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Preface

Abstract Over the last 20 years networks have emerged as the paradigmatic
framework to model complex systems. Yet, as simple collections of nodes and
links, they are intrinsically limited to pairwise interactions, limiting our ability to
describe, understand and predict complex phenomena which arise from
higher-order interactions. Here we introduce the new modeling framework of
higher-order systems, where hypergraphs and simplicial complexes are used to
describe complex patterns of interactions among any number of agents. We discuss
its potential to model real-world systems, and how considering their higher-order
organization can lead to the emergence of novel dynamical behavior. We believe
that in the future years the framework of higher-order systems will become an
important reference for network scientists interested in better modeling the inter-
connected world we live in.

Every day we witness the complexity of our world at many scales and across many
domains. Over the last few decades, the study of such complexity has overtaken
more traditional reductionist approaches, significantly affecting the way we look at
the reality around us [1]. We have learned that no matter how good our knowledge
of the basic units is, this is often not enough to understand system-level emerging
phenomena. Epileptic seizures can not be explained by the most precise description
of how a single neuron works, nor the viral spread of rumours, diseases or coop-
eration in a human population can be properly described by considering individual
behavior in isolation. In all such cases, the complex patterns of dependencies,
feedbacks and interactions among the system constituents play a fundamental role
to determine the emergence of complex collective behavior.

In this context, networks have risen as the primary tool to model complex
systems [2, 3]. Indeed, they are the simplest mathematical object able to explicitly
encode relational information: system units are described by nodes, and pairwise
interactions are encoded by links among them. Following the increasing availability
of large-scale datasets, networks expanded beyond traditional graph theory [4, 5]
and are now widely used to characterize the heterogeneous and multiscale structure
of many social, economic, political, transportation, biological and ecological
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systems [6–9]. In addition, the growth of network science has had a huge impact on
research on dynamical systems and stochastic processes. Indeed, we now know
that, instead of more traditional lattice-based or well-mixed coupling schemes,
considering complex patterns of interactions among coupled agents, from the
small-world phenomenon to high clustering and degree heterogeneity [10, 11], can
dramatically impact even the simplest dynamical models. To this day, networks are
the natural substrate to describe complex emerging phenomena such as diffu-
sion [12], synchronization [13], spreading [14], social dynamics [15] or coopera-
tion [16] in complex systems.

However, despite their success, networks can only provide a simplified
description of reality. Indeed, links encode connections among single pairs of
nodes, inherently constraining a faithful system representation to dyadic relation-
ships only. Yet, from biological to ecological and social systems, the basic units of
a system routinely interact in groups of three of more nodes at a time. For this
reason, more comprehensive mathematical frameworks are needed, which are able
to fully capture the richness stemming from such higher-order interactions [17, 18].
Hypergraphs and simplicial complexes are the two most commonly adopted rep-
resentations that capture by construction such group interactions.

In their simplest definition, hypergraphs [19] are natural extensions of networks
with the additional property that (hyper)edges can contain more than two nodes and
hence describe higher-order interactions. Just like for networks, many different
flavours of hypergraphs exist: hyperedges can be weighted, directed, or both;
hypergraphs can be multilayer, temporal and so on. In fact, their extreme generality
as a framework to encode interactions justifies their widespread use in applications
ranging from computer science to biology. At the same time, they are not fully free
from certain difficulties in interpretation. For example, there are many different
Laplacian operators compatible with the same hypergraph, which in turn compli-
cates the understanding of their effects on dynamical processes [17].

Simplicial complexes [20] find themselves at the other extreme of this spectrum
of flexibility. They are able to describe groups as well as hypergraphs in terms of
simplices (collections of vertices), but are much more constrained in which sim-
plices must be present in a complex. In fact, simplicial complexes have an internal
closure condition, meaning that for each simplex in the complex all its
sub-simplices must be contained in the complex too. This induces a certain rigidity
in modeling efforts. For instance, it is not possible to describe the situation in which
three nodes are part of a group as a triple, but are not part of other groups in pairs,
which is instead trivial to represent in hypergraphs through a single hyper-edges
with three nodes. A positive side of this limitation is, however, that simplicial
complexes (and related representations, e.g. cell complexes) provide access to
powerful mathematical tools that bridge between geometry, topology and dynam-
ical systems [21]. Indeed, a large fraction of the recent development in computa-
tional approaches to data spaces and their topology is based on simplicial
descriptions [22] .
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Against this background, this book introduces the most common higher-order
descriptions and their properties, with the explicit aim to provide a comprehensive
overview of the state-of-the-art for higher-order systems [17]. Its chapters are
contributed by leading researchers and research teams from a variety of back-
grounds and disciplines, from nonlinear dynamics and topological data analyses to
biology and neuroscience. Our target has been to cover such emerging field both in
breadth and in depth. For this reason , on the one hand, some chapters are organised
as reviews on central key topics, such as models of higher-order systems, topo-
logical data analysis, or social contagions. On the other hand, others provide
detailed accounts of specific findings, from explosive synchronization and chaos in
higher-order synchronization to collective games. More in detail, the book is
organized in three main parts:

• The first part of the book is devoted to the mathematical characterization of
higher-order structures. In Chap. 1 Mulas, Horak and Jost begin with a thorough
introduction on the mathematical formalisms of hypergraphs and simplicial
complexes and their corresponding spectral theories. In Chap. 2 Bobrowski and
Krioukov discuss geometric and topological models of higher-order structures.
In Chap. 3 Vaccarino, Fugacci and Scaramuccia presents an overview of
algebraic and topological tools for the analysis of real-world data. In Chap. 4
Eriksson, Carletti, Lambiotte, Rojas and Rosvall focus on the presence of
complex mesoscale structures known as communities, and on flow-based
methods to extract them in systems with higher-order interactions.

• The second part of the book discusses dynamical processes unfolding on
higher-order systems. In Chap. 5 Carletti and Fanelli overview reaction-diffusion
schemes and pattern formation in hypergraphs. In Chap. 6 Pikovsky and
Rosenblum introduce a theory of higher-order mean-field phase coupling, and
discuss harmonics, phase reduction and higher-order network reconstruction from
dynamics. In Chap. 7 Ashwin, Bick and Rodrigues focus on heteroclinic
dynamics and chaos in coupled phase oscillators with higher-order interactions. In
Chap. 8 Skardal and Arenas review explosive phenomena and multistability in
systems with higher-order interactions. In Chap. 9 Lucas, Cencetti and Battiston
introduce a multiorder Laplacian operator, which allows for a spectral charac-
terization of Kuramoto dynamics with higher-order interactions. In Chap. 10,
Gambuzza, Di Patti, Gallo, Lepri, Romance, Criado, Frasca, Latora and Boccaletti
exploit the same operator to extend the master stability function approach to
simplicial complexes. In Chap. 11, Millán, Restrepo, Torres and Bianconi
introduce simplicial synchronization, where state variables are placed not only on
the nodes, but also on the links of a higher-order system. In Chap. 12 Schaub,
Seby, Frantzen, Roddenberry, Zhu and Segarra overview signal processing in the
presence of higher-order interactions. In Chap. 13 Barrat, de Arruda, Iacopini and
Moreno survey contagion processes in higher-order systems. In Chap. 14
Neuhäuser, Lambiotte and Schaub discuss opinion dynamics with multibody
interactions. Finally, in Chap. 15 Alvarez-Rodriguez, Battiston, de Arruda,
Moreno, Perc and Latora discuss collective games with higher-order interactions
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• The third part of the book discusses applications of the higher-order network
framework. In particular, in Chap. 16 Feng, Hickok and Porter focus on appli-
cation of topological data analyses to spatial systems. In Chap. 17 Expert and
Petri summarise recent results and open challenges in the higher-order organi-
zation of the human brain. In Chap. 18 Ogbunugafor and Scarpino discuss the
role of higher-order interactions in biological systems and epistasis in particular.

Overall, we hope that this book will provide, as a single resource, a useful guide to
navigate the most important findings of the emergent field of higher-order systems,
which we believe will become an important reference for complexity scientists in
coming years.

Vienna, Austria Federico Battiston
Turin, Italy Giovanni Petri
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Chapter 1
Graphs, Simplicial Complexes
and Hypergraphs: Spectral Theory
and Topology

Raffaella Mulas, Danijela Horak, and Jürgen Jost

Abstract In this chapter we discuss the spectral theory of discrete structures such
as graphs, simplicial complexes and hypergraphs. We focus, in particular, on the
corresponding Laplace operators. We present the theoretical foundations, but we
also discuss the motivation to model and study real data with these tools.

Keywords Simplicial complexes · Hypergraphs · Laplace operators ·
Eigenvalues · Topology

1.1 Introduction

1.1.1 Motivating Examples

Example 1 Consider scientists A, B,C, D that work in the same field and assume
that there exists a joint publication of A, B,C , a single author paper of A, a joint
paper of B,C and one ofC, D.What are formal structures thatmodel these relations?

(a) A graph: We take A, B,C, D as the vertices of a graph and connect ver-
tices by an edge when the two scientists are coauthors. Thus, there are edges
(A, B), (B,C), (A,C), (C, D).
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B
•

C•

A•

D•

(b) A simplicial complex: The preceding model does not distinguish the fact that
there is a 3-author paper between A, B,C from the possibility that there might
be three 2-author papers between A, B, between B,C and between A,C . The
latterwould yield the samegraph as the former.We therefore add a 2-dimensional
simplex (A, B,C) to represent the 3-author paper.

B
•

C•

A•

D•

dummy
(c) A hypergraph: Still, this does not account for the facts that while there is a

joint paper between B,C , there are no 2-author papers involving A, B only or
A,C only. Nor does it account for the fact that only A has a single author paper.
We therefore consider the hypergraph with hyperedges (A), (B,C), (C, D),

(A, B,C) that represents the full information about the collaboration pattern.

B

C

A•

D

Example 2 We consider a metric space (X, d). For simplicity, we assume that it
is finite, although that is not needed for the construction. Thus, we have points
x1, . . . , xN with mutual distances d(xi , x j ) that are positive for xi �= x j , symmetric
(d(xi , x j ) = d(x j , xi )) and satisfy the triangle inequality (d(xi , x j ) ≤ d(xi , xk) +
d(xk, x j )). For x ∈ X and ρ ≥ 0, we consider the closed ball B(x, ρ) := {y ∈ X :
d(x, y) ≤ ρ} of radius ρ. For radii ri > 0, i = 1, . . . .N , we then form a complex
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by associating a (d − 1)-dimensional simplex to every family (xi1 , ri1), . . . , (xid , rid )
that satisfies ⋂

j=1,...,d

B(xi j , ri j ) �= ∅, (1.1)

that is, whenever these d balls have some point in common, for d = 0, . . . , N . This is
a simplicial complex (see the definition below), because whenever some collections
of balls has a nonempty intersection, then this also holds for any subcollection.
Such a complex is called a Čech complex, and it will play an important role in
our discussion of topology. When we take all ri ≡ r and then let r vary, we get the
family of complexes whose topology yields the bar codes of topological data analysis
(TDA).

Example 3 We consider a system of chemical reactions with substances A, B,C,

D, E . Reaction 1 transforms A, B into C , with E acting as a catalyst. Reaction 2has
B,C as inputs and A, D as outputs.

(a) We represent this by adirected hypergraphwithonehyperedge (A, B, E;C, E)

going from the inputs A, B, E to the outputs C, E (note that the catalyst E
appears both as an input and as an output) and another hyperedge (B,C; A, D).

(b) Alternatively, we construct a (directed) bipartite graph with vertices A, B,C,

D, E, 1, 2, with edges from A, from B and from E to 1, from 1 to C and to E ,
from B and from C to 2, and from 2 to A and to D.

1.1.2 How Can We Handle the Data?

While the preceding describes some modelling options, we should keep in mind
that the real data sets are much larger. There are probably millions of scientists,
with intricate patterns of collaborations. And by now, more than 20 million chemical
substances and 40 million reactions have been reported in the chemical literature
(see [1, 2]).

Therefore, we need not only mathematical concepts to model the data, but also
mathematical tools to extract qualitative or quantitative information from the models
about the data. Since (hyper)graphs and simplicial complexes are combinatorial
objects, we may have to face the danger of combinatorial explosion, that the effort
needed to analyze themgrows exponentiallywith their size. For instance, the question
whether two (unlabelled) graphs are isomorphic to each other is known to be in
the complexity class NP [3]. That is, we cannot easily decide whether two data
structures modelled as graphs are abstractly the same or different. And, of course,
since simplicial complexes or hypergraphs are more complicated structures than
graphs, the difficulties become even more severe.

But when we look at the global structures, for instance the collaboration pattern
of all scientists in some field, or the chemical hypergraph consisting of all known
substances and reactions, perhaps we are not so much interested in local details, but
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ratherwish to extract some global qualitative information that identifies characteristic
features of the data sets. And the methods to extract that kind of information should
scale nicely with the data size.

Here, we describe one such method, the spectral analysis (for networks modelled
as graphs, this has been systematically applied in [4–6]). This can be seen as some
kind of Fourier transform. We define a linear operator (or several in the case of
simplicial complexes) acting on functions on the vertices (or more generally, the
simplices) and consider its spectrum, that is, the collection of its eigenvalues. There
exist quick and robust numerical schemes to compute these eigenvalues (or possibly
only those that are most interesting for our purposes). And as we shall explain in
this contribution, from these eigenvalues we can read off many important qualitative
properties of the underlying structure. This requires some mathematical theory, as
we shall describe. The rewards are high, as we shall see.

Of course, the spectrum cannot provide full information about the underlying
structure. That is, two (hyper)graphs or two simplicial complexes with the same spec-
tra need not be isomorphic. In fact, it is not surprising that graphs cannot always be
distinguished by their spectra, since, as mentioned, the graph isomorphism problem
is in the complexity class NP, and therefore, according to current belief, is unlikely
to be possible to solve it in polynomial time. However, spectra provide important
information about many qualitative properties.

We should point out that there are also other geometric quantities that are on one
hand readily computed and on the other yield useful qualitative information about the
underlying structure. We should mention in particular the so-called Ricci curvatures
whose statistics reveal important patterns (see for instance [7]). The name curvature,
while perhaps not being very appropriate for a discrete structure, reveals its origin in
Riemannian geometry (see [8]). In fact, also the spectral theory of Laplace operators
was originally explored in Riemannian geometry (see [9]), andmany ideas developed
there are also useful here.
In any case, in this contribution, in line with the purpose of the present volume, we
only discuss the spectral theory of discrete structures.

1.1.3 Definitions of Structures

We shall begin with the simplest structures before we shall subsequently enrich or
decorate them. Keeping real data in mind, all objects will be assumed finite.

The starting point is a finite collection V of elements. As such, such a collection
is amorphous. But we want to assume that these elements stand in certain discrete
relations, and these relations then provide us with the structure to work with. The
basic definition shall now identify some such structures that we shall explore in this
contribution.



1 Graphs, Simplicial Complexes and Hypergraphs … 5

Definition 1.1.1

• A graph consists of a set V of vertices and a set E of edges which are unordered
pairs of different vertices.When e = (i, j) is an edge between the vertices i, j ∈ V ,
we say that i and j are neighbors and write i ∼ j . The degree deg i is the number
of neighbors of i .

• A hypergraph consists of a set V of vertices and a set H of hyperedges which are
nonempty sets of vertices. An oriented hypergraph has hyperedges consisting of
two disjoint sets of vertices, called the inputs and the outputs of the corresponding
hyperedge. Either of them, but not both might be empty.

• A simplicial complex is defined on a set of vertices V as a subset of its power set,
i.e. C ⊂ P(V ) that is closed under taking subsets, i.e. for a simplex C ∈ C, any of
its subsetsC ′ ⊂ C is also a simplex in C. In contrast to the previous two definitions,
the empty set is a simplex. A simplex c with d + 1 vertices is called a d-simplex
(with d being considered as its dimension), its subsimplices are called its faces,
and its (d − 1)-dimensional faces are called its facets. The down degree of c is
the number of its facets, and its up degree is the number of (d + 1)-simplices of
which c is a facet.

Every simplicial complex is a hypergraphwhenwe consider every simplex (except
the empty one) as a hyperedge. As it turns out, however, this is not a very useful
perspective, and it is much better to develop the theories for these two concepts
differently.

We can enrich this definition by providing additional structure.

Definition 1.1.2

• The graph (V, E) is directedwhen the edge set E contains ordered pairs of vertices.
Likewise, the oriented hypergraph (V, H) is directed when we consider each
hyperedge h = (h1; h2) as going from the input set h1 to the output set h2.

• We may allow the graph (V, E) to contain self-loops, that is, edges of the form
e = (i, i) with i ∈ V .

• The (hyper)graphor simplicial complex isweightedwheneachvertex, (hyper)edge,
simplex is allowed to carry some real number as its weight.When, for instance, the
edges e = (i, j) of a graph (V, E) carryweightswe = wi j , we put deg i = ∑

j wi j .
Here, wi j = 0 may simply express the fact that i and j are not connected by an
edge.

In most cases, the weights are assumed to be nonnegative (so as to make also
the vertex degrees nonnegative), but in certain cases, also negative weights might be
permitted. Since subsequently, we want to normalize by the degree, we may want to
assume that deg i �= 0 for all i .
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1.1.4 Conventions

The conventions for the sign and the eigenvalues of Laplacians vary in the liter-
ature, and even in our own papers. This is partly due to the fact that in different
circumstances, different conventions seem to be most natural and convenient.

Here, we make the Laplacian into a positive operator. Since the Laplacian is also
selfadjoint, its spectrum is real and nonnegative. We denote its smallest eigenvalue
by λ1, and not by λ0, as often done in the literature, as in the basic case of a graph, that
smallest eigenvalue is = 0. For a simplicial complex or a hypergraph, that smallest
eigenvalue, however, in general is no longer 0, or in contrast, there might be several
eigenvalues = 0 while for a connected graph, there is only one such eigenvalue.

1.2 Graphs

While this contribution is not about graphs, we nevertheless develop their theory first,
because both simplicial complexes and hypergraphs can be advantageously treated
as generalizations of graphs. This is particularly true for the Laplacians and their
spectra.
We shall develop the theory in such a manner that the generalizations appear most
natural. We should also point out that the theory to be developed here is inspired by
the corresponding theory in Riemannian geometry, see [9]. Systematic presentations
of the spectral theory of graphs can be found in [10, 11]. While we shall partly
use those references, we develop the theory here somewhat differently, in order to
motivate and to facilitate the generalizations to simplicial complexes [12, 13] and
hypergraphs [14] which is the main interest of this contribution.

1.2.1 The Laplacian

We start with the formula for the Laplace operator on an unweighted and undirected
graph.

Definition 1.2.1 Let � be a graph with vertex set V and edge set E without isolated
vertices (i.e., deg v > 0 for every v ∈ V ). Its (vertex) Laplace operator (or Laplacian
for short) operates on functions f : V → R via

L0 f (v) := f (v) − 1

deg v

∑

w∼v

f (w) for v ∈ V . (1.2)

This definition is easy to understand: The Laplacian takes the value of the function
f at the vertex v in question and subtracts from it the average of the values of the
neighbors of v. It can also be interpreted as the negative of the generator of a random
walk on the vertex set, where the random walker, when it finds herself at the vertex
v, randomly selects one of the neighbors of v for her next position.
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Warning: The Laplacian L0 is not the algebraic Laplacian used in classical graph
theory. That latter operator is given by

L f (v) := deg v f (v) −
∑

w∼v

f (w) for v ∈ V . (1.3)

When the graph is regular, that is deg v ≡ const , then L0 and L differ only by a
constant factor. For general graphs, their theory is different, however. L0 has better
mathematical properties than L and, in particular, generalizes much more readily to
both simplicial complexes and hypergraphs. That is why we take L0 as our basic
object.

We are interested in the spectrum, that is, the eigenvalues of L0. In order to
derive properties of that spectrum, we need to introduce some more mathematical
structure. Perhaps somewhat surprisingly, we shall begin by introducing another
operator that operates on functions on oriented edges. Here, the oriented edge e =
[v,w] is considered as going from the tail or input v to the head or output w. A
change of orientation corresponds to reversing the ordering and considering e− =
[w, v]. That is, e+ = [v,w] and e− = [w, v] carry opposite orientations. We shall
understand below why this is a natural construction. From now on, we let E denote
the set of oriented edges of our graph. We then consider functions γ defined on
oriented edges that are required to satisfy

γ (e−) = −γ (e+) (1.4)

for all oriented edges. (A reader knowledgable in Riemannian geometry [9] might
be reminded of exterior 1-forms.) We then define a Laplacian operating on such
functions.

Definition 1.2.2 The Laplacian for functions on oriented edges is

L1γ (e) := 1

deg v0
·

∑

v0∈e′=[v0,w]
γ (e′) − 1

deg v1
·

∑

v1∈e′′=[v1,w]
γ (e′′), (1.5)

where e = [v0, v1], and γ has to satisfy 1.4.

Again, this Laplacian is easy to understand. When we consider γ as a flow along
oriented edges, then it compares the difference between out- and inflow at the tail
with the difference between in- and outflow at the head. That is, it compares the flow
in the direction of the edge, what comes in at the tail and what goes out at the head,
with that in the opposite direction, what goes out at the tail and what comes in at the
head. That is, γ (e)measures the net flow of γ through the oriented edge e. Changing
the orientation of e changes the sign of this Laplacian, that is,

L1γ (e−) = −L1γ (e+), (1.6)

in accordance with 1.4.
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As we shall see in a moment, the two operators L0 and L1 are intimately related.
In particular, they have the same spectrum, apart from possibly the multiplicity of
the eigenvalue 0.

We first define the boundary operator for a function f : V → R. Let e = [v0, v1]
be an oriented edge, then

δ f (e) := f (v0) − f (v1). (1.7)

In order to define an adjoint of δ, we shall utilize a scalar product for functions
f, g : V → R on vertices, defined by

( f, g)V :=
∑

v∈V
deg v · f (v) · g(v) (1.8)

and a scalar product for functions ω, γ : E → R on oriented edges

(ω, γ )E :=
∑

e∈E
ω(e) · γ (e). (1.9)

Lemma 1.2.1 The operator

δ∗ : {γ : E → R} −→ { f : V → R}

defined as

δ∗(γ )(v) :=
∑

e′=[v,w] γ (e′) − ∑
e′′=[w,v] γ (e′′)

2 deg v
(1.10)

is the adjoint of δ in the sense that

(δ f, γ )E = ( f, δ∗γ )V for all f, γ . (1.11)

Proof

(δ f, γ )E =
∑

e=[v0,v1]
γ (e) · ( f (v0) − f (v1))

= 1

2

∑

v∈V
f (v) ·

⎛

⎝
∑

e′=[v,w]
γ (e′) −

∑

e′′=[w,v]
γ (e′′)

⎞

⎠

=
∑

v∈V
deg v · f (v) ·

∑
e′=[v,w] γ (e′) − ∑

e′′=[w,v] γ (e′′)
2 deg v

=
∑

v∈V
deg v · f (v) · δ∗(γ )(v)

= ( f, δ∗γ )V .

�
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Lemma 1.2.2 We have
L0 = δ∗δ (1.12)

and
L1 = δδ∗. (1.13)

Proof

δ∗(δ f )(v) =
∑

e′=[v,w′] δ f (e′) − ∑
e′′=[w′′,v] δ f (e′′)

2 deg v

=
∑

e′=[v,w′]( f (v) − f (w′))
2 deg v

+

−
∑

e′′=[w′′,v]( f (w′′) − f (v))

2 deg v

= L0 f (v)

and for e = [v0, v1]

δ(δ∗γ )(e) =δ∗γ (v0) − δ∗γ (v1)

=
∑

e′=[v0,w] γ (e′) − ∑
e′′=[w,v0] γ (e′′)

2 deg v0

−
∑

f ′=[v1,w] γ ( f ′) − ∑
f ′′=[w,v1] γ ( f ′′)

2 deg v1

= L1γ (e).

�

Corollary 1.2.1 We have

( f, L0 f )V = (δ f, δ f )E = (L0 f, f )V (1.14)

and
(γ, L1γ )E = (δ∗γ, δ∗γ )V = (L1γ, γ )E (1.15)

for all f, γ .
In particular, the operators L0 and L1 are self-adjoint and nonnegative, and all their
eigenvalues are real and nonnegative.
L0 and L1 have the same spectrum, except possibly for the multiplicity of the eigen-
value 0.
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Proof 1.14 and 1.15 follow from Lemmas 1.2.1 and 1.2.2, and these relations then
imply the next claim. Finally, two operators AB and BA have the same eigenvalues
except possibly for the multiplicity of the eigenvalue 0. �

Remark The algebraic Laplacian L from 1.3 is self-adjoint w.r.t. the product

( f, g)alg :=
∑

v

f (v)g(v).

1.2.2 The Spectrum

We consider a graph � = (V, E) with N vertices.

Definition 1.2.3 We say that� is connected if for any v′, v′′ ∈ V , there exist vertices
v1, . . . , vk and (unoriented) edges e0 = (v′, v1), e1 = (v1, v2),…, ek−1 = (vk−1, vk),
ek = (vk, v

′′), that is, if v′ and v′′ can be connected by a sequence of edges. Such a
sequences of edges is called a path from v′ to v′′.

We shall usually assume that our graphs are connected, even though we may not
always say so explicitly. For a graph that is not connected, we can simply treat its
connected components individually. We shall also usually assume that our graph (or,
if not connected, every connected component) has more than one vertex. Thus, every
vertex is assumed to support at least one edge, and hence have positive degree.

Lemma 1.2.3 Let v0 ∈ V be a local maximum of f : V → R, that is f (v) ≥ f (w)

for all w ∼ v. Then
L0 f (v) ≥ 0, (1.16)

and in fact L0 f (v) > 0 unless f (w) = f (v) for all w ∼ v.

Proof If f (v) ≥ f (w) for all w ∼ v, then also f (v) ≥ 1
deg v

∑
w∼v f (w). The last

claim then is obvious. �

Corollary 1.2.2 If � is connected, then L0 f = 0 implies f ≡ const.

Proof Let v0 be a local maximum of f . Then by the Lemma, f (w) = f (v) for
all w ∼ v. Thus, all neighbors of v are also local maxima, with the same value of
f . Iterating the argument, also all the neighbors of those neighbors have the same
(maximal) value of f , and so on. Since � is connected, we can reach each vertex
from v through a path connecting local neighbors, and therefore f is constant. �

Corollary 1.2.3 If � is connected, then λ = 0 is a simple eigenvalue of L0, and it
is an eigenvalue of L1 with multiplicity |E | − |V | + 1.

Proof ByCorollary 1.2.2, the only solutions of L0 f = 0 · f are the constants. There-
fore, the corresponding Eigenspace is 1-dimensional. The vector space on which L0
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operates is |V |-dimensional, and that of L1 is |E |-dimensional. Hence they have |V |
and |E | eigenvalues counted with multiplicity. In particular, by what we have already
proved, L0 has |V | − 1 nonzero eigenvalues. By Corollary 1.2.1, these are also the
nonzero eigenvalues of L1. Hence the eigenvalue 0 of L1 must have multiplicity
|E | − |V | + 1. �

Lemma 1.2.4 All eigenvalues of L0 and L1 satisfy

0 ≤ λ ≤ 2. (1.17)

Proof The eigenvalues are nonnegative by Corollary 1.2.1. Let fλ be an eigenfunc-
tion for the eigenvalue λ > 0. Then

λ f (v) = f (v) − 1

deg v

∑

w∼v

f (w). (1.18)

Let v be a vertex where | f | assumes its maximum. Then

λ| f (v)| ≤ | f (v)| + 1

deg v

∑

w∼v

| f (w)| ≤ 2| f (v)| (1.19)

which implies λ ≤ 2. �

Corollary 1.2.4 The eigenvalue λ = 2 is attained for an eigenfunction that satisfies

f (w) = − f (v) whenever w ∼ v. (1.20)

Such an eigenfunction exists if and only if the graph is bipartite, that is, has two
classes V1, V2 of vertices and allows only connections between vertices from different
classes.

Proof 1.20 is the condition for equality in 1.19. And we can construct such an f
only in the bipartite case, where we can take f (v) = 1 for v ∈ V1, f (v) = −1 for
v ∈ V2. �

It is often convenient to reformulate the eigenvalue Eq.1.18 as

(1 − λ) f (v) = 1

deg v

∑

w∼v

f (w). (1.21)

Thus, not only are the eigenvalues 0 and 2 extremal, but also the eigenvalue 1 is
special as in that case, the right hand side of 1.21 vanishes, that is, the average of the
values of f over the neighbors of any vertex vanishes.

Let us consider some simple examples where we can determine the eigenvalues
of L0 (and hence also infer those of L1 by Corollary 1.2.3). Further examples can be
found in Sect. 1.3.4.
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1• −1•

is an eigenfunction for the eigenvalue 2 for the two-vertex graph K2.

1
•

−1•

0•

is an eigenfunction for the complete graph K3 with three vertices, for the eigenvalue 3
2 .

By permuting the vertices,we obtain another linearly independent such eigenfunction
with the same eigenvalue. Hence the spectrum of K3 is (0, 3

2 ,
3
2 ).

1
•

−1•

0•

0•

is an eigenfunction for the complete graph K4 with four vertices, for the eigen-

value 4
3 . By permuting the vertices, we obtain two further linearly independent such

eigenfunction with the same eigenvalue. Hence the spectrum of K4 is (0, 4
3 ,

4
3 ,

4
3 ).

Inductively, we see that the complete graph KN has the eigenvalue 0 with multi-
plicity 1 and the eigenvalue N

N−1 with multiplicity N − 1.
We can also see a principle here that will also be useful for determining the spectra

of simplicial complexes and hypergraphs. Whenever we have two vertices v1, v−1

with the same other neighbors, we obtain an eigenfunction when we put

f (v) :=

⎧
⎪⎨

⎪⎩

1 for v = v1

−1 for v = v−1

0 else

(1.22)

as is readily checked from 1.2.
Let us explore this observation a bit more. First of all, such a graph possesses

an automorphism ι that exchanges v1 and v−1 and leaves all other vertices fixed.
Secondly, as will become clear below, we may assume that all other eigenfunctions
f ′ satisfy

f ′(v1) = f ′(v−1). (1.23)
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This is useful for an iterative determination of the eigenvalues and eigenfunctions.
Third, when v1 and v−1 are not neighbors, then the eigenvalue for f from 1.22 is
= 1, because then, by 1.21, for every vertex u

∑

w∼u

f (w) = 0. (1.24)

We may then say that v1 and v−1 are duplicates of each other.
With this principle [15], we can iteratively determine the entire spectrum of the

complete bipartite graph Km,n . That graph has two groups V1, V−1 of m and n
vertices, resp., such that every vertex in one group is connected to every vertex in the
other group, but there are no connections inside either group. This graph is obtained
from K1,1 = K2 by the repeated duplication of nodes

•

•

K1,1

•

• •

K1,2

•

• •

•
K2,2

•

• •

•

•

K2,3

Km,n then has the eigenvalue 0 with multiplicity 1 and the eigenvalue 1 with
multiplicity m + n − 2. The remaining eigenvalue is 2. In fact, every graph that is
bipartite, meaning that it has two groups V1, V−1 of vertices without any connections
inside either group, has that eigenvalue, with an eigenfunction that is = 1 on V1 and
= −1 onV−1. In fact, only bipartite graphs can carry the eigenvalue 2, as the condition
1.20 of Corollary 1.2.4 can only be satisfied on such graphs.

An example of a complete bipartite graph is the star graph K1,n that has one
central vertex connected to n peripheral ones.

Remark While the presence of the eigenvalue 1, as in 1.24, can be seen as an indi-
cation of vertex duplication in empirical spectra [16], we should point out that this
eigenvalue can also arise in other graphs:

• •

• •

•

• •

−1 −1

1 1

1

−1 −1
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Here, the eigenfunction for the eigenvalue 1 is invariant under the automorphisms
of the graph.

We now develop amore abstract perspective on symmetries and spectra, following
[17].

Definition 1.2.4 An automorphism of the graph � = (V, E) consists of bijections
σ : V → V and σ : E → E such that σ(v) ∈ σ(e) if and only if v ∈ e.
For f : V → R, we then put σ∗ f (v) = f (σ (v)).

The Laplace operator commutes with automorphisms.

Lemma 1.2.5 If σ is an automorphism of � = (V, E), then

L0(σ∗ f )(v) = σ∗(L0 f )(v) (1.25)

for all v ∈ V and f : V → R.

The proof is obvious.
We can use Lemma 1.2.5 to decompose the spectrum of L0. Let τ be an automor-

phism of � = (V, E) with
τ 2 = id. (1.26)

Then τ has two possible eigenvalues, ±1, on the space of functions f : V → R, and
L0 leaves those two Eigenspaces L± invariant. Also, V = V0 ∪ V1 where V0 is the set
of those vertices that are fixed by τ . Thus τ(v0) = v0 if and only if v0 ∈ V0. We write
V1 = V ′ ∪ V ′′ where V ′, V ′′ are disjoint and τ(V ′) = V ′′. Since also τ(V ′′) = V ′
because of (1.26), V ′ and V ′′ play symmetric roles.

Without loss of generality, we assume that V ′ (and hence also V ′′) is connected, as
otherwisewe can rearrange the decomposition ofV1 and/orwrite τ as the composition
of several such automorphisms.

Lemma 1.2.6 We can decompose V into spaces generated by symmetric and anti-
symmetric eigenfunctions. More precisely, we have a |V ′|-dimensional space of func-
tions f : V → R generated by eigenfunctions of L0 that vanish on V0 and that are
antisymmetric on V ′ and V ′′, f (v′′) = − f (v′) if v′′ = τ(v′) ∈ V ′′ for v′ ∈ V ′. The
remaining (|V ′| + |V0|)-dimensional space is generated by eigenfunctions that are
symmetric on V ′ and V ′′, that is, f (v′′) = f (v′).

Proof The first class of functions are those that are eigenfunctions of τ for the eigen-
value −1, and the second class has eigenvalue 1. By Lemma 1.2.5, these are unions
of Eigenspaces of L0. Since |V ′′| = |V ′| and V = V0 ∪ V ′ ∪ V ′′, this generates the
space of all functions on V .

Definition 1.2.5 Let � = (V, E) be a graph. An induced subgraph, also called a
motif, �̂ has some nonempty vertex set V̂ ⊂ V and an edge set Ê ⊂ E such that
any two v1, v2 ∈ V̂ are contained in an edge e ∈ Ê whenever they are contained in
e in �.



1 Graphs, Simplicial Complexes and Hypergraphs … 15

Let �̂ be a motif in �. We then have the induced Laplacian

L0
�,�̂

f (v) = f (v) − 1

deg� v
·
( ∑

v′∈V̂ ,v′∼v

f (v′)
)

(1.27)

where deg� v denotes the degree of v in �.

Definition 1.2.6 We say that the motif �′ with vertex set V ′ is a duplicated motif if
V ′ and V ′′ are disconnected, that is, when there is no edge containing elements from
both V ′ and V ′′.
We say that �′ and �′′ with vertex sets V ′ and V ′′ are twin motives if for every e ∈ E
we have that v′ ∈ e if and only if v′′ = τ(v′) ∈ e.

Lemma 1.2.7 Let �′ be a duplicated motif in �, and let v0 ∈ V0 be a neighbor of
some v′ ∈ V ′. Then v0 is also a neighbor of v′′ = τ(v′) ∈ V ′′.

Proof Since v0 ∈ V0 is fixed by the automorphism τ , and since τ maps the edge e
containing v0 and v′ onto an edge τ(e) containing v′′ = τ(v′) and v0 = τ(v0), the
claim follows.

Lemma 1.2.8 Let �′ be a duplicated motif in �. Then we find a basis of eigenfunc-
tions of the Laplacian L0 of � of functions f satisfying either

1.

L0
�,�′ f (v) =

⎧
⎪⎨

⎪⎩

λ f (v) for v ∈ V ′ ∪ V ′′

−λ f (τ (v)) for v ∈ V ′′

0 for v ∈ V0

(1.28)

2. or
f (τ (v)) = f (v) for v ∈ V ′. (1.29)

The latter eigenfunctions are those of the graph �τ obtained as the quotient of �
by τ , that is, the graph with vertex set V0 ∪ V ′ and all edges induced by �.

Proof If v0 ∈ V0 and f (v0) = 0 and if f is antisymmetric, then also L0 f (v0) = 0,
since by Lemma 1.2.7 the contributions from its neighbors v′ and v′′ = τ(v′) cancel
in L0 f (v0). The result then follows from Lemma 1.2.6, since a neighborw of v ∈ V ′
is contained either in V ′ or in V0, in which case for an antisymmetric f , f (w) = 0,
and therefore, we can restrict the computation in (1.28) to the induced Laplacian,
that is, consider only the vertices in V ′.

Examples:

1. We had already looked at the example of a duplicated vertex, that is, where v′ and
v′′ are not connected, but have the same neighbors.
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2. Let V ′ consist of a single vertex v′ connected to v′′ = τ(v′) by an edge. Then
1.28 becomes

f (v′) − 1

deg� v′ f (v
′′) = λ f (v′),

that is, since f (v′′) = − f (v′),

λ = 1 + 1

deg� v′ .

3. We next duplicate an edge e = (v′
1, v

′
2). Then two eigenvalues and eigenfunctions

of L0 are obtained by solving

f (v′
1) − 1

deg� v′
1

f (v′
2) = λ f (v′

1)

f (v′
2) − 1

deg� v′
2

f (v′
1) = λ f (v′

2)

f (v) = 0 for all other v.

This yields [15]

λ = 1 ± 1√
deg� v′

1 deg� v′
2

.

4. It should nowbe clear how to analyze the duplication or twinning of othermotives.

1.2.3 Rayleigh Quotients and the Courant-Fischer-Weyl
Scheme

We now want to develop a more systematic approach for studying Laplacian spectra.
We shall employ the fundamental

Theorem 1.2.1 (Courant-Fischer-Weyl min-max principle) Let H be an
N-dimensional vector space with a positive definite scalar product (., .). Let Hk

be the family of all k-dimensional subspaces of H. Let A : H → H be a self adjoint
linear operator. Then the eigenvalues λ1 ≤ . . . ≤ λN of A can be obtained by

λk = min
Hk∈Hk

max
g(�=0)∈Hk

(Ag, g)

(g, g)
= max

HN−k+1∈HN−k+1

min
g(�=0)∈HN−k+1

(Ag, g)

(g, g)
. (1.30)

The vectors gk realizing such a min-max or max-min then are corresponding Eigen-
vectors, and the min-max spacesHk are spanned by the Eigenvectors for the eigen-
values λ1, . . . , λk , and analogously, the max-min spacesHN−k+1 are spanned by the
Eigenvectors for the eigenvalues λk, . . . , λN .
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Thus, we also have

λk = min
g(�=0)∈H,(g,g j )=0 for j=1,...,k−1

(Ag, g)

(g, g)

= max
g(�=0)∈H,(g,g�)=0 for �=k+1,...,N

(Ag, g)

(g, g)
. (1.31)

In particular,

λ1 = min
g(�=0)∈H

(Ag, g)

(g, g)
, λN = max

g(�=0)∈H
(Ag, g)

(g, g)
. (1.32)

A prf can for instance be found in [18].

Definition 1.2.7 (Ag,g)
(g,g) is called the Rayleigh quotient of g.

According to Theorem 1.2.1, the eigenvalues of L0 are given by minimax values
of

(L0 g, g)

(g, g)
= (δg, δg)

(g, g)
=

∑
e=(v,w)(g(v) − g(w))(g(v) − g(w))

∑
v deg v g(v)2

, (1.33)

that is, when we denote an eigenfunction for the eigenvalue λk by fk ,

λk = min
f :( f, f j )=0 for j=1,...,k−1

∑
e=(v,w)( f (v) − f (w))2

∑
v deg v f (v)2

. (1.34)

It is not difficult, for instance, to read off Lemma 1.2.4 from this formula.
Theorem 1.2.1 will play a fundamental role in our analysis of the spectra of

simplicial complexes and hypergraphs below. In order to see its usefulness, let us
look here at the following result.

Corollary 1.2.5 A graph with N vertices is complete if and only if its spectrum
consists of 0 as a simple eigenvalue and N

N−1 with multiplicity N − 1.
For a graph with N vertices that is not complete, we have

λ2 ≤ 1 and λN >
N

N − 1
. (1.35)

Proof By Theorem 1.2.1,

λ2 = min
g: ∑

v deg v g(v)=0

(L0 g, g)

(g, g)
. (1.36)

When � is not complete, we can find two vertices v1, v2 that are not connected by
an edge, and take g with g(v1), g(v2) �= 0, but

deg v1 g(v1) + deg v2 g(v2) = 0 and g(v) = 0 for all other v. (1.37)
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Inserting this into the Rayleigh quotient 1.36 makes that expression 1, and the min-
imum therefore is ≤ 1. We leave the second inequality of 1.35 as an exercise.

FromCorollary 1.2.5 we see that the complete graphs KN are completely determined
by their spectrum. Thus, there are no other graphs that are isospectral with KN . There
do not even exist graphs whose spectrum is very close to that of KN . In fact, not only
do we have λ2 ≤ 1 = N−1

N−1 for non-complete graphs, but Das and Sun [19] proved
that for all non-complete graphs we also have

λN ≥ N + 1

N − 1
, (1.38)

with equality if and only if the complement graph (that is, the graph that connects
precisely those vertices that are not neighbors in the graph under consideration) is a
single edge or a complete bipartite graph with both parts of size N−1

2 . More precise
results in this direction can be found in [20].

Corollary 1.2.6 Eigenfunctions for different eigenvalues of L0 are orthogonal to
each other w.r.t. (., .)V . In particular, all the eigenfunctions f for λk with k ≥ 2 are
orthogonal to the constants (the eigenfunctions for λ1 = 0) and satisfy therefore

∑

v

deg v f (v) = 0. (1.39)

1.2.4 Cheeger-Type Estimates

In this section,we only provide a survey of results, but no proofs. Aswe have seen, the
spectrum of a graph can tell us its number of connected components (the multiplicity
of the eigenvalue 0), whether it is bipartite (if and only if it has the eigenvalue 2) or
complete (see Corollary 1.2.5), and it can indicate node duplications [15]. In fact,
the spectrum reflects the general symmetries of a graph [17].

But the spectrum controls many further qualitative properties of a graph by
inequalities relating eigenvalues to other quantities characterizing graphs. In particu-
lar, we have the so-called Cheeger-type estimates, the first of which were discovered
by Dodziuk [21] and Alon and Milman [22].

In fact, these estimates concern a quantity that had already been introduced by
Pólya and Szegö [23] into graph theory, but the estimate was inspired by Cheeger’s
estimate for an analogous constant in Riemannian geometry. The (Polya)-Cheeger
constant is defined as

h := min
S

|E(S, S)|
min(vol(S), vol(S))

, (1.40)

where |E(S, S)| denotes the number of edges between the two complementary sub-
sets S, S of the vertex set V , and
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vol(S) :=
∑

v∈S
deg v. (1.41)

Thus, the aim is to cut the graph into two large vertex sets with few connections
between them. That is, we want to cluster the vertex set. The result of [21, 22] then
is

Theorem 1.2.2 The eigenvalue λ2 of a connected graph satisfies

1

2
h2 ≤ 1 −

√
1 − h2 ≤ λ2 ≤ 2 h. (1.42)

We do not provide the proof here which can be found, for instance, also in [10, 11].
A systematic general treatment will be given in [24].

The inequality 1.42 tells us that the first nonzero eigenvalue λ2 of a connected
graph measures how different that graph is from a disconnected one (where both that
eigenvalue and h would be 0). We also recall that the largest eigenvalue λN is = 2 if
and only if the graph is bipartite. We may therefore ask whether in general 2 − λN

could also tell us how different a graph is from being bipartite. That works, indeed,
and there is a dual Cheeger constant that bounds the largest eigenvalue [25, 26] (or
a bipartiteness ratio [27]). It is defined as

h̄ := max
partitions V=V1�V2�V3

|E(V1, V2)|
vol(V1) + vol(V2)

. (1.43)

This constant is = 1 if and only if the graph is bipartite (we take V1, V2 as the two
classes of the bipartite graph and V3 = ∅). It satisfies an analogue of (1.42),

2h̄ ≤ λN ≤ 1 +
√
1 − (1 − h̄)2.

The two constants h and h̄ are related to each other [26].
We also have another characterization of h.

Theorem 1.2.3 For every connected graph,

h = min
f :V→R non constant

max
t∈R

∑
v∼w

∣∣ f (v) − f (w)
∣∣

∑
v∈V deg v · ∣∣ f (v) − t

∣∣

and
1

2
h ≤ min

f :V→R s.t.
∑

v∈V deg v· f (v)=0

∑
v∼w

∣∣ f (v) − f (w)
∣∣

∑
v∈V deg v · ∣∣ f (v)

∣∣ ≤ h.

For background on this result and the relation of the Cheeger constant with Rayleigh
quotients, we refer to [28–35]. The nodal sets of an eigenfunction f2 for λ2, that
is V± := {v ∈ V : ± f2 > 0} are connected and, according to the characterization in
Theorem 1.2.3, there are only few edges between V+ and V−. Thus, they provide
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natural clusters for the graph. A general survey of spectral clustering of graphs is
found in [36].

There is, however, no analogue for h̄ of Theorem 1.2.3, although optimal sets
V1, V2 in 1.43 should have few internal connections and therefore yield some structure
that approaches a bipartite one. Therefore, in [37], another quantity was introduced,

Q := max
e=(v,w)

(
1

deg v
+ 1

degw

)
.

We also need

τ := max
e=(v,w):degw≥deg v

(
(degw − deg v + N ) · deg v

deg v + degw

)
.

We then have the result of [37] which draws upon the duality between L0 and L1.

Theorem 1.2.4 For every graph,

Q = max
γ :E→R

∑
v∈V

1
deg v

·
∣∣∣∣
∑

ein:v input γ (ein) − ∑
eout:v output γ (eout)

∣∣∣∣
∑

e∈E |γ (e)|
and

Q ≤ λN ≤ Q · τ.

We also have

Q = max
�̂⊂� bipartite

∑
v∈V

deg�̂ (v)

deg�(v)

|E(�̂)| .

The last equation shows why Q is related to bipartiteness.

1.2.5 Generalizations and Extensions

1.2.5.1 Weighted Graphs

We can put weights on the vertices and/or the edges of a graph. When the vertex
weights are denoted by wi and the edge weights by we or wi j for e = (i, j), and we
then require the symmetry

wi j = w j i , (1.44)
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( f, g)V :=
∑

i

wi f (i)g(i) for f, g : V → R (1.45)

(γ, ω)E :=
∑

e

weγ (e)ω(e) for γ, ω : E → R. (1.46)

In order to avoid problems, itmight be good to require that all weights are nonnegative
and every vertex supports at least one edge with a positive weight. (Formally, we
could put we = 0 to indicate that the edge e is not present, that is, e /∈ E . Thus, an
ordinary graph has weight 1 for all e ∈ E and weight 0 for all e /∈ E .) In order to
define an adjoint δ∗ of the boundary operator δ as above, these two products have to
be compatible in the sense that

wi =
∑

j

wi j . (1.47)

In fact, from this perspective, for a graph without edge weights, as considered above,
deg i are the naturalweights for the vertices i . In some situations, like neural networks,
it might be natural to also admit negative edge weights (for inhibitory connections).
In that case, we need to assume that wi �= 0 in 1.47 for all vertices, in order to be
able to define our Laplacian.

That definition then is a simple and natural generalization of 1.2:

L0 f (i) := f (i) − 1

wi

∑

j

wi j f ( j). (1.48)

And the preceding scheme can then be used to define L1 analogously. We don’t spell
out the details here as such a scheme will come up again when we discuss simplicial
complexes.

In summary, the spectral theory for weighted graphs (with the restrictions that we
have imposed here) is not principally different from that of unweighted graphs.

1.2.5.2 Directed Graphs

When we allow for directed edges, going for instance from i to j , but not back
from j to i , or more generally, give up the symmetry 1.44 in the weighted case, the
theory becomes very different. The Laplacians, defined as in 1.2 or in 1.48, then
are no longer self-adjoint, and consequently, their spectrum need no longer be real.
Complex eigenvaluesmay occur. A corresponding theory has been developed in [38].
So far, however, this has not yet been pursued much, and systematic applications to
real data have not yet been carried out, althoughmanynetworks are naturally directed.
Examples range from neural networks to weblinks or citations.

Importantly, chemical reaction networks should be modelled by directed hyper-
graphs. This calls for the development of the corresponding theory.



22 R. Mulas et al.

1.2.5.3 Signed Graphs

There is another version that, in contrast to directed graphs, supports a Laplacian
with a real spectrum.

Definition 1.2.8 A signedgraph� consists of a vertex setV and a set E of undirected
edges with a sign function

s : E → {+1,−1}. (1.49)

A reference on the spectral theory of signed graphs is [39].
Such a signed graph may also carry a weight function

w : E → R+, (1.50)

but as we discussed the easy incorporation of weights into the theory already above,
we neglect that possibility here.

The sign distinguishes between positive and negative relations, like friendship vs.
hostility in a social network.

Definition 1.2.9 Let � be a signed graph. Its Laplacian is defined by

L0
s f (v) := f (v) − 1

deg v

∑

v′∼v

s(vv′) f (v′) = 1

deg v

∑

v′∼v

( f (v) − s(vv′) f (v′))

(1.51)
with deg v defined as before as the number of neighbors of v, for functions
f : V → R.

Lemma 1.2.9 L0
s is selfadjoint w.r.t. the product 1.8 ( f, g) = ∑

v deg v f (v)g(v),
and

(L0
s f, g) =

∑

v∼v′
( f (v) − s(vv′) f (v′))(g(v) − s(vv′)g(v′)) = ( f, L0

s g). (1.52)

1.2.5.4 Self-Loops

We had excluded self-loops, that is, edges of the form e = (i, i) for some vertex i .
There is no deeper reason for such an exclusion, except perhaps historical contin-
gencies in graph theory. The theory works as before when we allow for self-loops at
some or all vertices.

To seewhat happens, let us consider the graph K 0
N where each vertex i is connected

with all vertices j , including itself. We then have

L0
K 0

N
f (i) = f (i) − 1

N

∑

j

f ( j) =
(
1 − 1

N

)
f (i) − 1

N

∑

j �=i

f ( j), (1.53)
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which we may compare to the Laplacian on the complete graph KN ,

L0
KN

f (i) = f (i) − 1

N − 1

∑

j �=i

f ( j). (1.54)

The spectrum of L0
K 0

N
has the eigenvalue 0 and the eigenvalue 1, the latter with

multiplicity N − 1, whereas the corresponding eigenvalue of L0
KN

was N
N−1 .

1.3 Simplicial Complexes

1.3.1 Homology of Simplicial Complexes

Definition 1.3.1 Let � ⊂ P(V ) be a simplicial complex with vertex set V =
{v1, . . . , vN }. A collection of subsets of V , with ∅ ∈ �, S ∈ � is called a q-simplex
if it contains precisely q + 1 vertices.
When S = {vσ0 , . . . , vσq } is a q-simplex, then the ordered set [vσ0 , . . . , vσq ] is called
an oriented q-simplex. Changing the ordering by an odd permutation of the vertices
induces the opposite orientation.
Let G be an abelian group. A q-chain is a formal linear combination

cq =
m∑

i=1

giσ
i
q (1.55)

for elements gi of G and q-simplices σ i
q .

Definition 1.3.2 The boundary of an oriented q-simplex σq = [v0, v1, . . . , vq ] is
the (q − 1)-chain

∂σq :=
q∑

i=0

(−1)i (v0, . . . , v̂i , . . . , vq) for q > 0, (1.56)

and, of course, ∂σ0 = 0 for a 0-chain. Here, v̂i means that the vertex vi is omitted.
The boundary of the q-chain cq = ∑m

i=1 giσ
i
q then is, by linearity,

∂cq :=
m∑

i=1

gi∂σ i
q . (1.57)

When we want to emphasize that ∂ operates on q-chains, we shall write ∂q .

Definition 1.3.3 The q-chain cq is called closed or, equivalently, a cycle, if

∂qcq = 0. (1.58)
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The q-chain cq is called a boundary if there exists some (q + 1)-chain γq+1 with

∂q+1γq+1 = cq . (1.59)

Theorem 1.3.1
∂q−1∂q = 0 for all q. (1.60)

We shall usually abbreviate this fundamental relation as

∂2 = 0. (1.61)

Proof Because of 1.57, it suffices to show that

∂∂σq = 0 (1.62)

for any oriented q-simplex. Since Cs = 0 for s < 0, we only need to consider the
case q ≥ 2. For σq = [v0, . . . , vq ], we have

∂∂σq = ∂

q∑

i=0

(−1)i (v0, . . . , v̂i , . . . , vq )

=
q∑

i=0

(−1)i∂(v0, . . . , v̂i , . . . , vq )

=
q∑

i=0

(−1)i

⎛

⎝
i−1∑

j=0

(−1) j (v0, . . . , v̂ j , . . . , v̂i , . . . , vq )

+
q∑

j=i+1

(−1) j−1(v0, . . . , v̂i , . . . , v̂ j , . . . , vq )

⎞

⎠

=
∑

j<i

(−1)i+ j (v0, . . . , v̂ j , . . . , v̂i , . . . , vq )

+
∑

j>i

(−1)i+ j−1(v0, . . . , v̂i , . . . , v̂ j , . . . , vq ),

and exchanging i and j in the last sum gives the result.

Definition 1.3.4 The quotient group

Hq(�,G) := ker ∂q/im∂q+1 (1.63)

is called the qth homology group (with coefficients in G) of the simplicial complex
�.

When � is a simplicial complex and G is an abelian group G, we can define the
group of q-cochains

Cq(�,G) := Hom(Cq(�),G). (1.64)
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We then get the coboundary operators

δq : Cq(�,G) → Cq+1(�,G)

φ �→ φ ◦ ∂q .

Explicitly,

(δq f )([v0, . . . , vq+1]) =
q+1∑

j=0

(−1) j f ([v0, . . . , v̂ j . . . vq+1]). (1.65)

From Theorem 1.3.1, it follows that

δq ◦ δq−1 = 0. (1.66)

We can therefore proceed to

Definition 1.3.5 The qth cohomology group of the simplicial complex� with coef-
ficients in the abelian group G is

Hq(�,G) := ker δq/imδq−1. (1.67)

1.3.2 Laplace Operators on Simplicial Complexes

In this section, we develop the theory of [13]. � is a simplicial complex. [F] will
denote an oriented simplex, that is, an ordered set [v0, . . . , vq ] of vertices. Also, for
the abelian group G of the previous section, we take the real field R. The cochain
groups Cq(�, R) then are vector spaces over R.

Definition 1.3.6 The dimension bq(�) of Hq(�, R) is called the qth Betti number
of �.

Also, concerning the orientations, we have for any φ ∈ Cq(�, R),

φ(−σq) = −φ(σq), (1.68)

that is, changing the orientation yields a minus sign.

Definition 1.3.7 The adjoint (δq)∗ : Cq+1(�, R) → Cq(�, R) of the coboundary
operator δq is defined by

(δq f, g)Cq+1 = ( f, (δq)∗g)Cq ,

for f ∈ Cq(�, R) and g ∈ Cq+1(�, R), where ( , )Cq denotes the inner product on
the Cq(�, R) = Cq for short.
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We then have the arrows

Cq−1(�, R)
δq−1−−→←−−−
δq−1∗ C

q(�, R)
δq−−→←−−
δq∗ Cq+1(�, R), (1.69)

enabling us to define the following three operators on Cq(�, R):

Definition 1.3.8 (i) The q-dimensional combinatorial up Laplace operator or sim-
ply q-up Laplace operator of the simplicial complex � is

Lq
up := (δq)∗δq ,

(ii) the q-dimensional combinatorial down Laplace operator or q-down Laplace
operator

Lq
down := δq−1(δq−1)∗,

(iii) the q-dimensional combinatorial Laplace operator or q-Laplace operator

Lq := Lq
up + Lq

down = (δq)∗δq + δq−1(δq−1)∗.

For q = 0, that is, when we look at the operators on the vertices of a simplicial
complex, we have L0

down = 0, and hence

L0 = L0
up. (1.70)

Similarly, for q = dim�, the up-Laplacian vanishes, and

Ldim� = Ldim�
down . (1.71)

The operators Lq
up, L

q
down and Lq are obviously self-adjoint. Also

Lemma 1.3.1 The operators L = Lq
up, L

q
down, L

q are nonnegative, that is, they sat-
isfy

(L f, f ) ≥ 0 for all f ∈ Cq . (1.72)

Proof We have, generalizing (1.14),

(Lq
up f, f ) = ((δq)∗δq f, f ) = (δq f, δq f ) ≥ 0 (1.73)

(Lq
down f, f ) = (δq−1(δq−1)∗ f, f ) = ((δq−1)∗ f, (δq−1)∗ f ) ≥ 0 (1.74)

(Lq f, f ) = (δq f, δq f ) + ((δq−1)∗ f, (δq−1)∗ f ) ≥ 0. (1.75)

In particular, from 1.73-1.75
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Corollary 1.3.1

Lq
up f = 0 if and only if δq f = 0 (1.76)

Lq
down f = 0 if and only if (δq−1)∗ f = 0 (1.77)

Lq f = 0 if and only if δq f = 0 and (δq−1)∗ f = 0. (1.78)

Since the operators Lq
up, L

q
down and Lq are self-adjoint, nonnegative operators on

finite-dimensional Hilbert spaces, we have

Theorem 1.3.2 The eigenvalues of the operators Lq
up(�), Lq

down(�) and Lq(�) are
real and nonnegative.

Corollary 1.3.1 characterizes the eigenvalue 0. The other eigenvalues then are pos-
itive. Furthermore, Theorem 1.2.1 tells us that the eigenvalues admit a variational
characterization

We can easily prove Eckmann’s theorem [40], which is a discrete version of the
Hodge theorem.

Theorem 1.3.3 For a simplicial complex �,

ker Lq(�) ∼= Hq(�, R).

Thus, the multiplicity of the eigenvalue 0 of the operator Lq(�) equals the dimension
of Hq(�, R), that is, the Betti number bq .

Proof By 1.78,

ker Lq(�) = ker δq ∩ ker δq−1∗

= ker δq ∩ (imδq−1)
⊥

∼= Hq(�, R).

Also, one readily checks that dim Hq(�, R) = dim Hq(�, R) = bq .

While cohomology groups, like homology groups, were defined as quotients, that is,
as equivalence classes of elements of Cq , Theorem 1.3.3 provides us with concrete
representatives in Cq of those equivalence classes, the so-called harmonic cocycles.

We note that Eckmann’s Theoremdoes not depend on the choice of scalar products
on the spaces Cq (although the harmonic cocycles do). That theorem is concerned
with the eigenvalue 0 of the Laplacian. We shall now investigate the nonzero part of
the spectrum.

Since δqδq−1 = 0 and δq−1∗
δq∗ = 0 (recall 1.69),

imLq
down(�) ⊂ ker Lq

up(�), (1.79)

imLq
up(�) ⊂ ker Lq

down(�). (1.80)
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Therefore, λ is a nonzero eigenvalue of Li (�) if and only if it is a nonzero eigenvalue
of either Lq

up(�) or Lq
down(�). Therefore, the nonzero parts of the spectra satisfy

spec �=0(L
q(�)) = spec �=0(L

up
i (�)) ∪ spec �=0(L

down
i (�)). (1.81)

The multiplicity of the eigenvalue 0 may be different, however.
Since spec �=0(AB) = spec �=0(BA), for linear operators A and B onHilbert spaces,

we get the following equality.

spec �=0(L
q
up(�)) = spec �=0(L

q+1
down(�)). (1.82)

From (1.81) and (1.82) we conclude that each of the three families of multisets

{spec �=0(L
q(�)) | 0 ≤ q ≤ m}, {spec �=0(L

q
up(�)) | 0 ≤ q ≤ m − 1}

or {spec �=0(L
q
down(�)) | 1 ≤ q ≤ m}

determines the other two. Therefore, it suffices to consider only one of them. In the
sequel, we shall often omit the argument � from our Laplace operators.

We now look at scalar products on the spaces of cochains, as needed for the
definition of the Laplace operators. Here, we only consider positive inner products,
and when we shall speak about a scalar product in the sequel, we shall always assume
that it be positive definite.

Each simplex generates a cochain, consisting of its real multiples. We assume
that the cochains generated by different simplices are orthogonal to each other. This
restricts the possible scalar products. A scalar product with this property can be
obtained from a weight function w that associates to every simplex σ a positive real
number. In fact, any such positive inner product on the spaceCq(�, R) can bewritten
in terms of a weight function w as

( f, g)Cq =
∑

σ∈Sq
w(σ) f ([σ ])g([σ ]), (1.83)

where Sq is the space of q-simplices by Sq . In the sequel, we shall write
sgn([σ ], [σ ′]) = ±1 for two orientations of a simplex when those orientations coin-
cide/differ. We also write ∂σ for the cellular boundary of a simplex, that is, for the
collection of its facets.

By simple linear algebra, the q-up Laplace operator is then given by

(Lq
up f )([σ ]) =

∑

ρ∈Sq+1:
σ∈∂ρ

w(ρ)

w(σ)
f ([σ ])

+
∑

σ ′∈Sq :σ �=σ ′,
σ,σ ′∈∂ρ

w(ρ)

w(σ)
sgn([σ ], ∂[ρ])sgn([σ ′], ∂[ρ]) f ([σ ′]), (1.84)
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and the q-down Laplace operator is

(Lq
down f )([σ ]) =

∑

τ∈∂σ

w(σ)

w(τ)
f ([σ ])

+
∑

σ ′ :σ∩σ ′=τ

w(σ ′)
w(τ)

sgn([τ ], ∂[σ ])sgn([τ ], ∂[σ ′]) f ([σ ′]). (1.85)

For our purposes, however, we need some relation between theweights in different
dimensions.

Definition 1.3.9 The degree of a q-simplex σ of � is

deg σ :=
∑

ρ∈Sq+1(�):σ∈∂ρ

w(ρ). (1.86)

Definition 1.3.10 If the weight function w on � satisfies

w(σ) = deg σ, (1.87)

for every σ ∈ Sq(�), we call the Laplace operator defined on the cochain complex
of � the weighted normalized combinatorial Laplace operator. If in addition the
weights of the facets of � are equal to 1, then the Laplace operator is called the
normalized combinatorial Laplace operator.

When 1.87 holds, 1.84 simplifies to become

(Lq
up f )([σ ]) = f ([σ ])
+ 1

deg σ

∑

σ ′∈Sq :σ �=σ ′,
σ,σ ′∈∂ρ

w(ρ)sgn([σ ], ∂[ρ])sgn([σ ′], ∂[ρ]) f ([σ ′]). (1.88)

In the following, we discuss only the results related to the normalized combina-
torial Laplace operator; the results for a more general case can be found in [12, 13].

1.3.3 Spectra of Simplicial Complexes

In the following, we restrict our analysis of Lq
up(�) to pure, (q + 1)-dimensional

simplicial complexes. It follows from the definition that simplices of dimension lower
than q − 1 and higher than q + 1 will have no influence on the non-zero spectrum
of Lq

up(�).
We could refine the class of relevant simplicial complexes even further, without

any loss of generality , by limiting our attention to q-path connected components.
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Definition 1.3.11 A simplicial complex� is q-path connected if and only if for any
two q-faces E, F of� there exists a sequence of q-simplices E = F0, F1, . . . , Fn =
F , such that every two neighbouring simplices intersect in a (q − 1)-face, i.e., they
are (q − 1)-down neighbours. The maximal q-path connected subcomplexes of �

are called q-path connected components.

Any two q-path connected components share faces of dimension q − 2, at most,
therefore spec�=0(L

q
up(�)) is a multiset union of its q-path connected components.

Hence, without loss of generality we shall assume that simplicial complexes in the
subsequent analysis are pure and q + 1- path connected.

We first generalize Lemma 1.2.4

Lemma 1.3.2 All eigenvalues of Lq
up satisfy

0 ≤ λ ≤ q + 2. (1.89)

Proof The spectrum of any bounded symmetric operator on a Hilbert space is real.
Operator Lq

up is self-adjoint, thus symmetric, hence its eigenvalues are real. The
non-negativity follows from the Courant-Fischer-Weyl theorem and non-negative
weights.

Furthermore, for every f ∈ Cq(�, R)

(Lq
up f, f ) = (δ f, δ f )

= (
∑

F̄∈Sq+1(�)

f (∂[F̄]) e[F̄],
∑

F̄∈Sq+1(K )

f (∂[F̄]) e[F̄])

=
∑

F̄∈Sq+1(K )

f (∂[F̄])2w(F̄)

≤ (q + 2)
∑

F∈Sq (K )

f ([F])2
∑

F̄∈Sq+1(K ):F∈∂ F̄

w(F̄) (1.90)

= (q + 2)
∑

F∈Sq (K )

f ([F])2 deg F (1.91)

= (q + 2)( f, f ). (1.92)

Here eF̄ denotes the elementary functional and (1.90) is obtained by using the
Cauchy-Schwarz inequality. From (1.92) and the Courant-Fischer-Weyl min-max
principle (Theorem 1.2.1) it follows that λ ≤ q + 2 for all λ ∈ spec(Lq

up)

The exact number of zero eigenvalues in the spectrum of Lq
up is given in the

following theorem.

Theorem 1.3.4 The multiplicity of the eigenvalue zero in spec(Lq
up) is

dimCq −
q∑

i=0

(−1)i+q(dimCi − dim Hi ), (1.93)
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or equivalently

dimCq +
dim K−q∑

i=1

(−1)i (dimCq+i − dim Hq+i ). (1.94)

Proof The following are short exact sequences that split

0 → ker δq → Cq → im δq → 0,

0 → im δq−1 → ker δq → Hq → 0.

This is a direct consequence of the fact that im δq and Hq are projective modules.
Therefore,

dimCq = dim ker δq + dim im δq , (1.95)

and
dim ker δq = Hq + dim im δq−1. (1.96)

From (1.95) and (1.96)

dim im δq =
q∑

i=0

(−1)q+i (dimCi − dim Hi ).

The number of zeros in the spectrum of Lq
up is equal to the dimension of its kernel,

thus

dim ker Lq
up = dim ker δq

= dimCq −
q∑

i=0

(−1)q+i (dimCi − dim Hi ).

The expression (1.94) for the number of zeros in spec(Lq
up) is easily obtained by using

the Euler characteristic and the equality χ = ∑dim�
i=0 (−1)i dimCi =∑dim�

i=0 (−1)i dim Hi .

Corollary 1.3.2 Let � be a pure simplicial complex of dimension q + 1, then the
number of zero eigenvalues in the spectrum of Lq

up(�) is dimCq − dimCq+1 +
dim Hq+1.

Using the above results, we can derive some lower bounds for the maximal eigen-
value of Lq

up(�).

Theorem 1.3.5 Let � be a pure simplicial complex of dimension q + 1; let λm be
the maximum eigenvalue in the spectrum of Lq

up, then
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dimCq

(dimCq+1 − dim Hq+1)
≤ λm . (1.97)

Proof The sum of all eigenvalues is equal to the trace of the Laplace matrix, and in
the case of the normalized Laplacian, the trace of the q-dimensional upper Laplacian
equals the number of q-simplices.

The number of zero eigenvalues in the spectrum of Lq
up according to Corollary

1.3.2 is dimCq − dimCq+1 + dim Hq+1. Thus, the number of non-zero eigenvalues
in Lq

up is exactly dimCq+1 − dim Hq+1. Hence,

dimCq

(dimCq+1 − dim Hq+1)
≤ λm,

which proves the theorem. �

Note that for q = 0 (i.e., for graphs) inequality (1.97) reduces to V
(E−dim H 1)

=
V

(V−1) ≤ λm , and it attains the lower bound when the underlying graph is com-
plete. Interestingly, when � is a q + 1-dimensional simplex, then from 1.97 it fol-
lows that q + 2 ≤ λm ; together with the inequality from Lemma 1.3.2 we conclude
λm = q + 2.

The upper bound for the spectrum of the normalized graph Laplacian (q = 0) is
2 and is attained for bipartite graphs. There are many possible characterisations of
bipartite graphs, the one that we will consider in this section is

Definition 1.3.12 A 1-dimensional simplicial complex (a graph) is bipartite if and
only if it has no cycles of odd length.

We shall then see that we can generalize the characterization of bipartite graphs,
as attaining the upper bound 2 for the largest eigenvalue, for the upper bound q + 2
of spec(Lq

up(�)). We shall start with the definition of high dimensional cycles, which
we shall refer to as circuits, to avoid the confusion with co-chain cycles.

Definition 1.3.13 A pure simplicial complex � of dimension q is called a q-path
of length m if there is an ordering of its q-simplices F1 < F2 < . . . < Fm , such that
Fi and Fj are (q − 1)-down neighbours if and only if | j − l |= 1; � is an i -circuit
of length (m − 1) when Fm = F1.

Theorem 1.3.6 Let� be a pure q-connected simplicial complex, then the following
statements are equivalent:

(1) q + 2 is an eigenvalue of Lup
q (�),

(2) There are no (q + 1)-orientable circuits of odd length nor (q + 1)-non ori-
entable circuits of even length in �.

The following holds
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(Lq
up(�) f, f ) =

∑

F̄∈Sq+1(�)

f (∂[F̄])2w(F̄)

≤(q + 2)
∑

F∈Sq (�)

f ([F])2 deg(F). (1.98)

The equality in (1.98) is reached if and only if there exists a function f ∈ Cq(�, R),
such that

sgn([Fi ], ∂[F̄]) f ([Fi ]) = sgn([Fj ], ∂[F̄]) f ([Fj ]),

for every F̄ in Sq+1 and every Fi , Fj ∈ ∂ F̄ . Thus, | f ([F])| is a constant for every
F ∈ Sq(�); without loss of generality we shall assume further that | f ([F])|= 1,
then f ([F]) is equal either to sgn([F], ∂[F̄]) or−sgn([F], ∂[F̄]), for every F ∈ ∂ F̄ .
Therefore, f could be viewed as a choice of orientation on the (q + 1)-skeleton of�.

Theorem 1.3.7 The existence of a function f satisfying the equality in (1.98) is
equivalent to the existence of an orientation on the (q + 1)-skeleton of �, for which
any two (q + 1)-simplices intersecting in a common q-face induce the same ori-
entation on the intersecting simplex (This condition is opposite to the condition of
coherently oriented simplices).

Proof (Proof of Theorem 1.3.6) (1) ⇒ (2) proceeds by contradiction.
Assume that there exists a (q + 1)-orientable circuit of odd length,whoseq-simplices
F1,. . ., F2m+1 are ordered as suggested in Definition 1.3.13. Then it is possible to
orient these simplices in such a way that every two neighbouring simplices induce
different orientations on their intersecting face. Denote these oriented simplices by
[F1], . . . , [F2m+1]. In order to have the same orientation induced on the intersecting
face, we reverse the orientation of every simplex [Fk], for k even. Thus, [Fi ] and
−[Fi+1] induce the same orientation on [Fi ∩ Fi+1], for every 1 ≤ i ≤ 2m. However,
[F1] and [F2m+1] remain coherently oriented, which contradicts Theorem 1.3.7. The
analysis for the case of (n + 1)-non-orientable circuits is analogous.

(2) ⇒ (1) proceeds by contradiction. We shall assume (2) and ¬(1), i.e. q +
2 /∈ spec(Lq

up(�)); by Theorem 1.3.7 the former is equivalent to non-existence of
an orientation which induces incoherent orientations on neighbouring q-simplices.
Namely, any attempt to assign incoherent orientations to neighbouring simplices
would eventually result in two neighbouring simplices with coherent orientations.

More precisely, let Fi1 be an arbitrary (q + 1)-face of �; and let [Fi1] be the
initial positively oriented face. Let [Fi1i2...im ] be a (q + 1)-face of � which shares
a q-face with [Fi1i2...im−1]; assume both faces induce the same orientation on their
intersecting face and are oriented incoherently. Then by ¬(1) this construction will
eventually lead us to a point where Fi1i2...im ≡ Fi1i2...ik , but [Fi1i2...im ] = −[Fi1i2...ik ].
Notice that by construction, {Fi1i2...im , Fi1i2...im+1 , . . . , Fi1i2...ik } is a circuit. However,
the only circuits which do not admit incoherent orientations are odd orientable or
even non-orientable circuits, which contradicts (2).
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1.3.4 Spectra of Some Special Classes of Simplicial
Complexes

In this section we shall fully describe the spectrum of Lq
up(�) for some basic classes

of simplicial complexes:

• (n − 1)-simplex
• n- path
• n-circuit
• n-star

Theorem 1.3.8 Let � be a simplex on n vertices, i.e., an (n − 1)-dimensional sim-
plex. Then

spec(Lq
up(�)) =

{
0((n−1

q )),
n

n − q − 1

((n−1
q+1))

}
.

Proof We shall proceed to construct an eigenfunction f ∈ Cq(�, R), corresponding
to the Eigenvalue n

n−q−1 . In particular,

f = f[F̄]([F]) =
{
sgn([F], ∂ ¯[F]) if F is facet of (q + 1)-face F̄

0 otherwise.

There are exactly
(n−1
q+1

)
linearly independent functions of this form. In the following,

we shall verify that the equality

(Lq
up f[F̄])[F] = n

n − q − 1
f ([F])

holds for every q-dimensional face F of �. We shall distinguish three possibilities
for F and F̄ :
(i) F is an arbitrary facet of F̄ . Then,

(Lq
up f[F̄])([F]) =

∑

Ē∈Sq+1:
F∈∂ Ē

w(Ē)

w(F)
f[F̄]([F])

+
∑

F ′∈Sq (L):
(∃Ē∈Sq+1(L))F,F ′∈∂ Ē

w(Ē)

w(F)
sgn([F], ∂ ¯[E])sgn([F ′], ∂ ¯[E]) f[F̄]([F ′])

= 1

n − q − 1

∑

Ē∈Sq+1:
F∈∂ Ē

f[F̄](F)

+ 1

n − q − 1

∑

F ′∈Sq (L):
(∃Ē∈Sq+1(L))F,F ′∈∂ Ē

sgn([F], ∂ ¯[E])sgn([F ′], ∂ ¯[E]) f[F̄]([F ′])

= f[F̄]([F]) + q + 1

n − q − 1
sgn([F], ∂ ¯[F])

= n

n − q − 1
f ([F]).
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(i i) F and F̄ have q vertices in common, i.e., their intersection is a face of dimension
q − 1.
Then by definition f F̄ ([F]) = 0. Let v0, v1, . . . , vq+2 ∈ [n] be arbitrary vertices of
�; then we shall assume without loss of generality that F̄ = [v0, . . . , v̂l , . . . , vq+2]
and [F] = [v0, . . . , v̂ j , . . . , v̂k, . . . , vq+2] for 0 ≤ j < k < l ≤ q + 2. Therefore,
there are exactly two q-faces, F1 and F2, in the boundary of F̄ , and two (i + 1)-
simplices, F̄1 and F̄2, of �, such that F, F1 ∈ ∂ F̄1 and F, F2 ∈ ∂ F̄2. In partic-
ular, F1 = [v0, . . . , v̂k, . . . , v̂l , . . . , vi+2], F2 = [v0, . . . , v̂ j , . . . , v̂l , . . . , vi+2] and
F̄1 = [v0, . . . , v̂k, . . . , vi+2], F̄2 = [v0, . . . , v̂ j , . . . , vi+2]. Now it is straightforward
to calculate

(Lq
up f[F̄])([F]) = 0 + sgn([F], ∂[F̄1])sgn([F1], ∂[F̄1]) f[F̄])([F1])

+ sgn([F], ∂[F̄2])sgn([F2], ∂[F̄2]) f[F̄])([F2])
= sgn([F], ∂[F̄1])sgn([F1], ∂[F̄1])sgn([F1], ∂ ¯[F])

+ sgn([F], ∂[F̄2])sgn([F2], ∂[F̄2])sgn([F2], ∂ ¯[F])
= (−1) j (−1)l−1(−1)k + (−1)k−1(−1)l−1(−1) j

= 0.

(i i i) F and F̄ have less than q vertices in common.
Obviously, there are no faces in the boundary of F̄ which are (q + 1)-up neighbours
of F . This implies that Lq

up f ([F]) = 0, which completes the proof.

Remark Let K be a q + 1-combinatorial manifold, possibly with boundary. Then,
by orienting it, that is by orienting its (q + 1)-simplices coherently, we in fact choose
a basis Bq+1(�) of the vector space Cq+1(�, R) consisting of elementary (q + 1)-
chains [F̄] that are oriented coherently.

For the subsequent calculations, the following elementary result will be useful.

Lemma 1.3.3 When two matrices M and P commute, i.e., MP = PM, and when
λ is a simple eigenvalue of P, then its corresponding eigenvector v is also an eigen-
vector of M.

Proof Let Pv = λv. Then PMv = MPv = λMv, and so, Mv is an eigenvector of
P for λ. Since λ is simple, it must be a multiple of v.

Theorem 1.3.9 Let � be an orientable n-circuit of length m. Then the eigenvalues
of Ln

down(�) are n − cos(2π i/m), i = 0, 1, . . .m − 1.

Proof Let F1 < F2 < . . . < Fm be the ordering of n-simplices of � satisfying the
conditions of Definition 1.3.13; and let [F1], [F2], . . . , [Fm] be a coherent orientata-
tion. Let p : Cn(�, R) → Cn(�, R) be a map, such that p([Fi ]) = [Fi+1], for all
1 ≤ i < m, and p([Fm]) = [F1].

It is not difficult to check that
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Fig. 1.1 Examples of
2-circuits

(a) 2-circuit of length 6 (b) 2-circuit of length 6

pLn
down = Ln

down p (1.99)

Let P be the matrix associated to the mapping p. P is a permutation matrix and
its characteristic polynomial is λm − 1 = 0. Eigenvectors of P are Uθ = (1, θ,

θ2, . . . θm−1)T , where θ is the m-th root of unity. Thus, the eigenfunctions of the
map p are uθ ([Fi ]) = θ i−1.

With Lemma 1.3.3, we can now easily calculate the eigenvalues of Ln
down .

Let Ei := Fi−1 ∩ Fi for 2 ≤ i ≤ m − 1 and let Em := Fm ∩ F1. We have

Ln
downuθ ([Fi ]) =

∑

E∈Sn−1(L):
E∈∂Fi

w(Fi )

w(E)
θ i−1

+ w(Fi )

w(Ei )
sgn([Ei ], ∂[Fi ])sgn([Ei ], ∂Fi−1)θ

i−2

+ w(Fi )

w(Ei+1)
sgn([Ei+1], ∂[Fi ])sgn([Ei+1], ∂[Fi+1])θ i

= (
2

2
+ n − 1)θ i−1 − 1

2
θ i−2 − 1

2
θ i

= θ i−1(i − θ−1 + θ

2
)

= θ i−1(n − cos(
2π i

m
)).

It is straightforward to check that a similar equality holds for i = 1 and i = m.
Therefore the non zero spectrumof Ln

down is {n − cos(2π i/m) | i = 0, 1, . . .m − 1}.

Remark The eigenvalues of an orientable n-circuit depend only on its length, thus
there are different combinatorial structureswhich give the same eigenvalues of Ln

down .
For example, 1, 1.5, 1.5, 2.5, 2.5, 3 are the eigenvalues of L2

down of both simplicial
complexes in Fig. 1.1.

An analysis similar to the one above can be carried out for a non-orientable n-circuit
of length m. In that case we define p to be
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p([Fk]) =
{ [Fk+1] , for 1 ≤ k < m

−[F1] , for k = m.
(1.100)

The remaining calculations are carried out as in Theorem 1.3.9. Thus,

Theorem 1.3.10 Let � be a non-orientable n-circuit of length m. Then the eigen-
values of Ln

down(�) are n − sin(2π i/m) for m even and n + cos(2π i/m) for m odd,
where i = 0, 1, . . .m − 1.

Proof The characteristic polynomial of the permutation matrix corresponding to the
map p from (1.100) is

det

∣∣∣∣∣∣∣∣∣

−λ 1 0 . . . 0
0 −λ 1 . . . 0

0 0
. . .

. . .
...

−1 0 . . . . . . −λ

∣∣∣∣∣∣∣∣∣

=

=(−1)m+1 det

∣∣∣∣∣∣∣∣∣

1 0 . . . 0
−λ 1 . . . 0

0
. . .

. . .
...

0 . . . −λ 1

∣∣∣∣∣∣∣∣∣

+ (−λ)m+m det

∣∣∣∣∣∣∣∣∣

−λ 1 0 . . . 0
0 −λ 1 . . . 0

0 0
. . .

. . .
...

0 0 . . . . . . −λ

∣∣∣∣∣∣∣∣∣

=(−1)m+1 + λm .

Thus form odd, the characteristic polynomal of the permutation matrix P is λm + 1.
The Eigenvectors of P are Uθ = (−1,−θ, (−θ)2, . . . , (−θ)m−1)T , where θ is the
m-th root of unity. Using Lemma 1.3.3, we can now easily calculate the eigenvalues
of Ln

down .
Let Ek := Fk−1 ∩ Fk for 2 ≤ k ≤ m − 1 and let Em := Fm ∩ F1. We have

Ln
downuθ ([Fk]) =

∑

E∈Sn−1(L):
E∈∂Fk

w(Fk)

w(E)
(−θ)k−1

+ w(Fk)

w(Ek)
sgn([Ek], ∂[Fk])sgn([Ek], ∂Fk−1)(−θ)k−2

+ w(Fk)

w(Ek+1)
sgn([Ek+1], ∂[Fk])sgn([Ek+1], ∂[Fk+1])(−θ)k

= (
2

2
+ n − 1)(−θ)k−1 − 1

2
(−θ)k−2 − 1

2
(−θ)k

= (−θ)k−1(n − (−θ)−1 − θ

2
)

= (−θ)k−1(n − (− cos(
2πk

m
) + i sin(

2πk

m
)

− cos(
2πk

m
) − i sin(

2πk

m
))/2)

= (−θ)k−1(n + cos(
2πk

m
))
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If k = 1, then

Ln
downuθ ([F1]) = (

2

2
+ n − 1)(−θ)m + 1

2
(−θ)m−1 − 1

2
(−θ)1

= (−θ)m(n − (−θ)−1 − θ

2
)

= (−θ)m(n + cos(2π))

= n + 1.

Asimilar relation holds for k = m. For the casewhenm is even, the proof is analogous
to the above proof for m odd. Therefore the non-zero spectrum of Ln

down(�) is

{ {n − sin(2π i/m) | i = 0, 1, . . .m − 1} if m is even
{n + cos(2π i/m) | i = 0, 1, . . .m − 1} otherwise.

Corollary 1.3.3 The eigenvalues of Ln
down(�) of an n-path K of length m are λk =

n − cos(πk/m), for k = 0, . . . ,m − 1

Proof Since there are no self-intersections of dimension (n − 1) in an n-path, every
path is orientable. From Theorem 1.3.9, follows that in the spectrum of the n-th down
Laplacian of an n-circuit of length 2m, all eigenvalues appear twice, except (n −
1) and (n + 1). In particular, λk = n − cos(kπ/m) = n − cos((2m − k)π/m) =
λ2m−k , for k �= 0 and k �= m. Let φ = exp(ikπ/m), then the eigenvector correspond-
ing to λk , 0 ≤ k ≤ m is uk = (1, exp(ikπ/m, . . . , exp(i(2m − 1)kπ/m)T .

The function vk = uk + u2m−k is the eigenvector for the eigenvalue λk as well

vk(m) = ei
πk
m + ei

π(2m−k)
m = ei

πk
m + e−i πk

m .

It is now a straightforward calculation to see that the first m entries of vk , for
every k = 0, 1, . . .m − 1, constitute the Eigenvectors of � for the eigenvalue n −
cos(πk/m).

This idea generalizes to paths with self-intersections of dimension (n − 1), but then
it is necessary to distinguish among orientable and non-orientable paths. The eigen-
values of a star are described in the following theorem.

Theorem 1.3.11 Let� be an n-star consisting of m, n-simplices. Then the non-zero
eigenvalues of Ln

down(�) are n withmultiplicity (m − 1) and (n + 1)withmultiplicity
1.

Proof Let Fk , k ∈ {1, . . . ,m}, be an n-dimensional face of � and let
⋂

k Fk = E .
Let p : Bn(�, R) → Bn(�, R) be a mapping, such that p([Fk]) = [Fk+1]. Since
Fk ∩ Fi = E , for any two n-faces of K , we can fix the orientations on the Fk such
that they induce the same orientation on E . Now it is easy to check that

pLn
down = Ln

down p.
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Fig. 1.2 Examples of a path
and a star

(a) 2-path of length 3 (b) 2-star with 3 rays

Let θ denote an m-th root of unity different from 1 and u the eigenvector of p
corresponding to it. Then

Ln
downuθ ([Fk]) =

∑

E,E∈∂Fk

w(Fk)

w(E)
θ k−1 +

∑

F,F �=Fk

w(F)

w(E)
uθ ([F])

=nθ k−1 + 1

m
(1 + θ + . . . + θm−1)

=nθ k−1.

Thus, uθ is an eigenfunction of Ln
down(�) corresponding to the eigenvalue n. The

case when θ = 1 results in the eigenvalue n + 1 (Fig. 1.2).

1.3.5 Cheeger-Type Inequalities

It is a natural question to ask for Cheeger-type inequalities for the higher Laplacians
on simplicial complexes. There are some results for the highest order Laplacian in
[41, 42], but not much seems to be known in general.

1.4 Hypergraphs

1.4.1 The Laplacians

We present the Laplace operators on oriented hypergraphs as natural generalizations
of those on graphs, following [14, 43–46]. The basic idea underlying the definition
of an oriented hypergraph is the following. Assigning an orientation to the edge of
a graph means going from one of its vertices, considered as its tail or input, to the
other, its head or output. Reversing the orientation means changing the roles of the
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two vertices and going in the opposite direction. Thus, for an oriented hyperedge,
we distinguish now two sets of vertices and move from the tail (input) set to the
head (output) set. Here, more generally than for graphs, either of these sets could
be empty.1 Again, we can change the orientation by reversing roles and going in the
opposite direction. And since Laplacians should be related to network flows, we treat
all the members of the tail set as being parallel to each other, and the same for the
head set.

In this section, we consider an oriented hypergraph � with vertex set V and
hyperedge set H . For a vertex v, we let

deg v := ∣∣hyperedges containing v
∣∣ (1.101)

and we assume that deg v > 0 for all v ∈ V .

Definition 1.4.1 (Laplace operators) TheLaplace operator for functions f : V → R

on the vertex set V of an oriented hypergraph is

L0 f (v) :=
∑

hin :v input

(
∑

v′ input of hin f (v′)−∑
w′ output of hin f (w′)

)

deg v

−
∑

hout :v output

(
∑

v̂input of hout
f (v̂)−∑

ŵ output of hout
f (ŵ)

)

deg v
. (1.102)

The Laplacian for functions γ : H → R on the hyperedge set H , with γ (h+) =
−γ (h−) under a change of orientation, is

L1γ (h) := ∑
vi input of h

∑
hin :vi input γ (hin)−∑

hout :vi output γ (hout)

deg vi

−∑
v j output of h

∑
h′
in :v j input γ (h′

in)−
∑

h′
out :v j output γ (h′

out)

deg v j . (1.103)

When we have a graph, that is, when each hyperedge has a single input and a single
output, these two operators reduce to those defined in 1.2 and 1.5,

L0 f (v) = f (v) − 1

deg v

∑

w∼v

f (w)

L1γ (e) = 1

deg v0
·

∑

v0∈e′=[v0,w]
γ (e′) − 1

deg v1
·

∑

v1∈e′′=[v1,w]
γ (e′′) for e = [v0, v1],

because the neighbors of v are outputs of the edges for which v is an input and
conversely.

And we can generalize all the constructions underlying those operators to the
case of oriented hypergraphs. This will then provide us again with powerful tools to
analyze the spectra.

1 But our convention here, which is different from that employed for simplicial complexes is that
they should not both be empty.
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We start with the scalar products.

Definition 1.4.2 For f, g : V → R, let

( f, g)V :=
∑

v∈V
deg v · f (v) · g(v). (1.104)

For ω, γ : H → R, let
(ω, γ )H :=

∑

h∈H
ω(h) · γ (h). (1.105)

The boundary operator is next. It maps functions on vertices to functions on hyper-
edges that change their sign upon a change of orientation, as always.

Definition 1.4.3 For f : V → R and h ∈ H , let

δ f (h) :=
∑

vi input of h

f (vi ) −
∑

v j output of h

f (v j ). (1.106)

We then have

Lemma 1.4.1 The adjoint of the operator δ w.r.t. the scalar products 1.104, 1.105
is

δ∗(γ )(v) =
∑

hin:v input γ (hin) − ∑
hout:v output γ (hout)

deg v
. (1.107)

And we then have the analogue of Lemma 1.2.2

Lemma 1.4.2

L0 = δ∗δ (1.108)

L1 = δδ∗ (1.109)

and the analogue of Corollary 1.2.1

Corollary 1.4.1 We have

( f, L0 f )V = (δ f, δ f )H = (L0 f, f )V (1.110)

and
(γ, L1γ )H = (δ∗γ, δ∗γ )V = (L1γ, γ )H (1.111)

for all f, γ .
In particular, the operators L0 and L1 are self-adjoint and nonnegative, and all their
eigenvalues are real and nonnegative.
L0 and L1 have the same spectrum, except possibly for the multiplicity of the eigen-
value 0.
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While the details require a more complicated track keeping of inputs and outputs,
the basic ideas of the proofs are the same as before, and so, we do not spell out the
details here. After all, the point is that we have identified natural constructions.

We now consider the matrix formulations of L0 and L1. We denote by v1, . . . , vN

the vertices of � and by h1, . . . , hM its hyperedges. Given a hyperedge h, we say
that two vertices vi and v j are co-oriented in h if they either are both inputs, or both
outputs, for h. Conversely, we say that vi and v j are anti-oriented in h if they both
belong to h but have opposite orientations.

Definition 1.4.4 The degree matrix of � is the N × N diagonal matrix

D := diag(deg v1, . . . , deg vN ). (1.112)

The incidence matrix of � is the N × M matrix I := (Ii j )i j , where

Ii j :=

⎧
⎪⎨

⎪⎩

1 if vi is an input of h j

−1 if vi is an output of h j

0 otherwise.

Therefore, each row Ii of I represents a vertex vi and each column I j of I represents
a hyperedge h j .

The adjacency matrix of � is the N × N matrix A := (Ai j )i j , where Aii := 0 for
each i = 1, . . . , N and, for i �= j ,

Ai j := ∣∣{hyperedges in which vi and v j are anti-oriented}
∣∣

− ∣∣{hyperedges in which vi and v j are co-oriented}
∣∣ .

The Laplacians can then be written, in matrix form, as

L0 = Id−D−1A = D−1II�

and
L1 = I�D−1I.

In particular, this allows us to simplify (1.102) and write

L0 f (vi ) = f (vi ) − 1

deg vi

∑

j �=i

Ai j f (v j ),

for a given function f : V → R and a vertex vi .
Oriented hypergraphs were introduced by Shi in 1992 [47] as a generalization of

signed graphs, that can be seen as oriented hypergraphs forwhich all hyperedges have
size 2. Their corresponding spectral theory has been developed later. The adjacency
matrix and the algebraic Laplacian L := II� of an oriented hypergraph have been
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first introduced in [48], whereas the Laplacians L0 and L1 have been introduced
in [14].

As for graphs, when the hypergraph is regular, that is deg v ≡ const , then the
spectra of L0, L and A differ only by an additive or multiplicative constant. For
general hypergraphs, their spectral theory is different. We refer the reader to [48–60]
for a vast literature on the adjacency and algebraic Laplacian matrices of oriented
hypergraphs. We refer to [14, 17, 34, 43–46, 55, 56, 61, 62] for literature on the
hypergraph Laplacians L0 and L1, on which we shall focus. We refer to [63, 64] for
applications of the latter theory to dynamical systems on hypergraphs.

1.4.2 The Spectrum

Spectra of oriented hypergraphs can exhibit features not found for graphs. In partic-
ular, most of the results derived in Sect. 1.2.2 do not generalize to hypergraphs. Let
the hypergraph have N vertices. Then L0 has N real and nonnegative eigenvalues,
possibly with multiplicities,

0 ≤ λ1 ≤ · · · ≤ λN ≤ N .

Likewise when we have M hyperedges, L1 has M eigenvalues, the positive ones
agreeing with those of L0.

These eigenvalues always sum to N , since L0 = Id−D−1A, therefore the trace
of L0 is N and this implies that also

N∑

i=1

λi = N .

Examples:

1. Consider a hypergraphwhose vertices v1, . . . , vN are only contained in self-loops,
i.e. hyperedges of cardinality 1.

Then, for any function f : V → R, clearly

L0 f (vi ) = f (vi ).
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Hence, 1 is the only eigenvalue of L0. In particular, 0 is not an eigenvalue in this
case. This implies that Corollary 1.2.3 does no longer hold for the general case
of hypergraphs.

2. Consider a hypergraph with vertices v0, v1, . . . , vn and a single hyperedge h with
v0 as input and v1, . . . , vn as outputs.

Thus deg v = 1 for all vertices, and

L0 f (v0) = f (v0) −
n∑

i=1

f (vi )

L0 f (vi ) =
n∑

i=1

f (vi ) − f (v0) for i = 1, . . . , n.

For n = 1, this is simply the line graph K1,1. We let i = 1, . . . , n. Eigenfunc-
tions then are f0 with f0(v0) = n, f0(vi ) = 1 with the eigenvalue 0, fi0(vi0) = 1,
fi0(v j0) = −1 for some pair 1 ≤ i0 < j0 ≤ n and f0(vk) = 0 for all other k, again
with eigenvalue 0, and finally fn+1(v0) = 1, fn+1(vi ) = −1 with the eigenvalue
n + 1.
Thus, for n > 1, we have several eigenfunctions for the eigenvalue 0, but none of
them is constant. This implies that the operator L0 no longer obeys the maximum
principle of Lemma 1.2.3.

3. We next double the vertex v0, that is, introduce another vertex v′
0 and a hyperedge

h′ with v′
0 as input and v1, . . . , vn as outputs.

Then deg v0 = deg v′
0 = 1, but deg vi = 2 (as before, i = 1, . . . , n). The previous

eigenfunctions extend if we put f (v′
0) = f (v0). We get another eigenfunction f ′

for the eigenvalue 1 with f ′(v0) = 1, f ′(v′
0) = −1, f ′(vi ) = 0.

In the previous example, the duplication of a vertex produced the eigenvalue 1. This
is always the case, as shown in Lemma 1.4.3 below, that generalizes the results on
duplication for graphs that we systematically discussed in Sect. 1.2.3.
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Definition 1.4.5 Two vertices vi and v j are duplicates of each other if the corre-
sponding rows/columns of the adjacency matrix are the same, that is,

Ail = A jl for each l = 1, . . . , N .

In particular, Ai j = A j j = 0.

Remark In the case of graphs, Definition 1.4.5 coincides with the classical definition
of duplicate vertices that we presented in Sect. 1.2.2.

Lemma 1.4.3 Let vi and v j are duplicates of each other. Let f : V → R be such
that f (vi ) = − f (v j ) �= 0 and f = 0 otherwise. Then, L0 f = f , that is, 1 is an
eigenvalue for L0 and f is a corresponding eigenfunction.

Proof It is easy to see that, by definition of f ,

• L0 f (vi ) = f (vi ),
• L0 f (v j ) = f (v j ), and
• For each l �= i, j ,

L0 f (vl) = − 1

deg vl

(
Ali f (vi ) + Al j f (v j )

)

= − 1

deg vl

(
Ali f (vi ) − Ali f (vi )

)

= 0 = f (vl).

�

Corollary 1.4.2 If there are n duplicate vertices, 1 is an eigenvalue with multiplicity
at least n − 1.

Proof Assume that v1, . . . , vn are duplicate vertices. For each i = 1, . . . , n − 1, let
fi : V → R such that fi (vi ) = 1, fi (vi+1) = −1 and fi = 0 otherwise. Then, by
Lemma 1.4.3 the fi ’s are eigenfunctions corresponding to the eigenvalue 1. Also,
dim(span( f1, . . . , fn−1)) = n − 1, therefore the multiplicity of 1 is at least n − 1.

Similarly to duplicate vertices, we define and discuss twin vertices.

Definition 1.4.6 Two vertices vi and v j are twins of each other if they belong exactly
to the same hyperedges, with the same orientations. In particular, Ai j = − deg vi =
− deg v j and Ail = A jl for all l �= i, j .

Note that two vertices vi and v j cannot be both duplicates and twins of each other. In
fact, if they are duplicates then Ai j = 0 while, if they are twins, then Ai j < 0. Also,
while duplicate vertices exist for graphs, twin vertices cannot exist for graphs, since
in this case each edge has one input and one output.

We now generalize the notions of duplicate vertices and twin vertices by defining
duplicate families of twin vertices.
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Definition 1.4.7 A family V1 � . . . � Vl ⊂ V of vertices is an l-duplicate family of
t-twin vertices if

• For each a ∈ {1, . . . , l}, |Va| = t and the t vertices in Va are twins of each other;
• For each a, b ∈ {1, . . . , l} with a �= b, for each vi ∈ Va and for each v j ∈ Vb, vi
and v j are duplicates of each other.

Proposition 1.4.1 If � contains an l-duplicate family of t twins, then

• t is an eigenvalue with multiplicity at least l − 1, and
• 0 is an eigenvalue with multiplicity at least l(t − 1).

Proof In order to show that t is an eigenvaluewithmultiplicity at least l − 1, consider
the following l − 1 functions. For a = 2, . . . , l, let fa : V → R such that fa := 1
on V1, fa := −1 on Va and fa := 0 otherwise. Then,

• For each v j ∈ V1,

L0 fa(v j ) = 1 − 1

deg v j

∑

vk∈V1\{v j }
− deg v j = 1 + t − 1 = t · fa(v j );

• For each vi ∈ Va ,

L0 fa(vi ) = −1 − 1

deg vi

∑

vk∈Va\{vi }
deg vi = −1 − (t − 1) = t · fa(vi );

• For each vk ∈ V \ V1 � Va ,

L0 fa(vk) = − 1

deg vk

⎛

⎝
∑

v j∈V1

A jk −
∑

vi∈Va

Aik

⎞

⎠ = 0 = t · fa(vk).

Therefore, fa is an eigenfunction for t . Furthermore, the functions f2, . . . , fl are
linearly independent, hence t is an eigenvalue with multiplicity at least l − 1.

Similarly, in order to prove that 0 is eigenvalue with multiplicity at least l(t − 1),
let Va = {va

1 , . . . , v
a
t } and consider the l(t − 1) functions gab : V → R defined as

follows, for a = 1, . . . , l and b = 2, . . . , t . Let gab (v
a
1 ) := 1, gab (v

a
b ) := −1 and gab :=

0 otherwise. Then, each gab is an eigenfunction for 0. Since, furthermore, these are
l(t − 1) linearly independent functions, 0 has multiplicity at least l(t − 1).

1.4.3 Rayleigh Quotients and the Courant-Fischer-Weyl
Scheme

The constructions of Sect. 1.2.3 naturally extend to oriented hypergraphs. In particu-
lar, all the eigenvalues of L0 and L1 can be characterized in terms of minmax values
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of Rayleigh quotients. For instance, the largest eigenvalue λN of L0 (which is also
the largest eigenvalue of L1 can be characterized in two different ways [14]

λN = max
f

(δ f, δ f )H
( f, f )V

= max
f

∑
h∈H

(∑
vi input of h f (vi ) − ∑

v j output of h f (v j )

)2

∑
v∈V deg v f (v)2

and

λN = max
γ

(δ∗γ, δ∗γ )V

(γ, γ )H

= max
γ

∑
v∈V

1
deg v

·
(∑

hin:v input γ (hin) − ∑
hout:v output γ (hout)

)2

∑
h∈H γ (h)2

.

As a consequence of these characterizations of λN one can prove, for instance,
Theorem 1.4.1 below [45], showing a generalization of the following inequalities
that hold for graphs,

N

N − 1
≤ λN ≤ 2,

that we have seen in Sect. 1.2, to the general case of hypergraphs. Before stating it,
we need to define bipartite hypergraphs, which naturally generalize bipartite graphs,
as well as a few other preliminary definitions. As we shall see, analogously to the
graph case, λN gives a measure of bipartitness for all oriented hypergraphs.

Definition 1.4.8 A hypergraph � is bipartite (Fig. 1.3) if one can decompose the
vertex set as a disjoint union V = V1 � V2 such that, for every hyperedge h of �,
either h has all its inputs in V1 and all its outputs in V2, or vice versa.

Definition 1.4.9 The cardinality of a hyperedge h, denoted |h|, is the number of
vertices in h. A hypergraph is said to be k-uniform if all its hyperedges have cardi-
nality k.

Clearly, graphs and signed graphs are 2-uniform hypergraphs.

Fig. 1.3 A bipartite
hypergraph with
V1 = {v1, v2, v3} and
V2 = {v4, v5, v6}

v1
+

v2
+
−
v3−

v4
−

v5
−
+

v6
+

h1

h2



48 R. Mulas et al.

Definition 1.4.10 A hypergraph �̂ = (V̂ , Ĥ) is a sub-hypergraph of � = (V, H),
denoted �̂ ⊂ �, if V̂ ⊆ V and

Ĥ = {h ∩ V̂ : h ∈ H}.

Given a sub-hypergraph �̂ ⊂ �, we let

η(�̂) :=
∑

v∈V̂
deg�̂ (v)2

deg v

|Ĥ | ,

where deg�̂(v) denotes the degree of v in �̂ and |Ĥ | is the number of hyperedges in �̂.

Theorem 1.4.1 For every connected, oriented hypergraph �,

λN ≤ max
h∈H |h|, (1.113)

with equality if and only if � is bipartite and |h| is constant for all h, and

λN ≥ max
�̂⊂� bipartite

η(�̂). (1.114)

Proof We first prove (1.113). Let f : V → R be an eigenfunction for λN . Then,

λN =
∑

h∈H

(∑
vi input of h f (vi ) − ∑

v j output of h f (v j )

)2

∑
v∈V deg v f (v)2

≤
∑

h∈H
(∑

v∈h | f (v)|
)2

∑
i∈V deg v f (v)2

,

with equality if and only if f has its nonzero values on a bipartite sub-hypergraph.
Now, for each h ∈ H ,

(∑

v∈h
| f (v)|

)2 =
∑

v∈h
f (v)2 +

∑

{v,w}: v �=w∈h
2 · | f (v)| · | f (w)|

≤
∑

v∈h
f (v)2 +

∑

{v,w}: v �=w∈h

(
f (v)2 + f (w)2

)

=
∑

v∈h
f (v)2 +

∑

v∈h
(|h| − 1) f (v)2

= |h| ·
∑

v∈h
f (v)2,

with equality if and only if | f | is constant on all v ∈ h. Therefore,
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∑
h∈H

(∑
v∈h | f (v)|

)2

∑
i∈V deg v f (v)2

≤
∑

h∈H
∑

v∈h |h| · ∑
v∈h f (v)2∑

i∈V deg v f (v)2

=
∑

v∈V
∑

h�v |h| · f (v)2∑
i∈V deg v f (v)2

≤
(
max
h∈H |h|

)
·
∑

v∈V deg v f (v)2∑
i∈V deg v f (v)2

= max
h∈H |h|,

where the first inequality is an equality if and only if | f | is constant (since we
assuming that � is connected), and the last inequality is an equality if and only if |h|
is constant for all h. Putting everything together, we have that

λN ≤ max
h∈H |h|,

with equality if and only if |h| is constant for all |h| while | f | is constant and it is
defined on a bipartite sub-hypergraph (that is, | f | is constant and � is bipartite). This
proves the first claim.

It is left to prove (1.114).Given a bipartite sub-hypergraph �̂ ⊂ �, let γ ′ : H → R

be 1 on Ĥ and 0 otherwise. Then, up to changing (without loss of generality) the
orientations of the hyperedges,

λN = max
γ :H→R

∑
v∈V

1
deg v

·
(∑

hin:v input γ (hin) − ∑
hout:v output γ (hout)

)2

∑
h∈H γ (h)2

≥
∑

v∈V
1

deg v
·
(∑

hin:v input γ
′(hin) − ∑

hout:v output γ
′(hout)

)2

∑
h∈H γ ′(h)2

≥
∑

v∈V̂
1

deg v
·
(∑

hin:v input γ
′(hin) − ∑

hout:v output γ
′(hout)

)2

∑
h∈H γ ′(h)2

=
∑

v∈V̂
deg�̂ (v)2

deg v

|Ĥ | .

Since the above inequality is true for all �̂, this proves (1.114).

Observe that, in the graph case, since |h| = 2 for each (hyper)edge, (1.113) tells
us that

λN ≤ 2,
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with equality if and only if the graph is bipartite. (1.113) is therefore a generalization
of the classical upper bound for λN of Corollary 1.2.4 to the case of hypergraphs.

Also, given a graph �, fix a vertex v and let �̂ be the bipartite sub-graph of �

given by the edges that have v as endpoint. Then, by (1.114),

λN ≥ η(�̂) = 1 +
∑

w∼v

1

degw · deg v
≥ 1

+
∑

w∼v

1

(N − 1) · deg v
= 1 + 1

N − 1
= N

N − 1
.

Hence, from (1.114), we can re-infer the fact that λN ≥ N/(N − 1) for graphs.
In the following examples, we exhibit the sharpness of (1.114):

1. Let � = KN be the complete graph on N nodes. Fix a vertex v and let �̂ be the
bipartite sub-graph of � given by the edges that have v as endpoint. Then,

η(�̂) = N

N − 1
= λN .

Therefore, (1.114) is an equality for KN .
2. Let � = KN \ {(v1, v2)} be the complete graph with an edge (v1, v2) removed.

We know, from [19], that λN = (N + 1)/(N − 1). Let �̂ be the bipartite sub-
graph of � given by the edges that have either v1 or v2 as endpoint. Then,

η(�̂) = N + 1

N − 1
= λN .

Therefore, (1.114) is an equality for � = KN \ {(v1, v2)}.
3. For a bipartite, k-uniform hypergraph �, by Theorem 1.4.1 λN = k. Also,

η(�) =
∑

v∈V deg v

M
=

∑
h∈H |h|
M

= M · k
M

= k.

Therefore, (1.114) is an equality also in this case.

Theorem1.4.1 shows that, as in the graph case, the largest eigenvalueλN measures
howdifferent a hypergraph is from a bipartite one. Proposition 1.4.2 below shows that
all bipartite hypergraphs that have the same vertices and hyperedges, independently
of the input/output structure, are isospectral with each other. Before stating it, we
define the underlying hypergraph and the signless Laplacian of �.

Definition 1.4.11 The underlying hypergraph of � is the oriented hypergraph
obtained from � by letting each vertex be an input for all hyperedges in which
it is contained. The signless Laplacian of � is the Laplacian L0 of its underlying
hypergraph.
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Remark Assume that � is a graph and let �+ be its underlying hypergraph. Then,
the adjacency matrices of � and �+ are such that A(�+) = −A(�), while the degree
matrices of � and �+ coincide. Therefore, the Laplacians of � and �+ are

L0(�) = Id−D(�)−1A(�) and L0(�+) = Id+D(�)−1A(�) = 2 · Id−L0(�),

respectively. Hence, λ is an eigenvalue for L0(�) if and only if 2 − λ is an eigenvalue
for L0(�+).

Proposition 1.4.2 If � is bipartite, it is isospectral to its underlying hypergraph,
therefore, in particular, also to every other bipartite hypergraph that has the same
underlying hypergraph as �.

Proof Since � is bipartite, up to switching (without loss of generality) the orien-
tations of some hyperedges we can assume that all the inputs are in V1 and all the
outputs are in V2, with V = V1 � V2. Furthermore, by definition of L1, which has the
same nonzero spectrum as L0, we can move a vertex from V1 to V2 or vice versa, by
letting it be always an output or always an input, without affecting the spectrum. In
particular, if we move all vertices to V1, we obtain the underlying hypergraph of �.

We discuss two examples, namely the hyperflowers, that generalize star graphs, and
the c-complete hypergraphs, that generalize complete graphs.

Example 4 Given t ≥ 1, an oriented hypergraph � = (V, H) on N nodes and M
hyperedges is a hyperflower with t twins if (Fig. 1.4):

• The vertex set can be decomposed as V = C � P , where C is the core and P is
given by tM peripheral vertices v11, . . . , vt1, . . . , v1M , . . . , vtM ;

• Forgetting about the input/output structure, the hyperedges are

h = C �
t⋃

i=1

vi j for j = 1, . . . , M.

If � is a bipartite hyperflower, by Proposition 1.4.2 we can assume, when com-
puting the spectrum, that all its vertices are inputs for all the hyperedges in which
they are contained. In this case, since all hyperedges have cardinality N − tM + t ,
by Theorem 1.4.1 λN = N − tM + t . Furthermore, by Proposition 1.4.1, t is an
eigenvalue with multiplicity at least M − 1. We have therefore listed M eigen-
values whose sum is N . Since � has, in total, N eigenvalues whose sum is N ,
this implies that 0 has multiplicity N − M . Note that the star graph is a bipartite
hyperflower with t = N − M = 1. Hence, the above computations show that the
star graph has eigenvalues 0 with multiplicity 1, 1 with multiplicity N − 2 and 2
with multiplicity 1.

Example 5 Given c ≥ 2, we say that � is a c-complete hypergraph if, forgetting
about the input/output structure, its hyperedges are all possible

(N
c

)
hyperedges of
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Fig. 1.4 A hyperflower with
3 twins

cardinality c. If � is a bipartite, c-complete hypergraph and we are interested in
computing its spectrum, we can again assume, without loss of generality, that all
vertices are always inputs for the hyperedges in which they are contained. In this
case, by Theorem 1.4.1, λN = c. Moreover, observe that each vertex has degree d :=(N−1
c−1

)
, while a := Ai j = −(N−2

c−2

)
is constant for all i �= j . Therefore, ad = − c−1

N−1 and

L0 f (v) = f (v) − a

d

⎛

⎝
∑

w �=v

f (w)

⎞

⎠ = f (v) + c − 1

N − 1

⎛

⎝
∑

w �=v

f (w)

⎞

⎠ ,

for all v ∈ V . Now, for each i = 2, . . . , N , let fi (v1) := 1, fi (vi ) := −1 and fi := 0
otherwise. Then,

• L0 fi (v1) = 1 − c−1
N−1 = N−c

N−1 · fi (v1),
• L0 fi (vi ) = −1 + c−1

N−1 = N−c
N−1 · fi (vi ), and

• L0 fi (v j ) = 0 = N−c
N−1 · fi (v j ) for all j �= 1, i .

Therefore, the fi ’s are N − 1 linearly independent eigenfunctions with eigenvalue
N−c
N−1 . This implies that the spectrum of � is given by c with multiplicity 1, and N−c

N−1
with multiplicity N − 1.
In particular, if � is the complete graph KN , we can apply the above computations
to the underlying hypergraph of KN (which is a signed graph) and say that this has
eigenvalues 2 with multiplicity 1, and N−2

N−1 with multiplicity N − 1. Since λ is an
eigenvalue for the underlying hypergraph if and only if 2 − λ is an eigenvalue for the
original hypergraph, this implies that the eigenvalues of KN are 0 with multiplicity
1 and N

N−1 with multiplicity N − 1, as we already knew from Sect. 1.2.2.
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1.4.4 Cheeger-Type Estimates

The Cheeger inequalities
1

2
h2 ≤ λ2 ≤ 2h (1.115)

for connected graphs (cf. (1.42)) have been generalized in [44] to the case of con-
nected, k-uniform, bipartite hypergraphs, and it remains an open question whether
they can be generalized for all connected oriented hypergraphs. The idea developed
in [44] is the following. Given a connected graph �, its underlying hypergraph �+ is
a signed graph that has the same Cheeger constant as �. Moreover, λ is an eigenvalue
for L0(�) if and only if 2 − λ is an eigenvalue for L0(�+). Therefore, the Cheeger
inequalities in (1.115) can be equivalently reformulated in terms of the second largest
eigenvalue of L0(�+), as

1

2
h(�+)2 ≤ 2 − λN−1(�+) ≤ 2h(�+). (1.116)

This equivalent formulation of theCheeger inequalities in (1.115) can be used in order
to prove a generalization for uniform, bipartite hypergraphs.We state the generalized
inequalities, but we do not provide the proof here.

Let � be a connected, k-uniform, bipartite hypergraph. As for the case of graphs
that we discussed in Sect. 1.2.4, given S ⊆ V , we let S := V \ S and

vol(S) :=
∑

v∈S
deg v.

Moreover, for r ∈ {1, . . . , k}, we let

Er (S) := {e ∈ E : |e ∩ S| = r}.

Clearly, for each r ∈ {1, . . . , k}, Er (S) = Ek−r (S). Also,

Ek(S) = {e ∈ E : e ⊆ S},

E0(S) = {e ∈ E : e ⊆ S}

and

vol(S) =
k∑

r=1

r |Er (S)|.

With the above notations, we can define the generalized Cheeger constant, as
follows.

Definition 1.4.12 Given ∅ �= S � V , let



54 R. Mulas et al.

h(S) :=
∑k−1

r=1 |Er (S)|r(k − r)

min{vol(S), vol(S)} .

The Cheeger constant of � is

h := min
∅�=S�V

h(S).

Observe that the quantity
k−1∑

r=1

|Er (S)|r(k − r)

appearing in the numerator of h(S) counts the number of pairwise connections
between S and S. Furthermore, if � is a graph, then k = 2, E1(S) is the set of
edges between S and S, and the Cheeger constant defined above coincides with the
one introduced by Pólya and Szegö, see (1.40).

The following theorem, proved in [44], generalizes (1.116) which is, on its turn,
equivalent to the classical Cheeger inequalities in (1.115).

Theorem 1.4.2 Let � be a connected, k-uniform, bipartite hypergraph. Then,

1

2(k − 1)
h2 ≤ k − λN−1 ≤ 2(k − 1)h.

Similarly, the Cheeger-like constant Q defined, for a graph, as

Q := max
e=(v,w)∈E

(
1

deg v
+ 1

degw

)
,

has been generalized in [45] for any oriented hypergraph, as

Q := max
h∈H

(
∑

v∈h

1

deg v

)
.

The lower bound in Theorem 1.2.4, Q ≤ λN , has been proved to hold for all oriented
hypergraphs.

1.4.5 Generalizations

An oriented hypergraph can be seen as a classical hypergraph such that, in addi-
tion, for each vertex v and each hyperedge h, there exists a coefficient C(v, h) ∈
{−1, 0,+1}, where

C(v, h) = 0 ⇐⇒ v /∈ h, (1.117)
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while C(v, h) = +1 if and only if v is an input for h, and similarly C(v, h) = −1
if and only if v is an output for h. Various generalizations of this constructions have
been studied in the context of spectral theory:

• Chemical hypergraphs are a generalization of oriented hypergraphs in which
(1.117) does not necessarily hold, that is, one can have C(v, h) = 0 even if v ∈ h.
The idea is that, in this case, v can be seen as both an input and an output for
h, in which case v is said to be a catalyst for h. Chemical hypergraphs and their
Laplacians have been introduced in [14], and the corresponding spectral results
change based on the definition of generalized vertex degree that one considers. If

deg v := |{h ∈ H : C(v, h) �= 0}|,

then a chemical hypergraph � is isospectral to the oriented hypergraph obtained
from � by removing catalysts from the hyperedges. If

deg v := |{h ∈ H : v ∈ h}|,

by using the definition of Laplacian in (1.13), as in [14], the matrix formulation
of L0 becomes

L0 = D̂ − D−1A,

where D̂ is the diagonal matrix with diagonal entries

D̂ii := deg vi − |{h ∈ H : vi ∈ h as catalyst}|
deg vi

.

In this case, most of the results that we stated for oriented hypergraphs still hold.
The main difference is that the eigenvalues are generally smaller, since now

N∑

i=1

λi = N −
N∑

i=1

|{h ∈ H : vi ∈ h as catalyst}|
deg vi

can be smaller than N .
• Complex unit hypergraphs [56] are a generalization of oriented hypergraphs in
which the coefficients C(v, h) are from the complex unit circle, and (1.117) still
holds. In this case, most of the spectral results for oriented hypergraphs can be
generalized.Thedifference is that, insteadof being symmetric operators, theLapla-
cians are now Hermitian operators and therefore the proofs require slightly differ-
ent methods.

• Hypergraphs with real coefficients [17, 65] are a generalization of oriented hyper-
graphs in which (1.117) holds and the coefficients C(v, h) are real numbers. In
the case when, for all v and h, Cv,h ≥ 0 and

∑
h∈H Cv,h = 1, we can see each

coefficient Cv,h as the probability of the vertex v to belong to the hyperedge h. In
the case when the coefficients are integers, we can see each vertex as a chemical
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element, each hyperedge as a chemical reaction and each coefficient Cv,h as the
chemical stoichiometric coefficient of the element v in the reaction h. Moreover,
in the case when C(v, h) =: w(h) only depends on h, for each hyperedge h and
for each vertex v, we can see these hypergraphs as weighted hypergraphs.
If � = (V, H, {C(v, h) : v ∈ V and h ∈ H}) is a hypergraph with real coeffi-
cients, its vertex degrees are defined by

deg v :=
∑

h∈H
C(v, h)2,

and it is easy to see that this generalizes (1.101). Moreover, the degree matrix of
� is still defined by (1.112), the incidence matrix of � is defined by I := (Ii j )i j ,
where

Ii j := C(vi , h j ),

and the adjacency matrix of� is A := (Ai j )i j , where Aii := 0 for all i = 1, . . . , N
and, for i �= j ,

Ai j := −
∑

h∈H
C(vi , h) · C(v j , h).

The generalized Laplacians are then defined, in matrix form, as

L0 := Id−D−1A = D−1II� and L1 := I�D−1I,

and most of the properties that we discussed for oriented hypergraphs can be
generalized to the more general setting of hypergraphs with real coefficients.
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Chapter 2
Random Simplicial Complexes: Models
and Phenomena

Omer Bobrowski and Dmitri Krioukov

Abstract Wereviewa collection ofmodels of randomsimplicial complexes together
with some of the most exciting phenomena related to them. We do not attempt to
cover all existing models, but try to focus on those for which many important results
have been recently established rigorously in mathematics, especially in the context
of algebraic topology. In application to real-world systems, the reviewed models
are typically used as null models, so that we take a statistical stance, emphasizing,
where applicable, the entropic properties of the reviewed models. We also review
a collection of phenomena and features observed in these models, and split the
presented results into two classes: phase transitions and distributional limits. We
conclude with an outline of interesting future research directions.

Keywords Random simplicial complexes · Geometric complexes · Maximum
entropy principle · Canonical ensembles · Phase transitions · Percolation ·
Persistent homology · Betti numbers · Limit theorems

2.1 Introduction

Simplicial complexes serve as a powerful tool in algebraic topology, a field of math-
ematics fathered by Poincaré at the end of the 19th century. This tool was built—or
discovered, depending on one’s philosophical view—by topologists in order to study
topology. Much more recently, over the past decade or so, this tool was also discov-
ered by network and data scientists who study complex real-world systems in which
interactions are not necessarily diadic. The complexity of interactions in these sys-
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tems is amplified by their stochasticity,making themdifficult or impossible to predict,
and suggesting that these intricate systems should be modeled by random objects.
In other words, the combination of stochasticity and high-order interactions in real-
world complex systems suggests that models of random simplicial complexes may
be useful models of these systems.

From the mathematical perspective, the study of random simplicial complexes
combines combinatorics and probability with geometry and topology. As a conse-
quence, the history of random simplicial complexes is quite dramatic. The drama is
that this history is super-short, compared to the histories of probability and topol-
ogy taken separately. For example, the first and simplest model of random simplicial
complexes, the Linial-Meshulammodel [1], appeared only in 2006. The main reason
behind this dramatic delay is that probability and topology had been historically at
nearly opposite extremes in terms of methods, skills, intuition, and esthetic (dis)likes
among mathematicians. Fortunately, the wall is now dismantled, and over the last
15 years or so, the field of random topology has been growing explosively, as our
review attempts to convey through the lens of random simplicial complexes.

We do not attempt to review all existing models and results related to random
simplicial complexes, which is a mission impossible. Instead, we try to focus on
those models for which some exciting phenomena—which we review as well—
have been rigorously established in mathematics, especially in topology. It is not
entirely coincidental that a majority of these models are particulary attractive not
only from the topological and probabilistic perspectives, but also from the statis-
tical and information-theoretic perspectives. This is because these models tend to
be statistically unbiased, in the sense that they are canonical models satisfying the
maximum entropy principle. As a consequence, they can be used as the correct null
models of real-world complexes exhibiting certain structural features.

We take this statistical stance in our review of models in Sect. 2.2. This review is
then followed by the review of some of the most exciting phenomena related to these
models, which we split between phase transitions (Sect. 2.3) and distributional limit
theorems (Sect. 2.4).Many of the presented results are higher-dimensional analogues
of the well-known phenomena in random graphs related to connectivity, giant com-
ponent, cycles, etc., therefore we preamble, where possible, the higher-dimensional
statements with brief recollections of their one-dimensional counterparts. The focus
on mathematics taken in this review precludes us unfortunately from covering many
exciting subjects, such asmodels of growing complexes [2–7], their applications, and
phenomena in them including percolation [8–13]. Yet in the concluding Sect. 2.6 that
outlines our view on interesting future directions, we also comment briefly on some
applications and their implications for different models of random simplicial com-
plexes.
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2.2 Review of Models

In application to real-world systems, the models of random simplicial complexes
reviewed here are typically used as null models reproducing a particular property
of interest. In other words, these models are not intended to be “correct models” of
real-world systems, but they are intended to be correct null models of these systems.
By “correct” we mean here a model that is statistically unbiased, and by “statis-
tically unbiased” we mean a model that maximizes entropy across all models that
have a desired property. Therefore, we begin this section with a brief recollection of
basic facts behind the maximum entropy principle and canonical ensembles, which
we call canonical models in this review. We then observe that, with a few excep-
tions, the reviewed models are higher-dimensional generalizations of 1-dimensional
random simplicial complexes, which are random graphs. Therefore, we preamble,
where possible, the definition of a higher-dimensional model with its 1-dimensional
counterpart. We finish the section with a short summary of the maximum entropy
properties of the reviewed models.

2.2.1 Maximum Entropy Principle and Canonical Models

The maximum entropy principle [14] formalizes the concept of statistical unbiased-
ness of a null model. Indeed, Shannon entropy is the unique measure of informa-
tion satisfying the basic axioms of continuity, monotonicity, and system and subset
independence [15], and the maximum entropy principle follows directly from these
axioms coupled with the additional consistency axioms of uniqueness and repre-
sentation invariance [16–18]. For these reasons, a maximum-entropy model is the
unique model that contains all the information that the model is asked to model, and,
more importantly, that does not contain any other junk information.

Formally, let X be a space of graphs or simplicial complexes, and P a prob-
ability distribution on X corresponding to a model of X : P(X) is the probabil-
ity with which the model generates X ∈ X . The Shannon entropy of P is S(P) =
−∑

X∈X P(X) logP(X). Let xq : X → R, q = 1, 2, . . . , Q, be a finite collection of
functions that we call properties of X , and let yq ∈ R be a set of numbers that we
will associate with values of properties xq . In general, properties xq can take val-
ues in spaces that are more sophisticated than R, but R suffices for us here. Denote
x = {

xq
}Q
q=1, y = {

yq
}Q
q=1, and let ρ be a probability distribution on R

Q .
Given a pair of properties x and their values y, the microcanonical model is then

the one thatmaximizes entropy under the sharp constraints that the values of the prop-
erties x of X must be equal to y exactly: Pmic(x, y) = argmax

P
{S(P) : x(X) = y}.

This means that Pmic(x, y) is the uniform distribution over all such Xs:

Pmic[x, y](X) = 1

N (x, y)
,

where N (x, y) = |{X ∈ X : x(X) = y}|.
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The canonical model is the one that maximizes entropy under the soft con-
straints that the values of the properties x are equal to y in expectation: Pcan(x, y) =
argmax

P
{S(P) : E x = y}. If the properties x are sufficiently nice (e.g., satisfy certain

convexity assumptions [19, 20]), then the measure Pcan(x, y) is a Gibbs measure

Pcan[x, y](X) = exp[−λ(y) · x(X)]/Z ,

where Z = ∑
X∈X exp[−λ(y) · x(X)] and the parameters λ(y) solve the system of

equations E x = −∂ log Z/∂λ = y. The solution exists and is unique under the same
niceness assumptions [19, 20]. Since Gibbs measures are known as exponential fam-
ilies in statistics, canonical models of random graphs are called exponential random
graph models there. Consequently, canonical models of simplicial complexes are
exponential random simplicial complexes [21].

Finally, the hypercanonical model Phyp(x, ρ) is the canonical model with random
y ∼ ρ. The measure Phyp(x, ρ) is thus the ρ-mixture of the Gibbs measures,

Phyp[x, ρ](X) =
∫

Pcan[x, y](X) dρ(y),

reproducing a desired distribution ρ of the values y of the properties x of X .
It is important to notice that Pcan[x, y](X) depends on X only via x(X). For this

reason, the properties x are called sufficient statistics [22]: it suffices to know x(X)

to know Pcan[x, y](X); no further details about X are needed. It follows that all X ’s
with the same value of x(X) are equally likely in the canonical model, so that it
is a probabilistic mixture of the corresponding microcanonical models, while the
hypercanonical model is a probabilistic mixture of the canonical models.

Canonical models of random graphs and simplicial complexes tend to be more
tractable than their microcanonical counterparts, explaining why the best-studied
models of random simplicial complexes are based on canonical models of random
graphs, versus microcanonical ones. We begin with the simplest models based on
the Erdős-Rényi graphs.

2.2.2 Complexes Based on Homogeneous Random Graphs

The Erdős-Rényi graphs G(n, p) and G(n, M). Perhaps the best-studied random
graph model is the G(n, M)model of random graphs with n nodes and M edges. All
such graphs are equiprobable in the model, so that the model is microcanonical. It
was introduced in 1951 by Solomonoff and Rapoport [23], and then studied by Erdős
and Rényi in 1959 [24]. Its canonical counterpart, introduced byGilbert in 1959 [25],
is the G(n, p) ensemble of random graphs in which every possible edge between the(n
2

)
pairs of nodes exists independently with probability p. The sufficient statistic in

this canonical model is the number of edges M . If
(n
2

)
p/M → 1 in the large graph
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limit n → ∞, then the microcanonical G(n, M) and canonical G(n, p) models are
asymptotically equivalent according to all definitions of such equivalence [26–28].

TheLinial-Meshulam complex Y2(n, p). The constructive definition of theG(n, p)
model can be rephrased as follows: take a complete 0-complex, which is a set
of n vertices, and then add 1-simplexes (edges) to it at all possible

(n
2

)
loca-

tions independently with probability p. The result is a random 1-dimensional com-
plex Y1(n, p) = G(n, p).

The Linial-Meshulam model [1] is a straightforward 2-dimensional analogy of
G(n, p): take a complete 1-complex, which is the complete graph of size n, and then
add 2-simplexes (filled triangles) to it at all possible

(n
3

)
locations independently with

probability p. The result is a random 2-dimensional complex Y2(n, p).

The d-dimensional Linial-Meshulam complexes Yd(n, p) and Yd(n, M). The
Linial-Meshulam complex admits the natural generalization to any dimension d =
1, 2, . . . , n − 1 [29] in the following way. Take a complete (d − 1)-complex, and
then add d-simplexes to it at all possible

( n
d+1

)
locations independently with proba-

bility p. We denote this random complex by Yd(n, p).
The microcanonical version Yd(n, M) of canonical Yd(n, p) is also well defined.

Here, we can take a complete (d − 1)-complex, add exactly M d-simplexes to it

chosen uniformly at random out of all the
(( n

d+1)
M

)
possibilities. Note that Y1(n, M) =

G(n, M). The microcanonical Yd(n, M) model gained less consideration than the
canonical Yd(n, p) one, but some of its aspects were studied in [30, 31]. It should
be easy to show that Yd(n, M) is asymptotically equivalent to Yd(n, p), but this has
not been done.

The random flag complexes X (n, p) and X (n, M). The Linial-Meshulam com-
plexes are just one way to generalize the Erdős-Rényi graphs to higher dimensions.
Another straightforward generalization is to extend G(n, p) into a random flag com-
plex X (n, p) [32, 33]. Recall that the flag complex of a graph G is the simplicial
complex X obtained by filling all the (k + 1)-cliques in G with k-simplexes, for
all k = 1, 2, . . . , n − 1. We can similarly define X (n, M) as the flag complex of
G(n, M). To the best of our knowledge, the X (n, M)model has not been considered
in the past.

Themulti-parameter complexes X (n,p) and X (n,M). A further generalization of
G(n, p), subsuming both the Linial-Meshulam and flag complexes, is the multi-
parameter complex X (n,p) considered in [34–37]. Let p = (p1, p2, . . . , pn−1)

where pk ∈ [0, 1], k = 1, 2, . . . , n − 1, is the probability of the existence of sim-
plexes of dimension k in X (n,p). Given this vector of probabilities, the complex
X (n,p) is then defined as follows. First, take n vertices and add edges to them inde-
pendently with probability p1, i.e., generate a G(n, p1) graph. Second, considering
this graph as a 1-skeleton of a 2-complex, go over all the triangles (i.e. 3-cliques)
in it, and fill each of them with a 2-simplex independently with probability p2. Do
not stop here, but continue in this fashion—given the (k − 1)-skeleton, go over all
the (k + 1)-cliques in it, and fill each of them with a k-simplex independently with
probability pk—until k = n − 1.
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Among the G(n, p)-based complexes discussed thus far, the X (n,p) complex is
the most general since it subsumes both the flag complex,

X (n, p) = X (n, (p, 1, 1, . . . , 1)),

and the Linial-Meshulam complex,

Yd(n, p) = X (n, (1, 1, . . . , 1
︸ ︷︷ ︸

d−1

, p, 0, 0, . . . , 0
︸ ︷︷ ︸

n−d−1

)).

The X (n,p) model is canonical, and to specify its sufficient statistics, we define
a k-shell ∂σ to be the complete (k − 1)-dimensional boundary of a (potential) k-
simplex σ in a complex X . That is, X may or may not contain σ (σ can be filled
or empty), but if ∂σ is a k-shell, then all its simplexes are filled, so that ∂σ can be
thought of as a “pre-k-simplex”, in the sense that it is ready to be filled with σ , but
might eventually be left empty.

As shown in [21] (see also Sect. 2.2.6), the sufficient statistics in X (n,p) are
not only the numbers Ms,k of k-simplexes of each dimension k, but also the num-
bers Mc,k of k-shells. Therefore, the microcanonical counterpart of X (n,p) is
X (n,M), where M = ((Mc,1, Ms,1), (Mc,2, Ms,2), . . . , (Mc,n−1, Ms,n−1)), Mc,1 =(n
2

)
, and Ms,1 = M . This model has not been considered in the past, but it is another

natural higher-dimensional generalization ofG(n, M), while X (n, M) and Yd(n, M)

are special cases of X (n,M).
All other relationships between the discussed complexes are shown in Fig. 2.1.

2.2.3 Complexes Based on Inhomogeneous Random Graphs

2.2.3.1 General Complexes

The inhomogeneous random graph G(n, p̂). The edge existence probability in
the random Erdős-Rényi graph G(n, p) does definitely not have to be the same
p for all edges. Each edge i, j can have a different existence probability pi j ,
i, j = 1, 2, . . . , n. Such random graphs are known as inhomogeneous or general-
ized random graphs [38–41]. We denote them by G(n, p̂), where p̂ is the matrix of
edge existence probabilities, p̂ = {pi j }.
Themulti-parameter complex X (n, p̂).A straightforwardgeneralizationofG(n, p̂)
to higher dimensions was introduced in [21]. It is also a generalization of X (n,p),
and it is defined as follows. Let p̂ = ( p̂1, p̂2, . . . , p̂n−1) be a vector of simplex
existence probabilities for all possible simplexes of all possible dimensions k =
1, 2, . . . , n − 1: p̂1 = {pi j }, p̂2 = {pi jl}, and p̂k = {pσk } collects the

( n
k+1

)
existence

probabilities for all possible
( n
k+1

)
simplexes σk of dimension k. Given such a vector

of tensors p̂, the random complex X (n, p̂) is then generated similarly to X (n,p):
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Fig. 2.1 The relations between the considered models of random simplicial complexes. The
vertical solid lines connect more general complexes to their special cases. The horizontal dashed
lines connect higher-dimensional complexes to their 1-dimensional cases or 1-skeletons. The ver-
tical dotted lines connect probabilistic mixtures (e.g., canonical models) to their constituents (e.g.,
microcanonicalmodels). The shadedmodels have not been considered before. The review ofmodels
in Sect. 2.2 proceeds roughly against the arrow directions, from the least general G(n, M) to the
most general X (n, r̂)

starting with an inhomogeneous random graph G(n, p̂1), go over all the 3-cliques
(2-shells) in this graph, and fill them with 2-simplexes σ2 independently with prob-
ability pσ2 . Proceed to higher dimensions k = 3, 4, . . . , n − 1 in a similar fashion,
filling k-shells with k-simplexes independently with probabilities pσk . The complex
X (n,p) is a special case of X (n, p̂)—the one with p̂k ≡ pk .

2.2.3.2 Configuration Models

The configuration models SCM(n,k) and CM(n,k). The inhomogeneous random
graphsG(n, p̂) are quite general, subsumingmany other importantmodels of random
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graphs. In particular, they encompass the soft configuration model SCM(n,k) [38–
44],which is the canonicalmodel of randomgraphswith a given sequence of expected
degrees k = (k1, k2, . . . , kn), ki ≥ 0, i = 1, 2, . . . , n. The SCM(n,k) model is the
G(n, p̂) with p̂ given by

pi j = 1

eλi+λ j + 1
, (2.1)

where the parameters λi ’s (known as Lagrange multipliers) solve the system of n
equations given by ∑

j

pi j = ki . (2.2)

This equation guarantees the expected degree of node i to be ki .
The sufficient statistics in SCM(n,k) are the degrees of all nodes in a graph. There-

fore, SCM(n,k)’s microcanonical counterpart, the configuration model CM(n,k)

[45, 46], is the uniform distribution over all the graphs with the degree sequence k.
Note that k can be any sequence of nonnegative real numbers in SCM(n,k), but in
CM(n,k), k is a graphical sequence of nonnegative integers. A sequence k is called
graphical, if there exists a graph whose degree sequence is k. The necessary and
sufficient conditions for k to be graphical are the Erdős-Gallai conditions [47].

An important special case of CM(n,k) is the random k-regular graph G(n, k) =
CM(n, (k, k, . . . , k)).

The d-dimensional configuration models SCMd(n,k) and CMd(n,k). Recall that
the degree ki of a vertex (0-simplex) i is the number of edges (1-simplexes) that
contain i . In a similar vein, the degree kσ of d-simplex σ is defined to be the number
of (d + 1)-simplices that contain σ .

The d-dimensional soft configuration model SCMd(n,k) is a generalization of
SCM(n,k), where now k = {kτ } is a sequence of

(n
d

)
expected degrees kτ ≥ 0 of

all (d − 1)-simplexes τ . To construct SCMd(n,k) we take the complete (d − 1)-
skeleton on n vertices, and add all possible d-simplexes σ independently with prob-
ability

pσ = 1

e
∑

τ λτ1{τ<σ } + 1
, (2.3)

where the summation is over all (d − 1)-faces τ of σ (as implied by the standard
τ < σ notation), and the parameters λτ solve the system of

(n
d

)
equations

∑

σ

pσ1 {τ < σ } = kτ . (2.4)

Note that SCMd(n,k) is a special case of X (n, p̂):

SCMd(n,k) = X (n, (1, 1, . . . , 1
︸ ︷︷ ︸

d−1

, p̂d , 0, 0, . . . , 0︸ ︷︷ ︸
n−d−1

)),
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where p̂d = {pσ } is given by (2.3). Ifd = 1, thenEqs. (2.3 and 2.4) reduce toEqs. (2.1
and 2.2), respectively, and we have SCM1(n,k) ≡ SCM(n,k).

The SCMd(n,k) is the canonical model of random complexes whose sufficient
statistics are the degrees of all the (d − 1)-simplexes in a complex. Therefore,
SCMd(n,k)’s microcanonical counterpart, the configuration model CMd(n,k), is
the uniform distribution over complexes with the complete (d − 1)-skeleton and the
degree sequence of (d − 1)-simplexes equal to k. In CMd(n,k), k is a realizable
sequence of

(n
d

)
nonnegative integers, versus any sequence of

(n
d

)
nonnegative real

numbers in SCMd(n,k). The conditions for k to be realizable, analogous to the
Erdős-Gallai graphicality conditions in the d = 1 case, are at present unknown.

An important special case of the configurationmodel is the random k-regular com-
plex Xd(n, k) = CMd(n, (k, k, . . . , k)) in which all (d − 1)-simplexes have degree
k [48]. For k = 1, such a complex is also known as an (n, d)-Steiner system, whose
randomized construction is due to [49].

With the exceptionof Xd(n, k), thed-dimensional configurationmodelsCMd(n,k)

and SCMd(n,k) have not been considered in the past. The configuration models
defined and studied in [50, 51] are very different and unrelated to any other model
considered above. We review them in Sect. 2.2.5.2.

2.2.4 Complexes Based on Inhomogeneous Random Graphs
with Random Connection Probabilities

2.2.4.1 General Complexes

The inhomogeneous random graph with random connection probabilities
G(n, r̂). Note that the edge probabilities pi j in inhomogeneous random graphs
G(n, p̂) can themselves be random [40, 41, 52, 53]. In that case, we replace p̂
with r̂ = {ri j } which is a randommatrix with entries in [0, 1], and the corresponding
inhomogeneous random graph is denoted G(n, r̂). This class of random graphs is
extremely general and subsumes a great variety of many important random graph
models, for example G(n, p̂).

Of a particular interest is the case where

ri j = p(Xi , X j ),

where {X1, . . . , Xn} is a set of random variables in some measure space S, and
p : S × S → [0, 1] is a fixed function called the connection probability function.
This class of models is quite general and subsumes, for instance, the stochastic block
models [54], hidden variable models [52, 53], latent space models [55–57], random
geometric graphs [58, 59], and many other popular models. If the Xi ’s are indepen-
dent random variables uniformly distributed in [0, 1], and p is a symmetric integrable
function, then p is also known as a graphon in the theory of graph limits [60, 61].
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The multi-parameter complex X (n, r̂). The most general class of models consid-
ered in this chapter is a version of the multi-parameter complex X (n, p̂)with random
simplex existence probabilities p̂. To emphasize their randomness, we denote this
complex by X (n, r̂), where r̂ is random p̂. For maximum generality, the probabilities
of existence of different simplexes, including simplexes of different dimensions, do
not have to be independent random variables, so that the space of X (n, r̂) is parame-
terized by joint probability distributions over the vector of tensors r̂, equivalent to all
nonempty subsets of {1, . . . , n}. As evident from Fig. 2.1, all other models of random
complexes and graphs are special cases of X (n, r̂). In particular, X (n, p̂) is a special
degenerate case of X (n, r̂). At this level of generality, the complex X (n, r̂) has not
been considered or defined before, yet it is simply a higher-dimensional version of
the well-studied G(n, r̂).

2.2.4.2 Hypersoft Configuration Model

The hypersoft configuration model HSCM(n, ρ). The hypersoft configuration
model is the hypercanonical model of random graphs with a given expected degree
distribution ρ [40, 41, 44, 52, 53, 62]. It is defined as the SCM(n,k) in which
the expected degree sequence k is not fixed but random: the expected degree ki of
every vertex i is an independent random variable with distribution ρ, ki ∼ ρ. In
other words, to generate an HSCM(n, ρ) graph, one first samples ki s independently
from the distribution ρ, then solves the system of equations (2.2) to find all λi s, and
finally creates edges with probabilities pi j (2.1). The HSCM(n, ρ) is thus a prob-
abilistic mixture of SCM(n,k)’s with random k ∼ ρn . The degree distribution in
HSCM(n, ρ) is the mixed Poisson distribution with mixing ρ [40, 41].

An equivalent definition of HSCM(n, ρ) is based on the observation that the
distribution ρ defines the joint distribution � of � = {λi } via (2.2). This means that
an equivalent procedure to generate an HSCM(n, ρ) graph is to sample � directly
from� first, and then create edges with probabilities pi j (2.1). This definition makes
it explicit that the HSCM(n, ρ) is a special case of G(n, r̂).

For a given ρ, it may difficult to find the explicit form of the distribution �. How-
ever, in many cases with important applications—including the Pareto ρ with a finite
mean, for instance—it has been shown that the canonical connection probability (2.1)
and its classical limit approximation

pCLi j = min
(
1, e−λi e−λi

) = min

(

1,
ki k j

k̄n

)

, (2.5)

where k̄ is the mean of ρ, lead to asymptotically equivalent random graphs [28]. In
such cases, the random Lagrange multipliers λi ’s are asymptotically independent,
� = ψn , λi ∼ ψ , with the distributionψ defined by the distribution ρ via the change

of variables λi = ln
(√

k̄n/ki
)
where ki ∼ ρ. Generating such a graph is extremely

simple: first sample either the ki ’s or λi ’s independently from the distribution ρ or
ψ , respectively, and then generate edges with probabilities pCLi j (2.5).
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The d-dimensional hypersoft configuration model HSCMd(n, ρ). A straightfor-
ward generalization of HSCM(n, ρ) to dimension d is achieved by defining the
HSCMd(n, ρ) as the probabilistic mixture of SCMd(n,k) with random k ∼ ρ(nd):
the expected degree kτ of every (d − 1)-simplex τ is an independent random variable
with distribution ρ. In other words, to generate a randomHSCMd(n, ρ) complex, one
first prepares the complete (d − 1)-complex of size n, then samples the

(n
d

)
expected

degrees kτ of all the (d − 1)-simplexes τ independently from the distribution ρ,
then solves the system of equations (2.4) to find all the λτ ’s, and finally creates the
d-simplexes σ independently with probability pσ (2.3). For the same reasons as in
the d = 1 case, the HSCMd(n, ρ) model is a special case of X (n, r̂) for any d ≥ 1.
The model has not been previously considered, except the d = 1 case.

2.2.4.3 Geometric Complexes

An important class of random complexes are geometric complexes, which are a
special case of X (n, r̂) whose 1-skeletons are random geometric graphs. Their ran-
domness comes from random locations of vertices in a space, and this randomness
is often modeled by either binomial or Poisson point processes whose definitions we
recall next.

Let S be a metric space with a probability distribution P on it. The definitions
below apply to any sufficiently nice pair of S and P . However, for the sake of
simplicity, in the subsequent sections of this chapter, the space S will always be a
flat d-dimensional torus S = T

d = [0, 1]d/ {0 ∼ 1}, while P will be its Lebesgue
measure λ, i.e., P(A) = λ(A)/λ(Td) = λ(A), where λ(A) is the Euclidean volume
of A ⊆ T

d .

Thebinomial pointprocess is simply a set ofn randompointsXn = {X1, . . . , Xn} ⊂
S sampled independently from P . In the simplest case S = T

1,we simply sample Xi ’s
from the uniform distribution, Xi ∼ U(0, 1), viewed as a circle. The distribution of
the number of points in any measurable subset A ⊆ S is binomial with mean nP(A),
giving the process its name.

The Poisson point process is the binomial process with a random number of points
N sampled from the Poisson distribution with mean n, i.e. Pn = XN , where N ∼
Pois (n). The distribution of the number of points in anymeasurable A ⊆ S is Poisson
with mean nP(A), where n is the rate of the process. Another key property of the
Poisson process is spatial independence: the numbers of points in any pair of disjoint
subsets of S are independent random variables. This property, absent in the binomial
process, makes the Poisson process favorable in probabilistic analysis.

In the n → ∞ limit, the two process are asymptotically identical—the binomial
process converges to the Poisson process in a proper sense [63]. For this reason, and
given that the Poisson process is easier to deal with, we will restrict ourselves in this
chapter to the Poisson process Pn on the torus Td . These setting turn out to provide
the most elegant results, while not losing much in terms of generality.
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The random geometric graph G(Pn, r). We start with G(Xn, r), which is a special
case of G(n, r̂), in which

ri j = p(Xi , X j ) = 1
{
d(Xi , X j ) ≤ r

}
,

where d(Xi , X j ) is the distance between Xi , X j ∈ Xn inTd , and r > 0 is the connec-
tivity radius parameter [58, 59]. In other words, the vertices of this random graph are
a realization of the binomial process, and two vertices are connected if the distance
between them in Td is at most r . To generate the random geometric graph G(Pn, r)
we first sample N ∼ Pois (n), and then generate G(XN , r) as described above.

The random Vietoris-Rips complex R(Pn, r). This is the flag complex over the
random geometric graph G(Pn, r). It is thus a straightforward higher-dimensional
generalization of G(Pn, r). Note that we can consider R(Xn, r) for the binomial
process as well, which is a special case of X (n, r̂). Then R(Pn, r) = R(XN , r) with
N ∼ Pois (n).

The random Čech complex C(Pn, r). This is a different higher-dimensional gener-
alization of G(Pn, r). TheC(Pn, r) rule is: draw balls Br/2(Xi ) of radius r/2 around
each of the points Xi ∈ Pn , then look for all the intersections of these balls, and
for every (k + 1)-fold intersection of the balls, add the corresponding k-simplex to
the complex. Note that the binomial version C(Xn, r) can still be considered as a
special case of X (n, r̂) with a different rule for the creation of higher-dimensional
simplexes, compared to R(Xn, r).

While the 1-skeleton of both R(Pn, r) andC(Pn, r) is the same random geometric
graph G(Pn, r), higher-dimensional simplexes in these complexes are in general
different, as illustrated in Fig. 2.2. The following useful relation was proved in [64]

for any α ≤
√

d+1
2d :

R(Pn, αr) ⊂ C(Pn, r) ⊂ R(Pn, r).

A powerful property of the Čech complex is due to the Nerve Lemma [65] stating
that undermild conditionswehave the following isomorphismbetween the homology
groups Hk :

Hk(C(Pn, r)) ∼= Hk(B(Pn, r)),

Fig. 2.2 The Čech and Rips
complexes. We draw balls of
a fixed radius r around the
points, and consider their
intersection. The edges in
both cases correspond to the
geometric graph. While both
triangles belong to the Rips
complex, the left triangle is
not included in the Čech
complex
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where B(Pn, r) = ⋃
Xi∈Pn

Br/2(Xi ). This property, absent in the Rips complex, is
very useful in the probabilistic analysis of the Čech complex, allowing one to switch
back-and-forth between combinatorics and stochastic geometry.

2.2.5 Complexes Based on Random Hypergraphs

2.2.5.1 General Complexes

The main reason why the Linial-Meshulam model Yd(n, p) is defined on top of the
complete (d − 1)-skeleton, is simplicity. The complete (d − 1)-complex underlying
the d-complex Yd(n, p) simplifies its topological analysis drastically. Much less
simple, but also much more general, is the X (n, p̂) complex in which the probability
of existence of simplexes of different dimensions are all different, but this complex
is still relatively simple from the probabilistic perspective, since simplexes of higher
dimensions are created in a conditionally independent manner, with the conditions
being the existence of required simplexes of lower dimensions. Very recently, this
simplicity was sacrificed even further for the sake of even greater generality in a class
of models based on random hypergraphs [66, 67], which we briefly review next.

The inhomogeneous random hypergraph H(n, p̂). This is a straightforward gen-
eralization of the inhomogeneous random graph G(n, p̂) to hypergraphs: every pos-
sible hyperedge σ (which is a nonempty subset of {1, . . . , n}) in H ∼ H(n, p̂) exists
independently with probability pσ ∈ p̂. Note that H is not a simplicial complex with
high probability, unless p̂ is specially designed for H to be a complex.

The lower and upper complexes Z(n, p̂) and Z(n, p̂). Introduced in [66, 68],
these are both based on the H(n, p̂). The lower complex Z ∼ Z(n, p̂) is the largest
simplicial complex that the random H ∼ H(n, p̂) contains, while the upper com-
plex Z ∼ Z(n, p̂) is the smallest simplicial complex that contains the random
H ∼ H(n, p̂), so that Z ≤ H ≤ Z . In other words, a simplex σ is included in the
lower complex Z if and only if σ ∈ H and also all its faces are hyperedges of H .
The other way around, every hyperedge σ ∈ H is included in the upper complex Z
as a simplex together with all its faces, even if some of these faces do not happen to
be in H .

Compared to the graph-based models reviewed in the previous sections, the
hypergraph-based models are much more difficult to analyze, primarily because the
distributions of the skeletons are highly nontrivial and carry intricate dependency
structure. However, an exciting fact about these two models is that they are dual in
some strict topological sense (Alexander duality), and therefore statements about
one of the models can be translated with ease to corresponding statements about the
other [66, 67].

At this point, it may be tempting to proceed similarity to the previous X -sections,
and let the hyperedge existence probabilities p̂ be random r̂, leading to H(n, r̂),
Z(n, r̂), and Z(n, r̂). However, nothing new is gained by doing so, since the X (n, r̂)
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model is already general enough as it includes any possible joint distribution of
simplex existence probabilities, including the distributions describing Z(n, p̂) and
Z(n, p̂). That is, the lower and upper models Z(n, p̂) and Z(n, p̂) with nonrandom
p̂ are special cases of the more general X (n, r̂) model with the joint distribution of
r̂ set equal to the joint distribution of simplex existence probabilities in Z(n, p̂) and
Z(n, p̂), while the lower and upper models Z(n, r̂) and Z(n, r̂) with random r̂ are
equivalent to X (n, r̂∗) with matching joint distributions of r̂∗.

2.2.5.2 Z-configuration Models

One interesting special case of the Z -complexes from the previous section is the
Z -version of the d-dimensional (soft) configuration model considered in [50].
The Z -configurationmodels Z-CMd(n,k) and Z-SCMd(n,k). The d-degree kσ (d)

of a d ′-simplex σ is defined to be the number of simplexes of dimension d > d ′ that
contain σ [2], and the Z -configuration models are defined by a vector k = {ki (d)}
of a given sequence of (expected) d-degrees of vertices i = 1, 2, . . . , n, as opposed
to the vector of (expected) d-degrees of (d − 1)-simplexes in the (S)CMd(n,k) in
Sect. 2.2.3.2. No low-dimensional skeleton is formed in the Z-SCMd(n,k), while
the probability of d-simplex σ is

pσ = 1

e
∑

i λi1{i<σ } + 1
, (2.6)

where the n parameters λi of vertices i solve the system of n equations

∑

σ

pσ1 {i < σ } = ki (d). (2.7)

If simplex σ is added to the complex, then so are all its lower-dimensional faces. The
Z-SCMd(n,k) is a special case of the Z̄(n, p̂)with p̂ = (0, . . . , 0, p̂d , 0, . . . , 0) and
p̂d = {pσ } given by (2.6).

The model is canonical with the d-degree of all vertices being its sufficient statis-
tics, so that the corresponding microcanonical model Z-CMd(n,k) is the uniform
distribution over all the d-complexes with the d-degree sequence of the vertices equal
to k. Note that these complexes satisfy the additional constraint: they do not contain
any simplex of dimension d ′ < d that is not a face of a d-simplex. The hypercanonical
model Z-HSCMd(n, ρ) is the Z-SCMd(n,k) with random ki (d) ∼ ρ.

2.2.6 Random Simplicial Complexes as Canonical Models

Table2.1 summarizeswhat is knownconcerning the reviewed complexes as canonical
models. To convey this knowledge succinctly, it suffices to focus only on the canonical
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Table 2.1 Canonical models of random simplicial complexes

Models Spaces S Properties x References Comments

G(n, p), G(n, M) Gn M [39] (1)

X (n, p), X (n, M) Fn M [21] (1)

Yd (n, p), Yd (n, M) Cn,d Ms,d [21] (1)

X (n,p), X (n,M) Cn M = {
Mc,d , Ms,d

}n−1
d=1 [21] (1, 2)

G(n, p̂), G(n, r̂) Gn σ̂1 = {σ1} [39] (1)

X (n, p̂), X (n, r̂) Cn σ̂ = {{∂σd } , {σd }}n−1
d=1 [21] (1, 2)

((H)S)CM(n, ·) Gn k = {ki } [39] (3)

((H)S)CMd (n, ·) Cn,d k = {
kσd−1

}
here (4)

Z-((H)S)CMd (n, ·) Zn,d k = {ki (d)} [50] (5)

The first column lists the canonical models from Sect. 2.2, along with their micro- and hyper-
canonical counterparts (if any), whose entropy maximization properties have been established.
The second and third columns document the constraints (space of complexes and their properties)
under which the model entropy is maximized. The fourth column contains references to where
this maximization has been established and to further details. The last column refers to pertinent
comments in the text

models per se, since their microcanonical constituents and hypercanonical mixtures
are coupled to them as discussed in Sect. 2.2.1.

To define a canonical model, one needs to specify not only the sufficient statis-
tics x (whose expectations can take any admissible values y in a particular canonical
model), but also the spaceS of allowed complexes over which the entropy of a canon-
ical model is maximized. Table2.1 uses the following notations for such spaces S of
labeled graphs and complexes:

• Gn: all graphs of size n;
• Fn: flag complexes of size n;
• Cn: all complexes of size n;
• Cn,d : d-complexes of size n with a complete (d − 1)-skeleton;
• Zn,d : d-complexes of size n whose all d ′-simplexes, for all d ′ < d, are faces of
d-simplexes.

For the sufficient statistics, Table2.1 uses the following notations that rely on the
definition of a d-shell, which can be found at the end of Sect. 2.2.2:

• Mc,d and Ms,d : numbers of d-shells and d-simplexes (Ms,1 = M , the number of
edges);

• ∂σd and σd : d-shell and d-simplex (σ0 = i , a vertex; σ1 = {i, j}, an edge);
• kσd and kσd (d

′): (d + 1)-degree and generalized d ′-degree of σd (d < d ′ < n).

Finally, the comments referred to in Table2.1 are as follows:

1. The values y of properties x are not shown, but they are assumed to match
properly the model parameters. That is, in a general canonical model we have
that E x = y, so that the G(n, p) model, for example, is the canonical model
with x = M and y = EM = (n

2

)
p. Similarly, the X (n, p̂)model is the canonical
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model with E σd = pσdE ∂σd and E ∂σd = ∏
τd−1<σd

E τd−1, giving the expected
values of the sufficient statistics as functions of the model parameters pσd .

2. The presence of the constraints on the existence of the boundaries of d-simplexes,
their d-shells, in addition to the constraints on the existence of d-simplexes
themselves, may appear surprising at first. These stem from the conditional
nature of the definition of these complexes. The models with these additional
constraints removed, e.g. the canonical model over Cn with x = {

Ms,d
}n−1
d=1, are

still entirely unknown. This is not surprising, since such models appear to be
combinatorially intractable [21].

3. Note that the constraints under which entropy is maximized in a hypercanonical
model are generally intractable. The proofs that these constraints are the degree
distributions in the dense and sparse HSCM graphs appear in [44] and [62],
respectively. That is, the HSCM is the unbiased maximum-entropy model of
random graphs with a given degree distribution, versus an (expected) degree
sequence in the (S)CM.

4. The d-dimensional ((H)S)CM models have not been considered before. The
proof that SCMd(n,k) maximizes entropy subject to the expected (d − 1, d)-
degree sequence constraints is a straightforward adjustment of notations in the
corresponding proof for a general canonical model [14], so that it is omitted here
for brevity.

5. The hypercanonical version of the model (Z-HSCMd(n, ρ)) has not been con-
sidered before. Efficient algorithms to sample from a generalized version of
Z-CMd(n,k) are considered in [51].

2.3 Phase Transitions

Phase transitions are very interesting and important phenomena occurring in random
structures in statistical physics. In this section we briefly recall the most fundamental
types of phase transitions that have been studied in random graphs, and then describe
their higher dimensional analogues in simplicial complexes.

2.3.1 Homological Connectivity

The very first theorem proved for random graphs in [24] was the phase transition
when theG(n, M) randomgraph becomes connected. The following is the equivalent
result for the G(n, p) random graph.

Theorem 2.1 Let G ∼ G(n, p). Then

lim
n→∞P (G isconnected) =

{
1 np = log n + w(n),

0 np = log n − w(n),
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where w(n) is any function satisfying w(n) → ∞. In addition, if np = log n + c for
c ∈ (0,∞), and denoting by Ncomp the number of connected components in G, then

(Ncomp − 1)
D−→ Pois

(
e−c

)
,

where
D−→ denotes convergence in distribution. This convergence implies that

lim
n→∞P (G is connected) = e−e−c

.

Themain idea behind the proof of Theorem 2.1 is to show that around np = log n,
the random graph consists only of a giant connected component and isolated vertices.
In that case, the phase transition for connectivity can be achieved by analysing the
number of isolated vertices.

Note that in the language of homology, the event ‘G is connected’ can be phrased
as ‘the 0th homology group H0(G) is trivial’, and that Ncomp is equal to the 0th
Betti number β0(G). Thus, it is tempting to try to generalize this phase transition for
higher degrees of homology, and search for the point (value of p or np) where the
kth homology group Hk becomes trivial.

2.3.1.1 The Random d-complex

Westartwith theLinial-Meshulam randomd-complexYd(n, p). Recall thatG(n, p) =
Y1(n, p), and that Theorem 2.1 studies H0. Similarly, the following results studies
Hd−1 in Yd(n, p).

Theorem 2.2 Let Y ∼ Yd(n, p). Then

lim
n→∞P (Hd−1(Y ) = 0) =

{
1 np = d log n + w(n),

0 np = d log n − w(n),

where w(n) → ∞.
In addition, if np = d log n + c, c ∈ (0,∞), then

βd−1(Y )
D−→ Pois

(
e−c

d!
)

,

which implies that

lim
n→∞P (Hd−1(Y ) = 0) = e− e−c

d! .

Note that taking d = 1 in Theorem 2.2, nicely recovers the graph result in The-
orem 2.1. Thus, Linial and Meshulam named this phase transition ‘homological
connectivity’. The phase transition itself was proved first for d = 2 and for homol-
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ogy in Z2 coefficients in [1], and then for any d and homology in Zm coefficients in
[29]. The Poisson limit was proved a decade later [30].

Aside from the analogy between the statements of Theorems 2.2 and 2.1, the
general idea behind the proof also shares some similarity. To prove Theorem 2.2
one can show that around np = d log n, the only possible cycles in Hd−1

1 are those
generated by isolated (d − 1)-simplexes. An ‘isolated’ (d − 1)-simplex is such that
it is not included in any d-dimensional simplex. The fact that isolated (d − 1)-
simplexes yield nontrivial Hd−1 is relatively easy to prove. The much harder part
here is to show that these are the only possible cycles.

2.3.1.2 The Random Flag Complex

The random flag complex X (n, p) differs from the random d-complex Yd(n, p) in
two important ways. Firstly, X (n, p) has random homology in all possible degrees k,
rather than just k = d and k = d − 1 as in Yd(n, p). Secondly, note that in Yd(n, p)
both Hd−1 and Hd are monotone—Hd−1 is decreasing in p, while Hd is increasing.
This is not the case for the flag complex, where except for H0, none of the homology
groups is monotone. The following result was proved by Kahle [33].

Theorem 2.3 Let X ∼ X (n, p). Then,

lim
n→∞P (Hk(X) = 0) =

{
1 npk+1 = (

k
2 + 1 + ε

)
log n,

0 npk+1 = (
k
2 + 1 − ε

)
log n.

Note that here as well, taking k = 0 agrees with the phase transition in Theorem
2.1. The phase transition here is also a consequence of the vanishing of the iso-
lated k-simplexes. However, as oppose to the proofs in [1, 29] which mainly consist
of combinatorial arguments, the proof in [33] goes in a different way, employing
Garland’s method. Briefly, Garland’s method [69] is a powerful tool that allows
“breaking” the computation of homology into local pieces (the links of the faces),
and to invoke spectral graph arguments.

2.3.1.3 The Multi-parameter Random Complex

Phase transitions are usually described as a rapid change of system behavior, in
response to a small change in a system parameter value (e.g. p or r above). Since the
multi-parameter complex X (n,p) has an infinite sequence of parameters, we cannot
describe a suitable phase transition per se. Nevertheless, interesting results were pre-
sented in [70], showing that there are different regions within this high-dimensional
parameter space, where in each region there is a single dominant homology group Hk .

1 More accurately, the proof actually looks at cocycles in Hd−1.
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Todescribe the resultweneed a fewdefinitions.Letd > 0 and letα = (α1, . . . , αd)

∈ R
d+. Define

ψk(α) =
d∑

i=1

(
k

i

)

αi , k = 1, . . . , d.

These functions are then used to define different domains

Dk = {
α ∈ R

d
+ : ψk(α) < 1 < ψk+1(α)

}
,

for k = 0, . . . , d − 1, and where ψ0 ≡ 0. We also define Dd = {α : ψd(α) < 1}.
Finally, define

τk(α) =
k∑

i=1

(1 − ψi (α)), e(α) = min
0≤i≤d

(1 − ψi (α)).

Theorem 2.4 ([70]) Let p = (p1, p2, . . . , pd , 0, 0, . . .), be such that pi = n−αi ,
where α = (α1, . . . , αd) ∈ R

d may be a function of n, and limn→∞ α(n) = α∗. Let
X ∼ X (n,p), and suppose that α∗ ∈ Dk . Then, with high probability

βk(X) ≈ nτk (α)(k + 1)!,

and for all j �= k we have

β j (X) = O(n−e(α)βk(X)).

In other words, in each Dk the k-th Betti numbers is quite large, and all other Betti
numbers are negligible compared to it. One can think of this results as a “multi-
parameter phase transition” so that the system behavior changes as one moves from
one region Dk to another. The proofs in [37] relies mainly on counting faces and
using Morse inequalities.

2.3.1.4 Random Geometric Complexes

With respect to connectivity, the random geometric graph G(Pn, r) behaves quite
similarly to the G(Pn, p) random graph. Denoting by � = ωdnrd the expected
degree equal to the expected number of points in a ball of radius r , with ωd standing
for the volume of the unit-ball in R

d , the following was shown in [71].

Theorem 2.5 Let G ∼ G(Pn, r). Then

lim
n→∞P (G isconnected) =

{
1 � = log n + w(n),

0 � = log n − w(n),
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where w(n) is any function satisfying w(n) → ∞.

In other words, in both models connectivity is achieved once the expected degree is
larger than log n.

Moving to higher dimensions, the geometric models start to exhibit different
behavior than the combinatorial ones. The main difference is the following. In
Yd(n, p) and X (n, p), when p → 1, homological connectivity describes the stage
where homology becomes trivial. This is due to the fact that there is no structure
underlying the complex. In the geometric complexes, the vertices are sampled over a
metric space S, whichmight has its own intrinsic homology. Thus, for r large enough,
one should expect the homology of the random complex (C(Pn, r) or R(Pn, r)) to
“converge” to the homology of S, rather than to vanish. To account for this, the event
we will refer to as the k-th homological connectivity here, is defined in [72] as

Hk,r := {∀s ≥ r : Hk(C(Pn, s)) ∼= Hk(S)}

for the Čech complex, and similarly for the Rips complex, with ‘C’ replaced by ‘R’.
Note that Hk,r is a monotone event (i.e.Hk,r1 ⊂ Hk,r2 for all r1 ≤ r2).

In the Čech complex, the phase transition inHk,r is by now fully understood. The
following was proved in [72].

Theorem 2.6 Let S = T
d , then for 1 ≤ k ≤ d − 2,

lim
n→∞P

(Hk,r
) =

{
1 � = 2d(log n + (k − 1) log log n + w(n)),

0 � = 2d(log n + (k − 1) log log n − w(n)),

for any w(n) → ∞. In addition,

lim
n→∞P

(Hd−1,r
) = lim

n→∞P
(Hd,r

) =
{
1 � = 2d(log n + (d − 1) log log n + w(n)),

0 � = 2d(log n + (d − 1) log log n − w(n)).

While the proof there considers only the flat torus case, the results in [73] indicate that
similar results could be achieved for any compact Riemannianmanifold. The key idea
behind the proof of Theorem 2.6 was to consider the evolution of complex C(Pn, r)
as r is increased, and to look for critical faces. By that we mean simplexes that
facilitate changes in Hk(C(Pn, r))when they first enter the complex. The analysis of
critical faces employsMorse theory [74, 75]. The proof then consists of the following
arguments:

1. If � is large enough (� � log n), we have coverage, i.e. B(Pn, r) = T
d . Then,

by the Nerve Lemma [65] we have that Hk(C(Pn, r)) ∼= Hk(T
d).

2. If � = 2d(log n + (k − 1) log log n + w(n)) we can show that w.h.p. no more
critical faces that modify Hk enter the complex. In other words, Hk has reached
its limit. From the previous argument the limit is Hk(T

d), and thus we conclude
that Hk,r holds.
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3. If � = 2d(log n + (k − 1) log log n − w(n)), critical faces still enter the com-
plex and make chances in Hk . Thus Hk,r does not hold (w.h.p.).

Similarly to Theorems 2.1 and 2.2, the results in [72] also include a Poisson limit
for the counting of the critical faces, when � = 2d(log n + (k − 1) log log n + c).
This result is the analogue of the isolated vertices in the random graph, since: (a)
Critical faces are the ‘obstructions’ to homological connectivity, in the same way
that isolated vertices are for connectivity. (b) It can be shown that critical faces are
indeed isolated when they first enter the complex. Since the exact definition of the
critical faces require more details, we will not present the exact theorem here, but
refer the reader to [72, 76].

Homological connectivity for the Rips complex R(Pn, r) is still an open problem
to date. The most recent result in this direction appeared in [77]. By using Discrete
Morse Theory [78], Kahle was able to prove the following.

Theorem 2.7 Let S be a compact and convex subset of Rd . Then

E {βk(R(Pn, r))} = O
(
n�ke−c�

)
.

In particular, if � = 1+ε
c log n then βk = 0 (w.h.p.).

Note that this result is for compact and convex sets S, for which Hk(S) = 0 for all
k ≥ 1.While this result is a significant step, it is still incomplete since: (a) It does not
provide a sharp phase transition. In particular, there is no reason to believe that the
constant c provided by the proof, is the optimal one. (b) It does not apply to general
manifolds.

2.3.2 Emergence of Homology

Another fundamental result proved from random graph concerns the appearance of
cycles. The following was proved in [47] (for the G(n, M) model, but the statement
for G(n, p) is equivalent).

Theorem 2.8 Let G ∼ G(n, p), then

lim
n→∞P (G containscycles) =

⎧
⎪⎨

⎪⎩

1 np = c ≥ 1,

γ (c) np = c ∈ (0, 1),

0 np = o(1),

where γ (c) = 1 − √
1 − c exp

(
c
2 + c2

4

)
.

Note that the event ‘G contains cycles’ can be phrased as H1(G) �= 0. In other words,
Theorem 2.8 describes a phase transition for the emergence of H1 in G(n, p) =
X1(n, p).
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In the following, we will review the results known to date about the emergence
of k-cycles for the various random simplicial complex models.

2.3.2.1 The Random d-complex

For the random d-complex, the following is an aggregate of a collection of works.

Theorem 2.9 Let Y ∼ Yd(n, p). There exists c∗
d > 0 such that

lim
n→∞P (Hd(Y ) �= 0) =

⎧
⎪⎨

⎪⎩

1 np = c > c∗
d ,

γd(c) np = c ∈ (0, c∗
d),

0 np = o(1),

where γd(c) = 1 − exp
(
− cd+2

(d+2)!
)
. In addition, the only d-cycles in c ∈ (0, c∗

d) are

generated by empty (d + 1)-shells.

The first case was proved in [79], the middle case was proved in [80], and the
last case was proved in [81]. An equation defining the critical values can be found
in [79], while numerical approximations [80] yield c∗

2 ≈ 2.754, c∗
3 ≈ 3.907, c∗

4 ≈
4.962, . . . , c∗

1000 ≈ 1001. So roughly, it looks like c∗
d ≈ d + 1.

Another closely related phase transition is for collapsibility. Briefly, a d-complex
is collapsible, if we can iteratively erase pairs of simplexes in dimension d and
d − 1, without changing the topology of the complex. In [82] a phase transition for
collapsibility was shown at critical values ccold < c∗

d .

2.3.2.2 The Random Flag Complex

Recall that the homology Hk(X (n, p)) is non-monotone (in p). In Sect. 2.3.1.2 we
saw that the largest value of p such that Hk(X (n, p)) is non-trivial is when npk+1 =
�(log n). In this section we look for the smallest possible value of p.

Theorem 2.10 Let X ∼ X (n, p), and suppose that limn→∞ npk < ∞. Then,

lim
n→∞P (Hk(X) �= 0) =

{
1 npk ≥ k + 1 + ε,

0 npk ≤ n−ε,

for any ε > 0.

The upper case was proved in [33], while the lower case was proved in [32]. While
this result is not as sharp as the previous ones, it still implies a phase transition
when npk = �(1). Together with Theorem 2.3, we have that Hk(X) �= 0 for p in the
interval
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⎡

⎣
(
k + 1 + ε

n

) 1
k

,

((
k
2 + 1 − ε

)
log n

n

) 1
k+1

⎤

⎦ .

2.3.2.3 Random Geometric Complexes

The behavior of random geometric complexes is similar in many ways to that of the
random flag complex. In particular, for each k we have two phase transitions – one
for the emergence of the first k-cycles, and another for homological connectivity
(Sect. 2.3.1.4). Here we present the former phase transition.

For the Čech complex, combining the results from [77, 83], we have the following.

Theorem 2.11 For 1 ≤ k ≤ d − 1,

lim
n→∞P (Hk(Cr (Pn)) �= 0) =

⎧
⎪⎨

⎪⎩

1 n�k+1 = ω(1),

γk(c) n�k+1 = c ∈ (0,∞),

0 n�k+1 = o(1),

where γk(c) = 1 − exp(−cAk), for some constant Ak > 0.

Note that the transition occurs when � = �(n− 1
k+1 ) → 0. In other words, the first

cycles appear in a sparse regime where the expected degree is small. Consequently,
it was shown in [77] that in this regime the only k-cycles that appear are the smallest
possible ones – i.e., (k + 1)-shells, which consist of (k + 2) vertices. The phase
transition in Theorem 2.11 then essentially describes the appearance of these empty
(k + 1)-shells.

A similar result was proved for the Rips complex.

Theorem 2.12 For any k ≥ 1,

lim
n→∞P (Hk(Rr (Pn)) �= 0) =

⎧
⎪⎨

⎪⎩

1 n�2k+1 = ω(1),

γ̃k(c) n�2k+1 = c ∈ (0,∞),

0 n�2k+1 = o(1),

where γ̃k(c) = 1 − exp(−c Ãk), for some constant Ãk > 0.

There are two main differences between Theorems 2.11 and 2.12. Firstly, due to the
Nerve Lemma [65], the Čech complex on T

d (as well as any subset of Rd ) cannot
have any k-cycles for k > d. The Rips complex, on the other hand, may have k-cycles

for any k. Secondly, the transition here occurs when � = �
(
n− 1

2k+1

)
, as opposed

to � = �
(
n− 1

k+1

)
in Theorem 2.11. This difference stems from the fact that empty

shells cannot appear in the Rips complex. Thus, it can be shown that the smallest
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possible k-cycle is achieved by generating an empty cross-polytope, which consists
of 2k + 2 vertices.

2.3.3 Percolation-Related Phenomena

Percolation theory studies the emergence of infinite or “giant” connected compo-
nent in various random media. The study of higher-dimensional analogues is at a
preliminary stage, and we describe here the most recent results.

In the case of random graphs, giant components are commonly defined in terms
of the number of vertices. Specifically, for both theG(n, p) andG(Pn, r)models, by
a “giant component” we refer to a component that consists of �(n) many vertices.
As opposed to connectivity which we discussed earlier, this notion does not have
a simple analogue in higher dimensions. In this section we present two different
notions – one of the random d-complex and another for the random Čech complex.

2.3.3.1 Random d-complex

Starting with the G(n, p) graph, the following was proved in [47].

Theorem 2.13 Let G ∼ G(n, p), and np = c ∈ (0,∞). Denote by Ln the largest
connected component in G. Then with high probability

Ln =

⎧
⎪⎨

⎪⎩

�(n) c > 1,

�(n2/3) c = 1,

�(log n) c < 1.

In other words, a giant component appears for c > 1. Further, it can be shown that
in this case, the giant component is unique.

In order to generalize the emergence of the giant component to higher dimension,
the notion of shadow was introduced in [84]. Suppose that X is a d-dimensional
simplicial complex with a complete (d − 1)-skeleton. The shadow of X , denoted
SH(X), is the set of all d-dimensional faces σ such that (a) σ /∈ X , and (b) adding
σ to X generates a new d-cycle.

In the case of the graph (i.e., d = 1) the shadow are all the edges not in the graph,
such that adding them generates a new cycle. In that case, it is easy to show that when
c > 1 we have |SH(X)| = �

((n
2

))
, so that the shadow has a positive density, and we

say that the graph has a giant shadow. In [80], this phenomenon was generalized for
higher dimensions.

Theorem 2.14 Let Y ∼ Yd(n, p), and np = c ∈ (0,∞). Thenwith high probability,
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|SH(X)| =
{

�
(( n

d+1

))
c > c∗

d ,

�(n) c < c∗
d ,

where c∗
d is the critical value defined in Sect.2.3.2.

In other words, when c > c∗
d a giant shadow emerges in the random d-complex,

similarly to what happens in the graph case.

2.3.3.2 Random Geometric Complexes

Similarly to the G(n, p) model, the random geometric graph G(Pn, r) exhibits a
phase transition for the emergence of a giant component. This phase transition occurs
when the expected degree � is constant, and the corresponding critical value is
denoted as λc.

In the context of geometric complexes, a different generalization for percolation
was studied recently [85, 86]. Consider the random Čech complex C(Pn, r) defined
in Sect. 2.2, where Pn is a homogeneous Poisson process on the d-torus Td . One of
the nice facts about the torus, is that it has non-trivial homology for all 0 ≤ k ≤ d,
and in particularβk(T

d) = (d
k

)
. In [85] the notion of a “giant k-cycle”was introduced,

by which we mean any k-cycle in C(Pn, r) that corresponds to any of the nontrivial
cycles in Hk(T

d).
To define thismore rigorously,we consider the union of balls B(Pn, r), and the fact

that Hk(B(Pn, r)) ∼= Hk(C(Pn, r)). We then take the inclusion map i : B(Pn, r) ↪→
T
d , and its induced map i∗ : Hk(B(Pn, r)) → Hk(T

d). By a giant k-cycle we refer
to all nontrivial elements in the image Im(i∗). Finally, we define the events

Ek := {Im(i∗) �= 0} , Ak = {
Im(i∗) = Hk(T

d)
}
.

In other words, Ek is the event that some giant cycles exist, whileAk is the event that
all of them are present in B(Pn, r) (and correspondingly inC(Pn, r)). The following
was proved in [85].

Theorem 2.15 Suppose that � = ωdnrd = λ ∈ (0,∞).

1. There exist λ0
1 ≤ λ0

2 . . . ≤ λ0
d−1, such that if λ < λ0

k then,

P (Ak) ≤ P (Ek) ≤ e−C0
k n

1/d
,

for some C0
k > 0.

2. There exist λ1
1 ≤ λ1

2 . . . ≤ λ1
d−1, such that if λ > λ1

k then,

P (Ek) ≥ P (Ak) ≥ 1 − e−C1
k n

1/d
,

for some C1
k > 0.
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In addition, we have λ0
k ≤ λ1

k for all k, and λ0
1 = λ1

1 = λc.

In other words, Theorem 2.15 suggests that there is a phase transition describing the
emergence of the giant k-cycles. However in order to complete the proof, one needs
to show that λ0

k = λ1
k for all k.

At this stage the giant shadow and the giant cycle phenomena are incomparable.
However, it should be noted that both occur in the regime where the expected degree
(np or �) is finite, similarly to the giant component. It is an interesting question
whether these are merely two ways to view the same phenomenon, or they describe
completely different structures. Finally, we should note that other ideas for extending
percolation-type phenomena to higher dimension exist in the literature.

2.3.4 The Fundamental Group

Given a space X , the fundamental group π1(X) represents the space of equivalence
classes of loops in X , where the equivalence is based on homotopy (a continuous
transformation of one loop into the other). The space X is simply connected if and
only if π1(X) is trivial.

Note that the first homology group H1(X) also represents loops, but under a
different equivalence relation (being a boundary). In fact, it can be shown that H1(X)

is an abelianization of π1(X). Thus, it is possible that H1(X) is trivial while π1(X)

is not. Consequently, the vanishing threshold for π1 is larger than the threshold for
H1 as the following statements show.

We start with the random d-complex. Here the only relevant dimension is d = 2,
since otherwise the fundamental group is trivial. The following was proved in [87,
88].

Theorem 2.16 Let Y ∼ Y2(n, p). Then,

lim
n→∞P (π1(Y ) = 0) =

{
1 np = cn

1
2 ,

0 np = n
1
2 −ε,

where c is any constant bigger than
√
33/44.

Further, when np = n1/2−ε it is shown in [87] that the fundamental group is hyper-
bolic. It is also conjectured in [88] that in fact c = √

33/44 is the exact sharp threshold
for simple connectivity.

For the random flag complex, the existing results [89] are even less sharp.

Theorem 2.17 Let X ∼ X (n, p), then for any

n
1
2 +ε ≤ np ≤ n

2
3 −ε,

with high probability π1(X) is nontrivial and hyperbolic.
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Note that the algebraic structure of the fundamental group is more intricate than
H1(X), and thus several other properties have been studied in the literature. For
example: its geometric and cohomological dimension [90], torsion [91], property T
[33], freeness [92], and more.

2.4 Limit Theorems

The results in the previous section focused on a rather qualitative analysis of phase
transitions. Another direction of study is to consider some numerical marginals of
homology (e.g., the Betti numbers) and find their limiting distribution. In this section
we will briefly review some of the results in this direction.

We will not discuss the proofs here, however we note that in most cases they
rely on Stein’s method [93, 94]. Briefly, this method allows one to prove central
limit theorems and convergence to the normal and Poisson distributions in cases that
involve sums of random variables that are not independent.
Notation. In this section we will use an ≈ bn to denote that an/bn → 1 as n → ∞,

and an � bn to denote that an/bn → 0. In addition,
D−→ stands for convergence in

distribution, and N (μ, σ 2) for the normal distribution with mean μ and variance σ 2.

2.4.1 Betti Numbers

As we have seen in Sect. 2.3.2, the k-th homology of X (n, p) is nontrivial roughly
when p is between n−1/k and n−1/(k+1) (up to constants). It was shown in [32] that
when n−1/k � p � n−1/(k+1) then

E {βk(X (n, p))} ≈ nk

(k + 1)! p
(k+1

2 ).

In addition, the following central limit theorem was proved in [83].

Theorem 2.18 Let X ∈ X (n, p), and let n−1/k � p � n−1/(k+1). Then

βk(X) − E {βk(X)}√
Var (βk(X))

D−→ N (0, 1).

In the geometric complexes case, the results usually split according to the expected
degree�. In the case where� → 0 (sometimes called the sparse regime), the homol-
ogy is dominated by empty shells, and thus it is relatively easy to compute the Betti
numbers. For example, it was proved in [77] that

E {βk(C(Pn, r))} ≈ Akn�k+1,
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where Ak > 0 is a known constant [77]. Note that the limit of the right hand side can
be zero, finite, or infinite. Consequently we have three possible limits. The following
was proved in [83].

Theorem 2.19 Let C ∼ C(Pn, r), and suppose that � → 0.

1. If n�k+1 → 0 then βk(C) = 0 with high probability.

2. If n�k+1 = α ∈ (0,∞) then βk(C)
D−→ Pois (Akα).

3. If n�k+1 → ∞ then βk (C)−E{βk (C)}√
Var(βk (C))

D−→ N (0, 1).

Similar results hold for the Rips complex as well, just with n�2k+1 replacing n�k+1

[83].
The regime where � is finite and non-vanishing is sometimes referred to as the

thermodynamic limit. It can be shown that most of the cycles in either the Čech or
Rips complexes are generated in this regime. However, exact counting here is much
more difficult. It was shown in [77] that E {βk(C(Pn, r))} = �(n) (and the same for
the Rips). However the exact expectation is not known.

Nevertheless, one canprove lawsof large numbers aswell as central limit theorems
for the Betti number functionals. This type of results was first introduced in [95],
and has been improved over the years [96–98]. The main tools used are stabilization
methods for random point processes (e.g. [99]). The result is as follows.

Theorem 2.20 Let C ∼ C(Pn, r), and suppose that � = λ ∈ (0,∞). Then

βk(C) − E {βk(C)}√
n

D−→ N (0, σ 2(λ)),

for some σ 2(λ) > 0.

A similar result applies to the Rips complex as well. In addition in [98, 100] the
binomial processXn was studied as well, and similar limiting theorems were proved.

In the dense regime, i.e.,� → ∞ there are very few results. In particular, even the
scale of the expected Betti numbers is not known. The only case analyzed is the Pois-
son limit when � ≈ log n described earlier, as part of the homological connectivity
phenomenon.

2.4.2 Topological Types

In [101] a completely different type of limit theorem was proved. There, the goal
was to study the distribution of the different topological types that may appear in a
random Čech complex. Let X be a simplicial complex, and let C(X) be the set of all
connected components of X (so that β0(X) = |C(X)|). Define the empirical measure

μX := 1

β0(X)

∑

C∈C
δ[C],
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where δ stands for the Dirac delta measure, and [C] stands for the equivalence class
of all components homotopy equivalent to C (i.e. so that one component can be
“continuously transformed” into the other, see [102]).

Theorem 2.21 Let C ∼ C(Pn, r), and denote μ̂n := μC . Then the randommeasure
μ̂n converges in probability to a universal probability measure. The support of the
distribution is the set of all connected (finite) Čech complexes in Rd .

Note that universality here means that the limit is the same regardless of the under-
lying manifold S.

2.4.3 Persistent Homology

In the context of Topological Data Analysis (TDA), which is discussed in detail in
Chap.3, one is often more interested in studying persistent homology rather than
just the (static) homology. In this section we consider the persistent homology over
filtrations of either Čech or Rips complexes, namely {C(Pn, r)}∞r=0 or {R(Pn, r)}∞r=0,
respectively.

2.4.3.1 Limit Theorems

One useful quantity that can be extracted from persistent homology are the persistent
Betti numbers. Briefly, for any s ≤ t , we denote by β

(s,t)
k the number of cycles born

before radius s and die after radius r (see [96] for a formal definition). In [96] the
following central limit theorem was proved.

Theorem 2.22 Let C ∼ C(Pn, r), and suppose that nsd = α and ntd = β, for some
α ≤ β ∈ (0,∞). Then

β
(s,t)
k (C) − E

{
β

(s,t)
k (C)

}

√
n

D−→ N (0, σ 2(α, β)),

for some σ 2(α, β) > 0.

Note that this theorem describes the persistent Betti numbers in the thermodynamic
limit, where most cycles are born and die. A similar theorem applies for R(Pn, r),
and in fact [96] present this central limit theorem for an even larger general class
of geometric complexes. In [97] Theorem 2.22 was further extended to a multidi-
mensional central limit theorem (i.e. for a sequence (α1, β1), . . . , (αm, βm)). Finally,
note that Theorem 2.20 is in fact a special case of Theorem 2.22 in the case where
α = β.

Recall that a common representation for persistent homology is via a persistence
diagram, which is essentially a finite subset of � = {(x, y) : y ≥ x} ⊂ R

2, where
the coordinates of each point correspond to the birth and death times of a persistence

http://dx.doi.org/10.1007/978-3-030-91374-8_3
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interval. Thus, persistence diagrams attached to random finite simplicial complexes,
can be thought of as a random subset of�, or equivalently a random discrete measure
on �. One can then employ the theory of random sets and randommeasures to study
the limit of such diagrams.

Consider the random Čech filtration {C(Pn, r)}∞r=0, and let μk(n) be the discrete
measure representing the persistence diagram in degree k. The main result in [96]
shows that there exists a limiting Radon measure on �,

μk = lim
n→∞

μk(n)

n
.

The same is true for the Rips filtration as well. This statement is essentially a law of
large numbers for the persistence diagram as a Radon measure in R

2.
A different approach was taken in [103], where persistence diagrams were studied

from the point of view of set-topology. In that case it was shown that each persistence
diagram can be roughly split into three different areas. The limit of the persistence
diagram in the sparse region is empty. In the intermediate region it has a limiting
Poisson process distribution. Finally, in the dense region, the persistence diagram
converges to a solid (nonrandom) 2d region.

2.4.3.2 Maximal Cycles

Another interesting and significant type of limit for persistence diagrams was pre-
sented in [104]. There, it was assumed that S is a unit box (though the results should
not depend on that). The quantity considered was the maximal death/birth ratio
among all persistent cycles of degree k, denoted �k .

Theorem 2.23 Let �k be the maximally persistent cycle for either the Rips or Čech
complex. Then there exist Ak < Bk such that with high probability

Ak

(
log n

log log n

)1/k

≤ �k ≤ Bk

(
log n

log log n

)1/k

.

Theorem2.23provides the scaling for themultiplicative persistencevalue in a random
geometric complex. Since the unit box has no intrinsic homology, this result can be
thought of as describing the homology of noisy cycles, i.e., cycles that are not part
of the underlying topology. It can be shown that the same result applies for other
compact spaces S, as long as we do not count cycle that belong to Hk(S). Recalling
Sect. 2.3.3.2, such “signal” cycles (those in Hk(S)) are born when � is constant,
implying that the birth time is r ∝ n−1/d . On the other hand, the signal cycles die
when r is a constant (depends on S and not on n). Therefore, for the signal cycles
we have (death/birth) ∝ n1/d . In other words, taking death/birth as a measure of
persistence, Theorem 2.23 shows that asymptotically noisy cycles are significantly
less persistent than the signal ones, and one should be able to differentiate between
them, assuming a large enough sample.
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2.5 Other Directions

In Sects. 2.3 and 2.4 we presented some of the most fundamental results proved in
the mathematical literature on random simplicial complexes. There are numerous
important studies that we omit for space reasons, but would like to mention them
briefly here.

• Spectrum and expansion: Similarly to graphs, one can define an adjacency and
Laplacian operators for simplicial complexes, as well as different types of expan-
sion properties. These were studied mainly in the the context of the random d-
complex Yd(n, p) [48, 105–107].

• Functional limit theorems: One can examine functionals such as the Betti num-
bers and the Euler characteristic in a dynamic setting, and seek a limit in the form
of a stochastic (Gaussian) process. In [103, 108], geometric complexes were stud-
ied, and the dynamics was the growing connectivity radius in the complex. The
results show that the limiting process is indeed Gaussian. In [109], the random flag
complex was studied. Here, the set of edges used to construct the complex turns
on and off, following stationary Markov dynamics. The limiting processes are
shown to be Ornstein-Uhlenbeck (Gaussian) processes. These results were further
extended to the multiparameter complex [110].

• Spanning acycles: Similarly to the study of spanning trees in graphs, one can
consider spanning acycles in simplicial complex. Suppose that K is a complete
(d − 1)-skeleton on n vertices. A set of d-faces S is considered a spanning acycle if
βd−1(K ∪ S) = βd(K ∪ S) = 0. In otherwords, adding S to K kills all the existing
(d − 1)-cycles (hence “spanning”), while not generating any new d-cycles (hence
“acycle”). This definition invites the study of spanning acycles in the random d-
complex. In [111, 112] the weights of faces in the minimal spanning acycle and
their connection to the persistence diagram were studied.

2.6 Future Directions

We hope our review illustrates well that the recent progress in the fundamental
study of random simplicial complexes in mathematics has been extremely rapid. As
far as applications to real-world systems in network/data science are concerned, the
progress has been as rapid, but the field is definitely lessmature that its 1-dimensional
counterpart dealing with applications of random graph models. There, a collection
of important and ubiquitous properties of real-world networks abstracted as graphs
have been long identified and well studied. Such properties include sparsity, scale-
free degree distributions, degree correlations, clustering, small-worldness, commu-
nity structure, self-similarity, and so on [113, 114]. Consequently, there have been
an impressive body of work on null models that reproduce these properties in the
statistically unbiased manner, and on growing network models that attempt to shed
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light on possible mechanisms that might lead to the formation of these properties in
real-world systems [113, 114].

When the same systems are modeled as simplicial complexes or hypergraphs, the
list of important properties one should be looking at, is much less understood. Con-
sequently, the world of models dealing with such properties is much less explored,
as it is not entirely clear what properties one should be most concerned with in the
first place.

In addition to its relative infancy, the other reason why the world of random
complex models has not yet been navigated as much, is that models of even simplest
higher-dimensional properties tend to be much more complicated, not necessarily at
the technical level as much as at the conceptual level.

Consider the null models of the degree distribution, i.e. the configuration models,
for example. Since, as opposed to graphs, there is not one but

(n
2

)
notions of degree in

a simplicial complex of size n (d-degrees of d ′-simplexes for any pair of dimensions
d, d ′, 0 ≤ d ′ < d ≤ n − 1), it may not be immediately clear what degrees to focus
on. The degrees that the (S)CMd(n,k) and Z-(S)CMd(n,k) models reproduce in
Sects. 2.2.3.2 and 2.2.5.2, are the d-degrees of (d − 1)- and 0-dimensional simplexes,
respectively, with very different constraints imposed on the underlying simplicial
structure.

In that regard, these two models are the two simplest extremal versions of a
great variety of configuration models we can think of. Such models can reproduce
sequences of d-degrees of d ′-simplexes for any pair of dimensions d, d ′, in which
case the defining Eqs. (2.3, 2.4) remain the same, except that simplexes τ in those
equations are now understood to be of dimension d ′. We may also want to jointly
reproduce different combinations of degree sequences of different dimensions d, d ′
satisfying structural constraints. Suchmodels, based ongeneralized degree sequences
observed in real data, could serve as more adequate and more realistic null models
of the data. The first step in this direction has been made in [51].

Another example is homology, which we discussed at length in this chapter.
Homology is known to be a powerful tool to capture information about the qualitative
structure of simplicial complexes, and its theory in the random setting is constantly
growing. However, as a tool to analyze high-dimensional networks, it is not yet as
clear what part of the information provided by homology is useful and for what
purposes. For example, while H0 (connected components) and H1 (cycles) are quite
intuitive, the role of H2 as a network descriptor is not as clear. Neither is it entirely
clear what useful information is contained in the number of k-cycles, their physical
size, their persistent lifetime, etc. So while the theoretical homological analysis is
fruitful and highly interesting, it tends to be a challenge to see how and when to use
it in application to real-world networks.

The degree distribution and homology are certainly just two out of many proper-
ties that the future work may find interesting and important to model in more realistic
models of random simplicial complexes. For now, the list of such models is quite
rudimentary for the reasons above, so that it is not surprising that rigorous mathe-
matical results are available only for very basic models. Yet we have seen that even
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for these simplest models, the spectrum of available results is extremely rich and
complex.

We have also seen that these results mostly address direct problems, whereas
in dealing with real-world data one often faces inverse problems. For example,
the results presented in Sect. 2.4.3 tell us facts about the persistence diagrams in
“laboratory-controlled” settings, i.e. for given complexes in given spaces with known
topology—a direct problem. An inverse problem would be to make any statistical
inferences about the space topology from a persistence diagram coming from real-
world data. Some progress in this direction has been made over the past decade
[115–119], but this is still an active and important area of research to pursue.

Finally, we comment on one potentially very interesting direction of future
research inmathematics of randomcomplexes.Oneof themost fundamentally impor-
tant recent achievements in mathematics of random graphs is the development and
essential completion of the theory of limits of dense graphs known as graphons [60,
61]. One of the main results in that theory is that, even though there are many very
different notions of graph convergence, they all are equivalent for dense graphs, and
if a family of dense graphs converge, they converge to a (random) graphon [120]. As
mentioned in Sect. 2.2.4.1, a graphon is an integrable connection probability func-
tionW : [0, 1]2 → [0, 1]modulo a certain equivalence relation, and a graphon-based
random graph of size n—known as a W -random graph in the graphon theory—is
G ∼ G(n, r̂), where ri j = W (Xi , X j ) and Xi ∼ U (0, 1).

Can an analogous theory be constructed—or discovered, depending on one’s
philosophical view—for the limits of dense complexes, e.g. complexons? Com-
plexons may probably be related to hypergraphons [121–124], the limits of dense
hypergraphs, via the lower and upper complexes Z(n, p̂) and Z(n, p̂) discussed in
Sect. 2.2.5.1.
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Chapter 3
Persistent Homology: A Topological Tool
for Higher-Interaction Systems

Francesco Vaccarino, Ulderico Fugacci, and Sara Scaramuccia

Abstract The aim of this chapter is to give a handy but thorough introduction to
persistent homology and its applications. The chapter’s path is made by the follow-
ing steps. First, we deal with the constructions from data to simplicial complexes
according to the kind of data: filtrations of data, point clouds, networks, and topolog-
ical spaces. For each construction, we underline the possible dependence on a fixed
scale parameter. Secondly, we introduce the necessary algebraic structures capturing
topological informations out of a simplicial complex at a fixed scale, namely the sim-
plicial homology groups and the Hodge Laplacian operator. The so-obtained linear
structures are then integrated into the multiscale framework of persistent homol-
ogy where the entire persistence information is encoded in algebraic terms and the
most advantageous persistence summaries available in the literature are discussed.
Finally, we introduce the necessary metrics in order to state properties of stability of
the introduced multiscale summaries under perturbations of input data. At the end,
we give an overview of applications of persistent homology as well as a review of
the existing tools in the broader area of Topological Data Analysis (TDA).

3.1 Introduction

Persistent homology is an emerging tool to identify robust topological features under-
lying the higher-order structure of (high-dimensional) data and complex dynamical
systems (such as brain dynamics, molecular folding, distributed sensing). In the
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broader sense, persistence aims to associate meaningful mathematical objects to fil-
trations of data, point clouds, networks, topological spaces, simplicial complexes
etc. Here, a filtration is a sequence of spaces, point clouds, networks, etc. together
with maps connecting them. Very often these maps, if not always, will be inclu-
sions and the sequence will results from filtering on similarities, or weights, in a
way akin to hierarchical clustering. More specifically, we will be interested in con-
sidering filtrations of simplicial complexes, higher dimensional tetrahedral foams,
combinatorial topological spaces naturally associated to the input data. Attached to
simplicial complexes there are the homology groups that represent the lack of k-
connectivity: the zeroth group measures usual connectivity, the first one the lack of
tiles, e.g. three cliques, the second one the lack of four cliques and so on. The objects
counted by the homology groups are voids as dis-junctions, cycles, empty boxes and
so on. The homology groups corresponding to the stages of the filtration at the rel-
evant scales, are connected via linear mappings induced by the filtration’s maps (by
so called functoriality). Persistence studies the entanglement of these information
into a single object called the persistence module, which is a linear space endowed
with a structure of graded module encoding births and deaths of the voids along the
filtration.

The main feature characterizing the persistence approach is to associate a data
filtration with a unique well defined algebraic summary, computable by using linear
algebra tools, whose behaviour represent in a principled way the topological prop-
erties of the data at the various scales in a single summary. This differentiate in an
unequivocal way persistence from its germane, clustering. Indeed, while clustering
analyze the behaviour of data with respect to e.g. some similarity by representing
the process of aggregating data at the various scales but implicitly forces to choose
a significative scale where to stop the process, persistence formalize and compress
the information of the aggregation process itself. Furthermore, when persistence is
applied to the higher degrees homologies it deals with information that no longer
can be seen as a mere representation of the connectivity properties of the data along
their characteristic scales.

In this chapter, we review the main notions in persistent homology according to
the persistence pipeline. In Sect. 3.2, we address the main constructions to obtain a
simplicial complex, or a filtration of simplicial complexes, according to the kind of
input data. InSect. 3.3,we introduce the notion of simplicial homology and its relation
to the Hodge Laplacian as a way to deal with topological features of a simplicial
complex, into linear algebraic terms. InSect. 3.4, themultiscale approachof persistent
homology is introduced and its main summaries are reviewed. Stability properties
of metrics to compare changes in the data filtration to changes in the persistence
summaries are reviewed in Sect. 3.5. In Sect. 3.6, we review some applications of
persistent homology and provide the necessary references for tools implementing
the persistence pipeline in practice.
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Notations

• � Simplicial Complex (finite and ∅ /∈ �)
• σ, τ, ρ simplices
• F,R,Z,Z2 an arbitrary field, real numbers, integers, Z/2Z
• (v0, . . . , vq) q-simplex (simplex of dimension q)
• [v0, . . . , vq ] oriented q-simplex
• �q the set of the q-simplices of �

• �(q) the q-skeleton of � (i.e. the set of the p-simplices of � with p ≤ q)
• Cq(�;F) (short Cq or Cq(�)) group of q-chains of � with coefficients in F

• Cq canonical basis of Cq(�;F)

• ∂q : Cq(�;F) → Cq−1(�;F) boundary map
• δq : Cq(�;F) → Cq+1(�;F) co-boundary map
• Dq matrix representing the map ∂q : Cq(�;F) → Cq−1(�;F) with respect to the
basis Cq , Cq−1

• Bq(�;F) (short Bq or Bq(�)) q-boundaries of � with coefficients in F

• Zq(�;F) (short Zq or Zq(�)) q-cycles of � with coefficients in F

• Hq(X;F) (short Hq or Hq(�)) qth homology group of � with coefficients in F

• βq(�;F) (short βq or βq(�)) qth Betti number of � with coefficients in F

• ker( f ) kernel of f
• im( f ) image of f
• dim(�) dimension of �

• Hq Laplacian kernel
• ϕ : ∅ ⊆ �0 ⊆ �1 ⊆ . . . �m := � filtration of �

• Ci
q short for Cq(�

i ;F)

• Hi
q short for Hq(�

i ;F)

• Hq(ϕ) := ⊕
i Hq(�

i ;F) the qth persistence module of ϕ

• (a, b), (a,+∞) persistence pairs

3.2 From Data to Simplicial Structures

In this section, we review and discuss the main constructions to obtain the main
higher-order representation in the persistence pipeline, namely a simplicial complex
associated to the original input datum [49]. We begin with Sect. 3.2.1 introducing
simplicial complexes. We proceed further in Sect. 3.2.2 by introducing general con-
structions for simplicial complexes. In particular, we focus on the Nerve and the Flag
complexes. Then, we review specific constructions according to the kind of the given
data. We discuss point cloud data, graph and complex networks, partially ordered
sets, and functions. A summary of the discussed methods according to the kind of
input datum is depicted in Table 3.1.
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Table 3.1 A summary of the possible simplicial complex construction (columns) introduced in
this section according to the input data (rows)

3.2.1 Simplicial Complexes

Simplicial complexes are a classical mathematical tool for representing discrete
shapes [78]. The elementary building blocks which form a simplicial are called
simplices.

A simplex σ of dimension q (also addressed as q-simplex) is the convex hull of
q + 1 affinely independent points in the Euclidean space. Practically speaking, a
0-simplex is just a point, a 1-simplex an edge, a 2-simplex a triangle, a 3-simplex a
tetrahedron, and so on. Given a q-simplex σ , any simplex τ which is the convex hull
of a non-empty subset of the points generating σ is called a face of σ . Conversely,
σ is called a coface of τ .

A (finite) simplicial complex � is a finite set of simplices such that:

• each face of a simplex in � belongs to �;
• each non-empty intersection of any two simplices in � is a face of both.

Worth to be noticed that formally there is no obstruction in considering the empty
simplex as included in any simplicial complex �. Its inclusion is typically allowed
in theoretical frameworks and it will lead to the definitions of augmented chain
complexes and of reduced homology. For the sake of simplicity, in this chapter we
will only consider simplicial complexes not including the empty simplex.

The two above claimed conditions are visually depicted in Fig. 3.1. In particular,
we highlight the fact that once a simplex (such as the tetrahedron ABCD) belongs to
a simplicial complex�, then all its faces (vertices, edges, and triangle in the depicted
case) also belong to �. Moreover, in accordance with the second condition, notice
that given any two simplices of the depicted simplicial complex � their intersection
is empty or another simplex of � which is face of both.

By definition, a simplicial complex is a collection of simplices lying in an
Euclidean space Rd of a certain dimension d. In order to adopt the notion of simpli-
cial complex to a larger variety of datasets, it is useful to introduce a more general
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definition of simplicial complexes which do not necessarily need for a geometric
realization. An abstract simplicial complex � on a finite set V is a collection of
non-empty subsets of V , called simplices, with the property of being closed under
inclusion (see Fig. 3.2 for an example). More explicitly, if σ is a simplex which
belongs to � and τ is a non-empty subset of V such that τ ⊂ σ , then τ belongs to
�. Given a simplicial complex �, the elements of V are called vertices of � and a
simplex σ ∈ � is called a q-simplex (equivalently, a simplex of dimension q) if it
consists of q + 1 vertices.

Given a simplicial complex or an abstract simplicial complex�, the maximum of
the dimensions of its simplices is called the dimension of � and denoted as dim(�).
Moreover, we will denoted by �q the set of the q-simplices of � and by �(q) the
q-skeleton of � (i.e. the set of the p-simplices of � with p ≤ q).

In spite of the different definitions, the two presented notions of simplicial com-
plexes are strictly related. In fact, given a simplicial complex �, one can associate to
it an abstract simplicial complex �′ defined as the collection of the simplices of �.
Vice versa, given an abstract simplicial complex �, it always possible to retrieve a
simplicial complex �′ whose associated abstract simplicial complex coincides with
� [78]. The simplicial complexes � and �′ depicted in Figs. 3.1 and 3.2 , respec-
tively, represent an example of this correspondence. �′ is the abstract simplicial
complex associated to �, while � is a geometric realization of �′.

In the following, in the few cases in which we would like to distinguish between
simplicial complexes and abstract simplicial complexes, we will adopt the term
“geometric” simplicial complex to refer to the former. Differently, we will simply
use the term “simplicial complex” to address both the structures.

Fig. 3.1 A (geometric) simplicial complex� (on the left). The collection of simplices of the various
dimensions � consists of (on the right)



102 F. Vaccarino et al.

Fig. 3.2 An abstract simplicial complex �′ on V = {A, B,C, D, E}. �′ is the abstract simplicial
complex associated to the geometric simplicial complex � depicted in Fig. 3.1

3.2.2 Nerve Complexes, Flag Complexes, and Other
Constructions of Simplicial Complexes

As already mentioned, Topological Data Analysis aims at describing and character-
izing data in terms of their shape. In order to satisfy this assumption, the first required
step in the persistence pipeline concerns associating to the input dataset a simplicial
complex that will provide the data with a suitable topological structure needed for
the next steps of the topological-based analysis.

The kinds of datasets eligible for this process of “translation” into a simplicial
complex are various and heterogeneous and cover a vast majority of the datasets
which a researcher could face in its work.

For the sake of simplicity, in this document we will focus mainly on point clouds
embedded in an Euclidean space, (weighted) graphs or complex networks, functions,
and sets endowed with a relation of partial order among its elements. In spite of this,
most of the presented constructions can be generalized/adapted to the case of a
finite collection of elements endowed with a notion of proximity enabling to cover
a wide plethora of datasets. More properly, with the term “proximity” we mean a
semi-metric, i.e. a distance not necessarily satisfying the triangle inequality.

Two common tools adopted in this step assigning a simplicial complex to an
arbitrary dataset are the Nerve complex and the Flag complex.

Nerve complex

Let us consider a finite collection S of sets inRn . TheNerve complex Nrv(S) of S
is the abstract simplicial complex generated by the non-empty common intersections
among the sets of S [49]. More precisely,

Nrv(S) := {
σ ⊆ S |

⋂

s∈σ

s 
= ∅}
. (3.1)

As depicted in Fig. 3.3, intuitively the Nerve complex produces a simplicial com-
plex whose vertices are in correspondence with the sets of S, whose edges represents
the non-empty intersections among two sets in S, whose triangles the non-empty
intersections among three sets in S, and so on. One of the most desirable properties
of this construction relies on its capability of “preserving the shape” of the input
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Fig. 3.3 A cover S (a) and its Nerve complex Nrv(S) (b)

Fig. 3.4 A (undirected) graph G (a) and its Flag complex Flag(G) (b)

collection of sets. In fact, (a simplified version of the) Nerve theorem ensures that,
if all the sets in S are convex sets of Rn , then the Nerve complex of S and the union
of the sets in S are homotopy equivalent. Intuitively, this represents a theoretical
guarantee ensuring us that the proposed construction respect the shape of the data
and, specifically, its homology.

Flag complex

Given a (undirected) graphG = (V, E), its Flag complex Flag(G) is the abstract
simplicial complex having as simplices all the subsets σ of vertices of G such that,
for any two vertices u, v in σ , (u, v) is an edge of the graph G (see Fig. 3.4 for an
example).

In other words, Flag(G) consists of all the cliques of the graphG. For this reason,
it is also called clique complex. Intuitively, the Flag complex of a graph G captures
the connectivity among the vertices of G: two connected vertices are turned into an
edge of the simplicial complex, three fully-connected vertices into a triangle, and
so on.

Each of the next subsections will focus on a specific kind of dataset showing how
the introduced tools canbe applied in order to transform the input data into a simplicial
complex. Let us notice how, in most of the cases, the described constructions will
not produce a single simplicial complex but a collection of simplicial complexes �a

depending on a parameter a such that, if a ≤ b, then �a ⊆ �b.
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Table 3.2 A summary of the properties of simplicial complexes obtained from point cloud data
embedded in Rn

3.2.2.1 Point Clouds

Let us consider a finite set of points V in R
n and let us investigate several different

techniques to associate to it a simplicial complex. Table 3.2 highlights some proper-
ties of the methods to be introduced in this section: the simplicial complex might be
a purely combinatorial object (abstract) or embedded in some space (geometric); the
maximum dimension reached by the simplices in the complex might be dependent
on the original point cloud dimension or not; and the construction might be depen-
dent on a fixed parameter or not. The last property is particularly relevant when the
parameter is left free to vary. This multi-scale framework will be treated in Sect. 3.4.

Delaunay triangulations

One of the most traditional ways to build a simplicial complex from a point cloud is
the so called Delaunay triangulation [37]. This construction, originally described for
sets of points in R

2 but generalizable to arbitrary dimensions, aims at producing a
triangulation of the convex hull of V (i.e. the smallest convex set containing V ) free
of long and skinny triangles. More properly, a Delaunay triangulation Del(V ) of V
is a triangulation of the convex hull of V such that the circumcircle of any triangle
does not contain any point of V in its interior. A Delaunay triangulation of V can
be achieved by computing the Nerve complex of the Voronoi regions of the points
in V , where the Voronoi region RV (u) of a vertex u of V is the set of all points in
R

n whose Euclidean distance to u is not greater than their distance to the any other
vertex v of V . More formally,

RV (u) := {x ∈ R
n | ∀ v ∈ V, d(x, u) ≤ d(x, v)}, (3.2)

where d is the Euclidean distance.
Figure3.5 depicts an example of Delaunay triangulation. Specifically, Fig. 3.5b

shows a Delaunay triangulation of the point cloud V represented in Fig. 3.5a.
The points in V ⊆ R

n will be said in general position if no n + 2 points lie on a
common (n − 1)-dimensional sphere. E.g., for n = 2, the points of V are in general
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Fig. 3.5 A point cloud V in R2 (a) and its Delaunay triangulation Del(V ) (b). In (b), the Voronoi
regions in which R

2 is subdivided are delimited by dotted lines

position if and only if no four or more points are co-circular. The hypothesis that the
points in V are in general position enables to ensure that the Delaunay triangulation
of V is unique and its realization as the Nerve complex of the Voronoi regions of the
vertices of V produces not simply an abstract simplicial complex but a geometric
simplicial complex embedded in R

n .

Čech complexes
Given a point cloud V inRn and fixed a scalar parameter ε > 0, the Čech complex

Čechε(V ) associated with V and ε is the abstract simplicial complex defined as:

Čechε(V ) := {
σ ⊆ V | σ 
= ∅ and

⋂

v∈σ

B(v, ε/2) 
= ∅}
, (3.3)

where B(v, ε/2) is the closed ball of radius ε/2 centered in v (see Fig. 3.6a for an
example) [36, 49].

One can notice that the above definition arises from the idea of replacing each
vertex of V with a ball of radius ε/2 and then taking the Nerve complex associated
to this collection of balls. While considering the Čech complex of a point cloud
V is one of the most natural way in order to associate a simplicial complex to V ,
its computation is definitely a time consuming procedure. For this reason, several
“approximated” versions of the Čech complex have been proposed in the literature.

Vietoris-Rips complexes

Afirst approximated version of the Čech complex is represented by the Vietoris-Rips
complex [49, 102]. Fixed a scalar parameter ε > 0, the Vietoris-Rips (VR) complex
V Rε(V ) associated with V and ε is the abstract simplicial complex defined as:

V Rε(V ) := {σ ⊆ V | σ 
= ∅, and ∀ u, v ∈ σ, d(u, v) ≤ ε}, (3.4)

where d is the Euclidean distance (see Fig. 3.6b for an example).
By definition, it easy to notice that the Vietoris-Rips complex V Rε(V ) coincides

with the Flag complex of the 1-skeleton of the Čech complex Čechε(V ). Moreover,
the fact that the Vietoris-Rips complex represents an approximation of the Čech
complex is ensured by the property claiming that for any ε > 0,



106 F. Vaccarino et al.

Fig. 3.6 The Čech complex Čechε(V ) (a) and the Vietoris-Rips complex V Rε(V ) (b) associated
with the point cloud V depicted in Fig. 3.5a and ε. The depicted closed balls are of radius ε/2

V R √
2
2 ε

(V ) ⊆ Čechε(V ) ⊆ V Rε(V ). (3.5)

Alpha-shapes

Thepreviously described constructions present several pros and cons.Delaunay trian-
gulations produce geometrical simplicial complexes embedded in the sameEuclidean
space in which the input point cloud lies but, as a drawback, the obtained complex,
being a triangulation of a convex hull, is quite trivial from a topological point of view
(in fact, it has the same homology of a space consisting of a single point). On the
contrary, Čech and Vietoris-Rips complexes better preserve the shape of the input
dataset but they produce abstract simplicial complexes of arbitrarily high dimen-
sion. The idea behind alpha-shapes is to define a new strategy which could satisfies
the positive aspects achieved by the previously described constructions and, at the
same time, avoid to have their drawbacks [35, 40]. Given a point cloud V in Rn and
fixed a scalar parameter ε > 0, this can simply achieved by defining the alpha-shape
Alphaε(V ) associated with V and ε as the Nerve complex generated by the regions
obtained as the intersections between the closed balls of radius ε/2 centered in the
points of V and the Voronoi regions of the points in V . More precisely,

Alphaε(V ) := {
σ ⊆ V | σ 
= ∅ and

⋂

v∈σ

A(v, ε/2) 
= ∅}
, (3.6)

where A(v, ε/2) is defined as B(v, ε/2) ∩ RV (v) (see Fig. 3.7a for an example).
So, since by definition A(v, ε/2) ⊆ B(v, ε/2), we have that for any ε > 0,

Alphaε(V ) ⊆ Čechε(V ). (3.7)

Witness complexes

When dealing with point clouds consisting of a huge number of elements, the previ-
ously introduced constructions (even if sometimes still tractable) require a consider-
able amount of computational resources.Witness complexes aim at fixing this poten-
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Fig. 3.7 The alpha-shape Alphaε(V ) (a) and the witness complex (b) associated with the point
cloud V depicted in Fig. 3.5a and ε. The depicted closed balls in (a) are of radius ε/2

tial issue by constructing a simplicial complex still well representing the “shape” of
the point cloud V in input but having a vertex sets of cardinality equal to just a fraction
of V [30]. While a detailed definition of this class of complexes is out of the scope
of this chapter, we can intuitively describe the witness complex of V as follows. In a
nutshell, a witness complex is built by choosing a set of “landmark” points from V
and then constructing a simplicial complex by using the remaining (non-landmark)
data points as witnesses to the existence of edges or simplices spanned by combina-
tions of landmark points (see Fig. 3.7b for an example). Analogously to the previous
constructions, the definition of the witness complex associated with a point cloud V
depends on a scalar parameter ε > 0.

3.2.2.2 Graphs and Complex Networks

Given a complex network represented as a graph G = (V, E) a natural way to asso-
ciate with it a simplicial complex is by considering its Flag complex Flag(G)

[102]. If (as it is common is several application domains) the edges of graph G
are weighted by a function w : E → R, fixed a scalar parameter ε > 0, let us denote
as Gε = (Vε, Eε, wε : Eε → R), the subgraph of G such that:

• its vertex set Vε coincides with V ;
• its set of edges Eε consists of the edges of G having weight lower or equal than ε;
• its weight function wε is the restriction of w to the edge set Eε .

Combining this definition with the notion of Flag complex, one can define the Flag
complex associated with G and ε as the Flag complex Flag(Gε) of Gε .

3.2.2.3 Functions

Given a simplicial complex � a function f : � → R is called a filtering function
if, whenever σ is a face of τ with σ, τ ∈ �, then f (σ ) ≤ f (τ ). Given a filtering



108 F. Vaccarino et al.

Fig. 3.8 The order complexes associated to [2] = {0, 1, 2} (a) and to {(0, 1), (1, 0), (1, 1)} (b).
The considered partial orders ≤ are the standard ordering of natural numbers in the first case, while
its component-wise extension in the second one

function, it is possible to associate with f a collection of simplicial subcomplexes
of � depending on a parameter r ∈ R. Specifically, choosing a scalar value r ∈ R,
the sublevel set of f with respect to r is defined as

�r := f −1
(
(−∞, r ]). (3.8)

In several applicative scenarios, the function f could be defined on a domain
which is not a simplicial complex. In spite of this, in most of the cases this does not
represents a serious obstruction since one can often reconduct the situation to the
previously described case. For instance, if the domain of f is a point cloud V , one
can:

• construct from V a simplicial complex � by adopting one of the techniques
described in Subsect. 3.2.2.1;

• extend f to � by defining, for any σ ∈ �,

f (σ ) := max{ f (v) | v is a vertex of σ }. (3.9)

3.2.2.4 Partially-Ordered Sets

Order complexes

A partially-ordered set, usually called a poset, (S,≤) is a set S endowedwith a partial
order ≤ defined among its elements. Given a (finite) poset (S,≤), the order complex
�(S,≤) associated to it is the abstract simplicial complex on S whose vertex set
coincides with S and whose simplices are the finite chains of (S,≤), i.e. the finite
totally-ordered subsets of S [73, 82].

For example, let us consider the subset [n] ⊆ N consisting of the first n + 1
natural numbers, i.e. [n] = {0, 1, 2, . . . , n}. By considering the standard ordering
≤ on natural numbers, ([n],≤) is a totally-ordered set (in particular, a poset). As
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depicted in Fig. 3.8a for the case n = 2, the order complex associated to ([n],≤)

consists of a n-simplex and all its faces.
Differently, let us consider the subset S := {(0, 1), (1, 0), (1, 1)} ⊆ N

2 and endow
itwith thepartial order≤definedby: (x, y) ≤ (x ′, y′) if andonly if x ≤ x ′ and y ≤ y′.
Then, as depicted in Fig. 3.8b, the order complex associated to (S,≤) consists of two
1-simplices connected by a vertex (corresponding to the point (1, 1)). Please notice
that the edge connecting (0, 1) and (1, 0) is missing since the two points are not
comparable with respect to the considered partial order.

3.3 From Simplicial Structure to Linear Algebra

In the previous section, we described how to endow data with a shape through the
combinatorial and topological notion of a simplicial complex. In this section, we
introduce the notion of simplicial homology and its relation to the Hodge Laplacian
as a way to capture topological features coming from a simplicial complex into linear
algebraic terms. The notions introduced in this section have to be seen as prelimi-
nary ones to persistent homology, that is the core multiscale notion of this chapter
introduced in Sect. 3.4. Differently from persistent homology, a simplicial homol-
ogy group and a Hodge Laplacian refer to a single scale parameter characterizing
the shape we have associated to our data, and provides the building blocks for the
multiscale approach of persistent homology.

3.3.1 Simplicial Homology

Homology is a mathematical tool able to describe a shape in terms of its holes [78].
In order to define the homology of a simplicial complex �, we need to move from
the combinatorial notion of a simplicial complex to the algebraic structures of chain
groups.

Let σ be a q-simplex spanned by the vertices v0, v1, . . . , vq . Two orderings of the
vertices of σ are defined equivalent if they differ by an even permutation. If q > 0, the
orderings of the vertices ofσ fall into two equivalence classes called orientations ofσ .
A pair consisting of a simplex and an orientation of it will be called oriented simplex.
We will adopt the symbol [v0, v1, . . . , vq ] to denote the oriented simplex generated
by v0, v1, . . . , vq and the equivalence class of the specific ordering (v0, v1, . . . , vq).
When clear from the context, we will simply use σ to denote either a simplex or an
oriented simplex.

Given a simplicial complex � and a field F, we define the qth chain group
Cq(�;F) of � as the vector space over F generated by the oriented q-simplices
of � and where −σ coincides with the simplex σ endowed with the opposite orien-
tation. An element of Cq(�;F) is called q-chain and it is a finite linear combination∑

i λiσi with coefficients in F of oriented q-simplices. Once an orientation for each
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simplex of �q is fixed, a canonical basis Cq of Cq(�;F) is determined. Properly,
Cq consists of the q-chains corresponding to the oriented q-simplices of �. In the
following when it will not cause any ambiguity, we will often write Cq(�) or simply
Cq for in place of Cq(�;F). For the sake of readability, an analogous simplification
will be adopted to all the other notations presented in the following.

Chain groups of a simplicial complex � are connected by linear maps ∂q :
Cq(�;F) → Cq−1(�;F) called boundary operators. Given an element of the basis
Cq corresponding to the oriented q-simplex σ = [v0, v1, . . . , vq ] of �, ∂q(σ ) is
defined as:

∂q(σ ) :=
q∑

i=0

(−1)i [v0, . . . , v̂i , . . . , vq ], (3.10)

where v̂i means that vertex vi is not present (see Fig. 3.9 for an example).
The boundary ∂q is extended to each q-chain of � by linearity. In the following,

we will denote by Dq the matrix representing the map ∂q : Cq(�;F) → Cq−1(�;F)

with respect to the basis Cq , Cq−1.
We denote as Zq(�;F) := ker ∂q the F-vector space of the q-cycles of � and

as Bq(�;F) := im ∂q+1 the F-vector space of the k-boundaries of �. Examples of
boundaries and cycles are depicted in Fig. 3.9.

It is immediate to check that, for any q, ∂q∂q+1 = 0 or, equivalently, that Bq(�) ⊆
Zq(�). This fact ensures that the quotient

Hq(�;F) := Zq(�;F)

Bq(�;F)
(3.11)

is a well-defined vector space over F. The space Hq(�;F) will be called the kth

homology group of � with coefficients in F.
By definition of Hq(�;F), q-cycles of � are partitioned in equivalence classes

called homology classes. Two q-cycles are said homologous if they belong to the

Fig. 3.9 Examples of boundaries and cycles of a simplicial complex�. The yellow edges represent
the boundary of the triangle σ . All the highlighted collections of edges represent 1-cycles. The
yellow and the purple cycles are also 1-boundaries while the red and the light blue ones are not.
Moreover, the red and the light blue cycles are homologous, i.e. they are two representatives of the
same homology class (the triangular hole they both include)
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same homology class (see Fig. 3.9 for an example). Given a q-cycle c its homology
class (i.e. the collection of all the q-cycles homologous to c) will be denoted by [c].

The dimension of Hq(�;F) as F-vector space is called the kthBetti number of �

and denoted by βq(�;F).
Intuitively, homology spots the “holes” of a simplicial complex �. In fact, a non-

null element of Hq(�) is an equivalence class of homologous cycles that are not the
boundary of any (q + 1)-chain of �. The number βq of such classes represents, in
dimension 0, the number of connected components of�, in dimension 1, the number
of its tunnels and its loops, in dimension 2, the number of voids or cavities, and so on.

3.3.2 Hodge Decomposition

In this section, the ground ring of coefficients will be the field of real numbers R
unless otherwise stated. We fix an arbitrary finite simplicial complex �, and we set
Cq := Cq(�;R) so that ∂q : Cq → Cq−1 will stand for the boundary operator for
any q = 0, . . . , dim(�). Furthermore, we set Hq := Hq(�;R). We will work in a
simplified setting, adopting for the entire section the canonical basis Cq of Cq(�;F)

for Cq i.e. the one in bijection with (equivalence classes of oriented) q−dimensional
simplices and this will allow us to identify ∂q with its matrix Dq w.r.t. the bases Cq

and Cq−1,

Dq := M
C q ,C q−1

∂q
. (3.12)

The Hodge q-Laplacian, that is also called q-th Combinatorial Laplacian, can
be defined both in terms of cohomology, coboundaries and adjoint, as it has been
proposed in the previous chapter, than as follows in terms of homology, boundary
maps and their matrices

Lq := ∂
∗
q∂q + ∂q+1∂

∗
q+1, (3.13)

where ∂
∗
q denotes the adjoint of ∂q w.r.t some inner product defined on the chains

groups.Wefix the standard inner (scalar) product onCq whichmakesCq an orthonor-
mal basis so that the matrix of ∂

∗
q with respect to Cq−1, Cq is D

T

q the transposed of
Dq . We write

Lq := D
T

q Dq + Dq+1D
T

q+1. (3.14)

We will now study some properties of the Laplacians by taking advantage of this
formulation and following [68].

The fundamental theorem of topology states that Dq+1Dq = 0 for all q ≥ 0.
Therefore, it makes sense to study the Laplacians as follows.

Definition 3.1 Let A ∈ R
m×n and B ∈ R

n×p be two real matrices such that AB =
0 ∈ R

n×n , then
im(B) ⊆ ker(A) (3.15)
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and we set
HA,B := ker(A)/ im(B), (3.16)

for the homology group with respect to A and B.
Accordingly, their Hodge Laplacian is

L A,B := ATA + BBT . (3.17)

Note that LT
A,B = L A,B .

Theorem 3.1 Let A and B be as above. Then, the following hold

1. HA,B
∼= ker(L A,B);

2. ker(L A,B) = ker(A) ∩ ker(BT );
3. im(L A,B) = im(AT ) ⊕ im(B);
4. (Hodge Decomposition) There is an orthogonal direct sum decomposition

R
n ∼= im(AT ) ⊕ ker(L A,B) ⊕ im(B); (3.18)

5. Hodge Decomposition versus Fredholm Alternative

R
n =

ker(BT )
︷ ︸︸ ︷
im(AT ) ⊕ ker(L A,B) ⊕ im(B)

︸ ︷︷ ︸
ker(A)

. (3.19)

Proof See [68].

Now, by substituting A = ∂q and B = ∂q+1 in Theorem 3.1we obtain the classical
result on Hodge decomposition.

Theorem 3.2 Let ∂q , ∂q+1 and Lq be as above. Then, the following hold

1. Hq
∼= ker(Lq);

2. ker(Lq) = ker(Dq) ∩ ker(DT
q+1);

3. im(Lq) = im(DT
q ) ⊕ im(Dq+1);

4. (Hodge Decomposition) There is an orthogonal direct sum decomposition

Cq = im(DT
q ) ⊕ ker(Lq) ⊕ im(Dq+1); (3.20)

5. Hodge Decomposition versus Fredholm Alternative

Cq =
ker(DT

q+1)

︷ ︸︸ ︷
im(DT

q ) ⊕ ker(Lq) ⊕ im(Dq+1)
︸ ︷︷ ︸

ker(Dq )

. (3.21)
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We will present some interesting applications of the Hodge decomposition in
Sect. 3.6.

3.4 Multiscale Topology a.k.a. Persistent Homology

As described in Sect. 3.3, shapes can be associated with homology groups capturing
topological features. Instead, the idea of persistent homology [16, 39] is to deal
with, not simply the homology group at a specific scale, but rather the homology
groups of filtrations of shapes, that is shapes at multiple scales. This section aims
at introducing persistent homology along with the most known persistent homology
summaries. Theoretical comparisons among such summaries are provided. The same
notionswill be extensively used in Sect. 3.5 to discuss stability results for persistence.

3.4.1 Persistent Homology

As described in Sect. 3.2.1, given a dataset there are multiple ways in order to assign
to it the structure of a simplicial complex and, therefore, to study the “shape” of the
original dataset by computing the homology of the associated complex. Certainly,
in most of cases, the presented construction strategies depend on the choice of a
scalar parameter ε while the considered dataset gives us no clue as to which ε is
preferable. In spite of this, fixing a construction strategy and varying the value ε

produces a collection ϕ of encapsulated simplicial complexes to be studied in a mul-
tiscale framework. Since our simplicial complexes are always finite, we can restrict
to consider finite collections of encapsulated simplicial complexes were indexes take
integer values only.

A filtration of � is a finite sequence of subcomplexes ϕ := {�a | 0 ≤ a ≤ m}
of � such that ∅ = �0 ⊆ �1 ⊆ · · · ⊆ �m = �. We refer to �a as the step a in
the filtration ϕ. In Fig. 3.11, we see a filtration obtained from a set V of 7 points
by constructing the VR-complex V Rε(V) for 7 selected values of parameter ε (see
Sect. 3.2.2.1).

Let Ca
q be the short notation for Cq(�

a;F) introduced in Sect. 3.3.1. Consider
an inclusion �a ⊆ �b. Then, we get induced a map f a,b

q : Ca
q −→ Cb

q defined over
each q-simplex σ of the basis of Ca

q by fq(σ ) = σ and then extended linearly. The
linear map f a,b

q is a q-chain map since it satisfies

fq(∂qσ) = ∂q fq(σ ). (3.22)

This implies obviously the homology functoriality. Indeed, Equation (3.22)
ensures that fq preserves q-cycles and q-boundaries. Hence, the homology con-
struction can be applied not simply to all filtration steps in ϕ to obtain a collection
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of vector spaces Hq(�
a;F), shortly indicated by Ha

q , but also to all inclusion maps
to get maps i a,b

q : Ha
q −→ Hb

q at homology level defined by

i a,b
q ([c]) = [ f a,b

q (c)], for any k-cycle c. (3.23)

More generally, the homology functoriality holds due to the inclusion �a ⊆ �b

being a simplicial map. That is, a map s : � −→ �′ satisfying

for all σ, τ ∈ �, σ ⊂ τ ⇒ s(σ ) ⊂ s(τ ).

Thus, given a filtration ϕ = {�a | 0 ≤ a ≤ m}, we can define the following. For
a, b ∈ {0, . . . ,m} such that a ≤ b, the (a, b)-persistent q-homology group Ha,b

q (�)

is
Ha,b
q (ϕ) := im(i a,b

q ). (3.24)

Since homology captures cycles in a shape by factoring out the boundary cycles,
persistent homology [16, 39] captureswhether cycles that are non-boundary elements
in a certain step of the filtration and will turn into boundaries in some subsequent
step. The persistence, along a filtration, of a cycle gives quantitative information
about the relevance of the cycle itself for the shape.

3.4.2 Representing: from Persistence to Topological
Summaries

The purpose of this section is that of introducing the most relevant ways of repre-
senting the persistent homology information. Our main focus is on the information
encoded by each descriptor. Thus, we begin by exposing the algebraic correspon-
dence that provides a complete and standard way of encoding the whole persistent
homology information. We review some equivalent descriptors such as persistence
diagrams [38], barcodes, and persistent Betti numbers [44, 94]. We will go through
the diverse summaries by following the guiding example in Fig. 3.11. Afterwards, we
move to other summaries encoding the persistent homology information in a more
structured way. Statistical approaches require desciptor spaces being suitable not
simply for measurements (covered in Sect. 3.5) but where collections of descriptors
can be summed up, weighted and averaged. We close this part by reviewing some
proposals in statistical and learning direction to encode the persistent homology
information, namely persistence landscapes [13], persistence images [1] and other
kernel representations. A comparison of persistent homology summaries over the
same example is contained Fig. 3.10.

In order to deal with the totality of the persistence information is common to
consider the following definition.
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Fig. 3.10 A Vietoris-Rips filtration for increasing values of the parameter ε (top). From left to
right the persistence diagram, persistence landscapes, persistence surface, and persistence image,
for homology degree 0 (middle) and 1 (bottom)

Given a filtration ϕ = {�a | 0 ≤ a ≤ m}, the qth-persistence module Hq(ϕ) is the
collection of the groups Ha

q , with 0 ≤ a ≤ m, connected by the linear maps i a,b
q , with

0 ≤ a ≤ b ≤ m.
As explained in [16], a qth-persistence module Hq(ϕ) can be thought of as a

finitely generated graded F[x]-module M = ⊕
a∈N Ha

q where, each Ha
q is taken as

the set of homogeneous elements of grade a, and the action xb−ah over an element
h of grade a is defined by i a,b

q (h). Hence, xb−ah belongs to Hb
q for all h ∈ Ha

q , that
is the graded module definition is met.

Theorem 3.3 (Structure Theorem) Any finitely generated graded F[x]-module can
be decomposed as a finite direct sum of finitely generated F[x]-modules as follows

M ∼=
α⊕

i=1

xaiF[x] ⊕
β⊕

j=1

((
xb jF[x]) /

(
xc j−b jF[x])) , (3.25)
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Fig. 3.11 A filtration with the corresponding persistence pairs and barcode. All bars starting at 0
represent homological classes of degree 0. At the bottom, only one bar corresponds to the life-span
of a cycle

where ai , bi , ci ∈ N with bi < ci , and, for any n ∈ N, xnF[x] is the ideal generated
by xn inside F[x]. Furthermore, the decomposition is unique up to reordering of the
summands.

The summands entailing only one parameter a′
i capture the generators of M

appearing at grade a′
i , whereas the other summands capture generators appearing

at grade a j and disappearing at grade b j . The former kind of summands form what
is called the free part of the module decomposition, the latter kind form the torsion
part.

By applying the Structure Theorem to the graded F[x]-module
⊕

a∈N Ha
q associ-

ated with the qth-persistence module Hq(ϕ), we can encode, up to isomorphisms, the
entire information of persistent homology by means of pairs of two kinds. Each sum-
mand in the free part provides us with a pair (a,∞), representing the persistence of
a single homology class appearing at step a and never vanishing along the filtration.
Each summand in the torsion part provides us with a pair (a, b), for a single class
appearing at step a and vanishing at step b. The example in Fig. 3.11 has only the pair
(0,∞) for the homology degree 0 which never vanishes. All the other persistence
pairs in the example vanishes.

Tame persistence module

In order to obtain persistence modules from a filtering function as introduced in
Sect. 3.2.2.3 and in view of Sect. 3.5 on the stability of persistence summaries, we
generalize the persistence module definition to indexes in the set of real numbers R
totally ordered under the standard order relation ≤.

An R-persistence module [23]F with coefficients in F and real indexes consists
of a collection {Fa}a∈R of F-vector spaces along with a collection { f a,b}a≤b∈R of
linear maps such that
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∀a ≤ b ≤ c ∈ A, f a,c = f b,c ◦ f a,b

∀a ∈ A, f a,a = idFa .
(3.26)

An R-persistence module F is said to be tame if and only if,

∀a ∈ A, dimF Fa < +∞
f a,b is an isomorphism, (3.27)

except for a finite number of index pairs(a, b).

The notion of an R-persistence module generalizes the one with finite natural
indexes introduced at the beginning of this section. Indeed as an example, the qth-
persistence module Hq(ϕ) of a filtration ϕ = {�a | 0 ≤ i ≤ m, a ∈ N} with m ∈ N

can bemade into anR-persistencemodule. First, we extend the indexes to the integers
Z. The collection of groups {Hi } is extended by setting Hi = 0 if i < 0, and Hi =
Hm if i > m. The collection of linear maps { f i, j } is extended by setting f i,i+1 = 0
if i + 1 < 0, and f i,i+1 the identity map if i > m. Then, all possible compositions
define f i, j for general indexes i ≤ j . The extension to indexes in R is obtained
by setting, for all real numbers a ≤ b, Ha = Hi with the integer i such that i ≤
a < i + 1, Hb = H j with the integer j such that j ≤ b < j + 1, and f a,b = f i, j .
Moreover, it is obvious to check that the obtained R-persistence module is tame.

This extension allows us to consider relevant examples of tame R-persistence
modules such as the one obtained via sublevel sets of a filtering function introduced
in Sect. 3.2.2.3, or the ones obtained via filtrations from point clouds, as the one
in Fig. 3.11, introduced in Sect. 3.2.2.1, or the ones from graph data introduced in
Sect. 3.2.2.2.

Persistence diagrams

Fix the notation R̄ = (R ∪ {∞}) and N̄ = (N ∪ {∞}). Consider a tameR-persistence
moduleF . Thefinitemulti-set of points obtained from theStructureTheoremapplied
toF defines the persistence diagram [38] as

R × (R ∪ {∞}) PD(F )
N ∪ {∞}

if a 
= b (a, b) #{summands in Equation (13) corresponding to (a, b)}
if a = b (a, a) ∞.

(3.28)

The elements belonging to the persistence diagram are called persistence pairs.
By the Structure Theorem, the persistence diagram is a complete invariant for a
persistence module. The persistence diagram of the filtration in Fig. 3.11 consists of
the pairs depicted in column on the left. Notice that the pair (0, 0.35) appears with
multiplicity 2.

An invariant for a persistence module equivalent to the persistence diagram is the
barcode. The barcode Bar(F ) is the finite collection {(bi , di )}i∈I of points (bi , di )
varying in the support of PD(F ) counted PD(F )(b, d) times. The barcode of the fil-
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tration in Fig. 3.11 consists of the bars of different length according to the persistence
of the corresponding homology class as the value of the parameter ε varies.

As treated in [23], the tameness condition ensures thatF admits a representation
as a finitely generated module by a suitable reindexing. Hence, the definition in
Equation (3.28) applies. The tameness condition ensures that a sequence of nested
discretizations of F converges to a unique persistence diagram with respect to a
similarity notion between persistencemodules called the interleaving distance which
will be introduced in Sect. 3.5.

Persistent Betti numbers

Given a tame persistence module F = ({Fa}, { f a,b}) with coefficients in F and
indexes in (R,≤), we define the persistent Betti numbers [44] of F as the function
β : R × R̄ → N defined by

β(a, b) :=
{
dim f a,b(Fa) if a ≤ b

0 if a > b.
(3.29)

Equivalently, given the barcode Bar(F ) = {(bi , di )}0≤i≤N , we obtain the same
function by defining

β(a, b) = #{0 ≤ i ≤ N | s.t. bi ≤ a ≤ b ≤ di }. (3.30)

The Representation Theorem in [21] , or the Triangle Lemma in [27], guarantees
that knowing β is equivalent to knowing the persistence diagram. For a given homol-
ogy degree, the value at (a, b) of the persistent Betti numbers of the filtration can be
easily read off from Fig. 3.11 by counting the number of bars of full length in the ε

range from a to b.

Persistence landscapes

A limitation of a persistence diagram in encoding the persistence information is that
the mean of multiple persistence diagrams as functions might be ambiguous. To
overcome this, persistence landscapes are introduced in [13].

The persistence landscape ofF is the function λ : N × R → R̄ such that

λ(k, t) := sup{m ≥ 0 | β(t − m, t + m) ≥ k}. (3.31)

Notice that the transformation t = a+b
2 ,m = b−a

2 sends the diagonal of the persis-
tence diagram domain to the horizontal axis as we can see by comparing persistence
diagrams and landscapes in Fig. 3.12.

The persistence landscapes are invertible in the sense that the persistent dia-
gram can be recovered from the persistence landscapes. Indeed, persistent Betti
numbers β(a, b) at a point (a, b) can be recovered. Consider the set of integers
I(a,b) = {k | s.t. suppλ(k, ·) ⊇ [a, b]}. It follows that β(a, b) = ∑

k∈I(a,b)
λ(k, a+b

2 ).

The definition of the functionλ can be extended to the domainR2 by settingλ(�x�, t).
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Fig. 3.12 Persistence diagrams and landscapes for the first homology degree of a sampling of 100
points over a torus (top) and a sphere (bottom)

The mean λ̄ of λ1, . . . , λn persistence landscapes is defined by

λ̄(x, t) := 1

n

n∑

i=1

λi (x, t). (3.32)

Persistence images
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Recently, a very powerful summary for persistence has been introduced, called per-
sistence images [1]. Actually, their representation approximizes the information in a
persistence diagram and a persistence image is not invertible in the sense of persis-
tence landscapes.

Nonetheless, the key strength point is that persistence images represent persis-
tence as a finite dimensional vector in R

n . The finite dimensional representation
makes persistence images a favorable way for integrating persistence into deep neu-
ral architectures thus opening the way for an interplay between deep learning and
TDA (see Sect. 3.6).

A persistence diagram D is transformed into a persistence surface ρD : R2 → R

ρD(x) :=
∑

y∈T (D)

ω(y)kG(x, y), (3.33)

where T (D) is the set of birth-persistence pairs obtained from D by applying
(a, b) �→ (a, b − a), the weight function ω : R2 → R is zero on the horizontal
axis and step-wise differentiable, the function kG is the Gaussian kernel defined
by kG(x, y) = exp−‖x−y‖2

2σ 2 , for some parameter σ .
The persistence image I (ρD) of D is obtained from ρD by subdividing its domain

into n pixels P by means of a regular grid and by computing the integral of ρD over
each P . In Fig. 3.13, we see an example with the birth-persistence diagram T (D)

and the corresponding persistence image obtained by discretization.

Homological scaffolds

Homological scaffolds are effective and compact summaries of the homological
features of weighted networks capable of simultaneously make their homological
properties amenable to networks theoretical methods [87].

Given a complex network represented as a weighted graph G = (V, E, w : E →
R), let B be a collection of representative cycles of the 1-dimensional homological
classes occurring during the filtration ϕ of Flag complexes associated to G. Given
an edge e of G, it is possible to associate to it a weight ω(e) defined as it follows:

ω(e) :=
∑

g∈B,e∈g
ωg, (3.34)

where ωg is a weight value associated to the homological class of g. Based on the
weightω, the homological scaffold of the networkG is defined as the weighted graph
G ′ = (V ′, E ′, ω : E ′ → R>0) where:

• V ′ := V ;
• E ′ consists of the edges e of E for which ω(e) > 0.

The scaffold is called persistence homological scaffold by defining ωg as the life-
span πg of g, while it is called frequency homological scaffold by setting, for any
cycle g, ωg := 1.
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Fig. 3.13 Birth-persistence diagrams and persistence images for the first homology degree of a
sampling of 100 points over a torus (top) and a sphere (bottom)

Despite their proven applicative capabilities, (persistence and frequency) homo-
logical scaffolds theoretically depend on the choice of representative cycles. In order
to address this potential issue and thanks to the recent advances in the computation
of minimal homology bases [32], a quasi-canonical version of the scaffold, called
minimal, has been introduced in [48].

Formally, given a complex network G = (V, E, w : E → R), let us consider
the minimal homology basis Bε of H1(Flag(Gε)) (i.e. a collection of representa-
tive cycles of minimal total length whose classes form a basis of H1(Flag(Gε))).
Moreover, let us define B∗ as

⊔
ε B

ε . Similarly to the frequency homological scaf-
fold, the minimal homological scaffold of G is defined as the weighted graph
G ′ = (V ′, E ′, ω : E ′ → R>0) where:

• V ′ := V ;
• ω(e) := ∑

g∈B∗,e∈g 1 (i.e. the number of cycles in B∗ containing e);
• E ′ consists of the edges e of E for which ω(e) > 0.

In Fig. 3.14, an example of the minimal scaffold consisting of minimal 1-
homology generators appeared along the filtration is depicted.
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Fig. 3.14 At the top, filtration with minimal 1-homology generators (loops) highlighted. Below,
the associated minimal scaffold. Image available under courtesy of the authors of [48]

3.4.2.1 Representing the Topological Information Through Kernels

Topological information and, specifically, persistence diagrams are effective data
discriminants. On the other hand, interfacing persistence diagrams directly with
statistics and Machine Learning poses technical difficulties, because the space of
persistence diagrams is not endowed with a structure of an inner product or, more
properly, of a Hilbert space structure. This lack prevents that lengths, angles, and
means of persistence diagrams can be defined as well as that kernel-based learning
methods such as kernel PCA and support vector machines for classification [92] can
be adopted.

Given an input space X , a kernel for X is a map k : X × X → R such that there
exist a Hilbert space H and a map φ : X → H , called feature map for which, for
any x, y ∈ X , k(x, y) = 〈φ(x), φ(y)〉. Equivalently, k is a kernel if the following
diagram commutes:

(3.35)

Recall that a Hilbert space H is a complete metric space with respect to the
distance induced by the inner product 〈 · , · 〉. A widely adopted assumption for an
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inner product 〈 · , · 〉 is the request of being positive semi-definite. In such a case, a
kernel will be called reproducing kernel.

Worth to be mentioned that the definition a kernel k does not require the explicit
knowledge of its featuremapφ but just a theoretical guarantee of its existence.Results
as the theorems ofMoore-Aronszajn and ofMercer characterize the conditions under
which a function k : X × X → R can serve as a kernel [59]. For instance, Moore-
Aronszajn’s theorem claims that any finite function k : X × X → R is a reproducing
kernel as long as it is finite, symmetric, and positive semi-definite.

The idea of defining a kernel for the space X of persistence diagrams has been
introduced in the late nineties in [33, 43] but it has beenwidely adopted just in the last
few years. In the framework of persistence-based kernels, the feature map is usually
explicitly provided and the chosen Hilbert space is typically the L2(R2) space of the
square-integrable functions. In the following, wewill list and briefly discuss themain
features of all (to the best of our knowledge) persistence-based kernels introduced
in the literature.

Roughly, we can classify them into three groups: persistence landscapes [13];
Gaussian kernels [1, 61, 92]; sliced Wasserstein kernels [19].

Persistence landscapes as kernels

Persistence landscapes, introduced in [13] and previously described in Sect. 3.4.2,
allow for representing any persistence diagram as a square-integrable function. Even
if not previously mentioned, the procedure assigning a L2 function λ(D) to a persis-
tence diagram D can be considered as a feature map from the space of the persistence
diagrams to L2(R2). According with this perspective, a kernel k based on persistence
landscapes can be plainly defined as

k(D, D′) = ‖λ(D) − λ(D′)‖L2 , (3.36)

where D and D′ are two persistence diagrams.

Gaussian kernels

The second class of persistence-based kernels is defined thanks to the explicit intro-
duction of a feature map φ. In [92] and in [61], a similar approach is adopted. Focus-
ing on [92], let denote as� the region {x = (x1, x2) ∈ R

2 | x2 ≥ x1} ⊆ R
2 above the

diagonal and as δx the Dirac delta centered at the point x . The feature map φ will be
defined on a given persistence diagram D, as the solution u : � × R≥0 → R of the
partial differential equation

⎧
⎪⎨

⎪⎩

�xu = ∂u
∂t in � × R≥0

u = 0 on f r(�) × R≥0

u = ∑
y∈D δy in � × {0}.

(3.37)

A solution of the above equation is achieved by posing
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φD
σ (x) := 1

4πσ

∑

y∈D

(

e
(
− ‖x−y‖2

4σ

)

− e

(

− ‖x−y′‖2
4σ

))

, (3.38)

with y′ = (b, a) if y = (a, b).
So, we obtain the following explicit expression for the associated kernel

k(D, D′) = 1

8πσ

∑

y∈D,z∈D′

(

e
(
− ‖y−z‖2

8σ

)

− e

(

− ‖y−z′‖2
8σ

))

. (3.39)

Intuitively, given a persistence diagram D, the above described procedure returns
an L2 function φ(D) having a Gaussian peak centered at each point of the considered
diagram D. Moreover, in order to obtain a stable kernel, the height of each peak is set
as proportional to the distance of the corresponding point (a, b) from the diagonal
of the first quadrant of R2.

Even if still based on Gaussian peaks, a different approach has been adopted in
[1]. As previously mentioned, persistence images enable to convey the persistent
homology information through a vector. This is achieved by: (i) transforming any
persistence diagram D into a surface ρD obtained by centering at each point of D a
suitably weighted Gaussian peak; (ii) discretizing ρD by decomposing the domain
into a regular grid of pixels; (iii) representing the obtained result through a heat map
I (ρD). Among other advantages, such a vectorization process promptly provides a
notion of kernel. In fact, given two persistence diagrams D and D′, one can define
their kernel simply as the inner product of their associated vectors I (ρD) and I (ρD′):

k(D, D′) := 〈I (ρD), I (ρD′)〉. (3.40)

Sliced Wasserstein kernel

In various contexts, a standard way to construct a kernel is to exponentiate the
negative of an Euclidean distance. In [19], the authors aim at adopting a similar
approach in order to define a kernel between persistence diagrams. According with
this idea, given two persistence diagrams D and D′ a kernel can be defined as:

k(D, D′) := e
(
− f (D,D′)

2σ2

)

. (3.41)

An important theorem in [8] (Theorem 3.2.2, page 74) ensures that the above
formula defines a valid positive definite kernel for any σ > 0 if and only if f is neg-
ative semi-definite. Unfortunately, none of the already introduced distances between
persistence diagrams can serve as f since does not satisfy the property of negative
semi-definiteness. In order to overcome this limitation, a new distance dSW , called
slicedWasserstein distance, has been introduced in [19]. SlicedWasserstein distance
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represents an approximation of 1st -Wasserstein distance and, thanks to the fact of
being provably negative semi-definite, it can be chosen as f in Eq. (3.41) in order to
define a valid positive definite kernel of persistence diagrams.

3.5 Comparing Multiscale Summaries: Distances
and Stability

Stability is a concept rooted in celestial mechanics and, thereafter, in the study of
dynamical systems. Loosely speaking, a quantity related to the system is stable if
small perturbations will result in relatively small changes of it. In this spirit stability
has been studied also in the area of persistence. Namely, several results have been
obtained about the behaviour of the topological summaries presented in the previous
sections with respect to perturbations of the input data. In particular, this has been
addressed by comparing suitable set distances variations, as for example theGromov-
Hausdorff distance, with the corresponding modifications of their e.g. persistence
diagrams and the other summaries. This section is devoted to introduce and elucidate
this topic and the main results on it.

3.5.1 Distances on Data

In this section, we collect the definitions of the dissimilarity measures applying to
input data within the persistence pipeline (see Sect. 3.2). The first one is the natural
pseudo-distance [62] and it applies to continuous functions used to filter a domain by
sublevel sets. In the case of continuous functions over the same domain, the natural
pseudo-distance is usually replaced by the actual distance defined by the L∞-norm.

The seconddistance to be introduced is theGromov-Hausdorff [24] distancewhich
applies to finite metric spaces such as the point clouds discussed in Sect. 3.2.2.1.

Natural pseudo-distance

A topological space X is called triangulable [78] if there exists a (finite) simpli-
cial complex homemorphic to X . A continuous function f : X −→ R is called
tame if and only if it induces a filtration on X via sublevel sets of the form
Xa = f −1((−∞, a]) (see Sect. 3.2.2.3) such that each Xa has finite dimensional
homology. Notice that the tameness condition on functions implies the tameness
condition for the R-persistence module obtained through sublevel sets discussed in
Sect. 3.4.2. A pair (X, f ) consisting of a triangulable space X and a tame function
is called a size pair.

Let (X, f ) be a size pair. The natural pseudo-distance [62] between two pairs
(X, f ), (Y, g) is defined by
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dN ((X, f ), (Y, g)) :=
{
infh∈Hom(X,Y ) ‖ f − g ◦ h‖∞, if Hom(X,Y ) 
= ∅
+∞ if Hom(X,Y ) = ∅,

(3.42)
where Hom(X,Y ) is the set of all homeomorphisms from X to Y .

In the case Y = X , it is preferable to consider the L∞-norm inducing an actual
distance function between f and g instead of their natural pseudo-distance. Indeed, if
there exists an homeomorphism h such that f = g ◦ h, then dN((X, f ), (X, g)) = 0
even though their L∞-norm is in general non-trivial.

Gromov-Hausdorff distance

A finite metric space is a pair (X, dX ) consisting of a finite set X and a metric
function dX : X × X −→ R. For example, we can think of X endowed with the
metric function inherited from some embedding into a finite dimensional Euclidean
space. A correspondence r between X and Y is a subset of X × Y such that the
canonical projection from the Cartesian product πX : X × Y −→ X and πY : X ×
Y −→ Y are both surjective. The set of all correspondences between X and Y will
be denoted by X � Y . A correspondence generalizes a bijection between two sets
with different cardinalities.

Once we have a correspondence r ∈ X � Y between the underlying sets, we can
define its distorsion as

Dis(r) := sup{|dX (x, y) − dY (x ′, y′)| | (x, y), (x ′, y′) ∈ r}. (3.43)

The Gromov-Hausdorff distance [47] between two finite metric spaces (X, dX ),
(Y, dY ) is defined as

dGH ((X, dX ), (Y, dY )) := 1

2
inf{Dis(r) | r ∈ X � Y }. (3.44)

3.5.2 Distances on Persistence Summaries

In this section, we collect the definitions of the dissimilarity measures applying to
persistent homology summaries (see Sect. 3.4.2).

We first review the interleaving distance [23] applying to R-persistence mod-
ules. Afterwards, we review the p-landscape distance [13] applying in the same
way to both R-persistence modules and persistence diagrams. Later, we review the
distances on persistence diagrams: the matching/bottleneck distance [27, 62], the
pth-Wasserstein distance [28], and the Hausdorff distance [27].

We close this section by stating the Isometry Theorem [14, 65] for relating the
interleaving distance and the introduced distances on diagrams.

Interleaving distance
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Let F , G be R-persistence modules as in Eq. (3.26) and ε > 0. We say that F and
G are ε-interleaved if and only if there exists a family {�a : Fa −→ Ga+ε}a∈R and
a family {�a : Ga −→ Fa+ε}a∈R such that the following diagrams commute

Fa−ε
f a−ε,a+ε

�a−ε

Fa+ε Fa+ε
f a+ε,b+ε

Fb+ε

Ga �a
Ga ga,b

�a

Gb �b

Fa
�a Fa f a,b

�a

Fb
�b

Ga−ε
ga−ε,a+ε

�a−ε

Ga+ε Ga+ε
ga+ε,b+ε

Gb+ε .

(3.45)

The interleaving distance between real-indexed persistence modules is defined
by

dI(F ,G ) := inf{ε > 0 | F ,G are ε-interleaved}. (3.46)

Distance on persistence landscapes
Let λ, λ′ be the persistence landscapes associated to two persistence modules

F , F ′, respectively. Fix p a real number p ≥ 1 or p = ∞. Then, the p-landscape
distance is defined by means of the L p-norm as follows

�p(F ,F ′) := ‖λ − λ′‖p. (3.47)

In the same way, if λ, λ′ are the persistence landscapes associated to two persis-
tence diagrams D, D′ we define �p(D, D′) := ‖λ − λ′‖p.

Distances on persistence diagrams

Let D1 and D2 be persistence diagrams as defined in Eq. (3.28). Some pseudo-metrics
require the notion of a matching between persistence diagrams. Amatching between
D1 and D2 is simply a bijection between the underlying sets. Notice that the per-
sistence diagrams are not finite metric spaces like those in Eq. (3.44). Despite there
might be points with finite multiplicity in different number within two persistence
diagrams, such a cardinality discrepancy is overcome bymatching points to the diag-
onal when needed. The bottleneck distance [27] (also calledmatching distance [62])
is defined as

dB(D1, D2) := inf
π :D1→D2
bi jection

sup{‖x − π(x)‖∞ | x ∈ D1}, (3.48)

where the ‖‖∞-norm is always taken for points as part of R2.
The bottleneck distance can be seen as part of a family of pseudo-metrics. For

any integer 1 ≤ p ≤ +∞, the pth-Wasserstein distance [28] is defined as

dp
W(D1, D2) := inf

π :D1→D2
bi jection

(
∑

x∈D1

‖x − π(x)‖p
∞

) 1
p

. (3.49)
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The Hausdorff distance [27] does not require a bijection between the underlying
sets and it is defined as

dH(D1, D2) := max

{

sup
x∈D1

{ inf
y∈D2

{‖x − y‖∞}}, sup
y∈D2

{ inf
x∈D1

{‖x − y‖∞}}
}

. (3.50)

Let (X, f ), (Y, g) be two pairs consisting of a triangulable topological space and
a continuous real-valued function on it. Suppose f and g are both tame functions,
meaning that the respective R-persistence modules F and G obtained by sublevel
sets are tame in the sense of Equation (3.27). Let D f , Dg be the persistence diagrams
associated to the sublevel set filtrations induced by f and g, respectively. It follows
that the following relations among persistence pseudo-metrics hold:

dH(D f , Dg) ≤ dB(D f , Dg), (3.51)

dB(D f , Dg) = dI(F ,G ). (3.52)

By Eq. (3.51), we get that, on persistence diagrams, a stability result with respect
to the bottleneck distance implies the corresponding stability with respect to the
Hausdorff distance. Equation (3.52) is usually referred to as the Isometry Theo-
rem [14, 65].

3.5.3 Stability Results

In this section, we collect the main results concerning the stability with respect to
the dissimilarity measures introduced in Sect. 3.5.1 and Sects. 3.5.2.

We begin by stating Theorem 3.4 and Theorem 3.5 for the stability in terms
of bottleneck distance of persistence diagrams and natural pseudo-distance of size
pairs [29]. We proceed further with Theorem 3.6 and Theorem 3.7 for extending
to persistence landscapes the stability results just stated [13]. Afterwards, we state
Theorem 3.8 for the stability of the bottleneck distance of persistence diagrams with
respect to the Gromov-Hausdorff distance of finite metric spaces [28]. We conclude
this part with a focus on the stability of the persistence-based kernels which have
been introduced in Sect. 3.4.2.1.

Theorem 3.4 Let (X, f ), (Y, g)be twopairs consisting of a triangulable topological
space and a tame function on it. Let D f , Dg be the persistence diagrams associated
to the sublevel set filtrations induced by f and g, respectively. Then, it holds that

dB(D f , Dg) ≤ dN((X, f ), (Y, g)).

In the case of X = Y , the stronger result with respect to the L∞-norm applies [29].
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Theorem 3.5 Let (X, f ), (X, g) be two pairs consisting of a triangulable topo-
logical space and a tame function on it. Let D f , Dg be the persistence diagrams
associated to the sublevel set filtrations induced by f and g, respectively. Then, it
holds that

dB(D f , Dg) ≤ ‖ f − g‖∞.

Notice that, by Eq. (3.52), the two stability results apply also to the interleaving
distance between the corresponding persistence modules. That is usually referred to
as algebraic stability theorem [23]. Moreover, recently the stability result has been
sharpened and generalized to interval decomposable persistence modules and block
decomposableRn-persistence modules [12]. The former ones apply to modified per-
sistence frameworks: zig-zag persistence [76] andReeb graphs (a survey in [10]). The
latter ones apply to the the case of persistence generalized to filtrations determined
by multiparameters [17] instead of a single one.

In the case of persistence landscapes, the stability is stated by the following and
proved in [13].

Theorem 3.6 Let (X, f ), (X, g) be two pairs consisting of a triangulable topolog-
ical space and a function on it. LetF , G be the two persistence modules associated
to the sublevel set filtrations induced by f and g, respectively. Then, it holds that

�∞(F ,G ) ≤ ‖ f − g‖∞.

In the same way, the stability of persistence landscapes with respect to the pth-
Wasserstein distance of persistence diagrams is also proven [13].

Theorem 3.7 Let D1, D2 be two persistence diagrams. Fix p a real number p ≥ 1
or p = ∞. Then, it holds that

�∞(D1, D2) ≤ dp
W(D1, D2).

In the case of filtrations built on top of a finitemetric space such as those introduced
in Sect. 3.2.1, the following result holds [24].

Theorem 3.8 Let (X, dX ), (Y, dY ) be two finite metric spaces. Let DVR
X , D

VR
Y be the

persistence diagrams associated to the Vietoris-Rips complex constructions over
(X, dX ), (Y, dY ), respectively. Then, it holds that

dB(D
VR
X , DVR

Y ) ≤ dGH((X, dX ), (Y, dY )).

By applying Formula (3.5), the result can be extended to the Čech construction.

Stability of persistence-based kernels

Analogously to the the previously discussed topological summaries, it is crucial that
also for the information conveyed by a persistence-based kernel to be stable. Given
a (pseudo) distance d : X × X → R of a space X , a kernel k for X is called stable
with respect to d if there exists a constant C > 0 such that, for any x, y ∈ X ,
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‖φ(x) − φ(y)‖H ≤ C · d(x, y), (3.53)

where ‖ · ‖H is the norm induced by the inner product of H .

All the described persistence-based kernels satisfy some stability result. We refer
to the papers in which each kernel is introduced for the details about the specific
stability properties they satisfy. As an example, we report here the stability results
satisfied by the scale-space kernel. Stability of scale-space kernel with respect to
1st -Wasserstein distance of persistence diagrams

‖φσ (D) − φσ (E)‖L2 ≤ 1

2σ
√

π
d1W(D, E). (3.54)

3.6 Applications

In this section,we reviewapplications ofTopologicalDataAnalysis (TDA) exploiting
the persistent homology pipeline. Our purpose is not to provide a comprehensive list.
Surveys on the topic may be found in [25, 84]. Instead, we aim at showing how TDA
general properties are exploited and adapted to specific application fields. Generally
speaking, TDA is well-appreciated since it:

• summarizes multiscale information according to the relevance of homology
classes along the scale range on data;

• captures higher-order relations among data entities;
• capturesmesoscale informationoncomplexdata sincehomologymediates between
local properties (holes) inserted in global contexts (homologous holes are not nec-
essarily close each other);

• captures coarse information;
• captures robust information.

The reader interested in computational aspects of the persistence pipeline is
referred to the standard algorithm for persistence introduced in [16]. A list of soft-
wares implementing several persistent homology algorithms comprises: PHAT [6]
which is written in C++ and Python along with its distributed version DIPHA [5], the
tool Ripser [4], and themore recent tool GIOTTO [98]. A persistence tool specifically
designed for complex networks is jHoles [11]. The reader interested in a compre-
hensive comparison of algorithms and tools for persistent homology is referred to
the roadmap work in [81].

Libraries for performing general TDA computations are available in C++ and
Python through the Gudhi library [72] along with its R software interface [42]. A
previous C++ library for persistent homology is Dionysus [77]. A comprehensive
tool-kit for TDA not limited to the persistence pipeline is available at [85] in C++
and Python.
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In the following part, we focus on the fields of complex networks, neuroscience,
and biology where the contribution of TDA is well recognized. We proceed by pre-
senting two specific scopes where the q-Hodge Laplacian (see Sect. 3.3.2) finds
applications. In the final part, we present a collection of other applications to be
easily accessible by domain experts.

Complex networks and social science

Most of applications in complex networks exploits the ability of TDA of capturing
higher-order relations among data entities. Graphs and weighted graphs naturally
encode the pairwise relation of complex networks. The simplicial complex construc-
tions introduced in Sect. 3.2.2.2 allow to endow a (weighted) graph with a (filtered)
higher-order structure.

Some applications are focused on translations of graph concepts into simplicial
complex terms. In [9], the percolation is extended fromgraph to simplicial complexes.
In [54], the clique complex is introduced. This allows for a persistence multiscale
summary of higher-order structures [93] to track community cliques. This leads the
authors to introducing a newnon-localmeasurewhich is proven to be complementary
to standard centrality and comparison measures. A classification of network models
which integrates topological information is proposed in [97].

Some applications in the field of complex networks exploit the ability of per-
sistence in capturing mesoscale information. For instance, in [89] authors apply
persistence to detect new non-local structures. In [88], a new and robust filtration is
introduced which is proven to be richer than both metrical and clique filtrations.

Due to the formalization into (weighted) graph terms, applications to Social Sci-
ence exploit a framework similar to that of complex networks. In [2], topology is
used to detect a correlation between socio-economic indicators and spatial structures
in the city environment. In [99], topology is combined to non-linear dimensional
reduction to provide new contagion maps. In [20], authors apply the degree 0 and 1
persistence to analyze collaboration networks and differentiate them from the random
case. In [95], persistence is applied for selecting features out of the high-dimensional
point clouds of clients connected by weighted interaction links.

Neuroscience

The multiscale summaries provided by TDA have shown relevant impact on the
study of structural and functional brain connectivity. The brain connectivity is often
represented by a connectivity matrix based on physical adjacency or correlation
measures between brain regions. This can be easily turned into weighted graph terms
thus allowing for the application of TDA and, specifically, the persistence pipeline.

TDA supports the exploration and visualization purposes especially by means
of the Mapper graph [96]. The Mapper graph is a topological signature alternative
to persistence. The signature captures the adjacency of connected components with
respect to scalar function level sets. TheMapper signature is exploited in [83] to show
coherence of topological information on structural and functional brain aspects.

Coming back to the persistence pipeline, we first focus on structural aspects.
In [75], authors investigate the dynamics of theKuramotomodel in the case of higher-
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order relations. In [7], graph filtrations are exploited to study tree-like structures of
brain arteries to find correlations between age and sex higher than previously obtained
without higher-order structures.

As for the functional aspects, in [46] the clique complex construction is used
to derive the critical role of the hippocampal circuits in shaping the geometrical
structure of correlations in the brain of rats. In [87], the scaffold persistence summary
is exploited to discriminate between healthy and psycoactive patients. The function
brain connectivity is also studied under fMRI data (Functional Magnetic Resonance
Images) in [70] to introduce a new topology-based measure based on the scaffold
summary. In [101], vineyards, that is continuous families of persistence diagrams,
are used to classify between resting and gaming subjects to obtainmore robust results
compared to Principal Component Analysis.

Brain functionalities other than the connectivity are also investigated under data
represented by functions. Image data of cortical surfaces are classified in [26] accord-
ing to persistence summaries. Most applications are focused on EEG signals treated
in several works. In [100] denoising of signals is performed by means of persistence
landscape summaries. The original signal and the transformed one are found to share
topological properties. The independence from scales and translations of topolog-
ical features is exploited over the frequent space after Fourier transform to isolate
the signal. In [52, 53], EEG signals are treated for finding evidences of correlations
between head positioning and hypnotizability of patients. In [15], authors propose
feature selection to separate signals of able-bodied from amputee subjects.

Biology

The field of biology is experimenting a growing interest towards topological data
analysis. A first motivation relies on the high number of features known to be
involved in many biological studies. This is the case of the work in [90] where
TDA is integrated into feature selection to detect subgroups of features based on
similarity measures.

A second case is that of gene sequences. The gene sequence evolutions can be
represented by treelike structures where points are gene sequences. As stated in [22],
treelike structures accurately reflect vertical evolution (mutations over generations)
but not horizontal evolution (genomic mixture between individuals). Tree struc-
tures capture vertical evolution. They consist of a single connected component with-
out loops. Hence, homology in degree 0 might be associated to vertical evolution,
whereas higher-order homological features might be associated with horizontal evo-
lution. Higher-order homological features are captured by starting from the same ini-
tial gene sequences and considering the Vietoris-Rips complex with respect to some
distance measuring genetic dissimilarity. These assumptions are applied in [41] to
characterize and study antibiotic resistance. Another gene sequence application is
in the scope of pattern recognition. TDA is applied to finding patterns within gene
expressions [31] with no periodicity assumption, unlike, for instance, in the case of
those retrieved by the Fourier transform.

A third case of relevant interest is the study of proteins. Protein data are particu-
larly suited for geometrical representations, that is graphs or point clouds embedded
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in some metric space. Most persistent loops are found to appear in correspondence
of active protein sites [56]. For instance, DNA can be modeled by weighted graph
structures where vertexes are atoms, edges are bonds and weights represent biolog-
ical properties. In [74], the attitude of persistence of capturing mesoscale features
is used to reveal local functional properties, where local is not a priori determined
but retrieved. Weights are locally associated to persistence features within the gen-
eralized framework of weighted persistent homology. Moreover, in [45], protein
compressibiity is related to the protein geometric structure. The simplicial model
involved is that of α-shapes. A correlation between the topological measure and the
experimentally-determined compressibility of most proteins is found.

HodgeRank

In [68], the Hodge decomposition has been successfully applied in the setting of
statistical ranking. Themain problem discussed in [68] is that of determining a global
ranking from a dataset comprising a number of alternatives ranked by a number of
voters. This is a relevant problem which sprung form several fields and it is of
paramount relevance for, e.g., online global platform as Netflix, Amazon, Google,
Ebay, etc.

Besides deducing a global ranking from the data, whenever possible, the authors
also showed a way to analyze the obstructions not permitting a statistically meaning-
ful global ranking. Their methods, collectively called HodgeRank, analyze pairwise
rankings represented as edge flows on a graph using combinatorial Hodge theory also
to provide a mean to determine a global ranking that also comes with a certificate of
reliability for its validity.Alternatives areV = {1, . . . ,m} and voters� = {1, . . . , n}
For each voter α ∈ � ranking matrix

Y α ∈ R
n×n, Y α

i j = −Y α
j i

Weight function w : � × V × V → [0,∞)

wα
i j =

{
1 if α compared (i, j)
0 otherwise

are provided. Let � be the clique complex whose one skeleton is the graph G :=
(V, E)with vertices the alternatives and adjacencymatrix (wi, j ) i.e. edge are between
compared alternatives. Hodge theory then provides an orthogonal decomposition of
the assigned pairwise comparison flow into three components: a gradient flow that
is globally acyclic, a harmonic flow that is locally acyclic but globally cyclic, and a
curl flow that is locally cyclic. Namely

Y = Y (g) + Y (h) + Y (c)

from
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C1(�;R) =
ker(DT

2 )
︷ ︸︸ ︷
im(DT

1 ) ⊕ ker(L1) ⊕ im(D2)︸ ︷︷ ︸
ker(D1)

.

Usually, in this two dimensional case the components of the decomposition have
traditional name caming for physics, that is: the elements of im(DT

1 ) are the gradient
flows; the elements of ker(L1) are the harmonic flows; the elements of im(D2) are the
curl flows. The gradient flows component induces a global ranking of the alternatives
and this can be computed via a linear least squares problem. Furthermore, the l − 2-
norm of the least squares residual, provides a measure of the validity of the global
ranking induced by the gradient flow component. If the residual is small, then the
gradient flow accounts for most of the variation in the given data and, therefore, the
global ranking obtained from it is expected to be a majority consensus. Viceversa, if
the residual is large, then the data manifest cyclic inconsistencies and no reasonable
global ranking is expected to exist. The curl flow and harmonic flow components
of an edge flow quantify respectively the local and global cyclic inconsistencies.
Inconsistencies of a local nature will cause a dominant curl flow component, while a
dominant harmonic flow component reflects a global nature of the inconsistencies. If
in addition the harmonic flow component is small, then most of the inconsistencies
happen locally and this could be read as the global ranking is sound on a coarse scale
(infra-cluster ranking) but not on a finer scale (intra-cluster ranking).

Communication networks

In [3] the authors used the Hodge decomposition to analyze signals residing over
a simplicial complex. Although they focused on signals defined over the edges of
a complex of order two, i.e. including triangles, their findings and tools can be
directly translated to analyze signals defined over higher order structures. What
would be missing in the higher order cases would be concepts as solenoidal or
irrotational behaviors. A signal over over a simplicial complex � is a family of
functions sk : �k → R, with k = 0, . . . , dim�. By using the decomposition (4) and
(5) in Theorem 3.2 one can orthogonally decompose sk as

sk = DT
k s

k−1 + skH + Dk+1s
k+1

where Lk(skH ) = 0 i.e. it is an harmonic. Taking advantage of this representation
the authors were able to prove that the Lovàsz extension of the triple-wise coupling
function gives rise to a measure of the curl of edge signals along triangles. They
also proposed a method to infer the structure of a second order simplicial com-
plex from flow data and we showed that in applications over real wireless traffic
data, the proposed approach can significantly outperform methods based only on
graph representations. Furthermore, they analyze discrete vector fields and showed
an application to the recovery of the RNA velocity field to predict the evolution of
living cells. In such a case, using the eigenvectors of the first combinatorial Laplacian
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have been able to highlight irrational and solenoidal behaviors that would have been
difficult to highlight using only the eigenvectors of the zeroth one.

TDA applied to other fields

The number fields where TDA has found or is gaining success is experimenting an
impressive grow.

In particular, thanks to the translation into vector representations and the statisti-
cally significant improvements in representing persistent homology (Sect. 3.4.2.1),
the last fewyears have seen theflourishingof the interplay betweenTDAandMachine
Learning. To this scope, the survey [51] on TDA and deep learning provides an
interesting discussion on contributions of TDA in Machine learning as well as the
converse.

Finally, we close this section by providing a not exhaustive list of applications
which can possibly be of interest to field experts. The list entails: physics [34, 57, 58,
86], medicine [7, 63, 67, 80], chemistry [64], image analysis [18], shape study [60],
object recognition [66], fractal geometry [71], quantum computing [69], machine
monitoring [55], automated productivity [50], data analysis in biomechanics [91],
and material science [79].
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Chapter 4
Flow-Based Community Detection
in Hypergraphs
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and Martin Rosvall

Abstract To connect structure, dynamics and function in systems with multibody
interactions, network scientists model random walks on hypergraphs and identify
communities that confine the walks for a long time. The two flow-based community-
detection methodsMarkov stability and the map equation identify such communities
based on different principles and search algorithms. But how similar are the resulting
communities? We explain both methods’ machinery applied to hypergraphs and
compare them on synthetic and real-world hypergraphs using various hyperedge-size
biased randomwalks and time scales.We find that the map equation is more sensitive
to time-scale changes and that Markov stability is more sensitive to hyperedge-size
biases.
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4.1 Introduction

Researchersmodel andmap flows on networks to identify important nodes and detect
significant communities [1–6]. Fromsmall to large systemscales, randomwalk-based
methods help to uncover the inner workings of networks [7, 8]. When standard
network models with dyadic relations between pairs of nodes fail to adequately
represent a system’s interactions, researchers turn to higher-order models of complex
systems [9, 10], including multilayer networks [11–14] for multitype interactions,
memory networks [15–17] for multistep interactions, and simplicial complexes [18–
21] and hypergraphs [22–25] for multibody interactions.

While severalmethods can identify flow-based communities inmultilayer [14, 26,
27] and memory [15–17] networks with higher-order Markov dynamics, researchers
have focused on combinatorial methods to identify communities in hypergraphs [28–
33] and only recently begun to unravel flow-based community structures associated
with random walks guided by hyperedge sizes [23]. Two such methods are Markov
stability and the map equation. Both algorithms exploit random walkers’ tendency
to stay unexpectedly long times in assortative communities, albeit in different ways.
Markov stability measures the fraction of randomwalks that reside in the community
where they started after time t compared with stationarity. Instead, the map equation
measures the shortest possible modular codelength required to describe the random
walker on the network with given communities. Also their optimisation algorithms
differ and it remains unclear how their detected communities in hypergraphs compare.

For Markov stability, we have previously analysed random walks on hypergraphs
with a parameter controlling the bias of the dynamics towards small or large hyper-
edges and identified widely differing communities [23]. For the map equation and
its optimisation algorithm Infomap [34], we have derived and clustered unipartite,
bipartite, and multilayer network representations of hypergraph flows with different
advantages [35]. Both papers highlight that the network and the research question
should decidewhichmodel to use, but did not compare the twomethods. For example,
when modelling the flow of ideas with random walks in a co-authorship hypergraph,
how does the organisation of authors in communities, at scales from research groups
to research areas, change with community-detection method?

We compare Markov stability and the map equation applied to random walks
on hypergraphs with hyperedge-size bias. After explaining the random-walk model
and the flow-based community-detection methods using a schematic hypergraph for
illustration, we consider experiments on three real-world hypergraphs: a zoo hyper-
graphwith 101 nodes, a collaboration hypergraphwith 361 nodes, and a fossil-record
hypergraphwith 13,276 nodes.We find that themap equation responds faster to time-
scale changes and that Markov stability is more sensitive to hyperedge-size biases.
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4.2 RandomWalks on Hypergraphs

Weconsider hypergraphsH(V, E)with n nodes V = {v1, . . . , vn} andm hyperedges
E = {E1, . . . , Em}. Each hyperedge Eα ⊂ V is an unordered collection of nodes. A
hypergraph can be encoded by its incidence matrix eiα , where we use Roman indexes
for nodes and Greek indexes for hyperedges:

eiα =
{
1 vi ∈ Eα

0 otherwise .
(4.1)

The n × n adjacency matrix of the hypergraph is A = ee�, whose entry Ai j rep-
resents the number of hyperedges containing both nodes i and j with the diagonal
elements set to zero. We also define the m × m hyperedge matrix B = e�e, whose
entry Bαβ counts the number of nodes the two hyperedges share in the original
hypergraph, Eα ∩ Eβ . B corresponds to the weighted adjacency matrix of the dual
hypergraph, where hyperedges of the original hypergraph become nodes of the new
structure.

A random walk process on a hypergraph can be defined by the transition proba-
bility, Ti j , allowing the walker to move across any pair of nodes (i, j). The resulting
continuous-time Markov process can be defined by

ṗi (t) =
∑
j

p j (t)Tji −
∑
j

pi (t)Ti j , (4.2)

where pi (t) is the probability of finding the walker on node i at time t . As often
assumed when dealing with Markov processes, p = (p1, . . . , pn) is a row vec-
tor. With normalised transition probabilities such that

∑
j Ti j = 1, we rewrite the

continuous-time Markov process as

ṗi =
∑
j

p j (Tji − δi j ) = −
∑
j

p j L ji , (4.3)

where Li j := δi j − Ti j is the random-walk Laplace operator.
Assigning weights to nodes and hyperedges biases the transition probabilities and

leads to different probability flows between nodes [22, 23, 25].

Fixed weights and independent moves [25].
Setting a weight ω(Eα) to each hyperedge Eα and a weight γEα

(i) to each
node i ∈ Eα allows us to decompose the random walk into three steps:

1. A randomwalker on node i chooses an incident hyperedge Eα proportional
to its weight,

Qαi = ω(Eα)eiα∑
β ω(Eβ)eiβ

. (4.4)
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2. The random walker picks a node j �= i of hyperedge Eα proportional to
its weight,

R jα = γEα
( j)e jα∑

� �=i γEα
(�)e�α

. (4.5)

3. The random walker moves to node j with probability

Ti j =
∑

α

R jαQαi . (4.6)

Several random-walk processes can be defined with various node and hyperedge
weights. With hyperedge size as a proxy for the higher-order interactions’ nature,
we consider the transition probability

T (σ )
i j = K (σ )

i j∑
� �=i K

(σ )
i�

∀i �= j and T (σ )
i i = 0 , (4.7)

with
K (σ )

i j =
∑

α

(Bαα − 1)σ eiαe jα ∀i �= j and K (σ )
i i = 0 , (4.8)

for some real σ , which biases random walks to hyperedges depending on their size
[22, 23]. By setting ω(Eα) = (Bαα − 1)σ+1 and γEα

( j) = (Bαα − 1) for all j ∈ Eα ,
Eq. (4.7) takes the form of Eq. (4.6). From

∑
� �=i

K (σ )
i� =

∑
� �=i

∑
β

(Bββ − 1)σ eiβe�β =
∑

β

(Bββ − 1)σ+1eiβ ,

where we used
∑

� �=i e�β = Bββ − 1, we can conclude

T (σ )
i j = 1∑

β(Bββ − 1)σ+1eiβ

∑
α

(Bαα − 1)σ eiαe jα

= 1∑
β(Bββ − 1)σ+1eiβ

∑
α

(Bαα − 1)σ+1eiα
e jα

Bαα − 1

=
∑

α

Qαi R jα .

For largepositive values ofσ , hyperedgeswithmanynodes contributemore toT (σ )
i j

and guide the random process. For large negative values of σ , the large hyperedges’
contributions are negligible and only the small hyperedges drive the random walk
process. In this way, σ is a hyperedge-size bias parameter.
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When σ = 0, the randomwalkmoves on the so-called clique-reducedmultigraph,
where each pair of nodes is connected by a number of edges equal to the number of
hyperedges containing that pair in the hypergraph. The transition matrix takes the
form

T (0)
i j = K (0)

i j∑
� �=i K

(0)
i�

= Ai j∑
� �=i Ai�

,

where we used the hyperadjacency matrix Ai j = ∑
α eiαe jα . The clique reduced

multigraph is different from the projected network obtained by associating to each
hyperedge a clique of the same size. The latter can be interpreted as the unweighted
version of the clique-reduced multigraph.

The matrix K (σ )
i j given by Eq. (4.8) can be considered as the weighted adjacency

matrix of an undirected network. With the associated Laplace operator

L(σ )
i j = δi j − T (σ )

i j = δi j − K (σ )
i j∑

� �=i K
(σ )
i�

, (4.9)

the continuous-time random walk is

ṗi (t) = −
∑
j

p j (t)L
(σ )
j i , (4.10)

and the continuous-time transition matrix, which forwards the continuous-time
random-walk process by time t , is

T (σ )(t) = e−tL(σ )

. (4.11)

Based on this projection, we can invoke standard results about random walks and
in particular prove that the stationary state 1

π j = d(σ )
j∑

� d
(σ )
�

, (4.12)

where d(σ )
j = ∑

� �= j K
(σ )
j� is the strength of node j in the weighted graph. This quan-

tity is an immediate generalisation of the standard node degree that accounts for
different hyperedge sizes.

1 To lighten the notation, we do not show explicitly the dependence on σ on the asymptotic distri-
bution π .
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The standard formulation of the map equation uses a discrete-time random-walk
process. For discrete time steps k, the discrete-time version of Eq. (4.3) takes the form

pi (k + 1) =
∑
j

p j (k)Tji , (4.13)

with the same stationary distribution as for the continuous-time process.

4.3 Flow-Based Community Detection in Hypergraphs

To illustrate how the flow-based community-detection methods known as Markov
stability and the map equation identify communities in hypergraphs, we explain their
disparate machinery and illustrate with a schematic hypergraph.

4.3.1 Markov Stability

TheMarkov stability is a quality function for partitioning a network into communities
based on the persistence of random-walk flows inside a group of nodes.

Consider an ergodic random walk process in its stationary state. The Markov
stability [36, 37] of a partition at time t is defined as the difference between the
probability of a random walker to be in the same community at time 0 and at time t
and the analogous quantity computed once the system settles in the stationary state.
At a given time t , Markov stability is large when random walkers are unlikely to
have escaped their initial community. Because the process is assumed to be ergodic
and knowledge of the initial conditions is lost asymptotically, the second probability
is equal to the probability of two randomly chosen walkers residing in the same
community.

Markov stability and autocovariance of the walker signal
The Markov stability is equivalent to the autocovariance of a signal encoding
the sequence of communities visited by a randomwalker in the stationary state.

Starting from the continuous-time random walk in Eq. (4.3) or Eq. (4.10)
and with a partition encoded by an n × C indicator matrix C, we assign the
values Xα (α = 1, ..., C) to the vertices of each community. The autocovariance
of the sequence of values X (t) is

cov [X (0)X (t)] = 〈X (0)X (t)〉 − 〈X (0)〉〈X (t)〉 = X�R(t,C)X , (4.14)

where 〈X (t)〉 is the expectation of the random variable X (t), X is the 1 × C
column vector of labels assigned to the C communities and R(t,C) is the C × C
clustered covariance matrix,
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R(t,C) = C� [
� exp(−tL) − ππ�]

C , (4.15)

where � = diag(π) is a diagonal matrix encoding the stationary distribution.
This C × C matrix does not depend on our arbitrary choice for the values Xα .

Since (� exp(−tL)i j measures the flow of probability from node i to node
j over time t , the first term of Eq. (4.15) measures the probability flow between
two communities α and β over a time t . In a partition with a strong assortative
community structure, the probability flows should be captured for long times
within communities, and large entries in R(t,C) should be concentrated on
its diagonal. Following this reasoning, the Markov stability r(t,C) is defined
as the trace of the clustered autocovariance matrix [36, 38]:

r(t,C) = Tr [R(t,C)] . (4.16)

The Markov stability quantifies the quality of a partition at different time scales.
For every t , maximising r(t,C) gives the best partition of the network into commu-
nities, resulting in a sequence of optimal partitions at different times. Time acts as
a resolution parameter that enables us to tune the typical size of the communities in
the optimal partition, as longer times typically lead to fewer and larger communi-
ties. Markov stability shows connections with several concepts related to community
detection. For small t , the first order of its Taylor expansion recovers, up to a constant,
a parametric generalisation [39] of Newman-Girvan modularity.

4.3.1.1 Markov Stability for Hypergraphs

The random walk process above defined in Eq. (4.10) corresponds to a random walk
on a weighted undirected network. The link weights are self-consistently defined
starting from the process on the hypergraph and thus taking into account the multi-
body interactions encoded by the size of the hyperedges. Exploiting this relation, we
can optimise Markov Stability on the weighted network to partition the hypergraph
nodes into communities. Consider again a partition of the nodes of a hypergraph into
C non-overlapping communities, encoded by the n × C indicator matrix C. Expand-
ing Eq. (4.16), the corresponding Markov stability is explicitly given by

r(t,C) = Tr
[
C�

(

e−tL(σ ) − π�π

)
C

]
, (4.17)

where π is the asymptotic solution of Eq. (4.12),
 is the diagonal matrix containing
π on the diagonal, L(σ ) is the random-walk Laplace matrix and π�π is the matrix
whose (i, j) entry is πiπ j .

As an illustration, we compute the Markov stability for a schematic hypergraph
where nodes have two features represented by letters (A, B or C) and numbers (1
or 2) (Fig. 4.1). The hypergraph has six nodes, {A1, A2, B1, B2,C1,C2}, and five
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Fig. 4.1 A schematic hypergraph in (a) projected into three different weighted networks with
hyperedge-size bias σ = −1 in (b), 0 in (c), and 1 in (d)

hyperedges, three of size two connecting nodes with the same letter, and two of size
three connecting nodes with the same number. With K(σ ) defined in Eq. (4.8), the
hyperedges of size two have a weight of 1σ to the associated link, whereas the hyper-
edges of size three have a weight of 2σ . The corresponding transition probabilities
in Eq. (4.7) are

TX1,X2 = 1

2 × 2σ + 1
,

TX1,Y1 = 2σ

2 × 2σ + 1
,

TX1,Y2 = 0 ,

TX1,X1 = 0 ,

TX2,X2 = 0

for all X,Y in {A, B,C}.
When σ = 0, the transition probabilities are TX1,X2 = TX1,Y1 = 1/3. Thus, a

walker remains twice as likely in the same 3-hyperedge than in a 2-hyperedge.
The Markov stability thus returns two modules for sufficiently large Markov times
(t > 1). For σ = 1, TX1,X2 = 1/5 and TX1,Y1 = 2/5. Then, a walker is four times
more likely to remain in the same 3-hyperedge than in a 2-hyperedge. For σ = −1,
TX1,X2 = 1/2 and TX1,Y1 = 1/4, and the probability to stay in the 3-hyperedge is the
same as leaving it. In the limit as σ → ∞,

lim
σ→∞ TX1,X2 = 0 , lim

σ→∞ TX1,Y1 = 1/2 ∀X,Y ∈ {A, B,C} ,

hops among nodes with the same number are strongly favoured and a walker remains
for a long time in the same 3-hyperedge. In the other limit,

lim
σ→−∞ TX1,X2 = 1 , lim

σ→−∞ TX1,Y1 = 0 ∀X,Y ∈ {A, B,C}
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Fig. 4.2 Optimal solutions of the schematic hyper graph in Fig. 4.1 for different hyper edge biases
and Markov times. Solutions from Fig. 4.1b–d and the singleton solution with six communities,
demarcated with a) Markov stability in solid orange lines, and b) the map equation in dashed blue
lines. In b), the blue dotted line is the map equation applied to a continuous time process

a walker spends longer time in the 2-hyperedges. In the first case, Markov stability
favours two communities for sufficiently large Markov times, while it favours three
communities in the second case (Fig. 4.2a).

4.3.2 The Map Equation

Like Markov stability, the map equation is a quality function for partitioning a net-
work into communities based on the persistence of random-walk flows inside groups
of nodes. But instead of using autocovariance, the map equations casts the problem
of finding flow-based communities in networks into a minimum-description-length
problem [5].

The map equation measures, in bits, the optimal codelength L per step of
a discrete random walk on a network for a given node partition M with C
modules. When all nodes are in the same module, the map equation is simply
the Shannon entropy H of the node-visit rates P = {πi }.

In partitions with more than one module, the map equation combines within
and between module codelengths for describing flows within and between
modules. For modules α = 1, . . . ,C with

entry flow rates qα� = ∑
i /∈α, j∈α πi Ti j ,

exit flow rates qα� = ∑
i∈α, j /∈α πi Ti j ,

entry flow rate random variable Q = {qα�}
with total flow rate q� = ∑

α qα�,

exit and node-visit rate random variables Pα = {qα�, πi∈α}
with total flow rate pα� = qα� + ∑

i∈α πi ,
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the map equation takes its general two-level form

L(M) = q�H(Q) +
∑

α

pα�H(Pα). (4.18)

The first term is the codelength for between-module movements, followed by
the sum of codelengths for within-module movements over all modules.

This standard formulation of the map equation encodes every transition of a ran-
dom walker. For Markov times other than 1, the map equation uses a linearised
continuous-time transition matrix,

T̃ (t) =
{

(1 − t)I + tT t < 1

tT t ≥ 1,
(4.19)

which capturesMarkov times below 1with self-links andMarkov times above 1 with
transition rates proportional to the average rate of the underlying Poisson process
[40]. At Markov time 1, it recovers the discrete-time process in Eq. (4.13). Unlike
the exponential of the Laplacian, the linearisation keeps the transition matrix sparse
also for Markov times larger than zero.2

The linearisation is appealing for the map equation because the node-visit rates πi

remain the same for all Markov times t—since the relative visit rates at steady state
do not depend on how often the visits are sampled—and the module exit and entry
rates change linearly—since the number of random walkers moving along any link
between nodes during time t is directly proportional to t . Therefore, we can define

qα�(t) = tqα� (4.20)

qα�(t) = tqα�. (4.21)

With time dependence on all variables in Eq. (4.18) that depend on the module entry
or exit flow rates, the map equation for Markov time t takes the form

L(M, t) = q�(t)H(Q(t)) +
∑

α

pα�(t)H(Pα(t)). (4.22)

While the standard formulation of the map equation can be applied directly to the
continuous-time transition matrix for various Markov times in Eq. (4.11), deriving
the matrix is computationally expensive for large networks. For long Markov times,
it also generates dense networks with longer clustering times. In contrast, the map
equation forMarkov time t in Eq. (4.22) has no overhead compared with the standard
map equation. From a flowmodelling perspective, the map equation forMarkov time

2 Markov stability can also apply the linearisation to speed up calculations [37], but here we use
the exponential of the Laplacian for Markov stability in all examples.
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t counts each time a random walker moves across a modular boundary during time t .
Instead, the standard map equation applied to the continuous-time transition matrix
counts at most one boundary-crossing since it only considers the final position after
time t . For shortMarkov times, the two approaches are similar. Bur for longerMarkov
times, the map equation for Markov time t generally favours solutions with fewer
modules [40].

To identify the optimal partition—the one that compresses themodular description
the most—we use the community-detection algorithm Infomap [41] available on
www.mapequation.org. Infomap is to the map equation what the Louvain [42] and
the Leiden [43] methods are to the objective function modularity [44], which favours
partitions with a high internal density of links compared with a statistical null model.
Infomap uses a similar search algorithm as the Leiden method but tries to find the
node assignment that minimises the map equation’s codelength. Infomap also finds
deeper hierarchical partitions—from top-level supermodules with multiple levels of
submodules down to leaf-level modules containing the nodes—if such multilevel
solutions give higher modular compression [45]. The search algorithm works on
many network types, including weighted, directed, bipartite [46], andmultilayer [26]
networks. Infomap can also identify overlapping multilevel communities in higher-
order network flows modelled with so-called memory networks [41]. Recent work
introduces a Bayesian estimate of the map equation for identifying flows on sparse
networks with missing links [47], but here we focus on the standard map equation
and identify hard two-level partitions in weighted unipartite networks obtained with
the hypergraph projection described in Sect. 4.2.

4.3.2.1 The Map Equation for Hypergraphs

We have previously derived unipartite, bipartite, and multilayer network represen-
tations of hypergraph flows and analysed their different advantages when mapping
flows on hypergraphs with Infomap [35]. We found that when the research question
does not require hyperedge assignments from using bipartite networks or overlap-
ping modules from using multilayer networks, a unipartite network representation
like the one we use here provides a good trade-off between speed and ability to reveal
modular regularities.

We illustrate the map equation for hypergraphs with the schematic example in
Fig. 4.1 for which the stationary distribution of the random walk is independent of σ

such that π(σ)
i = πi for all nodes i . The one-module codelength is

L(M1, t) = H(P) (4.23)

= H(πA1 , πA2 , πB1 , πB2 , πC1 , πC2)

= 2.58 bits for all values of σand t.

When a network has modular regularities, a partition captures the modular flows
when the random walker spends long times within the modules with few transitions

www.mapequation.org
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between them. The codelength is shorter than in the one-module solution because the
information required to specify a random walker’s position in a module decreases
with its size. But for partitions with too many modules, the information required for
describing between-module movements exceeds the gain from using small modules.
The optimal partition has the shortest codelength. Its node assignment best captures
the modular regularities of flows on the network.

Using the three-module solution in Fig. 4.1b, the codelengths for the different
hyperedge-size biased random walks parametrised with σ are

L(M3, t) = q�H(q1�, q2�, q3�) (4.24)

+(q1� + πA1 + πA2)H(q1�, πA1 , πA2)

+(q2� + πB1 + πB2)H(q2�, πB1 , πB2)

+(q3� + πC1 + πC2)H(q3�, πC1 , πC2)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1.00 1.00 1.00 bits for σ → −∞,

2.30 3.17 4.58 bits for σ = −1,
2.61 3.67 5.41 bits for σ = 0,
2.84 4.05 6.04 bits for σ = 1, and
3.17︸︷︷︸
t=0.5

4.58︸︷︷︸
t=1

6.92︸︷︷︸
t=2

bits for σ → ∞.

This three-module letter-based solution gives shorter codelengths than the one-
module solution for small σ -values and short Markov times, indicated by bold num-
bers in Eq. (4.24). For these values, the random walker spends long times within the
three letter-based modules with few transitions between.

Using the two-module solution in Fig. 4.1d, the codelengths for the different
hyperedge-size biased random walks parametrised with σ are

L(M2, t) = q�H(q1�, q2�) (4.25)

+(q1� + πA1 + πB1 + πC1)H(q1�, πA1 , πB1 , πC1)

+(q2� + πA2 + πB2 + πC2)H(q2�, πA2 , πB2 , πC2)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3.46 4.58 6.34 bits for σ → −∞,

2.74 3.46 4.58 bits for σ = −1,
2.44 3.00 3.87 bits for σ = 0,
2.17 2.56 3.19 bits for σ = 1, and
1.58︸︷︷︸
t=0.5

1.58︸︷︷︸
t=1

1.58︸︷︷︸
t=2

bits for σ → ∞.

This two-module number-based solution gives shorter codelengths than the one-
module solution for large σ -values and short Markov times, again indicated by bold
numbers in Eq. (4.25). For these values, the randomwalker instead spends long times
within the two number-based modules so the codelength savings from using smaller
modules exceed the extra cost from switching modules.
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4.3.3 Comparing Markov Stability with the Map Equation

While both Markov stability and the map equation identify flow-based communities
in hypergraphs, they highlight different structures. Both methods prefer the solu-
tion with one node in each community for minimal Markov times when nearly all
flow remains in the nodes. But the Markov time at which they highlight non-trivial
solutions differs. For Markov stability this happens when more flows stay in larger
communities than in singleton communities compared with respective stationary
expectation. For the map equation, it happens when describing transitions between
communities costs more than gained from describing within-community movements
in singleton communities. Which one comes first depends on the network structure.
For the schematic network in Fig. 4.1, the map equation first prefers non-trivial solu-
tions (Fig. 4.2b). But in the larger networks analysed in Sect. 4.4, Markov stability
highlights non-trivial solutions for shorter Markov times than the map equation.

The map equation strictly prefers the one-community solution over a non-trivial
solution for long Markov times. It prefers a two-community solution only when
describing transitions between the communities costs no more than gained from
describing within-community movements in smaller communities. The map equa-
tion’s modular code structure with costs in bits for both community exits and entries
has a regularising effect as long as the network is connected. In contrast, Markov
stability prefers any solution that traps the slightest more flows within the commu-
nities for Markov time t than expected after infinite time. For example, only the map
equation prefers the one-community solution for the longer Markov times included
in Fig. 4.2. As a result, Markov stability typically has a longer range of non-trivial
solution and responds slower to changes in Markov time.

For the schematic hypergraph, both methods prefer two communities with flows
biased to larger hyperedges and three communities when biased to smaller hyper-
edges (Fig. 4.2). The map equation’s continuous-time approximation slightly shifts
the optimal solutions to longer Markov times in this case.

4.4 Experiments

To illustrate howMarkov stability and the map equation differ applied to real hyper-
graphs, we analysed a zoo hypergraph, a collaboration hypergraph, and a hypergraph
from fossil records.

4.4.1 A Zoo Hypergraph

The zoo hypergraph has been built using data from the UCI Machine Learning
Depository [48]; it consists of 101 animals nodes and 20 features hyperedges such
as fur, having a tail, and the number of legs. We identified communities for random-
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Fig. 4.3 Effective number of communities in the zoo hypergraph for different hyperedge-size bias
σ and Markov time t . Filled areas between the highest and lowest number of effective communities
for Markov stability (orange) and the map equation (blue)

walk bias σ = −4, −2, and 2 as a function of Markov time for Markov stability
using public code [49] and the map equation using Infomap [34].

The effective number of communities, measured as the perplexity of the rela-
tive community sizes S, 2H(S), decreases gradually for Markov stability and more
abruptly for the map equation (Fig. 4.3). Already at Markov time 0.1, Markov sta-
bility applied to the zoo hypergraph with hyperedge-size bias σ = −4 identifies less
than two effective communities. The bias toward small hyperedges fragments the
network into weakly connected components. The penalty term −π�π in Eq. (4.17)
with global flows makes Markov stability sense this large-scale network structure
even if most flows—more than 90 per cent in this case—remain at the node for the
short Markov time.

In contrast, the map equation prefers the singleton solution for the three tested
hyperedge-size biases for Markov time up to 0.5. A short Markov timemakes encod-
ing each node in its singleton community cheap sincemost flows remain there in each
step. The extra cost from describing movements in larger communities is higher than
the gain from describing fewer transitions between communities until the Markov
time approaches 1.

Markov stability identifies the largest communities with flows biased to small
hyperedges for allMarkov times. Themap equation applied to a continuous-time pro-
cess shows similar behaviour. But for the approximation shown in Fig. 4.3, it favours
the one-community solution with flows biased to large hyperedges for Markov time
about 0.9 or higher. Encoding all nodes in the same community best compresses the
interconnected flows biased to large hyperedges.

The various community structures at Markov time 1 illustrates that Markov sta-
bility and the map equation work differently. They identify different communities
for similar flows and similar communities for different flows. Between σ = −2 and
−4, Markov stability and the map equation find closest solutions for differing σ .
Markov stability for σ = −2 and the map equation for σ = −4 find communities
that best capture animal classes (Fig. 4.4).
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Fig. 4.4 Alluvial diagram of the zoo hypergraph solutions for Markov time t = 1 and different
hyperedge biases σ . Each block represents a community with block height proportional to the
number of nodes in the community. Streamfields connect blockswith shared nodes. Colours indicate
animal classes

4.4.2 A Collaboration Hypergraph

We used a collaboration hypergraph compiled from the 734 references in the review
paper Networks beyond pairwise interactions: Structure and dynamics [9, 35].
Hyperedges represent referenced articles and nodes represent their authors. Authors
with multiple articles form connections between the hyperedges. We analysed the
largest connected component with 361 author nodes in 220 hyperedges.

Again, changes in Markov time have a more gradual effect on Markov stability
than on the map equation. But for the collaboration network, the map equation
transitions from the singleton to the all-in-one solution over three orders ofmagnitude
and identifies non-trivial solutions for Markov times over 100 (Fig. 4.5). Different
Markov times highlight different hierarchical levels in the hypergraph’s hierarchical
community structure with smaller communities nested in larger communities. The
largest communities remain clear despite long walks that multiply flows tenfold
between the communities.
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Fig. 4.5 Effective number of communities in the collaboration hypergraph for different hyperedge-
size bias σ and Markov time t . Filled areas between the highest and lowest number of effective
communities for Markov stability (orange) and the map equation (blue)

Fig. 4.6 Effective number of communities in the fossil hypergraph for different hyperedge-size bias
σ and Markov time t . Filled areas between the highest and lowest number of effective communities
for Markov stability (orange) and the map equation (blue)

4.4.3 A Fossil-Record Hypergraph

We analysed a hypergraph representation of marine fossil animals from Cambrian
(541 MY) to Cretaceous (66 MY) [50]. Geological stages in the underlying sample-
based occurrence data formhyperedges connecting all genera occurring at each stage.
Genera occurring in multiple geological stages connect hyperedges. We weighted
the hyperedges by dividing the number of samples where a genus occurs in a given
geological stage by the total number of samples recorded at the stage. The assem-
bled hypergraph comprises 77 geological stage hyperedges and 13,276 fossil genera
nodes [35].

Once more, the effective number of identified communities decreases gradually
for theMarkov stability without reaching the all-in-one solution even at highMarkov
times (Fig. 4.6). In contrast, the map equation solutions quickly transition from sin-
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Fig. 4.7 Alluvial diagram of the map equation’s fossil hypergraph solutions for hyperedge-size
bias σ = 0. Each block represents a community with block height proportional to the number of
nodes in the community. Stream fields connect blocks with shared nodes. Singleton communities
aggregated in orange blocks for clarity

gleton to all-in-one communities around Markov time 1. In the narrow range of
Markov times with non-trivial solutions, the effective number of communities is two
to five. For this substantially larger hypergraph, the extensive hyperedges form a
weak community structure that dissolves for long Markov times and prevents mod-
ular compression.

Non-trivial Infomap solutions reproduce the underlying temporal structure of the
paleontological data with faunas organised into units of geological time (Fig. 4.7).
Although fossil genera can occur in more than one of these large-scale temporal
units, Infomap identifies successive global faunas that replace each other at their
boundaries. Overall, faunas from geological periods are clustered together or com-
bined into coarser temporal units at Markov time 1. These salient structures appear
from singletons without intermediate smaller structures for shorter Markov times.

Markov stability also delineates temporal faunas limited by geological units at
Markov time around 1. However, the temporal structure of the data cannot explain the
numerous communities Markov stability identifies for short Markov times (Fig. 4.8).
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Fig. 4.8 Alluvial diagram ofMarkov stability’s fossil hypergraph solutions for hyperedge-size bias
σ = 0. Each block represents a community with block height proportional to the number of nodes
in the community. Stream fields connect blocks with shared nodes. Markov times chosen to match
the effective number of communities in Fig. 4.7 and small communities with fewer than five nodes
aggregated in an orange block for clarity

4.5 Conclusions

We have derived Markov stability and the map equation for a random-walk process
on hypergraphs with hyperedge-size bias. Bothmethods identify communities where
flows stay for long times. Still, with disparatemachinery—Markov stabilitymeasures
overrepresentation of random walkers in communities where they started, whereas
the map equation measures the modular description length in bits—they capitalise
on distinct flow-based structures. By comparing with the stationary expectation,
Markov stability is more sensitive to hyperedge-size biases and gradually finds larger
communities for longer Markov times. When increasing the Markov time, the map
equation instead transitions more abruptly from identifying many small to few large
communities. Compared with the influence from their disparate machineries, the
map equation’s approximation of a continuous-time process has a negligible effect.
Whereas the map equation identifies salient structures, Markov stability can identify
communities of any size irrespective of the large-scale hypergraph structure. The
question and hypergraph at hand decide which method identifies the flow-based
communities that best elucidate the hypergraph’s studied function.
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Chapter 5
Pattern Formation on Hypergraphs

Timoteo Carletti and Duccio Fanelli

Abstract We present a general framework that enables one to model high-order
interactions among entangled dynamical systems, via hypergraphs. Several relevant
processes can be ideally traced back to the proposed scheme. We shall here solely
elaborate on the conditions that seed the spontaneous emergence of patterns, spa-
tially heterogeneous solutions resulting from the many-body interaction between
fundamental units. In particular we will focus, on two relevant settings. First, we
will assume long-ranged mean field interactions between populations, and then turn
to considering diffusive-like couplings. Two applications are presented, respectively
to a generalised Volterra system and the Brusselator model.

5.1 Introduction

The study of many body interactions has a long history in science and technology,
and relevant results have been obtained under the assumption of regularity of the
underlying substrates, where the dynamics eventually develops. When regularity
gets lost, general results are scarce and simplifying assumptions, which implement
dedicated approximations, need to be put forward. It is for instance customary to
reduce the many body exchanges within a pool of simultaneously interacting entities
to a vast collection of pairwise contacts, a working ansatz which drastically reduces
the intimate complexity of the scrutinised dynamics. Governing dynamical systems
are hence cast on top of networks [1, 2] with diverse and variegated topologies: each
node contains a replica of the original system, and the strength of interaction is set
by the weight of the associated link.
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Despite this crude approximation, relevant results have been obtained which bear
general interest [3–5]. At the same timemany examples of systems exist forwhich the
above assumption holds true just as a first order approximation [6, 7]. To overcome
this intrinsic limitation, the effect of aggregated structures of nodes, such as cliques,
modules or communities [5, 8] has been recently addressed in the literature. This
implies analysing the cooperative interference within bunches of tightly connected
nodes and assessing their role in shaping the ensuing dynamics, in the framerwok of
a generalized picture which accounts for multiple pairwise exchanges.

There are however several examples where the interactions among individuals,
being them neurons [9, 10], proteins [11], animals [12, 13] or authors of scientific
papers [14, 15], cannot be reduced to binary interactions. The group action is indeed
the real driver of the dynamics. Starting from this observation, higher-order models
have been developed so as to capture the many body interactions among individual
units. We hereby focus on hypergraphs [16–18], versatile tools with a broad poten-
tial that is still being fully elucidated. Hypergraphs have been applied to different
fields from social contagion model [19, 20], to the modelling of random walks [14],
from the study of synchronisation [21–23] and diffusion [20], to non-linear consen-
sus [24], via the emergence of Turing patterns [21]. It is also worth mentioning an
alternative approach to high-order interactions which exploits the notion of simpli-
cial complexes [25–27]. Largely used in the past to tackle optimisation or algebraic
problems, they have been recently invoked to address problems in epidemic spread-
ing [28, 29] or synchronisation phenomena [30–32]. In this work we will however
adopt the viewpoint of hypergraphs, to represent high-order interactions.

Hypergraphs constitute indeed a very flexible paradigm. An arbitrary number
of agents are allowed to interact: an hyperedge grouping all the involved agents
encodes for the many body interaction, thus extending conventional network models
beyond the limit of binary contacts. A hypergraph can reproduce, in a proper limit, a
simplicial complex and, in this respect, provides a more general tool for addressing
many body simultaneous interactions.

Based on the above, it can be claimed that many body interactions constitute a
relevant and transversal research field that is still in its embryonic stage, in particular
as concerns studies that relate to hypergraphs. Our contribution is positioned in this
context and aims at systematising the study of dynamical systems coupled via a
hypergraph. For a sake of definitiveness, we will hereby consider the interactions to
bemediated by the hyperedges, that is by the (hyper)adjacencymatrix (see Sect. 5.2),
or by a diffusive-like process, that is implemented via a properly engineered Laplace
matrix (see Sect. 5.3). In both cases,wewill be interested in the emergence of spatially
heterogeneous solutions, i.e., coherent and extended patterns.

5.2 Hypergraphs and High-Order Interactions

The aim of this section is to introduce the formalism of (hyper) adjacency matrix
which enables us to account for the high-order interaction among several identical
dynamical systems. We will then present a first study on the emergence of spatial
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heterogeneous solutions, i.e., patterns, for systems interacting via a hypergraph, by
assuming that uncoupled individual units do converge to a (spatially) homogeneous
stable solution.

5.2.1 Hypergraphs

An hypergraph H(V, E) is defined by a set of nodes, V = {v1, . . . , vn}, and a set
of m hyperedges E = {E1, . . . , Em}, such that for all α = 1, . . . ,m : Eα ⊂ V . If
all hyperedges have size 2 then the hypergraph reduces to a network. A simplicial
complex is recovered if each hyperedge contains all its subsets.

One can encode the information on how the nodes are shared among hyperedges,
by using the incidence matrix of the hypergraph,1 eiα , namely

eiα =
{
1 vi ∈ Eα

0 otherwise .
(5.1)

Given the latter, one can construct the n × n hypergraph adjacency matrix,

A = e e� , Ai j =
∑

α

eiαe jα , (5.2)

thus Ai j represents the number of hyperedges containing both nodes i and j . Let
us observe that often in the literature the adjacency matrix is defined by imposing
a null diagonal. In the following we will adopt a different notation by defining its
diagonal to contain all 1’s. This in turn amounts to assume the hypergraph to contain
all the trivial hyperedges made of just a single node. Finally we define the m × m
hyperedges matrix

C = e�e , Cαβ =
∑
i

eiαeiβ, (5.3)

Cαβ counts the number of nodes in Eα ∩ Eβ , hence Cαα is the size of the hyperedge
Eα .

5.2.2 High-Order Coupling

Let us consider a d-dimensional dynamical system described by the ODE:

dx
dt

(t) = f(x(t)), (5.4)

1 We will adopt the convention of using roman indexes for nodes and greek ones for edges.
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where x(t) = (x1(t), . . . , xd(t))� denotes the state of the system at time t and f is a
generic nonlinear function which describes the rate of variation of x. Assume now to
replicate system (5.4) into n independent copies, hence yielding a (tensorial) system

dx(i)

dt
(t) = f(x(i)(t)) ∀i = 1, . . . , n, (5.5)

where x(i)(t) = (x (i)
1 (t), . . . , x (i)

d (t))� denotes the state of the i-th copy of the gen-
eralised system. The whole system will thus be described by the n × d vector
x = (x(1), . . . , x(n))�. Finally we allow each system (5.5) to simultaneously interact
with many others, and specifically belonging to the same hyperedge.

Let thus Eα be an hyperedge containing the i-th system. Then the growth rate
associated to this latter will depend on all the systems j �= i , belonging to the same
hyperedge; moreover we assume such interaction to depend also on the hyperedge
size,ϕ(Cαα), for a generic functionϕ. The system i may belong to several hyperedges
Eα and thus all these contributions should be taken into account to determine its
growth rate. In formula

dx(i)

dt
(t) =

∑
α eiα

∑
j e jαϕ(Cαα)F(x(i)(t), x( j)(t))∑
α eiα

∑
j e jαϕ(Cαα)

∀i = 1, . . . , n, (5.6)

where we introduced the function F such that F(x(i), x(i)) = f(x(i)) and the term at
the denominator acts as a normalisation factor. We will show later on, that different
functions F can be used to return the same function f .

Let us define the m × m diagonal matrix � such that �αα = ϕ(Cαα) and zero
otherwise. Then we can rewrite Eq. (5.6) as follows

dx(i)

dt
(t) = 1

di

∑
j

Di jF(x(i)(t), x( j)(t)) ∀i = 1, . . . , n, (5.7)

where we introduced the matrix D = e� e� whose elements read

Di j =
∑

α

eiα�ααe jα ∀i �= j and Dii = ϕ(1). (5.8)

Let us observe that the different definition for the diagonal elements is due to the
inclusion of the trivial hyperedges containing each single node and thus having size
1. Finally let use define di = ∑

j Di j .

Remark 5.1 (Isolated systems) In the case n systems are isolated, i.e., all the hyper-
edges have size 1, then Cαα = 1 for all α. Observing that a single α′ (the one asso-
ciated to the unique hyperedge containing i) does satisfy eiα′ = 1 (all the other ones
being zero, eiβ = 0 for all β = α′), we can rewrite equation (5.6) by remarking that
the sum over j is restricted to j = i :
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dx(i)

dt
(t) = ϕ(1)F(x(i)(t), x(i)(t))

ϕ(1)
= f(x(i)(t)) ∀i = 1, . . . , n,

where use has beenmadeof the relationF(x(i), x(i)) = f(x(i)). Because our formalism
contains the trivial case of isolated systems (5.5), it results thus a natural extension
of the latter.

Remark 5.2 (Pairwise interacting systems) In case of systems interacting in pairs,
i.e., when all hyperedges have size Cαα = 2 for all α (but the ones associated to
the trivial hyperedges containing each node), we can show that equation (5.6) con-
verges back to the usual setting of a dynamical model anchored on a conventional
network [33], once we assume ϕ ≡ 1, namely the same unitary weight is associated
to each link.

First of all, let us observe that Dii = (e� e�)i i = ϕ(1)Aii while for i �= j we
have Di j = (e� e�)i j = ϕ(2)Ai j , where we used the definition of the adjacency
matrix that includes self-loops. Then Eq. (5.7) can be rewritten as

dx(i)

dt
(t) =

∑
j Ai jF(x(i)(t), x( j)(t))

ki
∀i = 1, . . . , n ,

where use has been made of the definition ki = ∑
j Ai j .

5.2.3 Dynamical Behaviour

Assume s(t) to be a solution of the initial system (5.4), then x(i)(t) = s(t), i =
1, . . . , n, is trivially also a homogeneous solution of Eq. (5.5) but also of Eq. (5.7).
Indeed, for all i = 1, . . . , n one has

dx(i)

dt
(t) = 1

di

∑
j

Di jF(x(i)(t), x( j)(t))
∣∣∣
x(i)(t)=s(t)

= 1

di

∑
j

Di jF(s(t), s(t))

= 1

di

∑
j

Di j f(s(t)) = f(s(t)), (5.9)

where we used the property F(s, s) = f(s) and the definition of di . By definition of
s the rightmost term equals ṡ which thus coincides also with the leftmost term.

Consider now a spatially dependent perturbation, i.e., a node depending one, about
the homogeneous solution, x(i)(t) = s(t) + u(i)(t). Insert this ansatz into Eq. (5.7)
and determine the evolution of u(i)(t) by assuming it to be small (i.e., using a first
order expansion), ∀i = 1, . . . , n:

du(i)

dt
(t) + ds

dt
(t) = 1

di

∑
j

Di jF(s + u(i), s + u( j))
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= f(s) + 1

di

∑
j

Di j

(∑
�

∂x (i)
�
F(s, s)u(i)

� +
∑

�

∂x ( j)
�
F(s, s)u( j)

�

)

= f(s) +
∑

�

∂x (i)
�
F(s, s)u(i)

� + 1

di

∑
j

Di j

∑
�

∂x ( j)
�
F(s, s)u( j)

�

= f(s) + J1u(i) + 1

di

∑
j

Di jJ2u( j) ,

where we defined the Jacobian matrices J1 = ∂x1F(s, s), i.e., the derivatives are com-
puted with respect to the first group of variables, and J2 = ∂x2F(s, s), i.e., the deriva-
tives are performed with respect to the second group of variables. In both cases the
derivatives are evaluated at the reference solution s.

By using the fact that ṡ = f(s) and by slightly rewriting the previous equation, we
obtain

du(i)

dt
(t) = J1u(i) + 1

di

∑
j

Di jJ2u( j) = J1u(i) + J2u(i) +
∑
j

(
Di j

di
− δi j

)
J2u( j)

= (J1 + J2) u(i) +
∑
j

Li jJ2u( j),

where we defined the matrix operator

Li j = Di j

di
− δi j . (5.10)

By introducing the n × d vector u = (u(1), . . . ,u(n))� we can rewrite the latter
equation in a compact form as:

du
dt

(t) = [(J1 + J2) ⊗ In + J2 ⊗ L]u, (5.11)

where In is the n × n identity matrix and ⊗ is the Kronecker product of matrices.
One can prove that L is a novel (consensus) high-order Laplace matrix2, i.e., it

is nonpositive definite, the largest eigenvalue is 	(1) = 0 and its is associated to the
uniform eigenvector φ(1) ∼ (1, . . . , 1)�.

2 Let us introduce Lsym = d−1/2LHd−1/2, where d is the diagonal matrix containing the di ’s
on the diagonal and LH is the high-order (combinatorial) Laplace matrix defined in[21]. Then
Lsym = Di j/

√
di d j − δi j from which it immediately follows that Lsym is symmetric and nonpos-

itive definite; indeed take any x ∈ R
N \ {0}, N standing for the dimension of the matrices, then

(x,Lsymx) = (d−1/2x,LHd−1/2x) ≤ 0 where the last inequality follows from the fact that LH is
nonpositive definite. Finally let us observe that L = d−1LH = d−1/2Lsymd1/2, hence, L is similar
to Lsym and, thus they display the same non-positive spectrum. Moreover this implies also that
−2 ≤ 	(α) ≤ 0.
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Recalling the relation f(x) = F(x, x) one can prove that:

∂xf := J = J1 + J2,

and thus rewrite Eq. (5.11) as

du
dt

(t) = [J ⊗ In + J2 ⊗ L]u. (5.12)

This is a linear system involving matrices with size nd × nd. To progress with
the analytical understanding, we employ the eigenbasis of L, to project the former
equation onto each eigendirection

du(α)

dt
(t) = [

J(s(t)) + J2(s(t))	(α)
]
u(α) , (5.13)

where 	(α) is the eigenvalue relative to the eigenvector φ(α). The above equation
enables us to infer the stability of the homogeneous solution, s(t), by studying the
Master Stability Function, namely the real part of the largest Lyapunov exponent of
Eq. (5.13). To illustrate the potentiality of the theory we shall turn to considering a
specific application that we will introduce in the following.

5.2.4 Results

In the above analysis we have obtained a one-parameter family (indexed by the
eigenvalues 	(α)) of linear but (in general) time dependent systems (5.13). For the
sake of simplicity we will hypothesise the homogenous solution to be stationary and
stable, s(t) = s0. In this way we will hence assume each isolated system to converge
to the same stationary point. This simplifies the study of Eq. (5.13), by allowing us
to deal with a constant linear system. Let us observe that one could in principle study
the more general setting of a time dependent solution, by using the Floquet theory in
case of a periodic orbit or the full Master Stability Function in the case of irregular
oscillators.

As a concrete application we will consider a Volterra model [34] which describes
the interaction of preys and predators in an ecological setting:

{
ẋ = −dx + c1xy

ẏ = r y − sy2 − c2xy,
(5.14)

here x denotes the concentration of predators, while y stands for the preys and ˙ the
time derivative. All the parameters are assumed to be positive; in the following we
will make use of the choice c1 = 2, c2 = 13, r = 1, s = 1 and d = 1/2, but of course
our results hold true in general. The Volterra model (5.14) admits a nontrivial fixed-
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point, x∗ = c1r−sd
c1c2

, y∗ = d
c1
, which is positive and stable, provided c1r − sd > 0. In

the case under scrutiny, we have x∗ = 3/52 ∼ 0.0577 and y∗ = 1/4.
Following the above presented scheme, let us now considering n replicas of the

model (5.14), each associated to a different ecological niche and indexed by the
node index i . Assume also that species can sense the remote interaction with other
communities populating neighbouring nodes. For instance, the competition of preys
for food and resources can be easily extended so as to account for a larger habitat
which embraces adjacent patches. At the same time, predators can benefit from a
coordinated action to hunt in team. For a sake of definitiveness we will study in the
following the high-order coupling (let us stress once again that several “microscopic”
high-order models can give rise to the same network-aggregate model) defined by:

{
ẋi = −dxi + ac1yi

1
di

∑
j Di j x j + (1 − a)c1xi

1
di

∑
j Di j y j

ẏi = r yi − syi
1
di

∑
j Di j y j − c2yi

1
di

∑
j Di j x j ,

(5.15)

where the matrix Di j encodes for the high-order interaction among nodes i and j ,
taking into account the number and size of the hyperedges containing both nodes
(see (5.8)). The parameters a ∈ [0, 1] describes the relative strength with which
the predators in node i increase because of the “in-node” predation or because of
the interaction among predators in the hyperedges. The case a = 1 corresponds to a
purely in-node process while if a = 0 a coordinated action to hunt in team is assumed
to rule the dynamics. Preys feel the competition for the resources with preys living
in nodes belonging to the same hyperedge (second term on the right hand side of the
second equation of (5.15)) as well from predators in the same hyperedge (rightmost
terms in the same equation). Birth and death of both species are local, i.e., due to
resources available in-node.

By using the new Laplace matrix (5.10) we can rewrite the previous model (5.15)
as: {

ẋi = −dxi + c1yi xi + ac1yi
∑

j Li j x j + (1 − a)c1xi
∑

j Li j y j
ẏi = r yi − sy2i − c2yi xi − syi

∑
j Li j y j − c2yi

∑
j Li j x j ,

(5.16)

where one can easily recognise the in-node Volterra model (5.14) and the corrections
stemming from high-order contributions.

As previously shown, in the general setting (see (5.9)) the homogenous solution
(x∗, y∗) is also a solution of the coupled system (5.15), that is xi = x∗ and yi = y∗
solves the latter. In the following we will prove that such solution can be destabilised
due to the high-order coupling so driving the system towards a new heterogenous,
spatially dependent, solution. To prove this claim, we will linearise system (5.14)
about the homogeneous equilibrium by setting ui = xi − x∗ and vi = yi − y∗ and
then make use of the eigenbasis of the Laplace matrix L, (	(α), φ(α)), to project the
linear system onto each eigenmode, that is ui = ∑

α u
αφ

(α)
i and vi = ∑

α vαφ
(α)
i :
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d

dt

(
uα

vα

)
=

[(
0 c1x∗

−c2y∗ −sy∗

)
+ 	(α)

(
ac1y∗ (1 − a)c1x∗
−c2y∗ −sy∗

)] (
uα

vα

)

= (
J + 	(α)J2

) (
uα

vα

)
=: J(α)

(
uα

vα

)
. (5.17)

The homogenous solution will prove unstable if (at least) one eigenmode ᾱ exists
for which the largest real part of the eigenvalues of J(ᾱ) is positive. The real part of
the largest eigenvalue λ as function of 	(α) is called the dispersion relation. One
can easily realise that λ is the solution with the largest real part of the second order
equation

λ2 − trJ(α)λ + det J(α) = 0.

Hence the required condition for the instability is

trJ(α) > 0 or trJ(α) < 0 and det J(α) < 0. (5.18)

A straightforward computation returns

trJ(α) = −sy∗ + 	(α) (−s + ac1) and det J(α)

= c1y
∗ (
1 + 	(α)

) [
	(α)

(
c2x

∗(1 − a) − asy∗) + c2x
∗] .

Let us recall that the homogenous equilibrium is stable for the decoupled sys-
tem corresponding to setting 	(1) = 0. Hence trJ(1) = −sy∗ < 0 and det J(1) =
c1c2x∗y∗ > 0. We have thus to determine the existence of (at least one) ᾱ ≥ 2 for
which the conditions for instability (5.18) hold true, allowing us to prove the posi-
tivity of λ

(
	(ᾱ)

)
. In Fig. 5.1 we report a case where the high-order coupling is able

to destabilise the homogenous solution (panel b), thus returning a patchy solution
(panels c and d) for the involved species. Finally let us observe that interestingly
some niches (6 over 20) become empty, that is deprived of any species.

Another even more interesting case is reported in Fig. 5.2. In this case the uncou-
pled homogeneous equilibrium yields x̃ = 0 and ỹ = r/s. When extending the study
to account for multi body interactions, predators do survive in each niche while the
preys go through extinction in a few location (8 nodes over 20). Generally the density
of preys is lower than the equilibrium value found in the isolated case.

5.3 Hypergraph and High-Order Diffusive-Like Coupling

In the previous section we have introduced and studied the problem of the emergence
of a spatially heterogenous solution in a system of several identical dynamical units
coupled together via the (hyper) adjacencymatrix of the hypergraph. In particular the
microscopic units defining the system are constrained to stay anchored to the node
where they interact with those sharing the same location and those belonging to nodes
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Fig. 5.1 Patterns in theVolterramodel with high-order interactions (I). In panel awe represent
the hypergraph used to model the high-order interactions among species living in different niches.
The hypergraph is composed of n = 20 nodes, it has been generated using a random attachment
process and it is composed by 20 trivial hyperedges of size 1, 11 hyperedges of size 2, 10 hyperedges
of size 3 and 1 hyperedge of size 4. In panel b we report the dispersion relation for the Volterra
model (5.15), the red symbols refer to λ

(
	(α)

)
, α ∈ {1, . . . , n}, while the blue line denotes the

dispersion relation for the Volterra model reformulated on a continuous support. In panel cwe show
the time evolution of the predator density in each node as a function of time, xi (t); let us observe that
in (almost) each node the density of predators is much larger than the corresponding homogenous
equilibrium x∗ ∼ 0.0577 (blue). Panel d report the time evolution of the preys density in each node
as a function of time, yi (t); let us observe that in (almost) each node the density of preys is much
lower than the corresponding homogenous equilibrium y∗ = 1 (green). The model parameters have
been set to c1 = 2, c2 = 13, r = 1, s = 1, d = 1/2 and a = 1/2. We fix ϕ(c) = cσ with σ = 1.5

of the incident hyperedges. In this sectionwewill present amodified frameworkbased
on the assumption that the basic units can travel across the hypergraph jumping from
node to node via the available hyperedges.

Starting from the definition of hyper adjacency matrix, Eq. (5.2), the notion of
(combinatorial) Laplace matrix for networks can be straightforwardly generalised
to the case of hypergraphs [23, 35], by defining kiδi j − Ai j , where ki = ∑

j Ai j .
Let us however observe that the latter does not account in full for the higher-order
structures encoded in the hypergraph. Notably, the sizes of the incident hyperedges
are neglected.
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Fig. 5.2 Patterns in theVolterramodelwith high-order interactions (II). Using the same hyper-
graph shown in Fig. 5.1 we study the emergence of patterns close to the homogeneous equilibrium
x̃ = 0 and ỹ = r/s = 1. We report in panel a the dispersion relation for the Volterra model (5.15),
the red symbols refer to λ

(
	(α)

)
, α ∈ {1, . . . , n}, while the blue line denotes the dispersion relation

for the Volterra model computed on a continuous support. In panel b we show the time evolution
of the predator density in each node as a function of time, xi (t); let us observe that in each node
the density of predators is positive in striking contrast with it happens for the uncoupled system.
Panel c reports the time evolution of the preys density in each node as a function of time, yi (t); let
us observe that in each node the density of preys is much lower than the homogenous equilibrium
y∗ = 1 (green) and in 8 niches the preys have gone through extinction. The model parameters have
been set to c1 = 2, c2 = 13, r = 1, s = 1, d = 1/2 and a = 1/2. We fix ϕ(c) = cσ with σ = 1.5

To overcome this limitation, authors of [14] studied a randomwalk process defined
on a generic hypergraph using a new (random walk) Laplace matrix. It is worth
mentioning that the transition rates of the associated process, linearly correlates with
the size of the involved hyperedges. Stated differently, exchanges are favoured among
nodes belonging to the same hyperedge (weighted according to its associated size).
Note that a similar construction has been proposed in [36] to extract a n-clique graph
from a network. The main difference in the present case is that hyperedges can have
an heterogeneous size distribution and thus provide a more flexible framework for
tackling a wide range of problems.

For the sake of completeness, let us briefly recall the construction of the random
walk process on a hypergraph and invite the interested reader to consult [14] for
further details. The agents are located on the nodes andhopbetween them. In a general
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setting, the walkers may weight hyperedges depending on their size, introducing a
bias in their moves that we shall encode into a function ϕ of the hyperedge size. This
yields the weighted adjacency matrix D = e� e�, already defined in Eq. (5.8) and
hereby recalled:

Di j =
∑

α

eiα�ααe jα ∀i �= j and Dii = ϕ(1) ,

where � is the diagonal matrix whose elements read ϕ(Cαα). The transition proba-
bilities of the examined process are then obtained by normalising the columns of the
weighted adjacency matrix Ti j = Di j

di
for all i , where again di = ∑

j Di j .
Let us briefly observe that assuming ϕ(c) = cσ allows to cover several existing

models of randomwalks on hypergraphs. For σ = 1, we get the randomwalk defined
in [14], while for σ = −1 we obtain the one introduced by Zhou [37]. Finally, the
case σ = 0 returns a random walk on the so called clique reduced multigraph. The
latter is a multigraph where each pair of nodes is connected by a number of edges
equal to the number of hyperedges containing that pair in the hypergraph.

From the above introduced transition probabilities one can define the randomwalk
Laplacian generalising that of standard networks, Li j = δi j − Ti j , and eventually
derive the (combinatorial) Laplace matrix,

LH = D − d, (5.19)

this latter will be employed in the following to model diffusion on higher-order
structures. In the above equation, matrix d displays, on the diagonal, the values
di = ∑

j Di j and zeros otherwise. It is clear from its very definition thatD takes into
account both the number and the size of the hyperedges incident with the nodes. It
can also be noted that D can be considered as a weighted adjacency matrix whose
weights have been self-consistently defined so as to account for the higher-order
structures encoded in the hypergraph.

Consider again the d-dimensional system Eq. (5.4) described by local, i.e., aspa-
tial, equations:

dx
dt

= f(x) x ∈ R
d , (5.20)

and assume further n identical copies of the above system coupled through a hyper-
graph. In this way each copy of the system attached to a node of a hypergraph
belonging to one (or more) hyperedge. Units sharing the same hyperedge are tightly
coupled, due to existing many body interactions. In formulas:

dxi
dt

= f(xi ) + ε
∑

α:i∈Eα

∑
j∈Eα

ϕ(Cα α)
(
G(x j ) − G(xi )

)
,

where xi denotes the state of the i-th unit, i.e., anchored to the i-th node, ε the strength
of the coupling, ϕ is the function encoding the bias due to the hyperedge size and G
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a generic nonlinear coupling function. From the definition of eiα one can rewrite the
previous formula as

dxi
dt

= f(xi ) + ε
∑
α, j

eiαe jαϕ(Cα α)
(
G(x j ) − G(xi )

)
= f(xi ) + ε

∑
j

Di j
(
G(x j ) − G(xi )

) = f(xi ) + ε
∑
j

(
Di j − diδi j

)
G(x j )

= f(xi ) + ε
∑
j

LH
i jG(x j ), (5.21)

where we have used the above definitions for di and LH
i j . Let us stress once again

that the whole high-order structure is encoded in a n × n matrix. Hence there is no
need for tensors and this simplifies the resulting analysis.

By exploiting the fact that
∑

j L
H
i j = 0 for all i = 1, . . . , n, it is immediate to

conclude that the aspatial reference solution s(t), i.e., the time dependent function
solving Eq. (5.20), is also a solution of Eq. (5.21). A natural question hence arises:
what can we say of the stability of the homogeneous solution for the system in its
diffusive-like coupled variant?

To answer to this question one introduces again the deviations from the refer-
ence orbit, i.e., ui = xi − s. Assuming this latter to be small, one can derive a self-
consistent set of linear differential equations for tracking the evolution of the pertur-
bation in time. To this end, we make use of the expression in the above Eq. (5.21)
and perform a Taylor expansion to the linear order of approximation, to eventually
get:

dui
dt

= J(s(t))ui + ε
∑
j

LH
i j JG(s(t))u j , (5.22)

where J(s(t)) (resp. JG(s(t))) denotes the Jacobian matrix of the function f (resp.
G) evaluated on the trajectory s(t).

We can improve on our analytical understanding of the problem by employing
again the eigenbasis of the Laplace matrix LH . Being the latter symmetric there
exists a basis of orthonormal eigenvectors, φ(α)

H , associated to the eigenvalues 	
(α)
H .

We can then project ui on this basis and obtain, for all α:

dyα

dt
=

[
J(s(t)) + ε	

(α)
H JG(s(t))

]
yα, (5.23)

where yα is the projection of ui on the α-th eigendirection.
The (in)stability of the homogenous solution s(t) can be checked by looking at

the eigenvalue of the linear system (5.23), and more specifically the eigenvalue with
the largest real part. In a general framework, where i.e., s(t) depends on time, we
are dealing with a time dependent eigenvalue problem that can be tackled by using
the Master Stability Function [38, 39]. For simplicity we will hereby solely consider
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the case of a stationary reference orbit, i.e., s(t) = s0. In this way Eq. (5.23) can be
directly solved by using spectral methods. We invite the interested reader to refer
to [21] where the general case of a periodic or even a chaotic s(t) has been analysed.

5.3.1 Turing Patterns on Hypergraphs

The problem introduced in the previous section opens up the perspective to address
the notion of a Turing instability on hypergraphs. Indeed, according to the Turing
instability mechanism, a stable homogeneous equilibrium becomes unstable upon
injection of a heterogeneous, i.e., spatially dependent, perturbation once diffusion
and reaction terms are simultaneously at play. The Turing phenomenon is exempli-
fied with reference to 2 dimensional systems. In the following we will consequently
assume d = 2 and rewrite xi = (ui , vi ) as well as f(xi ) = ( f (ui , vi ), g(ui , vi )),
where the index i = 1, . . . , n refers to the specific node to which the dynamical
variables are bound. Hence Eq. (5.21) becomes

{
u̇i = f (ui , vi ) + Du

∑
j L

H
i j u j

v̇i = g(ui , vi ) + Dv

∑
j L

H
i j v j

, (5.24)

where Du and Dv replace the diffusion coefficients of species u and v in the case of
network and can thus be called generalised diffusion coefficients. At first sight, the
above model seems to solely account for binary interactions. However, higher-order
interactions are also present, as encoded in the matrix LH . Finally, let us observe
that if the hypergraph is a network, then LH reduces to the standard Laplace matrix
and thus Eq. (5.24) converges to the usual reaction-diffusion system defined on a
network.

The condition for the emergence of a Turing instability can be assessed by per-
forming a linear stability analysis about the homogeneous equilibrium [40–43], as
previously shown. Assuming G to be the identity function and the reference orbit
to coincide with a stable stationary equilibrium s0 = (u0, v0), Eq. (5.22) simplifies
into: { ˙δui = ∂u f (u0, v0)δui + ∂v f (u0, v0)δvi + Du

∑
j L

H
i j δu j

˙δvi = ∂ug(u0, v0)δui + ∂vg(u0, v0)δvi + Dv

∑
j L

H
i j δv j ,

where δui = ui − u0 and δvi = vi − v0. By exploiting again the eigenbasis of
the Laplace matrix we can write δui (t) = ∑

α û
α(t)φα

i and δvi (t) = ∑
α v̂α(t)φα

i .
Finally the ansatz, ûα(t) ∼ eλα t and v̂α(t) ∼ eλα t , allows us to compute the dis-
persion relation, i.e., the linear growth rate λα = λ(	α

H ) of the eigenmode α, as a
function of the Laplacian eigenvalue 	α

H .
As it can be straightforwardly proved, the linear growth rate is the largest real part

of the roots of the second order equation
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Fig. 5.3 Turing patterns in the Brusselator model with high-order diffusive-like couplling.
Using the same hypergraph shown in Fig. 5.1 we study the Turing patterns emerging from the
homogeneous equilibrium (u0, v0). We report in panel a the dispersion relation for the Brusselator
model defined by the reaction terms f (u, v) = 1 − (b + 1)u + cu2v and g(u, v) = bu − cu2v; the

red symbols refer to λ
(
	

(α)
H

)
, α ∈ {1, . . . , n}, while the blue line denotes the dispersion relation

for the Brusselator model defined on a continuous support. In panel b we show the time evolution
of the u variable in each node as a function of time, ui (t). Panel c reports the time evolution of
the v variable in each node as a function of time, vi (t). The model parameters have been set to
b = 4, c = 6, Du = 0.02 and Dv = 0.17. Hence u0 = 1 and v0 = b/c = 2/3. We fix ϕ(c) = cσ

with σ = 1.5

λ2α − λα

[
trJ0 + 	α

H (Du + Dv)
] + det J0 + 	α

H (Du∂vg + Dv∂u f ) + DuDv(	
α
H )2 = 0,

(5.25)

where J0 =
(

∂u f ∂v f
∂u g ∂vg

)
is the Jacobian matrix of the reaction part evaluated at the

equilibrium (ui , vi ) = (u0, v0). In Eq. (5.25), tr(·) and det(·) stand respectively for
the trace and the determinant. The existence of at least one eigenvalue 	α̃

H for which
the dispersion relation takes positive values, implies that the system goes unstable
via a typical path first identified by Alan Turing in his seminal work. At variance,
if the dispersion relation is negative the system cannot undergo a Turing instability:
any tiny perturbation fades away and the system settles back to the homogeneous
equilibrium.

To proceed further with a concrete example we selected the Brusselator reaction
system [44, 45]. This is a nonlinear model defined by f (u, v) = 1 − (b + 1)u +
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cu2v and g(u, v) = bu − cu2v, where b and c act as tunable parameters. In Fig. 5.3
we report the results for a choice of themodel parameters giving rise toTuringpatterns
(b = 4, c = 6, Du = 0.02 and Dv = 0.17) and the same hypergraph previously used
in Figs. 5.1 and 5.2. The dispersion relation (panel a) is clearly positive for a selection
of 	

(α)
H (red points). The homogeneous solution becomes hence unstable and the

ensuing patterns are displayed in panels b) and c).

5.4 Conclusions

Complex systems are composed of a large number of simple units, mutually interact-
ing via nonlinear exchanges. Many-body interactions sit hence at the root of a large
plethora of spontaneously emerging phenomena, as exhibited by complex systems.
The former are often reduced to a vast collection of pairwise interactions, involving
agents interacting in pairs. This enables one to model the inspected problem as a
dynamical system flowing on a conventional binary network, a powerful approxima-
tion that allows for progresses to be made. In many cases of interest, this reductionist
choice constitutes a rough first order approximation to the examined dynamics and
more precise models are to be invoked which encompass for the high-order interac-
tions being at play.

In this work, we presented a general framework which allows one to account
for multi-body interacting systems coupled via a hypergraph. This materialises in
a natural extension of the conventional network paradigm. More specifically, we
considered the problem of the emergence of heterogeneous stable solutions in inter-
connected systems, under the assumption that, once isolated, all units converge to
the same, and thus globally homogenous, solution. The high-order interaction is the
driver of the resulting patchy states, which emerge as follow a symmetry breaking
instability caused by the injection of a tiny non homogeneous perturbation. This can
be though as a generalisation of the Turing instability on hypergraphs. In particular,
we considered the interaction mediated by the number of interacting neighbouring
units, namely the size of the hyperedge, and a diffusive-like process, again biased
by the number of neighbours. In both cases we provided sufficient conditions for the
emergence of spatial patterns.

Our findings have been corroborated by numerical simulations applied to two ref-
erence models. A Volterra model that describes the interaction among predators and
preys in ecological niches, and the Brusselator model, a prototypemodel of nonlinear
dynamics, that describes the interaction among reacting and diffusing chemicals.

The proposed framework goes beyond the examples hereby presented and,
because of its generality, it could prove useful in tackling those problems were simul-
taneous many-body interactions within a complex environment are to be properly
accounted for.
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Chapter 6
Non-pairwise Interaction in Oscillatory
Ensembles: from Theory to Data Analysis

Arkady Pikovsky and Michael Rosenblum

Abstract In this chapter, we briefly review several cases when non-pairwise inter-
action naturally appears in oscillatory networks. First, we analyze globally coupled
ensembles of phase oscillators. We demonstrate that nonlinear high-order mean-
field coupling is equivalent to a hypernetwork with non-pairwise interactions of the
population elements. Next, we consider small networks of limit-cycle oscillators.We
show that pairwise interaction in the state variables description results in non-pairwise
interaction on the level of phase dynamics, if one goes beyond the first order in the
weak-coupling phase reduction. Finally, we discuss the implications for recovery of
the network connectivity in terms of the phase dynamics from observations.

6.1 Introduction

Phase reduction is widely and efficiently exploited to investigate dynamics of inter-
acting self-sustained oscillators [1, 2]. The main results of this approach can be
summarized as follows. Consider a unit with frequency ω driven by a force with
close frequency ν ≈ ω. If the forcing is weak enough so that deviations of the state
space trajectory from the limit cycle are small, then in the first approximation in the
forcing amplitude, the dynamics of the phase is decoupled of that of the amplitudes,
and obeys the equation

φ̇ = ω + Q(φ,ψ), (6.1)

where φ,ψ are the phases of the oscillator and the force, respectively, and Q is the
coupling function. If the norm of Q is much smaller thanω, another approximation—
averaging over the oscillation period—provides a description in terms of phase dif-
ferences:
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φ̇ = ω + Q̄(ψ − φ). (6.2)

In a particular case when the forcing F(t) of the oscillator is scalar and independent
of the state of the oscillator, one can write the phase equation (6.1) in the Winfree
form [3]:

φ̇ = ω + S(φ)F(t), (6.3)

where S(φ) is the phase sensitivity function, also known as the phase response curve.
A generalization to large oscillatory networks typically implies that interaction is

pairwise and additive. Another standard assumption is that the form of the coupling
function is the same for all pairs. The simplest case of equally strong sine-like
coupling represents the famous Kuramoto-Sakaguchi model [4, 5]:

φ̇k = ωk + ε

N

N∑

j=1

sin(φ j − φk + β), (6.4)

where ε is the interaction strength, N is the population size, k is the oscillator index,
and β is a phase shift. In terms of the complex order parameter Z = N−1 ∑N

k=1 e
iφk ,

often called the mean field, the model reads

φ̇k = ωk + εIm
(
Zei(−φk+β)

)
. (6.5)

Numerous generalizations of the Kuramoto model [6–8] also rely on the assumption
of pairwise interaction. In this Chapter, we go beyond this assumption and consider
general mean-field coupled systems. We demonstrate that higher-order mean-field
coupling naturally results in the interaction of oscillatory triplets, quadruplets, etc. In
this sense the network of the interactions is hypernetwork. Furthermore, we show that
such high-order interaction naturally appears in the phase description of pairwise- but
non-weakly coupled oscillators. Finally, we discuss the implication for data analysis,
namely for the reconstruction of the network connectivity from observations.

6.2 Theory of Higher-Order Mean-Field Phase Coupling

6.2.1 General Nonlinear Mean-Field Coupling

Here we follow [9, 10] and outline a general approach to nonlinear mean-field cou-
pling in the context of phase dynamics. To simplify the presentation, we assume
that there are M populations of oscillators, each population labeled by index
n = 1, . . . , M . All elements of a population have the same natural frequencies ωn;
all other properties of the oscillators are assumed to be identical across populations.
The dynamics of the phase in the first-order approximation in coupling is, according
to (6.3)
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φ̇n[a] = ωn + εFnS(φn[a]), (6.6)

where φn[a] denotes the phase of the ath oscillator within the nth population, S(φ) =∑
p sp exp[i pφ] is the phase sensitivity function, and Fn is the force from all other

oscillators acting on elements φn[a] [11]. The equations are valid if parameter ε is
small. We assume amean-field coupling, what means that the force F is a function of
complexmeanfields of the populations. These complexmeanfields (a.k.a.Kuramoto-
Daido order parameters) are defined as

Z (n)
k = 〈eikφn [a]〉∣∣a = N−1

n

Nn∑

a=1

eikφn [a] (6.7)

where averaging is over all Nn units in population n. We assume that the force Fn

can be represented as power series in Z (n)
k :

Fn =
∑

k,m

h(n)
k,m Z

(m)
k +

∑

k,m,l,s

g(n)

k,m;l,s Z
(m)
k Z (s)

l +
∑

k,m;l,s; j,r
d(n)

k,m;l,s; j,r Z
(m)
k Z (s)

l Z (r)
j + . . .

(6.8)
where we explicitly write linear, quadratic, and cubic terms. Substitution of (6.8)
and (6.7) in (6.6) already yields equations with coupling terms containing complex
combinations of phase variables. However, not all of these terms are really relevant
and lead to essential effects; to reveal important terms one has to performan averaging
over the basic oscillation period.

To perform averaging, it is convenient to introduce slow phases according to
ϕn = φn − ωnt . (For brevity, we omit the index for individual oscillators.) Complex
order parameters z(n)

k for these variables are also slow. They are expressed in terms
of original order parameters (6.7) as follows

z(n)
k = 〈eikϕn 〉∣∣ = Z (n)

k e−ikωn t . (6.9)

The equations for the slow phases read

ϕ̇n =ε
∑

p

spe
ipϕn eipωn t

[ ∑

k,m

h(n)
k,mz

(m)
k eikωmt +

∑

k,m,l,s

g(n)

k,m;l,s z
(m)
k z(s)

l ei(kωm+lωs )t+

+
∑

k,m;l,s; j,r
d(n)

k,m;l,s; j,r z
(m)
k z(s)

l z(r)
j ei(kωm+lωs+ jωr )t + . . .

]
.

(6.10)

One can see that some terms on the r.h.s. contain explicit time dependence - these
are fast terms. Other terms either do not depend explicitly on time, or contain a
small frequency mismatch in the exponent—these are slow terms. It is convenient
to work with exact resonances, therefore one shifts slightly natural frequencies (by
terms of order ε), so that the combinations of these modified frequencies (like kωm +
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pωn) vanish exactly. Due to these modifications, small terms ∼ εδωn appear in the
dynamics. Averaging means omitting fast terms, what leads to generic averaged
phase coupled equations

ϕ̇n = εδωn + ε
∑

p;k,m
sph

(n)
k,mz

(m)
k exp[i pϕn]
(kωm + pωn)+

ε
∑

p;k,m,l,s

spg
(n)

k,m;l,s z
(m)
k z(s)

l exp[i pϕn]
(kωm + lωs + pωn)+

ε
∑

p;k,m;l,s; j,r
spd

(n)

k,m;l,s; j,r z
(m)
k z(s)

l z(r)
j exp[i pϕn]
(kωm + lωs + jωr + pωn) + . . .

(6.11)
where 
(ω) = 1 if ω = 0 and 
(ω) = 0 otherwise.

Below we discuss different cases leading to pairwise and multiple couplings of
the network elements in the phase approximation.

6.2.2 One Population of Oscillators

The simplest case is when there exist only one population of oscillators. In the
context of Eq. (6.11) this means that all frequencies ωn are equal (or nearly equal,
as mentioned above, small frequency differences can be straightforwardly included
in the consideration by adding deviations from the central frequency to the r.h.s.).
The famous Kuramoto setup [12] belongs to this class. Below, to describe it, we omit
index n.

6.2.2.1 Linear Coupling

In the case of linear coupling only terms ∼ hZ are present in (6.8). The function

(kω + pω) picks up from the sum in (6.11) only terms with p = −k. In this case
the phase dynamics corresponds to a famous Kuramoto-Daido model [13]

ϕ̇ = ε
∑

k

s−khkzk exp[−ikϕ]. (6.12)

Substitution here of the definition of the order parameters (6.9) reveals terms
ϕ̇[a] ∼ exp[ik(ϕ[b] − ϕ[a])], where a and b are indexes of different oscillators in
the population. This means that the couplings are pairwise.

6.2.2.2 First Harmonic Phase Sensitivity Function

In some cases, like e.g., the Stuart-Landau oscillators, the phase sensitivity function
contains only the first harmonics of the phase, i.e., in (6.11) index p takes values
±1 only (the term p = 0 would lead to a phase-independent frequency shift). Let us
consider two cases.
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Coupling via the main Kuramoto order parameter

In this case nonlinear terms in (6.11) contain only z1. It is easy to see that the terms
with quadratic nonlinearity vanish, and the only non-trivial, phase-dependent terms
with qubic nonlinearity are ∼ z21z

∗
1e

−iϕ and its complex conjugate. Together with
linear term in (6.11) this yields a Kuramoto model with nonlinearly corrected cou-
pling: acting mean field is modified z1 → z1 + α|z1|2z1, with a complex param-
eter α. This model has been introduced in [14] and studied in more details in
[15], for experimental realization see [16, 17]. The cubic nonlinearity in the order
parameter leads to terms in the phase coupling containing four phases (quadru-
plets): ϕ̇[a] ∼ exp(i(ϕ[b] + ϕ[c] − ϕ[d] − ϕ[a])). If both linear and cubic terms
are present, the coupling is a combination of pairs and quadruplets.

Coupling contains many order parameters

In this case already the quadratic terms in (6.11) contribute, provided the rela-
tions k + l = ±1 hold. The simplest case is where k = 2, l = 1. This corresponds
to the coupling term ∼ z2z∗

1e
−iϕ . This coupling is organized in triplets ϕ̇[a] ∼

exp(i(2ϕ[b] − ϕ[c] − ϕ[a])).

6.2.2.3 Second-Harmonic Phase Sensitivity Function

This case is described by the phase sensitivity function possessing the terms p = ±2
only. The simplest resonance here is provided by the quadratic terms in (6.11) satis-
fying condition k + l + p = 0. One can see that the main complex order param-
eter (k = l = 1) will contribute; the coupling term is ∼ z21e

−iϕ . In terms of the
phases, the coupling is arranged in triplets ϕ̇[a] ∼ exp(i(ϕ[b] + ϕ[c] − 2ϕ[a])). The
dynamics of populations of oscillators with this triplet coupling has been studied in
details in [18].

6.2.3 Several Populations of Oscillators

Here we consider a situation where several populations of oscillators with different
frequencies ωn interact. The novel aspect compared to the above-studied case is
interaction across populations. Because the resonance conditions have to be fulfilled,
essential are relations between the basic frequencies.

6.2.3.1 Incommensurate Basic Frequencies

Let us start with the simplest case of two populations with incommensurate fre-
quencies ω1 and ω2. This means that nontrivial resonances (i.e., resonances with
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nonvanishing p, k, l, s) in Eq. (6.11) are impossible in linear and quadratic terms.
The first possible nontrivial term appears in the third order; it corresponds to the con-
dition kω1,2 + lω2,1 − sω1,2 − pω2,1 = 0. The simplest term of this form with k =
l = s = p = 1 corresponds to the quadruplet coupling ϕ̇1,2[a] ∼ exp(i(ϕ1,2[b] +
ϕ2,1[c] − ϕ2,1[d] − ϕ1,2[a])). This is in fact a non-resonant coupling because it does
not depend on the values of the frequencies. In the case of three incommensu-
rate frequencies, the lowest-order term involving all three populations would be a
six-plet ϕ̇1,2,3[a] ∼ exp(i(ϕ1,2,3[b] + ϕ2,3,1[c] + ϕ3,1,2[d] − ϕ3,1,2[e] − ϕ2,3,1[ f ] −
ϕ1,2,3[a])). Effects of such a nonresonant interaction in several globally coupled
populations have been explored in [9].

6.2.3.2 Commensurate Basic Frequencies

The simplest case of resonance between two populations is ω2 = 2ω1. Inspecting
Eq. (6.11) one can see that there is already a possibility for nontrivial interaction
via linear in order parameters terms. This corresponds to the phase coupling terms
ϕ̇1[a] ∼ exp[i(ϕ2[b] − 2ϕ1[a])], ϕ̇2[a] ∼ exp[i(2ϕ1[b] − ϕ2[a])]. Such a coupling
has been treated in [10, 19]. Additionally, there can exist quadratic in the order
parameters resonant terms corresponding to triplet couplings ϕ̇1[a] ∼ exp[i(ϕ2[b] −
ϕ1[c] − ϕ1[a])], ϕ̇2[a] ∼ exp[i(ϕ1[b] + ϕ1[c] − ϕ2[a])].

The next nontrivial case is of three populationswith basic frequencies in resonance
ω3 = ω1 + ω2. In this case there is no linear (pairwise) couplingbetweenpopulations,
and the first nontrivial terms are triplets ϕ̇1[a] ∼ exp[i(ϕ3[b] − ϕ2[c] − ϕ1[a])],
ϕ̇2[a] ∼ exp[i(ϕ3[b] − ϕ1[c] − ϕ2[a])], ϕ̇3[a] ∼ exp[i(ϕ1[b] + ϕ2[c] − ϕ3[a])]. The
dynamics of three resonant populations has been studied in [20].

6.3 Multiple Effective Phase Coupling Appearing in Higher
Orders of Phase Reduction

Section6.2 discussed how couplings, nonlinear in the mean-field order parameters,
result in hypernetworks with triplets, quadruplets, etc., of interacting phases. These
nonlinear terms may be intrinsic for the problem, like in physical situations dis-
cussed in [14] and experimentally implemented in [16, 17]. Here we demonstrate
that such terms also appear in high orders in the phase reduction from the original
nonlinear equations having only pairwise linear interactions. Here we only sketch
the derivation; for the complete analysis, we refer the reader to Ref. [21].

We consider interacting nonlinear oscillators with variables yk possessing stable
limit cycles y0k(t) = y0k(t + Tk). For each of these cycles a phaseϕk can be introduced,
satisfying ϕ̇k = ωk = 2π/Tk . The phases are functions of the variables ϕk = k(yk),
but only on the limit cycle the variables y are unique functions of the phases. In the
basin of attraction of the limit cycles one has to account for amplitude deviations δy.
We write the system of coupled oscillators as
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ẏk = Fk(yk) + ε
∑

m �=k

Gmk(ym, yk), (6.13)

so that only pairwise couplings are present. For the phases, the equations read

ϕ̇k = d

dt
k(yk) = ωk + ε

∂k

∂yk

∑

m �=k

Gmk(ym, yk). (6.14)

This equation is, of course, not a closed equation for the phases, and one solves it
iteratively in powers of ε. In parallel, one also represents the deviations from the
limit cycle δyk in powers of ε.

In the first order in the small parameter ε, one can neglect the deviations δyk , then
the coupling terms

∂k

∂yk

∣∣∣∣
y0k

Gmk(y0m, y0k)

depend on two phases ϕk, ϕm and one obtains pairwise interactions in the phase
dynamics in form of Eqs. (6.1). In this order ∼ ε also δyk can be represented as a
sum of terms depending on two phases only.

In the second order in the small parameter ε, when one substitutes the expres-
sions of the first approximation δyk = ε

∑
Qkm(ϕk, ϕm) in (6.14), one obtains terms

containing three phases ϕk, ϕm, ϕl , i.e., an effective triplet interaction. In higher-
order approximations in ε also the quadruplet, etc., interactions appear in the phase
dynamics equations. One can complete this analysis in an exceptional case of the
Stuart-Landau oscillators, where the phases and their derivatives are known explic-
itly. Reference [21] derives phase equations for three Stuart-Landau units organized
in a chain, 1 ↔ 2 ↔ 3. As expected, already the second-order phase approximation
provides the terms depending on the phases of all three oscillators. Thus, on the level
of the phase dynamics, unit 1 interacts with unit 3, though there is no direct link
between them, and the simple motif 1 ↔ 2 ↔ 3 becomes a hypernetwork.

For general oscillators, the high-order phase reduction can be performed only
numerically. The interested reader can find the corresponding techniques for com-
putation of phases and instantaneous frequencies in Ref. [21]. For three van der Pol
oscillators, also coupled in a 1 ↔ 2 ↔ 3 motif, the analysis yields phase reduction
equations in different orders, similar to the theoretical findings. Like in the Stuart-
Landau systems, the second-order reduction already represents a hypernetwork, with
the coupling terms depending on three phases. Contrary to the Stuart-Landau case,
the phase dynamic equations for the van der Pol model also contain the terms with
the phases’ sums.
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6.4 Non-pairwise Interactions in the Network
Reconstruction Problem

Reconstruction of the coupled oscillatory models from data is an efficient tool for
experimental studies of interacting rhythmical objects. A particular example is the
recoveryof brain connectivity frommultichannelmeasurements of brain activity [22–
24]. Another example is the analysis of mutual influences of the cardiac, respiratory,
and brain rhythms [25–27]. In this approach, one assumes that the registered time
series represent outputs of interacting self-sustained oscillating units. These series
allow for estimating of phases and instantaneous frequencies of all oscillators. Typ-
ically, one computes these quantities exploiting the Hilbert transform. Finally, one
uses these estimates to construct the observed network’s phase dynamics model and
exploits this model to quantify the strength and directionality of all connections.
For technical details of phase estimation and equation reconstruction, we refer to
Refs. [27–29]. An essential issue is that the described approach yields the effective
phase connectivity that generally differs from the structural connectivity. The latter
is determined by physical connections between the oscillators, while the former rep-
resents the approximately equivalent phase model’s connections. Belowwe illustrate
that the difference is precisely due to the appearance of the non-pairwise interaction
on the level of phase reduction.

This approach’s main idea is that the dynamics of N interacting oscillators are
represented by a torus in the N -dimensional space if the coupling is not too strong.
Since the coupling function Q (cf. Eq. (6.1)) is 2π -periodic with respect to its argu-
ments, it can be written as an N -dimensional Fourier series, and the coefficients of
this series can be determined by fit.

Consider a simple motif of three pairwise coupled oscillators, described by
Eqs. (6.13). Our goal is to determine the network structure, i.e., to quantify all
connecting links’ strength. While doing this, we shall distinguish between direct
or indirect links. It is convenient to quantify first all incoming connections to one of
the units and then repeat it for other network elements. Without loss of generality,
we can consider the first oscillator. Its phase equation reads:

φ̇1 = ω1 + Q(φ1, φ2, φ3), (6.15)

where Q does not contain the constant term. The simplest and straightforward
approach, used in many studies, is to perform a pairwise analysis of the network.
It means that to quantify the link 1 ← 2, we neglect the third unit entirely and
reconstruct the equation in the form φ̇1 = ω1 + Q(φ1, φ2) with a two-dimensional
coupling function Q(φ1, φ2). Then we compute the norm of the coupling function
‖Q‖ and use it as a measure of the action exerted by the second oscillator on the first
one. To emphasize, that this quantity comes from a pairwise analysis, we denote it
as P1←2.

However, this estimation may yield spurious effective phase connections. Indeed,
suppose three oscillators are organized in a chain, 1 ↔ 2 → 3. Because ϕ1 is corre-
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lated with ϕ2 and ϕ2 acts on ϕ3, pairwise analysis for ϕ1, ϕ3 will yield spurious non-
zero coupling for the 1 → 3 link. Only the full phase dynamics given by Eq. (6.15)
would reveal the absence of a direct connection between the nodes 1 and 3 and the
presence of indirect coupling 1 → 2 → 3. Indeed, as argued in the previous section,
the second-order phase approximation yields the terms depending on all three phases.
It means that the reconstructed from data coupling function Q in Eq. (6.15) generally
contains Fourier components depending on all three phases, and these components
describe the indirect connection 1 → 2 → 3. The direct (pairwise) interaction can
be quantified by its total strength

T1←2 =
⎡

⎣
∑

k,l �=0

∣∣Fk,l,0

∣∣2
⎤

⎦
1/2

, (6.16)

where Fk,l,m are Fourier coefficients of Q(φ1, φ2, φ3) and the summation is per-
formed over the terms which do not depend on the third phase ϕ3. Correspondingly,
the joint action of the second and third oscillators on the first one, i.e., the triplet
interaction, that appears in the higher-order approximation can be quantified by the
triplet norm

T j←2,3 =
⎡

⎣
∑

k,l,m �=0

∣∣Fk,l,m

∣∣2
⎤

⎦
1/2

, (6.17)

where summation is performed over terms depending on three phases. Numer-
ical experiments in Refs. [30] demonstrate that coefficient P1←2 that describes
direct, structurally existing, connections scales linearly with coupling strength ε,
see Eq. (6.15). On the contrary, the scaling of T j←2,3 reveals high-order dependence
on ε, in full agreement with the theory outlined in the previous section.

Extension of the connectivity analysis through partial norms to the case of N > 3
oscillators seems to be straightforward; in Sect. 6.5 we provide such an example.
However, reconstruction of the coupling function for more than three variables
requires very long data sets. As shown in [29], the triplet analysis performed for
moderate lengths of time series, can eliminate this difficulty. Suppose the goal is
to quantify the link j ← k. The solution is to consider all possible N − 2 triplets
of oscillators j, k,m, where m = 1, 2, . . . , N , m �= j, k. For each triplet one recon-
structs the coupling function Q j (ϕ j , ϕk, ϕm), ignoring all other phases, and computes
the partial norm T (m)

j←k like in Eq. (6.17). The minimal value of these estimates yields
the final triplet-based measure of the binary (pairwise) effective phase connectivity
T j←k = minm T (m)

j←k . We illustrate this approach to reconstruction of phase dynamics
hypernetworks by an example of N = 5 and N = 9 randomly coupled van der Pol
oscillators [29]:

ẍk − μ(1 − x2k )ẋk + ω2
k xk = ε

∑

l

σkl(xl cos�kl + ẋl sin�kl). (6.18)
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The data was generated in many runs, and then the coupling structure was recon-
structed by estimating the strength of all links as already discussed. For each run, the
random frequenciesωk were taken from the uniform distribution 0.5 < ω < 1.5. The
asymmetric connection matrix σkl composed of zeros and ones was also randomly
generated, with four incoming connections. Another coupling parameter�was taken
from a uniform distribution 0 ≤ � < 2π . The results, presented in Figs. 4–7 of
Ref. [29] demonstrate that the phase dynamics reconstruction using hypernetworks
provides enhanced separation between truly existing and absent structural connec-
tions. For application of this approach to a hypernetwork with triplet interactions of
12 phase oscillators see Ref. [31].

6.5 Example of Phase Dynamics Reconstruction
in a Network with Triplet Couplings

Here we consider a simple example of a hypernetwork of oscillators with triplet
coupling. It consists of four FitzHugh-Nagumo units [32], and the force acting on a
unit is a product of observables of two other units:

u̇1 = u1 − u31
3

− v1 + 0.9 + 0.4εu2u3,

v̇1 = 0.35(u1 − 0.8v1 + 0.7),

u̇2 = u2 − u32
3

− v2 + 0.8 − 0.6εu1u3 + 0.7εu3u4,

v̇2 = 0.5(u1 − 0.8v1 + 0.7),

u̇3 = u3 − u33
3

− v3 + 1.1 + 0.8εu1u2 − 0.3εu2u4,

v̇3 = 0.42(u1 − 0.8v1 + 0.7),

u̇4 = u1 − u31
3

− v1 + 1 + 0.5εu2u3,

v̇4 = 0.45(u1 − 0.8v1 + 0.7).

(6.19)

This configuration is schematically presented in Fig. 6.1. It should be noted, that
although the coupling looks like a pure triplet one, because the interaction terms are
products of the corresponding variables (cf. [33]), in fact the pairwise coupling is
also present, because average values of observables ui are generally nonzero. Thus,
if one separates these average values by writing ui = ui + ũi , then, e.g., the forcing
for the first unit will be written as u2u3 + u2ũ3 + u3ũ2 + ũ2ũ3, i.e. with terms which
can be effectively considered as a pairwise coupling.

For the model (6.19) we performed numerically the phase reduction analysis, as
described above in Sect. 6.3 and in Ref. [21], for a range of values of the coupling
parameter 0.001 ≤ ε ≤ 0.05. We have looked for the phase dynamics equations in
the form
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Fig. 6.1 A schematic
representation of
network (6.19), with two
triplet couplings

2

4

3

1

ϕ̇s = ωs +
∑

jklm

[
A(s)
jklm cos( jϕ1 + kϕ2 + lϕ3 + mϕ4) + B(s)

jklm sin( jϕ1 + kϕ2 + lϕ3 + mϕ4)
]

(6.20)
In the reconstructionwe took into account all termswith | j, k, l,m| ≤ 2. To represent

the strengthof each couplingmode,wecalculatedC (s)
jklm =

[
(A(s)

jklm)2 + (B(s)
jklm)2

]1/2
.

Altogether, for each oscillator this gives 310 coupling terms.
After finding the coupling modes, we sorted them according to dependence on ε.

We performed a fit C ∼ ε p, and interpreted terms with |p − 1| < 0.1 as linear in ε,
and those with |p − 2| < 0.1 as quadratic in ε. We present the dependencies on ε of
all these terms for oscillators 1 and 2 in Fig. 6.2.

It is instructive to see, which effective phase coupling terms appear in the first and
the second orders in the coupling strength ε. Here are all 34 first-order terms for the
oscillator 1, sorted in descending order in their strength:

(1, 1, 1, 0), (1,−1, 1, 0), (1, 1,−1, 0), (1,−1,−1, 0), (1, 1, 0, 0), (1,−1, 0, 0),

(1,−1,−2, 0), (1, 1, 2, 0), (1, 1,−2, 0), (1,−1, 2, 0), (1, 0,−1, 0), (1, 0, 1, 0),

(1,−2, 1, 0), (1, 2,−1, 0), (1, 2, 1, 0), (1,−2,−1, 0), (2, 1, 1, 0), (2,−1,−1, 0),

(2, 1,−1, 0), (0, 1, 1, 0), (0, 1,−1, 0), (2,−1, 1, 0), (1, 0, 0, 0), (1, 2, 0, 0),

(1, 0,−2, 0), (1,−2, 0, 0), (1, 0, 2, 0), (2, 1, 0, 0), (1, 2,−2, 0), (1,−2,−2, 0),

(1, 2, 2, 0), (2, 1,−2, 0), (0, 1, 0, 0), (2,−1,−2, 0).

(6.21)

One can see that the largest terms describe triplet coupling 1 ↔ 2 ↔ 3 ↔ 1 and
the pairwise couplings. There is no term that includes the phase of oscillator 4. Such
terms appear in the second order in ε. Altogether, there are 63 terms:

(1, 2, 0, 2), (1, 2,−2, 2), (1,−2, 0,−2), (1,−2, 2,−2), (1, 0,−2,−2), (1, 2,−2,−2),

(1, 0, 2, 2), (1,−2, 2, 2), (1, 2,−1, 2), (1,−2, 1,−2), (1, 2, 1, 2), (1,−2,−1,−2),

(1,−2, 1,−1), (1, 2,−1, 1), (1,−2,−1,−1), (2, 2, 2, 0), (1, 2, 1, 1), (1, 2, 2, 1),

(1,−2,−2,−1), (1, 0, 0, 1), (1, 0, 0,−1), (1, 0, 1, 1), (1,−2,−2,−2), (1, 2, 1,−1),

(1, 2, 2, 2), (1, 0,−1,−1), (1,−2,−1, 1), (1,−1, 2, 2), (1, 0,−1, 1), (1, 2, 0, 1),

(1,−2, 0,−1), (1, 2,−2,−1), (1, 0, 1,−1), (1,−2, 2, 1), (1, 2, 2,−1), (1, 0,−2, 1),

(1,−1,−2,−2), (1, 0, 2,−1), (1, 0,−2,−1), (1, 1, 2, 2), (1, 0, 2, 1), (2,−2, 0,−2),

(1,−2,−2, 1), (1, 0, 0,−2), (1, 0, 0, 2), (2, 2,−2,−2), (0, 2, 0, 2), (1,−2, 0, 1),

(0, 0, 2, 2), (0, 2,−2,−2), (1,−2,−2, 2), (1,−1,−2, 1), (2, 2, 1, 1), (1, 0,−2, 2),

(1, 1,−2, 1), (1, 2,−1,−1), (2,−2, 1,−2), (1,−2, 0, 2), (1, 0, 1, 2), (1, 0, 1,−2),

(1, 0,−1,−2), (1,−2,−1, 2), (0, 0, 1,−1).
(6.22)
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Fig. 6.2 Scaling of coupling terms with ε for oscillators 1 (panel (a)) and 2 (panel (b)). The
dashed and the dotted lines show scalings ∼ ε and ∼ ε2, respectively. The corresponding coupling
coefficients are depicted with filled circles and open squares

Thirty-three of them include all four phases and therefore describe effective quadru-
plet coupling.

The second oscillator participates in two triplet couplings, and therefore the num-
ber of phase interaction terms in the first and in the second order is larger, 65 and 69,
respectively. The first-order terms are
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(0, 1, 1, 1), (0, 1,−1, 1), (0, 1,−1,−1), (0, 1, 1,−1), (1,−1,−1, 0), (1, 1,−1, 0),

(1,−1, 1, 0), (1, 1, 1, 0), (0, 1, 0,−1), (0, 1, 0, 1), (1,−1, 0, 0), (1, 1, 0, 0),

(0, 1, 2, 1), (0, 1,−2,−1), (0, 1, 2,−1), (0, 1,−2, 1), (1,−1,−2, 0), (1, 1, 2, 0),

(1,−1, 2, 0), (1, 1,−2, 0), (0, 2,−1, 1), (0, 0, 1,−1), (0, 1, 1, 0), (1, 0,−1, 0),

(0, 2, 1,−1), (0, 0, 1, 1), (1, 0, 1, 0), (0, 1,−1, 0), (0, 2,−1,−1), (1,−2,−1, 0),

(1,−2, 1, 0), (0, 1, 1, 2), (1, 2,−1, 0), (1, 2, 1, 0), (0, 1,−1, 2), (0, 1, 1,−2),

(0, 1,−1,−2), (0, 2, 1, 1), (1, 0, 0, 0), (0, 2, 0,−1), (0, 1, 0, 2), (0, 1, 0, 0),

(1, 2, 0, 0), (0, 1, 2, 2), (0, 1,−2, 2), (1, 0, 2, 0), (1,−2, 0, 0), (0, 1, 2,−2),

(1,−2, 2, 0), (2,−1,−1, 0), (0, 2, 2,−1), (2, 1,−1, 0), (0, 1, 0,−2), (1, 0,−2, 0),

(1, 2, 2, 0), (2,−1, 1, 0), (0, 0, 2,−1), (2, 1, 1, 0), (1, 2,−2, 0), (0, 1, 2, 0),

(0, 1,−2, 0), (0, 2,−1, 0), (0, 2,−1,−2), (2,−1,−2, 0), (2, 1,−2, 0)
(6.23)

and the second-order terms are

(1,−2, 2,−2), (1, 2, 0, 2), (1, 2,−2, 2), (1,−2, 0,−2), (1,−2,−1, 1), (1,−2,−1,−1),

(1,−2, 1,−2), (1, 0, 2, 2), (1, 2,−2,−2), (1,−2, 2, 2), (1, 2,−1, 2), (0, 2,−2, 0),

(1, 0,−2,−2), (1,−2, 0, 1), (1,−2,−1,−2), (1,−2, 2, 1), (1, 2, 1, 1), (1,−2,−2,−1),

(1, 2, 0, 1), (1,−2,−2, 1), (1, 0, 0, 1), (1,−2, 2,−1), (1, 0, 2, 1), (1,−2, 0,−1),

(1, 2, 1, 2), (1, 2, 0,−1), (1, 2,−2, 1), (1, 0,−2, 1), (1, 2,−2,−1), (1, 0, 1, 1),

(1, 2, 2, 1), (2, 2, 0, 0), (2,−2,−2, 0), (1, 0, 0,−1), (1,−2, 1,−1), (1, 0, 2,−1),

(1, 2, 2, 2), (1, 0,−2,−1), (1, 0, 1,−1), (1, 0,−1, 1), (1, 2, 2,−1), (1, 1, 0, 1),

(1, 2, 1,−1), (1, 1, 2, 1), (1, 2,−1,−1), (2, 2,−2, 0), (1,−1, 2, 1), (1,−2, 1, 1),

(1, 0,−1,−1), (1, 1,−2,−1), (1,−1, 2,−1), (1,−2, 0, 2), (1,−2,−1, 2), (1, 1, 2,−1),

(1,−1, 1, 1), (1, 2, 1,−2), (1, 0, 0, 2), (1, 0, 1, 2), (1,−1,−2, 1), (2, 2,−2, 2),

(1, 1, 0,−1), (2,−2, 2,−2), (1, 1, 1,−1), (2, 2, 1,−1), (2, 0, 1,−1), (2, 0,−2,−2),

(2, 2, 1, 2), (2, 2,−2,−2), (2, 2, 2, 2)
(6.24)

6.6 Conclusions

This mini-review demonstrates that hypernetworks naturally appear in the phase
dynamics description of ensembles of coupled oscillators. There are two main sce-
narios. First, the hypernetworks arise due to nonlinear mean-field coupling. Second,
simple pairwise connections on the level of state variables result in hypernetworks of
phase oscillators in the process of high-order phase reduction. This fact is significant
for a practical problem, namely, to determine the network connectivity frommeasure-
ments. Fitting a hypernetwork of phase oscillators to experimental data essentially
improves the recovery of the structural connectivity.



194 A. Pikovsky and M. Rosenblum

Acknowledgements The work was supported by the Russian Science Foundation (grant Nr. 17-
12-01534).

References

1. H. Nakao, Phase reduction approach to synchronisation of nonlinear oscillators. Contemp.
Phys. 57, 188–214 (2016)

2. B. Pietras, A. Daffertshofer, Network dynamics of coupled oscillators and phase reduction
techniques. Phys. Rep. 819, 1–105 (2019)

3. A.T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators. J.
Theor. Biol. 16, 15 (1967)

4. Y. Kuramoto, Chemical Oscillations. Waves and Turbulence (Springer, Berlin, 1984)
5. H. Sakaguchi, Y. Kuramoto, A soluble active rotator model showing phase transition viamutual

entrainment. Prog. Theor. Phys. 76(3), 576–581 (1986)
6. J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, R. Spigler, The Kuramoto model:

a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77(1), 137–175 (2005)
7. A. Pikovsky, M. Rosenblum, Dynamics of globally coupled oscillators: Progress and perspec-

tives. Chaos 25, 097616 (2015)
8. S.Chandra,M.Girvan,E.Ott,Continuousversus discontinuous transitions in thed-dimensional

generalized kuramoto model: odd d is different. Phys. Rev. X 9, 011002 (2019)
9. M. Komarov, A. Pikovsky, Effects of nonresonant interaction in ensembles of phase oscillators.

Phys. Rev. E 84(1), 016210 (2011)
10. M.Komarov,A. Pikovsky, Intercommunity resonances inmultifrequency ensembles of coupled

oscillators. Phys. Rev. E 92, 012906 (2015)
11. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization. A Universal Concept in Nonlinear

Sciences (Cambridge University Press, Cambridge, 2001)
12. Y.Kuramoto, Self-entrainment of a population of coupled nonlinear oscillators, in International

Symposium on Mathematical Problems in Theoretical Physics, ed. by H. Araki, p. 420, New
York, 1975. Springer Lecture Notes Phys, v. 39

13. H. Daido, Onset of cooperative entrainment in limit-cycle oscillators with uniform all-to-all
interactions: bifurcation of the order function. Physica D 91, 24–66 (1996)

14. M. Rosenblum, A. Pikovsky, Self-organized quasiperiodicity in oscillator ensembles with
global nonlinear coupling. Phys. Rev. Lett. 98, 064101 (2007)

15. A. Pikovsky, M. Rosenblum, Self-organized partially synchronous dynamics in populations of
nonlinearly coupled oscillators. Physica D 238(1), 27–37 (2009)

16. A.A. Temirbayev, ZZh. Zhanabaev, S.B. Tarasov, V.I. Ponomarenko, M. Rosenblum, Experi-
ments on oscillator ensembles with global nonlinear coupling. Phys. Rev. E 85, 015204 (2012)

17. A.A. Temirbayev, Y.D. Nalibayev, ZZh. Zhanabaev, V.I. Ponomarenko, M. Rosenblum,
Autonomous and forced dynamics of oscillator ensembles with global nonlinear coupling:
an experimental study. Phys. Rev. E 87, 062917 (2013)

18. M. Komarov, A. Pikovsky, Finite-size-induced transitions to synchrony in oscillator ensembles
with nonlinear global coupling. Phys. Rev. E 92, 020901 (2015)

19. S. Lück, A. Pikovsky, Dynamics of multi-frequency oscillator ensembles with resonant cou-
pling. Phys. Lett. A 375(28–29), 2714–2719 (2011)

20. M. Komarov, A. Pikovsky, Dynamics of multifrequency oscillator communities. Phys. Rev.
Lett. 110, 134101 (2013)

21. E. Gengel, E. Teichmann,M. Rosenblum, A. Pikovsky, High-order phase reduction for coupled
oscillators. J. Phys.: Complexity 2, 015005 (2021)

22. K. Lehnertz, Assessing directed interactions from neurophysiological signals—an overview.
Physiol. Measurement 32, 1715–1724 (2011)



6 Non-pairwise Interaction in Oscillatory Ensembles … 195

23. T.B. Leergaard, C.C. Hilgetag, O. Sporns, Mapping the connectome: multi-level analysis of
brain connectivity. Front. Neuroinformatics, 6(14) (2012)

24. O. Sporns, Making sense of brain network data. Nature Methods 10(6), 491–493 (2013)
25. R. Mrowka, L. Cimponeriu, A. Patzak, M.G. Rosenblum, Directionality of coupling of physio-

logical subsystems—age related changes of cardiorespiratory interaction during different sleep
stages in babies. Ame. J. Physiol. Regul. Comp. Integr. Physiol. 145, R1395–R1401 (2003)

26. B.Musizza,A. Stefanovska, P.V.E.McClintock,M.Paluš, J. Petrovčič, S.Ribarič, F.F.Bajrović,
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Chapter 7
From Symmetric Networks
to Heteroclinic Dynamics and Chaos
in Coupled Phase Oscillators with
Higher-Order Interactions

Peter Ashwin, Christian Bick, and Ana Rodrigues

Abstract We highlight some results from normal form theory for symmetric bifur-
cations that give a rational way to organize higher-order interactions between phase
oscillators in networks with fully symmetric coupling. For systems near Hopf bifur-
cation the lowest order (pairwise) interactions correspond to the system of Kuramoto
and Sakaguchi. At next asymptotic order one must generically include higher-order
interactions of up to four oscillators. We discuss some dynamical consequences of
these interactions in terms of heteroclinic attractors, chaos, and chimeras for related
systems.

7.1 Introduction

Network dynamical systems consists of individual dynamical units (nodes) that
evolve under mutual interaction. Examples include coupled neural oscillators, flash-
ing fireflies, and power grid networks. Such dynamical systems often give rise
to intriguing collective behavior, such as synchronization where nodes eventually
behave in unison [1, 2]. Mathematical descriptions of such network dynamical sys-
tems oftenmake the assumption that nodes interact in a pairwise fashion: The network
interactions are determined by the joint state of pairs of nodes, that is, there is an
underlying (directed) graph and such that if ( j, k) is an edge from node j to node k
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then the influence of j onto k does not depend on any other nodes. As an example, the
interactions in the classicalKuramotomodel [3, 4]where the phase θk ∈ T = R/2πZ
of oscillator k ∈ {1, . . . , N } evolves according to

θ̇k := d

dt
θk = ωk + K

N

N∑

j=1

sin(θ j − θk), (7.1)

with intrinsic frequencyωk ∈ R and subject to coupling strength K . In the Kuramoto
model, the interactions are all-to-all (i.e., the underlying graph is the complete graph)
but pairwise, that is, the influence of node j onto node k is determined by sin(θ j − θk)

which does not depend on the state of other nodes. This property allows to generalize
the Kuramoto model to arbitrary graphs [5]. Sakaguchi generalized the Kuramoto
model by incorporating a phase-shift parameter α ∈ T in the interaction function [6].

Recently, the dynamics of networks with nonpairwise interactions—interactions
containing nonlinear terms of more than two nodes—have attracted significant atten-
tion; cf. [7, 8] for recent reviews as well the other chapters in this book. Such network
dynamical systems have been studied in their own right as generalizations of dynam-
ics on graphs to “higher-order” combinatorial objects such as simplicial complexes
or hypergraphs. Intuitively speaking, a simplicial complex or hypergraph is an object
on a number of nodes that may not only contain edges between pairs of nodes but also
simplices that are spanned by three or more nodes. For a network dynamical system
on a simplex or hypergraph, the interactions along such a simplex corresponds to a
nonlinear term in the state variables of the nodes that span it. For example, Skardal
and Arenas [9, 10] considered a generalization of the Kuramoto model

θ̇k = ωk + K2

N

N∑

j=1

sin(θ j − θk) + K3

N 2

N∑

j,l=1

sin(2θl − θ j − θk)

+ K4

N 3

N∑

j,l,m=1

sin(θ j + θl − θm − θk),

(7.2)

where K2 and K3, K4 are the coupling strength of pairwise and nonpairwise interac-
tions, respectively. Here terms such as sin(2θl − θ j − θk) describe the nonadditive
joint influence of nodes l, j onto node k. These nonadditive terms can change the
properties of the collective dynamics as one may expect [11]: For (7.2) they lead to
a change in the criticality of the synchronization transition [10].

Nonadditively coupled phase oscillator networks—such as (7.2)—also arise as
phase approximations of weakly coupled nonlinear oscillator networks. In other
words, they can be derived from more general oscillator networks through phase
reduction [12, 13]. In this case, the phase dynamics (7.2) reflect the effective dynam-
ics of the corresponding nonlinear oscillator network [14] and nonadditive terms can
reflect the effect of the nonlinearities as the dynamics deviate from the original limit
cycle. For example, a globally coupled network of oscillatory nodes close to a Hopf
bifurcation has the effective phase dynamics
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θ̇k = ω +
N∑

j=1

g2(θ j − θk) +
N∑

j,l=1

g3(θ j + θl − 2θk)

+
N∑

j,l=1

g4(2θ j − θl − θk) +
N∑

j,l,m=1

g5(θ j + θl − θm − θk)

(7.3)

up to some order of approximation, as shown in [15], where g2, g3, g4, g5 are 2π -
periodic coupling functions. Thus, the dynamics of the phase reduction (7.3) reflect
the effective dynamics of the underlying nonlinear oscillator networks and can reveal
the possibility for chaotic phase dynamics [16]. Note that phase dynamics with non-
pairwise interaction terms can arise independent of whether the nonlinear oscillator
network has pairwise or nonpairwise coupling [14, 17].

In this chapter, we review recent progress on phase reductions in symmetric sys-
tems and their effective phase dynamics.Wewill also explicitly discuss these systems
from the perspective of symmetry. First, we will outline the phase reduction of gener-
ically coupled symmetric systems close to a Hopf bifurcation [15]; equation (7.3)
yields the resulting phase dynamics to higher order. The phase reduction is based
on the calculation of the equivariants of the system. Second, we analyze the phase
dynamics (7.3) and show that due to the inclusion of higher-order terms, chaotic
dynamics can arise; see [16]. These dynamics arise in globally coupled networks.
Third,wewill analyze a variation of (7.3) that allows to introduce a nontrivial network
structure. The resulting equations determine the dynamics of coupled populations
of phase oscillator networks, where the coupling within populations and between
populations is distinct. We summarize results from a series of papers [18–20] show-
ing that the network dynamics can not only show localized frequency synchrony
(i.e., frequencies are synchronized for some populations but not for others) akin to
chimeras [21, 22] but the location of synchrony can also wander around the net-
work through heteroclinic connections. We conclude with some remarks in the final
section.

7.2 Symmetric Normal Forms and Higher-Order
Interactions

An important tool to understand and classify bifurcations of dynamical systems is
transformation to a normal form: This is the simplest form of nonlinear equation
that locally explains the dynamics for all generic cases. In the next subsection we
briefly recall relevant ideas from symmetric Hopf bifurcation before applying it to the
problemof phase reduction near such aHopf bifurcation;more details are in [15]. The
main result of this section is to show that phase equations (7.3) with nonpairwise
interactions arise as higher-order approximations of the dynamics for symmetric
coupled oscillator networks with generic interaction close to a Hopf bifurcation.
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7.2.1 Hopf Bifurcation With SN Symmetry

In the general theory of symmetric (equivariant) dynamical systems [23] we study a
system of ordinary differential equations (ODEs)

ẋ = f (x, λ) (7.4)

with x ∈ V, λ ∈ R, where V is a finite-dimensional space, λ is the bifurcation param-
eter, and f is a symmetric function.

We say that an invertible n × n matrix γ is a symmetry of (7.4) if f (γ x, λ) =
γ f (x, λ) for all x ∈ V, λ ∈ R. A consequence of this is that if x(t) is a solution
to (7.4), then so is γ x(t). For periodic solutions, if x(t) is a T -periodic solution
of (7.4) then so is γ x(t). Uniqueness of solutions to the initial problem for (7.4)
implies that the trajectory of x(t) and γ x(t) are either disjoint, in which case we
have a new periodic solution, or identical, in which case they differ only by a phase
shift, that is, x(t) = γ x(t − t0) for some t0. In this case we say that the pair (γ, t0)
is a symmetry of the periodic solution x(t). Symmetries of periodic solutions have
both a spatial component γ and a temporal (phase shift) component t0.

Bifurcation Theory investigates how solutions to differential equations can branch
as a parameter is varied. Assume that x = 0 is an equilibriumof (7.4) for anyλ.When
convenient and there is confusion with subindices, we also write fλ(x) = f (x, λ).
The symmetry of f imposes restrictions on the bifurcations that can occur as λ is
varied. These can be a steady-state bifurcation, when an eigenvalue of the Jacobian
d fλ(0) of f at x = 0 passes through 0 (without loss of generality at λ = 0) or a
Hopf bifurcation, when a pair of complex conjugate eigenvalues of d fλ(0) crosses
the imaginary axis with nonzero speed at ±ωi, ω �= 0 where i = √−1.

The problem of N identical and identically interacting smooth (C∞) dynamical
systems on xk ∈ R

d (d ≥ 2) that simultaneously undergo a Hopf bifurcation is con-
sidered in [15]. In such a case the dynamics close to the Hopf bifurcation can be
approximated (beyond first order) by a phase oscillator system of the form (7.3).
Specifically, consider the coupled ordinary differential equations

ẋ1 = Hλ(x1) + εhλ,ε(x1; x2, . . . , xN )

...
...

... (7.5)

ẋN = Hλ(xN ) + εhλ,ε(xN ; x1, . . . , xN−1).

Note the parameter ε ∈ R is such that the system completely decouples for ε = 0.
We now assume that each system undergoes a Hopf bifurcation of x = 0 when
λ ∈ R passes through zero for ε = 0. We assume that the uncoupled system for
x ∈ R

d given by ẋ = Hλ(x) has a linearly stable fixed point at x = 0 for λ < 0
that undergoes supercritical Hopf bifurcation at λ = 0, in particular dHλ(0) has a
complex pair of eigenvalues λ ± iω, where ω �= 0 and all other eigenvalues μ of
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dHλ(0) satisfy Re(μ) < −r < 0. Without loss of generality we can assume 0 is an
equilibrium in some neighborhood of (λ, ε) = (0, 0).

7.2.2 Normal Forms for Symmetric Hopf Bifurcations With
SN Symmetry

System (7.5) describes a population of N identical, symmetrically coupled dynamical
systems with state xk ∈ R

d (d ≥ 2) close to a Hopf bifurcation. We assume that the
coupling respects the fact that the uncoupled systems can be permuted arbitrarily,
i.e., that the system is equivariant under the action of SN on R

dN by permutation
of coordinates. Since the system is close to a bifurcation, the dynamics can now be
reduced to a center manifold using equivariant bifurcation theory [24]: We explain
how this can be used as a basis for a phase oscillator description as in [15].

Note that the action of the symmetry group SN means that for ε > 0 a generic
Hopf bifurcation will have center manifold of dimension either 2 or 2N − 2. For the
uncoupled case λ = ε = 0 the center manifold will be 2N dimensional with each
coordinate xk parametrized by zk ∈ C. That is, for λ = ε = 0 points on the center
manifold are parametrized by (z1, . . . , zN ) ∈ C

N . The system on the center manifold
is

ż1 = fλ(z1) + εgλ(z1; z2, . . . , zN ) + O(ε2) (7.6)

etc., where z ∈ C
N and we have changed coordinates so that for zk = 0 is an equi-

librium that undergoes generic supercritical Hopf bifurcation at λ = 0. Note that for
N > 1 this will not be a generic Hopf bifurcation, but still we can assume f0(0) = 0
and d f0(0) has a pair of purely imaginary eigenvalues ±iω that pass transversely
through the imaginary axis with non-zero speed on changing λ.

The reduced system (7.6) has symmetries. First, the action of γ ∈ SN on C
N is

by permutation of coordinates

γ (z1, . . . , zN ) = (zγ −1(1), . . . , zγ −1(N )), (7.7)

where (z1, . . . , zN ) ∈ C
N meaning that gλ(z1; z2, . . . , zN ) is symmetric under all

permutations of the last N − 1 arguments. Second, Poincaré–Birkhoff normal form
theory [23] means that to all polynomial orders we can assume there is a normal
form symmetry given by the action of T on C

N , where θ ∈ T acts by

θ(z1, . . . , zN ) = eiθ (z1, . . . , zN ). (7.8)

The symmetries (7.7) and (7.8) restrict the possible terms that can appear in the
normal form;we can characterize these byfinding the possible equivariants, one order
at a time. Suppose N ≥ 4. Let f : CN → C

N be SN × T-equivariant with respect to
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the action (7.7), (7.8) with polynomial components of degree lower or equal than 3.
From results in [24, Section2.1.2] we can write f = ( f1, f2, . . . , fN ) where

f1(z1, z2, . . . , zN ) =
11∑

i=−1

aihi (z1, z2, . . . , zN ) (7.9)

with the other equations obtained by permutation, where the hi are equivariants listed
in [15] and a j ∈ C are constants.

Following [15], thismeanswe canwrite the equation for ż1 from (7.6) in Poincaré-
Birkhoff normal form [23] as the SN × T-equivariant system

ż1 = U (z1) + εF1(z1, . . . , zN , ε), (7.10)

where the third order truncated expression for F1 is given in (7.35) and the other
derivatives ż j are obtained by permutation of the indices.

7.2.3 Perturbations from the Uncoupled Limit

Note the Hopf bifurcation of (7.6) at λ = 0 has special structure: Following [15] we
assume there is an “uncoupled limit” corresponding to ε = 0. This extra structure
means that

ż1 = U (z1) := V (z1)z1 := [
λ + iω + a1|z1|2 + τ(z1)

]
z1, (7.11)

and we write V (z1) = VR(z1) + iVI (z1). We assume the uncoupled Hopf is super-
critical, meaning a1R < 0. We seek solutions of (7.11) of the form

z1(t) = R1(t)e
iφ1(t) = R1(t)e

i[�t+ψ1(t)] (7.12)

for some R1(t), ψ1(t) and constant �. Substituting this into (7.11), we require

Ṙ1 + i R1
[
� + ψ̇1

] = R1VR(R1) + i R1VI (R1)

where

VR(R1) = λ + a1R R
2
1 + τR(R2

1), VI (R1) = ω + a1I R
2
1 + τI (R1).

From this, it is clear that for small enough λ > 0 and ε = 0 there is a stable peri-
odic orbit at fixed R1 = R∗ > 0 such that VR(R∗) = 0, with angular frequency
� = VI (R∗) and arbitrary but fixed phase ψ1. More precisely, [15] shows that on
solving VR(R∗) = 0, we obtain
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R2
∗ = λ

−a1R
+ O(λ2),

� = VI (R
2
∗) = ω + a1I R

2
∗ + τ(R∗) = ω + a1I

−a1R
λ + O(λ2).

(7.13)

This implies there is a λ0 > 0 such that for any 0 < λ < λ0 there is a stable periodic
orbit (7.12) satisfying (7.13).

7.2.4 Reduction to Phase Oscillators

The final stage of the reduction undertaken by [15] is to show that, even though the
uncoupled limit cycles for λ > 0 are weakly stable, the normal form can gives an
explicit reduction to coupled phase oscillators as long as ε = o(λ). This involves
some coordinate changes to ensure that standard results from normally hyperbolic
invariant manifolds can be applied, followed by an averaging approximation. Since
we will be dealing with multiple timescales here, we will write out the temporal
derivatives d

dt explicitly in this section.
For ε = 0 and any 0 < λ < λ0 there is a stable invariant torus given by

(z1, . . . , zN ) = (R∗ei(�t+ψ1), . . . , R∗ei(�t+ψN )), (7.14)

parametrized by the phases (ψ1, . . . ψN ) ∈ T
N . This invariant torus is foliated by

neutrally stable periodic orbits with period 2π/� and so for each 0 < λ < λ0, the
torus is normally hyperbolic. The theory of normal hyperbolicity [25] implies there
is an ε0 such that for 0 < ε < ε0 the invariant torus persists and is Cr -smooth for
arbitrarily large r . Note that reducing r will restrict the ε0: We will need r ≥ 5 for
the approximation to be valid.

We write ak = αkeiθk = akR + iak I and zk(t) = Rk(t)ei(�t+ψk (t)) = [R∗ + ρk(t)]
ei(�t+ψk (t)) In particular, we seek solutions such that ρk is small and ψk varies slowly
with t . Re-writing (7.10), note that

d

dt
ρ1 + i R1

[
� + d

dt
ψ1

]
= U (R1) + εF1(z1, . . . , zN , 0)e−i(�t+ψ1) + O(ε2).

(7.15)
Writing U in real and imaginary parts and expanding for small ρ1, [15] show
that A(λ) := U ′

R(R∗)/λ, B(λ) := V ′
I (R∗)/(λ1/2), so that U (R1) = λA(λ)ρ1 +

i R1[� + λ1/2B(λ)ρ1] + O(ρ2
1 ). This implies that (7.15) can be expressed as

d

dt
ρ1 + i R1

[
� + d

dt
ψ1

]
= λA(λ)ρ1 + i R1[� + λ1/2B(λ)ρ1]

+ εF1(z1, . . . , zN )e−i(�t+ψ1) + O(ε2)

(7.16)
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Recalling from (7.13) that R2∗ = λ/(−a1R)+O(λ2), U (R∗) = UR(R∗) + iVI (R∗)
R∗ = (λ + a1R R2∗ + τ(R∗))R∗, τ(z) = O(z4), and τ ′(z) = O(z3) so one can show
A(λ) = 1 + 3a1R/(−a1R) + O(λ) = −2 + O(λ). Similarly, one can show B(λ) =
2a1I /

√−a1R + O(λ). In particular, for λ → 0 there are finite limits A(0) = −2,
B(0) = 2a1I /

√−a1R . Careful expansion of the terms in F1 and taking real parts
of (7.16) gives the expression (7.36). The equivalent equation for ψ1 is obtained
by taking imaginary parts of (7.15) and after cancellation and dividing by R1,
gives (7.37).

In terms of slow time T = λt , calculations in [15] show that (7.15, 7.16) can be
written as

d

dT
r j = A(λ)r j + f j + O(ε)

d

dT
ψ j = ελ−1

[
C(λ)r j + h j

] + O(ε2)

(7.17)

for j = 1, . . . , N . Note that f j and h j are trigonometric polynomials and A,C , f j and
h j have finite limits as λ → 0. Hence (7.17) gives a slow timescale for evolution of

ψ j as long as ε = o(λ). Defining scaled amplitude variables σ j := r j + f j (ψ1,...,ψN−1)

A(λ)
,

system (7.17) can be expressed as

d

dT
σ j = A(λ)σ j + O(ε)

d

dT
ψ j = ελ−1

[
C(λ)σ j + Hj

] + O(ε2),

(7.18)

where Hj = h j − f jC(λ)/A(λ). We write Hj = H 0
j + λH 1

j + O(λ2),where H 0
j =

h0j − C(0)/A(0) f 0j , H
1
j = R2∗(λ)

[
h1j − f 1j C(0)/A(0)

]
/λ − f 0j [C ′(0)A(0) − A′(0)

C(0)]/A(0)2, which is a trigonometric polynomial in ψk − φ j . It can be shown that
H 0

j only involves pairwise coupling while H
1
j includes coupling of up to four phases

(and on α2, . . . , α11).
After further manipulations [15], the reduced equations for φ j can be written in

the form
d

dt
φ j = � + ε

[
H 0

j + λH 1
j

]
(7.19)

where the phase differences ψ j − ψk = φ j − φk for all j and k, and the approxima-
tion will be close for times 0 < t < t̃ with t̃ = O(ε−1λ−2). For k = −1, 1, . . . , 11
we define βk and γk such that for all θ we have βk cos(γ j + θ) := αk sin(θk + θ) −
C(0)
A(0) αk cos(θk + θ). Then we can write (7.19) in the form
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d

dt
φ j = � + εH1

= �̃(φ, ε) + ε

N

N∑

k=1

g2(φk − φ j ) + ε

N 2

N∑

k,�=1

g3(φk + φ� − 2φ j )

+ ε

N 2

N∑

k,�=1

g4(2φk − φ� − φ j ) + ε

N 3

N∑

k,�,m=1

g5(φk + φ� − φm − φ j )

(7.20)
where the various coupling functions have the form

�̃(φ, ε) = � + R2
∗ε

⎡

⎣β4 cos γ4 + β5

N 2

∑

j,k

cos(γ5 + φ j − φk)

⎤

⎦

g2(ϕ) = β−1 cos(γ−1 + ϕ) + R2
∗
[
β2 cos(γ2 − ϕ) + β3 cos(γ3 + ϕ)

+β6 cos(γ6 + 2ϕ) + β8 cos(γ8 + ϕ) + β10 cos(γ10 + ϕ)
]

− λ
C ′(0)A(0) − A′(0)C(0)

A(0)2
α−1 cos(θ−1 + ϕ)

g3(ϕ) = R2
∗
[
β7 cos(γ7 + ϕ)

]

g4(ϕ) = R2
∗
[
β9 cos(γ9 + ϕ)

]

g5(ϕ) = R2
∗
[
β11 cos(γ11 + ϕ)

]
.

(7.21)

To summarize, we have illustrated how the reduction of [15] demonstrates that, to
first order, the generic dynamics of N weakly coupled coupled identical oscillators
close to a Hopf bifurcation are approximated by the Kuramoto equations (7.1) with
an additional phase-shift parameter α, i.e., the Kuramoto–Sakaguchi equations [6].
Moreover, at second order in the bifurcation parameter λ we have phase dynamics
given by (7.20), a system very similar to (7.3): The phase dynamics are determined
by

θ̇k = �̃(θ, ε) + ε
(
F (2)
k (θ) + F (3)

k (θ) + F (4)
k (θ)

)
(7.22)

for k ∈ {1, . . . , N } with

F (2)
k (θ) = 1

N

N∑

j=1

g2(θ j − θk) (7.23a)

F (3)
k (θ) = 1

N 2

N∑

j,�=1

g3(θ j + θ� − 2θk) + 1

N 2

N∑

j,�=1

g4(2θ j − θ� − θk) (7.23b)

F (4)
k (θ) = 1

N 3

N∑

j,�,m=1

g5(θ j + θ� − θm − θk) (7.23c)
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and coupling functions

g2(φ) = ξ 0
1 cos(φ + χ0

1 ) + λξ 1
1 cos(φ + χ1

1 ) + λξ 1
2 cos(2φ + χ1

2 )

g3(φ) = λξ 1
3 cos(φ + χ1

3 )

g4(φ) = λξ 1
4 cos(φ + χ1

4 )

g5(φ) = λξ 1
5 cos(φ + χ1

5 )

(7.24)

for coefficients ξ
j
i and χ

j
i determined from (7.21). In particular, this next order

includes pairwise, triplet and quadruplet interactions of phases.

7.3 Coupled Phase Oscillators Networks with Nonpairwise
Interactions

In this section, we recall some results from [16] and related literature that explores
the phase equations (7.22) with higher-order interactions. For concreteness, we set
�̃(θ, ε) = ω andfixλ = ε = 1. That is,we consider (7.3)with the coupling functions

g2(φ) = ξ1 cos(φ + χ1) + ξ2 cos(2φ + χ2)

g3(φ) = ξ3 cos(φ + χ3)

g4(φ) = ξ4 cos(φ + χ4)

g5(φ) = ξ5 cos(φ + χ5)

(7.25)

such that for general N the function g2 determines pairwise, g3, g4 triplet and g5
quadruplet interaction.

7.3.1 Symmetric Phase Oscillator Networks

The symmetries of the phase equations (7.3) have consequences for the dynamics.
Here the phase equations “inherit” symmetries from the generically coupled sys-
tem (7.5): First, the phase equations are symmetric with respect to the rotation by a
common angle. As a consequence, wemay assume—without loss of generality—that
the phase of the first oscillator θ1 is always equal to zero by going into a co-rotating
reference frame that moves with oscillator k = 1. Second, the SN -symmetry acts by
permuting oscillators. By using the permutational symmetry, we may assume that
the phases are in ascending order. Note that these properties are due to the symme-
try alone, independent of whether the phase oscillators are subject to pairwise or
nonpairwise interactions; cf. [26].
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Because of the symmetries,we donot need to consider the dynamics of (7.3) on the
entire phase space TN but can restrict the analysis to a smaller but still representative
subset. Specifically, define the canonical invariant region (CIR) [26] as the set of
phases

C = {
θ ∈ T

N | 0 = θ1 < θ2 < · · · < θN < 2π
}
. (7.26)

The CIR is a (N − 1)-simplex whose boundary consists of cluster configurations
where the phases of two or more oscillators are equal. The intersection of all cluster
configurations is the fully synchronized phase configuration

S := {
(θ1, . . . , θN ) ∈ T

N | θk = θk+1
}

(7.27a)

where the phases of all oscillators are equal. At the centroid of the CIR is the splay
phase configuration

D :=
{

(θ1, . . . , θN ) ∈ T
N

∣∣∣∣ θk+1 = θk + 2π

N

}
, (7.27b)

where the oscillator phases are uniformly distributed on the circle. As fixed point
subsets of symmetries—e.g., S is invariant under any permutation of the oscillator
indices—the cluster configurations are also dynamically invariant.

The CIR for N = 3 and N = 4 is illustrated in Fig. 7.1. For N = 3 the CIR is
a two-dimensional simplex and we cannot expect any chaotic dynamics [27]. For

Fig. 7.1 Structure of the canonical invariant region C for N = 3 and N = 4 (see [26]). Panels a, b
show C as an orthogonal projection of into R

2 and R
3, respectively. The edges of C for, a and the

faces of C for, b are points where two oscillators have the same phase. The filled circles represent the
fully synchronous phase configuration S; the open circle represents the splay phase configuration D
in C. In b the solid lines correspond to 3:1 cluster configurations where three oscillators have the
same phase and one is distinct while the long-dashed lines correspond to 2:2 cluster configurations
of two clusters of two oscillators. The short-dashed lines are points (a, b, a + π, b + π). For any N
there is a residual Z/NZ symmetry that “rotates” the canonical invariant region (the direction of
rotation is indicated by the arrows in b). Overall (N − 1)! symmetric copies of C pack a generating
region for the torus. Reprinted from [16]
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N = 4 the CIR is three-dimensional which does not preclude chaotic dynamics.
If the coupling is pairwise with a single harmonic as in the Kuramoto–Sakaguchi
model, there is additional degeneracy that prevent chaotic attractors to emerge [28].
If the coupling is pairwise but one allows for higher harmonics in the coupling
function (cf. [29]) onemayobserve chaotic dynamics for a pairwise coupling function
with four harmonics [30]. But no further examples of coupling functions with fewer
harmonics are known for fully symmetric systems with pairwise interactions.

7.3.2 Chaos in Globally Coupled Phase Oscillator Networks
with Higher-Order Interactions

The phase dynamics of (7.3) with nonpairwise coupling mediated by the func-
tions (7.25) can give rise to chaotic dynamics. Following [16] we fix Fourier coeffi-
cients

ξ = (−0.3, 0.3, 0.02, 0.8, 0.02) (7.28)

while varying the phase shifts χ . Calculating the maximal Lyapunov exponent λmax

reveals a region in parameter space where λmax > 0 and chaotic attractors appear
in the canonical invariant region. Figure7.2a shows a solution θ(t) in C for χ =
(0.154, 0.318, 0, 1.74, 0). While the attracting set lies in the interior of C, the trajec-
tories on the chaotic attractor come close to its boundary that consist where oscillators
are clustered. Indeed, a small variation shows periodic dynamics that appear to be
close to a heteroclinic network: Fig. 7.2b shows a stable periodic orbit close to such
a heteroclinic network for parameters χ = (0.2, 0.316, 0, 1.73, 0).

Since the equilibria on the boundary include a saddle-focus, the chaotic dynamics
appear to arise through a nonstandard Shilnikov saddle-focus scenario [31]. Indeed,

Fig. 7.2 Heteroclinic networks organize chaotic behavior in C for networks of N = 4 oscillators;
line styles on the boundary of C are as in Fig. 7.1. The right panel shows a trajectory with positive
maximal Lyapunov exponents for phase shift parameters χ = (0.154, 0.318, 0, 1.74, 0) that comes
close to the boundary of C. For nearby parameter values χ = (0.2, 0.316, 0, 1.73, 0) there is an
attracting periodic orbit close to a heteroclinic network involving two saddle equilibria, one a
saddle-focus, on the boundary of C. Reprinted from [16]
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modulo the residualZN symmetry on C the heteroclinic network on the boundary of C
involves two equilibria. Grines and Osipov [32] took this observation as a starting
point to determine what homoclinic and heteroclinic trajectories are possible in (7.3)
for N = 4 oscillators. More specifically, the symmetries of the system restrict the
saddle connections that are possible between equilibria that lie on the boundary of C
such as those in Fig. 7.2b.

While N = 4 is the smallest number of oscillators for which chaos can arise in the
phase equations, chaotic dynamics also arise in networks with N > 4 phase oscil-
lators. In [16] we gave explicit parameter values for which λmax > 0 but a detailed
analysis of these larger phase oscillator networks is still an outstanding problem.

7.4 Chimeras and Other Creatures for Multiple
Populations

The dynamics of a globally coupled network (7.3) of N identical oscillatorswith non-
pairwise interactions is constrained by the symmetries of the system. Since the system
isSN -equivariant, the asymptotic average frequencies�k(θ(0)) := limT→∞ θ(T )/T
for any initial condition θ(0) ∈ T

N are identical1: We have �k = � j for all k, j ∈
{1, . . . , N } independent of the initial condition and the oscillators are frequency syn-
chronized [21]. This restriction breaks down if the SN symmetry is broken. In this
section we discuss the dynamics of a generalization of (7.29) where the phase θk
evolves according to

θ̇k = ω +
N∑

j=1

a( jk)
2 g2(θ j − θk) +

N∑

j,l=1

a( jlk)
3 g3(θ j + θl − 2θk)

+
N∑

j,l=1

a( jlk)
4 g4(2θ j − θl − θk) +

N∑

j,l,m=1

a( jlmk)
5 g5(θ j + θl − θm − θk)

(7.29)

where a( jk)
2 ∈ R and a( jlk)

3 , a( jlk)
4 , a( jlmk)

5 ∈ R are the coupling strength of pairwise
and nonpairwise interactions. For nonhomogeneous choice of these coupling coeffi-
cients, the system (7.29) can describe coupled populations of phase oscillators that
allow for frequency synchrony to be localized in one or more populations.

1 Here we assume that the limit exists; for a generalization to frequency intervals see [22].
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7.4.1 Frequency Synchrony in Coupled Oscillator
Populations

Suppose that the N oscillators are grouped into M populations (assuming N = MQ)
indexed by σ ∈ {1, . . . , M}. The first Q oscillators belong to population σ = 1,
oscillators k ∈ {Q + 1, . . . , 2Q} to population σ = 2 etc., and we write k = (σ, q)

if oscillator k (in the linear ordering as above) corresponds to oscillator q in popu-
lation σ and θσ,q denote its phase and �σ,q the asymptotic average frequency. We
now consider networks with coupling coefficients a( jk)

2 = K (σ )
p /Q if k, j belong to

population σ and a( jk)
2 = 0 otherwise so that interactions within populations are pair-

wise and a( jlk)
3 = a( jlk)

4 = 0, and a( jlmk)
5 = K (στ)

np /Q3 if and only if oscillators m, k

belong to population σ and oscillators j, l to population τ and a( jlmk)
5 = 0 otherwise

determine the nonpairwise interactions. With this choice of coefficients the M pop-
ulations are globally and identically coupled through pairwise interactions while the
nonpairwise interactions mediate the coupling between distinct populations.

The specific formof network coupling induces symmetries: The dynamical system
is (SQ × T)M -equivariant where, for each population, SQ acts by permuting the
oscillators and T acts by shifting all oscillators of the given population by a constant.
Note that there is one phase-shift symmetry for each population. For population σ ,
write θσ = (θσ,1, . . . , θσ,Q) to denote the state of the population. Recall that S and D,
as defined in (7.27), denote the synchronized and splay configurations in a network
consisting of a single population. For the network of interacting populations, write

θ1 · · · θσ−1Sθσ+1 · · · θM = {
θ ∈ T

N
∣∣ θσ ∈ S

}
(7.30a)

θ1 · · · θσ−1Dθσ+1 · · · θM = {
θ ∈ T

N
∣∣ θσ ∈ D

}
(7.30b)

to indicate that population σ is fully phase synchronized or in splay phase. Because
of the symmetry these sets are dynamically invariant. We extend this notation to
intersections of the sets (7.30), so that S · · · S (M times) denotes cluster states where
all populations are fully phase synchronized and D · · ·D (M times) the set where all
populations are in splay phase.

These invariant sets can display frequency synchrony that is localized in a spe-
cific part of the network: The oscillators within one populations are frequency syn-
chronized while oscillators in different populations are not. This is a characterizing
feature of a weak chimera [21, 22]. To see this take K (στ)

np = 0, that is, there is no
coupling between different populations. If population σ is phase synchronized, that
is, θσ (0) = (θσ,1(0), . . . , θσ,Q(0)) ∈ S we have

�σ,k(θ(0)) = ω + K (σ )
p g2(0). (7.31)

Similarly, if population σ in splay phase, that is, θσ (0) ∈ D,we have
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�σ,k(θ(0)) = ω +
Q∑

j=1

K (σ )
p

Q
g2

(
2π j

Q

)
. (7.32)

Since these two values are distinct for a generic pairwise coupling function g2,
we have that any set of the form DS · · · S has populations with distinct frequency.
Moreover, this property is preserved for sufficiently small

∣∣K (σ,τ )
np

∣∣ > 0.

7.4.2 Heteroclinic Cycles and Networks

While much attention has focused on localized frequency and chimeras to be attrac-
tors in network dynamical systems [33], the nonpairwise interactions also allow for
heteroclinic dynamics that connect different localized frequency synchrony patterns.
For us, a heteroclinic cycle consists of a finite number of normally hyperbolic invari-
ant sets ξs , s ∈ {1, . . . , S}, together with trajectories [ξs → ξs+1] (indices are taken
modulo S) that lie in the intersection of the unstable manifold of ξs and the stable
manifold of ξs+1; cf. [34, 35]. Trajectories close to a heteroclinic cycle show “switch-
ing dynamics”: The trajectory will spend time close to one of the invariant sets ξs
before a rapid transition to the next set.

For small networks that consist ofM = 3 populations of Q ∈ {2, 3}we can explic-
itly give conditions for the existence of robust heteroclinic cycles that are asymptot-
ically stable. Here we outline the results for Q = 2 oscillators and refer to [18–20]
for more detailed results.

Theorem Consider M = 3 populations of Q = 2 oscillators with coupling
functions g2(ϑ) = sin(ϑ + α2) + r sin(2(ϑ + α2)) and g4(ϑ) = sin(ϑ + α4) and
nonpairwise coupling parameters K (στ)

np = −K if τ = σ − 1, K (στ)
np = K if τ =

σ + 1, and K (στ)
np = 0 if τ = σ . Then there exists an open set of parameter values

K , r, α2, α4 such that the coupled phase oscillator network (7.29) with higher-order
interactions has an asymptotically stable robust heteroclinic cycle.

The main ideas of the proof is as follows. First, note that because of the SM
Q

symmetry we can reduce the 6-dimensional dynamics to a system of 3 phase dif-
ference variables ψσ = θσ,2 − θσ,1 for each population σ ∈ {1, 2, 3}. In the reduced
coordinates invariant sets of the form SSS,DSS, . . . are equilibrium points. Second,
we can linearize the equations close to these equilibria. This allows to write down
conditions that ensure that the equilibria have the right (local) stability properties.
For example, we can impose that DSS is stable in the invariant subspaces DSθ3 and
θ1SS but unstable in the invariant subspace Dθ2S. Moreover, we want that DDS is
stable in Dθ2S and DDθ3 but unstable in θ1DS. The stability conditions for the other
equilibria are similar. Third, we have to ensure that there are heteroclinic connections
between the equilibria: There is a connection [DSS → DDS] if there are no other
equilibria in the one-dimensional invariant set Dθ2S. This condition—as well as con-
ditions for the other heteroclinic connections—can be explicitly expressed in terms
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of the coupling parameters. Fourth, we have that the resulting heteroclinic cycle is
in the class of quasi-simple heteroclinic cycles; see [36]. This allows to write down
explicit conditions for the stability of the resulting cycle [20]. Heteroclinic structures
organize the dynamics even if these structures are broken by perturbations: Typically,
periodic or chaotic dynamics appear that closely mimic the switching dynamics of
the cycle.

For a larger number of populations, such heteroclinic cycles can be part of larger
networks of heteroclinic connections. Existence of a heteroclinic network in M =
4 coupled populations of Q = 2 oscillators each is proved in [20]. This network
consists of two cycles of the form discussed above with the difference that from the
equilibrium SDSS there are two distinct heteroclinic connections [SDSS → SDDS]
and [SDSS → SDSD] resulting in a network that contains two distinct heteroclinic
cycles. In other words, the second population can desynchronize either the third or
the fourth population. If weak noise is added to the system nearby trajectories exhibit
dynamics that can follow either of the two cycles in the network. As quasi-simple
heteroclinic cycles—one can calculate their stability properties explicitly.

7.5 Outlook

In this chapter, we reviewed results from [15, 16] and related literature [18–20] that
discuss how nonpairwise interactions in phase oscillator networks arise naturally in
phase reductions and their consequences for the phase dynamics. The framework of
symmetric Hopf bifurcation theory helps organize and understand the importance
these nonpairwise interactions of the phase dynamics in a rigorous manner. We
discussed the dynamics of the resulting phase oscillator networks and a generalization
thereof that allows for amoregeneral network structure other thanglobal and identical
coupling.

One of the more puzzling aspects of higher order interactions in phase oscillator
networks is that it seems to be hard to characterize the dynamical restrictions imposed
by having only pairwise interactions. With a few exceptions (e.g., the scenarios for
cluster state stabilities considered in [15]), pairwise coupled systems are remarkably
rich in their dynamics. This may be the reason why higher order interactions have
only recently become of interest. In another approach, Komarov and Pikovsky [37]
consider a phase oscillator system of the form

φ̇k = � + ω + S(φk)F (7.33)

where F depends on themeanfields. They show that the second order phase dynamics
are given by

θ̇k = ω + ε
(
F (2)
k (θ) + F (3)

k (θ)
)

(7.34)
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with F (2)
k (θ) = 1

N

∑N
j=1 g2(θ j − θk), F (3)

k (θ) = 1
N 2

∑N
j,�=1 g3(θ j + θ� − 2θk) and

the interactions between the phases are given by g2(φ) = ξ1 cos(φ + χ1) + ξ2
cos(2φ + χ2), g3(φ) = ξ3 cos(φ + χ3). This is a special case of (7.29) where the
coupling functions g4, g5 are zero. Similarly, the phase oscillator network (7.2) con-
sidered by Skardal and Arenas [9, 10] is a special case of (7.29) as mentioned above.

While phase oscillators with nonpairwise interactions can be analyzed in their
own right, it is instructive to remember that such interaction terms arise in phase
reductions as discussed here. The nonpairwise interactions capture the nonlinearities
of the (unreduced) nonlinear oscillator system and their interactions. Thus, phase
oscillator networkswith nonpairwise interactions can capture someproperties of their
dynamics. It seems natural to assume that it is especially when one moves away from
the weakly coupled limit that higher-order interactions will become decisive: For
example, the discontinuous synchronization transitions in [38] appear in a strongly-
coupled oscillator network, while [39] also consider effects that can be viewed as
associated with higher-order interactions.
Truncated expressions for phase and amplitude dynamics

For completeness, the expression for the cubic truncated Hopf normal form
from [15] is

F1 =
⎡

⎣a−1
1

N

∑

j

z j + a2
z21
N

∑

j

z j + a3
|z1|2
N

∑

j

z j

+ a4
z1
N

∑

j

|z j |2 + a5
z1
N 2

∑

j,k

z j zk + a6
z1
N

∑

j

z2j

+ a7
z1
N 2

∑

j,k

z j zk + a8
1

N

∑

j

|z j |2z j + a9
1

N 2

∑

j,k

z2j zk

+ a10
1

N 2

∑

j,k

z j |zk |2 + a11
1

N 3

∑

j,k,�

z j zk z�

⎤

⎦ + F̃1 + O(ε).

(7.35)

where the ε = 0 error term is F̃1 = O(|z|5), ∑
i denotes

∑N
i=1,

∑
i, j denotes

∑N
i=1

∑N
j=1 and

∑
i, j,k denotes

∑N
i=1

∑N
j=1

∑N
k=1. This can be recovered from [24].

The radial dynamics for phase reduction is
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ρ̇1(t) = λA(λ)ρ1 + ε
[
α−1

∑′
j R j cos(θ−1 + ψ j − ψ1)

+α2
∑′

j R
2
1R j cos(θ2 + ψ1 − ψ j )

+α3
∑′

j R
2
1R j cos(θ3 + ψ j − ψ1)

+α4
∑′

j R1R2
j cos θ4

+α5
∑′

j,k R1R j Rk cos(θ5 + ψ j − ψk)

+α6
∑′

j R1R2
j cos(θ6 + 2ψ j − 2ψ1)

+α7
∑′

i, j R1Ri R j cos[θ7 + (ψi − ψ1) + (ψ j − ψ1)]
+α8

∑′
j R

3
j cos(θ8 + ψ j − ψ1)+

+α9
∑′

j,k R
2
j Rk cos(θ9 + 2ψ j − ψk − ψ1)

+α10
∑′

j,k R j R2
k cos(θ10 + ψ j − ψ1)

+α11
∑′

i, j,k Ri R j Rk cos(θ11 + ψi + ψ j − ψk − ψ1)
]

+O(ρ2, ε2)

(7.36)

where ρ2 = max j (ρ
2
j ) and

∑′
j a j := 1

N

∑N
j=1 a j ,

∑′
j,k a j,k := 1

N 2

∑N
j,k=1 a j,k , etc.

are the normalized sums. Similarly the phase dynamics are given by

ψ̇1(t) = λ1/2B(λ)ρ1 + ε
[
α−1

∑′
j (R j/R1) sin(θ−1 + ψ1 − ψ j )

+α2
∑′

j R1R j sin(θ2 + ψ1 − ψ j )

+α3
∑′

j R1R j sin(θ3 + ψ j − ψ1)

+α4
∑′

j R
2
j sin θ4

+α5
∑′

j,k R j Rk sin(θ5 + ψ j − ψk)

+α6
∑′

j R
2
j sin(θ6 + 2(ψ j − ψ1))

+α7
∑′

i, j Ri R j sin[θ7 + (ψi − ψ1) + (ψ j − ψ1)]
+α8

∑′
j (R

3
j/R1) sin(θ8 + ψ j − ψ1)

+α9
∑′

j,k(R
2
j Rk/R1) sin(θ9 + 2ψ j − ψk − ψ1)

+α10
∑′

j,k(R j R2
k/R1) sin(θ10 + ψ j − ψ1)

+α11
∑′

i, j,k(Ri R j Rk/R1) sin(θ11 + ψi + ψ j − ψk − ψ1)
]

+ 1
R1
O(ρ2, ε2)

(7.37)
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Chapter 8
Explosive Synchronization
and Multistability in Large Systems
of Kuramoto Oscillators
with Higher-Order Interactions

Per Sebastian Skardal and Alex Arenas

Abstract Since its original formulation, the Kuramoto model and its many vari-
ants have served as critical tools for uncovering and understanding the emergence of
nonlinear collective behavior. However, recent evidence suggests that in such phase-
reduced systems, interactions beyond the typical pair-wise angle differences need to
be considered to develop a full picture of the dynamics. In particular, higher-order
interactions, namely non-additive, nonlinear interactions that take place between
three or more oscillators are required. Here we explore these interactions and their
effect on themacroscopic dynamics of coupled phase oscillator systems. The analysis
for these systems begins with all-to-all coupled systems where a range of techniques
including dimensionality reductions and self-consistency analysesmay be employed.
The effects of the various higher-order coupling terms on the macroscopic dynam-
ics may then be explored, revealing a natural mechanism for nonlinear phenomena
that includes abrupt (i.e., explosive) synchronization transitions and extensive mul-
tistability. These dynamics are qualitatively preserved under more heterogeneous
network topologies. Moreover, the high degree of multistability in such networks
allows for the system to store information and memory.

8.1 Introduction

The Kuramoto model of coupled phase oscillators has guided researchers interested
in studying collective behavior in nonlinear dynamical systems for decades [1]. The
classical formulation involves N all-to-all coupled phase oscillators with states θn ,
n = 1 . . . , N , whose dynamics are governed by
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θ̇i = ωi + K

N

N∑

j=1

sin(θ j − θi ), (8.1)

where ωn is the natural frequency of oscillator n, K is the global coupling strength,
and the sine of the respective phase angles represents the effect of oscillator m on
oscillator n. The degree of synchronization of the system is typically measured using
Kuramoto’s order parameter,

z = reiψ = 1

N

N∑

j=1

eiθm , (8.2)

which gives a complex number that represents the centroid of all phases when placed
appropriately on the complex unit circle. In particular, the magnitude r = |z| takes
values in between zero and one with r ≈ 0 and r ≈ 1 representing incoherent and
synchronized states, respectively. In caseswheremultiple clusters emerge a collection
of higher-order variants of the order parameters, also known as the Daido order
parameters, are used to capture the macroscopic dynamics and are given by

zq = rqe
iψq = 1

N

N∑

j=1

eqiθm , (8.3)

where q is a natural number and q = 1 recovers the classical Kuramoto order param-
eter given by Eq. (8.2). As we will see in Sect. 8.3, the collection of order parameters
z1, . . . , zm are useful for characterizing the synchronization in a system withm clus-
ters. In addition to the all-to-all coupled system described given in Eq. (8.1) the
dynamics of the network-coupled analogue, given by

θ̇i = ωi + K
N∑

j=1

Ai j sin(θ j − θi ), (8.4)

has been used to explore themany effects of network structure on collective behavior.
It is important to note that the original system given by Eq. (8.1) is the result of a

phase-reduction from a system of globally-coupled limit cycle oscillators, where the
state of a limit-cycle oscillator is assumed to be well-approximated by a single phase
angle. Interestingly, recent work that aims to study these phase reductions beyond
first-order contributions have identified higher-order interactions, i.e., non-additive,
nonlinear interactions between three or more oscillators, as important components
for describing the full system dynamics [2, 3]. These theoretical studies are comple-
mented by empirical evidence in neuroscience that suggest higher-order interactions
may play an important role in brain function [4–6]. In particular, three such higher-
order interactions emerge and as an analogue to Kuramoto sine-coupling in Eq. (8.1)
take the following forms:
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Type I :
N∑

j=1

N∑

l=1

sin(2θ j − θl − θi ), (8.5)

Type II :
N∑

j=1

N∑

l=1

sin(θ j + θl − 2θi ), (8.6)

Type III :
N∑

j=1

N∑

l=1

N∑

m=1

sin(θ j + θl − θm − θi ), (8.7)

where type I and II coupling naturally take place between sets of three oscillators
(i.e., triangles or 2-simplexes) and type III coupling takes place between sets of
four oscillators (i.e., tetrahedra or 3-simplexes). In the remainder of this chapter we
explore the dynamics that emerge in phase oscillator systems as a result of incorpo-
rating these higher-order interaction terms, both together with the classical pairwise
coupling term and on their own. In Sect. 8.2 we study a system that includes pairwise
coupling along with type I and III coupling and show that the higher-order coupling
terms give rise to nonlinear behavior that allows for abrupt synchronization transi-
tions, hysteresis, and stable synchronized states even for negative pairwise-coupling.
In Sect. 8.3 we study type II coupling in isolation and show that it leads to abrupt
desynchronization transitions (without a complementary mechanism for synchro-
nization) and an extensive multistability that allows the system to store memory. In
Sect. 8.4 we provide some initial investigation into the effects of nontrivial network
structures. Lastly, we briefly provide an outlook for future work in Sect. 8.5.

8.2 Coupling Types I and III: Abrupt Synchronization

When incorporating type I and III interactions into the classical Kuramoto model we
obtain the following higher-order Kuramoto model originally studied in Ref. [7]:

θ̇i = ωi + K1

N

N∑

j=1

sin(θ j − θi ) + K2

N 2

N∑

j=1

N∑

l=1

sin(2θ j − θl − θi )

+ K3

N 3

N∑

j=1

N∑

l=1

N∑

m=1

sin(θ j + θl − θm − θi ), (8.8)

where coupling strengths K1, K2, and K3 measure the strength of interactions
between pairs, triangles, and tetrahedra of oscillators (i.e., 1-simplexes, 2-simplexes,
and 3-simplexes, respectively). The choice of coupling terms used in Eq. (8.8) con-
veniently allows us to solve exactly for the macroscopic system dynamics in the
continuum limit N → ∞ using the Ott-Antonsen ansatz [8–10]. In particular, we
note that by defining
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H = K1z + K2z2z
∗ + K3z

2z∗ (8.9)

where ∗ denotes the complex conjugate (and recall that z = z1), we may rewrite
Eq. (8.8) as

θ̇i = ωi + 1

2i

(
He−iθi − H∗eiθi

)
. (8.10)

Next, in the continuum limit we may describe the state of the system using the
density function f (θ, ω, t), where f (θ, ω, t)dθdω gives the fraction of oscillators
with phase in [θ, θ + dθ) and natural frequency in [ω,ω + dω) at time t . The con-
servation of oscillators and the static natural frequencies implies that f satisfies the
continuity equation 0 = ∂ f

∂t + ∂
∂θ

(
f θ̇

)
, i.e.,

0 = ∂ f

∂t
+ ∂

∂θ

{
f

[
ωi + 1

2i

(
He−iθi − H∗eiθi

)]}
. (8.11)

Since θ -domain of f is the circle it is natural to consider the Fourier expansion
of f as

f (θ, ω, t) = g(ω)

2π

[
1 +

∞∑

n=1

f̂n(ω, t)einθ +
∞∑

n=1

f̂ ∗
n (ω, t)e−inθ

]
. (8.12)

Remarkably, Ott and Antonsen discovered that the choice of geometrically-
decaying Fourier coefficients, i.e., f̂n(ω, t) = αn(ω, t) where α is assumed to be
an analytic function in the ω-complex plane, drastically reduces the system dynam-
ics. In particular, inserting this choice into Eq. (8.12) and then into Eq. (8.11) yields
a single ordinary differential equation for α, in this case given by

α̇ = −iωα + 1

2

(
H∗ − Hα2

)
. (8.13)

It is worth noting that this family of solutionswith geometrically-decaying Fourier
coefficients yields density functions f (θ, ω, t) that are Poison kernels and describes
a stable manifold to which all solutions tend [9, 10]. To close the system dynamics
we note that the order parameter satisfies

z∗ =
∫∫

f (θ, ω, t)eiθdθdω =
∫

α(ω, t)g(ω)dω. (8.14)

A convenient choice for the frequency distribution g is the Lorentzian with mean
ω0 and width �, i.e., g(ω) = �/π [�2 + (ω − ω0)

2]. The integral in Eq. (8.14)
can then be evaluated by closing the contour with the infinite-radius semi-circle
in the negative-half complex plane and using Cauchy’s integral theorem, yield-
ing z∗ = α(ω0 − i�, t). Similarly, for the order parameter z2 we have that z∗

2 =
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α2(ω0 − i�) = z∗2, and by evaluating Eq. (8.13) at ω = ω0 − i� and taking a com-
plex conjugate we find

ż = −�z + iω0z + 1

2

[(
K1z + K2+3z

2z∗) − (
K1z

∗ + K2+3z
∗2z

)
z2

]
, (8.15)

where we have defined the combined higher-order coupling strength K2+3 = K2 +
K3. Finally, it is convenient to decompose the complex dynamics given in Eq. (8.15)
into amplitude and angle components, yielding

ṙ = −�r + K1

2
r(1 − r2) + K2+3

2
r3(1 − r2), (8.16)

ψ̇ = ω0. (8.17)

Equations (8.16) and (8.17) close the dynamics for the macroscopic system
dynamics and allow us to now perform a bifurcation and stability analysis of the
synchronization dynamics of the higher-order Kuramoto model in the continuum
limit. Unsurprisingly, the amplitude and angle dynamics decoupling, leaving states
to rotate with a constant frequency equal to the mean natural frequency of the sys-
tem. Inspecting Eq. (8.16) more closely, we also observe that the contribution of the
higher-order interaction terms only contribute higher-order nonlinear terms imply-
ing that they have no effect on the stability of the incoherent state r = 0. In fact,
r = 0 is always a steady-state solution to Eq. (8.16) and is stable for K1 < 2�, and
loses stability at the critical value K1 = 2� in a pitchfork bifurcation that may be
supercritical or subcritical, depending on the amplification of the nonlinear terms by
K2+3. The nature of this bifurcation is most easily seen by solving for synchronized
steady-states, namely, r > 0 and ṙ = 0, yielding

r =
√

K2+3 − K1 ± √
(K1 + K2+3)2 − 8�K2+3

2K2+3
. (8.18)

The transition between incoherence and synchronization can be identified by
investigating how this synchronized branch meets the incoherent branch r = 0 in
particular, as r tends towards zero K1 tends towards 2� regardless of K2+3, but for
K2+3 ≤ 2� and K2+3 > 2� it tends towards 2� from above and below, respectively,
indicating a supercritical to subcritical shift. This can be seen most easily in Fig. 8.1a
where we plot the synchronized branch as a function of K1 for K2+3 values 0, 2, 5,
8, and 10 (blue ranging to red) and � = 1. The curves represent the exact prediction
given in Eq. (8.18) while circles correspond to simulations of N = 104 oscillators. In
particular, the synchronized branch begins to fold over itself at K2+3 = 2�, indicat-
ing supercritical and subcritical pitchfork bifurcations for K2+3 ≤ 2� and K2+3 >

2�, respectively. A straight forward analysis reveals that, when the synchronized
branch folds over itself the plus andminus signs in Eq. (8.18) give stable and unstable
solutions, respectively, which are depicted in solid and dashed curves, respectively.
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Fig. 8.1 Abrupt synchronization in the higher-order Kuramoto model. Synchronization pro-
files describing the macroscopic system state: the order parameter r a as a function of 1-simplex
coupling K1 for higher-order coupling K2+3 = 0, 2, 5, 8, and 10 (blue to red) and b as a function
of higher-order coupling K2+3 for 1-simplex coupling K1 = −0.5, 1, 1.8, 2, and 2.2. Solid and
dashed curves represent stable and unstable solutions given by Eq. (8.18), respectively, and circles
denote results taken from direct simulations of equation (8.8) with N = 104 oscillators with � = 1
and ω0 = 0. (Modified and adapted from Ref. [7])

To complement Fig. 8.1a we plot in Fig. 8.1b the synchronized branch as a function
of K2+3 for K1 values −0.5, 1, 1.8, 2, and 2.2 (blue ranging to red) and � = 1.

This reveals, for K2+3 > 2�, a region of bistability between the incoherent and
synchronized states in the form of a hysteresis loop bounded by two critical values.
The first of these critical values is the synchronization value K sync

1 = 2� where the
incoherent state loses stability and the system undergoes an abrupt transition to a
synchronized state. The second critical value occurs at a smaller value of K1 located
at the left-most point of the synchronized branch, at which point, as K1 is decreased,
the synchronized branch annihilates in a saddle-node bifurcation and the system
undergoes an abrupt transition to the incoherent state. Solving for this second desyn-
chronization value, we obtain K desync

1 = 2
√
2�K2+3 − K2+3, which collides with

K sync
1 = 2� at K2+3 = 2�, corresponding to the codimension-two point where the

pitchfork bifurcation transitions between subcritical and supercritical. Setting� = 1
(which can be done without loss of generality by rescaling time and the parame-
ters K1, K2+3 and ω0) we plot in Fig. 8.2 the stability diagram for the higher-order
Kuramoto model indicating incoherent, synchronized, and bistable regions between
pitchfork and saddle-node curves (blue and red, respectively) and the codiension-two
point at (K1, K2+3) = (2, 2). Interestingly, as the saddle-node curve crosses into the
negative-half plane K1 < 0 the system is able to support synchronized states even
for negative pairwise coupling, as was observed in Fig. 8.1a.
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Fig. 8.2 Stability diagram for the higher-order Kuramoto model. The full stability diagram
describing incoherent, synchronized, and bistable states as a function of 1-simplex coupling K1 and
higher-order coupling K2+3 for � = 1. Blue and red curves correspond to pitchfork and saddle-
node bifurcations, which collide at a codimension-two point (black circle) at (K1, K2+3) = (2, 2).
For K2+3 < 2 and K2+3 > 2 the pitchfork bifurcation is supercritical and subcritical, respectively.
(Modified and adapted from Ref. [7]

8.3 Coupling Type II: Abrupt Desynchronization
and Multistability

Nextwe investigate the dynamics in the presence of only type II interactions, yielding
the following model originally studied in Ref. [11]:

θ̇i = ωi + K

N 2

N∑

j=1

N∑

l=1

sin
(
θ j + θl − 2θi

)
. (8.19)

As we will see in what follows, the collective dynamics under type II interactions
deserve special attention for two reasons. First, the arrangement of terms in the
coupling function (i.e., compared to that in type I coupling) makes complicates
the analysis in that the Ott-Antonsen dimensionality reduction does not fully solve
the system–instead they provide a partial dimensionality reduction, beyond which
a self-consistency approach is required. Second, the effects of type II coupling on
the collective dynamics differ significantly from those explored above under type
I and III interactions. One such effect is the emergence of cluster synchronization,
where oscillators become entrained in two different clusters on the torus centered at
opposite angles. We note here that by entering a suitable rotating frame we may set
the mean natural frequency to zero, ensuring non-rotating entrained solutions, and
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Fig. 8.3 Collective dynamics under type II coupling. The order parameters a r1 and b r2 as
a function of the coupling strength K for various asymmetry values η. Blue, red, green, orange,
and purple circles represent results obtained from direct simulations of Eq. (8.19) with N = 105

oscillators with natural frequencies drawn from a Lorentzian with ω0 = 0 and � = 1 for η = 1,
0.95, 0.9, 0.85, and 0.8, respectively (Modified and adapted from Ref. [11])

moreover a shift in initial conditions ensures that the largest cluster (i.e., that with the
largest fraction of entrained oscillators) is centered at θ = 0 with the smaller cluster
centered opposite at θ = π .

The formation of these two clusters and the particular formof coupling then lead to
unexpected nonlinear behaviors which we illustrate now with numerical simulations
of N = 105 oscillators with natural frequencies drawn from a Lorentzian distribution
with mean ω0 = 0 and width � = 1. We then introduce an asymmetry parameter η

that describes the initial conditions: at time t = 0 we start with a randomly chosen
fraction ofη of all oscillators at phase θ = 0,while a fraction (1 − η) of the oscillators
start at θ = π . We then simulate the system dynamics by adiabatically decreasing
the coupling strength from K = 16 to 0, then adiabatically increase it again until
we reach K = 16 again. The results are shown in Fig. 8.3, where the values of r1
and r2 are plotted in panels (a) and (b), respectively, as a function of the coupling
strength K , for asymmetry parameters η = 1 (blue), 0.95 (red), 0.9 (green), 0.85
(orange), and 0.8 (purple). As seen in both plots the system begins in a synchronized
state and, as K is decreased, the degree of synchronization decreases continuously
until, at a critical value of K that depends on the asymmetry η, the system undergoes
an abrupt desynchronization transition. The state then remains incoherent until K
reaches zero. Then, as K is increased and restored to 16 the system surprisingly
remains incoherent, i.e., there is no synchronization transition (abrupt or continu-
ous) that complements the abrupt desynchronization transition. Moreover, further
numerical simulations (not shown) and the analysis presented below confirm that
no such synchronization transitions exist above K = 16. In addition to these abrupt
desynchronization transitions, the simulations above show that, for a given coupling
strength, many stable entrained states are possible, depending on the asymmetry η.
In fact, in the thermodynamic limit of N → ∞ a continuum of entrained states may
be stable, indicating an extensive multistability.
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We now present an analysis to explain these dynamics. First, we use the definition
of the order parameter to rewrite Eq. (8.19) as

θ̇i = ωi + Kr21 sin[2(ψ1 − θi )]. (8.20)

As is the previous section, we consider the continuum limit N → ∞ where the
state of the system can be described by a density function f (θ, ω, t) that satisfies
the same continuity equation 0 = ∂t f + ∂θ ( f θ̇ ). In contrast to the case with type
I and III interactions, here we must consider the symmetric and asymmetric parts
fs(θ, ω, t) and fa(θ, ω, t), respectively, of f (θ, ω, t) which satisfy

f (θ, ω, t) = fs(θ, ω, t) + fa(θ, ω, t), (8.21)

with symmetries

fs(θ + π,ω, t) = fs(θ, ω, t), and fa(θ + π,ω, t) = − fa(θ, ω, t). (8.22)

Note that the linearity of the continuity equation implies that if both fs and fa
are solutions, then so is f . While the asymmetric part fa may not be simplified by
dimensionality reduction, we may simplify the symmetric part fs . Noting that the
Fourier series of fs is given by the even terms of the Fourier series of f , i.e.,

fs(θ, ω, t) = g(ω)

2π

[
1 +

∞∑

m=1

f̂2m(ω, t)e2imθ + c.c.

]
, (8.23)

we propose an ansatz similar to that above where these even Fourier coefficients
decay geometrically, i.e., f̂2m(ω, t) = am(ω, t). Inserting this and Eq. (8.23) and
then into the continuity equation, we find that the symmetric dynamics collapse onto
the same low-dimensional manifold characterized by the condition

∂t a = −2iωa + K
(
z∗2
1 − z21a

2
)
. (8.24)

As was done above, the symmetric dynamics may be closed by expressing
a(ω, t) as an order parameter as follows. In particular, assuming again that that
the frequency distribution g(ω) is Lorentzian, g(ω) = �/{π [

(ω − ω0)
2 + �2

]} a
similar technique as that used in the previous section below Eq. (8.15) results in
z2 = a∗(ω0 − i�, t). We then evaluate Eq. (8.24) at ω = ω0 − i� to obtain

ż2 = 2iω0z2 − 2�z2 + K
(
z21 − z∗2

1 z22
)
, (8.25)

or, in polar form,

ṙ2 = −2�r2 + Kr21 (1 − r22 ) cos(2ψ1 − ψ2), (8.26)
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ψ̇2 = 2ω0 + Kr21
1 + r22
r2

sin(2ψ1 − ψ2). (8.27)

Equations (8.26) and (8.27) describe the symmetric dynamics captured by the
order parameter z2. However, these equations do not capture the asymmetric part
of the dynamics, and moreover they depends on the asymmetric dynamics via z2’s
dependence on z1. To complete the analysis we next need a self consistency analysis.
Recalling our assumptions where ω0 = 0 and clusters set at θ = 0 and π , effectively
setting the order parameter phases at ψ1, ψ2 = 0, we revisit Equation (8.20) which
implies that oscillators that become phase-locked satisfy |ωi | ≤ Kr21 , in which case
they relax to one of the two stable fixed points θi = θ∗(ωi ) or θ∗(ωi ) + π , where

θ∗(ω) = arcsin(ω/Kr21 )/2. (8.28)

These two fixed points correspond to the two clusters to which that the phase-
locked oscillators become entrained – specifically, phase-locked oscillators starting
near θ = 0 or π will end up at the fixed points θ∗(ω) or θ∗(ω) + π , respectively. The
phase-locked population is described by the density function

flocked(θ, ω) = ηδ(θ − θ∗(ω)) + (1 − η)δ(θ − θ∗(ω) − π), (8.29)

where the asymmetry parameter η appears and describes the fraction of phase-locked
oscillators in the θ = 0 cluster. On the other hand, oscillators satisfying |ωi | > Kr21
drift for all time and relax to the following stationary distribution

fdrift(θ, ω) =
√

ω2 − K 2r41

2π
[
ω + Kr21 sin(2ψ1 − 2θ)

] . (8.30)

Next, the order parameter z1 is given by the integral z1 = ∫∫
f (θ, ω, t)eiθdθdω,

which after inserting the density f as defined by Eqs. (8.29) and (8.30) reduces to

r1 = (2η − 1)

Kr21∫

−Kr21

√√√√1 +
√
1 − (ω/Kr21 )

2

2
g(ω)dω, (8.31)

where the contribution from the drifting oscillators vanishes due to the symmetry of
fdrift. Returning to r2, Eq. (8.26) implies that at steady state we have

r2 =
−� +

√
� + K 2r41

Kr21
. (8.32)

Thus, the macroscopic steady-state is described by Eqs. (8.31) and (8.32).
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Fig. 8.4 Synchronized states with type II coupling. For order parameters a r1 and b r2, the
synchronization branches predicted by Eqs. (8.31) and (8.32) plotted as solid curves and results
from simulations plotted in circles. Results correspond to asymmetries η = 1, 0.95, 0.9, 0.85, and
0.8, as well as the minimum branches [predictions for which are given in Eq. (8.35)]. Simulated
results use N = 105 oscillators (Modified and adapted from Ref. [11])

In Fig. 8.4 we overlay the analytical predictions of Eqs. (8.31) and (8.32) (solid
curves) with the synchronized states observed in simulations (circles) for the same
asymmetry parameter values η used in Fig. 8.3, noting excellent agreement. [Equa-
tion (8.31) was solved numerically to find r1.] We also investigate the smallest r1
and r2 supported by the system by, for each K , decreasing η until the synchronized
state is lost. These simulation results are plotted in black circles. Interestingly, while
these rmin

1 values decrease as K increases, rmin
2 appears to remain roughly constant.

In fact, we now use this surprising property to uncover the critical desynchronization
coupling strength as a function of the asymmetry parameter, i.e., Kc(η), or equiv-
alently, the minimum asymmetry parameter that supports a synchronized state as a
function of coupling, i.e., ηmin(K ). We begin by first inverting Eq. (8.32), obtaining
Kr21 = 2�r2/(1 − r22 ), which can be inserted into Eq. (8.31), yielding

√
2�r2
1 − r22

= √
K (2η − 1)

2�r2/(1−r22 )∫

−2�r2/(1−r22 )

√√√√1 +
√
1 − [

ω(1 − r22 )/2�r2
]2

2
g(ω)dω.

(8.33)

While Eq. (8.11) appears more complicated than Eq. (8.9), we note that the cou-
pling strength K has been entirely scaled out of the integral, appearing outside with
(2η − 1). We therefore conclude that if the quantities

√
K and 2η − 1 cancel one

another out, i.e.,
√
K (2η − 1) is constant, it follows that the solution r2 in Eq. (8.11)

is independent of K . We therefore ansatz that
√
K (2η − 1) = const. and use the ini-

tial condition ηmin(Kc(1)) = 1, where Kc(1) denotes the very first coupling strength
where a synchronized state is possible with η = 1, yielding
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Fig. 8.5 Abrupt desynchronization transition. The critical coupling strength Kc at which the
abrupt desynchronization transition occurs as a function of the asymmetry η. The solid curve
represents the theoretical prediction given by Eq. (8.36) and black circles represent observations
from direct simulation with N = 105 oscillators (Modified and adapted from Ref. [11])

ηmin(K ) =
√
Kc(1)

2
√
K

+ 1

2
. (8.34)

Equation (8.34) implies that along the minimum branch we have that
√
K (2η −

1) = √
Kc(1) ≈ 2.034, which can be used in Eq. (8.32) to compute the minimum

branch of r2, and in turn r1 via Eq. (8.31), yielding

rmin
1 (K ) ≈ 1.2120√

K
and rmin

2 (K ) ≈ 0.5290. (8.35)

These predictions are plotted as black curves in Fig. 8.4. Lastly, by inverting
Eq. (8.34) we find the critical coupling strength Kc as a function of η where the
abrupt desynchronization transition occurs, namely

Kc(η) ≈ 4.137

(2η − 1)2
. (8.36)

In Fig. 8.5 we plot the theoretical prediction of the abrupt desynchronization point
Kc(η) as a solid curve vs observations from direct simulations as black circles, noting
excellent agreement. Above this curve we observe extensive multistability and below
the curve only the incoherent state is stable. Some additional rigorous results that
agree and complement these may be found in Refs. [12, 13].

8.4 Effects of Network Structure

Having presented results on synchronization in the presence of higher-order interac-
tions in globally-coupled systems, we now turn our attention to the effects on net-
work structure. Herewe focus on the network analogue of the higher-order Kuramoto
model presented in Sect. 8.2. In the presence of a non-trivial network topology the
system dynamics are described by
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Fig. 8.6 Higher-order Kuramoto model: Real networks. The order parameter r as a function
of 1-simplex coupling K1 for the network analogue of the higher-order Kuramoto model for a
the Macaque brain network and b the UK power grid. In each case K1 is adiabatically increased
then decreased to highlight the bistable region. Higher-order coupling is given by a K2 = 1.6 and
K3 = 1.1 and b K2 = 2.2 and K3 = 3.3 (Modified and adapted from Ref. [7])

θ̇i = ωi + K1

〈k1〉
N∑

j=1

Ai j sin(θ j − θi ) + K2

2〈k2〉
N∑

j=1

N∑

l=1

Bi jl sin(2θ j − θl − θi )

+ K3

6〈k3〉
N∑

j=1

N∑

l=1

N∑

m=1

Ci jlm sin(θ j + θl − θm − θi ), (8.37)

where all dynamical variables and parameters are the same as in Sect. 8.2 except
for those that are network-dependent. In particular, he network structure (assumed
to be undirected and unweighted) is encoded in the 1-simplex adjacency matrix A,
2-simplex adjacency tensor B, and 3-simplex adjacency tensor C , where Ai j = 1 if
nodes i and j are connected by a link (and otherwise Ai j = 0), Bi jl = 1 if nodes
i , j , and l belong to a common 2-simplex (and otherwise Bi jl = 0), and Ci jlm = 1
if nodes i , j , l, and m belong to a common 3-simplex (and otherwise Ci jlm = 0).
For each node i we denote the q-simplex degree kqi as the number of distinct q-
simplexes node i is a part of, and 〈kq〉 is the mean q-simplex degree across the
network. Importantly, the division of each coupling strength by the respective mean
degree 〈kq〉 in Eq. (8.37) simply amounts to a rescaling of the respective coupling
strength, and moreover ensures that the mean-field approximation of the dynamics
of Eq. (8.37) are given precisely by Eq. (8.8).

We begin with direct simulations of Eq. (8.37) on two real-world networks: the
Macaque brain network [14] and the UK power grid [15]. In the Macaque brain



230 P. S. Skardal and A. Arenas

Fig. 8.7 Higher-orderKuramotomodel:Multiplexmodel. The order parameter r a as a function
of 1-simplex coupling K1 for higher-order coupling K2+3 = 0, 2, 5, 8, and 10 (blue to red) and
b as a function of higher-order coupling K2+3 for 1-simplex coupling K1 = −0.5, 1, 1.8, 2, and
2.2. Circles represent direct simulations on a network of N = 104 nodes with mean degrees 〈k1〉 =
〈k2〉 = 〈k3〉 = 30 and solid and dashed curves represent stable and unstable solutions of the mean
field approximation. (Modified and adapted from Ref. [7])

network we infer higher-order connection directly as triplets (i, j, l) and quadruplets
(i, j, l,m) that are fully-connected cliques. Using natural frequencies drawn from
the standard normal distribution, we set higher-order coupling strengths K2 = 1.6
and K3 = 1.1 and adiabatically increase and decrease K1 and plot the order param-
eter r as a function of K1 in Fig. 8.6a. For the UK power grid we follow a similar
protocol with K2 = 2.2 and K3 = 3.3, plotting the results in Fig. 8.6b, but given the
geographical nature of the network, we incorporate a triplet or quadruplet interaction
for any connected three- or four-path in the network. Importantly, in these real-world
topologies we see qualitatively similar dynamics as in the globally coupled system
presented in Sect. 8.2. We note, however, that while the results are qualitatively
similar, more quantitative predictions of the dynamics remain inaccurate.

Nextwe turn our attention to a generative networkmodel, in particular, amultiplex
model where interactions of different order are uncorrelated. Specifically, setting
target mean degrees 〈k1〉, 〈k2〉, and 〈k3〉, we place at random M1 = N 〈k1〉/2 1-
simplexes (i.e., links), M2 = N 〈k1〉/3 2-simplexes (i.e., filled triangles), and M3 =
N 〈k3〉/4 3-simplexes (i.e., filled tetrahedra). Note that in this model the interactions
of different orders are uncorrelated, so that, for example, a pair of nodes may be
part of a triangle even if there exists no link between them and vice versa. Thus,
this model may be thought of as a three-layer multiplex with 1-, 2-, and 3-simplexes
belonging to respective layers. In Fig. 8.7we plot the results of the dynamics of such a
multiplexmodel of N = 104 oscillatorswithmean degrees 〈k1〉 = 〈k2〉 = 〈k3〉 = 30,
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plotting r as a function of K1 for K2+3 = 0, 2, 5, 8, and 10 in panel (a) and as a
function of K2+3 for K1 = −0.5, 1, 1.8, 2, and 2.2 in panel (b). simulation results are
plotted in circles with solid curves representing the prediction from the mean-field
approximation, i.e., Eq. (8.18), showing strong agreement.

8.5 Outlook and Future Work

We now close with a brief outlook to future work. As we have seen in this chapter,
the presence of higher-order interactions in systems of coupled oscillators intro-
ducesmany newdynamics effects in synchronization dynamics. Even in the globally-
coupled case there aremany avenues to explore that promise rich dynamics. Examples
include (but are certainly not limited to) the incorporation of time delays, phase lags,
positive/negative coupling, external forcing—all of which have profound effects on
the collective dynamics in the absence of higher-order interactions. For the higher-
order Kuramoto model studied in Sect. 8.2 the viability of the Ott-Antonsen ansatz
promises to be very useful, but the technical peculiarities of type II coupling com-
plicate the analysis of this future work.

Further progress in the case of nontrivial network topologies is also needed. One
such case would be the presence of modular structure in networks and how it affects
the dynamics explored above. More generally, however, the generic effects of non-
trivial network structures are poorly understood. In Sect. 8.4 we saw that while
the real networks displayed qualitatively similar dynamics as the globally-coupled
system, quantitative predictions were poor. On the other hand, the dynamics of the
multiplex model were well-captured by the mean field analysis, suggesting that cor-
relations between interactions of different orders plays in important role. Another
broad question lies in the effect of network (i.e., degree) heterogeneity and its affect
on collective dynamics, most importantly the abrupt transitions.

Lastly, the multistability induced by type II coupling studied in Sect. 8.3 deserves
special mention. This phenomenon allows an oscillator system to store information
and memory by treating each oscillator as a bit: 0 or 1 if the oscillator is in the θ = 0
orπ cluster, respectively. Relatively small perturbations and parametermodifications
then allow the system to represent a different string, i.e., piece of information. In the
presence of a network topology these effects remain, although the supported (i.e.,
stable) states changes. Preliminary work [16] shows that sparser networks support
fewer states, but the overall effect of network structure remains poorly understood.
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Chapter 9
Multiorder Laplacian for Kuramoto
Dynamics with Higher-Order
Interactions

Maxime Lucas, Giulia Cencetti, and Federico Battiston

Abstract Many real-world systems are characterised by higher-order interactions,
where influences among units involve more than two nodes at a time, and which can
significantly affect the emergence of collective behaviors. A paradigmatic case is
that of synchronization, occuring when oscillators reach coherent dynamics through
their mutual couplings, and which is known to display richer collective phenomena
when connections are not limited to simple dyads. Here, we consider an extension
of the Kuramoto model with higher-order interactions, where oscillators can interact
in groups of any size, arranged in any arbitrary complex topology. We present a new
operator, the multiorder Laplacian, which allows us to treat the system analytically
and that can be used to assess the stability of synchronization in general higher-order
networks. Our spectral approach, originally devised for Kuramoto dynamics, can
be extended to a wider class of dynamical processes beyond pairwise interactions,
advancing our quantitative understanding of how higher-order interactions impact
network dynamics.

9.1 Introduction

Synchronization, i.e. the emergence of order in populations of oscillators, is ubiq-
uitous in nature [1, 2], from the brain [3] to circadian rhythms [4] and the cardio-

This chapter is built on the exposition of [27], in particular with respect to the theoretical
formalism. Our presentation here follows a different order and has a more didactic style. We also
added new examples such as the discussion of synchronization in random simplicial complexes.
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vascular system [5, 6]. Over the years network science has proven crucial to under-
stand how the emergence of collective behavior is governed by the underlying net-
work of interactions [7, 8], from full synchrony to more complex phenomena such
as the appearance of explosive [9, 10] and cluster synchronization [11]. In networks
the systems units are represented by nodes and their interactions encoded in links.
For this reason, couplings and feedbacks among the different agents are intrinsically
limited to dyadic relationship. Yet, in many real-world social and biological systems
interactions take place among three or more units at a time, highlighting a need for
different mathematical frameworks.

Networks beyondpairwise interactions have recently been the focus ongreat atten-
tion in the literature [12]. Higher-order interactions can significantly impact the emer-
gent behaviors of diverse dynamical processes [13], including diffusion [14], social
contagion [15], ecological [16] and cooperative [17] dynamics. For systems of oscil-
lators, non-dyadic couplings were shown to affect synchronization, for instance pro-
moting explosive transitions [18–20] and cluster synchronization [21, 22]. Higher-
order interactions terms were also shown to arise naturally from higher-order phase
reduction [23, 24], and were considered in the inverse approach [25, 26]. Yet, a
general analytical framework for synchronization in higher-order networks has long
been missed.

In this chapter, following the ideas originally proposed in [27], we introduce a
novel operator which allows us to characterize the stability of synchronization in
presence of higher-order interactions of any order and arbitrary complex topology.
To this scope, we present a generalization of the Kuramoto model of identical phase
oscillators on hypergraphs. Traditionally, the stability of the fully synchronized state
is assessed by spectral analysis of the Laplacian matrix. Here, we extend such pro-
cedure in a natural way by defining a multiorder Laplacian which takes into account
all orders of interactions and whose eigenvalues unequivocally determine the sta-
bility of the synchronized state. We apply our framework to two case studies: (i)
an hypergraph with all-to-all interactions at all orders, for which the eigenvalues
can be derived fully analytically, and (i i) a generalization of Erdős-Rényi graphs
where each node is randomly connected to the other nodes via both first and second
order hyperedges. For each case, we show how the stability of synchronisation is
altered by the presence of higher-order interactions. Given the wealth of applica-
tions of Laplacians operators, our multiorder Laplacian opens up new possibilities
for formal analyses of the structure and dynamics of higher-order systems.

9.2 Kuramoto with Higher-Order Interactions

We study the effect of generalized higher-order interactions in a population of N
identical phase oscillators. Each node i is associated to a phase θi , whose dynamical
evolution reads:



9 Multiorder Laplacian for Kuramoto Dynamics … 235

θ̇i = ω + γ1

〈K (1)〉
N∑

j=1

Ai j sin(θ j − θi )

+ γ2

2!〈K (2)〉
N∑

j,k=1

Bi jk sin(θ j + θk − 2θi )

+ γ3

3!〈K (3)〉
N∑

j,k,l=1

Ci jkl sin(θ j + θk + θl − 3θi )

+ ...

+ γD

D!〈K (D)〉
N∑

j1,..., jD=1

Mi j1... jD sin

(
D∑

m=1

θ jm − D θi

)
. (9.1)

System (9.1) is a generalization of the canonicalKuramotomodel [28] to higher-order
interactions of any order d = 1, . . . , D, Indeed, the first two terms on the right-hand
side correspond to the traditional Kuramoto, where pairs of oscillators are coupled,
with strength γ1, via a sinusoidal and diffusive function. The (undirected) adjacency
matrix A determines the structure of 2-oscillator interactions: Ai j = 1 if there i and j
are coupled, i.e. there is a link, between them, and Ai j = 1 otherwise,ω is the natural
frequency of the oscillators, and 〈K (1)〉 is the pairwise average degree. The following
terms refer instead to the higher-order interactions taking place in the system, with
γ2, . . . , γD the coupling strengths at each higher order, while 〈K (2)〉, . . . , 〈K (D)〉 rep-
resent the average degrees at order 2, . . . , D (explicitly defined in the next section as
natural extensions of the pairwise degree). The topology is encoded in the adjacency
tensorsM = {Mi j1... jD } just like Ai j = 1 if there is a pairwise interaction (i, j) but 0
otherwise, Bi jk = 1 if there is a triplet interaction (i, j, k) but 0 otherwise, and sim-
ilarly for all orders. Note that the interactions are assumed undirected, such that the
adjacency tensors are invariant under any permutation of their indices. These adja-
cency tensors encode the most general topology of higher-order interactions which
can be formalized as simplicial complexes, or more general hypergraphs.

Let us emphasize two features of model (9.1). First, the coupling function at each
order d is symmetric with respect to i , i.e. it is invariant for any permutation of the
remaining indices. This is the most natural generalization of the pairwise Kuramoto
coupling function. Other possible choices, e.g. sin(2θ j − θk − θi ) at order 2, can
also be treated with the multiorder Laplacian framework we will discuss in the
following (see [27] for details). Second, the normalization factors 〈K (d)〉 at each
order d ensure that the total contributions of each order d can be compared across
orders. In other words, even if a given hypergraph contains many more 2-hyperedges
than 1-hyperedges, the contribution of orders 1 and 2 can be compared, and will
be of equal relative strength if γ1 = γ2. Finally, when we deal with a hypergraph it
is sometimes convenient to look at the interactions at each order d (d-hyperedge)
separately, rather than at the full system (9.1). This can be achieved by turning on one
order of interaction at a time, while all others are turned off. For example, a classical
network with pairwise interaction corresponds to the pure 1-hyperedge version of the
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Fig. 9.1 Oscillators with higher-order interactions on simplicial complexes. Example of a
simplicial complex and its building blocks: in the top left sketch only edges (1-simplices) are
depicted,which can be encoded inLaplacian L(1). The topmiddle and top right sketches respectively
represent the triangles (2-simplices) and the tetrahedra (3-simplices) of the same simplicial complex,
described by L(2) and L(3). We recall that a d-simplex represents a (d + 1)-oscillator interaction.
The bottom sketch shows all orders combined, as encoded in the multiorder Laplacian L(mul)

full hypergraph, i.e. γ1 �= 0 but γd = 0 for d �= 1. Similarly, the pure 2-hyperedge
case is that with only 3-oscillator interactions, i.e. γ2 �= 0 but γd = 0 for d �= 2. In
general, we have a pure d∗-hyperedge when γd∗ �= 0 but γd = 0 for d �= d∗. All these
cases are graphically represented in Fig. 9.1. We will use such a decomposition in
the rest of the paper.

Model (9.1) admits a fully synchronized solution where each oscillator i evolves
according to θi (t) = ωt . We are interested in analyzing the stability of this fully
synchronized state. It is convenient to move to the rotating reference frame ψi =
θi − ωt , which is equivalent to applying the transformation θi �→ ψi and ω �→ 0 to
the original system (9.1). In this new reference frame, the synchronized solution is
given by ψi (t) = 0 for all i = 1, . . . , N . By considering a heterogeneous and time-
dependent perturbation δψi (t) to this state and inserting it in system (9.1) with the
new reference frame, we obtain the linearized dynamics:
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δψ̇i = + γ1

〈K (1)〉
N∑

j=1

Ai j (δψ j − δψi )

+ γ2

2!〈K (2)〉
N∑

j,k=1

Bi jk(δψ j + δψk − 2δψi )

+ γ3

3!〈K (3)〉
N∑

j,k,l=1

Ci jkl (δψ j + δψk + δψl − 3δψi )

+ ...

+ γD

D!〈K (D)〉
N∑

j1,..., jD=1

Mi ji ... jD

(
D∑

m=1

δψ jm − D δψi

)
. (9.2)

Let us observe that the same equations could also be derived by assuming a different
(not necessarily sinusoidal) shape of the coupling functions in the original system,
via the linearization mechanism. The linear stability of the synchronized state can
be determined by studying the solution of this system of equations. In a tradition-
ally pairwise framework, the conditions under which the perturbations tend to zero
(stable synchronized state) are typically assessed by using the so-called Laplacian
formalism.We therefore need to generalize this approach by introducing a Laplacian
operator which takes into account all orders of interactions, which will allow us to
fully characterize the stability of system (9.1).

9.3 Multiorder Laplacian Framework

In systems of oscillators coupled in a dyadic way only, the linearized dynamics such
as Eq. (9.2) can be written using the pairwise Laplacian. The solutions to this linear
system can then be obtained in terms of the eigenvalues of that Laplacian. Various
generalizations of the pairwise Laplacian to higher-order interactions have been
proposed in the literature, from the simplest versions for uniform hypergraphs [29,
30], tomore complicated ones associated to simplicial complexes [31–33] andHodge
Laplacians [34, 35], tomention a few. Thesemodels include higher-order interactions
by transferring the role that nodes have in the traditional setting to higher-order
structures (edges, triangles, tetrahedra, etc.). Hence the higher-order Laplacians can
describe not only connections among nodes but also among edges, among triangles,
and so on.

Bycontrast, herewe study the synchronizationof oscillators present onnodes only,
which requires a different solution. We hence present an alternative generalization of
the Laplacian which allows to mimic as closely as possible the standard procedure
to solve the linearized system (9.2). This is a multiorder Laplacian, since it is able
to simultaneously take into account all different orders of interactions. As described
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in the next section, it is defined as a weighted sum of the Laplacians associated to
the single orders of interactions. For this reason, before introducing the multiorder
Laplacian, we first need to define a Laplacian operator for each order d.

9.3.1 Laplacians of Order d and Multiorder Laplacian

We start by recalling the classical Laplacian formalism for pairwise interactions, i.e.
1-simplex interactions, defined as L(1)

i j = K (1)
i δi j − A(1)

i j . Here, we write A
(1)
i j and Ai j

interchangeably to refer to the first-order adjacency matrix and K (1)
i = ∑

j=1 Ai j is
the degree of order 1 of oscillator i , i.e. the number of pairwise (1-simplex) interac-
tions it has with other oscillators, and δi j denotes the Kronecker delta. For example,
in Fig. 9.1, pairwise interactions are shown in the top left sketch, represented as
dark brown links. We focus on pure first-order interactions in system (9.1), which is
equivalent to imposing γd = 0 for d ≥ 2. We can use the definitions above to rewrite
system (9.2):

δψ̇i = − γ1

〈K (1)〉
N∑

j=1

L(1)
i j δψ j . (9.3)

Let us now generalize this formalism to the case of 3-oscillator interactions, i.e.
those interactions represented by filled blue triangles in Fig. 9.1. By switching off all
interactions of other orders, γd = 0 for all d �= 2 in Eq. (9.2), we can write

δψ̇i = γ2

2!〈K (2)〉
N∑

j,k=1

Bi jk(δψ j + δψk − 2δψi )

= γ2

〈K (2)〉
N∑

j,k=1

Bi jk(δψ j − δψi ), (9.4)

by using the symmetry of the adjacency tensor B and of the coupling function with
respect to indices j and k. In fact, this symmetry allows us to write the 2-simplex
interaction of 3 phases as 2 identical terms of the difference of only 2 phases. The
phase difference in expression (9.4) is similar to that of the pairwise case, and this
allows us to naturally generalize the Laplacian formalism to 2-simplex interactions.

In parallel, we need to generalize two important 1-simplex quantities to 2-simplex
interactions: first, the 2-degree K (2)

i of node i , i.e. the number of distinct 2-simplices
node i is part of, which can be written as K (2)

i = 1
2!

∑N
j,k=1 Bi jk , where the factor 2!

ensures that each 2-simplex is counted only once. For example, in the middle left
sketch of Fig. 9.1, the central node has a degree of order 2 of K (2)

i = 4. Then, we
define the adjacency matrix of order 2, whose entries A(2)

i j represent the number of

2-simplices shared by the pair (i, j), as A(2)
i j = ∑N

k=1 Bi jk . This is a natural gener-
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alization of the usual pairwise adjacency matrix A. Indeed, A(2)
i j = n if i and j are

part of n common (but distinct) 2-simplex interactions, and 0 otherwise. With these
definitions in hand, we can re-write the 2-simplex interaction term (9.4) as follows

δψ̇i = γ2

〈K (2)〉

⎡

⎣
N∑

j=1

A(2)
i j δψ j − δψi2!K (2)

i

⎤

⎦ = − γ2

〈K (2)〉
N∑

j=1

L(2)
i j δψ j , (9.5)

where we obtained the last member by defining the Laplacian of order 2: L(2)
i j =

2K (2)
i δi j − A(2)

i j , as a natural generalization of the usual Laplacian of order 1.
Now, we briefly show how to rewrite the 3-simplex interactions in a similar way,

i.e. those interactions represented by filled light brown tetrahedra in Fig. 9.1 (bot-
tom left sketch). Although it is very similar to the 2-simplex case, the case of 3-
simplices better prepares us for the next step: the general d-simplex case. We switch
off all interactions of other orders, i.e. γd = 0 for all d �= 3 in Eq. (9.2), and it is
simple to rewrite the 3-simplex interactions in terms of differences of two phases:
δψ̇i = γ3

2!〈K (3)〉
∑N

j,k,l=1 Ci jkl(δψ j − δψi ), where the factor 2! = 3!/3 comes from the
intermediate step where the expression is written as the sum of 3 identical terms.
Similarly to the 2-simplex case, we can define the degree of order 3 for node i :
K (3)

i = 1
3!

∑N
j,k,l=1 Ci jkl as the number of distinct 3-simplex interactions it is part

of; the adjacency matrix, A(3)
i j = 1

2!
∑N

k,l=1 Ci jkl as the number of shared 3-simplices

including nodes i and j , and finally the Laplacian L(3)
i j = 3K (3)

i δi j − A(3)
i j . It is there-

fore possible to use the 3-Laplacian to rewrite the 3-simplex term of the linearized
system: δψ̇i = − γ3

〈K (3)〉
∑N

j=1 L
(3)
i j .

We are now ready to show that our generalized Laplacian formalism can be used
to describe higher-order interactions of any order d. We switch off all interactions of
other orders, γd ′ = 0 for all d ′ �= d in Eq. (9.2), and rewrite the d-simplex interactions
as the differences of two phases

δψ̇i = + γd
d!〈K (d)〉

∑N
j1,..., jd=1 Mi j1... jd

(∑d
m=1 δψ jm − d δψi

)

= γd d
d!〈K (d)〉

∑N
j1,..., jd=1 Mi j1... jd (δψ j − δψi ). (9.6)

Similarly to the previous lower orders, we now define at order d the degree, K (d)
i =

1
d!

∑N
j1,..., jd=1 Mi j1... jd ; the adjacency matrix A(d)

i j = 1
(d−1)!

∑N
j2,..., jd=1 Mi j j2... jd ; and

the Laplacian L(d)
i j = dK (d)

i δi j − A(d)
i j . Hence, similarly as before, we can simply

rewrite the d-simplex interaction term

δψ̇i = γd d

d!〈K (d)〉
N∑

j1,..., jd=1

Mi j1... jd (δψ j − δψi ) = − γd

〈K (d)〉
N∑

j=1

L(d)
i j δψ j . (9.7)
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This shows that, at any order d, the dynamics caused by interactions between d + 1
oscillators is determined by the matrix L(d). Such a matrix fulfills the requirements
necessary to be a Laplacian: it is positive semi-definite, its rows sum to zero and it
is symmetric for undirected networks. Its eigenvalues are hence non-negative and
include at least one zero, aswe shall see in next section, and they are real for undirected
networks. The definitions of the degree, adjacency matrix, and Laplacian matrix of
orderd are natural generalizations of their usual pairwise counterparts. Indeed, K (d)

i is
the number of d-simplex interactions node i is part of, the adjacency matrix A(d)

i j = n
where n is the number of distinct d-simplex interactions shared by nodes i and j .
Finally, L(d)

i j is defined in terms of A(d)
i j and K (d)

i mimicking how L(1)
i j is defined in

terms of A(1)
i j and K (1)

i , up to factor d. Note that the usual pairwise definitions are
recovered for d = 1.
We note that all single order Laplacians are defined as matrices of the same size
N × N , with N the number of nodes, as they all focus on node dynamics, separating
the contributions to the couplings according to the order of interactions. Now that we
can cast each orderd into thisLaplacian framework,we show that the full system (9.1)
can also be rewritten with a single multiorder Laplacian operator.

Let us consider now the original system (9.1) with all interactions at all orders
switched on, γd �= 0 for all d. We are now able to write the linearized system as

δψ̇i = −
N∑

j=1

L (mul)
i j δψ j , (9.8)

with

L (mul)
i j =

D∑

d=1

γd

〈K (d)〉 L
(d)
i j (9.9)

where D is themaximumorder of interactions in the hypergraph.We have defined the
multiorder Laplacian L (mul)

i j as a weighted sum of the Laplacian matrices of order d.
The weight given to each order is proportional to γd , and normalized by the average
degree of order d. As we discuss in the following, the spectrum of the multiorder
Laplacian controls the stability of a dynamical systems of coupled oscillators with
higher-order interactions.

9.3.2 Stability and Lyapunov Exponents

The synchronized state of our system of oscillators is stable if the perturbation δψi

on each node i converges to zero. To assess the overall stability, let us first con-
sider interactions at the pure order d. The temporal evolution of the perturbation
is given by solving Eq. (9.7) and this can be done by introducing Laplacian eigen-
values �(d)

α and eigenvectors φ(d)
α defined by

∑N
j=1 L

(d)
i j (φ(d)

α ) j = �(d)
α (φ(d)

α )i , with
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α = 1, . . . , N . Indeed, this eigenbasis can be used to project the perturbation vec-
tor δψi (t) = ∑N

α=1 cα exp(λ(d)
α t) φ(d)

α , where the cα are real constants and λ(d)
α the

Lyapunov exponents. Those define the condition for stability since the perturbations
tend to zero over time if all values λ(d)

α are negative. The Lyapunov exponents of the
synchronized state can be found by plugging this solution into system (9.7), which
allows to decouple our system of N equations, and can be hence written as:

λ(d)
α = − γd

〈K (d)〉�
(d)
α . (9.10)

The Laplacian eigenvalues are non-negative by definition so that if all γd > 0
(attractive coupling), the synchronized state is always stable, with 0 = λ

(d)
1 > λ

(d)
2 ≥

· · · ≥= λ
(d)
N .

In the multiorder system (9.8) the stability of the synchronized equilibrium
depends on the interplay of all different orders, as encoded in the multiorder Lapla-
cian. Notice that even though the multiorder Laplacian is the weighted sum of each
d-Laplacian, its eigenvalues cannot be obtained analytically from the singular spectra
andwewill need to numerically compute them.An exception to this is represented by
the case with all-to-all interactions, where the d-Laplacian eigenvalues can instead
be summed to obtain the multiorder spectrum and the system can be characterised
in a fully analytical manner. We present such case in Sect. 9.4.1. However in general
we need to compute the spectrum of L(mul) directly from the matrix to obtain the N
Lyapunov exponents:

λ(mul)
α = −�(mul)

α . (9.11)

Since the multiorder Laplacian has all the characteristics of a traditional Laplacian,
also being semi-positive definite if the coupling is attractive, again all the eigenvalues
are non-negative. In the multiorder framework too the synchronized state is hence
stable. The Lyapunov exponent that determines the long-term behavior is the second
Lyapunov exponent, λ

(mul)
2 , i.e. the smallest non-zero one. Its value determines the

resilience of the system to perturbations, i.e. how fast the system comes back to the
stable state after a perturbation. In particular, the more negative the λ

(mul)
2 , the more

stable the synchronized state.

9.4 Full Synchrony of Kuramoto in Simplicial Complexes

In this section we apply the general framework exposed above to two specific sim-
plicial complex topologies. The first case is a simplicial complex where all the nodes
are connected to each other by means of all the possible simplices. This special
case, that we call all-to-all higher-order network, is analytically solvable and we will
provide a formula for the Lyapunov exponents. The second case is the simplicial
generalization of an Erdős-Rényi network where each node is randomly connected
to the other nodes via 1-simplexes and 2-simplexes.
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9.4.1 All-to-all Higher-Order Networks

All-to-all coupling, also called global coupling, is a traditional network topology
where all possible pairwise interactions take place.Here,we consider a generalization
of this coupling scheme to higher-order interactions; we refer to it as higher-order all-
to-all. In this scheme, all possible higher-order interactions occur among the nodes.
The homogeneity of the higher-order network with that coupling scheme makes it
mathematically tractable. In fact, it has been investigated analytically in a few studies,
often focusing on cluster states [18, 19, 22, 36]. Here, instead, we consider the case
of full synchrony and present a fully analytical description of its stability.

In the higher-order all-to-all setting, the linearized version of system (9.1) reads

δψ̇i = + γ1

〈K (1)〉
N∑

j=1

(δψ j − δψi )

+ γ2

2!〈K (2)〉
N∑

j,k=1

(δψ j + δψk − 2δψi )

+ . . .

+ γd

d!〈K (d)〉
N∑

{ j2,..., jd+1}=1

⎛

⎝
d+1∑

jm=2

δψ jm − d δψi

⎞

⎠ . (9.12)

Now that we have defined the coupling scheme,we can explicitlywrite themultiorder
Laplacian.

9.4.1.1 Higher-Order Degree and Adjacency Matrices

Before explicitlywritingdown themultiorderLaplacian,weneed to derive the higher-
order degrees and adjacency matrices at order d. In a traditional all-to-all setting, the
pairwise adjacency matrix has all entries equal to one, but 0 on the diagonal, which
can be written A(1)

i j = 1 − δi j . At order d, the generic entry (i, j) of the adjacency

matrix A(d)
i j is equal to the number of distinct d + 1-oscillator interactions including

both oscillators i and j , as described above. Hence, the matrix is simply given by
the number of ways to pick d − 1 oscillators among the N − 1 oscillators left. This
number is givenby the combinatorics formula A(d)

i j = (N−2
d−1

)
(1 − δi j ),where (1 − δi j )

ensures that entries with i = j are equal to zero. Similarly, the degree of order d is
equal to the number of d + 1-oscillator interactions that oscillator i is part of. Hence,
it is given by the number of ways to pick d oscillators out of the N − 1 left, which
can be written K (d)

i = (N−1
d

)
in combinatorics notation.

Additionally, the following identities will prove useful in the next section, to relate
the quantities at order d to their traditional counterparts (at order 1)
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A(d)
i j = [(N − 2) · · · (N − d)/(d − 1)!] A(1)

i j , (9.13)

K (d)
i = [(N − 2) · · · (N − d)/d!] K (1)

i . (9.14)

In the higher-order all-to-all setting, all nodes have the same degree of order d. Hence,
in this section, we write K (d)

i and K (d) interchangeably.

9.4.1.2 Higher-Order Laplacians Are Proportional to the Traditional
Pairwise Laplacian

The pairwise Laplacian (d = 1) of the higher-order all-to-all case can be obtained
from its definition: L(1)

i j = K (1)
i j δi j − A(1)

i j = Nδi j − 1. We can now write the higher-
order Laplacian at order d in terms of this pairwise Laplacian, as follows:

L(d)
i j = dK (d)

i δi j − A(d)
i j

= [(N − 2) · · · (N − d)/(d − 1)!] L(1)
i j (9.15)

= d K (d)

N − 1
L(1)
i j

With this equation, we have shown that the Laplacian at order d is proportional
to the pairwise all-to-all Laplacian. More specifically, it grows with the order d
but decreases with the number of nodes N . This also holds true for the multiorder
Laplacian, which now reduces to

L (mul)
i j =

(
N−1∑

d=1

γd d

N − 1

)
L(1)
i j . (9.16)

Westress that this linear relationbetween the higher-orderLaplacians and that at order
1 is due to the homogeneity of the coupling scheme. Even though complex coupling
scheme yield more complex forms of higher-order Laplacian, this analytical formula
can serve as a limit case to help us understand more complex settings for which only
numerical insights can be obtained.

9.4.1.3 Spectrum and Stability

The simplicity of the mathematical formulation of the higher-order all-to-all Lapla-
cian at each order allows to find an analytical expression for the eigenvalues, and
hence the Lyapunov exponents which determine the stability of the synchronized
solution. In this particular case the traditional pairwise Laplacian shapes the Lapla-
cian spectrum at each order d, and for higher-order all-to-all networks the spectrum
of L(1) is simply given by
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�
(1)
1 = 0 �

(1)
2,...,N = N . (9.17)

It is easy to derive from this the Lyapunov exponents of each order d by simply
using Eqs. (9.10) and (9.15), and the fact that the eigenvalues linearly scale with the
Laplacian. We obtain:

λ
(d)
1 = 0 λ

(d)
2,...,N = −γd d

N

N − 1
. (9.18)

This expression allows to describe the stability around synchronization, represented
by the Lyapunov exponents and in particular by λ

(d)
2 . We first of all observe that, as

expected, the Lyapunov exponents are more negative for larger values of γd , enhanc-
ing stability. Then, this expression also says that the stability does not depend on the
size N of the system if it is large enough. Lastly, it appears clear that interactions
of higher orders d stabilize the synchronized state more (more negative Lyapunov
exponents as d increases). This means that a system with pure 2-simplex interac-
tions converges faster to synchronization than one with pure pairwise ones. This is
true despite each order being given an equal weight through the normalization in
system (9.12).

Then, combining all orders, we can obtain the multiorder Lyapunov exponents:

λ
(mul)
1 = 0 λ

(mul)
2,...,N = − N

N − 1

N−1∑

d=1

γd d. (9.19)

Let us notice that the Lyapunov spectrum of the full system reduces to a linear
combination of those at each pure order. We remark that this is possible because of
the absence of a complex topology, for which instead the aggregated spectrumwould
be determined by a nonlinear combination of each order.

9.4.2 Higher-Order Interactions in Erdős-Rényi networks

As a second example, we consider system (9.1) on randomly generated simplicial
complexes, with interactions up to order 2. The 2-parameter mechanism to generate
them, introduced in [15], is as follows. First, generate an Erdős-Rényi pairwise
network of N nodes, where edges are created between any two nodeswith probability
p1. Second, for any three nodes, generate a 2-simplex (filled triangle)with probability
p2. Then, if some edges of these 2-simplices were not already created in step 1, add
them to make the structure a simplicial complex. Conveniently, Iacopini et al. [15]
derived a formula that links the average degrees of order 1, 〈K (1)〉, and 2, 〈K (2)〉, to
the two parameters p1 and p2. For this reason, it is possible to directly choose the
these two average degrees to generate such simplicial complexes.



9 Multiorder Laplacian for Kuramoto Dynamics … 245

a b c

Fig. 9.2 Lyapunov spectra in random simplicial complexes with (〈K (1)〉, 〈K (2)〉) values of (a) (25,
10) and (b, c) (40, 10). (a, b) Respective Lyapunov spectra of order 1 (brown) and 2 (blue), divided
by their respective order. (c) Lyapunov spectrum of the multiorder Laplacian (red) compared to the
sum (grey) of the Lyapunov exponents of orders 1 and 2 from panel (b)

Figure9.2 shows the various Lyapunov spectra associated to two instances of
random simplicial complexes. The first has been assigned a first order degree
〈K (1)〉 = 25, in Fig. 9.2a, and the second 〈K (1)〉 = 40, in Fig. 9.2b, while both have
second order degree 〈K (2)〉 = 10. In Fig. 9.2a, b, we show the Lyapunov spectra of
order d = 1 (brown) and d = 2 (blue), normalized by their respective order d. These
spectra are computed semi-analytically: they are defined by the generic analytical
formulae (9.10) and (9.11) in which we numerically compute the eigenvalues of the
Laplacian matrices. They appear to scale with their order d just as in the all-to-all
case of last section. We also see that changing the number of pairwise interactions
between Figs. 9.2a and 9.2b changes the Laplacian at order 1 but not at order 2, as
expected. The tiny differences between the two spectra at order 2 (blue) exist just
because they are two independent random simplicial complexes. Finally, we com-
plete Fig. 9.2b by showing in Fig. 9.2c themultiorder Lyapunov spectrum (red) for the
same simplicial complex, i.e. combining all orders. First, note that the exponents of
the multiorder Laplacian are larger (in absolute value) than those obtained when only
taking pairwise interactions into account (brown in Fig. 9.2b). This is because the
(attractive) interactions at each order contribute to stabilizing the synchronized state.
Besides, their respective contributions do not in general add linearly, as shown by
the difference with the sum of the exponents at order 1 and 2 (red) and the multiorder
exponents (red), except from special cases like the one previously described.

9.5 Summary and Conclusions

In this chapter, we presented the multiorder Laplacian: a framework to assess the
stability of full synchrony in systems of coupled oscillators with higher-order inter-
actions at any order and with arbitrary topology. We showed how it can be applied
to real cases, considering two particular synthetic higher-order topologies. First, we
discussed an all-to-all scheme, where all computations can be derived analytically,
which gives us insight into the mechanisms at play. Second, we investigated ran-
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dom simplicial complexes, where the spectra of the multiorder Laplacian receives
non-trivial contributions from the single orders. Our code to compute the multiorder
Laplacian and Laplacians at each order in a hypergraph is available at https://github.
com/maximelucas/multiorder_Laplacian. In the next chapter, the multiorder Lapla-
cian is applied to different dynamical systems, showing how it can be used to extend
the ideas of the Master Stability Function approach to higher-order systems [37].

Finally, an adjusted version of themultiorder Laplacian with a fixed coupling bud-
get distributed between pairwise and higher-order interactions has been introduced
in Ref. [38], showing that in such a case hyperedges tend to enhance synchronization
in random hypergraphs, but have the opposite effect in simplicial complexes.
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Chapter 10
The Master Stability Function
for Synchronization in Simplicial
Complexes

Lucia Valentina Gambuzza, Francesca Di Patti, Luca Gallo, Stefano Lepri,
Miguel Romance, Regino Criado, Mattia Frasca, Vito Latora,
and Stefano Boccaletti

Abstract The collective behaviors of a complex system are determined by the intri-
cate way in which its components interact. In this chapter we discuss a novel and gen-
eral analytical framework to study synchronized states in systems ofmany dynamical
unitswithmany-body interactions,which allows to account for themicroscopic struc-
ture of the interactions at any possible order. In such a framework, the N dynamical
units of a system are associated to the N nodes of a D dimensional (D ≥ 1) simplicial
complex, whose simplices represent the structure of the different types of coupling.
Namely, 1-simplices (links) describe pairwise interactions, 2-simplices (triangles)
describe three-body interactions, 3-simpliced (tetrahedra) four-body interactions,
and so on. Such a description generalizes that of a complex network of dynamical
units, and reduces to it in the particular case of D = 1 simplicial complexes. Within
this framework, we study the onset of full synchronization and the conditions for
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the stability of a synchronized state in systems of identical dynamical units. We
show that, under certain assumptions on the network topology or on the form of the
coupling, these conditions can be written in terms of a Master Stability Function
that generalizes the existing results valid for pairwise interactions (i.e. networks)
to the case of complex systems with the most general possible architecture. As an
example of the potential utility of the proposed method we study the dynamics of
D = 3 simplicial complexes of chaotic systems (Rössler oscillators) and we inves-
tigate how the stability of synchronized states depends on the interplay between the
control parameters of the chaotic units and the structural properties of the simplicial
complex.

10.1 Introduction

Synchronization is an ubiquitous phenomenon in natural and engineered systems. It
corresponds to the emergence of a collective behavior wherein the system compo-
nents eventually adjust themselves into a common evolution in time. [1, 2] Various
studies have shed light on the intimate relations between the topology of a networked
system, its synchronizability, and the properties of the synchronized states. In par-
ticular, synchronous behaviors have been observed and characterized in small-world
[3], weighted [4], multilayer [5], and adaptive networks [6, 7]. Outside complete syn-
chronization, moreover, other types of synchronization have been revealed to emerge
in networked systems, including remote synchronization [8, 9], cluster states [10]
and synchronization of group of nodes [11], chimera [12, 13], Bellerophon states
[14, 15], and Benjamin-Feir instabilities [16–18]. Finally, the transition to synchro-
nization has been shown to be either smooth and reversible, or abrupt and irreversible
(as in the case of explosive synchronization, resembling a first-order like phase tran-
sition [19]).

While attempts of extending to p−uniform hypergraphs the analysis of complete
synchronization of dynamical systems have been recently made [20], most studies
of systems interplaying through higher order interactions in simplicial complexes
have focused on the case of the Kuramoto model [21, 22]. This is, in fact, a specific
model, wherein each unit of the ensemble i = 1, . . . , N is a phase oscillator and is
characterized by the evolution of its real valued phase θi (t) ∈ [0, 2π ]. The model has
been studied in all different sorts of network topologies with possible applications
to biological and social systems [2, 21], and recently extensions of it have been
proposed that include higher-order interactions. Namely, it has been shown that the
Kuramotomodelmay exhibit abrupt desynchronizationwhen three-body interactions
among all the oscillators are added to [23], or completely replace [24], the all-to-all
pairwise interactions of the original model. Similar results have been obtained with a
non-symmetric variation of the Kuramoto model in which the microscopic details of
the interactions among the phase oscillators are described in the form of a simplicial
complex [25]. A different approach has been proposed by Millán et al., who have
formulated a higher-order Kuramoto model in which the oscillators are placed not
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on the nodes but on higher-order simplices, such as links, triangles, and so on, of a
simplicial complex [26].

In Chap.9, an extension of the Kuramoto model to interactions of any order,
which is still analytically tractable because all the oscillators have identical frequen-
cies, has been discussed [27]. In this chapter, we move from the analysis of a specific
model to the study of the most general ensemble of, yet identical, dynamical sys-
tems, organized on the nodes of a simplicial complex of any order, and interacting
via any coupling functions. In such a general context, we show that complete syn-
chronization in systems of identical units exists as an invariant solution, as far as the
coupling functions cancel out. Furthermore, we give the necessary condition for it
to be observed as a stable state and then we show that such condition can be written
in terms of a Master Stability Function, a method initially developed in Ref. [28] for
pairwise coupled systems, and later extended in many ways to complex networks
[29] and to time-varying interactions [30–33]. Therefore, the framework discussed
here is valid for a large number of situations, and, as so, it is applicable to a very wide
range of experimental and/or practical circumstances. We will show, indeed, that all
the theoretical predictions that our method entitles us to make are fully verified in
simulations of synthetic and real-words networked systems.

10.2 Networks and Higher-Order Structures

A network is a collection of nodes and of edges connecting pairs of nodes. Math-
ematically, it is represented by a graph G = (V, E), which consists of a set V with
N = |V| elements called vertices (or nodes), and a set E whose K elements, called
edges or links, are pairs of nodes (i, j) (i, j = 1, 2, . . . , N and i �= j). As graphs
explicitly refer to pairwise interactions, networks have been very successful in cap-
turing the properties of coupled dynamical systems in all such cases in which the
interactions can be expressed (or approximated) as a sum of two-body terms [34].
Conversely, their limits emerge when it comes to model higher-order interactions. In
fact, the presence of a triangle of three nodes i, j, k in a network, e.g. the presence of
the three links (i, j), (i, k), ( j, k) in the corresponding graph, is not able to capture
the difference between a three-body interaction of the three individuals, from the
sum of three pairwise interactions. Notice that these are two completely different
situations, with completely different social mechanisms and dynamics at work [35].

Simplicial complexes are instead the proper mathematical structures for describ-
ing high order interactions. A simplicial complex is an aggregate of simplices, objects
that generalize links and can in general be of different dimension. A d-simplex, or
simplex of dimension d, σ is, in its simplest definition, a collection of d + 1 nodes.
In this way, a 0-simplex is a node, a 1-simplex is a link, a 2-simplex (i, j, k) is a two-
dimensional objectmade by three nodes, usually called a (full) triangle, a 3-simplex is
a tetrahedron, i.e. a three-dimensional object and so on (Fig. 10.1a). It is now possible
to differentiate between a three-body interaction, and three bodies in pairwise inter-
actions: the first case will be represented by a complete triangle, a two-dimensional

http://dx.doi.org/10.1007/978-3-030-91374-8_9
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Fig. 10.1 From networks to simplicial complexes. a Simplices of different orders d: the node
d = 0, the edge d = 1, the triangle d = 2, the tetrahedron d = 3. b A network only consists of 0−
and 1−simplices. c A simplicial complex consists of simplices of any order d = 0, 1, . . . , D (in
this case D = 3)

simplex, while the second case will consist of three one-dimensional objects. Hence,
in the following of this chapter, simplices of dimension d will be used to describe
the structure of (d + 1)-body interactions. Finally, a simplicial complex S on a given
set of nodes V , with |V| = N , is a collection of M simplices, S = {σ1, σ2, . . . , σM },
with the extra requirement that, for any simplex σ ∈ S, all the simplices σ ′ with
σ ′ ⊂ σ , i.e. all the simplices built from subsets of σ , are also contained in S. Due
to this requirement, simplicial complexes are a very particular type of hypergraphs
[36]. Simplicial complexes have shown to be appropriate in the context of social
systems [35, 37, 38] and, as we will see in the next Section, they will turn very
useful to study coupled dynamical systems. In the following, we will indicate as Md ,
d = 1, 2, . . . D the number of d-simplices present in S (where D, the order of the
simplicial complex, is the dimension of the largest simplex in S), and we have the
constraint

∑D
d=1 Md = M . Note that a network is a particular case of a simplicial

complex with D = 1 (Fig. 10.1b), whereas for D > 1 a truly higher-order structure
is obtained (Fig. 10.1c).

As a mathematical representation of simplicial complexes, we will use here a
formalism which generalises directly the concept of adjacency matrix for a network.
For each dimension d, we can define the N × N × · · · × N︸ ︷︷ ︸

d+1

adjacency tensor A(d),

whose entry a(d)
i1,...,id+1

is equal to 1 if the d-simplex (i1, . . . , id+1) belongs to the
simplicial complex S, and is 0 otherwise [39]. Notice that each tensor is symmetric
with respect to its d + 1 indices, which means that the value of a given entry a(d)

i1,...,id+1

is equal to the value of the entries corresponding to any permutation of the indices.
With the definition above, A(1) coincides with the standard adjacency matrix A,

while the N × N × N adjacency tensor A(2) characterizes two-dimensional objects:
one has a(2)

i jk = 1 if the three nodes i , j , k form a full triangle, and otherwise a(2)
i jk = 0.

As a conclusion, it is possible to map completely the connectivity structure of a
simplicial complex S into the entire set of D adjacency tensors A(d), d = 1, 2, . . . D.
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A node i of a simplicial complex S cannot be, therefore, characterized only by
giving its degree ki = ∑N

j=1 a
(1)
i j , but one needs instead to account for the number of

simplices of any dimension, incident in i . It is therefore extremely useful to define
the generalized d-degree, k(d)

i , of a node i as:

k(d)
i = 1

d!
N∑

i1=1

N∑

i2=1

. . .

N∑

id=1

a(d)
i,i1,i2,...,id

, (10.1)

with d = 1, 2, . . . , D so that k(1)
i coincides with the standard degree of node i , k(2)

i
counts the number of triangles (2-simplices) to which i participates:

k(2)
i = 1

2

N∑

j=1

N∑

k=1

a(2)
i jk (10.2)

k(3)
i the number of tetrahedrons, and so on.
Analogously, we can also define the generalized d-degree k(d)

i j of a link (i, j) as
the number of d-simplices to which link (i, j) is part of. We can write its expression
in terms of the adjacency tensor A(d) of dimension d, with d = 1, 2, . . . , D, as[39]:

k(d)
i j = 1

(d − 1)!
N∑

i1=1

N∑

i2=1

. . .

N∑

id−1=1

a(d)
i, j,i1,i2,...,id−1

, (10.3)

so that k(1)
i j = a(1)

i j , while k
(2)
i j counts the number of triangles (2-simplices) to which

(i, j) participates:

k(2)
i j =

N∑

k=1

a(2)
i jk, (10.4)

and so on.
Finally, we introduce here a generalized Laplacian describing the case of sys-

tems with high-order interactions. The generalized Laplacian of order d, with
d = 1, 2, . . . , D, is a matrix L(d) whose elements are defined as:

L(d)
i j =

⎧
⎪⎨

⎪⎩

0 for i �= j and a(1)
i j = 0

−(d − 1)!k(d)
i j for i �= j and a(1)

i j = 1

d! k(d)
i for i = j,

(10.5)

where k(d)
i j is the generalized d-degree of the link (i, j), and k(d)

i is the generalized
d-degree of node i . Replacing (10.1) and (10.3) in (10.5), in the case D = 2, we get
an equivalent expression for the generalized Laplacian:



254 L. V. Gambuzza et al.

L(2)
i j =

{
−∑

k a
(2)
i jk for i �= j

−∑
� �=i L(2)

i� for i = j,
(10.6)

Notice that L(1) recovers exactly the classical Laplacian matrix. This definition
of generalized Laplacian will turn useful in the following sections.

10.3 Dynamical Systems with Higher-Order Interactions

The object of our study is the most general simplicial complex of N coupled dynam-
ical systems, such that the nodes are subject not only to pairwise interactions, but
also to three-body interactions, four-body interactions and so on. We write the equa-
tions of motion governing the dynamics of our D-dimensional simplicial complex
as follows

ẋi = f(xi ) + σ1

N∑

j1=1
a(1)
i j1

g(1)(xi , x j1) + σ2

N∑

j1=1

N∑

j2=1
a(2)
i j1 j2

g(2)(xi , x j1 , x j2) + . . .

+σD

N∑

j1=1
. . .

N∑

jD=1
a(D)
i j1... jD

g(D)(xi , x j1 , . . . , x jD ),

(10.7)

where xi (t) is the m-dimensional vector state describing the dynamics of unit i ,
σ1, . . . , σD are real valued parameters describing coupling strengths, f : Rm −→ R

m

describes the local dynamics (which is assumed identical for all units), while
g(d) : R(d+1)×m −→ R

m (d = 1, . . . , D) are synchronization non-invasive functions
(i.e. g(d)(x, x, . . . , x) ≡ 0 ∀d) ruling the interaction forms at different orders. Fur-
thermore, for d = 1, . . . , D, a(d)

i j1... jd
are the entries of the adjacency tensor A(d). This

is the most general type of system we can consider, as there are no further specific
restrictions on both the adjacency tensors of the simplicial complex and the functions
f and g(d).

For the sake of clarity in what followswe illustrate our study for the case of D = 2
and then summarize the steps needed to generalize the results to any order D. Let us
then consider the following set of coupled differential equations

ẋi = f(xi ) + σ1

N∑

j=1
a(1)
i j g(1)(xi , x j ) + σ2

N∑

j=1

N∑

k=1
a(2)
i jk g

(2)(xi , x j , xk), (10.8)

where σ1 and σ2 are the coupling strengths associated to two- and three-body inter-
actions.

Notice that existence and invariance of the synchronized solution xs(t) = x1(t) =
· · · = xN (t) are warranted by the non-invasiveness of the coupling functions.
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10.4 Linear Stability Analysis

Here we study the stability of the synchronous solution via linearization around the
synchronous state xs . Let us then consider considers small perturbations around the
synchronous state xs , i.e., δxi = xi − xs , and write the dynamics of these variables
as follows

δ̇xi = J f(xs )δxi + σ1
N∑

j=1
a(1)
i j

[
∂g(1)(xi ,x j )

∂xi

∣
∣
∣
∣
(xs ,xs )

δxi + ∂g(1)(xi ,x j )
∂x j

∣
∣
∣
∣
(xs ,xs )

δx j

]

+σ2
N∑

j=1

N∑

k=1
a(2)
i jk

[
∂g(2)(xi ,x j ,xk )

∂xi

∣
∣
∣
∣
(xs ,xs ,xs )

δxi + ∂g(2)(xi ,x j ,xk )
∂x j

∣
∣
∣
∣
(xs ,xs ,xs )

δx j

+ ∂g(2)(xi ,x j ,xk )
∂xk

∣
∣
∣
∣
(xs ,xs ,xs )

δxk

]

,

(10.9)

where J f(xs) denotes the m × m Jacobian matrix of the function f , evaluated at the
synchronous state xs .

Now, let us make our first, very important, conceptual step, noticing that all cou-
pling functions are synchronization non-invasive, i.e. g(1)(x, x) ≡ 0 and g(2)(x, x, x)
≡ 0. As their value is then constant (equal to zero) at the synchronization manifold,
it immediately follows that their total derivative vanishes as well, which implies on
its turn that

∂g(1)(xi ,x j )

∂xi

∣
∣
∣
∣
(xs ,xs )

+ ∂g(1)(xi ,x j )

∂x j

∣
∣
∣
∣
(xs ,xs )

= 0,

∂g(2)(xi ,x j ,xk )
∂xi

∣
∣
∣
∣
(xs ,xs ,xs )

+ ∂g(2)(xi ,x j ,xk )
∂x j

∣
∣
∣
∣
(xs ,xs ,xs )

+ ∂g(2)(xi ,x j ,xk )
∂xk

∣
∣
∣
∣
(xs ,xs ,xs )

= 0.
(10.10)

Then, one can factor out the terms ∂g(1)(xi ,x j )

∂xi

∣
∣
∣
∣
(xs ,xs )

δxi and
∂g(2)(xi ,x j ,xk )

∂xi

∣
∣
∣
∣
(xs ,xs ,xs )

δxi

in the summations (both of them, indeed, do not depend on the indices of the sum-
mations). Furthermore, one has that

∑N
j=1 a

(1)
i j = k(1)

i and
∑N

j=1

∑N
k=1 a

(2)
i jk = 2k(2)

i .
Plugging back the resulting terms inside the summations, and using Eq. (10.10), one
eventually obtains

δ̇xi = J f(xs)δxi − σ1

N∑

j=1
L(1)
i j Jg(1)(xs, xs)δx j

−σ2

N∑

j=1

N∑

k=1
τi jk

[

J1g(2)(xs, xs, xs)δx j + J2g(2)(xs, xs, xs)δxk

]

,

(10.11)

where we introduced a tensor T whose elements are τi jk = 2k(2)
i δi jk − a(2)

i jk for
i, j, k = 1, . . . , N , and simplified the notation as
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Jg(1)(xs, xs) = ∂g(1)(xi ,x j )

∂x j

∣
∣
∣
∣
(xs ,xs )

,

J1g(2)(xs, xs, xs) = ∂g(2)(xi ,x j ,xk )
∂x j

∣
∣
∣
∣
(xs ,xs ,xs )

,

J2g(2)(xs, xs, xs) = ∂g(2)(xi ,x j ,xk )
∂xk

∣
∣
∣
∣
(xs ,xs ,xs )

.

(10.12)

Already at this stage, it is fundamental to remark that our approach even extends
the validity of the classical Master Stability Function theory [the case σ2 = 0 in Eq.
(10.11)], in thatwe do not require a diffusive functional form for the interplay among
the network nodes, and therefore we are actually encompassing a much broader class
of coupling functions. For instance, our approach allows the formal treatment of
the Kuramoto model [21], where m = 1, each network unit i is identified by the
instantaneous phase θi of an oscillator, and the coupling between nodes i and j is
given by the function sin (θ j − θi ), which is not diffusive.

Let us now make our second, conceptual, step, which will allow us to greatly
simplify the last term on the right hand side of Eq.(10.11). Such a term refers to
three-body interactions, and we now show how to map it into a single summation
involving the generalized Laplacian matrix. This is done by remarking that the two
Jacobian matrices J1g(2)(xs, xs, xs) and J2g(2)(xs, xs, xs) are both independent on k
and j . Accordingly, Eq.(10.11) becomes

δ̇xi = J f(xs )δxi − σ1
N∑

j=1
L(1)
i j Jg(1)(xs , xs )δx j

−σ2

[ N∑

j=1
J1g(2)(xs , xs , xs )δx j

N∑

k=1
τi jk +

N∑

k=1
J2g(2)(xs , xs , xs )δxk

N∑

j=1
τi jk

]

.

(10.13)

Then, using the symmetric property of T, namely
∑

k τi jk = ∑
k τik j , we obtain

δ̇xi = J f(xs)δxi − σ1

N∑

j=1
L(1)
i j Jg(1)(xs, xs)δx j

−σ2

N∑

j=1
L(2)
i j

[

J1g(2)(xs, xs, xs) + J2g(2)(xs, xs, xs)
]

δx j .

(10.14)

Equations (10.14) can be rewritten in block form by introducing the stack vector
δx = [δxT1 , δxT2 , . . . , δxTN ]T and denoting by JF = J f(xs), JG(1) = Jg(1)(xs, xs) and
JG(2) = J1g(2)(xs, xs, xs) + J2g(2)(xs, xs, xs). One obtains

δ̇x = [
IN ⊗ JF − σ1L(1) ⊗ JG(1) − σ2L(2) ⊗ JG(2)

]
δx. (10.15)

The third, and final, conceptual step is to remark that all generalized Laplacians
L(d) are symmetric real-valued zero-row-sum matrices. Therefore: (i) they are all
diagonalizable; (ii) for each one of them the set of eigenvalues is made of real non-
negative numbers, and the corresponding set of eigenvectors constitutes a orthonor-
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mal basis of RN ; (iii) they all share, as the smallest of their eigenvalues, λ1 ≡ 0,
whose associated eigenvector 1√

N
(1, 1, 1, . . . , 1)T is aligned along the synchro-

nization manifold; (iv) as in general they do not commute, the sets of eigenvectors
corresponding to all others of their eigenvalues are different from one another, and
yet any perturbation to the synchronization manifold (which, by definition, lies in
the tangent space) can be expanded as linear combination of one whatever of such
eigenvector sets (the relevant consequence is that one can arbitrarily select any of the
generalized Laplacians as the reference for the choice of the basis of the transverse
space, and all other eigenvector sets will map to such a basis by means of unitary
matrix transformations).

We are then fully entitled to take, as reference basis, the one constituted by the
eigenvectors of the classic Laplacian L(1) (V = [v1, v2, . . . , vN ]), and consider new
variables δη = (V−1 ⊗ Im)δx. We get

δ̇η =
[
IN ⊗ JF − σ1�

(1) ⊗ JG(1) − σ2L̃(2) ⊗ JG(2)
]
δη. (10.16)

where we have used the fact that V−1L(1)V = diag(λ1, λ2, . . . , λN ) = �(1), where
0 = λ1 < λ2 ≤ . . . λN are the eigenvalues ofL(1), and we have indicated with L̃(2) =
V−1L(2)V the transformed generalized Laplacian of order 2.

As L(2) is zero-row sum (i.e. L(2)v1 = 0), Eqs. (10.16) may be rewritten as

⎧
⎪⎨

⎪⎩

η̇1 = JFη1

η̇i = (JF − σ1λi JG(1))ηi − σ2

N∑

j=2
L̃(2)
i j JG

(2)η j ,
(10.17)

that is, the dynamics of the linearized system is decoupled into two parts: the dynam-
ics of η1 accounting for the motion along the synchronous manifold, and that of all
other variables ηi (with i = 2, . . . , N , representing the different modes transverse to
the synchronization manifold) which are coupled each other by means of the coeffi-
cients L̃(2)

i j (all of them being known quantities) given by transforming L(2) with the
matrix that diagonalizesL(1). The problem of stability is then reduced to: (i) simulat-
ing a single, uncoupled, nonlinear system; (ii) using the obtained trajectory to feed
up the elements of the Jacobians JG(1) and JG(2); (iii) simulating the dynamics of
a system of N − 1 coupled linear equations, and tracking the behavior of the norm√∑N

i=2

∑m
j=1(η

( j)
i )2 for the calculation of the maximum Lyapunov exponent (being

ηi ≡ (η
(1)
i , η

(2)
i , . . . , η

(m)
i )).

Stability of the synchronous solution requires, as a necessary condition, that the
maximum among the Lyapunov exponents associated to all transversemodes is nega-
tive. Therefore, this quantity provides a generalizedMaster Stability Function,�max,
which, given the node dynamics and the coupling functions, is in general function of
the topology of the two body interactions, the topology of the three body interactions,
and the two coupling strengths σ1 and σ2, i.e., �max = �max(σ1, σ2,L(1),L(2)).
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Notice that, in full analogy with the classical MSF approach, also in the case of
simplicial complexes one is, therefore, able to separate the motion along the syn-
chronization manifold and that transverse to it. And it is such a crucial separation
that ultimately enables the study of stability of the synchronous manifold, retaining
the general applicability of the original approach. In the case of simplical complexes,
the higher complexity in the structure of the interactions yields a formalism requir-
ing the analysis of a set of coupled differential equations, rather than of a single
parametric variational equation (as in the case of network synchronization). In other
words, in the fully general case the set of equations describing the motion transverse
to the synchronous manifold cannot be further decomposed into independent, decou-
pled modes, as it happens in the network case; however, the analysis of stability still
requires the computation of a single quantity, i.e., the maximumLyapunov exponent,
which has to be performed on such a set of coupled, linear equations. Hence, while
in the classical MSF on networks, once fixed the node dynamics and coupling func-
tion, one obtains �max = �max(σ,L), which can be further simplified introducing α

parametrizing the product of the coupling coefficient and the nonzero eigenvalues of
L, i.e.,�max = �max(α), for simplicial complexes, once fixed the node dynamics and
the coupling functions, one obtains�max = �max(σ1, σ2,L(1),L(2)). Note, however,
that there are still special cases where such an expression can be simplified up to
even recover cases where it is formally identical to that of the classical MSF, as we
will show explicitly later on in Sec. 10.5.

In analogy with the classification scheme adopted for synchronization in com-
plex networks (Chap.5 in Ref. [40]), one immediately realizes that, once the local
dynamics of each node (i.e. the function f), the various coupling functions g(1,2), and
the structure of the simplicial complex (i.e. L(1) and L(2)) are specified, all possible
cases can be divided in three different classes:

1. class I problems, where �max is positive in all the half plane (σ1 ≥ 0, σ2 ≥ 0),
and therefore synchronization is never stable;

2. class II problems, for which �max is negative within a unbounded area of the half
plane and

3. class III problems, for which the area of the half plane in which�max is negative is
instead bounded, and therefore additional instabilities of the synchronous motion
may occur at larger values of the coupling strengths.

We conclude this section by showing how the approach described above can
be extended to simplicial complexes of any order D. Indeed, each term on the
right hand side of Eq. (10.7) can be manipulated following exactly the same steps
described above. Defining JG(d) = J1g(d)(xs, . . . , xs) + J2g(d)(xs, . . . , xs) + · · · +
Jdg(d)(xs, . . . , xs), Eq. (10.15) becomes

δ̇x =
[

IN ⊗ JF − σ1L(1) ⊗ JG(1) − σ2L(2) ⊗ JG(2) − . . . − σDL(D) ⊗ JG(D)

]

δx. (10.18)

http://dx.doi.org/10.1007/978-3-030-91374-8_5
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Once again, one can select the eigenvector set which diagonalizes L(1), and to
introduce the new variables δη = (V−1 ⊗ Im)δx. Following the same steps which
led us to write Eqs. (10.17), one then obtains

⎧
⎨

⎩

η̇1 = JFη1,

η̇i = (JF − σ1λi JG(1))ηi − σ2

N∑

j=2
L̃(2)
i j JG

(2)η j − . . . − σD

N∑

j=2
L̃(D)
i j JG(D)η j ,

(10.19)
where the coefficients L̃(d)

i j result from transforming L(d) with the matrix that diago-
nalizesL(1). As a result, one has the same reduction of the problem to a single, uncou-
pled, nonlinear system, plus a system of N − 1 coupled linear equations, fromwhich
themaximumLyapunovexponent�max=�max(σ1, σ2, . . . , σD,L(1),L(2), . . . ,L(D))

can be extracted and monitored (for each simplicial complex) in the D-dimensional
hyper-space of the coupling strength parameters.

10.5 Master Stability Functions

The problem can be greatly simplified in a few special cases in which either the con-
nectivity of the system (i.e. the structure of the simplicial complex), or the coupling
functions, allow for a further reduction of complexity. For the sake of illustration,
we start considering first the case of D = 2, and, then, the extension to any possible
order D.

The first special case is the all-to-all coupling, for which every pair of two nodes
is connected by a link and every triple of nodes is connected by a 2-simplex, namely
all the possible two and three-body interactions are active. In this case, the classical
Laplacian matrix is

L(1)
i j =

{
−1 for i �= j

N − 1 for i = j.
(10.20)

Then, it is easy to rewriteL(2). First, the off diagonal terms−L(2)
i j (i �= j) represent

the number of triangles formed by the link (i, j)which, in the present case, is simply
equal to N − 2. Second, the terms of the main diagonal L(2)

i i indicates the number of
triangles having the node i as a vertex, which is

k(2)
i =

(
N − 1

2

)

= (N − 1)(N − 2)

2
. (10.21)

Consequently, one has that

L(2) = (N − 2) L(1). (10.22)



260 L. V. Gambuzza et al.

For the linearized dynamics, one gets

δ̇xi = JFδxi −
N∑

j=1

L(1)
i j

[
σ1 JG

(1) + σ2 (N − 2) JG(2)] δx j . (10.23)

By expanding the perturbation vector δx on the othornormal basis formed by the
eigenvectors of the classical Laplacian matrix L(1), and after noticing that in the
all-to-all configuration λ2 = . . . λN = N , for each ηi (with i ∈ {2, . . . , N }) one has

η̇i = [JF − σ1N JG(1) − σ2N (N − 2) JG(2)]ηi . (10.24)

In other words, in the all-to-all case, the variables ηi come out to be all uncoupled
to each other, so that the MSF uniquely depends on σ1, σ2 and N , i.e., �max =
�max(σ1, σ2, N ).

In the more general case of a D-dimensional simplicial complex, it is easy to
write the generalized Laplacian of order d as a function of the classical Laplacian
matrix. In fact, the number of d-simplices having node i as a vertex and the number
of d-simplices formed by the link (i, j) are respectively

k(d)
i =

(
N − 1

d

)

= (N − 1)(N − 2) . . . (N − d)

d! (10.25)

and

k(d)
i j =

(
N − 2

d − 1

)

= (N − 2) . . . (N − d)

(d − 1)! . (10.26)

Given the definition of the generalized Laplacian in Eq. (10.5), we find that

L(d) = (N − d) L(d−1) = (N − 2)(N − 3) . . . (N − d)L(1). (10.27)

Once again, one can derive a parametric equation analogous to Eq. (10.24), with
the MSF (once fixed both the node dynamics and the coupling functions) which
solely depends on the coupling coefficients and the number of nodes, i.e. �max =
�max(σ1, σ2, . . . , σD, N )

η̇i = [JF − σ1N JG(1) − · · · − σDN (N − 2) . . . (N − D) JG(D)]ηi . (10.28)

Another interesting case is that of generalized diffusion interactions with natural
coupling functions. This amounts to consider diffusive coupling functions, given by

g(1)(xi , x j ) = h(1)(x j ) − h(1)(xi ),
g(2)(xi , x j , xk) = h(2)(x j , xk) − h(2)(xi , xi ),

(10.29)
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where h(1) : Rm −→ R
m and h(2) : R2m −→ R

m . In addition, a condition of natural
coupling is considered

h(2)(x, x) = h(1)(x). (10.30)

Equation (10.30) expresses, indeed, the fact that the coupling to node i from two-
body and three-body interactions is essentially similar, in that a three-body interaction
where two nodes are on the same state is equivalent to a two-body interaction. Here,
the MSF assumes a particularly convenient form, as it can be written as a function
of a single parameter.

The consequence of Eq. (10.30) is that J1h(2)(xs, xs) + J2h(2)(xs, xs)=Jh(1)(xs).
Therefore, one has

δ̇xi = J f(xs)δxi −
N∑

j=1

[
σ1L(1)

i j + σ2L(2)
i j

]
Jh(1)(xs)δx j . (10.31)

Alternatively, one can consider the zero-row-sum, symmetric, effectivematrixM,
given by

M = L(1) + rL(2), r = σ2

σ1
. (10.32)

The eigenvalues ofM depend on the ratio r of the coupling coefficients, and one
has that

δ̇xi = J f(xs)δxi − σ1

N∑

j=1

Mi j Jh(1)(xs)δx j . (10.33)

Equation (10.33) allows to establish a formal full analogy between the case of a
simplicial complex and that of a network with weights given by the coefficients of
the effective matrix M. In this case, by diagonalizing the effective matrix M, the
transverse modes can be fully decoupled and a single-parameterMSF can be defined,
starting from the following m-dimensional linear parametric variational equation

η̇ = [
J f(xs) − α Jh(1)(xs)

]
η (10.34)

from which the maximum Lyapunov exponent is calculated: �max = �max(α)

with α = λ(σ1L(1) + σ2L(2)) or α = σ1λ(L(1) + rL(2)) = σ1λ(M). The situation
is therefore conceptually equivalent to that of synchronization in complex networks,
with the effective matrix M playing the same role of the classical Laplacian: given
the dynamical system f , the coupling functions h(1) and h(2), and the structure of
connection of the simplicial complex (i.e. L(1) and L(2)) one can define three possi-
ble classes of problems: 1) class I problems, for which the curve �max = �max(α)

does not intercept the abscissa and it is always positive. In this case synchroniza-
tion is always forbidden, no matter which simplicial complex is used for connecting
the dynamical systems; 2) class II problems, for which the curve �max = �max(α)

intercepts the abscissa only once at αc, and for which, therefore, the synchroniza-
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tion threshold is given by the self consistent equation σ c
1 = αc/λ2[M(σ c

1 , σ c
2 )], i.e.

it scales with the inverse of the second smallest eigenvalue of the effective matrix;
3) class III problems, for which the curve �max = �max(α) intercepts the abscissa
twice at α1 and α2 > α1. In this case, synchronization can be observed only if the
entire eigenvalue spectrum of the effective matrix is such that σ1λ2(M) > α1 and,
at the same time, σ1λN (M) < α2. In this case, the ratio λ2(M)/λN (M) can be con-
sidered as a proxy measure of synchronizability of the simplicial complex, in that the
closer is such a parameter to unity (the more compact is the spectrum of eigenvalues
of M) the larger can be the range of coupling strengths for which the two above
synchronization conditions can be satisfied.

We have so far considered the case of D = 2. In the fully general scenario, the
condition for natural coupling is given by

h(D)(x, . . . , x) = . . . = h(2)(x, x) = h(1)(x). (10.35)

The equation for the MSF is formally analogous to Eq. (10.34), where now α =
σ1λ2(M(D)) parametrizes the eigenvalues of the effective matrix of order D

M(D) = L(1) + σ2

σ1
L(2) + . . . + σD

σ1
L(D). (10.36)

10.6 Numerical Results

In this sectionwe showsomenumerical results confirming the validity of the proposed
approach. In particular, we focus on a paradigmatic example of three-dimensional
(x = (x, y, z)T ∈ R

3) chaotic systems, i.e., the Rössler oscillator [41], and consider
the case of natural coupling with D = 3.

In this case, as discussed in Sec. 10.5, in full analogy with what occurs for
networks, the MSF is a function of a single parameter, i.e., �max = �max(α) with
α = λ(σ1L(1) + σ2L(2) + σ3L(3)). This enables the study of synchronization stabil-
ity into two steps, one pertaining only to the node dynamics and coupling functions,
providing �max = �max(α), and a second step, where the condition �max(α) < 0 is
checked at the points α = {σ1λ2(M), . . . , σ1λN (M)}.

Here, we have calculated the MSF for the Rössler oscillator with several choices
of the coupling functions1:

1 For the calculation of the MSFs we have used the algorithm for the computation of the entire
spectrum of Lyapunov exponents in Ref. [42] (with parameters: integration step size of the Euler
algorithm δt = 10−5, length of the simulation L = 2500, windows of averaging T = 0.9L).
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h(1)(x j ) = [x3j , 0, 0]T ,h(2)(x j , xk) = [x2j xk, 0, 0]T ,h(3)(x j , xk, xh)

= [x j xk xh, 0, 0]T ;h(1)(x j ) = [0, x3j , 0]T ,h(2)(x j , xk)

= [0, x2j xk, 0]T ,h(3)(x j , xk, xh) = [0, x j xk xh, 0]T ;h(1)(x j )

= [0, 0, x3j ]T ,h(2)(x j , xk) = [0, 0, x2j xk]T ,h(3)(x j , xk, xh)

= [0, 0, x j xk xh]T ;h(1)(x j ) = [y3j , 0, 0]T ,h(2)(x j , xk)

= [y2j yk, 0, 0]T ,h(3)(x j , xk, xh) = [y j yk yh, 0, 0]T . . . and h(1)(x j )

= [0, 0, z3j ]T ,h(2)(x j , xk) = [0, 0, z2j zk]T ,h(3)(x j , xk, xh)

= [0, 0, z j zk zh]T .

As an example, when the coupling functions are fixed as h(1)(x j ) = [x3j , 0, 0]T ,
h(2)(x j , xk) = [x2j xk, 0, 0]T , and h(3)(x j , xk, xh) = [x j xk xh, 0, 0]T , the equations
governing the simplicial complex of Rössler systems read

ẋi = −yi − zi + σ1

N∑

j=1
a(1)
i j (x3j − x3i )

+σ2

N∑

j=1

N∑

k=1
a(2)
i jk(x

2
j xk − x3i ) + σ3

N∑

j=1

N∑

k=1

N∑

h=1
a(3)
i jkh(x j xk xh − x3i ),

ẏi = xi + ayi ,
żi = b + zi (xi − c),

(10.37)

where i = 1, . . . , N , and the parameters have been fixed so that the resulting dynam-
ics is chaotic, i.e., a = b = 0.2, c = 9.

It is interesting to note that the MSFs characterizing simplicial complexes of
Rössler oscillators (Fig. 10.2) exhibit a variety of behaviors that actually encompass
all possible classes of MSF. In particular, we find one class III example (Fig. 10.2a),
one class II example (Fig. 10.2e), while all remaining cases do correspond to class I.

Let us now consider the simplicial complex with N = 10 nodes represented in
Fig. 10.1c and simulate Eqs. (10.37) on top of this structure. Let us first fix σ3 = 0.1
and integrate2 Eqs. (10.37) for different values of σ1 and σ2. For each configura-
tions of the coupling parameters, the state of the system is monitored by the average

synchronization error defined as E = 〈
(

1
N (N−1)

N∑

i, j=1
‖xj − xi‖2

) 1
2

〉T , where T is a

sufficiently large window of time where the synchronization error is averaged, after
discarding the transient. As it is shown in Fig. 10.3a, which illustrates E(σ1, σ2)

along with the theoretical predictions provided by the MSF, the numerical simula-
tions are in very good agreement with the theoretical predictions for the synchro-
nization thresholds. This is an example of a class III system, with a synchronization
region that is bounded. In particular, it is interesting to note that synchronization

2 Numerical integrations have been performed by means of an Euler algorithm, with integration
step δt = 10−4, in a windows of time equal to 2T with T = 500.
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Fig. 10.2 Synchronization in simplicial complexes of Rössler oscillators, in the case of natural
coupling, is characterized by amaster stability function�max(α), here obtained for several coupling
functions. On the top of each panel, the expression used for h(3) is reported

Fig. 10.3 Synchronization in the simplicial complex of Rössler oscillators of Fig. 10.1c. a Contour
plot of the time averaged (over an observation time T = 500) synchronization error E in the plane
(σ1, σ2) for σ3 = 0.1. The red continuous line is the theoretical prediction of the synchronization
thresholds obtained from Eq. (10.34). b Synchronization region as predicted from Eq. (10.34) at
different values of the coupling strength σ3



10 The Master Stability Function for Synchronization … 265

is impossible to achieve for very small values of σ1, suggesting that in this struc-
ture interactions through links are essential for synchronization. To study the role of
four-bodies interaction we have then varied σ3 and illustrated the predictions of the
MSF obtained from Eq. (10.34) in Fig. 10.3b. We observe that, due to the fact that
configuration under analysis is class III, increasing σ3 actually decreases the area of
the synchronization region, in particular, lowering the threshold (for both σ1 and σ2)
from synchronization to desynchronization.

10.7 Conclusions

In a complex system consisting of many coupled dynamical units, collective behav-
iors are shaped by the functional form and by the architecture of the interactions. To
account for the most general type of interactions, we have here leveraged the mathe-
matical formalism of simplicial complexes to formulate a general model that include
many-body interactions of arbitrary order among dynamical systems of arbitrary
nature. Assuming the non-invasiveness of the coupling functions, we have shown
that is possible to derive necessary conditions for stable synchronous regime in a
simplicial complex. Remarkably, these conditions depend on generalized Laplacian
matrices that map the effects of high-order interactions. For specific types of struc-
tures (e.g., all-to-all interactions) and couplings (that we named natural couplings),
this approach ultimately provides a Master Stability Function, which formalizes the
interplay between the dynamics of the single units and the topology of the simplicial
complex.

The generality of the introduced framework and of the assumptions considered
make it applicable in a wide range of scenarios, so that we expect that our method
could be used to produce a-priori predictions on the emergence of synchronization
in many diverse theoretical and practical cases. In particular, our study only focused
on the regime of synchronization where all the units follow the same trajectory.
However, many other different forms of synchronization exist, including cluster
synchronization, chimera and Bellerophon states, remote synchronization, and so
on. It would be particularly intriguing to investigate the emergence of such states, or
even of novel ones, in structures that do not include exclusively pairwise couplings,
but also incorporate other, types of higher-order interaction mechanisms, such as the
simplicial complexes considered here.
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Chapter 11
Geometry, Topology and Simplicial
Synchronization

Ana Paula Millán, Juan G. Restrepo, Joaquín J. Torres,
and Ginestra Bianconi

Abstract Simplicial synchronization reveals the role that topology and geometry
have in determining the dynamical properties of simplicial complexes. Simplicial
network geometry and topology are naturally encoded in the spectral properties of
the graph Laplacian and of the higher-order Laplacians of simplicial complexes.
Here we show how the geometry of simplicial complexes induces spectral dimen-
sions of the simplicial complex Laplacians that are responsible for changing the
phase diagram of the Kuramoto model. In particular, simplicial complexes display-
ing a non-trivial simplicial network geometry cannot sustain a synchronized state in
the infinite network limit if their spectral dimension is smaller or equal to four. This
theoretical result is here verified on the Network Geometry with Flavor simplicial
complex generativemodel displaying emergent hyperbolic geometry.On its turn sim-
plicial topology is shown to determine the dynamical properties of the higher-order
Kuramoto model. The higher-order Kuramoto model describes synchronization of
topological signals, i.e., phases not only associated to the nodes of a simplicial com-
plexes but associated also to higher-order simplices, including links, triangles and so
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on. This model displays discontinuous synchronization transitions when topological
signals of different dimension and/or their solenoidal and irrotational projections are
coupled in an adaptive way.

11.1 Introduction

The interplay between structure and dynamics of complex networks [1–3] has been
at the forefront of network theory since the beginning of the field. In this context it
has been found that the combinatorial and statistical properties of complex networks
have unexpected effects on dynamics. For instance, a scale-free degree distribution
changes the phase diagram of a wide range of dynamical processes including perco-
lation, epidemic spreading, and the Ising model. The recent interest on higher-order
networks [4–7] provides an opportunity to bring a fresh perspective to this subject.
Indeed, higher-order networks, and in particular simplicial complexes, constitute the
ideal mathematical framework to capture the simplicial network topology and geom-
etry of data. Here we reveal that the network topology and geometry of simplicial
complexes can be crucial to define higher-order dynamics. The dynamical process
considered in this chapter is synchronization [8–10], captured by theKuramotomodel
[11] and the recently introduced higher-order Kuramoto model [12]. The dynamical
properties of these dynamical processes will be shown to be highly dependent on the
spectral properties [13, 14] of the simplicial complexes [15–19] on which they are
defined. The main message of this chapter is summarized in Fig. 11.1, which high-
lights the role of network topology and network geometry in shaping higher-order
network dynamics. In particular, in this chapter we will disclose how the spectral
properties of simplicial complexes are foundational to reveal the relation higher-
order network geometry, topology and dynamics. Note that while our approach to
simplicial synchronization is based on simplicial network geometry and topology,
other approaches based on a combinatorial definition of higher-order interactions
have been pursued in the literature [20–22], as covered by the Skardal and Arenas
chapter of this book.

11.2 Simplicial Complex Models

Simplicial network models are ideal to test, in a well-controlled setting, the interplay
between simplicial network geometry, topology and dynamics. Here we focus in par-
ticular on two large classes of simplicial complexmodels with very distinct structural
properties: the Network Geometry with Flavor (NGF) [16–19] and the configuration
model of simplical complexes [15] (see schematic illustrations of the two models in
Fig. 11.2). These models are implemented in codes available at the repository [23].
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Fig. 11.1 Simplicial complexes encode the rich simplicial network topology and geometry of
data and models, which strongly affects the higher-order dynamics. In this chapter we will see
how this interplay between structure and dynamics can enrich our understanding of synchronization
dynamics defined on simplicial complexes

Fig. 11.2 Schematic representation of the two classes of simplicial complex models considered
in this work. The Network Geometry with Flavor is a model of growing simplicial complexes
describing emergent hyperbolic network geometries. The left panel shows a realization of the NGF
simplicial complex of dimension d = 2 and flavor s = −1. The configuration model of simplicial
complexes (right panel) is a maximum entropy model enforcing a given sequence of generalized
degrees of the nodes. Right panel reprinted with permission from Ref. [15] ©Copyright (2016) by
the American Physical Society
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11.2.1 The Network Geometry with Flavor (NGF)

TheNetwork Geometry with Flavor (NGF) [16–19] is a general mathematical frame-
work for growing simplicial complexes that displays emergent hyperbolic network
geometry. In otherwords, theNGFmodel generates simplicial complexeswith hyper-
bolic geometry that evolve following purely combinatorial and stochastic rules that
do notmake any use of the natural hyperbolic embedding of the simplicial complexes.

The NGFs are simplicial complexes characterized by two main parameters: the
dimension of the simplicial complex d and the flavor s which is a parameter that
takes values s ∈ {−1, 0, 1}. The NGFs are generated by a dynamical process which
starting at time t = 1 from a single d-dimensional simplex proceeds at each time
t > 1 by adding a new d-dimensional simplex to the simplicial complex. The new
d-dimensional simplex includes one new node and is glued to a (d − 1)-dimensional
face α of the existing simplicial complex chosen according to the probability

�α = 1 − s + skd,d−1(α)
∑

α′ 1 − s + skd,d−1(α′)
, (11.1)

where kd,d−1(α) indicates the generalized degree [15] of a (d − 1)-dimensional face
α, i.e., the number of d-dimensional simplices incident to the (d − 1)-dimensional
faceα. Thismodel generates emergent hyperbolic simplicial complexeswhich satisfy
Gromov criteria [24] of hyperbolicity and are δ-hyperbolic with δ = 1 for every value
of the flavor s [25]. Moreover, for flavor s = −1 the generated simplicial complexes
form d-dimensional hyperbolic manifolds [17]. The network skeleton of the NGFs
are small world, display hierarchical community structure and are scale-free for
d ≥ 2 − s [16–18]. Interestingly, in the case d = 1 and s = 1 the NGF reduces to
the Barabási-Albert model, and for d = 1 and s = −1 the NGF reduces to random
Apollonian networks.

This model can be generalized in different directions. Instead of considering
simplicial complexes, one can use a similar model to generate cell complexes by
gluing together convex regular polytopes [18]. Another possibility is to consider
weighted simplicial complexes or to allow any new node to be incident to more than
one d-dimensional simplex [19]. Finally, the faces can be assigned a fitness that
can be used to modulate the attachment probability �α causing topological phase
transitions for certain fitness distributions [16, 17].

11.2.2 Configuration Model of Simplicial Complexes

The configuration model of simplicial complexes [15] is a maximum entropy model
of pure d-dimensional simplicial complexes. A pure d-dimensional simplicial com-
plex K can be fully encoded in a (d + 1)-dimensional adjacency tensor indicating
the presence of each d-dimensional facet of the simplicial complex. In particular
adjacency tensor a has elements aα = 1 if the d-dimensional simplex α is present in
the simplicial complex, otherwise aα = 0.
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The configurationmodel of simplicial complexes [15] is the least biased ensemble
of simplicial complexes with a given generalized degree sequence of the nodes

kd,0 = {kd,0(1), kd,0(2), . . . kd,0(N )} (11.2)

where kd,0(i) indicates the generalized degree of the node i , i.e., the number of
d-dimensional complexes of the node i ∈ {1, 2, . . . , N }.

The configuration model of simplicial complexes is fully characterized by the
probability P(K) assigned to each pure d-dimensional simplicial complex K of N
nodes. The probability P(K) maximizes the entropy S of the simplicial complex
ensemble

S = −
∑

K
P(K) ln P(K), (11.3)

given the constrain that each node i has generalized degree kd,0(i), i.e.,

∑

α∈Qd (N )|i⊂α

aα = kd,0(i), (11.4)

where Qd(N ) indicates the set of all possible d-dimensional simplices of a simpli-
cial complex formed by N nodes. Therefore the configuration model of simplicial
complexes is characterized by the uniform distribution

P(K) = 1

N
N∏

i=1

δ

⎛

⎝
∑

α∈Qd (N )|i⊂α

aα, kd,0(i)

⎞

⎠ , (11.5)

where here and in the following δ(a, b) indicates the Kronecker delta. In Ref. [15]
the Authors proposed an algorithm for sampling simplicial complexes from this
ensemble. This algorithm [23] uses the mapping of simplicial complexes to factor
graphs. The configuration model of simplicial complexes is a very valuable null
model of simplicial complexes, and provides an ideal benchmark to study dynamical
processes on higher-order networks.

11.3 Laplacians

11.3.1 Graph Laplacian

The graph Laplacian describes linear diffusion on a network and it is an important
operator that encodes the interplay between network structure and dynamics [3,
26]. The graph Laplacian can also capture the underlying network geometry of the
skeleton of a simplicial complex, i.e., of the network obtained from the simplicial
complex by retaining only its nodes and links.
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The graph Laplacian L[0] is the discrete version of the Laplacian operator defined
on continuous functions. The graph Laplacian of a network with N[0] nodes is a
N[0] × N[0] matrix of elements

[
L [0]
]
i j = kiδ(i, j) − ai j , (11.6)

where ki is the degree of node i and ai j are the elements of the adjacency matrix of
the network. In some cases it is useful to consider a generalization of this operator
called the normalized Laplacian L̂[0] that has elements

[
L̂ [0]
]

i j
= δ(i, j) − ai j

ki
. (11.7)

For instance, the normalized Laplacian is commonly employed to describe random
walk dynamics on a network.

Both the standard and the normalized Laplacians have real eigenvalues 0 = λ1 ≤
λ2 ≤ · · · ≤ λN[0] . The density of eigenvalues is described by the spectral density,

ρ(λ) = 1

N[0]

N[0]∑

i=1

δ̃(λ − λi ), (11.8)

where δ̃ (x) indicates the delta function.The eigenvectors of the normalizedLaplacian
also encode relevant properties of the underlying network.

11.3.2 Spectral Dimension

For many complex networks, the smallest non-zero eigenvalue (also called Fiedler
eigenvalue) λ2 remains finite as the network size increases. In this case, the network
is said to have a spectral gap. On the contrary, if λ2 → 0 as N → ∞, and the density
of eigenvalues ρ(λ) scales as

ρ(λ) ∝ λd [0]
S /2−1, (11.9)

for λ 
 1, the network is said to present a spectral dimension d [0]
S [26–28]. The

spectral dimension can be interpreted as the perceived dimension of the network by
diffusion processes, and it is a notable feature of networks with an underlying geo-
metrical nature. This is a definition of dimension that is alternative to the Hausdorff
dimension dH characterizing the scaling of the diameter D of a network with the
network size N , i.e., D ∝ N 1/dH .

For Euclidean lattices of dimension d, the spectral dimension coincides with the
Hausdorff dimension and we have d [0]

S = dH = d. However, in general the spectral
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dimension of a network skeleton of a simplicial complex does not have to coincide
with the topological dimension of the simplicial complex, nor with its Hausdorff
dimension [25, 27, 29, 30].

While Euclidean lattices display a finite spectral dimension, random graphs and
the configuration model of networks are instead characterized by a finite spectral
gap. The presence of a finite spectral gap indicates the mean-field nature of the
network interactions, and the absence of a clear notion of locality for these networks.
Interestingly, also the configuration model of simplicial complexes displays a finite
spectral gap.

Remarkably, the emergent network geometry of NGF reveals itself on their sig-
nificant spectral properties. Indeed the NGF network skeletons, together with other
small-world models of simplicial complexes [31], have a finite spectral dimension
whose value can be tuned according to the different control parameters [18] although
the NGFs are small world, i.e., they have an infinite Hausdorff dimension dH = ∞.

For s = −1, NGF networks formed purely by d-dimensional simplices have
d [0]
S ∼ d for d ∈ {2, 3, 4} as shown in Fig. 11.3 [33]. More generally, for NGFs

formed by regular polytopes, d [0]
S increases with the dimension d of the polytopes,

and it saturates for hypercubes and orthoplexes (d [0]
S ≤ 3) [32]. It was shown in Ref.

[18] that a similar trend is observed for different flavours of the NGF networks: d [0]
S

Fig. 11.3 Spectral dimension of NGF networks. Panel (a) The cumulative distribution ρc(λ) of
eigenvalues of the NGF with flavor s = −1 is shown for dimension d = 2, 3, 4, 5. The power-law
scaling of ρc(λ) observed for small values of λ indicates that the skeleton ofNGF has a finite spectral
dimension. Panels (b–d) The fitted spectral dimension d[0]

S of the skeleton of NGF simplicial and
cell complexes being formed by simplices (panel b), hypercubes (panel c) and orthoplexes (panel
d), is shown for values of the flavor s ∈ {−1, 0, 1} as indicated in the legend of panel (d). Lines
indicate best fit of the d[0]

S versus d dependence using parabolic (panel b) and exponential (panels
c, d) functional forms. Data from Ref. [32] and Ref.[18]. Details of the fits are described in Ref.
[18]
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grows quadratically with d for simplicial NGF networks, whereas it saturates at a
value d [0]

S = d̄S with 2 ≤ d̄S ≤ 3 for hypercube and orthoplex NGF networks. More-
over, it was shown recently in Ref. [25] that, in a generalization of the NGF model in
which different polytopes are glued together in the same higher-order network, the
spectral dimension of the network skeleton can be continuously tuned as a function
of the fraction of simplexes in the cell complex.

Thus, not only the dimension of the building blocks shapes the spectral dimension
of the networks, but the specific nature and symmetry of these building blocks also
play a role in the emerging spectral dimension of the network skeleton (see Fig. 11.3).

11.3.3 Higher-Order Laplacians

Important topological aspects of simplicial complexes are reflected in the spectral
properties of the higher-order Laplacians that generalize the graph Laplacian to
describe diffusion that occurs among higher-order simplices. The graph Laplacian
describes diffusion occurring among nodes connected by links. Similarly the n-th
order up-Laplacian describes the diffusion occurring among n-dimensional simplices
connected by (n + 1)-dimensional simplices and the n-th order down-Laplacian
describes the diffusion occurring among n-dimensional simplices connected by
(n − 1)-dimensional simplices. The higher-order Laplacians capture the topology
of simplicial complexes. For instance their spectrum encodes the Betti numbers, i.e.,
the number of n-dimensional cavities of the simplicial complex.

The higher-order Laplacians are defined in terms of the incidence matrices of the
simplicial complex which represent the boundary operators playing a fundamental
role in algebraic topology.

Here we provide a brief introduction to the necessary elements of algebraic topol-
ogy needed to define higher-order Laplacians.

We consider a d-dimensional simplicial complex formed by N[n] simplices of
dimension n. The simplices of the simplicial complexes are associated with an ori-
entation induced by the labelling of the nodes so that the link [i, j] has a positive
orientation if j > i and so on (see Fig. 11.4).

We consider algebraic entities called n-chains that are linear combinations of n-
dimensional simpliceswith coefficients inZ. In a less informal definition n-chains are
the elements of a free abelian group Cn with basis on the n-simplices of the simplicial
complex. The boundary map is a linear map ∂n : Cn → Cn−1 defined by its action
on each simplex α = [i0, i1, i2 . . . , in]. In particular the boundary map associates
to every n-dimensional simplex α = [i0, i1, i2 . . . , in] a linear combination of the
(n − 1)-dimensional oriented faces at its boundary, given by

∂n[i0, i1 . . . , in] =
n∑

p=0

(−1)p[i0, i1, . . . , i p−1, i p+1, . . . , in]. (11.10)
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It follows that the image of the boundary operator ∂n are the (n − 1)-chains that are
at the boundary of n-chains. For instance we have

∂2([1, 2, 3]) = [1, 2] + [2, 3] − [1, 3], (11.11)

i.e., the image of a triangle is the linear combination of the links at its boundary with
the correct orientation. Additionally, from this definition it is also easy to see that a
cyclic n-chain is in the kernel of the boundary map ∂n independently of whether the
cyclic n-chain is the boundary of a (n + 1)-chain. For instance we have

∂1([1, 2] + [2, 3] − [1, 3]) = [2] − [1] + [3] − [2] − [3] + [1] = 0, (11.12)

whether the simplex [123] belongs to the simplicial complex or not. One important
topological property of the boundary operator is that the “boundary of a boundary is
null" which implies

im ∂n+1 ⊆ ker ∂n (11.13)

or equivalently

∂n∂n+1 = 0. (11.14)

For instance we have

∂1∂2[1, 2, 3] = ∂1([1, 2] + [2, 3] − [1, 3]) = 0. (11.15)

The boundary map ∂n can be represented by a N[n−1] × N[n] incidence matrix B[n] if
we adopt as a basis of the space Cn an ordered set of the n-dimensional simplices α,
and as a basis of the space Cn−1 an ordered set of the (n − 1)-dimensional simplices α̂.

If the basis of n-chains Cn is given by the n-simplices {α1, α2, . . . αs . . .} and the
basis of (n − 1)-chains Cn−1 is given by the (n − 1)-simplices {α̂1, α̂2, . . . α̂r . . .}
the action of the boundary map over any arbitrary n-dimensional simplex αs =
[i0, i1 . . . , in] given by Eq. (11.10) can be expressed as

∂nαs =
Nn−1∑

r=1

[B[n]]rs α̂r . (11.16)

This equation fully determines the incidence matrices B[n]. Since we have seen that
the “boundary of a boundary is null" then the incidence matrices follow B[n]B[n+1] =
0 and also B

[n+1]B

[n] = 0.

As an example we can consider the simplicial complex shown in Fig. 11.4 whose
incidence matrices are given by



278 A. P. Millán et al.

Fig. 11.4 Example of oriented simplicial complex.This illustrates an example of a 2-dimensional
oriented simplicial complex having associated incidence matrices given by Eqs. (11.17). Reprinted
figure with permission from Ref. [12]. ©Copyright (2020) by the American Physical Society.

B[1] =

[1, 2] [1, 3] [2, 3] [3, 4]
[1] −1 −1 0 0
[2] 1 0 −1 0
[3] 0 1 1 −1
[4] 0 0 0 1

, B[2] =

[1, 2, 3]
[1, 2] 1
[1, 3] −1
[2, 3] 1
[3, 4] 0

. (11.17)

The graph Laplacian can be expressed in terms of the incidence matrix B[1] of the
graph as

L[0] = B[1]B
[1]. (11.18)

Similarly, in a simplicial complex the higher-order Laplacian L[n] (with n > 0) [14,
34, 35] is the N[n] × N[n] matrix defined as

L[n] = L[down]
[n] + L[up]

[n] , (11.19)

where

L[down]
[n] = B

[n]B[n], L[up]
[n] = B[n+1]B

[n+1]. (11.20)

The n-Laplacian is positive semi-definite and, therefore, it has N[n] non negative
eigenvalues 0 ≤ λ1 ≤ λ2 ≤ . . . λr ≤ . . . ≤ λN[n] .A notable property of the spectrum
of the n-th order Laplacian is that the degeneracy of zero eigenvalues is given by
the n-th Betti number. Despite the fact that the construction of the higher-order
Laplacians described above seems to rely on the choice of the orientations adopted
for the simplices of the simplicial complex, it is possible to show that the higher-
order Laplacians are independent on the orientation of the simplices as long as such
orientation is induced by the labeling of the nodes.

We note that also the up and the down Laplacians are positive semi-definite and
that from the definition of these matrices it follows immediately than the non-zero
eigenvalues in the spectrum of L[up]

[n] are the same as the non-zero eigenvalues in the

spectrum of L[down]
[n] .



11 Geometry, Topology and Simplicial Synchronization 279

By considering the property of the incidence matrices such that B[n]B[n+1] = 0, it
is possible to derive the Hodge decomposition of the space of n-chains, which reads

R
Dn = img(B

[n]) ⊕ ker(L[n]) ⊕ img(B[n+1]). (11.21)

This implies that the higher-order Laplacian L[n] can be simultaneously diagonalized
with the n-th order up and n-th order down Laplacian and that the non-zero eigen-
vectors of L[n] are either non-zero eigenvector of L[down]

[n] or non-zero eigenvectors of

L[up]
[n] . Therefore there is a basis in which L[n], L[down]

[n] and L[up]
[n] have diagonal form

given by

U−1L[n]U =
⎛

⎜
⎝

D[down]
[n] 0 0

0 0 0
0 0 D[up]

[n]

⎞

⎟
⎠ , U−1L[down]

[n] U =
⎛

⎝
D[down]

[n] 0 0
0 0 0
0 0 0

⎞

⎠ , U−1L[up]
[n] U =

⎛

⎝
0 0 0
0 0 0
0 0 D[up]

[n]

⎞

⎠ ,

where D[up]
[n] and D[down]

[n] are diagonal matrices having positive diagonal elements.

11.3.4 Higher Order Spectral Dimension

The notion of spectral dimension (see Sect. 11.3.2) can be generalized to n-order
up-Laplacians with important consequences for higher-order simplicial complex
dynamics. Here, we will focus on the model of NGF simplicial complexes intro-
duced in Sect. 11.2.1. In Sect. 11.3.2, we have shown that the graph Laplacian of
NGFs displays a finite spectral dimension d [0]

S [18, 32, 33]. Interestingly, higher-
order up-Laplacians L[up]

[n] and the higher-order down-Laplacians L[down]
[n] of NGFs

also display a finite spectral dimension.
In particular, the higher-order up-Laplacians of NGFs display a finite spectral

dimension d [n]
S depending on the order n, the dimension of the simplicial complex d

and theflavor parameter s [13]. Therefore,we candefinedifferent spectral dimensions
for 0 < n < d − 1. In order to show this remarkable geometrical property of NGFs
in Fig. 11.5 we provide numerical evidence of the scaling of the cumulative density
of non-zero eigenvalues ρ

up
c (λ) of the L[up]

[n] with λ for λ 
 1, given by

Fig. 11.5 The cumulative density of non-zero eigenvaluesρ
up
c (λ) of theL[up]

[n] forNGFof dimension
d = 3 and flavor s = −1 (panel a), s = 0 (panel b), and s = 1 (panel c) for n = 0 (blue solid
lines), n = 1 (red dashed lines), n = 2 (yellow dotted lines) and n = 3 (purple dot-dashed lines).
Considered NGFs sizes are N[0] = 2000 nodes, N[1] = 5994 links, N[2] = 5992 triangles, and
N[3] = 1997 tetrahedra. Adapted figure from [13]
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ρ[up]
c (λ) ∝ λd [n]

S /2, (11.22)

for different value of the order n of the up-Laplacian, and the flavor s of the NGF. It
follows that a NGFmodel is not characterized by a single spectral dimension, i.e., the
spectral dimension d [0]

S of the graph Laplacian, rather the NGF simplicial complexes
have a higher-order network geometry encoded in a vector of spectral dimensions

dS =
(
d [0]
S , d [1]

S , d [2]
S . . . , d [d−1]

S

)
. (11.23)

Consequently, the diffusion dynamics defined on simplices of different order n of the
sameNGF simplicial complex can be significantly different [36].We finally note that
for deterministic Apollonian and pseudo-fractal simplicial complexes that constitute
the deterministic counterpart of NGF simplicial complexes, the higher-order spectral
dimension can be predicted analytically by the real-space renormalization group [37]
showing that the higher-order spectral dimension of these structures depends on the
order n and remains finite as long as 0 ≤ n < d − 1.

11.4 Simplicial Synchronization

Synchronization is a fundamental dynamical state observed in a wide variety of
complex systems and capturing among other phenomena important aspects of brain
dynamics and circadian rhythms. TheKuramotomodel [8–11, 38] is a stylizedmodel
that explains how coupled oscillators, that in absence of interactions would have
different intrinsic frequencies, can start to follow a collective coherent motion when
their coupling constant σ , measuring the strength of their interaction, is larger than
a critical value σc also called synchronization threshold.

In order tomodel the coupling between the oscillators theKuramotomodel consid-
ers a network of N[0] nodes and associates a phase θi to each node i ∈ {1, 2, . . . , N[0]}
of the network. Therefore in the Kuramoto model, the dynamical state of the network
is determined by the vector θ of phases associated to its nodes given by

θ = (θ1, θ2, . . . , θN[0])
. (11.24)

Each phase θi describes the dynamical state of an oscillator that in absence of interac-
tions oscillates at an intrinsic frequency ωi drawn independently from a distribution
g(ω). Common choices for g(ω) are the unimodal Gaussian or Lorentzian distribu-
tions.

The equations determining the dynamics of the phases associated to the nodes
include an important contribution indicating the coupling among the phases of neigh-
bour nodes. This coupling term has a strength modulated by the coupling constant σ .
In particular, it is assumed that this contribution expresses the tendency of the phase
of any given node to oscillate together with the phases of its neighbour nodes. The
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resulting standard Kuramoto dynamics is captured by the differential equations

θ̇i = ωi + σ

N[0]∑

j=1

ai j sin
(
θ j − θi

)
, (11.25)

valid for every node i of the network,where ai j is the generic element of the adjacency
matrix of the network. The level of synchronization in the system is measured by the
Kuramoto order parameter,

Z0 = R0e
i� = 1

N

N[0]∑

j=1

eiθ j , (11.26)

where R0 and� are both real and where 0 ≤ R0 ≤ 1 measures the overall coherence
and � = �(t) is the phase of global oscillations.

The relation between the Kuramoto model and the graph Laplacian of the under-
lying network is revealed when the Kuramoto model is linearized for |θi − θ j | 
 1
for every pair of neighbour nodes (i, j). In this limit the Kuramoto model can be
shown to be described by the system of equations

θ̇ = ω − σL[0]θ , (11.27)

where ω indicates the vector of elements ωi with i ∈ {1, 2, . . . , N[0]}.
The Kuramoto model has been analytically solved only on a fully connected

network, although important progress has been made in understanding the Kuramoto
model in random complex networks [9, 39, 40],

In the fully connected network and in random networks the Kuramoto model
displays a second order phase transition at the synchronization threshold σ = σc

when the number of nodes goes to infinity, i.e., N[0] → ∞. For σ < σc the Kuramoto
model is in an incoherent state characterizedbyhaving a zeroorder parameter R0 = 0.
For σ > σc the Kuramoto model is in a coherent state characterized by a non-zero
order parameter R0 > 0 [8–10, 38].

In this chapter we show how the network geometry and topology of simplicial
complexes, directly acting on the spectral properties of the graph Laplacian and the
higher-order Laplacians, can dramatically change the dynamical properties of the
synchronization process on higher-order networks.

– Simplicial network geometry and the Kuramoto model. First we will illus-
trate how the phase diagram of the Kuramoto model changes when the model is
defined on the skeleton of simplicial complexes with distinct higher-order net-
work geometry. We have previously introduced the finite spectral dimension d [0]

S
of the graph Laplacian as a fundamental observable of the higher-order network
geometry of networks and simplicial complexes. In the following we will discuss
how the dynamics of the Kuramoto model depends on d [0]

S revealing that network
geometries have a more rich dynamics than random networks.
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– Simplicial network topology and the higher-order Kuramoto model. Secondly
we will reveal how the Kuramoto model can be considered as a limiting case
of a much wider class of higher-order Kuramoto models describing coupling of
topological signals. Topological signals are phases of oscillators associated not
only to the nodes but also to higher-order simplices of a simplicial complex.
For instance topological signals can be associated with both nodes and links of
a simplicial complex as schematically described by Fig. 11.6. In this case the
dynamical state of a simplicial complex is captured by the vector θ of the phases
associated to the nodes (defined in Eq. (11.24)) and by the vector φ of the phases
associated to the links of the simplicial complex given by

φ =
(
φ1 , φ2 , . . . , φN[1]

)
. (11.28)

The phases associated to the links of the simplicial complexes are topological sig-
nals that have the potential to capture the dynamics of fluxes in brain networks [41]
and biological transportation networks [42]. The newly formulated higher-order
Kuramoto model opens new scenarios for characterizing how topology affects
dynamics on higher-order networks and simplicial complexes. As we will dis-
cuss in Sect. 11.5 the higher-order Kuramoto model has a linearized dynamics
described by the higher-order Laplacians of the simplicial complex, and can dis-

Fig. 11.6 Schematic representation of the Kuramoto model and the higher-order Kuramoto
model capturing dynamics of topological signals. The Kuramoto model (panel a) captures the
emergence of a synchronized state among coupled oscillators described by phases associated to the
nodes of a network. The higher-order Kuramoto model (panel b) reveals the synchronization of
topological signals on simplicial complexes, i.e., oscillators associated not only to the nodes of a
simplicial complex, but also to higher-dimensional simplices such as links or triangles. Interestingly,
topological signals of different dimension can co-exist and co-evolve and can be non-trivially
coupled leading to simultaneous explosive transitions
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play the simultaneous explosive synchronization transition of the soleinodal and
the irrotational component of topological signals and even the simultaneous explo-
sive synchronization transition of topological signals of different dimensions.

11.5 Kuramoto Model on Simplicial Network Geometry

11.5.1 Synchronization on Simplicial Network Skeletons
with Finite Spectral Dimension

In order to investigate the role that simplicial network geometry has on the Kuramoto
model we explore the phase diagram of the normalized Kuramotomodel on networks
with finite spectral dimension [32]. Our theoretical results are then validated by
simulations performed over the skeleton of the NGF with flavor s = −1. Indeed
NGF with flavor s = −1 provide a very suitable benchmark to test our theoretical
results as they display a spectral dimension d [0]

S that can be changed by tuning the
dimension d of the simplicial complex [33].

The normalized Kuramoto model determines the dynamics of the phases θ asso-
ciated to the nodes of a network. The only difference with the standard Kuramoto
model is that the coupling between the phase of a given node i and the phases of its
neighbour nodes is normalized with the node degree ki . Therefore, the normalized
Kuramoto model is dictated by the differential equations

θ̇i = ωi + σ

N[0]∑

j=1

ai j
ki

sin
(
θ j − θi

)
, (11.29)

where here and in the following we consider internal frequencies ωi drawn inde-
pendently from a normal distribution, i.e., ωi ∼ N (0, 1). The normalization of the
coupling term by the degree of the node i is a very efficient way to screen out the
effects of the heterogeneity of the degrees of the nodes and single out only the effects
due to the geometrical nature of the network of their interactions.

The linearized equation of the normalized Kuramoto model is therefore deter-
mined by the normalized Laplacian L̂[0] instead of the graph Laplacian L[0], i.e.,

θ̇ = ω − σ L̂[0]θ . (11.30)

The analytical investigationof the stability of the synchronizedphase indicates that
the spectral dimension d [0]

S of the (normalized) graph Laplacian of the network plays
a fundamental role for determining the phase diagram of the normalized Kuramoto
model in the limit of infinite network size N[0] → ∞ [32]. Interestingly, we note that
the spectral dimension of the graph Laplacian and the normalized graph Laplacian
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take the same value under very general regularity conditions of the network [28]. For
the very heterogeneousNGF, numerical results show that the two spectral dimensions
differ by a small amount as long as the topological dimension d is small. Depending
on the value of the spectral dimension the phase diagram of the normalizedKuramoto
model defined in the infinite network limit changes drastically [32]:

(1) For networkswithfinite spectral dimensiond [0]
S ≤ 2, theKuramotomodel cannot

synchronize and is found in the incoherent state for every value of the coupling
constant σ .

(2) For networks with spectral dimension 2 < d [0]
S ≤ 4, global synchronization is

not achievable in the infinite network limit but an entrained state can be observed.
Therefore it is possible the Kuramoto model can have a transition between an
incoherent state and an entrained phase.

(3) Only for networks with spectral dimension d [0]
S > 4 it is possible to see a syn-

chronized phase.

These results reveal how the dynamics of the Kuramoto model depends on the
simplicial network geometry on which is defined, and extend previous results valid
on regular lattices of dimension d [43, 44].

11.5.2 Frustrated Synchronization on Network Geometry
with Flavor

The NGF constitutes a perfect model to investigate numerically the role that simpli-
cial network geometry has on the dynamics of the Kuramoto model [32, 33]. Indeed,
aswe discussed previously, theNGF displays an emergent hyperbolic network geom-
etry and for flavor s = −1 generates random hyperbolic manifolds. The simplicial
network geometry of NGF is also reflected on their spectral properties. Specifically,
NGFs have a finite spectral dimension d [0]

S which for flavor s = −1 and d ∈ {2, 3, 4}
can be approximated by d [0]

S � d. It follows that by changing the dimension d of the
NGF with flavor s = −1 we can explore the dynamics of the Kuramoto model when
the global synchronization state is not stable in the infinite network limit.

A computational finite size analysis of the Kuramoto model [32, 33] reveals,
in agreement with the theoretical expectations, that for d = 2 and d [0]

S � 2, global
synchronization is never achieved for large network sizes. On the other hand, syn-
chronization in NGFs with d = 3 and d = 4 and d [0]

S � d is only possible for finite
networks. In fact its onset occurs for higher couplingswhen the system size increases,
revealing, in agreement with the theoretical expectation, that in the limit N[0] → ∞
this state is never achieved.

Interestingly, we observe that for NGF with d = 3 and d = 4 and d [0]
S � d the

Kuramotomodel exhibits a phase with entrained synchronization that we call a phase
of frustrated synchronization for a wide range of coupling values. In the frustrated
synchronization regime the order parameter R0 displays strong temporal fluctuations.
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This phase is observed on finite NGF between the incoherent state and the globally
synchronized state, and for d = 3 a much broader regime of large fluctuations is
observed than for the d = 4 case.

Interestingly, the frustrated synchronization phase of NGFs is not only character-
ized by strong temporal fluctuations of the global order parameter but displays also
strong spatial fluctuations induced by the non-trivial hyperbolic network geometry
of the NGF. As such, the frustrated synchronization phase can capture an important
mechanism for inducing spatio-temporal fluctuations in brain dynamics.

The hyperbolic network geometry of NGF has a strong hierarchical nature that is
responsible for the emergence of a relevant community structure. In order to study
how the dynamics of the Kuramoto model is affected by the community structure
of the NGFs, we define mesoscopic synchronization order parameters Zmod that

Fig. 11.7 Frustrated synchronization on NGF characterized by spatio-temporal fluctuations
of the order parameter. Panel (a) The synchronization order parameter R0(T ) calculated at time
T is plotted versus the coupling constant σ revealing the regime of frustrated synchronization (top
panel). The time series R0(t) are shown (bottom panel) for the values of the coupling constant σ

indicated by arrows in the top panel. These time series reveal the temporal fluctuations of the order
parameter in the frustrated synchronization regime. Panel (b) The spatial fluctuations of the order
parameter in the frustrated synchronization regime are revealed by the local order parameter Zmod
of four different communities of the NGF calculated for σ = 5 (top panel). In this representation,
a circular trajectory describes a situation of global oscillations of the nodes in the community, with
constant Rmod(t). Random trajectories around the origin describe unsynchronized communities.
Partially synchronized communities, on the other hand,maydescribemore complex trajectories. The
bottom panel shows the corresponding time series of Rmod(t). Panel (c) Synchronization transition
as given by the mean order parameter R̄0 averaged over time and its variance σR0 , as functions of
σ , for different network sizes N = 100 (blue), 200, 400, …, 3200 (black). The apparent onset of
the synchronized regime is retarded to large values of the coupling constant σ for large network
sizes, revealing that the NGF of dimension d = 3 cannot sustain a synchronized phase in the limit
of infinite network sizes. All simulations reported in the figures are obtained for NGF of flavor
s = −1, dimension d = 3 and number of nodes N[0] = 1600. In panel (a) T = 500. Figure adapted
from [33]
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characterize the dynamical state of each community:

Zmod = Rmode
i�mod = 1

|C|
∑

j∈C
eiθ j , (11.31)

where C is the set of nodes in the community and |C| the total number of nodes in said
community. Figure11.7b displays the trajectory of Zmod = Zmod(t) in the complex
plane for some exemplary modules of an NGF with flavour s = −1 in d = 3, for
the coupling that leads to the largest fluctuations of R0 as a function of time. As
shown in the figure, different modules display different synchronization regimes and
may oscillate at different frequencies. Due to the underlying geometrical structure
of NGFs, these modules correspond to spatially localized regions.

We note here that the frustrated synchronization observed in NGF can be related
with analogous phases observed in other hierarchical models [45, 46] where tempo-
ral fluctuations of the synchronization order parameter are observed. However, the
combination of both temporal and spatial fluctuations is a specific property of the
frustrated synchronization in NGF due to their rich simplicial network geometry.

11.6 Higher-Order Kuramoto Model: a Topological
Approach to Synchronization

11.6.1 Synchronization of Topological Signals

Simplicial complexes are formed by nodes and higher-order simplices including
links, triangles, tetrahedra, and so on. As such, simplicial complexes have the ability
to sustain topological signals, i.e., dynamic variables not only associated with the
nodes of their network skeleton but also associated to links, triangles, and so on [12,
14, 47]. Topological signals have the ability to capture dynamics associated to links,
such as fluxes in brain networks [41] and biological transportation networks [42, 48].

Here we will present the higher-order Kuramoto model [12] that reveals how
topological signals can undergo continuous and discontinuous synchronization tran-
sitions. Interestingly, we will observe that this synchronization transition can be
detected only if the signals are filtered with the appropriate topological operators.
Therefore, the model not only captures a new topological critical phenomenon but
also prescribes a way to process real data in order to investigate whether this topo-
logical synchronization phenomenon can be observed in real systems such as the
brain or biological transportation networks.
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11.6.2 Higher-Order Kuramoto Dynamics

The higher-order Kuramoto model [30] describes the synchronization of topolog-
ical signals defined on simplices of dimension n. For instance, one can consider
topological signals defined on the links of a simplicial complex (case n = 1) or alter-
natively one can consider signals defined on the triangles of a simplicial complex
(case n = 2). The higher-order Kuramoto model is the most natural extension of the
Kuramoto model to capture the synchronization of higher-order topological signals.

The standard Kuramoto dynamics describes the dynamics of the phases θ asso-
ciated to the nodes of the network. This dynamics, defined by Eq. (11.25), can be
expressed in terms of the incidence matrix B[1] (see Appendix) as

θ̇ = ω − σ B[1] sin BT
[1]θ . (11.32)

The higher-order Kuramoto dynamics describes instead the dynamics of topolog-
ical signals φ with φα indicating the phase associated to the simplex α of dimension
n > 0. Therefore, using the insights coming from algebraic topology, the natural
definition of the simple higher-order Kuramoto model is

φ̇ = ω̂ − σ B[n+1] sin BT
[n+1]φ − σ BT

[n] sin B[n]φ, (11.33)

where ω̂ is the vector of intrinsic frequencies ω̂α associated with each n-dimensional
simplex α drawn independently from a normal distribution, i.e., ω̂α ∼ N (�1, 1/τ1).
As the standard Kuramoto model can be related to the graph Laplacian via lin-
earization (see Eq. 11.27), the higher-order Kuramoto model can be related to the
higher-order Laplacian upon linearization, leading to

φ̇ = ω̂ − σL[n]φ. (11.34)

Thehigher-orderKuramoto dynamics definedon topological signalsφ associated ton
dimensional simplices canbeprojectedon (n + 1) and (n − 1)dimensional simplices
by applying to the signals the incidence matrices. For instance a dynamics defined
on topological signals associated to links can be projected on nodes or on triangles.
Specifically, we have that the projected dynamics φ[−] on (n − 1)-dimensional sim-
plices and the projected dynamics φ[+] on (n + 1)-dimensional simplices is given by

φ[−] = B[n]φ,

φ[+] = B
[n+1]φ, (11.35)

where, for n = 1, B[n] indicates the discrete divergence and B
[n+1] indicates the

discrete curl. Therefore φ[−] indicates the irrotational component of φ while φ[+]
indicates the solenoidal component of φ. For the simple higher-order Kuramoto
model defined in Eq. (11.33), by recalling that B

[n+1]B

[n] = 0 and that B[n]B[n+1] =

0, it follows that the projected topological signals φ[−] and φ[+] obey the uncoupled
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system of equations

φ̇[−] = B[n]ω̂ − σ L[up]
[n−1] sin

(
φ[−]) ,

φ̇[+] = BT
[n+1]ω̂ − σ L[down]

[n+1] sin
(
φ[+]) . (11.36)

Therefore, the solenoidal and the irrotational components of the topological signals
are decoupled for the simple higher-order Kuramoto model.

The higher-order Kuramoto dynamics is remarkable from two perspectives:

(1) First of all it uses topology to naturally define the higher-order interactions
between the topological signals. Indeed the incidence matrices define higher-
order interactions with a clear prescription indicating the coupled variables
and the sign of their interactions. For example, the higher-order Kuramoto
dynamics for n = 1 dimensional simplices of the simplicial complex shown
in Fig. 11.4 reads

θ̇[1,2] = ω̂[1,2] − σ sin(θ[2,3] − θ[1,3] + θ[1,2]) − σ
[
sin(θ[1,2] − θ[2,3]) + sin(θ[1,3] + θ[1,2])

]
,

θ̇[1,3] = ω̂[1,3] + σ sin(θ[2,3] − θ[1,3] + θ[1,2]) − σ
[
sin(θ[1,3] + θ[1,2]) + sin(θ̂[3])

]
,

θ̇[2,3] = ω̂[2,3] − σ sin(θ[2,3] − θ[1,3] + θ[1,2]) − σ
[
sin(θ[2,3] − θ[1,2]) + sin(θ̂[3])

]
,

θ̇[3,4] = ω̂[3,4] − σ
[
sin(θ[3,4]) − sin(θ̂[3])

]
, (11.37)

with θ̂[3] indicating the three-body interaction

θ̂[3] = θ[13] + θ[23] − θ[34]. (11.38)

Therefore, the choice of thehigher-order interactions in thehigher-orderKuramoto
model is naturally dictated by topology.

(2) The synchronization of the higher-order Kuramoto model is only detectable if
the right topological filtering of the data is performed. Indeed the naïve order
parameter

Rn = 1

N[n]

∣
∣
∣
∣
∣
∣

N[n]∑

α=1

eiφα

∣
∣
∣
∣
∣
∣

(11.39)

associated to the unfiltered topological signal φ does not detect any synchro-
nization transition (see Fig. 11.8). Instead, the order parameter associated to the
solenoidal and the irrotational components of the topological signal do detect
the synchronization transition of the topological signals (see Fig. 11.8). These
order parameters are given by
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R[−]
n = 1

N[n−1]

∣
∣
∣
∣
∣
∣

N[n−1]∑

α=1

eiφ
[−]
α

∣
∣
∣
∣
∣
∣
, R[+]

n = 1

N[n+1]

∣
∣
∣
∣
∣
∣

N[n+1]∑

α=1

eiφ
[+]
α

∣
∣
∣
∣
∣
∣
, (11.40)

or alternatively by

R↓
n = 1

N[n]

∣
∣
∣
∣
∣
∣

N[n]∑

α=1

eiφ
↓
α

∣
∣
∣
∣
∣
∣
, R↑

n = 1

N[n]

∣
∣
∣
∣
∣
∣

N[n]∑

α=1

eiφ
↑
α

∣
∣
∣
∣
∣
∣
, (11.41)

where φ↓ = L[down]
[n] φ and φ↑ = L[up]

[n] φ.

The synchronization transition described by the simple higher-order Kuramoto
model leads to a continuous transition occurring at zero coupling, i.e., the synchro-
nization threshold is σc = 0 as long as n > 0. However, the higher-order Kuramoto
model admits a formulation called explosive higher order Kuramoto model that dis-
plays instead a discontinuous transition at a non zero coupling σc > 0.

The explosive higher-order Kuramoto dynamics [12] implements an adaptive cou-
pling of the projected dynamics of φ[+] and φ[−] through their global order param-
eters. The adopted adaptive coupling is inspired by analogous couplings previously
applied tomultilayer and simple networks [49]. The explosive higher-orderKuramoto
model [12] is defined by the system of equations

φ̇ = ω̂ − σ R[−]B[n+1] sin BT
[n+1]φ − σ R[+]BT

[n] sin B[n]φ. (11.42)

It follows that the dynamics projected on the (n + 1) and (n − 1)-dimensional sim-
plices now obeys the coupled system of equations

φ̇[+] = BT
[n+1]ω̂ − σ R[−]L[down]

[n+1] sin
(
φ[+]) ,

φ̇[−] = B[n]ω̂ − σ R[+]L[up]
[n−1] sin

(
φ[−]) . (11.43)

Numerical simulations on the configuration model of simplicial complexes with
power-law distribution of generalized degrees reveal that the explosive higher-order
Kuramoto model displays a discontinuous phase transition. The nature of the transi-
tion confirms the theoretical expectations obtained with an approximate phenomeno-
logical approach. This transition is clearly detected by a discontinuity in R[+]

n and
R[−]
n and in R↓

n and R↑
n as well, but is not captured by the naïve order parameter Rn

(see Fig. 11.8).
InRef. [12] it has been shown that the nature of the phase transitiondoes not change

if the generalized degree distribution is more uniform or if the simplicial complex
has a non trivial network geometry. Interestingly, simple and explosive higher-order
Kuramoto models can be investigated on simplicial complexes constructed from real
connectomes leading to continuous (for the simple higher-order Kuramoto model)
and discontinuous (for the explosive higher-order Kuramoto model) synchronization
transitions.
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Fig. 11.8 Higher-order Kuramoto dynamics. The synchronization of higher-order topological
signals is captured by the simple and explosive higher-order Kuramoto models. Panel (a) The
order parameters R[+]

1 and R[−]
1 reveal the synchronization transition of topological signals defined

on links (n = 1) of the configuration model of simplicial complexes. Panel (b) The naïve order
parameter R1 does not reveal the synchronization transition of topological signals defined on the
links of the configuration model of simplicial complex, while the order parameters R↑

1 and R↓
1 ,

sensible on the irrotational and solenoidal decomposition of the signal, to reveal the transition (as
well as R[+]

1 and R[−]
1 shown in panel (a)). The underlying network is the same for both panels and

has N[0] = 1000 nodes, N[1] = 5299 links and N[2] = 4147 triangles. The generalized degree of the
nodes is power-law distributed with power-law exponent γ = 2.8. Panel (c) shows the theoretical
expectations provided by an effective phenomenological model treated in Ref. [12] for the simple
(top) and explosive (bottom) higher-order Kuramoto models. Reprinted figure with permission
from Ref. [12] ©Copyright (2020) by the American Physical Society

11.6.3 Coupled Topological Signals

So far we have considered the synchronization of topological signals defined on
simplices of dimension n > 0. However, topological signals associated to simplices
of different dimension can co-exist and co-evolve. For instance, phases associated
to the nodes of a simplicial complex can be coupled with phases associated to its
links. In this section we will show how different topological signals, i.e., phases
defined on simplicial complexes of different dimensions, can be coupled to each
other leading to simultaneous explosive synchronization transitions. For simplicity
of presentation wewill focus on phases defined on nodes and links, but we emphasize
that our formalism allows one to consider the interaction of more general topological
signals.

We start by considering Model 1, an explosive higher-order Kuramoto model of
coupled signals of nodes and links. This model differs from the explosive higher-
order Kuramoto model defined in the previous section as it includes an additional
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Fig. 11.9 Simultaneous explosive synchronization of coupled topological signals. Model 1 dis-
plays the simultaneous explosive (discontinuous) transition captured by the order parameters R0,
R[−]
1 and R[+]

1 . Panels (a), (b), and (c) provide numerical evidence of this discontinuous transition
on different simplicial network topologies: the NGF with flavor s = −1 and dimension d (panel a),
the configuration model of pure d = 3 simplicial complex with power-law generalized degree dis-
tribution with power-law exponent γ = 2.8 (panel b) and the clique complex of the Caenorhabditis
elegans (C. elegans) connectome coming from Ref. [50] (panel c). Figure adapted from [47]

adaptive coupling among the topological signals of nodes and links, and obeys the
equations

θ̇ = ω − σ R[−]
1 B[1] sin(B

[1]θ),

φ̇ = ω̂ − σ R0R
[+]
1 B

[1] sin(B[1]φ) − R[−]
1 σB[2] sin(B

[2]φ). (11.44)

This model simulated in a wide variety of simplicial complexes including the NGF,
the configuration model of simplicial complexes, and the clique complex of real
connectomes displays a simultaneous explosive (i.e., discontinuous) synchronization
of the topological signals defined on nodes and of the soleinodal and irrotational
component of the topological signals defined on links [47]. Indeed, at a critical
threshold σ = σc we observe a discontinuity in the three order parameters R0, R

[−]
1

and R[+]
1 . In Fig. 11.9 we present numerical evidence of this discontinuous transition

by displaying the corresponding hysteresis loop in the order parameters. In particular,
instead of plotting the order parameters obtained at each value of σ starting from
random initial conditions as in Fig. 11.8 here we display the order parameters along
the forward and backward synchronization transitions obtained by first adiabatically
increasing and then decreasing the coupling constant σ .
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Interestingly, this model (Model 1) admits a variation (Model 2) that describes
the simultaneous synchronization of the topological signals associated to the nodes
and the irrotational component of the topological signal associated to the links. This
simpler version of the explosive higher-order Kuramoto model of coupled topo-
logical signals can be also defined on pairwise networks and is amenable to an
exact analytical treatment on fully connected networks and to an accurate annealed
approximation solution on random networks with given degree distribution. More
specifically, Model 2 only couples the signal of the nodes with the signal of the links
projected to the nodes, as described by the differential equations

θ̇ = ω − σ R[−]
1 B[1] sin(B

[1]θ), (11.45)

φ̇ = ω̂ − σ R0B
[1] sin(B[1]φ) − σB[2] sin(B

[2]φ). (11.46)

Projecting the dynamics of the link phases down to 0-simplices as in the previous
section, we introduce ψ for simplicity of notation with

ψ ≡ φ[−] = B[1]φ. (11.47)

By left multiplying Eq. (11.46) by B[1], we obtain the closed system of equations for
θ and ψ

θ̇ = ω − σ R[−]
1 B[1] sin(B

[1]θ),

ψ̇ = ω̃ − σ R0L[0] sin(ψ), (11.48)

where ω̃ = B[1]ω̂. Here we assumeω ∼ N (0, 1) and ω̂α ∼ N (�1, 1/τ1). With these
hypotheses the internal frequencies of the links projected on the nodes {ω̃i }i=1,2,...,N[0]
are Gaussian correlated variables with average

〈ω̃i 〉 =
⎡

⎣
∑

j<i

ai j −
∑

j>i

ai j

⎤

⎦�1 (11.49)

and with correlation matrix C of elements Ci j = 〈ω̃i ω̃ j
〉− 〈ω̃i 〉

〈
ω̃ j
〉
given by

C = L[0]
1

τ 2
1

. (11.50)

To understand the nature of the synchronization transition analytically whenModel 2
is defined on an uncorrelated random graph, in the following we discuss the solution
of the model in the annealed approximation. The annealed approximation is a widely
used approximation to study dynamical processes on random uncorrelated networks
which consists in substituting the adjacency matrix entries of the network ai j by their
average values in an uncorrelated random network with given degree sequence, i.e.,
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ai j → ki k j

〈k〉N . (11.51)

Using this approximation, Eq. (11.48) can be recast into the differential equations

θ̇ = ω − σ R[−]
1 R̂0k · sin(θ − �̂),

ψ̇ = ω̃ + σ R0 R̂
[−]
1 k sin �̂ − σ R0k � sinψ, (11.52)

where � indicates the Hadamard product (element by element multiplication) and
where two auxiliary complex order parameters are defined as

R̂0e
i�̂ =

N[0]∑

i=1

ki
〈k〉N[0]

eiθi , R̂[−]
1 ei�̂ =

N[0]∑

i=1

ki
〈k〉N[0]

eiψi , (11.53)

with R̂0, �̂, R̂[−]
1 and �̂ being real. Let us indicate with g(ω) the probability distri-

bution of the internal frequencies of the nodes and with Gi (ω̃) the marginal prob-
ability distribution of the internal frequencies of the links projected on node i , i.e.,
the marginal probability that ω̃i = ω̃. With this notation it is possible to derive the
analytic solution of Eq. (11.52) which gives the following expression for the order
parameters

R0 = 1

N[0]

N[0]∑

i=1

r0(i), R̂n =
N[0]∑

i=1

ki
〈k〉N[0]

r0(i),

R[−]
1 = 1

N[0]

N[0]∑

i=1

r [−]
1 (i), R̂[−]

1 =
N[0]∑

i=1

ki
〈k〉N[0]

r [−]
1 (i), (11.54)

with r0(i) and r
[−]
1 (i) given by

r0(i) =
∫

|ĉi |<1

dωg(ω)

√
√
√
√1 −

(
ω − �0

σki R̂0R
[−]
1

)2

,

r [−]
1 (i) =

∫

|d̂i |<1

dω̃Gi (ω̃)

√

1 −
(

ω̃

σki R̂0

)2

, (11.55)

and ĉi and d̂i indicating

ĉi = ω − �0

σki R̂0R
[−]
1

, d̂i = ω̃

σki R̂0

. (11.56)
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Fig. 11.10 Theoretical prediction for Model 2 of explosive higher-order Kuramoto model of
coupled dynamical signals applied to random and fully connected networks. The hysteresis
loop for Model 2 is shown for different types of networks. The backward transition is fully captured
by the theoretical expectations (solid black lines). Panels (a), (b) and (c) show the order parameters
R1 and R[−]

1 versus the coupling constant σ for: A Poisson network with average degree c = 12
and N[0] = 1600 nodes (panel a), a scale-free network with minimum degree m = 6, power-law
exponent γ = 2.5 and N[0] = 1600 nodes (panel b) and a fully connected network of different
network sizes N[0] = 500 (cyan symbols), N[0] = 1000 (green symbols)and N[0] = 2000 (purple
symbols) (panel c). From panel (c) it is evident that the forward transition occurs at higher values
of σ for larger network size, confirming the theoretical prediction indicating that the transition is
driven by finite size effects and it is absent in the infinite network limit. Figures adapted from[47]

Figure11.10 shows excellent agreement between the simulation results of Model 2
and the analytical prediction obtained in the annealed approximation for a Poisson
network with average degree c = 12 (panel (a)) and for an uncorrelated scale-free
network with minimum degree m = 6 and power-law exponent γ = 2.5 (panel b).

Model 2 of explosive higher-order synchronization of coupled topological signals
of nodes and links can be also solved exactly on a fully connected network. Before
discussing these theoretical results let us highlight that when treating Model 2 on a
fully connected network the model parameters need to be rescaled appropriately to
give a well defined transition in the large network limit. In particular the coupling
constant σ and τ1 are rescaled to

σ → σ

N
,

τ1 → τ1
√
N . (11.57)

Moreover, for simplicity we set �1 = 0. With these hypotheses the marginal distri-
bution Gi (ω̃) = G(ω̃) for every node i of the network can be derived to be equal to

G(ω̃) = τ1√
2π/c̄

exp

[

−τ 2
1 c̄

ω̃2

2

]

, (11.58)
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with c̄ = N/(N − 1). The self-consistent equations for the order parameters R0 =
R̂0 and R[−]

1 = R̂[−]
1 are given by

1 = σ R[−]
1 h

(
σ 2R2

0(R
[−]
1 )2

)
,

R[−]
1 = σ R0τ1

√
c̄h
(
σ 2τ 2

1 R
2
0

)
, (11.59)

where the scaling function h(x) is given by

h(x) =
√

π

2
e−x/4

[
I0
( x

4

)
+ I1

( x

4

)]
, (11.60)

with I0 and I1 indicating the modified Bessel functions.
These equations agree perfectly well with direct simulation ofModel 2 dynamical

Eq. (11.46) on a fully connected network as it can be appreciated from Fig. 11.10c.
Moreover a closer look to these equations reveals an important aspect of these transi-
tions.While the backward transition has a well defined limit as N → ∞, the forward
transition occurs at larger value of the coupling constant for large network size N , and
is only determined by finite size fluctuations, therefore the transition disappears in
the limit N → ∞. Interestingly, this lack of a proper hysteresis loop can be also pre-
dicted forModel 2 defined on uncorrelated randomgraphswith finite secondmoment
of the degree distribution, starting from their annealed approximation solution.

11.7 Conclusions

In this chapter our goal has been to provide evidence that the interplay between
simplicial complex structure and dynamics is mediated by simplicial geometry and
topology. The spectral properties of the graph Laplacian and the higher-order Lapla-
cian have been used here to reveal how simplicial synchronization is shaped by
topological and geometry of the simplicial complex. In particular, we investigated
how simplicial network geometry changes the phase diagram of the Kuramotomodel
defined on the network skeleton of simplicial complexes with notable geometrical
properties and characterized by a finite spectral dimension. We have shown that a
spectral dimension smaller or equal than four but larger than two can lead to a regime
of frustrated synchronization characterized by large spatio-temporal fluctuations of
the order parameter, while a spectral dimension smaller or equal than two leads to a
Kuramoto model in the incoherent state for every finite value of the coupling con-
stant. These theoretical results have been shown to apply to the simplicial complexes
generated by the modelling framework called Network Geometry with Flavor (NGF)
that is able to generate simplicial complexes with tunable spectral dimension of the
graph Laplacian. Interestingly, the NGF are characterized also by displaying higher-
order spectral dimension of the higher-order up Laplacian that describe higher-order
diffusion processes.
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This chapter introduces also a set of models for capturing synchronization of
topological signals, i.e., phases not only associated to the nodes of a simplicial
complex but also to the higher-order simplices such as links, triangles, and so on.
This higher-order synchronization reveals itself in the order parameter of the irrota-
tional and solenoidal projection of the topological signals. In the simple higher-order
Kuramoto model the irrotational and solenoidal projection of the topological signal
are uncoupled and undergo a sychronization transition at σc = 0. However, when
these two projections are coupled to each other by an adaptive global coupling the
synchronization becomes explosive, i.e., discontinuous, and occurs at a non-zero
value of coupling constant.

The higher-order Kuramoto model can be further extended to capture coupled
topological signals of different dimension, for instance coupling phases associated
to nodes and to links of a network or of a simplicial complex. This generalized higher-
order Kuramoto model can lead to an explosive phase transition affecting simultane-
ously the phases associated to the nodes and the irrotational and solenoidal projection
of the phases associated to the links. Interestingly, the higher-order Kuramoto model
of coupled topological signals defined on nodes and links can be treated analytically
using the annealed approximation when it is defined on a random uncorrelated net-
work and can be solved exactly on a fully connected network. This solution confirms
the discontinuous nature of the transition of the explosive higher-order Kuramoto
model and sheds light on the stability of the hysteresis loop associated to the tran-
sition on finite networks. The mathematical framework that we have proposed here
can be explored and modified in different directions and we believe that an in-depth
analysis of the model and its variations will provide important insights on the inter-
play between topology and dynamics. For instance, we note that the higher-order
Kuramoto model has been recently modified [51] to investigate also the properties
of a consensus model finding interesting results.

In conclusion, this chapter aims to provide an overview of the relation between
network geometry topology and dynamics. We believe this topic will flourish in
the incoming years and will transform our understanding of the relation between
structure and dynamics of higher-order networks. Therefore our expectation is that
this research line will play a relevant role for providing new insights in a variety of
applications including brain dynamics and biological transportation networks.

Appendix: Kuramoto dynamics expressed in terms
of the incidence matrix

In this Appendix our aim is to show that Eq. (11.25) that we rewrite here for conve-
nience,

θ̇i = ωi + σ

N[0]∑

j=1

ai j sin
(
θ j − θi

)
, (11.61)
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is equivalent to Eq. (11.32) given by

θ̇ = ω − σ B[1] sin BT
[1]θ . (11.62)

In order to show this let us observe that the incidence matrix B[1] has elements given
by

[B[1]]i =
⎧
⎨

⎩

−1 if  = [i, j],
1 if  = [ j, i],
0 otherwise.

(11.63)

To show the equivalence between Eq. (11.61) and Eq. (11.62) let us start by rewriting
Eq. (11.62) element by element, getting

θ̇i = ωi − σ
∑

∈S1
[B[1]]i sin

⎛

⎝
∑

j∈S0
[B

[1]]jθ j

⎞

⎠ , (11.64)

where we indicate with S1 the set of all links present in the simplicial complex or
network under consideration.

Let us consider the particular link  = [i, j] in this case we have

[B[1]]i sin
⎛

⎝
∑

j∈S0
[B

[1]]jθ j

⎞

⎠ = −ai j sin(θ j − θi ). (11.65)

Equivalently, if we consider the same link with opposite orientation  = [ j, i] we
get

[B[1]]i sin
⎛

⎝
∑

j∈S0
[B

[1]]jθ j

⎞

⎠ = ai j sin(θi − θ j ) = −ai j sin(θ j − θi ). (11.66)

Since the incidence matrix B[1] has non-zero elements only among nodes and links
incident to each other, it follows that Eq. (11.61) is equivalent to Eq. (11.62).
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Chapter 12
Signal Processing on Simplicial
Complexes

Michael T. Schaub, Jean-Baptiste Seby, Florian Frantzen,
T. Mitchell Roddenberry, Yu Zhu, and Santiago Segarra

Abstract Higher-order networks have so far been considered primarily in the con-
text of studying the structure of complex systems, i.e., the higher-order or multi-way
relations connecting the constituent entities. More recently, a number of studies
have considered dynamical processes that explicitly account for such higher-order
dependencies, e.g., in the context of epidemic spreading processes or opinion for-
mation. In this chapter, we focus on a closely related, but distinct third perspective:
how can we use higher-order relationships to process signals and data supported
on higher-order network structures. In particular, we survey how ideas from signal
processing of data supported on regular domains, such as time series or images, can
be extended to graphs and simplicial complexes. We discuss Fourier analysis, signal
denoising, signal interpolation, and nonlinear processing through neural networks
based on simplicial complexes. Key to our developments is the Hodge Laplacian

This chapter is built on the exposition of [46], in particular with respect to the example applica-
tions considered. Our discussion here is however more geared towards a reader with a network
science background who is less familiar with signal processing. In particular, we provide additional
discussion on the relations between filtering and linear dynamical processes on networks.
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matrix, a multi-relational operator that leverages the special structure of simplicial
complexes and generalizes desirable properties of the Laplacian matrix in graph
signal processing.

12.1 Introduction

Graphs provide a powerful abstraction for a wide variety of complex systems. Under-
pinning this abstraction is the central idea of decomposing a system into its funda-
mental entities and their relations. Those entities are then modelled as nodes and
pairwise interactions between those entities are encoded by edges in a graph. This
highly flexible, yet conceptually simple framework has been employed in many
fields [16, 36], with applications ranging from biology to social sciences.

However, the role that graphs play in such analysis can be substantially different,
depending on the type of data or process under investigation [6]. At the risk of
oversimplification, we distinguish between two perspectives: In one case, the data
are the connectivity patterns of the network itself, in the other, we aim to comprehend
high-dimensional signals supported on a network. This first viewpoint is centralwhen
modeling relational data, i.e., data corresponding to measured edges (connections,
interactions) in a network, where we aim to learn about a system by finding patterns
in these stochastic connections, e.g., via community detection, centrality analysis or
a range of other tools. In contrast, when studying dynamical processes on networks,
we often consider the network as an arbitrary but (essentially) fixed entity, and our
goal is to leverage the graph structure to understand the dynamics associated with
the nodes. This latter perspective, in which we aim to understand data supported on
a graph is the point of view we will adopt in the following.

The problem of having to understand processes and data supported on the nodes
of a graph does not only arise in the context of network dynamical systems. Another
area focusing on data of this type is graph signal processing (GSP) [40, 43, 49],
which is concerned with the analysis of general signals supported on the nodes of a
network. In fact, while such signals may come in the form of a time series, e.g., from
dynamical measurements at the nodes, many node signals consist of other types of
attribute data supported on nodes—sometimes referred to as node-covariates, node
meta-data, or node feature data. The goal of GSP is to extend concepts from signal
processing such as the Fourier transform and the large set of filtering operations
developed in signal processing to data supported on the nodes of a graph [40, 43,
49]. Drawing on the rich tradition of signal processing, GSP provides a range of
methods to analyze and process graph supported data and, thus, has seen a steady
increase in interest in the last decade.

Even though graph-based descriptions of systems have been the dominant
paradigm to analyze heterogeneously structured systems and data so far (poten-
tially augmented in terms of multiple layers or temporal dimensions), the utility of
graphs formodeling certain aspects of complex systems has been scrutinized recently.
Specifically, graphs do not encode interactions between more than two nodes, even
though such multi-way interactions are widespread in complex systems [4, 6, 46,
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51]: assemblies of neurons fire in unison [22], biochemical reactions typically include
more than two chemical species [30], and group interactions are widespread in social
context [28]. To represent such polyadic interactions, a number of modeling frame-
works have been proposed in the literature to model such higher-order relations,
including simplicial complexes [25], hypergraphs [5], and others [19]. Using these
frameworks to analyze the organizational principles of the (higher-order edge) struc-
ture of polyadic relational data has garnered much attention in the literature lately.

In comparison to this line of work of representing and analyzing the structure
of complex multi-relational systems, the literature on dynamical processes on such
higher-order network structures is still relatively sparse. However, there is a fast-
growing body of work considering epidemic spreading, diffusion and opinion for-
mation, among other processes, on higher-order networks—see the recent review [4]
and references therein. Similarly, the literature on signal processing on higher-order
networks is still nascent and received so far comparably little attention [2, 41, 46].
Our goal in this manuscript is to present this area of signal processing on higher-order
network in an accessible and coherent manner, focusing on simplicial complexes as
modeling framework for higher-order network interactions. Along the way we point
out connections to the study of certain dynamical processes on (higher-order) net-
works and highlight avenues for future research.

The remainder of this document is structured as follows. We assume most of
our readers will be accustomed to graphs and networks, but perhaps less familiar
with some of the ideas of signal processing. Hence, we review in Sect. 12.2 some
central tenets from discrete signal processing that are relevant for our purposes, and
highlight the close connection between discrete signal processing and linear dynam-
ical systems. In Sect. 12.3, we use the interpretation of signal processing in terms of
dynamical systems to explain howone can naturally generalize from the processing of
time series to signals supported on graphs. In this context we introduce three example
applications: (i) signal smoothing and denoising for graph signals, (ii) signal interpo-
lation on graphs, and (iii)nonlinear signal processing via graph neural networks. In
Sect. 12.4, we then extend the ideas fromgraph signal processing to signals supported
on higher-order networks, and outline central ideas for signal processing on simpli-
cial complexes (SC). We revisit our example applications and show how the Hodge
Laplacian, a generalization of the graph Laplacian for SCs, plays a central role in the
processing of signals supported on SCs. We finally point out some further connec-
tions to the study of certain dynamical systems on graphs and simplicial complexes
and then conclude with a brief discussion on future research avenues and directions.

12.2 From Signal Processing to Dynamical Systems
and Graphs

Before embarking on our study of signal processing on simplicial complexes, we
revisit key concepts from signal processing that will be instrumental for our expla-
nations in subsequent sections. In particular, our exposition highlights how linear
signal processing and linear dynamical processes may be seen as two sides of the
same coin.
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12.2.1 Linear Signal Processing in a Nutshell

Discrete signal processing (DSP) [39] is concernedwith the extraction of information
fromobserved data.Arguably one of themost elementary scenarios is thatwe observe
some n dimensional data vector y = s + η ∈ R

n , which is simply an addition of some
signal s and a distortion term η. Simply put, the data consists of signal plus noise,
and our goal is to extract the signal component from the observed data.

To make this task well-defined, we have to characterize more precisely what
properties the signal and the noise have, i.e., we have to provide some modelling
assumptions that specify characteristics of the signal versus the noise. A typical
assumption here is that the signal s is concentrated in a particular linear subspace
S ⊂ R

n , whereas the noise η is not localized in R
n . For instance, in the context of

time series, we typically assume that the signal s is varying smoothly, i.e., can be
well-approximated by a linear combination of smooth basis functions. By finding
an expressive set of basis vectors such that the subspace S of “interesting signals”
can be spanned via a (sparse) subset of basis vectors, we can filter out the noise by
projecting the observed signal y onto S. The classical choice for such a basis is the
collection of discrete Fourier modes [39]. Through their inherent characterization in
terms of frequencies, Fourier modes enable us to distinguish between slowly varying,
smooth signals and more rapidly oscillating signals.

The discrete Fourier transform of a signal y is defined as ỹ = Fy, where F is the
discrete Fourier transform matrix:

F = 1√
n

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωn−1

1 ω2 ω4 ω6 · · · ω2(n−1)

1 ω3 ω6 ω9 · · · ω3(n−1)

...
...

...
...

. . .
...

1 ωn−1 ω2(n−1) ω3(n−1) · · · ω(n−1)(n−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
n×n . (12.1)

Here ω = exp(−2iπ/n) is the n-th primitive root of unity, and i denotes the imag-
inary unit with i2 = −1. Since F is a unitary matrix (FF∗ = I), we see that the
original signal can be synthesized via y = F∗ỹ, where F∗ is the conjugate transpose
of F. Hence, the vector of Fourier coefficients ỹ is simply the representation of the
signal y in the new Fourier basis given by the columns of F∗, which are simply
the complex conjugates of the rows of F. Note that the Fourier basis functions are
ordered such that the first Fourier mode, the constant vector, is associated with the
smallest frequency possible (frequency 0).

Based on the Fourier transform, we can now define the concept of a linear time-
invariant filter as follows.1 Let us consider a signal vector sin defined via a scalar
time series sin(t) at time-steps t = 0, 1, . . . , n − 1, i.e., sin = [sin(0), . . . , sin(t), . . . ,

1 More precisely, as often encountered in DSP, we are dealing with a cyclic time-shift invariant
filter.
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sin(n − 1)]. A linear time-invariant filter now consists in a transformation of the input
signal sin via a linear operator H to an output signal sout:

sout = Hsin, (12.2)

such that the filter H = F∗�HF can be diagonalized by discrete Fourier modes, i.e.,
the discrete Fourier modes are eigenvectors of H. Here �H is the diagonal matrix
of eigenvalues of the filter H, which is the so called frequency response of the
filter. Accordingly, we can interpret the action of filter H in (12.2) in terms of three
consecutive operations. We first express the initial signal sin in the Fourier basis by
applying the Fourier transformation F. We then modulate (amplify or attenuate) the
coefficients of the signal representation in this new basis representation in a desired
way by multiplying with �H. Finally, we project back the output signal onto the
initial basis by applying the inverse Fourier transformation F∗.

Via direct calculation, it can be shown that the matrix representation of any such
time-invariant filter H is a circulant matrix of the form

H =

⎡
⎢⎢⎢⎢⎢⎣

c0 cn−1 cn−2 · · · c1
c1 c0 cn−1 · · · c2
c2 c1 c0 c3
...

. . .
. . .

...

cn−1 cn−2 · · · c1 c0

⎤
⎥⎥⎥⎥⎥⎦

. (12.3)

Note that the vector λ(H) of eigenvalues of H, i.e., the frequency response of the
filter can be calculated as:

λ(H) = √
n · Fc with c = [c0, . . . , cn−1]�, (12.4)

which means that the eigenvalues are simply a Fourier transform of the coefficient
vector c that defines the circulant matrix H.

The above description of signal processing in terms of a change of basis of the
original (time) signal to a frequency domain representation highlights that the choice
of signal representation in terms of a basis can be crucial for processing signals—this
is a scheme we will see reoccur in the context of graphs and simplicial complexes.
However, based on this representation, the close connections between such linear
filtering operations and linear dynamical systems are less apparent. In the following
subsection we thus focus on an equivalent interpretation of such filtering processes
in terms of linear dynamical processes defined on (certain) graphs.
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12.2.2 Signal Processing via Linear Dynamical Systems
on Graphs

We now concentrate on a formulation of the above signal processing procedures
in terms of linear dynamical systems in discrete time. To this end, let us define a
signal c(t) based on the vector c = [c(0), . . . , c(t), . . . , c(n − 1)]�, analogously as
we defined sin. Moreover, consider the periodic extensions of both of these signals
defined as s◦

in(t) = sin(t − �n) and c◦(t) = c(t − �n) for � ∈ Z.
From (12.3), we observe that the filtering operation (12.2) may equivalently be

written in terms of the linear convolution2 of the (periodically extended) impulse
response c(t) and the input signal sin(t)

sout(t) = (c ∗ sin)(t) =
∞∑

i=−∞
c(i)s◦

in(t − i) =
∞∑

i=−∞
c◦(t − i)sin(i). (12.5)

Clearly, the above formula defines a linear dynamical system in which c(t) plays
the role of an impulse response. The system is however not memoryless as inputs
sin(t ′) at times t ′ 
= t are important for the output sout(t) of the system at time t . To
implement (or realize) the system we thus introduce a state vector x ∈ R

n which
keeps track of the inputs to the system sin(t) at previous times. Accordingly, we may
express the filtering operation (12.2) as:

sout(t) = c�x(t) (12.6a)

x(t + 1) = Sx(t) with x(0) = sin, (12.6b)

where the state transition matrix S takes the special form of a (circular) shift

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 0 0
...

...
. . .

. . .
. . . 0

0 0 . . . 1 0 0
0 0 . . . 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (12.7)

Note that the above realization of the system may not be minimal and we may be
able to implement our systemwith fewer states. However, the key idea of representing
a linear system in terms of a set of internal states which are coupled by a shift operator
is the aspect that is central to our further developments. In particular, using the shift
operator we can compactly summarize the above filtering operation in vector form:

2 Equivalently,this may also be interpreted as the cyclic convolution of the vectors c andsin.
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Fig. 12.1 Interpretation of the cyclic shift operator as a linear dynamical system on a graph.
The cyclic shift operator S may be interpreted as a linear diffusion x(t + 1) = Sx(t) on a directed
cycle graph of size n

sout =
n−1∑
k=0

ckSksin = Hsin, (12.8)

which provides us with yet another way to express the output of our dynamical
system. Note that this implies, in particular, that the filterH can be constructed from
linear combinations of the simpler shift operator S. Further, the Fourier basis F∗
diagonalizes also the shift operator S.

The rewriting (12.8) suggests an interpretation of the filtering operation as a linear
process on a graph as illustrated in Fig. 12.1. Specifically, we may interpret the shift
operator S as a cyclic graph GC and associate each node with a state (time) of our
dynamical system (see Fig. 12.1). Each iteration of the dynamical system x(t + 1) =
Sx(t) can be interpreted as a linear filtering operation. Since a combination of linear
filters is linear, the output y = ∑

t ctx(t) is linear and can thus also be interpreted
in terms of a dynamical system on a cyclic graph. To summarize, a linear time-shift
invariant filter can be interpreted as a weighted sum of the states of a linear dynamical
system on a cyclic graph.

12.3 Signal Processing on Graphs

In this section, we provide a short introduction to graph signal processing (GSP),
which extends the ideas of signal processing for time series or images to the process-
ing of signals supported on general graphs. A key insight underpinning GSP is that
the filtering operation (12.8) can be generalized from a cyclic graph to any graph, by
defining an appropriate shift operator compatible with the structure of the graph on
which the signals are supported.

12.3.1 Graph Signals, Fourier Transforms, and Filters

To introduce the ideas of graph signal processing mathematically, we will first recall
somepreliminary definitions and notation for graphs and signals supported on graphs.
For simplicity, we will concentrate on undirected graphs in the ensuing discussion,
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as this setup can be directly generalized to simplicial complexes. However, graph
signal processing may also be considered in the context of directed graphs [20, 32].

We define an undirected graph G by a set of nodes V = {v1, · · · , vn} with cardi-
nality |V| = n and a set of edges E , i.e., a collection of unordered pairs of nodes,
with cardinality |E | = m. A graph signal s : V → R is a mapping that assigns to each
node i ∈ V a real-valued scalar. Such a graph signal may thus be suitably represented
by a vector s ∈ R

n .
For computational purposes, we encode the structure of the graph G by an adja-

cency matrix A, whose entry Ai j is 1 if there is an edge between nodes i and j ,
and 0 otherwise. The graph Laplacian of the graph G is defined as L = D − A,
where D = diag(A1) is the diagonal matrix of (weighted) node degrees, i.e., Dii

is the degree of node i . Given an arbitrary orientation of the edges, an alternative
description of the structure of G is the so-called incidence matrix B ∈ Z

n×m , such
that Bie = 1 if node i is the tail of edge e, Bie = −1 if i is the head of the edge e,
and 0 otherwise. Using the operator B, another expression for the graph Laplacian
is L = BB�. Notice that we think of the edge e = (i, j) as oriented from the tail i
to the head j , although the choice of the orientation is arbitrary and has nothing to
do with a directed graph. For notational simplicity, we focus on unweighted graphs,
although the presented ideas can be generalized. For instance, the entry Ai j of the
adjacency matrix then simply becomes the weight of the edge from i to j if it exists.

To extend the idea of filtering operations to graphs, equation (12.8) provides a
natural starting point. In particular, to define a linear filtering operation for general
graphs, we may replace the cyclic shift operator S by any linear operator encoding
the structure of the graph, e.g., the adjacency matrix A or the graph Laplacian L.
These matrices are accordingly referred to as graph shift operators in the context of
GSP [48]. Since linear filtering in the time-domain is defined in terms of convolution,
replacing the cyclic shift S in the filter (12.8) by a graph shift operator G gives rise
to a graph convolutional filter:

sout =
n−1∑
k=0

ckGksin = HGsin. (12.9)

We remark that this definition also implies that any filtering operation can be imple-
mented via localized computations in the graph, e.g., by exchanging node signals in
a scheme akin to (12.6). In particular, if we choose a normalized adjacency matrix as
the graph shift operator G, we can see that this filtering scheme is interpretable as a
weighted diffusion process on a graph. More generally, the graph filtering operation
can always be understood in terms of a suitably defined linear dynamical process on
the network. This highlights again the close similarities between signal processing
and dynamical systems. There is a noteworthy difference in terms of the goals we
typically have in mind in this context, however. In the study of (linear) dynamics on
graphs, e.g., diffusion processes, we are often concerned with a fixed dynamics and
aim to understand how the properties of an arbitrary graph may influence the behav-
ior of this dynamics. In contrast, in the context of signal processing, we typically
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consider the graph as a fixed entity and our goal is to design a filter (or equivalently
a dynamical process) that achieves a desired behavior in terms of filtering.

At this point, two natural questions are: (i) What is the influence of the choice
of the graph shift operator? (ii) Is there an advantage of choosing one over another
graph shift operator? Let us concentrate on the first question for now. Since we are
concerned with graph filters that can be expressed as a polynomial (or more generally
as a power series) of the graph shift operator, the choice of the shift operator will
induce an orthogonal basis in which we represent the graph signal s. More precisely,
given the spectral decomposition of the symmetric shift operator G = U�U�, we
say that the eigenvectors of the graph shift operator (the columns of U) define a
Graph Fourier Transform (GFT), i.e., they form a natural basis in which the signal
s can be expressed [40, 43, 49]. The GFT of a signal is defined as

s̃ = U�s, (12.10)

and the inverse Fourier Transform operation is

s = Us̃. (12.11)

Given a weight function h : R → R, any shift-invariant graph filter can thus also be
written as

HG =
N∑

k=1

h(λk)uku�
k = Uh(�)U�, (12.12)

where we used the shorthand notation h(�) = diag(h(λ1), h(λ2), · · · , h(λn)). Note
that this is exactly equivalent to the case of a time-invariant filter, apart from the
choice of a different set of basis functions in which the signal is expressed. Indeed,
h(�) can again be interpreted as the frequency response of the filter HG, and the
filtering operation sout = HGsin can be decomposed into three steps: (i) express the
signal in the Graph Fourier domain via multiplication by U�; (ii) filter the signal
by multiplication with h(�), and (iii) project the filtered signal back into the graph
domain via U.

Based on this discussion, are there any advantages of choosing a particular graph
shift operator over another? Potentially, yes. As the spectral decompositions of the
various possible choices for a graph shift G can vary significantly, our choice can
have a significant effect. However, whether the basis functions induced by the graph
shift have favorable characteristics for the task at hand is largely dependent on the
application context, and there is no choice that will be generally superior in all con-
texts. Nonetheless, we will focus primarily on the (combinatorial) graph Laplacian
as our graph shift operator. This choice is on one handmotivated by themathematical
properties of the Laplacian. On the other hand, as we will see later, the Laplacian
can be generalized in a natural way to simplicial complexes, which allows us to draw
parallels to the processing of signals on graphs.
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Importantly, the graph Laplacian L is positive semidefinite, and thus all its eigen-
values are real and non-negative, which enables us to interpret them as frequencies.
In particular, we can order the GFT basis vectors (eigenvectors) according to these
frequencies. This ordering indeed captures the amount of signal variation along the
edges of the graph as we can see by considering the eigenvalues in terms of the
Rayleigh quotient

r(s) = s�Ls
s�s

=
∑

i j Ai j (si − s j )2

2‖s‖2 .

It follows, that eigenvectors associated with small eigenvalues have small variation
along the graph edges (i.e., low frequency) and eigenvectors associated with large
eigenvalues show large variation along edges (i.e., high frequency). Specifically,
eigenvectors with eigenvalue 0 are constant over connected components, akin to a
constant signal in the time domain.

12.3.2 Illustrative Applications of GSP

To make our discussion of signal processing on graphs more concrete, we consider
three application scenarios. Later, we will use these applications as guiding exam-
ples to illustrate how the ideas of signal processing on graphs can be translated to
simplicial complexes.

12.3.2.1 Signal Smoothing and Denoising

Consider a true signal y0 of interest supported on the set of nodesV . In many settings,
we only observe a noisy version y of it, i.e., y = y0 + ε ∈ R

N , where ε is a vector of
zero-mean white Gaussian noise. For instance, we may consider that y0 corresponds
to a measurement of a sensor in a network, or an opinion of a person in a social
network. Our goal is now to recover the true signal y0, a procedure that is called
denoising or smoothing in GSP [10, 11, 38].

Tomake this problemwell posed, we assume that the signal is smoothwith respect
to the graph structure, i.e., nodes that are connected should have a similar signal [15,
27]. This assumption translates into the optimization problem

min
ŷ

{∥∥ŷ − y
∥∥2
2 + αŷ�Lŷ}, (12.13)

where ŷ is the estimate of the true signal y0. The coefficient α > 0 can be interpreted
as a regularization parameter that trades off the smoothness promoted by minimizing
the quadratic form ŷ�Lŷ = ∑

i j Ai j (ŷi − ŷ j )2/2 and the fit to the observed signal
in terms of the squared 2-norm. The optimal solution for (12.13) is given by
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ŷ = (I + αL)−1y = H1y. (12.14)

Note, in particular, that H1 is a linear graph filter.
We can also obtain an estimate of the signal using the iterative smoothing operation

ŷ = (I − μL)ky = H2y, (12.15)

for a certain fixed number of iterations k and a suitably chosen update parameter μ.
This may be interpreted in terms of k gradient descent steps, i.e., discretized gradient
flow dynamics, for the potential function ŷ�Lŷ defining the regularization cost.

Both the denoising operator H1 and the smoothing operator H2 defined in
(12.14) and (12.15) are instances of low-pass filters, i.e., the frequency responses
h(λ) = diag(U�HU) are vectors of non-increasing (decreasing) values [48]. Since
eigenvectors with small eigenvalues show smaller variation along the graph edges,
the low-pass filtering operation guarantees that variations over neighboring nodes
are smoothed out. This is precisely in line with the intuition underpinning the opti-
mization problem (12.13).

12.3.2.2 Graph Signal Interpolation

Given signal values, called labels, for a subset of the nodesV L ⊂ V of a graph, another
common task in GSP is to interpolate the signal on unlabeled nodes VU = V \ V L in
the graph [35, 47]. Similar to the signal denoising problem,we assume that connected
nodes have similar labels, which translates into the following optimization problem:

min
ŷ

∥∥B�ŷ
∥∥2

2 , subject to ŷi = yi for all vi ∈ V L . (12.16)

Thus, we again aim to minimize the sum-of-squares label difference between con-
nected nodes, but now under the constraint that all observed node labels yi should be
kept in the optimal solution. Importantly, we assume here that these measurements
are fully accurate. Further, notice that the objective function in (12.16) can again
be written in terms of the quadratic form of the graph Laplacian

∥∥B�ŷ
∥∥2
2 = ŷ�Lŷ,

highlighting again the inherent low-pass modeling assumption.

12.3.2.3 Graph Neural Networks

A recent extension to the domain of GSP is the introduction of graph neural net-
works [7] (GNNs) into the processing pipeline. In contrast to standard graph filters,
GNN architectures include nonlinearities and learnable weights. GNNs can be built
for a range of different tasks including node classification [12, 29], graph classifi-
cation [21], and link prediction [54]. In intuitive terms, one may think of a graph
neural network as a procedure to automatically find a nonlinear filter (or dynamical
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process) that fits the desired behaviour given by a training set of graph signals and
the desired outputs of such a filter on those signals.

One popular architecture is the graph convolutional network (GCN) [29], a gener-
alization of the well-known convolutional neural network architecture for Euclidean
data such as time series or images. A GCN can be understood as a form of itera-
tive smoothing (12.15) with interleaved element-wise nonlinearities—usually called
activation functions in this context—and learnable weights that perform linear trans-
formations in the feature space

Yk+1 = σ (HYkWk+1) (12.17)

We run the network for K iterations and define YK as the output of the graph convo-
lution. The input features F0 are collected in the columns of Y0 ∈ R

N×|F0|. Here, H
is a shift-invariant graph filter based on the graph’s adjacency or Laplacian matrix,
which is adapted to the task at hand via a set

{
Wk ∈ R

|Fk−1|×|Fk |}K
k=1 of learnable

weight matrices.
Note that we can interpret the GNN in terms of a dynamical system, if we treat

each layer in the GNN as corresponding to one time-step. For simplicity, let us first
consider the case where σ(·) is the identity mapping. Then, (12.17) can be expressed
as a linear graph filter that is applied to each feature individually and whose outputs
are linearly combined at each node using the matrices {Wk}. That is,

YK = HKY0W1 · · ·WK , (12.18)

where HK is itself a shift-invariant graph filter. From here, the iterative smooth-
ing (12.15) can easily be recovered by restricting Yk to only one feature and setting
H := I − μL. The key benefit of GCNs, however, lies in the interleaved nonlinear-
ities and the linear combination of different features, which enables the network to
learn more sophisticated relationships between nodes based on their neighborhoods
and node features.

Recurrent graph neural networks take this idea of a nonlinear aggregation of infor-
mation across neighborhoods to the extreme. In the basic case, their state evolution
can be described as

Yk+1 = σ (HYkW)

and iterations continue until a stable equilibrium for all node states is reached [53],
or some other predefined stopping criterion is fulfilled. Notice that, unlike in (12.17),
the same (learnable) weights are shared across all layers, whose number does not
have to be fixed a priori.
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a b c d

Fig. 12.2 Signals on simplicial complexes of different order. a Structure of the simplicial com-
plexes used as a running example in the text. Arrows represent the chosen reference orientation.
Shaded areas correspond to the 2-simplices {1, 3, 4} and {5, 6, 7}. b Signal on 0-simplices (nodes).
c Signal on 1-simplices (edges). d Signal on 2-simplices (triangles). Reproduced from [46]

12.4 Signal Processing on Simplicial Complexes

In this section, we extend our analysis of graph signal processing to the case where
signals are not only supported on nodes, but also on higher-order structures such as
edges, triangles, and so on.Oneway to analyze such type of data is tomodel structures
via simplicial complexes (SC). We first briefly review the formalism of simplicial
complexes. We then discuss how the Hodge Laplacian provides an extension of the
graph Laplacian for higher-order networks that can serve as a shift operation for
SCs, and enables us to extend denoising and interpolating methods for signals on
higher-order networks.

12.4.1 Brief Recap of Simplicial Complexes

Given a finite set of vertices V , a k-simplex (or simplex of order k) Sk is a subset of
V with cardinality k + 1. A simplicial complex X is a set of simplices such that for
any k-simplex Sk in X , any subset of Sk must also be in X .

Example 12.1 Consider the simplicial complex given in Fig. 12.2a. Simplices of
order 0 and 1 can be understood as nodes and as edges, respectively. Simplices of
order 2 correspond to filled triangular faces.

We can define a relation between k-simplices and simplices of order (k + 1) as
follows: We call a k-simplex Sk a face of Sk+1 if Sk is a subset of Sk+1. Likewise,
Sk+1 is a co-face of Sk if Sk+1 has exactly one additional element than Sk .

Example 12.2 Consider again Fig. 12.2a. The edges {1, 3}, {1, 4} and {3, 4} are all
faces of the 2-simplex {1, 23, 4}. The 2-simplex {5, 6, 7} is a co-face of each of the
edges {5, 6}, {5, 7} and of {6, 7}.

To enable algebraic computations with simplicial complexes, we fix an arbitrary
ordering of the nodes in the graph. This ordering induces an orientation for each
simplex via the increasing order of the vertex labels. Note that this orientation is
distinct from the notion of a direction found in a directed graph. Having defined an
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orientation for each simplex, we can now keep track of the relationships between
simplices of different orders by using linear maps called boundary operators. In
our context, these boundary operators are nothing but matrices Bk , whose rows are
indexed by (k − 1)-simplices and whose columns are indexed by k-simplices. In
particular, the i j th entry of Bk is +1 (or −1) if the i th (k − 1)-simplex is included in
the j th k-simplex and their orientation is aligned (or anti-aligned), and 0 otherwise.

Example 12.3 InFig. 12.2a,wefixed an arbitrary orientation bynumbering the nodes
from1 to 7. The orientation of 2-simplices is chosen such that nodes appear in increas-
ing order. For this simplicial complex, the boundary operators can be represented as
follows:

B1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(1, 2) (1, 3) (1, 4) (2, 3) (3, 4) (3, 6) (4, 5) (5, 6) (5, 7) (6, 7)

1 −1 −1 −1 0 0 0 0 0 0 0
2 1 0 0 −1 0 0 0 0 0 0
3 0 1 0 1 −1 −1 0 0 0 0
4 0 0 1 0 1 0 −1 0 0 0
5 0 0 0 0 0 0 1 −1 −1 0
6 0 0 0 0 0 1 0 1 0 −1
7 0 0 0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

B2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1, 3, 4) (5, 6, 7)

(1, 2) 0 0
(1, 3) 1 0
(1, 4) −1 0
(2, 3) 0 0
(3, 4) 1 0
(3, 6) 0 0
(4, 5) 0 0
(5, 6) 0 1
(5, 7) 0 −1
(6, 7) 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that B1 is nothing more than the incidence matrix of the graph and B2 is the
edge-to-triangle incidence matrix.

12.4.2 The Hodge Laplacian as a Shift Operator
for Simplicial Complexes

Given signals supported on the k-simplices of an SC,we need to define an appropriate
shift operator in order to translate the results from the GSP setting to SCs. To this
end, using the boundary operatorsBk described above, we extend the definition of the
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graph Laplacian for simplicial complexes. The kth combinatorial Hodge Laplacian
is given by [18, 31]:

Lk = B�
k Bk + Bk+1B�

k+1. (12.19)

Note in particular that the graph Laplacian corresponds toL0 = B1B�
1 , withB0 := 0.

Similar to the graph Laplacian, weighted versions of the Hodge Laplacian can be
defined as well, but we stick to the unweighted versions here for simplicity.

Whilewe have discussed general SCs so far, tomake our discussionmore concrete
we will focus on signals supported on 1-simplices, which may be interpreted as edge
flows. This choice is motivated from a practical point of view, as in many application
scenarios we are confronted with flows supported on the edges of a network, e.g.,
in transportation and supply networks, or networks defined via information flows or
human mobility. We argue that in those contexts the L1-Hodge Laplacian is a natural
choice for a shift operator for signals supported on edges (1-simplices). The ensuing
discussions are still applicable to signals supported on higher-order components of
simplicial complexes, whichmay come up in domains such as electromagnetics [13].
Indeed, there are close connections between signals on simplicial complexes and
differential forms on manifolds.

Specifically, similar to the graph Laplacian, the Hodge Laplacian is positive semi-
definite, which ensures that we can interpret its eigenvalues in terms of non-negative
frequencies. Moreover, these frequencies are again aligned with a notion of signal-
smoothness displayed by the eigenvectors of the Hodge Laplacian. This notion of
smoothness can be understood by means of the so-called Hodge decomposition [24,
31, 44], which states that the space of k-simplex signals can be decomposed into
three orthogonal subspaces

R
nk = im(Bk+1) ⊕ im(B�

k ) ⊕ ker(Lk), (12.20)

where im(·) and ker(·) are shorthand for the image and kernel spaces of the respective
matrices, ⊕ represents the union of orthogonal subspaces, and nk is the cardinality
of the space of signals on k-simplices (i.e., n0 = n for the node signals, and n1 = |E |
for edge signals). Here we have (i) made use of the fact that a signal on a finite
dimensional set of nk simplices is isomorphic toRnk ; and (ii) implicitly assumed that
we are only interested in real-valued signals and thus a Hodge decomposition for a
real valued vector space (see [31] for a more detailed discussion).

For the edge-space Hodge Laplacian L1 of an SC, this Hodge decomposition
is the discrete analogue of the well-known vector calculus result that any vector
field can be decomposed into gradient, curl, and harmonic components (see Fig. 12.3
for an illustration). First, the space im(B�

1 ) = {f = B�
1 v, for some v ∈ R

n} can be
considered as the space of gradient flows (or potential flows). Specifically, we can
create any such gradient flow by (i) assigning a scalar potential to all of the n nodes,
and (ii) inducing a flowalong the edges according to the difference of the potentials on
the endpoints. Clearly, any such flow cannot have a positive net sum along any closed
path in the graph and the space orthogonal to im(B�

1 ) is thus called the cycle space.
As indicated by (12.20), the cycle space is spanned by two types of cyclic flows. The
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space im(B2) consists of curl flows that can be composed of linear combinations of
local circulations along any 2-simplex (triangular face). Specifically, we may assign
a scalar potential to each oriented 2-simplex, and consider the induced flows f = B2t,
where t is the vector of 2-simplex potentials. Finally ker(L1) is the harmonic space,
whose elements correspond to global circulations that cannot be represented as linear
combinations of curl flows.

Importantly, these three subspaces are spanned by certain subsets of eigenvectors
ofL1 as described by the following result,which can be verified bydirect computation
[2, 44].

Theorem 12.1 Let L1 = B�
1 B1 + B2B�

2 be the Hodge 1-Laplacian of a simplicial
complex. The eigenvectors with nonzero eigenvalues of L1 consist of two groups that
span the gradient space and the curl space, respectively:

• Consider an eigenvector vi of the graph Laplacian L0 with nonzero eigenvalue λi .
Then, u(i)

grad = B�
1 vi is an eigenvector ofL1 with the same eigenvalue λi . Moreover,

Ugrad = [u(1)
grad,u

(2)
grad, . . .] spans the space of all gradient flows.

• Consider an eigenvector ti of the matrix T = B�
2 B2 with nonzero eigenvalue θi .

Then, u(i)
curl = B2ti is an eigenvector of L1 with the same eigenvalue θi . Moreover

Ucurl = [u(1)
curl,u

(2)
curl, . . .] spans the space of all curl flows.

The above result shows that, unlike in the case of node signals, edge-flow signals
can have a high frequency contribution due to two different types of (orthogonal)
basis components being present in the signal: a high frequency may arise both due
to a curl component as well as a strong gradient component present in the edge-flow.
This has certain consequences for the filtering of edge signals that we will discuss
in more detail in the following section.

12.4.3 Illustrative Applications

In the following subsections, we revisit the three application scenarios outlined in
the context of graphs, but this time focusing on edge flows supported on general SCs.
As we will see, in this context the Hodge Laplacian becomes a natural substitute for
the graph Laplacian.While most of the mathematical formulations can be carried out
in essentially the same way when using this substitution, it is important to consider
how the interpretation of smoothing and denoising changes when using the Hodge
Laplacian in the edge space as a shift operator.

12.4.3.1 Flow Smoothing and Denoising

Let us reconsider the problem of smoothing and denoising for oriented edge-signals
f0 ∈ R

E (flows) supported on a simplicial complex X . Let us assume again that we
cannot observe these flows directly, but we get to see a noisy signal f = f0 + ε, where
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ε is a zero-mean white Gaussian noise vector. As in the case of node signals, our
objective is to recover the true underlying signal f0. By analogy with the estimation
problem on graphs, we consider solving the following optimization program

min
f̂

{∥∥∥f̂ − f
∥∥∥
2

2
+ αf̂�Qf̂

}
, (12.21)

with optimal solution f̂ = HQf := (I + αQ)−1f . Like before, the quadratic form
f̂�Qf̂ acts again as regularizer. Since the filter HQ will inherit the eigenvectors of
the matrix Q, the eigenvectors will form a canonical basis for the filtered signal. A
natural choice for a regularizer is thus an appropriate (simplicial) shift operator.

Here we discuss three possible choices for the regularizer (shift operator) Q: (i)
the graph Laplacian LLG of the line-graph [45] of the underlying graph skeleton of
the complex X , i.e., the line-graph of the graph induced by the 0-simplices (nodes)
and 1-simplices (edges) of X ; (ii) the edge Laplacian Le = B�

1 B1, i.e., a form of the
Hodge Laplacian that ignores all 2-simplices in the complexX such thatB2 = 0; (iii)
the Hodge Laplacian L1 = B�

1 B1 + B2B�
2 that takes into account all the triangles

of X as well. To gain some intuition, let us illustrate the effects of these choices by
means of an example.

Example 12.4 Figure12.4a displays a conservative cyclic flowon the edges of anSC,
i.e., all of the flow entering a node exits the node again. This flow is then distorted
by a Gaussian noise vector ε in Fig. 12.4b. The estimation error produced by the
filter based on the line-graph (Fig. 12.4c) is comparatively worse than the estimation
performance of the edge Laplacian (Fig. 12.4d) and the Hodge Laplacian (Fig. 12.4e)
filters: Specifically the 2-norm of the error is 36.54 (line graph) versus 1.95 (Edge
Laplacian), and 1.02 (Hodge Laplacian) respectively.

To explain the results obtained from the individual filters in the above example,
it is essential to realize that the eigenvectors of the regularizer Q associated with
small eigenvalues will incur a small regularization penalty. In the case of the line-
graph Laplacian, these eigenvectors are determined by the edge connectivity: the
low-frequency eigenvectors correspond to signals in which adjacent edges in the
simplicial complex have a small difference. This is equivalent to the notion that low-
frequency modes in the node space do not vary a lot on tightly connected nodes on a
graph. However, for flow signals this notion of smoothness induced by the line-graph
as shift operator is often inappropriate. Specifically, many real-world flow signals
are approximately conservative, in that most of the flow signal entering a node exits
the node again, but the relative allocation of the flow to the edges does not have
to be similar. Accordingly, as can be seen from Fig. 12.4c, the line graph filtering
operation leads to an increased error compared to the noisy input signal [45]. Another
reason for this behavior is that the line-graph Laplacian does not reflect the arbitrary
orientation of the edges, so that the performance is not invariant to the chosen sign
of the flow.

Unlike the line-graph Laplacian, the Edge Laplacian captures a notion of flow
conservation, and its zero frequency eigenvectors correspond to cyclic flows [45]. To
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37.08

1.95

36.54

1.02

Noise-free flow

Edge Laplacian filter Hodge Laplacian filter

Noisy flow Line-graph filtera

d e

b c

Fig. 12.4 Flow smoothing on an SC. a An SC with a pre-defined and oriented flow f0. b The
observed flow is a noisy version of the flow f0, i.e., f0 is distorted by a Gaussian white noise
vector ε. c We denoise the flow by applying a Laplacian filter based on the line-graph. This filter
performs worse compared to the edge space filters in (d) and (e) that account for flow conservation.
d Denoised flow obtained after applying the filter based on the edge Laplacian. e Denoised flow
obtained after applying the filter based on the Hodge Laplacian. The estimation error is lower than
in the edge Laplacian case as the filter accounts for filled faces in the graph. Reproduced from [46]

see this, it is insightful to inspect the quadratic regularizerLe = B�
1 B1. Note that this

quadratic form can be written as f�Lef = ‖B1f‖22. This is precisely the (summed)
squared divergence of the flow signal f , as each entry (B1f)i corresponds to the
difference of the inflow and outflow at node i . As a consequence, all cyclic flows
will induce zero cost for the regularizer f�Lef . Stated differently, any flow that is not
divergence free, i.e., not cyclic, will be penalized by the quadratic form. Since by
the fundamental theorem of linear algebra ker(B1) ⊥ im(B�

1 ), any such non-cyclic
flow can be written as a gradient flow fgrad = B�

1 v for some vector v of scalar node
potentials—in line with the Hodge decomposition discussed in (12.20).

In contrast to the Edge Laplacian, the full Hodge Laplacian L1 includes the addi-
tional regularization term f�B2B�

2 f = ‖B�
2 f‖22, which may induce a non-zero cost

even for certain cyclic flows. More precisely, any curl flow fcurl = B2t, for some vec-
tor t will have a non-zero penalty. This penalty is incurred despite the fact that fcurl
is a cyclic flow by construction: since B1fcurl = B1B2c = 0, the vector fcurl is clearly
in the cycle space; see also discussion in Sect. 12.4.2. The additional regularization
term ‖B�

2 f‖22 may thus be interpreted as a squared curl flow penalty.
From a signal processing perspective, the L1 based filter thus allows for a more

refined notion of a smooth signal. Unlike in the Edge Laplacian filter, not all cyclic
flows can be constructed from frequency (eigenvalue) 0 basis signals. Instead a
signal can have a high-frequency even if it is cyclic, when it has a high curl compo-
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nent. Hence, by constructing simplicial complexes with appropriate (triangular) 2-
simplices, we have additionalmodeling flexibility for shaping the frequency response
of an edge-flowfilter. In our example above, this is preciselywhat leads to an improve-
ment in the filtering performance. Indeed the displayed “ground truth” signal is a
harmonic function with respect to the simplicial complex and thus does not contain
any curl components. We remark that the eigenvector basis of Le can always be
chosen to be identical to the eigenvectors of L1; thus, we may represent any signal
in exactly the same way in a basis of Le or L1. Thus the difference in filtering per-
formance is not due to the chosen eigenvector basis, but only due to the eigenvalues:
the frequencies associated with all cyclic vectors will be 0 for the Edge Laplacian,
while there will be cyclic flows with nonzero frequencies for L1, in general. This
emphasizes that the construction of faces is an important modeling choice when
defining the appropriate notion of a smooth signal.

12.4.3.2 Interpolation and Semi-supervised Learning

We now focus on the interpolation problem for data supported on the edges of a
simplicial complex. Let us suppose that we measure signals on a subset of the edges
in X , i.e., we are given a set of labeled edges E L ⊂ E , with cardinality |E L | = EL .
The objective is to estimate the labels of unobserved or unmeasured edges in the
set EU ≡ E\E L , whose cardinality we will denote by |EU | = EU . Following [26],
we will again start by considering the problem setup with no 2-simplices (B2 = 0),
before we consider the general case in which 2-simplices are present.

To derive a well-defined problem for imputing the remaining edge-flows, we
need to assume that the true signal has some low-dimensional structure. Following
our above discussions, we will again assume that the true signal has a low-pass
characteristic in the sense of the Hodge 1-Laplacian, i.e., that the edge flows are
mostly conserved. Let f̂ denote the vector of the true (partly measured) edge-flow.
A convenient loss function to promote flow conservation is then again the sum-of-
squares vertex divergence

∥∥∥B1 f̂
∥∥∥
2

2
= f̂�B�

1 B1 f̂ = f̂�Le f̂ . (12.22)

Accordingly, we formalize the flow interpolation problem

min
f̂

∥∥∥B1 f̂
∥∥∥
2

2
+ α2 ·

∥∥∥f̂
∥∥∥
2

2
s.t. f̂r = fr , for all measured edges r ∈ E L , (12.23)

Note that, in contrast to the node signal interpolation problem,we have to add an addi-
tional regularization term ‖f̂‖22 to guarantee the uniqueness of the optimal solution.
If there is any independent cycle in the network for which we have no measurement
available, we may otherwise add any flow along such a cycle while not changing the
divergence in (12.22). To remedy this aspect, we simply add a 2-norm regularization
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Fig. 12.5 Semi-supervised learning for edge flow. a Synthetic flow. 50% of the edges are labeled.
Labeled edges are colored based on the value of their flow. The remaining edges in grey are inferred
from the procedure explained in the text. b Edge flow obtained after applying the semi-supervised
algorithm in (12.24). c Numerical value of the inferred signal. Reproduced from [46]

that promotes small edge-flow magnitudes by default. While other regularization
terms are possible, with this formulation we can rewrite the above problem in a least
squares form as described next.

To arrive at a least-squares formulation, we consider a trivial feasible solution f̂0

for (12.23) that satisfies f̂ 0r = fr if r ∈ E L and f̂ 0r = 0 otherwise. Let us now define
the expansion operator � as the linear map from R

EU to R
E such that the true flow

f can be written as f = f̂0 + �fU , where fU ∈ R
EU is the vector of the unmeasured

true edge-flows. Reducing the number of variables considered in this way, we can
convert the constrained optimization problem (12.23) into the following equivalent
unconstrained least-squares estimation problem for the unmeasured edges f̂U :

f̂U∗ = argminf̂U

∥∥∥∥
[
B1�

αI

]
f̂U −

[−B1f0

0

]∥∥∥∥
2

2

. (12.24)

We illustrate the above procedure by the following example.

Example 12.5 We consider the network structure in Fig. 12.2a. The ground truth
signal is f = [−2,−2, 4,−2, 3,−7, 7, 3, 4,−4]�. We pick five labeled edges at
random (colored in Fig. 12.5a). The goal is to predict the labels of the unlabeled
edges (in grey with a question mark in Fig. 12.5a). The set of labeled edges
is E L = {(1, 3), (1, 4), (3, 6), (4, 5), (5, 6)}. The set of unlabeled edges is EU =
{(1, 2), (2, 3), (3, 4), (5, 7), (6, 7)}. Solving the optimization program (12.24), we
obtain the predicted signal f∗

SSL in Fig. 12.5b.Numerical values are given inFig. 12.5c.
The Pearson correlation coefficient between f and f∗

SSL is 0.99. The 2-norm of the
error is 0.064.

Analogous to our discussion above, it may be relevant to include 2-simplices for
the signal interpolation problem. We interpret such an inclusion of 2-simplices in
two ways. From the point of view of the cost function, it implies that instead of
penalizing primarily gradient flows (which have nonzero divergence), we in addition
penalize certain cyclic flows, namely those that have a nonzero curl component. From
a signal processing point of view, it means that we are changing what we consider a
smooth (low-pass) signal, by adjusting the frequency representation of certain flows.
Accordingly, one possible formulation of the signal interpolation problem, including
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information about 2 simplices is

f̂	 = argminf̂

∥∥∥B1 f̂
∥∥∥
2

2
+

∥∥∥B�
2 f̂

∥∥∥
2

2
+ α2

∥∥∥f̂
∥∥∥
2

2
, (12.25)

subject to the constraint that the components of f̂ corresponding to measured flows
are identical to those measurements. As in (12.24), we can convert this program into
the following least-squares problem

f̂U	 = argminf̂U

∥∥∥∥∥∥

⎡
⎣
B1�

αI
B�
2 �

⎤
⎦ f̂U −

⎡
⎣

−B1f0

0
−B�

2 f
0

⎤
⎦

∥∥∥∥∥∥

2

2

. (12.26)

Remark 12.1 Note that the problem of flow interpolation is tightly coupled to the
issue of signal reconstruction from sampled measurements. Indeed, if we knew that
the edge signal to be recoveredwas exactly bandlimited [2], thenwe could reconstruct
the edge-signal if we had chosen the edges to be sampled appropriately. Just like the
interpolation problem considered here may be seen as a semi-supervised learning
problem for edge labels, finding and choosing such optimal edges to be sampled
may be seen as an active learning problem in the context of machine learning. While
we do not expand further on the choice of edges to be sampled here, we point the
interested reader to two heuristic active learning algorithms for edge flows presented
in [26]. We also refer the reader to [2, 3] for a theory of sampling and reconstruction
of bandlimited signals on simplicial complexes, and to [1] for a similar overview that
includes an approach for topology inference based on signals supported on simplicial
complexes.

12.4.3.3 Simplicial Neural Networks

With a foundation in linear filtering based on the Hodge Laplacian for k-simplex
signals, a natural next step is the interleaving of nonlinearities to form convolutional
neural networks for data on simplicial complexes. In particular, convolutional layers
analogous to (12.17) can be constructed by composing filters, boundary maps, and
activation functions. Letting Y0 ∈ R

nk×|F0| gather k-simplex signals in its columns,
the layers of a simple convolutional neural network, as done by [17], can be written
recursively as

Yk+1 = σ (HYkWk+1) , (12.27)

where H is some suitable polynomial of the Hodge Laplacian Lk , and eachWk+1 ∈
R

|Fk |×|Fk+1| is a (learnable) weight matrix. Variants of this basic architecture allow
weights for the upper (B�

k B) and lower (Bk+1B�
k+1) components to be learned inde-

pendently [23], or for signals to be computed over all dimensions of the simplicial
complex [8].
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When representing a k-simplex signal for k ≥ 1, the first step is to fix an arbitrary
orientation of the simplices, as discussed in Sect. 12.4.1. In doing so, one fixes the
signs of the entries in the incidence matrices Bk,Bk+1, as well as the signs of a given
k-simplex signal. This is a distinct choice compared to architectures for signals on the
nodes of a graph, such as graph neural networks, since nodes do not have a notion
of orientation associated to them. Fortunately, the signs of the incidence matrices
and the signs of the signal written as a real vector are compatible, so that linear
filters based on the Hodge Laplacian commute with the choice of orientation: that
is, such filters are equivariant to the chosen orientation of the k-simplices. This is an
important property, since the orientation is indeed arbitrary: the choice of orientation
for k-simplex signals is analogous to choosing a coordinate basis in a vector space.
Although a choice of basis for a vector space makes computation intuitive, the “true”
object is the vector itself, and not the list of coordinates in that basis.

This introduces a new problem for the design of neural networks, since con-
volutional layers such as (12.27) are not necessarily equivariant to the choice of
orientation. This was considered by [23, 42], both advocating for the use of odd,
elementwise, and continuous activation functions in neural networks for signals on
simplicial complexes. Such functions are readily shown to yield architectures equiv-
ariant to the arbitrary choice of orientation.

12.5 Further Relations to Dynamical Systems on Graphs
and Simplicial Complexes

As we have seen in Sect. 12.2, the graph Laplacian is intimately connected to linear
dynamical systems on networks, such as diffusion processes or consensus processes.

In the context of consensus processes [37, 55], we consider networks composed
of so called “agents” (entities, devices, people) that are connected by an edge if the
corresponding agents interact. At each time step t , each agent is in a certain state.
For instance, in the context of social networks, the state of node i at time t can be
understood as the opinion of the individual i at time t . Let us denote by si (t) the
state of node i at time t and store the states of all agents at time t in a vector of
states (or opinions in the social networks context) s(t) = [s1(t), s2(t), · · · , sn(t)]�.
The dynamics of si over time can be expressed with the averaging law

ṡi (t) = −
∑
vi∼v j

(si (t) − s j (t)), (12.28)

which we can rewrite as

ds(t)
dt

= −Ls(t), (12.29)

where L is the graph Laplacian.
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Given an initial condition s(0) = s0, the solution of the above linear dynamics is
simply s(t) = exp(−Lt))s0, where exp(·) denotes the matrix exponential. Note we
may interpret this vector equivalently as a filtered graph signal. Stated differently, for
every t > 0, we may interpret the current state vector of the system as a (low-pass)
filtered version of the initial condition s0.

Following [33], we can also study a generalization of the dynamical system in
(12.29) for higher-order Laplacians. Let us consider a discrete time-varying signal
ω(t) of order k. For instance, in the case k = 1, ω(t) is an edge-flow, analog to f
in Sect. 12.4.3, i.e., the i-th component of the vector ω(t) is the state of the i-th
edge, assuming that an ordering of the edges was initially defined. We consider the
dynamical system

dω(t)

dt
= −Lkω(t), ω(0) = ω0, (12.30)

where Lk is the k-th combinatorial Hodge Laplacian as defined in (12.19). We can
interpret (12.30) as the higher-order analog of the discretized heat equation given in
(12.29) (note, however, that this is not a diffusion process). The equilibrium points
of this dynamical system are given by the set [33]

{ω | Lkω = 0} = ker(Lk). (12.31)

Since Lk is a positive semi-definite matrix and the system (12.30) is thus (semi-
)stable, the dynamics in (12.30) can be seen as a means to compute a k-th order
harmonic signal on a generic simplicial complex, starting from any arbitrary k-th
order signal. If the simplicial complex has non-empty homology (many holes), then
the systemwill converge to an element in the basis of ker(Lk) depending on the initial
condition. In other words, the above dynamical system acts as a perfect low-pass
filter which projects the initial condition (asympotically) into the space of harmonic
signals.

In particular, if the simplicial complex has exactly one hole, then for any initial
condition, the system will converges to a vector that spans the harmonic subspace.
The dynamical system in (12.30) thus offers a decentralized method to compute
the homology classes in the simplicial complex [34]. This method finds a useful
application in real sensor networks [34, 50], in particular for detecting coverage
holes in a decentralized manner and without location information [50].

Generalizations of (12.30) have been discussed and analyzed in [14, 51]. In par-
ticular, [14] analyzes a nonlinear version of (12.30). For an unweighted SC, this
model takes the form:

dω(t)

dt
= − (

Bk+1 f (B�
k+1ω(t)) + B�

k f (Bkω(t))
)
, (12.32)

where f : Rn → R
n is a function that acts componentwise. It is shown in [14] that

(12.32) under certain conditions be formulated as the gradient flow for an energy
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functional defined by the simplicial complex. Based on these results, the stability of
certain steady states in the nonlinear case can be deduced [14]. Note again that, apart
from a lack of adjustable weights, there is again a remarkable similarity between
the nonlinear equation (12.32) and the nonlinear signal processing approach of the
neural network formulation for SCs in (12.27). In particular, both systems are based
on alternating applications of a linear transformation and a point-wise nonlinearity.
Indeed this close similarity of particular neural network architectures and ordinary
differential equations has been the focal point for the development of the so-called
neural ODE formulations [9].

12.6 Discussion

Simplicial complexes have emerged as a key modeling framework for abstracting
complex systems with higher-order interactions [4, 6, 51]. The majority of previ-
ous works have focused on studying the structural properties of such complexes, in
particular in the context of topological data analysis [52]. More recently, the study
of dynamical processes acting on top of such complexes has gained attention. Here
we have discussed signal processing for data supported on simplicial complex as a
closely aligned, but different perspective to both of these viewpoints. Rather than try-
ing to understand a dynamical behavior on a (arbitrary but fixed) simplicial complex,
in the context of signal processing we aim to obtain a desired filtering output, based
on a given input signal—which may be interpreted as aiming to design a particular
dynamics that achieves a desired target specification as close as possible. We have
centered our discussion on the Hodge Laplacian [18, 31] as a key operator whose
spectral decomposition provides a unitary basis for signals supported on simplicial
complexes, which is tightly coupled to the structural properties of the underlying SC
due to the Hodge decomposition. Specifically, focusing on edge-flows, we discussed
how the Hodge decomposition can be interpreted as a discrete analog of the well-
known decomposition of a continuous vector field into gradient, curl, and harmonic
components.

Our discussion opens up a number of avenues for future research. For instance,
one pertinent question concerns the “optimal construction” of simplicial complexes
from data and how this affects signal processing supported on SCs. This problem is
only magnified when considering weighted SCs and corresponding weighted Hodge
Laplacians, to which most of the theory discussed here can be readily applied as
well [31, 44]. More generally, most of the developed theory can be readily extended
to cell complexes, in which the atomic building blocks are not simplices but cells
containing any number of nodes. How to choose an appropriate cell complex repre-
sentation for a given system is a completely open topic that remains to be explored
in more detail.
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Chapter 13
Social Contagion on Higher-Order
Structures

Alain Barrat, Guilherme Ferraz de Arruda, Iacopo Iacopini,
and Yamir Moreno

Abstract In this Chapter, we discuss the effects of higher-order structures on SIS-
like processes of social contagion. After a brief motivational introduction where we
illustrate the standard SIS process on networks and the difference between simple
and complex contagions, we introduce spreading processes on higher-order struc-
tures starting from the most general formulation on hypergraphs and then moving
to several mean-field and heterogeneous mean-field approaches. The results high-
light the rich phenomenology brought by taking into account higher-order contagion
effects: both continuous and discontinuous transitions are observed, and critical mass
effects emerge.We conclude with a short discussion on the theoretical results regard-
ing the nature of the epidemic transition and the general need for data to validate
these models.

13.1 Introduction

The standard modeling and study of social or biological contagion processes in
populations is based on two types of ingredients. First, the evolution of the process
within each individual is often described through compartmental models [1, 2], such
that each individual is at any time in one of several possible compartments or states.
For instance, in the description of many infectious diseases, the considered states
include susceptible (S, healthy), infectious (I, having the disease and able to transmit
it to others), or recovered (R, cured from the disease and immunized). This type
of modeling gives a simplified description of the disease course, abstracting the
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continuous growth and decrease of the viral load and viral shedding of an individual.
The modeling also defines the possible transitions between states: in the SIR model,
an S individual can become I upon interactionwith I individual(s), and an I individual
becomes R upon recovery. In the SIS model instead, an I individual becomes again
susceptible upon recovery.

The second typeofmodelinghypothesis concerns the definition and representation
of the interactions between individuals. This representation is crucial as it describes
the way in which the process spreads between individuals. Numerous results have
been obtained under the simplest homogeneous mixing hypothesis, in which any
individual can interact with any other, and contagion occurs with a certain probability
per unit time upon each contact [1, 2]. Evenwithin this simplistic picture, the SIS and
SIRmodels exhibit an interesting phenomenology,with a continuous phase transition
at the so-called epidemic threshold: when the ratio of the contagion to the recovery
rate is smaller than the epidemic threshold, the spread dies out, while it reaches a
finite fraction of the population above the threshold. In the SIS case, a steady state is
then reached, inwhich the epidemic is sustained by a non-zero number of individuals.

One of the most successful impacts of network science has been to go beyond the
homogeneous mixing hypothesis and study how more realistic structures of interac-
tions between individuals affect the dynamics of compartmental models of contagion
processes, and in particular the epidemic threshold [3–6]. Indeed, network-based
representations are conveniently used to describe many systems of various nature,
including the social structures onwhichmany dynamical processes occur, such as the
spread of diseases and of information, the formation of opinions and the diffusion of
innovations [4, 7, 8]. In the resulting modeling, the transmission process is assumed
to occur through pairwise interactions and through a single exposure: in other words,
an infectious individual can transmit the disease to a susceptible one upon a single
interaction (along one of the links of the network representation).

While such “simple contagion” frameworks are stillwidelyused in themodelingof
infectious diseases, the situation ismore complexwhen dealingwith social contagion
phenomena, such as the adoptionof normsor newproducts, or the diffusionof rumors.
Indeed, empirical evidence has shown that simple epidemic-like contagion processes
do not provide a satisfactory description of the complex dynamics occurring when
peer influence and reinforcementmechanisms are atwork [9–15].Complex contagion
mechanisms have been proposed to account for these effects: broadly speaking, they
are defined as any process in which exposure to multiple sources presenting the same
stimulus is needed for the contagion to occur [9].Modeling of complex contagion has
been developed in two main directions. On the one hand, threshold models consider
that an individual can be convinced to adopt e.g. a new behaviour if and only if a
fraction of their contacts larger than a given threshold is already convinced (have
already adopted the behaviour) [9, 13, 16–19]. On the other hand, epidemic-like
processes have been generalized, with contagion rates that depend on the number of
sources of exposure to which an individual is linked [12, 19–24].

From thehomogeneousmixing simple contagionmodels to the complex contagion
occurring on complex networks, the assumption of transmission processes occurring
along pairwise interactions has remained an ubiquitous and most often undiscussed



13 Social Contagion on Higher-Order Structures 331

norm. It fits well with the representation of social groups as networks, since links of
the networks are pairwise associations of nodes (the individuals of the population).
However, a number of social phenomena occur as the result of group interactions.
Let us consider for instance the adoption of a product or a norm. An individual
might be convinced by a single interaction with an adopter (simple contagion), or
by successive interactions with two distinct adopters (complex contagion), along the
links of their social networks. However, a qualitatively different process is at work
if the individual gets convinced as part of a social group of three individuals, the
other two being adopters. It might occur because the individual wants to be similar
to the rest of the group, or, in a group discussion, the two adopters’ arguments
might reinforce each other in a way that would be impossible in separate pairwise
discussions.

To account for such interactions between individuals occurring in groups of vari-
ous sizes, it is thus necessary to expand the representation of the social structure from
networks, which can only encode pairwise interactions, to higher-order structures,
namely hypergraphs [25]: the building blocks of hypergraphs are indeed hyperedges
that can join an arbitrary number of nodes. Clearly, the modeling of spreading pro-
cesses on hypergraphs also implies to generalize contagion processes from pairwise
to group processes: one needs for instance to define which contagion events can take
place on a hyperedge joining n nodes among which m are infectious. A number of
recentworks have focused on the definition and study of suchmodels [26–31], andwe
review in this chapter some of the corresponding approaches and results, highlighting
in particular how the obtained behaviour is richer than in the usual (network-based)
contagion models. The emerging phenomenology indeed includes both continuous
and discontinuous transitions, hysteresis phenomena and critical mass phenomena
reminiscent of the recently observed minimal size of committed minorities required
to initiate social changes [32].

13.2 Spreading Processes on Higher-Order Structures

Group interactions can be encoded as hyperedges of an hypergraph, where each
hyperedge is thus a set [i0, i1, . . . , ik−1] that involves k elements. In this language,
pairwise interactions are called 1-hyperedges, 3-body interactions are called 2-
hyperedges, etc. In the broadest definition, there are no limitations to the size and
relative inclusions of hyperedges. In some cases, it can be convenient to represent a
social structure using the more restricted framework of simplicial complexes: such a
representation assumes that in any group interaction all the sub-interactions among
the group members should be considered as well [33]. While this hypothesis has
been used in Ref. [26], further developments have shown that similar dynamical out-
comes for contagion processes can be found even under the more general framework
of hypergraphs [27]. Thus, in this chapter the latter setup will be used.

As the interactions are not necessarily pairwise anymore, but can occur in groups
of more than two individuals, this implies moreover that the models used to describe
the contagion processes need to be redefined. In this section, we present a rather
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general mathematical formulation of such possible contagion models on higher-
order structures, defining it in terms of Bernoulli random variables and Poisson
processes. Obtaining results directly from these definitions is, however, very hard,
so that we mainly restrict this subsection to the definition of the models and of
the quantities of interest, leaving to the following subsections the development of
analytical approximations and the numerical simulations.

Mathematically, in the social contagion process the states of the nodes aremodeled
as Bernoulli random variables, Yi = 1 (with its complementary Xi = 0) if the node
is active and Yi = 0 otherwise (and then Xi = 1). Individual states change either
spontaneously or as a consequence of their interactions. Formally, this is a collection
of independent Poisson processes. First, we associate to each active node i a Poisson

processwith parameter δi ,modeling its spontaneous deactivation, {Yi = 1} δi−→ {Xi =
1}. This transition is similar to the healing in disease spreading dynamics.On the other
hand, spreading processes occur along the hyperedges as follows. For each hyperedge
e j we define a random variable Tj = ∑

k∈e j Yk : Tj is by definition the number of
active nodes in the hyperedge. If Tj is equal to or above a given threshold � j , we
model the contagion by a Poisson process with parameter λ j . In other words, if Tj ≥
� j , then {Xk = 1} λ j−→ {Yk = 1}, ∀k ∈ e j . This corresponds to a threshold process
that becomes active only above a critical mass of active nodes. Finally, if |e j | = 2, we
assume directed Poisson processes, recovering a traditional SIS contagion process.
For the sake of simplicity, we assume that δi = δ and λ j = λ × λ∗(|e j |), where λ is
the control parameter and λ∗(|e j |) is an arbitrary function of the cardinality of the
hyperedge. The first assumption considers that every individual deactivates at the
same rate. The second condition assumes that a hyperedge that is above its critical-
mass threshold activates its nodes with a rate that depends only of its cardinality
(scaled by a global control parameter λ). The exact equation describing the resulting
dynamics can be written as

dE (Yi )

dt
= E

⎛

⎝−δYi + λ (1 − Yi )
∑

e j |i∈e j
λ∗(|e j |)

∑

B

1{Yi=0,Tj≥� j }

⎞

⎠ , (13.1)

where the first summation is over all hyperedges containing node i and the second
over the set B of all possible dynamicalmicro-states inside the hyperedge e j . Further-
more, 1{Yi=0,Tj≥� j } is an indicator function depending on both the specific node and
the hyperedge, taking the value 1 if Yi = 0 and the critical mass in the hyperedge is
reached (i.e., if node i is inactive and can potentially become active), and 0 otherwise.
We also use for convenience a global threshold ratio �∗, with � j = ��∗|e j |�.

The order parameter is defined as the expected fraction of active nodes, i.e.,
ρ = 1

N

∑
i E (Yi ). Although a formal proof is yet lacking, we observed, through sim-

ulations and numerical solutions of several analytical approaches, a rather general
phenomenology when λ is varied at fixed �∗, as illustrated in Fig. 13.1. Two solu-
tions for ρ as a function of λ are generically obtained, here called ρLower and ρUpper

(ρUpper > ρLower). Moreover, under certain conditions, the ρLower solution presents
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Fig. 13.1 Example of a phase diagram and parameter space for the hyperblob (See Sect. 13.3.2 for
details). Panel a shows the solutions for a fixed�∗ = 0.5. The red and blue curves show respectively
ρUpper and ρLower. The lower solution presents a second-order phase transition at λc = 0.2. When
increasing λ from 0 to 1 the transition from the lower to the upper solution occurs at the intersection
of the lower solution with a value of ρ in which the upper solution becomes the only stable one, ρc.
The jump between the two solutions is Ql (λ

L
c ). Similarly, when decreasing back λ, the jump from

ρUpper to ρLower takes place when ρUpper crosses the value ρc and becomes unstable, and the density
jump is Ql(λ

U
c ). Panel b shows a sketch of the parameter space. Region I: the system reaches the

absorbing state, ρ = 0; Region II: only the lower solution is stable; Region III: ρUpper is stable and
ρLower = 0 (bistable region below the critical point); Region IV: ρUpper > ρLower > 0 and both
are stable (bi-stable); Region V: only the upper solution is stable

a continuous phase transition between the absorbing state, where all the individuals
are deactivated (ρLower = 0), and an active state (ρLower > 0). This transition occurs
at a critical value of the parameter λ denoted λc. A bistable region can also exist, in
which the final state depends on the initial condition ρ(t = 0) being below or above
a so-called global critical-mass denoted ρc. Let us denote by ρ� the solution that
is obtained if ρ(t = 0) < ρc and by ρ∗ solution obtained if ρ(t = 0) ≥ ρc. In the
bistable region λU

c < λ < λL
c , ρ� = ρUpper and ρ∗ = ρLower, while for λ < λU

c we
have ρ� = ρ∗ = ρLower, and for λ > λL

c , ρ
� = ρ∗ = ρUpper.

When increasing λ from 0 (forward phase diagram), the system thus first follows
ρLower and jumps to ρUpper at λL

c when ρLower becomes unstable. When decreasing
backλ (backward phase diagram), the system followsρUpper and jumps back toρLower

at λU
c where ρUpper becomes unstable. The length of these two jumps are defined as

Ql(λ
X
c ) = (

ρUpper − ρLower)
λ=λX

c
, (13.2)

where Ql(λ
X
c ) can be Ql(λ

L
c ) or Ql(λ

U
c ). These quantities give the sudden change

in the fraction of active nodes at these jumps. These concepts are exemplified in
Fig. 13.1a, where we show an example obtained for a homogeneous hypergraph
composed of a random regular network and a hyperedge containing all the nodes.
This structure’s symmetries allow us to analytically explore their solutions following
a first-order approximation and serve as a didactic example of the behaviors present
in our model. In Fig. 13.1b, we show a sketch of the (λ,�∗) parameter space for the
same structure. We present the analytical aspects of this solution in Sect. 13.3.2.
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13.3 Individual-Based or Quenched Mean-Field Approach

As mentioned above, the exact formulation provides only a conceptual understand-
ing of our model but fails to provide a quantitative characterization. Here we con-
sider the individual-based or also called quenched mean-field approximation. This
approach neglects dynamical correlations but takes into account the structural corre-
lations of the interactions of the nodes. It is possible to solve the resulting equations
numerically (without resorting to stochastic numerical simulations), obtaining a bet-
ter understanding of the model’s behaviour. We first derive the general dynamical
equations of this approximation in Sect. 13.3.1; we then consider a toy example and
solve numerically the corresponding equations in Sect. 13.3.2 in order to exemplify
the variety of behaviors present in our model. Finally, in Sect. 13.3.3 we consider
a hypergraph with power-law distributed cardinalities of hyperedges, which has a
more complex and heterogeneous structure than the toy example of Sect. 13.3.2.

13.3.1 The General Formulation

Since Eq.(13.1) cannot be numerically solved, here we assume that the random
variables are independent, allowing us to significantly reduce the complexity of our
model. Denoting yi = E (Yi ), this first-order approximation is given by

dyi
dt

= −δyi + λ (1 − yi )
∑

e j |i∈e j

|e j |∑

k=� j

λ∗(|e j |)Pe j (K = k) , (13.3)

where Pe j (K = k) is the probability that the hyperedge e j has k active nodes. In this
formulation, we have used that the expectation of the indicator function in Eq. (13.1)
follows a Poisson binomial distribution, which can be formally expressed as

E
(
1{(Tj−Yk )≥� j }

) ≈
|e j |∑

m=� j

Pe j (K = m) (13.4)

Pe j (K = m) =
∑

A∈Fm

∏

i∈A

yi
∏

i ′∈Ac

(1 − yi ′), (13.5)

where Fm is the set of all subsets of m integers in {1, 2, ..., |e j |} and Ac is the
complementary of A. The summation in Eq. (13.5) considers all possible micro-
configurations in a given hyperedge, with A accounting for the active nodes and Ac

for the inactive ones. Using it directly for numerical computations can introduce
numerical stability problems for large hyperedges [34]. Fortunately, this issue can
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be solved by considering the discrete Fourier transform, obtaining the following
numerically stable solution [34]:

Pe j (K = k) = 1

n + 1

n∑

l=0

C−lk
n∏

m=1

(
1 + (Cl − 1)ym

)
, (13.6)

where C = exp
(
2iπ
n+1

)
. This expression allows to compute the solution for arbitrarily

large hyperedges. Although thewhole argument is quite intricate, Eq. (13.6) is simple
and robust enough, allowing the numerical evaluation of Eq. (13.3) for arbitrary
hypergraphs and parameters.

13.3.2 The Hyperblob

For the sake of simplicity, let us focus here on a very particular and homogeneous
structure: the hyperblob. The hyperblob is a hypergraph constructed as a homoge-
neous set of pairwise interactionswith average degree 〈k〉, towhich a single additional
hyperedge containing all nodes is added. This structural simplicity allows us to solve
the model analytically. Indeed, given the symmetry of the system, all yi are equal
(yi = ρ ∀i ) and their evolution can be expressed by the following single equation:

dρ

dt
= −δρ + λ(1 − ρ)

[〈k〉ρ + λ∗F
(
�∗, ρ

)]
. (13.7)

Here λ∗ stands for λ∗(|e j |) and

F
(
�∗, ρ

) = 1 −
�−1∑

l=0

PN−1 (K = l) ≈
{
1, if ρ ≥ �∗

0, otherwise
, (13.8)

where the approximation on the right-most part of the equation assumes that the
hypergraph is sufficiently large (for more on this approximation, we refer to the
supplemental material of [27]).

The approximation in Eq. (13.8) suggests the possibility of having two solutions,
one such that F (�∗, ρ) = 0, and another one such that F (�∗, ρ) = 1. Note that the
first solution represents the case in which the largest hyperedge is inactive, while it is
active in the second case. We remark that, as the only higher-order structure contains
all the nodes, the global critical-mass is here ρc = �∗. In other words, the activation
of this hyperedge determines which solution the system is in, and the jumps between
upper and lower solutions happen when they “cross” the value ρ = �∗. From the
approximation in Eqs. (13.8) and (13.7), we can analytically obtain the model’s
parameter space, obtaining the two solutions (see [27]).
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ρLower =
{
1 − δ

〈k〉λ , if λ
δ

≥ 1
〈k〉

0, otherwise
(13.9)

ρUpper = −δ + 〈k〉λ − λ∗λ + √
4〈k〉λ∗λ2 + (δ + (−〈k〉 + λ∗)λ)2

(2〈k〉λ)
. (13.10)

As anticipated in Sect. 13.2, a second-order phase transition is obtained for ρLower

as the feasibility condition λ
δ

≥ 1
〈k〉 [35]. We remark that this lower solution is here

simply the solution of a mean-field approach for an homogeneous structure with
average degree 〈k〉. The next quantities of interest are the limits of the bistable
region, which can be calculated as

λL
c = δ

〈k〉 − �∗〈k〉 (13.11)

λU
c = − δ�∗

λ∗�∗ − λ∗ + (�∗)2〈k〉 − �∗〈k〉 . (13.12)

Finally, the jump length is expressed as

Ql(λ
X
c ) =

(
δ − λ(λ∗ + 〈k〉) + √

(δ + λ(λ∗ − 〈k〉))2 + 4λ∗〈k〉λ2

2〈k〉λ

)

λ=λX
c

, (13.13)

where λX
c can be λL

c or λU
c . Although these equations are reasonably simple, the

upper solution depends on a quadratic equation, where only one of the solutions is
physical. The details for the complete derivation of these results can be found in the
supplemental material of [27]. In the same reference, the interested reader can also
find similar results when the considered lower-order structure is a star graph.

Figure13.2 shows the phase diagram for a hyperblob with N = 103, 〈k〉 = 5,
δ = 1 and λ∗(|e j |) = log2(|e j |). This result complements Fig. 13.1 and exemplifies
the five regions of the diagram in Fig. 13.1b. As predicted by our solutions, in (a), we
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Fig. 13.2 Phase diagram for the Hyperblob with 〈k〉 = 5, δ = 1 and λ∗(|e j |) = log2(|e j |). In a–c
the colormaps are obtained changing λ and �∗. In a the solution of forward phase diagram, in
b the solution of the backward one and in c the jump length (i.e., difference between b and a),
emphasizing the bi-stability region
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observe that the absorbing state plays a major role in the forward diagram, ρ�, as
there is a region of the parameter space that is not active, which is a consequence of
the second-order phase transition present in ρLower. This is also depicted as Regions
I and III in Fig. 13.1b. Conversely, for the backward phase diagram, ρ∗, the set of
parameters in which the system can reach the absorbing state is rather reduced,
being restricted to Region I in Fig. 13.1b. We highlight that substituting the random
regular network by a star would slightly change the parameter space as the second-
order phase transition of ρLower vanishes in the limit N → ∞, thus implying that the
Regions I and III in Fig. 13.1b vanish as well.

13.3.3 Example of a Hypergraph with a Power-Law
Distribution of Cardinalities

In order to considermore complex and heterogeneous structures,we show inFig. 13.3
an example of the solutions of the system of equations (13.3) for a hypergraph with
N = 104, power-law distributed cardinalities, P(|e j |) ∼ |e j |−γ with γ = 2.25, and
min{|e j |} = 2. Here we use spreading rates λ j = λ × log2(|e j |) and we fix the deac-
tivation parameter as δ = 1. Figure13.3a shows the phase diagram, while Fig. 13.3b
displays the temporal behavior for λ = 0.25. The agreement is qualitatively good,
with the upper solution being well captured. Both λU

c and λL
c seem to be underesti-

mated by the ODE. We however remark that an accurate determination of the transi-
tion points from numerical simulations is not an easy task and requires more sophis-
ticated algorithms (see Ref. [27] and its supplemental material for more details).
The temporal behavior shown in Fig. 13.3b suggests that the upper solution is better
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Fig. 13.3 Comparison of the numerical solution of the ODE system Eq. (13.3) with Monte Carlo
(MC) simulations for a hypergraph with N = 104, power-law distributed cardinalities, P(|e j |) ∼
|e j |−γ with γ = 2.25, and min{|e j |} = 2. The spreading rates are taken as λ j = λ × log2(|e j |) and
the deactivation parameter is fixed as δ = 1. We show in panel a shows the phase diagram for both
the upper and lower solutions, and in panel b the temporal behavior for λ = 0.25
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captured by our approach even at the dynamical level. For the lower solution, the
steady-state value is very well captured, but the duration of the transient is longer in
Monte Carlo simulations.

In summary, these examples highlight that the first-order approximation can pro-
vide a qualitative picture of the phenomenology at work, but that its limitations still
need to be further evaluated. For instance, the accuracy of the estimated discontinu-
ities might be related to specificities of the considered structure (e.g., low average
degree or hyperedge intersections). The strong interest of this approximation lies in
the relatively easy numerical implementation, as the system of equations (13.3) can
be solved, e.g., by using Runge-Kutta methods. The qualitative picture obtained also
suggests that the first-order approximation might be a good starting point for further
analytical explorations of this type of models.

13.4 Annealed Mean-Field Approach

13.4.1 Homogeneous Mean-Field

We now focus on the simplest analytical framework, the mean-field (MF) approach,
in whichwe assume that the population is fullymixed such that nodes are statistically
equivalent, their states are independent, and all interactions can happenwith identical
probabilities. This is indeed the simplest scenario, which completely neglects the
underlying structure. The mean-field form of Eq. (13.1) is given by

dρ

dt
= −δρ + Pν(ρ) = −δρ +

ν∑

m=2

λmc(m)(1 − ρ)ρm−1, (13.14)

where ν = max j {|e j |} is the maximum cardinality and c(m) is the ratio between
the average number of hyperedges with cardinality m and the average number of
pairwise interactions incident on a node i , which characterizes the structure of the
hypergraph. In the steady state this is a polynomial equation whose solutions are the
fixed points of the process.

We now restrict our attention to a tractable case in which we can find a solution
to the MF approximation. To do this, we consider a hypergraph formed solely by
1-hyperedges (standard pairwise links) and 2-hyperedges (3-body interactions). In
this case, the maximum cardinality is ν = 3, and Eq. (13.14) simplifies to:

dρ

dt
= −δρ + λ2c(2)(1 − ρ)ρ + λ3c(3)(1 − ρ)ρ2. (13.15)

Notice that c(2) = 1 by definition, while c(3) is given by the ratio between the
average number of 2-hyperedges and the average number of 1-hyperedges adjacent
to a node, so that c(3) = 〈k3〉/〈k2〉. We can thus rewrite Eq. (13.15) as
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dρ

dt
= −δρ + λ2(1 − ρ)ρ + 〈k3〉

〈k2〉λ3(1 − ρ)ρ2. (13.16)

After defining β2 = λ2〈k2〉/δ and β3 = λ3〈k3〉/δ, we can rewrite Eq. (13.16) as:

dρ

dt
= −ρ + β2(1 − ρ)ρ + β3(1 − ρ)ρ2. (13.17)

From Eq. (13.17) it is evident that we can recover the standard MF equation
for the SIS model by setting β3 = 0. In this case, we get back the two standard
stationary solutions which correspond to the absorbing state with no infected nodes
ρ

∗[β3=0]
1 = 0 and the endemic state ρ

∗[β3=0]
2 = 1 − 1/β2. When β2 < 1, ρ

∗[β3=0]
1 is

the only (stable) solution; it becomes unstable when β2 > 1 and ρ
∗[β3=0]
2 appears

(stable). The standard epidemic threshold β2 = 1 represents the points at which the
system undergoes a continuous transition between the two regimes.

Let us now consider the more interesting case in which there are contributions
coming from the higher-order interactions (2-hyperedges), i.e., β3 > 0. In this case,
there are up to three stationary solutions of the steady state equation dtρ = 0 that fall
within the range ρ ∈ [0, 1]. One is the trivial solution ρ∗

1 = 0, which corresponds
to the usual absorbing state where the epidemics dies out. The other two non-trivial
solutions are given by

ρ∗
2± = β3 − β2 ± √

(β2 − β3)2 − 4β3(1 − β2)

2β3
. (13.18)

These correspond to the lower (ρ∗
2−) and upper (ρ∗

2+) branch that have been pre-
viously discussed. This simple mean-field description allows to go further and study
the stability of the system (see [26] for details), confirming that:

• When β3 ≤ 1, if β2 < 1 there is only one acceptable solution, that is the trivial
absorbing state ρ∗

1 = 0. If instead β2 > 1, the non-trivial solution ρ∗
2+ is positive

and stable, while ρ∗
1 becomes unstable. Thus, when moving–using the standard

control parameter–from β2 < 1 to β2 > 1, it is possible to show that the system
undergoes a continuous transition at the standard epidemic thresholdβ2 = 1.While
this is similar to what happens when β3 = 0 (standard SIS model), if 0 < β3 ≤ 1
there is a higher density of infected nodes in the endemic state.

• When β3 > 1, algebraic manipulations of Eq. (13.18) show that if β2 < βc =
2
√

β3 − β3, ρ∗
2± are not in the acceptable domain and the only (stable) solution

is, again, the trivial one ρ∗
1 = 0. Contrarily, if β2 > βc, the system presents two

different regimes. If β2 > 1, we have a scenario similar to the one above, where ρ∗
1

is unstable and the stable state is ρ∗
2+ > 0. If instead βc < β2 < 1, both solutions

ρ∗
2± are positive (0 < ρ∗

2− < ρ∗
2+). More precisely, ρ∗

2− is an unstable solution that
splits the phase space into two regions and determines–according to the initial
conditions–in which one of the other two stable solutions ρ∗

1 and ρ∗
2+ the system

will end up. We can thus confirm what we had previously observed, that is the
presence of a discontinuous transition at βc and of a bistable region in which the
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Fig. 13.4 Analytical solution in the mean-field approximation. Three-dimensional phase dia-
gram, where the density of infected nodes in the stationary state ρ∗ is plotted as a function of
the 1-hyperedges rescaled infectivity β2 = λ2〈k2〉/δ and the 2-hyperedges rescaled infectivity
β3 = λ3〈k3〉/δ. When β3 = 0 the dynamics obeys the one of the standard SIS model on networked
systems with no higher-order interactions (links only). Two example curves are shown (at con-
stant values of β3 = 0.8 and β3 = 2.5), where MF results (black lines) are compared to results of
stochastic simulations on random simplicial complexes (white circles) [26]

system reaches ρ∗
2+ only if the initial seed of infected nodes is above a critical

mass (ρ(t = 0) > ρ∗
2−).

These results are also illustrated in Fig. 13.4, which gives a three-dimensional
representation of the phase diagram associated to the system. These are the solu-
tions of Eq. (13.17) just described, representing the density of infected nodes in the
large-time limit as a function of the rescaled infectivity parameters β2 and β3. For
visualization purposes only stable solutions are shown when β2 > 1. We also plot
two representative curves (black lines) that highlight the possible types of transitions.
For β3 = 0.8 the system still presents the standard continuous transition at β2 = 1,
while for greater values (β3 = 2.5 shown in the figure) the transition becomes dis-
continuous. The presence of a bistable region is evident from the “folding” of the
surface, in which a line parallel to the vertical axes can cross the surface in two
distinct points.

We also compare the MF results with average stationary values extracted from
multiple runs of stochastic simulations (white circles). Notice how, despite the over-
simplified MF approach, the analytical predictions–on the position of the epidemic
threshold and the nature of the transition–are in good agreement with the simulations
when higher-order structures with homogeneous degree distributions are consid-
ered, such as the random simplicial complex structure used in this case (N = 2000,
〈k2〉 = 20, 〈k3〉 = 6). More details on the construction of this random structure are
given in Ref. [26].
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13.4.2 Heterogeneous Mean-Field

The MF approach can be improved by relaxing the assumption that all nodes
are equivalent, and considering instead that nodes within the same hyperdegree
class behave similarly [3]. Let us thus call ki the vector containing all the gen-
eralized degrees associated to node i up to the maximum cardinality ν, such that
ki = [k2,i , k3,i , . . . , kν,i ] [36]. By doing that, we are effectively removing the actual
structure and describing it in terms of the probabilities of nodes to share a hyperedge.
The equation for the heterogeneous mean-field (HMF) approach, as introduced in
Ref. [31], reads:

dρk

dt
= −δρk + (1 − ρk) ×

ν∑

m=2

λm

(m − 1)!
∑

k1,...,km

m−1∏




P(k
) fm(k,k1, . . . ,km−1)G(ρk1 , . . . , ρkm−1) (13.19)

where ρk denotes the density of active nodes having hyperdegree k, and P(k) the
number of nodes with hyperdegree k. In the second term of the r.h.s. of Eq. (13.19),
the first summation runs over all hyperedges of size m that can infect a node
having hyperdegree k. This means that for each hyperedge there are m − 1 other
nodes that could be infected, and their combinations are counted by the second
summation. The ability to actually transmit the infection depends on the frac-
tion of hyperedges (among all their possible combinations) that include the given
node, given by fm(k,k1, . . . ,km−1), and the probability G(ρk1 , . . . , ρkm−1) that
the given hyperedge can transmit the infection. If we assume that a hyperedge
can infect a node only if all the remaining nodes composing it are infected, this
reads G(ρk1 , . . . , ρkm−1) = ∏m−1


=1 ρk

. In addition, if we consider as before a hyper-

graph containing 1- and 2-hyperedges only (ν = 3), and we assume that the con-
nection probabilities are only determined by the links, i.e., fm(k,k1, . . . ,km−1) =
fm(k, k1, . . . , km−1), Eq. (13.19) simplifies to

dρk

dt
= −δρk + (1 − ρk)λ2

∑
k1
P(k1) f2(k, k1)ρk1

+(1 − ρk)
λ3
2

∑
k1,k2

P(k1)P(k2) f3(k, k1, k2)ρk1ρk2

(13.20)

where it is now possible to explicitly distinguish the contributions coming from links
and “triangles”, respectively the second and third term of the r.h.s. of Eq. (13.20).

The process described by Eq. (13.20) can be analyzed using linear stability analy-
sis. Although an analytical solution for the fixed points of Eq. (13.20) is not possible,
we can restrict our analysis to the inactive state, i.e., ρk = 0 for all k. And as it turns
out [31], the inactive state becomes unstable for

λ2

δ
>

〈k2〉
〈k22〉

, (13.21)
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where k2 is the pairwise degree. Interestingly, the take-home message from this anal-
ysis is that only pairwise interactions are responsible for the inactive state’s stability.
In this case, the parameter λ3 is responsible for the presence or absence of bi-stable
solutions. As λ3 increases, the dynamics allow for a discontinuity, bi-stability, and
hysteretic behavior. These results are in agreement with the approach of Ref. [30],
where the authors arrived at a similar conclusion using a quenched formalism. Fur-
thermore, in Ref. [31], the authors used the HMF formalism to investigate the effect
of heterogeneity in hypergraph contagion models. They showed that in the extreme
case where a hyperedge can transmit infection if there is at least one infectious node
(as opposed to m − 1 discussed here), the bi-stability disappears, and the critical
point depends on both λ2 and λ3. Interestingly, they also showed that the explosive
transition could disappear for specific heterogeneous structures, e.g., when power-
law distributions of pairwise interactions are used as a starting structure to construct
the hypergraph. This can also happen when 2-hyperedges are placed at random, as
opposed to degree-correlated structures where higher-order interactions are more
likely to involve nodes that have a high pairwise degree (more details on the effects
of heterogeneity and the HMF formalism can be found in Ref. [31]).

13.5 Simulations on Real-World Structures

While the analytical approximations developed in the above sections correspond
to simplified structures of interactions between nodes, real-world interactions are
expected to involve complex and intricate structural correlations at various scales
that are not easily reproduced by models. Therefore, we now briefly investigate
the dynamics of the higher-order social contagion model on empirical higher-order
structures. We focus in particular on the simplicial contagion model in its origi-
nal formulation, where the social structure is modeled as a simplicial complex and
each simplex of size k can transmit the infection (at its order-dependent rate) to a
susceptible node incident on it only if the remaining k − 1 nodes are infectious [26].

To this aim,weconstruct empirical simplicial complexes from temporally resolved
interactions data. In fact, data already encoded into graphs are intrinsically ill-suited
for the task–since they have already been “projected” into pairwise relations (the links
of the graph). Although recovering the hidden higher-order interactions from pair-
wise networks surely represent a challenging task, recent efforts have addressed this
problem with a Bayesian approach [37]. Here, leveraging high-resolution proximity
contact data provided by the SocioPatterns collaboration,1 we consider simplicial
complexes representing interactions in four different social contexts: a workplace
(InVS15 [38]), a conference (SFHH [39]), a hospital (LH10 [40]) and a high school
(Thiers13 [41]). More precisely, as described in Ref. [26], we first aggregate tempo-
rally the recorded (temporal) interactions into windows of 5min. Maximal cliques
within each temporal window are then “promoted” to simplices (with associated

1 http://www.sociopatterns.org/datasets/.

http://www.sociopatterns.org/datasets/
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Fig. 13.5 Simulations on real-world social structures. Density of infected nodes ρ∗ in the stationary
state as a function of the 1-hyperedges rescaled infectivity β2 = λ2〈k2〉/δ and for three different
values of the 2-hyperedges rescaled infectivity β3 = λ3〈k3〉/δ. When β3 = 0 the dynamics obeys
the one of the standard SIS model on networked systems with no higher-order interactions. Points
and shaded areas correspond to median values and standard deviations as extracted from stochastic
simulations on top of four different empirical simplicial complexes constructed from the SocioPat-
terns data sets: a workplace (a), a conference (b), a hospital (c) and a high school (d). See [26] for
details

frequency of appearance) and the final simplicial complex is formed by retaining the
20% most frequent simplices (up to 2-simplices). More detailed information can be
found in Ref. [26]. The results of the stochastic simulations run on each structure are
displayed in Fig. 13.5, where the density of infected nodes in the stationary state is
plotted as a function of β2 for different values of β3. Despite the very different nature
of these datasets and their different generalized degree distributions, we encounter a
similar phenomenology to the one described in the previous sections. Namely, when
contributions from the higher-order interactions are stronger (higher values of β3)
we observe a lower (almost vanishing in some cases) epidemic threshold. More-
over, the bi-stability is present for the highest value of β3, confirming the overall
phenomenology obtained by the analytical approaches.

13.6 Conclusions

In this chapter we have reviewed some recent conceptual advances in the modeling
of social contagion processes, based on the idea to consider group interactions as
such, and not simply as a superposition of dyadic ones. To this aim, the substrate
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of the contagion models has to be changed, moving from a network picture to rep-
resentations by hypergraphs or simplicial complexes, which are able to represent
interactions involving an arbitrary number of individuals [42]. Notably, the models
of interactions themselves have to be redefined, as contagion models are traditionally
defined with dyadic interactions in mind. While we have not covered all the relevant
literature,2 we have highlighted the main approaches and results, and in particular
the rich phenomenology emerging from hyperedge interactions, with co-existence
of continuous and discontinuous phase transitions, bi-stability regions and critical
mass phenomena.

Moreover, while the discovery of this rich phenomenology has already prompted
a wealth of studies and brought both analytical and numerical insights, a number of
interesting points remain open.

First, few analytical or mathematical results are available regarding the nature of
the phase transitions: these results have been obtained under specific approximations
or for specific structures. It would be of clear interest to have more general results
on the conditions (either on the structure or on the dynamical model’s rules) for the
emergence of discontinuous transitions.

Another important point regards the availability of empirical data to feed models
defined on hypergraphs. Indeed, given the popularity and convenience of the net-
work representation, relational datasets are traditionally represented as sets of dyadic
interactions and often fail to include higher-order interactions (with some exceptions,
e.g. for scientific collaboration data that is easily represented as group interactions
[46]). While temporally resolved data can help understand whether cliques in an
aggregated network actually correspond to group meetings or not, as discussed in
Sect. 13.5, using dyadic data to reconstruct the actual higher-order interactions is in
general far from trivial [37] and it seems crucial to develop new methods to this aim.

Empirical validation of the rich phenomenology uncovered in the models remains
also very challenging. On the one hand, it has been shown that complex contagion
processes might become indistinguishable from simple contagion at the population
level when multiple contagion processes interact [47]. For simple contagions taking
place along networks, it is possible to infer the structure onwhich the process unfolds
and the process’ parameters [48], but the generalization to higher order processes
remains an open challenge.

Validation could also come from specifically designed experiments in which the
structure of the groups in which individuals interact is controlled. In the case of net-
works, controlled experiments have indeed helped discuss the role of the interaction
network structure on the emergence of conventions or on the outcome of game the-
oretical models [49, 50]. For higher order structures, such experiments would also
need to be carefully crafted and performed, a difficult yet promising challenge ahead.

2 For instance, the authors of [31] study the case in which λ3 < 0, i.e., an individual is less likely to
adopt a trend if this trend is popular in the group, and call this ingredient the "hipster effect"; this
effect also can lead to a region of bi-stability in the phase diagram [31]. Note that heterogeneous
recovery rates [43, 44] and “complex recovery” rates depending on the state of the surrounding
individuals have also been considered in the literature [45].
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Chapter 14
Consensus Dynamics and Opinion
Formation on Hypergraphs

Leonie Neuhäuser, Renaud Lambiotte, and Michael T. Schaub

Abstract In this chapter, we derive and analyse models for consensus dynamics on
hypergraphs. As we discuss, unless there are nonlinear node interaction functions,
it is always possible to rewrite the system in terms of a new network of effective
pairwise node interactions, regardless of the initially underlying multi-way interac-
tion structure. We thus focus on dynamics based on a certain class of non-linear
interaction functions, which can model different sociological phenomena such as
peer pressure and stubbornness. Unlike for linear consensus dynamics on networks,
we show how our nonlinear model dynamics can cause shifts away from the average
system state. We examine how these shifts are influenced by the distribution of the
initial states, the underlying hypergraph structure and different forms of non-linear
scaling of the node interaction function.

14.1 Background: Modelling Group Interactions

Group interactions are present in various areas in nature [34], society [11] and tech-
nology [26]. Examples range from collaborations of authors [29] to neuronal activity
[10, 31]. In sociology, for instance, it is well known that the dynamics in a social
clique is determined not just by the pairwise relationships of its members, but often
by complex mechanisms of peer influence and reinforcement [30]. This is illustrated
by the example of joint parental discipline shown in Fig. 14.1. In Fig. 14.1a, a strong
link between the parents reinforces the influences dynamics resulting in a stronger
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Fig. 14.1 Higher-order
group interactions in social
context. Higher-order group
interactions a can result in
greater influence on target
nodes than b pairwise
interactions

effect on the child. This is not captured by the independent pairwise influences in
Fig. 14.1b.

In the context of modelling such multi-way dynamics, it is thus important to
distinguish between the pairwise interactions between individuals and higher-order
interactions, which cannot be decomposed further into pairwise interactions. Specif-
ically, if the influence on an agent can be fully explained by its pairwise relationships
to other group members, then the system can be abstracted by an (effective, derived)
pairwise network representation. In contrast, higher-order interactions account for
the effect of the group as a whole, and thus different frameworks than graphs are
required to encode the interactions between agents.

Especially complex social processes such as the adoption of norms or opinion
spreadingmight not be explainable by a simple exchange of the states of neighbouring
nodes, as simple models for, e.g., epidemic spreading would suggest. For instance,
experiments in social psychology such as the conformity experiment [2] indicate
that multiple exposures might be necessary for an agent to adopt a certain state. This
type of behaviour is also at the core of threshold models on networks, which model
adoption processes (e.g. opinion spreading) in social systems. A threshold model
posits that each node in a network has an associated binary state, and the (binary)
state of agents only switches if a certain fraction (or a certain number) of their
neighbours agrees on the same opinion [14, 39]. More generally, such a nonlinear
dependence of a node on all its neighbors may be captured via a generalized linear
model, in which each node is influenced according to a nonlinear map applied to a
linear transformation of the states of its neighbors, i.e., we first linearly accumulate
pairwise influences and then transform the result in a nonlinearway [23]. For instance,
in the case of the threshold model this nonlinear function is a threshold or Heaviside
function, which is applied to the (linear) mean of the neighbors’ opinions. While
generalised linear models can capture certain aspects of a group dynamics, these
models may nonetheless provide an over-simplified view of the system. Consider
again the previous example of parental discipline. If we were to model this situation
with a threshold model, then any pair of adults could influence the child in the same
way, irrespective of the relation between the adults. However, it is not difficult to
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imagine that if there is strong relation between the parents, the influence on the child
may be stronger. We are therefore interested in models that can capture multi-way
relations that cannot be encoded with a network of pairwise influences.

There are different ways to encode such multi-way group relations in a network,
including set systems, general hypergraphs [6] and simplicial complexes [16, 21, 22,
28, 30, 35]. Note that we are using the term “network” in the sense of system and
not as a synonym for a graph. In this chapter, we explore dynamical models based
on hypergraphs, where each node has an associated state and the evolution of those
states depends on the values of all the nodes inside each hyperedge.

14.2 From Pairwise to Multi-way Interactions

Pairwise dynamical systems can describe a wide range of nonlinear dynamics on
graphs [38]. We can formalize these dynamical systems as follows. Let G be a
(directed) graph consisting of a set V (G ) = {1, . . . , N } of N nodes connected by
a set of edges E(G ) = {(i, j) : i, j ∈ V (G )}, described by ordered tuples of nodes.
The structure of the network can be represented by the adjacency matrix A ∈ R

N×N

with entries

Ai j =
{
1 (i, j) ∈ E(G )

0 otherwise.
(14.1)

For simplicity we will consider only undirected networks in this chapter, in which
case the adjacency matrix A is symmetric.

We endow each node i ∈ V (G )with a dynamical variable, xi ∈ R. For a pairwise
dynamical system as we consider here, the evolution of these variables is mediated
by the underlying graph G , whose edges constrain which nodes can interact with
each other, and a set of node interaction functions

F = {
fi j

∣∣ fi j : R2 → R, (i, j) ∈ E(G )
}
, (14.2)

that quantify how the states of neighbouring nodes affect each other. Given the infor-
mation about G and F , the time-evolution of the pairwise system is then defined as

ẋi =
N∑
j=1

Ai j fi j
(
xi , x j

)
, (14.3)
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where each node is affected by the sum of possibly nonlinear interactions with
its neighbours. Particular examples of (14.3) include the Kuramoto model [1],
continuous-time random walks and linear consensus on networks [15].1

Multi-way Interactions on Hypergraphs

Toencodepossiblemulti-way interactions in a dynamical systemweuse a hypergraph
H . A hypergraphH consist of a set V (H ) = {1, 2, . . . , N } of N nodes, and a set
E(H ) = {E1, E2, . . . , EM } of M hyperedges. Each hyperedge Eα is a subset of the
nodes, i.e. Eα ⊆ V (H ) for all α = 1, 2, . . . , M , where each hyperedge may have a
different cardinality nα = |Eα|. A graph is thus simply a hypergraph constrained to
contain only 2-edges.Weuse En(H ) to denote the set of all hyperedges of cardinality
n, which are henceforth referred to as n-edges. In the following we will concentrate
on hypegraphs without self-loops, i.e., nα ≥ 2 for all hyperedges Eα .

We can describe the structure of a hypergraph H by a set of adjacency tensors
{A(n), n = 2, 3 . . . , N }, where each tensor A(n) represents the connections made by
n-edges.

A(n)
i j ... =

{
1 {i, j . . .} ∈ En(H )

0 otherwise
(14.4)

Thus the adjacency tensor A(n) is symmetric with respect to any permutation of
its indices, and as we do not allow for self-loops its entries A(n)

i j ... can only be nonzero
if all indices are distinct.

Generalising Eq. (14.3), a multi-way dynamical system is now defined by a hyper-
graph H encoding the structure of the interactions between the nodes, and by a set
of node interaction functions

F = {
f Eα

∣∣ f Eα : RN×N×...×N → R, Eα ∈ E(H )
}
. (14.5)

Analogous to the definition of En(H ), we can also partition the function set
F into subsets Fn based on the cardinality of the hyperedges, which then can be
matched to the corresponding adjacency tensors A(n):

Fn = {
f {i, j ...} ∣∣ {i, j . . .} ∈ En(H )

}
. (14.6)

The set of all node interaction functions is then given by the union F = ⋃N
n=2 F

n .
Finally, we assume that the time-evolution of system is governed via a linear com-
bination of the effects of each hyperedge in which a node is involved (possibly in a

1 Note that the case of generalized linear models mentioned in the introduction does not fit the above
description. Instead of consisting of a linear sumof possibly nonlinear functions, a generalized linear
model would be of the form ẋi = f (

∑
j Ai j x j ), a nonlinear function applied to a (linear) sum.
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nonlinear way):

ẋi =
N∑

n=2

∑
j,k,...

A(n)
i jk... f

{i, j ...}(xi , x j , . . .) (14.7)

14.3 Higher-Order Effects and Nonlinearity

In this section ourmain goal is to examine underwhat conditions amulti-way dynam-
ical system as described by (14.5) cannot be rewritten as an appropriately defined
pairwise dynamical system (14.2), that is when a multi-body formalism is truly nec-
essary to capture the complexity of a system. We tackle this problem for classes of
node interaction functions satisfying desirable symmetries, described as follows.

14.3.1 Symmetries and Quasilinearity

As is often the case formodels of non-linear consensus or synchronisation on standard
networks, we would like our model to be invariant to translation and rotation. This is
a reasonable assumption for physical and sociological interaction processes ensuring
independence on the global reference frame. A function is rotational and translational
invariant if it is invariant under application of elements from the special Euclidean
group SE(N ), which is defined as the symmetry group of all translations and rotations
around the origin. As we restrict the scope to scalar values xi on nodes, and do not
consider vectors here, the rotational invariance simply means invariance under a
change of signs of the values. In the case of two-body dynamical systems, it is
known that a necessary and sufficient condition for these symmetries to be satisfied
is the quasi-linearity of the interaction [38], that is

ẋi =
∑
j

Ai j ki j (|x j − xi |) (x j − xi ), (14.8)

where ki j is an arbitrary function from R to R. This form implies that the node
interaction function is, for each edge, an odd function of (x j − xi ), which is a popular
choice in the study of non-linear consensus [37]. Within the language of non-linear
consensus, this model belongs to the family of relative non-linear flow. While we
cannot generally transfer these results to multi-body dynamical systems, they will
provide us a guide on how to define a ‘minimal non-linear’ model in that case.
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14.3.2 Linear Dynamics and Motif Matrices

We first investigate the relations between pairwise and multi-way dynamical systems
in the case of linear node interaction functions. Linear dynamics are crucial for
modeling a range of different phenomena and serve as a first approximation for
many nonlinear systems. With pairwise dynamical systems, the node interaction
function is given by fi j (xi , x j ) = c(x j − xi ) where c ∈ R is a scaling constant, and
the resulting dynamics reads

ẋi =
∑
j

Ai j c(x j − xi ) = −c
∑
j

Li j x j , (14.9)

where Li j = Di j − Ai j is the network Laplacian. Here the degreematrix Di j = δi j di
is a diagonal matrix of the degrees di = ∑

j Ai j . Equation (14.9) naturally arises
when modelling continuous-time random walks on networks [15], but also appears
in the context of opinion-formation anddecentralized consensus, as in the continuous-
timeDeGroot model [27]. For undirected, connected networks, the dynamics asymp-
totically converges to an average consensus limt→∞ x(t) = 1α for some α ∈ R, with
a convergence rate determined by the second dominant eigenvalue of the Laplacian.

With multi-way interaction systems, the linear node interaction function is given
by

ẋi = ∑N
n=2

1
(n−1)!

∑
jk... A

(n)
i jk...c

(
x j − xi + xk − xi + . . .

)
= ∑N

n=2
c

(n−2)!
∑

jk... A
(n)
i jk...

(
x j − xi

)
= −c

∑N
n=2

∑
j L

(n)
i j x j .

(14.10)

Here, we generalise (14.3.2), scaled according to the symmetry of the linear
multi-way interactions on the n-edges. We have defined themotif Laplacian for fully
connected n-cliques as:

L(n) = D(n) − W (n) (14.11)

which is simply the standard Laplacian for a graph with adjacency matrix

W (n)
i j = 1

(n − 2)!
∑
kl...

A(n)
i jk.... (14.12)

This rescaled network is thus obtained by weighting each edge by the number of
n-edges to which it belongs.2 Equation (14.3.2) can now be written as:

ẋi = −c
∑
j

Li j x j (14.13)

2 This is a standard procedure to project a hypergraph on a weighted network, but other possibilities
exist, for instance based on the dynamics of biased random walkers [7].
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where the Laplacians for all hyperedge cardinalities are summed up to one Laplacian
Li j = ∑N

n=2 L
(n)
i j .

In other words, a multi-way dynamical system can be rewritten as a pairwise
dynamical system in the case of linear dynamics, after a proper rescaling of the
adjacency matrix. This observation reveals that a genuine multi-way dynamics on
hypergraphs requires a non-linear node interaction function. Hence, linear multi-way
interactions are not sufficient to produce dynamics that cannot be reduced to pair-
wise dynamical systems. It is therefore essential to not simply study the hypergraph
structure in isolation, but also consider the dynamical process evolving on top of this
hypergraph.

Remark Before exploring the dynamics of multi-way systems further, let us remark
upon a connection between the operation (14.12) and the ‘motif matrix’ used to
uncover communities in higher-order networks [4]. A motif on k nodes is defined
by a tuple (B, P), where B is a k × k binary matrix that encodes the edge pattern
between the k nodes, and P ⊂ {1, 2, . . . . , k} is a set of anchor nodes. The study of
such motifs is an important objective in network science [19]. In Ref. [4], the authors
define a generalisation of conductance and cut, based on motifs rather than edges. In
this context they define the motif adjacency matrix

(WM)i j = number of instances of motifs in M containing i and j,

from which a motif Laplacian could be defined. Equation (14.12) provides a dynam-
ical interpretation of this quantity for n-edges. An interesting path for future research
could be to employ such motif Laplacians to extend random-walk based community
detection techniques such as the Map equation [32] and Markov stability [9, 13, 36]
to higher-order networks.

14.4 Non-linear Consensus Dynamics on Hypergraphs

In this section we explore how a non-linear node interaction function f can lead to
higher-order effects that do not exist in a pairwise setting. In particular, we investigate
non-linear consensus dynamics on hypergraphs.

14.4.1 Non-linear Consensus Dynamics in Three-Way
Interactions (3CM)

As previously mentioned, group effects that cannot be reduced to pairwise interac-
tions appear in various contexts. In the area of sociology, reinforcing group effects
such as peer pressure are a long-standing area of study, for instance in social psy-
chology [2]. It is thus important to develop models that capture these multi-way
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mechanisms to better understand phenomena such as hate communities [12], echo
chambers and polarisation [3] in society.

Motivated by these observations, and inspired by Eq. (14.3), we first consider
the case when all hyperedges have the same size 3, and we introduce a three-way
consensus model (3CM)[24] with a non-linear node interaction function of a specific
form, which is akin to a consensus dynamics with group reinforcement:

f { j,k}
i (xi , x j , xk) = s

(∣∣x j − xk
∣∣) (

(x j − xi ) + (xk − xi )
)
. (14.14)

where we assume the function on each 3-edge is the same, for the sake of simplicity.3

This expression models, for each 3-edge {i, j, k}, the multi-way influence of nodes
j and k on node i by the standard linear term

(
(x j − xi ) + (xk − xi )

)
modulated by

a scaling function s
(∣∣x j − xk

∣∣) of their state differences. If the scaling function s(x)
is monotonically decreasing, the influence of j and k on i is increased if j and k
have similar states. In such a situation we will say that j and k reinforce each other’s
influence. In contrast, the joint influence is diminished if j and k have very different
states which will be called inhibiting. This property is reminiscent of non-linear
voter models in the case of discrete dynamics [14, 18, 20], where the voters change
opinion with a probability p that depends non-linearly on the fraction of disagreeing
neighbours. Note that other choices of non-linear node interaction functions f , akin
to Watts threshold model [39], have also been considered recently for information
spreading [8].

For the dynamics (14.14) the resulting dynamics for each node i are then given
by

ẋi =
N∑

j,k=1

1

2
A(3)
i jk s

(∣∣x j − xk
∣∣) (

(x j − xi ) + (xk − xi )
)
. (14.15)

In Eq. (14.14), the node interaction function is non-linear for non-constant scaling
functions s(x) and captures multi-way effects, as the interactions on a triangle can
no longer be split into pairwise node interaction functions. If the scaling function
s(x) is constant, we recover the linear dynamics discussed in Sect. 14.3.2.

The functional form of our model has some further symmetries. In particular, we
remark that (14.14) is invariant to translation (xi → xi + a fora ∈ R) and equivariant
to reflections through the origin (xi → −xi ) of all node states. This is a desirable prop-
erty for many opinion formation process, as it ensures that the opinion formation is
only influenced by the relative position of the node states xi and independent of a spe-
cific global reference frame. This is still true for the more general case of vector val-
ued states: any rotation of the node states is norm preserving, and thus s(‖x j − xk‖)
is rotational and translational invariant. Since the term

(
(x j − xi ) + (xk − xi )

)
is

translation invariant and linear, any translation and rotation applied to all states will

3 Note that we adapted the notation of a multi-way node interaction as given in Eq. (14.6) to
emphasise that this function is symmetric in j and k and influencing node i .
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Fig. 14.2 Reinforcing group dynamics on 3-edges (3CM). The influence on node i due to the
interactions on 3-edge {i, j, k} and {i, k, p}. The value xi ∈ [0, 1] of the nodes is visualised by a
colour gradient between white and black. We consider a monotonically decreasing scaling function
(e.g. s(x) = exp(λx) for λ < 0). As a result, nodes p and k reinforce each other as they have similar
values, and hence a large s(

∣∣xp − xk
∣∣). Nodes k and j have instead distinct values, which leads to

a smaller scaling function s(
∣∣x j − xk

∣∣). Reproduced and adapted from [24]

leave (14.14) equivariant, both in the case of scalar and vector valued states. Note
that this ‘quasi-linearity’ of the three-way node interaction function is in close cor-
respondence to the necessary and sufficient conditions for translation and rotational
invariance for pairwise interaction systems [38]. In the following, we restrict our
scope to scalar states xi .

As we want to be able to model a reinforcement effect for nodes with a similar
opinion, a natural choice for the scaling function s(x) is

s
(∣∣x j − xk

∣∣) = exp
(
λ

∣∣x j − xk
∣∣) , (14.16)

where the sign of the parameter λ determines if the functionmonotonically decreases
or increases. Specifically, if λ < 0, then similar node states x j and xk will lead to a
stronger influence onnode i . Ifλ > 0, then dissimilar node states x j and xk will lead to
a stronger influence on node i . Finally, if λ = 0, then we recover the linear dynamics
discussed above (since the scaling function s(x) = 1 is constant). Figure14.2 shows
the influences on node i for λ < 0, i.e. where similar node states reinforce each other.

14.4.2 Derivation of a Weighted, Time-Dependent Laplacian

In Sect. 14.3.2, we showed that, in the case of linear node interactions, a multiway,
and thus a three-way dynamical system can be rewritten as a pairwise dynamical
system, defined on a network where the weight of an edge is the number of 3-nodes
to which the edge belongs. Let us explore how this result extends to 3CM. Recall
that we assumed that the adjacency tensor A(3)

i jk is symmetric. We define Ii j as the
index-set containing all nodes k that are part of 3-edge containing node i and j . Note
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that Ii j = ∅ if the nodes i, j are not part of any 3-edge. We now define the weighted
adjacency matrix W as

(W(3))i j =
∑
k

A(3)
i jks

(∣∣x j − xk
∣∣) =

∑
k∈Ii j

s
(∣∣x j − xk

∣∣) . (14.17)

Since Ii i = ∅, because a node cannot appear more than once in a hyperedge, the
weighted adjacency matrix has zero diagonal (diag(W(3)) = 0). The corresponding
degree matrix, that measures the total three-way influence on node i is defined as

(D(3))i i =
∑
jk

A(3)
i jks

(∣∣x j − xk
∣∣) =

∑
j

W
(3)
i j (14.18)

and the corresponding Laplacian is given by

L(3) = D(3) − W(3). (14.19)

Using (14.19), we can rewrite the dynamics in (14.15) as

ẋi =
∑
jk

1

2
A(3)
i jk s

(∣∣x j − xk
∣∣) ((x j − xi ) + (xk − xi ))

=
∑
jk

A(3)
i jk s

(∣∣x j − xk
∣∣) (x j − xi )

=
∑
j

W
(3)
i j (x j − xi ) = −

∑
j

L(3)
i j x j . (14.20)

The 3CM can thus also be rewritten in terms of the Laplacian of a network repre-
sented byW(3), whereas the entries (W(3))i j measure the three-way influence on node
i over edge {i, j}. However, as the adjacency matrixW(3) = W(3)(t) depends on the
dynamical node states xi = xi (t) in (14.17) and this projection is thus time-dependent
and node state-dependent, which implies that we cannot write this dynamics in terms
of pairwise interactions. We drop these dependencies in our notation for simplicity,
and simply useW from now on. The weighted time-dependent Laplacian L(3) is the
matrix representation of the non-linear dynamics and therefore the analogue of the
motif Laplacian, introduced in Sect. 14.3.2 for linear dynamics.

14.4.3 Diffusive Processes on Hypergraphs

In order to generalise the 3CM for hypergraphs with arbitrary edge cardinality, we
introduce a general model of diffusive processes on hypergraphs. Here, we consider
(x j − xi ) as a diffusive coupling of nodes i and j . The influence of the nodes in a
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hyperedge Eα on a node i is given by the node interaction function

f Eα

i (xi , x j , xk, · · · ) =
{∑

j∈Eα
s j
i (xi , x j , xk, . . .)

(
x j − xi

)
i ∈ Eα

0 i /∈ Eα.
(14.21)

The joint effect of all nodes within a hyperedge is given by the diffusive couplings
of each node pair of influenced node (i) and acting node ( j), modulated by the scaling
function s j

i (Eα) which captures the influence of the hyperedge Eα as a whole. The
scaling function s j

i (Eα) is invariant with respect to any permutation of the indices
k ∈ Eα , where k 
= i and k 
= j . For the special case where it is symmetric in all
node indices k 
= i , we can write si (Eα) .

The overall dynamics of node i is then obtained by linearly combining the effect
of each hyperedge node i is part of:

ẋi =
∑

α

f Eα

i (xi , x j , xk, · · · ). (14.22)

For the special case of a scaling function si which is independent of acting node
( j),we canderive analytical results for the behavior of this opinion formationprocess.
We can then write the effect of all n-edges on i as:

ẋi =
N∑

n=2

∑
jk...

A(n)
i jk...si (xi , x j , xk, . . .)

(
x j − xi

) × 1

(n − 2)! (14.23)

Analogously to the 3CM, we define weight matrices W(n)and corresponding
degree matrices Dn as follows:

W
(n)
i j = ∑

kl... A
(n)
i jk...si (xi , x j , . . .)

1
(n−2)!

D
(n)
i i = ∑

j W
(n)
i j

(14.24)

Here, D(n)
i j = 0 for all i 
= j . Equation (14.23) can now be written as:

ẋi = −
N∑

n=2

∑
j

L
(n)
i j x j = −

∑
j

Li j x j (14.25)

where Li j = ∑N
n=2 L

(n)
i j and L

(n)
i j = D

(n)
i j − W

(n)
i j .

We see again that when the scaling function si is constant, the dynamics reduces
to a linear dynamics on an (effective) static weighted network as shown in Sect. 14.2.
However, when the interactions are non-linear, the corresponding network is time-
dependent and multi-way effects are created.
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14.4.4 Multi-way Consensus Model (MCM)

There are multiple possibilities for specific forms of the nonlinear scaling functions
s j
i (Eα) in the general diffusion process in (14.21). They can have different sociolog-
ical motivations and result in distinct mathematical properties, which we will show
for two specific node interaction functions. They define two submodels, MCM I and
MCM II, of a general Multi-way Consensus Model (MCM) [33].4

14.4.4.1 MCM I Models Homophily

Homophily is a central concept in sociology describing the tendency of like-minded
individuals to interact [17]. The topology of social interactions is often influenced
heavily by homophily. Here, we consider the underlying topology fixed, but interpret
homophily instead as a force modulating the effect of a hyperedge, depending on the
proximity of the opinions inside it.

This is captured by the following node interaction function (MCM I)

f Eα

i (xi , x j , xk, · · · ) = s Ii (g
Eα

i (x))
∑
j∈Eα

(x j − xi ), (14.26)

where the argument function gEα

i of the scaling function s Ii measures the distance of
the state of node i to the mean state of the hyperedge including i :

gEα

i (xi , x j , xk, · · · ) =
∣∣∣∣
∑

k∈Eα
xk

| Eα | − xi

∣∣∣∣ = |〈x〉Eα
− xi | (14.27)

In sociological terms, the argument function gEα

i quantifies the difference between
the opinion of individual i and the average opinion of group Eα that i belongs to.
The influence of a group on a node is thus determined by the proximity of its average
state to the state of the node, modulated by the scaling function s Ii . For instance, a
monotonically decreasing function s Ii represents an individual i who is less influenced
by groups with opinions very different from its own than by groups with similar
opinions.

Mathematically speaking, gEα

i is independent of acting node j within the hyper-
edge, and s Ii (g

Eα

i (x)) thus modulates the competing effect of different hyperedges
on the state of an incident node. In other words, the scaling function determines the
rate at which a certain hyperedge influences the state of a node.

4 Note that 3CM (MCM) was originally named three-body (multi-body) consensus model in [24,
33]. Here, we prefer the more descriptive name three-way consensus model, which emphasises
more clearly that it is not the number of entities involved but the type of interaction between those
entities (pairwise vs multi-way) which is different to classical models.
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14.4.4.2 MCM II Models Conformity

Conformity is used to describe the tendency of an individual to align its beliefs to
those of its peers, and is usually affected by the reinforcing nature of shared opinions
(peer pressure).Modelling peer pressure has already been themotivation for the node
interaction function of 3CM in (14.14) before. We generalise this for hyperedges of
arbitrary size (MCM II):

f Eα

i (xi , x j , xk, · · · ) =
∑
j∈Eα

s I Ii (gEα

i← j (x))(x j − xi ). (14.28)

where the argument function gEα

i← j of s
I I
i now measures the distance of the state of

a participating node j from the mean state of the hyperedge excluding i .

gEα

i← j (xi , x j , xk, · · · ) =
∣∣∣∣∣
∑

k∈Eα,k 
=i xk

|Eα| − 1
− x j

∣∣∣∣∣ = |〈x〉Eα\i − x j | (14.29)

When all the hyperedges have size 3, we then have that

g{i, j,k}
i← j (xi , x j , xk) =

∣∣∣∣ x j + xk
2

− x j

∣∣∣∣ .
and the node interaction function is thus given by

f {i, j,k}
i (xi , x j , xk) = s I Ii

(∣∣xk − x j

∣∣
2

) ((
x j − xi

) + (xk − xi )
)
. (14.30)

which indeed recovers the node interaction function (14.14) of 3CM, with a constant
that can be absorbed in the time scale.

In sociological terms, the argument function gEα

i← j of s
I I
i captures the difference

between the opinion of individual j to the average opinion of the group except
individual i . Thus, in MCM II the influence exerted by j inside a hyperedge depends
on the proximity of its opinion to those of the rest of the group.

Mathematically, gEα

i← j is dependent on acting node ( j) and s I Ii (gEα

i← j (x)) thus
determines which nodes inside a single hyperedge are the most influential.

Like in 3CM, for a monotonically decreasing function an individual i tends to be
more influenced by individualswho agreewith the rest of the group. For an increasing
function, individuals are more attracted to the outliers of a group (anti-conformists
or contrarians).

It becomes clear here that even if we choose s(x) = s Ii (x) = s I Ii (x) to be of the
same form, the behaviour of the two facets will differ due to their arguments.
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14.4.4.3 General Multi-way Consensus Model

We can combine both of these submodels in a more general Multi-way Consensus
Model (MCM) [33], which can capture both homophily and conformity. The overall
effect of the hyperedge Eα on node i ∈ Eα , is then given by

f Eα

i (xi , x j , xk, · · · ) = s Ii (g
Eα

i (x))
∑

j∈Eα
s I Ii (gEα

i← j (x))(x j − xi ) (14.31)

Wenote that, as in the case of 3CM,bothnode interaction functions are invariant under
translations (xi �→ xi + a for a ∈ R) and reflection through the origin (xi �→ −xi ).
Thus, the dynamics are independent of the frame of reference in R.

14.5 Opinion Drifts: Higher-Order Effects of Non-linearity

In the previous section we saw that non-linearity of the dynamics is important to
make genuine higher-order effects appear, which can not be explained by pairwise
interactions. This emphasises that in the non-linear cases, we have to pay extra
attention to how the interaction of dynamics and higher-order topology affects the
overall dynamics of the system. Therefore, our primary objective in this section is to
determine if, and how, non-linear consensus models on hypergraphs asymptotically
reach consensus and which aspects can influence the dynamics. We can do that by
identifying and analysing conserved quantities, which is usually an essential step to
understand the properties of dynamical systems.

14.5.1 Conservation and Shifts of the Average Node State

In particular, we will investigate the average node state of the system. For consensus
dynamics on graphs, it is well-known that the average state at time t ,

x̄(t) = 1

N

N∑
i=1

xi (t), (14.32)

is conserved under general conditions. Specifically, consider a pairwise dynamical
system described by

ẋi (t) =
N∑
j=1

Ai j fi j (xi (t), x j (t)) =
N∑
j=1

Ai j h(x j (t) − xi (t)).
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The initial average x̄(0) is conserved if the derivative ˙̄x(t) = 1
N

∑N
i, j=1

Ai j h(x j (t) − xi (t)) is zero for all times. This is true if the adjacency matrix Ai j

of the graph is symmetric and the node interaction function h(x) is odd, which is
fulfilled by quasi-linear dynamics (14.8).

We now investigate how these conditions for conservation of the average state
change for a general multi-way interaction system. We consider a general node
interaction function f (x1(t), . . . , xn(t)) = h(

∑
j 
=i (x j (t) − xi (t))), where the form

of the node interaction function h ensures that the dynamics influence node i . To
determine conditions for a conservation of the average state we write

ẋi (t) =
∑
jk...

Ai jk...h

⎛
⎝∑

j 
=i

(x j (t) − xi (t))

⎞
⎠ . (14.33)

Let �(i, j, k, . . . ) be the set of all permutations of the n indices. Using this
notation, we can conclude that the derivative

˙̄x(t) = 1

N

N∑
i, j,k,···=1

Ai jk...h

⎛
⎝∑

j 
=i

(x j (t) − xi (t))

⎞
⎠ (14.34)

is zero for all times, if we have Aπ = Aτ for all permutations π, τ ∈ �(i, j, k, . . . )
and moreover

∑n
i=1 h(

∑
j 
=i x j (t) − (n − 1)xi (t)) = 0. This is the case for an undi-

rected multi-way interaction (for which A is symmetric in all indices), provided
h(x) is a linear function. We can thus conclude that, in line with our previous dis-
cussion, for a multi-way dynamical systems of the form (14.33), a linear dynamics
conserves the average state of the system. For non-linear dynamics, however, we can
not generally guarantee a conservation of the average state.

14.5.2 Factors Influencing the Consensus Process
for Non-linear Dynamics

For concreteness let us consider a simple but illustrative case for three-way interac-
tions to gain some intuition for the possible effects we can observe in a multi-way
interaction system. For 3CM, where the node interaction function takes the form
f (xi , x j , xk) = s

(∣∣x j − xk
∣∣) ((x j − xi ) + (xk − xi )), the change in the average state

can be written as

˙̄x(t) = 1

N

N∑
i=1

ẋi (t) = 1

N

N∑
i, j=1

W(t)i j (x j (t) − xi (t)). (14.35)
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It is important to note that when the dynamics is non-linear, W(t) is time-
dependent. Hence, the average state is only conserved if W(t) is symmetric for
all times. In particular, this means that for all i, j ,

W(t)i j = W(t) j i ⇔
∑
k∈Ii j

s
(∣∣x j (t) − xk(t)

∣∣) =
∑
k∈Ii j

s (|xi (t) − xk(t)|) ,

where Ii j is the index-set containing all nodes k that are part of 3-edge containing
node i and j . This is only true for all times if the scaling function is constant (s(x) =
c), i.e.,when the dynamics is linear. In this case, theweightedmatrixWi j = c(W (3))i j
simply equals the motif adjacency matrix scaled by the constant c (cf. Sect. 14.3.2).

Otherwise, the weighted matrix W(t) may be asymmetric at some time point t ,
which implies that the average state can shift, i.e., that we can get a drift of opinions.
These possible shifts are influenced by an interplay between

1. the initial node states,
2. the scaling function s(g(x)), and
3. the hypergraph topology

as all of these aspects are encoded in the weighted matrix W(3). This is also true
for the more general case of non-linear diffusive dynamics on general hypergraphs,
represented by the weighted matrixW(n)(14.24).

14.5.3 Influence of the Initial Node States on the Final
Consensus Value in a Fully Connected Hypergraph

We first consider a system which eliminates all topological effects, given by a fully
connected hypergraph H with nodes V (G) = {1, . . . , N }, in which each n-tuple of
distinct nodes is connected by a hyperedge. This is to investigate the isolated effect
of the initial node states.

Let us first stay with the model example of the 3CM to get some intuition of
the higher-order effects that appear in a fully connected hypergraph of 3-edges. As
all possible hyperedges exist, the node set Ii j = V (G)/{i, j} is given by all nodes
except i and j and the symmetry condition

∑
k∈Ii j

s
(∣∣x j (t) − xk(t)

∣∣) =
∑
k∈Ii j

s (|xi (t) − xk(t)|)

thus implies that themulti-way effects have to balance out for all nodes in the network
in order for the average state to be conserved. The equality here only depends on the
initial node states and the scaling function s(x), as the topology of the hypergraph
captured by the node set Ii j does not have an influence in a fully connected system.

As an illustration, consider a situationwhere the number of nodes is even andwhen
the initial values xi (0) on the nodes is binary, that is either zero or one. The symmetry
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condition (14.36) will be satisfied only if the initial configuration x(0) is balanced,
that is when x̄(0) = 0.5, in which case this average state is conserved in time. In
contrast, if the initial configuration is unbalanced, (14.36) will not hold in general,
and the average state will evolve in time. If s

(∣∣xi − x j

∣∣) is given by a decreasing
function, that is when similar node states reinforce each other, the deviation from
0.5 is expected to grow in time, with a drift towards the majority. In contrast, if the
scaling function is such that dissimilar node states reinforce each other, one will
observe a drift to the balanced state 0.5.

To validate these findings, we performed numerical simulations of 3CM on a
fully connected 3-edge hypergraph of 100 nodes. We used the exponential scaling
function s(x) = exp(λx) with the parameter λ set to λ = −1 to obtain an example
for a decreasing function, λ = 1 as an example for a growing function, and λ = 0 to
obtain a constant function (i.e., a linear dynamics).

Considering different initial distributions of the node states, we compared

1. a deterministic, symmetric distribution B(0.5), where 50% of the initial node
states have value 0 and 50% have value 1 (x̄(0) = 0.5)

2. a deterministic, asymmetric distribution B(0.2), where 80% of the node states
have value 0 and 20% have value 1 (x̄(0) = 0.2)

3. a random initialisation according to auniformdistributionU([0, 1]) (E(x̄(0))=0.5)

In the first two cases we do not observe any shift in the average state, as expected.We
can observe this conservation in Fig. 14.3, independently of the non-linear dynamics
that are applied.However,we do see a shift for the asymmetric initialisation, as shown
in Fig. 14.4. The simulations confirm that the average state is conserved for linear
dynamics (λ = 0) and multi-way effects only occur for non-linear node interaction
functions with λ 
= 0. For λ < 0 we observe a shift of x(t) towards the majority,
resulting in an asymptotic average limt→∞ x̄(t) smaller than the initial value of
x̄ = 0.2. For λ > 0 we see the opposite phenomenon, with a shift of the average
opinion towards 0.5.

In order to approximate the asymptotic state from the initial configuration of the
system, we can use a simple method which estimates the dynamical importance wi

of a node i based on the initial configuration as

wi (t) = influence of node i

total weight in the system

=
∑N

j,k=1 A
(3)
i jks

(∣∣xi (t) − x j (t)
∣∣)∑N

i, j,k=1 A
(3)
i jks

(∣∣xi (t) − x j (t)
∣∣) . (14.36)

The asymptotic value of x̄ is then obtained by one explicit Euler step of the
dynamics from the initial configuration x̄(0)

x̄ p = x̄(0) +
N∑
i=1

w j (0)(x j (0) − xi (0)). (14.37)
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Fig. 14.3 Symmetric initialisation: Conservation of average state. For uniform random a and
binary b symmetric initialisation the average is preserved for dynamics with a scaling function
s(x) = exp(λx) for all λ = {1, 0,−1}, so for both linear and non-linear dynamics. Shown are the
results for λ = −1 and the line colors represent the initial states of the nodes. The predicted average
agrees with the simulated average in this case

Fig. 14.4 Asymmetric initialisation: Conservation only for linear dynamics. An asymmetric
initialisation, with x̄(0) = 0.2, may shift the average node state in 3CM for fully-connected hyper-
graphs. The scaling function is s(x) = exp(λx). For λ < 0 (left), the dynamics exhibits a drift
towards the majority as similar node states reinforce each other. The opposite effect occurs for
λ > 0 (right), as the dynamics exhibits a drift towards balance. The average state is conserved for
λ = 0 (center), as expected for linear dynamics. Again, the line colors represent the initial states of
the nodes. Dotted red lines indicate the initial value of the average node state. Black (grey) solid
lines represent the evolution of the state of nodes whose initial configuration is one (or zero). Dashed
blue lines are the final state approximation, x̄ p . Reproduced and adapted from [24]

The simulations in Figs. 14.3 and 14.4 also display the predicted value (14.37),
which correctly identifies the direction of the shift.

14.5.3.1 Analytical Examination of MCM I

Let us now investigate how the shifts in the average node state of the systemgeneralise
to the case of non-linear consensus on hypergraphs modeled by the MCM. We will
look at the two submodels MCM I and MCM II separately. Similar to the 3CM,
the analytical examination of the MCM II is difficult as the argument of the scaling
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function s I Ii , given by the argument function gEα

i← j , depends on both node i and

node j . In contrast, in the case of the MCM I, the argument function gEα

i for the
scaling function s Ii is independent of acting node j and symmetric in all node indices
k ∈ Eα, k 
= i . We can thus quantify the shifts of the average opinion in a symmetric
system analytically.

We assume that the scaling function is the same for all nodes and we call it s I . We
assume a homogeneous mixing, where the nodes have equal probability of being part
of a hyperedge. We consider a hypergraph H with mk hyperedges of cardinality k
for k = 2, 3, . . . , N . Then, each node participates in kmk

N hyperedges of cardinality
k and that the mean of every hyperedge is the global mean x̄ . For an arbitrary node
in some hyperedge i ∈ Eα , we thus have

ẋi =
N∑

k=2

k2mk

N
s I (|x̄ − xi |) (x̄ − xi ) (14.38)

The mean state evolves as

˙̄x = 1

N 2

(
N∑

k=2

k2mk

) (
N∑
i=1

s I (|x̄ − xi |) (x̄ − xi )

)
(14.39)

and we observe that in a homogeneously mixed system, the mean does not shift if
the distribution of xi about the mean is symmetric. This result is equivalent to the
results for 3CM which we examined in Fig. 14.3.

We can now investigate the effect of an unbalanced initial distribution of the states
analytically. Consider a situation where the initial states are binary (either 1 or 0).
Suppose at t = 0, f0 fraction of the nodes have state 0, and the rest ( f1 = 1 − f0)
have state 1. From Eq.14.39, we can write

˙̄x = 1

N 2

(
N∑

k=2

k2mk

)(
N∑
i=1

s I (| f1 − xi |) ( f1 − xi )

)

= 1

N

(
N∑

k=2

k2mk

)
f0 f1(s

I ( f1) − s I ( f0))

If s I is monotonically increasing, f1 > f0 implies that ˙̄x > 0 and f1 < f0 that
˙̄x < 0, i.e. x̄ shifts towards the majority. Similarly, x̄ shifts towards the minority for
monotonically decreasing s I . This is fundamentally different to the case of 3CM,
where the same shift appears, but in the opposite direction. We therefore also expect
the generalisedMCM II to behave in the opposite way toMCM I. In the next section,
we thus investigate these contrasting effects, which arise from the different form of
non-linear argument.
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14.5.3.2 Fundamental Differences Between MCM I and MCM II

To compare the outcomes of the two models, we run numerical simulations on iden-
tical topologies (a fully connected hypergraph with N = 10 nodes) with the same
choice of scaling function with different parameters:

s Ii (x) = s I Ii (x) = eλx ∀i ∈ V (H ) (14.40)

As before, the initial node states have binary values (0 or 1), with n0 nodes of
state 0.

Numerical results in Fig. 14.5 show that the two submodels MCM I and MCM II
evolve in opposite ways. Further, the results forMCM I validate the analytical results
inSect. 14.5.3.1. For amonotonically increasing scaling function s(x) = eλxwithλ >

0, we see that the average state of the nodes shifts towards the opinion of the initial
majority. Similarly, the average state shifts towards the opinion of the initial minority
for a monotonically decreasing scaling function s I (λ < 0).WhileMCM II is a direct
generalisation of 3CMand the results of the simulations in Fig. 14.5 (right) alignwith
the numerical results of the previous section, MCM I shows an opposite behaviour to
MCM II despite the same scaling function s I (x) = s I I (x). These drastic differences
underline the huge effect of the argument functions, i.e. gEα

i in the case of MCM I
and gEα

i← j in the cas MCM II, on the long term behavior of the dynamical system.

14.5.4 Influence of Node Specific Function Parameters

Up until here, we have focused on a dynamics of the form (14.26) (MCM I) or
(14.28) (MCM II/3CM) with a scaling functions s(x) which was the same for all

Fig. 14.5 MCM I and MCM II show opposite effects. Numerical simulations to compare the
evolution of MCM I (left) and II (right) on a fully connected hypergraph. Reproduced and adapted
from [33]
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nodes, e.g. si (x) = s(x) = eλx for all i ∈ V (G). However, we can also choose node
specific parameters for the scaling functions si (x). These different scaling functions
si may, e.g., be motivated by sociological aspects such as character traits of different
individuals. In order to explore the higher-order effects of these individual node
traits, consider again for each node i ∈ V (G) the submodel MCM I (14.26) with
exponential function:

s Ii (x) = eλi x . (14.41)

For λi < 0 (λi > 0), the function is monotonically decreasing (increasing). Fol-
lowing the sociological motivation of MCM I in Sect. 14.4.4.1, a decreasing function
si can model an individual i that is comparably less influenced by groups Eα with an
average opinion 〈xEα

〉 that is very different from its own opinion xi , than by groups
that have an average opinion similar to its own opinion xi . This can be thought of
as individual i resisting change, or some form of ‘stubbornness’. On the other hand,
an increasing function si can be thought of as representing ‘gullibility’, i.e. a rather
susceptible individual i . In Fig. 14.6, we present the temporal evolution of the dynam-
ics of the MCM I with s Ii (x) = eλi x on a fully connected hypergraph (N = 10) with
binary, symmetric initialisation. The nodes whose states were initialised to xi = 1 (or
to initial state xi = 0) have a scaling function with parameter λi = −� (or parameter
λi = �), respectively. The numerical results in 14.6 show that the final consensus of
opinion values shifts towards the initial opinion of stubborn individuals.

Note that this is an important aspect of the MCM I, as it enables an individual to
heavily influence other members of a group while being resistant to their influence.
Hence our models allows certain individuals to be ‘trendsetters’, that can pull entire
groups towards their opinion. Specifically, stubborn individuals within in a group of
people with different opinions will become trendsetters.

Fig. 14.6 Influence of node specific parameters. Evolution of MCM I on a fully connected
hypergraph of 10 nodes initialised with 5 nodes each of opinions 0 (with λi = �) and 1 (with
λi = −�). Reproduced and adapted from [33]
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14.5.5 Influence of Clustered Hypergraph Topologies

In the previous experiments we have focused on fully connected hypergraphs, which
eliminated the influence of specific hypergraph topologies on the dynamics.We could
thus investigate, how asymmetric distributions of the initial node states cause shifts in
the average opinion of the system,whichwould not be present in a pairwise or a linear
higher-order setting. The direction of these shifts were additionally dependent on the
form of the scaling function si . We now want to investigate the additional influence
of the hypergraph topology, if it is not symmetric as in the fully connected case.

If we consider a hypergraph with two clusters A and B, we can define two types
of hyperedges: If all the nodes of a hyperedge Eα are contained in either cluster A
or in cluster B, we call Eα a cluster hyperedge. However, if Eα contains nodes from
both clusters, it will be referred to as a connecting hyperedge. In the latter case, the
connecting hyperedge is called oriented towards one of the cluster, if the minority of
the hyperedge nodes is part of that cluster. Otherwise, if the nodes are part of cluster
A or B in equal numbers, the hyperedge is unoriented.

As an illustrative example we consider a 3-edge hypergraph consisting of two
equally sized fully connected clusters. In addition, we assume that these clusters are
connected by a (small) set of 3-edges. This setting is illustrated in Fig. 14.7.

The dynamical effect of this construction becomes clear if we consider how the
initial node states will influence the future dynamics. We consider binary initial node
states, whereas all the nodes in clusterA have the initial state xA(0) = 0 and the nodes
in cluster B the initial state xB(0) = 1.We consider the 3CMwith a positive-definite,

Fig. 14.7 Cluster dynamics. If we consider a binary initialisation of the two clusters, here in black
and white, and a 3-edge oriented towards cluster B (top), the consensus in cluster A accelerates the
rate of change of the neighbour in B. In contrast, the node-state difference between the clusters is
maximal, which slows down the effect of cluster B on A. Reproduced and adapted from [24]
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decreasing scaling function s(x), such that the influence of nodes with similar states
is reinforced within a hyperedge. Moreover, in this example, we chose to add only a
single 3-edge between the cluster A and B, that is oriented towards cluster B. Due
to the consensus in cluster A and the fact that the connecting hyperedge is oriented
towards cluster B, the diffusion dynamics is accelerated towards cluster B, as the
majority of the nodes in the connecting hyperedge have the initial opinion of cluster
A and are thus reinforcing each other. On the contrary, the influence of cluster B
is inhibited in the opposite direction, as the node couplings of nodes belonging to
different clusters damp the diffusion because of their large state difference. For this
reason, one expects the average initial value in A to dominate that in B and thus
to dominate the asymptotic consensus value. Note that we thus achieve directed
dynamics (or an asymmetric flow) from one cluster to the other.

In order to quantitatively analyse this mechanism, we perform numerical simula-
tions on two fully connected clusters, each consisting of 10 nodes, with the binary
initialisation specified above. We then connect the clusters with 80 randomly placed
3-edges, such that a fraction p ∈ [0, 1] of 3-edges are oriented towards cluster A and
the rest towards cluster B.

14.5.5.1 Cluster Dominance Through Directedness of Cluster
connection

We first examine the influence of the orientation parameter p. For that purpose, we
take the scaling function s(x) = exp(λx) with λ = −100, so that pairs of similar
nodes exert a strong influence on other nodes. We show the results of our model
simulations averaged over 20 random instances in Fig. 14.9. In Fig. 14.9 (left), we
observe a shift in the final consensus value towards the initial value in cluster A
(or cluster B, respectively). The direction of this shift depends on the orientation of
the connecting 3-edges, quantified by p. For p = 0, all the connecting 3-edges are
oriented towards cluster B and the initial opinion of cluster A thus dominates the
dynamics. On the contrary, for p = 1 all connecting traingles are oriented towards
cluster A, therefore we observe a maximal influence of the initial value of cluster B.

The asymmetry of the dynamics which results from the orientation of the con-
necting hyperedges also influences the rate of convergence towards consensus, as
shown in Fig. 14.9 (right). More asymmetric configurations lead to a faster rate of
convergence. The simulations also reveal higher fluctuations in the asymptotic state
for values close to p = 0.5. This result indicates that the process is sensitive to
even small deviations from balance in the initial topology, which can lead to large
differences in the consensus value.

Note that the effect of the orientation reverses if we consider an increasing scaling
function such that dissimilar node states reinforce each other. In Sect. 14.8, we exam-
ine this effect by changing λ for the scaling function s(x) = exp(λx). We observe a
transition from the initial value in cluster A to that in cluster B, as expected.
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Fig. 14.8 Cluster dominance for reinforcing versus inhibiting dynamics. The final consensus
value of the two cluster system (with p = 0), dependent on the parameter λ. As the connecting
3-edges are all oriented towards cluster B, it depends on λ if the nodes in cluster A are reinforcing
each others’ influence which leads to directed dynamics towards cluster B (λ < 0) or inhibit each
other (λ > 0) which leads to the contrary effect. Therefore, the consensus value shifts towards the
mean of cluster B with growing λ. For λ = 0 we have linear dynamics and the initial average 0.5
is conserved. Reproduced and adapted from [24]

Fig. 14.9 Cluster dominance depends on directedness. Simulations of 3CM on two inter-
connected clusters of 10 nodes, with the scaling function s(x) = exp(−100x) (see main text for a
complete description). We compute the final consensus value, averaged over 20 simulations, where
the error bars display one standard deviation (left). As the fraction of 3-edges directed from cluster
A to cluster B increases, so does the consensus value towards the initial state in cluster A. The
rate of convergence is significantly faster when the initial configuration is very asymmetric, that is
extreme values of p (right). Reproduced and adapted from [24]

14.5.5.2 Minority Influence

Instead of considering equally sized groups as in the last section, we can also consider
settings in which one cluster forms a “minority” and is comparably smaller than the
other cluster (the majority) [25]. As shown in Fig. 14.10, even in this case the opinion
of the global minoritymay have a stronger influence on the final consensus value than
the majority cluster, depending on the relative number of 3-edges oriented towards
the majority. In the context of opinion dynamics, this type of behavior is akin to a
“minority influence”, where small groups can dominate the formation of an opinion.
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Fig. 14.10 Global minority influence through reinforcing opinion. We display simulations for
a scaling function s(x) = exp(λx) for λ = −10 and two clusters of different sizes, which are
connected with a single 3-edge oriented towards cluster A. Cluster A comprises the majority of
nodes (10 nodes) whereas cluster B consists only of 5 nodes. While intuition may suggest a final
consensus that is leaning towards the initial opinion 0 of the majority cluster A, we observe the
opposite behavior due to opinion reinforcing effect of the nonlinear coupling, which leads to an
(effectively) directed dynamics between B and A (left). In contrast, if the dynamics are linear
(right), the initial average opinion is conserved and therefore the majority opinion dominates the
final consensus value. Reproduced and adapted from [25]

Note that this happens not because of the size of the minority group, but due to the
internal cohesion of opinions within the minority and because the minority nodes
form the local majority in the connecting subgroups. Accordingly, if the minority
does not agree on the same opinion or the connecting subgroups are not oriented
towards the majority, the minority influence is diminished. Likewise, if we remove
the nonlinear effect of opinion reinforcement via the scaling function s and consider
simply a linear coupling, then the initial opinion of themajoritywill have the strongest
effect on the final consensus state.

14.5.5.3 Heaviside Function: Bounded Confidence Models
on hypergraphs

Up until now, the scaling function s has always been an exponential function, s(x) =
exp(λx), to demonstrate general properties of the model. However, we can choose
other functions as scaling functions. One interesting option is the Heaviside function,
given by

s(|x j − xk |) = H(|x j − xk | − φ) =
{
0 if |x j − xk | < φ

1 otherwise,
(14.42)

which switches between a zero interaction and linear diffusionwhen the difference of
the neighbouring nodes becomes smaller than a threshold φ ∈ (0, 1). This property
is reminiscent of the bounded confidence model [5]. Note that the Heaviside function
is not positive-definite, so that nonlinear consensus dynamics (MCM I and II) with
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Fig. 14.11 Bounded confidence on hypergraphs. Time evolution of the node states for aHeaviside
function with φ = 0.2. For p = 0 (left), only diffusion from cluster A towards B is enabled, until
the threshold of the Heaviside threshold φ = 0.2 is reached. The dynamics then become linear and
the average state becomes conserved. For p = 0.5 (right), the dynamics are initially symmetric,
as the orientation of the connecting 3-edges are balanced, and the dynamics are simultaneously
switched on. Reproduced and adapted from [24]

this scaling function do not necessarily converge to a consensus state asymptotically,
in which all nodes have the same value.

In Fig. 14.11, we show the simulation results for φ = 0.2 and a cluster scenario
with p = 0, i.e., the 3-edges are all oriented towards cluster B. As the difference of the
node states of the two clusters is initially larger than φ, only the nodes of cluster A in
the connecting 3-edges are close enough such that linear diffusion takes place towards
cluster B. Therefore, only nodes of cluster B change their value initially as shown
in Fig. 14.11 (left). As soon as the difference of the node states of the two clusters
is smaller than φ, the opinion dynamics is switched on for all node couplings and
the dynamics becomes linear. Therefore, the asymmetry of the dynamics disappears.
This mimics a situation of two polarised clusters where one side makes unilateral
concessions until the other side starts to participate in the consensus formation again.
For p = 0.5 the dynamics are symmetric as the orientation of the 3-edges is balanced.

14.5.5.4 Time-Scale Separation

Finally, we investigate our multi-way interaction dynamics concerning the interplay
between the topology in a clustered hypergraph and initial conditions that is not
bimodal. In particular, we are interested in examining different time scales in the
dynamics induced by the clustered topology with two groups. The different time-
scales are here associated to a fast convergence of states inside the clusters, followed
by a slower convergence towards global consensus.

Specifically, we reconsider the clustered 3-edge hypergraph with p = 1 and with
a dynamics governed by the 3CM. This time, however, the nodes in each cluster have
different states initially. For our experiments, we initialise nodes in different clusters
uniformly at random over disjoint intervals, such that nodes of cluster A have random
initial states in the interval IA = [0, 0.5] and nodes in cluster B have random initial
states in IB = [0.5, 1] (see Fig. 14.12). The initial cluster averages of the node states
are thus separated.
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Fig. 14.12 Time-scale separation. Dynamics of two clusters A and B connected with p = 1, e.g.
with 3-edges oriented towards nodes in A, and initialised with uniform distributions over separate
intervals IA, IB with IA ∩ IB = ∅. The left figures correspond to the exponential scaling function
s(x) = exp(λx) for λ = −100, and the right to a Heaviside function with threshold φ = 0.2. We
observe a timescale separation with a fast, symmetric dynamics inside the clusters, followed by a
slow, asymmetric dynamics between the clusters. The fast dynamics is shown in the bottom figures,
with qualitatively similar results for both scaling functions. The top figures show a shift towards
cluster B for the slow dynamics. For the Heaviside function, the process becomes linear when the
node states in the two clusters are less separated than the Heaviside-threshold. Reproduced and
adapted from [24]

Two effects lead now to a fast multi-way consensus inside each cluster. First, each
of the clusters are internally fully-connected. Second, the inter-cluster-dynamics will
have a weaker effect, since the difference in the distribution of the initial conditions
implies that s

(∣∣xi − x j

∣∣) will be small if nodes i and j are in different clusters. As a
result, we first observe a fast dynamics within the clusters in which nodes approach
the cluster-average state (Fig. 14.12, bottom) and then a slower dynamics between
the two clusters (Fig. 14.12, top).

The observed effect of the dynamics additionally depends on the scaling function.
For an scaling function s(x) = exp(λx), with λ = −100, we observe an asymmet-
ric shift of the average node state as shown in Fig. 14.12 (left). If we consider the
Heaviside function as a scaling function s(x) instead, the dynamics show a similar
asymmetry as in the exponential case, until the two cluster means are less separated
than the Heaviside threshold φ = 0.2. As shown in Fig. 14.12 (right), the dynamics
then become linear and symmetric.
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14.6 Conclusion

In this chapter, we have emphasised the importance of non-linearity for a dynam-
ical process to exhibit higher-order effects. Specifically, our results show that it is
important to distinguish between the model of the multi-body structure of a sys-
tem (here: a hypergraph) and the model of its multi-way dynamics (here: non-linear
multi-way consensus). The interplay of both aspects is important for genuine higher-
order effects to emerge. This is particularly apparent for linear consensus models,
whose dynamics can always be reduced to a pairwise dynamical system even when
defined on a hypergraph. In otherwords, it is a necessary (but not sufficient) condition
that the node interaction function is non-linear for genuine, non-reducible multi-way
dynamical phenomena to emerge. In that case, adjacency matrices are not adequate
to encode that sub-groups of nodes interact together, and higher-order objects like
hypergraphs are required.

We have then analysed possible higher-order dynamical effects by looking at
specific non-linear interaction functions, which are inspired by models in opinion
dynamics. We introduced a general Multi-way consensus model (MCM) in which
the adoption of an opinion by a node within a group is scaled non-linearly by the
similarity of the groupmembers, either including or excluding the affected node. This
leads to submodels, the MCM I and the MCM II, which have different mathematical
properties due to the dependencies of the argument of the non-linear scaling. In
sociological terms, the two submodels can represent consensus dynamics that are
either driven by homophily (MCM I) or by conformity or peer-pressure (MCM II).

The resulting dynamics lead to shifts of the average opinion state in the system,
which would not be present in the case of pairwise or linear multi-way interactions.

In a fully connected system, we find that the shift in the final consensus value only
depends on the interplay between (i) the distribution of the initial states of the nodes
(no shifts if x̄(0) = 0.5 versus shifts for x̄(0) 
= 0.5) and (ii) the form of the non-
linearity of the dynamics, i.e., the scaling function s(g(x)) (reinforcing (inhibiting)
dynamics for monotonically decreasing (increasing) s in the case of 3CM, opposite
effects of MCM I and MCM II due to the different form of their argument function
g). If we additionally consider a scaling function si with node specific parameters,
which classify certain nodes to be more stubborn than others (in the case of MCM
I) we can observe shifts even in the case of x̄(0) = 0.5.

If we go beyond fully connected systems and thus additionally consider the influ-
ence of the hypergraph topology,we observe that the influence of certain node subsets
can dominate the final consensus value in clustered hypergraphs. This depends on
the orientation of the hyperedges connecting the cluster. In the case of bounded-
confidence dynamics, this mechanisms can even lead to a situation in an opinion
dynamics where only one subgroup makes concessions initially. Moreover, in the
case of initial state distributions which are not bimodal, a combination of symmetric
and asymmetric dynamics is possible: we observe a timescale separation with a fast,
symmetric dynamics inside the clusters, followed by a slow, asymmetric dynamics
between the clusters.
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Generally, we conclude that non-linearity is needed for higher-order dynamical
effects to appear on hypergraphs. The effects that appear depend on a complex
interplay between the type of the non-linear dynamics, the topology of the hypergraph
and the initial node states. We have explored this interplay for a family of models for
consensus dynamics, and the rich phenomenology that we observed motivates the
study of these questions for other families of dynamical models in the future.
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Chapter 15
Collective Games on Hypergraphs

Unai Alvarez-Rodriguez, Federico Battiston, Guilherme Ferraz de Arruda,
Yamir Moreno, Matjaž Perc, and Vito Latora

Abstract Human activities often require simultaneous decision-making of individu-
als in groups. These processes cannot be coherently addressed bymeans of networks,
as networks only allow for pairwise interactions. Here, we propose a general imple-
mentation for collective games in which higher-order interactions are encoded on
hypergraphs. We employ it for the study of the public goods game by first validating
the analytical expression of the replicator dynamics in uniform and heterogeneous
populations, and then by introducing a procedure for retrieving empirical synergistic
effects of group interactions from real datasets.
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15.1 Introduction

Cooperation has been detected to be a key element in the explanation of the evolu-
tionary success of our species [1, 2]. The problem of understanding the emergence
of cooperation lies at the boundary of a plethora of scientific disciplines [3–9]. Pre-
vious works have been able to explain how cooperation in a population is sustained
by the structure of the social network encoding the interactions amongst individuals
[10, 11]. Evolutionary game theory is the branch of applied mathematics providing
a theoretical framework to address these questions, enabling quantitative statements
about the conditions that give rise to stable cooperation [12–14]. In this context, a
social dilemma is a scenario in which defection results in a higher payoff for indi-
viduals while cooperation entails a higher payoff for the collective of players [15].
The challenge presented by social dilemmas is solved by network reciprocity [16], a
property by which groups of nodes are strongly connected between them and weakly
connected to nodes outside the group, and thus protected from defector invasion.
This feature may be observed in structures of different nature, such as networks with
a heterogeneous degree distribution [17–19], networks with community structures
[20, 21], and even in multilayered systems [22–29].

These advances in evolutionary game theory have been restricted to the realm of
two-player games, as standard networks are not suitable for encoding group inter-
actions. In order to bypass this limitation, it was proposed to infer higher-order
interactions from the dyadic structure, by assuming that every node would act as a
vehicle for a group-game involving all of his neighbours [30, 31]. However, such
approach is structurally ambiguous, and thus incompatible with the well known
mechanisms favouring cooperation [32–39]. To overcome the constraints of tradi-
tional graphs, higher-order interactions have been suggested as the natural way to
encode non-diadic relationships [40, 41]. In particular, it has recently been shown
that hypergraphs are a natural solution to formalise n-player games [42]. In the fol-
lowing we elaborate on this idea by explaining how to implement n-player games on
hypergraphs and applying this to the study of the public goods game (PGG) [43, 44]
for uniform and heterogeneous structures.

The PGG is an n-player game of two strategies where at each round of the game
participants are requested to contribute to a common pool with a token of value c.
We shall call cooperators C those players who do contribute and defectors D those
that do not contribute. The collected amount is multiplied by the synergy factor R
and the outcome is equally split between all the participants [8]. It is standard to
assign a fixed value of c = 1 to the token, and to describe the payoffs in terms of the
reduced synergy factor r = R/g where g is the number of players. In a round with
wC cooperators the payoff for the defectors is πD = rwC , while the payoff of the
cooperators is given by πC = rwC − 1.
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15.2 Collective Games on Higher-Order Networks

The goal of evolutionary dynamics is to predict the number of cooperators and defec-
tors in a population undergoing a continuous iteration of the game combined with the
adaptation of strategies. A game implementation is a set of rules that determines how
this process occurs. In the hypergraph implementation (HI) each round of the PGG is
hosted by a hyperlink l ∈ L of the hypergraph H(N ,L) representing the system. The
evolutionary process is a concatenation of micro-steps: At each micro-step a hyper-
link l ∈ L and one of its nodes n ∈ l are randomly selected. All the nodes present
in the hyperlink play a round of the game for each hyperlink they are part of and
accumulate their payoffs. The payoffs are then normalised and compared to select
the node with the highest payoff per game ratio. Only then node n copies the winning
strategy with a probability proportional to the payoff difference 1

Δ
[(maxl π j ) − πi ].

Here Δ is the normalisation factor that accounts for the maximal payoff difference
between two nodes. For a system with |N | = N nodes, N micro-steps add up to a
step, in which every node has the opportunity to change its strategy at least once.
In Fig. 15.1 we graphically explain HI, and we compare it with the original network
implementation [30] or graph implementation (GI).

In the next subsections we analyse in depth the hypergraph implementation on
different families of hypergraphs. Thorough this chapter we adopt the fixed cost per
game perspective, where players contribute with a token to every round they play.

l0

l1
l2

l3

h0

h1

h2

h̄0

h̄1

h̄2

H H̄

Fig. 15.1 Collective games on Hypergraphs. We graphically argument that the hypergraph imple-
mentation provides a reliable alternative to the ambiguous graph implementation for collective
games. The hypergraph on the left H accounts for the real higher-order connections represented
by hyperlinks hi . The network with links li is inferred by linking all the nodes that are part of a
common hyperlink in the original structure. The hypergraph on the right H̄ with hyperlinks h̄i is
obtained as a product of the graph implementation, which imposes a group interaction between a
node and its first neighbours. The difference between the real groups hi and the ones imposed by
the graph implementation h̄i shows the inconsistency of the dyadic approach. Adapter from Ref.
[42]
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15.2.1 Uniform Hypergraphs

Uniform Hypergraphs are a subset of all the possible hypergraphs in which all the
hyperlinks have the same cardinality. This means in our context that all the rounds
of the PGG will have the same number of players g. The system may be described
by using the replicators approximation, in which the relevant properties of the evolu-
tionary dynamics are captured by the fraction of population selecting each strategy.
We use xC and xD for the fraction of cooperators and defectors respectively. We first
compute the average payoffs for cooperators πC and defectors πD for a generic order
g by counting all the possible configurations of strategies

πD =
g−1∑

i=0

(
g − 1
i

)
xg−1−i
D xiC ir

πC =
g−1∑

i=0

(
g − 1
i

)
xg−1−i
D xiC((i + 1)r − 1)

and obtain the average payoff difference as πD − πC = 1 − r . We also compute Δ,
the maximal payoff difference

Δ =
{
r(g − 2) + 1 if r < 1
gr − 1 if r > 1

The time evolution equation can be derived by counting all the possible combi-
nations leading to a strategy change: for every group in which at least two strategies
are present one has to consider the probabilities that a cooperator defector pair is
involved in a potential strategy change combined with the probability of the strategy
change actually occurring given the payoff difference. Although the equation for
cooperators is not presented here, its formulation is analogue to that of defectors.

ẋD =
g−2∑

i=0

(
g

1 + i

)
xg−1−i
D x1+i

C

(g − 1 − i)(1 + i)

g(g − 1)
Q

[
θ(πC − πD) + θ(πD − πC)

]

= QxDxC

where Q is the normalized payoff difference, Q ≡ (πD − πC)/Δ. From this equation
we observe that the dynamics has two absorbing states xD = 0, xC = 1 and xD =
1, xC = 0 and a phase transition at r = 1. Therefore one should expect cooperators
emerging in uniform hypergraphs only if R > g holds.

We test the replicators prediction on synthetically designed uniform random
hypergraphs (URH). For a fixed order g, these hypergraphs are composed of L inde-
pendent hyperlinks created by randomly selecting L g-tuples of different nodes. We
run T = 104 steps of the game in a system with N = 1000 nodes for g = 2, 3, 4, 5.
The number of hyperlinks L is tuned to exceed the critical threshold guaranteeing a
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Fig. 15.2 Uniform Hypergraphs. Relaxation time as a function of the reduced synergy factor
on uniform random hypergraphs with N = 1000 nodes and L = 5Lc hyperlinks for groups of
different sizes g. The triangles report the numerical simulations and the continuous line accounts
for the replicators prediction. Adapted from Ref. [42]

connected hypergraph Lc, L = 5Lc, with Lc = N
g ln N . The plot in Fig. 15.2 reports

the relaxation time for an initial population in which cooperators and defectors are
evenly distributed. A good agreement between the theory and the numerical simula-
tions is observed.

The replicators equation is derived by assuming that all nodes are indistinguish-
able and potentially connected to each other, and therefore an increasingly alike
behaviour to that of the replicator is expected when density is increased in URHs.
However, real-world scenarios seldom provide these conditions, as structures emerg-
ing from optimisation processes tend to display strong heterogeneities and low den-
sities. Hence, further analysis of the limits of the replicators approximation is needed
to understand its applicability range.

Let us start by introducing the hyperdegree of a node as an additional degree of
freedom in ourmodel.We have p(k) for the probability of a node having hyperdegree
k, and p(D|k) or p(C |k) for the probabilities that a node with hyperdegree k is either
a defector or a cooperator. We can recover the fraction of defectors and cooperators
by adding the contributions from all the possible hyperdegrees K.

xD =
∑

k∈K
p(k)p(D|k)

xC =
∑

k∈K
p(k)p(C |k) (15.1)

From the rest of this sectionwewill use pDk and pCk to lighten the notation. Following
the procedure explained in Eq. (15.1) one may derive the time evolution of the
hyperdegree restricted variables by adding all the possible channels that lead to
a strategy change. In essence, the population of defectors with degree k can only
increase if a cooperator of degree k changes its strategy, or if a defector of degree k
becomes a cooperator. Mathematically this can be expressed as
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ẋDk = −xDk

∑

k ′∈K
p(k ′|k)p(C |k ′)

∑

k ′′∈Kg−2

p(k ′′|kk ′)
∑

x∈X g−2

p(x |k ′′) ×

(πCk ′ − πDk)θ(πCk ′ − πDk)

Δ

+xCk

∑

k ′∈K
p(k ′|k)p(D|k ′)

∑

k ′′∈Kg−2

p(k ′′|kk ′)
∑

x∈X g−2

p(x |k ′′) ×

(πDk ′ − πCk)θ(πDk ′ − πCk)

Δ
(15.2)

While different, the terms associated to each of the channels respect the same prin-
ciple: In the first summation we consider all the possibilities of a neighbouring node
being a cooperator with a given degree k ′. In the second summation we account for
the hyperdegrees of the rest of g − 2 nodes in the group, conditioned to the hyper-
degrees of the defector-cooperator pair. In the third summation we include all the
possible strategy selections by these nodes. The last element in the product includes
the normalized average payoff difference between a defector with degree k and a
cooperator with degree k ′. We shall compute these to move forward. We have

πDk =
∑

k ′′∈Kg−1

p(k ′′|k)
∑

x ′′∈X g−1

p(x ′′|k ′′)(nr)

πCk ′ =
∑

k ′′∈Kg−1

p(k ′′|k ′)
∑

x ′′∈X g−1

p(x ′′|k ′′)((n + 1)r − 1)

where n is a function of x ′′ accounting for the number of cooperators. The first term
in each expression, p(k ′′|k) and p(k ′′|k ′) represent the hyperdegree-hyperdegree
correlations, i.e., how likely is that a node with hyperdegree k or k ′ is part of a group
of g − 1 with a given combination of hyperdegrees. We notice that if we make these
probabilities node independent, i.e., p(k ′′|k) = p(k ′′|k ′) = p(k ′′)wecan simplify the
expression for the average payoff difference, and recover the result of the original
replicators approach πDk − πCk ′ = 1 − r . By introducing this result on Eq. (15.2)
one obtains the more simplified

ẋDk = Qθ(r − 1)xDkxC + Qθ(1 − r)xCkxD (15.3)

where Q is the normalized average payoff difference, and the absence of hyperdegree-
hyperdegree correlations is used again. This expression is then combined with Eq.
(15.1) to yield a final formula for the time evolution of cooperators and defectors that
exactly coincides with the one derived above without considering the hyperdegrees.

ẋD = Qθ(r − 1)xDxC + Qθ(1 − r)xC xD = QxDxC

This result establishes a precise boundary between the hypergraphs that are suited
to be described with a replicators approach and those that are not. We point out
that these derivations corroborate the intuition behind the indistinguishability of the
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nodes, as the absence of hyperdegree-hyperdegree correlations implies that not only
the nodes but also their neighbourhoods are equal.

15.2.2 Heterogeneous Hypergraphs

Heterogeneous Hypergraphs are the next step in the path towards the application of
HI to more realistic scenarios. In these, hyperlink orders are not fixed, and therefore
effects arising from the mixture of group sizes are expected. A particularly interest-
ing question is to understand the phenomenology driven by a group-size dependent
synergy factor. We start by providing a description for heterogeneous hypergraphs
in terms of the abundance of hyperlinks of order g. We say that p = {pg}g+

g=g− of
elements pg = kg/k contains the fraction of hyperlinks of order g one node is
part of, where g− and g+ are the minimal and maximal orders respectively, and
g ∈ G = {g−, g− + 1, ..., g+ − 1, g+}. We are interested in describing the dynamics
for synergy factors modelled by non-linear functions of the group size, R(g) = αgβ

with α, β ≥ 0. Given that g takes only discrete values, we find more convenient to
work with r = {r g}g+

g=g− of elements r g = αgβ−1. With β = 1, we would factor out
the dependence of g in the reduced synergy factor, and therefore recover the uniform
case. The average payoff difference can be computed by adding the contribution of
all the group sizes

πD − πC =
∑

g∈G
pg(1 − r g) = 1 − α

∑

g∈G
pggβ−1

We use Q again as Q = (πD − πC)/Δ to represent the normalized payoff difference,
in terms of which Eq. (15.1) is obtained for the dynamics. Therefore, the condition
Q = 0 yields the critical value αc

αc = 1∑
g∈G pggβ−1

We validate our predictions on a series on numerical experiments with synthetic
heterogeneous hypergraphs. We consider hypergraphs whose p is restricted to
pg = ng/4 with ng ∈ {0, 1, 2, 3, 4}∀g ∈ G with g− = 2 and g+ = 5. We construct a
hypergraph with N = 1000 and L = 2Lc for each of the possible values of p fulfill-
ing the aforementioned condition, and collect all of them in an hypergraph ensemble
H with |H| = 35. We then run T = 104 steps of the evolutionary dynamics and
obtain the asymptotic fraction of cooperators as a function of α for β ∈ {0, 1, 2, 3}
for all the hypergraphs inH. The simulations in Fig. 15.3 (from [42]) display a good
agreement between our prediction of the critical point and the empirical transition
between cooperators and defectors.
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Fig. 15.3 Heterogeneous Hypergraphs. Fraction of cooperators xC after T = 104 time steps as a
function of α for each hypergraph in H with N = 1000 nodes. The panels correspond to values of
β = 0, 1, 2, 3 from left to right. The coloured triangles mark the analytical phase transition yield
by the replicators approximation. Adapted from Ref. [42]

15.2.3 Synergy Factor on Real Games

The advances in uniform and heterogeneous hypergraphs pave the way towards the
application of evolutionary dynamics to explain real-life systems. In particular, a
challenging question is to understand how group size influences the performance
of teams of cooperating individuals. In this section we introduce a procedure based
on a series of assumptions to extract the synergy factor from datasets of interacting
individuals and apply it to study the bibliographic dataset of the American Physical
Society (APS).

Our technique is grounded on the hypothesis that the structure of the hypergraph
is the outcome of an optimisation process, in which the players have selected their
connections to maximise their payoff. Therefore, one should expect a one to one
correlation between the hyperdegree distribution p and the group size dependent
synergy factor r g . Based on this idea, we argue that the system has to be constrained
by twoconditions: r has to beproportional top and the systemhas to be at equilibrium,
and thus defectors and cooperators have the same average payoff. The combination
of r g = zpg and

∑
g∈G pg(1 − r g) = 0 yields

r g = pg∑
g∈G(pg)2

(15.4)

In a random graphwith no hyperdegree heterogeneities the average fraction of hyper-
degrees pg = kg/k can be obtained from the total number of hyperlinks at each order
as kg = gLg/N as long as hyperlinks are uniformly distributed. Under these condi-
tions the synergy factor can be extracted as a function of the total number of groups
at each order Lg . We employ this technique to retrieve the synergy factor of 13 differ-
ent APS journals with a total of 577886 papers. Authors and papers are respectively
represented as nodes and hyperlinks of 13 different hypergraphs from where Lg is
measured as the total number of papers produced by a given number of authors.

We have now an algorithm for detecting the synergy factor, but we are also inter-
ested in explaining its origin. With that goal in mind we propose to model the group
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Fig. 15.4 Synergy factor on real games. We show the reduced synergy factor as a function of the
group size extracted from the bibliographic data of the APS for a selection of 13 journals. The dots
represent the experimental values while the continuous line corresponds to the model at Eq. (15.5)
explaining the synergy factor as the combination of positive and negative group effects. Adapted
from Ref. [42]

size dependence of the synergy factor as the product of two opposite contributions,
a first one increasing with g, and a second one decreasing with g

f (g, α, β, γ ) = αgβe−γ (g−1) (15.5)

From these three parametersα has a fixed value given by normalisation, and therefore
we are left with β and γ , both larger than zero. Due to their functional dependence
on g, β accounts for the positive aspects of group interactions while γ represents an
exponential dumping and therefore is associated to lower synergy factors in larger
groups. For the particular dataset we are studying, these opposite terms have specific
meanings in the production of scientificmanuscripts: One could associate the benefits
(β) with a multiplication in the amount and depth of ideas and discussions preceding
the manuscript preparation when increasing the group size. Analogously, the costs
(γ ) may be associated with difficulties in coordination when recruiting additional
authors for a paper. This interpretation is also compatible with the shape of r g , whose
maximum is predicted to be at β/γ .

In Fig. 15.4 (from [42]) the empirically derived profiles of the reduced synergy
factor for the APS dataset are shown, as well as the curve that better fits such profile
according to the model in Eq. (15.5). The parameters are reported in Table15.1.

15.3 Discussion

In this chapter we have presented the formalism introduced in [42] for studying
the evolutionary dynamics of systems with explicit higher-order interactions. We
have derived the replicators approximation and showed that it successfully accounts
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Table 15.1 Synergy factor on real games. Parameters of the study carried out for the APS biblio-
graphic dataset. For each journal we indicate the total number of hyperlinks L , the average order
< g >, the order with the highest synergy factor g(max r), the benefit and cost parameters β, γ and
the distance between the approximation by Eq. (15.5) and the data dr
Journal L < g > g(max r) β γ dr

PhysRev 47313 1.95 2 2.936 1.573 0.033

PhysRevA 70502 3.07 3 2.679 0.986 0.067

PhysRevB 171268 3.75 3 1.531 0.49 0.05

PhysRevC 36290 5.98 3 0.02 0.075 0.146

PhysRevD 74715 3.02 2 2.178 0.941 0.206

PhysRevE 50988 2.93 3 3.84 1.41 0.048

PhysRevApplied 327 5.39 5 3.356 0.62 0.09

PhysRevLett 113674 4.57 3 0.848 0.33 0.175

PhysRevSeriesI 1240 1.21 1 2.691 2.831 0.019

PhysRevSTAB 2393 5.52 4 0.566 0.173 0.127

PhysRevSTPER 484 2.42 3 2.75 1.21 0.078

PhysRevX 611 5.28 5 1.85 0.416 0.127

RevModPhys 3153 2.05 2 1.19 0.79 0.112

for the system’s dynamics in uniform and heterogeneous hypergraphs as long as no
hyperdegree-hyperdegree correlations are present.We have then discussed a proposal
for extracting the synergy factor of real games and apply it to the analysis of the
bibliographic dataset of the APS.

This new framework for higher-order interactions calls for a hypergraph adap-
tation of additional game characteristics that complement the PGG to facilitate the
emergence of cooperation, such as image scoring [34–36], rewarding [45], and pun-
ishment [46–49]. Similarly, the hypergraph implementation motivates new research
in the direction of understanding the influence of more complex structures, such us
communities or multilayer organization, which were well characterized for games
in standard networks [21–29]

All these assets will surely strengthen the already consistent and reliable hyper-
graph implementation of evolutionary dynamics for modelling the emergence of
cooperation.
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Chapter 16
Topological Data Analysis of Spatial
Systems

Michelle Feng, Abigail Hickok, and Mason A. Porter

Abstract In this chapter, we discuss applications of topological data analysis (TDA)
to spatial systems. We briefly review a recently proposed level-set construction of
filtered simplicial complexes, and we then examine persistent homology in two cases
studies: street networks in Shanghai and anomalies in the spread of COVID-19 infec-
tions. We then summarize our results and provide an outlook on TDA in spatial
systems.

16.1 Introduction

To improve our understanding of spatial systems, it is important to develop methods
that directly probe the effects of space on their structure and dynamics. Many com-
plex systems have a natural embedding in a low-dimensional space or are otherwise
influenced by space [1, 2]. Spatial effects significantly influence both their structure
and their dynamics.

One way to gain information about the global structure of spatial systems is by
studying notions of ‘connectedness’, ‘holes’, and ‘cavities’. Consequently, it is not
surprising that many researchers have used topological data analysis (TDA), usually
in the form of persistent homology (PH), to study a diverse variety of spatial systems.
For example, TDA has been used to study granular and particulate systems [3, 4],
neuronal networks [5], leaf-venation patterns [6], networks of blood vessels [7],
aggregation models [8], spatial percolation [9], human migration [10], and voting
patterns [11].

Analyzing PH allows one to quantify holes in data in a meaningful way and has
made it possible to apply homological ideas to a wide variety of empirical data sets
[12]. To study PH, one needs to construct a filtered simplicial complex. (See, e.g.,
Chap. 3 and [13].) In [11], Feng and Porter developed new types of filtered simpli-
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cial complexes that incorporate spatial information. In [14], they applied their new
constructions to synthetic spatial networks, city street networks, spiderwebs, and
snowflakes. Other studies have also incorporated spatial information into PH (see,
e.g., [7, 15, 16]). Recently, researchers have also extended TDA methods other than
PH—specifically, ones that use persistent cohomology [17] and the Euler character-
istic [18]—to incorporate spatial information.

In the present chapter, we discuss two case studies of PH to spatial systems. We
use a recently introduced level-set construction of simplicial complexes [11] to study
(1) city street networks in Shanghai1 and (2) anomalies in the spread of COVID-19
infections. Through these examples, we illustrate the importance of incorporating
spatial information when studying spatial systems using TDA.

Our chapter proceeds as follows. In Sect. 16.2, we discuss the level-set construc-
tion of filtered simplicial complexes. We use the PH of these complexes to study city
street networks in Shanghai in Sect. 16.3 and anomalies in the spread of COVID-19
infections in Sect. 16.4. In Sect. 16.5, we conclude and give a brief outlook on TDA
in spatial systems.

16.2 Level-Set Complexes

We now briefly review the level-set construction of filtered simplicial complexes that
was introduced recently in [11]. For discussions of other types of filtered simplicial
complexes (which are often called simply ‘filtrations’), see Chap.3 and [12].

In a level-set filtration, one describes data as a manifold. Let M denote a two-
dimensional (2D) manifold that is embedded in R2, such as data in an image format.
We construct a sequence

M0 ⊆ M1 ⊆ · · · ⊆ Mn

of manifolds (where M0 is an approximation of M) as follows. At each time t ,
we evolve the boundary �t of Mt outward according to the level-set equation of
front propagation [19]. Specifically, for a 2D manifold M that is embedded in R

2,
we define a function φ(x, t) : R2 × R → R, where φ(x, t) is the signed distance
function from x to �t at time t ≥ 0. We propagate �t outward at velocity v using the
partial differential equation

∂φ

∂t
= v|∇φ| (16.1)

until all homological features die. The evolution (16.1) gives a signed distance func-
tion at each time t . We take Mt to be the set of points x such that φ(x, t) > 0. (This
corresponds to points inside the boundary �t .) In our examples in this chapter, we
use v = 1.

1 This case study is related to an example in [14].

http://dx.doi.org/10.1007/978-3-030-91374-8_3
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By imposing {Mi } over a triangular grid of points (see [11]), we obtain a corre-
sponding simplicial complex Xi for each Mi . Because the level-set equation (16.1)
evolves outward, we satisfy the condition that Xi ⊆ Xi+1 for all i , so {Xi } is a filtered
simplicial complex.

16.3 Case Study: Street Networks in Shanghai

This case study is closely related to one of the examples in [14]. In this case study,
we use level-set complexes to examine patterns in city street networks. We focus
on the city of Shanghai, which has a long history of urban development [20]. The
discussion in [14] used the PH of level-set complexes to classify a variety of small
street networks from different neighborhoods of Shanghai. In the present discussion,
we closely examine the PH of street networks in several different neighborhoods of
Shanghai. Computing PH (and, more generally, using TDA) allows us to detect both
topological and geometric properties of city blocks in these neighborhoods. These
properties may reflect differences in the development of city streets across time and
cultural influences.

The city of Shanghai was first inhabited about 6000 years ago during China’s
Warring States period. Over the course of several millennia, Shanghai has experi-
enced urban growth, with a variety of developmental styles, over many distinct time
periods [20]. These different architectural and urban-planning styles reflect a diver-
sity of different views by the various powers of Shanghai for how the city should
be structured. In the following paragraphs, we use PH to highlight street networks
in several distinct neighborhoods of Shanghai. We draw connections between the
histories of these neighborhoods and the topological features that we observe in their
PH.

We use networks fromOSMnx [21] as input data. Our street networks are images
of street maps; they consist of a 2km by 2km square that is centered at a given set
of (latitude, longitude) coordinates. We show three such street maps in Fig. 16.1. In
Fig. 16.1a, we show a street map from Laoximen (‘Old West Gate’), a neighborhood
that was built up around the western gate of Shanghai’s original city walls. In Figure
16.1b, we show a street map from the former French Concession, which was a French
colonial territory from1849 to 1943. In Fig. 16.1c, we show a streetmap fromPudong
New Area, which is a modern financial district that has developed mostly over the
last few decades.

From the street maps in Fig. 16.1, we obtain level-set complexes following the
approach in Sect. 16.2. In Fig. 16.2,we show the level-set complex that corresponds to
themap in Fig. 16.1c. This level-set complex begins with line segments that represent
the streets in themap. The streets expand outward aswe add simplices to the complex.
We thereby capture city blocks as homological features, whose death times increase
as the sizes of the blocks increase. (Larger blocks take longer to be ‘filled’ by the
expanding streets in the simplicial complex.)
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(a) Laoximen (b) Former French Conces-
sion

(c) Pudong New Area

Fig. 16.1 Street networks from three different neighborhoods of Shanghai. (We generated these
maps using OSMnx [21].)

(a) (b) (c) (d) (e)

Fig. 16.2 Selected steps of the level-set evolution of the map of Pudong NewArea from Fig. 16.1c.
As the level-set complex evolves, the streets expand and fill in the blocks. Smaller blocks fill in
faster

To visualize the features of the PH of the street-map images, we use persistence
diagrams (PDs). PDs represent homological features as points on a scatter plot. We
plot each feature at a point (b, d), where b is the birth time of the feature and d is
its death time. We show zero-dimensional (0D) features as blue squares and one-
dimensional (1D) features as red disks. Because features cannot die before they are
born, all points must lie on or above the identity line g(x) = x . More persistent fea-
tures lie farther above this line. See Chap. 3 and [12] for more information about PDs.

In Fig. 16.3, we show the PDs that correspond to the maps in Fig. 16.1. The PD
of Laoximen (see Fig. 16.3a) reveals that most of the 1D features have death times
of less than 10. This indicates that the city blocks in this area are relatively small.
Additionally, although many of the features of the map of Laoximen are born at
early times (such features are close to the vertical axis of a PD), there are also several
points close to the diagonal that have later birth times. These points correspond to
features that tend to occur when a street map has dead ends. As the level-set complex
evolves, dead ends expand. This can result in the ‘pinching’ of a single block into
multiple smaller blocks when a dead end connects to the streets that border that
block. Similarly, blocks that are not rectangular because of winding roads can be
‘pinched’ into smaller blocks when narrower areas fill in faster than wider areas.
In the street map of Laoximen, there are a large number of dead ends and winding
streets. Street designs like these, which do not resemble rectangular grids, are less
common in modern street layouts than in older ones [22]. We observe in Fig. 16.1
that the southern part of our Laoximen map seems to contain more of these features

http://dx.doi.org/10.1007/978-3-030-91374-8_3
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(a) Laoximen (b) Former French Concession (c) Pudong New Area

Fig. 16.3 Persistence diagrams of street networks from three neighborhoods of Shanghai.We show
the (birth, death) coordinates of 0D features as blue squares and those of 1D features as red disks;
darker shapes indicate that more features have the same coordinates. By comparing the birth and
death times of the features in the PDs, we observe differences in block-size distributions and block
shapes in these neighborhoods. These differences reflect the different developmental histories of
these three areas

than other parts of the map. This particular area of the map includes one of the
oldest remaining neighborhoods of Laoximen.2 Much of the area around it has been
demolished and redeveloped.

The PD of the former French Concession (see Fig. 16.3b) has more features with
death times between 10 and 20 than is the case for the PD of Laoximen. This indicates
the existence of medium-size blocks, and we see in Fig. 16.1 that the blocks in
the former French Concession are generally larger than those in Laoximen. We
still observe many features with death times that are less than 10, so the street
network of the former FrenchConcession does have a variety of block sizes.Although
it has fewer dead ends than Laoximen, many of the blocks in the former French
Concession are not rectangular because of its curved roads. Like Laoximen, the
former French Concession has experienced much redevelopment in the last several
decades [25]. However, many of the original buildings and streets remain, and the
former French Concession is a popular tourist destination because of its European-
style buildings and streets. Its extra-settlement roads (which were built by the French
colonial government), spacious residential lots, and wide and tree-lined streets are
reflected in its street map.

The final district that we discuss is Pudong New Area, a financial hub that has
developed rapidly in the last few decades. This area, which is located across the
Huangpu River from European concession territories and the old city of Shanghai,
was initially developed only modestly before the late 20th century. In the 1990s, the
Chinese government set up a Special Economic Zone in Pudong New Area [26],
and this district now has some of Shanghai’s most famous skyscrapers. The PD of
our street map of Pudong New Area (see Fig. 16.3c) has several 1D features with
death times that are larger than 20, indicating the existence of large blocks. We also
observe several features with early and intermediate death times; these correspond

2 This part of Laoximen has been slated for redevelopment since 2017 [23]. When we obtained
these street maps in 2019, residents were fighting redevelopment efforts and development had not
yet begun [24]. It remains to be seen how this part of our Laoximen street map will change as a
result of redevelopment.
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to a few small blocks on the map. For example, there appears to be a small traffic
circle towards the western part of the street map (see Fig. 16.1c). The large blocks
are indicative of modern styles of urban planning, with large blocks laid out along
grids. Although these blocks are much larger than those in the street maps of the
other two regions, many of them are not rectangular, so we again observe several
features with late birth times.

16.4 Case Study: Anomalies in the Spread of COVID-19
Infections

The spread of coronavirus disease 2019 (COVID-19), which is caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global
pandemic [27]. Modeling the spread of COVID-19 is an important and complicated
task [28], in part because of the spatial heterogeneity in how it spreads.

TDA can be useful for the analysis of spreading phenomena. For example, PH has
been used previously in epidemiological applications to forecast the spread of Zika
[29] and to analyze the Watts threshold model of a contagion on noisy geometric
networks [30]. PH provides a different perspective than the many spatiotemporal
forecasting models that have been developed for COVID-19 without TDA (see, e.g.,
[31, 32]).

In our case study,3 we use PH to analyze the spatial properties of the spread
of COVID-19 in neighborhoods in the city of Los Angeles (LA) and counties in
California. In contrast to prior work, we use PH in a way that incorporates the
underlying geographic structure and various spatial relationships. We consider two
data sets. The first is a highly granular data set that consists of COVID-19 case
counts in 136 LA neighborhoods on 30 June 2020. The second is a coarser data set
that consists of case counts in the 58 counties of California on the same day [34].
For each data set, we also have geographic information in the form of a shapefile
[35, 36]. We visualize these data sets in Fig. 16.4.

Let MLA denote the 2D manifold that consists of the union of LA neighborhoods
with fewer than 750 cumulative cases, and let MCA denote the union of California
counties with fewer than 5000 cumulative cases.We approximate these manifolds by
rasterizing the associated shapefiles to obtain manifolds MLA

0 and MCA
0 . We show

MLA
0 and MCA

0 in Fig. 16.5. As we described in Sect. 16.2, we construct sequences
of manifolds starting from MLA

0 and MCA
0 using level-set dynamics (16.1). We then

construct a level-set filtration for each of these sequences by imposing the manifolds
in them on a triangulation of the plane.

In Fig. 16.6, we show the PDs that we compute for the 1D PH of our level-set
complexes for the twodata sets. ThesePDscanhelp us identifyCOVID-19anomalies.
We define an ‘anomaly’ to be a collection of regions—a set of neighborhoods in the

3 See [33] for a study of geographic patterns in COVID-19 case rates and COVID-19 vaccination
rates that uses PH in a different way.
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(a) LA neighborhoods (b) California counties

Fig. 16.4 Cumulative COVID-19 case counts on 30 June 2020 in (a) neighborhoods in the city of
Los Angeles and (b) counties in California. We plot the LA case counts on a linear scale and the
California county case counts on a (natural) logarithmic scale

(a) M LA
0 (b) M CA

0

Fig. 16.5 Initial manifolds for the level-set filtrations that we construct from data of the spread of
COVID-19. (a) The manifold MLA

0 is an approximation of the manifold MLA, which consists of
the union of LA neighborhoods with fewer than 750 cumulative cases on 30 June 2020. (b) The
manifold MCA

0 is an approximation of the surface MCA, which consists of the union of California
counties with fewer than 5000 cumulative cases on 30 June 2020
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(a) LA neighborhoods (b) CA counties

Fig. 16.6 The PDs for the 1D PH of the level-set filtrations for COVID-19 cases in (a) LA and (b)
California

LA data and a set of counties in the California data—in which the case count is
larger than in the surrounding area. This notion of an anomaly4 is analogous to the
political ‘islands’ that were studied using PH in [11]. Anomalies with case counts
that are at least as large as the threshold (750 for LA neighborhoods and 5000 for
California counties) appear as holes in M0, unless the anomaly is adjacent to the
boundary of the associated map (e.g., LA County in California). The anomalies that
are not adjacent to the boundary correspond to homology classes that are born at
time 0. There is not a one-to-one correspondence between anomalies and homology
classes that are born at time 0. Some of the homology classes that are born at 0 are
simply holes in the map (e.g., see Fig. 16.4a), and anomalies that are adjacent to a
boundary do not necessarily correspond to any homology class. Homology classes
that are born after time 0 usually reflect only the geography of the regions, although
they sometimes correspond to anomalies on the boundary of the associated map
(much like the homology classes that are created by city blocks with dead ends in
the Shanghai street networks). The PDs reflect both the numbers of anomalies and
the sizes of the anomalies.

16.5 Conclusions

In this chapter, we discussed the importance of incorporating spatial information into
TDA when using it to study spatial systems. As case studies, we computed PH using
a level-set construction of filtered simplicial complexes for two case studies: city
street networks in Shanghai and anomalies in the spread of COVID-19 infections.

4 We are concerned with local maxima. By contrast, the Centers for Disease Control and Prevention
(CDC) defines COVID-19 ‘hotspots’ using an absolute threshold for the number of cases and criteria
that are related to the temporal increase in the number of cases [37].
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In our case study of street networks in Shanghai, we illustrated that PH can capture
both topological and geometric properties of the organization of city streets. We also
observed that the PH of Shanghai’s street networks reflect underlying differences in
urban planning and organization. This suggests that topological tools can summarize
information about how humans organize themselves in space, although further study
is necessary to fully understand what types of spatial organization are amenable to
TDA.

In our case study of the spread of COVID-19, we showed that one can use a
level-set filtration to study the number and sizes of COVID-19 anomalies on both
a granular level (by considering neighborhoods in the city of Los Angeles) and a
coarse level (by considering counties in California). We used only case counts in
our computations, but one can also construct level-set filtrations for death counts,
hospitalization counts, or other quantities. The level-set filtration is flexible, but our
approach has important limitations. For example, we only detected anomalies with
case counts that are at least some fixed threshold. This restricts us to measuring the
severity of an outbreak based on its geographic area. One way to address this issue
is by applying the level-set filtration after constructing a cartogram [38], instead of
directly from a shapefile. Additionally, the level-set filtration is unable to detect
anomalies that occur on the boundary of a map (e.g., in Los Angeles County when
considering counties in California). Addressing these limitations is part of ongoing
work [33].

Many spatial systems are also social in nature, and there are major challenges
to overcome when studying such systems using TDA. In this chapter, we studied
spatial systems, but it is important to point out that many spatial systems (including
the examples in this chapter) reflect complicated social dynamics. For example,
the Shanghai street networks have been shaped by social processes like colonial
occupation and displacement of historical neighborhoods. Additionally, COVID-19
disproportionately affects certain communities because of a confluence of social
factors, including who is in prison [39] and where hospitals are located [40]. The
interaction between social and spatial systems is complicated and inseparable, and
intense work is necessary to connect approaches like TDA in spatial systems to the
social factors at play.
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Chapter 17
Higher-Order Description of Brain
Function

Paul Expert and Giovanni Petri

Abstract Higher-order interactions have long figured both at the microscopic and
macroscopic level in neuronal and whole-brain descriptions, with the aim to cap-
ture structural, functional, and ultimately cognitive aspects. They are systematizing
the paradigm shift that graph theory introduced by moving from studying neural and
brain activation to co-activation patterns. Recently, topology has emerged as a central
tool in this context due to its natural capacity to describe relations beyond pairwise
interactions, and to recent advances in its computational applications. In this chapter,
we summarize fundamental concepts and results of the application of higher-order
descriptions to neuroscience. We start from the microscopic scale, describing how
higher-order interactions have been introduced and measured in the context of neu-
ronal populations activation patterns and in neural coding theory. We then move
to the macroscopic scale, discussing recent applications of topological data anal-
ysis to whole-brain data, and finally highlight the challenges related to extracting
higher-order signals from low-order ones.

The role of higher-order interactions in neuroscience has been been actively debated
at bothmicroscopic andmacroscopic levels over the last decade. In both cases, there is
evidence that higher-order terms are present, yet at the same time in many instances
it is still unclear to what degree such interactions dominate, or are dominated by,
pairwise interactions. To further complicate the matter, a certain confusion is present
on what exactly is meant by higher-order interactions or effects, since they might
be encoded as many-body coefficients in spin models of neuron firing, as hyper-
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graphical structures for population coding, or even homological properties of the
functional spaces of whole-brain activations. The landscape of higher-order effects
in neuroscience includes contributions in which higher-order interactions can feature
as a fundamental dynamical unit, as a methodological tool, and, at times, as both. In
this chapter, we discuss these different aspects moving from the microscopic to the
macroscopic scale, while explicitly highlighting the role that higher-order interac-
tions take in the different cases.

Specifically, we describe how higher-order interactions have been introduced and
measured in the context of neuronal populations and in coding theory. We then
discuss recent applications of topological data analysis to whole-brain data, and
finally highlight the challenges related to promoting signals from low-order to higher-
order interactions.

17.1 Higher-Order Interactions and Descriptions
at the Neuronal Scale

Neuronal activation is the atomic unit of brain activity, and the firing patterns of
groups of neurons underpin human society. These patterns are not unique and do
reoccur, showing that neurons communicate and generate spatio-temporal correla-
tions in their firing activity. Interestingly, even cortical slices in a Petri dish display
non-trivial spatio-temporal correlation patterns [5] and can be used to show the del-
icate neurochemical balance underpinning neural activation [59]. Measuring neural
activity is by definition difficult. The size and density of neurons makes it impossible
to measure the activation of a single neuron, and electrodes array typically measure
the firing activity of a group of neurons. Measurements taken from live subjects
are invasive as they require implanting electrodes. Most experimental data therefore
comes from animal studies, with the exception of measurement obtained from sub-
jects suffering from certain forms of epilepsy or neurodegenerative disorders. Com-
putational models are commonly used to generate data, but are—of course—short
of the real thing. Despite these limitations on data size—i.e. number of electrodes,
length of clean times series or the artificiality of data—, important work has emerged
in the study of the role of higher-order interactions in neural coding.

Neuronal activity can be encoded as a two states variable, inactive and firing. A
paradigmatic model to study binary variables interactions is the Ising spin model that
can easily be extended to include any order of interactions, i.e. pairwise, threeway,
and higher-order analogues. The probability of a given neuronal configuration for a
population of N neurons (σ1, . . . , σN ) is given by the maximal entropy distribution,
also known as the Gibbs distribution:

p(σ1, . . . , σN ) ∝ exp

⎛
⎝∑

i

αiσi +
∑
i< j

βi jσiσ j +
∑
i< j<k

γi jkσiσ jσk + · · ·
⎞
⎠ ,

(17.1)
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where the coupling parameters αi , βi j , γi jk are to be estimated from experimental
data. In practice, the estimation of the coupling parameters and its reliability limits
the order that can be considered [54], and early results found that considering pair-
wise interactions was in some setups sufficient to capture most of the firing patterns
structure [58].

However, investigations of larger neuron ensembles (of the order of 100), showed
that higher-order interactions can easily encode responses to stimuli [19, 70] and—
additionally—that the structure of the interactions is hierarchical and modular, sug-
gesting scalability [19]. Further work has shown that including higher-order terms
to encode firing pattern elicited in response to stimuli improves the goodness of fit
when introducing a state-space for patterns [7, 60]. Simultaneous silence, i.e. patterns
of inactivity, are also characterisation of higher-order interactions and highlight the
role of inhibitory neurons in creating spatio-temporal interaction patterns [61].More-
over, the higher-ordermodels reveal activity patterns closely related to the underlying
structure of cortical columns [31], indicating a relationship between structure and
function.

While useful to capture the statistics of neuron firing patterns in response to
stimuli, these models suffer from several limitations. Their scalability is a problem,
as obtaining good and reliable estimates of the model parameters requires long time-
series, even for small systems [54]. They also remain “fitting” models, that make
assumptions about the process generating the data that, albeit intuitively reasonable,
are nevertheless without theoretical or empirical foundation. The last limitation is
built in the model class, they inherently lack a temporal dimension and dynamics
that is central to spatio-temporal neural coding.

To continue the study of higher-order driven neural activation patterns while alle-
viating some of the model-based limitations, we turn to model free, data-based meth-
ods from topological data analysis, and focus particularly on place cells [41]. Place
and grid cells have complementary roles in encoding and memorising spatial infor-
mation in the hyppocampus and the enthorinal cortex [24, 41]. They also display
reliable and long lasting transient patterns [28], making them ideal candidates for
detecting structure in neural activation patterns and understand the function of neural
circuits. Although we argue for common neural mechanism across species [4, 30],
the experimental data in the works we discuss come from rodents.

Remarkably, the firing patterns of hyppocampal place cells are shown to encode
the topology of an animal’s environment rather than its exact geometry, as well as
its position within its environment [12–14]. Place cells’ activations therefore reflect
the environment an animal is moving in. The question of how the brain activates
the appropriate “environmental” map is currently unknown, but research has shed
light on possible mechanisms that allow maps to be consistent and robust over time
[1]. Co-activation complexes are constructed by building simplices from coactive
place cells. Over time and exploration of the environment, the coactivation sim-
plices progressively become a better topological representation of the physical space
(Fig. 17.1). It is not clear that this mechanism is enough to ensure the maps are
committed to memory once the animal is removed from the test environment and
can be reused in the future or in mental exploration, i.e. memory trip. A potential
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a b

c d

Fig. 17.1 Coactivation complexes can explain sustained and robust representation of spaces.
a A simulated place cell field map M(ε) of a small planar environment ε with a hole in the center is
shown together with temporal snapshots of the temporal dynamics of the coactivity complex, which
evolved from a small and fragmented one, early during the exploration, to a stable representation of
the underlying environment later on. b The timelines, encoded as persistent barcodes, of topolog-
ical persistent H0 and H1 cycles for the coactivity simplicial complexes: 0-dimensional persistent
generators are shown in light-blue lines, 1-dimensional ones in light-green. Most 1-dimensional
cycles correspond to noise, while the persistent topological loops (red dots) encode true physical
features of the environment. The time to eliminate the spurious cycles is a proxy for the estimation
of the minimal time needed to learn the path connectivity of ε. c Since simplices can also disappear
due to noise and unstable neuronal firing, the coactivity complex can flicker, resulting in d the time-
lines of the topological cycles to be interrupted by opening and closing topological gaps. Figures
reproduced from Ref. [1]

such mechanism is proposed in a computational study [2] in the form of replays,
where the cells regularly and autonomously reproduce firing sequences correspond-
ing to specific maps, reinforcing existing patterns in a Hebbian learning way. One
might conjecture that replays happen during sleep as part of a memory consolidation
process [49].

Furthermore, [22] studied how the correlations of spike trains can be used to
detect intrinsic structures in place cell activity, without recurring to external stim-
uli, and how they relate to the topology and geometry of the animal’s space. Each
correlation matrix was then transformed into an order complex, a filtration of simpli-
cial complexes, obtained by adding a each filtration step a new edge corresponding
to the next highest non-diagonal correlation matrix value. The clique complex cor-
responding to that filtration was then built. They found that the Betti curves that
encode the homological properties of the cell activation patterns measured from the
animal free-roaming have consistently lower values than from reshuffled version of
the correlation matrices. These observations suggested that the correlation structure
of hippocampal neurons intrinsically represent the low dimension of the ambient
space.

While the geometry of place cells is constrained by the nature of the informa-
tion they encode, [50] investigated the topology of excitation networks built from
simulated activity on reconstructed generic corticalmicro-circuitry. The homological
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structure of such networkswas strikingly complex, showing a surprisingly large num-
ber of high-dimensional cliques and a wide variety of high-dimensional homological
holes. Further simulations on synthetic and nullmodels found different organisations,
suggesting that the topological properties of the activation patterns are not purely
driven by the neuron interaction topology, but also by their particular function.

Due to the difficulty of obtaining precisemeasurement of physical connections for
large collection of neurons, topologically based higher-order methods are currently
limited to decoding the activity or neuron rather than their structure. At the single
neuron level, there is however a correlation between a neuron’s topology and its
function [29], opening to door to investigating the topological properties of groups
of neurons and their function.

So far we have only discussed the role of neural activity at the very small scale,
focusing on small neuronal ensembles or very specific functions, e.g. spatial rep-
resentation. However, one of the great challenge of neuroscience is to understand
how behaviour emerges from neural activity, to bridge the scales at which brain
activity can be measured [66]. A unified model of brain function remains elusive,
despite progresses being made, such as models relating interneuron dysfunction to
schizophrenia [65], which has found some experimental confirmation [8, 42], or gene
co-expression maps being correlated with fMRI brain activity and neurotransmitter
pathways [43, 51].One is often focused on the difference between themicro scale, i.e.
neuronal activity, and macro scale dynamics, i.e. brain activity measured with neu-
roimaging techniques such as fMRI, EEG, or MEG. There are however similarities,
such as the spatio-temporal statistics of neuron [5] and voxels [64] activity. More-
over, the aim at both scales is to link spatio-temporal activity patterns to behaviour.
The same set methods can therefore be applied in both cases as they are agnostic to
the source of the data, and they can be used to bridge across scales.

For example, binarized fMRI signal [64] can also be used as an input for the
extended Ising spinmodel. The structure of the energy landscape defined by the spin-
voxels configuration (Eq. (17.1)) reveals transition dynamics between tasks [17, 68,
69]. However, the models fitted in these studies do not include higher-order terms,
as the length of fMRI time series is typically too short for a reliable estimation of
the model parameters. Methods relying on signal correlation analysis and topolog-
ical data analysis are less sensitive to this limitation and have seen their popularity
increase for the analysis of macroscopic brain function [16]. We discuss a selection
of relevant results in the next section.

17.2 Higher-Order Topology in Whole-Brain Descriptions

At the whole-brain level [15], the question of the importance of higher-order inter-
actions is faced with contrasting evidence. For example, it has been suggested that
weak higher-order interactions exist in large-scale functional networks, but are dom-
inated by the pairwise interactions, which would therefore be the main shapers of
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brain function [25]. From this perspective, the higher-order terms could be neglected
and functional connectivity descriptions based purely on network properties would
be enough to fully characterize brain function.

On the other hand, however, higher-order observables were identified as important
in multiple studies, e.g. test-retest analysis [72], aberrant connectivity in mental dis-
orders [48] and mild cognitive impairment [71], as well as model inference for EEG
signals [32]. Further evidence in this direction has recently come from the study of
the shape of the functional spaces described by whole-brain structural and functional
data, using tools borrowed from topological data analysis [16, 21]. In structural net-
works, typically obtained from DTI measurements, persistent homology was used to
distinguish healthy and pathological states in developmental [34, 37, 57] and neu-
rodegenerative diseases [35]. For example, considering white matter fibers between
brain regions as a weighted network, it was possible to detect loops and cavities
between regions that were coherent with biologically-inspired principles of parsi-
monious wiring (Fig. 17.2a) [62]. Such cavities act as obstructions for information
flows and were surrounded by large cliques, which could be interpreted as local
dense units able to perform rapid processing. The cavities were reproducible across
subjects and connected regions belonging to different phases of brain evolutionary
history (Fig. 17.2b).

At the functional level, topological differences were found in healthy and patho-
logical subjects [34, 36]. Higher-dimensional topological features in these cases
corresponded to the homological structure of the correlation spaces extracted from
functional connectivity analysis, e.g. spaces with Pearson correlation metric. They
were useful to discriminate between brain functional configurations in neuropsychi-
atric disorders and altered states of consciousness relative to controls [11], and to
characterize intrinsic geometric structures in neural correlations [22, 55]. One of the
more known examples of this type of analysis compared the topology of the func-
tional connectivity of subjects under the effect of psilocybin, a psychedelic drug,
with their own under placebo [44], finding that the topological structure was very
different between the two conditions, and that the difference could be quantified
at the level of persistence diagrams (Fig. 17.2c). To improve the interpretability of
the H1 topological summaries extracted from the data, homological scaffolds were
produced to map the topological information back to the brain regions. Such scaf-
folds can be understood as topological backbones, built from approximated minimal
homological generators (Fig. 17.2d), and showed that altered states of consciousness
induced by psilocybin (and likely, other psychedelics) arise from different patterns
of information integration and importance across brain regions [38] with respect to
the normal state (Fig. 17.2e).

Other examples of the application of homology can be found in the literature.
Lee et al. [34] have proposed methods to discriminate between cohorts of children
with attention deficit hyperactivity disorder, autism spectrum disorder and pediatric
control subjects on the basis of their functional topology. In following works [33],
the topological substructure of brain networks was represented through the eigenvec-
tors of the corresponding Hodge Laplacians and used it to discriminate between mild
and progressive cognitive impairments, andAlzheimer’s disease, used to describe the
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Fig. 17.2 Structural and functional brain topology. a Distribution of maximal cliques in the
average DSI (black) and individual minimally wired (gray) networks, thresholded at an edge density
ofρ = 0.25.Heatmaps of node participation shown on the brain surfaces for a range of clique degrees
equal to 4–6 (left), 8–10 (middle), and 12–16 (right). bMinimal cycles representing each persistent
cavity at the density at birth represented in the brain (top) and as a schematic (bottom) (adapted
from [62]). cComparison of persistence p and birth b distributions. Left, H1 generators’ persistence
distributions for the placebo group and psilocybin group. Right, distributions of homology cycles’
births. d Statistical features of group level homological scaffolds. Left, probability distributions for
the edgeweights in the persistence homological scaffolds (main plot) and the frequency homological
scaffolds (inset). Right, scatter plot of the scaffold edge frequency versus total persistence for
both placebo and psilocybin scaffolds. e Simplified visualization of the persistence homological
scaffolds for subjects injected with placebo (left) and with psilocybin (right). Colours represent
communities obtained bymodularity optimization on the placebo scaffold and display the departure
of the psilocybin connectivity structure from the placebo baseline. Figures adapted from Ref. [44]

heritability of differences inwhole-brain functional topology in a cohort of twins [10],
and related to topological functional structure of EEG data during imagery to func-
tional equivalence in a population of skilled versus unskilled imagers [26, 27].

17.3 Beyond Functional Connectivity

The analysis methods presented so far mostly focus on notions of functional con-
nectivity, the prototypical example being the canonical Pearson correlation matrices.
Using topological description, it is however possible to investigate different features
of the spaces in which brain activity can be represented. An interesting example
is a topological simplification analysis [56] which focuses on extracting new net-
work representations from temporally resolved fMRI signals. This approach starts
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by considering each instantaneous BOLD signal measurement as a point in a high-
dimensional space. This space of activation is then filtered using a PCA-based func-
tion, which is then used to create a binning of the time points in overlapping bins.
Inside each bin, points are then grouped using standard clustering algorithms. The
resulting clusters constitute the node set of a new graph, typically called shape graph
or Mapper graph [43]. Since the binning allows for overlap across bins, it is possible
for the same time point to belong to multiple clusters in different bins.Whenever two
clusters share a time point in this way, an edge is added linking the Mapper graph
nodes corresponding to the two clusters. In such way, it is possible to build a Mapper
graph for each subject, which captures the topology of a simplified representation of
the landscape of an individual’s activation space (Fig. 17.3a). Interestingly, Saggar
and collaborators [56] found that the properties of the individualMapper graphs were
predictive of changes in performance over amultiple tasks:Mapper graphs with large
modularity were linked to higher accuracy and smaller response times (Fig. 17.3b).
This suggests that a brain activation space that has more diverse and specialised rep-
resentations of tasks guarantees better multitasking performances [45], as opposed to
representations shared across multiple tasks, which instead have been linked to gen-
eralization. Moreover, it also suggests that changes in function can be both localized,
i.e. specific altered states that induce functional change, and global, i.e. they affect
the whole dynamical landscape of brain function rather than only specific configu-
rations. Results supporting this picture were also obtained using related embedding
techniques, e.g. low-dimensional projections based on topological distances [6] or
persistent homological features obtained from spatial activation patterns [52].

17.4 Higher-Order Signals and Reconstruction

An open and interesting question regarding higher-order interactions in neuroscience
is how to measure and—in some cases—even define them. In the case of co-firing
neurons, it is natural to identify their firing patterns as a higher-order interaction,
as it is done for example in the co-activation simplicial complexes of [3]. In such
cases, the interactions also have a natural downward closure—groups of 4 co-firing
neurons, also co-fire in groups of 3 and in pairs—, making simplices and simplicial
complexes natural descriptions for the system. Moreover, it is also straight-forward
and natural to define binary activation signals for these higher-order interactions by
considering when they are and are not present.

On the other side, when dealing with large-scale brain dynamics, signals for
higher-order interactions are almost never directly available. In general, neuroimag-
ing signals recorded from regions of interest, i.e. 0-th order signals, are encoded as
metric spaces [11, 44] or weighted clique simplicial complexes [46], using their cor-
relation properties. Filtrations of simplicial complexes are then extracted from these
representations to compute persistent homological features [47]. While this allows
to capture information that is not available from a network representation perspec-
tive, the dynamics of higher-order interactions strongly depends on the structure of
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Fig. 17.3 Mesoscale properties of graph representations of brain activation predict individual
task performances. Panel a shows the Mapper graphs obtained for two subjects [56] (labeled S14
and S07). The pie charts on the nodes show the fraction of timepoints corresponding to each task in
the graph node. TheMapper graph for S14 has a lowmodularity score [40], while that of S07 shows
a high degree of modularity structure, in particular showing nodes that are most often connected
between to other nodes of same task type. Panel b reports the correlations found between the graphs’
modularity scores (Qmod) and task performances. Adapted from [56]

pairwise interactions. Although this type of analyses has encountered large success
already [16], it would be very valuable to be able to measure or—at least—construct
higher-order signals from low-order ones in a principled and controlled way.

A first possibility in this direction is to explicitly leverage low-order signals to
define higher-order ones. An example is the edge-level signals and the corresponding
edge-centric connectivity introduced by Faskowitz et al. [18]. In standard functional
connectivity studies, after z-scoring each time series, the correlation ri j between
regions (nodes) i and j is computed as

ri j = 1

T − 1

∑
t

[
zi (t) · z j (t)

]
(17.2)

where zi, j are the z-scored timeseries. The correlation coefficient ri j is by definition
time independent, however, if one discards the sum over t and the normalization,
then it is possible to consider its time evolution
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a

b

Fig. 17.4 Construction of higher-order timeseries from low-order ones. a the construction in
the case of edge-centric connectivity. Adapted from Faskowitz et al. [18]. b Results for redundancy
and synergy based on O-information for age groups: I1 30 subjects, ages 10–20; I2 46 subjects, ages
20–40; I3 29 subjects, ages 40–60; I4 59 subjects, ages 60–80. Adapted from Gatica and Cofré [20]

ci j (t) = zi (t) · z j (t) (17.3)

as the timeseries describing the coherent fluctations of the functional edge i j and
therefore as a genuine higher-order signal. In [18] the authors used this construc-
tion to define an edge-based functional connectivity eFCi j,uv among pairs of edges
(Fig. 17.4a):

eFCi j,uv =
∑

t ci j (t) · cuv(t)√∑
t ci j (t)

2
√∑

t cuv(t)2
(17.4)

and then studied it using conventional network-based observables. The construction
could be generalized to arbitrary orders, which could provide a way to construct
weighted and temporally-resolved higher-order representations of brain neuroimag-
ing data. Note that, however, there is no concept of what type of information we are
encoding, e.g. whether the co-fluctuations of a set of regions are due to the effect of
yet another region, absent which they would be conditionally independent.

A second recent approach to the inference of higher-order interactions offers
a possible solution to this problem by adopting an information-theoretic point of
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view. O-information [53] is a (real-valued) observable that discriminates between
redundant and synergistic components of the information in systems composed by
multiple variables. Redundant information here means information that is present in
the low-order marginals, e.g. at the node level, while synergistic refers to information
that is absent at low orders and is only present at the group level. Formally, for a
system composed by n discrete variables, Xn = (X1, . . . , Xn), the O-information
�(Xn) is defined as:

�(Xn) = TC(Xn) − DTC(Xn) = (n − 2)H(Xn) +
n∑
j=1

[
H(X j ) − H(Xn

− j )
]

(17.5)
where TC and DTC are respectively the total correlation [67] and dual total correla-
tion [63], and Xn

− j is the vector X
n with the j th variable omitted. A positive value

of �(Xn) implies that the interdependence are mostly dominated by redundancy,
while a negative value implies that synergistic effects are dominant. A further advan-
tage of this quantity over previous multivariate measures of dependency is that it
does not require a division between predictors and target variables, but rather pro-
vides a genuine measure of group synergy. As a proof of principle, O-information
was used to quantify the changes in relevance of interactions of different orders in
groups with different ages [20]. In particular, they found significant increases in
redundancy in older participants for all interaction orders, and also that synergy and
redundancy display different functional forms across all age groups and interaction
orders (Fig. 17.4b).

Although promising, these two approaches still face challenges to be widely
adopted in conjunction with the existing topological and network tools. For exam-
ple, when generalizing edge-connectivity to higher-order interactions, the sign of the
co-fluctuations, being the result of the multiplication of more than two terms can be
misleading and could result in misinterpretations if not properly accounted for. On
the other hand, information-theoretic observables typically require a discretization
of the signals in states which is non-trivial already in simpler applications, e.g. multi-
variate mutual information [39]. Finally, in both cases, while it is possible to compute
the strength of interactions at all orders, it is unclear how values for interactions at
different orders could be compared directly, making the definition of a valid filtration
on a weighted simplicial complex non-trivial.

17.5 Outlook for the Future

There is little doubt in our opinion that higher-order interactions play a central role
in the brain dynamical organisation and in cognition. They might be weak and dif-
ficult to quantify in general at the moment, but in the context of complex systems,
weak does not imply negligible [9, 23, 66]. They are likely to play a central role
in multitasking [45], focus [27] and neural coding [12, 22] among other things.
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They have also been shown to improve model fitting [54, 68], prediction [3, 13]
and separation [56]. Hence, higher-order interactions and related analysis methods
might be good candidate for biomarkers. It is however difficult at the moment to
know whether they are simply good tools and representation of signals for analysis,
or have a deeper, more fundamental role in brain theory. Information-based signal
analysis [53] might be a good candidate for a first investigation of the precise role
of higher-order interactions and structure in brain organisation. However, as future
steps, we envision the inclusion of such interactions in testable theoretical brain
models so that theory and experiments feed on each other.
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Chapter 18
Higher-Order Interactions in Biology:
The Curious Case of Epistasis

C. Brandon Ogbunugafor and Samuel V. Scarpino

Abstract Aswith other arenas of complex systems, the biological world is driven by
interactions between actors, parcels, and forces of various kinds. Higher-order inter-
actions between these elements defines the complexity underlying many biological
systems, from species interactions, the microbiota, to biomechanics and others. Here
we explore higher-order interactions through a discussion of epistasis, a cutting-edge
concept in population and evolutionary genetics. We examine the concept’s history
and controversies, measure higher-order epistasis operating in a gene encoding
an enzyme, and discuss the implications of higher-order interactions for contempo-
rary conversations surrounding genetic modification and other technical challenges
that require a more refined understanding of the relationship between genotype and
phenotype.

18.1 Introduction

Biology occupies a unique niche among the domains where higher-order interactions
exist and are the object of study. By some standards, the biological realm is home
to many of the oldest examples of complex systems where higher-order interactions
have been observed and cataloged. On the other, it is also among the arenas where
higher-order actions remain the most intractable and elusive. But, as we argue in the
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coming sections, the biological realm is poised to make rapid progress in our scien-
tific understanding of higher-order interactions and our ability to engineer desired
outcomes in complex adaptive systems.

While dozens of studies have affirmed that biological systems have all the associ-
ated jazz that we associate with complex systems (e.g., emergence), there are fewer
areas of biology where a consideration of higher-order interactions has improved
our understanding enough to make accurate predictions. That is, while the biological
realm recognizes the importance of higher-order interactions in its constitution—
across scales of biological organization, from the molecular to the cellular to the
ecosystem—the study of higher-order interaction has yet to fully reconcile nor solve
any longstanding challenges in biology.

In this chapter, we discuss higher-order interactions within biology, using
genetics—and specifically a concept called “epistasis”—as amodel problem to high-
light how higher-order interactions can be identified, measured, and interpreted. We
will focus on higher-order epistasis, a phenomenon that captures both the caprice
and the ubiquity of higher-order interactions in biological systems. We examine its
multiple definitions within the fields of population, evolutionary, and quantitative
genetics, and discuss some of its implications for fundamental theoretical questions
and conflicts in the many subfields of genetics.We offer an analysis of a small dataset
to demonstrate how higher-order interactions manifest within genes but focus our
attention on large questions and conflicts that have undermined a more rigorous
understanding of cutting-edge problems in modern genetics.

18.2 Higher-Order Interactions Across Biological Domains

As in all the foundational fields where higher-order interactions exist, higher-order
epistasis is defined by nonlinear interactions between actors, entities, replicators,
or parcels of information. Such interactions exist in the many subfields of biology,
including ecology, where the study of high-dimensional species interactions has
long been an important area of research. Indeed, in one of the foundational papers
of both mathematical ecology and complex systems, May 1972 asked (and tried to
answer) the question, “Will a large complex system be stable?” [1]. Not surprisingly,
the answer was that it depends. Whether a large complex system—think about an
ecosystem or even a genome—will be stable depends on the number of interacting
entities, how they interact, the density of their connections, and—crucially—how
we quantify stability. Nevertheless, examples of large, complex biological systems
abound [2]. How then should we quantify the nature of the interactions and the
degree of stability in these systems?Or said differently, howdowe study higher-order
interactions in biological systems?

Higher-order interactions have been examined in ecological systems of various
kinds, ranging from statistical tests of interactions in ecology [3] to community
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ecology [4–6], predator–prey interactions [7], food webs [8], and microbial systems
[9, 10]. The importance of higher-order interactions between taxa of microbes has
become the focus of study in the microbiota. The microbiota includes the complex
community of microbes—trillions in number, across thousands of taxa—that live
within other, often multicellular organisms. The composition of the microbiota is
now understood to play a large role in many organismal-level phenotypes—disease
states, behavior, and many other phenotypes. And higher-order interactions have
been measured and are known to occur between the taxa of the microbiota, which
may have consequences in the construction of microbial consortia [11–13].

Biomedical systems have highlighted the presence of higher-order interactions
between drugs used at the clinical bedside, and especially to treat microbes [14–16].
These findings have reframed our understanding of the challenges of therapy, as drug-
drug interactions can foster treatment environments that are challenging to predict
from the effects of individual treatments. The future of biomedicinemust, then, prop-
erly incorporate details of how drugs interact in a higher-order fashion to respon-
sibly predict the effects of multiple drug environments. And, perhaps surprisingly,
biomechanical and physiological systems also embody higher-order interactions. For
example, recent studies have identified how interactions between anatomical traits
may have influenced their evolution across taxa of flatfishes [17]. And, in the model
organism Arabidopsis thaliana, physiological stress response to cold vs. drought
treatments result in different patterns of higher-order interaction in gene expression
[18].

In sum, the biological world is full of examples that fortify the importance of
higher-order interactions between actors, entities, and parcels of biological informa-
tion. And biology’s many subfields utilize a wide breadth of methods to detect and
quantify higher-order interactions.

However, across all the subfields of biology, genetics is an area where higher-
order interactions remainmost present in both theoretical and empirical research. The
notion that genetic information interacts with other parcels of genetic information
in crafting phenotypes is a defining feature of genotype–phenotype mapping. And it
manifests in many of the most sophisticated aspects of modern genetics, including
the search for the genetic underpinnings of complex traits (e.g., disease, behavior)
and genetic-modification technology. But how did we end up here? Where did some
of these concepts related to higher-order epistatic effects originate? While a full
examination of the history of these ideas is beyond the scope of this chapter, we will
offer a take, which we hope can provide some context for how higher-order effects
ended up on the menu of central ideas in evolutionary and population genetics.
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18.3 On Epistasis

18.3.1 History

Shortly after the rediscovery ofGregorMendel’swork onmechanisms of inheritance,
biologists demonstrated that certain phenotypes appeared to violate the independence
assumptions of gene interactions. Work by Bateson et al. 1910 and Weinberg 1910
[19, 20] both found that offspring phenotypes significantly deviated fromexpectation,
which could not be accounted for by dominance effects nor differences in environ-
ment. In 1909, Bateson published an extensive description of what he referred to
as epistasis [21], which is now the most commonly used term for gene interactions
leading to deviation from independence. However, he first used the term in a 1907
correspondence to Muriel Wheldale who was conducting breeding experiments on
snapdragons in Bateson’s laboratory [22]. In Wheldale’s paper [23], she ended up
using a different term to describe the effect of the expected phenotype being repressed
by another site in the genome. Because Bateson 1907 was trying to describe this
repression effect, he settled on the term epistasis, which comes from Greek and most
closely means “standing upon” [24]. Today, epistasis is used quite broadly to mean
any deviation from non-additive (or in some cases even multiplicative) interactions
between regions in the genome.

Deviations from the expected phenotype due to genetic interactionwere first rigor-
ously demonstrated in plant and animal breeding experiments in the early 1900s.
Concurrently, there was a debate raging between geneticists broadly referred to as
“Mendelians” and those referred to as “Biometricians” [25]. The debate was between
a continuous view of variation between individuals for the same phenotype (Biome-
tricians) and the discrete view that was empirically demonstrable for many pheno-
types in breeding experiments (Mendelians) [24]. Reminiscent of the emergence of
quantum mechanics, the seeming incongruence of the continuous and discrete views
of variation was resolved by R.A. Fisher in 1918, who showed analytically that the
two views were entirely compatible [26]. Although, when discussing statistical devi-
ations from non-independence, Fisher used the term epistacy, which has fallen out
of favor and is no longer used [24]. Instead, geneticists now use the term epistasis to
refer to any genetic interaction that leads to non-independence (regardless of whether
its suppression—as the term was originally defined—or enhancement and whether
the effect is demonstrated using continuous or discrete models [24]).

We now know that the myriad factors interact to determine an individual’s trait
value for any specific phenotype. These factors include genetic effects, environmental
effects, and all possible interactions. Broadly, we use the term genetic architecture to
represent the joint effects of all determinants of a phenotype. For some phenotypes,
e.g., the smooth vs. wrinkly peas from Mendel’s experiments, there may be exclu-
sively independent genetic effects. For others, such as schizophrenia, there will be
higher-order interactions between genes, environments, and other modifiers. Nearly
100 years of genetic studies have concluded that the vast majority of genetic archi-
tectures are complex [27, 28]. Despite this complexity, animal and plant breeders are
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able to direct the evolutionary trajectory of numerous traits, from milk production to
cold tolerance, using equations and frameworks from quantitative genetics [29].

18.3.2 A Contemporary Example: Biological Networks

Today we know that the structure of molecular interactions clearly affects evolu-
tionary processes across biological levels of organization: from cells, to species,
to populations and ecosystems. However, the precise role of molecular network
evolution in the process of species formation and adaptation to novel environments,
i.e. innovation, remains contentious, with prominent researchers claiming regula-
tory network changes are critical for macroevolutionary processes [30] and others
concluding that they rarely matter [31]. These differences in opinion manifest in
various settings.

For example, a recent comparative study of biological regulatory networks found
that such networks exist at the edge of criticality, straddling the border of chaotic
and ordered states [32]. That biological regulatory networks should exhibit the kind
of dynamic stability associated with near-critical networks has been theorized as
adaptive, both from the perspective of functional robustness [33] and their ability to
effectively process information [34]. However, there is also empirical and theoret-
ical evidence for the importance of change in these networks, e.g., if species must
evolve to meet shifting environmental or ecological selection pressures [35]. This
tradeoff between robustness and evolvability is hypothesized as an explanation for
the commonality of “small-world” networks in biology [36]. Nevertheless, founda-
tional work on self-organized criticality and 1/f noise demonstrated that dynamical
systems embedded in a spatial dimension, e.g., biological regulatory networks, might
naturally evolve to near-critical states [37, 38].

What then is the role of networks in evolution? For adaptation occurring along
a single phenotypic axis, e.g., temperature, RA Fisher’s geometric model (1930) of
adaptive substitutions provides a great deal of insight [39]. Simply put, the farther
away a population is from its fitness optimum, the larger the expected effect-size of
a mutational substitution. Recently, a number of experimental evolution studies have
provided empirical support for this model (e.g., Hietpas et al. 2013) [40]. However,
it seems unlikely that most historical episodes of adaptation occurred along single
phenotypic or genotypic axes. And, as Haldane (1957) concluded [41], for many
species experiencing selection alongmultiple axes of variation (e.g., temperature and
salinity), that importantly are under independent genetic control, natural selection is
expected to drive them rapidly to extinction. As we now know, the genetic architec-
tures underlying even diverse phenotypes are rarely independent: genes underlying
all traits exist in complex webs termed molecular networks [42]. Therefore, the role
of individual genes in the process of adaptation is affected by their position in these
networks and their very interconnectedness may explain why species are able to
simultaneously adapt to multiple axes of selection.
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18.4 Epistasis: Definitions and a Brief Survey of Methods

One simple dichotomy that capturesmany of the different uses of the term “epistasis”
is the difference between statistical and physiological epistasis. This difference was
summarized by Sackton and Hartl (2016) as: “any situation in which the genotype at
one locus modifies the phenotypic expression of the genotype at another [43].” This
is compatible with another very useful definition used by Weinreich et al. (2013),
who offered that epistasis is the “the surprise at the phenotype when mutations
are combined, given the constituent mutations’ individual effects [44]”. Both are
highlymechanistic definitions of epistasis and differ from themore statistical pictures
offered that focus on the role of epistasis on genetic variance in populations. Though
each formof epistasis—physiological and statistical—are referring to the same sort of
phenomena, themeans throughwhich epistasis ismeasured differs greatly depending
on which form we are discussing. In general, questions surrounding which methods
one should use to study epistasis are analogous to statistical debates regarding the
most defensible ways to measure nonlinear effects in complex systems. Quite often,
the specific question and context dictate which methods that one should use, and
some methods specialize in capturing a particular feature of epistasis. For example,
some methods address how noise can affect our understanding of epistasis [45, 46].
Others consider the limits of regression in detecting epistatic effects [47, 48], or
propose ways to measure epistasis in incomplete data sets [49].

One method for quantifying epistasis considers the marginal effect of non-
independence across large sets of mutations in genomes [50]. This test, called
“MArginal ePIstasis Test” or MAPIT, which is a linear mixed modeling strategy
for detecting genetic variants (e.g., single nucleotide polymorphisms, SNPs) that
are involved in the study of epistasis in genomic mapping studies. With respect
to Genome-Wide Association Studies (GWAS), MAPIT estimates and tests the
marginal epistatic effect or the combined epistatic effect between SNPs of interest
and all other SNPs in the data. By inferring the marginal epistatic effects of SNPS,
MAPIT can identify variants that exhibit epistatic interactions with any other variant
without the need to identify the specific combinations that drive the epistatic asso-
ciation. Therefore, MAPIT represents an important alternative to standard methods
for measuring epistasis [50]. Although somewhat intriguingly, this class of models
may perform differentially well at reconstructing epistatic interactions depending on
whether the species is outcrossing or self-fertilizing [51]. Despite the documented
effectiveness of methods like MAPIT, such approaches are unable to detect epistatic
interactions that are greater than second order (pairwise). However, recent appli-
cations of approximate Bayesian inference and neural networks, e.g., Biologically
AnnotatedNeuralNetworks (BANNs), showpromise for reconstructing higher-order
interactions leading to epistasis [52].

In sum, the methods to diagnose and measure epistasis are as diverse as the
settings and varied definitions of epistasis, which provides a challenge to whomever
wants to tell a singular narrative about higher-order interactions in genetics. But
there are smaller problem cases in genetics where the conceptualization and study
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of higher-order epistasis is more tractable. These can serve as useful model prob-
lems to discuss how interactions between mutations in a single genetic locus may
manifest. And for these purposes, often the physiological definition of epistasis, one
marked by clear ways of measuring the “surprise” at the phenotypic effect of combi-
nations of mutations, is the simpler way of demonstrating larger implications of the
phenomenon.

18.5 A Demonstration of Epistasis Operating in a Gene
Encoding an Enzyme

To demonstrate how epistatic interactions for even a relatively “simple” genetic
system can lead to complexity, we examine a data set corresponding to a protein
that carries multiple mutations that are associated with resistance to an antibiotic
(trimethoprim). The example that follows is based on real-world data, but is simplified
as a model to illustrate how epistasis manifests in a biological system. We will
measure how interactions betweenmutations are computed fromvalues for individual
variants of a protein containing a different suite of mutations. The dataset itself might
be called a “fitness landscape,” whereby scientists ask questions about how evolution
might be expected to occur across a small discrete portion of sequence space [53, 54].

Specifically, we utilized a suite of three mutations (P21L, A26T, and L28R; single
amino acid abbreviations) in bacterial dihydrofolate reductase (DHFR, an essential
enzyme target of many antimicrobial drugs) constructed in combination (23 = 8
alleles) across 3 different genetic backgrounds [55, 56]. The three different genomic
backgrounds are as follows: (i) wildtype, (ii) a GroEL+ strain, where a protein chap-
erone is overexpressed, (ii) �Lon protease, where an important protease (Lon) has
beendeleted.BothGroELandLonhavebeendemonstrated to regulateDHFRactivity
in bacterial cells [57].

18.5.1 Data Structure and Methods to Detect Epistasis

The data used here are a subset of those taken from a 2019 study on higher-order
epistasis [56]. Importantly, the growth rate and IC50 are different, but related traits,
part of a canonical tradeoff that has often been observed between growth and resis-
tance in microbial systems. In this examination, we measure epistasis across both
traits.

Because this analysis is invoked to be a general examination of higher-order effects
in biological systems, rather than a focused study of proteins (or a protein of a certain
kind), we will rename the elements in our discussion:

• Dihydrofolate reductase will be referred to as “an enzyme.”
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• The mutations corresponding to P21L, A26T, and L28R will be referred to with
regards to their combinatorial arrangement. For example, “PAL” corresponds to
the enzyme variant with amino acids Proline (P), Alanine (A), and Leucine (L) at
the three loci of interest.

• The genomic backgrounds corresponding to the wildtype GroEL+ and �Lon
protease will be referred to as “environment A” (wildtype) “environment B”
(GroEL+) and “environment C” (�Lon).

• Growth rate will be referred to as “trait 1,” and IC50 (resistance) will be referred
to as “trait 2”

We will make use of a method pioneered in theoretical computer science called
the Walsh-Hadamard transform, which computes a coefficient corresponding to the
magnitude and sign of an interaction between mutations, akin to an epistatic coef-
ficient. It was pioneered for use in the study of epistasis in a 2013 study that both
provided a primer for the calculation and analyzed several combinatorially complete
data sets [44]. It has since been further elaborated on applied to study of higher-order
epistasis across a larger sampling of empirical data sets [58, 59].

The Walsh-Hadamard transform implements phenotypic measurements into a
vector, then a Hadamard matrix, subsequently scaled by a diagonal matrix. The
calculation yields a set of coefficients which measure the degree to which the rela-
tionship between genetic information and phenotypes are linear, or second order,
third, and so forth. One limitation of the Walsh-Hadamard transform is that its data
must be combinatorially complete with no more than two variants at a given locus
of information. In this one scenario, the mutations at each of three sites (e.g. the
three mutations corresponding to Trimethoprim resistance in E.coli dihydrofolate
reductase), P21L, A26T, and L28R.

The full data set for the alleles consists of a vector of phenotypic values (resistance
to trimethoprim in the case of the DHFR mutants) for all possible combinations of
mutations (8 in total), represented by their single amino acid substitutions:

PAL, LAL, PAR, PTL, PTR, LAR, LTL, LTR.
These can be represented in binary notation:
000, 100, 001, 010, 011, 101, 110, 111.
This vector of phenotypes can be multiplied by a (8 × 8) square matrix, which

is the product of a diagonal matrix V and a Hadamard matrix H. These are defined
recursively by:

Vn+1 =
( 1

2Vn 0
0 −Vn

)
, V0 = 1 (18.1)

Hn+1 =
(
Hn Hn

Hn −Hn

)
, H0 = 1 (18.2)

n is the number of sites that differ in this enzyme (n = 3 in this setting).
The multiplication gives the following expression:
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(18.3)

In this scenario, H and V are the matrices described in Eqs. 18.1 and 18.2 and γ

is the Walsh coefficient, the measure of the average interaction between parcels of
information (mutations in this setting), here measured across environments.

Negative values for an effect suggest that that average effect is negative, positive
if it has a beneficial effect on a phenotype (e.g., antibiotic resistance).

Note: while we have provided some details of the calculation above, we encourage
those interested in the subtleties of the calculation to refer to several manuscripts,
especially Weinreich et al. 2013 [44] and Poelwijk 2016 [58], for a more focused
treatment of these methods.

18.5.2 Calculating Higher-Order Interactions

The above formula can be used to calculate the strength of interactions between
parcels of information, the mutations corresponding to different amino acid substi-
tions in an enzyme in our example.Butwhat about higher-order interactions (epistasis
beyond pairwise in this case)?

Previous studies have examined how higher-order epistasis manifests in adaptive
landscapes that include analogously structured data sets, including other enzymes
[44, 55, 59, 60]. Because our focus is on how higher-order epistasis manifests
in biological systems, we will offer a means through which one can make these
measurements.

For example, in a complete data set comprising eight variants, we can describe
the interactions between individual loci and genetic background in binary terms. If
we are talking about a combinatorial set of variants with three loci, we can describe
the interactions using binary representation.

γ000 interaction between the mutations in the wild-type background.
γ001 interaction between the “third site” mutation and all other genetic back-

grounds.
γ010 interaction between the “second site” mutation and all other genetic back-

grounds.
γ100 interaction between the “first site”mutation and all other genetic backgrounds.
γ011 second-order (pairwise) interaction betweenmutations at the second and third

loci.
γ101 second-order (pairwise) between mutations at the second and third loci.
γ110 second-order (pairwise) between mutations at the first and second loci.
γ111 A third-order interaction between mutations at all three loci.

In this set, there is one zeroth order interaction, three first-order interactions, three
second-order interactions, and one third-order interaction. The third-order interaction
would formally qualify as “higher-order.”
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In addition, one can take the mean of these epistatic coefficients within order,
which can facilitate comparisons between orders. For a given epistatic coefficient
we compute an absolute mean epistatic coefficient, E, as in prior studies that have
examined higher-order interactions on in silico fitness landscapes [61]:

Ei = |γi |∑
j

∣∣γ j

∣∣ (18.4)

The absolute value allows us to focus on the magnitude of higher-order interac-
tions. We label them with the term “absolute mean” since we incorporated absolute
values and averages in the calculation. This provides mean values for each order,
which translates to the overall contribution of, for example, 1st order effects. And we
can calculate the higher-order interaction across environments, creating an abstrac-
tion called the “mutation effect reaction norm” that highlights how environments
influence the effect of mutation interactions [62].

Figure 18.1 is a hypercube representation of the eight mutants, arising from a
combinationof three differentmutations (P21L,A26T, andL28R) in amodel enzyme.
All eight enzymes were engineered using transgenic methods and their growth and
resistance phenotypesmeasured using experimental methods [55]. Figure 18.2 repre-
sents the phenotype data for these eight mutants across the three environmental
contexts (A, B, C). From this, we can observe the existence of gene by environment
(G x E) interactions, indicated by the fact that different mutants have differing slopes
for performance for their growth (trait 1) and resistance (trait 2).

Data for trait 1 and 2 can be measured for all the alleles in this hypergraph, and
graphed with respect to the trait values across environment A, B, and C. This is

Fig. 18.1 A hypercube representation of the combinatorial set of mutations in the enzyme target of
study. Letters correspond to amino acids. In this instance, a bacterial enzyme has two amino variants
at each of three sites. Different combinations of these mutations are associated with different values
for traits associated with groth rate (trait 1) and antibiotic resistance (trait 2)
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depicted in Fig. 18.2, in an abstraction called a “reaction norm,” which is often used
to detect gene by environment interactions.

From the data in Fig. 18.2, the epistatic coefficients can be computed as outlined
in Eqs. 18.1–18.3. These yield calculations for the average effect of individual inter-
actions between mutations across environments, which can also be depicted in terms
of their absolute mean as outlined in Eq. 18.4.

Figure 18.3 depicts the coefficients for different interactions between mutants
(Fig. 18.3a and c). For example, the mutation effect corresponding to [*1*] translates
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to the average effect of adding the second-site mutation (A26T) across available
genetic backgrounds. Alternatively, [*11] corresponds to the average phenotypic
effect of adding A26T and L28R in combination. Also in Fig. 18.3 is the absolute
mean data, where we can observe the overall presence of epistatic effects across
environments, organized by order.

What dowe learn about how epistasismanifests in an enzymewith a suite ofmuta-
tions corresponding to different levels of growth and antibiotic resistance? Calcu-
lations of epistasis as depicted in Fig. 18.3 communicate the variability of epistatic
effects as a function of environment. When there are gene by environment interac-
tions present (as in Fig. 18.2), there are likely epistasis by environment interactions
(as in Fig. 18.3).

Even for traits where we expect a clear tradeoff, e.g., growth and antibiotic resis-
tance, the pattern of epistasis differ considerably. As a result, there exists no singular,
tractable pattern for how mutations will interact. More specifically, the eminence of
higher-order interactions changes across environmental contexts, something that has
been observed in other contexts [56, 63, 64]. Given that no locus operates in a
genome alone, we might expect the consequences of higher-order interactions to be
far greater than the effects measured by single mutations. Not only do mutations
interact in surprising ways within loci (as in the results of this data set), but we
might also expect genes to interact with other genes in surprising ways (as in gene
networks).

The ability of quantitative genetics to predict the trajectory ofmean trait values for
populations, coupled with our inability to predict the effect of most mutations, poses
both challenges and opportunities for the future of genetics. Can we develop theories
capable of making predictions relevant for engineering traits via genetic modifica-
tion, e.g., CRISPR? What additional ethical considerations arise from continuing
investment in genetic engineering without a general theory capable of predicting
the individual effect of mutations? In the following paragraphs, we advocate for a
complex network approach to genetic engineering. One where—far from trying to
reduce the effects of mutations—we instead embrace the gestalt when trying to direct
the phenotype of an individual through mutational engineering.

18.6 On Higher-Order Interactions and Genetic
Modification

Engineering human traits using CRISPR relies on the assumption that scientists can
accurately predict phenotype from genotype. Even for diseases caused by mutations
in single genes, such as cystic fibrosis [65] or muscular dystrophy [66], CRISPR
induced mutations failed to completely restore the “healthy” phenotypes in mouse
models or tissue culture.

Many other phenotypes in humans display a property that geneticists term
“missing heritability” [67], which means that researchers cannot identify genetic
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markers that account for the expected phenotypic similarity between parents and
offspring. Despite sequencing thousands of human genomes, we can only predict 6%
of the heritability of Type 2 diabetes, 5% for HDL cholesterol, 5% for height, and
<3% for early onset myocardial infarction [68]. This “missing heritability” implies
that the causal role of genetic interactions, environment, epigenetics, etc. is often as
strong as simple changes in one’s DNA.

So how can we reconcile the incredible predictive ability of quantitative genetics
when applied to animal/plant breeding with our inability to engineer traits using
tools like CRISPR? This is where we argue that the modern study of higher-order
interactions and genetics currently reside. However, the debate goes back to the early
1900s and the foundations of the field. Specifically, quantitative genetics abstracts
away the individual effects of genes and environments (alongwith their interactions).
Instead, it models them as expected effects on the variability of a trait. For example,
Huang and Macaky 2016 showed that genetic architecture could not be determined
for a principle component analysis of genetic variation (this is despite one’s ability to
influence trait evolution by selecting on the principal components) [69]. Our modern
understanding of the relationship between the individual determinants of traits and
their quantitative genetics representation was reviewed by Stinchombe and Hoekstra
2007 [70].

The continued effectiveness of quantitative genetics has led some mathematical
geneticists to question the importance of epistasis. Specifically, can we understand
and predict evolution without needing to know the underlying causes? Mäki-Tanila
and Hill 2014 showed that non-independent interactions between genes increases
the additive genetic variation at far higher rates and that it contributes to deviations
from additivity [71]. Indeed, they conclude that “Epistasis may be important in
understanding the genetic architecture, for example, of function or human disease,
but that does not imply that loci exhibiting it will contribute much genetic variance.
Overall we conclude that theoretical predictions and experimental observations of
low amounts of epistatic variance in outbred populations are concordant. It is not a
likely source of missing heritability, for example, or major influence on predictions
of rates of evolution.”

This breakdown in the predictability of how an engineered mutation will affect
a phenotype was demonstrated by Guerrero et al. 2019 [56]. This study shows that
a mutation’s effect depends strongly on genome background, environment, and the
interactions between them. As a result, even the sign (positive or negative) of the
effect that a mutation will have on a phenotype may be unpredictable. The ability of
models that we know are wrong to make accurate predictions is well known outside
of mathematical genetics [72] and is indicative of the deep connection between all
fields related to complex systems.
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18.7 Closing

What are the most important questions, then, about the implications of higher-
order interactions for biology? For convenience, we’ve identified three that capture
a broader set of curiosities.

(1) Despite most traits being high-order, many established population genetic
models assume pairwise interactions and that high-order interactions can be
modeled as the summation of pairwise interactions. How canwe accommodate
higher-order interactions into this theory?

(2) Fundamentally, we can re-ask where (or what) is the source of missing heri-
tability? Considering the plausibility of higher-order interactions between
genetic parcels, how can we “find” this heritability in a manner that doesn’t
simply relegate the problem to being unsolvable in light of combinatorial
explosion?

(3) At a more biophysical and physiological scale, can we use theory from higher-
order interactions in other fields to make engineering-level predictions? In the
data-driven example in this chapter—a single gene encoding an enzyme, and
a small set of mutations—we reveal how higher-order interactions are present
and context-dependent. But the methods do allow a mechanistic take on how
they manifest and influence a trait of interest. Can we apply such methods to
other problems?

The future of higher-order interactions in genetics encompasses these questions
and many more. And more broadly, as our understanding of the biological world
continue to grow in scope, we can expect the eminence of higher-order interactions
to also grow in relevance. While biological information might be highly special-
ized, with drift and selection responsible for its arrival and dispersal, it is now
surrounded by other parcels of information, that all interact in surprising ways,
creating a biosphere that is both more corporeal and capricious than scientists and
naturalists have appreciated.
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