
Chapter 3
Persistent Homology: A Topological Tool
for Higher-Interaction Systems

Francesco Vaccarino, Ulderico Fugacci, and Sara Scaramuccia

Abstract The aim of this chapter is to give a handy but thorough introduction to
persistent homology and its applications. The chapter’s path is made by the follow-
ing steps. First, we deal with the constructions from data to simplicial complexes
according to the kind of data: filtrations of data, point clouds, networks, and topolog-
ical spaces. For each construction, we underline the possible dependence on a fixed
scale parameter. Secondly, we introduce the necessary algebraic structures capturing
topological informations out of a simplicial complex at a fixed scale, namely the sim-
plicial homology groups and the Hodge Laplacian operator. The so-obtained linear
structures are then integrated into the multiscale framework of persistent homol-
ogy where the entire persistence information is encoded in algebraic terms and the
most advantageous persistence summaries available in the literature are discussed.
Finally, we introduce the necessary metrics in order to state properties of stability of
the introduced multiscale summaries under perturbations of input data. At the end,
we give an overview of applications of persistent homology as well as a review of
the existing tools in the broader area of Topological Data Analysis (TDA).

3.1 Introduction

Persistent homology is an emerging tool to identify robust topological features under-
lying the higher-order structure of (high-dimensional) data and complex dynamical
systems (such as brain dynamics, molecular folding, distributed sensing). In the
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broader sense, persistence aims to associate meaningful mathematical objects to fil-
trations of data, point clouds, networks, topological spaces, simplicial complexes
etc. Here, a filtration is a sequence of spaces, point clouds, networks, etc. together
with maps connecting them. Very often these maps, if not always, will be inclu-
sions and the sequence will results from filtering on similarities, or weights, in a
way akin to hierarchical clustering. More specifically, we will be interested in con-
sidering filtrations of simplicial complexes, higher dimensional tetrahedral foams,
combinatorial topological spaces naturally associated to the input data. Attached to
simplicial complexes there are the homology groups that represent the lack of k-
connectivity: the zeroth group measures usual connectivity, the first one the lack of
tiles, e.g. three cliques, the second one the lack of four cliques and so on. The objects
counted by the homology groups are voids as dis-junctions, cycles, empty boxes and
so on. The homology groups corresponding to the stages of the filtration at the rel-
evant scales, are connected via linear mappings induced by the filtration’s maps (by
so called functoriality). Persistence studies the entanglement of these information
into a single object called the persistence module, which is a linear space endowed
with a structure of graded module encoding births and deaths of the voids along the
filtration.

The main feature characterizing the persistence approach is to associate a data
filtration with a unique well defined algebraic summary, computable by using linear
algebra tools, whose behaviour represent in a principled way the topological prop-
erties of the data at the various scales in a single summary. This differentiate in an
unequivocal way persistence from its germane, clustering. Indeed, while clustering
analyze the behaviour of data with respect to e.g. some similarity by representing
the process of aggregating data at the various scales but implicitly forces to choose
a significative scale where to stop the process, persistence formalize and compress
the information of the aggregation process itself. Furthermore, when persistence is
applied to the higher degrees homologies it deals with information that no longer
can be seen as a mere representation of the connectivity properties of the data along
their characteristic scales.

In this chapter, we review the main notions in persistent homology according to
the persistence pipeline. In Sect. 3.2, we address the main constructions to obtain a
simplicial complex, or a filtration of simplicial complexes, according to the kind of
input data. InSect. 3.3,we introduce the notion of simplicial homology and its relation
to the Hodge Laplacian as a way to deal with topological features of a simplicial
complex, into linear algebraic terms. InSect. 3.4, themultiscale approachof persistent
homology is introduced and its main summaries are reviewed. Stability properties
of metrics to compare changes in the data filtration to changes in the persistence
summaries are reviewed in Sect. 3.5. In Sect. 3.6, we review some applications of
persistent homology and provide the necessary references for tools implementing
the persistence pipeline in practice.



3 Persistent Homology: A Topological Tool for Higher-Interaction … 99

Notations

• � Simplicial Complex (finite and ∅ /∈ �)
• σ, τ, ρ simplices
• F,R,Z,Z2 an arbitrary field, real numbers, integers, Z/2Z
• (v0, . . . , vq) q-simplex (simplex of dimension q)
• [v0, . . . , vq ] oriented q-simplex
• �q the set of the q-simplices of �

• �(q) the q-skeleton of � (i.e. the set of the p-simplices of � with p ≤ q)
• Cq(�;F) (short Cq or Cq(�)) group of q-chains of � with coefficients in F

• Cq canonical basis of Cq(�;F)

• ∂q : Cq(�;F) → Cq−1(�;F) boundary map
• δq : Cq(�;F) → Cq+1(�;F) co-boundary map
• Dq matrix representing the map ∂q : Cq(�;F) → Cq−1(�;F) with respect to the
basis Cq , Cq−1

• Bq(�;F) (short Bq or Bq(�)) q-boundaries of � with coefficients in F

• Zq(�;F) (short Zq or Zq(�)) q-cycles of � with coefficients in F

• Hq(X;F) (short Hq or Hq(�)) qth homology group of � with coefficients in F

• βq(�;F) (short βq or βq(�)) qth Betti number of � with coefficients in F

• ker( f ) kernel of f
• im( f ) image of f
• dim(�) dimension of �

• Hq Laplacian kernel
• ϕ : ∅ ⊆ �0 ⊆ �1 ⊆ . . . �m := � filtration of �

• Ci
q short for Cq(�

i ;F)

• Hi
q short for Hq(�

i ;F)

• Hq(ϕ) := ⊕
i Hq(�

i ;F) the qth persistence module of ϕ

• (a, b), (a,+∞) persistence pairs

3.2 From Data to Simplicial Structures

In this section, we review and discuss the main constructions to obtain the main
higher-order representation in the persistence pipeline, namely a simplicial complex
associated to the original input datum [49]. We begin with Sect. 3.2.1 introducing
simplicial complexes. We proceed further in Sect. 3.2.2 by introducing general con-
structions for simplicial complexes. In particular, we focus on the Nerve and the Flag
complexes. Then, we review specific constructions according to the kind of the given
data. We discuss point cloud data, graph and complex networks, partially ordered
sets, and functions. A summary of the discussed methods according to the kind of
input datum is depicted in Table 3.1.
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Table 3.1 A summary of the possible simplicial complex construction (columns) introduced in
this section according to the input data (rows)

3.2.1 Simplicial Complexes

Simplicial complexes are a classical mathematical tool for representing discrete
shapes [78]. The elementary building blocks which form a simplicial are called
simplices.

A simplex σ of dimension q (also addressed as q-simplex) is the convex hull of
q + 1 affinely independent points in the Euclidean space. Practically speaking, a
0-simplex is just a point, a 1-simplex an edge, a 2-simplex a triangle, a 3-simplex a
tetrahedron, and so on. Given a q-simplex σ , any simplex τ which is the convex hull
of a non-empty subset of the points generating σ is called a face of σ . Conversely,
σ is called a coface of τ .

A (finite) simplicial complex � is a finite set of simplices such that:

• each face of a simplex in � belongs to �;
• each non-empty intersection of any two simplices in � is a face of both.

Worth to be noticed that formally there is no obstruction in considering the empty
simplex as included in any simplicial complex �. Its inclusion is typically allowed
in theoretical frameworks and it will lead to the definitions of augmented chain
complexes and of reduced homology. For the sake of simplicity, in this chapter we
will only consider simplicial complexes not including the empty simplex.

The two above claimed conditions are visually depicted in Fig. 3.1. In particular,
we highlight the fact that once a simplex (such as the tetrahedron ABCD) belongs to
a simplicial complex�, then all its faces (vertices, edges, and triangle in the depicted
case) also belong to �. Moreover, in accordance with the second condition, notice
that given any two simplices of the depicted simplicial complex � their intersection
is empty or another simplex of � which is face of both.

By definition, a simplicial complex is a collection of simplices lying in an
Euclidean space Rd of a certain dimension d. In order to adopt the notion of simpli-
cial complex to a larger variety of datasets, it is useful to introduce a more general
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definition of simplicial complexes which do not necessarily need for a geometric
realization. An abstract simplicial complex � on a finite set V is a collection of
non-empty subsets of V , called simplices, with the property of being closed under
inclusion (see Fig. 3.2 for an example). More explicitly, if σ is a simplex which
belongs to � and τ is a non-empty subset of V such that τ ⊂ σ , then τ belongs to
�. Given a simplicial complex �, the elements of V are called vertices of � and a
simplex σ ∈ � is called a q-simplex (equivalently, a simplex of dimension q) if it
consists of q + 1 vertices.

Given a simplicial complex or an abstract simplicial complex�, the maximum of
the dimensions of its simplices is called the dimension of � and denoted as dim(�).
Moreover, we will denoted by �q the set of the q-simplices of � and by �(q) the
q-skeleton of � (i.e. the set of the p-simplices of � with p ≤ q).

In spite of the different definitions, the two presented notions of simplicial com-
plexes are strictly related. In fact, given a simplicial complex �, one can associate to
it an abstract simplicial complex �′ defined as the collection of the simplices of �.
Vice versa, given an abstract simplicial complex �, it always possible to retrieve a
simplicial complex �′ whose associated abstract simplicial complex coincides with
� [78]. The simplicial complexes � and �′ depicted in Figs. 3.1 and 3.2 , respec-
tively, represent an example of this correspondence. �′ is the abstract simplicial
complex associated to �, while � is a geometric realization of �′.

In the following, in the few cases in which we would like to distinguish between
simplicial complexes and abstract simplicial complexes, we will adopt the term
“geometric” simplicial complex to refer to the former. Differently, we will simply
use the term “simplicial complex” to address both the structures.

Fig. 3.1 A (geometric) simplicial complex� (on the left). The collection of simplices of the various
dimensions � consists of (on the right)
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Fig. 3.2 An abstract simplicial complex �′ on V = {A, B,C, D, E}. �′ is the abstract simplicial
complex associated to the geometric simplicial complex � depicted in Fig. 3.1

3.2.2 Nerve Complexes, Flag Complexes, and Other
Constructions of Simplicial Complexes

As already mentioned, Topological Data Analysis aims at describing and character-
izing data in terms of their shape. In order to satisfy this assumption, the first required
step in the persistence pipeline concerns associating to the input dataset a simplicial
complex that will provide the data with a suitable topological structure needed for
the next steps of the topological-based analysis.

The kinds of datasets eligible for this process of “translation” into a simplicial
complex are various and heterogeneous and cover a vast majority of the datasets
which a researcher could face in its work.

For the sake of simplicity, in this document we will focus mainly on point clouds
embedded in an Euclidean space, (weighted) graphs or complex networks, functions,
and sets endowed with a relation of partial order among its elements. In spite of this,
most of the presented constructions can be generalized/adapted to the case of a
finite collection of elements endowed with a notion of proximity enabling to cover
a wide plethora of datasets. More properly, with the term “proximity” we mean a
semi-metric, i.e. a distance not necessarily satisfying the triangle inequality.

Two common tools adopted in this step assigning a simplicial complex to an
arbitrary dataset are the Nerve complex and the Flag complex.

Nerve complex

Let us consider a finite collection S of sets inRn . TheNerve complex Nrv(S) of S
is the abstract simplicial complex generated by the non-empty common intersections
among the sets of S [49]. More precisely,

Nrv(S) := {
σ ⊆ S |

⋂

s∈σ

s 
= ∅}
. (3.1)

As depicted in Fig. 3.3, intuitively the Nerve complex produces a simplicial com-
plex whose vertices are in correspondence with the sets of S, whose edges represents
the non-empty intersections among two sets in S, whose triangles the non-empty
intersections among three sets in S, and so on. One of the most desirable properties
of this construction relies on its capability of “preserving the shape” of the input
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Fig. 3.3 A cover S (a) and its Nerve complex Nrv(S) (b)

Fig. 3.4 A (undirected) graph G (a) and its Flag complex Flag(G) (b)

collection of sets. In fact, (a simplified version of the) Nerve theorem ensures that,
if all the sets in S are convex sets of Rn , then the Nerve complex of S and the union
of the sets in S are homotopy equivalent. Intuitively, this represents a theoretical
guarantee ensuring us that the proposed construction respect the shape of the data
and, specifically, its homology.

Flag complex

Given a (undirected) graphG = (V, E), its Flag complex Flag(G) is the abstract
simplicial complex having as simplices all the subsets σ of vertices of G such that,
for any two vertices u, v in σ , (u, v) is an edge of the graph G (see Fig. 3.4 for an
example).

In other words, Flag(G) consists of all the cliques of the graphG. For this reason,
it is also called clique complex. Intuitively, the Flag complex of a graph G captures
the connectivity among the vertices of G: two connected vertices are turned into an
edge of the simplicial complex, three fully-connected vertices into a triangle, and
so on.

Each of the next subsections will focus on a specific kind of dataset showing how
the introduced tools canbe applied in order to transform the input data into a simplicial
complex. Let us notice how, in most of the cases, the described constructions will
not produce a single simplicial complex but a collection of simplicial complexes �a

depending on a parameter a such that, if a ≤ b, then �a ⊆ �b.
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Table 3.2 A summary of the properties of simplicial complexes obtained from point cloud data
embedded in Rn

3.2.2.1 Point Clouds

Let us consider a finite set of points V in R
n and let us investigate several different

techniques to associate to it a simplicial complex. Table 3.2 highlights some proper-
ties of the methods to be introduced in this section: the simplicial complex might be
a purely combinatorial object (abstract) or embedded in some space (geometric); the
maximum dimension reached by the simplices in the complex might be dependent
on the original point cloud dimension or not; and the construction might be depen-
dent on a fixed parameter or not. The last property is particularly relevant when the
parameter is left free to vary. This multi-scale framework will be treated in Sect. 3.4.

Delaunay triangulations

One of the most traditional ways to build a simplicial complex from a point cloud is
the so called Delaunay triangulation [37]. This construction, originally described for
sets of points in R

2 but generalizable to arbitrary dimensions, aims at producing a
triangulation of the convex hull of V (i.e. the smallest convex set containing V ) free
of long and skinny triangles. More properly, a Delaunay triangulation Del(V ) of V
is a triangulation of the convex hull of V such that the circumcircle of any triangle
does not contain any point of V in its interior. A Delaunay triangulation of V can
be achieved by computing the Nerve complex of the Voronoi regions of the points
in V , where the Voronoi region RV (u) of a vertex u of V is the set of all points in
R

n whose Euclidean distance to u is not greater than their distance to the any other
vertex v of V . More formally,

RV (u) := {x ∈ R
n | ∀ v ∈ V, d(x, u) ≤ d(x, v)}, (3.2)

where d is the Euclidean distance.
Figure3.5 depicts an example of Delaunay triangulation. Specifically, Fig. 3.5b

shows a Delaunay triangulation of the point cloud V represented in Fig. 3.5a.
The points in V ⊆ R

n will be said in general position if no n + 2 points lie on a
common (n − 1)-dimensional sphere. E.g., for n = 2, the points of V are in general
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Fig. 3.5 A point cloud V in R2 (a) and its Delaunay triangulation Del(V ) (b). In (b), the Voronoi
regions in which R

2 is subdivided are delimited by dotted lines

position if and only if no four or more points are co-circular. The hypothesis that the
points in V are in general position enables to ensure that the Delaunay triangulation
of V is unique and its realization as the Nerve complex of the Voronoi regions of the
vertices of V produces not simply an abstract simplicial complex but a geometric
simplicial complex embedded in R

n .

Čech complexes
Given a point cloud V inRn and fixed a scalar parameter ε > 0, the Čech complex

Čechε(V ) associated with V and ε is the abstract simplicial complex defined as:

Čechε(V ) := {
σ ⊆ V | σ 
= ∅ and

⋂

v∈σ

B(v, ε/2) 
= ∅}
, (3.3)

where B(v, ε/2) is the closed ball of radius ε/2 centered in v (see Fig. 3.6a for an
example) [36, 49].

One can notice that the above definition arises from the idea of replacing each
vertex of V with a ball of radius ε/2 and then taking the Nerve complex associated
to this collection of balls. While considering the Čech complex of a point cloud
V is one of the most natural way in order to associate a simplicial complex to V ,
its computation is definitely a time consuming procedure. For this reason, several
“approximated” versions of the Čech complex have been proposed in the literature.

Vietoris-Rips complexes

Afirst approximated version of the Čech complex is represented by the Vietoris-Rips
complex [49, 102]. Fixed a scalar parameter ε > 0, the Vietoris-Rips (VR) complex
V Rε(V ) associated with V and ε is the abstract simplicial complex defined as:

V Rε(V ) := {σ ⊆ V | σ 
= ∅, and ∀ u, v ∈ σ, d(u, v) ≤ ε}, (3.4)

where d is the Euclidean distance (see Fig. 3.6b for an example).
By definition, it easy to notice that the Vietoris-Rips complex V Rε(V ) coincides

with the Flag complex of the 1-skeleton of the Čech complex Čechε(V ). Moreover,
the fact that the Vietoris-Rips complex represents an approximation of the Čech
complex is ensured by the property claiming that for any ε > 0,
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Fig. 3.6 The Čech complex Čechε(V ) (a) and the Vietoris-Rips complex V Rε(V ) (b) associated
with the point cloud V depicted in Fig. 3.5a and ε. The depicted closed balls are of radius ε/2

V R √
2
2 ε

(V ) ⊆ Čechε(V ) ⊆ V Rε(V ). (3.5)

Alpha-shapes

Thepreviously described constructions present several pros and cons.Delaunay trian-
gulations produce geometrical simplicial complexes embedded in the sameEuclidean
space in which the input point cloud lies but, as a drawback, the obtained complex,
being a triangulation of a convex hull, is quite trivial from a topological point of view
(in fact, it has the same homology of a space consisting of a single point). On the
contrary, Čech and Vietoris-Rips complexes better preserve the shape of the input
dataset but they produce abstract simplicial complexes of arbitrarily high dimen-
sion. The idea behind alpha-shapes is to define a new strategy which could satisfies
the positive aspects achieved by the previously described constructions and, at the
same time, avoid to have their drawbacks [35, 40]. Given a point cloud V in Rn and
fixed a scalar parameter ε > 0, this can simply achieved by defining the alpha-shape
Alphaε(V ) associated with V and ε as the Nerve complex generated by the regions
obtained as the intersections between the closed balls of radius ε/2 centered in the
points of V and the Voronoi regions of the points in V . More precisely,

Alphaε(V ) := {
σ ⊆ V | σ 
= ∅ and

⋂

v∈σ

A(v, ε/2) 
= ∅}
, (3.6)

where A(v, ε/2) is defined as B(v, ε/2) ∩ RV (v) (see Fig. 3.7a for an example).
So, since by definition A(v, ε/2) ⊆ B(v, ε/2), we have that for any ε > 0,

Alphaε(V ) ⊆ Čechε(V ). (3.7)

Witness complexes

When dealing with point clouds consisting of a huge number of elements, the previ-
ously introduced constructions (even if sometimes still tractable) require a consider-
able amount of computational resources.Witness complexes aim at fixing this poten-
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Fig. 3.7 The alpha-shape Alphaε(V ) (a) and the witness complex (b) associated with the point
cloud V depicted in Fig. 3.5a and ε. The depicted closed balls in (a) are of radius ε/2

tial issue by constructing a simplicial complex still well representing the “shape” of
the point cloud V in input but having a vertex sets of cardinality equal to just a fraction
of V [30]. While a detailed definition of this class of complexes is out of the scope
of this chapter, we can intuitively describe the witness complex of V as follows. In a
nutshell, a witness complex is built by choosing a set of “landmark” points from V
and then constructing a simplicial complex by using the remaining (non-landmark)
data points as witnesses to the existence of edges or simplices spanned by combina-
tions of landmark points (see Fig. 3.7b for an example). Analogously to the previous
constructions, the definition of the witness complex associated with a point cloud V
depends on a scalar parameter ε > 0.

3.2.2.2 Graphs and Complex Networks

Given a complex network represented as a graph G = (V, E) a natural way to asso-
ciate with it a simplicial complex is by considering its Flag complex Flag(G)

[102]. If (as it is common is several application domains) the edges of graph G
are weighted by a function w : E → R, fixed a scalar parameter ε > 0, let us denote
as Gε = (Vε, Eε, wε : Eε → R), the subgraph of G such that:

• its vertex set Vε coincides with V ;
• its set of edges Eε consists of the edges of G having weight lower or equal than ε;
• its weight function wε is the restriction of w to the edge set Eε .

Combining this definition with the notion of Flag complex, one can define the Flag
complex associated with G and ε as the Flag complex Flag(Gε) of Gε .

3.2.2.3 Functions

Given a simplicial complex � a function f : � → R is called a filtering function
if, whenever σ is a face of τ with σ, τ ∈ �, then f (σ ) ≤ f (τ ). Given a filtering
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Fig. 3.8 The order complexes associated to [2] = {0, 1, 2} (a) and to {(0, 1), (1, 0), (1, 1)} (b).
The considered partial orders ≤ are the standard ordering of natural numbers in the first case, while
its component-wise extension in the second one

function, it is possible to associate with f a collection of simplicial subcomplexes
of � depending on a parameter r ∈ R. Specifically, choosing a scalar value r ∈ R,
the sublevel set of f with respect to r is defined as

�r := f −1
(
(−∞, r ]). (3.8)

In several applicative scenarios, the function f could be defined on a domain
which is not a simplicial complex. In spite of this, in most of the cases this does not
represents a serious obstruction since one can often reconduct the situation to the
previously described case. For instance, if the domain of f is a point cloud V , one
can:

• construct from V a simplicial complex � by adopting one of the techniques
described in Subsect. 3.2.2.1;

• extend f to � by defining, for any σ ∈ �,

f (σ ) := max{ f (v) | v is a vertex of σ }. (3.9)

3.2.2.4 Partially-Ordered Sets

Order complexes

A partially-ordered set, usually called a poset, (S,≤) is a set S endowedwith a partial
order ≤ defined among its elements. Given a (finite) poset (S,≤), the order complex
�(S,≤) associated to it is the abstract simplicial complex on S whose vertex set
coincides with S and whose simplices are the finite chains of (S,≤), i.e. the finite
totally-ordered subsets of S [73, 82].

For example, let us consider the subset [n] ⊆ N consisting of the first n + 1
natural numbers, i.e. [n] = {0, 1, 2, . . . , n}. By considering the standard ordering
≤ on natural numbers, ([n],≤) is a totally-ordered set (in particular, a poset). As
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depicted in Fig. 3.8a for the case n = 2, the order complex associated to ([n],≤)

consists of a n-simplex and all its faces.
Differently, let us consider the subset S := {(0, 1), (1, 0), (1, 1)} ⊆ N

2 and endow
itwith thepartial order≤definedby: (x, y) ≤ (x ′, y′) if andonly if x ≤ x ′ and y ≤ y′.
Then, as depicted in Fig. 3.8b, the order complex associated to (S,≤) consists of two
1-simplices connected by a vertex (corresponding to the point (1, 1)). Please notice
that the edge connecting (0, 1) and (1, 0) is missing since the two points are not
comparable with respect to the considered partial order.

3.3 From Simplicial Structure to Linear Algebra

In the previous section, we described how to endow data with a shape through the
combinatorial and topological notion of a simplicial complex. In this section, we
introduce the notion of simplicial homology and its relation to the Hodge Laplacian
as a way to capture topological features coming from a simplicial complex into linear
algebraic terms. The notions introduced in this section have to be seen as prelimi-
nary ones to persistent homology, that is the core multiscale notion of this chapter
introduced in Sect. 3.4. Differently from persistent homology, a simplicial homol-
ogy group and a Hodge Laplacian refer to a single scale parameter characterizing
the shape we have associated to our data, and provides the building blocks for the
multiscale approach of persistent homology.

3.3.1 Simplicial Homology

Homology is a mathematical tool able to describe a shape in terms of its holes [78].
In order to define the homology of a simplicial complex �, we need to move from
the combinatorial notion of a simplicial complex to the algebraic structures of chain
groups.

Let σ be a q-simplex spanned by the vertices v0, v1, . . . , vq . Two orderings of the
vertices of σ are defined equivalent if they differ by an even permutation. If q > 0, the
orderings of the vertices ofσ fall into two equivalence classes called orientations ofσ .
A pair consisting of a simplex and an orientation of it will be called oriented simplex.
We will adopt the symbol [v0, v1, . . . , vq ] to denote the oriented simplex generated
by v0, v1, . . . , vq and the equivalence class of the specific ordering (v0, v1, . . . , vq).
When clear from the context, we will simply use σ to denote either a simplex or an
oriented simplex.

Given a simplicial complex � and a field F, we define the qth chain group
Cq(�;F) of � as the vector space over F generated by the oriented q-simplices
of � and where −σ coincides with the simplex σ endowed with the opposite orien-
tation. An element of Cq(�;F) is called q-chain and it is a finite linear combination∑

i λiσi with coefficients in F of oriented q-simplices. Once an orientation for each
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simplex of �q is fixed, a canonical basis Cq of Cq(�;F) is determined. Properly,
Cq consists of the q-chains corresponding to the oriented q-simplices of �. In the
following when it will not cause any ambiguity, we will often write Cq(�) or simply
Cq for in place of Cq(�;F). For the sake of readability, an analogous simplification
will be adopted to all the other notations presented in the following.

Chain groups of a simplicial complex � are connected by linear maps ∂q :
Cq(�;F) → Cq−1(�;F) called boundary operators. Given an element of the basis
Cq corresponding to the oriented q-simplex σ = [v0, v1, . . . , vq ] of �, ∂q(σ ) is
defined as:

∂q(σ ) :=
q∑

i=0

(−1)i [v0, . . . , v̂i , . . . , vq ], (3.10)

where v̂i means that vertex vi is not present (see Fig. 3.9 for an example).
The boundary ∂q is extended to each q-chain of � by linearity. In the following,

we will denote by Dq the matrix representing the map ∂q : Cq(�;F) → Cq−1(�;F)

with respect to the basis Cq , Cq−1.
We denote as Zq(�;F) := ker ∂q the F-vector space of the q-cycles of � and

as Bq(�;F) := im ∂q+1 the F-vector space of the k-boundaries of �. Examples of
boundaries and cycles are depicted in Fig. 3.9.

It is immediate to check that, for any q, ∂q∂q+1 = 0 or, equivalently, that Bq(�) ⊆
Zq(�). This fact ensures that the quotient

Hq(�;F) := Zq(�;F)

Bq(�;F)
(3.11)

is a well-defined vector space over F. The space Hq(�;F) will be called the kth

homology group of � with coefficients in F.
By definition of Hq(�;F), q-cycles of � are partitioned in equivalence classes

called homology classes. Two q-cycles are said homologous if they belong to the

Fig. 3.9 Examples of boundaries and cycles of a simplicial complex�. The yellow edges represent
the boundary of the triangle σ . All the highlighted collections of edges represent 1-cycles. The
yellow and the purple cycles are also 1-boundaries while the red and the light blue ones are not.
Moreover, the red and the light blue cycles are homologous, i.e. they are two representatives of the
same homology class (the triangular hole they both include)
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same homology class (see Fig. 3.9 for an example). Given a q-cycle c its homology
class (i.e. the collection of all the q-cycles homologous to c) will be denoted by [c].

The dimension of Hq(�;F) as F-vector space is called the kthBetti number of �

and denoted by βq(�;F).
Intuitively, homology spots the “holes” of a simplicial complex �. In fact, a non-

null element of Hq(�) is an equivalence class of homologous cycles that are not the
boundary of any (q + 1)-chain of �. The number βq of such classes represents, in
dimension 0, the number of connected components of�, in dimension 1, the number
of its tunnels and its loops, in dimension 2, the number of voids or cavities, and so on.

3.3.2 Hodge Decomposition

In this section, the ground ring of coefficients will be the field of real numbers R
unless otherwise stated. We fix an arbitrary finite simplicial complex �, and we set
Cq := Cq(�;R) so that ∂q : Cq → Cq−1 will stand for the boundary operator for
any q = 0, . . . , dim(�). Furthermore, we set Hq := Hq(�;R). We will work in a
simplified setting, adopting for the entire section the canonical basis Cq of Cq(�;F)

for Cq i.e. the one in bijection with (equivalence classes of oriented) q−dimensional
simplices and this will allow us to identify ∂q with its matrix Dq w.r.t. the bases Cq

and Cq−1,

Dq := M
C q ,C q−1

∂q
. (3.12)

The Hodge q-Laplacian, that is also called q-th Combinatorial Laplacian, can
be defined both in terms of cohomology, coboundaries and adjoint, as it has been
proposed in the previous chapter, than as follows in terms of homology, boundary
maps and their matrices

Lq := ∂
∗
q∂q + ∂q+1∂

∗
q+1, (3.13)

where ∂
∗
q denotes the adjoint of ∂q w.r.t some inner product defined on the chains

groups.Wefix the standard inner (scalar) product onCq whichmakesCq an orthonor-
mal basis so that the matrix of ∂

∗
q with respect to Cq−1, Cq is D

T

q the transposed of
Dq . We write

Lq := D
T

q Dq + Dq+1D
T

q+1. (3.14)

We will now study some properties of the Laplacians by taking advantage of this
formulation and following [68].

The fundamental theorem of topology states that Dq+1Dq = 0 for all q ≥ 0.
Therefore, it makes sense to study the Laplacians as follows.

Definition 3.1 Let A ∈ R
m×n and B ∈ R

n×p be two real matrices such that AB =
0 ∈ R

n×n , then
im(B) ⊆ ker(A) (3.15)
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and we set
HA,B := ker(A)/ im(B), (3.16)

for the homology group with respect to A and B.
Accordingly, their Hodge Laplacian is

L A,B := ATA + BBT . (3.17)

Note that LT
A,B = L A,B .

Theorem 3.1 Let A and B be as above. Then, the following hold

1. HA,B
∼= ker(L A,B);

2. ker(L A,B) = ker(A) ∩ ker(BT );
3. im(L A,B) = im(AT ) ⊕ im(B);
4. (Hodge Decomposition) There is an orthogonal direct sum decomposition

R
n ∼= im(AT ) ⊕ ker(L A,B) ⊕ im(B); (3.18)

5. Hodge Decomposition versus Fredholm Alternative

R
n =

ker(BT )
︷ ︸︸ ︷
im(AT ) ⊕ ker(L A,B) ⊕ im(B)

︸ ︷︷ ︸
ker(A)

. (3.19)

Proof See [68].

Now, by substituting A = ∂q and B = ∂q+1 in Theorem 3.1we obtain the classical
result on Hodge decomposition.

Theorem 3.2 Let ∂q , ∂q+1 and Lq be as above. Then, the following hold

1. Hq
∼= ker(Lq);

2. ker(Lq) = ker(Dq) ∩ ker(DT
q+1);

3. im(Lq) = im(DT
q ) ⊕ im(Dq+1);

4. (Hodge Decomposition) There is an orthogonal direct sum decomposition

Cq = im(DT
q ) ⊕ ker(Lq) ⊕ im(Dq+1); (3.20)

5. Hodge Decomposition versus Fredholm Alternative

Cq =
ker(DT

q+1)

︷ ︸︸ ︷
im(DT

q ) ⊕ ker(Lq) ⊕ im(Dq+1)
︸ ︷︷ ︸

ker(Dq )

. (3.21)
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We will present some interesting applications of the Hodge decomposition in
Sect. 3.6.

3.4 Multiscale Topology a.k.a. Persistent Homology

As described in Sect. 3.3, shapes can be associated with homology groups capturing
topological features. Instead, the idea of persistent homology [16, 39] is to deal
with, not simply the homology group at a specific scale, but rather the homology
groups of filtrations of shapes, that is shapes at multiple scales. This section aims
at introducing persistent homology along with the most known persistent homology
summaries. Theoretical comparisons among such summaries are provided. The same
notionswill be extensively used in Sect. 3.5 to discuss stability results for persistence.

3.4.1 Persistent Homology

As described in Sect. 3.2.1, given a dataset there are multiple ways in order to assign
to it the structure of a simplicial complex and, therefore, to study the “shape” of the
original dataset by computing the homology of the associated complex. Certainly,
in most of cases, the presented construction strategies depend on the choice of a
scalar parameter ε while the considered dataset gives us no clue as to which ε is
preferable. In spite of this, fixing a construction strategy and varying the value ε

produces a collection ϕ of encapsulated simplicial complexes to be studied in a mul-
tiscale framework. Since our simplicial complexes are always finite, we can restrict
to consider finite collections of encapsulated simplicial complexes were indexes take
integer values only.

A filtration of � is a finite sequence of subcomplexes ϕ := {�a | 0 ≤ a ≤ m}
of � such that ∅ = �0 ⊆ �1 ⊆ · · · ⊆ �m = �. We refer to �a as the step a in
the filtration ϕ. In Fig. 3.11, we see a filtration obtained from a set V of 7 points
by constructing the VR-complex V Rε(V) for 7 selected values of parameter ε (see
Sect. 3.2.2.1).

Let Ca
q be the short notation for Cq(�

a;F) introduced in Sect. 3.3.1. Consider
an inclusion �a ⊆ �b. Then, we get induced a map f a,b

q : Ca
q −→ Cb

q defined over
each q-simplex σ of the basis of Ca

q by fq(σ ) = σ and then extended linearly. The
linear map f a,b

q is a q-chain map since it satisfies

fq(∂qσ) = ∂q fq(σ ). (3.22)

This implies obviously the homology functoriality. Indeed, Equation (3.22)
ensures that fq preserves q-cycles and q-boundaries. Hence, the homology con-
struction can be applied not simply to all filtration steps in ϕ to obtain a collection
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of vector spaces Hq(�
a;F), shortly indicated by Ha

q , but also to all inclusion maps
to get maps i a,b

q : Ha
q −→ Hb

q at homology level defined by

i a,b
q ([c]) = [ f a,b

q (c)], for any k-cycle c. (3.23)

More generally, the homology functoriality holds due to the inclusion �a ⊆ �b

being a simplicial map. That is, a map s : � −→ �′ satisfying

for all σ, τ ∈ �, σ ⊂ τ ⇒ s(σ ) ⊂ s(τ ).

Thus, given a filtration ϕ = {�a | 0 ≤ a ≤ m}, we can define the following. For
a, b ∈ {0, . . . ,m} such that a ≤ b, the (a, b)-persistent q-homology group Ha,b

q (�)

is
Ha,b
q (ϕ) := im(i a,b

q ). (3.24)

Since homology captures cycles in a shape by factoring out the boundary cycles,
persistent homology [16, 39] captureswhether cycles that are non-boundary elements
in a certain step of the filtration and will turn into boundaries in some subsequent
step. The persistence, along a filtration, of a cycle gives quantitative information
about the relevance of the cycle itself for the shape.

3.4.2 Representing: from Persistence to Topological
Summaries

The purpose of this section is that of introducing the most relevant ways of repre-
senting the persistent homology information. Our main focus is on the information
encoded by each descriptor. Thus, we begin by exposing the algebraic correspon-
dence that provides a complete and standard way of encoding the whole persistent
homology information. We review some equivalent descriptors such as persistence
diagrams [38], barcodes, and persistent Betti numbers [44, 94]. We will go through
the diverse summaries by following the guiding example in Fig. 3.11. Afterwards, we
move to other summaries encoding the persistent homology information in a more
structured way. Statistical approaches require desciptor spaces being suitable not
simply for measurements (covered in Sect. 3.5) but where collections of descriptors
can be summed up, weighted and averaged. We close this part by reviewing some
proposals in statistical and learning direction to encode the persistent homology
information, namely persistence landscapes [13], persistence images [1] and other
kernel representations. A comparison of persistent homology summaries over the
same example is contained Fig. 3.10.

In order to deal with the totality of the persistence information is common to
consider the following definition.
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Fig. 3.10 A Vietoris-Rips filtration for increasing values of the parameter ε (top). From left to
right the persistence diagram, persistence landscapes, persistence surface, and persistence image,
for homology degree 0 (middle) and 1 (bottom)

Given a filtration ϕ = {�a | 0 ≤ a ≤ m}, the qth-persistence module Hq(ϕ) is the
collection of the groups Ha

q , with 0 ≤ a ≤ m, connected by the linear maps i a,b
q , with

0 ≤ a ≤ b ≤ m.
As explained in [16], a qth-persistence module Hq(ϕ) can be thought of as a

finitely generated graded F[x]-module M = ⊕
a∈N Ha

q where, each Ha
q is taken as

the set of homogeneous elements of grade a, and the action xb−ah over an element
h of grade a is defined by i a,b

q (h). Hence, xb−ah belongs to Hb
q for all h ∈ Ha

q , that
is the graded module definition is met.

Theorem 3.3 (Structure Theorem) Any finitely generated graded F[x]-module can
be decomposed as a finite direct sum of finitely generated F[x]-modules as follows

M ∼=
α⊕

i=1

xaiF[x] ⊕
β⊕

j=1

((
xb jF[x]) /

(
xc j−b jF[x])) , (3.25)
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Fig. 3.11 A filtration with the corresponding persistence pairs and barcode. All bars starting at 0
represent homological classes of degree 0. At the bottom, only one bar corresponds to the life-span
of a cycle

where ai , bi , ci ∈ N with bi < ci , and, for any n ∈ N, xnF[x] is the ideal generated
by xn inside F[x]. Furthermore, the decomposition is unique up to reordering of the
summands.

The summands entailing only one parameter a′
i capture the generators of M

appearing at grade a′
i , whereas the other summands capture generators appearing

at grade a j and disappearing at grade b j . The former kind of summands form what
is called the free part of the module decomposition, the latter kind form the torsion
part.

By applying the Structure Theorem to the graded F[x]-module
⊕

a∈N Ha
q associ-

ated with the qth-persistence module Hq(ϕ), we can encode, up to isomorphisms, the
entire information of persistent homology by means of pairs of two kinds. Each sum-
mand in the free part provides us with a pair (a,∞), representing the persistence of
a single homology class appearing at step a and never vanishing along the filtration.
Each summand in the torsion part provides us with a pair (a, b), for a single class
appearing at step a and vanishing at step b. The example in Fig. 3.11 has only the pair
(0,∞) for the homology degree 0 which never vanishes. All the other persistence
pairs in the example vanishes.

Tame persistence module

In order to obtain persistence modules from a filtering function as introduced in
Sect. 3.2.2.3 and in view of Sect. 3.5 on the stability of persistence summaries, we
generalize the persistence module definition to indexes in the set of real numbers R
totally ordered under the standard order relation ≤.

An R-persistence module [23]F with coefficients in F and real indexes consists
of a collection {Fa}a∈R of F-vector spaces along with a collection { f a,b}a≤b∈R of
linear maps such that
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∀a ≤ b ≤ c ∈ A, f a,c = f b,c ◦ f a,b

∀a ∈ A, f a,a = idFa .
(3.26)

An R-persistence module F is said to be tame if and only if,

∀a ∈ A, dimF Fa < +∞
f a,b is an isomorphism, (3.27)

except for a finite number of index pairs(a, b).

The notion of an R-persistence module generalizes the one with finite natural
indexes introduced at the beginning of this section. Indeed as an example, the qth-
persistence module Hq(ϕ) of a filtration ϕ = {�a | 0 ≤ i ≤ m, a ∈ N} with m ∈ N

can bemade into anR-persistencemodule. First, we extend the indexes to the integers
Z. The collection of groups {Hi } is extended by setting Hi = 0 if i < 0, and Hi =
Hm if i > m. The collection of linear maps { f i, j } is extended by setting f i,i+1 = 0
if i + 1 < 0, and f i,i+1 the identity map if i > m. Then, all possible compositions
define f i, j for general indexes i ≤ j . The extension to indexes in R is obtained
by setting, for all real numbers a ≤ b, Ha = Hi with the integer i such that i ≤
a < i + 1, Hb = H j with the integer j such that j ≤ b < j + 1, and f a,b = f i, j .
Moreover, it is obvious to check that the obtained R-persistence module is tame.

This extension allows us to consider relevant examples of tame R-persistence
modules such as the one obtained via sublevel sets of a filtering function introduced
in Sect. 3.2.2.3, or the ones obtained via filtrations from point clouds, as the one
in Fig. 3.11, introduced in Sect. 3.2.2.1, or the ones from graph data introduced in
Sect. 3.2.2.2.

Persistence diagrams

Fix the notation R̄ = (R ∪ {∞}) and N̄ = (N ∪ {∞}). Consider a tameR-persistence
moduleF . Thefinitemulti-set of points obtained from theStructureTheoremapplied
toF defines the persistence diagram [38] as

R × (R ∪ {∞}) PD(F )
N ∪ {∞}

if a 
= b (a, b) #{summands in Equation (13) corresponding to (a, b)}
if a = b (a, a) ∞.

(3.28)

The elements belonging to the persistence diagram are called persistence pairs.
By the Structure Theorem, the persistence diagram is a complete invariant for a
persistence module. The persistence diagram of the filtration in Fig. 3.11 consists of
the pairs depicted in column on the left. Notice that the pair (0, 0.35) appears with
multiplicity 2.

An invariant for a persistence module equivalent to the persistence diagram is the
barcode. The barcode Bar(F ) is the finite collection {(bi , di )}i∈I of points (bi , di )
varying in the support of PD(F ) counted PD(F )(b, d) times. The barcode of the fil-
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tration in Fig. 3.11 consists of the bars of different length according to the persistence
of the corresponding homology class as the value of the parameter ε varies.

As treated in [23], the tameness condition ensures thatF admits a representation
as a finitely generated module by a suitable reindexing. Hence, the definition in
Equation (3.28) applies. The tameness condition ensures that a sequence of nested
discretizations of F converges to a unique persistence diagram with respect to a
similarity notion between persistencemodules called the interleaving distance which
will be introduced in Sect. 3.5.

Persistent Betti numbers

Given a tame persistence module F = ({Fa}, { f a,b}) with coefficients in F and
indexes in (R,≤), we define the persistent Betti numbers [44] of F as the function
β : R × R̄ → N defined by

β(a, b) :=
{
dim f a,b(Fa) if a ≤ b

0 if a > b.
(3.29)

Equivalently, given the barcode Bar(F ) = {(bi , di )}0≤i≤N , we obtain the same
function by defining

β(a, b) = #{0 ≤ i ≤ N | s.t. bi ≤ a ≤ b ≤ di }. (3.30)

The Representation Theorem in [21] , or the Triangle Lemma in [27], guarantees
that knowing β is equivalent to knowing the persistence diagram. For a given homol-
ogy degree, the value at (a, b) of the persistent Betti numbers of the filtration can be
easily read off from Fig. 3.11 by counting the number of bars of full length in the ε

range from a to b.

Persistence landscapes

A limitation of a persistence diagram in encoding the persistence information is that
the mean of multiple persistence diagrams as functions might be ambiguous. To
overcome this, persistence landscapes are introduced in [13].

The persistence landscape ofF is the function λ : N × R → R̄ such that

λ(k, t) := sup{m ≥ 0 | β(t − m, t + m) ≥ k}. (3.31)

Notice that the transformation t = a+b
2 ,m = b−a

2 sends the diagonal of the persis-
tence diagram domain to the horizontal axis as we can see by comparing persistence
diagrams and landscapes in Fig. 3.12.

The persistence landscapes are invertible in the sense that the persistent dia-
gram can be recovered from the persistence landscapes. Indeed, persistent Betti
numbers β(a, b) at a point (a, b) can be recovered. Consider the set of integers
I(a,b) = {k | s.t. suppλ(k, ·) ⊇ [a, b]}. It follows that β(a, b) = ∑

k∈I(a,b)
λ(k, a+b

2 ).

The definition of the functionλ can be extended to the domainR2 by settingλ(�x�, t).
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Fig. 3.12 Persistence diagrams and landscapes for the first homology degree of a sampling of 100
points over a torus (top) and a sphere (bottom)

The mean λ̄ of λ1, . . . , λn persistence landscapes is defined by

λ̄(x, t) := 1

n

n∑

i=1

λi (x, t). (3.32)

Persistence images
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Recently, a very powerful summary for persistence has been introduced, called per-
sistence images [1]. Actually, their representation approximizes the information in a
persistence diagram and a persistence image is not invertible in the sense of persis-
tence landscapes.

Nonetheless, the key strength point is that persistence images represent persis-
tence as a finite dimensional vector in R

n . The finite dimensional representation
makes persistence images a favorable way for integrating persistence into deep neu-
ral architectures thus opening the way for an interplay between deep learning and
TDA (see Sect. 3.6).

A persistence diagram D is transformed into a persistence surface ρD : R2 → R

ρD(x) :=
∑

y∈T (D)

ω(y)kG(x, y), (3.33)

where T (D) is the set of birth-persistence pairs obtained from D by applying
(a, b) �→ (a, b − a), the weight function ω : R2 → R is zero on the horizontal
axis and step-wise differentiable, the function kG is the Gaussian kernel defined
by kG(x, y) = exp−‖x−y‖2

2σ 2 , for some parameter σ .
The persistence image I (ρD) of D is obtained from ρD by subdividing its domain

into n pixels P by means of a regular grid and by computing the integral of ρD over
each P . In Fig. 3.13, we see an example with the birth-persistence diagram T (D)

and the corresponding persistence image obtained by discretization.

Homological scaffolds

Homological scaffolds are effective and compact summaries of the homological
features of weighted networks capable of simultaneously make their homological
properties amenable to networks theoretical methods [87].

Given a complex network represented as a weighted graph G = (V, E, w : E →
R), let B be a collection of representative cycles of the 1-dimensional homological
classes occurring during the filtration ϕ of Flag complexes associated to G. Given
an edge e of G, it is possible to associate to it a weight ω(e) defined as it follows:

ω(e) :=
∑

g∈B,e∈g
ωg, (3.34)

where ωg is a weight value associated to the homological class of g. Based on the
weightω, the homological scaffold of the networkG is defined as the weighted graph
G ′ = (V ′, E ′, ω : E ′ → R>0) where:

• V ′ := V ;
• E ′ consists of the edges e of E for which ω(e) > 0.

The scaffold is called persistence homological scaffold by defining ωg as the life-
span πg of g, while it is called frequency homological scaffold by setting, for any
cycle g, ωg := 1.
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Fig. 3.13 Birth-persistence diagrams and persistence images for the first homology degree of a
sampling of 100 points over a torus (top) and a sphere (bottom)

Despite their proven applicative capabilities, (persistence and frequency) homo-
logical scaffolds theoretically depend on the choice of representative cycles. In order
to address this potential issue and thanks to the recent advances in the computation
of minimal homology bases [32], a quasi-canonical version of the scaffold, called
minimal, has been introduced in [48].

Formally, given a complex network G = (V, E, w : E → R), let us consider
the minimal homology basis Bε of H1(Flag(Gε)) (i.e. a collection of representa-
tive cycles of minimal total length whose classes form a basis of H1(Flag(Gε))).
Moreover, let us define B∗ as

⊔
ε B

ε . Similarly to the frequency homological scaf-
fold, the minimal homological scaffold of G is defined as the weighted graph
G ′ = (V ′, E ′, ω : E ′ → R>0) where:

• V ′ := V ;
• ω(e) := ∑

g∈B∗,e∈g 1 (i.e. the number of cycles in B∗ containing e);
• E ′ consists of the edges e of E for which ω(e) > 0.

In Fig. 3.14, an example of the minimal scaffold consisting of minimal 1-
homology generators appeared along the filtration is depicted.
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Fig. 3.14 At the top, filtration with minimal 1-homology generators (loops) highlighted. Below,
the associated minimal scaffold. Image available under courtesy of the authors of [48]

3.4.2.1 Representing the Topological Information Through Kernels

Topological information and, specifically, persistence diagrams are effective data
discriminants. On the other hand, interfacing persistence diagrams directly with
statistics and Machine Learning poses technical difficulties, because the space of
persistence diagrams is not endowed with a structure of an inner product or, more
properly, of a Hilbert space structure. This lack prevents that lengths, angles, and
means of persistence diagrams can be defined as well as that kernel-based learning
methods such as kernel PCA and support vector machines for classification [92] can
be adopted.

Given an input space X , a kernel for X is a map k : X × X → R such that there
exist a Hilbert space H and a map φ : X → H , called feature map for which, for
any x, y ∈ X , k(x, y) = 〈φ(x), φ(y)〉. Equivalently, k is a kernel if the following
diagram commutes:

(3.35)

Recall that a Hilbert space H is a complete metric space with respect to the
distance induced by the inner product 〈 · , · 〉. A widely adopted assumption for an
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inner product 〈 · , · 〉 is the request of being positive semi-definite. In such a case, a
kernel will be called reproducing kernel.

Worth to be mentioned that the definition a kernel k does not require the explicit
knowledge of its featuremapφ but just a theoretical guarantee of its existence.Results
as the theorems ofMoore-Aronszajn and ofMercer characterize the conditions under
which a function k : X × X → R can serve as a kernel [59]. For instance, Moore-
Aronszajn’s theorem claims that any finite function k : X × X → R is a reproducing
kernel as long as it is finite, symmetric, and positive semi-definite.

The idea of defining a kernel for the space X of persistence diagrams has been
introduced in the late nineties in [33, 43] but it has beenwidely adopted just in the last
few years. In the framework of persistence-based kernels, the feature map is usually
explicitly provided and the chosen Hilbert space is typically the L2(R2) space of the
square-integrable functions. In the following, wewill list and briefly discuss themain
features of all (to the best of our knowledge) persistence-based kernels introduced
in the literature.

Roughly, we can classify them into three groups: persistence landscapes [13];
Gaussian kernels [1, 61, 92]; sliced Wasserstein kernels [19].

Persistence landscapes as kernels

Persistence landscapes, introduced in [13] and previously described in Sect. 3.4.2,
allow for representing any persistence diagram as a square-integrable function. Even
if not previously mentioned, the procedure assigning a L2 function λ(D) to a persis-
tence diagram D can be considered as a feature map from the space of the persistence
diagrams to L2(R2). According with this perspective, a kernel k based on persistence
landscapes can be plainly defined as

k(D, D′) = ‖λ(D) − λ(D′)‖L2 , (3.36)

where D and D′ are two persistence diagrams.

Gaussian kernels

The second class of persistence-based kernels is defined thanks to the explicit intro-
duction of a feature map φ. In [92] and in [61], a similar approach is adopted. Focus-
ing on [92], let denote as� the region {x = (x1, x2) ∈ R

2 | x2 ≥ x1} ⊆ R
2 above the

diagonal and as δx the Dirac delta centered at the point x . The feature map φ will be
defined on a given persistence diagram D, as the solution u : � × R≥0 → R of the
partial differential equation

⎧
⎪⎨

⎪⎩

�xu = ∂u
∂t in � × R≥0

u = 0 on f r(�) × R≥0

u = ∑
y∈D δy in � × {0}.

(3.37)

A solution of the above equation is achieved by posing
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φD
σ (x) := 1

4πσ

∑

y∈D

(

e
(
− ‖x−y‖2

4σ

)

− e

(

− ‖x−y′‖2
4σ

))

, (3.38)

with y′ = (b, a) if y = (a, b).
So, we obtain the following explicit expression for the associated kernel

k(D, D′) = 1

8πσ

∑

y∈D,z∈D′

(

e
(
− ‖y−z‖2

8σ

)

− e

(

− ‖y−z′‖2
8σ

))

. (3.39)

Intuitively, given a persistence diagram D, the above described procedure returns
an L2 function φ(D) having a Gaussian peak centered at each point of the considered
diagram D. Moreover, in order to obtain a stable kernel, the height of each peak is set
as proportional to the distance of the corresponding point (a, b) from the diagonal
of the first quadrant of R2.

Even if still based on Gaussian peaks, a different approach has been adopted in
[1]. As previously mentioned, persistence images enable to convey the persistent
homology information through a vector. This is achieved by: (i) transforming any
persistence diagram D into a surface ρD obtained by centering at each point of D a
suitably weighted Gaussian peak; (ii) discretizing ρD by decomposing the domain
into a regular grid of pixels; (iii) representing the obtained result through a heat map
I (ρD). Among other advantages, such a vectorization process promptly provides a
notion of kernel. In fact, given two persistence diagrams D and D′, one can define
their kernel simply as the inner product of their associated vectors I (ρD) and I (ρD′):

k(D, D′) := 〈I (ρD), I (ρD′)〉. (3.40)

Sliced Wasserstein kernel

In various contexts, a standard way to construct a kernel is to exponentiate the
negative of an Euclidean distance. In [19], the authors aim at adopting a similar
approach in order to define a kernel between persistence diagrams. According with
this idea, given two persistence diagrams D and D′ a kernel can be defined as:

k(D, D′) := e
(
− f (D,D′)

2σ2

)

. (3.41)

An important theorem in [8] (Theorem 3.2.2, page 74) ensures that the above
formula defines a valid positive definite kernel for any σ > 0 if and only if f is neg-
ative semi-definite. Unfortunately, none of the already introduced distances between
persistence diagrams can serve as f since does not satisfy the property of negative
semi-definiteness. In order to overcome this limitation, a new distance dSW , called
slicedWasserstein distance, has been introduced in [19]. SlicedWasserstein distance
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represents an approximation of 1st -Wasserstein distance and, thanks to the fact of
being provably negative semi-definite, it can be chosen as f in Eq. (3.41) in order to
define a valid positive definite kernel of persistence diagrams.

3.5 Comparing Multiscale Summaries: Distances
and Stability

Stability is a concept rooted in celestial mechanics and, thereafter, in the study of
dynamical systems. Loosely speaking, a quantity related to the system is stable if
small perturbations will result in relatively small changes of it. In this spirit stability
has been studied also in the area of persistence. Namely, several results have been
obtained about the behaviour of the topological summaries presented in the previous
sections with respect to perturbations of the input data. In particular, this has been
addressed by comparing suitable set distances variations, as for example theGromov-
Hausdorff distance, with the corresponding modifications of their e.g. persistence
diagrams and the other summaries. This section is devoted to introduce and elucidate
this topic and the main results on it.

3.5.1 Distances on Data

In this section, we collect the definitions of the dissimilarity measures applying to
input data within the persistence pipeline (see Sect. 3.2). The first one is the natural
pseudo-distance [62] and it applies to continuous functions used to filter a domain by
sublevel sets. In the case of continuous functions over the same domain, the natural
pseudo-distance is usually replaced by the actual distance defined by the L∞-norm.

The seconddistance to be introduced is theGromov-Hausdorff [24] distancewhich
applies to finite metric spaces such as the point clouds discussed in Sect. 3.2.2.1.

Natural pseudo-distance

A topological space X is called triangulable [78] if there exists a (finite) simpli-
cial complex homemorphic to X . A continuous function f : X −→ R is called
tame if and only if it induces a filtration on X via sublevel sets of the form
Xa = f −1((−∞, a]) (see Sect. 3.2.2.3) such that each Xa has finite dimensional
homology. Notice that the tameness condition on functions implies the tameness
condition for the R-persistence module obtained through sublevel sets discussed in
Sect. 3.4.2. A pair (X, f ) consisting of a triangulable space X and a tame function
is called a size pair.

Let (X, f ) be a size pair. The natural pseudo-distance [62] between two pairs
(X, f ), (Y, g) is defined by
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dN ((X, f ), (Y, g)) :=
{
infh∈Hom(X,Y ) ‖ f − g ◦ h‖∞, if Hom(X,Y ) 
= ∅
+∞ if Hom(X,Y ) = ∅,

(3.42)
where Hom(X,Y ) is the set of all homeomorphisms from X to Y .

In the case Y = X , it is preferable to consider the L∞-norm inducing an actual
distance function between f and g instead of their natural pseudo-distance. Indeed, if
there exists an homeomorphism h such that f = g ◦ h, then dN((X, f ), (X, g)) = 0
even though their L∞-norm is in general non-trivial.

Gromov-Hausdorff distance

A finite metric space is a pair (X, dX ) consisting of a finite set X and a metric
function dX : X × X −→ R. For example, we can think of X endowed with the
metric function inherited from some embedding into a finite dimensional Euclidean
space. A correspondence r between X and Y is a subset of X × Y such that the
canonical projection from the Cartesian product πX : X × Y −→ X and πY : X ×
Y −→ Y are both surjective. The set of all correspondences between X and Y will
be denoted by X � Y . A correspondence generalizes a bijection between two sets
with different cardinalities.

Once we have a correspondence r ∈ X � Y between the underlying sets, we can
define its distorsion as

Dis(r) := sup{|dX (x, y) − dY (x ′, y′)| | (x, y), (x ′, y′) ∈ r}. (3.43)

The Gromov-Hausdorff distance [47] between two finite metric spaces (X, dX ),
(Y, dY ) is defined as

dGH ((X, dX ), (Y, dY )) := 1

2
inf{Dis(r) | r ∈ X � Y }. (3.44)

3.5.2 Distances on Persistence Summaries

In this section, we collect the definitions of the dissimilarity measures applying to
persistent homology summaries (see Sect. 3.4.2).

We first review the interleaving distance [23] applying to R-persistence mod-
ules. Afterwards, we review the p-landscape distance [13] applying in the same
way to both R-persistence modules and persistence diagrams. Later, we review the
distances on persistence diagrams: the matching/bottleneck distance [27, 62], the
pth-Wasserstein distance [28], and the Hausdorff distance [27].

We close this section by stating the Isometry Theorem [14, 65] for relating the
interleaving distance and the introduced distances on diagrams.

Interleaving distance
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Let F , G be R-persistence modules as in Eq. (3.26) and ε > 0. We say that F and
G are ε-interleaved if and only if there exists a family {�a : Fa −→ Ga+ε}a∈R and
a family {�a : Ga −→ Fa+ε}a∈R such that the following diagrams commute

Fa−ε
f a−ε,a+ε

�a−ε

Fa+ε Fa+ε
f a+ε,b+ε

Fb+ε

Ga �a
Ga ga,b

�a

Gb �b

Fa
�a Fa f a,b

�a

Fb
�b

Ga−ε
ga−ε,a+ε

�a−ε

Ga+ε Ga+ε
ga+ε,b+ε

Gb+ε .

(3.45)

The interleaving distance between real-indexed persistence modules is defined
by

dI(F ,G ) := inf{ε > 0 | F ,G are ε-interleaved}. (3.46)

Distance on persistence landscapes
Let λ, λ′ be the persistence landscapes associated to two persistence modules

F , F ′, respectively. Fix p a real number p ≥ 1 or p = ∞. Then, the p-landscape
distance is defined by means of the L p-norm as follows

�p(F ,F ′) := ‖λ − λ′‖p. (3.47)

In the same way, if λ, λ′ are the persistence landscapes associated to two persis-
tence diagrams D, D′ we define �p(D, D′) := ‖λ − λ′‖p.

Distances on persistence diagrams

Let D1 and D2 be persistence diagrams as defined in Eq. (3.28). Some pseudo-metrics
require the notion of a matching between persistence diagrams. Amatching between
D1 and D2 is simply a bijection between the underlying sets. Notice that the per-
sistence diagrams are not finite metric spaces like those in Eq. (3.44). Despite there
might be points with finite multiplicity in different number within two persistence
diagrams, such a cardinality discrepancy is overcome bymatching points to the diag-
onal when needed. The bottleneck distance [27] (also calledmatching distance [62])
is defined as

dB(D1, D2) := inf
π :D1→D2
bi jection

sup{‖x − π(x)‖∞ | x ∈ D1}, (3.48)

where the ‖‖∞-norm is always taken for points as part of R2.
The bottleneck distance can be seen as part of a family of pseudo-metrics. For

any integer 1 ≤ p ≤ +∞, the pth-Wasserstein distance [28] is defined as

dp
W(D1, D2) := inf

π :D1→D2
bi jection

(
∑

x∈D1

‖x − π(x)‖p
∞

) 1
p

. (3.49)
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The Hausdorff distance [27] does not require a bijection between the underlying
sets and it is defined as

dH(D1, D2) := max

{

sup
x∈D1

{ inf
y∈D2

{‖x − y‖∞}}, sup
y∈D2

{ inf
x∈D1

{‖x − y‖∞}}
}

. (3.50)

Let (X, f ), (Y, g) be two pairs consisting of a triangulable topological space and
a continuous real-valued function on it. Suppose f and g are both tame functions,
meaning that the respective R-persistence modules F and G obtained by sublevel
sets are tame in the sense of Equation (3.27). Let D f , Dg be the persistence diagrams
associated to the sublevel set filtrations induced by f and g, respectively. It follows
that the following relations among persistence pseudo-metrics hold:

dH(D f , Dg) ≤ dB(D f , Dg), (3.51)

dB(D f , Dg) = dI(F ,G ). (3.52)

By Eq. (3.51), we get that, on persistence diagrams, a stability result with respect
to the bottleneck distance implies the corresponding stability with respect to the
Hausdorff distance. Equation (3.52) is usually referred to as the Isometry Theo-
rem [14, 65].

3.5.3 Stability Results

In this section, we collect the main results concerning the stability with respect to
the dissimilarity measures introduced in Sect. 3.5.1 and Sects. 3.5.2.

We begin by stating Theorem 3.4 and Theorem 3.5 for the stability in terms
of bottleneck distance of persistence diagrams and natural pseudo-distance of size
pairs [29]. We proceed further with Theorem 3.6 and Theorem 3.7 for extending
to persistence landscapes the stability results just stated [13]. Afterwards, we state
Theorem 3.8 for the stability of the bottleneck distance of persistence diagrams with
respect to the Gromov-Hausdorff distance of finite metric spaces [28]. We conclude
this part with a focus on the stability of the persistence-based kernels which have
been introduced in Sect. 3.4.2.1.

Theorem 3.4 Let (X, f ), (Y, g)be twopairs consisting of a triangulable topological
space and a tame function on it. Let D f , Dg be the persistence diagrams associated
to the sublevel set filtrations induced by f and g, respectively. Then, it holds that

dB(D f , Dg) ≤ dN((X, f ), (Y, g)).

In the case of X = Y , the stronger result with respect to the L∞-norm applies [29].
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Theorem 3.5 Let (X, f ), (X, g) be two pairs consisting of a triangulable topo-
logical space and a tame function on it. Let D f , Dg be the persistence diagrams
associated to the sublevel set filtrations induced by f and g, respectively. Then, it
holds that

dB(D f , Dg) ≤ ‖ f − g‖∞.

Notice that, by Eq. (3.52), the two stability results apply also to the interleaving
distance between the corresponding persistence modules. That is usually referred to
as algebraic stability theorem [23]. Moreover, recently the stability result has been
sharpened and generalized to interval decomposable persistence modules and block
decomposableRn-persistence modules [12]. The former ones apply to modified per-
sistence frameworks: zig-zag persistence [76] andReeb graphs (a survey in [10]). The
latter ones apply to the the case of persistence generalized to filtrations determined
by multiparameters [17] instead of a single one.

In the case of persistence landscapes, the stability is stated by the following and
proved in [13].

Theorem 3.6 Let (X, f ), (X, g) be two pairs consisting of a triangulable topolog-
ical space and a function on it. LetF , G be the two persistence modules associated
to the sublevel set filtrations induced by f and g, respectively. Then, it holds that

�∞(F ,G ) ≤ ‖ f − g‖∞.

In the same way, the stability of persistence landscapes with respect to the pth-
Wasserstein distance of persistence diagrams is also proven [13].

Theorem 3.7 Let D1, D2 be two persistence diagrams. Fix p a real number p ≥ 1
or p = ∞. Then, it holds that

�∞(D1, D2) ≤ dp
W(D1, D2).

In the case of filtrations built on top of a finitemetric space such as those introduced
in Sect. 3.2.1, the following result holds [24].

Theorem 3.8 Let (X, dX ), (Y, dY ) be two finite metric spaces. Let DVR
X , D

VR
Y be the

persistence diagrams associated to the Vietoris-Rips complex constructions over
(X, dX ), (Y, dY ), respectively. Then, it holds that

dB(D
VR
X , DVR

Y ) ≤ dGH((X, dX ), (Y, dY )).

By applying Formula (3.5), the result can be extended to the Čech construction.

Stability of persistence-based kernels

Analogously to the the previously discussed topological summaries, it is crucial that
also for the information conveyed by a persistence-based kernel to be stable. Given
a (pseudo) distance d : X × X → R of a space X , a kernel k for X is called stable
with respect to d if there exists a constant C > 0 such that, for any x, y ∈ X ,
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‖φ(x) − φ(y)‖H ≤ C · d(x, y), (3.53)

where ‖ · ‖H is the norm induced by the inner product of H .

All the described persistence-based kernels satisfy some stability result. We refer
to the papers in which each kernel is introduced for the details about the specific
stability properties they satisfy. As an example, we report here the stability results
satisfied by the scale-space kernel. Stability of scale-space kernel with respect to
1st -Wasserstein distance of persistence diagrams

‖φσ (D) − φσ (E)‖L2 ≤ 1

2σ
√

π
d1W(D, E). (3.54)

3.6 Applications

In this section,we reviewapplications ofTopologicalDataAnalysis (TDA) exploiting
the persistent homology pipeline. Our purpose is not to provide a comprehensive list.
Surveys on the topic may be found in [25, 84]. Instead, we aim at showing how TDA
general properties are exploited and adapted to specific application fields. Generally
speaking, TDA is well-appreciated since it:

• summarizes multiscale information according to the relevance of homology
classes along the scale range on data;

• captures higher-order relations among data entities;
• capturesmesoscale informationoncomplexdata sincehomologymediates between
local properties (holes) inserted in global contexts (homologous holes are not nec-
essarily close each other);

• captures coarse information;
• captures robust information.

The reader interested in computational aspects of the persistence pipeline is
referred to the standard algorithm for persistence introduced in [16]. A list of soft-
wares implementing several persistent homology algorithms comprises: PHAT [6]
which is written in C++ and Python along with its distributed version DIPHA [5], the
tool Ripser [4], and themore recent tool GIOTTO [98]. A persistence tool specifically
designed for complex networks is jHoles [11]. The reader interested in a compre-
hensive comparison of algorithms and tools for persistent homology is referred to
the roadmap work in [81].

Libraries for performing general TDA computations are available in C++ and
Python through the Gudhi library [72] along with its R software interface [42]. A
previous C++ library for persistent homology is Dionysus [77]. A comprehensive
tool-kit for TDA not limited to the persistence pipeline is available at [85] in C++
and Python.
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In the following part, we focus on the fields of complex networks, neuroscience,
and biology where the contribution of TDA is well recognized. We proceed by pre-
senting two specific scopes where the q-Hodge Laplacian (see Sect. 3.3.2) finds
applications. In the final part, we present a collection of other applications to be
easily accessible by domain experts.

Complex networks and social science

Most of applications in complex networks exploits the ability of TDA of capturing
higher-order relations among data entities. Graphs and weighted graphs naturally
encode the pairwise relation of complex networks. The simplicial complex construc-
tions introduced in Sect. 3.2.2.2 allow to endow a (weighted) graph with a (filtered)
higher-order structure.

Some applications are focused on translations of graph concepts into simplicial
complex terms. In [9], the percolation is extended fromgraph to simplicial complexes.
In [54], the clique complex is introduced. This allows for a persistence multiscale
summary of higher-order structures [93] to track community cliques. This leads the
authors to introducing a newnon-localmeasurewhich is proven to be complementary
to standard centrality and comparison measures. A classification of network models
which integrates topological information is proposed in [97].

Some applications in the field of complex networks exploit the ability of per-
sistence in capturing mesoscale information. For instance, in [89] authors apply
persistence to detect new non-local structures. In [88], a new and robust filtration is
introduced which is proven to be richer than both metrical and clique filtrations.

Due to the formalization into (weighted) graph terms, applications to Social Sci-
ence exploit a framework similar to that of complex networks. In [2], topology is
used to detect a correlation between socio-economic indicators and spatial structures
in the city environment. In [99], topology is combined to non-linear dimensional
reduction to provide new contagion maps. In [20], authors apply the degree 0 and 1
persistence to analyze collaboration networks and differentiate them from the random
case. In [95], persistence is applied for selecting features out of the high-dimensional
point clouds of clients connected by weighted interaction links.

Neuroscience

The multiscale summaries provided by TDA have shown relevant impact on the
study of structural and functional brain connectivity. The brain connectivity is often
represented by a connectivity matrix based on physical adjacency or correlation
measures between brain regions. This can be easily turned into weighted graph terms
thus allowing for the application of TDA and, specifically, the persistence pipeline.

TDA supports the exploration and visualization purposes especially by means
of the Mapper graph [96]. The Mapper graph is a topological signature alternative
to persistence. The signature captures the adjacency of connected components with
respect to scalar function level sets. TheMapper signature is exploited in [83] to show
coherence of topological information on structural and functional brain aspects.

Coming back to the persistence pipeline, we first focus on structural aspects.
In [75], authors investigate the dynamics of theKuramotomodel in the case of higher-
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order relations. In [7], graph filtrations are exploited to study tree-like structures of
brain arteries to find correlations between age and sex higher than previously obtained
without higher-order structures.

As for the functional aspects, in [46] the clique complex construction is used
to derive the critical role of the hippocampal circuits in shaping the geometrical
structure of correlations in the brain of rats. In [87], the scaffold persistence summary
is exploited to discriminate between healthy and psycoactive patients. The function
brain connectivity is also studied under fMRI data (Functional Magnetic Resonance
Images) in [70] to introduce a new topology-based measure based on the scaffold
summary. In [101], vineyards, that is continuous families of persistence diagrams,
are used to classify between resting and gaming subjects to obtainmore robust results
compared to Principal Component Analysis.

Brain functionalities other than the connectivity are also investigated under data
represented by functions. Image data of cortical surfaces are classified in [26] accord-
ing to persistence summaries. Most applications are focused on EEG signals treated
in several works. In [100] denoising of signals is performed by means of persistence
landscape summaries. The original signal and the transformed one are found to share
topological properties. The independence from scales and translations of topolog-
ical features is exploited over the frequent space after Fourier transform to isolate
the signal. In [52, 53], EEG signals are treated for finding evidences of correlations
between head positioning and hypnotizability of patients. In [15], authors propose
feature selection to separate signals of able-bodied from amputee subjects.

Biology

The field of biology is experimenting a growing interest towards topological data
analysis. A first motivation relies on the high number of features known to be
involved in many biological studies. This is the case of the work in [90] where
TDA is integrated into feature selection to detect subgroups of features based on
similarity measures.

A second case is that of gene sequences. The gene sequence evolutions can be
represented by treelike structures where points are gene sequences. As stated in [22],
treelike structures accurately reflect vertical evolution (mutations over generations)
but not horizontal evolution (genomic mixture between individuals). Tree struc-
tures capture vertical evolution. They consist of a single connected component with-
out loops. Hence, homology in degree 0 might be associated to vertical evolution,
whereas higher-order homological features might be associated with horizontal evo-
lution. Higher-order homological features are captured by starting from the same ini-
tial gene sequences and considering the Vietoris-Rips complex with respect to some
distance measuring genetic dissimilarity. These assumptions are applied in [41] to
characterize and study antibiotic resistance. Another gene sequence application is
in the scope of pattern recognition. TDA is applied to finding patterns within gene
expressions [31] with no periodicity assumption, unlike, for instance, in the case of
those retrieved by the Fourier transform.

A third case of relevant interest is the study of proteins. Protein data are particu-
larly suited for geometrical representations, that is graphs or point clouds embedded
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in some metric space. Most persistent loops are found to appear in correspondence
of active protein sites [56]. For instance, DNA can be modeled by weighted graph
structures where vertexes are atoms, edges are bonds and weights represent biolog-
ical properties. In [74], the attitude of persistence of capturing mesoscale features
is used to reveal local functional properties, where local is not a priori determined
but retrieved. Weights are locally associated to persistence features within the gen-
eralized framework of weighted persistent homology. Moreover, in [45], protein
compressibiity is related to the protein geometric structure. The simplicial model
involved is that of α-shapes. A correlation between the topological measure and the
experimentally-determined compressibility of most proteins is found.

HodgeRank

In [68], the Hodge decomposition has been successfully applied in the setting of
statistical ranking. Themain problem discussed in [68] is that of determining a global
ranking from a dataset comprising a number of alternatives ranked by a number of
voters. This is a relevant problem which sprung form several fields and it is of
paramount relevance for, e.g., online global platform as Netflix, Amazon, Google,
Ebay, etc.

Besides deducing a global ranking from the data, whenever possible, the authors
also showed a way to analyze the obstructions not permitting a statistically meaning-
ful global ranking. Their methods, collectively called HodgeRank, analyze pairwise
rankings represented as edge flows on a graph using combinatorial Hodge theory also
to provide a mean to determine a global ranking that also comes with a certificate of
reliability for its validity.Alternatives areV = {1, . . . ,m} and voters� = {1, . . . , n}
For each voter α ∈ � ranking matrix

Y α ∈ R
n×n, Y α

i j = −Y α
j i

Weight function w : � × V × V → [0,∞)

wα
i j =

{
1 if α compared (i, j)
0 otherwise

are provided. Let � be the clique complex whose one skeleton is the graph G :=
(V, E)with vertices the alternatives and adjacencymatrix (wi, j ) i.e. edge are between
compared alternatives. Hodge theory then provides an orthogonal decomposition of
the assigned pairwise comparison flow into three components: a gradient flow that
is globally acyclic, a harmonic flow that is locally acyclic but globally cyclic, and a
curl flow that is locally cyclic. Namely

Y = Y (g) + Y (h) + Y (c)

from
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C1(�;R) =
ker(DT

2 )
︷ ︸︸ ︷
im(DT

1 ) ⊕ ker(L1) ⊕ im(D2)︸ ︷︷ ︸
ker(D1)

.

Usually, in this two dimensional case the components of the decomposition have
traditional name caming for physics, that is: the elements of im(DT

1 ) are the gradient
flows; the elements of ker(L1) are the harmonic flows; the elements of im(D2) are the
curl flows. The gradient flows component induces a global ranking of the alternatives
and this can be computed via a linear least squares problem. Furthermore, the l − 2-
norm of the least squares residual, provides a measure of the validity of the global
ranking induced by the gradient flow component. If the residual is small, then the
gradient flow accounts for most of the variation in the given data and, therefore, the
global ranking obtained from it is expected to be a majority consensus. Viceversa, if
the residual is large, then the data manifest cyclic inconsistencies and no reasonable
global ranking is expected to exist. The curl flow and harmonic flow components
of an edge flow quantify respectively the local and global cyclic inconsistencies.
Inconsistencies of a local nature will cause a dominant curl flow component, while a
dominant harmonic flow component reflects a global nature of the inconsistencies. If
in addition the harmonic flow component is small, then most of the inconsistencies
happen locally and this could be read as the global ranking is sound on a coarse scale
(infra-cluster ranking) but not on a finer scale (intra-cluster ranking).

Communication networks

In [3] the authors used the Hodge decomposition to analyze signals residing over
a simplicial complex. Although they focused on signals defined over the edges of
a complex of order two, i.e. including triangles, their findings and tools can be
directly translated to analyze signals defined over higher order structures. What
would be missing in the higher order cases would be concepts as solenoidal or
irrotational behaviors. A signal over over a simplicial complex � is a family of
functions sk : �k → R, with k = 0, . . . , dim�. By using the decomposition (4) and
(5) in Theorem 3.2 one can orthogonally decompose sk as

sk = DT
k s

k−1 + skH + Dk+1s
k+1

where Lk(skH ) = 0 i.e. it is an harmonic. Taking advantage of this representation
the authors were able to prove that the Lovàsz extension of the triple-wise coupling
function gives rise to a measure of the curl of edge signals along triangles. They
also proposed a method to infer the structure of a second order simplicial com-
plex from flow data and we showed that in applications over real wireless traffic
data, the proposed approach can significantly outperform methods based only on
graph representations. Furthermore, they analyze discrete vector fields and showed
an application to the recovery of the RNA velocity field to predict the evolution of
living cells. In such a case, using the eigenvectors of the first combinatorial Laplacian
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have been able to highlight irrational and solenoidal behaviors that would have been
difficult to highlight using only the eigenvectors of the zeroth one.

TDA applied to other fields

The number fields where TDA has found or is gaining success is experimenting an
impressive grow.

In particular, thanks to the translation into vector representations and the statisti-
cally significant improvements in representing persistent homology (Sect. 3.4.2.1),
the last fewyears have seen theflourishingof the interplay betweenTDAandMachine
Learning. To this scope, the survey [51] on TDA and deep learning provides an
interesting discussion on contributions of TDA in Machine learning as well as the
converse.

Finally, we close this section by providing a not exhaustive list of applications
which can possibly be of interest to field experts. The list entails: physics [34, 57, 58,
86], medicine [7, 63, 67, 80], chemistry [64], image analysis [18], shape study [60],
object recognition [66], fractal geometry [71], quantum computing [69], machine
monitoring [55], automated productivity [50], data analysis in biomechanics [91],
and material science [79].
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