
Chapter 5
Pattern Formation on Hypergraphs

Timoteo Carletti and Duccio Fanelli

Abstract We present a general framework that enables one to model high-order
interactions among entangled dynamical systems, via hypergraphs. Several relevant
processes can be ideally traced back to the proposed scheme. We shall here solely
elaborate on the conditions that seed the spontaneous emergence of patterns, spa-
tially heterogeneous solutions resulting from the many-body interaction between
fundamental units. In particular we will focus, on two relevant settings. First, we
will assume long-ranged mean field interactions between populations, and then turn
to considering diffusive-like couplings. Two applications are presented, respectively
to a generalised Volterra system and the Brusselator model.

5.1 Introduction

The study of many body interactions has a long history in science and technology,
and relevant results have been obtained under the assumption of regularity of the
underlying substrates, where the dynamics eventually develops. When regularity
gets lost, general results are scarce and simplifying assumptions, which implement
dedicated approximations, need to be put forward. It is for instance customary to
reduce the many body exchanges within a pool of simultaneously interacting entities
to a vast collection of pairwise contacts, a working ansatz which drastically reduces
the intimate complexity of the scrutinised dynamics. Governing dynamical systems
are hence cast on top of networks [1, 2] with diverse and variegated topologies: each
node contains a replica of the original system, and the strength of interaction is set
by the weight of the associated link.
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Despite this crude approximation, relevant results have been obtained which bear
general interest [3–5]. At the same timemany examples of systems exist forwhich the
above assumption holds true just as a first order approximation [6, 7]. To overcome
this intrinsic limitation, the effect of aggregated structures of nodes, such as cliques,
modules or communities [5, 8] has been recently addressed in the literature. This
implies analysing the cooperative interference within bunches of tightly connected
nodes and assessing their role in shaping the ensuing dynamics, in the framerwok of
a generalized picture which accounts for multiple pairwise exchanges.

There are however several examples where the interactions among individuals,
being them neurons [9, 10], proteins [11], animals [12, 13] or authors of scientific
papers [14, 15], cannot be reduced to binary interactions. The group action is indeed
the real driver of the dynamics. Starting from this observation, higher-order models
have been developed so as to capture the many body interactions among individual
units. We hereby focus on hypergraphs [16–18], versatile tools with a broad poten-
tial that is still being fully elucidated. Hypergraphs have been applied to different
fields from social contagion model [19, 20], to the modelling of random walks [14],
from the study of synchronisation [21–23] and diffusion [20], to non-linear consen-
sus [24], via the emergence of Turing patterns [21]. It is also worth mentioning an
alternative approach to high-order interactions which exploits the notion of simpli-
cial complexes [25–27]. Largely used in the past to tackle optimisation or algebraic
problems, they have been recently invoked to address problems in epidemic spread-
ing [28, 29] or synchronisation phenomena [30–32]. In this work we will however
adopt the viewpoint of hypergraphs, to represent high-order interactions.

Hypergraphs constitute indeed a very flexible paradigm. An arbitrary number
of agents are allowed to interact: an hyperedge grouping all the involved agents
encodes for the many body interaction, thus extending conventional network models
beyond the limit of binary contacts. A hypergraph can reproduce, in a proper limit, a
simplicial complex and, in this respect, provides a more general tool for addressing
many body simultaneous interactions.

Based on the above, it can be claimed that many body interactions constitute a
relevant and transversal research field that is still in its embryonic stage, in particular
as concerns studies that relate to hypergraphs. Our contribution is positioned in this
context and aims at systematising the study of dynamical systems coupled via a
hypergraph. For a sake of definitiveness, we will hereby consider the interactions to
bemediated by the hyperedges, that is by the (hyper)adjacencymatrix (see Sect. 5.2),
or by a diffusive-like process, that is implemented via a properly engineered Laplace
matrix (see Sect. 5.3). In both cases,wewill be interested in the emergence of spatially
heterogeneous solutions, i.e., coherent and extended patterns.

5.2 Hypergraphs and High-Order Interactions

The aim of this section is to introduce the formalism of (hyper) adjacency matrix
which enables us to account for the high-order interaction among several identical
dynamical systems. We will then present a first study on the emergence of spatial
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heterogeneous solutions, i.e., patterns, for systems interacting via a hypergraph, by
assuming that uncoupled individual units do converge to a (spatially) homogeneous
stable solution.

5.2.1 Hypergraphs

An hypergraph H(V, E) is defined by a set of nodes, V = {v1, . . . , vn}, and a set
of m hyperedges E = {E1, . . . , Em}, such that for all α = 1, . . . ,m : Eα ⊂ V . If
all hyperedges have size 2 then the hypergraph reduces to a network. A simplicial
complex is recovered if each hyperedge contains all its subsets.

One can encode the information on how the nodes are shared among hyperedges,
by using the incidence matrix of the hypergraph,1 eiα , namely

eiα =
{
1 vi ∈ Eα

0 otherwise .
(5.1)

Given the latter, one can construct the n × n hypergraph adjacency matrix,

A = e e� , Ai j =
∑

α

eiαe jα , (5.2)

thus Ai j represents the number of hyperedges containing both nodes i and j . Let
us observe that often in the literature the adjacency matrix is defined by imposing
a null diagonal. In the following we will adopt a different notation by defining its
diagonal to contain all 1’s. This in turn amounts to assume the hypergraph to contain
all the trivial hyperedges made of just a single node. Finally we define the m × m
hyperedges matrix

C = e�e , Cαβ =
∑
i

eiαeiβ, (5.3)

Cαβ counts the number of nodes in Eα ∩ Eβ , hence Cαα is the size of the hyperedge
Eα .

5.2.2 High-Order Coupling

Let us consider a d-dimensional dynamical system described by the ODE:

dx
dt

(t) = f(x(t)), (5.4)

1 We will adopt the convention of using roman indexes for nodes and greek ones for edges.
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where x(t) = (x1(t), . . . , xd(t))� denotes the state of the system at time t and f is a
generic nonlinear function which describes the rate of variation of x. Assume now to
replicate system (5.4) into n independent copies, hence yielding a (tensorial) system

dx(i)

dt
(t) = f(x(i)(t)) ∀i = 1, . . . , n, (5.5)

where x(i)(t) = (x (i)
1 (t), . . . , x (i)

d (t))� denotes the state of the i-th copy of the gen-
eralised system. The whole system will thus be described by the n × d vector
x = (x(1), . . . , x(n))�. Finally we allow each system (5.5) to simultaneously interact
with many others, and specifically belonging to the same hyperedge.

Let thus Eα be an hyperedge containing the i-th system. Then the growth rate
associated to this latter will depend on all the systems j �= i , belonging to the same
hyperedge; moreover we assume such interaction to depend also on the hyperedge
size,ϕ(Cαα), for a generic functionϕ. The system i may belong to several hyperedges
Eα and thus all these contributions should be taken into account to determine its
growth rate. In formula

dx(i)

dt
(t) =

∑
α eiα

∑
j e jαϕ(Cαα)F(x(i)(t), x( j)(t))∑
α eiα

∑
j e jαϕ(Cαα)

∀i = 1, . . . , n, (5.6)

where we introduced the function F such that F(x(i), x(i)) = f(x(i)) and the term at
the denominator acts as a normalisation factor. We will show later on, that different
functions F can be used to return the same function f .

Let us define the m × m diagonal matrix � such that �αα = ϕ(Cαα) and zero
otherwise. Then we can rewrite Eq. (5.6) as follows

dx(i)

dt
(t) = 1

di

∑
j

Di jF(x(i)(t), x( j)(t)) ∀i = 1, . . . , n, (5.7)

where we introduced the matrix D = e� e� whose elements read

Di j =
∑

α

eiα�ααe jα ∀i �= j and Dii = ϕ(1). (5.8)

Let us observe that the different definition for the diagonal elements is due to the
inclusion of the trivial hyperedges containing each single node and thus having size
1. Finally let use define di = ∑

j Di j .

Remark 5.1 (Isolated systems) In the case n systems are isolated, i.e., all the hyper-
edges have size 1, then Cαα = 1 for all α. Observing that a single α′ (the one asso-
ciated to the unique hyperedge containing i) does satisfy eiα′ = 1 (all the other ones
being zero, eiβ = 0 for all β = α′), we can rewrite equation (5.6) by remarking that
the sum over j is restricted to j = i :
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dx(i)

dt
(t) = ϕ(1)F(x(i)(t), x(i)(t))

ϕ(1)
= f(x(i)(t)) ∀i = 1, . . . , n,

where use has beenmadeof the relationF(x(i), x(i)) = f(x(i)). Because our formalism
contains the trivial case of isolated systems (5.5), it results thus a natural extension
of the latter.

Remark 5.2 (Pairwise interacting systems) In case of systems interacting in pairs,
i.e., when all hyperedges have size Cαα = 2 for all α (but the ones associated to
the trivial hyperedges containing each node), we can show that equation (5.6) con-
verges back to the usual setting of a dynamical model anchored on a conventional
network [33], once we assume ϕ ≡ 1, namely the same unitary weight is associated
to each link.

First of all, let us observe that Dii = (e� e�)i i = ϕ(1)Aii while for i �= j we
have Di j = (e� e�)i j = ϕ(2)Ai j , where we used the definition of the adjacency
matrix that includes self-loops. Then Eq. (5.7) can be rewritten as

dx(i)

dt
(t) =

∑
j Ai jF(x(i)(t), x( j)(t))

ki
∀i = 1, . . . , n ,

where use has been made of the definition ki = ∑
j Ai j .

5.2.3 Dynamical Behaviour

Assume s(t) to be a solution of the initial system (5.4), then x(i)(t) = s(t), i =
1, . . . , n, is trivially also a homogeneous solution of Eq. (5.5) but also of Eq. (5.7).
Indeed, for all i = 1, . . . , n one has

dx(i)

dt
(t) = 1

di

∑
j

Di jF(x(i)(t), x( j)(t))
∣∣∣
x(i)(t)=s(t)

= 1

di

∑
j

Di jF(s(t), s(t))

= 1

di

∑
j

Di j f(s(t)) = f(s(t)), (5.9)

where we used the property F(s, s) = f(s) and the definition of di . By definition of
s the rightmost term equals ṡ which thus coincides also with the leftmost term.

Consider now a spatially dependent perturbation, i.e., a node depending one, about
the homogeneous solution, x(i)(t) = s(t) + u(i)(t). Insert this ansatz into Eq. (5.7)
and determine the evolution of u(i)(t) by assuming it to be small (i.e., using a first
order expansion), ∀i = 1, . . . , n:

du(i)

dt
(t) + ds

dt
(t) = 1

di

∑
j

Di jF(s + u(i), s + u( j))
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= f(s) + 1

di

∑
j

Di j

(∑
�

∂x (i)
�
F(s, s)u(i)

� +
∑

�

∂x ( j)
�
F(s, s)u( j)

�

)

= f(s) +
∑

�

∂x (i)
�
F(s, s)u(i)

� + 1

di

∑
j

Di j

∑
�

∂x ( j)
�
F(s, s)u( j)

�

= f(s) + J1u(i) + 1

di

∑
j

Di jJ2u( j) ,

where we defined the Jacobian matrices J1 = ∂x1F(s, s), i.e., the derivatives are com-
puted with respect to the first group of variables, and J2 = ∂x2F(s, s), i.e., the deriva-
tives are performed with respect to the second group of variables. In both cases the
derivatives are evaluated at the reference solution s.

By using the fact that ṡ = f(s) and by slightly rewriting the previous equation, we
obtain

du(i)

dt
(t) = J1u(i) + 1

di

∑
j

Di jJ2u( j) = J1u(i) + J2u(i) +
∑
j

(
Di j

di
− δi j

)
J2u( j)

= (J1 + J2) u(i) +
∑
j

Li jJ2u( j),

where we defined the matrix operator

Li j = Di j

di
− δi j . (5.10)

By introducing the n × d vector u = (u(1), . . . ,u(n))� we can rewrite the latter
equation in a compact form as:

du
dt

(t) = [(J1 + J2) ⊗ In + J2 ⊗ L]u, (5.11)

where In is the n × n identity matrix and ⊗ is the Kronecker product of matrices.
One can prove that L is a novel (consensus) high-order Laplace matrix2, i.e., it

is nonpositive definite, the largest eigenvalue is 	(1) = 0 and its is associated to the
uniform eigenvector φ(1) ∼ (1, . . . , 1)�.

2 Let us introduce Lsym = d−1/2LHd−1/2, where d is the diagonal matrix containing the di ’s
on the diagonal and LH is the high-order (combinatorial) Laplace matrix defined in[21]. Then
Lsym = Di j/

√
di d j − δi j from which it immediately follows that Lsym is symmetric and nonpos-

itive definite; indeed take any x ∈ R
N \ {0}, N standing for the dimension of the matrices, then

(x,Lsymx) = (d−1/2x,LHd−1/2x) ≤ 0 where the last inequality follows from the fact that LH is
nonpositive definite. Finally let us observe that L = d−1LH = d−1/2Lsymd1/2, hence, L is similar
to Lsym and, thus they display the same non-positive spectrum. Moreover this implies also that
−2 ≤ 	(α) ≤ 0.
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Recalling the relation f(x) = F(x, x) one can prove that:

∂xf := J = J1 + J2,

and thus rewrite Eq. (5.11) as

du
dt

(t) = [J ⊗ In + J2 ⊗ L]u. (5.12)

This is a linear system involving matrices with size nd × nd. To progress with
the analytical understanding, we employ the eigenbasis of L, to project the former
equation onto each eigendirection

du(α)

dt
(t) = [

J(s(t)) + J2(s(t))	(α)
]
u(α) , (5.13)

where 	(α) is the eigenvalue relative to the eigenvector φ(α). The above equation
enables us to infer the stability of the homogeneous solution, s(t), by studying the
Master Stability Function, namely the real part of the largest Lyapunov exponent of
Eq. (5.13). To illustrate the potentiality of the theory we shall turn to considering a
specific application that we will introduce in the following.

5.2.4 Results

In the above analysis we have obtained a one-parameter family (indexed by the
eigenvalues 	(α)) of linear but (in general) time dependent systems (5.13). For the
sake of simplicity we will hypothesise the homogenous solution to be stationary and
stable, s(t) = s0. In this way we will hence assume each isolated system to converge
to the same stationary point. This simplifies the study of Eq. (5.13), by allowing us
to deal with a constant linear system. Let us observe that one could in principle study
the more general setting of a time dependent solution, by using the Floquet theory in
case of a periodic orbit or the full Master Stability Function in the case of irregular
oscillators.

As a concrete application we will consider a Volterra model [34] which describes
the interaction of preys and predators in an ecological setting:

{
ẋ = −dx + c1xy

ẏ = r y − sy2 − c2xy,
(5.14)

here x denotes the concentration of predators, while y stands for the preys and ˙ the
time derivative. All the parameters are assumed to be positive; in the following we
will make use of the choice c1 = 2, c2 = 13, r = 1, s = 1 and d = 1/2, but of course
our results hold true in general. The Volterra model (5.14) admits a nontrivial fixed-
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point, x∗ = c1r−sd
c1c2

, y∗ = d
c1
, which is positive and stable, provided c1r − sd > 0. In

the case under scrutiny, we have x∗ = 3/52 ∼ 0.0577 and y∗ = 1/4.
Following the above presented scheme, let us now considering n replicas of the

model (5.14), each associated to a different ecological niche and indexed by the
node index i . Assume also that species can sense the remote interaction with other
communities populating neighbouring nodes. For instance, the competition of preys
for food and resources can be easily extended so as to account for a larger habitat
which embraces adjacent patches. At the same time, predators can benefit from a
coordinated action to hunt in team. For a sake of definitiveness we will study in the
following the high-order coupling (let us stress once again that several “microscopic”
high-order models can give rise to the same network-aggregate model) defined by:

{
ẋi = −dxi + ac1yi

1
di

∑
j Di j x j + (1 − a)c1xi

1
di

∑
j Di j y j

ẏi = r yi − syi
1
di

∑
j Di j y j − c2yi

1
di

∑
j Di j x j ,

(5.15)

where the matrix Di j encodes for the high-order interaction among nodes i and j ,
taking into account the number and size of the hyperedges containing both nodes
(see (5.8)). The parameters a ∈ [0, 1] describes the relative strength with which
the predators in node i increase because of the “in-node” predation or because of
the interaction among predators in the hyperedges. The case a = 1 corresponds to a
purely in-node process while if a = 0 a coordinated action to hunt in team is assumed
to rule the dynamics. Preys feel the competition for the resources with preys living
in nodes belonging to the same hyperedge (second term on the right hand side of the
second equation of (5.15)) as well from predators in the same hyperedge (rightmost
terms in the same equation). Birth and death of both species are local, i.e., due to
resources available in-node.

By using the new Laplace matrix (5.10) we can rewrite the previous model (5.15)
as: {

ẋi = −dxi + c1yi xi + ac1yi
∑

j Li j x j + (1 − a)c1xi
∑

j Li j y j
ẏi = r yi − sy2i − c2yi xi − syi

∑
j Li j y j − c2yi

∑
j Li j x j ,

(5.16)

where one can easily recognise the in-node Volterra model (5.14) and the corrections
stemming from high-order contributions.

As previously shown, in the general setting (see (5.9)) the homogenous solution
(x∗, y∗) is also a solution of the coupled system (5.15), that is xi = x∗ and yi = y∗
solves the latter. In the following we will prove that such solution can be destabilised
due to the high-order coupling so driving the system towards a new heterogenous,
spatially dependent, solution. To prove this claim, we will linearise system (5.14)
about the homogeneous equilibrium by setting ui = xi − x∗ and vi = yi − y∗ and
then make use of the eigenbasis of the Laplace matrix L, (	(α), φ(α)), to project the
linear system onto each eigenmode, that is ui = ∑

α u
αφ

(α)
i and vi = ∑

α vαφ
(α)
i :
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d

dt

(
uα

vα

)
=

[(
0 c1x∗

−c2y∗ −sy∗

)
+ 	(α)

(
ac1y∗ (1 − a)c1x∗
−c2y∗ −sy∗

)] (
uα

vα

)

= (
J + 	(α)J2

) (
uα

vα

)
=: J(α)

(
uα

vα

)
. (5.17)

The homogenous solution will prove unstable if (at least) one eigenmode ᾱ exists
for which the largest real part of the eigenvalues of J(ᾱ) is positive. The real part of
the largest eigenvalue λ as function of 	(α) is called the dispersion relation. One
can easily realise that λ is the solution with the largest real part of the second order
equation

λ2 − trJ(α)λ + det J(α) = 0.

Hence the required condition for the instability is

trJ(α) > 0 or trJ(α) < 0 and det J(α) < 0. (5.18)

A straightforward computation returns

trJ(α) = −sy∗ + 	(α) (−s + ac1) and det J(α)

= c1y
∗ (
1 + 	(α)

) [
	(α)

(
c2x

∗(1 − a) − asy∗) + c2x
∗] .

Let us recall that the homogenous equilibrium is stable for the decoupled sys-
tem corresponding to setting 	(1) = 0. Hence trJ(1) = −sy∗ < 0 and det J(1) =
c1c2x∗y∗ > 0. We have thus to determine the existence of (at least one) ᾱ ≥ 2 for
which the conditions for instability (5.18) hold true, allowing us to prove the posi-
tivity of λ

(
	(ᾱ)

)
. In Fig. 5.1 we report a case where the high-order coupling is able

to destabilise the homogenous solution (panel b), thus returning a patchy solution
(panels c and d) for the involved species. Finally let us observe that interestingly
some niches (6 over 20) become empty, that is deprived of any species.

Another even more interesting case is reported in Fig. 5.2. In this case the uncou-
pled homogeneous equilibrium yields x̃ = 0 and ỹ = r/s. When extending the study
to account for multi body interactions, predators do survive in each niche while the
preys go through extinction in a few location (8 nodes over 20). Generally the density
of preys is lower than the equilibrium value found in the isolated case.

5.3 Hypergraph and High-Order Diffusive-Like Coupling

In the previous section we have introduced and studied the problem of the emergence
of a spatially heterogenous solution in a system of several identical dynamical units
coupled together via the (hyper) adjacencymatrix of the hypergraph. In particular the
microscopic units defining the system are constrained to stay anchored to the node
where they interact with those sharing the same location and those belonging to nodes
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Fig. 5.1 Patterns in theVolterramodel with high-order interactions (I). In panel awe represent
the hypergraph used to model the high-order interactions among species living in different niches.
The hypergraph is composed of n = 20 nodes, it has been generated using a random attachment
process and it is composed by 20 trivial hyperedges of size 1, 11 hyperedges of size 2, 10 hyperedges
of size 3 and 1 hyperedge of size 4. In panel b we report the dispersion relation for the Volterra
model (5.15), the red symbols refer to λ

(
	(α)

)
, α ∈ {1, . . . , n}, while the blue line denotes the

dispersion relation for the Volterra model reformulated on a continuous support. In panel cwe show
the time evolution of the predator density in each node as a function of time, xi (t); let us observe that
in (almost) each node the density of predators is much larger than the corresponding homogenous
equilibrium x∗ ∼ 0.0577 (blue). Panel d report the time evolution of the preys density in each node
as a function of time, yi (t); let us observe that in (almost) each node the density of preys is much
lower than the corresponding homogenous equilibrium y∗ = 1 (green). The model parameters have
been set to c1 = 2, c2 = 13, r = 1, s = 1, d = 1/2 and a = 1/2. We fix ϕ(c) = cσ with σ = 1.5

of the incident hyperedges. In this sectionwewill present amodified frameworkbased
on the assumption that the basic units can travel across the hypergraph jumping from
node to node via the available hyperedges.

Starting from the definition of hyper adjacency matrix, Eq. (5.2), the notion of
(combinatorial) Laplace matrix for networks can be straightforwardly generalised
to the case of hypergraphs [23, 35], by defining kiδi j − Ai j , where ki = ∑

j Ai j .
Let us however observe that the latter does not account in full for the higher-order
structures encoded in the hypergraph. Notably, the sizes of the incident hyperedges
are neglected.
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Fig. 5.2 Patterns in theVolterramodelwith high-order interactions (II). Using the same hyper-
graph shown in Fig. 5.1 we study the emergence of patterns close to the homogeneous equilibrium
x̃ = 0 and ỹ = r/s = 1. We report in panel a the dispersion relation for the Volterra model (5.15),
the red symbols refer to λ

(
	(α)

)
, α ∈ {1, . . . , n}, while the blue line denotes the dispersion relation

for the Volterra model computed on a continuous support. In panel b we show the time evolution
of the predator density in each node as a function of time, xi (t); let us observe that in each node
the density of predators is positive in striking contrast with it happens for the uncoupled system.
Panel c reports the time evolution of the preys density in each node as a function of time, yi (t); let
us observe that in each node the density of preys is much lower than the homogenous equilibrium
y∗ = 1 (green) and in 8 niches the preys have gone through extinction. The model parameters have
been set to c1 = 2, c2 = 13, r = 1, s = 1, d = 1/2 and a = 1/2. We fix ϕ(c) = cσ with σ = 1.5

To overcome this limitation, authors of [14] studied a randomwalk process defined
on a generic hypergraph using a new (random walk) Laplace matrix. It is worth
mentioning that the transition rates of the associated process, linearly correlates with
the size of the involved hyperedges. Stated differently, exchanges are favoured among
nodes belonging to the same hyperedge (weighted according to its associated size).
Note that a similar construction has been proposed in [36] to extract a n-clique graph
from a network. The main difference in the present case is that hyperedges can have
an heterogeneous size distribution and thus provide a more flexible framework for
tackling a wide range of problems.

For the sake of completeness, let us briefly recall the construction of the random
walk process on a hypergraph and invite the interested reader to consult [14] for
further details. The agents are located on the nodes andhopbetween them. In a general
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setting, the walkers may weight hyperedges depending on their size, introducing a
bias in their moves that we shall encode into a function ϕ of the hyperedge size. This
yields the weighted adjacency matrix D = e� e�, already defined in Eq. (5.8) and
hereby recalled:

Di j =
∑

α

eiα�ααe jα ∀i �= j and Dii = ϕ(1) ,

where � is the diagonal matrix whose elements read ϕ(Cαα). The transition proba-
bilities of the examined process are then obtained by normalising the columns of the
weighted adjacency matrix Ti j = Di j

di
for all i , where again di = ∑

j Di j .
Let us briefly observe that assuming ϕ(c) = cσ allows to cover several existing

models of randomwalks on hypergraphs. For σ = 1, we get the randomwalk defined
in [14], while for σ = −1 we obtain the one introduced by Zhou [37]. Finally, the
case σ = 0 returns a random walk on the so called clique reduced multigraph. The
latter is a multigraph where each pair of nodes is connected by a number of edges
equal to the number of hyperedges containing that pair in the hypergraph.

From the above introduced transition probabilities one can define the randomwalk
Laplacian generalising that of standard networks, Li j = δi j − Ti j , and eventually
derive the (combinatorial) Laplace matrix,

LH = D − d, (5.19)

this latter will be employed in the following to model diffusion on higher-order
structures. In the above equation, matrix d displays, on the diagonal, the values
di = ∑

j Di j and zeros otherwise. It is clear from its very definition thatD takes into
account both the number and the size of the hyperedges incident with the nodes. It
can also be noted that D can be considered as a weighted adjacency matrix whose
weights have been self-consistently defined so as to account for the higher-order
structures encoded in the hypergraph.

Consider again the d-dimensional system Eq. (5.4) described by local, i.e., aspa-
tial, equations:

dx
dt

= f(x) x ∈ R
d , (5.20)

and assume further n identical copies of the above system coupled through a hyper-
graph. In this way each copy of the system attached to a node of a hypergraph
belonging to one (or more) hyperedge. Units sharing the same hyperedge are tightly
coupled, due to existing many body interactions. In formulas:

dxi
dt

= f(xi ) + ε
∑

α:i∈Eα

∑
j∈Eα

ϕ(Cα α)
(
G(x j ) − G(xi )

)
,

where xi denotes the state of the i-th unit, i.e., anchored to the i-th node, ε the strength
of the coupling, ϕ is the function encoding the bias due to the hyperedge size and G



5 Pattern Formation on Hypergraphs 175

a generic nonlinear coupling function. From the definition of eiα one can rewrite the
previous formula as

dxi
dt

= f(xi ) + ε
∑
α, j

eiαe jαϕ(Cα α)
(
G(x j ) − G(xi )

)
= f(xi ) + ε

∑
j

Di j
(
G(x j ) − G(xi )

) = f(xi ) + ε
∑
j

(
Di j − diδi j

)
G(x j )

= f(xi ) + ε
∑
j

LH
i jG(x j ), (5.21)

where we have used the above definitions for di and LH
i j . Let us stress once again

that the whole high-order structure is encoded in a n × n matrix. Hence there is no
need for tensors and this simplifies the resulting analysis.

By exploiting the fact that
∑

j L
H
i j = 0 for all i = 1, . . . , n, it is immediate to

conclude that the aspatial reference solution s(t), i.e., the time dependent function
solving Eq. (5.20), is also a solution of Eq. (5.21). A natural question hence arises:
what can we say of the stability of the homogeneous solution for the system in its
diffusive-like coupled variant?

To answer to this question one introduces again the deviations from the refer-
ence orbit, i.e., ui = xi − s. Assuming this latter to be small, one can derive a self-
consistent set of linear differential equations for tracking the evolution of the pertur-
bation in time. To this end, we make use of the expression in the above Eq. (5.21)
and perform a Taylor expansion to the linear order of approximation, to eventually
get:

dui
dt

= J(s(t))ui + ε
∑
j

LH
i j JG(s(t))u j , (5.22)

where J(s(t)) (resp. JG(s(t))) denotes the Jacobian matrix of the function f (resp.
G) evaluated on the trajectory s(t).

We can improve on our analytical understanding of the problem by employing
again the eigenbasis of the Laplace matrix LH . Being the latter symmetric there
exists a basis of orthonormal eigenvectors, φ(α)

H , associated to the eigenvalues 	
(α)
H .

We can then project ui on this basis and obtain, for all α:

dyα

dt
=

[
J(s(t)) + ε	

(α)
H JG(s(t))

]
yα, (5.23)

where yα is the projection of ui on the α-th eigendirection.
The (in)stability of the homogenous solution s(t) can be checked by looking at

the eigenvalue of the linear system (5.23), and more specifically the eigenvalue with
the largest real part. In a general framework, where i.e., s(t) depends on time, we
are dealing with a time dependent eigenvalue problem that can be tackled by using
the Master Stability Function [38, 39]. For simplicity we will hereby solely consider
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the case of a stationary reference orbit, i.e., s(t) = s0. In this way Eq. (5.23) can be
directly solved by using spectral methods. We invite the interested reader to refer
to [21] where the general case of a periodic or even a chaotic s(t) has been analysed.

5.3.1 Turing Patterns on Hypergraphs

The problem introduced in the previous section opens up the perspective to address
the notion of a Turing instability on hypergraphs. Indeed, according to the Turing
instability mechanism, a stable homogeneous equilibrium becomes unstable upon
injection of a heterogeneous, i.e., spatially dependent, perturbation once diffusion
and reaction terms are simultaneously at play. The Turing phenomenon is exempli-
fied with reference to 2 dimensional systems. In the following we will consequently
assume d = 2 and rewrite xi = (ui , vi ) as well as f(xi ) = ( f (ui , vi ), g(ui , vi )),
where the index i = 1, . . . , n refers to the specific node to which the dynamical
variables are bound. Hence Eq. (5.21) becomes

{
u̇i = f (ui , vi ) + Du

∑
j L

H
i j u j

v̇i = g(ui , vi ) + Dv

∑
j L

H
i j v j

, (5.24)

where Du and Dv replace the diffusion coefficients of species u and v in the case of
network and can thus be called generalised diffusion coefficients. At first sight, the
above model seems to solely account for binary interactions. However, higher-order
interactions are also present, as encoded in the matrix LH . Finally, let us observe
that if the hypergraph is a network, then LH reduces to the standard Laplace matrix
and thus Eq. (5.24) converges to the usual reaction-diffusion system defined on a
network.

The condition for the emergence of a Turing instability can be assessed by per-
forming a linear stability analysis about the homogeneous equilibrium [40–43], as
previously shown. Assuming G to be the identity function and the reference orbit
to coincide with a stable stationary equilibrium s0 = (u0, v0), Eq. (5.22) simplifies
into: { ˙δui = ∂u f (u0, v0)δui + ∂v f (u0, v0)δvi + Du

∑
j L

H
i j δu j

˙δvi = ∂ug(u0, v0)δui + ∂vg(u0, v0)δvi + Dv

∑
j L

H
i j δv j ,

where δui = ui − u0 and δvi = vi − v0. By exploiting again the eigenbasis of
the Laplace matrix we can write δui (t) = ∑

α û
α(t)φα

i and δvi (t) = ∑
α v̂α(t)φα

i .
Finally the ansatz, ûα(t) ∼ eλα t and v̂α(t) ∼ eλα t , allows us to compute the dis-
persion relation, i.e., the linear growth rate λα = λ(	α

H ) of the eigenmode α, as a
function of the Laplacian eigenvalue 	α

H .
As it can be straightforwardly proved, the linear growth rate is the largest real part

of the roots of the second order equation
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Fig. 5.3 Turing patterns in the Brusselator model with high-order diffusive-like couplling.
Using the same hypergraph shown in Fig. 5.1 we study the Turing patterns emerging from the
homogeneous equilibrium (u0, v0). We report in panel a the dispersion relation for the Brusselator
model defined by the reaction terms f (u, v) = 1 − (b + 1)u + cu2v and g(u, v) = bu − cu2v; the

red symbols refer to λ
(
	

(α)
H

)
, α ∈ {1, . . . , n}, while the blue line denotes the dispersion relation

for the Brusselator model defined on a continuous support. In panel b we show the time evolution
of the u variable in each node as a function of time, ui (t). Panel c reports the time evolution of
the v variable in each node as a function of time, vi (t). The model parameters have been set to
b = 4, c = 6, Du = 0.02 and Dv = 0.17. Hence u0 = 1 and v0 = b/c = 2/3. We fix ϕ(c) = cσ

with σ = 1.5

λ2α − λα

[
trJ0 + 	α

H (Du + Dv)
] + det J0 + 	α

H (Du∂vg + Dv∂u f ) + DuDv(	
α
H )2 = 0,

(5.25)

where J0 =
(

∂u f ∂v f
∂u g ∂vg

)
is the Jacobian matrix of the reaction part evaluated at the

equilibrium (ui , vi ) = (u0, v0). In Eq. (5.25), tr(·) and det(·) stand respectively for
the trace and the determinant. The existence of at least one eigenvalue 	α̃

H for which
the dispersion relation takes positive values, implies that the system goes unstable
via a typical path first identified by Alan Turing in his seminal work. At variance,
if the dispersion relation is negative the system cannot undergo a Turing instability:
any tiny perturbation fades away and the system settles back to the homogeneous
equilibrium.

To proceed further with a concrete example we selected the Brusselator reaction
system [44, 45]. This is a nonlinear model defined by f (u, v) = 1 − (b + 1)u +



178 T. Carletti and D. Fanelli

cu2v and g(u, v) = bu − cu2v, where b and c act as tunable parameters. In Fig. 5.3
we report the results for a choice of themodel parameters giving rise toTuringpatterns
(b = 4, c = 6, Du = 0.02 and Dv = 0.17) and the same hypergraph previously used
in Figs. 5.1 and 5.2. The dispersion relation (panel a) is clearly positive for a selection
of 	

(α)
H (red points). The homogeneous solution becomes hence unstable and the

ensuing patterns are displayed in panels b) and c).

5.4 Conclusions

Complex systems are composed of a large number of simple units, mutually interact-
ing via nonlinear exchanges. Many-body interactions sit hence at the root of a large
plethora of spontaneously emerging phenomena, as exhibited by complex systems.
The former are often reduced to a vast collection of pairwise interactions, involving
agents interacting in pairs. This enables one to model the inspected problem as a
dynamical system flowing on a conventional binary network, a powerful approxima-
tion that allows for progresses to be made. In many cases of interest, this reductionist
choice constitutes a rough first order approximation to the examined dynamics and
more precise models are to be invoked which encompass for the high-order interac-
tions being at play.

In this work, we presented a general framework which allows one to account
for multi-body interacting systems coupled via a hypergraph. This materialises in
a natural extension of the conventional network paradigm. More specifically, we
considered the problem of the emergence of heterogeneous stable solutions in inter-
connected systems, under the assumption that, once isolated, all units converge to
the same, and thus globally homogenous, solution. The high-order interaction is the
driver of the resulting patchy states, which emerge as follow a symmetry breaking
instability caused by the injection of a tiny non homogeneous perturbation. This can
be though as a generalisation of the Turing instability on hypergraphs. In particular,
we considered the interaction mediated by the number of interacting neighbouring
units, namely the size of the hyperedge, and a diffusive-like process, again biased
by the number of neighbours. In both cases we provided sufficient conditions for the
emergence of spatial patterns.

Our findings have been corroborated by numerical simulations applied to two ref-
erence models. A Volterra model that describes the interaction among predators and
preys in ecological niches, and the Brusselator model, a prototypemodel of nonlinear
dynamics, that describes the interaction among reacting and diffusing chemicals.

The proposed framework goes beyond the examples hereby presented and,
because of its generality, it could prove useful in tackling those problems were simul-
taneous many-body interactions within a complex environment are to be properly
accounted for.
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