
Chapter 17
Higher-Order Description of Brain
Function

Paul Expert and Giovanni Petri

Abstract Higher-order interactions have long figured both at the microscopic and
macroscopic level in neuronal and whole-brain descriptions, with the aim to cap-
ture structural, functional, and ultimately cognitive aspects. They are systematizing
the paradigm shift that graph theory introduced by moving from studying neural and
brain activation to co-activation patterns. Recently, topology has emerged as a central
tool in this context due to its natural capacity to describe relations beyond pairwise
interactions, and to recent advances in its computational applications. In this chapter,
we summarize fundamental concepts and results of the application of higher-order
descriptions to neuroscience. We start from the microscopic scale, describing how
higher-order interactions have been introduced and measured in the context of neu-
ronal populations activation patterns and in neural coding theory. We then move
to the macroscopic scale, discussing recent applications of topological data anal-
ysis to whole-brain data, and finally highlight the challenges related to extracting
higher-order signals from low-order ones.

The role of higher-order interactions in neuroscience has been been actively debated
at bothmicroscopic andmacroscopic levels over the last decade. In both cases, there is
evidence that higher-order terms are present, yet at the same time in many instances
it is still unclear to what degree such interactions dominate, or are dominated by,
pairwise interactions. To further complicate the matter, a certain confusion is present
on what exactly is meant by higher-order interactions or effects, since they might
be encoded as many-body coefficients in spin models of neuron firing, as hyper-
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graphical structures for population coding, or even homological properties of the
functional spaces of whole-brain activations. The landscape of higher-order effects
in neuroscience includes contributions in which higher-order interactions can feature
as a fundamental dynamical unit, as a methodological tool, and, at times, as both. In
this chapter, we discuss these different aspects moving from the microscopic to the
macroscopic scale, while explicitly highlighting the role that higher-order interac-
tions take in the different cases.

Specifically, we describe how higher-order interactions have been introduced and
measured in the context of neuronal populations and in coding theory. We then
discuss recent applications of topological data analysis to whole-brain data, and
finally highlight the challenges related to promoting signals from low-order to higher-
order interactions.

17.1 Higher-Order Interactions and Descriptions
at the Neuronal Scale

Neuronal activation is the atomic unit of brain activity, and the firing patterns of
groups of neurons underpin human society. These patterns are not unique and do
reoccur, showing that neurons communicate and generate spatio-temporal correla-
tions in their firing activity. Interestingly, even cortical slices in a Petri dish display
non-trivial spatio-temporal correlation patterns [5] and can be used to show the del-
icate neurochemical balance underpinning neural activation [59]. Measuring neural
activity is by definition difficult. The size and density of neurons makes it impossible
to measure the activation of a single neuron, and electrodes array typically measure
the firing activity of a group of neurons. Measurements taken from live subjects
are invasive as they require implanting electrodes. Most experimental data therefore
comes from animal studies, with the exception of measurement obtained from sub-
jects suffering from certain forms of epilepsy or neurodegenerative disorders. Com-
putational models are commonly used to generate data, but are—of course—short
of the real thing. Despite these limitations on data size—i.e. number of electrodes,
length of clean times series or the artificiality of data—, important work has emerged
in the study of the role of higher-order interactions in neural coding.

Neuronal activity can be encoded as a two states variable, inactive and firing. A
paradigmatic model to study binary variables interactions is the Ising spin model that
can easily be extended to include any order of interactions, i.e. pairwise, threeway,
and higher-order analogues. The probability of a given neuronal configuration for a
population of N neurons (σ1, . . . , σN ) is given by the maximal entropy distribution,
also known as the Gibbs distribution:

p(σ1, . . . , σN ) ∝ exp

⎛
⎝∑

i

αiσi +
∑
i< j

βi jσiσ j +
∑
i< j<k

γi jkσiσ jσk + · · ·
⎞
⎠ ,

(17.1)
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where the coupling parameters αi , βi j , γi jk are to be estimated from experimental
data. In practice, the estimation of the coupling parameters and its reliability limits
the order that can be considered [54], and early results found that considering pair-
wise interactions was in some setups sufficient to capture most of the firing patterns
structure [58].

However, investigations of larger neuron ensembles (of the order of 100), showed
that higher-order interactions can easily encode responses to stimuli [19, 70] and—
additionally—that the structure of the interactions is hierarchical and modular, sug-
gesting scalability [19]. Further work has shown that including higher-order terms
to encode firing pattern elicited in response to stimuli improves the goodness of fit
when introducing a state-space for patterns [7, 60]. Simultaneous silence, i.e. patterns
of inactivity, are also characterisation of higher-order interactions and highlight the
role of inhibitory neurons in creating spatio-temporal interaction patterns [61].More-
over, the higher-ordermodels reveal activity patterns closely related to the underlying
structure of cortical columns [31], indicating a relationship between structure and
function.

While useful to capture the statistics of neuron firing patterns in response to
stimuli, these models suffer from several limitations. Their scalability is a problem,
as obtaining good and reliable estimates of the model parameters requires long time-
series, even for small systems [54]. They also remain “fitting” models, that make
assumptions about the process generating the data that, albeit intuitively reasonable,
are nevertheless without theoretical or empirical foundation. The last limitation is
built in the model class, they inherently lack a temporal dimension and dynamics
that is central to spatio-temporal neural coding.

To continue the study of higher-order driven neural activation patterns while alle-
viating some of the model-based limitations, we turn to model free, data-based meth-
ods from topological data analysis, and focus particularly on place cells [41]. Place
and grid cells have complementary roles in encoding and memorising spatial infor-
mation in the hyppocampus and the enthorinal cortex [24, 41]. They also display
reliable and long lasting transient patterns [28], making them ideal candidates for
detecting structure in neural activation patterns and understand the function of neural
circuits. Although we argue for common neural mechanism across species [4, 30],
the experimental data in the works we discuss come from rodents.

Remarkably, the firing patterns of hyppocampal place cells are shown to encode
the topology of an animal’s environment rather than its exact geometry, as well as
its position within its environment [12–14]. Place cells’ activations therefore reflect
the environment an animal is moving in. The question of how the brain activates
the appropriate “environmental” map is currently unknown, but research has shed
light on possible mechanisms that allow maps to be consistent and robust over time
[1]. Co-activation complexes are constructed by building simplices from coactive
place cells. Over time and exploration of the environment, the coactivation sim-
plices progressively become a better topological representation of the physical space
(Fig. 17.1). It is not clear that this mechanism is enough to ensure the maps are
committed to memory once the animal is removed from the test environment and
can be reused in the future or in mental exploration, i.e. memory trip. A potential
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Fig. 17.1 Coactivation complexes can explain sustained and robust representation of spaces.
a A simulated place cell field map M(ε) of a small planar environment ε with a hole in the center is
shown together with temporal snapshots of the temporal dynamics of the coactivity complex, which
evolved from a small and fragmented one, early during the exploration, to a stable representation of
the underlying environment later on. b The timelines, encoded as persistent barcodes, of topolog-
ical persistent H0 and H1 cycles for the coactivity simplicial complexes: 0-dimensional persistent
generators are shown in light-blue lines, 1-dimensional ones in light-green. Most 1-dimensional
cycles correspond to noise, while the persistent topological loops (red dots) encode true physical
features of the environment. The time to eliminate the spurious cycles is a proxy for the estimation
of the minimal time needed to learn the path connectivity of ε. c Since simplices can also disappear
due to noise and unstable neuronal firing, the coactivity complex can flicker, resulting in d the time-
lines of the topological cycles to be interrupted by opening and closing topological gaps. Figures
reproduced from Ref. [1]

such mechanism is proposed in a computational study [2] in the form of replays,
where the cells regularly and autonomously reproduce firing sequences correspond-
ing to specific maps, reinforcing existing patterns in a Hebbian learning way. One
might conjecture that replays happen during sleep as part of a memory consolidation
process [49].

Furthermore, [22] studied how the correlations of spike trains can be used to
detect intrinsic structures in place cell activity, without recurring to external stim-
uli, and how they relate to the topology and geometry of the animal’s space. Each
correlation matrix was then transformed into an order complex, a filtration of simpli-
cial complexes, obtained by adding a each filtration step a new edge corresponding
to the next highest non-diagonal correlation matrix value. The clique complex cor-
responding to that filtration was then built. They found that the Betti curves that
encode the homological properties of the cell activation patterns measured from the
animal free-roaming have consistently lower values than from reshuffled version of
the correlation matrices. These observations suggested that the correlation structure
of hippocampal neurons intrinsically represent the low dimension of the ambient
space.

While the geometry of place cells is constrained by the nature of the informa-
tion they encode, [50] investigated the topology of excitation networks built from
simulated activity on reconstructed generic corticalmicro-circuitry. The homological
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structure of such networkswas strikingly complex, showing a surprisingly large num-
ber of high-dimensional cliques and a wide variety of high-dimensional homological
holes. Further simulations on synthetic and nullmodels found different organisations,
suggesting that the topological properties of the activation patterns are not purely
driven by the neuron interaction topology, but also by their particular function.

Due to the difficulty of obtaining precisemeasurement of physical connections for
large collection of neurons, topologically based higher-order methods are currently
limited to decoding the activity or neuron rather than their structure. At the single
neuron level, there is however a correlation between a neuron’s topology and its
function [29], opening to door to investigating the topological properties of groups
of neurons and their function.

So far we have only discussed the role of neural activity at the very small scale,
focusing on small neuronal ensembles or very specific functions, e.g. spatial rep-
resentation. However, one of the great challenge of neuroscience is to understand
how behaviour emerges from neural activity, to bridge the scales at which brain
activity can be measured [66]. A unified model of brain function remains elusive,
despite progresses being made, such as models relating interneuron dysfunction to
schizophrenia [65], which has found some experimental confirmation [8, 42], or gene
co-expression maps being correlated with fMRI brain activity and neurotransmitter
pathways [43, 51].One is often focused on the difference between themicro scale, i.e.
neuronal activity, and macro scale dynamics, i.e. brain activity measured with neu-
roimaging techniques such as fMRI, EEG, or MEG. There are however similarities,
such as the spatio-temporal statistics of neuron [5] and voxels [64] activity. More-
over, the aim at both scales is to link spatio-temporal activity patterns to behaviour.
The same set methods can therefore be applied in both cases as they are agnostic to
the source of the data, and they can be used to bridge across scales.

For example, binarized fMRI signal [64] can also be used as an input for the
extended Ising spinmodel. The structure of the energy landscape defined by the spin-
voxels configuration (Eq. (17.1)) reveals transition dynamics between tasks [17, 68,
69]. However, the models fitted in these studies do not include higher-order terms,
as the length of fMRI time series is typically too short for a reliable estimation of
the model parameters. Methods relying on signal correlation analysis and topolog-
ical data analysis are less sensitive to this limitation and have seen their popularity
increase for the analysis of macroscopic brain function [16]. We discuss a selection
of relevant results in the next section.

17.2 Higher-Order Topology in Whole-Brain Descriptions

At the whole-brain level [15], the question of the importance of higher-order inter-
actions is faced with contrasting evidence. For example, it has been suggested that
weak higher-order interactions exist in large-scale functional networks, but are dom-
inated by the pairwise interactions, which would therefore be the main shapers of
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brain function [25]. From this perspective, the higher-order terms could be neglected
and functional connectivity descriptions based purely on network properties would
be enough to fully characterize brain function.

On the other hand, however, higher-order observables were identified as important
in multiple studies, e.g. test-retest analysis [72], aberrant connectivity in mental dis-
orders [48] and mild cognitive impairment [71], as well as model inference for EEG
signals [32]. Further evidence in this direction has recently come from the study of
the shape of the functional spaces described by whole-brain structural and functional
data, using tools borrowed from topological data analysis [16, 21]. In structural net-
works, typically obtained from DTI measurements, persistent homology was used to
distinguish healthy and pathological states in developmental [34, 37, 57] and neu-
rodegenerative diseases [35]. For example, considering white matter fibers between
brain regions as a weighted network, it was possible to detect loops and cavities
between regions that were coherent with biologically-inspired principles of parsi-
monious wiring (Fig. 17.2a) [62]. Such cavities act as obstructions for information
flows and were surrounded by large cliques, which could be interpreted as local
dense units able to perform rapid processing. The cavities were reproducible across
subjects and connected regions belonging to different phases of brain evolutionary
history (Fig. 17.2b).

At the functional level, topological differences were found in healthy and patho-
logical subjects [34, 36]. Higher-dimensional topological features in these cases
corresponded to the homological structure of the correlation spaces extracted from
functional connectivity analysis, e.g. spaces with Pearson correlation metric. They
were useful to discriminate between brain functional configurations in neuropsychi-
atric disorders and altered states of consciousness relative to controls [11], and to
characterize intrinsic geometric structures in neural correlations [22, 55]. One of the
more known examples of this type of analysis compared the topology of the func-
tional connectivity of subjects under the effect of psilocybin, a psychedelic drug,
with their own under placebo [44], finding that the topological structure was very
different between the two conditions, and that the difference could be quantified
at the level of persistence diagrams (Fig. 17.2c). To improve the interpretability of
the H1 topological summaries extracted from the data, homological scaffolds were
produced to map the topological information back to the brain regions. Such scaf-
folds can be understood as topological backbones, built from approximated minimal
homological generators (Fig. 17.2d), and showed that altered states of consciousness
induced by psilocybin (and likely, other psychedelics) arise from different patterns
of information integration and importance across brain regions [38] with respect to
the normal state (Fig. 17.2e).

Other examples of the application of homology can be found in the literature.
Lee et al. [34] have proposed methods to discriminate between cohorts of children
with attention deficit hyperactivity disorder, autism spectrum disorder and pediatric
control subjects on the basis of their functional topology. In following works [33],
the topological substructure of brain networks was represented through the eigenvec-
tors of the corresponding Hodge Laplacians and used it to discriminate between mild
and progressive cognitive impairments, andAlzheimer’s disease, used to describe the
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Fig. 17.2 Structural and functional brain topology. a Distribution of maximal cliques in the
average DSI (black) and individual minimally wired (gray) networks, thresholded at an edge density
ofρ = 0.25.Heatmaps of node participation shown on the brain surfaces for a range of clique degrees
equal to 4–6 (left), 8–10 (middle), and 12–16 (right). bMinimal cycles representing each persistent
cavity at the density at birth represented in the brain (top) and as a schematic (bottom) (adapted
from [62]). cComparison of persistence p and birth b distributions. Left, H1 generators’ persistence
distributions for the placebo group and psilocybin group. Right, distributions of homology cycles’
births. d Statistical features of group level homological scaffolds. Left, probability distributions for
the edgeweights in the persistence homological scaffolds (main plot) and the frequency homological
scaffolds (inset). Right, scatter plot of the scaffold edge frequency versus total persistence for
both placebo and psilocybin scaffolds. e Simplified visualization of the persistence homological
scaffolds for subjects injected with placebo (left) and with psilocybin (right). Colours represent
communities obtained bymodularity optimization on the placebo scaffold and display the departure
of the psilocybin connectivity structure from the placebo baseline. Figures adapted from Ref. [44]

heritability of differences inwhole-brain functional topology in a cohort of twins [10],
and related to topological functional structure of EEG data during imagery to func-
tional equivalence in a population of skilled versus unskilled imagers [26, 27].

17.3 Beyond Functional Connectivity

The analysis methods presented so far mostly focus on notions of functional con-
nectivity, the prototypical example being the canonical Pearson correlation matrices.
Using topological description, it is however possible to investigate different features
of the spaces in which brain activity can be represented. An interesting example
is a topological simplification analysis [56] which focuses on extracting new net-
work representations from temporally resolved fMRI signals. This approach starts
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by considering each instantaneous BOLD signal measurement as a point in a high-
dimensional space. This space of activation is then filtered using a PCA-based func-
tion, which is then used to create a binning of the time points in overlapping bins.
Inside each bin, points are then grouped using standard clustering algorithms. The
resulting clusters constitute the node set of a new graph, typically called shape graph
or Mapper graph [43]. Since the binning allows for overlap across bins, it is possible
for the same time point to belong to multiple clusters in different bins.Whenever two
clusters share a time point in this way, an edge is added linking the Mapper graph
nodes corresponding to the two clusters. In such way, it is possible to build a Mapper
graph for each subject, which captures the topology of a simplified representation of
the landscape of an individual’s activation space (Fig. 17.3a). Interestingly, Saggar
and collaborators [56] found that the properties of the individualMapper graphs were
predictive of changes in performance over amultiple tasks:Mapper graphs with large
modularity were linked to higher accuracy and smaller response times (Fig. 17.3b).
This suggests that a brain activation space that has more diverse and specialised rep-
resentations of tasks guarantees better multitasking performances [45], as opposed to
representations shared across multiple tasks, which instead have been linked to gen-
eralization. Moreover, it also suggests that changes in function can be both localized,
i.e. specific altered states that induce functional change, and global, i.e. they affect
the whole dynamical landscape of brain function rather than only specific configu-
rations. Results supporting this picture were also obtained using related embedding
techniques, e.g. low-dimensional projections based on topological distances [6] or
persistent homological features obtained from spatial activation patterns [52].

17.4 Higher-Order Signals and Reconstruction

An open and interesting question regarding higher-order interactions in neuroscience
is how to measure and—in some cases—even define them. In the case of co-firing
neurons, it is natural to identify their firing patterns as a higher-order interaction,
as it is done for example in the co-activation simplicial complexes of [3]. In such
cases, the interactions also have a natural downward closure—groups of 4 co-firing
neurons, also co-fire in groups of 3 and in pairs—, making simplices and simplicial
complexes natural descriptions for the system. Moreover, it is also straight-forward
and natural to define binary activation signals for these higher-order interactions by
considering when they are and are not present.

On the other side, when dealing with large-scale brain dynamics, signals for
higher-order interactions are almost never directly available. In general, neuroimag-
ing signals recorded from regions of interest, i.e. 0-th order signals, are encoded as
metric spaces [11, 44] or weighted clique simplicial complexes [46], using their cor-
relation properties. Filtrations of simplicial complexes are then extracted from these
representations to compute persistent homological features [47]. While this allows
to capture information that is not available from a network representation perspec-
tive, the dynamics of higher-order interactions strongly depends on the structure of
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Fig. 17.3 Mesoscale properties of graph representations of brain activation predict individual
task performances. Panel a shows the Mapper graphs obtained for two subjects [56] (labeled S14
and S07). The pie charts on the nodes show the fraction of timepoints corresponding to each task in
the graph node. TheMapper graph for S14 has a lowmodularity score [40], while that of S07 shows
a high degree of modularity structure, in particular showing nodes that are most often connected
between to other nodes of same task type. Panel b reports the correlations found between the graphs’
modularity scores (Qmod) and task performances. Adapted from [56]

pairwise interactions. Although this type of analyses has encountered large success
already [16], it would be very valuable to be able to measure or—at least—construct
higher-order signals from low-order ones in a principled and controlled way.

A first possibility in this direction is to explicitly leverage low-order signals to
define higher-order ones. An example is the edge-level signals and the corresponding
edge-centric connectivity introduced by Faskowitz et al. [18]. In standard functional
connectivity studies, after z-scoring each time series, the correlation ri j between
regions (nodes) i and j is computed as

ri j = 1

T − 1

∑
t

[
zi (t) · z j (t)

]
(17.2)

where zi, j are the z-scored timeseries. The correlation coefficient ri j is by definition
time independent, however, if one discards the sum over t and the normalization,
then it is possible to consider its time evolution
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Fig. 17.4 Construction of higher-order timeseries from low-order ones. a the construction in
the case of edge-centric connectivity. Adapted from Faskowitz et al. [18]. b Results for redundancy
and synergy based on O-information for age groups: I1 30 subjects, ages 10–20; I2 46 subjects, ages
20–40; I3 29 subjects, ages 40–60; I4 59 subjects, ages 60–80. Adapted from Gatica and Cofré [20]

ci j (t) = zi (t) · z j (t) (17.3)

as the timeseries describing the coherent fluctations of the functional edge i j and
therefore as a genuine higher-order signal. In [18] the authors used this construc-
tion to define an edge-based functional connectivity eFCi j,uv among pairs of edges
(Fig. 17.4a):

eFCi j,uv =
∑

t ci j (t) · cuv(t)√∑
t ci j (t)

2
√∑

t cuv(t)2
(17.4)

and then studied it using conventional network-based observables. The construction
could be generalized to arbitrary orders, which could provide a way to construct
weighted and temporally-resolved higher-order representations of brain neuroimag-
ing data. Note that, however, there is no concept of what type of information we are
encoding, e.g. whether the co-fluctuations of a set of regions are due to the effect of
yet another region, absent which they would be conditionally independent.

A second recent approach to the inference of higher-order interactions offers
a possible solution to this problem by adopting an information-theoretic point of



17 Higher-Order Description of Brain Function 411

view. O-information [53] is a (real-valued) observable that discriminates between
redundant and synergistic components of the information in systems composed by
multiple variables. Redundant information here means information that is present in
the low-order marginals, e.g. at the node level, while synergistic refers to information
that is absent at low orders and is only present at the group level. Formally, for a
system composed by n discrete variables, Xn = (X1, . . . , Xn), the O-information
�(Xn) is defined as:

�(Xn) = TC(Xn) − DTC(Xn) = (n − 2)H(Xn) +
n∑
j=1

[
H(X j ) − H(Xn

− j )
]

(17.5)
where TC and DTC are respectively the total correlation [67] and dual total correla-
tion [63], and Xn

− j is the vector X
n with the j th variable omitted. A positive value

of �(Xn) implies that the interdependence are mostly dominated by redundancy,
while a negative value implies that synergistic effects are dominant. A further advan-
tage of this quantity over previous multivariate measures of dependency is that it
does not require a division between predictors and target variables, but rather pro-
vides a genuine measure of group synergy. As a proof of principle, O-information
was used to quantify the changes in relevance of interactions of different orders in
groups with different ages [20]. In particular, they found significant increases in
redundancy in older participants for all interaction orders, and also that synergy and
redundancy display different functional forms across all age groups and interaction
orders (Fig. 17.4b).

Although promising, these two approaches still face challenges to be widely
adopted in conjunction with the existing topological and network tools. For exam-
ple, when generalizing edge-connectivity to higher-order interactions, the sign of the
co-fluctuations, being the result of the multiplication of more than two terms can be
misleading and could result in misinterpretations if not properly accounted for. On
the other hand, information-theoretic observables typically require a discretization
of the signals in states which is non-trivial already in simpler applications, e.g. multi-
variate mutual information [39]. Finally, in both cases, while it is possible to compute
the strength of interactions at all orders, it is unclear how values for interactions at
different orders could be compared directly, making the definition of a valid filtration
on a weighted simplicial complex non-trivial.

17.5 Outlook for the Future

There is little doubt in our opinion that higher-order interactions play a central role
in the brain dynamical organisation and in cognition. They might be weak and dif-
ficult to quantify in general at the moment, but in the context of complex systems,
weak does not imply negligible [9, 23, 66]. They are likely to play a central role
in multitasking [45], focus [27] and neural coding [12, 22] among other things.
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They have also been shown to improve model fitting [54, 68], prediction [3, 13]
and separation [56]. Hence, higher-order interactions and related analysis methods
might be good candidate for biomarkers. It is however difficult at the moment to
know whether they are simply good tools and representation of signals for analysis,
or have a deeper, more fundamental role in brain theory. Information-based signal
analysis [53] might be a good candidate for a first investigation of the precise role
of higher-order interactions and structure in brain organisation. However, as future
steps, we envision the inclusion of such interactions in testable theoretical brain
models so that theory and experiments feed on each other.
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