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Abstract. It is proven that asymmetric key cryptographic systems that
rely on Integer Factorization or Discrete Logarithm as the underlying
hard problem are vulnerable to quantum computers. Using Shor’s algo-
rithm on a large-enough quantum computer, an attacker can cryptan-
alyze the public key to obtain the private key in O(logN) time com-
plexity. For systems that use the classical Digital Signature Algorithm
(DSA), Rivest-Shamir-Adleman (RSA) algorithm or Elliptic-Curve Dig-
ital Signature Algorithm (ECDSA), it means that authentication, data
integrity and non-repudiation between the communicating parties can-
not be assured in the post-quantum era.

In this paper, we present a novel approach using zero-knowledge
proofs on the pre-image of the private signing key to layer in quantum-
resistance into digital signature deployments that require longer-term
post-quantum protection while maintaining backward compatibility with
existing implementations. We show that this approach can extend the
cryptographic protection of data beyond the post-quantum era and is
also easy to migrate to. An implementation of this approach applying
a ZKBoo zero-knowledge proof on ECDSA signatures is realized using
a RFC3161-compatible time-stamp server with OpenSSL and an Adobe
Acrobat Reader DC.

Keywords: Digital signature · Elliptic Curve Digital Signature
Algorithm (ECDSA) · Zero-knowledge proof · Post-quantum security

1 Introduction

Asymmetric key cryptography is the tool used by systems worldwide to preserve
trust amongst parties in the digital realm. The use of digital signatures allow
communicating parties to authenticate each other, check the integrity of the
data exchanged, and prove the origin of the data in situations of repudiation.
Under National Institute of Standards and Technology’s (NIST) Digital Signa-
ture Standards FIPS 186-4 [26], three signature algorithms are described. These
are i) Digital Signature Algorithm (DSA) which is based on discrete logarithm
cryptography first introduced by Diffie and Hellman [15]; ii) Rivest-Shamir Adel-
man (RSA) [34], and iii) Elliptic-Curve Digital Signature Algorithm (ECDSA)
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which is based on Elliptic Curve Cryptography (ECC) [8] and together we call
them classical digital signature algorithms. The security of DSA and ECDSA
are based on the hard problem of solving discrete logarithm over a finite field
of very large numbers, while the security of RSA is based on the difficulty of
integer factorization over a finite field of very large numbers.

The advent of large fault-tolerant quantum computers poses a big risk to
systems that use these digital signature algorithms. Shor’s [35] algorithm is able
to solve both the discrete logarithm problem and integer factorization problem
in O(logN) polynomial time. This means that any adversary in possession of a
large-enough quantum computer will be able to compute a user’s private signing
key when given the user’s public key in a matter of hours, and generate valid
digital signatures to impersonate the user. In addition, data that was previously
signed by the user no longer can be proven to be authentic and trustworthy. As
a reference post-quantum deadline, NIST has provided a report [13] mentioning
that by year 2030, it is likely that a quantum computer capable of cryptana-
lyzing RSA-2048 can be built with a budget of one billion dollars. To address
this, NIST is embarking on a post-quantum standardization exercise [29,30] to
select suitable quantum-secure digital signature and key-exchange algorithms.
The final selection is expected to complete soon with the new standards slated to
be published by year 2024. Separately, NIST has also recommended two stateful
hash-based signatures, namely Leighton-Micali Signatures and eXtended-Merkle
Signature Scheme, for post-quantum use under conditions [14].

While the industry is likely to encourage new system implementations post-
2024 to consider adopting the new digital signature standards, we expect differ-
ent challenges for existing or upcoming systems. NIST has published some chal-
lenges they explored with post-quantum cryptography replacement and migra-
tion [4,12], and we supplement it with additional questions specific to digital
signatures. Should system operators using digital signatures embark on a crypto-
graphic migration to the stateful hash-based signatures [14] instead of waiting for
the post-quantum standardization? How about documents that are already digi-
tally signed, and are required to remain trustworthy beyond year 2030? Do these
documents need to be counter-signed with new algorithms? Since the counter-
signer may be a non-interested third party to the transaction, what liability
does the counter-signer bear for the verifying party? How about legacy systems
that cannot be migrated? When are the verifying parties expected to be ready
to verify the new algorithms since the migrations are happening at a different
pace? What are the legal implications for the verifying party if the existing non-
quantum-secure signature passes verification, but the verifying party is unable to
verify the new quantum-secure signature? These are questions with no straight-
forward answers and seeking a proper resolution may require more time than
afforded by the impending post-quantum deadline.

Our approach is different. If the existing digital signatures can remain
quantum-resistant even after large-enough quantum computers are built, then
many of the transition-related questions can be avoided. Existing systems will
not face compatibility issues, migration timelines to the new algorithms are less
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counter-party dependent, and existing digitally signed documents retain their
authenticity in the post-quantum era. This is possible by layering a quantum-
secure zero-knowledge proof of the pre-image of the private signing key along
with the signature. Our contributions are as follows:

– Extend the digital signature scheme to construct a quantum-resistant digital
signature scheme with backward-compatibility properties.

– Realize the quantum-resistant digital signature scheme using a zero-
knowledge proof to be included with digital signatures to make them
quantum-resistant.

– Deploy a real-world implementation of a RFC3161-compatible [2] time-stamp
server to issue quantum-resistant ECDSA timestamp digital signatures with
X.509v3 certificates that are compatible with the existing Adobe PDF Acro-
bat Reader DC v2021.x.

The rest of this paper is organized as follows. Section 2 covers the background
of digital signatures and zero-knowledge proofs. Section 3 describes the proposed
signature scheme, covers the description of the algorithms and provides measure-
ments made on execution timings and proof sizes. Section 4 describes the real-line
deployment of the proposed signature scheme and covers the migration strategy.
Section 5 discusses some of the related works and Sect. 6 concludes the paper.

2 Background

2.1 Digital Signature Basics

We describe a simple scenario for two communicating parties Alice and Bob,
where Alice has a message M to be sent to Bob. Alice wants to ensure that
Bob receives the message unchanged (integrity) and knows that it is from Alice
(authenticity). Bob wants to be able to prove to a third-party that the message
is indeed from Alice (non-repudiation).

Definition 1. We define a digital signature scheme as a triple of polynomial-
time algorithms KeyGen, Sign, V erify with the following parameters:

KeyGen(1n) ⇒ {Ks,Kp} takes in a security parameter 1n which defines the
cryptographic key strength of n, and outputs a private key Ks and corre-
sponding public key Kp.

Sign(M,Ks) ⇒ {σ} takes in a message M and the private key Ks, and outputs
a signature σ.

V erify(M,Kp, σ) ⇒ {result} takes in a message M , the public key Kp and
signature σ, and outputs accept if and only if σ is a valid signature generated
by Sign(M,Ks).

In this case, Alice, the signing party, calls KeyGen to generate {Ks,Kp}.
Kp is published where Bob and other parties have access to. Alice then calls
Sign with her private key Ks to sign the message M , generating a signature
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σ. Alice transmits {M,σ} to Bob. Bob, the verifying party, calls V erify with
Alice’s public key Kp to verify the signature σ for message M . If V erify returns
accept, then Bob has successfully received a message M unchanged and the
signature proof σ from Alice.

2.2 Zero-Knowledge Proof

Goldwasser et al. [20] provided the concept of zero-knowledge proofs where the
proof conveys no additional knowledge besides the correctness of the proposi-
tion. While there has been many concrete realizations of zero-knowledge proofs,
quantum-resistant non-interactive zero-knowledge proofs are either ZKStark [6]
or MPC-in-the-head (Multi-party computation in-the-head) [24] based proofs.

For MPC-in-the-head proofs, a prover has to create a boolean computational
circuit of n branches with commitment, of which n − 1 views can be revealed to
the verifier as proof of knowledge. To make the proof non-interactive, the prover
can use Fiat-Shamir’s heuristic [17] to deterministically, yet unpredictably decide
which n − 1 views to send to the verifier. The verifier then walks through the
n − 1 views with a 1

n chance that the proposition is incorrect. By increasing
the number of rounds (with different random input parameters) that the prover
has to compute the circuit and provide the views, it exponentially reduces the
statistical probability that the prover is making a false claim.

3 Proposed Quantum-Resistant Digital Signatures

Since Shor’s algorithm on quantum computers break the integer factorization
problem [35], discrete logarithm problem [35] and elliptic-curve discrete loga-
rithm problem [32], we can safely assume that adversaries can feasibly compute
all RSA/DSA/ECDSA private keys Ks given the public key Kp when large
enough quantum computers are built. On the other hand, symmetric key and
hash-based cryptography remain relatively quantum-resistant. Grover’s algo-
rithm [21] on quantum computers can only achieve a quadratic speedup of
O(

√
N) when performing a brute-force search, and this has been proven to be

optimal [7].
Therefore, our proposal is to extend the signing process to layer in a zero-

knowledge proof of knowledge of the pre-image of the private key to protect the
signature. The extended verifying process can then verify this proof to ascertain
that the signature is genuinely created by the owner of the private key and not a
quantum-capable adversary. For backward-compatibility, the existing verifying
process can still verify the digital signature without the proof, albeit losing the
quantum-resistant assurance.

3.1 Quantum-Resistant Digital Signature Scheme

We start by extending the classical digital signature scheme (Definition 1)
described in Sect. 2.1.
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Definition 2. The extended quantum-resistant digital signature scheme is as
follows:

KeyGenq(1n) ⇒ {ρ,Kp} takes in a security parameter 1n which defines the
cryptographic key strength of n, and outputs a secret pre-image ρ and a
public key Kp. Kp is the associated public key to the private key H(ρ) where
H() is a collapsing hash function [38].

Signq(M,ρ) ⇒ {σ, π} takes in a message M and the secret pre-image ρ, and
outputs a signature σ computed using Sign(M,H(ρ)) as well as a quantum-
resistant zero-knowledge proof π that i) H(ρ) is computed from ρ and ii) σ
is computed from H(ρ).

V erifyq(M,Kp, σ, π) ⇒ {result} takes in a message M , the public key Kp and
signature σ, and outputs accept if and only if V erify(M,Kp) returns accept
and π is a valid zero-knowledge proof that σ is computed from ρ.

Intuitively, Definition 2 inherits the classical security properties of Defini-
tion 1 with an additional layer of quantum-resistance placed on the private key.
A classical adversary will not be able to compromise the soundness of V erifyq
when interacting with the signing party since the additional information obtained
from Signq is a zero-knowledge proof that does not reveal the secret pre-image
ρ or private key Ks = H(ρ).

Lemma 1 (Quantum Resistance). Definition 2 offers additional quantum-
resistance for digital signatures generated using Signq provided V erifyq is used
to verify the signature σ and proof π.

Proof. We assume that a quantum-capable adversary is able to use Shor’s algo-
rithm [35] to recover H(ρ) from Kp. Using H(ρ), the adversary is then able
to arbitrarily generate valid signatures σ using Sign which will be accepted by
V erify. However, the adversary will not be able generate the proof π since the
value of ρ is not recoverable from H(ρ) as H() is a collapsing hash function
and resistant to pre-image attacks even from quantum computers [38]. Thus,
V erifyq is resistant to quantum-capable adversaries. ��
Lemma 2 (Backward Compatibility). A signing party using KeyGenq and
Signq of Definition 2 generates signatures σ that are backward compatible with
verifying parties using V erify of Definition 1.

Proof. Signatures σ returned by Signq are generated using the same algorithm
Sign where H(ρ) is effectively equal to Ks. Hence, any verifying party in this
case using V erify will be able to ignore π, and continue to call V erify to check
the validity of the signature σ with respect to M and Kp. A demonstration of
the backward compatibility can be seen in Sect. 4. ��
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3.2 Realizing the Proposed Digital Signature Scheme

We use the following algorithms to realize our quantum-resistant digital signa-
ture scheme:

– Digital signing algorithm. Either DSA or ECDSA can be easily used as the
digital signing algorithm. This is because the private key generator for DSA
and ECDSA is essentially an unpredictable random number generated over a
finite field. This matches nicely with the output of a one-way hash function
H(). Using RSA as the signing algorithm is more complex and tedious since
key generation involves the matching the output of a hash function to two
or more unpredictable prime numbers used to compute the RSA modulus.
Possible techniques include mapping the hash output into an ordered list of
very large primes [25] or repeatedly hashing (or mining) random numbers till
a prime is found. For our reference implementation, ECDSA is used as it has
the smallest key size which translates to the smallest proof size. The curve
chosen is secp256r1 (or prime256v1) [8].

– Hash function. The hash function to be used in our reference implementation
is SHA-256 [18] as it is collapsing [38] and the output fits well with the
secp256r1 curve.

– Zero-knowledge proof system. The zero-knowledge proof system to be used has
to be post-quantum secure. We have chosen ZKBoo [19] as it is a 3-branch
MPC-in-the-head realization and already has a ready SHA-256 implementa-
tion. ZKBoo is also used as the underlying proof system to create ZKB++
for Picnic [10], an alternative finalist candidate in NIST’s post-quantum stan-
dardization exercise [30].

Realization ofKeyGenq . The function KeyGenq shown in Algorithm1 works
very similarly to KeyGen. An additional step (see Step 5 of Algorithm1) is
performed to hash the secret pre-image ρ prior to computing public key Kp.

Algorithm 1: Quantum-resistant ECDSA Key Generation KeyGenq.
1 begin
2 G ← ECC base point; P ← ECC order;
3 Generate secret pre-image ρ;
4 Compute private key Ks = H(ρ);
5 Compute public key Kp = (x, y) where Kp ≡ Ks · G mod P ;
6 destroy Ks;
7 return ρ, Kp;
8 end
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Algorithm 2: Quantum-resistant ECDSA signing Signq.
1 begin
2 G ← ECC base point; P ← ECC order;
3 ρ ← secret pre-image;
4 M ← message;
5 Generate signature random r;

6 Compute r−1 where r ∗ r−1 ≡ 1 mod P ;
7 Compute R = (Rx, Ry) where R ≡ r · G mod P ;
8 Compute hash of message H(M);
9 Enumerate ZKBoo proof π = begin

10 Zero-knowledge computation of private key Ks where Ks = H(ρ) ;
11 Zero-knowledge computation of public key Kp where

Kp ≡ Ks · G mod P ;

12 Compute s where s ≡ r−1 ∗ (H(M) + Rx ∗ Ks) mod P ;
13 Commit Rx, s in the proof;
14 end

15 destroy r, r−1, Ks;
16 return σ = {Rx, s}, π;
17 end

Algorithm 3: Quantum-resistant ECDSA verification V erifyq.
1 begin
2 G ← ECC base point; P ← ECC order;
3 Kp ← ECC public key;
4 Rx, s ← signature σ; π ← proof; M ← message;

5 Compute s−1 where s ∗ s−1 ≡ 1 mod P ;
6 Compute hash of message H(M);

7 Compute u1 = s−1 ∗ H(M) mod P ;

8 Compute u2 = s−1 ∗ Rx mod P ;
9 Compute V = (Vx, Vy) where V = u1 · G + u2 · Kp mod P ;

10 if Vx �= Rx then
11 return ”Failed Signature Verification”
12 end
13 else
14 Verify ZKBoo proof π = begin
15 Check that Rx, s is committed in the proof;
16 Check that zero-knowledge computation of Kp from unknown

pre-image is correct;
17 if Check Failed then
18 return ”Failed Proof Verification”
19 end
20 end
21 end
22 return success;
23 end

Realization of Signq . The Signq function is shown in Algorithm2. Besides
computing the ECDSA signature using the private key H(ρ), the Signq function
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returns the ZKBoo proof π which includes: i) zero-knowledge proof of knowledge
of pre-image of H(ρ); ii) zero-knowledge proof that public key Kp is computed
from H(ρ); and iii) commitment that H(M) is the message being signed.

The implementation in Step 10 of Algorithm2 uses Giacomelli et al.’s [19]
SHA-256 code. Special care has to be taken to code Step 11 of Algorithm 2 as
the number of computational steps in the proof π could reveal the private key
Ks. When performing elliptic-curve multiplication, we use the double-and-add
always technique which is effective against side channel power analysis timing
attacks [27].

Realization of V erifyq . The function V erifyq shown in Algorithm3 consists
of two parts where the first part (from Steps 5 to 12) is the ECDSA signature
verification similar to V erify while the second part (from Steps 14 to 20) is the
additional verification of the quantum-resistant zero-knowledge proof.

3.3 Performance Measurement

The proposed digital signature scheme is implemented in C1 and tested on an
Intel I5-8250U 8th Gen machine with 8 CPU cores and 8 GB RAM, running a
Cygwin terminal on 64-bit Microsoft Windows 10. No operating system level
CPU scheduling or adjustments are done. We measure the execution times of
Signq and V erifyq as well as the proof sizes when we vary the number of
ZKBoo rounds from 50 to 250, in increments of 50. Increasing the number of
rounds increases the bit-strength of the proof, but inadvertently also increases
the proof sizes and execution times. The measurements are found in Table 1.

Table 1. Measurement of proof sizes and execution times of Signq and V erifyq

ZKBoo rounds 50 100 150 200 250

Size of proof (in KBytes) 1,978 3,956 5,934 7,912 9,890

Signq execution time (in seconds) 20.9 45.9 72.9 95.1 118.2

V erifyq execution time (in seconds) 19.6 45.0 71.0 93.2 115.7

At first glance, the measured overheads for a 250-bit strength proof show a
very large proof of about 10 MB in size and takes almost two minutes to either
carry out Signq or V erifyq. However, when we implement a real-life deployment
in Sect. 4, we are able to reduce the impact to the user experience as the proof
could be generated asynchronously and stored separately from the certificate.

4 Real-Life Deployment

To study issues related to backward-compatibility and migration to quantum-
resistance, we deploy the proposed digital signature scheme into a time-stamp
1 Source codes can be made available upon request.
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server while using an existing (unchanged) Adobe Acrobat Reader DC to request
for quantum-resistant time-stamped signed PDFs. The deployment is carried out
on a laptop with an Intel I5-8250U 8th Gen machine with 8 CPU cores and 8 GB
RAM, running 64-bit Microsoft Windows 10 for both the client and server. The
setup is as follows:

– Time-stamp client. We use an Adobe Acrobat Reader DC v2021.x. This client
already supports ECDSA [3] and is used unmodified.

– Time-stamp server. We use an open-source time-stamp server (from https://
github.com/kakwa/uts-server) by Pierre-Francois Carpentier. This server is
used with codes unmodified.

– Cryptographic library. The time-stamp server makes use of OpenSSL v1.1.x
to carry out the operations of Certification Authority (CA) issuance of server
certificates, as well as to carry out digital signing according to RFC3161 [2].
We modify the version of OpenSSL v1.1.1b to carry out the extended digital
signature scheme for both X.509 certificate issuance and time-stamping. An
optimization done is to make OpenSSL return the ECDSA signature, while
generating the ZKBoo proofs asynchronously. This allows the ECDSA-signed
time-stamp to be returned to the client without waiting for the ZKBoo proof
to be completely generated. The proofs are thus stored separately from the
certificate.

– Repository. Since the quantum-resistant 256-round ZKBoo proofs for the cer-
tificates and time-stamps are 10 MB each, they could not be easily transmit-
ted to the client. Our modified version of OpenSSL will write the proofs into
Dropbox (www.dropbox.com), while embedding the URL link in the signed
X.509 certificate or the PKCS#7 time-stamp that is returned to the calling
program.

4.1 Deployment Summary

Figure 1 describes the use-cases of the real-life implementation that is tested.
In the setup phase (done once), OpenSSL is used to generate the keys and

certify for both the root CA certificate and time-stamp server certificate. We
adopt a simple certificate hierarchy where the root CA will certify the server
certificate without the need for an intermediate CA (see Fig. 2). Both certifi-
cates include the link under the X.509 Authority-Information-Access extension
to point to the quantum-resistant proof in Dropbox. The root CA certificate is
imported into the Adobe Acrobat to establish the root-to-trust.

In the RFC3161 phase, PDF documents can be timestamped be initiating
the request from the Adobe Acrobat which contacts the Time-stamp Server
and receives an ECDSA-signed PKCS#7 time-stamp. The time-stamp signa-
ture proof is similarly stored in Dropbox with the URL link embedded in the
time-stamp. This time-stamp can be verified by the Adobe Acrobat (see Fig. 3)
and saved in the PDF. Note that the unmodified Adobe Acrobat only verifies
the ECDSA-signed time-stamp and certificate chain and not the ZKBoo proof,
resulting in no changes in wait-time experienced by the end-user.

https://github.com/kakwa/uts-server
https://github.com/kakwa/uts-server
www.dropbox.com
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End User Adobe Acrobat Time-stamp Server OpenSSL Dropbox

Generate root CA key+cert

CA cert proof

Download CA cert

Import CA cert

Generate server key+cert

Server cert proof

SetupSetup To Generate X.509 certs

Open PDF

Time-stamp request

ECDSA sign request

Time-stamp proof

Signed PKCS7

Time-stamp response

Verify time-stamp

Time-stamp OK

RFC3161RFC3161 To time-stamp PDF document

Retrieve proof

Download proof for verification

Post upgradePost upgrade To verify quantum-resistant proof

Fig. 1. Real-life deployment of quantum-resistant time-stamp service.
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Fig. 2. Root CA and time-stamp server certificates.

Fig. 3. Time-stamp verification by Adobe Acrobat unaffected by extension.
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In the Post upgrade phase, any verifying party capable of running V erifyq
can follow the link found in the certificates/signature block to download the
quantum-resistant proofs for complete signature verification as per Algorithm3.

4.2 Exploring Migration

To understand the impact to systems which are gradually migrating to the
quantum-resistant digital signature scheme, we list the different outcomes in
Table 2 for the signing and verifying parties at different stages of migration.

Table 2. Outcomes for parties at different stages of migration

Verifying party

Definition 1a Definition 2b

Signing party Definition 1a This is the “as-is” scenario. Signed

documents are vulnerable to forgery

in the post-quantum era.

Signed documents do not include the

quantum-resistant proof. Verifying

parties have the choice to either

reject the document or use V erify

to check the signature while

informing the signing party to

perform the migration

Definition 2b This is the appropriate “Step 1” of

the migration process. Signed

documents include the

quantum-resistant proof. Signing

parties do not need to wait for

verifying parties to migrate before

carrying out this step. Verifying

parties continue to verify the

signature while ignoring the

quantum-resistant proof

This is the “to-be” state, and the

appropriate “Step 2” of the

migration process. After the signing

parties have migrated and started

sending signed documents that

include the quantum-resistant proof,

the verifying parties can update

their systems to verify the signature

and proof to complete the migration

process
aNot yet migrated. Still using Definition 1’s KeyGen, Sign and V erify.
bMigration done. Upgraded using Definition 2’s KeyGenq , Signq and V erifyq .

The appropriate migration strategy to layer in quantum-resistance would
therefore be to firstly upgrade the signing parties to include the quantum-
resistant proof with the signature, before upgrading the verifying parties to be
able to verify the proofs. For verifying parties who choose to upgrade early, it
is recommended that they include Definition 1’s V erify function to maintain
compatibility with signing parties who may not have upgraded yet.

5 Related Work

The instinctive approach to make digital signatures quantum-secure is to use a
replacement or an additional quantum-secure algorithm. At this point of writing,
NIST’s post-quantum standardization exercise [29,30] has identified two lattice-
based algorithms, Dilithium and Falcon, and one multivariate-based algorithm,
Rainbow, as the three finalist digital signature algorithms. Three alternative
algorithms, namely multivariate-based GeMSS, zero-knowledge-based Picnic and
stateless hash-based SPHINCS+, have been shortlisted but will undergo further
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evaluation beyond the year 2024 deadline. Ideally, a “drop-in replacement” in
the form of a software library or hardware security module, would be used to
swap out or augment RSA/DSA/ECDSA with the new algorithm being stan-
dardized. But since each of these algorithms have unique resource, performance
and platform considerations [33,36,37], coupled with different key ceremony pro-
cesses and protocols, it is more likely that a migration playbook [4] needs to be
designed and carried out.

Another approach is to use a backup key that can override the regular signing
key in the event of compromise. In Chaum et al. [11], the authors propose the use
a quantum-resistant stateful hash-based W-OTS+ backup key which is created
during the key generation process, and can be used as a fall-back procedure in the
event the original key is compromised or lost. While such backup digital signing
key approaches can work as an account-recovery mechanism for authentication-
related protocols, they are not suitable for routine non-interactive digital signing
use-cases where longer-term non-repudiation protection of data is required.

Specific to the time-stamping use-case, the use of a sequence of hashes,
chaining them in either a forward or backward direction, is a well-researched
approach to provide long-term, possibly quantum-secure, time-stamping. Dig-
ital time-stamping by linking the sequence of documents to be time-stamped
through a linear hash-chain is first proposed by Haber and Stornetta in 1991 [23].
This is improved by Bayer et al. [5] to use Merkle trees [28] instead of a linear
hash-chain. Fast forward to the present where blockchains such as Ethereum
already support time-stamping smart contracts [16,31]. Abadi et al. [1] further
provided a decentralized time-stamp protocol on blockchains that can prevent
pre/post-dating. As these techniques typically rely on a public verifiable chain
to determine a specific time of occurrence, they are not applicable as a quantum-
resistant mechanism to protect digital signatures in general. Public blockchains
also face privacy-related concerns since the number of transactions performed
and the timings that they were transacted are publicly available.

6 Conclusion

In this paper, we have taken a different approach in implementing post-quantum
digital signing. Instead of replacing or adding on a different quantum-secure dig-
ital signing algorithm, we have shown that it is possible to continue to use the
classical RSA, DSA or ECDSA digital signing algorithms while achieving longer-
term quantum resistance. This is achieved by layering in a zero-knowledge proof
of knowledge of the pre-image of the private key in addition to the digital sig-
nature. With our approach, digital signature implementations wanting to move
ahead in quantum readiness continue to maintain backward-compatibility to
existing applications. This is important since different systems may have dif-
ferent timelines and schedules on when the migration to quantum readiness
happens, and our approach is able to ensure the seamless operations between
upgraded and non-upgraded applications.

But the work is not yet complete. The current implementation is neither
computational-efficient nor space-efficient. We envision future work in:
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– Optimizing the zero-knowledge proof. Both the size of the zero-knowledge
proof and execution times for Signq and V erifyq can be significantly
improved. There are other MPC-in-the-head based zero-knowledge proofs
such as ZKB++ [9], TurboIKOS [22] which achieve better performance and/or
space efficiencies. Our implementation can be updated to use them.

– Increasing the spectrum of applications. Beyond time-stamping PDF docu-
ments, there are other applications such as blockchain, Secure Email, and
Transport Layer Security that can use this approach to layer in quantum
resistance.

– Updating standards. In our implementation, the X.509 Authority Information
Access extension is used to store the link for the zero-knowledge proof. This
may clash with other applications already using this extension and hence may
not be the most appropriate use of the extension. A standardized extension
can be established for storing such zero-knowledge proofs.
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