
Chapter 15
Collective Games on Hypergraphs
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Yamir Moreno, Matjaž Perc, and Vito Latora

Abstract Human activities often require simultaneous decision-making of individu-
als in groups. These processes cannot be coherently addressed bymeans of networks,
as networks only allow for pairwise interactions. Here, we propose a general imple-
mentation for collective games in which higher-order interactions are encoded on
hypergraphs. We employ it for the study of the public goods game by first validating
the analytical expression of the replicator dynamics in uniform and heterogeneous
populations, and then by introducing a procedure for retrieving empirical synergistic
effects of group interactions from real datasets.
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15.1 Introduction

Cooperation has been detected to be a key element in the explanation of the evolu-
tionary success of our species [1, 2]. The problem of understanding the emergence
of cooperation lies at the boundary of a plethora of scientific disciplines [3–9]. Pre-
vious works have been able to explain how cooperation in a population is sustained
by the structure of the social network encoding the interactions amongst individuals
[10, 11]. Evolutionary game theory is the branch of applied mathematics providing
a theoretical framework to address these questions, enabling quantitative statements
about the conditions that give rise to stable cooperation [12–14]. In this context, a
social dilemma is a scenario in which defection results in a higher payoff for indi-
viduals while cooperation entails a higher payoff for the collective of players [15].
The challenge presented by social dilemmas is solved by network reciprocity [16], a
property by which groups of nodes are strongly connected between them and weakly
connected to nodes outside the group, and thus protected from defector invasion.
This feature may be observed in structures of different nature, such as networks with
a heterogeneous degree distribution [17–19], networks with community structures
[20, 21], and even in multilayered systems [22–29].

These advances in evolutionary game theory have been restricted to the realm of
two-player games, as standard networks are not suitable for encoding group inter-
actions. In order to bypass this limitation, it was proposed to infer higher-order
interactions from the dyadic structure, by assuming that every node would act as a
vehicle for a group-game involving all of his neighbours [30, 31]. However, such
approach is structurally ambiguous, and thus incompatible with the well known
mechanisms favouring cooperation [32–39]. To overcome the constraints of tradi-
tional graphs, higher-order interactions have been suggested as the natural way to
encode non-diadic relationships [40, 41]. In particular, it has recently been shown
that hypergraphs are a natural solution to formalise n-player games [42]. In the fol-
lowing we elaborate on this idea by explaining how to implement n-player games on
hypergraphs and applying this to the study of the public goods game (PGG) [43, 44]
for uniform and heterogeneous structures.

The PGG is an n-player game of two strategies where at each round of the game
participants are requested to contribute to a common pool with a token of value c.
We shall call cooperators C those players who do contribute and defectors D those
that do not contribute. The collected amount is multiplied by the synergy factor R
and the outcome is equally split between all the participants [8]. It is standard to
assign a fixed value of c = 1 to the token, and to describe the payoffs in terms of the
reduced synergy factor r = R/g where g is the number of players. In a round with
wC cooperators the payoff for the defectors is πD = rwC , while the payoff of the
cooperators is given by πC = rwC − 1.
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15.2 Collective Games on Higher-Order Networks

The goal of evolutionary dynamics is to predict the number of cooperators and defec-
tors in a population undergoing a continuous iteration of the game combined with the
adaptation of strategies. A game implementation is a set of rules that determines how
this process occurs. In the hypergraph implementation (HI) each round of the PGG is
hosted by a hyperlink l ∈ L of the hypergraph H(N ,L) representing the system. The
evolutionary process is a concatenation of micro-steps: At each micro-step a hyper-
link l ∈ L and one of its nodes n ∈ l are randomly selected. All the nodes present
in the hyperlink play a round of the game for each hyperlink they are part of and
accumulate their payoffs. The payoffs are then normalised and compared to select
the node with the highest payoff per game ratio. Only then node n copies the winning
strategy with a probability proportional to the payoff difference 1

Δ
[(maxl π j ) − πi ].

Here Δ is the normalisation factor that accounts for the maximal payoff difference
between two nodes. For a system with |N | = N nodes, N micro-steps add up to a
step, in which every node has the opportunity to change its strategy at least once.
In Fig. 15.1 we graphically explain HI, and we compare it with the original network
implementation [30] or graph implementation (GI).

In the next subsections we analyse in depth the hypergraph implementation on
different families of hypergraphs. Thorough this chapter we adopt the fixed cost per
game perspective, where players contribute with a token to every round they play.
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Fig. 15.1 Collective games on Hypergraphs. We graphically argument that the hypergraph imple-
mentation provides a reliable alternative to the ambiguous graph implementation for collective
games. The hypergraph on the left H accounts for the real higher-order connections represented
by hyperlinks hi . The network with links li is inferred by linking all the nodes that are part of a
common hyperlink in the original structure. The hypergraph on the right H̄ with hyperlinks h̄i is
obtained as a product of the graph implementation, which imposes a group interaction between a
node and its first neighbours. The difference between the real groups hi and the ones imposed by
the graph implementation h̄i shows the inconsistency of the dyadic approach. Adapter from Ref.
[42]
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15.2.1 Uniform Hypergraphs

Uniform Hypergraphs are a subset of all the possible hypergraphs in which all the
hyperlinks have the same cardinality. This means in our context that all the rounds
of the PGG will have the same number of players g. The system may be described
by using the replicators approximation, in which the relevant properties of the evolu-
tionary dynamics are captured by the fraction of population selecting each strategy.
We use xC and xD for the fraction of cooperators and defectors respectively. We first
compute the average payoffs for cooperators πC and defectors πD for a generic order
g by counting all the possible configurations of strategies

πD =
g−1∑

i=0

(
g − 1
i

)
xg−1−i
D xiC ir

πC =
g−1∑

i=0

(
g − 1
i

)
xg−1−i
D xiC((i + 1)r − 1)

and obtain the average payoff difference as πD − πC = 1 − r . We also compute Δ,
the maximal payoff difference

Δ =
{
r(g − 2) + 1 if r < 1
gr − 1 if r > 1

The time evolution equation can be derived by counting all the possible combi-
nations leading to a strategy change: for every group in which at least two strategies
are present one has to consider the probabilities that a cooperator defector pair is
involved in a potential strategy change combined with the probability of the strategy
change actually occurring given the payoff difference. Although the equation for
cooperators is not presented here, its formulation is analogue to that of defectors.

ẋD =
g−2∑

i=0

(
g

1 + i

)
xg−1−i
D x1+i

C

(g − 1 − i)(1 + i)

g(g − 1)
Q

[
θ(πC − πD) + θ(πD − πC)

]

= QxDxC

where Q is the normalized payoff difference, Q ≡ (πD − πC)/Δ. From this equation
we observe that the dynamics has two absorbing states xD = 0, xC = 1 and xD =
1, xC = 0 and a phase transition at r = 1. Therefore one should expect cooperators
emerging in uniform hypergraphs only if R > g holds.

We test the replicators prediction on synthetically designed uniform random
hypergraphs (URH). For a fixed order g, these hypergraphs are composed of L inde-
pendent hyperlinks created by randomly selecting L g-tuples of different nodes. We
run T = 104 steps of the game in a system with N = 1000 nodes for g = 2, 3, 4, 5.
The number of hyperlinks L is tuned to exceed the critical threshold guaranteeing a
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Fig. 15.2 Uniform Hypergraphs. Relaxation time as a function of the reduced synergy factor
on uniform random hypergraphs with N = 1000 nodes and L = 5Lc hyperlinks for groups of
different sizes g. The triangles report the numerical simulations and the continuous line accounts
for the replicators prediction. Adapted from Ref. [42]

connected hypergraph Lc, L = 5Lc, with Lc = N
g ln N . The plot in Fig. 15.2 reports

the relaxation time for an initial population in which cooperators and defectors are
evenly distributed. A good agreement between the theory and the numerical simula-
tions is observed.

The replicators equation is derived by assuming that all nodes are indistinguish-
able and potentially connected to each other, and therefore an increasingly alike
behaviour to that of the replicator is expected when density is increased in URHs.
However, real-world scenarios seldom provide these conditions, as structures emerg-
ing from optimisation processes tend to display strong heterogeneities and low den-
sities. Hence, further analysis of the limits of the replicators approximation is needed
to understand its applicability range.

Let us start by introducing the hyperdegree of a node as an additional degree of
freedom in ourmodel.We have p(k) for the probability of a node having hyperdegree
k, and p(D|k) or p(C |k) for the probabilities that a node with hyperdegree k is either
a defector or a cooperator. We can recover the fraction of defectors and cooperators
by adding the contributions from all the possible hyperdegrees K.

xD =
∑

k∈K
p(k)p(D|k)

xC =
∑

k∈K
p(k)p(C |k) (15.1)

From the rest of this sectionwewill use pDk and pCk to lighten the notation. Following
the procedure explained in Eq. (15.1) one may derive the time evolution of the
hyperdegree restricted variables by adding all the possible channels that lead to
a strategy change. In essence, the population of defectors with degree k can only
increase if a cooperator of degree k changes its strategy, or if a defector of degree k
becomes a cooperator. Mathematically this can be expressed as
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ẋDk = −xDk

∑

k ′∈K
p(k ′|k)p(C |k ′)

∑

k ′′∈Kg−2

p(k ′′|kk ′)
∑

x∈X g−2

p(x |k ′′) ×

(πCk ′ − πDk)θ(πCk ′ − πDk)

Δ

+xCk

∑

k ′∈K
p(k ′|k)p(D|k ′)

∑

k ′′∈Kg−2

p(k ′′|kk ′)
∑

x∈X g−2

p(x |k ′′) ×

(πDk ′ − πCk)θ(πDk ′ − πCk)

Δ
(15.2)

While different, the terms associated to each of the channels respect the same prin-
ciple: In the first summation we consider all the possibilities of a neighbouring node
being a cooperator with a given degree k ′. In the second summation we account for
the hyperdegrees of the rest of g − 2 nodes in the group, conditioned to the hyper-
degrees of the defector-cooperator pair. In the third summation we include all the
possible strategy selections by these nodes. The last element in the product includes
the normalized average payoff difference between a defector with degree k and a
cooperator with degree k ′. We shall compute these to move forward. We have

πDk =
∑

k ′′∈Kg−1

p(k ′′|k)
∑

x ′′∈X g−1

p(x ′′|k ′′)(nr)

πCk ′ =
∑

k ′′∈Kg−1

p(k ′′|k ′)
∑

x ′′∈X g−1

p(x ′′|k ′′)((n + 1)r − 1)

where n is a function of x ′′ accounting for the number of cooperators. The first term
in each expression, p(k ′′|k) and p(k ′′|k ′) represent the hyperdegree-hyperdegree
correlations, i.e., how likely is that a node with hyperdegree k or k ′ is part of a group
of g − 1 with a given combination of hyperdegrees. We notice that if we make these
probabilities node independent, i.e., p(k ′′|k) = p(k ′′|k ′) = p(k ′′)wecan simplify the
expression for the average payoff difference, and recover the result of the original
replicators approach πDk − πCk ′ = 1 − r . By introducing this result on Eq. (15.2)
one obtains the more simplified

ẋDk = Qθ(r − 1)xDkxC + Qθ(1 − r)xCkxD (15.3)

where Q is the normalized average payoff difference, and the absence of hyperdegree-
hyperdegree correlations is used again. This expression is then combined with Eq.
(15.1) to yield a final formula for the time evolution of cooperators and defectors that
exactly coincides with the one derived above without considering the hyperdegrees.

ẋD = Qθ(r − 1)xDxC + Qθ(1 − r)xC xD = QxDxC

This result establishes a precise boundary between the hypergraphs that are suited
to be described with a replicators approach and those that are not. We point out
that these derivations corroborate the intuition behind the indistinguishability of the
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nodes, as the absence of hyperdegree-hyperdegree correlations implies that not only
the nodes but also their neighbourhoods are equal.

15.2.2 Heterogeneous Hypergraphs

Heterogeneous Hypergraphs are the next step in the path towards the application of
HI to more realistic scenarios. In these, hyperlink orders are not fixed, and therefore
effects arising from the mixture of group sizes are expected. A particularly interest-
ing question is to understand the phenomenology driven by a group-size dependent
synergy factor. We start by providing a description for heterogeneous hypergraphs
in terms of the abundance of hyperlinks of order g. We say that p = {pg}g+

g=g− of
elements pg = kg/k contains the fraction of hyperlinks of order g one node is
part of, where g− and g+ are the minimal and maximal orders respectively, and
g ∈ G = {g−, g− + 1, ..., g+ − 1, g+}. We are interested in describing the dynamics
for synergy factors modelled by non-linear functions of the group size, R(g) = αgβ

with α, β ≥ 0. Given that g takes only discrete values, we find more convenient to
work with r = {r g}g+

g=g− of elements r g = αgβ−1. With β = 1, we would factor out
the dependence of g in the reduced synergy factor, and therefore recover the uniform
case. The average payoff difference can be computed by adding the contribution of
all the group sizes

πD − πC =
∑

g∈G
pg(1 − r g) = 1 − α

∑

g∈G
pggβ−1

We use Q again as Q = (πD − πC)/Δ to represent the normalized payoff difference,
in terms of which Eq. (15.1) is obtained for the dynamics. Therefore, the condition
Q = 0 yields the critical value αc

αc = 1∑
g∈G pggβ−1

We validate our predictions on a series on numerical experiments with synthetic
heterogeneous hypergraphs. We consider hypergraphs whose p is restricted to
pg = ng/4 with ng ∈ {0, 1, 2, 3, 4}∀g ∈ G with g− = 2 and g+ = 5. We construct a
hypergraph with N = 1000 and L = 2Lc for each of the possible values of p fulfill-
ing the aforementioned condition, and collect all of them in an hypergraph ensemble
H with |H| = 35. We then run T = 104 steps of the evolutionary dynamics and
obtain the asymptotic fraction of cooperators as a function of α for β ∈ {0, 1, 2, 3}
for all the hypergraphs inH. The simulations in Fig. 15.3 (from [42]) display a good
agreement between our prediction of the critical point and the empirical transition
between cooperators and defectors.
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Fig. 15.3 Heterogeneous Hypergraphs. Fraction of cooperators xC after T = 104 time steps as a
function of α for each hypergraph in H with N = 1000 nodes. The panels correspond to values of
β = 0, 1, 2, 3 from left to right. The coloured triangles mark the analytical phase transition yield
by the replicators approximation. Adapted from Ref. [42]

15.2.3 Synergy Factor on Real Games

The advances in uniform and heterogeneous hypergraphs pave the way towards the
application of evolutionary dynamics to explain real-life systems. In particular, a
challenging question is to understand how group size influences the performance
of teams of cooperating individuals. In this section we introduce a procedure based
on a series of assumptions to extract the synergy factor from datasets of interacting
individuals and apply it to study the bibliographic dataset of the American Physical
Society (APS).

Our technique is grounded on the hypothesis that the structure of the hypergraph
is the outcome of an optimisation process, in which the players have selected their
connections to maximise their payoff. Therefore, one should expect a one to one
correlation between the hyperdegree distribution p and the group size dependent
synergy factor r g . Based on this idea, we argue that the system has to be constrained
by twoconditions: r has to beproportional top and the systemhas to be at equilibrium,
and thus defectors and cooperators have the same average payoff. The combination
of r g = zpg and

∑
g∈G pg(1 − r g) = 0 yields

r g = pg∑
g∈G(pg)2

(15.4)

In a random graphwith no hyperdegree heterogeneities the average fraction of hyper-
degrees pg = kg/k can be obtained from the total number of hyperlinks at each order
as kg = gLg/N as long as hyperlinks are uniformly distributed. Under these condi-
tions the synergy factor can be extracted as a function of the total number of groups
at each order Lg . We employ this technique to retrieve the synergy factor of 13 differ-
ent APS journals with a total of 577886 papers. Authors and papers are respectively
represented as nodes and hyperlinks of 13 different hypergraphs from where Lg is
measured as the total number of papers produced by a given number of authors.

We have now an algorithm for detecting the synergy factor, but we are also inter-
ested in explaining its origin. With that goal in mind we propose to model the group
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Fig. 15.4 Synergy factor on real games. We show the reduced synergy factor as a function of the
group size extracted from the bibliographic data of the APS for a selection of 13 journals. The dots
represent the experimental values while the continuous line corresponds to the model at Eq. (15.5)
explaining the synergy factor as the combination of positive and negative group effects. Adapted
from Ref. [42]

size dependence of the synergy factor as the product of two opposite contributions,
a first one increasing with g, and a second one decreasing with g

f (g, α, β, γ ) = αgβe−γ (g−1) (15.5)

From these three parametersα has a fixed value given by normalisation, and therefore
we are left with β and γ , both larger than zero. Due to their functional dependence
on g, β accounts for the positive aspects of group interactions while γ represents an
exponential dumping and therefore is associated to lower synergy factors in larger
groups. For the particular dataset we are studying, these opposite terms have specific
meanings in the production of scientificmanuscripts: One could associate the benefits
(β) with a multiplication in the amount and depth of ideas and discussions preceding
the manuscript preparation when increasing the group size. Analogously, the costs
(γ ) may be associated with difficulties in coordination when recruiting additional
authors for a paper. This interpretation is also compatible with the shape of r g , whose
maximum is predicted to be at β/γ .

In Fig. 15.4 (from [42]) the empirically derived profiles of the reduced synergy
factor for the APS dataset are shown, as well as the curve that better fits such profile
according to the model in Eq. (15.5). The parameters are reported in Table15.1.

15.3 Discussion

In this chapter we have presented the formalism introduced in [42] for studying
the evolutionary dynamics of systems with explicit higher-order interactions. We
have derived the replicators approximation and showed that it successfully accounts
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Table 15.1 Synergy factor on real games. Parameters of the study carried out for the APS biblio-
graphic dataset. For each journal we indicate the total number of hyperlinks L , the average order
< g >, the order with the highest synergy factor g(max r), the benefit and cost parameters β, γ and
the distance between the approximation by Eq. (15.5) and the data dr
Journal L < g > g(max r) β γ dr

PhysRev 47313 1.95 2 2.936 1.573 0.033

PhysRevA 70502 3.07 3 2.679 0.986 0.067

PhysRevB 171268 3.75 3 1.531 0.49 0.05

PhysRevC 36290 5.98 3 0.02 0.075 0.146

PhysRevD 74715 3.02 2 2.178 0.941 0.206

PhysRevE 50988 2.93 3 3.84 1.41 0.048

PhysRevApplied 327 5.39 5 3.356 0.62 0.09

PhysRevLett 113674 4.57 3 0.848 0.33 0.175

PhysRevSeriesI 1240 1.21 1 2.691 2.831 0.019

PhysRevSTAB 2393 5.52 4 0.566 0.173 0.127

PhysRevSTPER 484 2.42 3 2.75 1.21 0.078

PhysRevX 611 5.28 5 1.85 0.416 0.127

RevModPhys 3153 2.05 2 1.19 0.79 0.112

for the system’s dynamics in uniform and heterogeneous hypergraphs as long as no
hyperdegree-hyperdegree correlations are present.We have then discussed a proposal
for extracting the synergy factor of real games and apply it to the analysis of the
bibliographic dataset of the APS.

This new framework for higher-order interactions calls for a hypergraph adap-
tation of additional game characteristics that complement the PGG to facilitate the
emergence of cooperation, such as image scoring [34–36], rewarding [45], and pun-
ishment [46–49]. Similarly, the hypergraph implementation motivates new research
in the direction of understanding the influence of more complex structures, such us
communities or multilayer organization, which were well characterized for games
in standard networks [21–29]

All these assets will surely strengthen the already consistent and reliable hyper-
graph implementation of evolutionary dynamics for modelling the emergence of
cooperation.
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