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Abstract The collective behaviors of a complex system are determined by the intri-
cate way in which its components interact. In this chapter we discuss a novel and gen-
eral analytical framework to study synchronized states in systems ofmany dynamical
unitswithmany-body interactions,which allows to account for themicroscopic struc-
ture of the interactions at any possible order. In such a framework, the N dynamical
units of a system are associated to the N nodes of a D dimensional (D ≥ 1) simplicial
complex, whose simplices represent the structure of the different types of coupling.
Namely, 1-simplices (links) describe pairwise interactions, 2-simplices (triangles)
describe three-body interactions, 3-simpliced (tetrahedra) four-body interactions,
and so on. Such a description generalizes that of a complex network of dynamical
units, and reduces to it in the particular case of D = 1 simplicial complexes. Within
this framework, we study the onset of full synchronization and the conditions for
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the stability of a synchronized state in systems of identical dynamical units. We
show that, under certain assumptions on the network topology or on the form of the
coupling, these conditions can be written in terms of a Master Stability Function
that generalizes the existing results valid for pairwise interactions (i.e. networks)
to the case of complex systems with the most general possible architecture. As an
example of the potential utility of the proposed method we study the dynamics of
D = 3 simplicial complexes of chaotic systems (Rössler oscillators) and we inves-
tigate how the stability of synchronized states depends on the interplay between the
control parameters of the chaotic units and the structural properties of the simplicial
complex.

10.1 Introduction

Synchronization is an ubiquitous phenomenon in natural and engineered systems. It
corresponds to the emergence of a collective behavior wherein the system compo-
nents eventually adjust themselves into a common evolution in time. [1, 2] Various
studies have shed light on the intimate relations between the topology of a networked
system, its synchronizability, and the properties of the synchronized states. In par-
ticular, synchronous behaviors have been observed and characterized in small-world
[3], weighted [4], multilayer [5], and adaptive networks [6, 7]. Outside complete syn-
chronization, moreover, other types of synchronization have been revealed to emerge
in networked systems, including remote synchronization [8, 9], cluster states [10]
and synchronization of group of nodes [11], chimera [12, 13], Bellerophon states
[14, 15], and Benjamin-Feir instabilities [16–18]. Finally, the transition to synchro-
nization has been shown to be either smooth and reversible, or abrupt and irreversible
(as in the case of explosive synchronization, resembling a first-order like phase tran-
sition [19]).

While attempts of extending to p−uniform hypergraphs the analysis of complete
synchronization of dynamical systems have been recently made [20], most studies
of systems interplaying through higher order interactions in simplicial complexes
have focused on the case of the Kuramoto model [21, 22]. This is, in fact, a specific
model, wherein each unit of the ensemble i = 1, . . . , N is a phase oscillator and is
characterized by the evolution of its real valued phase θi (t) ∈ [0, 2π ]. The model has
been studied in all different sorts of network topologies with possible applications
to biological and social systems [2, 21], and recently extensions of it have been
proposed that include higher-order interactions. Namely, it has been shown that the
Kuramotomodelmay exhibit abrupt desynchronizationwhen three-body interactions
among all the oscillators are added to [23], or completely replace [24], the all-to-all
pairwise interactions of the original model. Similar results have been obtained with a
non-symmetric variation of the Kuramoto model in which the microscopic details of
the interactions among the phase oscillators are described in the form of a simplicial
complex [25]. A different approach has been proposed by Millán et al., who have
formulated a higher-order Kuramoto model in which the oscillators are placed not
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on the nodes but on higher-order simplices, such as links, triangles, and so on, of a
simplicial complex [26].

In Chap.9, an extension of the Kuramoto model to interactions of any order,
which is still analytically tractable because all the oscillators have identical frequen-
cies, has been discussed [27]. In this chapter, we move from the analysis of a specific
model to the study of the most general ensemble of, yet identical, dynamical sys-
tems, organized on the nodes of a simplicial complex of any order, and interacting
via any coupling functions. In such a general context, we show that complete syn-
chronization in systems of identical units exists as an invariant solution, as far as the
coupling functions cancel out. Furthermore, we give the necessary condition for it
to be observed as a stable state and then we show that such condition can be written
in terms of a Master Stability Function, a method initially developed in Ref. [28] for
pairwise coupled systems, and later extended in many ways to complex networks
[29] and to time-varying interactions [30–33]. Therefore, the framework discussed
here is valid for a large number of situations, and, as so, it is applicable to a very wide
range of experimental and/or practical circumstances. We will show, indeed, that all
the theoretical predictions that our method entitles us to make are fully verified in
simulations of synthetic and real-words networked systems.

10.2 Networks and Higher-Order Structures

A network is a collection of nodes and of edges connecting pairs of nodes. Math-
ematically, it is represented by a graph G = (V, E), which consists of a set V with
N = |V| elements called vertices (or nodes), and a set E whose K elements, called
edges or links, are pairs of nodes (i, j) (i, j = 1, 2, . . . , N and i �= j). As graphs
explicitly refer to pairwise interactions, networks have been very successful in cap-
turing the properties of coupled dynamical systems in all such cases in which the
interactions can be expressed (or approximated) as a sum of two-body terms [34].
Conversely, their limits emerge when it comes to model higher-order interactions. In
fact, the presence of a triangle of three nodes i, j, k in a network, e.g. the presence of
the three links (i, j), (i, k), ( j, k) in the corresponding graph, is not able to capture
the difference between a three-body interaction of the three individuals, from the
sum of three pairwise interactions. Notice that these are two completely different
situations, with completely different social mechanisms and dynamics at work [35].

Simplicial complexes are instead the proper mathematical structures for describ-
ing high order interactions. A simplicial complex is an aggregate of simplices, objects
that generalize links and can in general be of different dimension. A d-simplex, or
simplex of dimension d, σ is, in its simplest definition, a collection of d + 1 nodes.
In this way, a 0-simplex is a node, a 1-simplex is a link, a 2-simplex (i, j, k) is a two-
dimensional objectmade by three nodes, usually called a (full) triangle, a 3-simplex is
a tetrahedron, i.e. a three-dimensional object and so on (Fig. 10.1a). It is now possible
to differentiate between a three-body interaction, and three bodies in pairwise inter-
actions: the first case will be represented by a complete triangle, a two-dimensional
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Fig. 10.1 From networks to simplicial complexes. a Simplices of different orders d: the node
d = 0, the edge d = 1, the triangle d = 2, the tetrahedron d = 3. b A network only consists of 0−
and 1−simplices. c A simplicial complex consists of simplices of any order d = 0, 1, . . . , D (in
this case D = 3)

simplex, while the second case will consist of three one-dimensional objects. Hence,
in the following of this chapter, simplices of dimension d will be used to describe
the structure of (d + 1)-body interactions. Finally, a simplicial complex S on a given
set of nodes V , with |V| = N , is a collection of M simplices, S = {σ1, σ2, . . . , σM },
with the extra requirement that, for any simplex σ ∈ S, all the simplices σ ′ with
σ ′ ⊂ σ , i.e. all the simplices built from subsets of σ , are also contained in S. Due
to this requirement, simplicial complexes are a very particular type of hypergraphs
[36]. Simplicial complexes have shown to be appropriate in the context of social
systems [35, 37, 38] and, as we will see in the next Section, they will turn very
useful to study coupled dynamical systems. In the following, we will indicate as Md ,
d = 1, 2, . . . D the number of d-simplices present in S (where D, the order of the
simplicial complex, is the dimension of the largest simplex in S), and we have the
constraint

∑D
d=1 Md = M . Note that a network is a particular case of a simplicial

complex with D = 1 (Fig. 10.1b), whereas for D > 1 a truly higher-order structure
is obtained (Fig. 10.1c).

As a mathematical representation of simplicial complexes, we will use here a
formalism which generalises directly the concept of adjacency matrix for a network.
For each dimension d, we can define the N × N × · · · × N︸ ︷︷ ︸

d+1

adjacency tensor A(d),

whose entry a(d)
i1,...,id+1

is equal to 1 if the d-simplex (i1, . . . , id+1) belongs to the
simplicial complex S, and is 0 otherwise [39]. Notice that each tensor is symmetric
with respect to its d + 1 indices, which means that the value of a given entry a(d)

i1,...,id+1

is equal to the value of the entries corresponding to any permutation of the indices.
With the definition above, A(1) coincides with the standard adjacency matrix A,

while the N × N × N adjacency tensor A(2) characterizes two-dimensional objects:
one has a(2)

i jk = 1 if the three nodes i , j , k form a full triangle, and otherwise a(2)
i jk = 0.

As a conclusion, it is possible to map completely the connectivity structure of a
simplicial complex S into the entire set of D adjacency tensors A(d), d = 1, 2, . . . D.
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A node i of a simplicial complex S cannot be, therefore, characterized only by
giving its degree ki = ∑N

j=1 a
(1)
i j , but one needs instead to account for the number of

simplices of any dimension, incident in i . It is therefore extremely useful to define
the generalized d-degree, k(d)

i , of a node i as:

k(d)
i = 1

d!
N∑

i1=1

N∑

i2=1

. . .

N∑

id=1

a(d)
i,i1,i2,...,id

, (10.1)

with d = 1, 2, . . . , D so that k(1)
i coincides with the standard degree of node i , k(2)

i
counts the number of triangles (2-simplices) to which i participates:

k(2)
i = 1

2

N∑

j=1

N∑

k=1

a(2)
i jk (10.2)

k(3)
i the number of tetrahedrons, and so on.
Analogously, we can also define the generalized d-degree k(d)

i j of a link (i, j) as
the number of d-simplices to which link (i, j) is part of. We can write its expression
in terms of the adjacency tensor A(d) of dimension d, with d = 1, 2, . . . , D, as[39]:

k(d)
i j = 1

(d − 1)!
N∑

i1=1

N∑

i2=1

. . .

N∑

id−1=1

a(d)
i, j,i1,i2,...,id−1

, (10.3)

so that k(1)
i j = a(1)

i j , while k
(2)
i j counts the number of triangles (2-simplices) to which

(i, j) participates:

k(2)
i j =

N∑

k=1

a(2)
i jk, (10.4)

and so on.
Finally, we introduce here a generalized Laplacian describing the case of sys-

tems with high-order interactions. The generalized Laplacian of order d, with
d = 1, 2, . . . , D, is a matrix L(d) whose elements are defined as:

L(d)
i j =

⎧
⎪⎨

⎪⎩

0 for i �= j and a(1)
i j = 0

−(d − 1)!k(d)
i j for i �= j and a(1)

i j = 1

d! k(d)
i for i = j,

(10.5)

where k(d)
i j is the generalized d-degree of the link (i, j), and k(d)

i is the generalized
d-degree of node i . Replacing (10.1) and (10.3) in (10.5), in the case D = 2, we get
an equivalent expression for the generalized Laplacian:
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L(2)
i j =

{
−∑

k a
(2)
i jk for i �= j

−∑
� �=i L(2)

i� for i = j,
(10.6)

Notice that L(1) recovers exactly the classical Laplacian matrix. This definition
of generalized Laplacian will turn useful in the following sections.

10.3 Dynamical Systems with Higher-Order Interactions

The object of our study is the most general simplicial complex of N coupled dynam-
ical systems, such that the nodes are subject not only to pairwise interactions, but
also to three-body interactions, four-body interactions and so on. We write the equa-
tions of motion governing the dynamics of our D-dimensional simplicial complex
as follows

ẋi = f(xi ) + σ1

N∑

j1=1
a(1)
i j1

g(1)(xi , x j1) + σ2

N∑

j1=1

N∑

j2=1
a(2)
i j1 j2

g(2)(xi , x j1 , x j2) + . . .

+σD

N∑

j1=1
. . .

N∑

jD=1
a(D)
i j1... jD

g(D)(xi , x j1 , . . . , x jD ),

(10.7)

where xi (t) is the m-dimensional vector state describing the dynamics of unit i ,
σ1, . . . , σD are real valued parameters describing coupling strengths, f : Rm −→ R

m

describes the local dynamics (which is assumed identical for all units), while
g(d) : R(d+1)×m −→ R

m (d = 1, . . . , D) are synchronization non-invasive functions
(i.e. g(d)(x, x, . . . , x) ≡ 0 ∀d) ruling the interaction forms at different orders. Fur-
thermore, for d = 1, . . . , D, a(d)

i j1... jd
are the entries of the adjacency tensor A(d). This

is the most general type of system we can consider, as there are no further specific
restrictions on both the adjacency tensors of the simplicial complex and the functions
f and g(d).

For the sake of clarity in what followswe illustrate our study for the case of D = 2
and then summarize the steps needed to generalize the results to any order D. Let us
then consider the following set of coupled differential equations

ẋi = f(xi ) + σ1

N∑

j=1
a(1)
i j g(1)(xi , x j ) + σ2

N∑

j=1

N∑

k=1
a(2)
i jk g

(2)(xi , x j , xk), (10.8)

where σ1 and σ2 are the coupling strengths associated to two- and three-body inter-
actions.

Notice that existence and invariance of the synchronized solution xs(t) = x1(t) =
· · · = xN (t) are warranted by the non-invasiveness of the coupling functions.



10 The Master Stability Function for Synchronization … 255

10.4 Linear Stability Analysis

Here we study the stability of the synchronous solution via linearization around the
synchronous state xs . Let us then consider considers small perturbations around the
synchronous state xs , i.e., δxi = xi − xs , and write the dynamics of these variables
as follows

δ̇xi = J f(xs )δxi + σ1
N∑

j=1
a(1)
i j

[
∂g(1)(xi ,x j )

∂xi

∣
∣
∣
∣
(xs ,xs )

δxi + ∂g(1)(xi ,x j )
∂x j

∣
∣
∣
∣
(xs ,xs )

δx j

]

+σ2
N∑

j=1

N∑

k=1
a(2)
i jk

[
∂g(2)(xi ,x j ,xk )

∂xi

∣
∣
∣
∣
(xs ,xs ,xs )

δxi + ∂g(2)(xi ,x j ,xk )
∂x j

∣
∣
∣
∣
(xs ,xs ,xs )

δx j

+ ∂g(2)(xi ,x j ,xk )
∂xk

∣
∣
∣
∣
(xs ,xs ,xs )

δxk

]

,

(10.9)

where J f(xs) denotes the m × m Jacobian matrix of the function f , evaluated at the
synchronous state xs .

Now, let us make our first, very important, conceptual step, noticing that all cou-
pling functions are synchronization non-invasive, i.e. g(1)(x, x) ≡ 0 and g(2)(x, x, x)
≡ 0. As their value is then constant (equal to zero) at the synchronization manifold,
it immediately follows that their total derivative vanishes as well, which implies on
its turn that

∂g(1)(xi ,x j )

∂xi

∣
∣
∣
∣
(xs ,xs )

+ ∂g(1)(xi ,x j )

∂x j

∣
∣
∣
∣
(xs ,xs )

= 0,

∂g(2)(xi ,x j ,xk )
∂xi

∣
∣
∣
∣
(xs ,xs ,xs )

+ ∂g(2)(xi ,x j ,xk )
∂x j

∣
∣
∣
∣
(xs ,xs ,xs )

+ ∂g(2)(xi ,x j ,xk )
∂xk

∣
∣
∣
∣
(xs ,xs ,xs )

= 0.
(10.10)

Then, one can factor out the terms ∂g(1)(xi ,x j )

∂xi

∣
∣
∣
∣
(xs ,xs )

δxi and
∂g(2)(xi ,x j ,xk )

∂xi

∣
∣
∣
∣
(xs ,xs ,xs )

δxi

in the summations (both of them, indeed, do not depend on the indices of the sum-
mations). Furthermore, one has that

∑N
j=1 a

(1)
i j = k(1)

i and
∑N

j=1

∑N
k=1 a

(2)
i jk = 2k(2)

i .
Plugging back the resulting terms inside the summations, and using Eq. (10.10), one
eventually obtains

δ̇xi = J f(xs)δxi − σ1

N∑

j=1
L(1)
i j Jg(1)(xs, xs)δx j

−σ2

N∑

j=1

N∑

k=1
τi jk

[

J1g(2)(xs, xs, xs)δx j + J2g(2)(xs, xs, xs)δxk

]

,

(10.11)

where we introduced a tensor T whose elements are τi jk = 2k(2)
i δi jk − a(2)

i jk for
i, j, k = 1, . . . , N , and simplified the notation as
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Jg(1)(xs, xs) = ∂g(1)(xi ,x j )

∂x j

∣
∣
∣
∣
(xs ,xs )

,

J1g(2)(xs, xs, xs) = ∂g(2)(xi ,x j ,xk )
∂x j

∣
∣
∣
∣
(xs ,xs ,xs )

,

J2g(2)(xs, xs, xs) = ∂g(2)(xi ,x j ,xk )
∂xk

∣
∣
∣
∣
(xs ,xs ,xs )

.

(10.12)

Already at this stage, it is fundamental to remark that our approach even extends
the validity of the classical Master Stability Function theory [the case σ2 = 0 in Eq.
(10.11)], in thatwe do not require a diffusive functional form for the interplay among
the network nodes, and therefore we are actually encompassing a much broader class
of coupling functions. For instance, our approach allows the formal treatment of
the Kuramoto model [21], where m = 1, each network unit i is identified by the
instantaneous phase θi of an oscillator, and the coupling between nodes i and j is
given by the function sin (θ j − θi ), which is not diffusive.

Let us now make our second, conceptual, step, which will allow us to greatly
simplify the last term on the right hand side of Eq.(10.11). Such a term refers to
three-body interactions, and we now show how to map it into a single summation
involving the generalized Laplacian matrix. This is done by remarking that the two
Jacobian matrices J1g(2)(xs, xs, xs) and J2g(2)(xs, xs, xs) are both independent on k
and j . Accordingly, Eq.(10.11) becomes

δ̇xi = J f(xs )δxi − σ1
N∑

j=1
L(1)
i j Jg(1)(xs , xs )δx j

−σ2

[ N∑

j=1
J1g(2)(xs , xs , xs )δx j

N∑

k=1
τi jk +

N∑

k=1
J2g(2)(xs , xs , xs )δxk

N∑

j=1
τi jk

]

.

(10.13)

Then, using the symmetric property of T, namely
∑

k τi jk = ∑
k τik j , we obtain

δ̇xi = J f(xs)δxi − σ1

N∑

j=1
L(1)
i j Jg(1)(xs, xs)δx j

−σ2

N∑

j=1
L(2)
i j

[

J1g(2)(xs, xs, xs) + J2g(2)(xs, xs, xs)
]

δx j .

(10.14)

Equations (10.14) can be rewritten in block form by introducing the stack vector
δx = [δxT1 , δxT2 , . . . , δxTN ]T and denoting by JF = J f(xs), JG(1) = Jg(1)(xs, xs) and
JG(2) = J1g(2)(xs, xs, xs) + J2g(2)(xs, xs, xs). One obtains

δ̇x = [
IN ⊗ JF − σ1L(1) ⊗ JG(1) − σ2L(2) ⊗ JG(2)

]
δx. (10.15)

The third, and final, conceptual step is to remark that all generalized Laplacians
L(d) are symmetric real-valued zero-row-sum matrices. Therefore: (i) they are all
diagonalizable; (ii) for each one of them the set of eigenvalues is made of real non-
negative numbers, and the corresponding set of eigenvectors constitutes a orthonor-
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mal basis of RN ; (iii) they all share, as the smallest of their eigenvalues, λ1 ≡ 0,
whose associated eigenvector 1√

N
(1, 1, 1, . . . , 1)T is aligned along the synchro-

nization manifold; (iv) as in general they do not commute, the sets of eigenvectors
corresponding to all others of their eigenvalues are different from one another, and
yet any perturbation to the synchronization manifold (which, by definition, lies in
the tangent space) can be expanded as linear combination of one whatever of such
eigenvector sets (the relevant consequence is that one can arbitrarily select any of the
generalized Laplacians as the reference for the choice of the basis of the transverse
space, and all other eigenvector sets will map to such a basis by means of unitary
matrix transformations).

We are then fully entitled to take, as reference basis, the one constituted by the
eigenvectors of the classic Laplacian L(1) (V = [v1, v2, . . . , vN ]), and consider new
variables δη = (V−1 ⊗ Im)δx. We get

δ̇η =
[
IN ⊗ JF − σ1�

(1) ⊗ JG(1) − σ2L̃(2) ⊗ JG(2)
]
δη. (10.16)

where we have used the fact that V−1L(1)V = diag(λ1, λ2, . . . , λN ) = �(1), where
0 = λ1 < λ2 ≤ . . . λN are the eigenvalues ofL(1), and we have indicated with L̃(2) =
V−1L(2)V the transformed generalized Laplacian of order 2.

As L(2) is zero-row sum (i.e. L(2)v1 = 0), Eqs. (10.16) may be rewritten as

⎧
⎪⎨

⎪⎩

η̇1 = JFη1

η̇i = (JF − σ1λi JG(1))ηi − σ2

N∑

j=2
L̃(2)
i j JG

(2)η j ,
(10.17)

that is, the dynamics of the linearized system is decoupled into two parts: the dynam-
ics of η1 accounting for the motion along the synchronous manifold, and that of all
other variables ηi (with i = 2, . . . , N , representing the different modes transverse to
the synchronization manifold) which are coupled each other by means of the coeffi-
cients L̃(2)

i j (all of them being known quantities) given by transforming L(2) with the
matrix that diagonalizesL(1). The problem of stability is then reduced to: (i) simulat-
ing a single, uncoupled, nonlinear system; (ii) using the obtained trajectory to feed
up the elements of the Jacobians JG(1) and JG(2); (iii) simulating the dynamics of
a system of N − 1 coupled linear equations, and tracking the behavior of the norm√∑N

i=2

∑m
j=1(η

( j)
i )2 for the calculation of the maximum Lyapunov exponent (being

ηi ≡ (η
(1)
i , η

(2)
i , . . . , η

(m)
i )).

Stability of the synchronous solution requires, as a necessary condition, that the
maximum among the Lyapunov exponents associated to all transversemodes is nega-
tive. Therefore, this quantity provides a generalizedMaster Stability Function,�max,
which, given the node dynamics and the coupling functions, is in general function of
the topology of the two body interactions, the topology of the three body interactions,
and the two coupling strengths σ1 and σ2, i.e., �max = �max(σ1, σ2,L(1),L(2)).
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Notice that, in full analogy with the classical MSF approach, also in the case of
simplicial complexes one is, therefore, able to separate the motion along the syn-
chronization manifold and that transverse to it. And it is such a crucial separation
that ultimately enables the study of stability of the synchronous manifold, retaining
the general applicability of the original approach. In the case of simplical complexes,
the higher complexity in the structure of the interactions yields a formalism requir-
ing the analysis of a set of coupled differential equations, rather than of a single
parametric variational equation (as in the case of network synchronization). In other
words, in the fully general case the set of equations describing the motion transverse
to the synchronous manifold cannot be further decomposed into independent, decou-
pled modes, as it happens in the network case; however, the analysis of stability still
requires the computation of a single quantity, i.e., the maximumLyapunov exponent,
which has to be performed on such a set of coupled, linear equations. Hence, while
in the classical MSF on networks, once fixed the node dynamics and coupling func-
tion, one obtains �max = �max(σ,L), which can be further simplified introducing α

parametrizing the product of the coupling coefficient and the nonzero eigenvalues of
L, i.e.,�max = �max(α), for simplicial complexes, once fixed the node dynamics and
the coupling functions, one obtains�max = �max(σ1, σ2,L(1),L(2)). Note, however,
that there are still special cases where such an expression can be simplified up to
even recover cases where it is formally identical to that of the classical MSF, as we
will show explicitly later on in Sec. 10.5.

In analogy with the classification scheme adopted for synchronization in com-
plex networks (Chap.5 in Ref. [40]), one immediately realizes that, once the local
dynamics of each node (i.e. the function f), the various coupling functions g(1,2), and
the structure of the simplicial complex (i.e. L(1) and L(2)) are specified, all possible
cases can be divided in three different classes:

1. class I problems, where �max is positive in all the half plane (σ1 ≥ 0, σ2 ≥ 0),
and therefore synchronization is never stable;

2. class II problems, for which �max is negative within a unbounded area of the half
plane and

3. class III problems, for which the area of the half plane in which�max is negative is
instead bounded, and therefore additional instabilities of the synchronous motion
may occur at larger values of the coupling strengths.

We conclude this section by showing how the approach described above can
be extended to simplicial complexes of any order D. Indeed, each term on the
right hand side of Eq. (10.7) can be manipulated following exactly the same steps
described above. Defining JG(d) = J1g(d)(xs, . . . , xs) + J2g(d)(xs, . . . , xs) + · · · +
Jdg(d)(xs, . . . , xs), Eq. (10.15) becomes

δ̇x =
[

IN ⊗ JF − σ1L(1) ⊗ JG(1) − σ2L(2) ⊗ JG(2) − . . . − σDL(D) ⊗ JG(D)

]

δx. (10.18)

http://dx.doi.org/10.1007/978-3-030-91374-8_5
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Once again, one can select the eigenvector set which diagonalizes L(1), and to
introduce the new variables δη = (V−1 ⊗ Im)δx. Following the same steps which
led us to write Eqs. (10.17), one then obtains

⎧
⎨

⎩

η̇1 = JFη1,

η̇i = (JF − σ1λi JG(1))ηi − σ2

N∑

j=2
L̃(2)
i j JG

(2)η j − . . . − σD

N∑

j=2
L̃(D)
i j JG(D)η j ,

(10.19)
where the coefficients L̃(d)

i j result from transforming L(d) with the matrix that diago-
nalizesL(1). As a result, one has the same reduction of the problem to a single, uncou-
pled, nonlinear system, plus a system of N − 1 coupled linear equations, fromwhich
themaximumLyapunovexponent�max=�max(σ1, σ2, . . . , σD,L(1),L(2), . . . ,L(D))

can be extracted and monitored (for each simplicial complex) in the D-dimensional
hyper-space of the coupling strength parameters.

10.5 Master Stability Functions

The problem can be greatly simplified in a few special cases in which either the con-
nectivity of the system (i.e. the structure of the simplicial complex), or the coupling
functions, allow for a further reduction of complexity. For the sake of illustration,
we start considering first the case of D = 2, and, then, the extension to any possible
order D.

The first special case is the all-to-all coupling, for which every pair of two nodes
is connected by a link and every triple of nodes is connected by a 2-simplex, namely
all the possible two and three-body interactions are active. In this case, the classical
Laplacian matrix is

L(1)
i j =

{
−1 for i �= j

N − 1 for i = j.
(10.20)

Then, it is easy to rewriteL(2). First, the off diagonal terms−L(2)
i j (i �= j) represent

the number of triangles formed by the link (i, j)which, in the present case, is simply
equal to N − 2. Second, the terms of the main diagonal L(2)

i i indicates the number of
triangles having the node i as a vertex, which is

k(2)
i =

(
N − 1

2

)

= (N − 1)(N − 2)

2
. (10.21)

Consequently, one has that

L(2) = (N − 2) L(1). (10.22)
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For the linearized dynamics, one gets

δ̇xi = JFδxi −
N∑

j=1

L(1)
i j

[
σ1 JG

(1) + σ2 (N − 2) JG(2)] δx j . (10.23)

By expanding the perturbation vector δx on the othornormal basis formed by the
eigenvectors of the classical Laplacian matrix L(1), and after noticing that in the
all-to-all configuration λ2 = . . . λN = N , for each ηi (with i ∈ {2, . . . , N }) one has

η̇i = [JF − σ1N JG(1) − σ2N (N − 2) JG(2)]ηi . (10.24)

In other words, in the all-to-all case, the variables ηi come out to be all uncoupled
to each other, so that the MSF uniquely depends on σ1, σ2 and N , i.e., �max =
�max(σ1, σ2, N ).

In the more general case of a D-dimensional simplicial complex, it is easy to
write the generalized Laplacian of order d as a function of the classical Laplacian
matrix. In fact, the number of d-simplices having node i as a vertex and the number
of d-simplices formed by the link (i, j) are respectively

k(d)
i =

(
N − 1

d

)

= (N − 1)(N − 2) . . . (N − d)

d! (10.25)

and

k(d)
i j =

(
N − 2

d − 1

)

= (N − 2) . . . (N − d)

(d − 1)! . (10.26)

Given the definition of the generalized Laplacian in Eq. (10.5), we find that

L(d) = (N − d) L(d−1) = (N − 2)(N − 3) . . . (N − d)L(1). (10.27)

Once again, one can derive a parametric equation analogous to Eq. (10.24), with
the MSF (once fixed both the node dynamics and the coupling functions) which
solely depends on the coupling coefficients and the number of nodes, i.e. �max =
�max(σ1, σ2, . . . , σD, N )

η̇i = [JF − σ1N JG(1) − · · · − σDN (N − 2) . . . (N − D) JG(D)]ηi . (10.28)

Another interesting case is that of generalized diffusion interactions with natural
coupling functions. This amounts to consider diffusive coupling functions, given by

g(1)(xi , x j ) = h(1)(x j ) − h(1)(xi ),
g(2)(xi , x j , xk) = h(2)(x j , xk) − h(2)(xi , xi ),

(10.29)
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where h(1) : Rm −→ R
m and h(2) : R2m −→ R

m . In addition, a condition of natural
coupling is considered

h(2)(x, x) = h(1)(x). (10.30)

Equation (10.30) expresses, indeed, the fact that the coupling to node i from two-
body and three-body interactions is essentially similar, in that a three-body interaction
where two nodes are on the same state is equivalent to a two-body interaction. Here,
the MSF assumes a particularly convenient form, as it can be written as a function
of a single parameter.

The consequence of Eq. (10.30) is that J1h(2)(xs, xs) + J2h(2)(xs, xs)=Jh(1)(xs).
Therefore, one has

δ̇xi = J f(xs)δxi −
N∑

j=1

[
σ1L(1)

i j + σ2L(2)
i j

]
Jh(1)(xs)δx j . (10.31)

Alternatively, one can consider the zero-row-sum, symmetric, effectivematrixM,
given by

M = L(1) + rL(2), r = σ2

σ1
. (10.32)

The eigenvalues ofM depend on the ratio r of the coupling coefficients, and one
has that

δ̇xi = J f(xs)δxi − σ1

N∑

j=1

Mi j Jh(1)(xs)δx j . (10.33)

Equation (10.33) allows to establish a formal full analogy between the case of a
simplicial complex and that of a network with weights given by the coefficients of
the effective matrix M. In this case, by diagonalizing the effective matrix M, the
transverse modes can be fully decoupled and a single-parameterMSF can be defined,
starting from the following m-dimensional linear parametric variational equation

η̇ = [
J f(xs) − α Jh(1)(xs)

]
η (10.34)

from which the maximum Lyapunov exponent is calculated: �max = �max(α)

with α = λ(σ1L(1) + σ2L(2)) or α = σ1λ(L(1) + rL(2)) = σ1λ(M). The situation
is therefore conceptually equivalent to that of synchronization in complex networks,
with the effective matrix M playing the same role of the classical Laplacian: given
the dynamical system f , the coupling functions h(1) and h(2), and the structure of
connection of the simplicial complex (i.e. L(1) and L(2)) one can define three possi-
ble classes of problems: 1) class I problems, for which the curve �max = �max(α)

does not intercept the abscissa and it is always positive. In this case synchroniza-
tion is always forbidden, no matter which simplicial complex is used for connecting
the dynamical systems; 2) class II problems, for which the curve �max = �max(α)

intercepts the abscissa only once at αc, and for which, therefore, the synchroniza-
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tion threshold is given by the self consistent equation σ c
1 = αc/λ2[M(σ c

1 , σ c
2 )], i.e.

it scales with the inverse of the second smallest eigenvalue of the effective matrix;
3) class III problems, for which the curve �max = �max(α) intercepts the abscissa
twice at α1 and α2 > α1. In this case, synchronization can be observed only if the
entire eigenvalue spectrum of the effective matrix is such that σ1λ2(M) > α1 and,
at the same time, σ1λN (M) < α2. In this case, the ratio λ2(M)/λN (M) can be con-
sidered as a proxy measure of synchronizability of the simplicial complex, in that the
closer is such a parameter to unity (the more compact is the spectrum of eigenvalues
of M) the larger can be the range of coupling strengths for which the two above
synchronization conditions can be satisfied.

We have so far considered the case of D = 2. In the fully general scenario, the
condition for natural coupling is given by

h(D)(x, . . . , x) = . . . = h(2)(x, x) = h(1)(x). (10.35)

The equation for the MSF is formally analogous to Eq. (10.34), where now α =
σ1λ2(M(D)) parametrizes the eigenvalues of the effective matrix of order D

M(D) = L(1) + σ2

σ1
L(2) + . . . + σD

σ1
L(D). (10.36)

10.6 Numerical Results

In this sectionwe showsomenumerical results confirming the validity of the proposed
approach. In particular, we focus on a paradigmatic example of three-dimensional
(x = (x, y, z)T ∈ R

3) chaotic systems, i.e., the Rössler oscillator [41], and consider
the case of natural coupling with D = 3.

In this case, as discussed in Sec. 10.5, in full analogy with what occurs for
networks, the MSF is a function of a single parameter, i.e., �max = �max(α) with
α = λ(σ1L(1) + σ2L(2) + σ3L(3)). This enables the study of synchronization stabil-
ity into two steps, one pertaining only to the node dynamics and coupling functions,
providing �max = �max(α), and a second step, where the condition �max(α) < 0 is
checked at the points α = {σ1λ2(M), . . . , σ1λN (M)}.

Here, we have calculated the MSF for the Rössler oscillator with several choices
of the coupling functions1:

1 For the calculation of the MSFs we have used the algorithm for the computation of the entire
spectrum of Lyapunov exponents in Ref. [42] (with parameters: integration step size of the Euler
algorithm δt = 10−5, length of the simulation L = 2500, windows of averaging T = 0.9L).
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h(1)(x j ) = [x3j , 0, 0]T ,h(2)(x j , xk) = [x2j xk, 0, 0]T ,h(3)(x j , xk, xh)

= [x j xk xh, 0, 0]T ;h(1)(x j ) = [0, x3j , 0]T ,h(2)(x j , xk)

= [0, x2j xk, 0]T ,h(3)(x j , xk, xh) = [0, x j xk xh, 0]T ;h(1)(x j )

= [0, 0, x3j ]T ,h(2)(x j , xk) = [0, 0, x2j xk]T ,h(3)(x j , xk, xh)

= [0, 0, x j xk xh]T ;h(1)(x j ) = [y3j , 0, 0]T ,h(2)(x j , xk)

= [y2j yk, 0, 0]T ,h(3)(x j , xk, xh) = [y j yk yh, 0, 0]T . . . and h(1)(x j )

= [0, 0, z3j ]T ,h(2)(x j , xk) = [0, 0, z2j zk]T ,h(3)(x j , xk, xh)

= [0, 0, z j zk zh]T .

As an example, when the coupling functions are fixed as h(1)(x j ) = [x3j , 0, 0]T ,
h(2)(x j , xk) = [x2j xk, 0, 0]T , and h(3)(x j , xk, xh) = [x j xk xh, 0, 0]T , the equations
governing the simplicial complex of Rössler systems read

ẋi = −yi − zi + σ1

N∑

j=1
a(1)
i j (x3j − x3i )

+σ2

N∑

j=1

N∑

k=1
a(2)
i jk(x

2
j xk − x3i ) + σ3

N∑

j=1

N∑

k=1

N∑

h=1
a(3)
i jkh(x j xk xh − x3i ),

ẏi = xi + ayi ,
żi = b + zi (xi − c),

(10.37)

where i = 1, . . . , N , and the parameters have been fixed so that the resulting dynam-
ics is chaotic, i.e., a = b = 0.2, c = 9.

It is interesting to note that the MSFs characterizing simplicial complexes of
Rössler oscillators (Fig. 10.2) exhibit a variety of behaviors that actually encompass
all possible classes of MSF. In particular, we find one class III example (Fig. 10.2a),
one class II example (Fig. 10.2e), while all remaining cases do correspond to class I.

Let us now consider the simplicial complex with N = 10 nodes represented in
Fig. 10.1c and simulate Eqs. (10.37) on top of this structure. Let us first fix σ3 = 0.1
and integrate2 Eqs. (10.37) for different values of σ1 and σ2. For each configura-
tions of the coupling parameters, the state of the system is monitored by the average

synchronization error defined as E = 〈
(

1
N (N−1)

N∑

i, j=1
‖xj − xi‖2

) 1
2

〉T , where T is a

sufficiently large window of time where the synchronization error is averaged, after
discarding the transient. As it is shown in Fig. 10.3a, which illustrates E(σ1, σ2)

along with the theoretical predictions provided by the MSF, the numerical simula-
tions are in very good agreement with the theoretical predictions for the synchro-
nization thresholds. This is an example of a class III system, with a synchronization
region that is bounded. In particular, it is interesting to note that synchronization

2 Numerical integrations have been performed by means of an Euler algorithm, with integration
step δt = 10−4, in a windows of time equal to 2T with T = 500.
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Fig. 10.2 Synchronization in simplicial complexes of Rössler oscillators, in the case of natural
coupling, is characterized by amaster stability function�max(α), here obtained for several coupling
functions. On the top of each panel, the expression used for h(3) is reported

Fig. 10.3 Synchronization in the simplicial complex of Rössler oscillators of Fig. 10.1c. a Contour
plot of the time averaged (over an observation time T = 500) synchronization error E in the plane
(σ1, σ2) for σ3 = 0.1. The red continuous line is the theoretical prediction of the synchronization
thresholds obtained from Eq. (10.34). b Synchronization region as predicted from Eq. (10.34) at
different values of the coupling strength σ3
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is impossible to achieve for very small values of σ1, suggesting that in this struc-
ture interactions through links are essential for synchronization. To study the role of
four-bodies interaction we have then varied σ3 and illustrated the predictions of the
MSF obtained from Eq. (10.34) in Fig. 10.3b. We observe that, due to the fact that
configuration under analysis is class III, increasing σ3 actually decreases the area of
the synchronization region, in particular, lowering the threshold (for both σ1 and σ2)
from synchronization to desynchronization.

10.7 Conclusions

In a complex system consisting of many coupled dynamical units, collective behav-
iors are shaped by the functional form and by the architecture of the interactions. To
account for the most general type of interactions, we have here leveraged the mathe-
matical formalism of simplicial complexes to formulate a general model that include
many-body interactions of arbitrary order among dynamical systems of arbitrary
nature. Assuming the non-invasiveness of the coupling functions, we have shown
that is possible to derive necessary conditions for stable synchronous regime in a
simplicial complex. Remarkably, these conditions depend on generalized Laplacian
matrices that map the effects of high-order interactions. For specific types of struc-
tures (e.g., all-to-all interactions) and couplings (that we named natural couplings),
this approach ultimately provides a Master Stability Function, which formalizes the
interplay between the dynamics of the single units and the topology of the simplicial
complex.

The generality of the introduced framework and of the assumptions considered
make it applicable in a wide range of scenarios, so that we expect that our method
could be used to produce a-priori predictions on the emergence of synchronization
in many diverse theoretical and practical cases. In particular, our study only focused
on the regime of synchronization where all the units follow the same trajectory.
However, many other different forms of synchronization exist, including cluster
synchronization, chimera and Bellerophon states, remote synchronization, and so
on. It would be particularly intriguing to investigate the emergence of such states, or
even of novel ones, in structures that do not include exclusively pairwise couplings,
but also incorporate other, types of higher-order interaction mechanisms, such as the
simplicial complexes considered here.
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