assigns to each initially marked place p ∈ InH a non-
empty subset of in(p) ⊆ ty(p).

Guards and expressions will typically contain variables. For a transition t ∈ TH

let var(t) denote the set of free variables occurring in the guard g(t) or in one of
the expressions e(p, t) and e(t, q) for places p in t’s preset, defined by pre(t) =
{p ∈ PH | (p, t) ∈ FH}, or q in t’s postset, defined by post(t) = {q ∈ PH |
(t, q) ∈ FH}.

Graphically, a high-level Petri game H looks like a normal Petri game, except
that guards g(t) appear inside a dashed box connected to the transition t by a
dashed line, expressions e(p, t) and e(t, q) appear as labels of the arcs (p, t) and
(t, q), respectively, and types ty(p) appear as labels of places p. To avoid clutter,
guards equivalent to true are not shown. Also, if the type of a place p can be
easily deduced from the context, the label ty(p) is not shown. The declarations
of parameters, constants, variables, and function symbols are listed in a dashed
box near the graphics of the Petri game.

The semantics of a high-level Petri game H is given by its token game.
To define it, we assume an instantiation of the parameters so that each set
expression defines a fixed set. A marking M of H assigns to each place p a set
M(p) ⊆ ty(p). Unlike in [18], we do not admit multisets as markings because
we aim at 1-bounded Petri games as low-level instantiations of high-level Petri
games. The initial marking M0 of H is the marking with M0(p) = in(p) for
p ∈ InH and M0(p) = ∅ otherwise.

A valuation v of a transition t assigns to each variable x ∈ var(t) a value
v(x) ∈ ty(x). By Val(t) we denote the set of all valuations of t. Each valuation v
of t is lifted inductively from the variables in var(t) to the expressions around t.
For the guard g(t) we denote by v(t) the Boolean value assigned by v to g(t).
For an ingoing arc (p, t) we denote by v(p, t) the value assigned by v to e(p, t),
and analogously for an outgoing arc (t, p).

A transition t is enabled at a marking M under a valuation v of t if v(t) = true
and v(p, t) ⊆ M(p) for each arc (p, t). Firing (the enabled) transition t at M
under v yields the marking M ′, where for each place p

M ′(p) = (M(p) − v(p, t)) ∪ v(t, p).

This is denoted by M [t, v〉M ′. We assume here that ∪ is a disjoint union, which
is satisfied if the Petri game is contact-free, i.e., if for all t ∈ TH and all reachable
markings M

pre(t) ⊆ P(M) ⇒ post(t) ⊆ (PH − P(M)) ∪ pre(t),
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where P(M) = {p ∈ PH | M(p) �= ∅}. The set of reachable markings of H is

R(H) = {M |∃n ≥ 0 ∃ t1, . . . , tn ∈ TH ∃ v1 ∈ Val(t1) . . . ∃ vn ∈ Val(tn) :
M0 [t1, v1〉 M1 [t2, v2〉 . . . [tn, vn〉 Mn = M}.

3.3 Instantiations of High-Level Petri Games

For fixed parameter values, a given high-level Petri game

H = (PH
S ,PH

E ,TH ,FH , InH ,BH , ty , g, e, in)

with PH = PH
S ∪ PH

E can be transformed into a safe Petri game

G = (PS ,PE ,T,F, In,B).

Let D =
⋃

p∈PH ty(p) be the set of all possible values that individual tokens in
places p ∈ PH can take, and let Val be the set of valuations assigning values d ∈
D of the right type to each variable. The constituents of G are as follows:

– system places: PS = {(p, d) ∈ PH
S × D | d ∈ ty(p)},

– environment places: PE = {(p, d) ∈ PH
E × D | d ∈ ty(p)},

– transitions: T = {(tH , v) | tH ∈ TH ∧ v ∈ Val(tH) ∧ v(tH) = true},
– an arc from (p, d) to (tH , v) occurs in F if d ∈ v(p, tH) holds in H,
– an arc from (tH , v) to (q, d) occurs in F if d ∈ v(tH , q) holds in H,
– initial marking: In = {(p, d) ∈ InH × D | d ∈ in(p)},
– bad places: B = {(p, d) ∈ BH × D | d ∈ ty(p)}.

The set of all places of G is thus given by

P = PS ∪ PE = {(p, d) ∈ PH × D | d ∈ ty(p)}.

Example 3. Figure 1 shows the instantiation of the alarm system for n = 2 loca-
tions of the high-level Petri game in Fig. 4.

3.4 Correspondence of High-Level and Low-Level Petri Games

We relate the firing behavior of the high-level Petri game H to that of the low-
level Petri game G defined in Sect. 3.3. To this end, we define a mapping ρ from
markings MH in H to sets of places in G as follows:

ρ(MH) = {(p, d) ∈ PH × D | d ∈ MH(p)} ⊆ P.

Note that for the initial markings M0 of H and In of G we have ρ(M0) = In.
Then we can state the following correspondence that is essentially due to [18].

Theorem 1. For all markings MH
1 and MH

2 of H, all transitions tH ∈ TH ,
and all valuations v ∈ Val(tH) the following properties hold:
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1. The transition tH is enabled at MH
1 under v in H if and only if the transition

(tH , v) is enabled at ρ(MH
1 ) in G.

2. The firing of enabled transitions under v corresponds to each other:

MH
1 [tH , v〉 MH

2 ⇐⇒ ρ(MH
1 ) [(tH , v)〉 ρ(MH

2 ).

Proof. Re 1 : Consider first the enabledness of the corresponding transitions:
tH ∈ TH is enabled at MH

1 under v in H

⇐⇒ tH ∈ TH and v(tH) = true and v(p, tH) ⊆ MH
1 (p) for all p ∈ pre(tH)

⇐⇒ (tH , v) ∈ T and (p, d) ∈ {(p, d) | d ∈ MH
1 (p)}

for all p ∈ pre(tH) and d ∈ v(p, tH)
⇐⇒ (tH , v) ∈ T and {(p, d) | p ∈ PH ∧ d ∈ v(p, tH)} ⊆ ρ(MH

1 )
⇐⇒ (tH , v) ∈ T and pre(tH , v) ⊆ ρ(MH

1 )
⇐⇒ (tH , v) ∈ T is enabled at ρ(MH

1 ) in G.

Re 2 : Consider now the firing of the corresponding enabled transitions:
MH

1 [tH , v〉 MH
2

⇐⇒ MH
2 (p) = (MH

1 (p) − v(p, tH)) ∪ v(tH , p) for all p ∈ PH

⇐⇒ {(p, d) | p ∈ PH ∧ d ∈ MH
2 (p)} =

({(p, d) | p ∈ PH ∧ d ∈ MH
1 (p)} − {(p, d) | p ∈ PH ∧ d ∈ v(p, tH)})

∪ {(p, d) | p ∈ PH ∧ d ∈ v(tH , p)}
⇐⇒ ρ(MH

2 ) = (ρ(MH
1 ) − pre(tH , v)) ∪ post(tH , v)

⇐⇒ ρ(MH
1 ) [(tH , v)〉 ρ(MH

2 ).

This concludes the proof. �
4 Parametric Benchmark Families

Several benchmark families served to demonstrate the applicability of the algo-
rithm for solving Petri games using the tool AdamSYNT [8,9]. These families
define Petri games with natural numbers as parameters that stand for the size
of certain patterns in the games, modeling persons, machines or phases of a
real-world application. The parameters serve to check the scalability of the algo-
rithms implemented in AdamSYNT. With parameterized high-level Petri games
such benchmark families can now be represented concisely by one single formal
object. We exemplify this for the benchmarks Concurrent Machines (CM) and
Self-Reconfiguring Robots (SR). Due to the clarity of the high-level representa-
tion both families could be optimized (in the size of the game or the functionality,
respectively) in comparison to the implemented versions of [8,9].

4.1 CM: Concurrent Machines

This benchmark family models n machines of which only n − 1 are working cor-
rectly. The environment decides nondeterministically which one is defective. The
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desired “good” behavior of the system is that each of the k orders is processed
by one of the n machines that is not defective. Each machine should process only
one order.

The high-level version of the benchmark family is depicted in Fig. 6. The
parameters are the number n of machines and the number k of orders, with
k < n. Each order can inform itself of the defective machine and decide, with
or without this information, on which machine it would like to be processed. At
the end, no order should decide for the defective or for an already used machine.

d
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(o,m)
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par n, k : N, k < n

M = {1, . . . , n}
O = {1, . . . , k}
var m : M, o : O

F : M → P (M)

m �→ M \ {m}

Fig. 6. Parameterized high-level Petri game for the benchmark family of concurrent
machines. There are k ∈ N orders which can be processed on n ∈ N machines. Each
machine should only process one order. A hostile environment decides on the function-
ality of the machines.

The n different machines of the family are identified by the individual tokens
in the set M = {1, . . . , n}. The hostile environment decides to destroy one of
them by putting it into place ERR and all other but this token into place OK
via transition d. The k orders which should be processed by the machines are
identified by the individual tokens in the set O = {1, . . . , k}, which initially
reside in place Sys. The orders can decide to first test which machine is defective
(via transition test) and decide afterwards on which machine they want to be
processed, or choose a machine without any knowledge about the functionality
of the machines (both via transition p). A tuple (o,m) residing in M , for o ∈ O
and m ∈ M, indicates that the order o should be processed by machine m.
Since the place OK only contains one unique token for each intact machine,
transition g can only fire at most |M| − 1 times and takes one of those machine
identifiers of OK each time. Hence, a token (i, e) ∈ O × M for orders i which
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decide on the defective machine e or a machine e which already processed another
order, is not moved to G but stays in M . Since we are searching for deadlock-
avoiding strategies, this token must eventually end up in the bad place B for
every strategy.

Sys

M1 M2 M3

G1 B1 B2 B3

G2

G3

Sys ′

M ′
1 M ′

2 M ′
3

G′
1 B′

1 B′
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test2

test3ERR1

OK 1

ERR2

OK 2

ERR3

OK 3

d3

d2

d1

Fig. 7. Instantiation of the Petri game of Fig. 6 for |M| = 3 and |O| = 2. The k = 2
orders of this instantiation of the concurrent machines benchmark family are initially
residing in Sys and Sys ′. The n = 3 machines are represented by the six places: Mi for
the first order and M ′

i for the second order (for i ∈ {1, . . . , 3}).

Figure 7 shows the instantiation of this benchmark family for three machines
and two orders. The nondeterministic destruction of machines is visualized in the
left-most part, whereas the possibilities of the two orders is depicted in the middle
and the right-most part of the figure, respectively. Each of the three machines
m ∈ {1, 2, 3} can be functioning, i.e., a token resides in OK i, or defective, i.e.,
a token resides in ERRi. The place M collecting which order is processed on
which machine of Fig. 6, as well as the corresponding good and bad place, is
split into |M×O| = 6 places each. The three undecorated copies of each of these
places in the middle belong to the first and the decorated in the most-right part
of Fig. 7 to the second order. This game can be won by the system players by
first testing which of the three machines is defective, hence knowing which two
are functioning, and afterwards unequally deciding on one of the two functioning
machines.

4.2 SR: Self-reconfiguring Robots

This benchmark is inspired by [17] and deals with the following scenario. Each
piece of material needs to be processed by n different tools. This is done by n
robots, each one having all n tools to their disposal, but only one of which is
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par n, k : N

R = {1, . . . , n}
T = {1, . . . , n}
P = {1, . . . , k}
I = {(i, i) ∈ R × T | i ∈ {1, . . . , n}}
var r : R, t, t′ : T, p, p′ : P

F : P → P (R × P)

p �→ {(r, p) | r ∈ R}

Fig. 8. Parameterized high-level Petri game for the benchmark family of self-
reconfiguring robots. The n robots have n tools to their disposal of which nonde-
terministically k tools can be destroyed over time. In this smart factory each piece of
material needs to be machined by every tool. Every robot can use one single tool at a
time and can decide on a different one after the factory recognizes a defective tool on
any of the robots.

currently used. The environment may destroy a tool on any robot r. Then all
robots reconfigure themselves so that r uses another tool and the other robots
adapt their usage of tools accordingly. Destructions can occur repeatedly in
subsequent phases. The desired “good” behavior for this family of games is that
the following two safety objectives are satisfied:

1. No wrong tool assignment, i.e., no robot uses a tool that is destroyed by the
environment.

2. Unique tool assignment, i.e., each tool is assigned only to a single robot.

The high-level representation of this benchmark family is depicted in Fig. 8.
It uses two parameters n, k of type N, where n is both the number of robots
in the set R and the number of tools in the set T on each robot and where k
is the number of phases in the set P, in each of which one tool on one of the
robots is destroyed. The game proceeds in phases, each one starting in the place
Phases with type P. Initially, the game starts with phase 1 and for each but
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the last phase k (ensured by the predicate p < k) the transition i1 puts the
number of the next phase, p + 1, back into Phases and remembers the current
phase p in place S. In the last phase the identifier k is directly put into S via
transitions i2 and no token resides in Phases anymore. Next the environment can
destroy via the transition des on one robot r one tool t in this phase p by putting
the information triple (r, t, p) into the system place RTP and the environment
token into place W (for working). Now the system in place work gets active
by firing transition tw, which withdraws the system token from place work and
puts the set of all robot identifiers equipped with the current phase p into the
system place RP and the environment token into place C (for completed). Next
the transition chg (for change) is enabled. In its preset are the places RP and
RT of which the latter contains the current assignment of tools to robots. Here
we assume w.l.o.g. that initially RT stores the assignment I where robot i ∈ R
uses tool i ∈ T. In general, transition chg takes one robot identity (r, p) of
the current phase p from place RP and a tool assignment (r, t) out of place
RT and replaces it by the (possibly new) assignment (r, t′). The idea is that t′

is the tool that robot r should use from now on. The transition chg stores
this new assignment by putting the triple (r, t′, p) into place R′T ′P ′. If t is
destroyed by the environment transition des in any prior phase p̃ yielding (r, t, p̃)
in place RTP then a winning strategy for the system players should choose t �= t′.
Otherwise the transition ⊥1 is enabled and eventually has to fire, i.e., ⊥1 puts the
wrong tool assignment (r, t) into the bad place Bad1. Additionally, transition chg
stores the new tool assignment (r, t′) into place check . Here the unique tool
assignment property, i.e., whether each tool is assigned only to a single robot,
is checked. The place Tools contains one unique identifier t ∈ T for each tool.
Every firing of transition c withdraws one of these tools. A robot r can only
reach the place restart via transition c if it currently uses a tool t, i.e., the
current tool assignment (r, t) resides in place check , which has not already been
used by another robot already moved to restart . This means for two robots r1
and r2 using the same tool t, i.e., (r1, t) and (r2, t) residing in check , that one of
these duplicate assignment remains in place check . Since every winning strategy
has to be deadlock-avoiding, transition ⊥2 eventually fires and puts one of the
robots with the duplicate tool assignment into the bad place Bad2. When every
robot uses a different tool, eventually all robots gather in place restart and the
transition nxt can enable a new phase by putting a black token back into the
environment place Env .

Figure 9 shows an instantiation of this high-level representation for two robots
equipped with two tools each and two destruction phases. The first phase is
presented in the left part of the figure, whereas the second part is depicted in
the right one. The destruction of the tools is done in the upper part of the figure.
Note that we simplified the unfolding of the high-level place Bad1, for a clearer
presentation. In the middle of the figure the changing of the tool for the first
and below the changing for the second robot is depicted. The bottom of Fig. 9
shows the starting of the second phase.
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Fig. 9. Instantiation of the Petri game depicted in Fig. 8 for |R| = |T| = |P| = 2.
The k = 2 destruction phases are presented in the upper left and upper right part,
respectively. The tool changing of the robots is depicted in the middle: in the upper
left part for the first robot in the first phase, in the upper right part for the first robot
in the second phase, in the lower left part for the second robot in the first phase, and
in the lower right for the second robot in the second phase. The bottom of the figure
presents the starting of the second phase.
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This game cannot be won by the system players, because the environment
can either decide to destroy both tools of one robot, say of robot r = 1, or
decide to destroy the same tool, say the tool t = 1, on each robot. In the first
case the robot has no other possibility than to chose an already destroyed tool,
say the tool t = 1, in the second phase. This enables transition ⊥1 in the high-
level version, which corresponds in the low-level version to the enabledness of
either transition ⊥ or ⊥′, depending on the phase in which the tool t has been
destroyed. In the second case, either one of the robots decides on an already
destroyed tool (which leads us to the previous case), or both robots decide on
taking tool t′ = 2. This means transition c of the high-level version can only fire
for one robot, because afterwards the place Tools only contains the tool 1. Thus,
nxt cannot fire and therewith ⊥2 eventually has to put the other robot into Bad2.
For the low-level version both robots choosing tool 2 results in having a token in
each of the places check12 and check22. Hence, only one of the transitions in the
postset of Tools2 can fire, resulting in firing eventually ⊥1 or ⊥4, respectively.

5 Conclusion

We have introduced a new representation of benchmark families for Petri games.
Similarly to the advantages of high-level Petri nets versus place/transition Petri
nets, the representation captivates by its concise and complete abilities of defin-
ing the families. The possibility to keep the expression sets parametric allows for
a uniform representation of the entire family. We have presented an instantia-
tion technique to obtain a low-level version as standard 1-bounded Petri game for
each element of the benchmark family. Those Petri games can then be solved by
the existing algorithms and tool. Furthermore, we have experienced that param-
eterized high-level representations of Petri games help to understand the key
ideas of benchmark families even better. This has enabled us to improve each
of the presented benchmark families compared to their original implementations
regarding their size or functionality.

For this paper, the introduction of high-level Petri games was driven primarily
by the desire to have a clear, concise, and unambiguous definition of the bench-
mark families used to show how our synthesis algorithms scale with increasing
complexity. In future work we would like to investigate for which parameters such
high-level Petri games have a solution and possibly even generate parameterized
strategies. This means we aim for directly obtaining parameterized distributed
controllers from parameterized high-level Petri games.

Acknowledgement. We thank Wolfgang Reisig for suggesting to use high-level Petri
nets to represent families of benchmarks during a Dagstuhl Workshop. We also thank
two anonymous reviewers for their helpful comments.
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1 Digital Twins and CPSs

Engineering adequate Digital Twins for Cyber-Physical Systems is a complex,
multidimensional challenge. While there are many definitions of what is a digital
twin, we choose to refer to the recent, quite realistic and encompassing definition
is by Ashtari et al. [50]: “The Digital Twin is a virtual representation of a physical
asset in a Cyber-Physical Production System (CPPS), capable of mirroring its
static and dynamic characteristics. It contains and maps various models of a
physical asset, of which some are executable, called simulation models. But not all
models are executable, therefore the Digital Twin is more than just a simulation
of a physical asset. Within this context, an asset can be an entity that already
exists in the real world or can be a representation of a future entity that will be
constructed.”

In 2019 the Gartner group [43] listed digital twins in the top 10 strategic
technology trends, next to blockchain, artificial intelligence, empowered edge,
privacy and ethics, quantum computing, immersive experiences, augmented ana-
lytics, and autonomous things. While some of these technologies are evergreens,
like quantum computing and the rather generic “autonomous things”, digital
twins are a new entry, and they start to play a role, at least conceptually, well
beyond the smart manufacturing domain from which they originate. For exam-
ple, one starts to hear about initiatives to co-create digital twins for (cancer)
patients [1]. The digital twins of the future will be patient-tailored models that:

– Can be used to evaluate potential preventative and/or therapeutic plans,
– Incorporate information across length and time scales,
– Continually integrate new data and knowledge,
– Help clinicians and patients understand the risks and benefits of a particular

treatment plan that best meets the patient’s objectives.

Digital Twins are used as well for and within supply chains [21], in particular
in connection with supply chain disruption for manufacturing, as the last year
has acutely manifested. Most of these Digital Twin variants concern simulation
models that arise distinctly from the physical thing, or more realistically, the
real-world system, they model.

Cast in new words, a digital twin is an instance-level model of an entity (phys-
ical or not), that, as IBM’s Chris O’Connor puts it, is “simple, but detailed”1. A
digital twin implies a strong notion of adequacy for purpose (otherwise it is
not a “twin”, lacking sufficient sameness), a context-dependency of the pur-
pose (there can be different digital twins for the same entity if this entity serves
different purposes, and these differences of purpose matter, inducing difference
of context), and it is required to have an ability to support and guide the
design, build and operation phases of the entity it represents. It is there-
fore descriptive (like a design model), behavioural (as it must encompass what
the physical twin can do), and predictive: during operations it must be able to

1 https://youtu.be/RaOejcczPas.

https://youtu.be/RaOejcczPas
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predict maintenance needs as well as out-of-order behaviours, and serve as a
baseline to figure out their prevention and repair.

Most frequently we see digital twins of some physical entities, like manu-
facturing machines and products that are more generally abstracted as Cyber-
Physical Systems (CPSs) models. Most recently they started to include also any
kind of Internet of Things (IoT) and Industrial Internet of Things (IIoT) devices.

At design time, the digital twin models serve the main purpose of increasing
the expected dependability of their physical counterpart. At build time they
serve to assess and monitor the faithfulness of the production processes for the
physical twin. During operation, once the physical twin has been produced and
installed, they find use to monitor the dependability of the products, for each
individual piece with its individual characteristics, aging, and anomalies.

However, many engineers still associate the concept of digital twin to a quan-
titative, mathematical simulation based model, that allows (mostly mechanical)
engineers to ask what-if questions that inform design, usage, and evolution deci-
sions for a mechanical object or mechanical forming process [12]. Statistical mod-
els, Finite Element Analysis (FEA) as the simulation of a physical phenomenon
using a numerical mathematical technique referred to as the Finite Element
Method (FEM) are the most frequent types of models, and in some application
domains they are still nearly synonyms of Digital Twins. The awareness that
software plays a role in the “fullness” of modern devices, that the behavior of
the software may go beyond a pure controller of the physical part, that there is
inherently a heterogeneity, and thus an integration problem with discrete, finite
state machine-like models are still not obvious today.

The most modern intuitive connection is with models derived by Machine
Learning (ML) from data acquired from the physical twin, retrofitting the device
(a black box) with models that are based on statistics, and incomplete knowl-
edge and descriptions. They are therefore at best approximations of the real
behaviours, thus themselves a black box model, and a blurry one.

What we are trying to achieve, on the contrary, is the systematic, and possibly
automatic, production of behavioural models for real devices, that describe
precisely the observed behaviours and are congruent to such behaviours, thus can
be used as faithful predictors, like a sosia, and are able to explain the predicted
and the observed behaviour on an execution by execution basis, i.e., use case by
use case, test run by test run.

The challenge towards this scenario is, how can one systematically enable the
well-founded engineering of such digital twins for dependable CPSs?

We are going use the simple Confirm Digital Thread prototype consisting of
1) a commercial Universal Robots cobot and 2) a Web-based remote controller
application as a small example for a concrete CPS of industrial relevance. This
mini-system of systems case study includes a Cyber part (the web application),
a Physical part (the robot), and a communication system, which is here the
internet plus a TCP socket connection to the robot. Although simple, this system
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exhibits the essential traits of many CPSs, and it is simple and small enough (i.e.,
physically transportable) that it has been repeatedly used for many teaching and
demonstration purposes.

We will show how already the simple Active Automata Learning for Mealy
machines can be an effective technique to retrofit existing CPS systems with
models that satisfy these characteristics. We then reflect on several aspects of
the system, the model, the learning, and how the model, behavior and properties
are expressed, that can be interesting from a research and practical point of view.

In the following, Sect. 2 presents the case study and Sect. 3 provides an
overview of MDD and Active Automata Learning techniques. We then explain
the setup for experiments of the Confirm Digital Thread prototype in conjunc-
tion with the robot simulator (Sect. 4), followed by a discussion of the learning
results in Sect. 5 and an application of CTL model checking for property check-
ing on the learned model in Sect. 1. In Sect. 7 we discuss the insights gained so
far, the lessons learned and our reflections along various perspectives of past
experience, collaboration with Bengt Jonsson and future work. Lastly, Sect. 8
concludes the paper.

(a) Universal Robots’ UR3 (b) Demonstrator Setup with UR 5

Fig. 1. The physical system

2 The Case Study: XMDD Steers a Cobot

The Confirm Digital Thread demonstrator, introduced in [32], showcases a MDD-
based application in the smart manufacturing context. It is a handy example that
brings together two worlds still culturally very distant and effectively disjoint:
commercial collaborative robots and advanced Model Driven Development.



142 T. Margaria and A. Schieweck

This portable demonstrator consists of a collaborative robot (cobot) pro-
duced by Universal Robots (UR) together with a web application designed to
remotely control such cobots. In the world of robotics, this is a very small instal-
lation, easy to transport and set up for demonstration and outreach purposes.
As shown in Fig. 1b, the UR5 is mounted on a portable rolling table, and the
large display shows the Web Application, running on the laptop at the right.

The UR product line consists of flexible 7 joints robotic arms that can be
equipped with a wide variety of mountable devices like a grip arm, a camera,
and various sensors and actuators. It is widely customizable and retargetable
for different applications with little effort and expense, by retooling and repro-
gramming. Cobots are particularly safe because they are equipped with special
sensors to detect whether something is in their way. This ability allows them to
operate without special work cages, opening the possibility of collaborative work
with humans. UR, the first company to produce such robots, offers four models:
UR3 (see Fig. 1a), UR5 (see Fig. 1b), UR10 and UR16. The number indicates
the maximum payload in Kg of each model. The models grow in size and weight
accordingly, but the core design and concepts, like the joints, degrees of freedom
and skills, are very similar for all models. They use for example the same API,
which allows custom programs to be interchangeable [32].

Fig. 2. The web application: The controller main page (left). Clicking the ‘Move to
Coordinates’ button leads to the coordinates input page (right)

While this describes the Physical side of the CPS demonstrator, the user-level
interactable view of the Cyber component is shown in Fig. 2. The main page of
the controller offers a set of six predisposed operations: Initial position (dark
blue button) Pause (yellow button), Test position and Move to coordinates
(light blue buttons), Stop and Shutdown (red buttons). Each of them can be
launched by clicking the corresponding GUI button. The Initial position
and Test position skills are fully predefined: clicking the respective button
brings the robot to a fixed position. For example, the Initial position button
leads to the balanced vertical “zero” position shown in Fig. 3. The Move to
coordinates button, however, allows a remote configuration of the robot: it
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Fig. 3. Interactive simulator by universal robots

leads to a second web page (Fig. 2(right)), where a mask allows the user to input
target coordinates of the tip of the arm. The choice of these skills is intentional:
it is a minimum set of skills that covers the categories Home, Move, Timing
and Manage, associated with the colour of the button as well as with a small
symbol near the skill name on the button. This is, in effect, a minimal Domain
Specific Language in the application domain of the robots, what we would call
an A-DSL for Application-specific DSL. The colours and symbols associated to
the individual skills expose the internal structure of the A-DSL, which has a
taxonomic structure.

Traditionally, the controller is programmed and tested either on-site, using
the tablet physically tethered to the machine, or by means of a simulator software
that behaves like the UR equipment, so that the program tested on the simulator
can be then uploaded with confidence to the cobot. The simulator provided by
Universal Robots shown in Fig. 3 covers the entire family of cobots. It can be
installed on a Linux system or used in a virtual machine via a provided virtual
machine image. For the purpose of this paper we choose the latter option, as
this adds a layer of separation between the now virtual robot and the rest of our
technology stack, similar to how a real cobot would be separated from the other
technologies. The simulator also offers the option to change timing parameters.
This allows the simulated robot to move like a real machine, but at accelerated
speed. This feature is going to be very useful during the automata learning
campaign that leads to the Digital Twin of this system.
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The simulator is seen by many in robotics and manufacturing as “the” model,
and effectively as the in-silico reification, of the Digital Twin in terms of soft-
ware. However, there is much more that models can do to support the deeper
understanding of a system.

With this small demonstrator we intend to showcase the use of models at
many levels: to design and validate the controller, but also to represent in a
different way the “real essence” of the Digital Twin, not just for the robot but
also for the entire CPS, including the controller. To do so, we will use some
XMDD concepts and technologies.

Fig. 4. Process model of the remote controller: App’s main workflow in DIME

3 XMDD Concepts and Technologies

We adopt the eXtreme MDD paradigm of [33,34], and use the DIME [7] tool
and platform first to model, and then to code-generate and deploy the Web
application that controls the cobot. In this section we briefly introduce XMDD
and provide a short introduction in Active Automata Learning, the approach we
use to generate the Digital Twin. We assume that model checking is known.
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Fig. 5. Overview of the active automata learning loop

3.1 XMDD in DIME

The Model Driven Design (MDD) approach breaks with the paradigm that every-
thing needs to be written in native code and puts instead models at the center of
a software development project. Those models can be textual or graphical, they
help the developer to describe what the software should be doing. Depending
on the choice of models and modelling languages, they have different levels of
expressiveness, automatic model analysis and transformation support. In most
approaches, a key advantage is that they help delegate the worry about the
“how” to a separate design granularity, and often to a separate professional
profile [11,26–28].

From a generic MDD point of view, DIME is an Integrated Modelling Envi-
ronment, i.e. a model driven design tool, specialized for the design, development
and deployment of web applications. DIME is open source, provides flexibility,
ease of extension, supports high-assurance software quality, agility, a service-
oriented approach, and also containerization. For the specific low-code support,
its model-driven approach is based on Domain Specific Languages (DSLs) at two
levels:

– Language DSLs, as a mechanism to design and implement the application
design environment itself, i.e., the Integrated Modeling Environment (IME),

– and a number of Application domain DSLs, at application design time. We
want to use Native DSLs as the means to integrate and expose collections of
capabilities offered by end devices and other sources of functionalities to the
application designers, and Process DSLs (see Fig. 4) as the means to foster
reuse of medium and large grained business logic across applications.

DIME’s DSLs cover all layers of a modern web applications, e.g. the data
model, the process models to describe the business logic, and the GUI front end
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in a way similar to a “What you see is what you get” editor. The Native DSLs
extend its capabilities with new GDLSs: new libraries of Service Independent
Blocks (SIBs) for the back or front end. The UR Control application makes use
of this functionality by introducing robotics DSLs used to create a plugin that
communicates with the UR robots [7,49].

DIME is itself created using the Cinco meta-modeling environment [37], and
it is in fact the most sophisticated Cinco-product. Cinco allows the creation
of further Eclipse based specialized editors for Language DSL tools without a
deeper knowledge about the various Eclipse graphical tooling projects.

3.2 Active Automata Learning

Active Automata Learning (AAL) [2] uses observations to infer models of a
system’s internal states and behavior. In the case of reactive systems like web
applications, those models are often Mealy machines.

Definition 1 (Mealy Machine).
A Mealy Machine is defined as a tuple (Q, q0, Σ, Λ, δ, λ), where Q is a finite
set of states, q0 ∈ Q is the initial state, Σ is a finite set of input symbols, i.e.
the input alphabet, Λ is a finite set of output symbols, i.e. the output alphabet,
δ : Q × Σ → Q is the transition function, and λ : Q × Σ → Λ is the output
function.

The core Active Automata Learning process is illustrated in Fig. 5. The learn-
ing algorithm, called the learner, interacts with the System Under Learning
(SUL) via testing and observes its behavior. Those interactions are called Mem-
bership Queries. In a Membership Query, the learner sends inputs to the SUL,
collects the corresponding observed outputs, and collects the resulting input/out-
put behaviour traces, producing a hypothesis model of the internal states of the
system. Once the learner reaches a point where it has seen enough behaviour,
along a predefined notion of “enough”, it passes the current hypothesis model
to the Equivalence (EQ) Oracle. In an ideal world, the EQ Oracle would have
perfect knowledge of the SUL and could decide this question directly. In the real
world this is impossible: instead, the EQ Oracle applies another set of criteria
to the model, and tells the learner whether the current hypothesis is correct, i.e.
satisfies all those criteria, or not. If one or more counterexamples are found, they
are passed back to the learner, which starts a new MQ campaign based on the
new insights. This leads to successive evidence-based refinement cycles of the
hypothesis model. When the deployed counter-example search strategies do not
find any counter example anymore in reasonable time, the current hypothesis
model is assumed to be correct and the learning process terminates with that
learned model.

It is important to note that every membership and equivalence query needs
to start with the same prerequisites, so a reset mechanism of the SUL to the
same initial state is needed too.
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Fig. 6. The setup of the learning experiment: AAL with LearnLib Studio

LearnLib2 [19,40] is a state of the art open source framework for AAL, which
offers a wide set of algorithms, counter examples search strategies and infrastruc-
ture components in Java. Many tools have been designed to create customized
learn experiments utilizing the LearnLib.

The Active Automata Learning Experience (ALEX) tool is built upon Learn-
Lib and allows a no-code way to learn web applications and even to mix them
with REST APIs. ALEX is itself a web application. It offers a comfortable GUI
to describe the interactions with a web application or a RESTful API. The
learning can be parameterized, but the overall learning process is fixed [19,40].
Because the UR robot itself does not offer a REST API, ALEX is unfortunately
not applicable to this case. We use instead LearnLib Studio3, a specialized Cinco-
product for defining LearnLib experiments through a custom MDD editor.

4 Automata Learning Experiments: Set Up with Learnlib
Studio

In our Digital Thread prototype, the UR Remote Control Web Application and
the robot, here a UR simulator, constitute the SUL (see Fig. 6). We wish to
automatically extract a Digital Twin of the SUL in order to find out whether
the web application interacts with the robot in the expected way. Concretely,
we wish to find out if the native SIB libraries of the UR DSL are used in the
expected way, e.g. following the correct protocol, and if the controller application

2 https://learnlib.de.
3 https://github.com/learnlib/learnlib-studio.

https://learnlib.de
https://github.com/learnlib/learnlib-studio


148 T. Margaria and A. Schieweck

is properly designed, i.e., it is doing exclusively what it is expected to do, in terms
of sewuences of actions and reaction s to unexpected inputs or commands. We
have the SUL as entire CPS on the right, and on the left we use LearnLib Studio
as the Learner, extracting a model that is the Digital Twin of the SUL.

While this experiment can show the existence of a fault, it would not be able
to determine where the fault sits, i.e., whether the implementation of the native
SIBs is faulty (code) or whether the SIBs are OK but not properly used in the
process model (application logic).

In the following we recall the preexisting components (Sect. 4.1), then we
describe the set up of the learning experiment (Sect. 4.2). Section 4.3 describes
in detail the alphabets we used, and finally Sect. 4.4 reports on performance
issues and their resolution.

4.1 Preexisting Components

Instead of connecting a real robot to the system, we use the simulator provided by
Universal Robots in a Virtual Box. As the robot is in reality also connected with
an IP Address, the Virtual Box helps to create a realistic scenario. Within this
setup, the simulator and the robot are interchangeable, as was confirmed through
tests. We parameterized the simulator with the data and coordinates for the UR3
model, but the UR scripting language and the communication with the robot are
identical for the whole UR family. To cover other models, which have different
dimensions of the arm segments, the specific coordinates for predefined positions
would need to be changed to those for the specific UR model. Using the simulator
also allowed us to speed up the robot responsiveness, significantly reducing the
overall time for our learning experiment. The robot is in fact mechanically quite
slow. We used instead a simulator setting with a near immediate response to
commands, preserving the execution traces but much faster than the real system.
As we are not examining timed behaviour or performance, this difference did not
impact the behaviour to be learned.

The UR Control Web Application, which is itself designed as a DIME appli-
cation, once compiled and deployed runs in a Docker environment and it can be
used independently of DIME. For the learning experiments, everything was thus
executed on a single local machine.

4.2 The Learning Experiment Set up

The learning experiment was described graphically using LearnLib Studio’s mod-
els, as shown in Fig. 7. The left side of the Learn Experiment Model shows the
definition of the experiment setup. It uses the TTT algorithm [18] and the Ran-
dom Word Equivalence Oracle, which is a random word counterexample search
parameterized with 20 random words with a length between 5 and 10 symbols.
The right side of the model shows the graphical definition of the SUL in terms
of the commands in its alphabet. The cycle between the TTT algorithm and the
Random Word Equivalence Oracle represents the learn loop. Both these elements
connect to the SUL via a query counter and a cache, which are filters defined
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Fig. 7. Definition of the Learning Experiment as a Learn Experiment Model

as part of the LearnLib pipeline. While the query counter provides insights on
the learning use of resources, the cache offers a potentially increased efficiency
because it directly answers known queries instead of invoking the SUL anew.
The SUL is represented as a set of 10 symbols: the learning alphabet consists
of seven symbols, and the further three are special symbols which deal with the
setup and tear down of the SUL and the connection to it.

4.3 The Learning Alphabet

The symbols defined for the learning experiment are described in Table 1. The
seven symbols Connect to Robot, Go To Initial Position, Go to Test Position, Go
to Coordinate Input, Send Coordinates, Cancel Coordinate Input and Robot Coordi-
nates constitute the learning alphabet. Their names constitute the input alphabet
to the algorithm. The output alphabet consists of their possible outputs: Success,
Success (X, Y, Z) which includes the actual robot coordinates at time of calling,
and the additional symbol ElementNotFound. The use of the robot coordinates in
this set up allows to independently observe the robot coordinates in the learning
process, and correlate them to interactions with the web application.

Beside the input and output symbols, the three helper symbols Set Up, Reset
and Tear Down described in Table 2 help manage the experiment, for example to
ensure a reliable reset.

These handling of the symbols is implemented in LearnLib Studio. It adopts
a MDD approach with a Cinco GDSL similar to the process language of DIME,
but modified to focus more on consistent outputs symbols. As an example, Fig. 8
shows the implementation of the Go To Initial Position symbol. This model is
executed every time a learning component sends to the SUL a query containing
this symbol. Starting from the Start SIB, a so-called WebDriver is needed to
emulate the user behavior in a web browser. The Start SIB grabs it from a global
context and passes it to the next SIB via the dotted data flow edge. As the Start
SIB has only one control flow successor (the solid line), the WaitForNode is
executed next. This SIB takes care of extra waiting time to ensure the page has
properly loaded. Each SIB has input (blue, top) and output (orange, bottom)
ports. Input ports can either be dynamic, i.e. they accept data flow from other
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Table 1. Overview of the Learning Alphabet

Name Outputs Description

Connect To Robot Success, ElementNotFound Tries to enter the IP address and click

‘Connect’

Go to {Initial, Test} Position Tries to click the button {initial, test}
position button, which should move the

robot accordingly

Go to Coordinate Input Tries to click the button in the web

application to navigate to the coordinate

input page

Send Coordinates Tries to enter custom coordinates and click

the move button on the coordinate input page

Cancel Coordinate Input Tries to click the cancel button on

the coordinate input page

Robot Coordinates Success (X, Y, Z) Connects to the robot and receives the

current robot coordinates, which are part

of the output

Table 2. Overview of the helper symbols

Name Description

Set Up Starts the web browser
It is called only once at the beginning of the learn experiment

Reset Opens the web app in a fresh environment
Moves the robot to the initial position Called before every
query

Tear down Closes the web browser
It is only called once at the end of the learning experiment

SIBs, or static, i.e. the value is fixed and predefined when modeling the symbol.
The next action in this symbol’s workflow, the Click SIB, actually clicks the
button, and then the symbol execution terminates with its End SIB, which in
this case is the Success output. This End SIB also updates the WebDriver in
the global context. Should any of those two execution SIBs fail, e.g., if the
WaitForNode reaches a timeout while waiting for the button in, or if the Click
SIB is unable to click the button, the alternative error path indicated by the red
dotted lines is taken. These error paths lead to the End SIB ElementNotFound,
which signals to the learn experiment that the button is missing.

The collections of symbols in Tables 1 and 2 are defined in this way. They
use a newly created custom SIB library to interact with the web application, see
Fig. 9. It is part of the example experiments included with LearnLib Studio and
deals with buttons, numeric fields, and other interactable GUI elements of web
application.

Another SIB library was used to interact with the robot directly.

4.4 Performance Issues

During the first learning experiment there were speed management issues with
the network socket of the robot: even the sped-up robot in the simulator, much
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Fig. 8. Symbol definition in LearnLib studio for the click on the Go to Initial Position
Button

faster to respond than the real robot, could not keep up with the amount of dif-
ferent commands automatically sent to it by the learning algorithm. The adopted
solution was to introduce an artificial wait time of ten seconds before querying
the coordinates from the robot, the SIB WaitForNode, even though this slowed
down the overall learning process.

A different approach would have been to poll the robot multiple times until
the reported coordinates stop changing, indicating that the robot has reached its
final position, or alternatively to instruct the robot call back once the movement
is finished. Both approaches would have requested multiple interactions and a
more complex logic, so we preferred to opt for the simpler wait solution.

5 Results: The Learned Digital Twin

The Mealy machine shown in Fig. 10 is the behavioral Digital Twin of the UR
Controller Web Application as learned through the AAL experiment. It has
seven states, based on the seven input symbols introduced with the learning
alphabet, the corresponding output symbols, i.e. Success, ElementNotFound and
the different coordinates.

The state q0 on the top left, shaded in green, is the initial state. The very
first page of the web application asks for the IP address of the robot and is
otherwise only reachable by reloading the application. This behavior is evident
in the Digital Twin model’s state q0: it is the initial state and it only allows to
move ahead with the Connect To Robot action.

Upon closer inspection, one notices that the final model is a product of the
possible states of the web application, i.e. main ’button’ page and coordinate
input page, and the three possible robot positions from the app, i.e. initial posi-
tion, test position, and custom coordinates. In the three states q0, q1 and q3 (in
the dashed oval) the robot is in the initial position. The states q2 and q5 (solid
oval) represent the robot in the test position. And in states q4 and q6 (dot-
ted oval) the robot is in the custom coordinates position. Between those areas
there are only the Go to Initial Position, Go to Test Position and Send Coordinates
transitions, and they lead always successfully to the according target state.
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Fig. 9. Selenium SIB library for interactions with web applications.

In each robot position, one state represents the main button page of the
website: q1, q2 and q4, highlighted by blue squares. Furthermore, these position-
related areas of the model include the states q3, q5 and q6 (highlighted by orange
triangles) representing the coordinate input page. Between pairs of those states
there are only transitions with Go to Coordinate Input and Cancel Coordinate
Input: these transitions are present and successful. The only exception is the
Send Coordinates transition between q6 and q4, which can be easily explained as
it is the reflexive edge within the robot position area.

Overall, the final model that emerged is structured as a product between
the states of the web application and the three chosen robot positions, with
a network of correct transitions according to the good machine behaviour we
expected.

The learning experiment was run on a Dell XPS 15 9560 (Intel Core i7-
7700HQ, 32 GB RAM, Manjaro Linux) and took 80 min of execution time. Its
production took four iterations of the learning loop, with algorithmic search and
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Fig. 10. The final model: the digital twin obtained by AAL

counterexample. The learner asked 218 Membership Queries and 34 Equivalence
Queries were posed by the counter example strategy.

6 Property Checking on the Digital Twin

The Digital Twin extraction is interesting per se, but, as we see, its interpre-
tation requires manual analysis and a good understanding of how the system
under learning functions: its architecture, its components, both individually and
in their communication patterns. This can be done for a small model. However, as
soon as systems and models grow, for example in our case when adding a camera
that observes from outside the real robot behaviour and steers adjustments to
coordinates based on precise measurements, e.g., to limit the movements within
a ‘virtual cage’, the model size grows as well, the interactions become more intri-
cate, and a different method of analysis is needed in order to properly evaluate
the model and its meaning. Property checking on the Digital Twin is a useful
technique.

We use here CTL model checking, specifically model checking with the GEAR
[3,4] tool, in order to a) express behavioural properties of the system that can
be assessed on the model, and b) automatically check them on the produced
Digital Twin model. The four properties we checked are:

Property 1: If the Go to Initial button is clickable, clicking it leads to the robot
being positioned in the initial position.



154 T. Margaria and A. Schieweck

Fig. 11. GEAR results: States Q2 and Q4, highlighted in green, fulfill the constraint.

(["Go_To_Initial_Position/Success"]

"Robot_Position/Success (-0.5,_-223.15, 293.95)")

OR

"Go_To_Initial_Position/Element_Not_Found"

Property 2: If the Go to Test button is clickable, clicking it leads to the robot
being positioned in the test position.

(["Go_To_Test_Position/Success"]

"Robot_Position/Success (243.24, -223.15, 50.79)")

OR

"Go_To_Test_Position/Element_Not_Found"

Property 3: If the Go to Coordinate Input button is clickable, clicking it does
not change the position of the robot.

(

("Robot Position/Success (-0.5, -223.15, 293.95)"

["Go To Coordinate Input/Success"]

"Robot Position/Success (-0.5, -223.15, 293.95)"

)

AND

("Robot Position/Success (243.24, -223.15, 50.79)"

["Go To Coordinate Input/Success"]

"Robot Position/Success (243.24, -223.15, 50.79)"

)

AND

("Robot Position/Success (223.0, -445.0, 15.0)"

["Go To Coordinate Input/Success"]

"Robot Position/Success (223.0, -445.0, 15.0)"
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)

)

OR

"Go To Coordinate Input/Element Not Found"

Property 4: If the Cancel Coordinate Input button is clickable, clicking it does
not change the position of the robot.

(

("Robot Position/Success (-0.5, -223.15, 293.95)"

["Cancel Coordinate Input/Success"]

"Robot Position/Success (-0.5, -223.15, 293.95)"

)

AND

("Robot Position/Success (243.24, -223.15, 50.79)"

["Cancel Coordinate Input/Success"]

"Robot Position/Success (243.24, -223.15, 50.79)"

)

AND

("Robot Position/Success (223.0, -445.0, 15.0)"

["Cancel Coordinate Input/Success"]

"Robot Position/Success (223.0, -445.0, 15.0)"

)

)

OR

"Cancel Coordinate Input/Element Not Found"

As we see from the GEAR screenshot in Fig. 11, the model checker highlights
the states satisfying a property, providing good visual feedback to the user. All
these properties are fulfilled by this model. Property checking on the digital twin
can be a useful way to validate the model, making sure that it captures those
phenomena that are known to the designers.

7 Reflections and Lessons Learned

Several considerations come upon reflection on this even simple case study, espe-
cially in the context of our conversations with people interested in Digital Twins
for Cyberphysical Systems that are not computer scientists themselves. In this
group fall the recurring questions about the role of AI (Sect. 7.1), and the fact
that there are many different kinds of software models, like design models and
behavioral models (Sect. 7.2). We follow then with some reflections on two lines
of work that are central to Bengt’s and Tiziana’s connection: the genesis and
evolution of the specific AAL technology we used here (Sect. 7.3), and their work
on features and feature interactions (Sect 7.4).

7.1 AAL vs. AI

When using AAL to extract digital twins of (software) systems, we are frequently
asked:
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Can’t you use AI instead?

Resorting to AI as the all-encompassing solution to any unknown seems to
become a reflex response to any question concerning systems and their analysis.
There are at least two fundamental differences between the models produced by
AAL and those produced in AI:

– Many popular AI techniques essentially retrofit (mostly) numerical and/or
probabilistic models based on a data set interpreted as an input/output rela-
tion, without necessarily a relation with the real system. Even Grammatical
Evolution [44], which is based on a BNF-style description of a system’s poten-
tial actions, essentially tries to match an I/O behaviour provided in a file by
first guessing and then recombining populations of alternative “programs”
that approximate the real system.
Instead, AAL systematically explores the real system (or the part of the sys-
tem one decides to observe, as this is steered through the Learning Alphabet)
and provides the minimal model that reflects faithfully all the observations.
In this sense, there is an aspect of tightness to the system that the AAL
approach has and the AI one does not.

– AI models that replicate systems are themselves mostly black boxes, and even
the typical tools used for Explainable AI, like SHAP [25], provide percentages
of correlation between certain inputs and certain outputs, but do not provide
an analyzable, even enactable model of the system itself like the model in
Fig. 10. The value of this Mealy machine as an explanation model, for any
What-If analysis, is in a totally different class of confidence and evidence.

7.2 Design Models vs. Behavioural Models

Other frequent questions are:

Isn’t the software the model itself?
Isn’t the process diagram the model?
Why do you need a digital twin of software?

There is still a widespread belief that software does not need models, that soft-
ware “is” per se modelling (because it is inherently immaterial, in contrast to the
tangible things in manufacturing and production, or even communications, as
communication tools come with apparati like transmitters, receivers, etc. In some
circles, software is met in the form of simulators, and the simulation software is
then identified itself as “the model”. The fundamental distinctions between the
simulation tool, the simulation run, the data, and the aggregated model from
many runs are more or less unconsciously blurred.

In the same line of thought:

If the software is not the model, then the diagrams “are” the model, right?
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The graphical presentation of process models and workflows induces some to see
them as fundamentally different from code, and thus from software. A recipe like
a DIME or BPMN process model is then taken as “being the model”, which is
true in a behaviour design sense, but not in the sense of exposing the semantic
effects of the execution.

The difference between design-time models of behaviour and semantic and
runtime or execution models in this guise was showcased and discussed in [38], on
the case study concerning a prior version of the Online Conference System (OCS)
published as part of the FMICS Working Group state of the art book [10]. There,
we used the AAL technologies described in [15] in order to extract by learning
the behaviour of a Web application that implements a conference management
system. In that case, AAL was applied to a purely cyber system, i.e., not physical
at all, and used to show that various properties that were requirements at design
time were indeed satisfied by the implemented and deployed system.

This brings us to the specific learning technology used, then and now, in our
work. This also brings us to the connection and collaboration with Bengt.

7.3 Learning Technology

We use here a new version of the LearnLib Studio which is now a specialized
Cinco-product for defining LearnLib experiments through a custom MDD editor.
We specifically used the TTT algorithm of [18]. However, the AAL technology
has a long history and it has benefited greatly from Bengt Jonsson’s research
and work. The original LearnLib [40] was greatly enhanced in collaboration with
Bengt and his group during the Connect EU project [41], leading to the first
applications within FMICS [31] and to dynamic testing [42]. It was then followed
by the Next Generation LearnLib (NGLL) [36], with full details described in [46],
and more recently by the Open Source Learn Lib of [19]. This LearnLib has
made school, becoming one of the most downloaded and widely used tools for
Automata Learning, with the ALEX tool and others like LearnLib Studio as
further derivatives. The LearnLib materialized in a very successful tool set the
first observations about knowledge based relevance filtering for an efficient use of
testing in order to save order of magnitudes of tests when we started to explore
model extraction based on systematic execution as a way to extract compact
models from deployed systems [17,29,30].

Specifically in AAL, or regular inferences, Bengt and his group contributed
greatly to the development of algorithms and optimizations, e.g. exploring the
connection between the connection between conformance testing and regular
inference [5] back in 2005, then working on the inferring semantic interfaces
for data structures [13] and on learning canonical register automata [16], and
here most recently combining black-box and white-box techniques [14], until the
more recent works on active learning for extended finite state machines [9], in
the quest to solve the CONNECT challenges [20] and more.
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7.4 Features and Feature Interaction

Also without addressing the topic of humans in the loop and human-machine col-
laboration that cobots address, it is clear that manufacturing systems deal with
system interactions. In the language of coordination models, some of these inter-
actions can be orchestrated, i.e. the interactions are designed in their entirety and
can be to a good extent linearized to workflow-deterministic projections onto the
individual actors, but this is not always the case. Already two UR3 that collab-
orate, e.g., to hold and weld a piece could give rise to more diverse interactions
if they are considered independent systems that happen to cooperate. This is
the realm of choreographies, akin to collections of independent (state) machines
that only loosely coordinate. Sometimes one even observes emergent behaviours,
that, from the point of view of the modelling, appear spontaneous. In this con-
text, it is frequent to observe so called feature interactions, where independent
behaviours that are individually correct and consistent become inconsistent and
face ambiguous choices if they have to coexist. In a sense, coupling due by the
fact that these behaviours are brought in the same context, often being one the
context of the other, exposes inconsistencies for which there is often no good
decision policy.

The phenomenon is observed in the robotics domain, where collisions happen
because the individual rules and policies driving one of the moving components
clash with the others. Early discovery of such interactions is one of the uses
of digital twins, ideally with the ability to identify whether such situations are
possible, and even better with the ability to reduce the model to a small or even
minimal model that models precisely and only the interference potential.

Here, the ability to produce faithful digital twins though AAL, together with
the ability to analyze the models by means of model checking is a real asset.
Having fully fledged formal models like the Mealy Machine of our case or richer
models, like the register automata, may for example help identify certain lan-
guage elements of the learning alphabet as irrelevant, and produce, either by
re-learning or by model abstraction, smaller versions that still correctly charac-
terize the problem. This is difficult and expensive to achieve both by traditional
testing and by AI. Some reinforcement learning approaches start to bear fruits,
and it is noteworthy in this context that the principle of RL, with an omniscient
teacher (mostly simulated by annotations) is similar to AAL’s oracle, with its
implementations by query-answering mechanisms.

The feature interaction problem was first discovered in the late1990 s in the
telecommunications domain. Also here we can look back at joint contributions
with Bengt and some of his students. Started with their modular specification of
telephone services within first-order linear-time temporal logic [6] and their for-
malization of Service Independent Building Blocks [39] in that style, this line of
work brought us to an intense collaboration in 1998–2001, leading to a sabbati-
cal semester in Uppsala. The approach for incremental requirement specification
for evolving systems [22] based on that modular modelling style [23]. Since 1994
we were already working on projects with Siemens concerning the use of formal
models for Intelligent Network services. They included model hierarchy [47] and
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constraint techniques to specify service properties . In particular we produced
what today would be called a DSL-based, model driven and generative design
environment for the agile development of IN Services [48]. Soon later we added
an automated service evolution technology based on constraint-driven modifica-
tion of the business logic [8], so that at the time of the cooperation with Bengt
in Uppsala both groups happened to have independent yet fully aligned mod-
elling styles and technology stacks. This made the collaboration possible, easier,
and productive. Eight years later, at the onset of service oriented computing,
an overview paper cheekily stated that we had 10 year experience in a field that
was 3 years old [35], a claim substantiated by all this experience in research and
industrial products with real impact.

Thinking in features has played a significant role in two other contexts: when
modelling, then learning and analyzing the Online Conference System already
mentioned [24], and later in the approach to constraint-based variability mod-
eling framework [45]. This framework has a much wider applicability than the
original feature models, as it targets generic (software and systems) product
lines. Families of artifacts are first described in terms of collection of features,
then composed, selected and analaysed in terms of their behavioral properties
specified as temporal logic constraints. It is this last evolution of our feature-
oriented thinking that is closest to the approach we intend to adopt and apply to
both the digital twins, in terms of behavioural models, and to the digital thread
in terms of end-to-end integration and composition of software and systems.

8 Conclusion and Outlook

In this paper we applied active automata learning experiments to a scenario in
remote robotics control, based on the UR family of collaborative robots. While
this is a small example, the capability to retrofit Digital Twin models to the
behaviour of cyberphysical systems can potentially pave the way to capturing
the behaviour of legacy (control) applications in smart manufacturing by means
of models amenable to formal analysis and model based testing. We used here
the LearnLib Studio for the Automata learning, and the GEAR model checker
to verify a few properties of the Mealy machine obtained in the learning phase.

We are currently extending the functionality of the case study by connecting
the robot also via ROS, the Robot Operating System popular in the education
and research community for CPS, with the goal to provide many versions of the
demonstrator and to be able to profile the various technologies involved, some-
times as alternatives like ROS vs. TCP socket. Thinking in features and dealing
with feature interaction when having more than one independent subsystem is
a further direction of research.

We also reflected on many dimensions of modelling and technology choice
stemming from the two contexts in which we see us immersed: the Confirm
Research Centre on Smart Manufacturing, with its challenges as a multicul-
tural, multidisciplinary and multisectoral community of research and practice,
and the personal history and experience. The Confirm context, in particular
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the conversation with excellent partners with very different background, lead us
to have to rethink, explicitly formulate, and many times tangibly demonstrate
rather than explain assumptions and facts that are not common knowledge nor
obviously accepted outside of computer science. Here we count the omnipresence
of AI as the go-to solution, with the need to justify why one is adopting a dif-
ferent approach, and the understanding of software, its facets and its role in a
wider context of production floors. On the personal experience, having worked
with many industry sectors and with many collaborators turns out to be a great
asset. Beside the familiarity with automata learning, particularly the experience
in modelling of telecommunication systems and reasoning about feature inter-
actions has proven useful in recent collaborations also in Confirm, and is a nice
benefit that we now draw, stemming from the pleasant and productive collabo-
ration with Bengt and his group in the past 23 years. It is nice to see that there
is a long term effect also for collaborations in a research that seemed to be a
niche topic at some point.
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Abstract. In this paper, we revisit the concept of never-stop learning, a
combination of active automata learning and runtime monitoring. Pub-
lished research focuses on regular systems and became practical with the
development of the TTT algorithm and its redundancy-free approach of
storing information. With the recent development of our active learn-
ing algorithm for systems of procedural automata (SPAs), we can infer
instrumented context-free/procedural systems via a simultaneous infer-
ence of individual (regular) procedures. In this paper, we combine these
two concepts to lift the concept of never-stop (or life-long) learning to
the level of context-free/procedural systems. In an empirical evaluation
we show that using the TTT algorithm for procedural learning allows
us to tackle internal (procedural) redundancy whereas the inherent com-
positional structure and instrumentation of our SPA approach allows us
to tackle external (global) redundancy. A comparison with the alterna-
tive formalism of visibly pushdown automata (VPAs) shows that our
approach performs better by multiple orders of magnitude, making it a
valuable choice for practical never-stop context-free learning.

Keywords: Active automata learning · Never-stop learning ·
Procedural systems · Context-free languages · Runtime verification

1 Introduction

What first touched me (Bernhard), and what I will never forget, was Bengt
playing Chopin at my supervisor’s home back in 1985. Our scientific connec-
tion built up much later, when I came to Uppsala for sabbatical in 1999 and
served on the ASTEC1 advisory board in the beginning of this millennium. A
few years later, Bengt joined our work on active automata learning [6–8,27,33]
pushing towards more expressive representation languages, in particular, for cap-
turing data. Together with, in particular, Falk Howar, who recently came back to
our university as associate professor, we extended automata learning to register
automata, a variant of automata capable of expressing dataflow [15,16,20,26–
28,36]. This turned out to be a major breakthrough, paving the way towards cap-
turing even more expressive automata (programming language-like) formalisms
with the help of SMT solving [17–19]. Learning recursive structures, so-called

1 The Swedish ....
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Fig. 1. Never-stop learning approach, proposed by Bertolino et al. [9] (source: [31])

procedural automata [12–14,21,22], is another research direction towards the
goal of learning program-like structures [30,40].

In this paper, we revisit active automata learning (AAL) of recursive
structures [22] under the perspective of never-stop or life-long learning (cf.
Fig. 1) which is a paradigm jointly developed with Bengt in the CONNECT
project [1,5,9,10,27,33]. The main idea behind never-stop or life-long learning
is to instrument the (potentially in-production) system with a monitoring mech-
anism that observes and controls its runs on the basis of previously learned
hypothesis models. Whenever the monitor recognizes a discrepancy between the
current hypothesis model and the system (a so-called counterexample), we have
detected either an error in the system or (the focus of this paper) an error
in the hypothesis model in which case the monitored trace can be fed to the
learner in order to refine the model and monitor. After hypothesis refinement
the life-long learning process then continues with the next monitoring phase.
This approach, which is characterized by its never-stopping, user-driven coun-
terexample search, has shown promising results in a number of software projects
in the past [9,33,38,41].

Life-long learning comes with a challenge: counterexamples may be exces-
sively long as they typically arise as unexpected continuations of days-long nor-
mal operating. “Classical” AAL algorithms are not able to deal with this charac-
teristic as their complexity depends (a least) linearly on the length of counterex-
amples. The TTT algorithm [31] has been specifically designed to address this
problem. Its redundancy-free way of storing only relevant information through-
out the learning process reduces the dependency on the length of counterexam-
ples to a logarithmic factor, which turns life-long (never-stop) learning into a
practical approach.
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In [22] we show how learning of context-free systems, formalized by systems
of procedural automata (SPAs), can be reduced to the regular learning of the
constituent procedural automata in a modular fashion by

– projecting global counterexamples of the SPA to local counterexamples of the
affected procedural automata, and

– expanding local queries of procedural automata to global queries of the entire
SPA.

In this paper, we investigate the impact and practicality of the life-long learning
approach for SPA learning. It turns out that the benefits of the SPA formalism
are two-fold: On the one hand, being parameterizable regarding procedural learn-
ers allows us to inherit properties of regular learners such as TTT that enable us
to tackle internal redundancy in long counterexamples. On the other hand, the
modularity of SPA learning can be exploited to extract information from global
counterexamples to dynamically optimize internal datastructures on-the-fly and
tackle external redundancy.

Our evaluation further compares the performance of SPA learning with learn-
ing of visibly pushdown automata (VPAs) [2,3,29,35]. The difference is enor-
mous. Admittedly, VPA learning is technically more general than SPA learning.
On the other hand, we consider SPAs more practical, not only because of the
mentioned performance difference, but also because they are much easier to
comprehend and to work with.2

Outline. Sections 2 and 3 summarize the main definitions and concepts of [22]:
Systems of procedural automata (SPAs) and the approach to infer these context-
free systems by means of simultaneous inference of the individual (regular) pro-
cedures. In Sect. 4 we present the empirical evaluation of our approach and com-
pare it with competing algorithms in this field of research. Section 5 concludes
the paper and gives an outlook on possible future work.

2 Preliminaries

In this chapter we introduce the preliminary definitions and concepts for our
procedural learning algorithm.

Active automata learning describes the inference of an unknown formal lan-
guage by means of interacting with some form of teacher. In practice, one often
associates a word of the language, i.e. a sequence of symbols, with a run of a
system, i.e. a sequence of interactions, so that the inferred language of a system
describes all successful executions of the system. Many AAL algorithms follow
the minimally adequate teacher (MAT) framework introduced by Angluin [4],
which operates in two alternating phases:

2 See https://github.com/LearnLib/learnlib-spa for examples.

https://github.com/LearnLib/learnlib-spa


Never-Stop Context-Free Learning 167

1. Exploration: The learning algorithm (or simply learner) poses membership
queries (words over a predefined alphabet) to a membership oracle to test
if a word is a member of the unknown language. They are often answered
by testing/executing the word on the software-system under learning (SUL).
The responses to these queries are then used by the learner to construct a
hypothesis of the SUL.

2. Verification: Once a hypothesis is constructed, an equivalence query is posed
to an equivalence oracle to decide whether or not the constructed hypothesis
is equivalent to the SUL. If it is, the learning process terminates. If it is
not, the equivalence query returns a counterexample (again, a word over an
alphabet) which can be used to refine the previous hypothesis and start a
new exploration phase.

While there have been plenty of success stories for AAL in the past, the process
itself is neither correct nor complete because the black-box equivalence problem
is in general undecidable [37]. Thus finding good approximations for equivalence
oracles is of high importance for the practicality of AAL. Prominent are heuristics
known from model-based testing [6,11]. An alternative is the life-long learning
approach discussed in this paper.

The formal foundation of our SPAs are context-free grammars [24, Chapter
5]. For a context-free grammar, we interpret terminal symbols as atomic sys-
tem actions and non-terminal symbols as invocations of procedures because the
expansion process of a non-terminal effectively resembles the “execution” of a
procedure. Key to our learning algorithm is an instrumentation that makes the
start and the end of procedures observable. Formally, this can be achieved by
enhancing the production rules of the context-free grammar (instrumenting the
SUL) with new observable symbols at the start and end of each production rule.
An example of this instrumentation is given in Fig. 2.

Fig. 2. Left: production rules of an exemplary context-free grammar for palindromes
over the three terminal symbols a, b, c, using two non-terminal symbols F and G.
Right: production rules of the instrumented system, using the procedures F and G as
observable call symbols and introducing an observable return symbol R.

To better distinguish between the different kinds of symbols and their respective
roles, we introduce the notion of an SPA alphabet :
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Definition 1 (SPA alphabet). An SPA alphabet Σ = Σcall � Σint � {r} is
the disjoint union of three finite sets, where Σcall denotes the call alphabet, Σint

denotes the internal alphabet and r denotes the return symbol.

The SPA alphabet for the palindrome example in Fig. 2 is given by
Σ = {F,G} � {a, b, c} � {R} and we write w ∈ Σ∗ to denote words over an SPA
alphabet. In the following, we differentiate between global words of an (instru-
mented) system and procedural words, where we use ̂ to denote the procedural
context. By adding (or removing) ̂ from symbols and words, we switch between
the two contexts. Given an SPA alphabet, we define (systems of) procedural
automata as follows:

Definition 2 (Procedural automaton). Let Σ be an SPA alphabet and
c ∈ Σcall denote a procedure. A procedural automaton for procedure c over Σ
is a deterministic finite automaton P c = (Qc, qc0, δ

c, Qc
F ), where

– Qc denotes the finite, non-empty set of states,
– qc0 ∈ Qc denotes the initial state,
– δc : Qc × ( ̂Σcall � ̂Σint) → Qc denotes the transition function, and
– Qc

F ⊆ Qc denotes the set of accepting states.

We define L(P c) as the language of P c, i.e. the set of all accepted words of P c.

Definition 3 (System of procedural automata). Let Σ be an SPA alphabet
with Σcall = {c1, . . . , cq}. A system of procedural automata S over Σ is given
by the tuple of procedural automata (P c1 , . . . , P cq ) such that for each call symbol
there exists a corresponding procedural automaton. The initial procedure of S is
denoted as c0 ∈ Σcall. We define L(S) as the language of S, i.e., the set of all
words generated by the instrumented grammar induced by P c1 , . . . , P cq and c0.

In essence, a procedural automaton resembles a deterministic finite automa-
ton (DFA) that accepts the language of right-hand sides of (non-instrumented)
production-rules for a specific non-terminal, where call symbols represent the cor-
responding non-terminals. Consequently, an SPA aggregates several production-
rules that in total resemble an automaton-based representation of a context-free
grammar (CFG). An SPA representation of the context-free grammar of Fig. 2
(left) is shown in Fig. 3.

Our proposed instrumentation allows us to deal with the different levels of
observability of procedural invocations: In the DFA interpretation, the (non-
terminal) call symbols need to be observable, whereas as in the CFG inter-
pretation they are not. Therefore, we define the language of an SPA via its
instrumented grammar interpretation (cf. Fig. 2, right) that allows us to observe
procedural information that can be projected to an observable representation
of the original production rule (cf. Sect. 3.2). Our projection exploits that any
instrumented word of an SPA S is always well-matched, i.e. every (instrumented)
call-symbol is at some point followed by its matching return symbol and vice
versa.
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Fig. 3. An SPA representation of the context-free grammar of Fig. 2 with initial proce-
dure F . Sink states and the corresponding transitions have been omitted for readability.

3 Compositional Learning

This chapter briefly summarizes from [22] the main concepts of our SPA learning
algorithm. By construction, an SPA is characterized by its individual procedures.
Therefore, the main task of inferring an SPA is to infer each of the individual
procedural automata, which on its own is a regular inference problem. Our SPA
learner coordinates individual regular learning algorithms (one for each proce-
dure) and transforms information between the local procedural learners and the
global (instrumented) context-free SUL.

Our instrumentation allows us for every procedural invocation p occurring in
a successful run of the instrumented SUL to extract three fragments:

– an access sequence as[p] (the prefix of the run reaching the call symbol of p)
– a terminating sequence ts[p] (the subsequence of the run between the call

symbol of p and its matching return symbol), and
– a return sequence rs[p] (the suffix of the run starting from the matching return

symbol).

Using these sequences we can switch between the local view of a procedural
learner and the global view comprising the entire SUL via membership query
expansion and counterexample projection.

3.1 Membership Query Expansion

During the local exploration phases, each regular learning algorithm poses mem-
bership queries which need to be answered by the SUL. However, each local
learner only operates on a local view of a single procedure and not the actual
global context-free system at hand. We solve this issue by translating local queries
to global queries: We scan a (local) query and replace every single call symbol
with a guaranteed successful run of the corresponding procedure, which can be
constructed by using its terminating sequence. In order to embed the query itself
in the correct context, we prepend the access sequence and append the return
sequence of the procedure whose learner is posing the query. The translated
query can then be posed to the global system and the response to the query is
simply returned to the local learner. An example of this expansion step is shown
in Fig. 4.
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Fig. 4. The expansion of a local query of a procedural automaton p to a global query
of the instrumented SUL.

3.2 Counterexample Projection

Upon hypothesis stabilization, the hypothesis SPA is checked for equivalence
against the SUL, which may yield a global counterexample exposing in-equivalent
behavior. The global counterexample can be analyzed to pinpoint a single pro-
cedure of the hypothesis SPA that behaves differently from its counterpart in
the SUL. In order to refine the identified procedure, the concerned procedu-
ral sub-sequence of the global counterexample needs to be projected to a local
context because it may contain nested procedural invocations which the local
learner cannot process properly. This projection replaces every instrumented,
well-matched occurrence of a procedural invocation with a single corresponding
(non-instrumented) call symbol. This allows us to transfer information from the
global context to the local context of the procedure and to construct a valid,
local counterexample. An example of this projection step is shown in Fig. 5:

Fig. 5. The projection of a global counterexample in which c2 has been identified as the
violating procedure to a local counterexample for the concerned procedural automaton.

3.3 Sequence Optimizations

An integral property of our approach is that the projection step does not depend
on a particular instance of an access, terminating or return sequence. They can
be replaced on-the-fly throughout the learning process. This enables us to use
two major optimization techniques that allow us to tackle the redundancy related
problems encountered in the never-stop learning setting:

– Whenever we observe a shorter terminating sequence or a pair of shorter
access and return sequences, we can replace the currently used ones and
continue using the shortest found so far for future query expansion steps.
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– Since we are inferring context-free systems, every occurrence of a nested,
procedural invocation in any of the three sequences can be replaced by
any valid terminating sequence without impacting the validity of the three
sequences. By regularly replacing nested invocations with shortest terminat-
ing sequences, we can construct even shorter access, terminating and return
sequences than we could originally extract from counterexamples.

As we show in Sect. 4.2, this translation has the potential to eliminate a major-
ity of the external redundancy introduced in the never-stop learning scenario.
Together with using TTT as a procedural learner to tackle the redundancy within
local counterexamples, we can successfully tackle the problems of long counterex-
amples in the never-stop learning context and allow a practical application of
this concept for context-free systems.

4 Experimental Evaluation

In this section we present our experimental setup and obtained results. For our
experimental evaluation we looked at three different setups:

– Section 4.1 illustrates the effect of internal redundancy by comparing the per-
formance of different regular learners for inferring the individual procedural
automata in the context of global SPA learning.

– Section 4.2 illustrates the impact of external redundancy when using the best
regular learning algorithm, i.e. the impact of excessive lengths of counterex-
ample prefixes until an error is observed.

– Section 4.3 compares our approach with the formalism of visibly pushdown
automata (VPAs) by Alur et al. [2,3], to our knowledge the only compara-
ble formalism for which active automata learning algorithms have also been
developed in the past [29,35].

For running the experiments, we used the open-source AAL library LearnLib [32]
(version 0.13.1).

4.1 Inference Performance with High Internal Redundancy

For analyzing the performance of different SPA configurations, we conducted a
series of 10 independent experiments and present in the following the averaged
results of our observed data. Each experiment is characterized by a randomly
generated SUL (see below) and an equivalence oracle that returns (local) coun-
terexamples with a minimum length lcel ∈ {0, 25, . . . , 1000} to simulate internal
redundancy. For each of the possible values of lcel, we investigated five different
algorithms as local learners: L∗, the algorithm by Angluin [4]; KV, the L∗ vari-
ant of Kearns and Vazirani [34]; RS, the L∗ variant using the counterexample
analysis of Rivest and Schapire [39]; DT, the discrimination tree algorithm3 by
Howar [25] and TTT, the algorithm by Isberner et al. [31].
3 Sometimes also called “Observation Pack” algorithm.
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System Under Learning. For each experiment, we constructed an SPA alpha-
bet with 10 call symbols, 25 internal symbols and the single return symbol.
With this alphabet, we generated 10 random procedural automata (one for each
call symbol) with 50 states each and selected an initial start procedure by ran-
domly sampling a procedure from the call alphabet. From these components
we constructed our random SPA-SUL which, in summary, had the following
properties: |Σ| = 36 (|Σcall| = 10, |Σint| = 25, |{r}| = 1) and |S| = 500
(|P c| = 50 ∀c ∈ Σcall).

During the construction of the SPA-SUL we also made sure that each pro-
cedural automaton was reachable from the chosen start procedure and each
procedural automaton had a finite terminating sequence, so that our generated
SUL represented a valid procedural system.

Counterexample Generation. For constructing local counterexamples of a
specific length, we took the previously generated SPA-SUL as ground truth and
compared this system in each verification step to the hypotheses returned by
the learners. We randomly chose a procedural automaton of the SPA hypothesis
which was not yet equivalent to the corresponding SUL procedure and con-
structed a counterexample automaton.4 To generate a counterexample, we ran-
domly sampled words of the required length (or longer if no exact counterexample
existed) that were accepted by this automaton. These (local) counterexamples
were then expanded to global counterexamples according to our expansion step
(cf. Fig. 4) to constitute a proper global counterexample. To minimize the bias
introduced by the expansion step and focus on the local redundancy aspect, we
used shortest access, terminating and return sequences for this expansion.

Measurements. We investigated the following properties:

– GCEL/LCEL ratio: The global counterexample length (GCEL) to local
counterexample length (LCEL) ratio to gauge if and how much the different
configurations were affected by the expansion step during counterexample
generation, which could potentially bias the results.

– PCEL The average projected counterexample length, i.e. the length of coun-
terexamples that were forwarded to the local learning algorithms to measure
any deviation from the lcel value.

– Queries [#]: The average combined number of membership queries posed
by the SPA learner instance during (global) counterexample analysis and by
the local learners during (local) hypotheses construction.

– Symbols [#]: The average accumulated number of symbols of each posed
membership query.

4 The product-automaton of the selected hypothesis procedure and its corresponding
SUL procedure with symmetric difference (i.e., XOR) as acceptance criterion.
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Results. Figure 6 shows our collected data. In Fig. 6a, we can see that for
most lcel values the expansion step of local counterexamples to global ones
added a symbol overhead of about 42% to each counterexample. What is more
important is the fact that the overhead was almost identical for all local learner
variants. This allows us to accurately compare the remaining data because each
configuration was affected to a similar degree.

Figure 6b shows that the intended redundancy directly transfers to the local
learners since the length of the projected counterexamples scales linearly with
the lcel value. The slope of the averaged PCEL value is slightly below the value
of 1 (most notably for the L∗ configuration) because a global counterexample
may additionally expose in-equivalent behavior outside of the procedure that
was selected for exposing in-equality (e.g. in its access and return sequence).
Since we have used shortest access, terminating and return sequences during
construction, these cases yield shorter local counterexamples and thus lower the
average PCEL value. However, the overall redundancy at the local learner level
still allows one to accurately compare the performance of the different local
learning algorithms.

Figure 6c shows the number of queries each configuration posed. The classic
L∗ algorithm uses every prefix of a counterexample for constructing subsequent
procedural hypotheses. Consequently, the longer the counterexamples are, the
more prefixes are added to its internal datastructure, resulting in more queries
being posed as the counterexample length increased. The other learners extract
from every valid counterexample only a single prefix or suffix, resulting in either
a single new column in the observation table or in a single new node in the
discrimination tree. As a result, after a short saturation phase the number of
total membership queries for these configurations remained almost unaffected by
the increase of local counterexample length. Of the four remaining algorithms,
KV performed worst and TTT performed best.

Figure 6d shows the accumulated number of symbols of all posed membership
queries. For each algorithm we can see, that with the increase of counterexample
length, the number of posed symbols also increased. A slight increase was to be
expected, since analyzing longer (global and local) counterexamples results in
longer queries being posed. The drastic increase of L∗ comes from the fact that
this learner also posed significantly more queries with increasing counterexam-
ple length. For the remaining learners we can see, that for lcel values greater
than 250, the increase stabilized and longer counterexamples no longer affected
the number of posed symbols unexpectedly. For the TTT algorithm, we can see
that the impact of redundancy introduced by the counterexamples was tack-
led much earlier compared to the other algorithms, since the increase of posed
symbols in the range of 0 ≤ lcel ≤ 250 was much lower than for any other
algorithm. For counterexamples of greater length, TTT performed similar to the
other algorithms. This results in the best performance throughout all counterex-
ample lengths, with less than 50% of the amount of posed symbols compared to
the next best algorithm (DT).
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Overall, the different configurations showed characteristics similar to their
regular versions. This was to be expected since the inference process of an SPA
is decomposed into a simultaneous inference of the regular procedures. With
regard to dealing with internal redundancy, the data supports the notion of
“inheritance” of the characteristics of the regular learning algorithms to the
context-free case. In particular, TTT allows one to successfully tackle the prob-
lem of internal redundancy in context-free systems and therefore makes it a
promising candidate to further investigate its performance in the context of
external redundancy.

4.2 Inference Performance with High External Redundancy

In this series, we scaled the amount of input symbols before a counterexam-
ple for a procedure was observed (see below) to better simulate the structure
of counterexamples in a monitor-like environment. We investigated four fixed
configurations of the TTT learner (lcel ∈ {250, 500, 750, 1000}) to inspect the
correlation between local and global redundancy and scaled the external redun-
dancy length (erl ∈ {102, 103, . . . , 106}) of the (local) counterexample. Again, we
conducted 10 independent experiments and present in the following the averaged
results.

System Under Learning. For the system under learning we used the same
SPA-SULs from Sect. 4.1.

Counterexample Generation. For constructing counterexamples with a cer-
tain (global) overhead until an observable error occurred, we first generated a
random successful run of the main procedure, with a fixed minimum length of 25
symbols and containing at least one call symbol (henceforth expansion point).
For each expansion point in the run, we repeated this step (now generating a ran-
dom successful run for the corresponding procedure of the expansion point) and
replaced the expansion point with the generated run. We continued these gener-
ation/replacement steps recursively. Once the global trace reached the required
minimal length, we expanded the currently processed expansion point with a
valid counterexample trace (cf. Sect. 4.1) and replaced each pending expansion
point with a terminating sequence (also with minimal length 25) containing only
internal symbols to stop the recursion process.

Measurements. We investigated the following properties:

– GCEL/ERL ratio: The global counterexample length (GCEL) to external
redundancy length (ERL) ratio to measure the overhead of our expansion
step.

– PCEL The average projected counterexample length, i.e. the length of coun-
terexamples that were forwarded to the local learning algorithms to measure
how external redundancy impacts the counterexample length of the local
learners.
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– Counterexamples [#] (pos./neg.): The average number of generated
(global) counterexamples until the inference process terminated, split into
positive and negative ones.

– Queries [#] (normalized): The average number of posed queries through-
out the learning process. Here, we differentiate between the combined (cf.
Sect. 4.1) and the normalized number of posed queries, which only includes
queries posed by the local learning algorithms and excludes queries from the
global counterexample analysis.

– Symbols [#] (normalized): The average accumulated number of sym-
bols each posed membership query contained, also split between com-
bined/normalized queries.

Results. Figures 7 and 8 show our collected data. In Fig. 7a we see that espe-
cially for small erl values, our expansion step significantly impacted the global
counterexample length. This was to be expected, since a single expansion (25
symbols) already constitutes a quarter of the external redundancy length. How-
ever, with ongoing increments of the erl value this overhead became proportion-
ally smaller, eventually stagnating around a value of 6 for erl values greater than
103. Most importantly, the expansion step again impacts every configuration to
a similar degree, which allows us to adequately compare the remaining data.

With the increasing amount of the erl value we can see in Fig. 7b that the
average length of the projected counterexamples decreased and converged to a
value of approximately 25. Recall that after the redundancy threshold has been
met, the counterexample generation inserted the (procedural) counterexample
and replaced the pending expansion points with procedural invocations ranging
over 25 symbols. Here, we can see the potential of our SPA approach to extract
and utilize additional information available in a counterexample: While the orig-
inal counterexample was embedded in local redundancy (lcel ∈ {250, . . . , 1000}),
the more global information was available, the more procedural information
(invocations ranging over 25 symbols) could be used for individual procedu-
ral refinements. We can further see the impact of this additional information in
the number of global counterexamples required.

In Figs. 7c and 7d we can see that with increasing erl values (and conse-
quently increasing counterexample length) the counterexamples held more infor-
mation as fewer were required for refining the hypotheses. This trend culminated
in erl values of 105 and 106 for which only a single positive counterexample was
sufficient for inferring the complete SPA-SUL in all configurations. An interest-
ing characteristic in this experimental series is that for all erl values only positive
counterexamples have been found. We will see this impacting the global query
performance below.

In Figs. 8a and 8b we see the number of normalized queries and the number
of symbols therein, i.e. the number of queries and symbols that the local, regular
learning algorithms posed. For growing erl values this value slightly decreased
which corresponds to the observations of Fig. 7b: The shorter the average pro-
jected counterexamples are, the fewer queries are required for their analysis. The
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slight variance is explained by the random nature of the systems as well as the
random counterexample generation.

The number of symbols correlates to the number of counterexamples (cf.
Fig. 7c): The fewer counterexamples were encountered throughout the inference
process, the less information was available for potentially improving access, ter-
minating or return sequences. In its most extreme form, having only a single
counterexample left the learner with exactly these information for embedding
local queries into a global context. The constant performance for erl values
greater than 103 further shows that, once the essential information about access-
ing, terminating and returning from a procedure was known to our approach,
any additional redundancy did not affect its (local) inference performance.

Important to note here is that the number of (normalized) queries and sym-
bols almost matches the data of Figs. 6c and 6d. Compared to the previous setup
(cf. Sect. 4.1) the local learners required a nearly identical amount of queries
which consisted of about twice the amount of symbols. Our concept of projec-
tion and expansion allows the local learning algorithms to nearly ignore all of
the external redundancy.

In Figs. 8c and 8d we see that the query performance and symbol perfor-
mance of the global learning algorithm is identical to the normalized case. This
is because our SPA learner is able to analyze positive counterexamples without
posing any additional queries to the SUL. As one can see this is a highly useful
property in the never-stop learning setting where counterexamples with such
high external redundancy are encountered regularly.

We want to emphasize the fact that, even with a single counterexample con-
taining over a million symbols, the core inference process (cf. Figures 8a and 8b)
almost matched the performance of a perfect environment (cf. Figures 6c and 6d):
The idea of sequence optimization (cf. Sect. 3.3) almost eliminated any impact
of external redundancy introduced in this experimental setup. To demonstrate
the impact of our translation layer, we have run the same benchmark with a
non-optimizing version of our algorithm which simply used the first access, ter-
minating and return sequences encountered during the learning process. The
results are shown in Fig. 95. These results are highly promising for never-stop
learning in the context-free scenario.

Admittedly, only encountering positive counterexamples benefited the
(global) performance of our SPA learner. Our learner analyzes negative coun-
terexamples in a binary-search fashion which adds a logarithmic overhead regard-
ing query complexity. While this makes our approach competitive for this sce-
nario as well, we are currently also investigating techniques (especially from the
field of runtime monitoring) to further optimize its performance in this regard.

4.3 A Comparison to Visibly Pushdown Automata

This section compares our approach with the formalism of visibly pushdown
automata by Alur et al. [2,3]. To our knowledge this is the only comparable for-

5 The identical query performance is skipped.
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Fig. 9. Comparison of the optimizing and non-optimizing version of our approach for
the external redundancy benchmark.

malism for which active automata learning algorithms have also been developed
in the past [29,35].

In order to construct an experimental setup similar to Sects. 4.1 and 4.2, we
would first have to transform our SPA to a corresponding VPA representation.
This was unfeasible, due to a potential state explosion in the order of 5010 states.
To avoid this state explosion, we chose to generate a procedural characterization
set from the SPAs (see below). The VPAs learned on this basis are only guaran-
teed to approximate the full SPA behavior, but the results are clearly sufficient to
make our point: The – admittedly slightly less general – SPA approach is by far
more efficient than the VPA approach. As before, we conducted 10 independent
experiments, for which we present the averaged data.

System Under Learning. We used the method of Sect. 4.1 to construct our
SULs. However, due to runtime and memory constraints, we only generated
procedural automata with 10 states, so that the final dimensions of our SPA-
SUL in this setup were: |Σ| = 36 and |S| = 100.

Counterexample Generation. For constructing counterexamples, we took
the previously generated SPA-SUL as ground truth and computed a procedural
characterizing set (PCS): For each procedural automaton, we computed a local
characterizing set (via the Wp method [23]) and used the concept of query expan-
sion (cf. Fig. 4) to transform the local characterizing words to global ones. For
this transformation, we used shortest access, terminating and return sequences.
The PCS was then constructed by the union of all the (expanded) local character-
izing sets. For finding counterexamples during the verification phase, we checked
each word in the PCS, compared the expected output with the hypothesis out-
put and returned the currently inspected word whenever there was a mismatch
in outputs. For gauging the impact of counterexample length, we checked the
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traces of the PCS from shortest to longest (ShoLo variant) and from longest to
shortest (LoSho variant).

Measurements. We investigated the following properties:

– Hypothesis size: For SPAs, this is the sum of number of states of the pro-
cedural automata. For VPAs this is the number of locations of the visibly
pushdown automaton.

– GCEL: The average global counterexample length.
– Queries [#]: The combined number of queries, including counterexample

analysis and hypothesis exploration
– Symbols [#]: The combined number of symbols the membership queries

contained.

Results. The results are presented in Table 1. For the hypothesis sizes of the
different algorithms, one can already see interesting properties of the learning
algorithms:

– We can see that all hypotheses returned by the SPA-based learning algorithms
were of the exact size of the originally generated SPA-SUL and further exam-
ination showed, they were in fact equivalent to the SPA-SUL. As such, the
information contained in the PCS sufficed to characterize the global proce-
dural system.

– The number of locations for the VPA highly exceeded the number of proce-
dural states of the SPA. This in itself is an interesting observation, because
previously [22] we have observed the opposite: For smaller and more struc-
tured systems, VPAs usually represented a system with fewer locations.

– The hypothesis size differed between the two VPA learners. This can be
explained by the thorough counterexample analysis of the TTT variant, which
– by posing more queries – also observes more system behavior. An interest-
ing observation is that the LoSho variant, which checked (and returned) the
longer PCS traces first, resulted in generally larger hypotheses of the identical
SPA-SUL. We have yet to find a reasonable explanation for this.

In summary, these results show that the PCS is not complete for the formalism
of VPAs, as both VPA learners returned a hypothesis conforming to the PCS
but still not equivalent to the SUL-SPA (as the differences between the ShoLo
and LoSho variant showed). So a truly equivalent model will have even more
states and therefore have an even worse query performance (see below).

Regarding counterexample length we can see that in both configurations the
counterexample length was about the size of a single procedural automaton.
For the VPA learners it is interesting to see, that in both variants the average
counterexample length was almost identical. It appears that there is a lot of
variability in the VPA hypotheses because every trace of the PCS appeared to
hold relevant information for this formalism: In the ShoLo variant the later,
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Table 1. Averaged benchmark data for comparing the SPA and VPA approach. Top:
ShoLo variant; Bottom: LoSho variant.

Algorithm Hyp. Size GCEL Queries [#] Symbols [#]

SPA—DT 100.0 7.29 13015.8 100975.6

SPA—KV 100.0 7.29 12917.9 100544.8

SPA—L∗ 100.0 6.75 25464.8 220237.8

SPA—RS 100.0 6.78 19686.7 160927.8

SPA—TTT 100.0 7.27 13470.7 99906.4

VPA—DT 1833.3 10.24 384486832.4 5621996712.8

VPA—TTT 2287.1 10.57 649920703.0 9647036650.7

Algorithm Hyp. Size GCEL Queries [#] Symbols [#]

SPA—DT 100.0 13.46 13014.7 176878.5

SPA—KV 100.0 13.44 13118.0 173778.4

SPA—L∗ 100.0 13.90 26547.6 346012.2

SPA—RS 100.0 13.78 19880.3 232591.6

SPA—TTT 100.0 13.53 13483.8 157626.8

VPA—DT 2234.4 10.78 542051650.0 10922349881.9

VPA—TTT 2597.8 11.91 648607182.2 11173838769.0

longer counterexample traces raised the average GCEL value whereas in the
LoSho variant the later, shorter counterexamples lowered the GCEL value.

For the query complexity (both the number of queries and the number of
symbols therein), we can see that our SPA approach drastically outperformed
the VPA approach. The differences in the order of counterexamples (ShoLo vs.
LoSho) mainly affected the number of symbols, although for the VPA—DT
learner, the total number of queries was also affected. It is clear to see that in
both variants the number of the queries and consequently the number of symbols
posed by the VPA learners exceeded those of the SPA learners by multiple orders
of magnitude.

5 Conclusion and Future Work

Motivated by the never-stop/life-long learning approach of Bertolino et al. [9]
and the promising results of the TTT algorithm [31], we have analyzed the per-
formance of our SPA learning algorithm for context-free systems in environments
with high internal and external redundancy. Our empirical evaluation shows that
using the TTT algorithm allows us to tackle internal (procedural) redundancy,
whereas the inherent compositional structure and instrumentation of our SPA
approach allows us to tackle external (global) redundancy. In fact, our observa-
tions suggest that the structure of procedural systems may be advantageous for
learning scenarios with excessively long counterexamples like they arise in the
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monitoring-based life-long learning approach. Especially positive counterexam-
ples which allow us to skip any work on (global) counterexample analysis turned
out to have a huge beneficial impact on our benchmark performance.

Looking forward, we plan on further investigating the aspect of counterex-
amples for procedural/context-free systems. This not only covers AAL-related
concepts such as the efficient analysis of (especially negative) counterexamples,
but also counterexample generation. We believe that our formalism of SPAs is
not only limited to AAL but may also be fruitful for fields such as (context-
free) runtime monitoring and (context-free) runtime verification. We are looking
forward to combine concepts from these fields to provide a practical formal-
ism/framework for context-free runtime verification.

References

1. Aarts, F., et al.: Establishing basis for learning algorithms. Technical report,
CCSd/HAL: e-articles server (based on gBUS) [http://hal.ccsd.cnrs.fr/oai/oai.
php] (France), February 2010. http://hal.archives-ouvertes.fr/inria-00464671/en/

2. Alur, R., Kumar, V., Madhusudan, P., Viswanathan, M.: Congruences for visibly
pushdown languages. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1102–1114. Springer, Heidelberg
(2005). https://doi.org/10.1007/11523468 89

3. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the
36th annual ACM Symposium on Theory of computing, pp. 202–211. ACM (2004)

4. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

5. Bennaceur, A., et al.: Machine learning for emergent middleware. In: Moschitti,
A., Plank, B. (eds.) EternalS 2012. CCIS, vol. 379, pp. 16–29. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-45260-4 2

6. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On
the correspondence between conformance testing and regular inference. In: Cerioli,
M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31984-9 14

7. Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines with param-
eters. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 107–121.
Springer, Heidelberg (2006). https://doi.org/10.1007/11693017 10

8. Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines using
domains with equality tests. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008.
LNCS, vol. 4961, pp. 317–331. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78743-3 24
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Abstract. Register automata model languages over infinite alphabets.
A number of publications define different register automata formalisms.
Equal expressiveness has been conjectured for many formalisms but a
formal analysis is still open. In this paper on the occasion of the 63rd

birthday of Bengt Jonsson we examine if these formalisms are equally
expressive. We define a taxonomy to describe the different formalisms. By
combining small-step reductions, we demonstrate that all models have
equal expressiveness. We link these to model-specific complexity results
for the NonEmptiness problem and decide which taxonomy features
determine the complexity of NonEmptiness. The taxonomy enables
formal classification of future models. The reductions permit transfer
of formalism-specific results to other formalisms.

Keywords: Register automata · Non-emptiness · Decidability ·
Expressiveness

1 Introduction

Finite state machines are a common tool for modeling languages over finite
alphabets and are amenable to algorithmic analysis. In recent years, the study
of automata operating on infinite alphabets has gained some attention, e.g., in
the field of automata learning [12]. The first extension of finite state machines
to infinite alphabets was proposed by Kaminski and Francez [15]. An exam-
ple of such a register automaton that can recognize strings in which a single
character is repeated is given in Fig. 1. Subsequently, register automata have
been extensively studied in literature. Many publications choose to use their
own register automaton models, or variants of existing models. These models
are more amenable to proofs or can express real-world concerns more succinctly.
The succinct canonical register automaton [5,6] in Fig. 2, for example, expresses
a fragment of the XMPP instant messaging protocol [21] in a way that is concise,
easily understood, and can be inferred algorithmically [13] from tests.

While occasionally, the expressiveness of such formalisms has been noted
to at least capture finite-memory automata (e.g., in [11]), no formal study of
the different models’ expressiveness has been conducted. Babari et al. provide a
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Fig. 1. Nondeterministic finite-memory automaton recognizing inputs in which at least
one symbol occurs twice [15, Figure 1]. In the initial state q1 the automaton reads and
stores input until the duplicated symbol occurs. The symbol is recognized nondeter-
ministically and state q2 is entered. Input is read and stored until the saved symbol
reoccurs. Then, the accepting state q3 is reached.

taxonomy for extensions to the model of Kaminsky and Francez [1]. The com-
plexity of NonEmptiness for different models of register interaction (“regis-
ter disciplines”) was examined by Murawski et al. in [17,18]. Cassel et al. [6]
show that for some variants of their register automata that mimic restrictions
imposed by other register automata formalisms the size of the automaton rep-
resentation can blow up exponentially while expressiveness is not affected by
the restrictions. Correspondingly, different complexity results have been proven
for NonEmptiness: for Kaminsky and Francez’s finite memory automata [15],
the problem is NP-complete [22], for Murawski et al.’s more restricted model,
it is NL-complete [17,18] and for Demri and Lazić’s automata, it is PSPACE-
complete [11]. A formal relation of different types of register automata would not
only further our understanding of automata over infinite alphabets as a whole but
could also serve as a basis for implementing and porting existing algorithms, e.g.,
in libraries for automata learning algorithms like LearnLib [14] or RALib [4].
Learning algorithms have already been extended from register automata to some
classes of more expressive extended finite state machines [7]. A formal analysis of
the differences in expressiveness of different automata models (or lack thereof)
may serve as a basis for further extensions and help understanding limits of
expressivity.

In this paper on the occasion of the 63rd birthday of Bengt Jonsson, we
provide a four-feature-taxonomy describing the most common types of register
automata. For each feature, we define variants describing the types and indi-
vidual reductions between variants to prove their equal expressiveness. We also
present upper and lower bounds on the complexity of these reductions. Together
with results from the literature on the complexity of deciding NonEmptiness
in several register automaton models, we obtain a detailed characterization of
the subtle differences between automata models as well as their expressiveness
in relation to their size.

Outline. Section 2 will introduce data languages and provide a definition of
generic register automata that encompasses all definitions found in the literature.
Next, we will introduce a taxonomy of reductions in Sect. 3 and the taxonomy of
register automata in Sect. 4, which will be applied to register automata defini-
tions from the literature. Section 5 describes small-step reductions between the
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Fig. 2. Succinct Canonical Register Automaton that recognizes successful XMPP reg-
istrations and logins for a single user [5, Figure 1]. In the initial state q1, no user is
registered. By registering an account, state q2 is entered and the credentials stored. A
login with matching credentials enters state q3. The logged-in user can update their
password, log out or delete the account altogether.

taxonomy elements, including some lower complexity bounds; Sect. 6 combines
these to construct reductions and lower bounds between the existing models.
Section 7 summarizes our findings and describes possible extensions.

2 Preliminaries

We start by defining notation for some fundamental concepts.

Definition 1 (Power Set). Given a set S, P(S) = {S′ | S′ ⊆ S} is the power
set of S.

Definition 2 (Image). Given a function f : A → B, I(f) = {f(a) | a ∈ A}
denotes the image of f .

Register automata operate on a combination of a finite and an infinite alpha-
bet. The finite alphabet defines labels that are then combined with values from
the infinite alphabet. We now formally define these combinations.

Definition 3 (Data Universe, Symbol, Word, Language). A data uni-
verse is a tuple D = (Λ,D, a) with a finite set Λ of labels, an infinite set D of
(data) values, and an arity function a : Λ → Z≥0. For a given label λ, the vector
of formal parameters is Pλ = (p1, . . . , pa(λ)). A data symbol is a tuple (λ, �d)
with λ ∈ Λ and a vector of data values �d with |�d| = a(λ). We usually write a
symbol as λ(d1, . . . , da(λ)). A data word is a sequence of data symbols. A set of
data words from the same data universe is a data language.

Now, we provide a definition for register automata with equality and inequal-
ity comparisons. While in the literature, similar automata with more operations
(e.g., less-than comparisons) have been studied, their expressiveness and theo-
retical properties are different from classic register automata. Our definition is
designed to subsume all equality-based models present in the literature. These
will later be represented as constraints for the following definitions.

Definition 4 (Register Automaton). A register automaton (RA) is a tuple
A = (D, Q, q0, Q

+,X,XQ, χ0, Γ ), defining
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– a data universe D = (Λ,D, a),
– a finite set of states Q,
– an initial state q0 ∈ Q,
– accepting states Q+ ⊆ Q,
– a finite set of registers X that can store data values,
– a visibility function XQ : Q → P(X),
– an initial valuation χ0 : X → D ∪ {#} such that # /∈ D is the empty value

and for all x /∈ XQ(q0), χ0(x) = #, and
– a set Γ of transitions 〈q, q′, λ, g, u〉, each defining

• a source state q ∈ Q,
• a target state q′ ∈ Q,
• a label λ ∈ Λ,
• a guard g, i.e. a propositional logic formula with an equality relation

over free variables from XQ(q) ∪ Pλ, and
• an update u : XQ(q′) → (XQ(q) ∪ Pλ) that selects new values for the

registers visible in the target state, i.e., u(x) = v if the value of register
or parameter v is copied to x.

A transition 〈q, q′, λ, g, u〉 is always written as

λ(p1, . . . , p|a(λ)|) | g

u
,

where p1, . . . , p|a(λ)| are the formal parameters, g is the guard and u is a set
of parallel updates xi := v with v ∈ XQ(q) ∪ Pλ. If no explicit assignment to
a register xi ∈ XQ(q) ∩ XQ(q′) is given, the assignment xi := xi is implicitly
assumed.

Definition 5 (Deterministic Register Automaton). A register automaton
is deterministic if for each pair of transitions 〈q, q′

1, λ, g1, u1〉 and 〈q, q′
2, λ, g2, u2〉

with identical source state and label, (g1 ∧ g2) is unsatisfiable.

Note that our definition does not demand that a valid transition exists (i.e.,
the disjunction of all guards is a tautology), while e.g. [15, Definition 2] does.
This can be rectified by adding a trap state and “missing” transitions. Now, we
define how a register automaton processes words.

Definition 6 (State Transition). For a register automaton (D, Q, q0, Q
+,X,

XQ, χ0, Γ ) with a transition γ = 〈q, q′, λ, g, u〉 ∈ Γ , a state transition T =
〈q, χ, λ(d1, . . . , da(λ)), q′, χ′〉 is a tuple of

– source and target state q, q′,
– a data symbol λ(d1, . . . , da(λ)) ∈ DD,
– a source valuation χ : XQ(q) → D ∪ {#} such that g is satisfied by the

valuation ν : XQ(q) ∪ Pλ → D ∪ {#} defined as

ν(v) :=

{
χ(v) if v ∈ XQ(q)
di if v = pi, and
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– a target valuation χ′ : XQ(q′) → D ∪ {#} such that χ′(x) = ν(u(x)).

Intuitively speaking, an RA automaton accepts a data word if there exists
a sequence of state transitions from the initial to an accepting state using the
word’s symbols.

Definition 7 (Acceptance Behavior). A register automaton A = (D, Q, q0,
Q+,X,XQ, χ0, Γ ) accepts or rejects data words from its data universe. A data
word λ1(�d1) . . . λk(�dk) is accepted if a sequence of state transitions T1, . . . , Tk

exists such that

– the source state of T1 is q0,
– the source valuation of T1 is χ0,
– the target state of Tk is in Q+,
– for 1 ≤ i < k, the target state and valuation of Ti are the source state and

valuation of Ti+1, and
– for 1 ≤ i ≤ k, the data symbol of Ti is λi(�di).

A data word that is not accepted is rejected. The language of words accepted by
the automaton is L(A).

3 Reductions

In the previous section, we described a generic automaton model. Register
automata with additional, disparate constraints have been studied in the litera-
ture. We call a set of automata with identical constraints a class (of automata).
To transfer decidability and complexity results between classes, we define reduc-
tions between classes. If the specific type of reduction is apparent from the
context, we denote reducibility with the � operator.

Definition 8 (NonEmptiness-Turing Reduction). Given two classes C1
and C2 of register automata, C1 is NonEmptiness-Turing reducible (NETR)
to C2 if there exists an algorithm A that determines NonEmptiness for any
C1-automaton if A has access to an oracle that decides NonEmptiness for any
C2-automaton.

Definition 9 (Membership-Turing Reduction). Given two classes C1 and
C2 of register automata, C1 is Membership-Turing reducible (MTR) to C2 if
there exists an algorithm A that determines acceptance for any C1-automaton
and data word in its data universe if A has access to an oracle that decides
Membership for any C2-automaton and word from its data universe.

We also define a reduction’s complexity as the complexity of the underlying
algorithm:

Definition 10 (Reduction Complexity). Let R be a type of reduction. Given
a reduction of type R such that the algorithm a is computable with complexity
T , the reduction is a T -R.
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Definition 11 (Turing Reduction). Given two classes C1 and C2 of register
automata, C1 is Turing reducible (TR) to C2 if it is both NonEmptiness-
and Membership-Turing reducible to C2. If it is T -NonEmptiness- and T -
Membership-Turing reducible for any complexity T , it is T -Turing-reducible
(T -TR).

These reductions are useful to prove lower bounds. We define a more con-
strained type of reduction as a transformation between automata and inputs
analogously to Post [20]. Since the input-modifying function of this model is
dependent on both automata’s data universes, it is defined as a family of func-
tions.

Definition 12 (Many-One Reduction). Given two classes C1 and C2 of reg-
ister automata, a many-one reduction (M1R) from C1 to C2 is a tuple (fA, fD,E

D� ),
where

– D and E are variables for data universes,
– fA : C1 → C2 is the automaton reduction,
– fD,E

D� : C1 × D
�
D → D

�
E is a family of data reductions,

– given A ∈ C1 with data universe D such that fA(A) has data universe E,

w ∈ L(A) ⇐⇒ fD,E
D� (A,w) ∈ L(fA(A)), and

– L(A) = ∅ ⇐⇒ L(fA(A)) = ∅.

We will make this generic definition more specific, since the resulting automa-
ton does not need to resemble the original automaton and, given enough compu-
tation time, it is possible to “solve” the original automaton during the reduction
and create a trivial reduced instance. We define a more constrained reduction
type that requires all modifications to the input to be computationally inexpen-
sive. A linear time bound ensures that each symbol can be examined, but that no
non-trivial computation can be performed on it. Additionally, all changes to the
input must be independent of the source automaton and the surrounding sym-
bols. Automaton- or word-specific information can only be added to the word as
a prefix.

Definition 13 (Linear-Local Reduction). Given two classes C1 and C2 of
register automata, a linear-local reduction (LLR) from C1 to C2 is a tuple
(fA, fD,E

D , fE
P A , fD,E

P D ), where

– D and E are variables for data universes,
– fA : C1 → C2 is the automaton reduction,
– fD,E

D : DD → D
�
E is a family of linear time computable data reductions,

– fE
P A : C1 → D

�
E is a family of linear time computable automaton prefix-

generating reductions, and
– fD,E

P D : D�
D → D

�
E is a family of linear time computable data prefix-generating

reductions
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such that (fA, fD,E
D� ) with

fD,E
D� (A,w) = fE

P A(A)fD,E
P D (w)fD,E

D (w1) . . . fD,E
D (w|w|)

is a many-one reduction.

In some cases, we can omit the reduction functions to obtain an even simpler
reduction.

Definition 14 (Prefix Free). Given two classes C1 and C2 of register
automata, a prefix free reduction (PFR) from C1 to C2 is a tuple (fA, fD,E

D ),
where

– D and E are variables for data universes,
– fA : C1 → C2 is the automaton reduction, and
– fD,E

D : DD → D
�
E is a family of linear-time-computable data reductions

such that (fA, fD,E
D , f ε

P A , f ε
P D ) with

f ε
P A(A) = ε for all A ∈ C1 and f ε

P D (w) = ε for all w ∈ D
�
D

is a linear-local reduction.

Independently of the presence or absence of prefixes, some reductions do not
modify the input word itself, e.g., when constants are transformed into a prefix,
but the word is unchanged. We also formalize this property.

Definition 15 (Data Stable). Given two classes C1 and C2 of regis-
ter automata, a data stable reduction (DSR) from C1 to C2 is a tuple
(fA, fD

P A , fD,D
P D ), where

– D is a variable for a data universe,
– fA : C1 → C2 is the automaton reduction,
– fD

P A : C1 → D
�
D is a family of linear-time-computable automaton prefix-

generating reductions, and
– fD,D

P D : D�
D → D

�
D is a family of linear-time-computable data prefix-generating

reductions

such that (fA, f id
D , fD

P A , fD,D
P D ) with

f id
D (d) = d for all d ∈ DD

is a linear-local reduction.

Some reductions satisfy both properties, i.e., only the automaton structure
is modified.

Definition 16 (Automaton-Only Reduction). Given two classes C1 and
C2 of register automata, a automaton-only reduction (AOR) from C1 to C2 is a
function fA : C1 → C2 such that (fA, f id

D , f ε
P A , f ε

P D ) is a linear-local reduction.
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Fig. 3. The different types of reduction. Arrows indicate an is-a relation. If types are
horizontally adjacent, a reduction can be a member of any subset of them.

The complexity of the Membership problem is lower for deterministic regis-
ter automata, so we distinguish reductions that preserve the automaton’s deter-
minism.

Definition 17 (Determinism-Preserving). A many-one reduction (fA, fD,E
D� )

is determinism-preserving (DP) if for a deterministic register automaton A, fA(A)
is deterministic.

All types of reduction introduced in this section and their relations are out-
lined in Fig. 3.

4 Taxonomy for Register Automata Formalisms

This section describes the proposed taxonomy for RA models and applies it to
existing models from the literature.

4.1 Proposed Taxonomy

In the literature, more restricted models of register automata than that described
in Definition 4 have been studied. Each model adds constraints to certain aspects
of the automaton. To describe these classes of register automata, we introduce
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Table 1. The register automaton taxonomy.

Feature Variants

Data Universe Type (U-UL) Unlabeled
(U-LU) Labeled Unary
(U-LV) Labeled Variadic

Register Availability (R-UA) Update-Activated
(R-IN) Initialized
(R-IE) Initialized or Empty

Update Granularity (A-PS) Per State
(A-PT) Per Transition

Guard-Update Model (G-UP) Update-or-Present
(G-UA) Update-if-Absent
(G-FG) Full Guard with Single Update
(G-NR) No Register-Register Operations
(G-CC) Conjunction of Comparisons

a taxonomy using four features. It is outlined in Table 1. A class of automata
with a common feature variant is described by its variant label, e.g., (G-CC). An
intersection of feature variants is denoted with a plus, e.g., (A-PT)+(G-CC). If
each automaton in a class is automatically member of another, this is denoted
by the � operator, e.g., (G-NR) � (G-CC).

For each variant, deterministic and non-deterministic automata can be con-
structed. Since these are known to differ in expressiveness, we do not include
determinism in this taxonomy. The taxonomy is therefore “orthogonal” to the
question of determinism.

Data Universe Type. The first feature is the automaton’s type of data uni-
verse, i.e., the number of labels and their arities. The variants are:
Unlabeled (U-UL). The data universe has a single label λ with arity a(λ) = 1.

For brevity, the label is usually omitted.
Labeled Unary (U-LU). The universe contains an arbitrary number of labels,

each with arity one.
Labeled Variadic (U-LV). The universe has an arbitrary number of labels,

each with arbitrary arity.
By definition, (U-UL) � (U-LU) � (U-LV).

Register Availability. The second feature are the semantics of register avail-
ability, i.e., if registers are visible in every state and if initial values are pro-
vided for the registers. Three models are described in the literature:
Update-Activated (R-UA). Under this model, no registers are visible in the

initial state. Therefore, XQ(q0) = ∅ and χ0(x) = # for all x ∈ X. All
registers must be activated by an update operation before becoming visi-
ble. Since this will overwrite the register’s contents, the empty values are
effectively invisible to the automaton.
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Initialized (R-IN). Registers are initialized to a non-empty value and all regis-
ters are visible in every state, so XQ(q) = X for all q ∈ Q and χ0(x) �= #
for all x ∈ X.

Initialized or Empty (R-IE). Registers are initialized to a data value or #
and are visible in every state. This is the only type of automaton that
can encounter the empty value during a guard evaluation.

By definition, (R-IN) � (R-IE).
Update Granularity. The third feature describes the scope of update rules.

Two models are present in the literature:
Per State (A-PS). For each state, there exists a single canonical update func-

tion. Each outgoing transition must either use the source state’s canonical
update function or keep all registers unchanged. As a result, all outgoing
transitions must discard their parameter or write to the same register.

Per Transition (A-PT). Each transition’s update can be arbitrarily defined.
By definition, (A-PS) � (A-PT).

Guard-Update Model. The fourth feature describes the form of guards and
updates. Five models are prevalent in the literature:
Update-or-Present (G-UP). This model ensures that no duplicate values

(except for #) can be present in the registers. Initial values – if present
– must be distinct as well. All data symbols must have arity one. This
invariant is maintained by the following transition semantics:
1. First, the update operation is executed. Four scenarios can occur:

(a) The value is not assigned to a register.
(b) The value v is assigned to a register xi, but there exists a register

xj �= xi with valuation χ(xj) = v. The assignment is then ignored.
(c) The value v is assigned to a register xi and χ(xi) = v. The assign-

ment has no observable effect.
(d) The value v is assigned to a register xi and χ(x) �= v for all x ∈ X.

The update then stores the value in xi.
2. Afterwards, the parameter is tested for equality with a single register,

i.e., contrary to our definition, the guard takes the update operation
into account. It can thereby check if a write operation was successful
under the no-duplicates rule outlined above.

Under this model, two types of transitions can be expressed. They can be
transformed to use guard-before-update semantics as follows:
1. The parameter p is assigned to xi, then xi is tested for equality with

p. This test succeeds if either p was not stored in any register and the
assignment was executed or if xi contained p previously. The previous
value of xi is therefore irrelevant. Using a source state q, this yields
following transition:

λ(p) |
∧

x∈XQ(q)\{xi}(p �= x)

xi := p

2. The parameter p is either not assigned or assigned to a register xj

with j �= i, then xi is tested for equality with p. This can only be
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the case if the value of p was already present in that register. If p
was assigned to xj , the assignment can therefore have had no effect.
Therefore, both cases yield the transition:

λ(p) | p = xi

−

Update-if-Absent (G-UA). This model also does not allow duplicate values
and all data symbols must have arity one. This invariant is maintained
by allowing two classes of transition:
1. The parameter is tested for equality with a single register. The def-

inition allows for multiple tests, but since no duplicates are present,
multiple comparisons cannot succeed:

λ(p) | p = xi

− .

2. Alternatively, an update operation is executed if the value is present
in no register. Two scenarios can occur:
(a) The value v is assigned to a register xi, but there exists a register

x ∈ X (including x = xi) with valuation χ(x) = v. The transition
fails.

(b) The value v is assigned to a register xi and χ(x) �= v for all x ∈ X.
The update then stores the value in xi.

Again, the definition allows multiple assignment, but only one
attempt can succeed. This can be expressed as:

λ(p) |
∧

x∈XQ(q)(p �= x)

xi := p
.

Full Guard with Single Update (G-FG). Duplicate values in registers are per-
mitted. The parameter must be compared (using = or �=) to every visible
register. The update may then write the parameter to a single register; no
register-to-register assignments aside from the implicit self-assignments
are permitted. For example, if X = {x1, x2, x3}, the following transition
satisfies these constraints:

λ(p) | (x1 = p) ∧ (x2 �= p) ∧ (x3 �= p)
x2 := p

.

No Register-Register Operations (G-NR). Guards are a conjunction of com-
parisons between the parameter and registers. The parameter does not
need to be compared to every register. The update may copy the param-
eter to multiple registers. For example, the following transition satisfies
these constraints:

λ(p) | (x1 = p) ∧ (x3 �= p)
x2 := p;x3 := p

.
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Conjunction of Comparisons (G-CC). Guards are a conjunction of parameter-
to-parameter, parameter-to-register, and register-to-register comparisons.
Updates may copy data from parameters and registers. For example, the
following transition satisfies these constraints:

λ(p) | (x1 = p) ∧ (x2 = x3) ∧ (x3 �= p)
x2 := p;x3 := p

.

By definition, (G-UP) � (G-NR), (G-UA) � (G-NR), (G-FG) � (G-NR), and (G-
NR) � (G-CC). (G-UP), (G-UA), and (G-FG) are not contained in one another.

We do not allow several combinations of (U-LV) that are difficult to define
and are not present in the literature:

– (A-PS)+(U-LV) would require all outgoing updates to be identical. Given
transitions on λ(p1) and μ(p1, p2), p2 could not be assigned, since this update
would not match the formal parameters of λ.

– (U-LV)+(G-NR) would permit circumventing the lack of register-to-register-
comparisons by introducing “witness” parameters and using guards (x1 =
p) ∧ (x2 = p) to imply equality. Consequently, we also disallow (U-LV)+(G-
UP), (U-LV)+(G-UA), and (U-LV)+(G-FG).

When discussing reductions between automata classes, a reduction might
only be defined for a variant of a secondary feature and its supervariants. For
example, a reduction might reduce (A-PT) to (A-PS), but will only be defined for
automata that are at least (G-CC). A (A-PT)+(G-NR) automaton will be reduced
to a (A-PS)+(G-NR) one, while a (A-PT)+(G-CC) automaton will yield a (A-
PS)+(G-CC) one. We denote a reduction that requires a secondary feature and
preserves it in the transformed automaton, as (A-PT)+(G-NR)� to (A-PS)+(G-
NR)�.

4.2 Classification of Some Existing Models

This taxonomy can now be applied to models from the literature. The descrip-
tions are summarized in Table 2. For some of these models, complexity results
are present in the literature and are recapped below.

Finite-Memory Automata. Kaminsky and Francez were the first to define
a register automaton model [15]. They defined update-or-present semantics,
enforced identical updates per state and initialization with empty registers and
did not use labels. Bojańczyk et al. previously proved these automata to be
equivalent in expressiveness to G-automata [3]. The model is characterized as
(A-PS)+(U-UL)+(R-IE)+(G-UP).

Figure 4b shows a sample finite-memory automaton accepting the language D
(i.e., all single-symbol words). Note that the transition from q1 to q2 is unusable
since x1 always has value # in q1.
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Table 2. Taxonomy of automata models.

Automaton model Variant

Initialized finite-memory automata [17,18] (A-PS)+(U-UL)+(R-IN)+(G-UP)

Finite-memory automata [15] (A-PS)+(U-UL)+(R-IE)+(G-UP)

Neven-Schwentick-Vianu automata [19] (A-PT)+(U-UL)+(R-IE)+(G-UA)
Segoufin automata [23] (A-PT)+(U-LU)+(R-IN)+(G-FG)

Demri-Lazić automata [11] (A-PT)+(U-LU)+(R-IN)+(G-NR)

Succinct canonical register automata [5,6] (A-PT)+(U-LV)+(R-UA)+(G-CC)

Lemma 1 ([22, Theorem 1]). Membership of words in deterministic finite-
memory automata is P-complete.

Lemma 2 ([22, Theorem 2]). Membership of words in finite-memory
automata is NP-complete.

Lemma 3 ([22, Theorem 4]). NonEmptiness of finite-memory automata is
NP-complete.

Initialized Finite-Memory Automata. Murawski et al. remarked on a vari-
ant of finite-memory automata [17,18] in which all registers are initialized with
data values (i.e., no empty value # is used). The model is characterized as (A-
PS)+(U-UL)+(R-IN)+(G-UP).

Figure 4a shows a sample initialized finite-memory automaton accepting the
language (

D \ {a}
)

∪ {ba}.

In contrast to the automaton in Fig. 4b, all transitions are usable.

Lemma 4 ([17, Footnote 5]). NonEmptiness of initialized finite-memory
automata is NL-complete.

Neven-Schwentick-Vianu Automata. Neven et al. presented a slight mod-
ification of finite-memory automata [19]. Their model additionally permits ε-
transitions, i.e., transitions that do not consume input values. Additionally, it
requires every input word to start with a designated start symbol. We propose
this theorem, the proof of which is outside the scope of this paper:

Proposition 1. Every automaton satisfying the model by Neven et al. can be
transformed into a equivalent (A-PT)+(U-UL)+(R-IE)+(G-UA) automaton using
our notation.

Figure 4c shows a sample (transformed) Neven-Schwentick-Vianu automaton
accepting the language (

D \ {b}
)

∪
{
dd | d ∈ D \ {b}

}
.
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Fig. 4. Sample automata demonstrating the expressiveness of existing models.

In comparison with Fig. 4b’s automaton, different assignment targets for tran-
sitions with the same origin are permitted and guards for assignments must
compare the value to the target register.

Segoufin Automata. Segoufin’s automaton model [23] extends finite-memory
automata with per-transition updates and labels, does forbid empty registers
and defines single update with full test semantics. The model is characterized as
(A-PT)+(U-LU)+(R-IN)+(G-FG).

Figure 4d shows a sample Segoufin automaton accepting the language{
μ(d) | d ∈ D \ {a, b}

}
∪ {λ(b)ν(b)}.

In contrast to the automaton shown in Fig. 4c, #-intialized registers are not
permitted. Guards and assignments can be used in arbitrary combinations,
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but guards must compare p to every register. This permits indirect register-
to-register comparisons using witness parameters, as exemplified by the q1-q2-
transition’s guard. In addition, data values are labeled under this model.

Demri-Lazić Automata. Demri and Lazić defined an automaton model [11]
for use in acceptance games. The model as-defined does not match this taxonomy,
but we again propose a theorem:

Proposition 2. Every automaton satisfying the model by Demri and Lazić can
be transformed into a equivalent (A-PT)+(U-LU)+(R-IN)+(G-NR) automaton
using our notation.

Figure 4e shows a sample Demri-Lazić automaton accepting the language{
μ(d) | d ∈ D \ {b}

}
∪

{
λ(b)ν(d) | d ∈ D

}
.

When comparing this to the automaton in Fig. 4d, it can be seen that the per-
missible guard statements do not need to compare every register.

Lemma 5 ([11, Theorem 5.1(a)]). NonEmptiness of Demri-Lazić automata
is PSPACE-complete.

Succinct Canonical Register Automata. Succinct canonical RAs [5] use
variadic labeled data, update-activated registers instead of initialized ones and
allow conjunctions of arbitrary comparisons in their guards. This model is char-
acterized as (A-PT)+(U-LV)+(R-UA)+(G-CC).

Figure 4f shows a sample succinct canonical register automaton accepting the
language {

μ(d) | d ∈ D \ {b}
}

∪
{
λ(d, d)ν() | d ∈ D

}
.

Note that in contrast to the other models such as the automaton in Fig. 4e,
guards can compare registers, i.e., the availability of the q1-q2 transition depends
on the values of p1 and p2 in the q0-q1-transition. Additionally, registers can
be #-initialized, but must be written to before reading. Data values can have
arbitrary arity, including arity zero.

5 Reductions Between Variants

In this section, we will examine reductions between the RA variants. While all
variants have equal expressiveness, two lower complexity bounds for reductions
as well as the non-existence of a specific reduction type are proven, outlining
differences between the variants. This section considers each automaton feature
in turn.
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Fig. 5. Sample transformation from two (U-LV)+(G-CC)� transitions to multiple (U-
LU)+(G-CC)� transitions.

5.1 Data Universe Type

Theorem 1. There exists a determinism-preserving P-prefix free reduction from
(U-LV)+(G-CC)� to (U-LU)+(G-CC)�.

Note that (U-LV)+(G-CC)� = (U-LV), since (U-LV) is only defined for (G-CC).
Intuitively, this reduction replaces each symbol of arity k with k symbols of arity
one and modifies the automaton accordingly.

Proof Sketch. We construct a new input language in which we replace every
label λ with a(λ) labels λ1, . . . , λa(λ). The data reduction then replaces every
instance of λ(�d) with λ1(d1) . . . λa(λ)(da(λ)). The automaton reduction modifies
each state’s outgoing transitions. For every label present, a(λ) transitions to
intermediate states are created. Since guards and updates can only be safely
evaluated in the last transition, these transition only store their parameters in
cache registers. The automaton requires a total of maxλ∈Λ a(λ)−1 cache registers
XC . For each transition, a final step from the last intermediate state to the target
state is generated during which guards and updates are evaluated, substituting
cached values for the parameters.

For each word

λ1(d1, . . . , da(λ1)) . . . λk(d1, . . . , da(λk)) (LV)

accepted by the original, the word

λ1
1(d1) . . . λ

a(λ1)
1 (da(λ1)) . . . λ1

k(d1) . . . λ
a(λk)
l (da(λk)) (LU)

is accepted by the newly created automaton. The construction ensures that
each word accepted by the new automaton is of form LU, i.e., for each original
label, all partial labels are present in the word in correct order. Such words can
be reassembled into an input of form LV accepted by the original automaton,
preserving acceptance behavior. ��

The process is exemplified in Fig. 5. Note that in the example, the interme-
diate state q′ is shared between transitions to preserve determinism.
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Fig. 6. Sample transformation from two (U-LU) transitions to multiple (U-UL) transi-
tions.

Theorem 2. There exists a determinism-preserving P-many-one reduction from
(U-LU) to (U-UL).

Proof Sketch. The reduction designates data values as proxies for labels and
alternatingly reads a proxy and a “real” value. We require |Λ| data symbols as
label proxies. These proxies are stored in additional registers XΛ, with λi being
replaced by xΛ

i . The input word λ1(d)λ2(e) would then be replaced with xΛ
1 dxΛ

2 e.
The proxy values are then added as a prefix and are assigned to the registers
during an initialization before the first original transition. They must be selected
to differ from any value in the input so that (G-UP) and (G-UA) semantics are
retained, requiring access to both input and automaton.

For each label Λi present on a state’s outgoing transitions, the automaton
reduction creates a transition with guard p = xΛ

i and no assignment to an
intermediate state similar to Theorem 1. For each original transition, a second
transition from the matching intermediate state is created that uses the original
guard, update, and target. ��

If the automaton permits duplicate values in registers ((G-FG) and above),
the proxies can be chosen at random instead, yielding a narrower reduction type.

Corollary 1. There exists a determinism-preserving P-linear-local reduction
from (U-LU)+(G-FG)� to (U-UL)+(G-FG)�.

An example of the transformation is shown in Fig. 6. As with the last example,
the intermediate state q′ is shared between transitions to preserve determinism.

All results presented in this section are outlined in Fig. 11a.

5.2 Register Availability

Theorem 3. There exists a determinism-preserving LIN-automaton-only reduc-
tion from (R-UA) to (R-IN).

Proof Sketch. The automaton-only reduction sets XQ(q) := X for all q ∈ Q,
i.e., all registers are always visible. All updates are extended to assign the newly
visible registers to themselves and the initial valuation is set to random values.
Since these values are guaranteed to be overwritten before being accessed by a
guard, this does not change the automaton’s semantics. ��
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Theorem 4. There exists a determinism-preserving LIN-data stable reduction
from (R-IE)+(G-FG)� to (R-IN)+(G-FG)�.

Proof Sketch. We employ the proxy value technique presented in Theorem 2.
The automaton reduction inserts an initial transition that reads a proxy value
for # that is distinct from all non-# initial values and stores it in every #-
initialized register and a new register, x#. If the proxy value is encountered in the
input, the automaton’s semantics could change. To preserve NonEmptiness, we
ensure that every such input is rejected by modifying every guard g to g ∧ (p1 �=
x#) ∧ · · · ∧ (pa(λ) �= x#). The data prefix-generating reduction selects a proxy
value from the data value set that does not occur in the remaining input. ��

We can demonstrate that under common assumptions about complexity
classes, more space-efficient reductions do not exist.

Theorem 5. If NL �= NP, there exists no NL-NonEmptiness-Turing reduction
from (R-IE) to (R-IN).

Proof. We demonstrate that the existence of such a reduction permits the cre-
ation of an NL algorithm for an NP-complete problem. Assume that an NL-
Turing reduction from (R-IE) to (R-IN) exists. Since NonEmptiness of initial-
ized finite-memory automata can be decided in NL, we obtain an NLNL algorithm
for NonEmptiness of finite-memory automata. Since the original problem is
NP-complete and NLNL = NL due to NL = coNL, NL = NP. ��

Theorem 6. There exists a determinism-preserving LIN-data stable reduction
from (R-IN) to (R-UA).

Proof Sketch. Again, we employ a proxy value technique to substitute values
for the initialization. We then use an existing result to demonstrate the automa-
ton’s emptiness is unchanged. The automaton reduction inserts initial steps that
reads |X| proxy values and assigns them to the correct registers, ensuring that
values that were equal in the initial valuation remain so. The automaton prefix-
generating reduction can write the original initialization to maintain the original
behavior.

We demonstrate that this reduction preserves NonEmptiness. For each word
accepted by the original automaton, the proxy values can be set to the original
initialization to create an accepting input. For the inverse direction, consider
a word accepted by the new automaton. It consists of a prefix of length |X|
that is used to initialize the registers and a remaining input word. We define
an automorphism on data values that maps the prefix’s values to the source
automaton’s initialization. Since a register automaton’s language is closed under
automorphisms on the data value set [15, Proposition 2], the new automaton will
accept the resulting word. By definition, this word must also have been accepted
by the original automaton. ��

All results presented in this section are outlined in Fig. 11b.
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Fig. 7. Sample transformation from two (A-PT)+(G-FG)� transitions to multiple (A-
PS)+(G-FG)� transitions.

5.3 Update Granularity

Theorem 7. There exists a determinism-preserving LIN-prefix free reduction
from (A-PT)+(G-FG)� to (A-PS)+(G-FG)�.

Proof Sketch. This reduction requires duplication of every input symbol. The
first instance is used to make a transition to an intermediate state, while the
second is used in the assignment.

The automaton reduction modifies all transitions. Given a transition

λ(p1, . . . , pa(λ)) | g

a
,

it introduces an intermediate state. The transition from intermediate to target
state is identical to the original and the transition from source to intermediate
state is

λ(p1, . . . , pa(λ)) | g

− .

Since all guards remain identical, determinism is preserved.
The data reduction duplicates every data symbol in the input word. Due to

the structure of the new automaton, an accepted word can be transformed to
an accepting word for the original by removing all symbols in odd positions,
preserving emptiness. ��

An example is shown in Fig. 7. For other guard-update models, the reduction
needs to be modified slightly.

Theorem 8. There exists a determinism-preserving LIN-prefix free reduction
from (A-PT)+(G-UP) to (A-PS)+(G-UP) and from (A-PT)+(G-UA) to (A-
PS)+(G-UA).

Proof Sketch. Due to the limited types of transitions available, the technique
used in the last proof needs to be adapted to these classes.

We alter the automaton by adding |Λ| additional scratch registers XΛ to the
automaton and initializing it to data values DΛ not present in the input. The
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Fig. 8. Sample transformation from two (A-PT)+(G-UP) transitions to multiple (A-
PS)+(G-UP) transitions. The transitions to q2 and q3 both used label λ and now share
the intermediate state q′. The transition to q4 was labeled μ and is reached over a
separate state q′′.

reduction then introduces intermediate states similar to the proof of Theorem
7. However, we use the transition

λ(p) | p = xλ

−

to transit from source to intermediate state. Since these transitions are mutually
exclusive and transitions from the intermediate to the target state are copied
as-is, determinism is preserved.

The data reduction inserts ds before every data symbol in the input word.
Again, an accepted word can be transformed to an accepting word for the original
by removing all symbols in odd positions, preserving emptiness. ��

An example for this variant (using (G-UP) semantics) is given in Fig. 8. Dupli-
cation or insertion of dummy symbols is required to efficiently perform the reduc-
tion. If the data language is untouched, no efficient algorithm exists:

Theorem 9. There exists no determinism-preserving data stable reduction from
(A-PT) to (A-PS).

Proof Sketch. Intuitively, a (A-PT)+(G-NR) automaton can store information by
selecting an assignment’s target register. A (A-PS)+(G-NR) automaton is forced
to store the same information by transitioning to different states. This results in
a superpolynomial amount of required states for certain languages.

We provide a (U-LU) language that can be recognized by a (A-PT) automa-
ton of size k. Then, we prove by contradiction that a (A-PS) automaton
must have k! states to recognize the same language. The language uses labels
λ1, . . . , λ�, κ1, . . . , κ� to simulate an �-memory cell storage as follows:
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– Initially, all registers are empty.
– When reading λk(p), the k-th memory cell is overwritten with p.
– When reading κk, the k-th memory cell is compared to p.
– The language is the set of all instruction sequences for which all κ-comparisons

hold true.

A two-state deterministic (A-PT) automaton with k registers that implements
memory cells using registers can be constructed for this language.

Now, we define the permutations π : {1, . . . , k} → {1, . . . , k} and the family
of input strings Sπ := λπ(1)(p1)λπ(2)(p2) . . . λπ(k)(pk) for distinct p0, . . . , pk. We
now inductively show by contradiction that no two strings from this family can
cause a (A-PS) automaton to enter the same state.

Assume that two such strings Sπ, Sπ′
exist, π(1) �= π′(1) and that the

automaton enters the same state after both strings. Since the automaton started
in the same state, p1 must have been written to the same register x1 and must
not have been overwritten on any path (otherwise, κπ(1) and κπ′(1) cannot be
handled).

Now, assume the automaton reads κπ(1)(p1). It will accept after the input
Sπ and reject after Sπ′

. However, in that state, the guard

p = x1 ∧

⎛
⎝ ∧

x∈XQ(q)\{x1}
p �= x

⎞
⎠

and all more general guards will be satisfied after both inputs, while all other
(G-NR) guards will not be satisfied. Therefore, it must either accept or reject
after both Sπ and Sπ′

.
If we set π(1) = π′(1), the argument can be repeated for the second input

symbol. By induction, π = π′, i.e., no two different paths can merge. Since there
are k! permutations, we require at least as many states. ��

All results presented in this section are outlined in Fig. 11c.

5.4 Guard-Update Model

Theorem 10. There exists a determinism-preserving LIN-automaton-only
reduction from (G-UP) to (G-UA).

Proof Sketch. The reduction splits all transitions of form

λ(p) |
∧

x∈XQ(q)\{xi}(p �= x)

xi := p

into two transitions with the same source and target states:

λ(p) |
∧

x∈XQ(q)(p �= x)

xi := p
and

λ(p) | p = xi

− ,

which are equivalent to the original and compatible with (G-UA). Since the
transitions are mutually exclusive, the reduction preserves determinism. ��
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Fig. 9. Sample transformation from a (G-CC) without (U-LV) transition to (G-UP)
transitions. For this example, the set of mapping functions are defined as →i:=〈
x1 = x̂j , q2 = x̂k | j = (i mod 3) + 1, k =

⌊
i−1
3

⌋
+ 1

〉
.

Theorem 11. There exists a determinism-preserving P-automaton-only reduc-
tion from (G-UA) to (G-FG).

Proof Sketch. The automaton reduction extends all guards to add the missing
comparisons to registers. While this would normally result in an exponential
number of transitions to describe all possible comparisons of parameters and
registers, (G-UA) guarantees that a parameter can be equal to at most one reg-
ister. A transition

λ(p) |
∧

x∈XQ(q)(p �= x)

a

already satisfies (G-FG), while one of form

λ(p) | p = xi

−

is equivalent to
λ(p) | p = xi ∧

∧
x∈XQ(q)\{xi}(p �= x)

− .

��

Theorem 12. There exists a determinism-preserving EXP-automaton-only
reduction from (G-CC) without (U-LV) to (G-UP).

Proof Sketch. The construction circumvents the lack of register-to-register oper-
ations by virtualizing the automaton’s registers. Each state of the resulting
automaton is associated with a register mapping, making register-to-register
operations essentially “free”.

To prepare the transformation, we add an additional register to the automa-
ton, resulting in the register set X̂ and define a family of functions f→ : X → X̂
that defines the register mapping. There is a maximum of |X||X|+1 such func-
tions, resulting in an exponential blow-up. For each function f→, we create a copy
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of the automaton’s states. A state q associated with the mapping f→ is called
q→. This permits conclusions about equality between registers. Two registers xi

and xj are equal if and only if f→(xi) = f→(xj). A register-to-register assign-
ment becomes a change in storage: xi := xj is modeled as f→(xi) := f→(xj).
Additionally, for each mapping function, a scratch register x̂s is identified that
is not in I(f→). This register becomes the sole target of write operations. The
initial state remains in the copy where f→ is the identity function.

Each source automaton’s transition 〈q, q′, λ, g, u〉 now needs to be translated
to account for the register virtualization. First, a copy of the transition is created
for each copy of its source, i.e., for every mapping f→. Next, we extend the guard
clause for each resulting copy, to ensure that the parameter p is compared to
every register in the original automaton. We refer to the registers that p is not
compared to as X̄. Now, we generate guards

(g ∧ p = x̄1 ∧ p = x̄2 ∧ · · · ∧ p = x̄|X̄|), (g ∧ p �= x̄1 ∧ p = x̄2 ∧ · · · ∧ p = x̄|X̄|),

(g ∧ p = x̄1 ∧ p �= x̄2 ∧ · · · ∧ p = x̄|X̄|), (g ∧ p �= x̄1 ∧ p �= x̄2 ∧ · · · ∧ p = x̄|X̄|),

. . . , (g ∧ p �= x̄1 ∧ p �= x̄2 ∧ · · · ∧ p �= x̄|X̄|)

and create a copy of the transition for each guard variant. We can now use
the knowledge that xi = xj ⇐⇒ f→(xi) = f→(xj) to check if register-to-
register comparisons are satisfied in the source state. If not, the transition copy
is discarded. Otherwise, redundant comparisons can be omitted, resulting in
either a single comparison p = xi or ∧x∈X(p �= xi).

In the first case, we can generate transitions

λ(p) | p = f→(xi)
− . (EQ1)

In the second case, the guard is always satisfiable in the original automaton, but
the value of p might still be stored in any register not ∈ I(f→) from a previous
write operation. For each register x̄ /∈ I(f→) ∪ {x̂s}, we create a transition

λ(p) | p = x̄i

− . (EQ2)

Finally, for the scratch register x̂s, we add the transition

λ(p) |
∧

x̂∈X̂\x̂s
(p �= x̂)

x̂s := p
. (NEQ)

Since the generated transitions are mutually exclusive, the resulting automaton
will be deterministic if the original automaton was.

Finally, the update is transformed into a new register mapping f→′ . The
transition’s target is then set to q′

→′ .

– For all registers that are not explicitly written to by the update, f→′ behaves
identically to f→.



A Taxonomy and Reductions for Common Register Automata Formalisms 209

Fig. 10. Sample transformation from two (G-CC) without (U-LV) transitions to multiple
(G-NR) transitions.

– For each register that is assigned another register’s values using xj := xi, the
mapping function is modified such that f→′(xj) := f→(xi).

– Each register that is assigned a parameter using xj := p must be handled
differently for the three types of transitions. For EQ1-transitions, we can
exploit that p = xi, yielding f→′(xj) := f→(xi). For EQ2-transitions, we
obtain f→′(xj) := x̄i. NEQ-transitions result in f→′(xj) := x̂s. ��

A small example for the transformation of a transition with an equality test
is given in Fig. 9. Note that the illustration assumes only two registers, for more,
an even larger blow-up would result.

Theorem 13. There exists a determinism-preserving P-many-one reduction
from (G-CC) without (U-LV) to (G-NR).

Proof Sketch. For each transition, the reduction introduces up to |X|2 “witness”
values into the input to replace register-register operations, making the data
reduction automaton dependent.

Given a transition with k register-to-register comparisons and � register-to-
register assignments, k+� intermediate states are created. The original transition
is stripped of all register-register operations. For each comparison xi = xj , an
additional transition

ω(p) | (p = xi) ∧ (p = xj)
−

is inserted and for each assignment xi := xj , a transition

ω(p) | p = xj

xi := p
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is created. The input is modified to include the “witness” values where required.
To preserve determinism, intermediate states with identical incoming transitions
can be merged. ��

Figure 10 illustrates the process.

Theorem 14. There exists a P-many-one reduction from (G-NR) to (G-FG).

Proof Sketch. The construction employs a technique similar to register virtual-
ization used in the proof of Theorem 12. However, we store the equality infor-
mation in registers and discard the actual values.

The reduction replaces the registers with |X|2 − |X| registers

x1,2, x̄1,2, x1,3, x̄1,3, . . . , x|X|−1,X , x̄|X|−1,X

that encode the equality half-matrix of original registers. We will maintain the
following invariants:

1. if in the original automaton for i < j, xi = xj , then xi,j = x̄i,j ,
2. if in the original automaton for i < j, xi �= xj , then xi,j �= x̄i,j ,
3. and for i < j and i′, j′ with i �= i′ or j �= j′, {xi,j , x̄i,j} ∩ {xi′,j′ , x̄i′,j′} = ∅.

To avoid unnecessary concern for register order, we will also refer to xi,j as xj,i.
Using these registers, we can compare xi = xj by using

λ(p) | (p = xi,j) ∧ (p = x̄i,j) ∧
∧

x∈XQ(q)\{xi,j ,x̄i,j}(p �= x)

−
and xi �= xj by using

λ(p) | (p = xi,j) ∧
∧

x∈XQ(q)\{xi,j}(p �= x)

− .

Storing equalities needs to take into account the previous state. We store xi = xj

using two parallel transitions:

λ(p) | (p = xi,j) ∧ (p = x̄i,j) ∧
∧

x∈XQ(q)\{xi,j ,x̄i,j}(p �= x)

−
is used if the registers were previously equal and

λ(p) | (p = xi,j) ∧
∧

x∈XQ(q)\{xi,j}(p �= x)

x̄i,j := p

is used if they were not. Storing an inequality xi �= xj is possible in one transition:

λ(p) |
∧

x∈XQ(q)\{xi,j}(p �= x)

x̄i,j := p
.

Now, all transitions need to be transformed. We distinguish two types of
transitions, those that guarantee the equality of the parameter and a register
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(e.g., p = xi) and those that do not. In the first case, all other instances of p in
the guard can be replaced with xi. Since p = xi is always satisfiable, the guard
can be replaced with test of equalities between registers. Each such comparison
is done in a separate transition. The assignment is then done by updating all
relevant equalities.

If p is only compared negatively to some registers, the guard is always satisfi-
able and can be removed. However, it is unknown if p is equal to registers it was
not compared to. For each group of equal registers p might be equal to, we non-
deterministically select either equality or inequality and write the corresponding
information to the half-matrix. ��

We now demonstrate that under widely-held assumptions about complexity
classes, no efficient reduction between (G-NR) and (G-UP) can exist.

Theorem 15. If NP �= PSPACE, there exists no P-many-one reduction from
(G-FG) to (G-UP).

A similar result for deterministic (U-LV) automata has been proven by Cassel
et al. [6]. Here, we demonstrate that such a reduction would allow us to construct
an NP algorithm for a PSPACE-complete problem.

Proof. Assume that an NP-many-one reduction from (G-FG) to (G-UP) exists
(�). We can now construct an NP-algorithm for NonEmptiness of deterministic
Demri-Lazić automata.

The following sequence of reductions reduces the Demri-Lazić automaton to
a finite-memory automaton:

(A-PT)+(U-LU)+(R-IN)+(G-NR): Demri-Lazić automaton
Thm. 2

� (A-PT)+(U-UL)+(R-IN)+(G-NR)
Thm. 14

� (A-PT)+(U-UL)+(R-IN)+(G-FG)
(�)
� (A-PT)+(U-UL)+(R-IN)+(G-UP)
� (A-PT)+(U-UL)+(R-IE)+(G-UP)

Thm. 8
� (A-PS)+(U-UL)+(R-IE)+(G-UP): finite-memory automaton

The finite-memory automaton’s emptiness can be decided in NP; the result holds
for the original automaton. Since the original problem is PSPACE-complete,
NP = PSPACE. ��

By using Turing reductions in the proof, permitting multiple oracle queries,
we obtain statements conditional on the collapse of the polynomial hierarchy.
These corollaries can be extended to arbitrary hierarchy levels.

Corollary 2. If the polynomial hierarchy does not collapse, there exists no PH-
NonEmptiness-Turing reduction from (G-FG) to (G-UP).

Theorem 16. There exists a LIN-automaton-only reduction from (G-UA) to (G-
UP).
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Proof Sketch. For all transitions that store the parameter (e.g., using xi := p),
the reduction removes (p �= xi) from the guard, yielding a (G-UP) automaton.
This operation can remove determinism from the automaton. To demonstrate
that this does preserve NonEmptiness, consider an input that does “overwrite”
a register with its value. This would not be permissible in the original automaton.
We demonstrate that an accepted input must exist that does not overwrite a
value.

Let the register valuation prior to overwriting be χ, the previous state be q
and the overwritten value be d̄. Consider a modification of the register automaton
in which χ is the initial valuation and q the initial state. This register automa-
ton’s language is closed under automorphisms on the data value set [15, Propo-
sition 2]. Let d̄′ be a value not occurring in the remaining input and σ : D → D
be the automorphism defined by

σ(d) =

⎧⎪⎨
⎪⎩

d̄′ if d = d̄

d̄ if d = d̄′

d otherwise.

If σ is applied to the remaining input, it is still accepted, but no overwrit-
ing occurs. This process can be repeated for each instance of overwriting. The
resulting input is accepted by both the original and the newly created automa-
ton. ��

All results presented in this section are outlined in Fig. 11d.

6 Application to Existing Models

We now employ the feature-wise reductions from Sect. 5 to define reductions
between the existing models from Sect. 4.2.

Theorem 17. Every initialized finite-memory automaton is a valid finite-me-
mory automaton.

Theorem 18. There exists a determinism-preserving LIN-automaton-only
reduction from finite-memory to Neven-Schwentick-Vianu automata.

Proof. We apply the following sequence of reductions:

(A-PS)+(U-UL)+(R-IE)+(G-UP): finite-memory automaton
� (A-PT)+(U-UL)+(R-IE)+(G-UP)

Thm. 10
� (A-PT)+(U-UL)+(R-IE)+(G-UA): Neven-Schwentick-Vianu automaton

��

Theorem 19. There exists a determinism-preserving P-data stable reduction
from Neven-Schwentick-Vianu to Segoufin automata.
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Fig. 11. Inequalities, reductions, and lower reduction complexity bounds between vari-
ants.
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Proof. We apply the following sequence of reductions:

(A-PT)+(U-UL)+(R-IE)+(G-UA): Neven-Schwentick-Vianu automaton
� (A-PT)+(U-LU)+(R-IE)+(G-UA)

Thm. 11
� (A-PT)+(U-LU)+(R-IE)+(G-FG)

Thm. 4
� (A-PT)+(U-LU)+(R-IN)+(G-FG): Segoufin automaton

��
Theorem 20. Every Segoufin automaton is a valid Demri-Lazić automaton.

Theorem 21. There exists a determinism-preserving LIN-data stable reduction
from Demri-Lazić to succinct canonical register automata.

Proof. We apply the following sequence of reductions:

(A-PT)+(U-LU)+(R-IN) +(G-NR): Demri-Lazić automaton
Thm. 6

� (A-PT)+(U-LU)+(R-UA)+(G-NR)
� (A-PT)+(U-LU)+(R-UA)+(G-CC)
� (A-PT)+(U-LV)+(R-UA)+(G-CC): succinct canonical RA

��
Theorem 22. There exists a determinism-preserving P-many-one reduction
from succinct canonical register automata to Demri-Lazić automata.

Proof. We apply the following sequence of reductions:

(A-PT)+(U-LV)+(R-UA)+(G-CC): succinct canonical RA
Thm. 1

� (A-PT)+(U-LU)+(R-UA)+(G-CC)
Thm. 3

� (A-PT)+(U-LU)+(R-IN) +(G-CC)
Thm. 13

� (A-PT)+(U-LU)+(R-IN) +(G-NR): Demri-Lazić automaton

��
Theorem 23. There exists a determinism-preserving EXP-many-one reduction
from succinct canonical register automata to finite-memory automata.

Proof. We apply the following sequence of reductions:

(A-PT)+(U-LV)+(R-UA)+(G-CC): succinct canonical RA
Thm. 7

� (A-PS)+(U-LV)+(R-UA)+(G-CC)
Thm. 1

� (A-PS)+(U-LU)+(R-UA)+(G-CC)
Thm. 2

� (A-PS)+(U-UL)+(R-UA)+(G-CC)
Thm. 3

� (A-PS)+(U-UL)+(R-IN) +(G-CC)
� (A-PS)+(U-UL)+(R-IE) +(G-CC)

Thm. 12
� (A-PS)+(U-UL)+(R-IE) +(G-UP): finite-memory automaton

��
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Fig. 12. Reductions between models and the complexity of NonEmptiness.

Theorem 24. There exists a P-many-one reduction from Demri-Lazić to Segou-
fin automata.

Proof. Follows from Theorem 14.

Theorem 25. If the polynomial hierarchy does not collapse, there exists no
PH-NonEmptiness-Turing reduction from Segoufin to Neven-Schwentick-Vianu
automata.

Proof. Follows from Corollary 2.

Theorem 26. There exists a LIN-prefix free reduction from Neven-Schwentick-
Vianu to finite-memory automata.

Proof. We apply the following sequence of reductions:

(A-PT)+(U-UL)+(R-IE)+(G-UA): Neven-Schwentick-Vianu automaton
Thm. 8

� (A-PS)+(U-UL)+(R-IE)+(G-UA)
Thm. 16

� (A-PS)+(U-UL)+(R-IE)+(G-UP)
(A-PS)+(U-UL)+(R-IE)+(G-UP): finite-memory automaton

��

Theorem 27. If NL �= NP, there exists no NL-NonEmptiness-Turing reduc-
tion from finite-memory to initialized finite-memory automata.



216 S. Dierl and F. Howar

Proof. Follows from Theorem 5.

Three categories of model can be distinguished by the complexity of
deciding NonEmptiness: those for which the problem is NL-, NP-, and
PSPACE-complete. These match the “register disciplines” SF , S#0 , and MF
by Murawski et al. [17,18]. The resulting structure is shown in Fig. 12.

For finite-memory automata and above, deciding Membership is P-complete
for deterministic automata and NP-complete otherwise. P- and NP-hardness
were proven for finite-memory automata. For every model, the Membership
of a word can – depending on determinism – be verified in P or NP by “execut-
ing” the automaton. Reductions therefore are of little interest for deciding the
Membership problem.

7 Conclusion and Future Work

We have described a taxonomy for several register automaton features and suc-
cessfully applied it to several types of automaton in the literature. The examined
feature variants have been shown to be mutually reducible, as outlined in Fig. 11.
This shows that all variants have identical expressiveness. We also charted the
complexity of the NonEmptiness problem for different features and identified
three categories of automaton, those for which it is NL-, NP-, and PSPACE-
complete. The possibility of transition guards to be unsatisfiable for certain
register valuations defines the difference between the first two, while the ability
to store the same value in multiple registers defining the difference between the
latter1. This implies that the size of automaton required to recognize a language
varies between models, i.e., automata with PSPACE-complete NonEmptiness
require less size to recognize a language.

Some register automaton formalisms, such as M-automata [15] and the
automata defined by Benedikt et al. [2] cannot be described using our taxonomy.
The former bears more similarity to pebble automata [19], while the latter’s use
of states is dissimilar to any other model’s. In future work, our taxonomy could
be extended to capture these formalisms.

Semantic extensions that strictly increase expressiveness such as register
pushdown automata [9], fresh-register automata [24], register automata with
non-deterministic reassignment [16] or with linear arithmetic [8] and symbolic
register automata [10] have been proposed as extensions to the classical register
automaton model studied by us. Again, these extensions could be taxonomized
to permit the transfer of applicable results.
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