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Abstract. In Shamir (t, n) secret sharing scheme, the secret can be
recovered by any t or more than t shareholders. However, in insecure
networks, if the number of participants is greater than t, a participant
who does not own a valid share can also recover the secret by collect-
ing components from other honest shareholders. Harn proposed the first
secure secret reconstruction scheme, which used linear combination of
shares to solve this problem, but this scheme is vulnerable to linear sub-
space attack. Miao used randomized component to disrupt the linear
relationship and protect the share from being exposed. However, it can
also be attacked by lattice. In this paper, we propose two randomized
component based secure secret reconstruction schemes in insecure net-
works. The first scheme uses a random element whose distribution range
at least equals to the share to protect the secrecy of share. Further-
more, the scheme is ideal and perfect. The second scheme is an improved
scheme using bivariate polynomial, which is not only used for share and
randomized component generation, but for secure channel construction.
We don’t need to establish the secure channel for each pairwise sharehold-
ers in advance. s-box transmission breaks the linear relationship among
randomized components and guarantee the perfect secrecy of our scheme.

Keywords: Secret sharing · Insecure networks · Secure secret
reconstruction · Randomized component · Bivariate polynomial

1 Introduction

(t, n) secret sharing (SS) was first introduced respectively by Shamir [22] and
Blakley [4] in 1979. It is mainly divided into share distribution and secret recon-
struction these two parts. In distribution phase, a mutually trusted dealer divides
the secret s into n shares and distributes them to n shareholders through secure
channel. Then threshold t or more than t shareholders cooperate in the secret
reconstruction to reconstruct the secret, while less than t shareholders cannot
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get any information about the secret. Different from Shamir scheme of recovering
secret using interpolation polynomials, Bloom [3] also proposed a secret sharing
scheme using Chinese Remainder Theorem (CRT) in 1983. Then many secret
sharing schemes (i.e. [5,6,10,20,24]) based on Chinese Remainder Theorem were
proposed.

Shamir (t, n) secret sharing scheme can realize that any t or more than t
shareholders can recover the secret. However, when the communication among
shareholders is in an insecure network, it may lead to some threats. We show
the two models of active attack and passive attack in Fig. 1.

Fig. 1. Model of attacks in insecure networks.

(a) Active attack: If the number of participants is larger than t, there may
exist an active attack adversary who does not own a valid share participating
in secret reconstruction and releasing his components last. In this case, he
can recover the secret or forge a legal share by collecting enough components
from other honest shareholders.

(b) Passive attack: Since all components are sent in insecure networks, even a
passive attack adversary who does not participate in the secret reconstruc-
tion directly, he can eavesdrop all components sent in secret reconstruction
and recover the secret himself.

1.1 Related Work

One potential method against passive attack is establishing secure channels for
each pair of shareholders. Many proposed secret sharing schemes are based on
the assumption that secure channels have been established in advance. Then in
order to resist active attack, Chor [7] proposed verifiable secret sharing (VSS) to
verify other participants’ shares before secret reconstruction. In a VSS scheme,
each shareholder verifies the authenticity of received shares rather than uses them
to recover the secret directly. There are also many research papers (i.e. [2,8,15,
21,25]) based on VSS. However, VSS scheme requires more calculation processes.
Furthermore, the adversary still gets valid shares from honest shareholders even
though his illegal behaviour can be detected.
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Harn [9] proposed secure secret reconstruction (SSR) using linear combina-
tion of shares to protect the privacy of shares and prevent the adversary from
obtaining secret by releasing his share last. Then more schemes based on secure
secret reconstruction were proposed. Xiao [27] modified the scheme [9] by chang-
ing the degree of polynomial. Harn [12] proposed an asynchronously rational
secret sharing scheme to solve the problem, in which a dishonest shareholder
can release a fake share at last to make the correct secret recoverable only by
himself when shares are released asynchronously. Using bivariate polynomial,
Hsu [14] proposed a secure secret reconstruction scheme which can verify all
shares at once; Meng [18] proposed a threshold changeable secret sharing, which
can increase the threshold of the scheme to the exact number of the participants.
Then Harn [13] proposed a secure secret reconstruction scheme which claimed
to be information theoretical secure. He [11] also proposed a dynamic threshold
secret sharing scheme using bivariate polynomial, which can make the threshold
equal to the exact number of participants.

However, a participant who does not own a valid share can also forge a legal
share in secure secret reconstruction schemes [9,11] by using linear subspace
cryptanalysis [1,16]. Since the schemes [12–14,18,27] employ the same idea as
scheme [9] to protect the share, all these schemes can be attacked by subspace
linear attack. Ahmadian [1] found that t + k − 1 valid released components are
sufficient to forge any number of components in scheme [9]. Then Jamshidpour
[16] found that no matter how large the threshold is, any t + 1 released com-
ponents can recover the secret and forge a legal share in scheme [11]. Xia [26]
also analyzed the linear subspace attack in schemes [9,11] and introduced a
game-based model that can be used to formally analyze secret sharing schemes.

The main drawback in Harn scheme [9] is that t + k − 1 components expand
a linear subspace of components. That is, an adversary can forge a legal share
if he knows t + k − 1 linearly independent components. In order to prevent this
attack, Miao [19] proposed a randomized component based secure secret sharing
scheme. Compared to scheme [9], this scheme uses random integers to break
the linear relationship among components. Furthermore, each shareholder only
needs to own one share. Based on Miao scheme, Meng [17] also proposed a novel
threshold changeable secret sharing scheme. However, as the distribution range
of random integers in Miao scheme is smaller than share, it leads to short vectors
consisting these random integers. The scheme is vulnerable to lattice attack.

1.2 Our Contribution

Based on the idea of randomized component in Miao scheme [19], we propose
two secure secret reconstruction schemes in insecure networks, one is based on
Chinese Remainder Theorem for polynomial and the other is based on bivariate
polynomial. We add random element in our schemes to break the relationship
among components. Then different from Miao scheme, the distribution range of
our random element is no less than that of shares. As a result, both schemes can
well protect the secrecy of shares and resist lattice attack.
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We summarize contributions as follows:

– A (t, n) secure secret reconstruction scheme based on Chinese Remainder
Theorem for polynomial is proposed. Using a novel randomized polynomial
whose distribution range is no less than that of shares, the scheme can prevent
the participant who does not own a valid share from recovering the secret and
forging a legal share. This scheme can resist both the linear subspace attack
and lattice attack. Furthermore, it is perfect and ideal.

– A (t, n) secure secret reconstruction scheme based on bivariate polynomial
is proposed, in which bivariate polynomial is used to generate shares, secure
channel key and randomized components. Shareholders don’t need to estab-
lish secure channels in advance. s-boxes are used during the generation of
randomized components to enable the scheme to be resistant to both linear
subspace and lattice attack.

1.3 Organization

The rest of this paper is organized as follows. Section 2 introduces some prelimi-
naries and analyzes the problems of secure secret reconstruction schemes [9,19].
Section 3 introduces the model and security goals. In Sect. 4, a basic SSR scheme
based on CRT for polynomial is proposed. In Sect. 5, an improved SSR scheme
using bivariate polynomial is also proposed. Section 6 describes our schemes’
properties and compares our schemes with other SSR schemes. Conclusion is
included in Sect. 7.

2 Preliminaries

Some definitions are introduced in this section. Then description of Asmuth-
Bloom (t, n) secret sharing and secure secret reconstruction schemes [9,19] are
also given.

Definition 1. Information entropy
Suppose X is a discrete-time discrete valued random variable with a sample

space SP . Let H(·) be the information entropy function, then the entropy of X
is denoted as:

H(X) = E(−log2P (X)) =
∑

x∈SP

−P (x)log2P (x),

where E is the expectation operator and P (·) is the probability distribution func-
tion of X.

Definition 2. Perfect secrecy [23]
For any distribution on plaintext space M and the corresponding distribution

on ciphertext space C, the condition of perfect secrecy for an encryption scheme
Π = (Gen,Enc,Dec) is that

Pr(M = m|C = c) = Pr(M = m),

where m is a plaintext and c is a ciphertext.
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Perfect Secrecy Necessary Condition: If an encryption scheme with message
space M and key space K satisfies perfect secrecy, then |K| ≥ |M |. From the
view of information entropy, a perfect secrecy scheme satisfies H(K) ≥ H(M).

Definition 3. Perfect secret sharing scheme
Let P be a set of participants, Γ be an access structure on P and S be the

set of secrets. A perfect secret sharing scheme PS(Γ, S) satisfies:

1. any qualified subset can reconstruct the secret: ∀X∈Γ H(S|X) = 0;
2. any non-qualified subset has no information on secret: ∀X /∈Γ H(S|X) = H(S).

Definition 4. Information Rate
Information rate is the size ratio of secret to share. Let s be the secret and

S = {s1, s2, . . . sn} be the share set, then the information rate is

ρ =
log2|s|

maxsi∈S(log2|si|) .

Ideal Secret Sharing Scheme: If a perfect scheme has the information rate
1, it’s an ideal scheme.

2.1 Asmuth-Bloom (t, n) SS Scheme

Asmuth-Bloom (t, n) SS Scheme is a secret sharing scheme based on Chinese
Remainder Theorem (CRT). First, dealer selects a large prime p and a secret
s < p. Then dealer selects n pairwise coprime integers m1,m2, . . . mn satisfying:

1. m1 < m2 < . . . < mn;
2. gcd(mi, p) = 1, 1 ≤ i ≤ n and gcd(mi,mj) = 1, 1 ≤ j ≤ n, j �= i;
3. m1m2 . . . mt > pmn−t+2mn−t+3 . . . mn.

Share Generation. Let m = m1m2 . . . mt, then dealer selects a random integer
r in [0, m

p − 1] and calculates s′ = s + rp. Each shareholder’s share is si =
s′ mod mi(i = 1, 2, . . . , n), where mi is the public identity of shareholder Ui.

Secret Reconstruction. If h(h ≥ t) shareholders try to recover the secret, the
following system of congruence equations can be obtained:

⎧
⎪⎪⎨

⎪⎪⎩

s′ = s1 mod m1

s′ = s2 mod m2

· · ·
s′ = sh mod mh

.

According to the Chinese Remainder Theorem, because of m1m2 . . . mh ≥ m,
the system has a unique solution s′ and the secret s = s′ mod p.
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2.2 Harn (t, n) Secure Secret Reconstruction Scheme

In order to prevent the participant who does not own a valid share from recover-
ing the secret, Harn proposed a (t, n) secure secret reconstruction scheme. Share-
holders need to compute a linear combination of multiple shares as Lagrange
component. Then on the basis of this scheme, Harn also modified it to a secure
multi-secret sharing scheme with h shares. The following is a detailed description
of Harn (t, n) secure multi-secret sharing scheme with h shares.

Share Generation. To reconstruct h secrets si(i = 1, 2, . . . , h) for n sharehold-
ers, dealer selects k random polynomials fl(x)(l = 1, 2, . . . , k) of degree t − 1,
where kt > h(n + 1) − 2 and k > (h − 1)(n − t + 2). Dealer sends k shares
fl(xr) to each shareholder Ur secretly, where xr is the public identity of Ur.
Then dealer finds public integers wl, di,l in GF (p) for each secret si, such

that: si =
k∑

i=1

di,lfl(wl)(l = 1, 2, . . . , k), where wi �= wj , wi /∈ {x1, x2, . . . xn}.

Secret Reconstruction. If h(h ≥ t) shareholders try to reconstruct the secret
si, each participant Ur computes

cr =
k∑

i=1

di,lfl(xr)
h∏

v=1,v �=r

wl − xv

xr − xv
mod p

and sends it to other participants. Then the secret si =
h∑

r=1
cr mod p.

Vulnerable to Linear Subspace Attack. Linear subspace attack is an
algebraic-based analysis for linear released components. If the released com-
ponents are modelled as a linear system with a structured matrix, adversary
can use the rank property to mount attacks through rank analysis.
The main drawback in Harn scheme is that it is not sufficient only to hide
the polynomials’ coefficients for information protection. Since the Lagrange
components are generated by the linear combination of the shares, all released
components are in a linear subspace of dimension of t + k − 1. Consequently,
a non-shareholder is able to forge a new component after collecting up to
t + k − 1 components by using linear subspace attack.

2.3 Miao Randomized Component Based (t, n) SSR Scheme

Miao proposed an improved randomized component based SSR scheme to break
the linear relationship among components. Suppose that there are n shareholders
U = {U1, U2, . . . , Un} and each shareholder Ui has a public identity xi.

Share Generation. Dealer selects two large primes p, q satisfying p > q + nq2.
He also selects a polynomial over Fp: f(x) = a0 + a1x + . . . at−1x

t−1 mod p,
where a0 ∈ Fq, ai ∈ Fp, i = 1, 2, . . . t − 1, at−1 �= 0. The secret s = a0. Then
dealer sends the share si = f(xi) mod p to each shareholder Ui secretly.
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Randomized Component Computation. If h(h ≥ t) shareholders try to
recover the secret, each participant Pi randomly selects ri∈RFq and constructs
the randomized components:

RCi = (f(xi)
m∏

v=1,v �=i

−xv

xi − xv
+ riq) mod p.

Secret Reconstruction. Then each participant releases RCi(1 ≤ i ≤ h) and

the secret can be recovered by s = (
h∑

i=1

RCi mod p) mod q.

Vulnerable to Lattice Attack. Lattice attack is used to analyze a series of
adding short vectors linear components such as {f1 + v1, f2 + v2, . . . , fn +
vn}, where f1, f2, . . . fn are linear related and v1, v2, . . . vn are short vectors
added to fi(i = 1, 2, . . . n). The adversary can find these short vectors by
constructing lattice base and using LLL reduction algorithm.
In Miao scheme, RCi can be regarded as the encryption of f(xi) with ri

as the encryption key. Since f(xi) is uniformly distributed over Fp and ri

is uniformly distributed over Fq, q < p, then |K| < |M |. From the view
of perfect secrecy, ri cannot protect the secrecy of f(xi). When adversary
collects multiple randomized components, he constructs lattice base and each
ri consisting short vectors can be found by LLL reduction algorithm. Then
the adversary obtains share f(xi) from RCi and recover the secret.

In order to specifically show the relationship among these related work in
Sect. 2, we summarize them in Fig. 2.

Fig. 2. Summary of related work.

3 Scheme Model and Security Goals

This section presents the model and security goals of our secure secret recon-
struction schemes in insecure networks.
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3.1 Scheme Model

Our proposed secure secret reconstruction schemes adopt the same model as
Harn [9], which includes three types of entities: dealer, shareholder and adversary.

Dealer: Dealer is trusted by all shareholders. He sets up parameters and dis-
tributes shares to shareholders.

Shareholder: A shareholder receives valid share from the dealer. Then he uses
share to generate the component and sends it to other shareholders through
secure channel. Only t or more than t shareholders can recover the secret,
while less than t shareholders cannot get any information about the secret.

Adversary: In our scheme, adversary is divided into two types:
– Inside adversary: Less than threshold t legal shareholders use their

shares and conspire to recover the secret.
– Outside adversary: A participant who does not own a valid share par-

ticipates in secret reconstruction and tries to recover the secret or forge
a legal share by collecting components from honest shareholders.

The two models of adversary are shown in Fig. 3.

Fig. 3. Model of adversary.

3.2 Security Goals

Generally, in order to achieve the security of secure secret sharing scheme, we
need to ensure that only t or more than t honest shareholders can recover the
secret. In insecure networks, shareholders cannot identify other participants and
the components sent among shareholders may be captured by outside adversary.
As a result, we need to thwart both the inside shareholder conspiracy attack and
the outside adversary attack. The security goals of our model are as follows:

– Resist attack from inside adversary: Only t or more than t shareholders
can recover the secret, while less than t shareholders cannot.

– Resist attack from outside adversary: If a participant who does not own
a valid share collects components from other honest participants, he cannot
recover the secret. Even using linear subspace attack and lattice attack, he
cannot get any information about the share and secret.
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4 Basic Proposed SSR Scheme

4.1 Scheme

First, we propose a (t, n) randomized component based secure secret reconstruc-
tion scheme in insecure networks, which is an improvement of Miao scheme [19].
Different from Miao scheme, the random element in our scheme can cover up
the information of share and resist lattice attack. Furthermore, this scheme is
perfect and ideal.

The scheme is divided into three parts, including initialization, share gener-
ation and secret reconstruction.

Initialization: Assume that there are n shareholders U = {U1, U2, ..., Un} and
a trusted dealer.

Step 1: Dealer randomly chooses a large prime p and threshold t publicly. The
secret s(x) is a polynomial of degree d − 1 over Fp.

Step 2: Dealer selects m0(x) and n public monic and irreducible polynomials of
degree d over Fp as each shareholder’s identity: mi(x)(i = 1, 2, . . . , n).

Share Generation: In order to distribute shares for shareholders to recover
the secret s(x):

Step 1: Dealer constructs polynomials F (x) = s(x) + k(x) · m0(x), where k(x)
is a random polynomial over Fp and deg(k(x)) = (t − 1)d − 1.

Step 2: Dealer computes and distributes the share si(x) = F (x) mod mi(x) for
each shareholder Ui.

Secret Reconstruction: Suppose that there are h(h ≥ t) shareholders trying
to recover the secret.

Step 1: Before secret reconstruction, each participant Pi(1 ≤ i ≤ h) randomly
selects a polynomial ri(x), which is uniformly distributed over Fp and
satisfies d − 1 ≤ deg(ri(x)) ≤ (h − 1)d − 1.

Step 2: Randomized component RCi is computed by each participant as

RCi(x) = (si(x) · ci(x) + ri(x) · m0(x)) mod M(x),

where ci(x) = Mi(x)M ′
i(x), Mi(x) = M(x)

mi(x)
, M(x) =

h∏
i=1

mi(x) and

Mi(x)M ′
i(x) = 1 mod mi(x).

Step 3: Each participant Pi sends RCi(x) to other h − 1 participants through
secure channel. After receiving h − 1 components, the secret can be

computed by s(x) = (
h∑

i=1

RCi(x) mod M(x)) mod m0(x).

4.2 Correctness Analysis

Suppose that there are h(h ≥ t) shareholders trying to recover the secret.

Lemma 1. The sum of all the adding random polynomials equals to 0, in other

words,
h∑

i=1

ri(x) · m0(x) mod M(x) mod m0(x) = 0.
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Proof. Since deg(ri(x)) ≤ (h − 1)d − 1, M(x) =
h∏

i=1

mi(x) and deg(mi(x)) = d,

for i = 0, 1, . . . , n, then we have deg(ri(x) · m0(x)) ≤ hd − 1 < deg(M(x)).

Therefore,
h∑

i=1

ri(x) · m0(x) mod M(x) mod m0(x) = 0.

Theorem 1. The secret s(x) can be recovered by h(h ≥ t) shareholders.

Proof. On account of Lemma 1, we have:

h∑

i=1

RCi(x) mod M(x) mod m0(x)

= (
h∑

i=1

si(x) · ci(x) +
h∑

i=1

ri(x) · m0(x)) mod M(x) mod m0(x)

=
h∑

i=1

(si(x) · ci(x)) mod M(x) mod m0(x) (1a)

= F (x) mod m0(x) = s(x). (1b)

Since si(x) = F (x) mod mi(x) and ci(x) = Mi(x)M ′
i(x), step (1a) is equiva-

lent to step (1b) on the basis of Chinese Remainder Theorem. Therefore, h(h ≥ t)

shareholders can recover the secret by s(x) =
h∑

i=1

RCi(x) mod M(x) mod m0(x).

4.3 Security Analysis

Lemma 2. The distributed share si(x) is uniformly distributed over Fp.

Proof. A map σ from Fp[x] to its quotient ring Fp[x]/〈mi(x)〉 can be constructed:

σ : Fp[x] → Fp[x]/〈mi(x)〉, F (x) 
→ si(x) ≡ F (x) mod mi(x). (2)

Then given F (x), G(x) ∈ Fp[x], the above Eq. (2) satisfies:

σ(F (x) + G(x)) = (F (x) + G(x)) mod mi(x)
= (F (x) mod mi(x)) + (G(x) mod mi(x))
=σ(F (x)) + σ(G(x)).

Therefore, σ is a group homomorphism. For any si(x) ∈ Fp[x]/〈mi(x)〉, there
exists F (x) ∈ Fp[x] such that σ(F (x)) = si(x). Thus, σ is an epimorphism. As
a result, if F (x) is uniformly distributed over Fp, then the distributed share
si(x) = F (x) mod mi(x) is also uniformly distributed over Fp.

Theorem 2. The proposed scheme can resist attack from inside adversary. In
detail, the secret s(x) cannot be recovered by less than t legal shareholders.
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Proof. We consider the worst case of t − 1 shareholders with valid shares trying
to recover the secret illegally. Any t − 1 inside adversaries can generate t − 1
congruence equations based on modular of d degree, which can only recover a
unique polynomial F ′(x) of degree not higher than d(t − 1) − 1. They need to
use this polynomial F ′(x) to recover the secret s(x) = F (x) mod m0(x).

However, F ′(x) satisfies F ′(x) = F (x) mod
t−1∏
i=1

mi(x). They have F (x) =

F ′(x) + k(x) ·
t−1∏
i=1

mi(x), where deg(k(x)) = d − 1. From the view of infor-

mation entropy, let H(s) represents the information entropy of the secret and
H(s|{s1, s2, . . . , st−1} represents the information entropy of knowing t−1 share-
holders’ shares to recover the secret. Since both k(x) and s(x) are polynomials
of degree d − 1 over Fp, then H(s) = H(s|{s1, s2, . . . , st−1}) = dlog2p. Thus,
t − 1 inside adversaries cannot get any information about the secret.

Lemma 3. Given a randomized component RCi(x), it is impossible to derive
the share si(x).

Proof. The randomized component RCi(x) = si(x) · ci(x) + ri(x) · m0(x), where
ri(x) is randomly selected over Fp by shareholder. According to Lemma 2, si(x) is
uniformly distributed over Fp and deg(si(x)) = d−1, the probability of inferring
si(x) directly is dp. Then since deg(ri(x)) ≥ d − 1, the probability of deriving
si(x) from RCi by inferring ri(x) at least equals to dp. Thus, given a randomized
component RCi(x), it is impossible to derive the share si(x).

Theorem 3. The proposed scheme can resist attack from outside adversary. In
detail, when h(h ≥ t) participants try to recover the secret, a participant who
does not own a valid share cannot get any information about secret and share by
collecting h − 1 randomized components from other honest participants.

Proof. Suppose adversary is the hth participant who releases his component last,
he can collect h − 1 randomized components from other participants.

1. First, we prove the outside adversary cannot get any information about the

secret. The secret s(x) = (
h−1∑
i=1

RCi(x) + RCh(x)) mod M(x) mod m0(x),

where RCh(x) = sh(x) · ch(x) + rh(x) · m0(x). If the outside adversary
wants to compute RCh(x), he needs to know the share sh(x). Both s(x) and
sh(x) are unknown polynomials of d − 1 degree over Fp in x. From the view
of information entropy, let H(s) represents the information entropy of the
secret and H(s|{RC1, RC2, . . . RCh−1}) represents the information entropy
of knowing h− 1 shareholders’ randomized components to recover the secret.
H(s) = H(s|{RC1, RC2, . . . RCh−1}) = dlog2p, then outside adversary can-
not get any information about the secret by collecting h − 1 randomized
components from other honest participants.

2. Next, we prove the outside adversary cannot get any information about the
share. On account of Lemma 3, it is impossible for outside adversary to derive
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the original share si from the randomized component RCi.
Then we discuss whether the outside adversary can obtain the share through
linear subspace attack and lattice attack. Since ri(x) is randomly selected and
separated from F (x), adversary cannot find any relationship among random-
ized components by linear subspace cryptanalysis. In randomized component
RCi(x), ri(x) can be regarded as the key K to protect the message si(x). The
degree of ri(x) is at least d−1, which satisfies deg(ri(x)) ≥ deg(si(x)) = d−1
and guarantee |K| ≥ |M |. Our scheme satisfies perfect secrecy and can resist
both linear subspace attack and lattice attack.

5 Improved Bivariate Polynomial Based SSR Scheme

5.1 Scheme

This scheme is an improved randomized component based secure secret recon-
struction scheme using bivariate polynomial, which can generate both the share
and the randomized component. Furthermore, we don’t need to establish the
secure channel for each pairwise shareholders in advance. Each shareholder owns
two shares, where the additional share is used for secure channel key generation.

The second scheme is divided into six parts, including initialization, share
generation, calculation of pairwise key, establishment of secure channel, calcula-
tion of randomized component and secret reconstruction.

Here we use degx(F (x, y)) to represent the degree of bivariate polynomial
F (x, y) in x and use degy(F (x, y)) to represent the degree of F (x, y) in y.

Initialization: Assume that there are n shareholders U = {U1, U2, ..., Un} and
a trusted dealer.

Step 1: Dealer randomly chooses a large prime p, a integer d, the threshold t
and makes them public.

Step 2: Dealer selects ai,j ∈ Zp(1 ≤ i, j ≤ dt − 1) and construct a matrix A as:

A =

⎡

⎢⎢⎢⎣

a0,0 a0,1 . . . a0,dt−1

a1,0 a1,1 . . . a1,dt−1

...
...

. . .
...

adt−1,0 adt−1,1 . . . adt−1,dt−1

⎤

⎥⎥⎥⎦ .

Then the bivariate polynomial F (x, y) with degree dt − 1 can be con-
structed as: F (x, y) =

[
x0 x1 . . . xdt−1

] · A · [
y0 y1 . . . ydt−1

]T mod p.
Step 3: Dealer chooses public polynomials m0(x) and m0(y) of degree d over Fp

and public non-linear mapping s1-box and s2-box: Fp → Fp. The secret

s(x, y) = F (x, y) mod m0(x) mod m0(y).

Share Generation:
Step 1: Shareholders pick coprime polynomials mi(x)(1 ≤ i ≤ n) of degree d

over Fp as their public identity.
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Step 2: Dealer computes and distributes two shares si,1(x, y) = F (x, y) mod
mi(x) and si,2(x, y) = F (x, y) mod mi(y) for each shareholder Ui(1 ≤
i ≤ n) secretly. mi(y) is the polynomial which uses variable y to replace
the variable x in mi(x).

Calculation of Pairwise Key: We use function sgn to describe the relationship
of shareholder’s identity.

sgn(mi(x) − mj(x)) =
{

1; if mi(x) > mj(x)
−1; if mi(x) < mj(x) .

Shareholder Ui computes the pairwise key ki,j(x, y) with Uj as follows:

ki,j(x, y) =
{

si,1(x, y) mod mj(y); if sgn(mi(x) − mj(x)) = 1
si,2(x, y) mod mj(x); if sgn(mi(x) − mj(x)) = −1 . (3)

We describe ki,j(x, y) as: ki,j(x, y) =
[
x0 x1 . . . xd−1

] ·E · [y0 y1 . . . yd−1
]T

,
where E is the coefficient matrix of ki,j(x, y):

E =

⎡

⎢⎢⎢⎣

e0,0 e0,1 . . . e0,d−1

e1,0 e1,1 . . . e1,d−1

...
...

. . .
...

ed−1,0 ed−1,1 . . . ed−1,d−1

⎤

⎥⎥⎥⎦ .

Establishment of Secure Channel: Before secret reconstruction, each pair
of participants establish secure channels with each other.

Step 1: To generate the secure channel key with participant Pj , participant Pi

calculates k′
i,j =

d−1∑
i=0,j=0

ei,j mod p, where ei,j(0 ≤ i, j ≤ d − 1) are

parameters of coefficient matrix E in ki,j(x, y).
Step 2: Participant Pi inputs k′

i,j into s1-box and generates the pairwise secure
channel key s1(k′

i,j) with Pj .
Calculation of Randomized Component: Assume that there are h(h ≥ t)

shareholders trying to recover the secret.
Step 1: First, participant Pi(1 ≤ i ≤ h) computes a new share for secret recon-

struction si(x, y) = si,1(x, y) mod m0(y) and generates the component

gi(x, y) = si(x, y)Mi(x)M ′
i(x), where M(x) =

h∏
i=1

mi(x), Mi(x) = M(x)
mi(x)

and Mi(x)M ′
i(x) = 1 mod mi(x).

Step 2: Participant Pi transforms each coefficient in Eq. (3) through s2-box to
gets s2(ki,j(x, y). Then he generates

ki(x, y) =
h∑

j=1,j �=i

(sgn(mi(x) − mj(x)) · s2(ki,j(x, y))).

Step 3: Each randomized component RCi(x, y) = gi(x, y)+ki(x, y) is calculated
and sent to other participants through previously established secure
channel.
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Secret Reconstruction: After receiving h − 1 randomized components from

other participants, the secret s(x, y) =
h∑

i=1

RCi(x, y) mod M(x) mod m0(x).

5.2 Correctness Analysis

Suppose that there are h(h ≥ t) shareholders trying to recover the secret.

Lemma 4. Each pair of shareholders can generate the same pairwise key.
Specifically, shareholder Ui and Uj can generate ki,j(x, y) = kj,i(x, y).

Proof. Assume that mi(x) > mj(x), then sgn(mi(x) − mj(x)) = 1. We have

ki,j(x, y) = F (x, y) mod mi(x) mod mj(y); (4)

kj,i(x, y) = F (x, y) mod mj(x) mod mi(y), (5)

where mi(x), mj(x) are polynomials only in x and mi(y), mj(y) are polynomials
only in y. Since the order of modular operation of polynomials based on different
variables does not affect the result of computation, Eq. (4) equals to Eq. (5). For
any pairwise shareholders Ui and Uj , we have ki,j(x, y) = kj,i(x, y). Therefore,
each pair of shareholders can generate the same pairwise key.

Lemma 5. The sum of adding random polynomials equals to 0, in other words,
h∑

i=1

ki(x, y) = 0.

Proof. According to Lemma 4, for any pairwise shareholders Ui and Uj , we have
ki,j(x, y) = kj,i(x, y) and s2(ki,j(x, y)) = s2(kj,i(x, y)). Thus,

sgn(mi(x) − mj(x)) · s2 (ki,j(x, y)) + sgn(mj(x) − mi(x)) · s2 (kj,i(x, y))
= (sgn(mi(x) − mj(x)) + sgn(mj(x) − mi(x))) · s2 (ki,j(x, y)) (6a)
= 0, (6b)

where step (6a) equals to step (6b) due to for any pairwise shareholders Ui and
Uj : sgn(mi(x) − mj(x)) + sgn(mj(x) − mi(x)) = 1 + (−1) = 0.

For any pairwise shareholders Ui and Uj , there is:

h∑

i=1

ki(x, y) =
h∑

i=1

h∑

j=1,j �=i

(sgn(mi(x) − mj(x)) · s2(ki,j(x, y))) = 0.

Therefore, the sum of adding random polynomials equals to 0.

Theorem 4. The secret s(x, y) can be recovered by h(h ≥ t) shareholders.
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Proof. According to Lemma 5, we have

h∑

i=1

RCi(x, y) mod M(x) mod m0(x)

= (
h∑

i=1

gi(x, y) +
h∑

i=1

ki(x, y)) mod M(x) mod m0(x)

=
h∑

i=1

gi(x, y) mod M(x) mod m0(x)

=
h∑

i=1

si(x, y)Mi(x)M ′
i(x) mod M(x) mod m0(x) (7a)

= F (x, y) mod m0(x) mod m0(y) = s(x, y). (7b)

Since si(x, y) = F (x, y) mod mi(x) mod m0(y), step (7a) is equivalent to
step (7b) on the basis of Chinese Remainder Theorem. Therefore, h(h ≥ t) share-

holders can recover the secret by s(x) =
h∑

i=1

RCi(x, y) mod M(x) mod m0(x).

5.3 Security Analysis

Lemma 6. The distributed shares si,1(x), si,2(x) and share for secret recon-
struction si(x) are uniformly distributed over Fp.

Proof. Since for any bivariate polynomial F (x, y) ∈ Fp[x, y], there exists unique
si,1(x, y) ∈ Fp[x, y]/〈mi(x)〉 such that si,1(x, y) ≡ f(x, y) mod mi(x). A map σ
from Fp[x, y] to its quotient ring Fp[x, y]/〈mi(x)〉 can be constructed as follows:

σ : Fp[x, y] → Fp[x, y]/〈mi(x)〉
F (x, y) 
→ si,1(x, y) ≡ F (x, y) mod mi(x).

(8)

Given F (x, y), G(x, y) ∈ Fp[x, y], Eq. (8) satisfies

σ(F (x, y) + G(x, y)) = (F (x, y) + G(x, y)) mod mi(x)
= (F (x, y) mod mi(x)) + (G(x, y) mod mi(x))
=σ(F (x, y)) + σ(G(x, y)).

Thus, σ is a group homomorphism. For any si,1(x, y) ∈ Fp[x, y]/〈mi(x)〉, there
exists F (x, y) ∈ Fp[x, y] such that σ(F (x, y)) = si,1(x, y). σ is an epimor-
phism. As a result, if F (x, y) is uniformly distributed over Fp, then si,1(x, y) =
F (x, y) mod mi(x) is also uniformly distributed over Fp. Similarly, we also have
si,2(x, y) = F (x, y) mod mi(y) and si(x, y) = si,1(x, y) mod m0(y) uniformly
distributed over Fp.

Theorem 5. The proposed scheme can resist attack from inside adversary. In
detail, the secret s(x, y) cannot be recovered by less than t legal shareholders.
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Proof. We consider the worst case of t−1 shareholders trying to recover the secret
illegally. Any t − 1 inside adversaries can generate t − 1 congruence equations
based on modular of d degree in x, which can only recover a unique bivariate
polynomial F ′(x, y) with degx(F ′(x, y)) ≥ d(t − 1) − 1. We use θ(x, y) to rep-
resent F (x, y) mod m0(y) and ω(x, y) to represent F ′(x, y) mod m0(y). Inside
adversaries need to use ω(x, y) to recover the secret s(x, y) = θ(x, y) mod m0(x).

However, ω(x, y) satisfies ω(x, y) = θ(x, y) mod
t−1∏
i=1

mi(x). Then they have

θ(x, y) = ω(x, y) + k(x, y) ·
t−1∏
i=1

mi(x), where degx(k(x, y)) = degy(k(x, y)) =

d − 1. From the view of information entropy, let H(s) represents the infor-
mation entropy of the secret and H(s|{s1, s2, . . . , st−1} represents the informa-
tion entropy of knowing t − 1 shareholders’ shares to recover the secret. Since
degx(k(x, y)) = degx(s(x, y)) = d − 1 and degy(k(x, y)) = degy(s(x, y)) = d − 1,
then H(s) = H(s|{s1, s2, . . . , st−1}) = dlog22p. Thus, t − 1 inside adversaries
cannot get any information about the secret.

Lemma 7. Given a randomized component RCi(x, y), it is impossible to derive
the share si(x, y).

Proof. The randomized component RCi(x, y) = gi(x, y) + ki(x, y), where
gi(x, y) = si(x, y)Mi(x)M ′

i(x) and ki(x, y) is generated by s2-box transmission.
s2-box breaks the linear relationship between si(x, y) and ki(x, y) and makes the
transformed bivariate polynomial ki(x, y) distributed uniformly over Fp.

On account of Lemma 6, the share si(x, y) is uniformly distributed over Fp

and degx(si(x, y)) = degy(si(x, y)) = d − 1, the probability of inferring si(x, y)
is d2p. Since degx(ki(x, y)) = degy(ki(x, y)) = d − 1, the probability of deriving
si(x, y) from RCi(x, y) by inferring ki(x, y) also equals to d2p. Thus, given a
randomized component RCi(x, y), it is impossible to derive the share si(x, y).

Theorem 6. The proposed scheme can resist attack from outside adversary. In
detail, when h(h ≥ t) participants try to recover the secret, a participant who
does not own a valid share cannot get any information about secret and share by
collecting h − 1 randomized components from other honest participants.

Proof. Suppose that the adversary is the hth participant who releases his com-
ponent last, he can collect h−1 randomized component from other participants.

1. First, we prove the outside adversary cannot get any information about the
secret. After collecting h − 1 randomized components, the secret s(x, y) =

(
h−1∑
i=1

RCi(x, y) + RCh(x, y)) mod M(x) mod m0(x), where degx(s(x, y)) =

degy(s(x, y)) = d − 1. However, each participant uses ki(x, y) to cover up the
original component and RCh(x, y) = gh(x, y) + kh(x, y), where RCh(x, y) is
generated by sh,1(x, y) and sh,2(x, y). If the outside adversary want to recover
the secret, he has to use these two shares to calculate RCh(x, y) and eliminate
other participants’ disrupted information added. The shares are generated by
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sh,1(x, y) = F (x, y) mod mh(x) and sh,2(x, y) = F (x, y) mod mh(y), where
both the degree of shares in x and y at least equals to the secret s(x, y).
From the view of information entropy, let H(s) represents the information
entropy of the secret and H(s|{RC1, RC2, . . . RCh−1}) represents the informa-
tion entropy of knowing h−1 shareholders’ randomized components to recover
the secret, then there is H(s) = H(s|{RC1, RC2, . . . RCh−1}) = dlog22p. As a
result, the adversary cannot get any information about the secret by collecting
h − 1 randomized components.

2. Next, we prove the outside adversary cannot get any information about the
share. On account of Lemma 7, it is impossible for outside adversary to derive
the original share si(x, y) from the randomized component RCi(x, y).
Then we discuss whether the outside adversary can obtain the share through
linear subspace attack and lattice attack. s-boxes are used to disrupt the
linear relationship among randomized components. In randomized component
RCi(x, y), ki(x, y) can be regarded as the key K to protect the message
si(x, y). Both ki(x, y) and si(x, y) are polynomials of degree d − 1 in x and y
over Fp, which can guarantee |K| = |M |. Our scheme satisfies perfect secrecy
and can resist linear subspace attack and lattice attack.

Theorem 7. Our proposed scheme can resist passive attack with each pair of
shareholders generating the same secure channel key.

Proof. On account of Lemma 4, for any pairwise shareholders Ui and Uj with

mi(x) > mj(x), we have ki,j(x, y) = kj,i(x, y). Since k′
i,j =

d−1∑
i=0,j=0

ei,j mod p,

where ei,j(0 ≤ i, j ≤ d − 1) are parameters of coefficient matrix E in k′
i,j(x, y),

then k′
i,j = k′

j,i and s1(k′
j,i) = s1(k′

i,j). As a result, each pair of shareholders can
generate the same secure channel key.

If a passive adversary want to compute the key s1(k′
j,i), he needs to know

at least one of the shares si,1(x, y). Since degx(si,1(x, y)) = degx(s(x, y)) and
degy(si,1(x, y)) > degy(s(x, y)), the probability of guessing key is larger than
guessing the secret. Our proposed scheme can resist passive attack.

6 Properties and Comparisons

We analyze the properties of our schemes in three aspects: active attack, pas-
sive attack and information rate. The active attack can be divided into inside
adversary attack and outside adversary attack these two parts. Linear subspace
attack and lattice attack are two attack strategies of outside adversary.

6.1 Properties

Our first secure secret reconstruction scheme can resist both the inside and out-
side adversary attack in insecure networks. The random element ri(x) added
in the component can prevent the outside adversary from obtaining the secret
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and share by collecting randomized components from other honest participants.
Since ri(x) is randomly selected, there is no linear relationship among random-
ized components. As a result, our first scheme can resist linear subspace attack.
In addition, the degree of ri(x) at least equals to the share, which can guar-
antee perfect secrecy and prevent lattice attack. This scheme is based on the
assumption that the secure channel is well established to resist passive attack.

The second secure secret reconstruction scheme uses bivariate polynomial,
which can generate both the share and randomized component. This scheme can
also prevent the inside and outside adversary from recovering secret illegally. Par-
ticularly, it establishes the secure channel for each pairwise shareholders before
secret reconstruction and can resist passive attack in insecure networks. Each
shareholder owns two shares, where the additional share is used for pairwise
key and randomized component generation. s-boxes are used to disrupt the lin-
ear relationship and resist linear subspace attack. Then, because both share for
secret reconstruction and random element are bivariate polynomials with the
same degree in x and y, this scheme can protect the share in perfect secrecy and
resist lattice attack.

Next, we analyze our schemes’ information rate according to Definition 4 and
show their properties in Table 1.

Table 1. Properties of our schemes.

Scheme Secret size Number of share Each share size Information rate

Scheme 1 pd 1 pd 1

Scheme 2 pd
2

2 pd
2t 1

t

In the first scheme, both the secret and share are polynomials with degree
d − 1 over Fp. The information rate of our first scheme can be computed as:

ρ =
log2|s|

maxsi∈S(log2|si|) =
log2pd

log2pd
= 1.

In the second scheme, the secret is a bivariate polynomial with degree d−1 in
both x and y over Fp. Each shareholder owns two shares, where degx(si,1(x, y)) =
degy(si,2(x, y)) = d − 1 and degy(si,1(x, y)) = degx(si,2(x, y)) = dt − 1. The
information rate of our second scheme can be computed as:

ρ =
log2|s|

maxsi∈S(log2|si|) =
log2pd2

log2pd2t
=

1
t
.

The information rate of our first scheme is 1, while the second scheme is 1
t .

Thus, our first scheme is perfect and ideal. The lower information rate in the sec-
ond scheme is the price of establishing secure channel and generating randomized
component effectively by distributing more information to each shareholder.
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6.2 Comparisons

We compare our schemes with other secure secret reconstruction schemes [9,11,
17–19] and the result is shown in Table 2.

Since information rate is the size ratio of secret to share, which can denote
the efficiency of a shareholder sharing a secret, we mainly use information rate
to describe the scheme performance bellow. For a secure secret sharing scheme,
the information rate is generally not more than 1. The higher information rate
is, the more efficiently the scheme works.

Table 2. Comparison of different SSR schemes.

Scheme Resist IAAa Resist LSAb Resist LAc Secure channel Information rate

Harn [9] � × � × 1

Harn [11] � × � � 1
t

Meng [17] � � � × (
1
6
, 1
4

)

Meng [18] � × � × 1
t

Miao [19] � � × × (
1
3
, 1
2

)

Our scheme 1 � � � × 1

Our scheme 2 � � � � 1
t

aIAA is inside adversary attack.
bLSA is linear subspace attack.
cLA is lattice attack.

From the table, we know that scheme [17,19] and our schemes can resist linear
subspace attack, but scheme [19] is vulnerable to lattice attack. Only scheme [11]
and our scheme 2 don’t need to establish secure channel in advance and can resist
passive attack in insecure networks. The information rate of scheme [9] and our
first scheme is 1. Although the information rate of our second scheme is 1

t , it
can resist all attacks we analyzed in insecure networks.

7 Conclusion

In this paper, we first point two common attacks: active and passive attack on
secret sharing in insecure networks. Then we introduce secure secret reconstruc-
tion scheme, which can prevent the participant who does not own a valid share
from obtaining the secret and share by collecting other participants’ components.
We also analyze the possible attacks on Harn and Miao proposed SSR scheme.
Using linear subspace cryptanalysis, adversary can obtain the secret by analyz-
ing the relationship among sending components. Due to the adding randomized
integer cannot protect the share in an information theoretically secure manner,
Miao scheme is vulnerable to lattice attack.

In order to solve these problems, we describe the model and security goals
of our secure secret reconstruction scheme in insecure networks. Based on the
same idea of randomized component in Miao scheme, we propose two novel secure
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secret reconstruction schemes. The first scheme is based on Chinese Remainder
Theorem for polynomial. The adding random element in this scheme breaks the
relationship among components and can protect the secrecy of share. Further-
more, this scheme is perfect and ideal. Then we also propose an improved secure
secret reconstruction scheme based on bivariate polynomial. The bivariate poly-
nomial is used for share and randomized component generation. Specifically,
this scheme can resist passive attack and establish the secure channel for each
pairwise shareholders in advance. Each shareholder owns two shares, where the
additional share can generate the secure channel key and randomized compo-
nent. s-boxes disrupt the linear relationship and randomized component can
enable our scheme to satisfy perfect secrecy. Both of our schemes are resistance
to linear subspace attack and lattice attack. The inside and outside adversary
in insecure networks cannot get any information about the secret and share in
our two schemes.

References

1. Ahmadian, Z., Jamshidpour, S.: Linear subspace cryptanalysis of harn’s secret
sharing-based group authentication scheme. IEEE Trans. Inf. Forensics Secur. 13,
1 (2017). https://doi.org/10.1109/TIFS.2017.2757454

2. Ao, J., Liao, G., Ma, C.: A novel non-interactive verifiable secret sharing scheme.
In: 2006 International Conference on Communication Technology. pp. 1–4 (2006).
https://doi.org/10.1109/ICCT.2006.342026

3. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Inf.
Theory 29(2), 208–210 (1983). https://doi.org/10.1109/TIT.1983.1056651

4. Blakley, G.: Safeguarding cryptographic keys (pdf). In: International Workshop on
Managing Requirements Knowledge, p. 313 (1979)

5. Chanu, O.B., Tentu, A.N., Venkaiah, V.C.: Multi-stage multi-secret sharing
schemes based on Chinese remainder theorem. In: ICARCSET 2015 (2015).
https://doi.org/10.1145/2743065.2743082

6. Chen, Z., Li, S., Zhu, Y., Yan, J., Xu, X.: A cheater identifiable multi-secret shar-
ing scheme based on the Chinese remainder theorem. Secur. Commun. Networks
8(18), 3592–3601 (2015). https://doi.org/10.1002/sec.1283, https://onlinelibrary.
wiley.com/doi/abs/10.1002/sec.1283

7. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults. In: 26th Annual Symposium on
Foundations of Computer Science (SFCS 1985), pp. 383–395 (1985). https://doi.
org/10.1109/SFCS.1985.64

8. Ersoy, O., Pedersen, T.B., Kaya, K., Selçuk, A.A., Anarim, E.: A CRT-based verifi-
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