
Chapter 7
From Symmetric Networks
to Heteroclinic Dynamics and Chaos
in Coupled Phase Oscillators with
Higher-Order Interactions

Peter Ashwin, Christian Bick, and Ana Rodrigues

Abstract We highlight some results from normal form theory for symmetric bifur-
cations that give a rational way to organize higher-order interactions between phase
oscillators in networks with fully symmetric coupling. For systems near Hopf bifur-
cation the lowest order (pairwise) interactions correspond to the system of Kuramoto
and Sakaguchi. At next asymptotic order one must generically include higher-order
interactions of up to four oscillators. We discuss some dynamical consequences of
these interactions in terms of heteroclinic attractors, chaos, and chimeras for related
systems.

7.1 Introduction

Network dynamical systems consists of individual dynamical units (nodes) that
evolve under mutual interaction. Examples include coupled neural oscillators, flash-
ing fireflies, and power grid networks. Such dynamical systems often give rise
to intriguing collective behavior, such as synchronization where nodes eventually
behave in unison [1, 2]. Mathematical descriptions of such network dynamical sys-
tems oftenmake the assumption that nodes interact in a pairwise fashion: The network
interactions are determined by the joint state of pairs of nodes, that is, there is an
underlying (directed) graph and such that if ( j, k) is an edge from node j to node k
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then the influence of j onto k does not depend on any other nodes. As an example, the
interactions in the classicalKuramotomodel [3, 4]where the phase θk ∈ T = R/2πZ
of oscillator k ∈ {1, . . . , N } evolves according to

θ̇k := d

dt
θk = ωk + K

N

N∑

j=1

sin(θ j − θk), (7.1)

with intrinsic frequencyωk ∈ R and subject to coupling strength K . In the Kuramoto
model, the interactions are all-to-all (i.e., the underlying graph is the complete graph)
but pairwise, that is, the influence of node j onto node k is determined by sin(θ j − θk)

which does not depend on the state of other nodes. This property allows to generalize
the Kuramoto model to arbitrary graphs [5]. Sakaguchi generalized the Kuramoto
model by incorporating a phase-shift parameter α ∈ T in the interaction function [6].

Recently, the dynamics of networks with nonpairwise interactions—interactions
containing nonlinear terms of more than two nodes—have attracted significant atten-
tion; cf. [7, 8] for recent reviews as well the other chapters in this book. Such network
dynamical systems have been studied in their own right as generalizations of dynam-
ics on graphs to “higher-order” combinatorial objects such as simplicial complexes
or hypergraphs. Intuitively speaking, a simplicial complex or hypergraph is an object
on a number of nodes that may not only contain edges between pairs of nodes but also
simplices that are spanned by three or more nodes. For a network dynamical system
on a simplex or hypergraph, the interactions along such a simplex corresponds to a
nonlinear term in the state variables of the nodes that span it. For example, Skardal
and Arenas [9, 10] considered a generalization of the Kuramoto model

θ̇k = ωk + K2

N

N∑

j=1

sin(θ j − θk) + K3

N 2

N∑

j,l=1

sin(2θl − θ j − θk)

+ K4

N 3

N∑

j,l,m=1

sin(θ j + θl − θm − θk),

(7.2)

where K2 and K3, K4 are the coupling strength of pairwise and nonpairwise interac-
tions, respectively. Here terms such as sin(2θl − θ j − θk) describe the nonadditive
joint influence of nodes l, j onto node k. These nonadditive terms can change the
properties of the collective dynamics as one may expect [11]: For (7.2) they lead to
a change in the criticality of the synchronization transition [10].

Nonadditively coupled phase oscillator networks—such as (7.2)—also arise as
phase approximations of weakly coupled nonlinear oscillator networks. In other
words, they can be derived from more general oscillator networks through phase
reduction [12, 13]. In this case, the phase dynamics (7.2) reflect the effective dynam-
ics of the corresponding nonlinear oscillator network [14] and nonadditive terms can
reflect the effect of the nonlinearities as the dynamics deviate from the original limit
cycle. For example, a globally coupled network of oscillatory nodes close to a Hopf
bifurcation has the effective phase dynamics
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θ̇k = ω +
N∑

j=1

g2(θ j − θk) +
N∑

j,l=1

g3(θ j + θl − 2θk)

+
N∑

j,l=1

g4(2θ j − θl − θk) +
N∑

j,l,m=1

g5(θ j + θl − θm − θk)

(7.3)

up to some order of approximation, as shown in [15], where g2, g3, g4, g5 are 2π -
periodic coupling functions. Thus, the dynamics of the phase reduction (7.3) reflect
the effective dynamics of the underlying nonlinear oscillator networks and can reveal
the possibility for chaotic phase dynamics [16]. Note that phase dynamics with non-
pairwise interaction terms can arise independent of whether the nonlinear oscillator
network has pairwise or nonpairwise coupling [14, 17].

In this chapter, we review recent progress on phase reductions in symmetric sys-
tems and their effective phase dynamics.Wewill also explicitly discuss these systems
from the perspective of symmetry. First, we will outline the phase reduction of gener-
ically coupled symmetric systems close to a Hopf bifurcation [15]; equation (7.3)
yields the resulting phase dynamics to higher order. The phase reduction is based
on the calculation of the equivariants of the system. Second, we analyze the phase
dynamics (7.3) and show that due to the inclusion of higher-order terms, chaotic
dynamics can arise; see [16]. These dynamics arise in globally coupled networks.
Third,wewill analyze a variation of (7.3) that allows to introduce a nontrivial network
structure. The resulting equations determine the dynamics of coupled populations
of phase oscillator networks, where the coupling within populations and between
populations is distinct. We summarize results from a series of papers [18–20] show-
ing that the network dynamics can not only show localized frequency synchrony
(i.e., frequencies are synchronized for some populations but not for others) akin to
chimeras [21, 22] but the location of synchrony can also wander around the net-
work through heteroclinic connections. We conclude with some remarks in the final
section.

7.2 Symmetric Normal Forms and Higher-Order
Interactions

An important tool to understand and classify bifurcations of dynamical systems is
transformation to a normal form: This is the simplest form of nonlinear equation
that locally explains the dynamics for all generic cases. In the next subsection we
briefly recall relevant ideas from symmetric Hopf bifurcation before applying it to the
problemof phase reduction near such aHopf bifurcation;more details are in [15]. The
main result of this section is to show that phase equations (7.3) with nonpairwise
interactions arise as higher-order approximations of the dynamics for symmetric
coupled oscillator networks with generic interaction close to a Hopf bifurcation.
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7.2.1 Hopf Bifurcation With SN Symmetry

In the general theory of symmetric (equivariant) dynamical systems [23] we study a
system of ordinary differential equations (ODEs)

ẋ = f (x, λ) (7.4)

with x ∈ V, λ ∈ R, where V is a finite-dimensional space, λ is the bifurcation param-
eter, and f is a symmetric function.

We say that an invertible n × n matrix γ is a symmetry of (7.4) if f (γ x, λ) =
γ f (x, λ) for all x ∈ V, λ ∈ R. A consequence of this is that if x(t) is a solution
to (7.4), then so is γ x(t). For periodic solutions, if x(t) is a T -periodic solution
of (7.4) then so is γ x(t). Uniqueness of solutions to the initial problem for (7.4)
implies that the trajectory of x(t) and γ x(t) are either disjoint, in which case we
have a new periodic solution, or identical, in which case they differ only by a phase
shift, that is, x(t) = γ x(t − t0) for some t0. In this case we say that the pair (γ, t0)
is a symmetry of the periodic solution x(t). Symmetries of periodic solutions have
both a spatial component γ and a temporal (phase shift) component t0.

Bifurcation Theory investigates how solutions to differential equations can branch
as a parameter is varied. Assume that x = 0 is an equilibriumof (7.4) for anyλ.When
convenient and there is confusion with subindices, we also write fλ(x) = f (x, λ).
The symmetry of f imposes restrictions on the bifurcations that can occur as λ is
varied. These can be a steady-state bifurcation, when an eigenvalue of the Jacobian
d fλ(0) of f at x = 0 passes through 0 (without loss of generality at λ = 0) or a
Hopf bifurcation, when a pair of complex conjugate eigenvalues of d fλ(0) crosses
the imaginary axis with nonzero speed at ±ωi, ω �= 0 where i = √−1.

The problem of N identical and identically interacting smooth (C∞) dynamical
systems on xk ∈ R

d (d ≥ 2) that simultaneously undergo a Hopf bifurcation is con-
sidered in [15]. In such a case the dynamics close to the Hopf bifurcation can be
approximated (beyond first order) by a phase oscillator system of the form (7.3).
Specifically, consider the coupled ordinary differential equations

ẋ1 = Hλ(x1) + εhλ,ε(x1; x2, . . . , xN )

...
...

... (7.5)

ẋN = Hλ(xN ) + εhλ,ε(xN ; x1, . . . , xN−1).

Note the parameter ε ∈ R is such that the system completely decouples for ε = 0.
We now assume that each system undergoes a Hopf bifurcation of x = 0 when
λ ∈ R passes through zero for ε = 0. We assume that the uncoupled system for
x ∈ R

d given by ẋ = Hλ(x) has a linearly stable fixed point at x = 0 for λ < 0
that undergoes supercritical Hopf bifurcation at λ = 0, in particular dHλ(0) has a
complex pair of eigenvalues λ ± iω, where ω �= 0 and all other eigenvalues μ of
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dHλ(0) satisfy Re(μ) < −r < 0. Without loss of generality we can assume 0 is an
equilibrium in some neighborhood of (λ, ε) = (0, 0).

7.2.2 Normal Forms for Symmetric Hopf Bifurcations With
SN Symmetry

System (7.5) describes a population of N identical, symmetrically coupled dynamical
systems with state xk ∈ R

d (d ≥ 2) close to a Hopf bifurcation. We assume that the
coupling respects the fact that the uncoupled systems can be permuted arbitrarily,
i.e., that the system is equivariant under the action of SN on R

dN by permutation
of coordinates. Since the system is close to a bifurcation, the dynamics can now be
reduced to a center manifold using equivariant bifurcation theory [24]: We explain
how this can be used as a basis for a phase oscillator description as in [15].

Note that the action of the symmetry group SN means that for ε > 0 a generic
Hopf bifurcation will have center manifold of dimension either 2 or 2N − 2. For the
uncoupled case λ = ε = 0 the center manifold will be 2N dimensional with each
coordinate xk parametrized by zk ∈ C. That is, for λ = ε = 0 points on the center
manifold are parametrized by (z1, . . . , zN ) ∈ C

N . The system on the center manifold
is

ż1 = fλ(z1) + εgλ(z1; z2, . . . , zN ) + O(ε2) (7.6)

etc., where z ∈ C
N and we have changed coordinates so that for zk = 0 is an equi-

librium that undergoes generic supercritical Hopf bifurcation at λ = 0. Note that for
N > 1 this will not be a generic Hopf bifurcation, but still we can assume f0(0) = 0
and d f0(0) has a pair of purely imaginary eigenvalues ±iω that pass transversely
through the imaginary axis with non-zero speed on changing λ.

The reduced system (7.6) has symmetries. First, the action of γ ∈ SN on C
N is

by permutation of coordinates

γ (z1, . . . , zN ) = (zγ −1(1), . . . , zγ −1(N )), (7.7)

where (z1, . . . , zN ) ∈ C
N meaning that gλ(z1; z2, . . . , zN ) is symmetric under all

permutations of the last N − 1 arguments. Second, Poincaré–Birkhoff normal form
theory [23] means that to all polynomial orders we can assume there is a normal
form symmetry given by the action of T on C

N , where θ ∈ T acts by

θ(z1, . . . , zN ) = eiθ (z1, . . . , zN ). (7.8)

The symmetries (7.7) and (7.8) restrict the possible terms that can appear in the
normal form;we can characterize these byfinding the possible equivariants, one order
at a time. Suppose N ≥ 4. Let f : CN → C

N be SN × T-equivariant with respect to
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the action (7.7), (7.8) with polynomial components of degree lower or equal than 3.
From results in [24, Section2.1.2] we can write f = ( f1, f2, . . . , fN ) where

f1(z1, z2, . . . , zN ) =
11∑

i=−1

aihi (z1, z2, . . . , zN ) (7.9)

with the other equations obtained by permutation, where the hi are equivariants listed
in [15] and a j ∈ C are constants.

Following [15], thismeanswe canwrite the equation for ż1 from (7.6) in Poincaré-
Birkhoff normal form [23] as the SN × T-equivariant system

ż1 = U (z1) + εF1(z1, . . . , zN , ε), (7.10)

where the third order truncated expression for F1 is given in (7.35) and the other
derivatives ż j are obtained by permutation of the indices.

7.2.3 Perturbations from the Uncoupled Limit

Note the Hopf bifurcation of (7.6) at λ = 0 has special structure: Following [15] we
assume there is an “uncoupled limit” corresponding to ε = 0. This extra structure
means that

ż1 = U (z1) := V (z1)z1 := [
λ + iω + a1|z1|2 + τ(z1)

]
z1, (7.11)

and we write V (z1) = VR(z1) + iVI (z1). We assume the uncoupled Hopf is super-
critical, meaning a1R < 0. We seek solutions of (7.11) of the form

z1(t) = R1(t)e
iφ1(t) = R1(t)e

i[�t+ψ1(t)] (7.12)

for some R1(t), ψ1(t) and constant �. Substituting this into (7.11), we require

Ṙ1 + i R1
[
� + ψ̇1

] = R1VR(R1) + i R1VI (R1)

where

VR(R1) = λ + a1R R
2
1 + τR(R2

1), VI (R1) = ω + a1I R
2
1 + τI (R1).

From this, it is clear that for small enough λ > 0 and ε = 0 there is a stable peri-
odic orbit at fixed R1 = R∗ > 0 such that VR(R∗) = 0, with angular frequency
� = VI (R∗) and arbitrary but fixed phase ψ1. More precisely, [15] shows that on
solving VR(R∗) = 0, we obtain
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R2
∗ = λ

−a1R
+ O(λ2),

� = VI (R
2
∗) = ω + a1I R

2
∗ + τ(R∗) = ω + a1I

−a1R
λ + O(λ2).

(7.13)

This implies there is a λ0 > 0 such that for any 0 < λ < λ0 there is a stable periodic
orbit (7.12) satisfying (7.13).

7.2.4 Reduction to Phase Oscillators

The final stage of the reduction undertaken by [15] is to show that, even though the
uncoupled limit cycles for λ > 0 are weakly stable, the normal form can gives an
explicit reduction to coupled phase oscillators as long as ε = o(λ). This involves
some coordinate changes to ensure that standard results from normally hyperbolic
invariant manifolds can be applied, followed by an averaging approximation. Since
we will be dealing with multiple timescales here, we will write out the temporal
derivatives d

dt explicitly in this section.
For ε = 0 and any 0 < λ < λ0 there is a stable invariant torus given by

(z1, . . . , zN ) = (R∗ei(�t+ψ1), . . . , R∗ei(�t+ψN )), (7.14)

parametrized by the phases (ψ1, . . . ψN ) ∈ T
N . This invariant torus is foliated by

neutrally stable periodic orbits with period 2π/� and so for each 0 < λ < λ0, the
torus is normally hyperbolic. The theory of normal hyperbolicity [25] implies there
is an ε0 such that for 0 < ε < ε0 the invariant torus persists and is Cr -smooth for
arbitrarily large r . Note that reducing r will restrict the ε0: We will need r ≥ 5 for
the approximation to be valid.

We write ak = αkeiθk = akR + iak I and zk(t) = Rk(t)ei(�t+ψk (t)) = [R∗ + ρk(t)]
ei(�t+ψk (t)) In particular, we seek solutions such that ρk is small and ψk varies slowly
with t . Re-writing (7.10), note that

d

dt
ρ1 + i R1

[
� + d

dt
ψ1

]
= U (R1) + εF1(z1, . . . , zN , 0)e−i(�t+ψ1) + O(ε2).

(7.15)
Writing U in real and imaginary parts and expanding for small ρ1, [15] show
that A(λ) := U ′

R(R∗)/λ, B(λ) := V ′
I (R∗)/(λ1/2), so that U (R1) = λA(λ)ρ1 +

i R1[� + λ1/2B(λ)ρ1] + O(ρ2
1 ). This implies that (7.15) can be expressed as

d

dt
ρ1 + i R1

[
� + d

dt
ψ1

]
= λA(λ)ρ1 + i R1[� + λ1/2B(λ)ρ1]

+ εF1(z1, . . . , zN )e−i(�t+ψ1) + O(ε2)

(7.16)
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Recalling from (7.13) that R2∗ = λ/(−a1R)+O(λ2), U (R∗) = UR(R∗) + iVI (R∗)
R∗ = (λ + a1R R2∗ + τ(R∗))R∗, τ(z) = O(z4), and τ ′(z) = O(z3) so one can show
A(λ) = 1 + 3a1R/(−a1R) + O(λ) = −2 + O(λ). Similarly, one can show B(λ) =
2a1I /

√−a1R + O(λ). In particular, for λ → 0 there are finite limits A(0) = −2,
B(0) = 2a1I /

√−a1R . Careful expansion of the terms in F1 and taking real parts
of (7.16) gives the expression (7.36). The equivalent equation for ψ1 is obtained
by taking imaginary parts of (7.15) and after cancellation and dividing by R1,
gives (7.37).

In terms of slow time T = λt , calculations in [15] show that (7.15, 7.16) can be
written as

d

dT
r j = A(λ)r j + f j + O(ε)

d

dT
ψ j = ελ−1

[
C(λ)r j + h j

] + O(ε2)

(7.17)

for j = 1, . . . , N . Note that f j and h j are trigonometric polynomials and A,C , f j and
h j have finite limits as λ → 0. Hence (7.17) gives a slow timescale for evolution of

ψ j as long as ε = o(λ). Defining scaled amplitude variables σ j := r j + f j (ψ1,...,ψN−1)

A(λ)
,

system (7.17) can be expressed as

d

dT
σ j = A(λ)σ j + O(ε)

d

dT
ψ j = ελ−1

[
C(λ)σ j + Hj

] + O(ε2),

(7.18)

where Hj = h j − f jC(λ)/A(λ). We write Hj = H 0
j + λH 1

j + O(λ2),where H 0
j =

h0j − C(0)/A(0) f 0j , H
1
j = R2∗(λ)

[
h1j − f 1j C(0)/A(0)

]
/λ − f 0j [C ′(0)A(0) − A′(0)

C(0)]/A(0)2, which is a trigonometric polynomial in ψk − φ j . It can be shown that
H 0

j only involves pairwise coupling while H
1
j includes coupling of up to four phases

(and on α2, . . . , α11).
After further manipulations [15], the reduced equations for φ j can be written in

the form
d

dt
φ j = � + ε

[
H 0

j + λH 1
j

]
(7.19)

where the phase differences ψ j − ψk = φ j − φk for all j and k, and the approxima-
tion will be close for times 0 < t < t̃ with t̃ = O(ε−1λ−2). For k = −1, 1, . . . , 11
we define βk and γk such that for all θ we have βk cos(γ j + θ) := αk sin(θk + θ) −
C(0)
A(0) αk cos(θk + θ). Then we can write (7.19) in the form
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d

dt
φ j = � + εH1

= �̃(φ, ε) + ε

N

N∑

k=1

g2(φk − φ j ) + ε

N 2

N∑

k,�=1

g3(φk + φ� − 2φ j )

+ ε

N 2

N∑

k,�=1

g4(2φk − φ� − φ j ) + ε

N 3

N∑

k,�,m=1

g5(φk + φ� − φm − φ j )

(7.20)
where the various coupling functions have the form

�̃(φ, ε) = � + R2
∗ε

⎡

⎣β4 cos γ4 + β5

N 2

∑

j,k

cos(γ5 + φ j − φk)

⎤

⎦

g2(ϕ) = β−1 cos(γ−1 + ϕ) + R2
∗
[
β2 cos(γ2 − ϕ) + β3 cos(γ3 + ϕ)

+β6 cos(γ6 + 2ϕ) + β8 cos(γ8 + ϕ) + β10 cos(γ10 + ϕ)
]

− λ
C ′(0)A(0) − A′(0)C(0)

A(0)2
α−1 cos(θ−1 + ϕ)

g3(ϕ) = R2
∗
[
β7 cos(γ7 + ϕ)

]

g4(ϕ) = R2
∗
[
β9 cos(γ9 + ϕ)

]

g5(ϕ) = R2
∗
[
β11 cos(γ11 + ϕ)

]
.

(7.21)

To summarize, we have illustrated how the reduction of [15] demonstrates that, to
first order, the generic dynamics of N weakly coupled coupled identical oscillators
close to a Hopf bifurcation are approximated by the Kuramoto equations (7.1) with
an additional phase-shift parameter α, i.e., the Kuramoto–Sakaguchi equations [6].
Moreover, at second order in the bifurcation parameter λ we have phase dynamics
given by (7.20), a system very similar to (7.3): The phase dynamics are determined
by

θ̇k = �̃(θ, ε) + ε
(
F (2)
k (θ) + F (3)

k (θ) + F (4)
k (θ)

)
(7.22)

for k ∈ {1, . . . , N } with

F (2)
k (θ) = 1

N

N∑

j=1

g2(θ j − θk) (7.23a)

F (3)
k (θ) = 1

N 2

N∑

j,�=1

g3(θ j + θ� − 2θk) + 1

N 2

N∑

j,�=1

g4(2θ j − θ� − θk) (7.23b)

F (4)
k (θ) = 1

N 3

N∑

j,�,m=1

g5(θ j + θ� − θm − θk) (7.23c)
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and coupling functions

g2(φ) = ξ 0
1 cos(φ + χ0

1 ) + λξ 1
1 cos(φ + χ1

1 ) + λξ 1
2 cos(2φ + χ1

2 )

g3(φ) = λξ 1
3 cos(φ + χ1

3 )

g4(φ) = λξ 1
4 cos(φ + χ1

4 )

g5(φ) = λξ 1
5 cos(φ + χ1

5 )

(7.24)

for coefficients ξ
j
i and χ

j
i determined from (7.21). In particular, this next order

includes pairwise, triplet and quadruplet interactions of phases.

7.3 Coupled Phase Oscillators Networks with Nonpairwise
Interactions

In this section, we recall some results from [16] and related literature that explores
the phase equations (7.22) with higher-order interactions. For concreteness, we set
�̃(θ, ε) = ω andfixλ = ε = 1. That is,we consider (7.3)with the coupling functions

g2(φ) = ξ1 cos(φ + χ1) + ξ2 cos(2φ + χ2)

g3(φ) = ξ3 cos(φ + χ3)

g4(φ) = ξ4 cos(φ + χ4)

g5(φ) = ξ5 cos(φ + χ5)

(7.25)

such that for general N the function g2 determines pairwise, g3, g4 triplet and g5
quadruplet interaction.

7.3.1 Symmetric Phase Oscillator Networks

The symmetries of the phase equations (7.3) have consequences for the dynamics.
Here the phase equations “inherit” symmetries from the generically coupled sys-
tem (7.5): First, the phase equations are symmetric with respect to the rotation by a
common angle. As a consequence, wemay assume—without loss of generality—that
the phase of the first oscillator θ1 is always equal to zero by going into a co-rotating
reference frame that moves with oscillator k = 1. Second, the SN -symmetry acts by
permuting oscillators. By using the permutational symmetry, we may assume that
the phases are in ascending order. Note that these properties are due to the symme-
try alone, independent of whether the phase oscillators are subject to pairwise or
nonpairwise interactions; cf. [26].



7 From Symmetric Networks to Heteroclinic … 207

Because of the symmetries,we donot need to consider the dynamics of (7.3) on the
entire phase space TN but can restrict the analysis to a smaller but still representative
subset. Specifically, define the canonical invariant region (CIR) [26] as the set of
phases

C = {
θ ∈ T

N | 0 = θ1 < θ2 < · · · < θN < 2π
}
. (7.26)

The CIR is a (N − 1)-simplex whose boundary consists of cluster configurations
where the phases of two or more oscillators are equal. The intersection of all cluster
configurations is the fully synchronized phase configuration

S := {
(θ1, . . . , θN ) ∈ T

N | θk = θk+1
}

(7.27a)

where the phases of all oscillators are equal. At the centroid of the CIR is the splay
phase configuration

D :=
{

(θ1, . . . , θN ) ∈ T
N

∣∣∣∣ θk+1 = θk + 2π

N

}
, (7.27b)

where the oscillator phases are uniformly distributed on the circle. As fixed point
subsets of symmetries—e.g., S is invariant under any permutation of the oscillator
indices—the cluster configurations are also dynamically invariant.

The CIR for N = 3 and N = 4 is illustrated in Fig. 7.1. For N = 3 the CIR is
a two-dimensional simplex and we cannot expect any chaotic dynamics [27]. For

Fig. 7.1 Structure of the canonical invariant region C for N = 3 and N = 4 (see [26]). Panels a, b
show C as an orthogonal projection of into R

2 and R
3, respectively. The edges of C for, a and the

faces of C for, b are points where two oscillators have the same phase. The filled circles represent the
fully synchronous phase configuration S; the open circle represents the splay phase configuration D
in C. In b the solid lines correspond to 3:1 cluster configurations where three oscillators have the
same phase and one is distinct while the long-dashed lines correspond to 2:2 cluster configurations
of two clusters of two oscillators. The short-dashed lines are points (a, b, a + π, b + π). For any N
there is a residual Z/NZ symmetry that “rotates” the canonical invariant region (the direction of
rotation is indicated by the arrows in b). Overall (N − 1)! symmetric copies of C pack a generating
region for the torus. Reprinted from [16]
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N = 4 the CIR is three-dimensional which does not preclude chaotic dynamics.
If the coupling is pairwise with a single harmonic as in the Kuramoto–Sakaguchi
model, there is additional degeneracy that prevent chaotic attractors to emerge [28].
If the coupling is pairwise but one allows for higher harmonics in the coupling
function (cf. [29]) onemayobserve chaotic dynamics for a pairwise coupling function
with four harmonics [30]. But no further examples of coupling functions with fewer
harmonics are known for fully symmetric systems with pairwise interactions.

7.3.2 Chaos in Globally Coupled Phase Oscillator Networks
with Higher-Order Interactions

The phase dynamics of (7.3) with nonpairwise coupling mediated by the func-
tions (7.25) can give rise to chaotic dynamics. Following [16] we fix Fourier coeffi-
cients

ξ = (−0.3, 0.3, 0.02, 0.8, 0.02) (7.28)

while varying the phase shifts χ . Calculating the maximal Lyapunov exponent λmax

reveals a region in parameter space where λmax > 0 and chaotic attractors appear
in the canonical invariant region. Figure7.2a shows a solution θ(t) in C for χ =
(0.154, 0.318, 0, 1.74, 0). While the attracting set lies in the interior of C, the trajec-
tories on the chaotic attractor come close to its boundary that consist where oscillators
are clustered. Indeed, a small variation shows periodic dynamics that appear to be
close to a heteroclinic network: Fig. 7.2b shows a stable periodic orbit close to such
a heteroclinic network for parameters χ = (0.2, 0.316, 0, 1.73, 0).

Since the equilibria on the boundary include a saddle-focus, the chaotic dynamics
appear to arise through a nonstandard Shilnikov saddle-focus scenario [31]. Indeed,

Fig. 7.2 Heteroclinic networks organize chaotic behavior in C for networks of N = 4 oscillators;
line styles on the boundary of C are as in Fig. 7.1. The right panel shows a trajectory with positive
maximal Lyapunov exponents for phase shift parameters χ = (0.154, 0.318, 0, 1.74, 0) that comes
close to the boundary of C. For nearby parameter values χ = (0.2, 0.316, 0, 1.73, 0) there is an
attracting periodic orbit close to a heteroclinic network involving two saddle equilibria, one a
saddle-focus, on the boundary of C. Reprinted from [16]
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modulo the residualZN symmetry on C the heteroclinic network on the boundary of C
involves two equilibria. Grines and Osipov [32] took this observation as a starting
point to determine what homoclinic and heteroclinic trajectories are possible in (7.3)
for N = 4 oscillators. More specifically, the symmetries of the system restrict the
saddle connections that are possible between equilibria that lie on the boundary of C
such as those in Fig. 7.2b.

While N = 4 is the smallest number of oscillators for which chaos can arise in the
phase equations, chaotic dynamics also arise in networks with N > 4 phase oscil-
lators. In [16] we gave explicit parameter values for which λmax > 0 but a detailed
analysis of these larger phase oscillator networks is still an outstanding problem.

7.4 Chimeras and Other Creatures for Multiple
Populations

The dynamics of a globally coupled network (7.3) of N identical oscillatorswith non-
pairwise interactions is constrained by the symmetries of the system. Since the system
isSN -equivariant, the asymptotic average frequencies�k(θ(0)) := limT→∞ θ(T )/T
for any initial condition θ(0) ∈ T

N are identical1: We have �k = � j for all k, j ∈
{1, . . . , N } independent of the initial condition and the oscillators are frequency syn-
chronized [21]. This restriction breaks down if the SN symmetry is broken. In this
section we discuss the dynamics of a generalization of (7.29) where the phase θk
evolves according to

θ̇k = ω +
N∑

j=1

a( jk)
2 g2(θ j − θk) +

N∑

j,l=1

a( jlk)
3 g3(θ j + θl − 2θk)

+
N∑

j,l=1

a( jlk)
4 g4(2θ j − θl − θk) +

N∑

j,l,m=1

a( jlmk)
5 g5(θ j + θl − θm − θk)

(7.29)

where a( jk)
2 ∈ R and a( jlk)

3 , a( jlk)
4 , a( jlmk)

5 ∈ R are the coupling strength of pairwise
and nonpairwise interactions. For nonhomogeneous choice of these coupling coeffi-
cients, the system (7.29) can describe coupled populations of phase oscillators that
allow for frequency synchrony to be localized in one or more populations.

1 Here we assume that the limit exists; for a generalization to frequency intervals see [22].
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7.4.1 Frequency Synchrony in Coupled Oscillator
Populations

Suppose that the N oscillators are grouped into M populations (assuming N = MQ)
indexed by σ ∈ {1, . . . , M}. The first Q oscillators belong to population σ = 1,
oscillators k ∈ {Q + 1, . . . , 2Q} to population σ = 2 etc., and we write k = (σ, q)

if oscillator k (in the linear ordering as above) corresponds to oscillator q in popu-
lation σ and θσ,q denote its phase and �σ,q the asymptotic average frequency. We
now consider networks with coupling coefficients a( jk)

2 = K (σ )
p /Q if k, j belong to

population σ and a( jk)
2 = 0 otherwise so that interactions within populations are pair-

wise and a( jlk)
3 = a( jlk)

4 = 0, and a( jlmk)
5 = K (στ)

np /Q3 if and only if oscillators m, k

belong to population σ and oscillators j, l to population τ and a( jlmk)
5 = 0 otherwise

determine the nonpairwise interactions. With this choice of coefficients the M pop-
ulations are globally and identically coupled through pairwise interactions while the
nonpairwise interactions mediate the coupling between distinct populations.

The specific formof network coupling induces symmetries: The dynamical system
is (SQ × T)M -equivariant where, for each population, SQ acts by permuting the
oscillators and T acts by shifting all oscillators of the given population by a constant.
Note that there is one phase-shift symmetry for each population. For population σ ,
write θσ = (θσ,1, . . . , θσ,Q) to denote the state of the population. Recall that S and D,
as defined in (7.27), denote the synchronized and splay configurations in a network
consisting of a single population. For the network of interacting populations, write

θ1 · · · θσ−1Sθσ+1 · · · θM = {
θ ∈ T

N
∣∣ θσ ∈ S

}
(7.30a)

θ1 · · · θσ−1Dθσ+1 · · · θM = {
θ ∈ T

N
∣∣ θσ ∈ D

}
(7.30b)

to indicate that population σ is fully phase synchronized or in splay phase. Because
of the symmetry these sets are dynamically invariant. We extend this notation to
intersections of the sets (7.30), so that S · · · S (M times) denotes cluster states where
all populations are fully phase synchronized and D · · ·D (M times) the set where all
populations are in splay phase.

These invariant sets can display frequency synchrony that is localized in a spe-
cific part of the network: The oscillators within one populations are frequency syn-
chronized while oscillators in different populations are not. This is a characterizing
feature of a weak chimera [21, 22]. To see this take K (στ)

np = 0, that is, there is no
coupling between different populations. If population σ is phase synchronized, that
is, θσ (0) = (θσ,1(0), . . . , θσ,Q(0)) ∈ S we have

�σ,k(θ(0)) = ω + K (σ )
p g2(0). (7.31)

Similarly, if population σ in splay phase, that is, θσ (0) ∈ D,we have
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�σ,k(θ(0)) = ω +
Q∑

j=1

K (σ )
p

Q
g2

(
2π j

Q

)
. (7.32)

Since these two values are distinct for a generic pairwise coupling function g2,
we have that any set of the form DS · · · S has populations with distinct frequency.
Moreover, this property is preserved for sufficiently small

∣∣K (σ,τ )
np

∣∣ > 0.

7.4.2 Heteroclinic Cycles and Networks

While much attention has focused on localized frequency and chimeras to be attrac-
tors in network dynamical systems [33], the nonpairwise interactions also allow for
heteroclinic dynamics that connect different localized frequency synchrony patterns.
For us, a heteroclinic cycle consists of a finite number of normally hyperbolic invari-
ant sets ξs , s ∈ {1, . . . , S}, together with trajectories [ξs → ξs+1] (indices are taken
modulo S) that lie in the intersection of the unstable manifold of ξs and the stable
manifold of ξs+1; cf. [34, 35]. Trajectories close to a heteroclinic cycle show “switch-
ing dynamics”: The trajectory will spend time close to one of the invariant sets ξs
before a rapid transition to the next set.

For small networks that consist ofM = 3 populations of Q ∈ {2, 3}we can explic-
itly give conditions for the existence of robust heteroclinic cycles that are asymptot-
ically stable. Here we outline the results for Q = 2 oscillators and refer to [18–20]
for more detailed results.

Theorem Consider M = 3 populations of Q = 2 oscillators with coupling
functions g2(ϑ) = sin(ϑ + α2) + r sin(2(ϑ + α2)) and g4(ϑ) = sin(ϑ + α4) and
nonpairwise coupling parameters K (στ)

np = −K if τ = σ − 1, K (στ)
np = K if τ =

σ + 1, and K (στ)
np = 0 if τ = σ . Then there exists an open set of parameter values

K , r, α2, α4 such that the coupled phase oscillator network (7.29) with higher-order
interactions has an asymptotically stable robust heteroclinic cycle.

The main ideas of the proof is as follows. First, note that because of the SM
Q

symmetry we can reduce the 6-dimensional dynamics to a system of 3 phase dif-
ference variables ψσ = θσ,2 − θσ,1 for each population σ ∈ {1, 2, 3}. In the reduced
coordinates invariant sets of the form SSS,DSS, . . . are equilibrium points. Second,
we can linearize the equations close to these equilibria. This allows to write down
conditions that ensure that the equilibria have the right (local) stability properties.
For example, we can impose that DSS is stable in the invariant subspaces DSθ3 and
θ1SS but unstable in the invariant subspace Dθ2S. Moreover, we want that DDS is
stable in Dθ2S and DDθ3 but unstable in θ1DS. The stability conditions for the other
equilibria are similar. Third, we have to ensure that there are heteroclinic connections
between the equilibria: There is a connection [DSS → DDS] if there are no other
equilibria in the one-dimensional invariant set Dθ2S. This condition—as well as con-
ditions for the other heteroclinic connections—can be explicitly expressed in terms
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of the coupling parameters. Fourth, we have that the resulting heteroclinic cycle is
in the class of quasi-simple heteroclinic cycles; see [36]. This allows to write down
explicit conditions for the stability of the resulting cycle [20]. Heteroclinic structures
organize the dynamics even if these structures are broken by perturbations: Typically,
periodic or chaotic dynamics appear that closely mimic the switching dynamics of
the cycle.

For a larger number of populations, such heteroclinic cycles can be part of larger
networks of heteroclinic connections. Existence of a heteroclinic network in M =
4 coupled populations of Q = 2 oscillators each is proved in [20]. This network
consists of two cycles of the form discussed above with the difference that from the
equilibrium SDSS there are two distinct heteroclinic connections [SDSS → SDDS]
and [SDSS → SDSD] resulting in a network that contains two distinct heteroclinic
cycles. In other words, the second population can desynchronize either the third or
the fourth population. If weak noise is added to the system nearby trajectories exhibit
dynamics that can follow either of the two cycles in the network. As quasi-simple
heteroclinic cycles—one can calculate their stability properties explicitly.

7.5 Outlook

In this chapter, we reviewed results from [15, 16] and related literature [18–20] that
discuss how nonpairwise interactions in phase oscillator networks arise naturally in
phase reductions and their consequences for the phase dynamics. The framework of
symmetric Hopf bifurcation theory helps organize and understand the importance
these nonpairwise interactions of the phase dynamics in a rigorous manner. We
discussed the dynamics of the resulting phase oscillator networks and a generalization
thereof that allows for amoregeneral network structure other thanglobal and identical
coupling.

One of the more puzzling aspects of higher order interactions in phase oscillator
networks is that it seems to be hard to characterize the dynamical restrictions imposed
by having only pairwise interactions. With a few exceptions (e.g., the scenarios for
cluster state stabilities considered in [15]), pairwise coupled systems are remarkably
rich in their dynamics. This may be the reason why higher order interactions have
only recently become of interest. In another approach, Komarov and Pikovsky [37]
consider a phase oscillator system of the form

φ̇k = � + ω + S(φk)F (7.33)

where F depends on themeanfields. They show that the second order phase dynamics
are given by

θ̇k = ω + ε
(
F (2)
k (θ) + F (3)

k (θ)
)

(7.34)
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with F (2)
k (θ) = 1

N

∑N
j=1 g2(θ j − θk), F (3)

k (θ) = 1
N 2

∑N
j,�=1 g3(θ j + θ� − 2θk) and

the interactions between the phases are given by g2(φ) = ξ1 cos(φ + χ1) + ξ2
cos(2φ + χ2), g3(φ) = ξ3 cos(φ + χ3). This is a special case of (7.29) where the
coupling functions g4, g5 are zero. Similarly, the phase oscillator network (7.2) con-
sidered by Skardal and Arenas [9, 10] is a special case of (7.29) as mentioned above.

While phase oscillators with nonpairwise interactions can be analyzed in their
own right, it is instructive to remember that such interaction terms arise in phase
reductions as discussed here. The nonpairwise interactions capture the nonlinearities
of the (unreduced) nonlinear oscillator system and their interactions. Thus, phase
oscillator networkswith nonpairwise interactions can capture someproperties of their
dynamics. It seems natural to assume that it is especially when one moves away from
the weakly coupled limit that higher-order interactions will become decisive: For
example, the discontinuous synchronization transitions in [38] appear in a strongly-
coupled oscillator network, while [39] also consider effects that can be viewed as
associated with higher-order interactions.
Truncated expressions for phase and amplitude dynamics

For completeness, the expression for the cubic truncated Hopf normal form
from [15] is

F1 =
⎡

⎣a−1
1

N

∑

j

z j + a2
z21
N

∑

j

z j + a3
|z1|2
N

∑

j

z j

+ a4
z1
N

∑

j

|z j |2 + a5
z1
N 2

∑

j,k

z j zk + a6
z1
N

∑

j

z2j

+ a7
z1
N 2

∑

j,k

z j zk + a8
1

N

∑

j

|z j |2z j + a9
1

N 2

∑

j,k

z2j zk

+ a10
1

N 2

∑

j,k

z j |zk |2 + a11
1

N 3

∑

j,k,�

z j zk z�

⎤

⎦ + F̃1 + O(ε).

(7.35)

where the ε = 0 error term is F̃1 = O(|z|5), ∑
i denotes

∑N
i=1,

∑
i, j denotes

∑N
i=1

∑N
j=1 and

∑
i, j,k denotes

∑N
i=1

∑N
j=1

∑N
k=1. This can be recovered from [24].

The radial dynamics for phase reduction is
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ρ̇1(t) = λA(λ)ρ1 + ε
[
α−1

∑′
j R j cos(θ−1 + ψ j − ψ1)

+α2
∑′

j R
2
1R j cos(θ2 + ψ1 − ψ j )

+α3
∑′

j R
2
1R j cos(θ3 + ψ j − ψ1)

+α4
∑′

j R1R2
j cos θ4

+α5
∑′

j,k R1R j Rk cos(θ5 + ψ j − ψk)

+α6
∑′

j R1R2
j cos(θ6 + 2ψ j − 2ψ1)

+α7
∑′

i, j R1Ri R j cos[θ7 + (ψi − ψ1) + (ψ j − ψ1)]
+α8

∑′
j R

3
j cos(θ8 + ψ j − ψ1)+

+α9
∑′

j,k R
2
j Rk cos(θ9 + 2ψ j − ψk − ψ1)

+α10
∑′

j,k R j R2
k cos(θ10 + ψ j − ψ1)

+α11
∑′

i, j,k Ri R j Rk cos(θ11 + ψi + ψ j − ψk − ψ1)
]

+O(ρ2, ε2)

(7.36)

where ρ2 = max j (ρ
2
j ) and

∑′
j a j := 1

N

∑N
j=1 a j ,

∑′
j,k a j,k := 1

N 2

∑N
j,k=1 a j,k , etc.

are the normalized sums. Similarly the phase dynamics are given by

ψ̇1(t) = λ1/2B(λ)ρ1 + ε
[
α−1

∑′
j (R j/R1) sin(θ−1 + ψ1 − ψ j )

+α2
∑′

j R1R j sin(θ2 + ψ1 − ψ j )

+α3
∑′

j R1R j sin(θ3 + ψ j − ψ1)

+α4
∑′

j R
2
j sin θ4

+α5
∑′

j,k R j Rk sin(θ5 + ψ j − ψk)

+α6
∑′

j R
2
j sin(θ6 + 2(ψ j − ψ1))

+α7
∑′

i, j Ri R j sin[θ7 + (ψi − ψ1) + (ψ j − ψ1)]
+α8

∑′
j (R

3
j/R1) sin(θ8 + ψ j − ψ1)

+α9
∑′

j,k(R
2
j Rk/R1) sin(θ9 + 2ψ j − ψk − ψ1)

+α10
∑′

j,k(R j R2
k/R1) sin(θ10 + ψ j − ψ1)

+α11
∑′

i, j,k(Ri R j Rk/R1) sin(θ11 + ψi + ψ j − ψk − ψ1)
]

+ 1
R1
O(ρ2, ε2)

(7.37)

References

1. A. Pikovsky,M. Rosenblum, J. Kurths,AUniversal Concept in Nonlinear Sciences (Cambridge
University Press, Synchronization, 2003)

2. S.H. Strogatz. Sync: The Emerging Science of Spontaneous Order (Penguin, 2004)
3. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, vol. 19. (Springer, Berlin, 1984)
4. J. Acebrón, L. Bonilla, Conrad P. Vicente, F. Ritort, R. Spigler. The Kuramoto model: A simple

paradigm for synchronization phenomena. Rev. Mod. Phys. 77(1), 137–185 (2005)
5. F.A. Rodrigues, T.K.D.M. Peron, P. Ji, J. Kurths, The Kuramoto model in complex networks.

Phys. Rep. 610, 1–98 (2016)
6. H. Sakaguchi, Y. Kuramoto, A soluble active rotator model showing phase transitions via

mutual entrainment. Prog. Theor. Phys. 76, 576–581 (1986)



7 From Symmetric Networks to Heteroclinic … 215

7. F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas, A. Patania, J. Young, G. Petri,
Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020)

8. C. Bick, E. Gross, H.A. Harrington, M.T. Schaub, What are higher-order networks? (2021)
arXiv:2104.11329

9. P.S. Skardal, A. Arenas, Abrupt desynchronization and extensive multistability in globally
coupled oscillator simplexes. Phys. Rev. Lett. 122(24), 248301 (2019)

10. P.S. Skardal, A. Arenas, Higher order interactions in complex networks of phase oscillators
promote abrupt synchronization switching. Commun. Phys. 3(1), 218 (2020)

11. C.Kuehn, C. Bick, A universal route to explosive phenomena. Sci. Adv. 7(16), eabe3824 (2021)
12. H. Nakao, Phase reduction approach to synchronisation of nonlinear oscillators. Contem. Phys.

57(2), 188–214 (2016)
13. B. Pietras, A. Daffertshofer, Network dynamics of coupled oscillators and phase reduction

techniques. Phys. Rep. 819, 1–105 (2019)
14. B. Kralemann, A. Pikovsky, M. Rosenblum, Reconstructing effective phase connectivity of

oscillator networks from observations. New J. Phys. 16(8), 085013 (2014)
15. P. Ashwin, A. Rodrigues, Hopf normal form with SN symmetry and reduction to systems of

nonlinearly coupled phase oscillators. Physica D 325, 14–24 (2016)
16. C. Bick, P. Ashwin, A. Rodrigues, Chaos in generically coupled phase oscillator networks with

nonpairwise interactions. Chaos 26(9), 094814 (2016)
17. I. León, D. Pazó, Phase reduction beyond the first order: the case of the mean-field complex

Ginzburg-Landau equation. Phys. Rev. E 100(1), 012211 (2019)
18. C. Bick, Heteroclinic switching between chimeras. Phys. Rev. E 97(5), 050201(R) (2018)
19. C. Bick, Heteroclinic dynamics of localized frequency synchrony: heteroclinic cycles for small

populations. J. Nonlinear Sci. 29(6), 2547–2570 (2019)
20. C. Bick, A. Lohse, Heteroclinic dynamics of localized frequency synchrony: stability of hete-

roclinic cycles and networks. J. Nonlinear Sci. 29(6), 2571–2600 (2019)
21. P. Ashwin, O. Burylko, Weak chimeras in minimal networks of coupled phase oscillators.

Chaos 25, 013106 (2015)
22. C. Bick, P. Ashwin, Chaotic weak chimeras and their persistence in coupled populations of

phase oscillators. Nonlinearity 29(5), 1468–1486 (2016)
23. M. Golubitsky, D.G. Schaeffer, I.N. Stewart. Singularities and Groups in Bifurcation Theory,

Vol. II, vol. 69 of Appl. Math. Sci. (Springer, New York, 1988)
24. A.P. Dias, A. Rodrigues, Secondary bifurcations in systems with all-to-all coupling. ii. Dyn.

Syst. 21, 439 – 463 (2006)
25. N. Fenichel, Geometric singular perturbation theory for ordinary differential equations. J.

Differ. Equ. 31, 53–98 (1979)
26. P. Ashwin, J.W. Swift, The dynamics of n weakly coupled identical oscillators. J. Nonlinear

Sci. 2(1), 69–108 (1992)
27. A.J. Schwartz, A generalization of a Poincaré-Bendixson theorem to closed two-dimensional

manifolds. Am. J. Math. 85(3), 453 (1963)
28. S.Watanabe, S.H. Strogatz, Constants ofmotion for superconducting Josephson arrays. Physica

D 74(3–4), 197–253 (1994)
29. H. Daido, Onset of cooperative entrainment in limit-cycle oscillators with uniform all-to-all

interactions: bifurcation of the order function. Physica D 91(1–2), 24–66 (1996)
30. C. Bick, M. Timme, D. Paulikat, D. Rathlev, P. Ashwin, Chaos in symmetric phase oscillator

networks. Phys. Rev. Lett. 107(24), 244101 (2011)
31. L.P. Shilnikov, A case of the existence of a denumerable set of periodic motions. Soviet Math.-

Doklady 6, 163–166 (1965)
32. E.A. Grines, G.V. Osipov, Heteroclinic and Homoclinic Structures in the System of Four

Identical Globally Coupled Phase Oscillators with Nonpairwise Interactions. Regul. Chaotic
Dyn. 23(7–8), 974–982 (2018)

33. O.E. Omel’chenko, The mathematics behind chimera states. Nonlinearity 31(5), R121–R164
(2018)

http://arxiv.org/abs/2104.11329


216 P. Ashwin et al.

34. J.M. Guckenheimer, P. Holmes, Structurally stable heteroclinic cycles. Math. Proc. Cambridge
Philos. Soc. 103(01), 189–192 (1988)

35. O. Weinberger, P. Ashwin, From coupled networks of systems to networks of states in phase
space. Discrete Continuous Dyn. Syst. B 23(5), 2043–2063 (2018)

36. L. Garrido-da Silva, S.B.S.D. Castro, Stability of quasi-simple heteroclinic cycles. Dyn. Syst.
1–26 (2018)

37. M. Komarov, A. Pikovsky, Finite-size-induced transitions to synchrony in oscillator ensembles
with nonlinear global coupling. Phys. Rev. E 92(2), 020901 (2015)
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