
Joseph K. Liu · Sokratis Katsikas ·
Weizhi Meng · Willy Susilo ·
Rolly Intan (Eds.)

LN
CS

 1
31

18

Information Security
24th International Conference, ISC 2021
Virtual Event, November 10–12, 2021
Proceedings

Lecture Notes in Computer Science 13118

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at https://link.springer.com/bookseries/7410

https://springerlink.bibliotecabuap.elogim.com/bookseries/7410

Joseph K. Liu · Sokratis Katsikas ·
Weizhi Meng ·Willy Susilo · Rolly Intan (Eds.)

Information Security
24th International Conference, ISC 2021
Virtual Event, November 10–12, 2021
Proceedings

Editors
Joseph K. Liu
Monash University
Clayton, VIC, Australia

Weizhi Meng
Technical University of Denmark
Kongens Lyngby, Denmark

Rolly Intan
Petra Christian University
Surabaya, Indonesia

Sokratis Katsikas
Norwegian University of Science
and Technology
Gjøvik, Norway

Willy Susilo
University of Wollongong
Wollongong, NSW, Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-91355-7 ISBN 978-3-030-91356-4 (eBook)
https://doi.org/10.1007/978-3-030-91356-4

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-6656-6240
https://orcid.org/0000-0003-4384-5786
https://orcid.org/0000-0003-2966-9683
https://orcid.org/0000-0002-1562-5105
https://doi.org/10.1007/978-3-030-91356-4

Preface

On behalf of the Program Committee, it is our pleasure to present the proceedings of
the 24th Information Security Conference (ISC 2021). ISC is an annual international
conference covering research in theory and applications of information security. Both
academic research with high relevance to real-world problems and developments in
industrial and technical frontiers fall within the scope of the conference.

The 24th edition of ISC was organized by the Petra Christian University, Surabaya,
Indonesia, and was held entirely online (due to the COVID-19 pandemic) during
November 10–12, 2021. Willy Susilo (University of Wollongong, Australia) and
Rolly Intan (Petra Christian University, Indonesia) served as the general chairs, whilst
we—Joseph Liu (Monash University, Australia) and Sokratis K. Katsikas (Norwegian
University of Science and Technology, Norway)—served as the program co-chairs. The
Program Committee comprised 54 members from top institutions around the world. Out
of 87 submissions, theProgramCommittee eventually selected 21papers for presentation
at the conference and publication in the proceedings, resulting in an acceptance rate
of 24.1%. The review process was double-blind, and it was organized and managed
through the EasyChair online reviewing system, with all papers receiving at least three
reviews. The final program was quite balanced in terms of topics, containing both
theoretical/cryptography papers and more practical/systems security papers.

A successful conference is the result of the joint effort ofmany people.Wewould like
to express our appreciation to the Program Committee members and external reviewers
for the time spent reviewing papers and participating in the online discussion.We deeply
thank our invited speakers for theirwillingness to participate in the conference, especially
during the difficult times in the middle of the global pandemic. Further, we express our
appreciation toWeizhi Meng (Technical University of Denmark, Denmark), who served
as the publication chair. Finally, we thank Springer for publishing these proceedings as
part of their LNCS series, and the ISC Steering Committee for their continuous support
and assistance.

ISC 2021would not have been possiblewithout the authorswho submitted their work
and presented their contributions, as well as the attendees who joined the conference
sessions. We would like to thank them all, and we look forward to their future
contributions to ISC.

October 2021 Joseph Liu
Sokratis Katsikas

Organization

Steering Committee

Zhiqiang Lin The Ohio State University, USA
Javier Lopez University of Malaga, Spain
Masahiro Mambo Kanazawa University, Japan
Eiji Okamoto University of Tsukuba, Japan
Michalis Polychronakis Stony Brook University, USA
Jianying Zhou Singapore University of Technology and Design, Singapore

General Chairs

Willy Susilo University of Wollongong, Australia
Rolly Intan Petra Christian University, Indonesia

Program Chairs

Joseph Liu Monash University, Australia
Sokratis K. Katsikas Norwegian University of Science and Technology, Norway

Publication Chair

Weizhi Meng Technical University of Denmark, Denmark

Technical Program Committee

Masayuki Abe NTT Secure Platform Laboratories, Japan
Cristina Alcaraz University of Malaga, Spain
Man Ho Au University of Hong Kong, Hong Kong
Liqun Chen University of Surrey, UK
Xiaofeng Chen Xidian University, China
Mauro Conti University of Padua, Italy
Frédéric Cuppens Polytechnique Montreal, Canada
Josep Domingo-Ferrer Universitat Rovira i Virgili, Spain
Dung Hoang Duong University of Wollongong, Australia
Steven Furnell University of Nottingham, UK
Joaquin Garcia-Alfaro Institut Polytechnique de Paris, France
Vasileios Gkioulos Norwegian University of Science and Technology, Norway
Stefanos Gritzalis University of Piraeus, Greece
Fuchun Guo University of Wollongong, Australia

viii Organization

Jinguang Han Queen’s University Belfast, UK
Shoichi Hirose University of Fukui, Japan
Xinyi Huang Fujian Normal University, China
Christos Kalloniatis University of the Aegean, Greece
Sokratis K. Katsikas Norwegian University of Science and Technology, Norway
Angelos Keromytis Georgia Institute of Technology, Georgia
Hiroaki Kikuchi Meiji University, Japan
Hyoungshick Kim Sungkyunkwan University, South Korea
Miroslaw Kutylowski Wroclaw University of Science and Technology, Poland
Shangqi Lai Monash University, Australia
Jooyoung Lee Korea Advanced Institute of Science and Technology,

South Korea
Yannan Li University of Wollongong, Australia
Kaitai Liang Delft University of Technology, Netherlands
Joseph Liu Monash University, Australia
Javier Lopez University of Malaga, Spain
Rongxing Lu University of New Brunswick, Canada
Xiapu Luo Hong Kong Polytechnic University, Hong Kong
Mark Manulis University of Surrey, UK
Weizhi Meng Technical University of Denmark, Denmark
Khoa Nguyen Nanyang Technological University, Singapore
Pankaj Pandey Norwegian University of Science and Technology, Norway
Günther Pernul Universität Regensburg, Germany
Josef Pieprzyk CSIRO, Data61, Australia
Nikolaos Pitropakis Edinburgh Napier University, UK
Reihaneh Safavi-Naini University of Calgary, Canada
Georgios Spathoulas Norwegian University of Science and Technology, Norway
Stavros Stavrou Open University of Cyprus, Cyprus
Ron Steinfeld Monash University, Australia
Shi-Feng Sun Monash University, Australia
Willy Susilo University of Wollongong, Australia
Qiang Tang University of Sydney, Australia
Ding Wang Nankai University, China
Avishai Wool Tel Aviv University, Israel
Qianhong Wu Beihang University, China
Toshihiro Yamauchi Okayama University, Japan
Guomin Yang University of Wollongong, Australia
Yong Yu Shaanxi Normal University, China
Tsz Hon Yuen University of Hong Kong, Hong Kong
Mingwu Zhang Hubei University of Technology, China
Jianying Zhou Singapore University of Technology and Design, Singapore

Organization ix

Additional Reviewers

Mohsen Ali
Marios Anagnostopoulos
Michael Bamiloshin
Thomas Baumer
Cailing Cai
Yanmei Cao
Eyasu Getahun Chekole
Long Chen
Yonghui Chen
Chengjun Lin
Liron David
Fuyang Deng
Vasiliki Diamantopoulou
Philip Empl
Ludwig Englbrecht
Sabrina Friedl
Sebastian Groll
Rami Haffar
Fadi Hassan
Shen Hua
Li Huilin
Najeeb Jebreel
Pallavi Kaliyar
Maria Karyda
Sascha Kern
Ashneet Khandpur Singh
Chhagan Lal
Minghang Li
Yumei Li
Trupil Limbasiya
Chao Lin
Eleonora Losiouk
Jiqiang Lu

Katerina Mavroeidi
Mohamed-Amine Merzouk
Reza Mohammadi
Antonio Muñoz
Vinod P. Nair
Jianting Ning
Jean-Yves Ouattara
Jing Pan
Shimin Pan
Pavlos Papadopoulos
Argyri Pattakou
Baodong Qin
Xianrui Qin
Tian Qiu
Yanli Ren
Rahul Saha
Jun Shen
Stavros Simou
Chunhua Su
Teik Guan Tan
Aggeliki Tsohou
Mingming Wang
Mingli Wu
Yi Xie
Lei Xu
S. J. Yang
Xu Yang
Yang Yang
Shang Zefua
Jixin Zhang
Yudi Zhang
Yuexin Zhang
Haibin Zheng

Contents

Cryptology

Integer LWE with Non-subgaussian Error and Related Attacks 3
Tianyu Wang, Yuejun Liu, Jun Xu, Lei Hu, Yang Tao, and Yongbin Zhou

Layering Quantum-Resistance into Classical Digital Signature Algorithms 26
Teik Guan Tan and Jianying Zhou

Cryptanalysis of RSA Variants with Primes Sharing Most Significant Bits 42
Meryem Cherkaoui-Semmouni, Abderrahmane Nitaj, Willy Susilo,
and Joseph Tonien

Cryptanalysis of Two White-Box Implementations of the SM4 Block
Cipher . 54
Jiqiang Lu and Jingyu Li

A Non-interactive Multi-user Protocol for Private Authorised Query
Processing on Genomic Data . 70
Sara Jafarbeiki, Amin Sakzad, Shabnam Kasra Kermanshahi,
Ron Steinfeld, Raj Gaire, and Shangqi Lai

Bigdata-Facilitated Two-Party Authenticated Key Exchange for IoT 95
Bowen Liu, Qiang Tang, and Jianying Zhou

Randomized Component Based Secure Secret Reconstruction in Insecure
Networks . 117
Xinyan Wang and Fuyou Miao

Transparency Order of (n, m)-Functions—Its Further Characterization
and Applications . 139
Yu Zhou, Yongzhuang Wei, Hailong Zhang, Luyang Li, Enes Pasalic,
and Wenling Wu

Web and OS Security

Browserprint: An Analysis of the Impact of Browser Features
on Fingerprintability and Web Privacy . 161
Seyed Ali Akhavani, Jordan Jueckstock, Junhua Su,
Alexandros Kapravelos, Engin Kirda, and Long Lu

xii Contents

TridentShell: A Covert and Scalable Backdoor Injection Attack on Web
Applications . 177
Xiaobo Yu, Weizhi Meng, Lei Zhao, and Yining Liu

Andromeda: Enabling Secure Enclaves for the Android Ecosystem 195
Dimitris Deyannis, Dimitris Karnikis, Giorgos Vasiliadis,
and Sotiris Ioannidis

Network Security

FEX – A Feature Extractor for Real-Time IDS . 221
Andreas Schaad and Dominik Binder

Identifying Malicious DNS Tunnel Tools from DoH Traffic Using
Hierarchical Machine Learning Classification . 238
Rikima Mitsuhashi, Akihiro Satoh, Yong Jin, Katsuyoshi Iida,
Takahiro Shinagawa, and Yoshiaki Takai

Detection of Malware, Attacks and Vulnerabilities

Hybroid: Toward Android Malware Detection and Categorization
with Program Code and Network Traffic . 259
Mohammad Reza Norouzian, Peng Xu, Claudia Eckert,
and Apostolis Zarras

A Novel Behavioural Screenlogger Detection System . 279
Hugo Sbai, Jassim Happa, and Michael Goldsmith

DEVA: Decentralized, Verifiable Secure Aggregation
for Privacy-Preserving Learning . 296
Georgia Tsaloli, Bei Liang, Carlo Brunetta, Gustavo Banegas,
and Aikaterini Mitrokotsa

DVul-WLG: Graph Embedding Network Based on Code Similarity
for Cross-Architecture Firmware Vulnerability Detection . 320
Hao Sun, Yanjun Tong, Jing Zhao, and Zhaoquan Gu

Machine Learning for Security

Detect and Remove Watermark in Deep Neural Networks via Generative
Adversarial Networks . 341
Shichang Sun, Haoqi Wang, Mingfu Xue, Yushu Zhang, Jian Wang,
and Weiqiang Liu

Contents xiii

Targeted Universal Adversarial Perturbations for Automatic Speech
Recognition . 358
Wei Zong, Yang-Wai Chow, Willy Susilo, Santu Rana, and Svetha Venkatesh

Voxstructor: Voice Reconstruction from Voiceprint . 374
Panpan Lu, Qi Li, Hui Zhu, Giuliano Sovernigo, and Xiaodong Lin

Word-Map: Using Community Detection Algorithm to Detect AGDs 398
Futai Zou, Qianying Shen, and Yuzong Hu

Author Index . 415

Cryptology

Integer LWE with Non-subgaussian Error
and Related Attacks

Tianyu Wang1,2, Yuejun Liu3(B), Jun Xu1,2, Lei Hu1,2, Yang Tao1,
and Yongbin Zhou3

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

{wangtianyu,xujun,HuLei,taoyang}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100093, China
3 Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China

{liuyuejun,zhouyongbin}@njust.edu.cn

Abstract. This paper focuses on the security of lattice based Fiat-
Shamir signatures in leakage scenarios. More specifically, how to recover
the complete private key after obtaining a large number of noisy linear
equations without modular about the private key. Such a set of equations
can be obtained, for example, in [5], by attacking the rejecting sampling
step with a side-channel attack. The paper refers to the mathematical
problem of recovering the secret vector from this structure as the ILWE
problem and proves that it can be solved by the least squares method.
A similar mathematical structure has been obtained in [13] by leaking a
single bit at certain specific locations of the randomness.

However, the ILWE problem requires the error term to be subgaussian,
which is not always the case in practice. This paper therefore extends the
original ILWE problem by presenting the non-subgaussian ILWE prob-
lem, proving that it can be solved by the least squares method combined
with a correction factor, and giving two attack scenarios: an attack with
lower bits leakage of randomness than in [13], and a careless implemen-
tation attack on the randomness. In the lower bit randomness leakage
case, we are able to attack successfully with 2 or 3 bits leakage lower than
those in [13] experimentally, and in the careless implementation attack,
we are able to recover the private key successfully when the rejection
sampling partially fails.

Keywords: Lattice-based cryptography · Fiat-Shamir signature ·
ILWE problem · Least squares method · Statistical analysis

This work is supported in part by National Natural Science Foundation of China (No.
U1936209, No. 61632020, No. 62002353 and No. 61732021) and Beijing Natural Science
Foundation (No. 4192067).

c© Springer Nature Switzerland AG 2021
J. K. Liu et al. (Eds.): ISC 2021, LNCS 13118, pp. 3–25, 2021.
https://doi.org/10.1007/978-3-030-91356-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91356-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-91356-4_1

4 T. Wang et al.

1 Introduction

When evaluating the concrete security of a public key scheme, we should not
only analyze the hardness of mathematical problems the scheme relies on, but
also consider the leakage of some sensitive information in the scheme due to
implementation, communication or other reasons. Many existing works show
that the leakage of some sensitive information will lead to the complete attack
of the scheme. For example, Heninger and Shacham [10] showed that the RSA
secret key with small public parameters can be efficiently recovered given its 27%
random bits. Even if we have not selected some sensitive parameters correctly,
we can still transform the originally difficult mathematical problem the scheme
based on into a much easier problem with the extra information. For example,
when the secret key d < n0.292, the RSA problem is no longer difficult, and d
can be completely recovered by Coppersmith method in polynomial time [3].

This paper mainly discusses the potential risk of the extra information of
the randomness (or nonce) in lattice based Fiat-Shamir signatures. Aiming at
the problem of randomness leakage of Fiat-Shamir signature such as DSA and
ECDSA, many impressive results have been achieved [6,11,16,17]. The frame-
work of these attacks is to transform the leakage attack into a hidden number
problem (HNP) problem [4], which can be further solved by the lattice method
or the Bleichenbacher method. The lattice method is suitable for the situation
that the number of leaked bits is large but the number of signatures is small
[4,16], while the Bleichenbacher method is suitable for the situation where the
number of leaked bits is small but the number of signatures is large [2,6].

In recent years, in order to prevent possible attacks of quantum comput-
ers in the future, many lattice based schemes resisting quantum attacks have
been proposed. Dilithium and qTesla are lattice based Fiat-Shamir signatures
and Dilithium has been selected as a candidate for the third round of NIST
post quantum standardization competition due to its excellent performance. At
present, in addition to the algorithms of the difficult problems on lattice, there
are a series of side channel attacks against the specific implementation of lattice
based Fiat-Shamir signatures [5,8,9,18,19], but the sensitivity of randomness
leakage in lattice signatures has not been analyzed until [13]. Liu et al. first
observed that if one bit of specific position of the randomness is leaked, the
adversary will get a noisy linear equation of the low bit of signature and secret
without modular, that is, zlow +d ∗ 2l = ylow + 〈s, c〉, where d represents if there
is an overflow and is decided according to the leakage. Recovering s with enough
equations is abstracted as an integer LWE (ILWE) problem [5] and has been
extended to the FS-ILWE problem to adjust this attack in their work. Despite
the tiny difference between these two problems, we can simply obtain s simply
by the least squares method. Take Dilithium IV for example, around 220 sig-
natures are needed to recover the secret key when leaking the 7-th lower bit of
randomness.

Integer LWE with Non-subgaussian Error and Related Attacks 5

1.1 Our Contribution

Although Liu et al. recovered the secret key effectively, their attack has a limita-
tion that it is not suitable for the lower-bit-leakage case, because in order to guess
the value d correctly, |〈s, c〉| must be smaller than 2l−1 and the leakage position
must be higher than l. If the leakage position is lower than l, additional error
related to the value 〈s, c〉 is introduced. In view of this limitation, we expand
the ILWE problem. Instead of requiring randomness to be independent of 〈s, c〉,
we relax this requirement into that the expectation of error term is only related
to the value 〈s, c〉 and satisfies the tail property of subgaussian. We have proved
that solving this new problem with the least squares method will result in a
certain multiple of s and the related conclusion is Theorem 2 (Page 6).

As for λ, we can not only estimate it with ‖s‖2 according to Proposition 1
(Page 7), but also search for its true value without knowing the exact value of
‖s‖2. As a result, we can recover s by rounding each component of the vector
1
λ s̃.

In the past, we only knew the ILWE problem with subgaussian randomness
could be solved directly by the least squares method, while knowing little if
the randomness is related to 〈s, c〉. With this theorem, we can deal with more
abundant scenarios than those in the past. This paper analyzes the following
cases:

1. Lower-bit Randomness Leakage Attack. We use Liu et al.’s attack
method into the lower-bit randomness leakage case, and then we can get a coef-
ficient multiple of the private key λs. With this change, we can treat the case
that the leakage position is 2–3 bits lower than before. We can not handle lower
leakage case as there is too little effective information of the secret key to recover
it in practice.

2. Careless Implementation Attack. The careless implementation of ran-
domness may lead to the inconsistency of randomness distribution, which may
make the rejection sampling invalid or partially invalid for the original signature
scheme, resulting in the distribution of signatures contains the information of
〈s, c〉. In Sect. 5, we provide a general approach to extract the secret by the least
squares method.

By using the Proposition 1, we can further obtain the number of required
signatures and the approximate value of λ in these scenarios. The analysis of
these two scenarios shows that the randomness in lattice based Fiat-Shamir
signature needs to be protected very carefully, and the detection of signature
distribution needs to be added in the implementation of signature algorithm to
prevent possible statistical attacks caused by different outputted signatures.

1.2 Organization of the Paper

The rest of this paper will be organized as follows. Section 2 is the preliminaries
of this paper. In Sect. 3 we introduce a new extension of the ILWE problem,
which we call non-subgaussian ILWE problem, and proves that non-subgaussian

6 T. Wang et al.

ILWE problem can also be solved directly by the least squares method. In Sect. 4
and 5, we heuristically reduce two attack scenarios of lattice based Fiat-Shamir
signatures to the non-subgaussian ILWE problem: lower-bit randomness leak-
age attack and randomness implementation mistakes attack. In Sect. 6 we show
the experimental results of these two attack scenarios and further verified the
rationality of our heuristic reduction. In Sect. 7 we summarize our work.

2 Preliminaries

2.1 Notation

For x ∈ R, rounding the number x is denoted by �x�. Rounding up and rounding
down the number x is denoted by �x	 and
x� respectively. We denote column
vectors by bold lowercase (e.g. x) and matrices in bold uppercase (e.g. A).
The p-norm of the vector x = (x1, . . . , xn)T ∈ R

n is denoted by ‖x‖1/p
p =

(|x1|p+. . .+|xn|p)1/p, and the infinity norm by ‖x‖∞ = max(|x1|, |x2|, . . . , |xn|).
For a matrix A ∈ R

m×n, we denote the i-th column of A ∈ R
m×n by ai. The

operator norm ‖A‖op
p of A with respect to the p-norm, p ∈ [1,∞], is given by:

‖A‖op
p = sup

x∈Rn\{0}

‖Ax‖p

‖x‖p
= sup

‖x‖p=1

‖Ax‖p. (1)

In this paper, R � Z[x]/(xn+1) is a polynomial ring and Rq � Zq[x]/(xn+1),
where n is a power of 2. For an element a =

∑N−1
i=0 aix

i ∈ R, this element
can also be represented as a vector (an−1, an−2, . . . , a0)T . For two polynomials
a,b ∈ R, the inner product is denoted by 〈a,b〉 =

∑d
i=0 aibi = aT b. The

polynomial multiplication is represented as ab and can also be denoted as matrix
multiplication Ab or Ba where A, B are the rotation matrices related to a and
b. The rotation matrix A of a is the following Toeplitz matrix:

A =

⎡

⎢
⎢
⎢
⎣

a0 a1 a2 · · · aN−1

−aN−1 a0 a1 · · · aN−2

...
...

...
. . .

...
−a1 −a2 −a3 · · · a0

⎤

⎥
⎥
⎥
⎦

. (2)

2.2 Gaussian and Subgaussian

For any random variable X, E[X] denotes the expectation of X and D[X] =
E[X2] − E[X]2 denotes the variance. We write X ∼ χ to denote that X follows
the distribution χ. If χ is a discrete distribution over some countable set S,
then for any s ∈ S, we denote by χ(s) the probability that a sample from χ
equals to s. In particular, if f : S → R is any function and X ∼ χ, we have:
E[f(s)] =

∑
s∈S f(s) · χ(s).

Let ρ(x) = exp(−πx2) for all x ∈ R. We define ρμ,σ(x) = ρ((x − μ)/σ)
the Gaussian function of parameters μ, σ and we call that a random variable

Integer LWE with Non-subgaussian Error and Related Attacks 7

ξ ∼ N(μ, σ) if its probability density function is 1√
2πσ

ρ((x − μ)/σ). For any
subset S ⊂ R such that the sum converges, we let:

ρμ,σ(S) =
∑

s∈S

ρμ,σ(s).

The discrete Gaussian distribution Dμ,σ centered at μ and of parameter σ is the
distribution on Z defined by

Dμ,σ(x) =
ρμ,σ(x)
ρμ,σ(Z)

=
exp(−π(x − μ)2/σ2)

ρμ,σ(Z)

for all x ∈ Z. We omit the subscript c in ρμ,σ and Dμ,σ when μ = 0.
Next we recall the notion of subgaussian distributions in [5] and list some

properties of subgaussian distributions.

Definition 1 (Subgaussian random variable [5]). A random variable X
over R is said to be τ -subgaussian for some τ if the following bound holds for all
s ∈ R:

E[exp(sX)] ≤ exp(
τ2s2

2
).

Lemma 1 (Lemma 2.4 in [5]). A τ -subgaussian random variable X satisfies:

E(X) = 0 and E(X2) ≤ τ2.

Lemma 2 (Lemma 2.5 in [5]). Any distribution over R of mean zero and
supported over a bound interval [a, b] is (b−a)

2 -subgaussian.

2.3 The ILWE Problem

The ILWE problem is first introduced in [5], their main motivation for study-
ing the ILWE problem is a side-channel attack against the BLISS lattice-based
signature [7]. The definition of the ILWE is given below.

Definition 2 (ILWE Distribution [5]). For any vector s ∈ Z
n and any

two probability distribution χa, χe over Z, the ILWE distribution Ds,χa,χe
is the

probability distribution over Zn ×Z defined as follows: samples from Ds,χa,χe
are

of the form
(a, b) = (a, 〈a, s〉 + e)

where a ← χn
a and e ← χe.

Definition 3 (ILWE Problem [5]). Given m samples {(ai, bi)}1≤i≤m from
the ILWE distribution Ds,χa,χe

for some s ∈ Z
n, one is asked to recover the

vector s.

Let σe and σa be the standard deviation of χe and χa respectively. Bootle
et al. [5] showed the ILWE problem with m samples can be solved in polynomial
time using statistical learning techniques when m ≥ Ω(σe/σa)2 and σe is not
superpolynomially larger than σa.

8 T. Wang et al.

Theorem 1 (Theorem 4.5 in [5]). Suppose that χa is a τa-subgaussian and
χe is τe-subgaussian, and let (A,b = As + e) the data constructed from m sam-
ples of the ILWE distribution Ds,χa,χe

, for some s ∈ Z
n. There exist constants

C1, C2 > 0 such that for all η ≥ 1, if:

m ≥ 4
τ4
a

σ4
a

(C1n + C2η) and m ≥ 32
τ2
e

σ2
a

ln(2n),

then the least squares estimator s̃ = (AT A)−1AT b satisfies ‖s − s̃‖∞ < 1/2,
and hence �s̃� = s with probability at least 1 − 1

2n − 2−η. Furthermore, one can
choose C1 = 28 ln 9 and C2 = 29 ln 2.

Notice s̃ = (AT A)−1AT b = s + (AT A)−1AT e, thus the theorem states
that when the number of samples is sufficiently large, the norm (AT A)−1AT e
is small enough.

2.4 Lattice Based Fiat-Shamir Signatures

Fiat-Shamir signatures is transformed from a Σ-protocol through the famous
Fiat-Shamir transform. The first lattice based Fiat-Shamir signature is given by
[14] and several improvements have been made. The security of lattice based
Fiat-Shamir signatures are based on hard lattice problems such as LWE, SIS
and their variants.

The signature in the lattice based Fiat-Shamir paradigm can usually be writ-
ten as z = y + sc, where s is a matrix and c is a vector if the scheme is based
on LWE and SIS [14]. If the scheme is based on RLWE and RSIS then s, c are
polynomials in Rq [1], while s ∈ Rr

q and c ∈ Rq if the scheme is based on
MLWE and MSIS [15]. As the polynomial multiplication can be represented as
matrix multiplication, so no matter what the scheme is, we can always write
several signatures as the matrix form z = y + Cs, where every component of z
is zi = yi + 〈ci, s〉.

3 The Non-subgaussian ILWE Problem

In this section, we will extend the original ILWE problem to the non-subgaussian
ILWE problem. The difference is the expectation of the randomness is a function
only related to 〈s,a〉 and the definition is as follows:

Definition 4 (The Non-subgaussian ILWE Distribution). For any vector
s ∈ Z

n and any two probability distribution χa, χe over Z, f(x) is a continuous
function defined on R, the ILWE distribution Ds,χa,χe,f is the probability distri-
bution over Z

n × Z defined as follows: samples from Ds,χa,χe,f are of the form

(a, b) = (a, 〈a, s〉 + e + f(〈a, s〉))

where a ← χn
a and e ← χe.

Integer LWE with Non-subgaussian Error and Related Attacks 9

Compared with the ILWE distribution, the non-subgaussian ILWE distribu-
tion has an additional term f . The function f is defined to be continuous to
ensure we can estimate λ in the next step. Now we give the definition of the
non-subgaussian ILWE problem.

Definition 5 (The Non-subgaussian ILWE Problem). Given m samples
{(ai, bi)}1≤i≤m from the non-subgaussian ILWE distribution Ds,χa,χe,f for some
s ∈ Z

n, one is asked to recover the vector s.

The analysis in the rest of this paper is based on an assumption that if an
n dimensional random vector a is sampled as a ← χn

a and χa is τa-subgaussian,
then for any fixed orthogonal transformation P ∈ On(R), the random vector
Pa can also be treated as a τa-subgaussian random vector distributed on χn

a

statistically. We make this assumption because the distribution χn
a seems close

to isotropic. For example, if the vector a follows a spherical gaussian distribu-
tion, then this assumption clearly holds. In Theorem 2, we will show that given
enough non-subgaussian ILWE samples, the result of the least squares method
is a constant multiple of the secret vector.

Theorem 2. Suppose that χa is a τa-subgaussian and χe is τe-subgaussian, and
let (A,b) be m samples from the non-subgaussian ILWE distribution Ds,χa,χe,f ,
for some s ∈ Z

n. If the least squares estimator s̃ of (A,b) converges to some
vector s′ when m tend to infinity, then there exist λ ∈ R such that s′ = λs.

Proof. Let A = (a1,a2, . . . ,am)T , f(As) = (f(〈a1, s〉), f(〈a2, s〉),
. . . , f(〈am, s〉))T and e′ = e + f(As). Now we select an orthogonal transfor-
mation P ∈ On(R) such that {x ∈ R

n|Px = x} = Span{s}, the two sets of
samples (b = As + e′ = APT Ps + e′,A) and (b = APT s + e′,APT) behaves
almost the same1, so the least squares estimator of these two sets of samples
are equal. In other words, s̃ = (AT A)−1AT b ≈ ((APT)T APT)−1(APT)T b =
P(AT A)−1AT b = Ps̃, so Ps̃ ≈ s̃ ≈ s′2, which concludes that s′ ∈ Span{s}
thus s′ = λs. �

Now we have explained why s̃ = λs intuitively. In the next step, we will
estimate the value of λ when knowing the exact Euclidean norm of the secret s:

Proposition 1. Suppose that χa is a τa-subgaussian and χe is τe-subgaussian,
and let (A,b) be m samples from the non-subgaussian ILWE distribution
Ds,χa,χe,f , for some s = (s1, 0, . . . , 0) ∈ Z

n and a continuous function f . Let

r(a(1)
i) = f(a

(1)
i s1)+a

(1)
i s1

a
(1)
i s1

where a
(1)
i denotes the first component of the vector ai.

If D[χa] = σ2
a, E[r(a(1)

i)(a(1)
i)2] �= 0, σ2

1 = E[r(a(1)
i)(a(1)

i)2], σ2
2 = E[r(x(1)

i)], and

m > M = max(
4τ4

a

σ4
a

(C1n + C2η), 27
τ2
e

σ2
a

ln(2n), 213(n ln 9 + ln 8n)σ2
a|s1|2 · C3),

1 According to our assumption, the distribution of Pa can also be treated as χa, so
the latter set of samples can also be treated as sampled from the non-sugbaussian
ILWE distribution Ds,χa,χe,f .

2 “≈” means “converges to” when m tend to infinity.

10 T. Wang et al.

where C1 = 28 ln 9, C2 = 29 ln 2, C3 = max{max{σ1,σ2}2

σ8
a

, K2 max{σ1,σ2}4

min{σ1,σ2}2 }, then
Pr[‖s̃ − σ2

1/σ2
as‖∞ < 1/2] > 1 − 1

n + 1
4n2 .

The proof of Proposition 1 is relatively complex and the details can be found
in the Appendix A. What’s more, the secret in Proposition 1 has a special form
s = (s1, 0, . . . , 0)T , so we have only obtained the conclusion for the special case
now. In fact, this special case can be extended to the general case, and all the
details can be found in Appendix A. What’s more, λ can also be searched by
finding arg maxλ{(� 1

λ s̃� − 1
λ s̃)2} when enough samples have been obtained.

4 Low-Bit’s Randomness Leakage Attack

In this section, we introduce the randomness leakage attack in [13] and extend it
to the lower-bit leakage. The original attack can be applied to most known Fiat-
Shamir signatures and we only introduce Dilithium as an example. The Dilithium
scheme is built via the “Fiat-Shamir with aborts” structure and can be seen as a
variant of the Bai-Galbraith scheme with a public key compression. Dilithium is
based on the hardness of Module-LWE and Module-SIS problems and the secret
keys consist of two parts s1 ∈ Rr

q and s2 ∈ Rs
q, where Rq = Zq[X]/(Xn+1). The

signature is computed as z = y + sc, where c ∈ Rq and every component of y is
uniformly distributed on [−γ, γ]. Although the public key has been compressed
so we cannot recover s2 only knowing s1, the work [19] showed that just knowing
s1 is sufficient for existential forgery attack. One polynomial component of s1 is
omitted as s in the rest of the paper, then the multiplication between s and c
is a polynomial multiplication, so we can rewrite it as a matrix multiplication
Cs, where C is the rotation of c. The key generation and signing algorithms of
Dilithium without public key compression are presented in Algorithm 1. In order
to recover the full secret key, we need to solve several independent noisy linear
systems independently.

4.1 The Randomness Leakage Attack

Assume that |〈ci, s〉| < 2l, and we have got the l + 1-th bit of yi, then the
l least significant bits of yi, which is denoted as [yi]2l , can be regarded as an
independent subgaussian variable with ci and s.3 The low bits of zi can be
expressed as follows: [zi]2l + di · 2l = [yi]2l + 〈ci, s〉, where di reflects if the carry
or borrow occurs between the sum of [yi]2l and 〈ci, s〉. So the first step of this
attack is guessing the value of di. If the (l + 1)-th bit of zi and the (l + 1)-th bit
of yi are the same, then di = 0; otherwise di �= 0. Furthermore:

[zi]2l ∈ (−2l, −2l−1) ∪ (0, 2l−1), then di = 1;

[zi]2l ∈ (−2l−1, 0) ∪ (2l−1, 2l), then di = −1;

[zi]2l = 0, zi > 0, then di = 1;

[zi]2l = 0, zi < 0, then di = −1.

3 In fact E([y]2l) = − 2l

2γ+1−1
〈s, c̄〉 is close to 0, where 2γ � 2l. So [yi]2l can be regarded

as subgaussian.

Integer LWE with Non-subgaussian Error and Related Attacks 11

Algorithm 1. Simplified Version of Dilithium
Gen:
A ← Rk×l

q

(s1, s2) ← Sl
η × Sk

η

t := As1 + s2
return pk = (A, t), sk = (A, t, s1, s2)

Sign(sk, M):
t := ⊥
while z = ⊥ do

y ← Sl
γ1−1

w1 := HighBits(Ay, 2γ2)
c ∈ Bτ := H(M‖w1)
z := y + cs1
if ‖z‖∞ ≥ γ1 − β or ‖LowBits(Ay − cs2, 2γ2)‖∞ ≥ γ2 − β, then z := ⊥

end while
return σ = (z, c)

Assume that we can always guess d correctly, then the sample (ci, [zi]2l +di ·2l =
[yi]2l + 〈ci, s〉) is in fact follows the ILWE, so finding s given sufficient equations
of the low bits of signatures is in fact an ILWE problem4. After judging the value
of di, we can simply apply the least squares method to the low-bits samples and
then rounding the output

s̃ = (CT C)−1CT ([z]2l + 2l · d).

Due to Theorem 1, �s̃� = s with high probability. In summary, if the l +1-th bit
of the randomness is leaked, the attack can be divided into the following steps.

1. Guess the value of d, the result relies on whether the l + 1-th bit of y′ equals
to the l + 1-th bit of z′ and the value of [zi]2l ,

2. Establish the linear system with randomness [zi]2l + di · 2l = [yi]2l + 〈ci, s〉
and compute the least squares estimator s̃ = (CT C)−1CT ([z]2l + 2l · d),

3. s =
s̃	.
In summary, if |〈ci, s〉| < 2l−1 and the leakage position is higher than l + 1,
we can always guess the value d correctly, thus getting an ILWE sample. With
plenty of ILWE instances, the secret can be easily found by the least squares
method.

4.2 Extend to Lower Bits

An obstacle of the original attack is that when |〈ci, s〉| < 2l−1, the leakage
position of yi must be higher than l + 1, otherwise we can not obtain the true

4 More precisely, it is an FS-ILWE problem presented in [13], but due to their simi-
larity, we view this problem as ILWE.

12 T. Wang et al.

value of d with nearly 100% accuracy. Let the information of carry or borrow we
guess is denoted by d′, then the equation of lower bits we get is

[zi]2l + d′
i · 2l = [yi]2l + (d′

i − di) · 2l + 〈ci, s〉.

Actually, the error in the linear system we build after guessing d is [yi]2l + (d′
i −

di) · 2l, which is no longer subgaussian. However, take the l-th-bit’s leakage case
as an example, we will show that the expectation of the error term is only related
to |〈ci, s〉|.

After the l-th bit of yi is leaked, the first step is guessing d. When |〈ci, s〉| <
2l−2, then d′ = d. When 〈ci, s〉 < [2l−2, 2l−1), the judgment of d is shown in the
following Table 1.

Table 1. Determine the value of d

z z(l) = y(l) [z]2l−1 Judge d′ True d d = d′

>0 Y [0, 2l−2) 0 0 Y

[2l−2, 2 × 2l−2) 0 0 Y

N [0, 2l−2) 1 1 Y

[2l−2, 2 × 2l−2) −1 1 N

<0 Y [0, 2l−2) 0 0 Y

[2l−2, 2 × 2l−2) 0 0 Y

N [0, 2l−2) −1 1 N

[2l−2, 2 × 2l−2) 1 1 Y

After dealing with different values of x = 〈ci, s〉, we get the expectation of
the randomness is the following function:

f(x) =

⎧
⎨

⎩

−2l−1 − 2x, x ∈ (−2 · 2l−2,−2l−2]
0, x ∈ (−2l−2, 2l−2)
2l−1 − 2x, x ∈ [2l−2, 2 · 2l−2)

That is to say, all the equation of the lower bits can be transformed into the
following form

[z]2l−1 + d′ · 2l−1 = 〈ci, s〉 + ([y]2l−1 − f(〈ci, s〉) + f(〈ci, s〉).

Now ([y]2l−1−f(〈ci, s〉) is τy-subgaussian and f(〈ci, s〉) is a function only related
to 〈ci, s〉, so the samples (ci, [y]2l−1) follow a non-subgaussian ILWE distribution.
According to Theorem 2, the least squares estimator s̃ = λs. In practice, we need
to search an approximate value λ′ ≈ λ and calculate the rounding vector
 1

λ s̃	.
So the smaller λ is, the larger the error between
 1

λ s̃	 and s, and it is more
difficult to find s. In Sect. 6, we set up several experiments on the Dilithium-5
and this attack works well leaking the 4-th bit of randomness. As a contrast,

Integer LWE with Non-subgaussian Error and Related Attacks 13

when there is no correction factor, we can only attack the case leaking the 7-th
bit or above. When the leakage position is lower than 4, λ becomes extremely
small. As we need to ensure that ‖
 1

λ s̃	−s‖∞ ≤ 1/2 but a smaller λ will expand
the left end of the inequality, so more signatures are necessary to find s.

5 The Careless Implementation Attack

In a Fiat-Shamir signature scheme, in order to prevent the leakage of any infor-
mation of the secret s through the distribution of the signature z = y + 〈s, c〉,
rejection sampling is applied to remodeling the distribution of z to a public dis-
tribution. However, a well constructed cryptosystem might be carelessly applied
or implemented. Specifically, when some parameters related to the nonce y are
implemented mistakenly, the rejection sampling will lose its effects and thus the
signatures will leak some information of the secret s. In this section, according
to the error distribution, we abstract different cases for further discussions. We
find that no matter what the distribution of y is, the solution vector obtained
by the least squares method is also a constant multiple of the real secret s.

5.1 Gaussian Randomness

Among the lattice based Fiat-Shamir signature schemes, [14] choose to instan-
tiate the error as a Gaussian distribution.5 The signature is generated by
z = Sc + y, where the secret key S ∈ Z

k×n
q . After generating signatures, these

signatures will finally be output with probability min(Dk
σ(z)/(M · DSc,σ), 1).

The parameter M is chosen to be the maximum real number such that
Dk

σ(z)/(M · DSc,σ) ≤ 1. When the cryptosystem is running normally, the distri-
bution of the signature z is clearly Dk

σ(z), which is a public distribution which
is independent with Sc.

When the distribution of y changes to Dk
σ′ , as the output probability of

the signature is still min(Dk
σ(z)/(M · DSc,σ), 1), the distribution of the output

signature is DSc,σ′ · Dk
σ(z)/(M · DSc,σ), which is in fact a gaussian distribution.

Let σ′ = ησ, then for one component of z, its probability density function is

D〈s,c〉,σ′ · Dk
σ(z)/(M · D〈s,c〉,σ)

= K · exp(− (z − 〈s, c〉)2(σ2 − σ′2)
2σ2σ′2) · exp(− z2

2σ2
)

= K′ · exp(− (z − μ)2

2Σ2
),

where μ = (1 − η2)〈s, c〉, Σ = ησ and K,K ′ are constant real numbers. So the
signature z is gaussian with E(z) = (1 − η2)Sc and D(z) = η2σ2.

5 In fact, the nonce in [7] is also gaussian, but the signature is of the form z =
y + (−1)bsc, which is different with our case.

14 T. Wang et al.

Now the i-th coefficient of z, which is denoted as zi, follows the equation
zi = 〈si, c〉 + yi. Let f(〈si, c〉) = −η2〈si, c〉, then

zi = 〈si, c〉 + y′
i + f(〈si, c〉)

and y′
i become a gaussian variable. We can transform these samples to an ILWE

form: zi = 〈(1−η2)si, c〉+y′
i. As a result, when collecting enough samples about

the same row of the secret S, the result of the least squares method s̃ will be
close to (1 − η2)s. In order to find out the secret vector si, the amount of the
signatures we get should be large enough so that ‖�s̃/(1 − η2)� − si‖∞ < 1/2.
Other rows of S can be obtained using the same approach.

5.2 Uniform Randomness

In this section, we will deal with the uniform case. Take Dilithium for an example,
we take one part of the secret key s1 be s, then the corresponding signature is
z = y + sc. The randomness y is chosen uniformly at random among γ-short
polynomials in Rq. Rewrite cs by the matrix multiplication Cs, where C is the
rotation of c. The signature z will finally be output when z ∈ {−γ + β, . . . , γ −
β}n, where Cs ∈ (−β, β)n and y ∈ (−γ, γ). If the bound γ of the randomness
y is implemented to a different parameter γ′ such that the rejection sampling
lose its efficacy, we will illustrate that the least squares method can also solve
the secret vector s.

It is clear when γ′ ≥ γ, all the coefficient of z are uniformly distributed
on (−γ + β, γ − β) ∩ Z, so the distribution of z is independent of c. In other
words, there is no information of the secret s contained in the distribution of z.
When γ′ ≤ γ −2β, then ‖y + sc‖∞ ≤ γ +β, which means the rejection sampling
completely lose its effectiveness. In this case, y is a subgaussian vector regardless
of C, then recovering s can be reduced to the ILWE problem.

If γ′ ∈ (γ − 2β, γ), we write the linear equations z = y + Cs as before, then
the i-th coefficient zi of z can be represented as zi = 〈ci, s〉 + yi, where ci is
the i-th row of C. After the rejection sampling, the distribution of zi can be
easily obtained, which is related to the value of 〈ci, s〉. Then the expectation
E(yi) is related to 〈ci, s〉, so we can regard E(yi) as a function of 〈ci, s〉 thus
E(yi) = f(〈ci, s〉), where f(x) is

f(x) =

⎧
⎪⎪⎨

⎪⎪⎩

−1

2
(γ − γ′ − β), x ∈ (−β, −(γ − γ′ − β))

0, x ∈ [−(γ − γ′ − β), γ − γ′ − β]
1

2
(γ − γ′ − β), x ∈ [γ − γ′ − β, β).

If γ′ ∈ (γ − β, γ), then E(yi) can also be regarded as a function 〈ci, s〉, so
the samples (z = y + Cs,C) follow a non-subgaussian distribution. After given
enough partially rejected signatures, we can obtain a vector s̃ and s̃ ≈ λs by the
least square method with samples (z = y + Cs,C).

A similar problem to the implementation mistakes of randomness is how
high the risk is if the rejection bound is relaxed. This is a practical problem

Integer LWE with Non-subgaussian Error and Related Attacks 15

because the efficiency of signature scheme is related to the expected number of
repetitions due to the rejection sampling. This number is not to be neglected
when considering the efficiency of the scheme. If we try to change the original
rejection boundary ‖z‖∞ ≤ γ −β to ‖z‖∞ ≤ γ′ −β, where 0 < γ′ < γ, then with
the similar analysis as Sect. 5.2, it is also a non-subgaussian ILWE problem. The
corresponding experimental results are given in Sect. 6.

It takes extremely many samples to recover s due to the large scale of random-
ness in the lattice based Fiat-Shamir signatures. However, when given the public
key, we can recover the majority of the components of the private key using a
smaller number of signatures, and then determine the remaining components of
the secret key by exhaustive search or lattice method.

6 Experimental Results

In this section, we have carried out three sets of experiments: lower-bit random-
ness leakage attack, careless implementation attack with uniform randomness
and careless implementation attack with gaussian randomness. We refer to λ as
the correction factor.

6.1 Lower-Bit Randomness Leakage Attack

Our discussion is based on the highest security level parameter set, Dilithium-5,
of the third round candidate Dilithium. Before carrying out the specific exper-
iment, the leakage boundary l should be determined. 10000 signatures (corre-
sponding to 2.56 million samples) are randomly generated to count the proba-
bility of |〈s, c〉| falling in the interval (−2l, 2l). The probability of |〈s, c〉| < 25 is
required to be larger than 99%, so the leakage bound of Dilithium-5 is 6.

Next, try to recover the private key of Dilithium-5 when the 5-th bit, the 4-th
bit or even lower bit is leaked. The private key recovery is tested when the fixed
number of signatures is given and different correction coefficients are selected.
Among them, 7 groups of experiments were carried out for each leakage position.

The first case is leaking the fifth bit. Randomly generate 1000 signatures
and 11 different correction factors such as 1, 1.1, 1.2, ..., 2, were selected to
attack with 1000 signatures. The experimental results are shown in Fig. 1. The
horizontal coordinate in the figure is the correction coefficient, and the vertical
coordinate is the number of components in λs̃ different from components in the
private key. Obviously, the vertical coordinate of 0 indicates the recovery of the
complete private key. It can be seen from the figure that the optimal correction
coefficient is between 1.3 and 1.5 when the fifth bit of the leakage randomness is
leaked. What’s more, we have give an estimation of the correction factor based
on Proposition 1 and the results are in the Table 2.

Next, consider the case of leaking the fourth bit. Since 5000 signatures are
given since 1000 signatures are not enough. Besides, 401 different correction
factors such as 0, 0.05, 0.1,..., 20 are selected. The experimental results are shown
in Fig. 1. It can be seen from the figure that when the fourth bit of randomness is

16 T. Wang et al.

leaked, the optimal correction coefficient is between 6 and 12. We have also give
an estimation of the correction factor and the results are in the Table 2. We find
that the gap between the theoretical value and the experimental value is very
small, which further verifies that the assumptions used to prove Proposition 1
are reasonable.

Fig. 1. Attack on Dilithium-5 with 5-th and 4-th bit’s leakage

Table 2. Estimation of the correction factor

‖s‖2 22.181 23.600 23.152 21.977 23.600 22.293 23.302

Position = 5 1.374 1.475 1.442 1.362 1.475 1.381 1.453

Position = 4 7.411 9.444 8.939 6.959 9.444 7.459 9.220

Finally, the results show that even given 500000 signatures, the secret key of
Dilithium-5 can not be recovered when leaking the third bit as the correction
factor is extremely large. The estimation of the correction factor is about 1000,
which explains why we can’t recover the secret key by the least squares method.

6.2 Careless Implementation Attack with Uniform Randomness

We also take Dilithium-5 as an example in this section. In the case of uniform
distribution, the change of rejection condition is equivalent to the change of the
range of randomness. In practice, in order to reduce the number of rejection
times of signature to improve the efficiency of a scheme, we may try to relax
the reject condition. Therefore, it is more meaningful to analyze the attacks
that signature schemes may suffer under this situation. Now we consider two
rejection conditions: ‖z‖∞ ≤ γ + β and ‖z‖∞ ≤ γ. In each case, seven groups
of experiments are carried out to test the influence of the number of rejected
signatures and the correction coefficient on the attack results.

Integer LWE with Non-subgaussian Error and Related Attacks 17

First of all, if the rejection condition is ‖z‖∞ ≤ γ + β, the attacker can
obtain all the rejected signatures. Intuitively, the secret key can be recovered
without the correction factor, which is confirmed in the following experiment.
We have randomly generated 10 million and 20 million messages to obtain the
corresponding signatures and 81 different correction coefficients of 0, 0.05, 0.1,...,
4 are selected to attack. The results are shown in Fig. 2.

Fig. 2. Attack on Dilithium-5 with the rejection bound γ + β

Secondly, when the rejection condition is γ1, the attacker can only obtain a
part of rejected signatures. Similar to the first case, we test the influence of the
number of rejected signatures and the correction factor on the attack result. At
this time, 81 different correction coefficients, such as 0, 0.05, 0.1, ..., 4, are still
selected. However, because more rejection signatures are needed in this case, the
number of messages is increased from 40 million to 50 million. The attack results
are shown in Fig. 3. It can be seen from the experimental results that when the
rejection condition is γ1, the optimal correction coefficient is between 1.5 and 2.

Fig. 3. Attack on Dilithium-5 with the rejection bound γ

Furthermore, we note that the signature does not actually leak any infor-
mation of s when |z| < γ − β, so this part of the signature actually reduces
the speed of convergence of the least squares method. In our experiments, we

18 T. Wang et al.

remove these signatures and then do the least squares method on the remaining
signatures after reducing their size, which can greatly save data complexity and
time complexity.

6.3 Careless Implementation Attack with Gaussian Randomness

The signature [14], in which the randomness is Gaussian, is used for analysis.
For experimental convenience, the scheme parameters are adjusted as follows:
the dimension of the lattice m = 1024, the infinite norm of the private key
‖s‖∞ = 1, the number of non-zero elements in the output of the random oracle
is 44, and the standard deviation of the randomness is σ = 6721. Two scales
of randomness are implemented in this section and the standard deviation are
σ′ = 1

2σ, 1
11σ respectively. Four sets of experiments are conducted for each case to

test the effect of the correction factor. We randomly generate 1 million of signa-
tures correspond to 1 million of different messages, and 2001 different correction
coefficients, such as 0, 0.001, 0.002,..., 2, are selected. The results are shown in
Fig. 4. The correction factor are about 0.5, 1 respectively, and the secret key can
be completely recovered when σ′ = 1

11σ.
In this group of experiments, there is a phenomenon that the theoretical

value of λ is inconsistent with the experimental value. One possible explanation
is that after the careless implementation of the randomness, min(Dk

σ(z)/(M ·
DSc,σ), 1) �= Dk

σ(z)/(M · DSc,σ), so we can’t treat the distribution of the signa-
tures as gaussian.

Fig. 4. Attack on [14] with careless implementation

7 Conclusion

In this paper we extend the ILWE problem to the non-subgaussian ILWE prob-
lem, and prove the non-subgaussian ILWE problem can still be solved by the
least squares method. Then, we give two practical attack scenarios against lat-
tice based Fiat-Shamir signatures: a lower-bit of randomness leakage attack and

Integer LWE with Non-subgaussian Error and Related Attacks 19

a careless implementation attack, and finally carry out a series of experiments
to verify that the attacks are feasible for a concrete scheme. The above facts
show that in lattice based Fiat-Shamir signatures, the secret s can theoretically
be recovered just using the least squares method as long as the distribution
of signature leaks any information about the private key. Therefore, we should
check the distribution of the actual output of signatures in order to avoid the
implementation errors that could lead to the leakage of private key information.

In practice, a large number of signatures are often required in order to recover
the complete private key. In the future, we will look for algorithms that require
less signatures for different attack scenarios by taking into account the known
relationship between the public and private keys. Another direction that needs
to be improved is to remove the heuristic assumptions in this paper, although
the experimental results are very close to the theoretical prediction.

A Proof of Proposition 1

Reduce the General Case to the Special Case. This step is reducing any
nonlinear ILWE problem to a special nonlinear ILWE problem where the secret
satisfies s = (s1, 0, . . . , 0)T . Let (A,b) be m samples from the non-subgaussian
ILWE distribution Ds,χa,χe,f , e′ = e + f(As) and P = (p1,p2, . . . ,pm)T ∈
On(R), then b = (APT)(Ps)+e′. In particular, there exists an orthogonal trans-
formation P such that Ps = (‖s‖2, 0, . . . , 0)T .6 As we have illustrated above, the
result of the least squares method is

(AT A)−1AT b = PT ((APT)T APT)−1(APT)T b.

If we can prove ((APT)T APT)−1(APT)T b ≈ λPs = (λ‖s‖2, 0, . . . , 0)T , then
(AT A)−1AT b ≈ PT (λ‖s‖2, 0, . . . , 0)T = λs.

Notice that ((APT)T APT)−1(APT)T b is the least squares estimator of the
samples (b = e + APT Ps,APT) where Ps = (‖s‖2, 0, . . . , 0)T . As the distribu-
tion of the random vector Pa can be treated as the distribution of a, so we have
transferred a general non-subgaussian ILWE problem into a special one that only
the first component of s is nonzero. In the rest of this paper, s = (s1, 0, . . . , 0)T

and ai is represented as (a(1)
i , a

(2)
i , . . . , a

(m)
i)T .

Next, combine the terms 〈ai, s〉 and f(〈ai, s〉) together and rewrite 〈ai, s〉 +
f(〈ai, s〉) as 〈r(a(1)

i)ai, s〉. Now bi = 〈r(a(1)
i)ai, s〉 + ei and the error becomes

subgaussian, where ri = f(a
(1)
i s1)+a

(1)
i s1

a
(1)
i s1

. Let R = diag(r1, r2, . . . , rm), then these

samples can be rewrite as the following matrix form

(A,b = RAs + e). (3)

6 “P = (p1,p2, . . . ,pm)T ” can be constructed as the following way: p1 =
(s1/‖s‖2, s2/‖s‖2, . . . , sm/‖s‖2)

T , p2,p3, . . . ,pm are any set of orthonormal basis
on the vector space Span{p1}⊥.

20 T. Wang et al.

Estimate λ. We restate that the result of the least squares method is

(AT A)−1AT b = (AT A)−1AT e + (AT A)−1(AT RA)s.

According to Theorem 1, (AT A)−1AT e tend to zero, so what remains unsettled
now is

(AT A)−1(AT RA)s.

Let (AT A)−1 = M1 and AT RA = M2 and next we will analyze M2. As the
matrix R = diag(r1, r2, . . . , rm), so R

1
2 = diag(

√
r1,

√
r2, . . . ,

√
rm) and M2 =

(R
1
2 A)T (R

1
2 A). The components of each row of R

1
2 A = V are no longer obey

the same distribution as χn
a . In order to get the tail inequalities of the spectral

radius of VT V, we split VT V as
∑m

k=1 vkvT
k , where V = (v1,v2, . . . ,vm)T and

vk = r
1
2
k am. The elements in row i and column j of the matrix VT V can be

expressed as
∑m

k=1 v
(i)
k v

(j)
k =

∑m
k=1 r

(1)
k a

(i)
k a

(j)
k , then

E[r(1)k a
(i)
k a

(j)
k] = 0 i �= j

E[r(1)k a
(i)
k a

(j)
k] = E[r(1)k]σ2

a = σ2
2 i = j �= 1

E[r(1)k a
(1)
k a

(1)
k] = E[r(1)k a

(1)
k a

(1)
k] = σ2

1 i = j = 1.

According to the central limit theorem, the matrix mM1 will converge
to σ2

aIn and 1
mM2 will converge to an n-dimensional diagonal matrix

diag(σ2
1 , σ

2
2 , . . . , σ

2
2). We claim that M1M2s will converge to

(
1
m

σ−2
a In)(m · diag(σ2

1 , σ
2
2 , . . . , σ

2
2))s = (σ1/σa)2s.

Formally speaking, we want to prove the following proposition:

Proposition 2. Let x1,x2, . . . ,xm be random vectors in R
n. All the components

of these vectors are independently and identically distributed with the standard
deviation be σx, s = (s1, 0, . . . , 0) ∈ Z

n. If for some γ ≥ 0,

E[exp(αT xi)] ≤ exp(‖α‖22γ/2), ∀α ∈ R
n

for all i = 1, 2, . . . ,m, then for any a > 0 and t > 0, when

m > M = 29 · (n ln 9 + t)γ2a2|s1|2 max{max{σ1, σ2}2
σ8

x

,
K2 max{σ1, σ2}4

min{σ1, σ2}2 },

Pr[‖(
m∑

i=1

xixT
i)−1(

m∑

i=1

r(x(1)
i)xixT

i)s − σ2
1

σ2
x

s‖2 > 1/a] ≤ 1 − 4e−t

where x
(1)
i is the first component of the random vector xi, r is a bounded function

satisfies E[r(x(1)
i)(x(1)

i)2] �= 0 and |r| < K > 0, σ2
1 = E[r(x(1)

i)(x(1)
i)2] and

σ2
2 = E[r(x(1)

i)].

Integer LWE with Non-subgaussian Error and Related Attacks 21

The proof will be given at the end of this section. Using this theorem, we can
prove Proposition 1.

Proof. According to Theorem 1 and Proposition 2, we can choose m ≥ M and
t = ln(8n), then

Pr[‖(AT A)−1 · AT e′‖∞ < 1/4] ≤ 1 − 1/2n

Pr[‖(
m∑

i=1

aiaT
i)−1(

m∑

i=1

r(a(1)
i)aiaT

i)s − σ2
1

σ2
a

s‖2 < 1/4] ≤ 1 − 1/2n,

where each component of e′ satisfies e′ = e − f(〈a, s〉), thus the least squares
estimator satisfies

‖s̃ − σ2
1/σ2

as‖∞ = ‖(AT A)−1 · AT b − σ2
1/σ2

as‖∞

≤ ‖(AT A)−1 · AT e′‖∞ + ‖(
m∑

i=1

aiaT
i)−1(

m∑

i=1

r(a(1)
i)aiaT

i)s − σ2
1/σ2

as‖∞

then Pr[‖s̃ − σ2
1/σ2

as‖∞ < 1/2]

≤ Pr[‖(AT A)−1AT e′‖∞ + ‖(AT A)−1(
m∑

i=1

r(a(1)
i)aiaT

i)s − σ2
1

σ2
a

s‖∞ < 1/2]

≤ Pr[‖(AT A)−1AT e′‖∞ <
1
4
] · Pr[‖(AT A)−1(

m∑

i=1

r(a(1)
i)aiaT

i)s − σ2
1

σ2
a

s‖∞ <
1
4
]

≤ (1 − 1/2n)2 = 1 − 1
n

+
1

4n2
. �

The bound of Proposition 1 is relatively loose. In fact, when the function f is
close to a zero function, the samples required in practice is almost the same as
the bound in Theorem 1.

To prove Proposition 2, we should measure the operator norm of the sum of
random matrix. Fortunately, the following lemma in [12] provided a method to
solve this problem.

Lemma 3 (Lemma A.1 in [12]). Let x1,x2, . . . ,xm be random vectors in R
n

such that, for some γ ≥ 0,

E[xixT
i |x1,x2, . . . ,xi−1] = In and

E[exp(αT xi)|x1,x2, . . . ,xi−1] ≤ exp(‖α‖22γ/2), ∀α ∈ R
n

for all i = 1, 2, . . . ,m, almost surely. For all ε0 ∈ (0, 1/2) and t > 0,

Pr[‖(
m∑

i=1

1
m

xixT
i) − In‖op

2 >
1

1 − 2ε0
· εε0,t,m] ≤ 2e−t

where

εε0,t,m := γ · (

√
32(n ln(1 + 2/ε0) + t)

m
+

2(n ln(1 + 2/ε0) + t)
m

).

22 T. Wang et al.

We can get two corollaries below using the Lemma 3.

Corollary 1. Let x1,x2, . . . ,xm be random vectors in R
n such that, for some

γ ≥ 0,
E[xixT

i |x1,x2, . . . ,xi−1] = σ2
xIn and

E[exp(αT xi)|x1,x2, . . . ,xi−1] ≤ exp(‖α‖22γ/2), ∀α ∈ R
n

for all i = 1, 2, . . . ,m, almost surely. For all ε0 ∈ (0, 1/2) and t > 0,

Pr[‖(
m∑

i=1

1
m

xixT
i)−1 − σ−2

x In‖op
2 >

σ−2
x

1 − 2ε0
· εε0,t,m] ≤ 2e−t

where

εε0,t,m := σ−2
x γ · (

√
32(n ln(1 + 2/ε0) + t)

m
+

2(n ln(1 + 2/ε0) + t)
m

).

Proof. Let yi = 1
σx

xi for i ∈ {1, 2, . . . ,m}, A1 =
∑m

i=1 yiyT
i so E[1

mA1] = In

and yi is
√

γ/σx−subgaussian. Let ΔA1 = 1
mA1−In, then (In+ΔA1) = 1

mA1.
Notice that In = (m · A−1

1)(In + ΔA1) = m · A−1
1 + m · A−1

1 ΔA1, so it is clear
that

‖In − m · A−1
1 ‖op

2 ≤ m‖A−1
1 ‖op

2 ‖ΔA1‖op
2 . (4)

Furthermore,

m‖A−1
1 ‖op

2 = ‖In − m · A−1
1 ΔA1‖op

2 ≤ ‖In‖op
2 + m‖A−1

1 ‖op
2 ‖ΔA1‖op

2

so
m‖A−1

1 ‖op
2 ≤ 1

1 − ‖ΔA1‖op
2

. (5)

Combine Eq. 4 and 5, we have

‖In − m · A−1
1 ‖op

2 ≤ ‖ΔA1‖op
2

1 − ‖ΔA1‖op
2

. (6)

According to Lemma 3, we have:7

Pr[‖(
m∑

i=1

1
m

xixT
i)−1 − σ−2

x In‖op
2 >

σ−2
x

1 − 2ε0
· εε0,t,m]

≤ Pr[‖ΔA1‖op
2 >

1
1 − 2ε0

· εε0,t,m] ≤ 2e−t. �

7 We have omit an infinitesimal, which only have tiny impact. Similar simplifications
are applied in other proofs.

Integer LWE with Non-subgaussian Error and Related Attacks 23

Corollary 2. Let xi = (x(1)
i , x

(2)
i , . . . , x

(n)
i), i ∈ 1, . . . , m be m random vectors

and all the components are independent random variables with standard deviation
be σ and

∃γ ≥ 0, E[exp(αT xi)|x1,x2, . . . ,xi−1] ≤ exp(‖α‖22γ/2), ∀α ∈ R
n

for all i = 1, 2, . . . ,m, almost surely. For all ε0 ∈ (0, 1/2) and t > 0,

Pr[‖(
m∑

i=1

1

m
r(x

(1)
i)xix

T
i) − diag(σ2

1 , σ2
2 , . . . , σ2

2)‖op
2 >

max{σ1, σ2}2
(1 − 2ε0)

· εε0,t,m] ≤ 2e−t

where r is a function satisfies E[r(x(1)
i)(x(1)

i)2] �= 0, |r(x(1)
i)| < K ,

σ2
1 = E[r(x(1)

i)(x(1)
i)2], σ2

2 = E[r(x(1)
i)] and

εε0,t,m := Kγ/min{σ1, σ2}2 · (

√
32(n ln(1 + 2/ε0) + t)

m
+

2(n ln(1 + 2/ε0) + t)
m

).

Proof. Let vi = r(x(1)
i)1/2 ·xi, we can prove E[vivT

i] = diag(σ2
1 , σ

2
2 , . . . , σ

2
2) = Λ.

Then E[Λ−1/2vi(Λ−1/2vi)T] = mIn and

E[exp(αT Λ−1/2vi)|] = E[exp(αT Λ−1/2r(x(1)
i)1/2xi)|]

≤ exp((‖αT Λ−1/2‖op
2)2Kγ/2) ≤ exp(‖Λ−1‖op

2 ‖α‖22Kγ/2), ∀α ∈ R
n.

This implies that Λ−1/2vi is a ‖Λ−1/2‖op
2

√
Kγ − subgaussian random vector.

Let A2 =
∑m

i=1 r(x(1)
i)xixT

i , then the rest is the similar with Corollary 2. �

Now we can prove Proposition 2.

Proof. Let A1 =
∑m

i=1 xixT
i and A2 =

∑m
i=1 f(x(1)

i)xixT
i , then E[xixT

i] = σ2
xIn,

E[f(x(1)
i)xixT

i] = diag(σ2
1 , σ

2
2 , . . . , σ

2
2) = Λ, and

‖(mA−1
1) · (

1
m

A2)s − σ−2
x In · Λs‖2

= ‖(mA−1
1) · (

1
m

A2)s − (mA−1
1) · Λs + (mA−1

1) · Λs − σ−2
x In · Λs‖2

≤ (‖mA−1
1 ‖op

2 · ‖ 1
m

A2 − Λ‖op
2 + ‖mA−1

1 − σ−2
x In‖op

2 · ‖Λ‖op
2) · |s1|.

Use Corollary 1 and 2, we choose ε0 = 1/4 and M in the proposition, we have

Pr[‖mA−1
1 − σ−2

x In‖op
2 <

1
2amax{σ1, σ2}|s1|] > 1 − 2e−t

Pr[‖ 1
m

A2 − Λ‖op
2 <

1
2amin{σ1, σ2}|s1|] > 1 − 2e−t,

24 T. Wang et al.

so Pr[‖(mA−1
1) · (1

m
A2)s − σ−2

x In · Λs‖2 <
1

a
]

> Pr[‖mA−1
1 ‖op

2 ‖ 1

m
A2 − Λ‖op

2 |s1| <
1

2a
] × Pr[‖mA−1

1 − σ−2
x In‖op

2 ‖Λ‖op
2 |s1| <

1

2a
]

> Pr[‖ 1

m
Λ−1/2A2Λ

−1/2 − In‖op
2 <

1 + ‖ΔA1‖op
2

2amin{σ1, σ2}|s1|]

× Pr[‖mA−1
1 − σ−2

x In‖op
2 <

1

2amax{σ1, σ2}|s1|]

> (1 − 2e−t)2 > 1 − 4e−t. �

References

1. Bindel, N., et al.: qTESLA. Submission to the NIST Post-Quantum Cryptography
Standardization (2017). https://tesla.informatik.tu-darmstadt.de/de/tesla/

2. Bleichenbacher, D.: On the generation of one-time keys in DL signature schemes.
In: Presentation at IEEE P1363 Working Group Meeting, p. 81 (2000)

3. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N 0.292. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48910-X 1

4. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of
secret keys in Diffie-Hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-68697-5 11

5. Bootle, J., Delaplace, C., Espitau, T., Fouque, P.-A., Tibouchi, M.: LWE with-
out modular reduction and improved side-channel attacks against BLISS. In:
Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 494–
524. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2 17

6. De Mulder, E., Hutter, M., Marson, M.E., Pearson, P.: Using Bleichenbacher”s
solution to the hidden number problem to attack nonce leaks in 384-bit ECDSA.
In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 435–452.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1 25

7. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 3

8. Espitau, T., Fouque, P.A., Gérard, B., Tibouchi, M.: Side-channel attacks on BLISS
lattice-based signatures: exploiting branch tracing against strongswan and electro-
magnetic emanations in microcontrollers. In: CCS, pp. 1857–1874. ACM, New York
(2017)

9. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload
– a cache attack on the BLISS lattice-based signature scheme. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 323–345. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53140-2 16

10. Heninger, N., Shacham, H.: Reconstructing RSA private keys from random key
bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 1

11. Howgrave-Graham, N.A., Smart, N.P.: Lattice attacks on digital signature schemes.
Des. Codes Crypt. 23(3), 283–290 (2001)

https://tesla.informatik.tu-darmstadt.de/de/tesla/
https://doi.org/10.1007/3-540-48910-X_1
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/978-3-030-03326-2_17
https://doi.org/10.1007/978-3-642-40349-1_25
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-662-53140-2_16
https://doi.org/10.1007/978-3-642-03356-8_1

Integer LWE with Non-subgaussian Error and Related Attacks 25

12. Hsu, D., Kakade, S.M., Zhang, T.: Tail inequalities for sums of random matrices
that depend on the intrinsic dimension. Electron. Commun. Probab. 17(14), 1–13
(2012)

13. Liu, Y., Zhou, Y., Sun, S., Wang, T., Zhang, R., Ming, J.: On the security of
lattice-based Fiat-Shamir signatures in the presence of randomness leakage. IEEE
Trans. Inf. Forensics Secur. 16, 1868–1879 (2020)

14. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

15. Lyubashevsky, V., et al.: CRYSTALS-Dilithium. Submission to the NIST Post-
Quantum Cryptography Standardization (2017). https://pq-crystals.org/dilithium

16. Nguyen, S.: The insecurity of the digital signature algorithm with partially known
nonces. J. Cryptol. 15(3), 151–176 (2002)

17. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the elliptic curve digital signature
algorithm with partially known nonces. Des. Codes Crypt. 30(2), 201–217 (2003)

18. Pessl, P., Bruinderink, L.G., Yarom, Y.: To BLISS-B or not to be: attacking
strongswan’s implementation of post-quantum signatures. In: CCS, pp. 1843–1855.
ACM, New York (2017)

19. Ravi, P., Jhanwar, M.P., Howe, J., Chattopadhyay, A., Bhasin, S.: Side-channel
assisted existential forgery attack on Dilithium - a NIST PQC candidate. Cryptol-
ogy ePrint Archive, Report 2018/821 (2018). https://eprint.iacr.org/2018/821

https://doi.org/10.1007/978-3-642-29011-4_43
https://pq-crystals.org/dilithium
https://eprint.iacr.org/2018/821

Layering Quantum-Resistance into
Classical Digital Signature Algorithms

Teik Guan Tan(B) and Jianying Zhou

Singapore University of Technology and Design, Singapore, Singapore
teikguan tan@mymail.sutd.edu.sg

Abstract. It is proven that asymmetric key cryptographic systems that
rely on Integer Factorization or Discrete Logarithm as the underlying
hard problem are vulnerable to quantum computers. Using Shor’s algo-
rithm on a large-enough quantum computer, an attacker can cryptan-
alyze the public key to obtain the private key in O(logN) time com-
plexity. For systems that use the classical Digital Signature Algorithm
(DSA), Rivest-Shamir-Adleman (RSA) algorithm or Elliptic-Curve Dig-
ital Signature Algorithm (ECDSA), it means that authentication, data
integrity and non-repudiation between the communicating parties can-
not be assured in the post-quantum era.

In this paper, we present a novel approach using zero-knowledge
proofs on the pre-image of the private signing key to layer in quantum-
resistance into digital signature deployments that require longer-term
post-quantum protection while maintaining backward compatibility with
existing implementations. We show that this approach can extend the
cryptographic protection of data beyond the post-quantum era and is
also easy to migrate to. An implementation of this approach applying
a ZKBoo zero-knowledge proof on ECDSA signatures is realized using
a RFC3161-compatible time-stamp server with OpenSSL and an Adobe
Acrobat Reader DC.

Keywords: Digital signature · Elliptic Curve Digital Signature
Algorithm (ECDSA) · Zero-knowledge proof · Post-quantum security

1 Introduction

Asymmetric key cryptography is the tool used by systems worldwide to preserve
trust amongst parties in the digital realm. The use of digital signatures allow
communicating parties to authenticate each other, check the integrity of the
data exchanged, and prove the origin of the data in situations of repudiation.
Under National Institute of Standards and Technology’s (NIST) Digital Signa-
ture Standards FIPS 186-4 [26], three signature algorithms are described. These
are i) Digital Signature Algorithm (DSA) which is based on discrete logarithm
cryptography first introduced by Diffie and Hellman [15]; ii) Rivest-Shamir Adel-
man (RSA) [34], and iii) Elliptic-Curve Digital Signature Algorithm (ECDSA)

c© Springer Nature Switzerland AG 2021
J. K. Liu et al. (Eds.): ISC 2021, LNCS 13118, pp. 26–41, 2021.
https://doi.org/10.1007/978-3-030-91356-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91356-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-91356-4_2

Layering Quantum-Resistance into Classical Digital Signature Algorithms 27

which is based on Elliptic Curve Cryptography (ECC) [8] and together we call
them classical digital signature algorithms. The security of DSA and ECDSA
are based on the hard problem of solving discrete logarithm over a finite field
of very large numbers, while the security of RSA is based on the difficulty of
integer factorization over a finite field of very large numbers.

The advent of large fault-tolerant quantum computers poses a big risk to
systems that use these digital signature algorithms. Shor’s [35] algorithm is able
to solve both the discrete logarithm problem and integer factorization problem
in O(logN) polynomial time. This means that any adversary in possession of a
large-enough quantum computer will be able to compute a user’s private signing
key when given the user’s public key in a matter of hours, and generate valid
digital signatures to impersonate the user. In addition, data that was previously
signed by the user no longer can be proven to be authentic and trustworthy. As
a reference post-quantum deadline, NIST has provided a report [13] mentioning
that by year 2030, it is likely that a quantum computer capable of cryptana-
lyzing RSA-2048 can be built with a budget of one billion dollars. To address
this, NIST is embarking on a post-quantum standardization exercise [29,30] to
select suitable quantum-secure digital signature and key-exchange algorithms.
The final selection is expected to complete soon with the new standards slated to
be published by year 2024. Separately, NIST has also recommended two stateful
hash-based signatures, namely Leighton-Micali Signatures and eXtended-Merkle
Signature Scheme, for post-quantum use under conditions [14].

While the industry is likely to encourage new system implementations post-
2024 to consider adopting the new digital signature standards, we expect differ-
ent challenges for existing or upcoming systems. NIST has published some chal-
lenges they explored with post-quantum cryptography replacement and migra-
tion [4,12], and we supplement it with additional questions specific to digital
signatures. Should system operators using digital signatures embark on a crypto-
graphic migration to the stateful hash-based signatures [14] instead of waiting for
the post-quantum standardization? How about documents that are already digi-
tally signed, and are required to remain trustworthy beyond year 2030? Do these
documents need to be counter-signed with new algorithms? Since the counter-
signer may be a non-interested third party to the transaction, what liability
does the counter-signer bear for the verifying party? How about legacy systems
that cannot be migrated? When are the verifying parties expected to be ready
to verify the new algorithms since the migrations are happening at a different
pace? What are the legal implications for the verifying party if the existing non-
quantum-secure signature passes verification, but the verifying party is unable to
verify the new quantum-secure signature? These are questions with no straight-
forward answers and seeking a proper resolution may require more time than
afforded by the impending post-quantum deadline.

Our approach is different. If the existing digital signatures can remain
quantum-resistant even after large-enough quantum computers are built, then
many of the transition-related questions can be avoided. Existing systems will
not face compatibility issues, migration timelines to the new algorithms are less

28 T. G. Tan and J. Zhou

counter-party dependent, and existing digitally signed documents retain their
authenticity in the post-quantum era. This is possible by layering a quantum-
secure zero-knowledge proof of the pre-image of the private signing key along
with the signature. Our contributions are as follows:

– Extend the digital signature scheme to construct a quantum-resistant digital
signature scheme with backward-compatibility properties.

– Realize the quantum-resistant digital signature scheme using a zero-
knowledge proof to be included with digital signatures to make them
quantum-resistant.

– Deploy a real-world implementation of a RFC3161-compatible [2] time-stamp
server to issue quantum-resistant ECDSA timestamp digital signatures with
X.509v3 certificates that are compatible with the existing Adobe PDF Acro-
bat Reader DC v2021.x.

The rest of this paper is organized as follows. Section 2 covers the background
of digital signatures and zero-knowledge proofs. Section 3 describes the proposed
signature scheme, covers the description of the algorithms and provides measure-
ments made on execution timings and proof sizes. Section 4 describes the real-line
deployment of the proposed signature scheme and covers the migration strategy.
Section 5 discusses some of the related works and Sect. 6 concludes the paper.

2 Background

2.1 Digital Signature Basics

We describe a simple scenario for two communicating parties Alice and Bob,
where Alice has a message M to be sent to Bob. Alice wants to ensure that
Bob receives the message unchanged (integrity) and knows that it is from Alice
(authenticity). Bob wants to be able to prove to a third-party that the message
is indeed from Alice (non-repudiation).

Definition 1. We define a digital signature scheme as a triple of polynomial-
time algorithms KeyGen, Sign, V erify with the following parameters:

KeyGen(1n) ⇒ {Ks,Kp} takes in a security parameter 1n which defines the
cryptographic key strength of n, and outputs a private key Ks and corre-
sponding public key Kp.

Sign(M,Ks) ⇒ {σ} takes in a message M and the private key Ks, and outputs
a signature σ.

V erify(M,Kp, σ) ⇒ {result} takes in a message M , the public key Kp and
signature σ, and outputs accept if and only if σ is a valid signature generated
by Sign(M,Ks).

In this case, Alice, the signing party, calls KeyGen to generate {Ks,Kp}.
Kp is published where Bob and other parties have access to. Alice then calls
Sign with her private key Ks to sign the message M , generating a signature

Layering Quantum-Resistance into Classical Digital Signature Algorithms 29

σ. Alice transmits {M,σ} to Bob. Bob, the verifying party, calls V erify with
Alice’s public key Kp to verify the signature σ for message M . If V erify returns
accept, then Bob has successfully received a message M unchanged and the
signature proof σ from Alice.

2.2 Zero-Knowledge Proof

Goldwasser et al. [20] provided the concept of zero-knowledge proofs where the
proof conveys no additional knowledge besides the correctness of the proposi-
tion. While there has been many concrete realizations of zero-knowledge proofs,
quantum-resistant non-interactive zero-knowledge proofs are either ZKStark [6]
or MPC-in-the-head (Multi-party computation in-the-head) [24] based proofs.

For MPC-in-the-head proofs, a prover has to create a boolean computational
circuit of n branches with commitment, of which n − 1 views can be revealed to
the verifier as proof of knowledge. To make the proof non-interactive, the prover
can use Fiat-Shamir’s heuristic [17] to deterministically, yet unpredictably decide
which n − 1 views to send to the verifier. The verifier then walks through the
n − 1 views with a 1

n chance that the proposition is incorrect. By increasing
the number of rounds (with different random input parameters) that the prover
has to compute the circuit and provide the views, it exponentially reduces the
statistical probability that the prover is making a false claim.

3 Proposed Quantum-Resistant Digital Signatures

Since Shor’s algorithm on quantum computers break the integer factorization
problem [35], discrete logarithm problem [35] and elliptic-curve discrete loga-
rithm problem [32], we can safely assume that adversaries can feasibly compute
all RSA/DSA/ECDSA private keys Ks given the public key Kp when large
enough quantum computers are built. On the other hand, symmetric key and
hash-based cryptography remain relatively quantum-resistant. Grover’s algo-
rithm [21] on quantum computers can only achieve a quadratic speedup of
O(

√
N) when performing a brute-force search, and this has been proven to be

optimal [7].
Therefore, our proposal is to extend the signing process to layer in a zero-

knowledge proof of knowledge of the pre-image of the private key to protect the
signature. The extended verifying process can then verify this proof to ascertain
that the signature is genuinely created by the owner of the private key and not a
quantum-capable adversary. For backward-compatibility, the existing verifying
process can still verify the digital signature without the proof, albeit losing the
quantum-resistant assurance.

3.1 Quantum-Resistant Digital Signature Scheme

We start by extending the classical digital signature scheme (Definition 1)
described in Sect. 2.1.

30 T. G. Tan and J. Zhou

Definition 2. The extended quantum-resistant digital signature scheme is as
follows:

KeyGenq(1n) ⇒ {ρ,Kp} takes in a security parameter 1n which defines the
cryptographic key strength of n, and outputs a secret pre-image ρ and a
public key Kp. Kp is the associated public key to the private key H(ρ) where
H() is a collapsing hash function [38].

Signq(M,ρ) ⇒ {σ, π} takes in a message M and the secret pre-image ρ, and
outputs a signature σ computed using Sign(M,H(ρ)) as well as a quantum-
resistant zero-knowledge proof π that i) H(ρ) is computed from ρ and ii) σ
is computed from H(ρ).

V erifyq(M,Kp, σ, π) ⇒ {result} takes in a message M , the public key Kp and
signature σ, and outputs accept if and only if V erify(M,Kp) returns accept
and π is a valid zero-knowledge proof that σ is computed from ρ.

Intuitively, Definition 2 inherits the classical security properties of Defini-
tion 1 with an additional layer of quantum-resistance placed on the private key.
A classical adversary will not be able to compromise the soundness of V erifyq
when interacting with the signing party since the additional information obtained
from Signq is a zero-knowledge proof that does not reveal the secret pre-image
ρ or private key Ks = H(ρ).

Lemma 1 (Quantum Resistance). Definition 2 offers additional quantum-
resistance for digital signatures generated using Signq provided V erifyq is used
to verify the signature σ and proof π.

Proof. We assume that a quantum-capable adversary is able to use Shor’s algo-
rithm [35] to recover H(ρ) from Kp. Using H(ρ), the adversary is then able
to arbitrarily generate valid signatures σ using Sign which will be accepted by
V erify. However, the adversary will not be able generate the proof π since the
value of ρ is not recoverable from H(ρ) as H() is a collapsing hash function
and resistant to pre-image attacks even from quantum computers [38]. Thus,
V erifyq is resistant to quantum-capable adversaries. ��
Lemma 2 (Backward Compatibility). A signing party using KeyGenq and
Signq of Definition 2 generates signatures σ that are backward compatible with
verifying parties using V erify of Definition 1.

Proof. Signatures σ returned by Signq are generated using the same algorithm
Sign where H(ρ) is effectively equal to Ks. Hence, any verifying party in this
case using V erify will be able to ignore π, and continue to call V erify to check
the validity of the signature σ with respect to M and Kp. A demonstration of
the backward compatibility can be seen in Sect. 4. ��

Layering Quantum-Resistance into Classical Digital Signature Algorithms 31

3.2 Realizing the Proposed Digital Signature Scheme

We use the following algorithms to realize our quantum-resistant digital signa-
ture scheme:

– Digital signing algorithm. Either DSA or ECDSA can be easily used as the
digital signing algorithm. This is because the private key generator for DSA
and ECDSA is essentially an unpredictable random number generated over a
finite field. This matches nicely with the output of a one-way hash function
H(). Using RSA as the signing algorithm is more complex and tedious since
key generation involves the matching the output of a hash function to two
or more unpredictable prime numbers used to compute the RSA modulus.
Possible techniques include mapping the hash output into an ordered list of
very large primes [25] or repeatedly hashing (or mining) random numbers till
a prime is found. For our reference implementation, ECDSA is used as it has
the smallest key size which translates to the smallest proof size. The curve
chosen is secp256r1 (or prime256v1) [8].

– Hash function. The hash function to be used in our reference implementation
is SHA-256 [18] as it is collapsing [38] and the output fits well with the
secp256r1 curve.

– Zero-knowledge proof system. The zero-knowledge proof system to be used has
to be post-quantum secure. We have chosen ZKBoo [19] as it is a 3-branch
MPC-in-the-head realization and already has a ready SHA-256 implementa-
tion. ZKBoo is also used as the underlying proof system to create ZKB++
for Picnic [10], an alternative finalist candidate in NIST’s post-quantum stan-
dardization exercise [30].

Realization ofKeyGenq . The function KeyGenq shown in Algorithm1 works
very similarly to KeyGen. An additional step (see Step 5 of Algorithm1) is
performed to hash the secret pre-image ρ prior to computing public key Kp.

Algorithm 1: Quantum-resistant ECDSA Key Generation KeyGenq.
1 begin
2 G ← ECC base point; P ← ECC order;
3 Generate secret pre-image ρ;
4 Compute private key Ks = H(ρ);
5 Compute public key Kp = (x, y) where Kp ≡ Ks · G mod P ;
6 destroy Ks;
7 return ρ, Kp;
8 end

32 T. G. Tan and J. Zhou

Algorithm 2: Quantum-resistant ECDSA signing Signq.
1 begin
2 G ← ECC base point; P ← ECC order;
3 ρ ← secret pre-image;
4 M ← message;
5 Generate signature random r;

6 Compute r−1 where r ∗ r−1 ≡ 1 mod P ;
7 Compute R = (Rx, Ry) where R ≡ r · G mod P ;
8 Compute hash of message H(M);
9 Enumerate ZKBoo proof π = begin

10 Zero-knowledge computation of private key Ks where Ks = H(ρ) ;
11 Zero-knowledge computation of public key Kp where

Kp ≡ Ks · G mod P ;

12 Compute s where s ≡ r−1 ∗ (H(M) + Rx ∗ Ks) mod P ;
13 Commit Rx, s in the proof;
14 end

15 destroy r, r−1, Ks;
16 return σ = {Rx, s}, π;
17 end

Algorithm 3: Quantum-resistant ECDSA verification V erifyq.
1 begin
2 G ← ECC base point; P ← ECC order;
3 Kp ← ECC public key;
4 Rx, s ← signature σ; π ← proof; M ← message;

5 Compute s−1 where s ∗ s−1 ≡ 1 mod P ;
6 Compute hash of message H(M);

7 Compute u1 = s−1 ∗ H(M) mod P ;

8 Compute u2 = s−1 ∗ Rx mod P ;
9 Compute V = (Vx, Vy) where V = u1 · G + u2 · Kp mod P ;

10 if Vx �= Rx then
11 return ”Failed Signature Verification”
12 end
13 else
14 Verify ZKBoo proof π = begin
15 Check that Rx, s is committed in the proof;
16 Check that zero-knowledge computation of Kp from unknown

pre-image is correct;
17 if Check Failed then
18 return ”Failed Proof Verification”
19 end
20 end
21 end
22 return success;
23 end

Realization of Signq . The Signq function is shown in Algorithm2. Besides
computing the ECDSA signature using the private key H(ρ), the Signq function

Layering Quantum-Resistance into Classical Digital Signature Algorithms 33

returns the ZKBoo proof π which includes: i) zero-knowledge proof of knowledge
of pre-image of H(ρ); ii) zero-knowledge proof that public key Kp is computed
from H(ρ); and iii) commitment that H(M) is the message being signed.

The implementation in Step 10 of Algorithm2 uses Giacomelli et al.’s [19]
SHA-256 code. Special care has to be taken to code Step 11 of Algorithm 2 as
the number of computational steps in the proof π could reveal the private key
Ks. When performing elliptic-curve multiplication, we use the double-and-add
always technique which is effective against side channel power analysis timing
attacks [27].

Realization of V erifyq . The function V erifyq shown in Algorithm3 consists
of two parts where the first part (from Steps 5 to 12) is the ECDSA signature
verification similar to V erify while the second part (from Steps 14 to 20) is the
additional verification of the quantum-resistant zero-knowledge proof.

3.3 Performance Measurement

The proposed digital signature scheme is implemented in C1 and tested on an
Intel I5-8250U 8th Gen machine with 8 CPU cores and 8 GB RAM, running a
Cygwin terminal on 64-bit Microsoft Windows 10. No operating system level
CPU scheduling or adjustments are done. We measure the execution times of
Signq and V erifyq as well as the proof sizes when we vary the number of
ZKBoo rounds from 50 to 250, in increments of 50. Increasing the number of
rounds increases the bit-strength of the proof, but inadvertently also increases
the proof sizes and execution times. The measurements are found in Table 1.

Table 1. Measurement of proof sizes and execution times of Signq and V erifyq

ZKBoo rounds 50 100 150 200 250

Size of proof (in KBytes) 1,978 3,956 5,934 7,912 9,890

Signq execution time (in seconds) 20.9 45.9 72.9 95.1 118.2

V erifyq execution time (in seconds) 19.6 45.0 71.0 93.2 115.7

At first glance, the measured overheads for a 250-bit strength proof show a
very large proof of about 10 MB in size and takes almost two minutes to either
carry out Signq or V erifyq. However, when we implement a real-life deployment
in Sect. 4, we are able to reduce the impact to the user experience as the proof
could be generated asynchronously and stored separately from the certificate.

4 Real-Life Deployment

To study issues related to backward-compatibility and migration to quantum-
resistance, we deploy the proposed digital signature scheme into a time-stamp
1 Source codes can be made available upon request.

34 T. G. Tan and J. Zhou

server while using an existing (unchanged) Adobe Acrobat Reader DC to request
for quantum-resistant time-stamped signed PDFs. The deployment is carried out
on a laptop with an Intel I5-8250U 8th Gen machine with 8 CPU cores and 8 GB
RAM, running 64-bit Microsoft Windows 10 for both the client and server. The
setup is as follows:

– Time-stamp client. We use an Adobe Acrobat Reader DC v2021.x. This client
already supports ECDSA [3] and is used unmodified.

– Time-stamp server. We use an open-source time-stamp server (from https://
github.com/kakwa/uts-server) by Pierre-Francois Carpentier. This server is
used with codes unmodified.

– Cryptographic library. The time-stamp server makes use of OpenSSL v1.1.x
to carry out the operations of Certification Authority (CA) issuance of server
certificates, as well as to carry out digital signing according to RFC3161 [2].
We modify the version of OpenSSL v1.1.1b to carry out the extended digital
signature scheme for both X.509 certificate issuance and time-stamping. An
optimization done is to make OpenSSL return the ECDSA signature, while
generating the ZKBoo proofs asynchronously. This allows the ECDSA-signed
time-stamp to be returned to the client without waiting for the ZKBoo proof
to be completely generated. The proofs are thus stored separately from the
certificate.

– Repository. Since the quantum-resistant 256-round ZKBoo proofs for the cer-
tificates and time-stamps are 10 MB each, they could not be easily transmit-
ted to the client. Our modified version of OpenSSL will write the proofs into
Dropbox (www.dropbox.com), while embedding the URL link in the signed
X.509 certificate or the PKCS#7 time-stamp that is returned to the calling
program.

4.1 Deployment Summary

Figure 1 describes the use-cases of the real-life implementation that is tested.
In the setup phase (done once), OpenSSL is used to generate the keys and

certify for both the root CA certificate and time-stamp server certificate. We
adopt a simple certificate hierarchy where the root CA will certify the server
certificate without the need for an intermediate CA (see Fig. 2). Both certifi-
cates include the link under the X.509 Authority-Information-Access extension
to point to the quantum-resistant proof in Dropbox. The root CA certificate is
imported into the Adobe Acrobat to establish the root-to-trust.

In the RFC3161 phase, PDF documents can be timestamped be initiating
the request from the Adobe Acrobat which contacts the Time-stamp Server
and receives an ECDSA-signed PKCS#7 time-stamp. The time-stamp signa-
ture proof is similarly stored in Dropbox with the URL link embedded in the
time-stamp. This time-stamp can be verified by the Adobe Acrobat (see Fig. 3)
and saved in the PDF. Note that the unmodified Adobe Acrobat only verifies
the ECDSA-signed time-stamp and certificate chain and not the ZKBoo proof,
resulting in no changes in wait-time experienced by the end-user.

https://github.com/kakwa/uts-server
https://github.com/kakwa/uts-server
www.dropbox.com

Layering Quantum-Resistance into Classical Digital Signature Algorithms 35

End User Adobe Acrobat Time-stamp Server OpenSSL Dropbox

Generate root CA key+cert

CA cert proof

Download CA cert

Import CA cert

Generate server key+cert

Server cert proof

SetupSetup To Generate X.509 certs

Open PDF

Time-stamp request

ECDSA sign request

Time-stamp proof

Signed PKCS7

Time-stamp response

Verify time-stamp

Time-stamp OK

RFC3161RFC3161 To time-stamp PDF document

Retrieve proof

Download proof for verification

Post upgradePost upgrade To verify quantum-resistant proof

Fig. 1. Real-life deployment of quantum-resistant time-stamp service.

36 T. G. Tan and J. Zhou

Fig. 2. Root CA and time-stamp server certificates.

Fig. 3. Time-stamp verification by Adobe Acrobat unaffected by extension.

Layering Quantum-Resistance into Classical Digital Signature Algorithms 37

In the Post upgrade phase, any verifying party capable of running V erifyq
can follow the link found in the certificates/signature block to download the
quantum-resistant proofs for complete signature verification as per Algorithm3.

4.2 Exploring Migration

To understand the impact to systems which are gradually migrating to the
quantum-resistant digital signature scheme, we list the different outcomes in
Table 2 for the signing and verifying parties at different stages of migration.

Table 2. Outcomes for parties at different stages of migration

Verifying party

Definition 1a Definition 2b

Signing party Definition 1a This is the “as-is” scenario. Signed

documents are vulnerable to forgery

in the post-quantum era.

Signed documents do not include the

quantum-resistant proof. Verifying

parties have the choice to either

reject the document or use V erify

to check the signature while

informing the signing party to

perform the migration

Definition 2b This is the appropriate “Step 1” of

the migration process. Signed

documents include the

quantum-resistant proof. Signing

parties do not need to wait for

verifying parties to migrate before

carrying out this step. Verifying

parties continue to verify the

signature while ignoring the

quantum-resistant proof

This is the “to-be” state, and the

appropriate “Step 2” of the

migration process. After the signing

parties have migrated and started

sending signed documents that

include the quantum-resistant proof,

the verifying parties can update

their systems to verify the signature

and proof to complete the migration

process
aNot yet migrated. Still using Definition 1’s KeyGen, Sign and V erify.
bMigration done. Upgraded using Definition 2’s KeyGenq , Signq and V erifyq .

The appropriate migration strategy to layer in quantum-resistance would
therefore be to firstly upgrade the signing parties to include the quantum-
resistant proof with the signature, before upgrading the verifying parties to be
able to verify the proofs. For verifying parties who choose to upgrade early, it
is recommended that they include Definition 1’s V erify function to maintain
compatibility with signing parties who may not have upgraded yet.

5 Related Work

The instinctive approach to make digital signatures quantum-secure is to use a
replacement or an additional quantum-secure algorithm. At this point of writing,
NIST’s post-quantum standardization exercise [29,30] has identified two lattice-
based algorithms, Dilithium and Falcon, and one multivariate-based algorithm,
Rainbow, as the three finalist digital signature algorithms. Three alternative
algorithms, namely multivariate-based GeMSS, zero-knowledge-based Picnic and
stateless hash-based SPHINCS+, have been shortlisted but will undergo further

38 T. G. Tan and J. Zhou

evaluation beyond the year 2024 deadline. Ideally, a “drop-in replacement” in
the form of a software library or hardware security module, would be used to
swap out or augment RSA/DSA/ECDSA with the new algorithm being stan-
dardized. But since each of these algorithms have unique resource, performance
and platform considerations [33,36,37], coupled with different key ceremony pro-
cesses and protocols, it is more likely that a migration playbook [4] needs to be
designed and carried out.

Another approach is to use a backup key that can override the regular signing
key in the event of compromise. In Chaum et al. [11], the authors propose the use
a quantum-resistant stateful hash-based W-OTS+ backup key which is created
during the key generation process, and can be used as a fall-back procedure in the
event the original key is compromised or lost. While such backup digital signing
key approaches can work as an account-recovery mechanism for authentication-
related protocols, they are not suitable for routine non-interactive digital signing
use-cases where longer-term non-repudiation protection of data is required.

Specific to the time-stamping use-case, the use of a sequence of hashes,
chaining them in either a forward or backward direction, is a well-researched
approach to provide long-term, possibly quantum-secure, time-stamping. Dig-
ital time-stamping by linking the sequence of documents to be time-stamped
through a linear hash-chain is first proposed by Haber and Stornetta in 1991 [23].
This is improved by Bayer et al. [5] to use Merkle trees [28] instead of a linear
hash-chain. Fast forward to the present where blockchains such as Ethereum
already support time-stamping smart contracts [16,31]. Abadi et al. [1] further
provided a decentralized time-stamp protocol on blockchains that can prevent
pre/post-dating. As these techniques typically rely on a public verifiable chain
to determine a specific time of occurrence, they are not applicable as a quantum-
resistant mechanism to protect digital signatures in general. Public blockchains
also face privacy-related concerns since the number of transactions performed
and the timings that they were transacted are publicly available.

6 Conclusion

In this paper, we have taken a different approach in implementing post-quantum
digital signing. Instead of replacing or adding on a different quantum-secure dig-
ital signing algorithm, we have shown that it is possible to continue to use the
classical RSA, DSA or ECDSA digital signing algorithms while achieving longer-
term quantum resistance. This is achieved by layering in a zero-knowledge proof
of knowledge of the pre-image of the private key in addition to the digital sig-
nature. With our approach, digital signature implementations wanting to move
ahead in quantum readiness continue to maintain backward-compatibility to
existing applications. This is important since different systems may have dif-
ferent timelines and schedules on when the migration to quantum readiness
happens, and our approach is able to ensure the seamless operations between
upgraded and non-upgraded applications.

But the work is not yet complete. The current implementation is neither
computational-efficient nor space-efficient. We envision future work in:

Layering Quantum-Resistance into Classical Digital Signature Algorithms 39

– Optimizing the zero-knowledge proof. Both the size of the zero-knowledge
proof and execution times for Signq and V erifyq can be significantly
improved. There are other MPC-in-the-head based zero-knowledge proofs
such as ZKB++ [9], TurboIKOS [22] which achieve better performance and/or
space efficiencies. Our implementation can be updated to use them.

– Increasing the spectrum of applications. Beyond time-stamping PDF docu-
ments, there are other applications such as blockchain, Secure Email, and
Transport Layer Security that can use this approach to layer in quantum
resistance.

– Updating standards. In our implementation, the X.509 Authority Information
Access extension is used to store the link for the zero-knowledge proof. This
may clash with other applications already using this extension and hence may
not be the most appropriate use of the extension. A standardized extension
can be established for storing such zero-knowledge proofs.

Acknowledgement. This project is supported by the Ministry of Education, Singa-
pore, under its MOE AcRF Tier 2 grant (MOE2018-T2-1-111).

References

1. Abadi, A., Ciampi, M., Kiayias, A., Zikas, V.: Timed signatures and zero-knowledge
proofs—timestamping in the blockchain era—. In: Conti, M., Zhou, J., Casalicchio,
E., Spognardi, A. (eds.) ACNS 2020. LNCS, vol. 12146, pp. 335–354. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-57808-4 17

2. Adams, C., Cain, P., Pinkas, D., Zuccherato, R.: RFC 3161: Internet x. 509 public
key infrastructure time-stamp protocol (TSP) (2001)

3. Adobe: Adobe DC Digital Signatures Guide - Supported Standards (2018).
https://www.adobe.com/devnet-docs/acrobatetk/tools/DigSigDC/standards.
html. Accessed Apr 2021

4. Barker, W., Polk, W., Souppaya, M.: Getting ready for post-quantum cryptogra-
phy: explore challenges associated with adoption and use of post-quantum cryp-
tographic algorithms. The Publications of NIST Cyber Security White Paper
(DRAFT), CSRC, NIST, GOV 26 (2020)

5. Bayer, D., Haber, S., Stornetta, W.S.: Improving the efficiency and reliability of
digital time-stamping. In: Capocelli, R., De Santis, A., Vaccaro, U. (eds.) Sequences
II, pp. 329–334. Springer, New York (1993). https://doi.org/10.1007/978-1-4613-
9323-8 24

6. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. IACR Cryptology ePrint Archive
2018/46 (2018)

7. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses
of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

8. Certicom: SEC 2: Recommended elliptic curve domain parameters. Technical
Report SEC2-Version-1.0, Certicom Research, Mississauga, ON, Canada (2000)

9. Chase, M., et al.: The picnic digital signature algorithm: update for round 2 (2019)
10. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-

key primitives. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1825–1842. ACM (2017)

https://doi.org/10.1007/978-3-030-57808-4_17
https://www.adobe.com/devnet-docs/acrobatetk/tools/DigSigDC/standards.html
https://www.adobe.com/devnet-docs/acrobatetk/tools/DigSigDC/standards.html
https://doi.org/10.1007/978-1-4613-9323-8_24
https://doi.org/10.1007/978-1-4613-9323-8_24

40 T. G. Tan and J. Zhou

11. Chaum, D., Larangeira, M., Yaksetig, M., Carter, W.: W-OTS+ up my sleeve!
a hidden secure fallback for cryptocurrency wallets. In: Sako, K., Tippenhauer,
N.O. (eds.) ACNS 2021. LNCS, vol. 12726, pp. 195–219. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-78372-3 8

12. Chen, L.: Cryptography standards in quantum time: new wine in old wineskin?
IEEE Secur. Priv. 15(4), 51 (2017)

13. Chen, L., et al.: NISTIR 8105: Report on post-quantum cryptography. US Depart-
ment of Commerce, National Institute of Standards and Technology (2016)

14. Cooper, D.A., Apon, D.C., Dang, Q.H., Davidson, M.S., Dworkin, M.J., Miller,
C.A.: Recommendation for stateful hash-based signature schemes. NIST Special
Publication 800-208 (2020)

15. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644–654 (1976)

16. Estevam, G., Palma, L.M., Silva, L.R., Martina, J.E., Vigil, M.: Accurate and
decentralized timestamping using smart contracts on the Ethereum blockchain.
Inf. Process. Manag. 58(3), 102471 (2021)

17. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

18. FIPS PUB: 180-4. Secure Hash Standard (SHS). Information Technology Labora-
tory, National Institute of Standards and Technology (NIST), Gaithersburg (2015)

19. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for Boolean
circuits. In: 25th USENIX Security Symposium (USENIX Security 2016), pp. 1069–
1083 (2016)

20. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

21. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack.
Phys. Rev. Lett. 79(2), 325 (1997)

22. Gvili, Y., Ha, J., Scheffler, S., Varia, M., Yang, Z., Zhang, X.: TurboIKOS:
improved non-interactive zero knowledge and post-quantum signatures. In: Sako,
K., Tippenhauer, N.O. (eds.) ACNS 2021. LNCS, vol. 12727, pp. 365–395. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-78375-4 15

23. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. In: Menezes,
A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 437–455. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 32

24. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Proceedings of the Thirty-Ninth Annual ACM Sym-
posium on Theory of Computing, pp. 21–30. ACM (2007)

25. Jones, J.P., Sato, D., Wada, H., Wiens, D.: Diophantine representation of the set
of prime numbers. Am. Math. Mon. 83(6), 449–464 (1976)

26. Kerry, C., Gallagher, P.: FIPS PUB 186-4: Digital signature standard (DSS). Fed-
eral Information Processing Standards Publication, National Institute of Standards
und Technology (2013)

27. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

28. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990). https://doi.org/
10.1007/0-387-34805-0 40

https://doi.org/10.1007/978-3-030-78372-3_8
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-030-78375-4_15
https://doi.org/10.1007/3-540-38424-3_32
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/0-387-34805-0_40

Layering Quantum-Resistance into Classical Digital Signature Algorithms 41

29. Moody, D.: NIST Status Update on the 3rd Round (2021). https://csrc.nist.
gov/CSRC/media/Presentations/status-update-on-the-3rd-round/images-media/
session-1-moody-nist-round-3-update.pdf. Accessed July 2021

30. NIST: Post-Quantum Cryptography: Round 3 Submissions (2019). https://cs
rc.nist.gov/projects/post-quantum-cryptography/round-3-submissions. Accessed
July 2021

31. Pastor, M., dela Eva, R.: TimeStamp Smart Contract (2021). https://ec.europa.eu/
cefdigital/wiki/display/EBSIDOC/TimeStamp+Smart+Contract. Accessed July
2021

32. Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves.
arXiv preprint quant-ph/0301141 (2003)

33. Raavi, M., Wuthier, S., Chandramouli, P., Balytskyi, Y., Zhou, X., Chang, S.-Y.:
Security comparisons and performance analyses of post-quantum signature algo-
rithms. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021. LNCS, vol. 12727, pp.
424–447. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78375-4 17

34. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

35. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

36. Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Post-quantum authentication in
TLS 1.3: a performance study. In: 27th Annual Network and Distributed System
Security Symposium, NDSS 2020, San Diego, California, USA, 23–26 February
2020. The Internet Society (2020)

37. Tan, T.G., Szalachowski, P., Zhou, J.: SoK: challenges of post-quantum digital
signing in real-world applications. Cryptology ePrint Archive, Report 2019/1374
(2019). https://eprint.iacr.org/2019/1374

38. Unruh, D.: Collapse-binding quantum commitments without random oracles. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 166–195.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 6

https://csrc.nist.gov/CSRC/media/Presentations/status-update-on-the-3rd-round/images-media/session-1-moody-nist-round-3-update.pdf
https://csrc.nist.gov/CSRC/media/Presentations/status-update-on-the-3rd-round/images-media/session-1-moody-nist-round-3-update.pdf
https://csrc.nist.gov/CSRC/media/Presentations/status-update-on-the-3rd-round/images-media/session-1-moody-nist-round-3-update.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://ec.europa.eu/cefdigital/wiki/display/EBSIDOC/TimeStamp+Smart+Contract
https://ec.europa.eu/cefdigital/wiki/display/EBSIDOC/TimeStamp+Smart+Contract
https://doi.org/10.1007/978-3-030-78375-4_17
https://eprint.iacr.org/2019/1374
https://doi.org/10.1007/978-3-662-53890-6_6

Cryptanalysis of RSA Variants with
Primes Sharing Most Significant Bits

Meryem Cherkaoui-Semmouni1, Abderrahmane Nitaj2(B), Willy Susilo3,
and Joseph Tonien3

1 ICES Team, ENSIAS, Mohammed V University in Rabat, Rabat, Morocco
meryem.semmouni@um5s.net.ma

2 Normandie University, UNICAEN, CNRS, LMNO, 14000 Caen, France
abderrahmane.nitaj@unicaen.fr

3 Institute of Cybersecurity and Cryptology, School of Computing and Information
Technology, University of Wollongong, Wollongong, Australia

{willy.susilo,joseph.tonien}@uow.edu.au

Abstract. We consider four variants of the RSA cryptosystem with an
RSA modulus N = pq where the public exponent e and the private
exponent d satisfy an equation of the form ed− k

(
p2 − 1

) (
q2 − 1

)
= 1.

We show that, if the prime numbers p and q share most significant bits,
that is, if the prime difference |p − q| is sufficiently small, then one can
solve the equation for larger values of d, and factor the RSA modulus,
which makes the systems insecure.

Keywords: RSA variants · Continued fractions · Coppersmith’s
method · Lattice reduction

1 Introduction

The RSA cryptosystem [16] is one of the most used public key cryptosystems.
The arithmetic of RSA is based on a few parameters, namely a modulus of the
form N = pq where p and q are large primes, a public exponent e satisfying
gcd(e, φ(N)) = 1 where φ(N) = (p − 1)(q − 1), and a private exponent d sat-
isfying ed ≡ 1 (mod φ(N)). To encrypt a message m, one simply computes the
ciphertext c ≡ me (mod N), and to decrypt it, one computes m ≡ cd (mod N).

To ease the exponentiation in the decryption phase, a natural way is to choose
a mall private exponent. Unfortunately, Wiener [21] showed that if d < 1

3N
1
4 ,

then one can factor N by computing the convergents of the continued fraction
expansion of e

N . Later on, Boneh and Durfee [1] extended the bound up to
d < N0.292 by applying Coppersmith’s method [7] and lattice reduction tech-
niques. Also, there are plenty of attacks on RSA that depend on the arithmetical
structure of its parameters [2,10]. A typical attack on RSA with a specific struc-
ture, presented by de Weger [20] in 2002, exploits the size of the difference of
the prime factors |p − q|. It notably improves the attack of Wiener, as well as
the attack of Boneh and Durfee when |p − q| is suitably small.
c© Springer Nature Switzerland AG 2021
J. K. Liu et al. (Eds.): ISC 2021, LNCS 13118, pp. 42–53, 2021.
https://doi.org/10.1007/978-3-030-91356-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91356-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-91356-4_3

Cryptanalysis of RSA Variants with Primes Sharing Most Significant Bits 43

Since its invention by Rivest, Shamir and Adleman in 1978, many variants of
RSA have been proposed such as Multi-prime RSA [6], Rebalanced RSA [21], and
RSA-CRT [19]. These variants use more or less the same arithmetic. However,
some variants of RSA with notably different structures have been proposed in
the literature. In the following, we present four of such variants having similar
moduli and key equations.

1) In 1993, Smith and Lennon [17] proposed a system, called LUC, based
on Lucas sequences. The modulus is N = pq, and the public and
the private exponents are positive integers e and d satisfying ed ≡ 1
(mod

(
p2 − 1

) (
q2 − 1

)
).

2) In 1995, Kuwakado et al. [12] presented a cryptosystem based on the singular
cubic curve with the equation y2 ≡ x3 + ax2 (mod N) where N = pq is an
RSA modulus, and a, x, y ∈ Z/NZ. In this system, the public exponent e and
the private exponent d satisfy ed ≡ 1 (mod

(
p2 − 1

) (
q2 − 1

)
).

3) In 2002, Elkamchouchi et al. [8] proposed a cryptosystem in the ring of Gaus-
sian integers. The operations are performed modulo N = PQ where P and
Q are two Gaussian primes. The public exponent e and the private exponent
d are positive integers satisfying ed ≡ 1 (mod

(|P |2 − 1
) (|Q|2 − 1

)
) where

|P | and |Q| are prime integers.
4) In 2006, Castagnos [5] presented a probabilistic cryptosystem over quadratic

field quotients. As in LUC, this cryptosystem uses Lucas sequences, and the
modulus is in the form N = pq. As in the previous cryptosystems, the public
exponent e, and the private exponent d are positive integers satisfying ed ≡ 1
(mod

(
p2 − 1

) (
q2 − 1

)
).

A common characteristic of the former cryptosystems is that they share the
key equation ed ≡ 1 (mod

(
p2 − 1

) (
q2 − 1

)
). The cryptanalysis of such sys-

tems started in 2016 with the work of Bunder et al. [3]. They transformed
the key equation into an equation of the form ed − k

(
p2 − 1

) (
q2 − 1

)
= 1,

and showed that k
d can be computed by a convergent of the continued frac-

tion expansion of e
N2− 9

4N+1
if d <

√
2N3−18N2

e . Then, in 2017, Bunder
et al. [4] studied the case when N = pq, and the public exponent e sat-
isfies an equation of the form ex − (

p2 − 1
) (

q2 − 1
)
y = z. They combined

Coppersmith’s technique, and the continued fraction method and showed that
one can factor N if xy < 2N − 4

√
2N

3
4 and |z| < |p − q|N 1

4 y. For z = 1,
the equation becomes ed − k

(
p2 − 1

) (
q2 − 1

)
= 1, and the bound on d is

d <
√

2N − 4
√

2N
3
4 . The same equation ex − (

p2 − 1
) (

q2 − 1
)
y = z was later

considered by Nitaj et al. [15]. For e = Nα, and d = N δ, they showed that the
equation ed − k

(
p2 − 1

) (
q2 − 1

)
= 1 can be solved and N can be factored if

δ < 7
3 − 2

3

√
1 + 3α. In [18], Peng et al. obtained the better bound δ < 2−√

α by
mixing Coppersmith’s method and unravelled linearization techniques. Finally,
Zheng et al. [22] reconsidered the key equation ed− k

(
p2 − 1

) (
q2 − 1

)
= 1, and

obtained a similar bound on d which is applicable for 1 ≤ α < 4.
In this paper, we study the cryptanalysis of the former four variants of RSA if

the RSA modulus N = pq is such that q < p < 2q, and p−q = Nβ . We note here

44 M. Cherkaoui-Semmouni et al.

that, for q < p < 2q, we have always 0 < β < 1
2 . However, if β < 1

4 , then one can
find p and q by Fermat’s method (see [20]), or by Coppersmith’s method [7]. Our
starting point is the key equation ed − k

(
p2 − 1

) (
q2 − 1

)
= 1 which is common

to the four variants. More precisely, for q < p < 2q, we set e = Nα, p − q = Nβ ,
d = N δ. Then, by applying the continued fraction algorithm, we show that,
under the condition δ < 2 − β − 1

2α, the rational number k
d is a convergent

of the continued fraction expansion of e
(N−1)2 . This leads us to find p and q,

and break the system. Also, we show that the key equation can be transformed
to a modular polynomial equation of the form f(x, y) = xy + Ax + 1 ≡ 0
(mod e), with A = −(N − 1)2, where (x, y) =

(−k, (p − q)2
)

is a solution. Then
by applying Coppersmith’s method and lattice reduction techniques, we show
that, under the condition δ < 2 − √

2αβ, one can factor the RSA modulus N .
If we apply our attacks to the case where p and q are randomly chosen, that is
p − q = O (

Nβ
)

with β = 1
2 , then our bounds on δ and d retrieve the existing

bounds in the previous attacks in [3,15,18,22].
The paper is organized as follows. Section 2 presents the preliminaries to the

next sections. In Sect. 3, we present our first attack based on the continued frac-
tion algorithm. In Sect. 4, we present our second attack based on Coppersmith’s
method and lattice reduction techniques. In Sect. 5, we compare the new results
to existing ones in the literature. We conclude the paper in Sect. 6.

2 Preliminaries

In this section, we present some fundamental concepts and results relevant to
our methods.

2.1 A Useful Lemma

We start by the following result (see [3]).

Lemma 1. Let N = pq be an RSA modulus with q < p < 2q. Then

N2 − 5
2
N + 1 <

(
p2 − 1

) (
q2 − 1

)
< N2 − 2N + 1.

2.2 Continued Fractions

Let ξ be real number. The continued fraction expansion of ξ is an expression of
the form

ξ = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

,

where a0 ∈ Z, and ai ∈ N
∗ for i ≥ 1. If ξ is a rational number, the list

[a0, a1, a2, . . .] of partial quotients is finite and can be computed in polynomial

Cryptanalysis of RSA Variants with Primes Sharing Most Significant Bits 45

time. For n ≥ 0, [a0, a1, a2, . . . , an] is a rational number and is called a conver-
gent of the continued fraction expansion of ξ. There are various properties of
the continued fraction expansion of real numbers, and the following is useful to
check whether a rational number a

b is a convergent of a real number ξ [9].

Theorem 1. Let ξ be a positive real number. If a and b are integers satisfying
gcd(a, b) = 1 and ∣

∣
∣ξ − a

b

∣
∣
∣ <

1
2b2

,

then a
b is a convergent of the continued fraction expansion of ξ.

2.3 Lattice Reduction

Let b1, b2, . . . , bω be ω linearly independent vectors of R
n with n ≥ ω. The

lattice L spanned by the vectors b1, b2, . . . , bω is the set of their integer linear
combinations, that is

L =

{
ω∑

i=1

xibi, x1, . . . , xω ∈ Z

}

.

The list (b1, b2, . . . , bω) is called a basis of the lattice L, ω is its dimension, and n
is its rank. When ω = n, the lattice is called full-rank. A basis matrix B for the
lattice can be constructed by expanding the vectors bi in the rows. The lattice
determinant is then defined by det(L) =

√
det (BBt), where Bt is the transpose

of B. When the lattice if full-rank, B is a square matrix and det(L) = |det (B) |.
Lattices are used in several domains, especially in cryptography for creating

new systems and for cryptanalysis. As a lattice has infinitely many bases, it is
crucial to find a basis with good properties, typically with short vectors. In 1982,
Lenstra, Lenstra, and Lovász [13] proposed an algorithm, called LLL, to find a
good basis and short vectors in a lattice. A useful property of the LLL algorithm
is the following result [14].

Theorem 2. Let L be a lattice spanned by a basis (u1, u2, . . . , uω). The LLL
algorithm produces a new basis (b1, b2, . . . , bω) satisfying

‖b1‖ ≤ . . . ≤ ‖bi‖ ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i , i = 1, . . . , ω.

Let e be an integer and f(x1, x2, . . . , xn) =
∑

i1,i2,...,in
ai1,i2,...,in

xi1
1 xi2

2 · · · xin
n

with ai1,i2,...,in
∈ Z. The Euclidean norm of the polynomial f is defined by

‖f(x1, x2, . . . , xn)‖ =
√∑

a2
i1,i2,...,in

. In 1997, Coppersmith [7] developed a tech-
nique to find the small solutions of the modular polynomial equation f(x1) ≡ 0
(mod N) with one variable, and the small roots of the polynomial f(x1, x2) = 0
with two variables, by applying lattice reduction. Later, the technique has been
extended to more variables, especially to find the small solutions of the modular
polynomial equation f(x1, x2, . . . , xn) ≡ 0 (mod e). The following result, due to
Howgrave-Graham [11], is a cornerstone in Coppersmith’s method.

46 M. Cherkaoui-Semmouni et al.

Theorem 3 (Howgrave-Graham). Let f(x1, x2, . . . , xn) ∈ Z[x1, x2, . . . , xn]
be a polynomial with at most ω monomials, and e a positive integer. Suppose
that

f(x′
1, x

′
2, . . . , x

′
n) ≡ 0 (mod e) and ‖f(x1X1, x2X2, . . . , xnXn))‖ <

e√
ω

,

where |x′
1| < X1, |x′

2| < X2, . . . , |x′
n| < Xn. Then f(x′

1, x
′
2, . . . , x

′
n) = 0 holds

over the integers.

The starting step in Coppersmith’s method for finding the small solutions of
the modular polynomial equation f(x1, x2, . . . , xn) ≡ 0 (mod e) is to generate
ω polynomials gi(x1, x2, . . . , xn) satisfying gi(x′

1, x
′
2, . . . , x

′
n) ≡ 0 (mod e) for

1 ≤ i ≤ ω. The coefficients of the polynomials gi(x1, x2, . . . , xn) are then used
to build a matrix of a lattice L. Applying the LLL algorithm to the lattice
produces a new matrix from which ω new polynomials hi(x1, x2, . . . , xn) are
extracted such that hi(x′

1, x
′
2, . . . , x

′
n) ≡ 0 (mod e). If, in addition, at least n of

such polynomials satisfy Theorem 3, then using resultant techniques or Gröbner
basis method, one can extract the small solution (x′

1, x
′
2, . . . , x

′
n). We note that

for n ≥ 3, Coppersmith’s method to extract the solutions is heuristic. It depends
on the assumption that the polynomials derived from the reduced basis are
algebraically independent. In this paper, we always successfully extracted the
solutions by Gröbner basis computation.

3 The Attack Based on Continued Fraction Algorithm

In this section, we present our first attack which is based on the continued
fraction algorithm.

Theorem 4. Let N = pq be an RSA modulus with q < p < 2q and |p−q| = Nβ.
Let e = Nα be a public exponent satisfying the equation ed−k

(
p2 − 1

) (
q2 − 1

)
=

1 with d = N δ. If

δ < 2 − β − 1
2
α.

then one can find p and q in polynomial time.

Proof. Suppose that N = pq with q < p < 2q and that a public exponent e
satisfies the key equation ed − k

(
p2 − 1

) (
q2 − 1

)
= 1. Then

ed − (N − 1)2 k = k
(
p2 − 1

) (
q2 − 1

)
+ 1 − (N − 1)2 k

= 1 + k
((

p2 − 1
) (

q2 − 1
) − (N − 1)2

)

= 1 − k(p − q)2.

This leads to
∣
∣
∣
∣

e

(N − 1)2
− k

d

∣
∣
∣
∣ =

∣
∣1 − k(p − q)2

∣
∣

d(N − 1)2
<

k(p − q)2

d(N − 1)2
.

Cryptanalysis of RSA Variants with Primes Sharing Most Significant Bits 47

Using the key equation, we get k
(
p2 − 1

) (
q2 − 1

)
= ed − 1 < ed. Then

k

d
<

e

(p2 − 1) (q2 − 1)
,

and ∣
∣
∣
∣

e

(N − 1)2
− k

d

∣
∣
∣
∣ <

e(p − q)2

(N − 1)2 (p2 − 1) (q2 − 1)
.

By Lemma 1, we have

(N − 1)2
(
p2 − 1

) (
q2 − 1

)
> (N − 1)2

(
N2 − 5

2
N + 1

)

= N4 − 9
2
N3 + 7N2 − 9

2
N + 1

>
1
2
N4,

where the last inequality is valid for N ≥ 8. Hence using e = Nα, |p − q| = Nβ ,
and d = N δ, we get

∣
∣
∣
∣

e

(N − 1)2
− k

d

∣
∣
∣
∣ <

e(p − q)2

(N − 1)2 (p2 − 1) (q2 − 1)
< 2Nα+2β−4.

If 2Nα+2β−4 < 1
2N−2δ, that is δ < 2 − β − 1

2α, then
∣
∣
∣
∣

e

(N − 1)2
− k

d

∣
∣
∣
∣ <

1
2
N−2δ =

1
2d2

.

It follows that one can find k
d amongst the convergents of the continued fraction

expansion of e
(N−1)2 . Then, using the values of k and d in the key equation

ed − k
(
p2 − 1

) (
q2 − 1

)
= 1, we get p2 + q2 = N2 + 1 − ed−1

k . Combining this
with N = pq, we find p and q. �	

We note that if p and q are such that p − q ≈ N
1
2 , then β ≈ 1

2 , and the bound
on δ in Theorem 4 is δ < 3

2 − α
2 . This retrieves the results of [3].

4 The Attack Based on Coppersmith’s Method

In this section, we apply Coppersmith’s method and lattice reduction techniques
to launch an attack on the RSA variants with a modulus N = pq where the
prime difference |p − q| is sufficiently small, and the exponents e and d satisfy
the equation ed − k

(
p2 − 1

) (
q2 − 1

)
= 1.

Theorem 5. Let (N, e) be a public key for the RSA variants where N = pq
with q < p < 2q, and e = Nα. Suppose that e satisfies the equation ed −
k

(
p2 − 1

) (
q2 − 1

)
= 1 with d = N δ and |p − q| < Nβ. If

δ < 2 −
√

2αβ − ε.

for a small positive constant ε, then one can factor N in polynomial time.

48 M. Cherkaoui-Semmouni et al.

Proof. Suppose that N = pq and e = Nα satisfy the equation ed −
k

(
p2 − 1

) (
q2 − 1

)
= 1 with d = N δ and |p − q| = Nβ . By Lemma 1, for N ≥ 5,

we have
(
p2 − 1

) (
q2 − 1

)
> N2 + 1 − 5

2
N >

1
2
N2.

Then
k =

ed − 1
(p2 − 1) (q2 − 1)

<
2ed

N2
= 2Nα+δ−2,

which gives an upper bound for k. On the other hand, the key equation can be
rewritten as

(−k)(p − q)2 − (N − 1)2(−k) + 1 ≡ 0 (mod e).

Consider the polynomial f(x, y) = xy + Ax + 1, with A = −(N − 1)2.
Then (x, y) =

(−k, (p − q)2
)

is a solution of the modular polynomial equa-
tion f(x, y) ≡ 0 (mod e). To find the small solutions, we apply Coppersmith’s
method [7] to the polynomial F (x, u) = u + Ax where u = xy + 1 with the
bounds

|x| < 2Nα+δ−2, |y| < N2β , |u| < 2Nα+δ+2β−2.

Let m and t be two positive integers to be specified later. Consider the polyno-
mials

Gk,i1,i2,i3(x, y, u) = xi1F (x, u)kem−k,

with k = 0, . . . m, i1 = 0, . . . ,m − k, i2 = 0, i3 = k,

Hk,i1,i2,i3(x, y, u) = yi2F (x, u)kem−k,

with i1 = 0, i2 = 1, . . . t, k =
⌊m

t

⌋
i2, . . . ,m, i3 = k.

In the expansion of the polynomial Hk,i1,i2,i3(x, y, u), each term xy is replaced
by u − 1. The monomials of Gk,i1,i2,i3(x, y, u) and Hk,i1,i2,i3(x, y, u) are ordered
by the following rule

• A monomial of Gk,i1,i2,i3(x, y, u) is prior to every monomial of
Hk,i1,i2,i3(x, y, u).

• The monomials of Gk,i1,i2,i3(x, y, u) are ordered following the output of the
procedure
for k = 0, . . . m, for i1 = 0, . . . , m−k, for i2 = 0, for i3 = k, output xi1yi2ui3 .

• The monomials of Hk,i1,i2,i3(x, y, u) are ordered following the output of the
procedure
for i1 = 0, for i2 = 1, . . . t, for k =

⌊
m
t

⌋
i2, . . . ,m, for i3 = k, output xi1yi2ui3 .

The polynomials are ordered by similar rules. We set

X = 2Nα+δ−2, Y = N2β , U = 2Nα+δ+2β−2. (1)

We consider the lattice L where the rows of the basis matrix is built by consider-
ing the coefficients of the monomials of the polynomials Gk,i1,i2,i3(Xx, Y y, Uu)
and Hk,i1,i2,i3(Xx, Y y, Uu). We note that the lattice L is different from the

Cryptanalysis of RSA Variants with Primes Sharing Most Significant Bits 49

lattices used in [15,18,22]. Table 1 shows the lattice basis matrix generated by
m = 2 and t = 2.

Table 1. The lattice basis matrix for m = 2 and t = 2.

1 x x2 u xu u2 yu yu2 y2u2

G0,0,0,0(x, y, u) e2 0 0 0 0 0 0 0 0

G0,1,0,0(x, y, u) 0 Xe2 0 0 0 0 0 0 0

G,2,0,0(x, y, u) 0 0 X2e2 0 0 0 0 0 0

G1,0,0,1(x, y, u) 0 Xa1e 0 Ue 0 0 0 0 0

G1,1,0,1(x, y, u) 0 0 X2a1e 0 XUe 0 0 0 0

G2,0,0,2(x, y, u) 0 0 X2a21 0 2UXa1 U2 0 0 0

H1,0,1,1(x, y, u) −a1e 0 0 Ua1e 0 0 UY e 0 0

H2,0,1,2(x, y, u) 0 −a21X 0 −2Ua1 a21UX 2U2a1 0 U2Y 0

H2,0,2,2(x, y, u) a21 0 0 −2Ua21 0 U2a21 −2Ua1Y 2U2a1Y U2Y 2

The lattice basis matrix is triangular and the determinant of the lattice is of
the form

det(L) = XnX Y nY UnU ene , (2)

and the dimension is ω with

nX =
m∑

k=0

m−k∑

i1=0

i1 =
1
6
m3 + o(m3),

nY =
t∑

i2=1

m∑

k=�m
t �

i2 =
1
2
mt2 − 1

3

⌊m

t

⌋
t3 + o(mt2),

nU =
m∑

k=0

m−k∑

i1=0

k +
t∑

i2=1

m∑

k=�m
t �

k =
1
6
m3 +

1
2
m2t − 1

6

⌊m

t

⌋2

t3 + o(m3),

ne =
m∑

k=0

m−k∑

i1=0

(m − k) +
t∑

i2=1

m∑

k=�m
t �

(m − k)

=
1
3
m3 +

1
2
m2t +

1
6

⌊m

t

⌋2

t3 − 1
2

⌊m

t

⌋
mt2 + o(m3).

ω =
m∑

k=0

m−k∑

i1=0

1 +
t∑

i2=1

m∑

k=�m
t �

1 =
1
2
m2 + mt − 1

2

⌊m

t

⌋
t2 + o(m2).

50 M. Cherkaoui-Semmouni et al.

If we set t = mτ and replace
⌊

m
t

⌋
by 1

τ in the above approximations, we get

nX =
1
6
m3 + o(m3),

nY =
1
6
τ2m3 + o(m3),

nU =
1
6
(2τ + 1)m3 + o(m3),

ne =
1
6
(τ + 2)m3 + o(m3),

ω =
1
2
(τ + 1)m2 + o(m2).

(3)

Applying the LLL algorithm to the lattice L, we get a new matrix satisfying the
inequalities of Theorem 2. To combine it with Theorem 3, we set

2
ω(ω−1)
4(ω−2) det(L)

1
ω−2 <

em

√
ω

,

or equivalently det(L) < 2− ω(ω−1)
4 (

√
ω)2−ω

em(ω−2). Using (2), we get

XnX Y nY UnU ene < 2− ω(ω−1)
4

(√
ω
)2−ω

em(ω−2).

Then, using (3), and by a straightforward calculation, we get the inequality

1
6
(α + δ − 2) +

1
6
τ2(2β) +

1
6
(2τ + 1)(α + δ + 2β − 2)

+
1
6
(τ + 2)α − 1

2
(τ + 1)α < −ε1,

where ε1 is a small positive constant that depends only on N and m. The left
side is optimized for τ0 = 2−δ−2β

2β . Plugging τ0 in the former inequality, we get

−δ2 + 4δ + 2αβ − 4 < −ε2,

with a small positive constant ε2. This leads to the inequality

δ < 2 −
√

2αβ − ε,

where ε is a small positive constant. Note that we also need τ0 ≥ 0, that is
2 − δ − 2β ≥ 0 and δ ≤ 2 − 2β. Consequently, δ should satisfy

δ < min
(
2 −

√
2αβ − ε, 2 − 2β

)

For α ≥ 2β, that is e ≥ |p − q|2, we have 2 − √
2αβ ≤ 2 − 2β, and the con-

dition becomes δ < 2 − √
2αβ − ε. Under these conditions, the reduced lattice

has three polynomials h1(x, y, u), h2(x, y, u) and h2(x, y, u) sharing the root
(x, y, u) = (−k, (p − q)2,−k(p − q)2 + 1). Then, applying Gröbner basis or resul-
tant computations, we can extract the solution from which we deduce p−q =

√
y.

Combining with the equation pq = N , this leads to the factorization of N = pq,
and terminates the proof. �	

Cryptanalysis of RSA Variants with Primes Sharing Most Significant Bits 51

5 Comparison with Former Attacks

Before starting comparing our results to existing ones, we notice that the bound
on δ in Theorem 5 is always better than the bound in Theorem 4. To ease the
comparison, we neglect the term ε in Theorem 5. For the same parameters α
and β, the difference between the bounds in Theorem 5 and Theorem 4 is

2 −
√

2αβ −
(

2 − β − 1
2
α

)
= β +

1
2
α −

√
2αβ

=

(
β + 1

2α
)2 − 2αβ

β + 1
2α +

√
2αβ

=

(
β − 1

2α
)2

β + 1
2α +

√
2αβ

≥ 0,

which implies that 2 − √
2αβ ≥ 2 − β − 1

2α.
In [3], Bunder et al. studied the key equation ed − k

(
p2 − 1

) (
q2 − 1

)
=

1 by the method of the continued fractions. They showed that if d satisfies

d <
√

2N3−18N2

e , then k
d is a convergent of the continued fraction expansion

of e
N2− 9

4N+1
, the key equation can be solved and N can be factored. If we set

d = N δ, and e = Nα, then the former inequality gives δ < 3
2 − 1

2α which is
the same than the bound of Theorem 4 with |p − q| = Nβ and β = 1

2 . As a
consequence, the results of [3] can be retrieved by our method as in Theorem 4.

In [15], Nitaj et al. studied the variant equation eu − (
p2 − 1

) (
q2 − 1

)
v =

w with e = Nα, u < N δ, |w| < Nγ , and showed that under the conditions
δ < 7

3 − γ − 2
3

√
1 + 3α − 3γ, one can factor the RSA modulus N = pq. If we

take γ = 0, then the equation becomes eu − (
p2 − 1

) (
q2 − 1

)
v = 1, and the

condition is δ < 7
3 − 2

3

√
1 + 3α. To compare it with the bound of Theorem 5, we

take |p − q| = Nβ with β = 1
2 , and the bound becomes δ < 2 − √

α. Then

2 − √
α −

(
7
3

− 2
3
√

1 + 3α
)

=
2
3
√

1 + 3α − √
α − 1

3

=
4
9 (1 + 3α) − (√

α + 1
3

)2

2
3

√
1 + 3α +

√
α + 1

3

=
1
3 + 1

3α − 2
3

√
α

2
3

√
1 + 3α +

√
α + 1

3

=
1
3 (1 − √

α)2

2
3

√
1 + 3α +

√
α + 1

3

≥ 0,

which shows that our bound in Theorem 5 is always better than the bound
of [15].

52 M. Cherkaoui-Semmouni et al.

In [18], Peng et al. studied the key equation ed − k
(
p2 − 1

) (
q2 − 1

)
= 1 by

Coppersmith’s method, with e = Nα, and d = N δ. The key equation is first
transformed to the modular equation k

(
N2 + 1 − p2 − q2

)
+ 1 ≡ 0 (mod e),

and then to the modular equation x(y + A) + 1 ≡ 0 (mod e) with A = N2 + 1,
x = k, and y = − (

p2 + q2
)
. They showed that one can factor the RSA modulus

if δ < 2−√
α. In Theorem 5, if we set |p− q| = Nβ with β = 1

2 , we get the same
condition. This shows that our method can be considered as an extension of the
work in [18].

In [22], Zheng et al. studied the key equation ed − k
(
p2 − 1

) (
q2 − 1

)
= 1

and transformed it to k
(
(N + 1)2 − (p + q)2

)
+ 1 ≡ 0 (mod e), and also to

x(y + A) + 1 ≡ 0 (mod e) with A = (N + 1)2, x = k, and y = − (p + q)2. They
showed that one can solve the equation and factor N if d = N δ, e = Nα, and
δ < 2 − √

α. As specified before, this result can be retrieved by our method of
Theorem 5.

6 Conclusion

In this paper, we studied the key equation ed − k
(
p2 − 1

) (
q2 − 1

)
= 1 derived

from four variants of the RSA cryptosystem with a modulus N = pq, a public
exponent e, and a private exponent d. Moreover, we considered the situation
where the prime factors p and q are of equal bitsize, and share an amount of their
most significant bits. We presented two different attacks on such variants. The
first attack is based on the continued fraction algorithm, and the second attack
is based on lattice reduction. For both attacks, we showed that the variants are
insecure if the prime difference p − q, and the private exponent d are suitably
small. Finally, we compared our new attacks to existing ones, and showed that
our methods are more suitable for the cryptanalysis of the RSA variants.

References

1. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292.
In: Advances in Cryptology-Eurocrypt 1999, Lecture Notes in Computer Science,
vol. 1592, Springer-Verlag, pp. 1–11 (1999)

2. Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Notices Amer. Math.
Soc. 46(2), 203–213 (1999)

3. Bunder, M., Nitaj, A., Susilo, W., Tonien, J.: A new attack on three variants of
the RSA cryptosystem. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol.
9723, pp. 258–268. Springer, Cham (2016)

4. Bunder, M., Nitaj, A., Susilo, W., Tonien, J.: A generalized attack on RSA type
cryptosystems. Theoretical Comput. Sci. 704, 74–81 (2017)

5. Castagnos, G.: An efficient probabilistic public-key cryptosystem over quadratic
field quotients, 2007, Finite Fields and Their Applications, 13(3–13), p. 563–576
(2007). http://www.math.u-bordeaux1.fr/∼gcastagn/publi/crypto quad.pdf

6. Collins, T., Hopkins, D., Langford, S., Sabin, M.: Public key cryptographic appa-
ratus and Method. US Patent 5,848,159, Jan 1997

http://www.math.u-bordeaux1.fr/~gcastagn/publi/crypto_quad.pdf

Cryptanalysis of RSA Variants with Primes Sharing Most Significant Bits 53

7. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Crypt. 10(4), 233–260 (1997)

8. Elkamchouchi, H., Elshenawy, K., Shaban, H.: Extended RSA cryptosystem and
digital signature schemes in the domain of Gaussian integers. In: Proceedings of
the 8th International Conference on Communication Systems, pp. 91–95 (2002)

9. Hardy, G.H., Wright, E.M.: An Introduction to Theory of Numbers, 5th edn. The
Clarendon Press, Oxford University Press, New York (1979)

10. Hinek, M.: Cryptanalysis of RSA and Its Variants. Chapman & Hall/CRC, Cryp-
tography and Network Security Series, Boca Raton (2009)

11. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024458

12. Kuwakado, H., Koyama, K. Tsuruoka, Y.: A new RSA-type scheme based on sin-
gular cubic curves y2 = x3 + bx2 (mod n). IEICE Transactions on Fundamentals,
vol. E78-A, pp. 27–33 (1995)

13. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261, 513–534 (1982)

14. May, A.: New RSA Vulnerabilities Using Lattice Reduction Methods, PhD Thesis,
University of Paderborn (2003)

15. Nitaj, A., Pan, Y., Tonien, J.: A generalized attack on some variants of the RSA
cryptosystem. In: Cid, C., Jacobson, M., Jr. (eds.) SAC 2018. LNCS, vol. 11349, pp.
421–433. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-10970-7 19

16. Rivest, R., Shamir, A., Adleman, L.: A Method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

17. Smith, P.J., Lennon, G.J.J.: LUC: A New Public-Key Cryptosystem, pp. 103–117.
Elsevier Science Publishers, Ninth IFIP Symposium on Computer Science Security
(1993)

18. Peng, L., Hu, L., Lu, Y., Wei, H.: An improved analysis on three variants of the
RSA cryptosystem. In: Chen, K., Lin, D., Yung, M. (eds.) Inscrypt 2016. LNCS,
vol. 10143, pp. 140–149. Springer, Cham (2017)

19. Quisquater, J.J., Couvreur, C.: Fast decipherment algorithm for RSA public key
cryptosystem. Electron. Lett. 18, 905–907 (1982)

20. de Weger, B.: Cryptanalysis of RSA with small prime difference. Appl. Algebra
Eng. Commun. Comput. 13(1), 17–28 (2002)

21. Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf. Theory
36, 553–558 (1990)

22. Zheng, M., Kunihiro, N., Hu, H.: Cryptanalysis of RSA Variants with Modified
Euler Quotient. In: Joux A., Nitaj A., Rachidi T. (eds.) Progress in Cryptology-
AFRICACRYPT 2018. AFRICACRYPT 2018. Lecture Notes in Computer Sci-
ence, vol. 10831. Springer, Cham (2018)

https://doi.org/10.1007/BFb0024458
https://doi.org/10.1007/978-3-030-10970-7_19

Cryptanalysis of Two White-Box
Implementations of the SM4 Block Cipher

Jiqiang Lu1,2,3(B) and Jingyu Li1

1 School of Cyber Science and Technology, Beihang University, Beijing, China
lijingyu98@buaa.edu.cn

2 Guangxi Key Laboratory of Cryptography and Information Security, Guilin, China
3 HangZhou Innovation Institute, Beihang University, Beijing, China

lvjiqiang@buaa.edu.cn

Abstract. The SM4 block cipher has a 128-bit block length and a 128-
bit user key, formerly known as SMS4. It is a Chinese national standard
and an ISO international standard. White-box cryptography aims pri-
marily to protect the secret key used in a cryptographic software imple-
mentation in the white-box scenario that assumes an attacker to have full
access to the execution environment and execution details of an imple-
mentation. Since white-box cryptography has many real-life applications
nowadays, a few white-box implementations of the SM4 block cipher has
been proposed, in particular, in 2009 Xiao and Lai presented the first
white-box SM4 implementation based on traditional way, which has been
attacked with the lowest currently published attack complexity of about
232 using affine equivalence technique; and in 2020 Yao and Chen pre-
sented a white-box SM4 implementation based on state expansion, and
got the lowest attack complexity of about 251 among a variety of attack
techniques. In this paper, we present collision-based attacks on Yao and
Chen’s and Xiao and Lai’s white-box SM4 implementations with a time
complexity of about 223 for recovering a round key, and thus show that
their security is much lower than previously published.

Keywords: White-box cryptography · Block cipher · SM4 (SMS4) ·
Collision attack

1 Introduction

In 2002, Chow et al. [8,9] introduced white-box cryptography and proposed
white-box implementations to the AES [26] and DES [27] block ciphers. White-
box cryptography works under the white-box security model, which assumes an
attacker has full access to the execution environment and execution details (such
as intermediate values, CPU calls, memory registers, etc.) of a software imple-
mentation, giving the attacker more power than the black-box and grey-box
security models. Nowadays, white-box cryptography has many real-life appli-
cation scenarios like TV boxes, mobile phones and game consoles, and some
white-box cryptography solutions have been in use.
c© Springer Nature Switzerland AG 2021
J. K. Liu et al. (Eds.): ISC 2021, LNCS 13118, pp. 54–69, 2021.
https://doi.org/10.1007/978-3-030-91356-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91356-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-91356-4_4

Cryptanalysis of Two White-Box Implementations 55

The primary security threat for white-box cryptography is key extrac-
tion attack, which aims to extract the key used in white-box implementation.
Chow et al.’s white-box AES implementation has been cryptanalysed exten-
sively [5,18,23,29], and the main attack results are as follows. In 2004, Billet
et al. [5] presented an attack with a time complexity of 230 (referred to below as
BGE attack). In 2013, Lepoint et al. [18] improved the BGE attack to have a time
complexity of 222, and presented a collision-based attack with a time complexity
of 222. There are also a few attacks [14,15,21,32] on Chow et al.’s white-box DES
implementation. On the other hand, a number of different white-box implemen-
tation designs have been proposed [1,3,7,16,22,33], but almost all of them have
been broken with a practical or semi-practical time complexity [3,10,18,24,25].
Generally speaking, it has been well understood that the line of white-box imple-
mentation for an existing cryptographic algorithm is hardly impossible to achieve
the full security under the black-box model, but it is expected that it can still
provide some protection with realistic significance.

The SM4 block cipher was first released in 2006 as the SMS4 [11] block cipher
used in the Chinese WLAN national standard WAPI (WLAN Authentication
and Privacy Infrastructure), which has a 128-bit block length and a 128-bit user
key. SMS4 became a Chinese cryptographic industry standard in 2012, labeled
with SM4, which then became a Chinese national standard [12] in 2016 and
an ISO international standard in 2021 [13]. The main white-box implementation
results of SMS4/SM4 are as follows. In 2009, Xiao and Lai [34] proposed the first
white-box SM4 implementation with a series of lookup tables and affine transfor-
mation operations. In 2013, Lin and Lai [19] attacked Xiao and Lai’s white-box
SM4 implementation with a time complexity of around 247, by combining the
BGE attack with a few other techniques like differential cryptanalysis. In 2015,
Shi et al. [28] proposed a lightweight white-box SM4 implementation based on
the idea of dual cipher [4]. In 2016, Bai and Wu [2] proposed a white-box SM4
implementation with complicated encoding and decoding processes. In 2018, Lin
et al. [20] attacked Shi et al.’s white-box SM4 implementation with a time com-
plexity of 249, basing it on Biryukov et al.’s affine equivalence technique [6]. In
2020, Yao and Chen [35] proposed a white-box SM4 implementation with some
original internal states expanded by dummy states under the control of a secret
random number, and finally got the lowest attack complexity of about 251 after
an extensive security analysis. Most recently, Wang et al. [31] applied Lepoint et
al.’s collision-based attack idea to attack Shi et al.’s white-box SM4 implementa-
tion with a time complexity of around 223 (note that collision-based attacks on
Shi et al.’s and Yao and Chen’s white-box SM4 implementations appeared earlier
in Wang’s thesis [30], however, due to the distinctions among the white-box AES
and SM4 implementation operations, there is a fundamental flaw on the colli-
sion principle of the attacks described in [30], which makes the attacks invalid;
besides, Wang dealt with those dummy states by enumerating the associated
4-bit random vector for Yao and Chen’s white-box SM4 implementation).

In this paper, we apply Lepoint et al.’s collision-based idea to attack Yao
and Chen’s white-box SM4 implementation with a time complexity of about

56 J. Lu and J. Li

223, in particular, we find that the effect of those dummy states can be bypassed
without any workload by first devising an appropriate collision function and then
using a trick to recover the linear parts of the concerned affine output encodings.
The attack significantly reduces the estimated security of Yao and Chen’s white-
box SM4 implementation, from the designers’ semi-practical level 251 to a very
practical level. The attack can be similarly applied to Xiao and Lai’s white-box
SM4 implementation with a time complexity of about 223 too, reducing much the
best previously published attack complexity of 232 based on affine equivalence
technique. These suggest that Yao and Chen’s white-box SM4 implementation
does not improve on Xiao and Lai’s white-box SM4 implementation in the sense
of security, and their realistic significance is reduced.

The remainder of the paper is organised as follows. In the next section, we
describe the notation and the SM4 block cipher. We describe our attack on Yao
and Chen’s white-box SM4 implementation in Sect. 3, and briefly describe our
attack on Xiao and Lai’s white-box SM4 implementation in Sect. 4. Section 5
concludes this paper.

2 Preliminaries

In this section, we give the notation used throughout this paper, and briefly
describe the SM4 block cipher.

2.1 Notation

We use the following notation throughout this paper.

⊕ bitwise exclusive OR (XOR)
≪ left rotation of a bit string
|| bit string concatenation
◦ functional composition

2.2 The SM4 Block Cipher

SM4 [11,12] is a unbalanced Feistel cipher with 32 rounds, a 128-bit block size
and a 128-bit key length. Denote by (Xi,Xi+1, Xi+2,Xi+3) the 128-bit input
to the i-th round, by rki the 32-bit i-th round key, where i = 0, 1, . . . , 31 and
Xi ∈ GF(2)32.

Define the nonlinear function τ : GF(2)32 → GF(2)32 that applies the same
8-bit S-box S four times in parallel as

x �→ (
S(x[31...24]),S(x[23...16]),S(x[15...8]),S(x[7...0])

)
;

and define the linear function L : GF(2)32 → GF(2)32 as

x �→ x ⊕ (x ≪ 2) ⊕ (x ≪ 10) ⊕ (x ≪ 18) ⊕ (x ≪ 24). (1)

Cryptanalysis of Two White-Box Implementations 57

Then, the invertible transformation T : GF(2)32 × GF(2)32 → GF(2)32 is
defined to be

(x, rki) → L(τ(x ⊕ rki)),

and the round function F : GF(2)128 × GF(2)32 → GF(2)128 under round key
rki is

((Xi,Xi+1,Xi+2,Xi+3), rki) �→ (Xi+1,Xi+2,Xi+3,Xi ⊕
T

(
Xi+1 ⊕ Xi+2 ⊕ Xi+3, rki)

)
. (2)

The encryption procedure of SM4 consists of the 32 round functions F’s and
finally a reverse transformation R : GF(2)128 → GF(2)128 defined as

(X32,X33,X34,X35) �→ (X35,X34,X33,X32).

It is depicted in Fig. 1.
The decryption process of SM4 is the same as the encryption process, except

that the round keys are used in the reverse order. We refer the reader to [11,12]
for detailed specifications.

Particularly, it is easy and worthy to note that the linear transformation L (as
described in Eq. (1)) of SM4 can also be represented as an invertible 32× 32-bit
matrix ⎡

⎢
⎢
⎣

B1 B2 B2 B3

B3 B1 B2 B2

B2 B3 B1 B2

B2 B2 B3 B1

⎤

⎥
⎥
⎦ , (3)

Fig. 1. SM4 encryption procedure

58 J. Lu and J. Li

with B1, B2 and B3 being 8 × 8-bit block matrices as follows.

B1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let x0, x1, x2, x3 be four byte variables, represent L as four 32 × 8-bit
matrices

[
L0 L1 L2 L3

]
, and define

L0(x) = x · [
B1 B3 B2 B2

]T
, L1(x) = x · [

B2 B1 B3 B2

]T
,

L2(x) = x · [
B2 B2 B1 B3

]T
, L3(x) = x · [

B3 B2 B2 B1

]T
,

then we have L(x0||x1||x2||x3) = L0(x0) ⊕ L1(x1) ⊕ L2(x2) ⊕ L3(x3).

3 Collision-Based Attack on Yao and Chen’s White-Box
SM4 Implementation

In this section, we first describe Yao and Chen’s white-box SM4 implementation,
and then present our attack on it.

3.1 Yao and Chen’s White-Box SM4 Implementation

Yao and Chen’s white-box SM4 implementation [35] is based on internal state
expansion, particularly, the 32 × 32-bit matrix representation described in

Fig. 2. An encryption round of Yao and Chen’s white-box SM4 implementation

Cryptanalysis of Two White-Box Implementations 59

Eq. (3) of the linear transformation L is expanded to the following 64 × 64-
bit matrix L̂ with the 8 × 8-bit zero matrix 0:

L̂ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B1 0 B2 0 B2 0 B3 0
0 B1 0 B2 0 B2 0 B3

B3 0 B1 0 B2 0 B2 0
0 B3 0 B1 0 B2 0 B2

B2 0 B3 0 B1 0 B2 0
0 B2 0 B3 0 B1 0 B2

B2 0 B2 0 B3 0 B1 0
0 B2 0 B2 0 B3 0 B1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Represent the matrix L̂ as four 64×16-bit matrices, that is, L̂ =
[
L̂0 L̂1 L̂2 L̂3

]
.

Then, an encryption round of Yao and Chen’s white-box SM4 implementation
consists of the following three parts according to Eq. (2), as depicted in Fig. 2.
Note first that Xj is the corresponding original value protected with an affine
output encoding Pl(x) = Al · x ⊕ al, where x is a 32-bit variable, al is a secret
(randomly generated) 32-bit vector, Al is a secret (randomly generated) general
invertible 32 × 32-bit matrix, and l = 0, 1, · · · , 35.

Part 1: Implement Xi+1 ⊕ Xi+2 ⊕ Xi+3 �→ X. In order to obtain the orig-
inal value of Xi+1⊕Xi+2⊕Xi+3 from the protected forms Xi+1,Xi+2 and Xi+3,
apply first the inverses P−1

i+1, P−1
i+2 and P−1

i+3 of the three output encodings respec-
tively to Xi+1,Xi+2 and Xi+3, followed by an identical diagonal output encod-
ing Ei = diag(Ei,0, Ei,1, Ei,2, Ei,3), where Ei,0, Ei,1, Ei,2, Ei,3 are four general
invertible 8 × 8-bit affine transformations (i = 0, 1, . . . , 31).

This part can be summarised as

X ′
i+j = Ei ◦ P−1

i+j(Xi+j), j = 1, 2, 3;

X = X ′
i+1 ⊕ X ′

i+2 ⊕ X ′
i+3,

where X is a 32-bit variable. Observe that the final result of this part X =
Ei ◦ (P−1

i+1(Xi+1) ⊕ P−1
i+2(Xi+2) ⊕ P−1

i+3(Xi+3)) is the original value of Xi+1 ⊕
Xi+2 ⊕ Xi+3 protected with the output encoding Ei in such a way that its four
bytes are protected respectively with the four 8-bit encodings Ei,0, Ei,1, Ei,2,
Ei,3.

Part 2: Implement T(X ⊕ rki) �→ Yi(= Yi0||Yi1). The input X of the
second part is the output of the first part, represent X as 4 bytes X =
(xi,0, xi,1, xi,2, xi,3), and represent the round key rki as 4 bytes rki =
(rki,0, rki,1, rki,2, rki,3), where i = 0, 1, . . . , 31. Next, construct four lookup tables
that map from 8-bit input to 64-bit output each, as follow:

Tablei,0 = Gi,0 ◦ L̂0[Ŝ(E−1
i,0 (xi,0), rki,0, αi,0)ti,0],

Tablei,1 = Gi,1 ◦ L̂1[Ŝ(E−1
i,1 (xi,1), rki,1, αi,1)ti,1],

Tablei,2 = Gi,2 ◦ L̂2[Ŝ(E−1
i,2 (xi,2), rki,2, αi,2)ti,2],

Tablei,3 = Gi,3 ◦ L̂3[Ŝ(E−1
i,3 (xi,3), rki,3, αi,3)ti,3],

60 J. Lu and J. Li

where

– αi,j is an 8-bit random number (j = 0, 1, 2, 3);
– L̂j is the corresponding j-th 64 × 16-bit part of L̂;
– (ti,0, ti,1, ti,2, ti,3) is a 4-bit random vector (ti,j ∈ {0, 1}), and

Ŝ(E−1
i,j (xi,j), rki,j , αi,j)ti,j

=

{
S(E−1

i,j (xi,j) ⊕ rki,j) || S(E−1
i,j (xi,j) ⊕ αi,j), ti,j = 0;

S(E−1
i,j (xi,j) ⊕ αi,j) || S(E−1

i,j (xi,j) ⊕ rki,j), ti,j = 1.

That is, the Ŝ operation is constructed by expanding the original S operation
with a dummy S operation under the control of the 1-bit ti,j parameter.

– Gi,j is the composition of a shift matrix SR and an output encoding Qi,j . The
shift matrix SR transforms the expanded 64-bit value after L̂j into such a
64-bit value that the former half is the original 32-bit part (without expansion)
and the latter half consists only of some dummy bits. Qi,j is of the affine form
Qi,j(x) = LQ · x ⊕ CQi,j

, here x is a 64-bit variable, the linear part LQ is a
block diagonal matrix being composed of eight 8 × 8-bit matrices, and the
constant part CQi,j

consists of eight concatenated 8-bit vectors.

The final output of this part is the XOR of the four 64-bit outputs of the
four lookup tables, which is denoted by Yi = Yi0||Yi1 with Yi0 being supposed
to be the original useful 32-bit value.

Part 3: Implement Yi0 ⊕ Xi �→ Xi+4. This part first extracts the original
useful 32-bit value from the 64-bit expanded output of the second part, and then
calculates Xi+4, as follows.

Y ′
i0 = P ′′

i+4 ◦ (Qi)−1
t (Yi0),

X ′
i = P ′

i+4 ◦ P−1
i (Xi),

Xi+4 = Y ′
i0 ⊕ X ′

i,

where (Qi)−1
t represents the corresponding part of the inverse of the encodings

LQ ·x⊕ (CQi,0 ⊕CQi,1 ⊕CQi,2 ⊕CQi,3) of the second part, and P ′
i+4 and P ′′

i+4 are
new affine output encodings of the forms P ′

i+4(x) = Pi+4 ⊕ a′
i+4 and P ′′

i+4(x) =
Pi+4 ⊕ a′′

i+4, respectively, so that Xi+4 is a protected form with an affine output
encoding Pi+4(x) = Ai+4 · x ⊕ ai+4, like Xi.

As a result, the whole white-box SM4 implementation can be obtained by
iterating the above process for all the 32 rounds with possibly independent
encodings.

Yao and Chen analysed its security against a variety of attack techniques like
BGE, and got that the attack complexity using affine equivalence technique was
297, and the lowest attack complexity was 251 among all used attack techniques.

Cryptanalysis of Two White-Box Implementations 61

Fig. 3. Our collision function at a high level

3.2 Attacking Yao and Chen’s White-Box SM4 Implementation

In this subsection, we apply Lepoint et al.’s collision-based idea to attack Yao
and Chen’s white-box SM4 implementation with a time complexity of about 223.
AES and SM4 have different structures, and Yao and Chen’s white-box SM4
implementation is distinct from Chow et al.’s white-box AES implementation:
there are dummy states with indeterminate positions and the encoding used in
Xi+4 involves a general 32 × 32-bit matrix, which does not allow us to apply
Lepoint et al.’s attack idea efficiently within one round, as done on Chow et al.’s
white-box AES implementation. However, after a detailed investigation we find
an appropriate collision function by considering two consecutive rounds in Yao
and Chen’s white-box SM4 implementation, plus a trick that can recover the
linear parts of the concerned encodings, to bypass the effects due to the dummy
states and etc.

3.2.1 Devising a Collision Function
As illustrated in Fig. 3 at a high level, the collision function used in our attack
takes as input the two 32-bit input parameters (xi,0||xi,1||xi,2||xi,3,Xi) in the
second part of an encryption round of Yao and Chen’s white-box SM4 imple-
mentation, and ends with the output of an Ei+1,j operation of the Xi+4 branch
in the first part of the next encryption round (j = 0, 1, 2, 3). Observe that Ei and
Ei+1 are diagonal affine transformations, Ei,j and Ei+1,j are invertible 8 × 8-bit
affine transformations, and xi,j is the original input byte to the j-th original
S-box of the i-th encryption round in a protected form with Ei,j .

The collision function is functionally equivalent and can be simplified to the
one depicted in Fig. 4. Without loss of generality, we set Xi = 0 in our attack
and all subsequent descriptions, and denote the constant P−1

i+4◦P ′
i+4◦P−1

i (Xi)⊕
A−1

i+4 · a′′
i+4 = P−1

i+4 ◦ P ′
i+4 ◦ P−1

i (0) ⊕ A−1
i+4 · a′′

i+4 by ε. We now explain where the
value ε comes from. Let X̂ denotes the original 32-bit value immediately after
the L operation under the input X = (xi,0, xi,1, xi,2, xi,3), then we have

62 J. Lu and J. Li

Fig. 4. Equivalent of our collision function

P−1
i+4 ◦ (Y ′

i0 ⊕ P ′
i+4 ◦ P−1

i (Xi))

= P−1
i+4(Y

′
i0) ⊕ P−1

i+4 ◦ P ′
i+4 ◦ P−1

i (Xi)

= P−1
i+4 ◦ P ′′

i+4(X̂) ⊕ P−1
i+4 ◦ P ′

i+4 ◦ P−1
i (Xi)

= P−1
i+4 ◦ (Pi+4(X̂) ⊕ a′′

i+4) ⊕ P−1
i+4 ◦ P ′

i+4 ◦ P−1
i (Xi)

= P−1
i+4 ◦ (Ai+4(X̂) ⊕ ai+4 ⊕ a′′

i+4) ⊕ P−1
i+4 ◦ P ′

i+4 ◦ P−1
i (Xi)

= A−1
i+4 ◦ (Ai+4(X̂) ⊕ ai+4 ⊕ a′′

i+4 ⊕ ai+4) ⊕ P−1
i+4 ◦ P ′

i+4 ◦ P−1
i (Xi)

= X̂ ⊕ A−1
i+4 · a′′

i+4 ⊕ P−1
i+4 ◦ P ′

i+4 ◦ P−1
i (Xi),

which is equal to X̂ ⊕ ε when Xi = 0.
As a consequence, the collision function denoted by f(xi,0, xi,1, xi,2, xi,3,Xi),

or simply f(xi,0, xi,1, xi,2, xi,3) under Xi = 0, is

f(xi,0, xi,1, xi,2, xi,3) =

⎡

⎢
⎢
⎣

Ei+1,0

Ei+1,1

Ei+1,2

Ei+1,3

⎤

⎥
⎥
⎦ ◦ ⊕ε ◦ L ◦

⎡

⎢
⎢
⎣

S ◦ ⊕rki,0 ◦ E−1
i,0 (xi,0)

S ◦ ⊕rki,1 ◦ E−1
i,1 (xi,1)

S ◦ ⊕rki,2 ◦ E−1
i,2 (xi,2)

S ◦ ⊕rki,3 ◦ E−1
i,3 (xi,3)

⎤

⎥
⎥
⎦ .

Furthermore, we express f as a concatenation of four byte functions f0, f1,
f2 and f3:

f(xi,0, xi,1, xi,2, xi,3) = (f0(xi,0, xi,1, xi,2, xi,3), f1(xi,0, xi,1, xi,2, xi,3),
f2(xi,0, xi,1, xi,2, xi,3), f3(xi,0, xi,1, xi,2, xi,3));

and define Sj function as

Sj(·) = S ◦ ⊕rki,j
◦ E−1

i,j (·) = S(rki,j ⊕ E−1
i,j (·)), j = 0, 1, 2, 3. (4)

3.2.2 Recovering Sj Functions
Next we try to recover the functions S0, S1, S2 and S3 by exploiting collisions
on the output of the functions fj . We first use the following collision to recover
S0 and S1:

Cryptanalysis of Two White-Box Implementations 63

f0(α, 0, 0, 0) = f0(0, β, 0, 0), (5)

where α, β ∈ GF(28). By the linear transformation L in Eq. (3), Eq. (5) imme-
diately means the following equation:

Ei+1,0 ◦ ⊕ε0 ◦ (
B1 ◦ S0(α) ⊕ B2 ◦ S1(0) ⊕ B2 ◦ S2(0) ⊕ B3 ◦ S3(0)

)

= Ei+1,0 ◦ ⊕ε0 ◦ (
B1 ◦ S0(0) ⊕ B2 ◦ S1(β) ⊕ B2 ◦ S2(0) ⊕ B3 ◦ S3(0)

)
,

where ε0 is the corresponding byte of the constant ε. Since Ei+1,0 is a bijection,
we have the following equation:

B1 ◦ S0(α) ⊕ B2 ◦ S1(0) = B1 ◦ S0(0) ⊕ B2 ◦ S1(β).

For convenience, define um = S0(m) and vm = S1(m), then we have

B1 ◦ (u0 ⊕ uα) = B2 ◦ (v0 ⊕ vβ). (6)

Since α �→ f0(α, 0, 0, 0) and β �→ f0(0, β, 0, 0) are bijections, we can find
256 collisions. After removing (α, β) = (0, 0), we get 255 pairs (α, β) satisfying
Eq. (5), each providing an equation of the form of Eq. (6). In the same way, we
use other fj functions (j ∈ {1, 2, 3}) to generate similar equations with different
coefficients in {B1, B2, B3}. Finally, we get 4 × 255 linear equations with all 512
unknowns, as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B1 ◦ (u0 ⊕ uα) = B2 ◦ (v0 ⊕ vβ);
B2 ◦ (u0 ⊕ uα) = B3 ◦ (v0 ⊕ vβ);
B3 ◦ (u0 ⊕ uα) = B1 ◦ (v0 ⊕ vβ);
B2 ◦ (u0 ⊕ uα) = B2 ◦ (v0 ⊕ vβ).

(7)

Define u′
m = u0⊕um and v′

m = v0⊕vm, with m ∈ {1, 2, . . . , 255}, so that the
number of unknowns is reduced to 2×255 = 510. Thus, Eq. (6) can be rewritten
as

B1 ◦ u′
α = B2 ◦ v′

β ,

meaning that the linear system of Eq. (7) can be represented with 510 unknowns
as ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

B1 ◦ u′
α = B2 ◦ v′

β ,

B2 ◦ u′
α = B3 ◦ v′

β ,

B3 ◦ u′
α = B1 ◦ v′

β ,

B2 ◦ u′
α = B2 ◦ v′

β .

The 4 × 255 equations yield a linear system of rank 509; and in such a linear
equation system, all other unknowns can be expressed as a function of one of
them, say u′

1, that is, there exist coefficients ai and bi such that u′
m = am · u′

1

and v′
m = bm · u′

1. That is,

um = am · (u0 ⊕ u1) ⊕ u0,

vm = bm · (u0 ⊕ u1) ⊕ v0. (8)

64 J. Lu and J. Li

Next we can recover the S0 function by exhaustive search on the pair (u0, u1),
and at last we use the following equation from the definition of the S0 function
to verify whether the obtained S0 function is right or not:

S−1 ◦ S(·) = rki,0 ⊕ E−1
i,0 (·).

Since E−1
i,0 is an 8×8-bit invertible affine transformation, the above function has

an algebraic degree of at most 1. For a wrong pair (u0, u1), a wrong candidate
function S∗

0 would be got which is an affine equivalent to S0, namely there exists
an 8 × 8-bit matrix a and an 8-bit vector b such that S∗

0(·) = a · S0(·) ⊕ b, with
a �= 0 and (a, b) �= (0, 1). The function S−1 ◦ S∗

0(·) satisfies

S−1 ◦ S∗
0(·) = S−1

(
a · S0

(
rki,0 ⊕ E−1

i,0 (·)) ⊕ b
)
.

In this case, S−1 ◦ S∗
0(·) has an algebraic degree greater than 1 with an over-

whelming probability. More specifically, we set the function ĝ(·) = S−1 ◦ S∗(·),
used Lai’s higher-order derivative concept [17] to calculate the 1st-order deriva-
tive of ĝ, and finally ran ten thousand tests without obtaining a function with
an algebraic degree of 1 or less. For instance, the 1st-order derivative ϕ̂ at (01)
is set to

ϕ̂(x) = ĝ(x ⊕ 01) ⊕ ĝ(x),

and we verify
⊕255

i=0 ϕ̂(xi) = 0 with 27 inputs of x, since ϕ̂(x) = ϕ̂(x ⊕ 01). For
each wrong pair, the probability of getting

⊕255
i=0 ϕ̂(xi) = 0 is roughly 2−8, so

wrong guesses can be quickly removed.
After recovering S0, we can use Eq. (8) to recover S1 by exhaustive search

on v0, and similarly recover S2 and S3 with other equations finally.

3.2.3 Recovering the Linear Parts of Output Encodings Ei+1,j

After the Sj functions have been recovered (j = 0, 1, 2, 3), however it is not
as easy to recover the output encodings Ei+1,j as Lepoint et al.’s attack on
Chow et al.’s white-box AES implementation, because of the existence of the
unknown constant ε, which is partially due to the different structures of Feis-
tel and SPN ciphers and the design of Yao and Chen’s white-box SM4 imple-
mentation. Anyway, we find a trick to recover the linear part of the output
encodings Ei+1,j . Since Ei+1,j is an invertible affine transformation, we write
Ei+1,j(·) = Ci+1,j(·) ⊕ ci+1,j , where Ci+1,j is a general invertible 32 × 32-bit
matrix and ci+1,j is an 8-bit constant.

Given a 32-bit input (xi,0, xi,1, xi,2, xi,3) to the f collision function, denote
the original 32-bit value immediately after the L̂ operation as follows:

Y =
[
Y0 Y1 Y2 Y3

]T
= L0 ◦ S0(xi,0) ⊕ L1 ◦ S1(xi,1) ⊕ L2 ◦ S2(xi,2) ⊕ L3 ◦ S3(xi,3).

Cryptanalysis of Two White-Box Implementations 65

As L is public and we have recovered Sj above (j = 0, 1, 2, 3), we can compute
Yj . The output of the f collision function is

f =
[
f0 f1 f2 f3

]T =

⎡

⎢
⎢
⎣

Ei+1,0(Y0 ⊕ ε0)
Ei+1,1(Y1 ⊕ ε1)
Ei+1,2(Y2 ⊕ ε2)
Ei+1,3(Y3 ⊕ ε3)

⎤

⎥
⎥
⎦ ,

where (ε0, ε1, ε2, ε3) = ε.
Subsequently, to recover Ei+1,j , we need to know the 8-bit unknown constant

εj . A straightforward way is to try by exhaustive search, which would cause an
additional time complexity of 28. However, we can recover the linear part Ci+1,j

at ease, as follows.
First, we choose the 32-bit input X0 = (x̂i,0, x̂i,1, x̂i,2, x̂i,3) to the f

collision function, so that the original 32-bit value immediately after the
L operation is 0; this can be done easily by choosing X0 such that
(S0(x̂i,0),S1(x̂i,1),S2(x̂i,2),S3(x̂i,3)) = L−1(0) = 0. Thus, its corresponding out-
put under the f0 collision function is

f0(X0) = Ci+1,0(ε0) ⊕ ci+1,0. (9)

Next, we select an arbitrary 32-bit input X = (xi,0, xi,1, xi,2, xi,3) to the f
collision function, and its corresponding output under the f0 collision function
is

f0(X) = Ei+1,0(X̂ ⊕ ε) = Ci+1,0(X̂) ⊕ Ci+1,0(ε0) ⊕ ci+1,0, (10)

where X̂ = L(S0(xi,0),S1(xi,1),S2(xi,2),S3(xi,3)), which denotes the original
32-bit value immediately after the L operation under the input X.

At last, XORing Eq. (9) and Eq. (10), we get f0(X) ⊕ f0(X0) = Ci+1,0(X̂).
As a consequence, we can recover the linear part Ci+1,0 of the output encod-
ings Ei+1,j . The linear parts of other output encodings Ei+1,j can be recovered
similarly.

3.2.4 Recovering Round Key rki

We first show how to recover the key byte rki,j . According to Eq. (4) and Eq. (5),
we define the function g as follows:

g = f0
(
E−1

i,0 (S−1(·) ⊕ rki,0), 0, 0, 0
)
,

which satisfies

g(x) = Ei+1,0(B1 ◦ x ⊕ c) = Ci+1,0(B1 ◦ x ⊕ c) ⊕ ci+1,0,

where c = B2◦S1(0)⊕B2◦S2(0)⊕B3◦S3(0)⊕ε0, and Ci+1,0(ε0)⊕ci+1,0 has been
calculated in Eq. (9). Because of the 8 × 8-bit invertible affine transformation

66 J. Lu and J. Li

Ei+1,0, the function g has algebraic degree at most 1. For a wrong guess r̂ki,0 �=
rki,0, the function ĝ is defined as:

ĝ(x) = f0
(
E−1

i,0 (S−1(x) ⊕ r̂ki,0), 0, 0, 0
)

= Ei+1,0

(
B1 · S(S−1(x) ⊕ r̂ki,0 ⊕ rki,0) ⊕ c

)
.

In this case, with a similar test, ĝ has an algebraic degree of more than 1 with
an overwhelming probability. We extract rki,0 by exhaustive search, that is, we
verify

⊕255
i=0 ϕ̂(xi) = 0 for each guess r̂ki,0, where ϕ̂(x) = ĝ(x ⊕ 01) ⊕ ĝ(x). For

a wrong guess r̂ki,0,
⊕255

i=0 ϕ̂(xi) = 0 roughly occurs with probability 2−8, so
wrong guesses can be quickly removed.

The other three key bytes rki,1, rki,2 and rki,3 can be similarly recov-
ered by changing the definition of the function g. For instance, we define
g = fj

(
0, E−1

i,1 (S−1(·) ⊕ rki,1), 0, 0
)

to retrieve the key byte rki,1. Finally, the
full sectet key of SM4 can be easily recovered by inverting the key schedule
scheme from the second round.

3.2.5 Time Complexity
In the phase of recovering S0, there are 216 candidates (u0, u1) for exhaustive
search, and to verify

⊕255
i=0 ϕ̂(xi) = 0 we need to calculate ϕ̂(xi) for 27 inputs.

For a wrong guess (u0, u1), the probability of
⊕255

i=0 ϕ̂(xi) = 0 is 2−8 roughly.
Thus, the expected value of the test is 1 + 1/256 + · · · + 1/(25615) ≤ 1.004. The
time complexity of recovering S0 is hence of 216 · 1.004 · 27 ≈ 223.

We recover S1, S2 and S3 by exhaustive search on v0 and produce the com-
plexity of 3 · (28 · 1.004 · 27) ≈ 3 · 215. Thus, the total complexity of the recovery
of Sj is 223 + 3 · 215 ≈ 223.

The time complexity for recovering the linear part of output encoding Ei+1,j

is negligible. We divide the 32-bit round key into four bytes. The time complexity
of recovering one key byte is rough 28 · 1.004 · 27 ≈ 215, so the complexity of
recovering a round key is 4 · 215 = 217. To sum up, the total time complexity of
recovering one round key is 223 + 217 ≈ 223.

Fig. 5. An encryption round of Xiao and Lai’s white-box SM4 implementation

Cryptanalysis of Two White-Box Implementations 67

4 Collision-Based Attack on Xiao and Lai’s White-Box
SM4 Implementation

Xiao and Lai’s white-box SM4 implementation [34] is similar to Yao and Chen’s
white-box SM4 implementation at a high level, except that there is no state
expansion to the S-box layer and thus the original L operation is used. Figure 5
depicts an encryption round of Xiao and Lai’s white-box SM4 implementation,
where Qi is a general invertible affine output encoding.

Therefore, we can apply the above collision-based attack to Xiao and Lai’s
white-box SM4 implementation in the same way, and the attack’s time complex-
ity is also around 223 for recovering a round key.

5 Concluding Remarks

The SM4 block cipher is a Chinese national standard and an ISO international
standard, first released as SMS4 in 2006. In 2009 Xiao and Lai presented the
first white-box SM4 implementation with the best currently published attack
complexity of about 232 using affine equivalence technique, and in 2020 Yao
and Chen presented a new white-box SM4 implementation with the best self-
estimated attack complexity of about 251 among a variety of attack techniques.
In this paper, we have presented collision-based attacks on Yao and Chen’s and
Xiao and Lai’s white-box SM4 implementations with a time complexity of about
223, and thus their security is much lower than previously published and their
realistic significance is reduced. Our attacks indicate to some degree that a white-
box SM4 implementation following a similar protection line is hardly secure
generally as long as the inputs to the original S-box layers of two consecutive
rounds can be known, and thus we have to explore a different design way.

Acknowledgement. This work was supported by National Natural Science Foun-
dation of China (No. 61972018) and Guangxi Key Laboratory of Cryptography and
Information Security (No. GCIS202102). Jiqiang Lu is Qianjiang Special Expert of
Hangzhou.

References

1. Baek, C.H., Cheon, J.H., Hong, H.: White-Box AES implementation revisited. J.
Commun. Netw. 18(3), 273–287 (2016)

2. Bai, K., Wu, C.: A secure White-Box SM4 implementation. Secur. Commun. Netw.
9(10), 996–1006 (2016)

3. Bai, K., Wu, C., Zhang, Z.: Protect White-Box AES to resist table composition
attacks. IET Inf. Secur. 12(4), 305–313 (2018)

4. Barkan, E., Biham, E.: In how many ways can you write Rijndael? In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 160–175. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36178-2 10

https://doi.org/10.1007/3-540-36178-2_10

68 J. Lu and J. Li

5. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a White Box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-
4 16

6. Biryukov, A., De Cannière, C., Braeken, A., Preneel, B.: A Toolbox for cryptanal-
ysis: linear and affine equivalence algorithms. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-39200-9 3

7. Bringer, J., Chabanne, H., Dottax, E.: White box cryptography: another attempt.
IACR Cryptol. ePrint Arch. 2006, 468 (2006)

8. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-Box cryptography
and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36492-7 17

9. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A White-Box DES imple-
mentation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol.
2696, pp. 1–15. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
44993-5 1

10. Derbez, P., Fouque, P., Lambin, B., Minaud, B.: On recovering affine encodings in
white-box implementations. IACR Trans. Cryptogr. Hard. Embed. Syst. 2018(3),
121–149 (2018)

11. Office of State Commercial Cryptography Administration of China: The SMS4
Block Cipher (2006). (in Chinese)

12. Standardization Administration of China: Information Security Technology - SM4
Block Cipher Algorithm (2016)

13. International Standardization of Organization (ISO), International Standard -
ISO/IEC 18033–3:2010/AMD1:2021, Amendment 1 - Information technology -
Security techniques - Encryption algorithms - Part 3: Block ciphers - SM4 (2021)

14. Goubin, L., Masereel, J.-M., Quisquater, M.: Cryptanalysis of White Box DES
implementations. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS,
vol. 4876, pp. 278–295. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-77360-3 18

15. Jacob, M., Boneh, D., Felten, E.: Attacking an obfuscated cipher by injecting
faults. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 16–31. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-44993-5 2

16. Karroumi, M.: Protecting White-Box AES with dual ciphers. In: Rhee, K.-H.,
Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 278–291. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24209-0 19

17. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E.,
Costello, D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryptogra-
phy. The Springer International Series in Engineering and Computer Science (Com-
munications and Information Theory), vol. 276, pp. 227–233. Springer, Boston, MA
(1994). https://doi.org/10.1007/978-1-4615-2694-0 23

18. Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a
White-Box AES implementation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 265–285. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7 14

19. Lin, T., Lai, X.: Efficient attack to White-Box SMS4 implementation. J. Softw.
24(9), 2238–2249 (2013).(in Chinese)

https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/3-540-39200-9_3
https://doi.org/10.1007/3-540-39200-9_3
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/978-3-540-77360-3_18
https://doi.org/10.1007/978-3-540-77360-3_18
https://doi.org/10.1007/978-3-540-44993-5_2
https://doi.org/10.1007/978-3-642-24209-0_19
https://doi.org/10.1007/978-1-4615-2694-0_23
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-662-43414-7_14

Cryptanalysis of Two White-Box Implementations 69

20. Lin, T., Yan, H., Lai, X., Zhong, Y., Jia, Y.: Security evaluation and improve-
ment of a White-Box SMS4 implementation based on affine equivalence algorithm.
Comput. J. 61(12), 1783–1790 (2018)

21. Link, H.E., Neumann, W.D.: Clarifying obfuscation: improving the security of
White-Box DES. In: International Symposium on Information Technology: Coding
and Computing, pp. 679–684. IEEE (2005)

22. Luo, R., Lai, X., You, R.: A new attempt of White-box AES implementation.
In: Proceedings of IEEE International Conference on Security, pp. 423–429. IEEE
(2014)

23. Michiels, W., Gorissen, P., Hollmann, H.D.L.: Cryptanalysis of a generic class of
White-Box implementations. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC
2008. LNCS, vol. 5381, pp. 414–428. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04159-4 27

24. De Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao – Lai White-
Box AES implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol.
7707, pp. 34–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
35999-6 3

25. De Mulder, Y., Wyseur, B., Preneel, B.: Cryptanalysis of a perturbated White-Box
AES implementation. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS,
vol. 6498, pp. 292–310. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17401-8 21

26. National Institute of Standards and Technology (NIST): Advanced Encryption
Standard (AES), FIPS-197 (2001)

27. National Bureau of Standards (NBS): Data Encryption Standard (DES), FIPS-46
(1977)

28. Shi, Y., Wei, W., He, Z.: A lightweight white-box symmetric encryption algorithm
against node capture for WSNs. Sensors 15(5), 11928–11952 (2015)

29. Tolhuizen, L.: Improved cryptanalysis of an AES implementation. In: Proceedings
of the 33rd WIC Symposium on Information Theory in the Benelux, pp. 68–71
(2012)

30. Wang, R.: Security analysis of lightweight white-box cryptography algorithm .
Master’s thesis, Beihang University (2021). (in Chinese)

31. Wang, R., Guo, H., Lu, J., Liu, J.: Cryptanalysis of a White-Box SM4 implemen-
tation based on collision attack. IET Inf. Secur. (to appear)

32. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of White-Box
DES implementations with arbitrary external encodings. In: Adams, C., Miri, A.,
Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 264–277. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77360-3 17

33. Xiao, Y., Lai, X.: A secure implementation of white-box AES. In: Proceedings of
the Second International Conference on Computer Science and its Applications,
pp. 1–6. IEEE (2009)

34. Xiao, Y., Lai, X.: White-Box cryptography and a SMS4 implementation . In: Pro-
ceedings of 2009 Annual Conference of the Chinese Association of Cryptologic
Research, pp. 24–34 (2009). (in Chinese)

35. Yao, S., Chen, J.: A new method for White-Box implementation of SM4 algorithm
(in Chinese). J. Cryptol. Res. 7(3), 358–374 (2020)

https://doi.org/10.1007/978-3-642-04159-4_27
https://doi.org/10.1007/978-3-642-04159-4_27
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-17401-8_21
https://doi.org/10.1007/978-3-642-17401-8_21
https://doi.org/10.1007/978-3-540-77360-3_17

A Non-interactive Multi-user Protocol
for Private Authorised Query Processing

on Genomic Data

Sara Jafarbeiki1,2(B), Amin Sakzad1, Shabnam Kasra Kermanshahi3,
Ron Steinfeld1, Raj Gaire2, and Shangqi Lai1

1 Monash University, Melbourne, Australia
sara.jafarbeiki@monash.edu
2 CSIRO, Canberra, Australia

3 RMIT University, Melbourne, Australia

Abstract. This paper introduces a new non-interactive multi-user
model for secure and efficient query executions on outsourced genomic
data to the cloud. We instantiate this model by leveraging searchable
symmetric encryption (SSE). This new construction supports various
types of queries (i.e., count, Boolean, k′-out-of-k match queries) on
encrypted genomic data, and we call it NIMUPrivGenDB. Most impor-
tantly, it eliminates the need for the data owner and/or trusted entity
to be online and avoids per-query interaction between the data owner
and/or trusted entity and users. This is achieved by introducing a new
mechanism called QUAuth to enforce access control based on the types
of queries (Q) each user (U) is authorised (Auth) to submit. To the
best of our knowledge, this is the first paper proposing an authorisation
mechanism based on queries on genomic data. Moreover, QUAuth offers
user management by supporting authorisation updates. We proved that
our construction achieves strong security against malicious behaviour
among authorised users, where a malicious user pretends to be other
users by using others’ unique IDs, and colluding attacks among these
users are also considered. Finally, our proposed protocol’s implementa-
tion and evaluation demonstrate its practicality and efficiency in terms
of search computational complexity and storage cost.

Keywords: Genomic data privacy · Searchable encryption · Secure
outsourcing · Cloud security · Non-interactive · Multi-user ·
Authorisation

1 Introduction

The rapid improvements in the generation and availability of genomic data have
had an influence on related scientific studies. These massive genomic datasets
aid our understanding of the connection between many of the diseases and genes.
The most prevalent form of genetic variation is single nucleotide polymorphisms

c© Springer Nature Switzerland AG 2021
J. K. Liu et al. (Eds.): ISC 2021, LNCS 13118, pp. 70–94, 2021.
https://doi.org/10.1007/978-3-030-91356-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91356-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-91356-4_5

A Non-interactive Multi-user Protocol 71

(SNPs), and many genetic studies include finding interactions between SNPs
and traits or diseases (phenotypes). Genomic data are highly sensitive, notably,
because they are irrevocable and have stigmatising implications for both indi-
viduals and their families [1].

Various types of queries on a genomic dataset can help users of a genome
system providing search functionalities, e.g., count query, Boolean query, k′-out-
of-k matches query [2–5]. These users are normally analysts to conduct research
or clinicians to get information of a patient. Given the multiple users involved
in such a system to do analysis or provide care, the concern of who retrieves
what information has to be considered with subtlety. For instance, clinicians are
allowed to retrieve information of a particular person as their patient, which is
considered as the primary purpose of genomic data collection. However, analysts
are not allowed to get the data of particular records for research, which can be
identified unless an exception applies [6–8].

Cloud computing services provide a promising way to store vast volumes
of data and delivers great advantages to consumers. Undoubtedly, large-scale
genomic data storage and query processing would receive cost and speed benefit
from using cloud computing infrastructures. However, placing sensitive genomic
dataset in a public cloud system without implementing any cybersecurity mea-
sures raises privacy and security concerns [9,10].

Different cryptographic solutions have been used to provide confidentiality
and secure query executions on genomic data [2–5,11–14]. For a detailed com-
parison on what features each of these schemes bring to the table, please see
Table 1. Interactive access control mechanism causes delays and query submis-
sion dependency on data owner/trusted entity. Other works [15,16] gave autho-
risation mechanisms for different purposes such as allowing authorised queries
of a list of specific SNPs or computing weighted average test over SNPs stored
on data owner’s device. A non-interactive authorisation mechanism based on
submitted queries has not been studied yet. As extra merit to non-interactivity,
updating a user’s search permission based on types of queries without affecting
other users has not been investigated. These schemes, while supporting various
types of queries on genomic data, either do not provide an access control mech-
anism or require data owner and/or trusted entity to interactively control the
access of the system.

A naive solution would use different servers for different categories of users,
e.g., clinicians would be allowed to submit their queries to server 1, analysts
would be allowed to execute queries using server 2 and so on. However, such
naive solution would increase the storage cost and initialisation computational
cost by approximately a factor of the number of types of users. Furthermore,
only with non-colluding servers’ assumption will this simplistic approach be
seen as a model that can fulfill authorisation requirements based on submit-
ted queries. Otherwise, if servers collude, different users can submit queries to
different servers and authorisation based on types of queries will not take place.
Moreover, this naive solution does not support/offer authorisation update func-
tionality (see Table 1).

72 S. Jafarbeiki et al.

T
a
b
le

1
.
C

o
m

p
a
ri

so
n

o
f
ex

is
ti

n
g

sc
h
em

es
fo

r
q
u
er

y
ex

ec
u
ti

o
n
s

o
n

g
en

o
m

ic
d
a
ta

S
ch

e
m

e
M

e
th

o
d

F
u
n
c
ti

o
n
a
li
ty

A
u
th

o
ri

sa
ti

o
n

S
to

ra
g
e

c
o
st

fo
r

o
u
ts

o
u
rc

e
d

d
a
ta

P
ri

m
it

iv
e

S
o
lu

ti
o
n

D
a
ta

se
t

Q
u
e
ri

e
s

Y
e
s/

N
o

N
o
n
/
In

te
ra

c
ti

v
e

[1
5
]

A
sy

m
m

e
tr

ic
S
o
ft

w
a
re

S
N

P
N

/
A

Y
e
s

(W
e
ig

h
ts

)
In

te
ra

c
ti

v
e

N
/
A

[1
6
]

A
sy

m
m

e
tr

ic
S
o
ft

w
a
re

S
N

P
N

/
A

Y
e
s

(F
u
n
c
ti

o
n
s)

In
te

ra
c
ti

v
e

N
/
A

[1
1
]

A
sy

m
m

e
tr

ic
S
o
ft

w
a
re

S
N

P
C

N
o

N
/
A

r
(4

x
b
)

[1
2
]

S
y
m

m
e
tr

ic
H

y
b
ri

d
S
N

P
,
P
H

C
N

o
N

/
A

r
x
� E

[1
3
]

A
sy

m
m

e
tr

ic
H

y
b
ri

d
S
N

P
,
P
H

C
N

o
N

/
A

3
b
(3

x
−

1
)

[2
]

A
sy

m
m

e
tr

ic
S
o
ft

w
a
re

S
N

P
,
P
H

+
C

N
o

N
/
A

1
.5

(3
x

−
1
)(

m
+

2
b
)

�
�

[3
]

A
sy

m
m

e
tr

ic
S
o
ft

w
a
re

S
N

P
,
P
H

+
,
M

C
N

o
N

/
A

1
.5

(3
x

−
1
)(

m
+

4
b
)

�
�

[4
]

A
sy

m
m

e
tr

ic
S
o
ft

w
a
re

S
N

P
,
P
H

C
,
to

p
k

N
o

N
/
A

2
r
x

+
2
r
b

[5
]

A
sy

m
m

e
tr

ic
S
o
ft

w
a
re

S
N

P
C

,
N

,
k

′
N

o
N

/
A

r
(8

x
b
)

[1
4
]

S
y
m

m
e
tr

ic
S
o
ft

w
a
re

S
N

P
,
P
H

+
,
M

C
,
N

,
k

′ ,
B

Y
e
s

(Q
u
e
ri

e
s)

In
te

ra
c
ti

v
e

r
x
(�

E
+

� P
)
+

m

N
a
iv

e
so

lu
ti

o
n

S
y
m

m
e
tr

ic
S
o
ft

w
a
re

S
N

P
,
P
H

+
,
M

C
,
N

,
k

′ ,
B

Y
e
s

(Q
u
e
ri

e
s)

N
o
n
-I

n
te

ra
c
ti

v
e

u
r
x
(�

E
+

� P
)
+

u
m

N
IM

U
P
ri

v
G

e
n
D

B
S
y
m

m
e
tr

ic
S
o
ft

w
a
re

S
N

P
,
P
H

+
,
M

C
,
N

,
k

′ ,
B

Y
e
s†

(Q
u
e
ri

e
s)

N
o
n
-I

n
te

ra
c
ti

v
e

r
x
(�

E
+

� P
)
+

m
+

q
|U

|(�
F

)

N
o
ta

ti
o
n
s:

P
H

:
P
h
e
n
o
ty

p
e
;

M
:

M
e
ta

d
a
ta

;
C

:
C

o
u
n
t;

N
:

N
e
g
a
ti

o
n
;

k
′ :

k
′ -

o
u
t-

o
f-

k
m

a
tc

h
;

B
:

B
o
o
le

a
n
;

x
:

N
u
m

b
e
r

o
f

c
o
lu

m
n
s

in
th

e
o
ri

g
in

a
l

d
a
ta

b
a
se

;
r
:
N

u
m

b
e
r

o
f
re

c
o
rd

s
in

D
B

;
u
:
N

u
m

b
e
r

o
f
c
a
te

g
o
ri

e
s

o
f
u
se

rs
in

th
e

sy
st

e
m

;
q
:
N

u
m

b
e
r

o
f
ty

p
e
s

o
f
su

p
p
o
rt

e
d

q
u
e
ri

e
s;

|U
|:

N
u
m

b
e
r

o
f

a
ll

th
e

u
se

rs
o
f
th

e
sy

st
e
m

;
+

:
P
h
e
n
o
ty

p
e

in
c
lu

d
e
s

th
e

e
x
a
c
t

d
is

e
a
se

/
tr

a
it

,
n
o
t

ju
st

p
o
si

ti
v
e
/
n
e
g
a
ti

v
e

si
g
n
s

to
sh

o
w

w
h
e
th

e
r

th
a
t

re
c
o
rd

h
a
s

o
n
e

p
a
rt

ic
u
la

r
p
h
e
n
o
ty

p
e

o
r

n
o
t;

b
:
P
u
b
li
c

k
e
y

m
o
d
u
lu

s
si

z
e

in
b
it

s;
� p

:
S
iz

e
o
f
a
n

e
le

m
e
n
t

fr
o
m

Z
p

(p
is

a
p
ri

m
e

n
u
m

b
e
r)

;
� E

:
S
iz

e
o
f
th

e
b
lo

ck
o
f

S
E

;
� F

:
S
iz

e
o
f
th

e
o
u
tp

u
t

o
f
a

P
se

u
d
o
ra

n
d
o
m

F
u
n
c
ti

o
n

(P
R

F
);

m
:
B

lo
o
m

F
il
te

r
(B

F
)

si
z
e
;

�
�
:
T

h
is

d
e
p
e
n
d
s

o
n

th
e

d
is

tr
ib

u
ti

o
n

o
f
g
e
n
o
ty

p
e
s

in
th

e
d
a
ta

se
t;

† :
It

a
ls

o
su

p
p
o
rt

s
a
u
th

o
ri

sa
ti

o
n

u
p
d
a
te

;
:
S
e
p
a
ra

te
s

th
e

w
o
rk

s
o
n

to
p

o
f
it

a
s

th
e

o
n
e
s

th
a
t

a
re

n
o
t

in
th

e
e
x
a
c
t

c
o
n
te

x
t

o
f
th

is
w

o
rk

(t
h
e
y

e
it

h
e
r

d
o

n
o
t

su
p
p
o
rt

d
iff

e
re

n
t

q
u
e
ri

e
s,

o
r

a
u
th

o
ri

se
b
a
se

d
o
n

d
iff

e
re

n
t

p
a
ra

m
e
te

rs
).

A Non-interactive Multi-user Protocol 73

In contrast, an efficient system would allow users to submit queries to a server
and receive authorised results back without interacting with intermediate entities
and without replicating the database onto multiple servers. The model in [14]
utilises searchable symmetric encryption (SSE) influenced by oblivious cross-tags
(OXT) protocol in [17], which provides a method for searching encrypted data
efficiently and securely. It also supports different types of queries on encrypted
genomic data; however, it is an interactive model with a middle trusted entity
checking each submitted query.

1.1 Our Contributions

We present a new non-interactive multi-user model, NIMUPrivGenDB, for differ-
ent query executions (Table 1-Functionality) on genomic data. Our model lever-
ages SSE scheme inspired by OXT scheme of Cash et al. [17] to provide data
confidentiality. Motivated by NIMC-SSE-Π2 in [18], this paper proposes a new
authorisation mechanism, QUAuth, to achieve authorised queries submission in
a non-interactive fashion. To the best of our knowledge, this is the first paper
proposing a non-interactive multi-user model utilising SSE, that controls the
users’ access based on submitted queries. The proposed model in [18] autho-
rises users based on search keywords whereas QUAuth is based on query types.
In addition, QUAuth eliminates per-query authorisation by granting the user
a query-authorised private key associated with the types of queries the user is
allowed to submit (Table 1-Authorisation)1. Therefore, it does not require the
online presence of a trusted entity in the query submission process. Moreover,
this query-authorised key is also dependent on the user ID, which makes it unique
for each user. Hence, the authorisation can be updated and a user management
mechanism can take into place to add/revoke each user’s access. NIMUPriv-
GenDB is also proved to be secure against malicious users that try to forge
other users’ key using those users’ unique ID. Moreover, it is secure against
users collusion attack. All the above advantages are achieved without relying
on non-colluding servers. This in turn results in enforcing access policy in our
model with newly proposed mechanism, QUAuth, without multiplying the stor-
age cost to the number of categories of users (Table 1-Storage cost) as opposed to
the navie solution. Furthermore, our experimental evaluations indicates the low
communication, computation, and storage costs, which makes NIMUPrivGenDB
suitable in practice for real-world applications. It is demonstrated that besides
all above-mentioned added functionalities, our protocol’s search time complex-
ity is still approximately the same as [14] without sacrificing much storage. It is
also approximately 100 and 22 times faster than [2] and [4] for a query with 10
keywords, respectively. Please see Appendix 1 for more details on our technique.

1 We used/tested this model for query processing on genomic data. However, this
proposed mechanism may be of independent interest. It can be utilised in other
applications where access to the data is essential based on the types of queries.

74 S. Jafarbeiki et al.

2 Preliminaries

2.1 Biology Background

Genome is the complete set of genetic information of an organism. The genome
is encoded in double-stranded deoxyribonucleic acid (DNA) molecules, which are
made up of two long and complementary polymer chains of four basic units called
nucleotides, which are represented by the letters A (Adenine), C (Cytosine), G
(Guanine), and T (Thymine) in humans and many other species. The human
genome consists of approximately 3 billion such letters (base pairs).

Single nucleotide polymorphisms (SNPs) are the most common form of
DNA variation, and they occur where a single nucleotide (A, C, G, or T) varies
between members of the same species. The majority of SNPs are biallelic, with
only two possible variants (alleles) observed. The set of specific alleles carried
by an individual is called their genotype. Together, SNPs account for a large
proportion of the genetic variation underlying many human traits such as height
and predisposition to disease [19,20].

Phenotype refers to an individual’s manifestation of a characteristic or trait.
SNP variations are often associated with the trait in question and how individu-
als develop diseases and respond to drugs, vaccines and other agents. Thus, they
help in the discovery of the genetic mechanisms that underlying these charac-
teristics (called phenotypes).

Table 2 illustrates one type of data representation in a database of SNP
genotypes for a number of individuals with the individuals’ phenotype and other
information. The genotypes of each SNP are listed in a single column [2,12].

Table 2. Data representation with SNPs

Record SNP1 SNP2 SNP3 SNP4 ... Phenotype Gender Ethnicity

1 AG CC TT AA . . . Cancer A Female White

2 AA CC CT AG . . . Cancer B Male White

3 AG CT CC AA . . . Cancer A Female Black

Queries on genomic data have different types that can help researchers
analyse genomic and phenotype data and find their correlations, or help clinicians
in finding patients’ genomic related information, such as reaction to a medicine,
or their potential diseases. Some different query types on this dataset are2:

Count Query: A count query measures the number of records in the database
that match the query predicates and assists in the calculation of many statis-
tical algorithms, which is especially useful in genetic association studies. Some
statistical tests are performed by computing a series of count queries [21]. The

2 In all of these queries, negation terms can be added as predicates. Other information
like gender and ethnicity can also be added as predicates in the query.

A Non-interactive Multi-user Protocol 75

total number of SNPs specified in the query predicate is called the query size.
Example of count query on dataset in Table 2: Select count from sequences where
phenotype = Cancer B AND SNP2 �= CT AND SNP4 = AG, Result: 1.

Boolean Query: Apart from finding the number of matches, we may need to
extract the data owners’ details in order to assist them with treatment or to
warn them about a drug allergy or vaccine. As a consequence, clinicians can
ask for the IDs or other details of patients with unique genotypes so that they
can contact them. This can be accomplished by first extracting the IDs whose
genotypes match the question symbols, and then using those IDs to extract any
additional information required by the clinician. Of necessity, since this sort of
information can be risky, access control has to be considered.

k′-out-of-k Match Query: A threshold (k′) is used to decide if at least k′ number
of the SNPs out of k number of the query predicates’ characteristics (except the
first predicate) matches for the records. This can be used to retrieve IDs with
this threshold matching to check their information like diseases/medications.
If this is being checked for one record, the answer is either yes or no. Exam-
ple: Retrieve IDs from sequences where at least k′ = 2 matches out of k = 3
SNP predicates: phenotype = Cancer A AND SNP2 = CC AND SNP3 = CC AND
SNP4 = AA, Result: {1, 3}.

2.2 Cryptographic Background

Frequently used notations in this paper are listed in Table 3. The required cryp-
tographic preliminaries are described as follows.

Pseudorandom Function (PRF). A PRF [22] is a collection of functions in
which no efficient algorithm can tell the difference between a randomly chosen
PRF function and a random oracle (a function whose outputs are fixed entirely
at random) with a substantial advantage.

Let X and Y be sets, F : {0, 1}λ × X → Y be a function, s $←S be the
operation of assigning to s an element of S chosen at random, F(X,Y) denote
the set of all functions from X to Y, λ denote the security parameter for the PRF,
and negl(λ) represent a negligible function. We say that F is a pseudorandom
function (PRF) if for all efficient adversaries A, Advprf

F,A(λ) = Pr[AF (K,·)(1λ) =
1] − Pr[Af(·)(1λ) = 1] ≤ negl(λ), where the probability is over the randomness

of A, K
$← {0, 1}λ, and f

$← Fun(X,Y).

Set-Constrained Pseudorandom Function (SC-PRF). In this subsection,
a specific class of constrained pseudorandom functions [18,23,24], called set-
constrained PRFs (SC-PRFs) is discussed. (We use the SC-PRF presented and
utilised in [18]) Let F : K×X → Y be a keyed-function from domain X to range
Y, and key space K. The function F itself can be computed by a deterministic
algorithm, which on input (k, x) ∈ K×X outputs the value F (k, x) ∈ Y. A PRF
F : K × X → Y is called set-constrained if there exists an additional key space
Kc and two poly-time algorithms F.Eval and F.Cons:

76 S. Jafarbeiki et al.

Table 3. Notations

Notation Description

IDO Data Owner’s unique ID

ID′
O Encrypted Data Owner’s ID

S The set of all SNP indeices s

Θs The set of all genotypes appeared in SNPs

Gs = {g = s||θs : θs ∈ Θs} The set of all keywords g formed by
concatanating a SNP index to all genotypes of
that particular SNP

Gρ The set of all keywords g related to phenotypes

GΔ The set of all keywords g related to other
information such as gender and ethnicity

g ∈ G = {Gs}s∈S ∪ Gρ ∪ GΔ List of all keywords g in the database

GIDO List of keywords IDO has, which defines the
genotypes, phenotypes and other information
related to a particular Data Owner

MUGDB(g) = {IDO : g ∈ GIDO } The set of Data Owner IDs that contain that
particular g, which is either genotype or
phenotype or information like gender

MUGDB Multi-User Genotype-Phenotype DataBase

EMUGDB Encrypted Multi-User Genotype-Phenotype
DataBase

γ Type of a query

Γ List of the types of queries

ΓIDOi
List of the types of queries IDOi is allowed to
submit

Ui A unique certificate for i-th user

Enc, Dec Encryption, Decryption

sterm The least frequent term among predicates in the
query

xterm Other predicates in the query (except sterm)

-F.Cons (k, S) : on input a function key k ∈ K and the description of a set S ⊆ X ,
it outputs a set-constrained key kS .
-F.Eval (kS , x) : on input a constrained key kS for set S ⊆ X and an element
x ∈ S, it outputs y ∈ Y. For correctness, it is required that:

F.Eval (kS , x) =
{

F (k, x), x ∈ S
⊥, otherwise.

It is now obvious that the key kS enables us to evaluate F (k, x) on any x ∈ S
but no other x. Intuitively, it’s secure if no poly-time adversary can tell the

A Non-interactive Multi-user Protocol 77

difference between a totally random string and the PRF value of one point not
in the queried subsets. The security is given in Appendix 2.

Searchable Symmetric Encryption (SSE) and Overview of OXT. SSE
allows searchable ciphertext and search tokens to be generated by the secret key
holder. One notable work in the area of Searchable Encryption is the scheme
proposed by Cash et al. [17] called Oblivious Cross Tag (OXT). It supports con-
junctive search and general Boolean queries. For single keyword searches, a spe-
cific data structure known as tuple-set or TSet is utilised. For multiple keyword
searches, an additional dataset called XSet is utilised to see if the documents
found for the first keyword also satisfy the remaining query. Even though the
search query is of a Boolean type rather than a single keyword, the OXT scheme
achieves sublinear search time. The amount of time required is related to the
number of documents containing the least common keyword. The OXT scheme
syntax consists of EDBSetup, TokenGen, Search, and Retrieve algorithms. In the
EDBSetup, it generates the encrypted database (TSet and XSet data structures)
using security parameter. In the TokenGen, it generates search tokens based on
query predicates. In the Search, it uses the search token to search through the
encrypted database and outputs the search results. In the Retrieve, it decrypts
the encrypted results output from the search process. Below are the algorithms
in more details:

EDB ← EDBSetup(λ,DB): It first takes the security parameter λ as input
and outputs the secret key K = {KX ,KI ,KZ ,KS ,KT }, where KX ,KI ,KZ and
KS ,KT are secret keys for PRF Fp (with range in Z

∗
p

)
and PRF F , respectively.

Then, it initialises the TSet T to an empty array indexed by keywords from W
and initialises the XSet to an empty set. For each w ∈ W, it performs as follows:
Initialise t to be an empty list and initialise a counter c to 0. Set Ke ← F (KS , w)
and for each ind ∈ DB(w): (i) Set xind ← Fp (KI , ind), z ← Fp (KZ , w‖c) , y ←
xind ·z−1, and e ← Enc (Ke , ind). (ii) Append (y, e) to t and set c ← c + 1.
(iii) Set xtag ← gFp(KX ,w).xind and add xtag to XSet. Then, it sets T[w] ← t,
runs TSet.Setup(T) and outputs TSet. The encrypted database is set as EDB =
(TSet, XSet).

Tok ← TokenGen(K, Q): This algorithm inputs a query Q with included
keywords (w), where w = (w̄1, . . . , w̄n), and keys. It then chooses the keyword
with lowest-frequency as the sterm and considers the remaining keywords as
xterms. Assume w̄1 is the sterm (least frequent keyword). This algorithm gener-
ates the search token Tok = (stag, xtoken[1], xtoken[2], . . . , xtoken[n]) as follows:
Set stag ← TSet.GetTag(KT , w̄1). For c = 1, 2, . . . and until the server sends
stop do: (i) For i = 2, . . . , n, set xtoken[c, i] ← gFp(KZ ,w̄1‖c)·Fp(KX ,w̄i). (ii) Set
xtoken[c] ← (xtoken[c, 2], . . . , xtoken[c, n]).

Res ← Search(Tok,EDB): This algorithm first sets t ← TSet.Retrieve (TSet,
stag). For each (e, y) pairs in t, it tests whether ∀i = 2, . . . , n, such that
xtoken[c, i]y ∈ XSet. If so, it adds e into Res. When the last tuple in t is reached,
it sends stop to the client and halts, and returns Res as search results.

78 S. Jafarbeiki et al.

IND ← Retrieve(Res,KS , w̄1): This algorithm creates an empty set IND, then
sets Ke ← F (KS , w̄1) ; and for each e received, computes ind ← Dec (Ke, e) and
puts it in IND.

The TSet instantiation proposed and utilised in OXT scheme is described
here, which is a hash table with B buckets of size S each. Each keyword in a
database is associated with a list of fixed-length data tuples in a special data
structure known as TSet (Each keyword w has a list of ids that have that par-
ticular w). It is an inverted index that is used to search for single keywords. A
database DB = (indi,wi) is a list of (id, keyword) pairs. W is a list of all keywords.

TSet.Setup(S): The input to this algorithm is an array S of lists of equal-length
bit strings indexed by the elements of W. It outputs a pair TSet,KT. For each
w ∈ W, S[w] is a list of strings and contains one tuple per each document
which matches w.

TSet.GetTag(KT,w): The input to this algorithm is KT and w and it outputs stag
that can be used for search (retrieving the documents that match w).

TSet.Retrieve(TSet, stag): This algorithm inputs TSet, stag and outputs a list of
strings, t = S[w].

3 Proposed Solution

3.1 System Model Overview

The proposed model consists of different components, including data provider
(trustee), data owner, data server (genomic data database), and users (analysts
or clinicians). Their roles are discussed below:

Data Owner (O): A data owner is an individual who visits a medical facility
(trustee) as a study participant or patient. Therefore, her information is gathered
and preserved, and she gives the trustee permission to use her genomic data for
potential analysis or care.

Trustee (T): It is a medical facility, that collects genomic data for analysis/care
purposes and sends this information in a specific format to the data server.
The main tasks of this entity are: (i) encoding gathered data, generating an
inverted index, and encrypting it, (ii) managing the cryptographic keys, and
(iii) authenticating users and authorising them for submitting different types of
queries based on the access list for different categories of users.

Users (U): Analysts who want to analyse/conduct research on genomic data, or
physicians who want to learn more about their patients, are the two types of users
in this system. They submit specific requests to the data server and wait for the
execution results. Different queries are allowed for different users (for example,
analysts may run count queries, whereas clinicians may run count/Boolean/k′-
out-of-k match queries). Therefore, in our solution, users have to use their query-
authorised key, that does not let them process a query that they are not allowed
to. The number of types of users and the association of queries to users can
change based on the application requirements without changing the model.

A Non-interactive Multi-user Protocol 79

Data Server (D): It stores genomic data, phenotypes, and other details that
T provides. D runs encrypted queries on encrypted data and returns the results.

The system model is depicted in Appendix 3, and the syntax of our proposed
non-interactive multi-user searchable encryption is given in Appendix 4.

3.2 Threat Model

Our ultimate aim with the cloud-based genomic data outsourcing solution is that
the Data Server (D) to learn nothing about the shared genomic data or the query
conducted by the analysts/clinicians. However, in our model and construction,
we allow a small well-defined leakage to the server, as in [18], to make the system
performance practical. Since the trustee is in charge of index generation and
data encryption, we assume it is a trustworthy entity. Users are assumed to be
malicious and attempt to perform queries that reveal more information about
the database than that which can be revealed by the user’s authorised queries.
In our proposed model, we assume that D is honest-but-curious, which means
that it follows the protocol honestly and has no dishonest intent to produce an
incorrect result. However, D may attempt to obtain more data than is intended
to be extracted during or after the protocol’s execution. We assume that D does
not collude with the users, and the users receive the correct keys from T . T is
aware of the types of queries users are allowed to submit, but it has no means
to learn the exact keywords searched by the users. Users may collude to submit
a new query type or use other user’s ID to search.3

4 NIMUPrivGenDB Construction

This section provides a detailed construction of NIMUPrivGenDB with four
algorithms: ΠMUG = (NIMUPrivGenDB.{Initialisation, TokenGeneration, Search,
Retrieve}). The idea in our protocol is to generate different QSets for each query
that the system supports. For each user of the system, different qtags are gen-
erated based on the user unique ID and the query type that particular user is
allowed to submit. For example, in Table 4, the first user with id U1 is allowed to
submit queries γ1, γ2, γ3. Therefore, a related qtag has been generated dependen-
ing on the γ and U1 in three QSets1, QSets2, and QSets3. However, the second
user, U2 is only allowed to submit γ2 type query. The number of QSets can change
by the number of different queries our model supports. QUAuth mechanism is
now defined by introduction of QSets, qtags via User.Auth algorithm, and the
way the authorisation/search process takes place using qtags.

3 The proposed model in [14] adds a middle entity called vetter to the system model to
control the access of users to the system. Our model does not have a trusted middle
entity and hence, provide the control on users in a non-interactive way. Moreover,
we add user management functionality to our system without the need of per-query
interaction with a trusted entity (vetter). In terms of security, we demonstrate that
NIMUPrivGenDB does not leak much more information than [14] to the data server
and also it is secure against malicious colluding users.

80 S. Jafarbeiki et al.

Table 4. Different QSets for different query types.

QSet1 QSet2 QSet3

qtagU1,1 γ = 1 qtagU1,2 γ = 2 qtagU1,3 γ = 3

qtagU4,1 γ = 1 qtagU2,2 γ = 2 qtagU4,3 γ = 3

. qtagU3,2 γ = 2

We now put forward detailed explanations of our protocol. Let F̂ : K×X → Y
be a SC-PRF with algorithms (F̂ ·Cons, F̂ ·Eval), and assume that the query set
Γ =

⋃r
i=1 ΓIDOi

for ACL = (IDOi, ΓIDOi
)r
i=1

is contained in the domain X of F̂.
Then, the phases are described as follows:

1) NIMUPrivGenDB.Initialisation(λ,MUGDB,Γ,ACL,U) This process is illus-
trated in Algorithm 1. The Trustee T runs this algorithm. Given security param-
eter λ and a genotype-phenotype database MUGDB containing genotypes Θ for
each SNPs, phenotypes ∈ Gρ, other information ∈ GΔ, this algorithm outputs
the encrypted database EMUGDB. Furthermore, on input Γ,ACL,U , it generates
a key, skΓi

, for each user Ui of the system using the ACL and based on the queries
that Ui is allowed to submit. This algorithm uses the below sub-algorithms:

MUGeEncode(MUGDB): In this algorithm, T generates the list of key-
words, Gs for genotypes for different SNPs, Gρ for phenotype column and GΔ

for other columns containing more information or metadata, like gender and
ethnicity. It creates Gs by concatenating the index of a SNP to each θs ∈ Θs,
g = s||θs for each g ∈ Gs. For example, considering Table 2, there would be
three defined keywords for SNP3, those are: 3CC, 3CT, 3TT.
MUBInv(G,MUGDB): T generates an inverted index [25] IINX by running
this algorithm which inputs the keywords in G and the database MUGDB. The
pairs of (g, IDO) for all the keywords g ∈ G = {Gs}s∈S ∪Gρ ∪GΔ is generated.
In inverted indexing data structure, a keyword points to the records that
contain the considered keyword.
EMUGDB.Setup(λ, IINX,MUGDB, Γ,Ui,ACL): On input the security
parameter λ, generated inverted index IINX, set of different queries Γ , users
Ui, related ACL and the database MUGDB, T executes this algorithm and
outputs the encrypted database EMUGDB = (InvG,SG,QSetj) and the set of
keys, K. It chooses random key KS for PRF F and keys KX , KI , KZ for PRF
Fp and Kq for set-constrained PRF F̂ and the generator h ∈ G. Then, it gener-
ates the EMUGDB. In more details, for each user Ui, based on the access list,
the queries she is allowed to submit are extracted. Then, a qtagUi,j dependent
on Ui for each type of query γj (computing SC-PRF of concatenation of query
type and Ui) is generated and stored in QSet. For each g ∈ G it computes
value of Ke and then for the c-th IDO ∈ MUGDB[g], the trustee generates a
value y and a ciphertext ID′

O ← Enc (ke, IDO), and adds (ID′
O, y) to inv (a list

of (ID′
O, y)) pairs related to each g). Also, it computes τG associated with the

keyword/record (g, IDO), and adds it to an initially empty set SG. Then, by
using TSet.Setup algorithm, it generates InvG and outputs KT . The EMUGDB

A Non-interactive Multi-user Protocol 81

is stored in the data server, and the keys, K, are sent to the users to generate
tokens for the search.
User.Auth(γ,ACL,Ui,Kq): When a legitimate user Ui is allowed to perform
query types Γi = {γ1, . . . , γj}, the trustee produces a corresponding private
key skΓi

for this Ui and each query types, and returns it to the user along
with Γi (refer to Algorithm 1). This key is used for generating token for the
search.

Algorithm 1. NIMUPrivGenDB.Initialisation

NIMUPrivGenDB.Initialisation(λ, MUGDB, Γ, ACL, U)

Input : λ, MUGDB, Γ, ACL, U
Output : EMUGDB, K, skΓi
The T rustee performs:

1: G ← MUGeEncode(MUGDB)
2: IINX ← MUBInv(G, MUGDB)
3: (EMUGDB, K, Kq) ← EMUGDB.Setup

(λ, IINX, MUGDB, Γ, Ui, ACL)
4: skΓi

← User.Auth(Γ, ACL, Ui, Kq)

5: T rustee outsources EMUGDB to the D.
6: T rustee sends K = (KS , KX , KI , KZ , KT), skΓi

to the User Ui.

EMUGDB.Setup(λ, IINX, MUGDB,Γ, Ui, ACL)

Input : λ, IINX, MUGDB, Γ, Ui, ACL
Output : EMUGDB, K, Kq

1: Select keys KS for PRF F and keys
KX , KI , KZ for PRF Fp and Kq for SC-PRF

F̂ using security parameter λ , and G a group
of prime order p and generator h.

2: for each Ui do
3: based on the ACL, extract ΓUi

4: for γj ∈ ΓUi
do

5: qtagUi,j ← F̂(Kq, γj ||Ui)

6: QSetj(qtagUi,j) ← γj

7: end for
8: end for
9: Parse MUGDB as (IDO, g) and SG ← {}
10: for g ∈ G do
11: Initialise inv ← {}; let Ke ← F (KS , g).

12: for IDO ∈ MUGDB(g) do
13: Set a counter c ← 1
14: Compute XIDO ← Fp(KI , IDO),

z ← Fp(KZ , g||c); y ← XIDO.z−1, ID′
O ←

Enc(Ke, IDO).

15: Set τG ← hFp(KX ,g)·XIDO and SG ←
SG ∪ τG

16: Append (y, ID′
O) to inv and c ← c+1.

17: end for
18: IINX[g] ← inv
19: end for
20: Set (InvG, KT) ← TSet.Setup(IINX)
21: EMUGDB = (InvG, SG, QSetj) j = 1, 2, 3.

22: return EMUGDB and K = (KS , KX , KI , KZ ,
KT)

User.Auth(Γ, ACL, Ui, Kq)

//based on the access list ACL for each user and
type of queries data owner decides for each user,
Ui which can submit different γj , (ΓUi

= all γj

that Ui can submit):

1: for each Ui of the system do
2: Γi ← {}
3: for each γj ∈ ΓUi

do

4: γj ← γj ||Ui

5: Γi ← Γi ∪ γj

6: end for
7: skΓi

← F̂.Cons(Kq, Γi) for each Ui

8: return skΓi
to user Ui

9: end for

2) NIMUPrivGenDB.TokenGeneration(q,K, skΓi
): U runs this algorithm (see

Algorithm 2), which takes the query q(g1, . . . , gn), the key set K, and query-
authorised key of the user skΓi

as inputs and outputs the search tokens qtagUi,j ,
that is based on the type of the query γj and Ui, alongside gToK. Follow the blue
and black lines for Boolean/Count queries, and the black and red lines for k′-out-
of-k match queries. Before computing tokens, Ui generates the keywords related
to the genotypes for SNPs by using the encoding mechanism used in initialisation
phase, and the new query will be generated as q(g1, . . . , gn). For example, gi can
be cancer B, or Female, or 1AA, or 3CT, or 4AG,. . . for i = 1, . . . , n.

In particular, U generates tokens as follows: qtagUi,j is generated based on
the query type which is going to be submitted and Ui, using the key skΓi

. Then,

82 S. Jafarbeiki et al.

Algorithm 2. NIMUPrivGenDB.TokenGeneration

Input : q(g1, ..., gn), K, skΓi
Output : qtagUi,j , gToK

//based on the type of query q, U chooses γ

1: if Query=Boolean then

2: γ ← 1

3: elseif Query=Count

4: γ ← 2

5: else

6: γ ← 3

7: end if

8: Computes qtagUi,j ← F̂.Eval(skΓi
, γj ||Ui).

9: User sends qtagUi,j and γj to D.

10: Computes τρ ← TSet.GetTag(KT , g1).

11: User sends τρ to D.

// Based on the type of the query allowed to

submit, U generates gToK:

–Boolean/Count, k′-out-of-k match Query–

12: for c = 1, 2, . . . until D stops do

13: for i = 2, . . . , n do

14: Gtoken[c, i] ← hFp(KZ ,g1||c)·Fp(KX ,gi)

15: end for

16: Gtoken1[c] ← (Gtoken[c, i], . . .)

//for non-negated terms

17: Gtoken2[c] ← (Gtoken[c, i], . . .)

//for negated terms

18: Gtoken[c] ← (Gtoken[c, 2], . . ., Gtoken[c, n])

//for all terms

19: end for

20: gToK ← (τρ, Gtoken1, Gtoken2)

21: gToK ← (τρ, Gtoken, k′)
22: return qtagUi,j , gToK

it is sent to D, that checks if it is a valid token. In particular, if user Ui is
allowed to submit that particular γj , the generated token qtagUi,j is a valid
token, otherwise, it is not valid and the user cannot perform the query. The
τρ is generated based on the least frequent predicate, considering it as g1 (the
TSet.GetTag(KT , g1) from TSet in OXT [17] is utilised here). To compute gToK,
for count/Boolean queries, one token is generated for non-negated requested
predicates such as genotypes, phenotypes, gender, ethnicity, and one token is
generated for negated terms. For k′-out-of-k match query, since there are no
negated terms and the procedure is only to verify the number of matches based
on some threshold (k′), one token is created.

3) NIMUPrivGenDB.Search(qtagUi,j gToK, EMUGDB, T): This algorithm
inputs the search tokens qtagUi,j and gToK and the encrypted database
EMUGDB, then outputs the search result. First, if the submitted qtagUi,j

is valid, the data server will proceed by retrieving all the (ID′
O, y) invoking

TSet.Retrieve(InvG, τρ) algorithm. Then, based on different tokens as the input
for different queries (Boolean/Count/k′-out-of-k), the D performs different pro-
cesses and outputs the result of the query. The search process starts when the
qtag is submitted. Afterwards, if that particular qtag exists in the related QSet,
the submitted stag will be used for continuing the search process. The whole pro-
cess is described in Algorithm 3 (the blue and black lines are for Boolean/Count
queries, and the red and black lines for k′-out-of-k match). For checking whether
the retrieved IDs for submitted τρ satisfy the rest of non-negated or negated
terms in the query, the Gtokeny will be checked to be in the set or not, respec-
tively. When the Data Owner IDs need to be retrieved (like in Boolean or k′-
out-of-k match queries), D creates an empty set, named RSet to put the related
encrypted IDs (ID′

O) in it. For the count query, it also creates that empty set
and puts the IDs in it, but later the |RSet| will be returned. A threshold T can
be defined to check the output of count query, such that if it is less than T, do
not reveal the result.

A Non-interactive Multi-user Protocol 83

4) NIMUPrivGenDB.Retrieve(RSet, g1,K): As given in Algorithm 4, the user
uses K and g1 to generate the key for decrypting the retrieved ID′

O ∈ RSet, where
Dec is the decryption algorithm.4

Algorithm 3. NIMUPrivGenDB.Search

Input : qtagUi,j , gToK, EMUGDB, T

Output : RSet/|RSet|
D performs the search based on input γ

1: RSet ← {}
2: if qtagUi,j /∈ QSetj then

3: reject the query
4: else
5: RSet ← {}
6: inv ← TSet.Retrieve(InvG, τρ)
7: for c = 1, . . . , |inv| do
8: Retrieve (ID′

O, y) from the c−th tuple
in inv
–Boolean/Count, k′-out-of-k match Query–

9: if γ = 1 or 2 then
10: if Gtoken1[c, i]y ∈ SG for all i =

2, . . . , n in Gtoken1 and Gtoken2[c, i]y 	∈ SG

for all i in Gtoken2 then
11: RSet ← RSet∪{ID′

O}
12: else

13: m ← 0
14: for i = 2, . . . , n do
15: if Gtoken[c, i]y ∈ SG then
16: m ← m+1
17: end if
18: end for
19: if m ≥ k′ then
20: RSet ← RSet ∪ {ID′

O}
21: end if
22: end if
23: end if
24: end for
25: if γ = 1 or 3 then
26: return RSet
27: else
28: if |RSet| ≥ T then
29: return |RSet|
30: end if
31: end if
32: end if

Algorithm 4. NIMUPrivGenDB.Retrieve

Input : RSet, g1, K
Output : IDSet

1: IDSet ← {}
2: User sets Ke ← F (KS , g1)

3: for each ID′
O ∈ RSet received do

4: Compute IDO ← Dec(Ke, ID′
O)

5: IDSet ← IDSet ∪ {IDO}
6: end for
7: return IDSet

5 Security Definitions and Analysis

Definition 1 (Leakage to Data Server). We define LD(MUGDB, q) of our
scheme for MUGDB = {(IDO, g)}, r equals number of Data Owners (records) and
q = (g1[i], gx[i]), where g1 is the sterm and gx is the xterms in the query, as a tuple
(N, s̄, q̄,SP,RP, IP,XP,QT,NP)5, where N represents the total number of (g, IDO)
pairs which is

∑r
i=1 GIDOi

, s̄ indicates which queries have the same sterm, q̄
indicates which queries have the same qtag (the type of the query and the user
are the same), SP represents the number of records (data owners) matching the
first predicate in the query, RP is the result pattern and indicates the intersection
of sterm g1[i] with any xterm gx[i] in the same query (RP[i] = MUGDB(g1[i]) ∩
4 Attribute-Based Encryption [26] can also be utilised to let the T realise fine-grained

access control on the encrypted data, but it is not the main point of this work.
5 All components are the same as [17], except q̄,NP,QT, and same as [14], except q̄.

84 S. Jafarbeiki et al.

MUGDB(gx[i])), XP indicates the number of xterms in the query, QT is the query
threshold, k′, NP represents the number of negated and non-negated terms in the
query, IP is the conditional intersection pattern. Formally, IP is indexed by (i, j,
α, β) where 1 ≤ i, j ≤ Q (a sequence of queries) and 1 ≤ α, β ≤ n (where n is
the maximum number of xterms in any query) and defined as follows:

IP[i, j, α, β] =
{
MUGDB(g1[i]) ∩ MUGDB(g1[j]), if i �= j and gxα

[i] = gxβ
[j]

∅, otherwise

D’s view in an adaptive attack (database and queries are selected by D) can
be simulated using only the output of LD. Below, we define a real experiment
Real ΠMUG

A (λ) and an ideal experiment Ideal ΠMUG

A,Sim(λ) for an adversary A and a
simulator Sim, respectively:

Real ΠMUG

A (λ): A(1λ) chooses MUGDB and a list of queries q. The experiment
then runs (EMUGDB,K, skΓi

) ← Initialisation(λ,MUGDB, Γ,ACL,U) and gives
EMUGDB to A. Then A repeatedly chooses a query q. The experiment runs
the algorithm TokenGeneration on inputs (q(g),K, skΓi

), and returns search
tokens to A. Eventually, A returns a bit that experiment uses as its output.

Ideal ΠMUG

A,Sim(λ): The game starts by setting a counter i = 0 and an empty list
q. A(1λ) chooses a GDB and a query list q. The experiment runs EGDB ←
Sim(LD(GDB)) and gives EGDB to A. Then, A repeatedly chooses a search
query q. To respond, the experiment records this query as q[i], increments
i and gives the output of Sim(LD(GDB, q)) to A, where q consists of all
previous queries as well as the latest query issued by A. Eventually, the
experiment outputs the bit that A returns.

Definition 2 (Security w.r.t. Data Server). The protocol ΠMUG is called
LD-semantically-secure against adaptive attacks if for all adversaries A there
exists an efficient algorithm Sim such that

|Pr[RealΠMUG

A (λ) = 1] − Pr[IdealΠMUG

A,Sim(λ) = 1]| ≤ negl(λ).

Definition 3 (Unforgeable search tokens through colluding corrupted
users). We define a game, ExptUF

A,qtag(λ), specified below to capture security
against token forgery attacks by a collusion of malicious users: 1) The adversary
A chooses different Ui’s with different permitted query sets ΓUi

’s as ACL and
sends to the challenger. 2) The challenger selects Kq using security parameter
and runs EMUGDB.Setup (λ, Γ,Ui,ACL) to generate QSets. 3) The challenger
runs User.Auth(Kq, Ui,ACL, Γ) for different users received from adversary and
returns skΓi

for different requested users to A. 4) The adversary returns a search
token qtag∗ for query Q∗ with type γ∗ and user Ui

∗. 5) The experiment outputs 1
if (a) γ∗ is a new query type γ∗ ∈ Γ ∗\

⋃
i∈[q] γi (b) Ui

∗ is one of the adversary’s
selected users at the beginning, and (c) qtag∗ is valid.

Definition 4 (Security w.r.t. Users). The search token in ΠMUG is unforge-
able against (i) malicious users pretending to be other users by using those users’
IDs, (ii) colluding users trying to generate a valid search token for a query

A Non-interactive Multi-user Protocol 85

type they are not allowed to submit, if for all PPT adversary A, it holds that
Pr

[
ExptUF

A,qtag(λ) = 1
]

≤ negl(λ).

Security Analysis: We state the security of our protocol against data server
and compromised users, respectively. The proofs of the following theorems are
given in Appendix 5.

Theorem 1. Let LD be the leakage function defined in Sect. 5. Then, our pro-
tocol is LD-semantically-secure against adaptive data server (Definition 2) , if
OXT [17] is secure and under the assumption of the security of regular PRFs
and SC-PRF.

Theorem 2. Under the security of regular PRFs and set-constrained PRF F̂,
our scheme ΠMUG is secure against malicious users in terms of search token in
ΠMUG is unforgeable against (i) malicious users pretending to be other users by
using those users’ IDs and (ii) adaptive colluding attacks among users to generate
a search token for a query type they are not allowed to submit (Definition 4)6.

6 Implementation and Evaluation

This section presents the evaluation results of our protocol. The source code is
written in Java programming language, and our machine used to run the code
is Intel(R) Core(TM) i7-8850H CPU @ 2.60 GHz processors with 32 GB RAM,
running Ubuntu Linux 18.04. We use an in-memory key-value storage Redis [27]
to store the generated InvG and QSets for querying purposes. In addition, we use
Alexandr Nikitin’s Bloom filter [28] to store SG, which is the fastest Bloom filter
implementation for JVM, and we set the false-positive rate of the bloom filter
to 10−6. We used the JPBC [29] in our implementation.

Real-life and synthetic datasets are used for evaluating NIMUPrivGenDB.
The real-life data are from The Harvard Personal Genome Project (PGP) [30],
and we extracted data of 58 participants with 2, 000 SNPs, their phenotype,
gender, and ethnicity. These participants have had different types of cancer
such as breast, brain, thyroid, uterine, kidney, melanoma, colon, prostate as
the phenotype, or they were Covid-19 positive/negative recently. Then, using
the above-mentioned actual dataset as a basis, we generated multiple synthetic
datasets with varying number of records (5,000–40,000) and SNPs (500–2,000)
to test NIMUPrivGenDB. To evaluate our protocol’s performance, we use the
well-known tree-based GGM PRF [31] and implement NIMUPrivGenDB, which
shows that our protocol has low communication and computation costs and is
suitable for real-world applications. We remark that the size of secret key skΓi

is dependent on the size of the set Γi. In our application, since the size of this

6 The security against malicious users in Theorem 2 is a generic characteristic, which
can be utilised in scenarios with more supported types of queries. In other words,
the designed protocol and the security proof against unforgeability by a collusion of
users can be generalised to handle more than three queries.

86 S. Jafarbeiki et al.

set is three for each user, this is not a bottleneck or drawback. However, for
applications with a larger set size, constrained PRF of Brakerski et al. [32] can
be considered, which has a short constrained key.

We show the storage cost in Table 5, which is in the order of rx + q|U|.
Although storage cost in our model increases when the number of users and their
supported queries increases, we show that to support submitting different queries
with a defined access list, extra storage overhead is not costly. Hence, our solution
is practical when different queries are allowed for different types of users rather
than having different databases (naive solution explained in Introduction), which
leads to more storage cost. The quantity |QSets| grows approximately linearly
with the number of users and their authorised queries and does not depend
on the number of SNPs or the number of records. For example, for around
1, 000 users, |QSets| is approximately 50 KB. Therefore, the storage overhead
(expansion factor) of NIMUPrivGenDB is still around 80, while it is 180 in [2],
and in the order of 1024 in [5,11] (without supporting user authorisation). Note
that it is 160 in naive solution.

Table 5. Size of original and encrypted database.

#Records(r) #SNPs = 500 #SNPs = 1, 000

Original Encrypted Original Encrypted

5, 000 14 MB 1.12 GB +|QSets| 28.9 MB 2.22 GB +|QSets|
10, 000 28.5 MB 2.27 GB +|QSets| 57.8 MB 4.50 GB +|QSets|
20, 000 57 MB 4.43 GB +|QSets| 115.6 MB 8.89 GB +|QSets|
40, 000 114 MB 8.92 GB +|QSets| 224 MB 17.8 GB +|QSets|

Next, we evaluated the initialisation phase of our protocol. From Fig. 1 we can
see that the initialisation time grows linearly with the number of records and the
number of SNPs, as we expected it is in the order of rx. It is worth mentioning
that generating QSets does not take much time and is considered negligible with
respect to MUBInv and EMUGDB.Setup time. The key generation time for the
users is also negligible compared to the time takes to encrypt the dataset.

To show the benefit of non-interactive protocol, we compare the communica-
tion overhead in interactive protocol, PrivGenDB, and our protocol, NIMUPriv-
GenDB here. In PrivGenDB, there is a middle entity involved to check every
query submitted to the system. So, there might be delays in response. Moreover,
the communication overhead in interactive protocol is around 150B + 2 KB
(depends on the result being sent back to the user). 150B is the size of a plain
text query sent to the middle entity, that has to be sent for each desired query.
However, in our solution, a one-time key is generated and sent to the user with
the size of approximately 142B. Therefore, communication overhead in our non-
interactive model is around 142B for each user (does not depend on the number
of submitted queries by a user) plus around 16B for each qtag. This is in contrast
to the interactive protocol that is around (150B + 2 KB) ∗ (number of queries).

A Non-interactive Multi-user Protocol 87

Finally, we present the search time of our protocol in Fig. 2. Search time
increases linearly with the number of records satisfying the first predicate in
the query (α), not the total number of records, hence achieves sublinear search
time. Moreover, number of SNPs does not affect the search complexity of our
protocol. Adding QSets or users does not add much search complexity, since it
is just a lookup table. NIMUPrivGenDB query execution time for 5, 000 records
and 500 SNPs, is around 1.3 s, 2.3 s with query sizes of 10 and 20 respectively.
The query execution time is somehow the same as that of naive solution, with
the use of proposed QUAuth. Whereas, the storage overhead in naive solution
is multiplied by the number of categories of users (if user management is not
considered), or multiplied by the number of users which is not practical. However,
NIMUPrivGenDB provides the efficient query submission functionality and user
management for multi-user scenario with small amount of storage overhead.
With all the functionalities added to NIMUPrivGenDB compared to the state-
of-the-art, it still provides less search time complexity, e.g., for a query with
10 keywords on a dataset of 5, 000 records and 500 SNPs, NIMUPrivGenDB
takes 1.3 s; whereas, e.g., it takes approximately 77.8 s and 29 s for [2] and [4] to
respond, respectively.

Fig. 1. Initialisation time for datasets with different number of SNPs and records.

Fig. 2. (a) Query execution time on dataset with 40, 000 records in total (different
number of records satisfy the phenotype in the query). (b) Query execution time on
datasets with r = 5, 000 and different number of SNPs, with different query sizes.

88 S. Jafarbeiki et al.

7 Conclusion

The proposed non-interactive multi-user model/protocol, NIMUPrivGenDB,
enables efficient query executions on outsourced genomic data at low storage
cost. This new protocol avoids the per-query interaction between the data owner
and the user. With the newly proposed mechanism, QUAuth, users are autho-
rised based on the query types, and their access to the system is managed and
can be revoked. Our protocol is secure against colluding malicious users. Apart
from that, it protects user privacy so that the trustee only learns the types of
queries the user is allowed to submit and has no means to learn the exact search
keywords. Finally, the implementation results demonstrate its practicality due
to low communication, computation and storage costs.

Appendix

Appendix 1
Our Techniques: Following the idea of authorising different users for submit-
ting different types of queries, the main task is to develop a scheme that can
authorise the users before starting the execution process. We observe that the
scheme of [18] supports authorising users (clients) based on the keywords they
are allowed to search. What we need is to authorise the users based on the types
of supported queries. Apart from that, we want to control and manage the users
individually. To achieve this, our main idea is to use a query-authorised key
created in advance by the data owner for each user. The user then employs this
query-authorised key to create a tag for the requested query, and the data server
may determine if this user is authorised to perform the query. The main differ-
ence between our protocol and [18] is that in [18] authorised keywords have to
be considered in the whole process of token generation to make sure no keyword
other than those of authorised is submitted. However, in our protocol, a new
mechanism is proposed to make sure an authorised query is submitted before
the main search process starts.

In order to design such a scheme, we leverage set-constrained pseudorandom
function (SC-PRF) in [18] to generate query-authorised keys for users and pro-
pose a new mechanism, QUAuth, for authorisation based on queries. Specifically,
in our construction, we employ lookup tables for different types of queries for
checking the submitted tag by the user. It incurs less storage overhead than the
multiple databases (naive) solution. The dominant part of the storage cost is
related to a set being generated to keep the (record, keyword) pairs. Therefore,
multiplying the storage in naive solution leads to multiplying this high amount
of storage cost. Lookup tables, on the other hand, need only a limited amount
of storage. Therefore, for each query submission, the data server checks the sub-
mitted tag against the related lookup table, and if that particular user is allowed
to execute the submitted query, the server processes the query. To incorporate
extra features, such as authorisation updates, the users’ ID has been exploited
in QUAuth, while a naive solution would need one storage per user, which is

A Non-interactive Multi-user Protocol 89

highly impractical. QUAuth, on the other hand, provides this by increasing the
minimal amount of storage overhead as the number of users grows.

In addition, our construction achieves an enhanced security against untrusted
clients in comparison to [18]. It is proved that our construction is secure not only
against colluding attacks among untrusted users, but also against search token
forgery using other users’ unique IDs through untrusted users. This is achieved
by considering user’s unique ID in key generation, and the need for using that
key and unique ID to generate search token in the next phase for starting search.

Appendix 2
The security of SC-PRF is officially captured by the game outlined below.

– Setup: Challenger selects k
$← K and b

$← {0, 1}, and initialises empty sets
E,Q and C.

– Query Phase: In this phase, the adversary adaptively issues the following
queries: (i) Evaluation query: on input x ∈ X , the challenger returns F (k, x)
and adds x to E. (ii) Key query: on input a set S ⊆ X , the challenger returns
a set-constrained key F.Cons (k, S), and adds S to Q.

– Challenge Phase: on input a challenge query x∗ ∈ X , the challenger outputs
F (k, x∗) if b = 1, otherwise returns u

$← Y, and then adds x∗ to C.
– Guess: the adversary outputs a guess b′ of b.

A wins in the above game if all the following conditions hold: (1) b′ = b; (2)
E ∩ C = ∅; (3) for all x∗ ∈ C, x∗ /∈

⋃
S∈Q S.

Definition 5. (Secure Set-Constrained PRF). A set-constrained PRF F : K ×
X ← Y is secure if for all PPT adversary A, the advantage of A winning in the
above game is negligible in λ.

That is, AdvSC−PRF
A,F (λ) =| Pr[A wins] − 1

2 |≤ negl(λ)

Appendix 3
System Design Overview of NIMUPrivGenDB See Fig. 3.

Data

Query

Rejec on/
Result

Analysts

Clinicians

Users

Data Server

Trustee

Data Owners

Fig. 3. System design overview of NIMUPrivGenDB

90 S. Jafarbeiki et al.

Appendix 4
Syntax of Our Proposed Non-interactive Multi-user SSE

Initialisation(λ,MUGDB, Γ,ACL,U): Trustee runs this algorithm. Given the secu-
rity parameter λ, the multi-user genomic database MUGDB, types of the
queries Γ , the access list ACL, and the users U , this algorithm outputs the
encrypted database EMUGDB and a key skΓi for each user Ui. Trustee uses
below sub-algorithms to complete the initialisation:

– G ← MUGeEncode(MUGDB): To encode the genotypes in the database,
trustee runs this algorithm that constructs keywords related to genotypes
by concatenating each SNP index to all genotypes of that particular SNP.

– IINX ← MUBInv(G,MUGDB): This algorithm gets as input the key-
words in G and generates an inverted index.

– (EMUGDB,K,Kq) ← EMUGDB.Setup(λ, IINX, MUGDB, Γ, Ui, ACL):
The inputs to this algorithms are the security parameter λ, the generated
inverted index IINX, types of queries Γ , the access list ACL, and the
users U , and outputs are the encrypted multi-user database EMUGDB =
(InvG,SG,QSets), and a set of keys K,Kq. TSet.Setup(IINX) is used in
EMUGDB.Setup algorithm and resembles TSet in OXT scheme.

– skΓi
← User.Auth(Γ,ACL,Ui,Kq): Trustee runs this algorithm by using

Kq, types of queries and access list for a particular user Ui to generate a
specific key skΓi

for each user of the system. Each user has its own key
and can later submit the queries using this key.

TokenGeneration(q(g1, . . . , gn), K, skΓi
): A user runs this algorithm with inputs

being the desired query (with encoded keywords, if they are genotype-related
keywords), the set of key K, and its own specific key skΓi

, and outputs being
the tokens qtagUi,j and gToK. The input threshold T is used for limiting
the number of records returned as the result of the submitted count query.
TSet.GetTag(KT , g1) is used in TokenGeneration algorithm and resembles TSet
in OXT scheme.

Search(qtagUi,j , gToK, EMUGDB, T): This algorithm inputs the search tokens
qtagUi,j (that specifically lets the server to authorise the user and the type
of the query submitted through this user), gToK and the encrypted database
EMUGDB, then outputs the search result. The algorithm TSet.Retrieve
(InvG, τρ) is used in Search and resembles TSet in OXT scheme.

Retrieve(RSet, g1,K): The user runs this algorithm when the submitted query
response is a set of record IDs. This algorithm takes the RSet, g1 and key K
as inputs and outputs the set of IDO by decrypting all the ID′

O in the RSet
and puts them in a new set IDSet.

Appendix 5
Proof of Theorem 1. Let A be an honest-but-curious data server who performs
an adaptive attack against our protocol. Then we can construct an algorithm
B that breaks the server privacy of protocol OXT in [17] by running A as a
subroutine with non-negligible probability.

– Algorithm B passes the selected GDB by A to the OXT challenger.

A Non-interactive Multi-user Protocol 91

– The OXT challenger runs (K,EDB) ← OXT.Setup(GDB) and returns EDB to
the algorithm B. Then, algorithm B chooses a random key, Kq and runs lines
2 to 9 of algorithm EMUGDB.Setup to generate QSet and sets EMUGDB =
{EDB,QSets}.

– The algorithm B sends EMUGDB to an adversary A.
– For each q query issued by the adversary A, the algorithm B defines

NIMUPrivGenDB.TokenGeneration(K; q[i]), where q[i] = (s[i], x[i, ·]), which
computes qtag, (by first computing the key skΓi

, and then computing the lines
1 to 9 of algorithm NIMUPrivGenDB.TokenGeneration or simply generating
qtag by running line 5 of EMUGDB.Setup for requested query type), and
then uses the xtoken output of the TokenGeneration oracle of OXT. For
count and Boolean queries, it categorises negated/non-negated terms and
runs the TokenGeneration algorithm of OXT twice. For k′-out-of-k matches,
it just omits the k′ from query sent by A, pass the rest to TokenGeneration
algorithm of OXT and generate the token by using that output and including
k′ to send it to A.

– Finally, the adversary A outputs a bit that the algorithm B returns.

Since the core construction of our scheme is exploited from OXT in [17], we use
the oracle of OXT to reduce the security of it to that of OXT protocol. Thus, if
the security of OXT holds, the security of our scheme is guaranteed.

Simulator 1 (for Count and Boolean queries) By considering A as an honest-
but-curious server against our protocol, ΠMUG, we construct an algorithm B that
breaks the server privacy of OXT protocol [17] by running A. Let SOXT be the
simulator for OXT; then we construct a simulator SMUG for our scheme. The
algorithm B uses SOXT to construct the simulator SMUG in order to answer the
queries issued by A. Simulator for the initialisation phase, perform the follow-
ing algorithm apart from using the simulator of OXT. It selects a key, Kq and
calculates qtag for different queries A may submit, and generates QSet.

A sequence of T conjunctive queries is represented by q = (s, x), where the
i-th query is written as q[i] = (s[i], x[i, ·]) for i ∈ [T], and s[i], x[i, ·] denote the
sterm and xterms in the i -th query, respectively. Then, for the token generation,
it first generates query-qtag by using that Kq and knowing the type of query A
submitted. It can use the leakage q̄ to send the relative qtag back to A. For
count and Boolean queries, such a simulator can be constructed by using SOXT,
a simulator for OXT protocol. By using added NP, the SMUG can simulate the
two Gtokens, for negated terms and non-negated terms. Then, it combines them
as the gToK.

For k′-out-of-k match queries, by using SOXT, Gtoken is constructed and then
the extra QT component is added and gToK is simulated. Now we just need to
use the simulator of OXT for AOXT, to construct the simulator of our scheme for
AMUG. By running SOXT for EDBSetup and TokenGen queries, we can construct
a simulator SMUG for EDBSetup and TokenGen queries of our scheme.

Pr(RealΠMUG

A = 1) − Pr(IdealΠMUG

A,SMUG
= 1) ≤

[Pr(RealΠOXT

B = 1) − Pr(IdealΠOXT

B,SOXT
= 1)] + AdvSC-PRF

F̂,B (λ)

92 S. Jafarbeiki et al.

Since OXT is secure, its advantage is negligible. The advantage of SC-PRF
is also negligible. Hence, the advantage of our protocol, ΠMUG is negligible.

Proof of Theorem 2. Suppose that there is an efficient adversary A that can
generate a new valid search token for a new query type γ∗

j , which implies that A
produces a new qtag, then we show that we can construct an efficient algorithm B
(with A as the subroutine) to break the security of set-constrained PRF. For the
case that A wins by producing a qtag for the new query type γ∗, the algorithm
B is described as below.

B has access to constrained key generation oracle OF̂
Kq

(·) of SC-PRF F̂. A
selects different Ui with different ΓUi

. For the i-th key extraction query where
ΓUi

= {γ1,i, . . . , γm,i} , for Ui, the algorithm B concatenates all γj with Ui and
gets skΓi

by querying her own oracle OF̂
Kq

(Γi), and then returns skΓi
for each

requested Ui. At last, A outputs a search token qtag∗ for a query Q∗ with a new
type γ∗ and user Ui. Then B forwards γ∗||Ui to his own challenger and receives
the response y∗, such that

y∗ =
{
F̂ (Kq, γ

∗||Ui) , b = 1,
u, b = 0,

where u is randomly chosen from Y. After that, B checks whether or not the
event that y∗ = qtag∗ denoted by experiment E happens. If yes, it outputs 1,
otherwise returns 0. From the simulation, we get that
Pr[b′ = 1 | b = 1] − Pr[b′ = 1 | b = 0]
= Pr[E | y∗ = F̂ (Kq, γ

∗||Ui)] − Pr[E | y∗ = u]
= Pr[A wins | y∗ = F̂ (Kq, γ

∗||Ui)] − Pr[E | y∗ = u] ≥ Pr[A wins] − negl(λ),
where b is uniformly random and independent of A′s final output. Therefore,
Pr[A wins] ≤ AdvSC-PRF

F̂,B (λ) + negl(λ), which indicates that A can generate a
valid search token with a fresh query type for user Ui except for a negligible
probability.

References

1. Kupersmith, J.: The privacy conundrum and genomic research: re-identification
and other concerns, Health Affairs. Project HOPE (2013)

2. Hasan, M.Z., Mahdi, M.S.R., Sadat, M.N., Mohammed, N.: Secure count query on
encrypted genomic data. J. Biomed. Inform. 81, 41–52 (2018)

3. Mahdi, M.S.R., Sadat, M.N., Mohammed, N., Jiang, X.: Secure count query
on encrypted heterogeneous data. In: 2020 IEEE International Conference on
(DASC/PiCom/CBDCom/CyberSciTech), pp. 548–555. IEEE (2020)

4. Ghasemi, R., Al Aziz, M.M., Mohammed, N., Dehkordi, M.H., Jiang, X.: Private
and efficient query processing on outsourced genomic databases. IEEE J. Biomed.
Health Inform. 21(5), 1466–1472 (2016)

5. Nassar, M., Malluhi, Q., Atallah, M., Shikfa, A.: Securing aggregate queries for
DNA databases. IEEE Trans. Cloud Comp. 7(3), 827–837 (2017)

6. Krishna, R., Kelleher, K., Stahlberg, E.: Patient confidentiality in the research use
of clinical medical databases. Am. J. Public Health 97(4), 654–658 (2007)

A Non-interactive Multi-user Protocol 93

7. Shabani, M., Borry, P.: Rules for processing genetic data for research purposes in
view of the new EU general data protection regulation. Eur. J. Hum. Genet. 26(2),
149–156 (2018)

8. A.G.H. Alliance: Genomic data & privacy law, May 2018. https://www.
australiangenomics.org.au/genomics-and-privacy-law/

9. Erlich, Y., et al.: Redefining genomic privacy: trust and empowerment. PLoS Biol.
12(11), e1001983 (2014)

10. Erlich, Y., Narayanan, A.: Routes for breaching and protecting genetic privacy.
Nat. Rev. Genet. 15(6), 409–421 (2014)

11. Kantarcioglu, M., Jiang, W., Liu, Y., Malin, B.: A cryptographic approach to
securely share and query genomic sequences. IEEE Trans. Inform. Tech. Biomed.
12(5), 606–617 (2008)

12. Canim, M., Kantarcioglu, M., Malin, B.: Secure management of biomedical data
with cryptographic hardware. IEEE Trans. Inform. Tech. Biomed. 16(1), 166–175
(2011)

13. Chenghong, W., et al.: Scotch: secure counting of encrypted genomic data using a
hybrid approach. In: AMIA Annual Symposium Proceedings, vol. 2017. American
Medical Informatics Association, p. 1744 (2017)

14. Jafarbeiki, S., et al.: PrivGenDB: efficient and privacy-preserving query executions
over encrypted SNP-phenotype database (2021). https://arxiv.org/abs/2104.02890

15. Perillo, A.M., De Cristofaro, E.: PAPEETE: Private, Authorized, and Fast Per-
sonal Genomic Testing. SciTePress (2018)

16. Naveed, M., et al.: Controlled functional encryption. In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, pp. 1280–
1291 (2014)

17. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for Boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 20

18. Sun, S.F., et al.: Non-interactive multi-client searchable encryption: realization and
implementation. IEEE Trans. Dependable Secur. Comput. (2020)

19. National human genome research institute. https://www.genome.gov/genetics-
glossary/Phenotype. No date

20. Gibson, G.: Population genetics and GWAS: a primer. PLoS Biol. 16(3), e2005485
(2018)

21. Chen, F., et al.: Princess: privacy-protecting rare disease international network
collaboration via encryption through software guard extensions. Bioinformatics
33(6), 871–878 (2017)

22. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca
Raton (2020)

23. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-
0 15

24. Hohenberger, S., Koppula, V., Waters, B.: Adaptively secure puncturable pseudo-
random functions in the standard model. In: Iwata, T., Cheon, J.H. (eds.) ASI-
ACRYPT 2015. LNCS, vol. 9452, pp. 79–102. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48797-6 4

25. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database System Implementation,
vol. 672. Prentice Hall, Upper Saddle River (2000)

https://www.australiangenomics.org.au/genomics-and-privacy-law/
https://www.australiangenomics.org.au/genomics-and-privacy-law/
https://arxiv.org/abs/2104.02890
https://doi.org/10.1007/978-3-642-40041-4_20
https://www.genome.gov/genetics-glossary/Phenotype
https://www.genome.gov/genetics-glossary/Phenotype
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-662-48797-6_4
https://doi.org/10.1007/978-3-662-48797-6_4

94 S. Jafarbeiki et al.

26. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98 (2006)

27. R. Labs: Redis, vol. 2017. https://redis.io
28. Nikitin, A.: Bloom Filter Scala, vol. 2017. https://alexandrnikitin.github.io/blog/

bloom-filter-for-scala/
29. Caro, A.D., Iovino, V.: JPBC: Java pairing based cryptography, pp. 850–855. In:

ISCC 2011. IEEE (2011)
30. The Personal Genome Project: Harvard Medical School. Title = Person-

alGenomes.org. https://pgp.med.harvard.edu/data
31. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. In:

Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser
and Silvio Micali, pp. 241–264 (2019)

32. Brakerski, Z., Vaikuntanathan, V.: Constrained Key-Homomorphic PRFs from
Standard Lattice Assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015.
LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46497-7 1

https://redis.io
https://alexandrnikitin.github.io/blog/bloom-filter-for-scala/
https://alexandrnikitin.github.io/blog/bloom-filter-for-scala/
https://pgp.med.harvard.edu/data
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-662-46497-7_1

Bigdata-Facilitated Two-Party
Authenticated Key Exchange for IoT

Bowen Liu1(B), Qiang Tang1, and Jianying Zhou2

1 Luxembourg Institute of Science and Technology (LIST),
5 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg

{bowen.liu,qiang.tang}@list.lu
2 Singapore University of Technology and Design, 8 Somapah Road,

Singapore 487372, Singapore
jianying zhou@sutd.edu.sg

Abstract. Authenticated Key Exchange (AKE) protocols, by defini-
tion, guarantee both session key secrecy and entity authentication. Infor-
mally, session key secrecy means that only the legitimate parties learn
the established key and mutual authentication means that one party can
assure itself the session key is actually established with the other party.
Today, an important application area for AKE is Internet of Things (IoT)
systems, where an IoT device runs the protocol to establish a session key
with a remote server. In this paper, we identify two additional security
requirements for IoT-oriented AKE, namely Key Compromise Imper-
sonation (KCI) resilience and Server Compromise Impersonation (SCI)
resilience. These properties provide an additional layer of security when
the IoT device and the server get compromised respectively. Inspired by
Chan et al.’s bigdata-based unilateral authentication protocol, we pro-
pose a novel AKE protocol which achieves mutual authentication, ses-
sion key secrecy (including perfect forward secrecy), and the above two
resilience properties. To demonstrate its practicality, we implement our
protocol and show that one execution costs about 15.19 ms (or, 84.73
ms) for the IoT device and 2.44 ms (or, 12.51 ms) for the server for secu-
rity parameter λ = 128 (or, λ = 256). We finally propose an enhanced
protocol to reduce the computational complexity on the end of IoT by
outsourcing an exponentiation computation to the server. By instantiat-
ing the signature scheme with NIST’s round three alternate candidate
Picnic, we show that one protocol execution costs about 14.44 ms (or,
58.45 ms) for the IoT device and 12.78 ms (or, 46.34 ms) for the server
for security parameter λ = 128 (or, λ = 256).

Keywords: Internet of Things · Authenticated key exchange · Perfect
forward secrecy · Key compromise impersonation resilience · Server
compromise impersonation resilience

1 Introduction

Two-party key exchange is a fundamental cryptographic primitive that enables
two parties to establish secure communication channels over an open network.
c© Springer Nature Switzerland AG 2021
J. K. Liu et al. (Eds.): ISC 2021, LNCS 13118, pp. 95–116, 2021.
https://doi.org/10.1007/978-3-030-91356-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91356-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-91356-4_6

96 B. Liu et al.

Furthermore, an authenticated key exchange protocol not only allows two par-
ties to negotiate a session key but also ensures the authenticity of the involved
parties [5]. The basic security property of an AKE protocol is that only the
legitimate parties can gain access to the established secret key in every protocol
execution (i.e. a session). In addition, some AKE protocols guarantee perfect
forward secrecy which preserves the session key secrecy even if the long-term
credentials of both parties are compromised. Regarding their construction, most
existing AKE protocols employ only a single type of authentication factor (e.g.
long-term secret keys or digital certificates). Consequently, if the single authenti-
cation factor gets compromised, then the AKE protocol’s security will be broken.

In this paper, we are interested in two-party AKE protocols for IoT systems,
where an IoT device and a server run the protocol to authenticate each other and
establish a session key. We generally assume that the IoT device is standalone
and no human user is necessarily present when it is engaged in the protocol
execution. Note that we do recognize some exceptional scenarios, e.g. when the
IoT device is a smart phone, where a human user is able to involve in the
AKE protocol. It is well known that IoT devices are constrained with respect
to computation capability, network bandwidth, and battery life. This advocates
lightweight AKE designs. Regarding security, we would like to emphasize two
observations.

– An IoT device is very likely to be compromised and has the stored credentials
leaked, e.g. via side-channel attacks. This motivates us to consider key com-
promise impersonation resilience (see the definition below) to be a valuable
property for IoT-oriented AKE protocols.

– Even less likely, the server could also be compromised. Taking into account
the fact that the IoT device can be deployed in a critical infrastructure, it
is ideal that an attacker should not be able to impersonate the server to the
IoT device even if it has compromised the server.

It is worth noting that we assume the attacker only learns some credentials by
compromising an entity. Other types of damage (e.g. installing a trapdoor or
disabling the entity) are not directly related to AKE and are beyond the scope
of our paper.

As a result, our objective is to construct AKE protocols with the following
properties in addition to the standard session key security property.

1. (Prefect) Forward Secrecy. Forward secrecy means that if one party’s long-
term key is compromised, the secrecy of its previous session keys should not
be affected. Perfect forward secrecy (PFS) requires that previous session keys
remain secure even if both parties’ long-term keys have been compromised.

2. Key Compromise Impersonation (KCI) Resilience. Even if an attacker has
obtained one party’s long-term private key, then it still cannot impersonate
the other party to this party.

3. Server Compromise Impersonation (SCI) Resilience. Even if an attacker has
compromised the server, then it still cannot impersonate the server to the
IoT device.

IoT Friendly Data-Based Two-Factor AKE 97

Our analysis shows that it is very challenging for single-factor-based AKE
protocols to achieve all these properties. Hence, in this paper, we will focus on
AKE protocols, where the entity authentication is based on two or more factors.

1.1 Related Work

We emphasize that two-party authenticated key exchange is a fruitful research
area, with many existing protocols, implementations and standards. For the
sake of space, we refer the readers to survey papers/books like [6] for a detailed
overview. Regarding Two-Factor Authenticated Key Exchange (2FAKE), Lee
et al. [25] proposed a protocol which combines a smart card and a password as
authentication factors. Byun [10] proposed a 2FAKE protocol by using a shared
common secret and Physical Unclonable Functions (PUFs) as authentication
factors. Guo and Chang [21] proposed a chaotic maps-based AKE protocol with
password and smart cards as additional authentication factors. Later, Liu and
Xue [28] proposed a chaos-based AKE protocol using password as the other
authentication factor. Challa et al. [13] proposed an AKE protocol using pass-
word, biometric information and a smart card as authentication factors. In 2008,
Pointcheval and Zimmer [31] proposed the first Multi-Factor Authenticated Key
Exchange (MFAKE) protocol which combines a password, a secret key, and bio-
metric information as the authentication factors. Later, Hao and Clarke [22]
pointed out that an adversary can break the protocol by only compromising a
single password factor based on the deficiency of its security model (i.e. server
impersonation has not been considered). Byun [8,9,11] proposed MFAKE pro-
tocols by using PUF, biometric template and long-term secret keys as authen-
tication factors. Li et al. [26] proposed a MFAKE protocol by using password,
biometric fingerprint and Personal Identification Number (PIN) as authentica-
tion factors. Stebila [34] proposed an MFAKE scheme, where multiple short
secrets (e.g. one-time response) are used in addition to a password. Besides,
Fleischhacker et al. [20] proposed a modular MFAKE framework by combining
any subset of multiple low-entropy (one-time) passwords/PINs, high-entropy
private/public keys, and biometric factors.

Since we assume there is no human involvement, PIN, password and biometric
factors do not fit into our setting. In addition, PUF-based AKE protocols require
special type of IoT devices, e.g. it should have PUF embedded. In order to design
general purpose two-factor or multi-factor AKE protocols, we need to find other
authentication factors. Regarding entity authentication, authentication factors
can be classified into three categories: something you know, something you have,
and something you are [17]. In addition, Brainard et al. proposed a fourth cat-
egory: some one you know which is the social networking information-based
authentication factor [7]. Among all, the something you have category fits into
our IoT setting, and bigdata could be a candidate of good authentication fac-
tor. To this end, Chan et al. [14] proposed a bigdata-based unilateral two-factor
authentication protocol. In more detail, their protocol uses all available historical
data and relevant tags as an authentication factor, where the tags are generated
injectively based on the historical data, in addition to the conventional first

98 B. Liu et al.

authentication factor of the shared long-term key. It is shown that, in a bounded
storage model [3,19], the protocol remains secure since the adversary can only
capture limited records of the large amount of full historical data.

1.2 Our Contribution

In this paper, our contribution is multifold. Firstly, inspired by Chan et al.’s
work [14], we introduce a new IoT-oriented AKE setting, where bigdata is used
as an additional factor in addition to a shared long-term private key for facil-
itating mutual authentication. We propose a security model to capture all the
desired security properties listed in the previous subsection. To our knowledge,
no existing AKE protocol achieves all these properties, as shown in Table 1.

Table 1. Comparison among different AKE protocols

Protocol Authentication factor Security property Communication

passP1 P2 P3 P4 P5 P6

[31] Biometic, Password and Secret Key ✗ ✓ ✓ - - - 4

[26] Biometic, Password and PIN ✗ ✓ ✓ ✓ - - 4

[25] Password and Secret Key ✓ ✓ ✓ ✗ - - 2

[34] Password and Customized Elements ✓ ✓ ✓ - - - 3

[13] Biometic, Password and Smart Card ✓ ✓ ✓ - - - 3

[8–11,28] PUF/Chaos and Others ✓ ✓ ✓ ✓ - - 3

[20] Multiple Customized Elements ✓ ✓ ✓ - - - 2 ∗No. of Factors

Ours Bigdata and Secret Key ✓ ✓ ✓ ✓ ✓ ✓ 3

‘P1’: Mutual authentication, ‘P2’: Session key security, ‘P3’: Forward secrecy, ‘P4’: Prefect forward

secrecy, ‘P5’: Key compromise impersonation resilience, ‘P6’: Server compromise impersonation

resilience, ‘✓’: Provides the security property, ‘✗’: Does not prevent the attack, ‘-’: The security

property has not been considered.

Secondly, we propose a novel AKE protocol, which uses both long-term pri-
vate keys and bigdata as its authentication factors. Regarding the processing of
bigdata, we distribute the relevant credentials to both the IoT and the server.
As a result, we avoid one vulnerability of Chan et al.’s scheme, described in
the Appendix of the full paper [27]. Under the general assumption that the
Pseudo-Random Functions (PRFs) are secure and the attacker can only retrieve
a limited amount of data from a compromised server, we further prove that,
our AKE protocol achieves all the desired properties based on the Computa-
tional Diffie-Hellman (CDH) assumption and the Strong Diffie-Hellman (SDH)
assumption in the random oracle model with an appropriate parameter setup.

Thirdly, by using Raspberry Pi 3 Model B+ as the IoT device and a PC as
the server, we investigate the parameter configurations for the big dataset held
by the server and identify the optimal parameters. We run the experiment and
show that one protocol execution takes 15.19 ms (or, 84.73 ms) for the IoT device
and 2.44 ms (or, 12.51 ms) for the server for security parameter λ = 128 (or,
λ = 256). Lastly, we propose an enhanced protocol to reduce IoT’s computational

IoT Friendly Data-Based Two-Factor AKE 99

complexity by outsourcing an exponentiation computation to the server. The
enhanced protocol does not increase round complexity (i.e. it still needs three
message passes) and only slightly increases the communication complexity. By
instantiating the signature scheme with NIST’s round three alternate candidate
Picnic, we show that one protocol execution costs about 14.44 ms (or, 58.45
ms) for the IoT device and 12.78 ms (or, 46.34 ms) for the server for security
parameter λ = 128 (or, λ = 256). The running time for the IoT device has
become 1.05 and 1.45 times faster for λ = 128 and λ = 256, respectively. We
notice that the improvement can be further enhanced with techniques from [15].

Table 1 shows that our protocol achieves more security properties than the
existing ones in the literature. Nevertheless, we compare its complexity with
the protocol from [9] which falls into a similar setting to ours. Moreover, we
also resolve the scalability question concerning the server needs to serve a large
number of IoT devices and store a huge amount of bigdata.

1.3 Paper Organisation

The rest of the paper is organised as follows. In Sect. 2, we describe the security
model. In Sect. 3 and Sect. 4, we describe our novel AKE protocol and provide
security analyses respectively. In Sect. 5, we detail our implementation procedure
and present the evaluation results, and then present the enhanced protocol and
corresponding experimental results. In addition, we make a simple comparison
and resolve the scalability question. In Sect. 6, we conclude the paper.

2 IoT-Oriented AKE Security Model

In this section, we first describe our IoT-oriented AKE setting, and then present
a security model based on the existing ones, e.g. Bellare-Rogaway [4], Shoup
model [32], Canetti-Krawczyk model [12], and particularly that of Pointcheval
and Zimmer [31].

2.1 IoT-Oriented AKE Setting

For simplicity, we only consider one IoT device and one server, and denote them
as c and s respectively. For entity authentication, we assume two factors.

– One is a long-term shared private key mk between the two parties.
– The other is based on a dataset, which contains a large number of data items

denoted as di (1 ≤ i ≤ L) for some L. In the initialisation phase, the server
processes the dataset with a set of secret keys, which map each data item to
a tag. The server sends a subset of the secret keys (denoted as Sc) to the IoT
device, and keeps some secret keys (denoted as Ss) together with the data
item and tag tuples (di, ti) (1 ≤ i ≤ L) locally.

In contrast to Chan et al. [14], the dataset is considered as private information
in our design. Furthermore, we assume a bounded retrieval model [2,18], which

100 B. Liu et al.

implies that an attacker can only obtain a small portion of the data item and
tag tuples (di, ti) (1 ≤ i ≤ L) when it compromises the server. To sum up, the
long-term private credentials for the IoT device and the server are (mk,Sc) and
(mk,Ss , (di, ti) (1 ≤ i ≤ L)), respectively.

2.2 Preliminary Notions

For our security model, we will adopt the standard game-based definitions.
Below, we briefly introduce the preliminary notions.

For generality, we assume the parties can have concurrent runs of the proto-
col. Each execution of the protocol is called a session. If the attacker is passive,
then a session will be happening between two instances, one from the IoT device
c and the other from the server s. For a party p ∈ {c, s}, we use πi

p to denote
its i-th instance. Each instance can possess the following essential variables:

– pid: the partner identifier, where the server’s identifier is denoted as s and c
represents the identifier of IoT device.

– sid: the session identifier, and each sid should be unique.
– sk: the session key derived by πi

p at the end of the protocol execution. It is
initialized as ⊥.

– acc: the state of acceptance acc ∈ {⊥, accepted, rejected}, which represents
the state of πi

p at the end of the protocol execution. It is initialized as ⊥,
will be set as accepted if the instance successfully completes the protocol
execution, and will be set as rejected otherwise.

– rev: the status rev ∈ {revealed, unrevealed} of the session key sk of πi
p . It

is initialized as unrevealed.

We assume the party p maintains a status variable cpt ∈ {corrupted,
uncorrupted} which denotes whether or not it has been compromised or
corrupted.

The notion of partnering, also called matching conversation, happens between
two instances: one is the instance of an IoT device πi

c and the other instance of
a server πj

s , for some i and j. It requires the following conditions to be satisfied:

– πi
c .acc = πj

s .acc = accepted
– πi

c .sid = πj
s .sid

– πi
c .sk = πj

s .sk
– πi

c .pid = s and πj
s .pid = c

An instance πi
p (p ∈ {c, s}) is said to be fresh, if the following conditions are

satisfied: πi
p .acc = accepted; πi

p .rev = unrevealed, p.cpt = uncorrupted; if it has
any partner instance πj

p′ , then p′.cpt = uncorrupted and πj
p′ .rev = unrevealed.

Definition 1. An AKE protocol is sound if, in the presence of any passive
attacker, a protocol execution always successfully ends and results in a matching
conversation between the IoT device c and the server s.

IoT Friendly Data-Based Two-Factor AKE 101

2.3 Game-Based Security Definitions

For game-based security definitions, an attacker A’s advantage over a security
property is evaluated by a game played between the attacker and a challenger
C who simulates the activities of the legitimate players, namely the IoT device
c and the server s in our setting. In our security model, we assume that A is a
probabilistic polynomial time (P.P.T.). We further assume that A fully controls
the communication network so that it can intercept, delay, modify and delete
the messages sent between any two instances.

Formally, the attacker A’s intervention in a security game is modeled via the
following oracle queries submitted to the challenger C.

– Send(msg, πi
p): A can send any message msg to an instance πi

p via this
query. πi

p responds according to the protocol specification. For simplicity,
we assume the attacker can send a null message for the initiator to start a
protocol execution.

– Corruptc(): After receiving this query, the challenger C returns the long-term
key of c, namely mk and Sc . Simultaneously, the challenger C sets c’s status
variable as c.cpt = corrupted.

– Corrupts(IA): After receiving this query, the challenger C returns the long-
term key of s, namely mk and Ss , and the (di, ti) whose index i falls inside
IA. In the bounded retrieval model, IA has a limited size. Simultaneously, the
challenger C sets s’s status variable as s.cpt = corrupted.

– Reveal(πi
p): This query can only be issued to an accepted instance πi

p . After
receiving this query, the challenger C returns the contents of the session key
πi
p .sk. Simultaneously, the session key status of πi

p and its partner πj

p′ are set

to πi
p .rev = πj

p′ .rev = revealed.
– Test(πi

p): The instance πi
p should be fresh. After receiving this query, the

challenger C flips a coin b ∈ {0, 1} uniformly at random, and returns the
session key if b = 0, otherwise, it outputs a random string from the session
key space.

Definition 2. In our security model, an AKE protocol is said to be secure
if it is sound and the advantages AdvPFS(A), AdvKCI

s (A), AdvKCI
c (A) and

AdvSCI(A) are negligible for any P.P.T. attacker A. These advantages are
defined in the security games in following-up subsections.

2.3.1 Session Key Security and Forward Secrecy
This game is designed for modeling session key security, including the known key
security property (i.e., the knowledge of session keys generated in other sessions
should not help the attacker to learn anything more about the session key in a
target session.). In more detail, it is defined as follows:

1. C generates parameters and gives the public parameters to A.
2. Once A has all public parameters, it can issue a polynomial number of Send

and Reveal queries in any order.

102 B. Liu et al.

3. At some point, A chooses a fresh instance πi
c for some i or πj

s for some j, and
issues a Test query.

4. A can continue issuing queries as in step 2, but not any Reveal query to the
tested instance and its partner.

5. Eventually, A terminates the game and outputs a guess bit b′ for b.

A wins the game if b′ = b. Formally, A’s advantage is defined as AdvSK(A) =
∣
∣Pr[b = b′] − 1

2

∣
∣.

In order to model (perfect) forward secrecy, we only need to slightly modify
the above game.

– If A is allowed to issue one of Corruptc and Corrupts queries in Step 4 of
the above game, then we obtain the security game for forward secrecy. The
attacker A’s advantage is defined as AdvFS(A) =

∣
∣Pr[b = b′] − 1

2

∣
∣.

– If A is allowed to issue both Corruptc and Corrupts queries in Step 4 of the
above game, then we obtain the security game for perfect forward secrecy.
The attacker A’s advantage is defined as AdvPFS(A) =

∣
∣Pr[b = b′] − 1

2

∣
∣.

It is clear that AdvPFS(A) ≥ AdvFS(A) ≥ AdvSK(A). In other words, if
AdvPFS(A) is negligible then the others will also be negligible.

2.3.2 Key Compromise Impersonation Resilience
For the KCI property, we consider two scenarios and propose two security games
accordingly. In the first scenario, A impersonates the IoT device c to the corrupted
server s. In the second scenario, A impersonates the server s to the corrupted IoT
device c. Next, we describe the security game for the first scenario.

1. C generates the parameters and gives the public ones to A.
2. A sends Corrupts to C for the secret information of s.
3. A can issue a polynomial number of Send and Reveal queries in any order.
4. A terminates the game and outputs a session identifier sidA for a selected

instance πj
s .

Let Succs denote an event, defined by the following two conditions. Formally,
A’s advantage is defined as AdvKCI

s (A) = Pr[Succs].

– πj
s successfully accepts;

– Not all messages πj
s receives are identical to what have been sent by some

instance πi
c which also possesses sidA as its session identifier. This condition

excludes the trivial “attack” that A simply relays the message exchanges
between πi

c and πj
s .

For the second scenario, we only need to make two changes in the above
game. In step 2, A is allowed to issue Corruptc query instead of Corrupts
query. In step 4, A outputs a session identifier sidA for a selected instance πi

c .
Let Succc denote an event, defined by the following two conditions. Formally,
A’s advantage is defined as AdvKCI

c (A) = Pr[Succc].

– πi
c successfully accepts;

– Not all messages πi
c receives are identical to what has been sent by some

instance πj
s which also possesses sidA as its session identifier.

IoT Friendly Data-Based Two-Factor AKE 103

2.3.3 Server Compromise Impersonation Resilience
For the SCI resilience property, we require that any attacker A cannot imper-
sonate the server s to the IoT device c even if it can compromise the server, i.e.
issuing a Corrupts query in the game. The following security game captures this
property.

1. C generates the parameters and gives the public ones to A.
2. A can send Corrupts to C for the secret information of s.
3. A can issue a polynomial number of Send and Reveal queries in any order.
4. A terminates the game and outputs a session identifier sidA for a selected

instance πi
c .

Let Succ denote an event defined by the following two conditions. Formally,
A’s advantage is defined as AdvSCI(A) = Pr[Succ].

– πi
c successfully accepts;

– Not all messages πi
c receives are identical to what have been sent by some πj

s

which also possesses sidA as its session identifier.

3 The Proposed AKE Protocol

To bootstrap the AKE protocol, an initialisation phase is required for the IoT
device and the server to configure their credentials. In practice, these entities
can be configured in a secure lab, and then the IoT device is deployed in the
remote environment, say in a factory site. In this section, we first introduce this
phase, and then describe the proposed AKE protocol in detail.

3.1 Initialisation Phase

In this phase, the server s chooses a security parameter λ (e.g. λ = 128 or
λ = 256) and initializes the following public parameters: a group G of prime
order q, a generator g of G, a cryptographic hash function H : {0, 1}∗ → Zq

and two Pseudo-Random Functions (PRFs) F : {0, 1}λ × {0, 1}∗ → Zq, E :
{0, 1}λ ×{0, 1}λ → {0, 1}λ. Furthermore, the server s generates a public/private
key pair (pk = gsk, sk), where sk ∈ Zq, and also generates sk1 = {mk} where
mk ∈ {0, 1}λ as the long-term shared key and sk2 = {K,K ′} for tag generation
and data processing where K ∈ Zq and K ′ ∈ {0, 1}λ. Suppose the server s
possesses a dataset D which contains L data items di (1 ≤ i ≤ L). For every
data item di ∈ D, the server generates its tag as ti = K ·H(di)+FK′(i), which is
computed in the finite field Zq. We define a dataset D

∗ which contains all data
item and tag tuples (di, ti) (1 ≤ i ≤ L). In addition, the server also chooses an
index parameter z which is an integer. For clarity, we summarize the initialisation
phase in Fig. 1.

As a quick remark, referring to our problem setting described in Sect. 2.1 and
the security model, the IoT device’s long-term credentials Sc = {mk,K ′} and
the server’s long-term credentials Ss = {mk, sk,K,D∗}.

104 B. Liu et al.

Fig. 1. Initialisation phase

Even though our work is inspired by [14], our initialisation is significantly
different in two aspects. Firstly, we assume the dataset D is pre-configured or
randomly generated by the server. This dataset is also treated as secret informa-
tion for the server. Secondly, the keys for tag generation (namely, sk2) are split
and separately stored in the IoT device c (namely, K) and the server s (namely,
K ′). Overall, these differences make it impossible for an attacker to forge tags
even if it has compromised one party. One specific benefit is that it helps us
avoid the vulnerability of Chan et al.’s scheme [14], described in the Appendix
of the full paper [27].

3.2 Description of the Proposed AKE Protocol

Intuitively, the proposed AKE protocol is in the Diffie-Hellman style while the
mutual authentication is achieved by (1) asking the IoT device and the server
to mutually prove the data-tag relationship via the distributed credentials in
the Initialisation Phase, and (2) asking the server to prove its knowledge about
sk via computing a∗. The protocol is summarized in Fig. 2, and its detailed
execution is as follows. We use the notation a

$← B to denote selecting a from
the set B uniformly at random.

1. The IoT device c first selects r1
$← Z

∗
q to compute a = pkr1 and g′ = gr1 .

Then, it selects r2
$← {0, 1}λ and a random subset Ic of z distinct indices for

the tuples in D
∗, and then sends g′, r2, Ic and M1 = H(mk||a||g′||r2||Ic) to

the server s.
2. After receiving the message, the server s first computes a∗ = g′sk and verifies

whether or not M1 = H(mk||a∗||g′||r2||Ic) holds. If the verification passes,
it randomly selects a subset Is of z distinct indices which should be disjoint
from Ic . Next, it computes r′

2 = Emk(r2), X = K · ∑i
i∈I

(H(di) · Fr′
2
(i)) and

Y =
∑i

i∈I
(ti · Fr′

2
(i)), where I = Ic ∪ Is . Note that we assume X,Y are

computed in the finite field Zq. Besides, the server s randomly selects r3 to
compute b = pkr3 and dh = a∗r3 . Finally, the server s sends b, Is ,X and
M2 = H(a∗||b||dh||Is ||X||Y || 1) to the IoT device c. For the sake of space, we
use 1 to denote the messages sent in the first round, namely g′, r2, Ic ,M1.

IoT Friendly Data-Based Two-Factor AKE 105

Fig. 2. Proposed AKE protocol

3. After receiving the message, the IoT device c computes r′
2 = Emk(r2) and

KI =
∑i

i∈I
(FK′(i) · Fr′

2
(i)), where I = Ic ∪ Is . Next, it computes Y = X + KI

and dh∗ = br1 , and verifies whether M2 = H(a||b||dh∗||Is ||X||Y || 1) holds. If
the verification passes, it computes M3 = H(a||b||dh∗||I||Y || 1 || 2) and sends
it to the server s. Finally, the IoT device c computes its session key and session
identifier as skc = H(mk||a||b||dh∗||Y) and sidc = H(1 || 2) respectively.

4. After receiving the message, the server s verifies whether or not the equality
M3 = H(a∗||b||dh||I||Y || 1 || 2) holds. If the verification passes, it computes
its session key and session identifier as sks = H(mk||a∗||b||dh||Y) and sids =
H(1 || 2) respectively.

It is straightforward to verify that the above AKE protocol is sound under
Definition 1.

106 B. Liu et al.

4 Security Analysis

In this section, we first review the CDH and SDH assumptions and then prove
the security of the proposed AKE protocol in our security model.

4.1 CDH and SDH Assumptions

CDH assumption is widely used in the literature. Given a security parameter λ,
there exists a polynomial time algorithm which takes λ as input and outputs a
cyclic group G of prime order q. On the input of (G, q, g) and a CDH challenge
(ga, gb), where g is a generator of G and a, b are randomly chosen from Z

∗
q , a

P.P.T. attacker can only compute gab with a negligible probability.
Related to the CDH assumption, the SDH assumption has been defined in

[1]. The setup is identical to the CDH assumption, except that the attacker has
access to an oracle Ob. After receiving a tuple (g1, g2), Ob replies 1 if g2 = gb

1

and replies 0 otherwise. In this paper, we will use a hashed variant of the SDH
assumption where the only difference lies in Ob. Given a hash function H, in this
variant, the oracle O′

b is defined as: after receiving a (g1, d1, d2, h), O′
b replies 1

if h = H(d1||gb
1||d2) and replies 0 otherwise.

Suppose the hash function H is modeled as a random oracle, we can prove
that the SDH and the hashed variant are equivalent. The equivalence is briefly
demonstrated below.

– Given an oracle Ob, we can construct an oracle O′
b as follows. After receiv-

ing a (g1, d1, d2, h), O′
b replies 1 if (1) there is a query to H such that

h = H(d1||x||d2) and (2) when being queried with (g1, x), Ob replies 1. Oth-
erwise, O′

b replies 0.
– Given an oracle O′

b, we can construct an oracle Ob as follows. After receiving
a tuple (g1, g2), Ob replies 1 if the oracle O′

b replies 1 when being queried with
(g1, d1, d2,H(d1||g2||d2)) where d1 and d2 are randomly generated. Otherwise,
Ob replies 0.

4.2 Security Proofs

We prove the proposed AKE protocol is secure under Definition 2, by show-
ing the advantages AdvPFS(A), AdvKCI

s (A), AdvKCI
c (A) and AdvSCI(A) are

negligible in the following Lemmas. Note that we generally assume that the
Pseudo-Random Functions (PRFs) are secure and the attacker can only retrieve
a limited amount of data from a compromised server (i.e. bounded retrieval
model). For the sake of simplicity, we avoid repeating them in each Lemma and
the full proofs appear in the full paper [27].

Lemma 1. The proposed protocol achieves KCI resilience in the first scenario
defined in Sect. 2.3.2 (i.e. A cannot impersonate c to s even after it has com-
promised s). The security property holds based on the CDH assumption in the

random oracle as long as (n−z
z)

(L−z
z) is negligible.

IoT Friendly Data-Based Two-Factor AKE 107

Lemma 2. The proposed protocol achieves KCI resilience in the second scenario
defined in Sect. 2.3.2 (i.e. A cannot impersonate s to c even after it has com-
promised c). The security holds based on the SDH assumption in the random
oracle.

Lemma 3. The proposed protocol achieves SCI resilience property defined in
Sect. 2.3.3 (i.e. A cannot impersonate s to c even after it has compromised s).

The security property holds in the random oracle as long as (nz)
(Lz)

is negligible.

It is clear that (nz)
(Lz)

>
(n−z

z)
(L−z

z) . To make Lemma 1 and Lemma 3 hold, we (at

least) need to make (nz)
(Lz)

negligible.

Lemma 4. The proposed protocol achieves the PFS property based on the SDH

assumption in the random oracle as long as (n−z
z)

(L−z
z) is negligible.

5 Performance Evaluation and Enhancements

In Table 2, we summarize the asymptotic complexity (i.e. the number of different
types of computations) of the proposed protocol.

Table 2. Complexity of the proposed protocol

Modular

exponentiation

Multiplication Addition PRF E PRF F Hash H

Tag generation - L L - L L

IoT device 3 2z 2z 1 4z 5

Server 3 4z + 1 4z − 2 1 2z 2z + 5

In the rest of this section, we implement our protocol and provide the detailed
running time. Furthermore, we show how to reduce the running time for the IoT
device. At last, we make a comparison to the protocol from [9] and resolve the
scalability question.

5.1 Parameter Selection and Implementation Results

We consider two security levels, namely λ = 128 and λ = 256. Next, we first
describe how to set up the parameters and then present the implementation
results.

108 B. Liu et al.

5.1.1 Parameter Setup
With respect to the instantiation of group G, we use the Koblitz curve secp256k1
and secp521r1, respectively. These curves are recommended parameters defined
in Standards for Efficient Cryptography [33], and the parameters can be found
in the Appendix of the full paper [27]. When λ = 256, we use SHA-256 to
implement the function H and use HMAC-SHA256 to instantiate the PRF E.
For the PRF F, we can also use HMAC-SHA256 by truncating its output size to
q. When λ = 128, we can further truncate the outputs of these functions to fit
into the required domain. We skip the detail here.

Given a security parameter, we take the following approach to determine the
parameters L, n, z.

1. Since we rely on the bounded retrieval model, we need to first set a threshold
τ , which limits how much data an attacker can retrieve if it has compromised
the server. For our implementation, we suppose the attacker can only retrieve
τ = 100 MB data. It will be straightforward to adapt our discussions to other
τ values.

2. With τ , we enumerate some potential sizes for a single data item in D. Let
the sizes be denoted as xi (1 ≤ i ≤ T) for some integer T . For every xi, we
do the following.
(a) Compute ni = τ

xi
, which represents the number of tuples an attacker can

retrieve if it has compromised the server.
(b) With ni, we need to try different (z, L) pairs so that (nz)

(Lz)
is negligible w.r.t

the security parameter. Note that a smaller z requires a larger L.
(c) Evaluate the obtained (z, L) pairs, and try to find the one which results

in a good balance between the size of D (i.e. L × xi) and the complexity
of 2z hash computations. In another word, both z and L should not be
too large. It is also worth noting that if z is very large, there is also the
cost of multiplications in the computation of X and Y for the server (this
makes a difference in our case of λ = 256, see below).

3. Further evaluate the (z, L) pairs for all xi (1 ≤ i ≤ T) obtained at the end of
last step, and select the most suitable one.

In the following table, we enumerate five options for the size of a single data
item in D and present the hashing time and the value for n correspondingly. All
the computations are done with a PC, with its configurations described in the
next subsection.

Table 3. Data item sizes

Data item size (MB) 0.0005 0.001 0.01 0.1 1

Hash one data item (ms) 0.004 0.007 0.068 0.689 6.698

Value of n 106 105 104 103 102

For the security parameter λ = 128, we compute the (z, L) pairs shown in
Table 4, where the top row lists different data item size and n value tuples.

IoT Friendly Data-Based Two-Factor AKE 109

Each pair guarantees that (nz)
(Lz)

≤ 1
2128 . In the table, we have also presented the

computation time for 2z hashes and the storage for the server. From the table,
it seems the most appropriate pair is (z = 50, L = 5896957), which achieves a
better balance for hashing time and storage for the server. If storage is more
important for the server, then (z = 50, L = 589588) can be the alternative.

Table 4. Determine (z, L) when λ = 128

(0.0005, 106) (0.001, 105) (0.01, 104) (0.1, 103) (1, 102)

Value of L when z = 10 7131518127 713122933 71283411 7099433 680759

Size of D (GB) 3565.76 713.12 712.83 709.94 680.76

Hash 2z data items (ms) 0.075 0.14 1.38 13.91 134.02

Value of L when z = 20 84447713 8444058 843693 83655 7637

Size of D (GB) 42.22 8.44 8.43 8.37 7.64

Hash 2z data items (ms) 0.15 0.27 2.73 26.89 267.91

Value of L when z = 50 5896957 589588 58851 5777 462

Size of D (GB) 2.95 0.59 0.59 5.78 0.46

Hash 2z data items (ms) 0.36 0.72 6.77 67.49 669.29

Value of L when z = 100 2428319 242769 24214 2357 147

Size of D (GB) 1.21 0.24 0.24 0.24 0.15

Hash 2z data items (ms) 0.73 1.45 13.73 135.31 1342.25

For the security parameter λ = 256, we compute the (z, L) pairs shown in

Table 5. Each pair guarantees that (nz)
(Lz)

≤ 1
2256 . It may seem that (z = 100, L =

5896835) is a good choice. However, considering also the costs in multiplications
(see our explanation in Step 2. (c)) from the aforementioned approach descrip-
tion, the most appropriate pair is (z = 50, L = 3476724) in this case. In addition,
we do not choose (z = 50, L = 34774689) because the storage is too high.

Table 5. Determine (z, L) when λ = 256

(0.0005, 106) (0.001, 105) (0.01, 104) (0.1, 103) (1, 102)

Value of L when z = 10 50858779596503 5085671978593 508361198100 50629932185 4854873253

Dataset size (GB) 25429389.80 5085671.98 5083611.98 5062993.22 4854873.25

Hash 2z data items (ms) 0.081 0.14 1.37 14.11 142.14

Value of L when z = 20 7131482474 713087280 71247750 7063691 644102

Size of D (GB) 3565.74 713.09 712.48 706.37 644.10

Hash 2z data items (ms) 0.16 0.29 2.76 25.47 265.13

Value of L when z = 50 34774689 3476724 346928 33945 2601

Size of D (GB) 17.39 3.48 3.47 3.39 2.60

Hash 2z data items (ms) 0.36 0.89 6.67 64.22 673.19

Value of L when z = 100 5896835 589466 58729 5653 276

Size of D (GB) 2.95 0.59 0.06 0.57 0.28

Hash 2z data items (ms) 0.71 1.44 14.21 139.64 1324.91

110 B. Liu et al.

5.1.2 Implementation Results
With the selected parameters from the previous subsection, we implement the
proposed AKE protocol in C with the MIRACL cryptographic library [30]1. In
the experiment, we use a PC as the server. It has an Intel R© CoreTM i7-4770 CPU
@ 3.4 GHz processor with 16 GB RAM. In the literature, most benchmarks are
implemented by using a single-board computer to simulate an IoT device, like
Arduino, BeagleBone Black, Raspberry Pi, etc. [14,23,24]. Therefore, we use a
Raspberry Pi 3 Model B+ with ARM Cortex-A53 @ 1.4 GHz processor and 1 GB
RAM as the IoT device. To obtain fair execution results, we execute the codes
ten times and take the average. Table 6 depicts the results. From the table, we
observe that the running time of the server is much smaller than that of the
IoT device. This may look strange, but it could be preferable in practice given
that the server may need to support a large number of IoT devices. For the IoT
device, the running time 15.19 ms (when λ = 128) and 84.73 ms (when λ = 256)
could be acceptable in many application scenarios. But, it will be interesting to
reduce this complexity, particularly for IoT devices which have less computing
power than the Raspberry Pi.

Table 6. Running time (ms)

Modular exponentiation Multiplication Addition PRF E PRF F Hash H Total

λ = 128, Elliptic Curve: secp256k1, L = 5896957, n = 106, z = 50

IoT device 13.61 0.16 0.03 0.04 0.66 0.06 15.19

Server 1.69 0.04 0.01 0.04 0.06 0.37 2.44

λ = 256, Elliptic Curve: secp521r1, L = 3476724, n = 105, z = 50

IoT device 81.96 0.34 0.05 0.04 0.96 0.12 84.73

Server 11.08 0.09 0.02 0.02 0.07 0.73 12.51

5.2 Efficiency Enhancement for the IoT

Referring to the AKE protocol in Fig. 2 from Sect. 3.2, the values of a and g′ can
be computed in advance. By doing so, the IoT device can avoid about two-thirds
of the computations required in the protocol execution.

Besides the “trivial” pre-computation strategy, we can try to offload one
exponentiation from IoT to the server. For the enhanced AKE protocol, the
initialisation phase stays the same except the following.

– IoT device is configured with a set S which contains tuples in the form of
(gu, u) where u

$← Z
∗
q . This allows us to outsource the computation of gr1 to

the server without revealing r1.
– The original (pk, sk) is discarded and a new key pair (spk, ssk) is generated

for a signature scheme (Sign,Verify) which achieves existential unforgeability
under chosen-message attacks (EUF-CMA). This is necessary to achieve KCI
resilience when the attacker compromises the IoT device.

1 Source code is available at https://github.com/n00d1e5/Demo Bigdata-facilitated
Two-party AKE for IoT.

https://github.com/n00d1e5/Demo_Bigdata-facilitated_Two-party_AKE_for_IoT
https://github.com/n00d1e5/Demo_Bigdata-facilitated_Two-party_AKE_for_IoT

IoT Friendly Data-Based Two-Factor AKE 111

The Enhanced AKE protocol is summarized in Fig. 3.

Fig. 3. Enhanced AKE protocol

Regarding the security of the enhanced protocol, we sketch below how the
Lemmas from Sect. 4 still hold. First of all, the results of Lemma 1 and Lemma 3
will not be affected because compromising the server does not give the attacker
any more privileges. Intuitively, our modification against the original AKE pro-
tocol from Sect. 3 does not give any more power to the attacker when it com-
promises the server, i.e. in the original case, it obtains sk while in the enhanced
protocol it obtains ssk. In addition, the security results mainly come from the
inability for the attacker to forge bigdata-related information. The new security

112 B. Liu et al.

proofs can be carried out in a very similar manner, we skip the details here.
Regarding Lemma 2, the original proof methodology does not work anymore.
In fact, this is why we have introduced the digital signature scheme. Since the
server is required to send σ which is a signature for the exchanged messages,
i.e. 1 and M2 which embeds (b, Is ,X) inside. Based on the EUF-CMA prop-
erty, the attacker cannot impersonate the server to the IoT device even if it
has compromised the latter. Give that the results of Lemma 1, Lemma 2, and
Lemma 3 still hold, then Lemma 4 also holds and the proof stays very similar.
We skip the details here as well. It worth pointing out that, in comparison to the
original protocol, one potential drawback for this enhanced protocol is the lack
of backward secrecy, which means that an attacker can obtain the session keys
established after it compromised the IoT (due to the fact that it can obtains r1
through u). How to address this issue is an interesting future work.

Table 7 shows the complexity of the enhanced protocol. Comparing to Table 2,
we can conclude that the signature verification operation should be very efficient
in order to make the outsourcing meaningful.

Table 7. Complexity of the enhanced protocol

Sign Verify Modular

exponentiation

Multiplication Addition PRF E PRF F Hash H

IoT device - 1 1 2z 2z 1 4z 5

Server 1 - 3 4z + 1 4z − 2 1 2z 2z + 5

To implement the enhanced AKE protocol, all parameters can stay the same
except that we need to choose an appropriate digital signature scheme. According
to NIST’s benchmarking [16], we choose Picnic [29]. We benchmark the schemes
both for 128 and 256-bit security2 on our Raspberry Pi and get the results in
Table 8. For 128-bit security, the running time remains almost the same for the
IoT device as the original solution, while the running time for the server has
increased significantly. But, for 256-bit security, the execution time is 1.45 times
faster for the IoT device while the running time for the server has increased
moderately.

Table 8. Running time (ms)

Sign Verify Modular exp. Multiplication Addition PRF E PRF F Hash H Total

λ = 128, Elliptic Curve: secp256k1, L = 5896957, n = 106, z = 50

IoT device - 8.32 4.54 0.16 0.03 0.04 0.66 0.06 14.44

Server 10.34 - 1.69 0.04 0.01 0.04 0.06 0.37 12.78

λ = 256, Elliptic Curve: secp521r1, L = 3476724, n = 105, z = 50

IoT device - 28.36 27.32 0.34 0.05 0.04 0.96 0.12 58.45

Server 33.83 - 11.08 0.09 0.02 0.02 0.07 0.73 46.34

2 Source code of both schemes picnic-L1-full for 128-bit security and picnic-L5-full for
256-bit security is available at https://github.com/IAIK/Picnic.

https://github.com/IAIK/Picnic

IoT Friendly Data-Based Two-Factor AKE 113

Furthermore, it is clear that if there is a more efficient signature scheme,
then the efficiency gain will be more for the enhanced AKE protocol. To further
improve its efficiency, we can also try to outsource the computation of dh∗ = br1

to the server. To this end, Protocol 5 from [15] can be employed. A detailed
investigation of this direction is an interesting future work.

5.3 Comparison with Existing Protocol(s)

Regarding the setting mentioned in the beginning of Sect. 1, the protocol from [9]
is similar to ours, even though it does not achieve the KCI and SCI properties.
We choose 128-bit AES to instantiate the encryption algorithm and use the same
group to implement this protocol for the security level λ = 128, and summarize
the results in Table 9. In comparison to the results from Table 6, it is clear that
the complexities for the IoT device are very close while the complexity for the
server is slightly higher in our protocol. Note also the fact that we have not
taken into account the PUF operations, which may increase the complexity for
the IoT device for the protocol from [9].

Table 9. Complexity and Running time (ms) of [9]

Modular exponentiation Encryption Decryption Hash H Total

IoT Device 13.61 0.00006 - 0.06 ≈13.67

Server 1.69 0.000006 0.000006 0.02 ≈1.71

In this paper, we have assumed a setting with one IoT device and the server.
In practice, the server may serve a large number of IoT devices, e.g. thousands
of them. In this case, the security properties will not be affected in any manner,
but there are potential scalability concerns. From our implementation results, the
running time of the server can scale to a considerable number of IoT devices, and
the main concern is the storage. Below, we propose a simple solution to resolve
this question.

Instead of storing an individual dataset D for every IoT device, the server can
store a global dataset D̃ which contains L data items d̃i (1 ≤ i ≤ L). In addition,
the server can generate a global secret key gk for dataset configuration. Consider
an IoT device, which has the identifier id. For both the Initialisation Phase and
the AKE protocol, the server can construct a dataset D for this IoT device
on-the-fly, where every element di is derived from d̃i as follows:

di = H̃(id||gk||d̃i)

where H̃ is a hash function. By doing so, the server only needs to store the global
dataset D̃ and ephemerally generate D when necessary. When the cryptographic
hash function H̃ is modeled as a random oracle, it is straightforward to verify
that the security properties of the proposed protocols will not be affected. Due
to the space limitation, we skip the details here.

114 B. Liu et al.

6 Conclusion

Motivated by Chan et al.’s unilateral authentication scheme [14], we have pro-
posed a bigdata-facilitated two-party AKE protocol for IoT systems. The pro-
posed protocol achieves a wide range of security properties including PFS, KCI
resilience and SCI resilience. In particular, the KCI and SCI resilience properties
are well demanded by the IoT environment, and cannot be satisfied by existing
AKE protocols. Furthermore, we have presented an enhanced protocol, which
can significantly reduce the computation load for the IoT with an appropriate
signature scheme. Our work has left a number of future research directions. As
mentioned in Sect. 5.2, it is an immediate future work to give a formal proof of
the enhanced AKE protocol even if it is almost straightforward. Furthermore, it
is worth investigating to further improve the efficiency of the protocol by inte-
grating the Protocol 5 from [15] and evaluate its efficiency gain vs the added
communication complexity. Along this direction, it is also worth exploring other
signature schemes which have better verification efficiency.

Acknowledgement. This paper is supported in the context of the project CAT-
ALYST funded by Fonds National de la Recherche Luxembourg (FNR, reference
12186579).

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9 12

2. Alwen, J., Dodis, Y., Wichs, D.: Leakage-Resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 3

3. Aumann, Y., Ding, Y.Z., Rabin, M.O.: Everlasting security in the bounded storage
model. IEEE Trans. Inf. Theory 48(6), 1668–1680 (2002)

4. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

5. Blake-Wilson, S., Menezes, A.: Authenticated Diffie-Hellman key agreement pro-
tocols. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 339–361.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48892-8 26

6. Boyd, C., Mathuria, A., Stebila, D.: Protocols for Authentication and Key Estab-
lishment. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-662-58146-9

7. Brainard, J., Juels, A., Rivest, R.L., Szydlo, M., Yung, M.: Fourth-factor authentica-
tion: somebody you know. In: Proceedings of the 13th ACM Conference on Computer
and Communications Security, pp. 168–178 (2006)

8. Byun, J.W.: A generic multifactor authenticated key exchange with physical unclon-
able function. Secur. Commun. Networks 2019 (2019)

9. Byun, J.W.: An efficient multi-factor authenticated key exchange with physically
unclonable function. In: 2019 International Conference on Electronics, Information,
and Communication (ICEIC), pp. 1–4. IEEE (2019)

https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/978-3-642-03356-8_3
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/3-540-48892-8_26
https://doi.org/10.1007/978-3-662-58146-9

IoT Friendly Data-Based Two-Factor AKE 115

10. Byun, J.W.: End-to-end authenticated key exchange based on different physical
unclonable functions. IEEE Access 7, 102951–102965 (2019)

11. Byun, J.W.: PDAKE: a provably secure PUF-based device authenticated key
exchange in cloud setting. IEEE Access 7, 181165–181177 (2019)

12. Canetti, R.,Krawczyk,H.:Analysis of key-exchange protocols and their use for build-
ing secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-
6 28

13. Challa, S., et al.: Secure signature-based authenticated key establishment scheme for
future IoT applications. IEEE Access 5, 3028–3043 (2017)

14. Chan, A.C.-F., Wong, J.W., Zhou, J., Teo, J.: Scalable two-factor authentication
using historical data. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C.
(eds.) ESORICS 2016. LNCS, vol. 9878, pp. 91–110. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45744-4 5

15. Chevalier, C., Laguillaumie, F., Vergnaud, D.: Privately outsourcing exponentiation
to a single server: cryptanalysis and optimal constructions. Algorithmica 83(1), 72–
115 (2020). https://doi.org/10.1007/s00453-020-00750-2

16. Dang, V.B., Farahmand, F., Andrzejczak, M., Mohajerani, K., Nguyen, D.T.,
Gaj, K.: Implementation and benchmarking of round 2 candidates in the NIST
post-quantum cryptography standardization process using hardware and soft-
ware/hardware co-design approaches. Cryptology ePrint Archive: Report 2020/795
(2020)

17. Davies, S.G.: Touching Big Brother: how biometric technology will fuse flesh and
machine. Inf. Technol. People 7(4), 38–47 (1994)

18. Di Crescenzo, G., Lipton, R., Walfish, S.: Perfectly secure password protocols in the
bounded retrieval model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 225–244. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 12

19. Dziembowski, S.: Intrusion-Resilience via the bounded-storage model. In: Halevi,
S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg
(2006). https://doi.org/10.1007/11681878 11

20. Fleischhacker, N., Manulis, M., Azodi, A.: A modular framework for multi-factor
authentication and key exchange. In: Chen, L., Mitchell, C. (eds.) SSR 2014. LNCS,
vol. 8893, pp. 190–214. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
14054-4 12

21. Guo, C., Chang, C.C.: Chaotic maps-based password-authenticated key agreement
using smart cards. Commun. Nonlinear Sci. Numer. Simul. 18(6), 1433–1440 (2013)

22. Hao, F., Clarke, D.: Security analysis of a multi-factor authenticated key exchange
protocol. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp.
1–11. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31284-7 1

23. Kruger, C.P., Hancke, G.P.: Benchmarking Internet of Things devices. In: 2014 12th
IEEE International Conference on Industrial Informatics (INDIN), pp. 611–616.
IEEE (2014)

24. Krylovskiy, A.: Internet of things gateways meet linux containers: performance eval-
uation and discussion. In: 2015 IEEE 2nd World Forum on Internet of Things (WF-
IoT), pp. 222–227. IEEE (2015)

25. Lee, Y., Kim, S., Won, D.: Enhancement of two-factor authenticated key exchange
protocols in public wireless LANs. Comput. Electr. Eng. 36(1), 213–223 (2010)

26. Li, Z., Yang, Z., Szalachowski, P., Zhou, J.: Building low-interactivity multi-factor
authenticated key exchange for industrial Internet-of-Things. IEEE Internet of
Things J. 8(2), 844–859 (2020)

https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-319-45744-4_5
https://doi.org/10.1007/978-3-319-45744-4_5
https://doi.org/10.1007/s00453-020-00750-2
https://doi.org/10.1007/11681878_12
https://doi.org/10.1007/11681878_11
https://doi.org/10.1007/978-3-319-14054-4_12
https://doi.org/10.1007/978-3-319-14054-4_12
https://doi.org/10.1007/978-3-642-31284-7_1

116 B. Liu et al.

27. Liu, B., Tang, Q., Zhou, J.: Bigdata-facilitated Two-party Authenticated Key
Exchange for IoT (full paper) (2021). https://eprint.iacr.org/2021/1131. Accessed
10 Sept 2021

28. Liu, Yu., Xue, K.: An improved secure and efficient password and chaos-based two-
party key agreement protocol. Nonlinear Dyn. 84(2), 549–557 (2015). https://doi.
org/10.1007/s11071-015-2506-2

29. Microsoft: The Picnic Signature Algorithm. https://github.com/microsoft/Picnic/
30. MIRACL Ltd.: Multiprecision Integer and Rational Arithmetic Cryptographic

Library – the MIRACL Crypto SDK (2019). https://github.com/miracl/MIRACL
31. Pointcheval, D., Zimmer, S.: Multi-factor authenticated key exchange. In: Bellovin,

S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp.
277–295. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68914-
0 17

32. Shoup, V.: On Formal Models for Secure Key Exchange. Cryptology ePrint Archive,
Report 1999/012 (1999). https://eprint.iacr.org/1999/012

33. Standards for Efficient Cryptography (SEC): SEC 2: Recommended elliptic curve
domain parameters (2000)

34. Stebila, D., Udupi, P., Chang Shantz, S.: Multi-factor password-authenticated key
exchange. Inf. Secur. 2010, 56–66 (2010)

https://eprint.iacr.org/2021/1131
https://doi.org/10.1007/s11071-015-2506-2
https://doi.org/10.1007/s11071-015-2506-2
https://github.com/microsoft/Picnic/
https://github.com/miracl/MIRACL
https://doi.org/10.1007/978-3-540-68914-0_17
https://doi.org/10.1007/978-3-540-68914-0_17
https://eprint.iacr.org/1999/012

Randomized Component Based Secure
Secret Reconstruction in Insecure

Networks

Xinyan Wang and Fuyou Miao(B)

School of Computer Science and Technology, University of Science and Technology
of China, Hefei 230026, China

mfy@ustc.edu.cn

Abstract. In Shamir (t, n) secret sharing scheme, the secret can be
recovered by any t or more than t shareholders. However, in insecure
networks, if the number of participants is greater than t, a participant
who does not own a valid share can also recover the secret by collect-
ing components from other honest shareholders. Harn proposed the first
secure secret reconstruction scheme, which used linear combination of
shares to solve this problem, but this scheme is vulnerable to linear sub-
space attack. Miao used randomized component to disrupt the linear
relationship and protect the share from being exposed. However, it can
also be attacked by lattice. In this paper, we propose two randomized
component based secure secret reconstruction schemes in insecure net-
works. The first scheme uses a random element whose distribution range
at least equals to the share to protect the secrecy of share. Further-
more, the scheme is ideal and perfect. The second scheme is an improved
scheme using bivariate polynomial, which is not only used for share and
randomized component generation, but for secure channel construction.
We don’t need to establish the secure channel for each pairwise sharehold-
ers in advance. s-box transmission breaks the linear relationship among
randomized components and guarantee the perfect secrecy of our scheme.

Keywords: Secret sharing · Insecure networks · Secure secret
reconstruction · Randomized component · Bivariate polynomial

1 Introduction

(t, n) secret sharing (SS) was first introduced respectively by Shamir [22] and
Blakley [4] in 1979. It is mainly divided into share distribution and secret recon-
struction these two parts. In distribution phase, a mutually trusted dealer divides
the secret s into n shares and distributes them to n shareholders through secure
channel. Then threshold t or more than t shareholders cooperate in the secret
reconstruction to reconstruct the secret, while less than t shareholders cannot

Supported by National Key R&D Program of China 2018YFB0803405.

c© Springer Nature Switzerland AG 2021
J. K. Liu et al. (Eds.): ISC 2021, LNCS 13118, pp. 117–138, 2021.
https://doi.org/10.1007/978-3-030-91356-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91356-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-91356-4_7

118 X. Wang and F. Miao

get any information about the secret. Different from Shamir scheme of recovering
secret using interpolation polynomials, Bloom [3] also proposed a secret sharing
scheme using Chinese Remainder Theorem (CRT) in 1983. Then many secret
sharing schemes (i.e. [5,6,10,20,24]) based on Chinese Remainder Theorem were
proposed.

Shamir (t, n) secret sharing scheme can realize that any t or more than t
shareholders can recover the secret. However, when the communication among
shareholders is in an insecure network, it may lead to some threats. We show
the two models of active attack and passive attack in Fig. 1.

Fig. 1. Model of attacks in insecure networks.

(a) Active attack: If the number of participants is larger than t, there may
exist an active attack adversary who does not own a valid share participating
in secret reconstruction and releasing his components last. In this case, he
can recover the secret or forge a legal share by collecting enough components
from other honest shareholders.

(b) Passive attack: Since all components are sent in insecure networks, even a
passive attack adversary who does not participate in the secret reconstruc-
tion directly, he can eavesdrop all components sent in secret reconstruction
and recover the secret himself.

1.1 Related Work

One potential method against passive attack is establishing secure channels for
each pair of shareholders. Many proposed secret sharing schemes are based on
the assumption that secure channels have been established in advance. Then in
order to resist active attack, Chor [7] proposed verifiable secret sharing (VSS) to
verify other participants’ shares before secret reconstruction. In a VSS scheme,
each shareholder verifies the authenticity of received shares rather than uses them
to recover the secret directly. There are also many research papers (i.e. [2,8,15,
21,25]) based on VSS. However, VSS scheme requires more calculation processes.
Furthermore, the adversary still gets valid shares from honest shareholders even
though his illegal behaviour can be detected.

RC Based SSR 119

Harn [9] proposed secure secret reconstruction (SSR) using linear combina-
tion of shares to protect the privacy of shares and prevent the adversary from
obtaining secret by releasing his share last. Then more schemes based on secure
secret reconstruction were proposed. Xiao [27] modified the scheme [9] by chang-
ing the degree of polynomial. Harn [12] proposed an asynchronously rational
secret sharing scheme to solve the problem, in which a dishonest shareholder
can release a fake share at last to make the correct secret recoverable only by
himself when shares are released asynchronously. Using bivariate polynomial,
Hsu [14] proposed a secure secret reconstruction scheme which can verify all
shares at once; Meng [18] proposed a threshold changeable secret sharing, which
can increase the threshold of the scheme to the exact number of the participants.
Then Harn [13] proposed a secure secret reconstruction scheme which claimed
to be information theoretical secure. He [11] also proposed a dynamic threshold
secret sharing scheme using bivariate polynomial, which can make the threshold
equal to the exact number of participants.

However, a participant who does not own a valid share can also forge a legal
share in secure secret reconstruction schemes [9,11] by using linear subspace
cryptanalysis [1,16]. Since the schemes [12–14,18,27] employ the same idea as
scheme [9] to protect the share, all these schemes can be attacked by subspace
linear attack. Ahmadian [1] found that t + k − 1 valid released components are
sufficient to forge any number of components in scheme [9]. Then Jamshidpour
[16] found that no matter how large the threshold is, any t + 1 released com-
ponents can recover the secret and forge a legal share in scheme [11]. Xia [26]
also analyzed the linear subspace attack in schemes [9,11] and introduced a
game-based model that can be used to formally analyze secret sharing schemes.

The main drawback in Harn scheme [9] is that t + k − 1 components expand
a linear subspace of components. That is, an adversary can forge a legal share
if he knows t + k − 1 linearly independent components. In order to prevent this
attack, Miao [19] proposed a randomized component based secure secret sharing
scheme. Compared to scheme [9], this scheme uses random integers to break
the linear relationship among components. Furthermore, each shareholder only
needs to own one share. Based on Miao scheme, Meng [17] also proposed a novel
threshold changeable secret sharing scheme. However, as the distribution range
of random integers in Miao scheme is smaller than share, it leads to short vectors
consisting these random integers. The scheme is vulnerable to lattice attack.

1.2 Our Contribution

Based on the idea of randomized component in Miao scheme [19], we propose
two secure secret reconstruction schemes in insecure networks, one is based on
Chinese Remainder Theorem for polynomial and the other is based on bivariate
polynomial. We add random element in our schemes to break the relationship
among components. Then different from Miao scheme, the distribution range of
our random element is no less than that of shares. As a result, both schemes can
well protect the secrecy of shares and resist lattice attack.

120 X. Wang and F. Miao

We summarize contributions as follows:

– A (t, n) secure secret reconstruction scheme based on Chinese Remainder
Theorem for polynomial is proposed. Using a novel randomized polynomial
whose distribution range is no less than that of shares, the scheme can prevent
the participant who does not own a valid share from recovering the secret and
forging a legal share. This scheme can resist both the linear subspace attack
and lattice attack. Furthermore, it is perfect and ideal.

– A (t, n) secure secret reconstruction scheme based on bivariate polynomial
is proposed, in which bivariate polynomial is used to generate shares, secure
channel key and randomized components. Shareholders don’t need to estab-
lish secure channels in advance. s-boxes are used during the generation of
randomized components to enable the scheme to be resistant to both linear
subspace and lattice attack.

1.3 Organization

The rest of this paper is organized as follows. Section 2 introduces some prelimi-
naries and analyzes the problems of secure secret reconstruction schemes [9,19].
Section 3 introduces the model and security goals. In Sect. 4, a basic SSR scheme
based on CRT for polynomial is proposed. In Sect. 5, an improved SSR scheme
using bivariate polynomial is also proposed. Section 6 describes our schemes’
properties and compares our schemes with other SSR schemes. Conclusion is
included in Sect. 7.

2 Preliminaries

Some definitions are introduced in this section. Then description of Asmuth-
Bloom (t, n) secret sharing and secure secret reconstruction schemes [9,19] are
also given.

Definition 1. Information entropy
Suppose X is a discrete-time discrete valued random variable with a sample

space SP . Let H(·) be the information entropy function, then the entropy of X
is denoted as:

H(X) = E(−log2P (X)) =
∑

x∈SP

−P (x)log2P (x),

where E is the expectation operator and P (·) is the probability distribution func-
tion of X.

Definition 2. Perfect secrecy [23]
For any distribution on plaintext space M and the corresponding distribution

on ciphertext space C, the condition of perfect secrecy for an encryption scheme
Π = (Gen,Enc,Dec) is that

Pr(M = m|C = c) = Pr(M = m),

where m is a plaintext and c is a ciphertext.

RC Based SSR 121

Perfect Secrecy Necessary Condition: If an encryption scheme with message
space M and key space K satisfies perfect secrecy, then |K| ≥ |M |. From the
view of information entropy, a perfect secrecy scheme satisfies H(K) ≥ H(M).

Definition 3. Perfect secret sharing scheme
Let P be a set of participants, Γ be an access structure on P and S be the

set of secrets. A perfect secret sharing scheme PS(Γ, S) satisfies:

1. any qualified subset can reconstruct the secret: ∀X∈Γ H(S|X) = 0;
2. any non-qualified subset has no information on secret: ∀X /∈Γ H(S|X) = H(S).

Definition 4. Information Rate
Information rate is the size ratio of secret to share. Let s be the secret and

S = {s1, s2, . . . sn} be the share set, then the information rate is

ρ =
log2|s|

maxsi∈S(log2|si|) .

Ideal Secret Sharing Scheme: If a perfect scheme has the information rate
1, it’s an ideal scheme.

2.1 Asmuth-Bloom (t, n) SS Scheme

Asmuth-Bloom (t, n) SS Scheme is a secret sharing scheme based on Chinese
Remainder Theorem (CRT). First, dealer selects a large prime p and a secret
s < p. Then dealer selects n pairwise coprime integers m1,m2, . . . mn satisfying:

1. m1 < m2 < . . . < mn;
2. gcd(mi, p) = 1, 1 ≤ i ≤ n and gcd(mi,mj) = 1, 1 ≤ j ≤ n, j �= i;
3. m1m2 . . . mt > pmn−t+2mn−t+3 . . . mn.

Share Generation. Let m = m1m2 . . . mt, then dealer selects a random integer
r in [0, m

p − 1] and calculates s′ = s + rp. Each shareholder’s share is si =
s′ mod mi(i = 1, 2, . . . , n), where mi is the public identity of shareholder Ui.

Secret Reconstruction. If h(h ≥ t) shareholders try to recover the secret, the
following system of congruence equations can be obtained:

⎧
⎪⎪⎨

⎪⎪⎩

s′ = s1 mod m1

s′ = s2 mod m2

· · ·
s′ = sh mod mh

.

According to the Chinese Remainder Theorem, because of m1m2 . . . mh ≥ m,
the system has a unique solution s′ and the secret s = s′ mod p.

122 X. Wang and F. Miao

2.2 Harn (t, n) Secure Secret Reconstruction Scheme

In order to prevent the participant who does not own a valid share from recover-
ing the secret, Harn proposed a (t, n) secure secret reconstruction scheme. Share-
holders need to compute a linear combination of multiple shares as Lagrange
component. Then on the basis of this scheme, Harn also modified it to a secure
multi-secret sharing scheme with h shares. The following is a detailed description
of Harn (t, n) secure multi-secret sharing scheme with h shares.

Share Generation. To reconstruct h secrets si(i = 1, 2, . . . , h) for n sharehold-
ers, dealer selects k random polynomials fl(x)(l = 1, 2, . . . , k) of degree t − 1,
where kt > h(n + 1) − 2 and k > (h − 1)(n − t + 2). Dealer sends k shares
fl(xr) to each shareholder Ur secretly, where xr is the public identity of Ur.
Then dealer finds public integers wl, di,l in GF (p) for each secret si, such

that: si =
k∑

i=1

di,lfl(wl)(l = 1, 2, . . . , k), where wi �= wj , wi /∈ {x1, x2, . . . xn}.

Secret Reconstruction. If h(h ≥ t) shareholders try to reconstruct the secret
si, each participant Ur computes

cr =
k∑

i=1

di,lfl(xr)
h∏

v=1,v �=r

wl − xv

xr − xv
mod p

and sends it to other participants. Then the secret si =
h∑

r=1
cr mod p.

Vulnerable to Linear Subspace Attack. Linear subspace attack is an
algebraic-based analysis for linear released components. If the released com-
ponents are modelled as a linear system with a structured matrix, adversary
can use the rank property to mount attacks through rank analysis.
The main drawback in Harn scheme is that it is not sufficient only to hide
the polynomials’ coefficients for information protection. Since the Lagrange
components are generated by the linear combination of the shares, all released
components are in a linear subspace of dimension of t + k − 1. Consequently,
a non-shareholder is able to forge a new component after collecting up to
t + k − 1 components by using linear subspace attack.

2.3 Miao Randomized Component Based (t, n) SSR Scheme

Miao proposed an improved randomized component based SSR scheme to break
the linear relationship among components. Suppose that there are n shareholders
U = {U1, U2, . . . , Un} and each shareholder Ui has a public identity xi.

Share Generation. Dealer selects two large primes p, q satisfying p > q + nq2.
He also selects a polynomial over Fp: f(x) = a0 + a1x + . . . at−1x

t−1 mod p,
where a0 ∈ Fq, ai ∈ Fp, i = 1, 2, . . . t − 1, at−1 �= 0. The secret s = a0. Then
dealer sends the share si = f(xi) mod p to each shareholder Ui secretly.

RC Based SSR 123

Randomized Component Computation. If h(h ≥ t) shareholders try to
recover the secret, each participant Pi randomly selects ri∈RFq and constructs
the randomized components:

RCi = (f(xi)
m∏

v=1,v �=i

−xv

xi − xv
+ riq) mod p.

Secret Reconstruction. Then each participant releases RCi(1 ≤ i ≤ h) and

the secret can be recovered by s = (
h∑

i=1

RCi mod p) mod q.

Vulnerable to Lattice Attack. Lattice attack is used to analyze a series of
adding short vectors linear components such as {f1 + v1, f2 + v2, . . . , fn +
vn}, where f1, f2, . . . fn are linear related and v1, v2, . . . vn are short vectors
added to fi(i = 1, 2, . . . n). The adversary can find these short vectors by
constructing lattice base and using LLL reduction algorithm.
In Miao scheme, RCi can be regarded as the encryption of f(xi) with ri

as the encryption key. Since f(xi) is uniformly distributed over Fp and ri

is uniformly distributed over Fq, q < p, then |K| < |M |. From the view
of perfect secrecy, ri cannot protect the secrecy of f(xi). When adversary
collects multiple randomized components, he constructs lattice base and each
ri consisting short vectors can be found by LLL reduction algorithm. Then
the adversary obtains share f(xi) from RCi and recover the secret.

In order to specifically show the relationship among these related work in
Sect. 2, we summarize them in Fig. 2.

Fig. 2. Summary of related work.

3 Scheme Model and Security Goals

This section presents the model and security goals of our secure secret recon-
struction schemes in insecure networks.

124 X. Wang and F. Miao

3.1 Scheme Model

Our proposed secure secret reconstruction schemes adopt the same model as
Harn [9], which includes three types of entities: dealer, shareholder and adversary.

Dealer: Dealer is trusted by all shareholders. He sets up parameters and dis-
tributes shares to shareholders.

Shareholder: A shareholder receives valid share from the dealer. Then he uses
share to generate the component and sends it to other shareholders through
secure channel. Only t or more than t shareholders can recover the secret,
while less than t shareholders cannot get any information about the secret.

Adversary: In our scheme, adversary is divided into two types:
– Inside adversary: Less than threshold t legal shareholders use their

shares and conspire to recover the secret.
– Outside adversary: A participant who does not own a valid share par-

ticipates in secret reconstruction and tries to recover the secret or forge
a legal share by collecting components from honest shareholders.

The two models of adversary are shown in Fig. 3.

Fig. 3. Model of adversary.

3.2 Security Goals

Generally, in order to achieve the security of secure secret sharing scheme, we
need to ensure that only t or more than t honest shareholders can recover the
secret. In insecure networks, shareholders cannot identify other participants and
the components sent among shareholders may be captured by outside adversary.
As a result, we need to thwart both the inside shareholder conspiracy attack and
the outside adversary attack. The security goals of our model are as follows:

– Resist attack from inside adversary: Only t or more than t shareholders
can recover the secret, while less than t shareholders cannot.

– Resist attack from outside adversary: If a participant who does not own
a valid share collects components from other honest participants, he cannot
recover the secret. Even using linear subspace attack and lattice attack, he
cannot get any information about the share and secret.

RC Based SSR 125

4 Basic Proposed SSR Scheme

4.1 Scheme

First, we propose a (t, n) randomized component based secure secret reconstruc-
tion scheme in insecure networks, which is an improvement of Miao scheme [19].
Different from Miao scheme, the random element in our scheme can cover up
the information of share and resist lattice attack. Furthermore, this scheme is
perfect and ideal.

The scheme is divided into three parts, including initialization, share gener-
ation and secret reconstruction.

Initialization: Assume that there are n shareholders U = {U1, U2, ..., Un} and
a trusted dealer.

Step 1: Dealer randomly chooses a large prime p and threshold t publicly. The
secret s(x) is a polynomial of degree d − 1 over Fp.

Step 2: Dealer selects m0(x) and n public monic and irreducible polynomials of
degree d over Fp as each shareholder’s identity: mi(x)(i = 1, 2, . . . , n).

Share Generation: In order to distribute shares for shareholders to recover
the secret s(x):

Step 1: Dealer constructs polynomials F (x) = s(x) + k(x) · m0(x), where k(x)
is a random polynomial over Fp and deg(k(x)) = (t − 1)d − 1.

Step 2: Dealer computes and distributes the share si(x) = F (x) mod mi(x) for
each shareholder Ui.

Secret Reconstruction: Suppose that there are h(h ≥ t) shareholders trying
to recover the secret.

Step 1: Before secret reconstruction, each participant Pi(1 ≤ i ≤ h) randomly
selects a polynomial ri(x), which is uniformly distributed over Fp and
satisfies d − 1 ≤ deg(ri(x)) ≤ (h − 1)d − 1.

Step 2: Randomized component RCi is computed by each participant as

RCi(x) = (si(x) · ci(x) + ri(x) · m0(x)) mod M(x),

where ci(x) = Mi(x)M ′
i(x), Mi(x) = M(x)

mi(x)
, M(x) =

h∏
i=1

mi(x) and

Mi(x)M ′
i(x) = 1 mod mi(x).

Step 3: Each participant Pi sends RCi(x) to other h − 1 participants through
secure channel. After receiving h − 1 components, the secret can be

computed by s(x) = (
h∑

i=1

RCi(x) mod M(x)) mod m0(x).

4.2 Correctness Analysis

Suppose that there are h(h ≥ t) shareholders trying to recover the secret.

Lemma 1. The sum of all the adding random polynomials equals to 0, in other

words,
h∑

i=1

ri(x) · m0(x) mod M(x) mod m0(x) = 0.

126 X. Wang and F. Miao

Proof. Since deg(ri(x)) ≤ (h − 1)d − 1, M(x) =
h∏

i=1

mi(x) and deg(mi(x)) = d,

for i = 0, 1, . . . , n, then we have deg(ri(x) · m0(x)) ≤ hd − 1 < deg(M(x)).

Therefore,
h∑

i=1

ri(x) · m0(x) mod M(x) mod m0(x) = 0.

Theorem 1. The secret s(x) can be recovered by h(h ≥ t) shareholders.

Proof. On account of Lemma 1, we have:

h∑

i=1

RCi(x) mod M(x) mod m0(x)

= (
h∑

i=1

si(x) · ci(x) +
h∑

i=1

ri(x) · m0(x)) mod M(x) mod m0(x)

=
h∑

i=1

(si(x) · ci(x)) mod M(x) mod m0(x) (1a)

= F (x) mod m0(x) = s(x). (1b)

Since si(x) = F (x) mod mi(x) and ci(x) = Mi(x)M ′
i(x), step (1a) is equiva-

lent to step (1b) on the basis of Chinese Remainder Theorem. Therefore, h(h ≥ t)

shareholders can recover the secret by s(x) =
h∑

i=1

RCi(x) mod M(x) mod m0(x).

4.3 Security Analysis

Lemma 2. The distributed share si(x) is uniformly distributed over Fp.

Proof. A map σ from Fp[x] to its quotient ring Fp[x]/〈mi(x)〉 can be constructed:

σ : Fp[x] → Fp[x]/〈mi(x)〉, F (x)
→ si(x) ≡ F (x) mod mi(x). (2)

Then given F (x), G(x) ∈ Fp[x], the above Eq. (2) satisfies:

σ(F (x) + G(x)) = (F (x) + G(x)) mod mi(x)
= (F (x) mod mi(x)) + (G(x) mod mi(x))
=σ(F (x)) + σ(G(x)).

Therefore, σ is a group homomorphism. For any si(x) ∈ Fp[x]/〈mi(x)〉, there
exists F (x) ∈ Fp[x] such that σ(F (x)) = si(x). Thus, σ is an epimorphism. As
a result, if F (x) is uniformly distributed over Fp, then the distributed share
si(x) = F (x) mod mi(x) is also uniformly distributed over Fp.

Theorem 2. The proposed scheme can resist attack from inside adversary. In
detail, the secret s(x) cannot be recovered by less than t legal shareholders.

RC Based SSR 127

Proof. We consider the worst case of t − 1 shareholders with valid shares trying
to recover the secret illegally. Any t − 1 inside adversaries can generate t − 1
congruence equations based on modular of d degree, which can only recover a
unique polynomial F ′(x) of degree not higher than d(t − 1) − 1. They need to
use this polynomial F ′(x) to recover the secret s(x) = F (x) mod m0(x).

However, F ′(x) satisfies F ′(x) = F (x) mod
t−1∏
i=1

mi(x). They have F (x) =

F ′(x) + k(x) ·
t−1∏
i=1

mi(x), where deg(k(x)) = d − 1. From the view of infor-

mation entropy, let H(s) represents the information entropy of the secret and
H(s|{s1, s2, . . . , st−1} represents the information entropy of knowing t−1 share-
holders’ shares to recover the secret. Since both k(x) and s(x) are polynomials
of degree d − 1 over Fp, then H(s) = H(s|{s1, s2, . . . , st−1}) = dlog2p. Thus,
t − 1 inside adversaries cannot get any information about the secret.

Lemma 3. Given a randomized component RCi(x), it is impossible to derive
the share si(x).

Proof. The randomized component RCi(x) = si(x) · ci(x) + ri(x) · m0(x), where
ri(x) is randomly selected over Fp by shareholder. According to Lemma 2, si(x) is
uniformly distributed over Fp and deg(si(x)) = d−1, the probability of inferring
si(x) directly is dp. Then since deg(ri(x)) ≥ d − 1, the probability of deriving
si(x) from RCi by inferring ri(x) at least equals to dp. Thus, given a randomized
component RCi(x), it is impossible to derive the share si(x).

Theorem 3. The proposed scheme can resist attack from outside adversary. In
detail, when h(h ≥ t) participants try to recover the secret, a participant who
does not own a valid share cannot get any information about secret and share by
collecting h − 1 randomized components from other honest participants.

Proof. Suppose adversary is the hth participant who releases his component last,
he can collect h − 1 randomized components from other participants.

1. First, we prove the outside adversary cannot get any information about the

secret. The secret s(x) = (
h−1∑
i=1

RCi(x) + RCh(x)) mod M(x) mod m0(x),

where RCh(x) = sh(x) · ch(x) + rh(x) · m0(x). If the outside adversary
wants to compute RCh(x), he needs to know the share sh(x). Both s(x) and
sh(x) are unknown polynomials of d − 1 degree over Fp in x. From the view
of information entropy, let H(s) represents the information entropy of the
secret and H(s|{RC1, RC2, . . . RCh−1}) represents the information entropy
of knowing h− 1 shareholders’ randomized components to recover the secret.
H(s) = H(s|{RC1, RC2, . . . RCh−1}) = dlog2p, then outside adversary can-
not get any information about the secret by collecting h − 1 randomized
components from other honest participants.

2. Next, we prove the outside adversary cannot get any information about the
share. On account of Lemma 3, it is impossible for outside adversary to derive

128 X. Wang and F. Miao

the original share si from the randomized component RCi.
Then we discuss whether the outside adversary can obtain the share through
linear subspace attack and lattice attack. Since ri(x) is randomly selected and
separated from F (x), adversary cannot find any relationship among random-
ized components by linear subspace cryptanalysis. In randomized component
RCi(x), ri(x) can be regarded as the key K to protect the message si(x). The
degree of ri(x) is at least d−1, which satisfies deg(ri(x)) ≥ deg(si(x)) = d−1
and guarantee |K| ≥ |M |. Our scheme satisfies perfect secrecy and can resist
both linear subspace attack and lattice attack.

5 Improved Bivariate Polynomial Based SSR Scheme

5.1 Scheme

This scheme is an improved randomized component based secure secret recon-
struction scheme using bivariate polynomial, which can generate both the share
and the randomized component. Furthermore, we don’t need to establish the
secure channel for each pairwise shareholders in advance. Each shareholder owns
two shares, where the additional share is used for secure channel key generation.

The second scheme is divided into six parts, including initialization, share
generation, calculation of pairwise key, establishment of secure channel, calcula-
tion of randomized component and secret reconstruction.

Here we use degx(F (x, y)) to represent the degree of bivariate polynomial
F (x, y) in x and use degy(F (x, y)) to represent the degree of F (x, y) in y.

Initialization: Assume that there are n shareholders U = {U1, U2, ..., Un} and
a trusted dealer.

Step 1: Dealer randomly chooses a large prime p, a integer d, the threshold t
and makes them public.

Step 2: Dealer selects ai,j ∈ Zp(1 ≤ i, j ≤ dt − 1) and construct a matrix A as:

A =

⎡

⎢⎢⎢⎣

a0,0 a0,1 . . . a0,dt−1

a1,0 a1,1 . . . a1,dt−1

...
...

. . .
...

adt−1,0 adt−1,1 . . . adt−1,dt−1

⎤

⎥⎥⎥⎦ .

Then the bivariate polynomial F (x, y) with degree dt − 1 can be con-
structed as: F (x, y) =

[
x0 x1 . . . xdt−1

] · A · [
y0 y1 . . . ydt−1

]T mod p.
Step 3: Dealer chooses public polynomials m0(x) and m0(y) of degree d over Fp

and public non-linear mapping s1-box and s2-box: Fp → Fp. The secret

s(x, y) = F (x, y) mod m0(x) mod m0(y).

Share Generation:
Step 1: Shareholders pick coprime polynomials mi(x)(1 ≤ i ≤ n) of degree d

over Fp as their public identity.

RC Based SSR 129

Step 2: Dealer computes and distributes two shares si,1(x, y) = F (x, y) mod
mi(x) and si,2(x, y) = F (x, y) mod mi(y) for each shareholder Ui(1 ≤
i ≤ n) secretly. mi(y) is the polynomial which uses variable y to replace
the variable x in mi(x).

Calculation of Pairwise Key: We use function sgn to describe the relationship
of shareholder’s identity.

sgn(mi(x) − mj(x)) =
{

1; if mi(x) > mj(x)
−1; if mi(x) < mj(x) .

Shareholder Ui computes the pairwise key ki,j(x, y) with Uj as follows:

ki,j(x, y) =
{

si,1(x, y) mod mj(y); if sgn(mi(x) − mj(x)) = 1
si,2(x, y) mod mj(x); if sgn(mi(x) − mj(x)) = −1 . (3)

We describe ki,j(x, y) as: ki,j(x, y) =
[
x0 x1 . . . xd−1

] ·E · [y0 y1 . . . yd−1
]T

,
where E is the coefficient matrix of ki,j(x, y):

E =

⎡

⎢⎢⎢⎣

e0,0 e0,1 . . . e0,d−1

e1,0 e1,1 . . . e1,d−1

...
...

. . .
...

ed−1,0 ed−1,1 . . . ed−1,d−1

⎤

⎥⎥⎥⎦ .

Establishment of Secure Channel: Before secret reconstruction, each pair
of participants establish secure channels with each other.

Step 1: To generate the secure channel key with participant Pj , participant Pi

calculates k′
i,j =

d−1∑
i=0,j=0

ei,j mod p, where ei,j(0 ≤ i, j ≤ d − 1) are

parameters of coefficient matrix E in ki,j(x, y).
Step 2: Participant Pi inputs k′

i,j into s1-box and generates the pairwise secure
channel key s1(k′

i,j) with Pj .
Calculation of Randomized Component: Assume that there are h(h ≥ t)

shareholders trying to recover the secret.
Step 1: First, participant Pi(1 ≤ i ≤ h) computes a new share for secret recon-

struction si(x, y) = si,1(x, y) mod m0(y) and generates the component

gi(x, y) = si(x, y)Mi(x)M ′
i(x), where M(x) =

h∏
i=1

mi(x), Mi(x) = M(x)
mi(x)

and Mi(x)M ′
i(x) = 1 mod mi(x).

Step 2: Participant Pi transforms each coefficient in Eq. (3) through s2-box to
gets s2(ki,j(x, y). Then he generates

ki(x, y) =
h∑

j=1,j �=i

(sgn(mi(x) − mj(x)) · s2(ki,j(x, y))).

Step 3: Each randomized component RCi(x, y) = gi(x, y)+ki(x, y) is calculated
and sent to other participants through previously established secure
channel.

130 X. Wang and F. Miao

Secret Reconstruction: After receiving h − 1 randomized components from

other participants, the secret s(x, y) =
h∑

i=1

RCi(x, y) mod M(x) mod m0(x).

5.2 Correctness Analysis

Suppose that there are h(h ≥ t) shareholders trying to recover the secret.

Lemma 4. Each pair of shareholders can generate the same pairwise key.
Specifically, shareholder Ui and Uj can generate ki,j(x, y) = kj,i(x, y).

Proof. Assume that mi(x) > mj(x), then sgn(mi(x) − mj(x)) = 1. We have

ki,j(x, y) = F (x, y) mod mi(x) mod mj(y); (4)

kj,i(x, y) = F (x, y) mod mj(x) mod mi(y), (5)

where mi(x), mj(x) are polynomials only in x and mi(y), mj(y) are polynomials
only in y. Since the order of modular operation of polynomials based on different
variables does not affect the result of computation, Eq. (4) equals to Eq. (5). For
any pairwise shareholders Ui and Uj , we have ki,j(x, y) = kj,i(x, y). Therefore,
each pair of shareholders can generate the same pairwise key.

Lemma 5. The sum of adding random polynomials equals to 0, in other words,
h∑

i=1

ki(x, y) = 0.

Proof. According to Lemma 4, for any pairwise shareholders Ui and Uj , we have
ki,j(x, y) = kj,i(x, y) and s2(ki,j(x, y)) = s2(kj,i(x, y)). Thus,

sgn(mi(x) − mj(x)) · s2 (ki,j(x, y)) + sgn(mj(x) − mi(x)) · s2 (kj,i(x, y))
= (sgn(mi(x) − mj(x)) + sgn(mj(x) − mi(x))) · s2 (ki,j(x, y)) (6a)
= 0, (6b)

where step (6a) equals to step (6b) due to for any pairwise shareholders Ui and
Uj : sgn(mi(x) − mj(x)) + sgn(mj(x) − mi(x)) = 1 + (−1) = 0.

For any pairwise shareholders Ui and Uj , there is:

h∑

i=1

ki(x, y) =
h∑

i=1

h∑

j=1,j �=i

(sgn(mi(x) − mj(x)) · s2(ki,j(x, y))) = 0.

Therefore, the sum of adding random polynomials equals to 0.

Theorem 4. The secret s(x, y) can be recovered by h(h ≥ t) shareholders.

RC Based SSR 131

Proof. According to Lemma 5, we have

h∑

i=1

RCi(x, y) mod M(x) mod m0(x)

= (
h∑

i=1

gi(x, y) +
h∑

i=1

ki(x, y)) mod M(x) mod m0(x)

=
h∑

i=1

gi(x, y) mod M(x) mod m0(x)

=
h∑

i=1

si(x, y)Mi(x)M ′
i(x) mod M(x) mod m0(x) (7a)

= F (x, y) mod m0(x) mod m0(y) = s(x, y). (7b)

Since si(x, y) = F (x, y) mod mi(x) mod m0(y), step (7a) is equivalent to
step (7b) on the basis of Chinese Remainder Theorem. Therefore, h(h ≥ t) share-

holders can recover the secret by s(x) =
h∑

i=1

RCi(x, y) mod M(x) mod m0(x).

5.3 Security Analysis

Lemma 6. The distributed shares si,1(x), si,2(x) and share for secret recon-
struction si(x) are uniformly distributed over Fp.

Proof. Since for any bivariate polynomial F (x, y) ∈ Fp[x, y], there exists unique
si,1(x, y) ∈ Fp[x, y]/〈mi(x)〉 such that si,1(x, y) ≡ f(x, y) mod mi(x). A map σ
from Fp[x, y] to its quotient ring Fp[x, y]/〈mi(x)〉 can be constructed as follows:

σ : Fp[x, y] → Fp[x, y]/〈mi(x)〉
F (x, y)
→ si,1(x, y) ≡ F (x, y) mod mi(x).

(8)

Given F (x, y), G(x, y) ∈ Fp[x, y], Eq. (8) satisfies

σ(F (x, y) + G(x, y)) = (F (x, y) + G(x, y)) mod mi(x)
= (F (x, y) mod mi(x)) + (G(x, y) mod mi(x))
=σ(F (x, y)) + σ(G(x, y)).

Thus, σ is a group homomorphism. For any si,1(x, y) ∈ Fp[x, y]/〈mi(x)〉, there
exists F (x, y) ∈ Fp[x, y] such that σ(F (x, y)) = si,1(x, y). σ is an epimor-
phism. As a result, if F (x, y) is uniformly distributed over Fp, then si,1(x, y) =
F (x, y) mod mi(x) is also uniformly distributed over Fp. Similarly, we also have
si,2(x, y) = F (x, y) mod mi(y) and si(x, y) = si,1(x, y) mod m0(y) uniformly
distributed over Fp.

Theorem 5. The proposed scheme can resist attack from inside adversary. In
detail, the secret s(x, y) cannot be recovered by less than t legal shareholders.

132 X. Wang and F. Miao

Proof. We consider the worst case of t−1 shareholders trying to recover the secret
illegally. Any t − 1 inside adversaries can generate t − 1 congruence equations
based on modular of d degree in x, which can only recover a unique bivariate
polynomial F ′(x, y) with degx(F ′(x, y)) ≥ d(t − 1) − 1. We use θ(x, y) to rep-
resent F (x, y) mod m0(y) and ω(x, y) to represent F ′(x, y) mod m0(y). Inside
adversaries need to use ω(x, y) to recover the secret s(x, y) = θ(x, y) mod m0(x).

However, ω(x, y) satisfies ω(x, y) = θ(x, y) mod
t−1∏
i=1

mi(x). Then they have

θ(x, y) = ω(x, y) + k(x, y) ·
t−1∏
i=1

mi(x), where degx(k(x, y)) = degy(k(x, y)) =

d − 1. From the view of information entropy, let H(s) represents the infor-
mation entropy of the secret and H(s|{s1, s2, . . . , st−1} represents the informa-
tion entropy of knowing t − 1 shareholders’ shares to recover the secret. Since
degx(k(x, y)) = degx(s(x, y)) = d − 1 and degy(k(x, y)) = degy(s(x, y)) = d − 1,
then H(s) = H(s|{s1, s2, . . . , st−1}) = dlog22p. Thus, t − 1 inside adversaries
cannot get any information about the secret.

Lemma 7. Given a randomized component RCi(x, y), it is impossible to derive
the share si(x, y).

Proof. The randomized component RCi(x, y) = gi(x, y) + ki(x, y), where
gi(x, y) = si(x, y)Mi(x)M ′

i(x) and ki(x, y) is generated by s2-box transmission.
s2-box breaks the linear relationship between si(x, y) and ki(x, y) and makes the
transformed bivariate polynomial ki(x, y) distributed uniformly over Fp.

On account of Lemma 6, the share si(x, y) is uniformly distributed over Fp

and degx(si(x, y)) = degy(si(x, y)) = d − 1, the probability of inferring si(x, y)
is d2p. Since degx(ki(x, y)) = degy(ki(x, y)) = d − 1, the probability of deriving
si(x, y) from RCi(x, y) by inferring ki(x, y) also equals to d2p. Thus, given a
randomized component RCi(x, y), it is impossible to derive the share si(x, y).

Theorem 6. The proposed scheme can resist attack from outside adversary. In
detail, when h(h ≥ t) participants try to recover the secret, a participant who
does not own a valid share cannot get any information about secret and share by
collecting h − 1 randomized components from other honest participants.

Proof. Suppose that the adversary is the hth participant who releases his com-
ponent last, he can collect h−1 randomized component from other participants.

1. First, we prove the outside adversary cannot get any information about the
secret. After collecting h − 1 randomized components, the secret s(x, y) =

(
h−1∑
i=1

RCi(x, y) + RCh(x, y)) mod M(x) mod m0(x), where degx(s(x, y)) =

degy(s(x, y)) = d − 1. However, each participant uses ki(x, y) to cover up the
original component and RCh(x, y) = gh(x, y) + kh(x, y), where RCh(x, y) is
generated by sh,1(x, y) and sh,2(x, y). If the outside adversary want to recover
the secret, he has to use these two shares to calculate RCh(x, y) and eliminate
other participants’ disrupted information added. The shares are generated by

RC Based SSR 133

sh,1(x, y) = F (x, y) mod mh(x) and sh,2(x, y) = F (x, y) mod mh(y), where
both the degree of shares in x and y at least equals to the secret s(x, y).
From the view of information entropy, let H(s) represents the information
entropy of the secret and H(s|{RC1, RC2, . . . RCh−1}) represents the informa-
tion entropy of knowing h−1 shareholders’ randomized components to recover
the secret, then there is H(s) = H(s|{RC1, RC2, . . . RCh−1}) = dlog22p. As a
result, the adversary cannot get any information about the secret by collecting
h − 1 randomized components.

2. Next, we prove the outside adversary cannot get any information about the
share. On account of Lemma 7, it is impossible for outside adversary to derive
the original share si(x, y) from the randomized component RCi(x, y).
Then we discuss whether the outside adversary can obtain the share through
linear subspace attack and lattice attack. s-boxes are used to disrupt the
linear relationship among randomized components. In randomized component
RCi(x, y), ki(x, y) can be regarded as the key K to protect the message
si(x, y). Both ki(x, y) and si(x, y) are polynomials of degree d − 1 in x and y
over Fp, which can guarantee |K| = |M |. Our scheme satisfies perfect secrecy
and can resist linear subspace attack and lattice attack.

Theorem 7. Our proposed scheme can resist passive attack with each pair of
shareholders generating the same secure channel key.

Proof. On account of Lemma 4, for any pairwise shareholders Ui and Uj with

mi(x) > mj(x), we have ki,j(x, y) = kj,i(x, y). Since k′
i,j =

d−1∑
i=0,j=0

ei,j mod p,

where ei,j(0 ≤ i, j ≤ d − 1) are parameters of coefficient matrix E in k′
i,j(x, y),

then k′
i,j = k′

j,i and s1(k′
j,i) = s1(k′

i,j). As a result, each pair of shareholders can
generate the same secure channel key.

If a passive adversary want to compute the key s1(k′
j,i), he needs to know

at least one of the shares si,1(x, y). Since degx(si,1(x, y)) = degx(s(x, y)) and
degy(si,1(x, y)) > degy(s(x, y)), the probability of guessing key is larger than
guessing the secret. Our proposed scheme can resist passive attack.

6 Properties and Comparisons

We analyze the properties of our schemes in three aspects: active attack, pas-
sive attack and information rate. The active attack can be divided into inside
adversary attack and outside adversary attack these two parts. Linear subspace
attack and lattice attack are two attack strategies of outside adversary.

6.1 Properties

Our first secure secret reconstruction scheme can resist both the inside and out-
side adversary attack in insecure networks. The random element ri(x) added
in the component can prevent the outside adversary from obtaining the secret

134 X. Wang and F. Miao

and share by collecting randomized components from other honest participants.
Since ri(x) is randomly selected, there is no linear relationship among random-
ized components. As a result, our first scheme can resist linear subspace attack.
In addition, the degree of ri(x) at least equals to the share, which can guar-
antee perfect secrecy and prevent lattice attack. This scheme is based on the
assumption that the secure channel is well established to resist passive attack.

The second secure secret reconstruction scheme uses bivariate polynomial,
which can generate both the share and randomized component. This scheme can
also prevent the inside and outside adversary from recovering secret illegally. Par-
ticularly, it establishes the secure channel for each pairwise shareholders before
secret reconstruction and can resist passive attack in insecure networks. Each
shareholder owns two shares, where the additional share is used for pairwise
key and randomized component generation. s-boxes are used to disrupt the lin-
ear relationship and resist linear subspace attack. Then, because both share for
secret reconstruction and random element are bivariate polynomials with the
same degree in x and y, this scheme can protect the share in perfect secrecy and
resist lattice attack.

Next, we analyze our schemes’ information rate according to Definition 4 and
show their properties in Table 1.

Table 1. Properties of our schemes.

Scheme Secret size Number of share Each share size Information rate

Scheme 1 pd 1 pd 1

Scheme 2 pd
2

2 pd
2t 1

t

In the first scheme, both the secret and share are polynomials with degree
d − 1 over Fp. The information rate of our first scheme can be computed as:

ρ =
log2|s|

maxsi∈S(log2|si|) =
log2pd

log2pd
= 1.

In the second scheme, the secret is a bivariate polynomial with degree d−1 in
both x and y over Fp. Each shareholder owns two shares, where degx(si,1(x, y)) =
degy(si,2(x, y)) = d − 1 and degy(si,1(x, y)) = degx(si,2(x, y)) = dt − 1. The
information rate of our second scheme can be computed as:

ρ =
log2|s|

maxsi∈S(log2|si|) =
log2pd2

log2pd2t
=

1
t
.

The information rate of our first scheme is 1, while the second scheme is 1
t .

Thus, our first scheme is perfect and ideal. The lower information rate in the sec-
ond scheme is the price of establishing secure channel and generating randomized
component effectively by distributing more information to each shareholder.

RC Based SSR 135

6.2 Comparisons

We compare our schemes with other secure secret reconstruction schemes [9,11,
17–19] and the result is shown in Table 2.

Since information rate is the size ratio of secret to share, which can denote
the efficiency of a shareholder sharing a secret, we mainly use information rate
to describe the scheme performance bellow. For a secure secret sharing scheme,
the information rate is generally not more than 1. The higher information rate
is, the more efficiently the scheme works.

Table 2. Comparison of different SSR schemes.

Scheme Resist IAAa Resist LSAb Resist LAc Secure channel Information rate

Harn [9] � × � × 1

Harn [11] � × � � 1
t

Meng [17] � � � × (
1
6
, 1
4

)

Meng [18] � × � × 1
t

Miao [19] � � × × (
1
3
, 1
2

)

Our scheme 1 � � � × 1

Our scheme 2 � � � � 1
t

aIAA is inside adversary attack.
bLSA is linear subspace attack.
cLA is lattice attack.

From the table, we know that scheme [17,19] and our schemes can resist linear
subspace attack, but scheme [19] is vulnerable to lattice attack. Only scheme [11]
and our scheme 2 don’t need to establish secure channel in advance and can resist
passive attack in insecure networks. The information rate of scheme [9] and our
first scheme is 1. Although the information rate of our second scheme is 1

t , it
can resist all attacks we analyzed in insecure networks.

7 Conclusion

In this paper, we first point two common attacks: active and passive attack on
secret sharing in insecure networks. Then we introduce secure secret reconstruc-
tion scheme, which can prevent the participant who does not own a valid share
from obtaining the secret and share by collecting other participants’ components.
We also analyze the possible attacks on Harn and Miao proposed SSR scheme.
Using linear subspace cryptanalysis, adversary can obtain the secret by analyz-
ing the relationship among sending components. Due to the adding randomized
integer cannot protect the share in an information theoretically secure manner,
Miao scheme is vulnerable to lattice attack.

In order to solve these problems, we describe the model and security goals
of our secure secret reconstruction scheme in insecure networks. Based on the
same idea of randomized component in Miao scheme, we propose two novel secure

136 X. Wang and F. Miao

secret reconstruction schemes. The first scheme is based on Chinese Remainder
Theorem for polynomial. The adding random element in this scheme breaks the
relationship among components and can protect the secrecy of share. Further-
more, this scheme is perfect and ideal. Then we also propose an improved secure
secret reconstruction scheme based on bivariate polynomial. The bivariate poly-
nomial is used for share and randomized component generation. Specifically,
this scheme can resist passive attack and establish the secure channel for each
pairwise shareholders in advance. Each shareholder owns two shares, where the
additional share can generate the secure channel key and randomized compo-
nent. s-boxes disrupt the linear relationship and randomized component can
enable our scheme to satisfy perfect secrecy. Both of our schemes are resistance
to linear subspace attack and lattice attack. The inside and outside adversary
in insecure networks cannot get any information about the secret and share in
our two schemes.

References

1. Ahmadian, Z., Jamshidpour, S.: Linear subspace cryptanalysis of harn’s secret
sharing-based group authentication scheme. IEEE Trans. Inf. Forensics Secur. 13,
1 (2017). https://doi.org/10.1109/TIFS.2017.2757454

2. Ao, J., Liao, G., Ma, C.: A novel non-interactive verifiable secret sharing scheme.
In: 2006 International Conference on Communication Technology. pp. 1–4 (2006).
https://doi.org/10.1109/ICCT.2006.342026

3. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Inf.
Theory 29(2), 208–210 (1983). https://doi.org/10.1109/TIT.1983.1056651

4. Blakley, G.: Safeguarding cryptographic keys (pdf). In: International Workshop on
Managing Requirements Knowledge, p. 313 (1979)

5. Chanu, O.B., Tentu, A.N., Venkaiah, V.C.: Multi-stage multi-secret sharing
schemes based on Chinese remainder theorem. In: ICARCSET 2015 (2015).
https://doi.org/10.1145/2743065.2743082

6. Chen, Z., Li, S., Zhu, Y., Yan, J., Xu, X.: A cheater identifiable multi-secret shar-
ing scheme based on the Chinese remainder theorem. Secur. Commun. Networks
8(18), 3592–3601 (2015). https://doi.org/10.1002/sec.1283, https://onlinelibrary.
wiley.com/doi/abs/10.1002/sec.1283

7. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults. In: 26th Annual Symposium on
Foundations of Computer Science (SFCS 1985), pp. 383–395 (1985). https://doi.
org/10.1109/SFCS.1985.64

8. Ersoy, O., Pedersen, T.B., Kaya, K., Selçuk, A.A., Anarim, E.: A CRT-based verifi-
able secret sharing scheme secure against unbounded adversaries. Secur. Commun.
Networks 9(17), 4416–4427 (2016). https://doi.org/10.1002/sec.1617

9. Harn, L.: Secure secret reconstruction and multi-secret sharing schemes with
unconditional security. Secur. Commun. Networks 7(3), 567–573 (2014). https://
doi.org/10.1002/sec.758

10. Harn, L., Fuyou, M., Chang, C.C.: Verifiable secret sharing based on the Chinese
remainder theorem. Secur. Commun. Networks 7(6), 950–957 (2014). https://doi.
org/10.1002/sec.807

https://doi.org/10.1109/TIFS.2017.2757454
https://doi.org/10.1109/ICCT.2006.342026
https://doi.org/10.1109/TIT.1983.1056651
https://doi.org/10.1145/2743065.2743082
https://doi.org/10.1002/sec.1283
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1283
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1283
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1002/sec.1617
https://doi.org/10.1002/sec.758
https://doi.org/10.1002/sec.758
https://doi.org/10.1002/sec.807
https://doi.org/10.1002/sec.807

RC Based SSR 137

11. Harn, L., Hsu, C.F.: Dynamic threshold secret reconstruction and its application
to the threshold cryptography. Inf. Process. Lett. 115, 851–857 (2015). https://
doi.org/10.1016/j.ipl.2015.06.014

12. Harn, L., Lin, C., Li, Y.: Fair secret reconstruction in (t, n) secret sharing. J. Inf.
Secur. Appl. 23, 1–7 (2015). https://doi.org/10.1016/j.jisa.2015.07.001, https://
www.sciencedirect.com/science/article/pii/S2214212615000344

13. Harn, L., Xia, Z., Hsu, C., Liu, Y.: Secret sharing with secure secret reconstruction.
Inf. Sci. 519, 1–8 (2020). https://doi.org/10.1016/j.ins.2020.01.038, https://www.
sciencedirect.com/science/article/pii/S0020025520300402

14. Hsu, C., Harn, L., Wu, S., Ke, L.: A new efficient and secure secret reconstruction
scheme (SSRS) with verifiable shares based on a symmetric bivariate polynomial.
Mobile Inf. Syst. 2020, 1039898 (2020). https://doi.org/10.1155/2020/1039898

15. Imai, J., Mimura, M., Tanaka, H.: Verifiable secret sharing scheme using hash val-
ues. In: 2018 Sixth International Symposium on Computing and Networking Work-
shops (CANDARW), pp. 405–409 (2018). https://doi.org/10.1109/CANDARW.
2018.00081

16. Jamshidpour, S., Ahmadian, Z.: Security analysis of a dynamic threshold secret
sharing scheme using linear subspace method. Inf. Process. Lett. 163, 105994
(2020). https://doi.org/10.1016/j.ipl.2020.105994

17. Meng, K.: A novel and secure secret sharing algorithm applied to insecure networks.
Wirel. Pers. Commun. 115(2), 1635–1650 (2020). https://doi.org/10.1007/s11277-
020-07647-x

18. Meng, K., Miao, F., Huang, W., Xiong, Y.: Threshold changeable secret sharing
with secure secret reconstruction. Inf. Process. Lett. 157, 105928 (2020). https://
doi.org/10.1016/j.ipl.2020.105928, https://www.sciencedirect.com/science/articl
e/pii/S0020019020300156

19. Miao, F., Xiong, Y., Wang, X., Badawy, M.: Randomized component and its appli-
cation to (t, m, n)-group oriented secret sharing. IEEE Trans. Inf. Forensics Secur.
10(5), 889–899 (2015). https://doi.org/10.1109/TIFS.2014.2384393

20. Ning, Yu., Miao, F., Huang, W., Meng, K., Xiong, Y., Wang, X.: Constructing
ideal secret sharing schemes based on Chinese remainder theorem. In: Peyrin, T.,
Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 310–331. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03332-3 12

21. Pedersen, T.P.: Non-Interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

22. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979). https://
doi.org/10.1145/359168.359176

23. Shannon, C.E.: Communication theory of secrecy systems*. Bell Syst. Tech. J.
28(4), 656–715 (1949). https://doi.org/10.1002/j.1538-7305.1949.tb00928.x

24. Verma, O.P., Jain, N., Pal, S.K.: A hybrid-based verifiable secret sharing scheme
using Chinese remainder theorem. Arabian J. Sci. Eng. 45(4), 2395–2406 (2020).
https://doi.org/10.1007/s13369-019-03992-7

25. Wang, N., Cai, Y., Fu, J., Chen, X.: Information privacy protection based on
verifiable (t, n)-threshold multi-secret sharing scheme. IEEE Access 8, 20799–20804
(2020). https://doi.org/10.1109/ACCESS.2020.2968728

https://doi.org/10.1016/j.ipl.2015.06.014
https://doi.org/10.1016/j.ipl.2015.06.014
https://doi.org/10.1016/j.jisa.2015.07.001
https://www.sciencedirect.com/science/article/pii/S2214212615000344
https://www.sciencedirect.com/science/article/pii/S2214212615000344
https://doi.org/10.1016/j.ins.2020.01.038
https://www.sciencedirect.com/science/article/pii/S0020025520300402
https://www.sciencedirect.com/science/article/pii/S0020025520300402
https://doi.org/10.1155/2020/1039898
https://doi.org/10.1109/CANDARW.2018.00081
https://doi.org/10.1109/CANDARW.2018.00081
https://doi.org/10.1016/j.ipl.2020.105994
https://doi.org/10.1007/s11277-020-07647-x
https://doi.org/10.1007/s11277-020-07647-x
https://doi.org/10.1016/j.ipl.2020.105928
https://doi.org/10.1016/j.ipl.2020.105928
https://www.sciencedirect.com/science/article/pii/S0020019020300156
https://www.sciencedirect.com/science/article/pii/S0020019020300156
https://doi.org/10.1109/TIFS.2014.2384393
https://doi.org/10.1007/978-3-030-03332-3_12
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1007/s13369-019-03992-7
https://doi.org/10.1109/ACCESS.2020.2968728

138 X. Wang and F. Miao

26. Xia, Z., Yang, Z., Xiong, S., Hsu, C.-F.: Game-Based security proofs for secret
sharing schemes. In: Yang, C.-N., Peng, S.-L., Jain, L.C. (eds.) SICBS 2018. AISC,
vol. 895, pp. 650–660. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
16946-6 53

27. Xiao, M., Xia, Z.: Security analysis of a multi-secret sharing scheme with uncon-
ditional security. In: Wang, G., Chen, B., Li, W., Di Pietro, R., Yan, X., Han,
H. (eds.) SpaCCS 2020. LNCS, vol. 12383, pp. 533–544. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-68884-4 44

https://doi.org/10.1007/978-3-030-16946-6_53
https://doi.org/10.1007/978-3-030-16946-6_53
https://doi.org/10.1007/978-3-030-68884-4_44

Transparency Order
of (n,m)-Functions—Its Further

Characterization and Applications

Yu Zhou1(B), Yongzhuang Wei2, Hailong Zhang3, Luyang Li4, Enes Pasalic5,
and Wenling Wu6

1 Science and Technology on Communication Security Laboratory,
Chengdu 610041, China
zhouyu.zhy@tom.com

2 Guilin University of Electronic Technology, Guilin 541004, China
walker wei@msn.com

3 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
zhanghailong@iie.ac.cn

4 National Engineering Laboratory for Wireless Security, Xi’an University of Post
and Telecommunications, Xi’an 710061, China

luyang li@foxmail.com
5 FAMNIT & IAM, University of Primorska, Koper, Slovenia

6 TCA Laboratory, SKLCS, Institute of Software, Chinese Academy of Sciences,
Beijing 100190, China
wwl@tca.iscas.ac.cn

Abstract. The concept of transparency order is a useful measure for the
robustness of (n, m)-functions (cryptographic S-boxes as mappings from
GF (2)n to GF (2)m) to multi-bit Differential Power Analysis (DPA).
The recently redefined notion of transparency order (RT O), based on
the cross-correlation coefficients, uses a very delicate assumption that
the adversary has a priori knowledge about the so called pre-charged
logic value (a constant register value set by a system) used in DPA-like
attacks. Moreover, quite contradictorily, this constant value is used as
a variable when maximizing RT O. To make the attack scenario more
realistic, the notion of differential transparency order (DT O) is defined
for (n, m)-functions, which can efficiently eliminate the impact posed by
this pre-charged logic value. By considering (4, 4) S-boxes which are com-
monly used in the design of lightweight block ciphers, we deduce in the
simulated scenario that the information leakage using DT O is usually
larger compared to the standard indicator. Towards its practical appli-
cations, we illustrate that the correlation power analysis (CPA) based
on the novel notion of DT O performs better than that uses the classi-
cal notion of RT O. This conclusion is confirmed in two cases, i.e. CPA
against MARVIN and CPA against PRESENT-128.

Keywords: (n, m)-functions · Transparency order · Differential
transparency order · Auto-correlation · Cross-correlation

c© Springer Nature Switzerland AG 2021
J. K. Liu et al. (Eds.): ISC 2021, LNCS 13118, pp. 139–157, 2021.
https://doi.org/10.1007/978-3-030-91356-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91356-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-91356-4_8

140 Y. Zhou et al.

1 Introduction

Differential Power Analysis (DPA) [14,17] is one of the strongest forms of side-
channel attacks. In order to minimize information leakage, the substitution boxes
(S-boxes), the only nonlinear part of block ciphers, should be resistant to higher-
order differential cryptanalysis which is closely related to DPA-like attacks. In
a particular context of linear cryptanalysis and its relation to DPA, in [14] the
authors analyzed the S-boxes of AES and DES in terms of signal-to-noise ratio
(SNR).

In 2005, Prouff [21] introduced a useful characterization of S-boxes in terms
of their robustness to DPA-like attacks and proposed the definition of the
transparency order (T O) based on the auto-correlation coefficients of (n,m)-
functions, where this term stands for a common representation of S-boxes that
map n binary inputs to m binary outputs. The main conclusion is that S-boxes
with smaller T O offer a higher resistance to DPA attacks, and additionally both
a lower bound and an upper bound on T O were deduced in [21].

Even though, the whole approach of defining the resistance to DPA, as given
in [21], was questioned recently in [9] by identifying certain limitations and
inconsistency of the original definition. Accordingly, a revised definition of the
transparency order (RT O), based on the cross-correlation coefficients of (n,m)-
functions (thus not only auto-correlation), was introduced in [9]. This definition
appears to capture better the resistance to DPA attacks in the Hamming weight
model and in particular address better the case when the so-called hardware
implementation with pre-charged logic is used. This redefinition also motivated
several attempts [9] to find small size S-boxes that apart from satisfying other
cryptographic criteria such as high degree, high nonlinearity, good differential
properties also have a good transparency order. And some analysis and construc-
tions of RT O for Boolean function were obtained in [24]. Some transparency
order relationships between one Boolean function and its decomposition func-
tions were obtained in [26].

In practice, the accuracy of the leakage model and the noise level significantly
influence the efficiency of CPA [4,15], which is also confirmed in this work. In
a similar fashion, other forms of side-channel cryptanalysis can be efficiently
applied to encryption algorithms such as an DPA attack performed on the well-
known stream ciphers Grain and Trivium in [12]. The sensitivity of a proper
choice of the indicator of information leakage was further investigated in [11,
13], where Fei et al. introduced the so-called confusion coefficient (CC) as a
useful measure of the robustness of encryption algorithms against side-channel
cryptanalysis. Experimental results related to the DPA attacks mounted on DES
and AES confirmed that this leakage model has a high accuracy and it ensures
a larger success rate compared to classical models.

Nevertheless, it turns out that both definitions of the transparency order,
based either on auto-correlation [21] or cross-correlation coefficients [9], still have
certain shortcomings. For instance, these definitions heavily depend on the so
called pre-charged (constant) logic value β which cannot be efficiently predicted
by an adversary in the Hamming distance model. Moreover, the estimate of both

Transparency Order of (n, m)-Functions 141

essential indicators (absolute and sum-of-square) is performed using maximiza-
tion over β. This basically contradicts the fact that this parameter is considered
to be a constant, namely it is system dependent and commonly corresponds to
the initial register value. For these reasons, we introduce the notion of differen-
tial transparency order (DT O), which is not affected by the pre-charged logic
value β at all and might even better capture the robustness of S-boxes to DPA
attacks. In accordance to this new definition, the information leakage of many
(4, 4) S-boxes used in lightweight block ciphers are determined. Our simulations
indicate that the information leakage of these S-boxes measured through the new
indicator is larger than that of RT O. A theoretical upper and lower bounds on
DT O are also derived.

In particular, it is illustrated that the correlation power analysis (CPA) [4]
attack that uses this novel notion of DT O is more efficient compared to the same
attack than implemented with respect to RT O. This conclusion is experimen-
tally confirmed when applying CPA attack to encryption algorithms MARVIN
and PRESENT since the correlation coefficients of power traces achieve larger
values in the context of DT O than those of RT O.

This article is organized as follows. In Sect. 2, we introduce some relevant
notations and definitions related to Boolean functions and briefly discuss two
different notions of transparency order. A new measure of information leakage,
also including differential aspects of S-boxes and denoted DT O, is proposed in
Sect. 3. In Sect. 4, the affine invariance of DT O is analyzed, and the lower and
upper bounds on DT O are given in Sect. 5. Finally, some concluding remarks
are given in Sect. 6.

2 Preliminaries

We denote by F2 the finite field with two elements: 0,1. Fn
2 is the n-dimensional

vector space over F2. A function F : F
n
2 → F

m
2 is called an (n,m)-function (or

S-box), where n and m are two positive integers. F can be viewed as a collection of
its coordinate Boolean functions, F (x) = (f1(x), . . . , fm(x)), where fi : Fn

2 → F2

is a Boolean function. For shortness, we usually use the notation F = (f1, . . . , fm).
Every Boolean function f ∈ Bn admits a unique representation called the alge-
braic normal form (ANF) which is a multivariate polynomial over F2:

f(x1, . . . , xn) = a0 ⊕
⊕

1≤i≤n

aixi ⊕
⊕

1≤i<j≤n

ai,jxixj ⊕ · · · ⊕ a1,...,nx1x2 · · · xn,

where the coefficients a0, ai, ai,j , · · · , a1,...,n ∈ F2. The algebraic degree, deg(f),
is the largest length of the monomial(s) with non-zero coefficients. A Boolean
function f ∈ Bn is said to be balanced if its truth table contains equal number
of ones and zeros, that is, |{x ∈ F

n
2 : f(x) = 1}| = |{x ∈ F

n
2 : f(x) = 0}| = 2n−1.

An (n,m)-function F is called balanced if every image value in F
m
2 is taken

exactly 2n−m times when the input ranges through F
n
2 .

In this paper, 0n,1n ∈ F
n
2 will denote the all-zero and all-one vectors,

respectively.

142 Y. Zhou et al.

Before giving Definition 1, we need to give the definition of cross-correlation
function. The cross-correlation function between f, g ∈ Bn is defined as

�f,g(α) =
∑

x∈F
n
2

(−1)f(x)⊕g(x⊕α), α ∈ F
n
2 .

In particular, when f = g, then the auto-correlation function of f ∈ Bn is given
by

�f (α) =
∑

x∈F
n
2

(−1)f(x)⊕f(x⊕α), α ∈ F
n
2 .

Two functions f, g ∈ Bn are said to be perfectly uncorrelated if �f,g(α) = 0,
for any α ∈ F

n
2 . The following definition is proved useful in the remainder of this

article.

Definition 1. Let f, g ∈ Bn. f and g are almost perfectly uncorrelated, if
�f,g(α) = 0 for any α ∈ F

n∗
2 , where F

n
2

∗ = F
n
2 \ 0n.

Apparently, when f and g are perfectly uncorrelated it implies that they are
almost perfectly uncorrelated.

In 2005, Prouff [21] gave the original definition of the transparency order in
Definition 2.

Definition 2. [21] Let F = (f1, . . . , fm) be an (n,m)-function. The trans-
parency order (T O) is defined by:

T O(F) = max
β∈F

m
2

{| m − 2wt(β) | − 1
22n − 2n

∑

a∈F
n∗
2

∣∣
m∑

i=1

(−1)βi�fi
(a)

∣∣}. (1)

In 2017, the revised definition was given recently in [9].

Definition 3. [9] Let F = (f1, . . . , fm) be a balanced (n,m)-function. The
redefining transparency order (RT O) of F is defined by:

RT O(F) = max
β∈F

m
2

{m − 1
22n − 2n

∑

a∈F
n∗
2

m∑

j=1

∣∣
m∑

i=1

(−1)βi⊕βj�fi,fj
(a)

∣∣}. (2)

Remark 1. Recently, the notion of modified transparency order (MT O)

was introduced in [18]. To calculate MT O, the term
∑

a∈F
n∗
2

m∑
j=1

∣∣
m∑

i=1

(−1)βi⊕βj

�fi,fj
(a)

∣∣ in (2) is simply replaced by
∑

a∈F
n∗
2

∣∣
m∑

j=1

m∑
i=1

(−1)βi⊕βj�fi,fj
(a)

∣∣. The

authors then claimed that the notion of MT O captures better the multi-bit DPA
in Hamming weight leakage model than RT O. However, our experimental results
(fixing the success rate to be at least 0.8) indicate that there is only a marginal
improvement (in certain cases) in the number of traces needed when performing
multi-bit DPA attack using the MT O measure compared to RT O.

Transparency Order of (n, m)-Functions 143

3 Differential Transparency Order—A Novel DPA
Concept

In this section, we introduce a new measure of the information leakage relevant
to DPA type of cryptanalysis. Notice that both original definitions employ the
Hamming distance model to quantify the possibility of deducing (a portion of)
the secret key K used in the computation of the form F (x ⊕ K̇). In brief, both
approaches are based on the measuring of the number of changed bits (using
the corresponding power traces) in F (x ⊕ K̇) through H(F (x ⊕ K̇) ⊕ β), where
H(·) measures the Hamming weight of a given input. The parameter β is the so-
called precharge logic value specific to a given system (namely the initial register
value), which can be treated as a fixed constant, see [9]. Then, T O and RT O
respectively employ the auto- and cross-correlation properties of F (x ⊕ K̇).

In difference to both these definitions which are very sensitive to the unknown
constant β, using the similar idea of differential attacks [19], the adversary may
consider the differential output of the cryptographic S-box so that G(x ⊕ K̇) =
F (x ⊕ K̇) ⊕ F (x ⊕ γ ⊕ K̇), where (x, x ⊕ γ) is a pair of input plaintext blocks
and γ is a nonzero constant. Moreover,

H(G(x⊕K̇)) = H(F (x⊕K̇)⊕F (x⊕γ⊕K̇)) = H(F (x⊕K̇)⊕β⊕F (x⊕γ⊕K̇)⊕β).

More specifically, the adversary can use the correlation property of H(G(x⊕K̇))
and the value of |H(F (x ⊕ K̇) ⊕ β) − H(F (x ⊕ γ ⊕ K̇) ⊕ β)|, where | · | denotes
the absolute value. This observation has been described and efficiently used in
attack by Oswald et al. [20]. The main problem with the current concept of
transparency order is the fact that RT O is an estimated (maximum) value that
depends on β rather than the exact value which can be computed for a given
constant β that is system dependent.

This is indeed important since H(G(x⊕K̇)) can be efficiently measured by the
adversary and H(G(x⊕K̇)) is actually not directly affected by the parameter β∗

in the Hamming distance model, i.e. it is equivalent to observe H(G(x⊕K̇)⊕β∗),
where the precharge logic value β∗ is set to zero.

This essentially means that F (x) is replaced by G(x) in the definition of RT O
and additionally β∗ = 0m in Eq. (2). To thwart DPA attack in this model, the
leakage information of a given S-box should be small enough for every possible
value γ. This leads us to a yet another revision of the concept of transparency
order which we refer to as differential transparency order (DT O).

3.1 Differential Transparency Order

Definition 4. Let F = (f1, . . . , fm) ∈ F
n
2 be an (n,m)-function. The differential

transparency order (DT O) is defined by:

DT O(F) = max
γ∈F

n∗
2

{m − 1
22n − 2n

∑

a∈F
n∗
2

m∑

j=1

|
m∑

i=1

�Gi,Gj
(a) |}, (3)

where Gi(x) = fi(x) ⊕ fi(x ⊕ γ) for some 0n �= γ ∈ F
n
2 and 1 ≤ i ≤ m.

144 Y. Zhou et al.

Example 1. The S-box of Prince [3] block cipher is given in Table 1. It can be
easily verified that RT O(F) = 2.333, whereas DT O(F) = 2.533 > RT O(F). It
means that the information leakage of this S-box is larger using our new indicator
DT O(F) compared to the leakage evaluated using RT O(F).

Table 1. S-box of Prince

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 11 15 3 2 10 12 9 1 6 7 8 0 14 5 13 4

We further notice that there are eight S-boxes in Lblock cipher having this prop-
erty (similar to S-box in Prince), whereas all S-boxes used in Midori have larger
DT O than RT O. Tables 2 and 3 illustrate that the information leakage based
on DT O is larger than the value of original RT O for most of the (4, 4) S-boxes
(except the S-box in Piccolo) that are practically used as the core component in
lightweight block ciphers.

Table 2. Comparison of RT O(F) with DT O(F) for the first group of (4, 4) S-boxes

S-boxes PRESENT [6] Lblock [25] Piccolo [23] Marvin [16]

RT O(F) 2.467 2.567 2.567 2.667

DT O(F) 3.000 3.133 3.533 4.000

Table 3. Comparison of RT O(F) with DT O(F) for the second group of (4, 4) S-boxes

S-boxes Skinny [5] Pride [1] Midori [2] Gift [7]

RT O(F) 2.567 2.467 2.167 2.200

DT O(F) 3.533 3.067 2.800 3.000

3.2 CPA Efficiency Using RT O and DT O—A Comparison

We now illustrate that under Hamming weight leakage model, the CPA attack
that utilizes the concept of DT O can be more efficient (in terms of the suc-
cess rate) than the same attack that employs the classical RT O measure. For
this purpose we have performed simulations by implementing Marvin [16] and
PRESENT-128 [6] encryption algorithms and applying the CPA attack on their
S-boxes. The correlation coefficients derived using only 16 power traces are cal-
culated using RT O and DT O respectively and the success rate of the attack is
then compared.

Transparency Order of (n, m)-Functions 145

In more detail, our targeted intermediate value v (where the power traces
are taken from) is selected to be the output of S-box of the first round of either
PRESENT-128 or MARVIN algorithm. It is furthermore assumed that differ-
ent bits of v leak the information independently and identically, in which case
the signal part leakages essentially follow the Hamming weight model. In more
detail, the Hamming weight of v is used to denote the power leakage of v. Then,
electronic noise of a crypto device need to be embedded (simulated) which is
assumed to follow the Gaussian distribution. We denote the noise and signal
part contained in the ith power trace by ni and si, respectively. Then, the power
consumption of the ith power trace can be expressed as ti = si + ni.

In our experiments, the signal-to-noise ratio (SNR) is varied to evaluate
the correctness of the theoretical analysis. The SNR is defined as the ratio
between the variance of signal part leakages VARs and the variance of noise part
leakages VARn, i.e., SNR = VARs

VARn
. First, the value of VARs can be computed. For

example, when the target is an implementation of the PRESENT-128 algorithm,
the values of v are randomly chosen as integers in the interval [0,15] which gives
the Hamming weight of v. With the Hamming weight of all possible values of v,
the variance of signal part leakages VARs can be obtained. More specifically, the
Hamming weight of 16 possible values of v can be denoted as HW0, . . . , HW15.
Using these values, the variance of signal part leakages VARs can be calculated

by using equation VARs = 1
16

15∑
i=0

(HWi − 1
16

15∑
j=0

HWi)2. Then, the power traces

obtained form the implemented algorithm can be used to recover a portion of the
secret key, say kc, when the same key is repeatedly used by the targeted device
e times. For this purpose, we employ CPA as the attack method. Averaging the
results when applying the CPA attack e times to a particular target (PRESENT-
128 or MARVIN), the success rate (SR) of CPA can be empirically estimated.
In order to get accurate estimates of SRCPA, the value of e is empirically set to
1, 000.

Fig. 1. Success rate of CPA against MARVIN with the noise level σ2 ∈ {1, 2}

146 Y. Zhou et al.

The simulation results of CPA attack applied to MARVIN and PRESENT-
128 are given in Fig. 1 and Fig. 2, respectively. Notice that only 16 power traces
are used in both cases and the success rate of CPA performed using DT O is sig-
nificantly higher than the same attack that employs the classical RT O concept.
The main reason for this behaviour is that the influence of the difference between
two S-Box inputs is embedded in the leakage model based on DT O which is not
the case when the leakage model that uses RT O is considered. Moreover, the β
value that depicts the maximum success rate of CPA with DT O in Fig. 1 and
Fig. 2 is consistent with the value of γ that maximizes DT O(F), see equation
(3). This further illustrates that the indicator DT O is more accurate parameter
when evaluating the resistance of cryptographic S-boxes against CPA attacks.

Fig. 2. Success rate of CPA against PRESENT-128 with the noise level σ2 ∈ {1, 2}

Remark 2. To achieve the success rate of 0.8 in the case of PRESENT-128,
the multi-bit DPA attack proposed by Li et al. [18] requires at least 30 power
traces when the noise level equals to 1. It is confirmed by simulations that DT O
in general achieves a smaller value than RT O and its practical use is justified
by its employment in the simulated CPA attack on block ciphers PRESENT-128
and MARVIN which performs better than the same attack that uses the RT O
indicator. It means that the CPA with embedded DT O information leakage model
appears to be more efficient than the multi-bit DPA attack.

4 Is DT O Affine Invariance?

Having introduced a new definition, it is important to establish whether DT O is
affine invariant or not. Notice that many cryptographic notions (such as nonlin-
earity, maximum value in the auto-correlation spectrum and algebraic degree)
remain invariant under affine transformation applied to input/output. We show
that DT O is affine invariant when only the input is affected by this trans-
formation, whereas when both the input and output are subjected to affine

Transparency Order of (n, m)-Functions 147

transformation we illustrate (by specifying examples) that the affine invariance
of DT O is not generally true.

For two balanced (n, n)-functions S1 and S2, if there exists a pair of invertible
affine mappings A and B such that B−1 ◦ S1 ◦ A = S2 then S1 and S2 are called
affine equivalent. Each of these affine mappings can be expressed as a linear
transform followed by an addition, which leads to an affine equivalence relation
of the form

S1(x) = B−1 · S2(A · x ⊕ a) ⊕ b, x ∈ F
n
2 ,

with A and B invertible n × n-bit linear mappings, and a and b n-bit constants.
A partial affine invariance (applying affine transformation to the input) of

the DT O criterion is stated in the following theorem.

Theorem 1. Let F = (f1, . . . , fn) ∈ F
n
2 be a balanced (n, n)-function. Then,

for any affine permutation A ∈ An and c ∈ F
n
2 we have DT O(F (A · x ⊕ c)) =

DT O(F (x)).

Proof. For convenience, let hi(x) = fi(A·x⊕c) for 1 ≤ i ≤ n and Li(x) = hi(x)⊕
hi(x ⊕ γ) for some 0n �= γ ∈ F

n
2 (1 ≤ i ≤ n), we will prove DT O(F) = DT O(H)

for H = (h1, . . . , hn).
From Definition 4, let

DT O(H, γ) = n − 1
22n − 2n

∑

a∈F
n∗
2

n∑

j=1

|
n∑

i=1

�Li,Lj
(a) | .

Since A is an affine permutation over F
n
2 ,

DT O(H, γ) = n − 1
22n − 2n

∑

a∈F
n∗
2

n∑

j=1

|
n∑

i=1

∑

x∈F
n
2

(−1)fi(A·x⊕c)⊕fi(A·(x⊕γ)⊕c)

(−1)fj(A·(x⊕a)⊕c)⊕fj(A·((x⊕a)⊕γ)⊕c) |

= n − 1
22n − 2n

∑

a∈F
n∗
2

n∑

j=1

|
n∑

i=1

∑

x∈F
n
2

(−1)fi(A·x⊕c)⊕fi(A·x⊕A·γ⊕c)

(−1)fj(A·x⊕A·a⊕c)⊕fj(A·x⊕A·a⊕A·γ⊕c) |

= n − 1
22n − 2n

∑

a∈F
n∗
2

n∑

j=1

|
n∑

i=1

∑

y=A·x⊕c
x∈F

n
2

(−1)fi(y)⊕fi(y⊕A·γ)

(−1)fj(y⊕A·a)⊕fj(y⊕A·a⊕A·γ) |

= n − 1
22n − 2n

∑

r=A·a
a∈F

n∗
2

n∑

j=1

|
n∑

i=1

�Gi,Gj
(r) |

(where Gi(x) = fi(x) ⊕ fi(x ⊕ A · γ))
= DT O(F,A · γ).

Since γ ∈ F
n∗
2 , DT O(F (A · x ⊕ c)) = DT O(F (x)). �

148 Y. Zhou et al.

Similarly as for RT O [9], we can only prove that DT O of F and F ◦ A are
the same for any affine permutation A ∈ An(c ∈ F

n
2). On the other hand, DT O

of F and B ◦F ◦A are not the same under affine transformation A and B which
is illustrated through the following examples found by computer search:

1. We consider the output values of the (4, 4)-function S-box, denoted by F and
used in LBlock [25], given by F = E9F0D4AB128376C5 (the output values
are given in hexadecimal format for the inputs sorted lexicographically). By
applying the affine transformation so that G = B ◦ F ◦ A where

A =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ B =

⎛

⎜⎜⎝

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠

one can verify that G = 69705CAB1283FE4D. Then, we have DT O(F) =
3.133 and DT O(G) = 3.000 and consequently DT O(F) �= DT O(G).

2. Similarly, for the (4, 4) S-box of Marvin [16] whose output values are given by
F = 021B83ED46F5C79A, using the same A and B as above one can verify
that G = B ◦ F ◦ A gives G = 021B8365CE7D4F9A. We have DT O(F) = 4
and DT O(G) = 3.067 and hence DT O(F) �= DT O(G).

3. Also for the (4, 4) S-box of Midori cipher [2] given by F = CAD3EBF78915
0246, by applying G = B ◦ F ◦ A one obtains G = 4A536B7F891D02CE.
Then, DT O(F) = 2.800 and DT O(G) = 2.867, so that DT O(F) �= DT O(G).

We conclude this section by considering representatives of 302 affine equiv-
alence classes of (4, 4) S-boxes specified in [8] (applying affine transformation
to the input only) and comparing their DT O and RT O value. The simulation
results are given in Appendix and the main conclusion is that approximately 94
% of these S-boxes have a larger DT O than their corresponding RT O value (see
Tables 5, 6 and 7).

Remark 3. A similar behaviour is noted for (8, 8) S-boxes regarding the compar-
ison between the transparency order indicators. In most of the cases, our simula-
tions show that RT O(F) < DT O(F). For instance, for the S-box of Midori-128
cipher [2] one obtains RT O(F) = 4.267 and DT O(F) = 5.753. Nevertheless,
the inverse S-box of AES [10] has RT O(F) = 6.916 and DT O(F) = 6.573, thus
RT O(F) > DT O(F), which is possibly due to good differential properties of the
inverse function.

5 Lower and Upper Bounds on DT O

In this section we derive some upper and lower bounds related to the DT O
indicator. It will be demonstrated that for certain sizes of S-boxes these bounds
are tight.

Transparency Order of (n, m)-Functions 149

Theorem 2. Let F = (f1, . . . , fm) be an (n,m)-function. If Gi and Gj are
almost perfectly uncorrelated functions for 1 ≤ i �= j ≤ m, then

0 ≤ DT O(F) ≤ m,

where Gi(x) = fi(x) ⊕ fi(x ⊕ γ) for some 0n �= γ ∈ F
n
2 and 1 ≤ i ≤ m.

Especially, DT O(F) = m if and only if | �Gj
(a) | = 0 for any α ∈ F

n
2

∗

and 1 ≤ j ≤ m. Also, DT O(F) = 0 if and only if | �Gj
(α) |= 2n, for any

α ∈ F
n
2 \ 0n and 1 ≤ j ≤ m.

Proof. Since Gi(x) and Gj(x) are almost perfectly uncorrelated, then �Gi,Gj
(a)

= 0 for any a ∈ F
n∗
2 and 1 ≤ i �= j ≤ m. Thus,

DT O(F) = max
γ∈F

m
2

{m − 1
22n − 2n

∑

a∈F
n∗
2

m∑

j=1

|
m∑

i=1

�Gi,Gj
(a) |}

= max
γ∈F

m
2

{m − 1
22n − 2n

∑

a∈F
n∗
2

m∑

j=1

| �Gj ,Gj
(a) |}.

For any Gj(x) = fj(x) ⊕ fj(x ⊕ γ), with 1 ≤ j ≤ m, we know that 0 ≤|
�Gj ,Gj

(a) |=| �Gj
(a) |≤ 2n. This implies that 0 ≤ DT O(F) ≤ m.

In particular, we have DT O(F) = m if and only if | �Gj
(a) | = 0 for any

α ∈ F
n
2

∗ and 1 ≤ j ≤ m. Similarly, DT O(F) = 0 if and only if | �Gj
(α) |= 2n,

for any α ∈ F
n
2 \ 0m and 1 ≤ j ≤ m. �

Example 2. To demonstrate the tightness of our lower and upper bounds, we
give two examples.

1) Let F = (f1, f2), where f1(x1, . . . , x4) = x1x2 ⊕ x3x4 and f2(x1, . . . , x4) =
x1x3 ⊕x2x4 ⊕ 1 are 4-variable bent functions. Then, G1(x1, . . . , x4) = γ2x1 ⊕
γ1x2⊕γ4x3⊕γ3x4⊕γ1γ2⊕γ3γ4, G2(x1, . . . , x4) = γ3x1⊕γ4x2⊕γ1x3⊕γ2x4⊕
γ1γ3 ⊕ γ2γ4. It can be easily verified that both G1 and G2 are balanced func-
tions for some 04 �= γ = (γ1, . . . , γ4) ∈ F

4
2. Thus, | �G1(α) |=| �G2(α) |= 24

and | �G1,G2(α) |= 0 for 04 �= α ∈ F
4
2. Thus, DT O(F) = 0.

2) Using computer simulations, we find that the (4, 4) S-box of block cipher MAR-
VIN [16], given in Table 4, reaches the upper bound on DT O.

Table 4. S-box of MARVIN

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 0 2 1 11 8 3 14 13 4 6 15 5 12 7 9 10

The algebraic normal forms of the coordinate functions fi of this S-box F =
(f1, f2, f3, f4) are given as: f1(x1, . . . , x4) = x1x3 ⊕ x1x4 ⊕ x2, f2(x1, . . . , x4) =
x3x4⊕x1, f3(x1, . . . , x4) = x1x3⊕x3x4⊕x4, f4(x1, . . . , x4) = x2x3x4⊕x1x2x3⊕
x2x4 ⊕ x3. Let Gj(x) = fj(x) ⊕ fj(x ⊕ γ)(1 ≤ i ≤ 4,04 �= γ ∈ F

4
2), then we have

DT O(F) = 4.

150 Y. Zhou et al.

Lemma 1. Let F = (f1, . . . , fm) be an (n,m)-function, and Gi(x) = fi(x) ⊕
fi(x ⊕ γ) for some 0n �= γ ∈ F

n
2 and 1 ≤ i ≤ m. Then

∑

a∈F
n
2

�Gi,Gj
(a) = �fi

(γ)�fj
(γ).

Proof.
∑

a∈F
n
2

�Gi,Gj
(a) =

∑

a∈F
n
2

[∑

x∈F
n
2

(−1)fi(x)⊕fi(x⊕γ)⊕fj(x⊕a)⊕fj(x⊕γ⊕a)
]

=
∑

a∈F
n
2

[∑

x∈F
n
2

(−1)fi(x)⊕fi(x⊕γ)(−1)fj(x⊕a)⊕fj(x⊕γ⊕a)
]

=
∑

x∈F
n
2

(−1)fi(x)⊕fi(x⊕γ)
∑

a∈F
n
2

(−1)fj(x⊕a)⊕fj(x⊕a⊕γ)

=
∑

x∈F
n
2

(−1)fi(x)⊕fi(x⊕γ)�fj
(γ)

= �fi
(γ)�fj

(γ).�

Based on Lemma 1, we give an upper bound on DT O(F) for (n,m)-functions.

Theorem 3. Let F = (f1, . . . , fm) be an (n,m)-function, Gi(x) = fi(x)⊕fi(x⊕
γ) for some 0n �= γ ∈ F

n
2 and 1 ≤ i ≤ m. Then,

DT O(F) ≤ max
γ∈F

n∗
2

{m − 1
22n − 2n

|
m∑

j=1

m∑

i=1

[�fi
(γ)�fj

(γ) − �Gi,Gj
(0n)] |}.

Proof. By Lemma 1 and using the inequality
m∑

i=1

| ai |≥|
m∑

i=1

ai | for any ai ∈ R,

then

DT O(F) = max
γ∈F

n∗
2

{m − 1
22n − 2n

∑

a∈F
n∗
2

m∑

j=1

|
m∑

i=1

�Gi,Gj
(a) |}

≤ max
γ∈F

n∗
2

{m − 1
22n − 2n

∑

a∈F
n∗
2

|
m∑

j=1

m∑

i=1

�Gi,Gj
(a) |}

≤ max
γ∈F

n∗
2

{m − 1
22n − 2n

|
∑

a∈F
n∗
2

m∑

j=1

m∑

i=1

�Gi,Gj
(a) |}

= max
γ∈F

n∗
2

{m − 1
22n − 2n

|
m∑

j=1

m∑

i=1

[
∑

a∈F
n∗
2

�Gi,Gj
(a)] |}

= max
γ∈F

n∗
2

{m − 1
22n − 2n

|
m∑

j=1

m∑

i=1

[�fi
(γ)�fj

(γ) − �Gi,Gj
(0n)] |},

which is an upper bound on DT O(F). �

Transparency Order of (n, m)-Functions 151

Remark 4. According to Theorem 3, the upper bound on DT O(F) can be
obtained provided the knowledge of the autocorrelation distributions of fi (1 ≤
i ≤ m) with respect to 0n �= γ ∈ F

n
2 . This computation is therefore essential for

the evaluation of differential transparency order.

Note that an (n,m)-function F = (f1, . . . , fm) is bent [22] if and only if all of
the component functions v · F are bent function for any v ∈ F

n
2 and wt(v) > 0.

From this fact and Theorem 3 we can give an upper bound on DT O(F) for
(n,m)-bent function.

Corollary 1. Let F = (f1, . . . , fm) be an (n,m)-bent function (with m ≤ n
2),

and 0n �= γ ∈ F
n
2 . Then

DT O(F) ≤ m − m

2n − 1
.

Proof. Because F = (f1, . . . , fm) is an (n,m)-bent function, we know that fi and
fi ⊕ fj are all bent functions for 1 ≤ i < j ≤ m. Moreover, we have �fi

(a) = 0
and �fi⊕fj

(a) = 0 for any a ∈ F
n
2 and wt(a) > 0.

By Theorem 3, we have

DT O(F) ≤ max
γ∈F

n∗
2

{m − 1
22n − 2n

|
m∑

j=1

m∑

i=1

[�fi
(γ)�fj

(γ) − �Gi,Gj
(0n)] |}

= max
γ∈F

n∗
2

{m − 1
22n − 2n

|
m∑

j=1

m∑

i=1

[�Gi,Gj
(0n)] |}

= max
γ∈F

n∗
2

{m − 1
22n − 2n

| [
m∑

i=1

�Gi,Gi
(0n) + 2

∑

1≤i<j≤m

�Gi,Gj
(0n)] |}

= max
γ∈F

n∗
2

{m − 1
22n − 2n

| [m × 2n + 2
∑

1≤i<j≤m

�fi⊕fj
(γ)] |}

= m − m

2n − 1
.�

152 Y. Zhou et al.

Table 5. Distribution of differential transparency order for (4, 4) S-boxes (I)

RT O Number DT O Number

0.000 1 4.000 1

0.467 1 2.000 1

0.800 1 4.000 1

1.067 1 4.000 1

1.133 1 3.533 1

1.267 1 2.000 1

1.333 3 2.000 1

3.533 1

4.000 1

1.400 1 2.800 1

1.533 1 2.000 1

1.600 1 4.000 1

1.733 2 2.533 1

2.800 1

1.800 4 2.000 1

2.533 1

2.800 1

3.533 1

1.833 1 2.600 1

1.867 5 2.000 1

2.600 1

3.067 1

3.533 1

4.000 1

1.900 1 2.533 1

1.933 8 2.467 1

2.533 1

2.800 2

3.067 3

3.533 1

1.967 3 2.800 2

3.000 1

2.000 2 3.067 1

3.533 1

2.033 1 2.800 1

2.067 3 2.800 1

3.067 1

4.000 1

2.100 2 2.800 2

2.133 6 2.600 1

3.067 1

3.267 1

3.533 1

4.000 2

2.167 2 3.000 1

3.267 1

2.200 2 2.800 1

3.067 1

2.233 1 2.800 1

Transparency Order of (n, m)-Functions 153

Table 6. Distribution of differential transparency order for (4, 4) S-boxes (II)

RT O Number DT O Number

2.267 6 2.533 1

2.600 1

3.000 3

3.267 1

2.300 5 2.533 1

2.600 1

2.733 1

2.800 1

3.267 1

2.333 22 2.533 3

2.600 4

2.667 1

2.733 2

2.800 1

2.867 1

3.000 2

3.067 2

3.133 1

3.267 2

3.533 3

2.367 15 2.533 2

2.600 3

2.733 1

2.800 2

2.867 1

3.000 3

3.067 1

3.267 2

2.400 22 2.533 2

2.600 2

2.800 3

3.000 5

3.067 6

3.267 3

4.000 1

2.433 21 2.533 2

2.600 1

2.733 2

2.800 3

3.000 5

3.067 3

3.133 1

3.267 2

3.533 2

2.467 30 2.533 8

2.600 3

2.733 1

2.800 3

3.000 6

3.067 4

3.267 4

3.533 1

154 Y. Zhou et al.

Table 7. Distribution of differential transparency order for (4, 4) S-boxes (III)

RT O Number DT O Number

2.500 31 2.533 2

2.600 4

2.733 2

2.800 5

3.000 4

3.067 6

3.267 7

3.533 1

2.533 30 2.533 2

2.600 2

2.733 2

2.800 6

3.000 5

3.067 5

3.267 7

4.000 1

2.567 26 2.533 3

2.600 3

2.667 1

2.733 1

2.800 1

2.867 1

3.000 9

3.067 5

3.533 2

2.600 20 2.267 1

2.533 2

2.600 5

2.733 2

2.800 2

3.000 2

3.067 4

3.267 1

3.533 1

2.633 9 2.533 2

2.600 1

2.733 2

2.800 2

3.000 1

3.533 1

2.667 7 2.600 1

2.733 1

2.800 2

3.000 1

3.533 2

2.700 1 3.200 1

2.733 1 2.800 1

2.767 1 3.000 1

Transparency Order of (n, m)-Functions 155

6 Conclusions

This article further addresses some relevant concepts related to multi-bit dif-
ferential power cryptanalysis in the Hamming distance model. Motivated by
certain shortcomings of the previous definitions (most importantly avoiding the
dependency on the pre-charged constant logic value), we (once again) revise this
notion and introduce a novel concept of differential transparency order DT O. It
is illustrated through examples and simulations that DT O is not affine invari-
ant (under affine action on both input and output) and furthermore that DT O
attains larger value than RT O in general. Most notably, we demonstrate that
the CPA attacks perform better when the novel concept is embedded in the
information leakage model. In the next step, we will focus on the DT O of (8, 8)
-functions, and discuss the relationship between DT O and other cryptographic
indicators.

Acknowledgments. Yu Zhou is supported in part by the Sichuan Science and Tech-
nology Program (2020JDJQ0076). Yongzhuang Wei is supported by the National Natu-
ral Science Foundation of China (61872103), the Guangxi Science and Technology Foun-
dation (Guike AB18281019) and the Guangxi Natural Science Foundation (2019GXNS-
FGA245004). Hailong Zhang is supported by the National Natural Science Foundation
of China (61872040). Enes Pasalic is supported in part by the Slovenian Research
Agency (research program P1-0404 and research projects J1-9108, J1-1694, N1-0159,
J1-2451). Luyang Li is supported by the Natural Science Foundation of Shaanxi Provin-
cial Department of Education (20JK0911).

References

1. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın, T.: Block
ciphers – focus on the linear layer (feat. PRIDE). In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 57–76. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44371-2 4

2. Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 411–436. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-48800-3 17

3. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications - extended abstract. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34961-4 14

4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

5. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 5

6. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007, Part II. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

https://doi.org/10.1007/978-3-662-44371-2_4
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-540-74735-2_31

156 Y. Zhou et al.

7. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Yu., Sim, S.M., Todo, Y.: GIFT: a
small present - towards reaching the limit of lightweight encryption. In: Fischer,
W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 16

8. De Cannière, C.: Analysis and design of symmetric encryption algorithms (Ph.D.),
Katholieke Universiteit Leuven (2007)

9. Chakraborty, K., Sarkar, S., Maitra, S., Mazumdar, B., Mukhopadhyay, D., Prouff,
E.: Redefining the transparency order. Des. Codes Cryptogr. 82(1–2), 95–115
(2017)

10. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-the Advanced Encryption
Standard. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-04722-
4

11. Fei, Y., Adam Ding, A., Lao, J., Zhang, L.: A Statistics-based Fundamental Model
for Side-channel Attack Analysis. Cryptology ePrint Archive, report 2014/152
(2014). http://eprint.iacr.org/2014/152

12. Fischer, W., Gammel, B.M., Kniffler, O., Velten, J.: Differential power analysis of
stream ciphers. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 257–270.
Springer, Heidelberg (2006). https://doi.org/10.1007/11967668 17

13. Fei, Y., Luo, Q., Ding, A.A.: A statistical model for DPA with novel algorithmic
confusion analysis. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol.
7428, pp. 233–250. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33027-8 14

14. Guilley, S., Hoogvorst, P., Pacalet, R.: Differential power analysis model and some
results. In: Quisquater, J.-J., Paradinas, P., Deswarte, Y., El Kalam, A.A. (eds.)
CARDIS 2004. IIFIP, vol. 153, pp. 127–142. Springer, Boston, MA (2004). https://
doi.org/10.1007/1-4020-8147-2 9

15. Guillot, P., Millérioux, G., Dravie, B., El Mrabet, N.: Spectral approach for cor-
relation power analysis. In: El Hajji, S., Nitaj, A., Souidi, E.M. (eds.) C2SI 2017.
LNCS, vol. 10194, pp. 238–253. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-55589-8 16

16. Simpĺıcio, M.A., Jr., Barbuda, P.D.F.F.S., Barreto, P.S.L.M.: The MARVIN
message authentication code and the LETTERSOUP authenticated encryption
scheme. Secur. Commun. Netw. 2(2), pp. 165–180 (2009)

17. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
Advances in Cryptology - CRYPTO 1999, pp. 388–397. Springer, Heidelberg (1999)

18. Li, H., Zhou, Y., Ming, J., Yang, G., Jin, C.: The notion of transparency order,
revisited. Comput. J. (2020). https://doi.org/10.1093/comjnl/bxaa069

19. Nyberg, K., Knudsen, L.R.: Provable security against a differential attack. J. Cryp-
tol. 8(1), 27–37 (1995)

20. Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical second-order DPA
attacks for masked smart card implementations of block ciphers. In: Pointcheval,
D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Heidelberg (2006).
https://doi.org/10.1007/11605805 13

21. Prouff, E.: DPA attacks and S-boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005). https://doi.org/
10.1007/11502760 29

22. Rothaus, O.S.: On bent functions. J. Comb. Theory A 20, 300–305 (1976)
23. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Pic-

colo: an ultra-lightweight blockciphe. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23951-9 23

https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
http://eprint.iacr.org/2014/152
https://doi.org/10.1007/11967668_17
https://doi.org/10.1007/978-3-642-33027-8_14
https://doi.org/10.1007/978-3-642-33027-8_14
https://doi.org/10.1007/1-4020-8147-2_9
https://doi.org/10.1007/1-4020-8147-2_9
https://doi.org/10.1007/978-3-319-55589-8_16
https://doi.org/10.1007/978-3-319-55589-8_16
https://doi.org/10.1093/comjnl/bxaa069
https://doi.org/10.1007/11605805_13
https://doi.org/10.1007/11502760_29
https://doi.org/10.1007/11502760_29
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-642-23951-9_23

Transparency Order of (n, m)-Functions 157

24. Wang, Q., Stănică, P.: Transparency order for Boolean functions: analysis and
construction. Des. Codes Crypt. 87(9), 2043–2059 (2019). https://doi.org/10.1007/
s10623-019-00604-1

25. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21554-4 19

26. Zhou, Yu., Dong, X., Wei, Y.: On the transparency order relationships between
one Boolean function and its decomposition functions. J. Inf. Secur. Appl. 58, 1–9
(2021)

https://doi.org/10.1007/s10623-019-00604-1
https://doi.org/10.1007/s10623-019-00604-1
https://doi.org/10.1007/978-3-642-21554-4_19

Web and OS Security

Browserprint: An Analysis of the Impact
of Browser Features on Fingerprintability

and Web Privacy

Seyed Ali Akhavani1(B), Jordan Jueckstock2, Junhua Su2,
Alexandros Kapravelos2, Engin Kirda1, and Long Lu1

1 Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
{sadatakhavani.s,e.kirda,l.lu}@northeastern.edu

2 North Carolina State University, Raleigh, NC 27695, USA
{jjuecks,jsu6,akaprav}@ncsu.edu

Abstract. Web browsers are indispensable applications in our daily
lives. Millions of users use web browsers for a wide range of activities
such as social media, online shopping, emails, or surfing the web. The
evolution of increasingly more complicated web applications relies on
browsers constantly adding and removing features. At the same time,
some of these web services use browser fingerprinting to track and pro-
file their users with clear disregard for their web privacy. In this paper, we
perform an empirical analysis of browser features evolution and aim to
evaluate browser fingerprintability. By analyzing 33 Google Chrome, 31
Mozilla Firefox, and 33 Opera major browser versions released through
2016 to 2020, we discover that all of these browsers have unique fea-
ture sets which makes them different from each other. By comparing
these features to the fingerprinting APIs presented in literature that
have appeared in this field, we conclude that all of these browser ver-
sions are uniquely fingerprintable. Our results show an alarming trend
that browsers are becoming more fingerprintable over time because newer
versions contain more fingerprintable APIs compared to older ones.

Keywords: Browser security · Fingerprinting · Privacy · Web security

1 Introduction

Web browsers have become indispensable in our daily lives. The majority of the
online activity of many Internet users comprises of using a browser to access
social media, online shopping, surfing the web, messaging, and accessing stored
information in the cloud. Unfortunately, many companies are interested in col-
lecting the private browser activities of end-users for marketing and sales pur-
poses. To achieve their data collection objectives, some web services use “browser
fingerprinting” to track and profile their users with clear disregard for their web
privacy.

c© Springer Nature Switzerland AG 2021
J. K. Liu et al. (Eds.): ISC 2021, LNCS 13118, pp. 161–176, 2021.
https://doi.org/10.1007/978-3-030-91356-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91356-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-91356-4_9

162 S. A. Akhavani et al.

As browsers increasingly supplant traditional operating systems as the appli-
cation publishing platforms of choice, many unique details of a user’s browser
such as its hardware, operating system, browser configuration and preferences
can be exposed through the browser. An attacker who collects and sums these
outputs can create a unique “fingerprint” for tracking and identification pur-
poses. In addition, browsers have also been increasing in complexity as more
and more new features are being integrated into them, raising concerns that
the attack surface offered by this software “bloating” (i.e., the increase in the
number of components and code not needed by every user) is contributing to
making browsers more difficult to secure against attacks.

Browser fingerprinting has been determined to be an important problem
by previous research (e.g., [4,7,20,23]) as well as browser vendors themselves
(e.g., [8,22,28]). To date, however, no studies have looked at popular browsers
historically and have attempted to determine how their fingerprintability has
evolved over the years. Past work has demonstrated that the ability to sim-
ply fingerprint a browser’s precise version without relying on possibly spoofed
User-Agent strings can be useful to attackers [26]. In the further light of web pri-
vacy research showing the potential and/or real-world exploitation of novel APIs
for fingerprinting [6,15,24], we consider the raw volume of implemented APIs to
be a rough but useful proxy estimate of a browser’s potential fingerprintability.

In this paper, we perform an empirical analysis of a large number of browser
features that have been integrated or phased out of the popular Mozilla Fire-
fox, the Google Chrome, and the Opera browsers between the years 2016 and
2020. We consider browser features to be all functionality that is available to
attackers directly through JavaScript, since these are the root problem of most
web attacks. Our aim is to answer a number of research questions about the
fingerprintability and security of these browsers over this time period. We pro-
pose a new metric for quantifying the fingerprintability of browser versions that
rely on the number of browser features that are associated with fingerprinting.
This metric is based on previous research and current fingerprinting techniques
discovered in the wild (see Sect. 3.2 for more details). By analyzing 33 Google
Chrome, 31 Mozilla Firefox, and 33 Opera major browser versions, our results
suggest that these popular browsers have unique feature sets that make them
significantly different from each other. Hence, by comparing these features to the
fingerprinting APIs presented in literature, we conclude that all of these browser
versions are uniquely fingerprintable. Our results suggest the alarming trend
that browsers are becoming more fingerprintable over time as newer versions of
popular browsers have more fingerprintable APIs embedded in them.
This paper makes the following key contributions:

– We show that all major Mozilla Firefox, Google Chrome, and Opera browser
versions between 2016 until 2020 are uniquely fingerprintable based exclu-
sively on the presence or absence of browser features.

– We analyze Mozilla Firefox, Google Chrome, and Opera and report major
differences between feature introduction and removal trends. While Firefox
tends to keep a steady number of features in the browser (i.e., introducing

Browserprint: Impact of Browser Features on Fingerprintability and Privacy 163

new features while removing older ones), Chrome, in contrast, is growing and
more features are kept as the browser evolves. Opera, similar to Chrome,
seems to be adding lots of features and not interested in removing the older
ones.

– We show that although Google Chrome and Opera are both based upon
Chromium and share the same codebase, there are still differences in their
feature introduction and removal patterns. But this shared codebase makes
them very similar in our fingerprintability analysis.

– We provide all the source code and datasets that we have collected in our
experiments to the community1.

2 Research Questions

In this paper, by performing an automated analysis, we attempt to answer the
following research questions:

1. Are major versions of Firefox, Chrome, and Opera browsers fingerprintable?
Our results suggest that the feature set for each browser version is unique.
There exist multiple APIs in every browser version that we have analyzed
that can be used for fingerprinting. By extracting all the features supported
by a browser and exposed via API calls, we can uniquely identify each browser
version.

2. Are Firefox, Chrome, and Opera becoming more fingerprintable over time?
One of the major conclusions of our study is that the number of APIs one
can use in the newer versions of Chrome, Opera, and Firefox is larger than the
older versions. Hence, newer browser versions are even more fingerprintable
than previous versions, and our findings suggest that this trend is likely to
continue. As a result, privacy might be an even more significant concern in
the future for browser users.

3. What “lifespan profiles” can we cluster browser features into? Are there
any“permanently removed” features? If so, how does their life cycle look like?
Our results suggest that we can categorize browser features based on their
lifespan into three main categories (i.e., persistent features, non persistent
features, and recurring features). We observe that most of the features are
added permanently, and are not removed over time – indicating that browsers
are indeed becoming more “bloated” as they evolve.

4. With respect to browser bloating, how does Firefox compare to Chrome and
Opera? In our study, we were able to map the number of unique features
for major versions of Firefox, Chrome, and Opera. The results suggest that
Chrome and Opera are introducing more features over time than Firefox, but
that all of these browser vendors have shown a significant increase in the
total number of features they support per version since 2016. Compared to
Firefox, Chrome and Opera tend to introduce more new features and keep
them around longer.

1 https://github.com/sa-akhavani/browserprint.

https://github.com/sa-akhavani/browserprint

164 S. A. Akhavani et al.

5. Could the incognito mode in Chrome and the private window mode in Firefox
and Opera reduce the possibility of being fingerprinted by websites? Our anal-
ysis suggests that the incognito and private window modes have negligible
impact on reducing fingerprinting. That is, almost all fingerprinting APIs are
accessible in these modes the same way that they are available in non-private
mode.

6. Although Opera and Chrome are both Chromium-based and share the same
codebase, is there any noticeable difference between these two browsers in case
of fingerprintability? In our analysis, we found out that Opera and Chrome
have very similar sets of fingerprintable APIs and there is not much difference
between these two browsers in case of fingerprintability. But there exist dif-
ferences in some browser-specific features between these two browsers. Addi-
tionally, Opera and Chrome follow almost the same pattern in feature adding
and removal as a result of their shared codebase. These browsers tend to keep
a majority of their features untouched.

3 Methodology

To be able to determine how fingerprintable a browser is, we need to determine
the features it supports when a webpage is visited by a user. Similarly, we need to
understand which features are supported by a specific version because attackers
typically target such features in attacks (e.g., a bug in the video access function-
ality might be exploited). Hence, to answer the research questions we pose in
this study, we need to be able to figure out exactly what features are supported
by each browser version under analysis. In this section, we describe the method-
ology we followed in this work, and explain how we created the datasets we used
in our analyses.

3.1 Feature Gathering

In order to collect browser feature sets from Firefox, Opera, and Chrome, we
crafted a special JavaScript-instrumented webpage that analyzes the visiting
browser. We use the term feature to describe JavaScript objects, methods, and
property values built into the global namespace of the browser’s JavaScript
implementation (i.e., the window object). Clearly, this definition is JavaScript-
centric. However, it is unambiguous and naturally scalable, as we can automate
the collection of features from many different browser implementations using
standard scripting and crawling techniques. When our instrumented page is
loaded by the browser, our JavaScript is executed. This code probes and iterates
through the features supported by the browser. This is done by using JavaScript
to traverse the tree of non-cyclic JavaScript object references accessible from
a pristine (i.e., unmodified by polyfills or other prototype-chain modifications)
window object, and collecting the full feature names encountered during the
traversal. Each feature name comprises the sequence of property names leading
from the global object to a given built-in JavaScript value. The traversal code is

Browserprint: Impact of Browser Features on Fingerprintability and Privacy 165

careful to not modify this object (which doubles as the global variable names-
pace) in any way, to avoid contaminating the resulting set of feature names.
Captured feature sets are then stored in a database, tagged with identifying
metadata such as the browser’s User-Agent string.

We use the terms browser features, as defined in this section, and JavaScript
APIs interchangeably in our work.

3.2 Browser Fingerprinting APIs

We conduct an in-depth analysis in order to determine which browser features
are associated with fingerprinting. Our analysis generates a list of suspicious
APIs that we use in our measurements in Sect. 4 to quantify fingerprintability :
the ratio of browser features in a browser version that are associated with fin-
gerprinting techniques. We describe in the following how we determine which
browser features are related to browser fingerprinting.

Our list of suspicious browser fingerprinting APIs contains a total of 313
JavaScript APIs. These APIs are considered suspicious because the purpose of
using these API depends on the intent of the programmer who writes the code.
We call this list suspicious fingerprinting APIs in this paper. In Panopticlick’s
research [4], browser fingerprinting is achieved through a combination of APIs
that seem innocent, such as Navigator.plugins, Navigator.userAgent, and
Screen.colorDepth. These APIs provide functionality that matches their orig-
inal objectives. However, they can be abused by creating a unique fingerprint of
the client’s browser due to exposing information that narrows down the diversity
of visited users. We use two methods to assemble the list of fingerprinting APIs:
literature review and experimental analysis.

Literature Review. The foundation of the API list is composed of four core
fingerprinting papers, Panopticlick [4], AmIUnique [1], Hiding in the Crowd [18],
and FPDetective [7]. This analysis resulted in approximately 10% of the list of
suspicious fingerprinting APIs. Some of the APIs are directly mentioned in these
papers and the others are modified to match standard APIs2 with the same func-
tionality. The concepts of Canvas, WebGL, Font fingerprinting are introduced
among these APIs. These concepts lead to the next turn of investigation of papers
which are Cookieless Monster [23] and Pixel Perfect [20]. This investigation does
not bring more APIs but a direction to experimental analysis.

Experimental Analysis. The experimental analysis consists of two stages,
collecting APIs by crawling websites and extracting suspicious APIs from the
crawling data. In terms of data collecting, the workflow is the same as the one
in VisibleV8 [19]. A customized crawler was driven to visit all websites in the
Easylist [2] domain file that contains 13,241 domains. Then, the raw logs gener-
ated by VisibleV8 were gathered and the VisibleV8 post processor was applied

2 https://developer.mozilla.org/en-US/docs/Web/API.

https://developer.mozilla.org/en-US/docs/Web/API

166 S. A. Akhavani et al.

to process the raw data. After removing duplicate and non-standard APIs, the
APIs usage of 8,682 domains with 56,828 origins was collected. Non-standard
APIs indicate ones that are not listed in the WebIDL [5] data package. In other
words, VisibleV8 and its post processor were adopted to aggregate and summa-
rize standard JS API usage of the target domains.

While collecting APIs from the wild, the API suspicious list was extended
through crawling on panopticlick.eff.org, amiunique.org, and browserleaks.com
websites. These websites are explicitly marked as browser fingerprinting websites.
Therefore, augmenting suspicious fingerprinting APIs among these websites is
more efficient than a random walk on the enormous JS API pool.

The next step is to perform a manual analysis to check every API utilized
by these three websites. First, we search for information and usage of an API
on Mozilla’s MDN Web Docs [21]. Then, we determine whether an API finger-
prints users based on the information the API conveys. That is to say, an API
is classified as a suspicious fingerprinting API if it can provide the information
to filter certain users out. For example, there are two users with distinct user
agents. By calling Navigator.userAgent, the programmer should be able to dis-
tinguish between these two users. Navigator.userAgent can be recognized as a
fingerprinting API in this case. The majority of suspicious fingerprinting APIs
comes from manual analysis and the idea of categorizing fingerprinting APIs is
incited by the browserleaks.com website.

The last step is to manually search for more fingerprinting APIs with the
keyword. Namely, in Canvas fingerprinting, most APIs include the “Canvas”
or “CanvasRendering”. A program was created to filtrate APIs that contain
“Canvas” or “CanvasRendering” among APIs of 8k crawled domains. The same
pattern also applies to BatteryManager, WebGLRenderingContext, and Speech-
Synthesis. Meanwhile, the fingerprint2.js [16] was reviewed to supplement the
suspicious fingerprinting API list.

There are limitations to the methods we used for constructing a suspicious
fingerprinting API list. First and foremost, this list only provides a partial view
of full fingerprinting APIs. To the best of our knowledge, there is no complete
table of fingerprinting APIs and more research is needed in this direction. The
second limitation is during the manual analysis. There could be misconceptions
between the API usage provided by Mozilla web APIs page and the way pro-
grammers exploit them. Lastly, part of JS APIs is filtered out by the VisibleV8
post processor. This can be improved by using a larger set of WebIDL data or
precisely use the aggregated raw APIs.

As a service to the community, we have made our list of fingerprinting APIs
publicly available.

3.3 Browser Testing Platform

In this work, we target Google Chrome, Mozilla Firefox, and Opera browsers
as they are well-known, popular browsers that have millions of users. Firefox
possesses a distinct codebase unlike Chrome and Opera which are both based
on Chromium. We gathered a copy of every major Firefox, Chrome, and Opera

http://panopticlick.eff.org
https://amiunique.org
https://browserleaks.com
https://browserleaks.com

Browserprint: Impact of Browser Features on Fingerprintability and Privacy 167

version that was released during the March 2016 to April 2020 timeframe, i.e.,
Chrome versions 49–81, Firefox versions 45–75, and Opera versions 36–68.

To individually connect each browser version to our instrumented feature
gathering web application, we mainly used the BrowserStack web service [10].
BrowserStack is a cloud-based web and mobile testing platform that enables
developers to test their websites and mobile applications across on a wide range
of browsers, operating systems, and real mobile devices. If a specific browser ver-
sion or configuration was not available on BrowserStack, we developed and used
automation scripts to instrument and run the browser instances on a desktop
computer running Windows 10.

4 Analysis

In this section, we describe the analysis we performed on the datasets that we
collected, and the insights that we distilled from the analysis. We leverage the
browser features dataset and the suspicious fingerprinting APIs dataset in our
analysis.

4.1 Analysis of the Browser Features

The first analysis we performed on the dataset we collected was to understand
how browser features have evolved over time. As we describe in Sect. 3, we con-
sider browser features all functionality exposed to JavaScript as objects, meth-
ods, and property values. This definition of browser features reflects on 1) how
attackers craft web attacks (i.e., creating a unique fingerprint using such fea-
tures, or exploiting vulnerabilities) and 2) a measurable metric across browser
versions. Understanding and gaining insights into how browsers are dealing with
new as well as older features is important to be able to distill conclusions about
how secure and fingerprintable browsers are becoming as they evolve. Hence,
our analysis looked at specific browser features that were introduced, what the
typical lifespan of features looks like.

After extracting feature information for all of the browsers under analysis,
we automatically parsed the generated reports and analyzed them to see if the
features in these browsers fall into specific categories. Our analysis suggested
that the features in Firefox, Opera, and Chrome can be categorized into three
main categories:

– Persistent Features: These are features that are added to a specific version,
and that continue to exist in every version that is released after the feature
was introduced. We consider a feature to be “persistent” if it appears in at
least two distinct browser versions.

– Non-Persistent Features: These are features that existed in older versions
of the browser, but were removed, and never appeared in newer versions of
the browser again. We consider a feature to be “non-persistent” if it is absent
in at least two distinct versions of the browser versions under analysis.

168 S. A. Akhavani et al.

– Recurring Features: These are features that are added and removed from
the browser from time to time. That is, they are introduced, they are removed,
and they might appear again at some point. Such features are typically being
tested by the vendors, and it is not clear if they will become persistent, or
non-persistent.

Our analysis suggests that Chrome possesses 9,718 persistent, 711 non-
persistent, and 3,161 recurring features that it supports. Similarly, Opera con-
tains 9,674 persistent, 711 permanently removed, and 3,219 recurring features.
On the other hand, Firefox supports 6,274 persistent, 809 non-persistent, and
115 recurring features. Note that Firefox, overall, supports significantly fewer
features than Chrome and Opera. Also, our analysis suggests that Firefox, com-
pared to Chrome and Opera, is keeping fewer features (i.e., they are removing
more) over time. Figure 1 illustrates the feature categories for each browser ven-
dor. It can be seen that Opera and Chrome are having similar patterns since lots
of their features are related to Chromium which is their shared codebase. Besides,
Chrome and Opera have a greater portion of recurring features compared to Fire-
fox. This means that Chrome and Opera tend to do more experiments on adding
and removing specific features through time.

Fig. 1. Feature category distribution for browsers.

In this work, we also performed an analysis of the common features between
Firefox, Chrome, and Opera. Since 2016, the total number of features introduced
by these browsers is 15,945. Among all these features, there exist only 4,843
common features among Firefox and Chrome – which is approximately 30%
of the total number of features that these vendors support. This number is the
same between Firefox and Opera too, with 4,843 common features between them.

Browserprint: Impact of Browser Features on Fingerprintability and Privacy 169

On the other hand, Chrome and Opera have a bigger set of common features.
There exists 13,558 common features between Opera and Chrome – which is
approximately 85% of the total number of features that these vendors support.
The impact of this huge common features set on fingerprintability between two
browsers are analyzed in the next section.

We can conclude that Firefox does not have a high feature overlap with
Chrome and Opera. Note that although these browsers often offer very similar
functionality, unsurprisingly, their codebase might be very different from each
other. We are aware that Firefox’s codebase is very different from Chrome’s and
Opera’s. Hence the API names through which these features are available are
also often significantly different. To the contrary, Chrome and Opera share the
same codebase. This leads to having a bigger set of common features between
these two browsers.

Figures 2 and 3 show the feature addition and removal trends for Firefox
and Chrome. The data shows that Chrome is adding and removing many more
features than Firefox in each version that is released if one looks at the overall
numbers of features. However, Firefox seems to be more constant with respect to
the number of new features added, and older features removed. Hence, Firefox
seems to be more aggressive with respect to removing older features from the
browser, “debloating” this way the browser. Chrome and Opera share the same
trend, so we omit a separate figure for Opera and leave Fig. 3 as a representative
visualization of feature introduction and removal for Chromium-based browsers.

Fig. 2. Feature introduction and removal in Firefox.

170 S. A. Akhavani et al.

Fig. 3. Feature introduction and removal in Chrome.

By using the feature datasets we extracted from the Firefox, Opera, and
Chrome versions, we compared feature trends for these browsers. The trends are
depicted in Fig. 4. The graph shows that the number of features supported by
Firefox seems to be quite steady (i.e., if new features are added, some older ones
are typically removed) while the number of features supported by Chrome and
Opera is growing over time. Hence, the data suggests that Chrome and Opera
are following differing browser feature development philosophies compared to
Firefox.

4.2 Browser Fingerprintability

Analyzing Fingerprinting API Presence in Chrome, Firefox, and
Opera. Recall that one of the key research questions we asked at the beginning
of this paper was if popular browsers such as Firefox, Chrome, and Opera are
generally becoming more fingerprintable over time. In particular, we were also
interested in answering if every browser version is unique in a fingerprintability
sense.

Using the fingerprinting APIs that we collected (and described in Sect. 3), we
aimed to determine how many of these APIs are available and active in specific
browser versions. That is, we iterated through all the major Firefox and Chrome
browser versions between 2016 and 2020, and tested their fingerprintability.

In Chrome 49 (i.e., the oldest Chrome version in our analysis), there exist
139 APIs from the suspicious fingerprinting APIs list. Which means they could
be used for fingerprinting. In Chrome 81 (the newest Chrome version in our
analysis), there exist 274 APIs from the suspicious fingerprinting APIs list. In

Browserprint: Impact of Browser Features on Fingerprintability and Privacy 171

Fig. 4. Feature trends in Firefox, Opera, and Chrome when compared to each other.

short, the number of APIs that could be used for fingerprinting Chrome versions
are increasing over time. That is, the data suggest that Chrome is becoming
easier to fingerprint as it evolves over time.

Compared to Chrome, Firefox 45 (i.e., the oldest version in our study) has
147 APIs from the suspicious fingerprinting APIs list. In contrast, Firefox 75
(which is the latest Firefox version in our study) has 271 fingerprinting APIs
from the suspicious fingerprinting APIs list. Interestingly, though, Firefox 71
has 276 APIs from the suspicious fingerprinting APIs list. Our data analysis
suggests that Firefox has become more fingerprintable over time, but that lately,
although more features are added to it, its fingerprintability might have started
to decline. In fact, Firefox has indeed started to take the fingerprinting problem
seriously and has been increasingly taking steps to prevent it (e.g., [22]).

In addition, Opera 36 (i.e., the oldest version in our study) contains 139
suspicious fingerprinting APIs. On the other hand, Opera 68 (the latest Opera
version in our measurement) is consist of 274 suspicious fingerprinting APIs. The
trend is very similar to Google Chrome but there are minor differences at some
points which could be seen in Fig. 5.

Figure 5 depicts, in detail, the presence of fingerprinting APIs in Chrome,
Firefox, and Opera that we measured. Note that in January 2017, there is a
significant increase in the number of fingerprinting APIs that each browser sup-
ports. More than 100 fingerprinting APIs were added to both browsers. To deter-
mine what caused this spike, we investigated and analyzed the release notes of
both Firefox 51 [17], Chrome 56 [13], and Opera 43 which is based on Chromium
56 [3].

The release notes indicate that HTML5 was enabled for all users by default in
Chrome 56. As of this version, Adobe Flash Player was disabled and only allowed
to run with specific user permissions. Chrome also enabled the WebGL 2.0 API

172 S. A. Akhavani et al.

that provides a new rendering context, and supports objects for the HTML5
Canvas elements. This context allows rendering using an API that conforms
closely to the OpenGL ES 3.0 API3. Similarly, in Firefox 51, we observed that the
browser had also added WebGL2 support during that time. The same happened
to Opera 43 since Chromium 56 added WebGL2 support to its codebase.

When we analyzed our fingerprinting API list, we saw that the 107 new
fingerprinting APIs that became possible as of this date were actually related
to WebGL2RenderingContext which was added to Firefox 51, Chrome 56, and
Opera 43. The straight-forward lesson to distill from our observation is that
browser vendors need to be extra careful when they implement and release new
features if they are interested in making their browsers more difficult to finger-
print.

Fig. 5. Presence of fingerprinting APIs in Chrome, Firefox, and Opera.

As part of our experiments, we also collected the feature sets for Firefox’s
Private Window, Google Chrome’s Incognito, and Opera’s Private Window. We
measured the fingerprintability of the browsers in these modes. For Chrome,
our results show that there is a small difference between the total number
of features in regular mode versus the total number of features in incognito
mode. For instance, Chrome 80’s regular mode has 11,946 features while it
has 11,936 features available in Incognito mode. The results were similar for
Firefox’s regular mode versus its Private Window Mode. For example, Firefox
75’s regular mode has 6,370 total features while its Private Window Mode has
6,358 features available. Besides, Opera’s private window had the same finger-
printing APIs compared to the regular mode and had zero impact on reducing
fingerprintability.

3 https://www.khronos.org/registry/webgl/specs/latest/2.0/.

https://www.khronos.org/registry/webgl/specs/latest/2.0/

Browserprint: Impact of Browser Features on Fingerprintability and Privacy 173

Hence, we conclude that the incognito and private window modes do not help
users against browser fingerprinting since every fingerprinting API that exists in
a version’s normal mode also appears in the same browser version’s Incognito
(or Private Window) mode.

Unique Feature Set. In our analyses, we automatically deduced a “feature
set” for each browser version that we analyzed. A feature set is a set of (i.e.,
the list of) browser features that exist in that specific browser version under
analysis. When we compared the features sets for each browser version to each
other (e.g., Firefox 54 versus 55), we observed that each feature set was unique
for all the browser versions that we tested. That is, there exist no two browsers
that possess the same feature set. Hence, from this observation, we can deduce
that all the browser versions that we analyzed are uniquely fingerprintable.

The reason why the feature sets are unique among different browser versions
is that each browser, as we described before, have recurring as well as non-
persistent features. As a result, the fact that vendors continuously add, remove,
and sometimes re-add features into their browsers also make them more finger-
printable.

One interesting trend is that the differences between the feature sets of
Chrome, Firefox, and Opera in their newer versions is becoming smaller. That
is, we observed much more intersections with each other than in older versions.
Our data suggest that the feature sets for all Firefox, Chrome, and Opera are
converging towards homogeneity of browser features.

5 Related Work

Our work focuses on the intersection of browser evolution and browser finger-
printing.

Browser Evolution. The first web browser, WorldWideWeb [9], was developed
in 1990 by Tim Berners-Lee. That browser did not have JavaScript, did not sup-
port cookies and users could not adapt their browser with extensions. All these
features and thousands more were introduced in browsers over time, matching
the needs of the ever-evolving web.

Synder et al. [27] use a similar method to us to collect browser features by
using the web API and extracting different kinds of JavaScript functions. They
measure browser feature usage among Alexa’s popular websites and also how
many security vulnerabilities have been associated with related browser features.
However, they do not aim to measure fingerprintability of different browsers
which is one of the main goals of our paper. In another work by Snyder [29], a
cost-benefit approach to improving browser security was conducted. Our work
focuses on how browsers have become more fingerprintable over time based on
the features they introduce, taking a new perspective on the privacy and security
costs that the browser evolution brings.

Recent work has focused on methods to automatically reduce the functional-
ity of the browser at the binary level. Chenxiong et al. [12] propose a debloating

174 S. A. Akhavani et al.

framework for the browser that removes unused features. Our work is comple-
mentary to debloating efforts of the browser, as we focus on which browser
features affect the users’ privacy the most. Also, our work suggests that the
debloating of browsers might not really be necessary as there does not seem to
exist a correlation between the number of features added to the browsers over
time, and how insecure they become.

Browser Fingerprinting. There have been a number of studies on browser
fingerprinting and browser bloating. The first large-scale study on browser fin-
gerprinting was conducted by Eckersley [14]. Eckersley showed that a wide range
of properties in a user’s browser and the installed plugins can be combined to
form a unique fingerprint. His study made us eager to see what is happening
in the world of browser features, and to try to analyze the impact of different
browser features on creating unique user fingerprints.

Browser fingerprinting can be done by using different methods. Cao et al. [11]
created user fingerprints by using OS-level features from screen resolution to the
number of CPU cores. They also measure the uniqueness of different browser
types by analyzing its OS-level features.

Olejnik et al. [25] show that one way of fingerprinting a browser is using web
history. In this method, there is no need for a client-side state. However, note
that this method is no longer possible because browser vendors have fixed this
issue and (i.e., extracting user history is not possible as before).

Nikiforakis et al. [23] showed how tracking has moved from using cookies
(stateful) to browser fingerprinting (stateless) on the web. Mowery et al. [20]
demonstrated how the canvas HTML5 feature can be abused for browser finger-
printing based on the differences in rendering images on different GPUs. Starov
et al. [30] measured how bloated browser extensions are in terms of the arti-
facts that they inject in visited pages, and can be used to identify the presence
of the users’ installed extensions. Trickel et al. [31] proposed a defense mecha-
nism against identifying installed browser extensions in users’ browsers based on
artifacts that reveal their presence on the visited pages.

In light of the prior research on browser fingerprinting, our aim was to collect
data and analyze the trends, and to see whether we are becoming better at
managing browser fingerprinting (or if this privacy issue is becoming worse as
new features are being introduced in new browser versions).

6 Conclusion

The evolution of the web relies on browsers adding new features that drive
innovation in web applications. Yet, this innovation comes at a significant cost
to the end users’ privacy, since browser fingerprinting techniques abuse certain
browser features. In this paper, we analyzed the impact of browser features on
browser fingerprinting. We investigated more than 30 major browser versions for
Google Chrome, Mozilla Firefox, and Opera between 2016 and 2020.

First, we extracted every browser feature that existed in these browser ver-
sions using the browser APIs. Then, we analyzed the feature sets for these

Browserprint: Impact of Browser Features on Fingerprintability and Privacy 175

browsers and compared them. One key observation was that the feature numbers
are overall increasing in modern browsers, and they are indeed becoming more
“bloated” in general.

Next, we compared the feature reports for these browsers to the already
listed fingerprinting APIs in browsers that are presented in the literature. Our
findings suggested that each browser version between 2016 and 2020 was uniquely
fingerprintable, and that the fingerprintablity of the browsers has been increasing
over the years.

We envision our research to affect how browser vendors introduce new fea-
tures and take into consideration the effects that these have on browser finger-
printability. Our goal is to highlight the concerning trend of “bloating” in the
browser and encourage browser vendors to remove abused features in order to
improve privacy on the web.

References

1. Am IUnique. https://amiunique.org. Accessed 20 June 2021
2. EasyList. https://easylist.to/. Accessed 20 June 2021
3. Opera version history. https://help.opera.com/en/opera-version-history/.

Accessed 30 June 2021
4. Panopticlick. https://panopticlick.eff.org. Accessed 10 Jan 2021
5. WebIDL Level 1. https://www.w3.org/TR/WebIDL-1/. Accessed 20 July 2021
6. Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan, A., Diaz, C.: The

web never forgets: persistent tracking mechanisms in the wild. In: Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security (2014)

7. Acar, G., et al.: Fpdetective: dusting the web for fingerprinters. In: Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications Security.
CCS 2013, pp. 1129–1140. Association for Computing Machinery, New York, NY,
USA (2013). https://doi.org/10.1145/2508859.2516674

8. Apple: Safari privacy overview (2019). https://www.apple.com/safari/docs/.pdf
9. Berners-Lee, T.: The worldwideweb browser (1990). https://www.w3.org/People/

Berners-Lee/WorldWideWeb.html
10. BrowserStack: App & Browser Testing Made Easy (2021). https://www.

browserstack.com/
11. Cao, Y., Li, S., Wijmans, E.: (cross-)browser fingerprinting via OS and hardware

level features (2017). https://doi.org/10.14722/ndss.2017.23152
12. Chenxiong, Q., Koo, H., Oh, C., Kim, T., Lee, W.: Slimium: debloating the

chromium browser with feature subsetting. In: Proceedings of the ACM Conference
on Computer and Communications Security (CCS) (2020)

13. Google Chrome: New in Chrome 56 — Web (2017). https://developers.google.com/
web/updates/2017/01/nic56. Accessed 20 June 2021

14. Eckersley, P.: How unique is your web browser? In: Atallah, M.J., Hopper, N.J.
(eds.) PETS 2010. LNCS, vol. 6205, pp. 1–18. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14527-8 1

15. Englehardt, S., Narayanan, A.: Online tracking: a 1-million-site measurement and
analysis. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1388–1401 (2016)

https://amiunique.org
https://easylist.to/
https://help.opera.com/en/opera-version-history/
https://panopticlick.eff.org
https://www.w3.org/TR/WebIDL-1/
https://doi.org/10.1145/2508859.2516674
https://www.apple.com/safari/docs/.pdf
https://www.w3.org/People/Berners-Lee/WorldWideWeb.html
https://www.w3.org/People/Berners-Lee/WorldWideWeb.html
https://www.browserstack.com/
https://www.browserstack.com/
https://doi.org/10.14722/ndss.2017.23152
https://developers.google.com/web/updates/2017/01/nic56
https://developers.google.com/web/updates/2017/01/nic56
https://doi.org/10.1007/978-3-642-14527-8_1
https://doi.org/10.1007/978-3-642-14527-8_1

176 S. A. Akhavani et al.

16. fingerprintjs: fingerprintjs. https://github.com/fingerprintjs/fingerprintjs.
Accessed 15 July 2021

17. Mozilla Firefox: Firefox 51.0, See All New Features, Updates and Fixes
(2017). https://www.mozilla.org/en-US/firefox/51.0/releasenotes/. Accessed 20
June 2021

18. Gómez-Boix, A., Laperdrix, P., Baudry, B.: Hiding in the crowd: An analysis of
the effectiveness of browser fingerprinting at large scale. In: Proceedings of the
2018 World Wide Web Conference. WWW 2018, pp. 309–318. International World
Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE
(2018). https://doi.org/10.1145/3178876.3186097

19. Jueckstock, J., Kapravelos, A.: Visible V8: in-browser monitoring of JavaScript in
the wild. In: Proceedings of the ACM Internet Measurement Conference (IMC),
October 2019

20. Mowery, K., Shacham, H.: Pixel perfect: fingerprinting canvas in HTML5. In: Pro-
ceedings of W2SP (2012)

21. Mozilla: MDN Web Docs - Web APIs. https://developer.mozilla.org/en-US/docs/
Web/API

22. Mozilla: How to block fingerprinting with Firefox (2020). https://blog.mozilla.org/
firefox/how-to-block-fingerprinting-with-firefox/

23. Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F., Vigna, G.:
Cookieless monster: exploring the ecosystem of web-based device fingerprinting.
In: Proceedings of the IEEE Symposium on Security and Privacy (2013)

24. Olejnik, L., Englehardt, S., Narayanan, A.: Battery status not included: assessing
privacy in web standards. In: Proceedings of the International Workshop on Privacy
Engineering (IWPE) (2017)

25. Olejnik, A., Castelluccia, C., Janc, A.: Why Johnny can’t browse in peace: On the
uniqueness of web browsing history patterns (2012)

26. Schwarz, M., Lackner, F., Gruss, D.: JavaScript template attacks: automatically
inferring host information for targeted exploits. In: NDSS (2019)

27. Snyder, P., Ansari, L., Taylor, C., Kanich, C.: Browser feature usage on the modern
web. In: Proceedings of the Internet Measurement Conference (IMC) (2016)

28. Snyder, P., Livshits, B.: Brave, fingerprinting, and privacy budgets (2019). https://
brave.com/brave-fingerprinting-and-privacy-budgets/

29. Snyder, P., Taylor, C., Kanich, C.: Most websites don’t need to vibrate: a cost-
benefit approach to improving browser security. In: Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (2017)

30. Starov, O., Laperdrix, P., Kapravelos, A., Nikiforakis, N.: Unnecessarily Identi-
fiable: Quantifying the fingerprintability of browser extensions due to bloat. In:
Proceedings of the World Wide Web Conference (WWW) (2019)

31. Trickel, E., Starov, O., Kapravelos, A., Nikiforakis, N., Doupe, A.: Everyone is
different: client-side diversification for defending against extension fingerprinting.
In: Proceedings of the USENIX Security Symposium (2019)

https://github.com/fingerprintjs/fingerprintjs
https://www.mozilla.org/en-US/firefox/51.0/releasenotes/
https://doi.org/10.1145/3178876.3186097
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API
https://blog.mozilla.org/firefox/how-to-block-fingerprinting-with-firefox/
https://blog.mozilla.org/firefox/how-to-block-fingerprinting-with-firefox/
https://brave.com/brave-fingerprinting-and-privacy-budgets/
https://brave.com/brave-fingerprinting-and-privacy-budgets/

TridentShell: A Covert and Scalable
Backdoor Injection Attack on Web

Applications

Xiaobo Yu1, Weizhi Meng2, Lei Zhao3, and Yining Liu1(B)

1 School of Computer Science and Information Security, Guilin University of
Electronic Technology, Guilin 541004, China

ynliu@guet.edu.cn
2 Department of Applied Mathematics and Computer Science, Technical University

of Denmark, 2800 Kongens Lyngby, Denmark
3 School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China

Abstract. Web backdoor attack is a kind of popular network attack,
which can cause a serious damage to websites. In practice, cyber attackers
often exploit vulnerabilities in the system or web applications to implant
a backdoor to a web server. To address this challenge, static feature detec-
tion is believed to be an effective solution. However, it may also leave
a potential security “hole” that could be exploited by intruders. In this
paper, we propose a novel backdoor attack method called TridentShell,
which can inject a webshell into the memory of web application server
without leaving attack traces. Our attack is able to bypass almost all
types of static detection methods. In particular, it attempts to blend
itself into the web server and erase attack traces automatically, instead
of encrypting or obfuscating the content of webshell to avoid detection.
Besides, TridentShell can still be executed even when the webmasters
restrict the access to web directory. In the evaluation, we showcase how
TridentShell can successfully inject a webshell into five different types of
Java application servers (covering around 87% Java application servers in
the market), and can remove the attack traces on the server (increasing
the detection difficulty).

Keywords: Backdoor attack · Webshell · Web security · Java
application · Static feature detection

1 Introduction

With the rapid development of web applications and the ever-increasingly
enlargement of users, more attention has been given on how to make web services
more secure and reliable. According to the semiannual safety report issued by
CNCERT/CC [3], the first six months in 2019 had a 20% year-over-year growth
rate in the amount of web backdoor attacks. Web backdoor, often referred to as
webshell, has become the main threat for web security, which is a popular cyber-
attack to obtain the privilege of a victim’s server. It provides a web interface that
c© Springer Nature Switzerland AG 2021
J. K. Liu et al. (Eds.): ISC 2021, LNCS 13118, pp. 177–194, 2021.
https://doi.org/10.1007/978-3-030-91356-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91356-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-91356-4_10

178 X. Yu et al.

enables cyber attackers to remotely control the server, such as intelligence gath-
ering, command execution, file transferring, network traffic forwarding, lateral
movement and so forth.

Due to the wide usage of webshell in cyber attacks, there have been many
previous research studies in this field. Generally, webshell detection methods can
be divided into two types: static detection [10,20], and dynamic detection [21,22].
Static detection mainly focuses on identifying script files containing malicious
codes using different algorithms. Different from the static detection, dynamic
detection focuses on analyzing the features of webshell during the execution
time. While for dynamic detection, when being run on a cluster scale, the cost
of development time is high and numerous false positives may occur [13]. Because
of these challenges in dynamic detection, the static detection naturally becomes
a popular webshell detection.

Static detection has been widely studied in recent years. Hu et al. [15] devel-
oped a webshell detection method based on decision tree, they extracted different
static features of script files to classify and detect webshell. Hu et al. [14] pro-
posed a detection model based on Naive Bayesian theory, which can effectively
detect the confused webshell and improve the classification accuracy rate. Sun
et al. [19] proposed a webshell detection method based on matrix decomposition
and machine learning methods. It could effectively predict webshell and finally
achieve the purpose of classification.

However, after investigating a large number of static detection methods, we
observe that most existing methods focus mainly on the features of a script file
or log file, while ignoring the diverse forms of attacks, such as fileless attack
[18]. Fileless attack as a kind of new attack conception enables to carry out
intrusions successfully where no executable file is written to disk. This type of
attack provides characteristics of higher concealment, longer latency, and greater
harm. Due to these characteristics, fileless attack has drawn increasing attention
and penetrated into many links of attack activities in recent years.

Motivated by the above observations, in this paper, we propose a novel back-
door attack method called TridentShell, which can inject webshell into the mem-
ory of web application server without leaving attack traces, and is able to detour
almost all types of static detection methods. Instead of encrypting or obfuscating
the content of webshell, our attack can blend itself into the web server and erase
attack traces automatically to avoid being detected. Moreover, it is generic and
flexible, which not only can attack different types of Java application servers but
also can be executed even when the webmasters restrict access to web directory.
To summarize, we have made the following contributions.

– By investigating a large number of static detection methods, we observe that
most static detection methods focus mainly on the features of file contents
while ignoring the existing forms of webshell. This observation poses a new
angle to design a backdoor attack.

– We propose a generic and covert backdoor attack by injecting webshell into
the memory of web application server, without leaving any attack traces. The
webshell can be executed even when the access to web directory is restricted.

TridentShell 179

– We evaluate the effectiveness and run-time performance of our webshell. The
experimental results indicate that our webshell can compromise five different
types of Java application servers (covering about 87% Java application servers
in the current market) and remain no traces on the server. We also show that
TridentShell is resistant to antivirus software, access control policy and static
detection methods to some extent.

The rest of this paper is structured as follows: Sect. 2 describes the back-
ground and the related work. Our proposed attack - TridentShell is described in
Sect. 3, including attack vector, its methodology and the implementation details.
Section 4 evaluates the effectiveness and run-time performance of our attack with
a series of experiments, as well as discusses the limitations and future work. We
conclude the paper in Sect. 5.

2 Background and Related Work

2.1 Static Webshell Detection

Static webshell detection mainly focuses on identifying script files containing
malicious codes using different algorithms. Due to the classification nature of
webshell detection, feature selection will make a determining impact on the
detection result, including text feature selection and syntax feature selection.
Regular expression detection method has been widely applied in the field of text
feature, but this detection method can be easily bypassed by obfuscated web-
shell for the sake of its limited expression ability and the rapid development of
current obfuscation technology.

To make up the shortcomings of regular expression, researchers began to
use statistical analysis to detect malicious files. Statistical analysis technique
focuses on identifying obfuscated webshell based on statistical features including
information entropy, if the webshell is being encrypted. 1) The longest word,
which means that the file content appears to be obfuscated via coding technique
such as Base64 to form a long string. 2) Index of coincidence, if the coincidence
index is low, the file might be encrypted or obfuscated. 3) The compression ratio,
as the character within obfuscated webshell distributes more evenly than normal,
compression ratio would thus become much larger. NeoPI [10] is a very popular
webshell detection tool based on statistical analysis, and it can detect obfuscated
or encrypted contents within text and script files. Cui et al. [12] proposed a PHP
webshell detecting model, which is a combination of random forest classifier and
GBDT classifier. Furthermore, they extracted both common statistical features
and opcode sequence features from PHP source files.

Although statistical analysis is good at identifying obfuscated webshell in
a holistic mode, it would be ineffective if attackers insert obfuscated malicious
codes into a big chunk of normal code. To solve this problem, syntax feature
selection has attracted attention and becomes widely acceptable. This kind of
detection methods were used to explore all possible execution paths of script
files, so it can complete some difficult detection tasks. Li et al. [16] proposed

180 X. Yu et al.

a webshell detection system called ShellBreaker, which detects malicious script
files by correlating syntactical and semantic features. Then they used a statistical
classifier to analyze these features. Experimental results demonstrated that their
system can achieve the detection rate of 91.7%, and a false positive rate of 1%.

Besides, Shi et al. [17] proposed a log-based lightweight webshell detection
method, and the webshell can be detected from three angles: text feature, statis-
tical feature and correlation feature. The experiments indicated that this method
is able to discover backdoor attacks either underway or already completed.

2.2 Java Bytecode Instrumentation Technique

Java bytecode instrumentation technique was firstly introduced in Java SE 5. It
assists developers using an independent agent program to monitor Java appli-
cation before application runs. This monitoring method can not only get status
of JVM but also modify Java class definitions. In Java SE 6, this technique was
further updated and makes it possible to load an agent program into an already
running JVM. Owing to its good performance, it has already been practiced in
the field of network security. Runtime Application Self-Protection Technology
(RASP) [8] is one of the many applications of Java instrumentation technique.
RASP is a new application security protection technique, which injects a pro-
tection program into an application or application runtime environment and
enables to detect and prevent real-time attacks. Besides, when protection pro-
gram incorporated in the application execution environment, this incorporation
is noninvasive and requires no modification to application code [11]. Based on
this observation, an attractive insight to make covert backdoor attack is to inject
malicious codes into application server at run-time. More importantly, as most
of detection methods focus on the static features of file contents, an “invisible”
webshell can escape detection easily. By injecting a webshell into an application
server, we can design a hard-to-spot web backdoor attack.

2.3 Webshell Backdoor

Webshell is a malicious web-based command execution environment existing in
multiple forms, especially written in some scripting language like ASP, PHP,
JSP or CGI. It enables attackers to remotely control a web server and provide
various functionalities such as intelligence gathering, command execution, file
transferring, network traffic forwarding, etc. The webshell attack flow chart can
be described in Fig. 1. First, the attacker implants a webshell to victim’s server by
exploiting the relevant vulnerabilities. Then the attacker can remotely access to
the webshell through a browser or a webshell management tool and get command
execution environment. All these actions aim to finally obtain the control of the
web server.

TridentShell 181

Fig. 1. Webshell attack flowchart

3 Our Proposed Attack: TridentShell

3.1 Attack Vector

Target Scope and Presupposition. Before introducing our attack in more
detail, we need to firstly discuss the target scope and presupposition of our
attack. In particular, the prime attack targets are Java application servers such
as Apache Tomcat, JBoss, WebLogic, Jetty and Resin. Besides, to enable attack-
ers to execute our webshell in a target server, we presuppose that an attacker
has obtained the normal user permissions on the server before implementing a
backdoor (this is common in practice).

Attack Characteristics. By using Java instrumentation technology, Tri-
dentShell could hook specified class within the Java application in order to con-
trol the whole HTTP request process. Moreover, it can provide the feature of
noninvasion, that is, there is no need for attackers to add or modify any configu-
ration files and application code on the server. Nevertheless, almost all webshell
attacks may face the following two challenges in a practical attacking scenario.

– Challenge 1: How to be scalable to different application platforms.
In most realistic attacking scenarios, there are different kinds of Java appli-
cation servers, and the Java class within each of these servers is also diverse.
How to locate hooked Java class is thus undoubtedly a difficult task. There
is a need to find a solution to extend the scalability of webshell attacks.

– Challenge 2: How to clean the traces of our attack remained on a
server. In most cases, attacking traces will be left on a server. For example,
the Windows OS has the file locking mechanism, when a webshell is executed,
the attack file will be occupied and could not be deleted. Hence, it is very
essential to find a solution to erase traces before being discovered.

182 X. Yu et al.

3.2 Methodology

The proposed attack model in this paper consists of two modules: Load Module
and Agent Module. First, Load Module connects to the Java virtual machine and
loads the Agent Module into target VM. After that, Agent Module can complete
a series of actions in the VM, such as adding transformer, getting loaded classes
and modifying the content of the normal class. Figure 2 shows an overview of
the attack model.

Fig. 2. Attack model

Load Module. For each Java program, Java Virtual Machine (JVM) will create
a corresponding instance of the virtual machine after startup. The main task is
to load the Agent Module into Java application server virtual machine. Firstly,
it invokes the method listVirtualMachines in order to get a list of the Java
virtual machine descriptors. Then, it attempts to match the currently running
Java web application server according to the display name of the virtual machine
descriptor. Once it successfully completes the matching, it will connect to the
virtual machine instance of the application server by calling the method attach
and invoking the method LoadAgent to load our crafted agent JAR file [7].

Agent Module. Since we aim to generate a covert webshell, an intuitive app-
roach to remotely control the victim machine is to send a malicious command
through Uniform Resource Locator (URL). As shown in Fig. 3(a), the normal
procedure for HTTP request in Java application server is: a user’s browser sends
the URL to the target server, then the server parses this URL and hands it off to
the Filter and Servlet. During this process, if a match is found, then the server
will send back a response to the browser.

As shown in Fig. 3(b), if we tamper with a key Java class for handling the
HTTP requests, then an “intangible” webshell can be implemented. Specifically,
the main task of Agent Module is to hook the key class and modify it. When
the Agent Module has been loaded into an application server virtual machine,

TridentShell 183

Fig. 3. The procedure for an HTTP request

it will register supplied transformer by invoking a method addTransformer at
first. Afterwards, Agent Module calls the method getAllLoadedClasses to achieve
all classes loaded by the current virtual machine. Thus, during the normal request
process, once the key class is called, it would be hooked, and a backdoor will
be inserted. Listing 1.1 describes the code illustration of backdoor. First, we
accept two arguments including HTTP requests and responses. Then, we define
the input parameters of password and cmd. Only when the user inputs a correct
password, the backdoor can execute the command properly.

Listing 1.1. A code illustration of backdoor

1 Javax . s e r v l e t . http . HttpServ letRequest r eque s t = $1 ;
2 Javax . s e r v l e t . http . HttpServletResponse re sponse = $2 ;
3 St r ing password = reques t . getParameter (‘ password ’) ;
4 S t r ing cmd = reques t . getParameter (‘ cmd ’) ;
5 S t r ing output = ‘ ’ ;
6 i f (password . equa l s (‘ backdoor ’)) {
7 output = execmd (cmd) ;

3.3 Implementation

Based on the understanding of our attack model, in this part, we introduce how
to address the two challenges in our implementation.

Challenge and Solution 1: Extending the Application Platform of Our
Webshell. To apply our attack model in a practical attacking scenario, it
is important to extend our attack capability to compromise different types of
servers. The key to this challenge is to locate the corresponding classes that will
handle HTTP requests before the requests flow into the Filter and Servlet in dif-
ferent Java application servers. However, almost all application servers contain
a large number of class files, it is not an easy task to find such class.

184 X. Yu et al.

Fig. 4. The invocation chain of FilterChain (the TRACE command can help search
the invocation path of FilterChain and count all performance overhead in this invoca-
tion chain. Each of these rows starts with the elapsed time overhead followed by the
invocation method).

FilterChain is an object provided by the servlet container, which can offer a
view into the invocation chain of a filtered request for a resource, and filters use
FilterChain to invoke the next filter in the chain [6]. Thus, if we can control the
entrance of the filter chain, we can direct the HTTP requests to go through our
malicious logic flow rather than the normal filter. To achieve this goal, we care-
fully investigate relevant Java classes and find that Arthas can help locate Java
classes. Arthas is an open-source Java diagnostic tool provided by Alibaba mid-
dleware team [1], which can help developers dynamically trace Java programs
and monitor the state of JVM in real-time. It can be used to trace the specific
class and view the full request trees. Below we can take the Tomcat for example:

Fig. 5. The part code of internalDoFilter

– Tracing the Filter. As shown in Fig. 3, the HTTP requests should enter
the filters after being sent to the server; thus, an intuitive approach to locate

TridentShell 185

the key class is to trace the Filter. Specifically, we can trace the interface
javax.Servlet.FilterChain and view the entire invocation process. As shown
in Fig. 4, we can observe that the HTTP requests should first enter Applica-
tionFilterChain, which is the implementation class of FilterChain, and finally
reach service in the Servlet.

– Looking for the Hook Point. After carefully reviewing the class code of
ApplicationFilterChain, we can find that internalDoFilter satisfies our need.
As shown in Fig. 5, ServletRequest and ServletResponse as parameters of this
method can encapsulate HTTP requests and responses. Besides, this method
contains the entrance of the filter chain. For these reasons, we construct a
backdoor function in this method and force the HTTP request into our func-
tion before it goes through filter chain.

Based on such approach, we eventually identify the key Java classes and
their hook methods for five different types of Java application servers, as shown
in Table 1.

Table 1. List of hook methods in different Java middleware

Java middleware Hook method

Tomcat org.apache.catalina.core.ApplicationFilterChain:internalDoFilter()

JBoss org.apache.catalina.core.ApplicationFilterChain:internalDoFilter()

Resin com.caucho.server.dispatch.ServletInvocation:service()

Jetty org.eclipse.jetty.server.handler.HandlerWrapper:handle()

WebLogic weblogic.wsee.server.servlet.BaseWSServlet:service()

Challenge and Solution 2: Cleaning the Traces of Our Attack
Remained and Achieving Fileless Webshell. As Windows has the file lock-
ing mechanism, when Load Module is executed to load Agent Module into JVM,
it cannot be deleted because the DeleteFile function on Windows fails if an appli-
cation attempts to delete a file that has other handler open for normal I/O [5].
Due to this, most backdoor attacks will leave obvious attack traces. To clean the
traces of our attack, there is a need to figure out which process is holding the
Load Module and preventing from deletion. Then we need to get the file handler
and release it. To achieve this goal, we design the following approach:

– Getting Debug Privilege. Before we enumerate all current system pro-
cesses, we must get debug privilege at first. Debug privilege is a security
policy setting that allows someone to debug a process that they would not
otherwise have access to. For example, a process running as a user with the
debug privilege enabled on its token can debug a service running as the local
system [4]. Listing 1.2 shows the code illustration of enabling the debug privi-
lege in the process. First, we invoke the function OpenProcessToken to get the
token of current process. Then, we attempt to activate the debug privilege of
current token by calling the function LookupPrivilegeValue. When Attributes

186 X. Yu et al.

is set to SE PRIVILEGE ENABLED, debug privilege has been successfully
activated.

Listing 1.2. A code illustration of enabling the debug privilege

1 BOOL EnableDebugPriv i lege (BOOL fEnable) {
2 BOOL fOk = FALSE;
3 HANDLE hToken ;
4 i f (OpenProcessToken (GetCurrentProcess () ,

TOKEN ADJUST PRIVILEGES, &hToken)) {
5 TOKEN PRIVILEGES tp ;
6 Tp . Pr iv i l egeCount = 1 ;
7 LookupPriv i legeValue (NULL, SE DEBUG NAME, &tp

. P r i v i l e g e s [0] . Luid) ;
8 tp . P r i v i l e g e s [0] . At t r ibute s = fEnable ?

SE PRIVILEGE ENABLED : 0 ;
9 AdjustTokenPr iv i l eges (hToken , FALSE, &tp ,

s i z e o f (tp) , NULL, NULL) ;
10 fOk = (GetLastError () == ERROR SUCCESS) ;
11 CloseHandle (hToken) ;
12 }
13 return (fOk) ;
14 }

Fig. 6. The result of releasing target handler (after executing ‘delete.exe’, the file han-
dler of ‘load.jar’ can be released at runtime. Then we can delete ‘load.jar’ to make sure
that no attack traces will be left on the disk).

– Enumerating System Processes and Getting File Handler. After ele-
vating permission, we can call a kernel function NtQuerySystemInformation
to get handlers for all processes. By invoking kernel function NtDuplicateOb-
ject, we can get more detailed information about these handlers, including
handler name, process ID, object address and more. By matching the han-
dler name, we can eventually figure out the process that is holding the Load
Module open.

TridentShell 187

– Releasing File Handler. Even though we get the corresponding process
handler by the approach above, it is still a pseudo handler that could not
be directly operated. Thus, we may need to invoke kernel function Dupli-
cateHandle and convert this pseudo handler to a real handler. In addition,
dwOptions - the parameter of DuplicateHandle also needs to be set as DUPLI-
CATE CLOSE SOURCE, as this handler will be closed in the source process.
Hence we can finally release the target handler, and an instance is depicted
in Fig. 6.

4 Evaluation

4.1 Experimental Design and Settings

We assess our webshell based on the following criteria: (1) We examine the
effectiveness of our attack with five distinct types of Java application servers,
including Tomcat, JBoss, Resin, Jetty, and WebLogic. All of them can be down-
loaded from their official website. (2) We evaluate the run-time performance of
our attack with four types of security policies, including static webshell detec-
tion methods, access control policy, antivirus engines and Windows Defender.
(3) All Java application servers were running on Windows 10, with Intel(R) Core
(TM) i5-7360 CPU@2.30 GHz and 512 GB RAM.

Table 2. The effectiveness evaluation

Tomcat JBoss WebLogic Jetty Resin

Directly display � � � � �

Executable � � � � �

�: The requirement (left) is satisfied on the corresponding
server (top).

�: The requirement (left) is not satisfied on the correspond-
ing server (top).

4.2 Effectiveness of Our Approach

To evaluate the effectiveness of our attack under different Java application
servers, we selected five commonly used servers including Tomcat, JBoss,
WebLogic, Jetty, Resin. By using Java bytecode instrumentation technique, we
can inject the backdoor function into a normal Java class. The experimental
results are shown in Table 2. It is observed that for the first three servers, we
could directly interact with the webshell on the webpage. For the latter two
servers, our attack cannot display correctly on the webpage because of the default
settings for page redirection on the server. However, it does not affect the func-
tion of our TridentShell, it can still compromise the target server through HTTP
request. We explain the result as follows.

188 X. Yu et al.

Figure 7 and Fig. 8 respectively shows the attack effect on the first three
and latter two servers. As shown in Fig. 7, we can interact with our TridentShell
directly through URL on the first three web servers and make them display the
system command ‘systeminfo’ on the webpage. However, the system command
we executed cannot be correctly displayed on the latter two servers. Hence we
aim to verify the validity of our webshell through DNSLog, which is a platform to
help verify no-echo command execution. More specifically, we can get a random
subdomain in this platform. Then we execute the command ‘ping SUBDOMAIN’
through URL on the target web server. If this command has been executed by the
target server, we can receive this DNS query record in this platform. As shown
in Fig. 8, we could successfully receive two records from the target server. This
proves that our TridentShell can still be used on Jetty and Resin. To demonstrate
the effectiveness of our attack on each of the servers, we print out the word of
‘[SERVER NAME] Attack Success’ to the console, as shown in Fig. 9.

Fig. 7. Executing the command ‘systeminfo’ with our TridentShell through browser

Fig. 8. DNS query record in DNSLog

TridentShell 189

Fig. 9. The result of attack on five different servers

4.3 Robustness of TridentShell

Resistance to Static Feature Detection. Static webshell detection includes
regular expression detection method, statistical feature detection method, syntax
feature detection method and log-based webshell detection method, etc. The first

190 X. Yu et al.

three detection methods mainly rely on matching potential malicious codes in
source files. As our TridentShell will be injected into server memory and leave
no attack files on the server, these approaches are naturally not effective at
recognising our attack.

Moreover, log analysis technique mainly detects abnormal files from a huge
amount of web log files. For example, Shi et al. [17] proposed a webshell detec-
tion method based on the server log text file. They matched the file access path
and the parameters that are submitted, and detected webshell via a comparison
regarding the access frequency to the webpage file. However, we find that their pre-
processing stage could be compromised by our TridentShell. To be more specific,
before detecting any abnormal files, they need to firstly clean records about static
files from web log, e.g., the files with the suffix ‘.html’. While we could trigger our
backdoor attack from arbitrary URL path since we hook the method that handles
HTTP requests in a Java application server. Thus, if we construct a malicious
URL that ends with the ‘.html’ suffix, we could bypass this detection method.
As shown in Fig. 10, we constructed a backdoor URL ended with ‘index.html’ and
could trigger our webshell successfully. The experimental results demonstrate that
such detection method is ineffective to defeat our attack.

Fig. 10. Adding static file suffix to bypass log analysis technique

Fig. 11. To evaluate our attack under access control

TridentShell 191

Fig. 12. The scanning result by VirusTotal

Access Control. We then demonstrate the flexibility of our attack at the
deployment phase. Traditional webshell is a malicious script file, which must
be saved under the Web directory; otherwise it will not work correctly. In some
practical attacking scenarios, the server administrator often prevents web back-
door attack by forbidding Web directory write permission. That is, a normal
user is prohibited from creating or updating file in this directory. Although this
measure can defend against traditional webshell, but it is not workable to our
TridentShell. This is because our webshell can be executed on any arbitrary path
as long as the Java runtime environment installed and configured on the server.
The experimental results are shown in Fig. 11. It shows that our webshell cannot
be moved to Web directory, but it can still perform a backdoor attack.

Antivirus Software. We then evaluate the concealment of our attack under
antivirus engines and the Windows defender. More specifically, we first use Virus-
Total [9], which is a popular antivirus website allowing to scan malicious files
with more than 70 antivirus tools.

As shown in Fig. 12, all the antivirus engines in VirusTotal cannot identify
our TridentShell as a backdoor. We analyze the potential reasons as follows. (1)
The file format of our TridentShell is JAR, which is different from script files that
can be called remotely. Hence most antivirus engines would not regard it as a
potential threat. (2) The main function of our TridentShell is just adding or sub-
stituting java codes, thus it was only treated as a normal programming behavior.
For instance, we compare a general backdoor (e.g., Chopper webshell [2]) with
our proposed webshell at the pre-attack stage. At this stage, we try to implant
the backdoor to the target server. As shown in Fig. 13(a) and Fig. 13(b), the
general webshell was detected by the Windows Defender immediately whereas
our TridentShell would not trigger any alarm.

192 X. Yu et al.

Fig. 13. The scanning result by Windows Defender

4.4 Limitations and Future Work

Although our proposed TridentShell has shown the high concealment and robust-
ness against the antivirus software and static detection, we aware that our attack
may have two main limitations. First, it lacks enough capability to completely
withstand dynamic webshell detection, which often uses the network traffic, sys-
tem commands and state exceptions to identify a malicious backdoor. Second,
when our TridentShell runs on the Resin and Jetty, it cannot display correctly
on the webpage.

In our future work, we plan to investigate the performance of dynamic detec-
tion methods and analyze dynamic features in order to enhance our proposed
webshell and bypass the detection. Besides, we intend to improve the display
function of our TridentShell on Resin and Jetty. Also, we plan to explore our
attack impact on other servers.

5 Conclusion

In this paper, we observe that most of existing methods focus mainly on the fea-
tures of the script file or log file but ignore the existing form of attack. Motivated
by this, we proposed a generic, covert backdoor attack called TridentShell, which
can inject a webshell into the memory of web application server, which is able
to bypass almost all types of static detection methods. To make our webshell
more effective in practice, we address two challenges including how to extend its
application platform and clean the traces after the attacks. The experimental
results demonstrate that our approach can successfully compromise five different
types of Java application servers (covering about 87% Java application servers

TridentShell 193

in the market). In addition, TridentShell is resistant to antivirus software, static
detection methods and other security policies to some extent.

Acknowledgments. This work is supported in part by National Natural Science
Foundation of China under Grants 62072133 and 61662016 and, in part by the Key
Projects of Guangxi Natural Science Foundation under Grant 2018GXNSFDA281040.

References

1. Arthas. https://arthas.aliyun.com/
2. China chopper. https://www.fireeye.com/blog/threat-research/2013/08/breaking-

down-the-china-chopper-web-shell-part-i.html
3. CNCERT semiannual safety report. https://www.cert.org.cn/publish/main/

upload/File/2019Firsthalfyear.pdf
4. Debug privilege. https://docs.microsoft.com/en-us/windows-hardware/drivers/

debugger/debug-privilege
5. Deletefilea function. https://msdn.microsoft.com/library/windows/desktop/

aa363915(v=vs.85).aspx
6. Filter chain. http://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/

FilterChain.html
7. Package com.sun.tools.attach. https://docs.oracle.com/javase/7/docs/jdk/api/

attach/spec/com/sun/tools/attach/package-summary.html
8. Runtime application self-protection. https://www.gartner.com/en/information-

technology/glossary/runtime-application-self-protection-rasp
9. Virustotal. https://www.virustotal.com/gui/

10. Web shell detection using NeoPI. https://resources.infosecinstitute.com/web-shell-
detection

11. Čisar, P., Čisar, S.M.: The framework of runtime application self-protection tech-
nology, pp. 000081–000086 (2016)

12. Cui, H., Huang, D., Fang, Y., Liu, L., Huang, C.: Webshell detection based on
random forest-gradient boosting decision tree algorithm, pp. 153–160 (2018)

13. Guo, Y., Marco-Gisbert, H., Keir, P.: Mitigating webshell attacks through machine
learning techniques. Future Internet 12(1), 12 (2020)

14. Hu, B.: Research on webshell detection method based on Bayesian theory. Sci.
Mosaic 6, 66–70 (2016)

15. Hu, J., Xu, Z., Ma, D., Yang, J.: Research of webshell detection based on decision
tree. J. Network New Media 6(005) (2012)

16. Li, Y., Huang, J., Ikusan, A., Mitchell, M., Zhang, J., Dai, R.: ShellBreaker: auto-
matically detecting PHP-based malicious web shells. Comput. Secur. 87, 101595
(2019)

17. Liuyang, S., Yong, F.: Webshell detection method research based on web log. J.
Netw. New Media 2(11) (2016)

18. Mansfield-Devine, S.: Fileless attacks: compromising targets without malware. Net-
work Secur. 2017(4), 7–11 (2017)

19. Sun, X., Lu, X., Dai, H.: A matrix decomposition based webshell detection method,
pp. 66–70 (2017)

20. Tu, T.D., Guang, C., Xiaojun, G., Wubin, P.: Webshell detection techniques in
web applications, pp. 1–7 (2014)

https://arthas.aliyun.com/
https://www.fireeye.com/blog/threat-research/2013/08/breaking-down-the-china-chopper-web-shell-part-i.html
https://www.fireeye.com/blog/threat-research/2013/08/breaking-down-the-china-chopper-web-shell-part-i.html
https://www.cert.org.cn/publish/main/upload/File/2019Firsthalfyear.pdf
https://www.cert.org.cn/publish/main/upload/File/2019Firsthalfyear.pdf
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debug-privilege
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debug-privilege
https://msdn.microsoft.com/library/windows/desktop/aa363915(v=vs.85).aspx
https://msdn.microsoft.com/library/windows/desktop/aa363915(v=vs.85).aspx
http://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/FilterChain.html
http://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/FilterChain.html
https://docs.oracle.com/javase/7/docs/jdk/api/attach/spec/com/sun/tools/attach/package-summary.html
https://docs.oracle.com/javase/7/docs/jdk/api/attach/spec/com/sun/tools/attach/package-summary.html
https://www.gartner.com/en/information-technology/glossary/runtime-application-self-protection-rasp
https://www.gartner.com/en/information-technology/glossary/runtime-application-self-protection-rasp
https://www.virustotal.com/gui/
https://resources.infosecinstitute.com/web-shell-detection
https://resources.infosecinstitute.com/web-shell-detection

194 X. Yu et al.

21. Yang, W., Sun, B., Cui, B.: A webshell detection technology based on HTTP traffic
analysis. In: Barolli, L., Xhafa, F., Javaid, N., Enokido, T. (eds.) IMIS 2018. AISC,
vol. 773, pp. 336–342. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-
93554-6 31

22. Zhang, H., et al.: Webshell traffic detection with character-level features based on
deep learning. IEEE Access 6, 75268–75277 (2018)

https://doi.org/10.1007/978-3-319-93554-6_31
https://doi.org/10.1007/978-3-319-93554-6_31

Andromeda: Enabling Secure Enclaves for
the Android Ecosystem

Dimitris Deyannis1,2,3(B), Dimitris Karnikis2, Giorgos Vasiliadis2,
and Sotiris Ioannidis2,4

1 Sphynx Technology Solutions AG, Zug, Switzerland
d.ntegiannis@sphynx.ch

2 FORTH-ICS, Heraklion, Crete, Greece
{deyannis,dkarnikis,gvasil}@ics.forth.gr
3 University of Crete, Heraklion, Crete, Greece

deyannis@csd.uoc.gr
4 Technical University of Crete, Chania, Crete, Greece

sotiris@ece.tuc.gr

Abstract. The Android OS is currently used in a plethora of devices
that play a core part of our everyday life, such as mobile phones, tablets,
smart home appliances, entertainment systems and embedded devices.
The majority of these devices typically process and store a vast amount of
security-critical and privacy-sensitive data, including personal contacts,
financial accounts and high-profile enterprise assets. The importance of
these data makes these devices valuable attack targets.

In this paper we propose Andromeda, a framework that provides
secure enclaves for Android OS to mitigate attacks that target sen-
sitive or critical code, data and communication channels. Andromeda
offers the first SGX interface for Android OS (to the best of our knowl-
edge), as well as services that enhance its security and offer protec-
tion schemes for several applications that deal with sensitive or secret
data. Andromeda is also able to securely execute SGX-enabled code on
behalf of external devices that are not equipped with SGX-capable CPUs.
Moreover, Andromeda protects cryptographic keys from memory dump
attacks with less than 16% overhead on the corresponding cryptographic
operations and provides secure, end-to-end encrypted, communication
and computation channels for external devices paired with the Android
device.

1 Introduction

Android has become a very popular open-source operating system that targets a
large set of devices [11], including mobile phones, tablets, smart home appliances,
entertainment systems and embedded devices. All these devices play a core part
of our everyday life and usually process and store a vast amount of privacy-
sensitive data, such as personal info, financial accounts, cryptographic keys and
high-profile enterprise assets. The importance of this data makes these devices

c© Springer Nature Switzerland AG 2021
J. K. Liu et al. (Eds.): ISC 2021, LNCS 13118, pp. 195–217, 2021.
https://doi.org/10.1007/978-3-030-91356-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91356-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-91356-4_11

196 D. Deyannis et al.

a valuable target for attacks and forces enterprises and device owners to be
concerned about the security of the data stored on them.

Furthermore, Android is also used as a hub for a diverse set of smaller
devices, such as wearables, web-cams, sensors, control and automation systems,
etc. These external devices act as data producers (e.g., image/video capturing,
motion sensors, temperature/humidity sensors, activity trackers etc.), sending all
of their data to a corresponding application that runs on Android. Several differ-
ent application frameworks do currently exist, such as Samsung SmartThings [12]
and Android Sensor API [4], that enable third-party developers to build apps
that compute on such, typically sensitive, data. Even though such applications
allow the user to easily access the data, still at the same time they are being
posed to significant risks as data is usually left unprotected and prone to mis-
use/abuse by unverified processes. As such, enabling applications to compute on
sensitive data that external devices generate (such as surveillance material, heart
rates, activities performed, motion patterns), while preserving the integrity of
data and preventing any unwanted or malicious abuse, is an important problem.
The protection of sensitive data is even more difficult to be achieved in such use
cases, since external and wearable devices are not equipped with trusted com-
ponents. In most cases, the only option available to protect the sensitive data
they produce is to use the TEE offered by other (remote) devices, if available.

To mitigate such attacks and protect user data, many operating systems
or frameworks that target such devices deploy permission-based access con-
trol mechanisms, such as authentication and disk encryption. For instance, IoT
frameworks, such as Bosch’s IoT [6] and Amazon’s AWS [1], use permission-
based access control for data sources and sinks, however they do not control the
flows between the authorized sources and sinks [26]. Many approaches leverage
hardware-based trusted computing techniques to isolate the execution of appli-
cations [17,23,33,38]. For instance, several works utilize ARM TrustZone [14]
to run security-sensitive code or protect security-critical data, such as crypto-
graphic keys and payment information [31,32,39]. However, TrustZone is shared
simultaneously by all applications since there is only one TEE provided by the
hardware. Thus, by design, it can not provide isolation between the applications
that utilize the TEE, as they all co-reside in the same secure space. As a result,
if one of the trusted applications goes rogue, any other application that runs in
the secure world can possibly be affected. This prevents it from being universally
leveraged simultaneously across different applications, either in user-space (e.g.,
banking applications, etc.) or kernel-space (security monitors, device keystore,
etc.). In addition, TrustZone does not protect against attackers with physical
DRAM access. Moreover, although TrustZone is provided by almost all ARM
processors, it can not be directly used by application developers; it requires
control of the device and its firmware, which is not the case in many cases.

In this paper we introduce Andromeda, a framework that provides secure
enclaves for Android OS so Android developers can explicitly use them for their
applications, either by using the native API in C/C++ or our Java interface
that provides access to the secure enclaves through JNI bindings. In contrast to

Andromeda: Enabling Secure Enclaves for the Android Ecosystem 197

previous approaches, Andromeda has the potential for multiple enclaves in a sys-
tem simultaneously, making it more flexible for general-purpose security-critical
operations, offering per-application or per-function isolated secure environments.
In addition, Andromeda implements popular Android services, enhanced with
secure enclaves capabilities, hence securing and protecting their functionalities.
We offer two representative services (i.e., a secure key management system, and
a data protection scheme for data flows) that enhance the security of Android OS
and offer protection schemes for several applications that deal with sensitive data
(such as cipher keys, personal data, medical data, etc.). These services enable
Andromeda to support an efficient and robust end-to-end encrypted data flow
model in which external devices that pair with Android can securely transfer and
process their data in the Android device, or even with a remote cloud-service.

We have currently implemented Andromeda prototype for Intel CPU proces-
sors with SGX support; any device that is equipped with a SGX-enabled pro-
cessor can run Andromeda natively, out of the box, including handheld devices,
convertibles, set-top boxes, and car entertainment units. However, we have to
point out that Andromeda is not bound to Intel SGX; instead the proposed
mechanisms could be implemented on top of other architectures offering secure
user-level enclaves. For instance, there are approaches that implement user-level
secure enclaves, compatible to SGX, either independent of the underlying CPU
(such as Komodo [27]) either on top of ARM TrustZone (such as Sanctuary [20]);
Andromeda is not fundamentally tight to Intel SGX and, as such, could be imple-
mented on top of such approaches instead. Besides that, we note that a number
of vendors are developing similar hardware protection mechanisms, including
AMD SEV [2] and IBM’s SecureBlue++ [19]. Even though these mechanisms
are not identical, many of the proposed techniques of Andromeda can be adapted
to use these hardware features, the need of which will increase in the future.

The contributions of our paper are the following:

– We present a systematic methodology to port the SGX framework for the
Android OS, including the SGX kernel driver, the required libraries and back-
ground services needed for its operation and a custom cross-compiler (Sect. 5).
This allows Android developers to explicitly use SGX for their applications
either by using the native API in C/C++ (Sect. 6.2), or our proposed Java
interface that provides access to the secure enclaves through JNI bindings
(Sect. 6.3).

– We implement popular Android services, enhanced with SGX capabilities,
hence securing and protecting their functionalities (Sect. 4.2). The SGX
enclaves enable multiple secure spaces that can be used simultaneously by
different applications, in contrast with other TEE ecosystems, such as ARM
TrustZone, that allow only a single secure space that is shared for everyone
and often times requires control of the device and its firmware.

– We implement a programming paradigm tailored for externally paired devices,
that enables a robust, efficient, and trusted data flow between external devices
that pair with the Android OS (Sect. 4.2). Such devices can securely offload

198 D. Deyannis et al.

data storage and computations to the Android OS in a trustworthy manner,
without necessarily being equipped with TEE-enabled CPUs.

2 Background

2.1 Intel SGX

Intel SGX [8] is a technology for application developers who are seeking to protect
selected code and data from disclosure attacks or modifications. Intel SGX makes
such protections possible through the use of enclaves, which are trusted execution
environments for applications. Enclave code and data reside in enclave page cache
(EPC), which is a region of protected physical memory. Both enclave code and
data are guarded by CPU access controls, and are also cache-resident. Every time
the data are moved to DRAM, they are encrypted via an extra on-chip memory
encryption engine (MEE), at the granularity of cache lines. For Intel Skylake
CPUs [9], the EPC size is between 64 MB and 128 MB and SGX provides a
paging mechanism for swapping pages between the EPC and untrusted DRAM.

Enclave memory is also protected against memory modifications and roll-
backs, using integrity checking. Non-enclave code cannot access enclave memory,
however enclave code can access untrusted DRAM outside the EPC directly. It
is the responsibility of the enclave code, however, to verify the integrity of all
untrusted data. Application code can be put into an enclave by special instruc-
tions and software made available to developers via the Intel SGX SDK. The
Intel SGX SDK is a collection of APIs, libraries, documentation, sample source
code, and tools that allows software developers to create and debug Intel SGX
enabled applications in C and C++ and is targeted for ×86 64 computer sys-
tems.

2.2 The Android OS

Android is an operating system mainly designed for small handheld smart
devices, including but not limited to mobile phones, tablets and watches. It
is being developed by Google LLC, was first released in 2007 and is currently
the most widespread OS for smart devices [10,13]. Android’s backbone is based
on the Linux kernel, thus granting it extensively tested security features and sta-
bility, and also allowing developers and manufacturers alike to develop hardware
drivers for a well known kernel. Google also had to make a few additions in order
to provide a more customised kernel functionality for Android’s requirements. A
few key additions are the wakelocks, a power management component crucial for
mobile devices, a unique out of memory (OOM) handling also informally known
as ‘Viking Killer’, the ashmem, a new shared memory allocator for low-memory
devices, pmem a process memory allocator and also Binder an Android specific
interprocess communication mechanism and remote method invocation system
essential to Android, due to the fact that it does not support the use of the
Linux SysV IPC.

Andromeda: Enabling Secure Enclaves for the Android Ecosystem 199

Android is built on top of the Linux kernel with components such as the
hardware abstraction layer (HAL), which provides various standard interfaces
that allow higher Java APIs and code to make use of a device’s hardware com-
ponents, and the Android Runtime (ART), a special virtual machine similar
to Java’s JVM, designed to run on low-memory devices. There are also Native
C/C++ Libraries and both HAL and ART are written in C/C++, however these
native libraries do not provide the same functionality as they would in a native
Linux machine. On the top layer of the Android architecture, there is the Java
API Framework, which provides applications a means to access the other lay-
ers in a constant way throughout different machines. All Android applications,
while able to use native C/C++ code, are developed in Java, enabling them to
be executed on multiple and different devices.

The majority of cryptographic operations in Android, including encryption,
decryption, message authentication (MAC), key generation and agreement, are
handled by the Android Keystore [3], that also provides a central place for storing
cryptographic keys for all applications. Keymaster is a part of the Android Key-
store service and responsible for generating new keys for encrypting, decrypting
and hashing data. It supports various cryptographic functions like AES, RSA,
SHA and more. In order to generate such an encrypted key for an application
and perform cryptographic operations, one has to generate a SecretKey, ini-
tialize a Cipher with the desired mode (encrypt, decrypt or other) and choose
the appropriate algorithm and its properties for the current operation. Android
defines an abstract programming interface that can be used for the third-party
implementations, plugged in seamlessly as needed. Therefore application devel-
opers may take advantage of any number of provider-based implementations
without having to add or rewrite code.

3 Threat Model and Assumptions

In this work, we assume a powerful and active adversary who has root privileges
and access to the physical hardware (with the exception of the CPU) as well.
The adversary can control the entire software stack, including the OS kernel and
other system software. However, we explicitly exclude denial-of-service (DoS)
attacks on enclaves, given that the design of SGX allows the host OS to control
an enclave’s life cycles anyway. As a result, an attacker can prevent or abort the
execution of enclaves, but should not gain any knowledge by doing so. Moreover,
side-channel attacks [21] that exploit timing or page faults or based on vulnera-
bilities of the application running inside the enclave are proven to be feasible on
SGX enclaves. However, protecting SGX enclaves from side-channel attacks that
either focus on software or hardware bugs is orthogonal to Andromeda and thus
we consider that it is out of scope of our work. However, any successful attempt
to protect SGX-enabled code/hardware has a direct benefit to our framework.
Finally, we assume the design and implementation of SGX itself, including all
cryptographic operations, is secure and does not contain any vulnerabilities.

200 D. Deyannis et al.

4 Andromeda Architecture

Our objective is to offer secure enclaves for the Android OS which must protect
sensitive services from the threats defined in Sect. 3. This will enable Android
developers to explicitly leverage them for their applications. We also want to
utilize secure enclaves inside Android services that operate on sensitive data
(such as Keystore), so they can be used transparently by applications. Overall,
Android developers should be able to build their applications and make use of
the secure enclaves as transparently as possible, ideally without writing extra
code or heavily modifying existing applications.

An enclave cannot be initiated on its own but instead the Intel Launch enclave
must be used to generate the appropriate launch token. In addition, an enclave’s
code always has to be executed in Ring-3 with a reduced set of allowed instruc-
tions and a limited amount of available memory. Thereby, we decide to build
an architecture that runs solely on the user-space, providing the interface and
the services that Android applications can use in an expressive and flexible way.
Figure 1 gives an overview of the Andromeda architecture. It comprises of dif-
ferent layers that can be used by different kinds of applications for different pur-
poses. Using these mechanisms, we enhance popular Android services, such as
the Device Pairing and Keystore service, to leverage secure enclaves internally in
order to increase their security in a robust and transparent way. Finally, we also
implement an environment, within SGX, so external devices that have paired
with Android can securely transfer and store sensitive data on the Android
device. Andromeda is responsible to protect all sensitive data by encrypting
them across the full path from the external device to the Android OS. Further,
Andromeda optionally enables the processing of these data via functions that the
data-publishing application has submitted for execution in the SGX enclaves.

4.1 Trusted Execution and Storage

Andromeda provides a trusted execution and data storage service on top of SGX.
The service can be used by local Android apps, as well as from remotely paired
devices, as described in Sect. 4.2. At the lowest level, applications can use the
native API provided by the SGX runtime libraries, in order to achieve the max-
imum performance. The process of utilising secure enclaves in an application
developed in native C/C++ code remains the same as for every other native
C/C++ Android application. The developer needs to prepare and integrate the
Intel SGX counterpart of the application (similar to the Linux environment) and
then cross-compile the application with our custom Android tool-chain, which is
able to handle the compilation of both trusted and untrusted parts of the code.
Developing Intel SGX enclaves for an APK implemented using Java requires
the use of JNI bindings. For this reason, we provide a Java API (described
in Sect. 6.3, which wraps the SGX functionalities in appropriate classes. The
developer needs to extend these classes with methods that will be eventually
executed in the SGX enclave of the application and perform the code compila-
tion using the Andromeda tool-chain which also provides JNI bindings for each

Andromeda: Enabling Secure Enclaves for the Android Ecosystem 201

SGX-enabled function requested. In this way, the developer can easily inter-
face with the enclaves from the APK level. Moreover, Andromeda provides the
implementation of a secure data vault system and exposes a simple Java API
for Android applications. Using the data vault service, applications can securely
store data inside the SGX enclaves or seal them for secure file system storage.

Fig. 1. Architecture of Andromeda

4.2 Andromeda Services

Keystore Service. The main purpose of Android Keystore is to store crypto-
graphic keys and offer cryptographic operations in a secure container, protecting
them from tampering. However, if not implemented with secure hardware sup-
port, it is vulnerable to a broad set of attacks, as described in Sect. 3. Having
the secret and private keys stored in clear-text makes them an easy target for a
malicious software running on the device. Andromeda offers the mechanisms to
keep the secret keys in a protected space, within secure enclaves, thus solving
and overcoming leakage scenarios.

The Keystore is implemented in C/C++ while Android uses a binder to
communicate with the Java part. Internally, Android Keystore can handle dif-
ferent type of entries. Some of them are PrivateKey, SecretKeyEntry and
TrustedCertificateEntry. Each one of these entries is identified by an alias
name which corresponds to the Keystore entry. When generating such an entry,
it is possible to choose from a range of cryptographic algorithms available in the
Keystore or use the default. In this way, the Android Keystore is able to store
multiple keys simultaneously, regardless of type, name and algorithm. At the
same time, different running programs can utilize the Keystore and store their
keys without having to deal with collisions.

An overview of our SGX-enabled Keystore operation is illustrated in Fig. 2.
A major advantage of Andromeda Keystore is that it can be used even by legacy

202 D. Deyannis et al.

apps without any code modifications or recompilation. The simplest way is to
have the entire Keystore inside a single enclave. However, this design leads to a
large TCB that is generally harder to review, or possibly verify, and is assumed to
have more vulnerabilities. To overcome this problem, we place in secure enclaves
only three core operations, which are used by the majority of cryptographic
algorithms: (i) the key generation, (ii) the data encryption, and (iii) the data
decryption. By doing so, we ensure that all private and secret keys reside in secure
enclaves while having a small TCB that can be easily verified. The memory for
the keys is allocated inside the SGX enclave and only their pointers are returned
to the user-space, preventing any attempt to read them, extract them or modify
them, even via physical access to the device’s DRAM.

Our current implementation uses RSA-1024 and AES Counter Mode (AES-
CTR); we note though that other modes can be easily implemented. AES divides
each plain-text into 128-bit fixed blocks and encrypts each block into cipher-
text with a 128-bit key. The encryption algorithm consists of 10 transforma-
tion rounds. Each round uses a different round key generated from the original
key using Rijndael’s key schedule. The whole encryption and decryption occurs
inside the SGX enclave, ensuring that keys and all intermediate states are well
protected. Similarly, we have implemented RSA encryption and decryption.

Fig. 2. The Keystore Architecture. The cipher keys are stored only in SGX enclaves.
Developers can encrypt and decrypt their data using the default Keystore API, which
internally redirects to Andromeda’s trusted implementation.

Andromeda: Enabling Secure Enclaves for the Android Ecosystem 203

Trusted Device Pairing. Andromeda provides secure device pairing between
devices, even when only one (i.e., the Android device) is equipped with an SGX-
enabled processor. Such scenarios are typical when small external devices, such
as sensors and wearables with limited security capabilities, need to be paired
with more powerful Android devices (i.e., a phone or gateway). To accomplish
secure device pairing and attestation in such use cases, Andromeda offers the
functionality that enables the external devices to securely connect with the SGX-
capable Android device. The main concept is that data-publishing wearable or
external devices can protect their sensitive data, so it will only reside or processed
within designated functions that run in SGX-provided enclaves.

First, Andromeda generates a key pair and distributes the public key to the
external device and the corresponding private key to a local secure enclave. Each
external device has its own secure enclave, to ensure isolation between each other.
These keys can be used later to establish a session key via Diffie-Hellman. The
process of establishing and storing the keys is performed entirely inside SGX
enclaves in the case of the Android device. We assume that the external device
runs on a minimal code base with limited I/O, thus the integrity of the key
management can be attested and preserved. While this end-to-end encryption of
the I/O channel ensures data protection during transfers, the need of attestation
between the two devices remains a critical point in order to prevent malicious
users impersonating as one of the two devices. In cases where the external device
is capable to execute the Intel Remote Attestation process it is able to verify
that it is indeed communicating with a secure enclave, running on SGX-capable
hardware without emulation. However, in some cases, Intel Remote Attestation
can not be performed due to the limited computing capabilities of many exter-
nal devices. To overcome this, we utilize one-time passwords (OTP) instead,
which are an essential part for our remote attestation alternative procedure.
More specifically, we use Google key generator to create an arbitrary key that
we can then register with a secure SGX enclave. The registration is performed at
the first connection and Andromeda (optionally) prompts the user to verify the
registration. Once the key has been successfully registered, the attestation pro-
cedure starts by the external device demanding a 6-digit OTP to be exchanged.
The generated OTPs are based on the RFC 6238. Upon receiving the OTP, the
external device calculates an OTP with the same key. If both match, the exter-
nal device can be certain that it communicate with the SGX enclave, since the
entire OTP process is performed inside the enclave. Once the OTP is verified,
the secure communication channel is established as described above.

5 Implementation

5.1 Setting up SGX for Android

Cross-compiling Intel SGX for Android OS is a challenging task. Due to the
complexity of the software and the many differences between a Linux distribution
and Android, we have to split the porting process in several smaller tasks in order
to constantly proving the potential and validity of our goal. For this reason we

204 D. Deyannis et al.

perform the Android port in the following steps. First, we compile the SGX SDK
for a different Linux distribution than Ubuntu, which is the officially supported,
namely Arch Linux. Since Android is also based on Linux, this process lets us
understand how different compiler and library versions affect the possibility of
porting SGX on Android. Second, we validate that we can build the Android
Open Source Project (AOSP) form scratch and successfully install and run it on
an SGX-capable x86 machine. Finally, we integrate the SGX functionality into
the AOSP source tree by cross-compiling and providing the necessary libraries
for its correct operation.

The whole process of building the SGX environment for a non supported
Linux distribution is a quite tedious procedure due to the kernel, compiler
and library version incompatibilities. While analyzing the dependencies of SGX
SDK we find the following to be essential for a standard enclave execution:
(i) the SGX kernel driver, (ii) aesm service which is a background dae-
mon serving as a management agent for SGX enabled applications, (iii) the
libsgx urts.so and libsgx uae service.so, needed for executing enclaves
in hardware mode, the libsgx urts sim.so and libsgx uae service sim.so,
needed for the software emulation mode, and finally (iv) the le prod css.bin
and libsgx le.signed.so. This analysis allowed us to understand the software
requirements and the process of building the SGX environment for an unsup-
ported platform.

Porting SGX on Android is an even more complicated process. First, AOSP
has to be built from scratch and be installed on an SGX-enabled x86 machine.
Then, porting the SGX environment is a time-consuming process since each
change to the source tree requires to (i) build the Android image, (ii) flash it on
the host machine and (iii) verify the correctness of each change as well as the
stability of the system. The SGX SDK is designed to be build on desktop-based
Linux distributions using GCC > v5 while Google’s NDK (Native Development
Kit for Android) offers GCC-4 and clang that are not able to compile the SGX
source tree. For this reason, we use CrystaX NDK [7] which acts as a drop-in
replacement for Google’s Android NDK, offering GCC-5.3 compatibility. Also,
the SGX SDK contains a group of libraries that must be compiled for Android in
order for the environment to execute properly, such as protobuf, ssl, libssp,
curl, gperftools and libunwind. To cross-compile them, we need to export
and set the corresponding flags for the Makefile and configuration files of each
project to link to the CrystaX compiler by setting the cross compiling field to
true. Then, all references to lpthread have to be removed from the Makefiles,
since it is automatically linked at the Android version of the standard library.
Moreover, due to the stripped down kernel version that is used by the Android
OS, the RDRAND instruction that is used by sgx read rand to perform random
number generation is not available. To overcome this issue we use a software
based implementation for random number generation that is fully compatible
with the existing API and works on Android and SGX.

After successfully cross-compiling the SGX source tree, the final step is to
cross-compile the kernel driver and port it to Android. Unfortunately, there are

Andromeda: Enabling Secure Enclaves for the Android Ecosystem 205

inconsistencies between the supported kernel used by Ubuntu and the Android
kernel headers and the signatures of several kernel functions are different. For
this reason, some patches are required in order to build the driver which also
requires to be built in-source with Android. Once the SGX porting is completed,
we build a demo application that utilizes SGX enclaves in both hardware and
simulation mode. Finally, in order to execute Intel SGX enclave code, the
application must be signed using Intel’s sgx sign tool, which we rebuild and
use in order to compile Android applications as needed. The problem is that
cross compiling the whole Intel SGX source developing tools (SDK) and platform
software (PSW), would produce the sgx sign binary that is only executable on
Android; this would be quite inflexible to build an application and then sign it
at the Android using the application. Instead, we rebuild the source but this
time using only the Ubuntu default tools, store the sgx sign, and then use it to
compile our applications when needed.

5.2 Running an SGX Application

An SGX application can run either in hardware or simulation mode. To make
use of the underlying hardware and leverage Intel SGX as a service, we compile
SGX applications using make SGX MODE=HW which links against libsgx urts.so.
Of course, since these libraries are not available in the source tree of Android
they must be provided to the LD LIBRARY PATH of the corresponding application
by exporting the paths of each one of them. Apart from the required SGX
dependencies, the libraries that were linked during the SDK compilation must
be also provided and exported to the LD LIBRARY PATH of the given application.
Additionally, we use insmod to load the driver and then start the aesm service.
The Android service system has several differences compared to Linux; editing a
system service file like init.d is not enough for Android to deploy a new system
service. Instead, a new application, marked as a service, has to be created and
meet specific code requirements [5]; i.e., all native functions of aesm service
need to be wrapped with JNI calls for it to be accessible by the Java part.

To overcome this issue, we simply adjust the aesm service source code to run
as a daemon in the background and interact directly with the native part. The
other solution would be to discard the whole Android application part and inter-
act with the native part directly. By examining the source code of aesm service
we manage to run the application as daemon (which is essentially a service) so
the app would start and stay alive. Whereas, if we start it without the spec-
ified input it would just terminate with no output. Also, the aesm service
requires the le prod css.bin and libsgx le.signed.so binaries to properly
execute so we transfer these binaries from the Intel SGX output directory to
the aesm service directory in Android before its execution. Finally, running an
application in Android requires it to be built with the -pie and -fPIE flags.
These flags instruct the linker that the program’s code can be executed regard-
less its absolute address. After all the aforementioned requirements are met, we
are able to cross-compile and execute SGX-enabled Android applications.

206 D. Deyannis et al.

Enclaves can be created using the ECREATE instruction, which initializes an
SGX enclave control structure (SECS) in the EPC. The EADD instruction adds
pages to the enclave, which are further tracked and protected by the SGX (i.e.,
the virtual address and its permissions). The EINIT instruction creates a crypto-
graphic measurement, after the loading of all enclave pages. The cryptographic
measurement can be used by remote parties for attestation. After the enclave
has been initialized, enclave code can be executed through the EENTER instruc-
tion, which switches the CPU to enclave mode and jumps to a predefined enclave
offset. The EEXIT instruction causes execution to leave the enclave.

6 Andromeda Framework

The Andromeda framework is split in three parts: (i) the enclave-enhanced
Android Keystore, which can be utilized transparently, (ii) the native API, used
to initialize and configure SGX using native code, and (iii) the Java API, which
provides a set of building blocks for APKs.

6.1 Andromeda Keystore

The Android apps can transparently utilize the Andromeda Keystore service
to securely perform cryptographic operations. Private keys and other sensitive
information are kept in encrypted form in an array that resides in SGX memory
and cannot be accessed in any way by the host. To perform a cryptographic
operation: (i) the required (encrypted) key is fetched from the array, (ii) it is
decrypted inside the enclave, and (iii) the actual operation is performed on the
input data. This extension of the Android Keystore, provided by Andromeda,
is completely transparent to the developer. All necessary modifications are per-
formed at the native C/C++ part of Android’s Keystore while the correspond-
ing Java API remains unmodified, rendering it completely backwards compatible
with legacy applications. Persistent secure storage of keys and important meta-
data can be achieved using the sealing technique. The Keystore service will
seal and export the contents of the secure enclaves to the specified file-system
locations, protecting them during unexpected execution termination or device
power-off. The exported data are encrypted and accompanied with the neces-
sary metadata that ensure their validity. Once Keystore’s enclaves need to be
re-enabled, the service will repopulate them by loading and unsealing the data.
If the data is invalid or tampered, the service provides the necessary exceptions.

6.2 Native Development

Using the Andromeda SGX tool-chain, developers can create their own SGX
enclaves for their Android applications. To do so, native code in C/C++ has
to be developed for the enclave functionality as well as the respective ECALLs
and OCALLs that manipulate the data (sensitive or not) in the trusted and the
untrusted part. In order to access the SGX code and functions, JNI bindings

Andromeda: Enabling Secure Enclaves for the Android Ecosystem 207

must be provided to the Java part of the APK to connect it with the native
C/C++ and SGX counterpart. These JNI functions must be written in order
to initialize the enclave instance, setup the environment and access the secure
enclave code, functions and data. The process is quite similar with a Linux envi-
ronment; the basic difference with SGX-enabled Android applications is that all
native C/C++ code that implements the SGX enclaves and the native C/C++
code that handles their execution should be cross-compiled with the Andromeda
Android tool-chain which handles all the steps required to build the source tree.

6.3 Andromeda Java API

In order to assist the development of SGX-enabled Android applications,
Andromeda also offers an API that developers can use to offload specific parts of
the code into secure enclaves. The Andromeda Java API provides a set of build-
ing blocks for APKs and automates the generation process of secure enclaves
that execute only minimal parts of the application logic in the trusted environ-
ment. The Andromeda Java API are shown in Table 1 and allows the creation
of enclaves, the configuration of input and output between enclaves, and the
execution of user-defined functions.

Secure Execution. The Java functions provided by the Andromeda API offer
the following functionality: The developer can create a new secure enclave Java
class instance using the TrustedEnvironment() constructor. To make the estab-
lishment of the trusted environment, the secure enclave Java class provides the
load() method that passes configuration settings and user-defined configura-
tion extensions to the enclave. This operation will generate a new enclave using
the C/C++ layer of the Andromeda API and provide the necessary handles to
the Java counterpart in order to interface with the enclave. The enclave and its
metadata can be securely erased using the destroy() method, which optionally
passes finalization data to the enclave. Developers can use the run() method to
perform a trusted execution in the secure enclave. The run() method is exten-
sible and includes the code that performs the desired computations inside the
SGX enclave. Andromeda also provides the option to implement multiple func-
tions to be executed in the trusted environment which can be invoked using their
respective index (using the corresponding run() method argument). The run()
method can be called an arbitrary number of times with different inputs.

In contrast to the manual development of SGX-enabled Android applications,
when using the Andromeda Java API the Andromeda tool-chain will generate the
appropriate native C/C++ SGX code that implements the functionality defined
in the run() method. Moreover, the tool-chain will generate the enclave driver
code, that handles I/O and function calling, as well as establish connection with
the Java API by creating the necessary JNI bindings.

Secure Vault API. The Java functions provided by the Andromeda secure
vault API enable both short term and persistent secure storage functionality.

208 D. Deyannis et al.

Table 1. Andromeda Java API for SGX enclave utilization.

Constructor summary

Constructor Description

TrustedEnvironment() Creates a new secure enclave class instance

Method summary

Modifier and Type Method description

void load(EnclaveConfig config)
Initializes the secure enclave

EnclaveOutput run(int index, EnclaveInput i)
Performs the trusted execution

int store(byte[] data)
Stores the data and returns its index

byte[] retrieve(int index)
Retrieves the data using its index

SealedData seal(Object d)
Seals the enclave data and stores to file-system

Object unseal(SealedData d)
Unseals the data and populates the enclave

void pair(ChannelConfig config)
Creates a secure connection with the external device

void transmit(ChannelConfig config, byte[] data)
Securely transmits data to the external device

byte[] receive(ChannelConfig config)
Securely receives data from the external device

void terminate()
Disconnects the external

void destroy()
Destroys the secure enclave

The developer can use the store() function in order to store a data object within
a secure enclave. The data object can be of any kind, such as cryptographic
keys, certificates, fingerprints, tokens or any other data considered sensitive in
the scope of the application. Upon successful data storage, the API will return
an index which can be used to retrieve the actual data through the retrieve()
function. Moreover, the Andromeda Java API provides access to the SGX sealing
and unsealing functionality, via the seal() and unseal() methods respectively.
Using the seal() function, the developer can encrypt the data within the enclave
using a secret key derived within SGX. Once the data are sealed, they can be
stored in main memory or storage with assurances of integrity and authenticity
and can only be unsealed using unseal(). These functions can also be used to

Andromeda: Enabling Secure Enclaves for the Android Ecosystem 209

periodically generate backups of the secure storage in order to prevent data loss
(e.g., from unpredictable execution termination).

Secure Pairing API. The secure device pairing functionality is provided by
dedicated Andromeda API methods. These methods can be utilized by the
Android application controlling the external device, as long as the external device
includes Andromeda’s connection libraries, which do not require SGX support,
in its software stack. The developer is able to establish a secure communication
channel with an external device using the pair() method. The external device
can be connected either via Bluetooth or Wi-Fi. Andromeda will then perform
the attestation procedure for both devices. The configuration data passed to this
method indicate the device ID, the attestation procedure (Remote Attestation
or OTP), the option of notifying the user with a verification pop-up and other
metadata, essential for initiating the connection. Once the attestation process is
completed, Andromeda will perform the communication channel establishment
automatically, as described in Sect. 4.2. Once communication is initiated, the
devices are able to exchange data using the transmit() and receive() func-
tions respectively. Finally, the developer can execute the terminate() function
for a TrustedEnvironment instance in order to disconnect the external device.

7 Evaluation

7.1 Security Analysis

We now evaluate the security properties of Andromeda by describing possible
attacks and showing how our proposed design protects against them.

Memory Attacks. We implement Andromeda in a way that nothing but a
pointer to enclave memory is ever written into host memory. The pointer’s
content can not be read or modified since it resides into the enclave. When
Andromeda performs the desired operations, the output is transferred back to
Android memory. In the meantime, we keep the enclave execution alive com-
pletely isolated from the Android system, without being affected by side effects
of the OS or hardware, such as interrupt handling, scheduling, swapping, and
ACPI suspend modes.

Controlling the Kernel. In cases where the attackers have successfully
taken full control of the Android OS kernel, any sensitive data manipulated
by Andromeda is still sound and safe. Once again, even though the attack-
ers may have full read/write/execute rights in the whole system, they cannot
read/write/execute code inside the enclave. As a result, any attempt to modify
or read enclave code will result in a Segmentation violation since this memory
is not mappable outside the enclave code, keeping the data secured.

210 D. Deyannis et al.

Integrity of Data. In a typical scenario, attackers can exploit software vulner-
abilities and manage to inject code of their choice to a running service. Sensitive
data, such as secret keys and checksums, stored in the address space of the pro-
cess, can be easily acquired. In contrast, hiding sensitive data in a secure enclave
prevents access even to fully privileged processes. To verify this, we attach our
process with gdb in order to check the allocated pointers in the enclave code
and trace the calls. However, no such data can be extracted since the enclave
code and data are inaccessible from non-enclave code nor the function calls or
memory stack. Such operations always result in Segmentation violations.

7.2 Performance Analysis

We now assess the performance of Andromeda and the extra overhead introduced
for the execution of the secure enclaves. For our experiments we use an Intel NUC
8i5BEK kit with an SGX-enabled Intel i5-8259U CPU at 2.3 GHz and 8 GB of
DDR4 RAM. The system is running Android x86 version 7.1.2 r33.

AES Evaluation. We compare the performance of the AES-128 crypto algo-
rithm, as achieved by the vanilla Android Keystore system, versus the SGX-
enabled implementation provided by Andromeda, using a custom benchmarking
tool. In each processing loop, the tool generates a random secret key and a ran-
dom stream of data. The data vary in size from 32 B up to 32 MB. To avoid any
potential caching effects that may result in inaccurate results, we generate a new
key and data stream in each processing loop. Once an AES key and a stream of
data are prepared in memory, the tool performs cryptographic operations on the
data using AES-128 in CTR mode, using both the vanilla and the SGX-enhanced
Keystore system, provided by Andromeda. Figure 3(a) shows the performance
characteristics of the native AES code execution. We achieve this by monitor-
ing only the AES functions found in the native C code part of the Android
Keystore system. Our evaluation indicates that the overhead introduced by the

Fig. 3. Throughput comparison between the AES-128 CTR found in Android’s Key-
store and the SGX-enabled version provided by Andromeda’s Keystore.

Andromeda: Enabling Secure Enclaves for the Android Ecosystem 211

SGX-enabled implementation ranges between 51% and 84% for the encryption
operations and from 51% to 78% for the decryption.

In the next experiment we explore the throughput sustained in the APK
scope. We achieve this by performing the same experiment but in this case we
monitor the execution time of the Java cryptographic functions provided to the
APK by the Keystore system (Fig. 3(b)). The execution time includes the entire
execution path and the overhead introduced by the various layers of the Android
architecture, including the IPC, the binder and the numerous function calls until
the actual cryptographic operations are performed. We notice that the sustained
throughput perceived by the APK is one order of magnitude lower (compared to
Fig. 3(a)), due to the overhead introduced by the various layers of the software
stack involved in the process (i.e., JNI, IPC, and the binder). Similarly, the
perceived overhead introduced by the SGX enclaves is minimised, between 0.6%
to 13% for encryption and 0.6% to 11% for decryption.

100

102

104

106
Encryption

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

SGX Vanilla

100

102

104

106

32 64 128
256

512
1K 2K 4K 8K 16K

32K

Decryption

Input size (Bytes)

Fig. 4. Sustained throughput achieved for the vanilla and the SGX-enabled implemen-
tation of the RSA-1024 cryptographic algorithm.

RSA Evaluation. We now present the performance comparison between the
vanilla and our SGX-enabled implementation of the RSA algorithm. We per-
form the evaluation as follows. We develop a benchmarking application capable
to perform RSA key generation, encryption and decryption. In each process-
ing loop, the tool generates a new RSA key-pair and performs cryptographic
operations against a set of input data. The data set consist of 10,000 random
data chunks, varying in size from 32 B up to 32 KB, with each set containing
chunks of the same size. We choose to generate a new set of random data in
each processing loop in order to eliminate any caching effects. We execute the
benchmarking application for every data set, each time monitoring the number of

212 D. Deyannis et al.

sustained cryptographic operations per second. The outcome of this experiment
is displayed in Fig. 4.

We notice that the SGX-enabled implementation introduces a maximum
overhead of 16%, observed when processing 64 B long data, with the lowest intro-
duced overhead being 2.3% during the encryption of 2 KB long data. The max-
imum sustained decryption rate is observed for the vanilla implementation dur-
ing the encryption of 32 B long data with the introduced overhead being 12.6%.
The minimum observed overhead introduced by the use of SGX enclaves is 0.9%,
encountered during the decryption of 2 KB long values. For both crypto oper-
ations, we observe that the perceived overhead introduced by the I/O between
the benchmarking application and the SGX-enclave is minimised due to the
processing complexity of the RSA algorithm.

Fig. 5. Performance comparison of the different Andromeda-enabled execution meth-
ods, including offloading, against the vanilla Java versions.

Computation Offloading. We present the performance of three benchmarking
applications, executed, using the different methods provided by the Andromeda
framework, as well as the overhead introduced by executing them remotely. In
particular, we compare the execution of the vanilla Java implementation against
their secure implementation using C and SGX natively, compiled with our cus-
tom cross-compiler, and their implementation using the Andromeda Java API
for SGX. These benchmarks consist of some typical operations that external
devices or wearables may perform on sensitive data (e.g., for analytics on finance
or health data, image processing, etc.) and also exhibit different performance
characteristics (i.e., IO-bound, memory-intensive, computational-intensive). The
first benchmark performs matrix multiplication on two tables with 10K rows and
columns. The second benchmark performs bubble sort on an array of 20K ran-
dom integers. Finally, the third benchmark is a convolutional neural network that

Andromeda: Enabling Secure Enclaves for the Android Ecosystem 213

performs image classification using as input images with size 800× 600 pixels,
generated by an external device.

As we can see in Fig. 5, the vanilla Java implementation requires 5.4% to
11.2% more time to finish its execution than the respective SGX-enabled imple-
mentations (developed either in native C or using the Andromeda SGX Java
API) whereas the time needed for code offloading ranges from 5.13% to 7.5% for
Java. The reason for this is that in both SGX-enabled versions, the functions
are executed natively using C. The overhead introduced by the I/O with the
secure enclave, the JNI layer (in the SGX-enabled Java implementation) and
the data offloading on the socket level are minimal in these cases and does not
overshadow the speedup gained by the native execution.

8 Discussion and Limitations

Misusing Andromeda Keystore for Encrypting/Decrypting Messages.
Intel SGX cannot verify whether a request for an operation has been received
from a benign or a malicious user. As a result, an attacker who has managed to
gain access to the base Android system or the Keystore service could leverage
Intel SGX to encrypt and decrypt messages. Still, the adversary cannot steal
any key stored in secure enclaves.

Denial-of-Service. Adversaries who have compromised the Android system
can easily disrupt the operation of Intel SGX. For example, they can delete or
modify input or output data by hooking the functions that communicate with
the SGX application or even kill or suspend the execution of enclaves. As the
main purpose of Intel SGX is to protect sensitive data and perform trusted
operations, defending against these attacks is out of the scope of this work.

Portability. Andromeda is currently implemented on Intel SGX-equipped
CPUs. Even though this prevents us from adopting it to other CPU models,
we note that Andromeda is not fundamentally bound to Intel SGX; instead
our proposed architecture could be implemented on top of other approaches
that offer secure user-level enclaves. For instance, there are recently proposed
approaches that implement user-level secure enclaves, similar to SGX, either
independent of the underlying CPU [27] either on top of ARM TrustZone [20];
porting Andromeda to these approaches is part of our future work.

9 Related Work

ARM TrustZone [14] enables the development of two separate environments, the
trusted and the untrusted world. This split enables the execution of the rich
OS (that runs in the untrusted world) and the system software that controls
basic operations that must be protected and runs in the trusted world. Santos
et al. [33] use TrustZone for securing mobile applications, by establishing and

214 D. Deyannis et al.

isolating trusted components. However, their approach requires a trusted lan-
guage runtime in the TCB, due to the fact that there is only a single trusted
world. DroidVault [29] presents a security solution for storing and manipulating
sensitive data. The data are stored in an encrypted form on the filesystem and
are only processed (decrypted) in TrustZone. TZ-RKP implements a low-TCB
system level safe security monitor on top of the TrustZone architecture [16] that
provides a real-time OS kernel protection. The monitor routes privileged sys-
tem functions through secure world for examination. Samsung KNOX [32] is a
secure container framework, leveraging ARM TrustZone, that offers protection
from both the software and the hardware. However, KNOX is primarily a closed-
source system and its architecture is not well documented in the open literature.
A major limitation of all these TrustZone-based approaches is that they do not
protect against attackers with physical DRAM access. Moreover, TrustZone is
not best suited to be securely shared by multiple applications, as there is only
one shared TEE provided by the hardware, offering limited isolation granular-
ity compared to SGX. This prevents it from being leveraged simultaneously by
different applications, either in user-space (e.g., banking applications, etc.) or
kernel-space (security monitors, device keystore, etc.).

Intel SGX [8] offers fine-grained confidentiality and integrity at the enclave
level. Haven [18] aims to execute unmodified legacy Windows applications inside
SGX enclaves by porting a Windows library OS into SGX. TrustAV [25] offloads
malware analysis operations within secure enclaves to shield the transfer and
processing of private user data in untrusted environments. Graphene-SGX [37]
encapsulates the entire libOS, including the unmodified application binary, sup-
porting libraries, and a trusted runtime with a customized C library and ELF
loader inside an SGX enclave. VC3 [34] uses SGX to achieve confidentiality and
integrity for the Map Reduce framework. SCONE [15] is a shielded execution
framework that enables developers to compile their C applications into Docker
containers. SGX-Mon [24] is a host-based kernel integrity monitor that resides in
SGX enclaves to prevent attackers from tampering its execution and operation-
critical data. In contrast with these works, Andromeda is the first approach, to
the best of our knowledge, that enables SGX enclaves for the Android OS. More-
over, there are recently proposed approaches that implement user-level enclaves,
similar to SGX, either independent of the underlying CPU [27] or on top of
ARM TrustZone [20]; Andromeda is not fundamentally tight to Intel SGX and,
as such, could be implemented on top of such approaches instead.

Finally, several improvements for SGX have been recently developed in order
to protect against memory bugs [28,30,35] or controlled-channel attacks [36].
SGXBOUNDS [28] enables bounds-checking with low memory overheads, in order
to fit within the limited EPC size. SGX-Shield [35] implements Address Space Lay-
out Randomization (AS-LR) in enclaves, with a scheme to maximize the entropy,
and the ability to hide and enforce ASLR decisions. Eleos [30] proposes to reduce
the number of enclave exits by asynchronously servicing system calls outside of
the enclaves, and enabling user-space memory paging. T-SGX [36] is an approach
that combines SGX with Transactional Synchronization Extensions, in order to

Andromeda: Enabling Secure Enclaves for the Android Ecosystem 215

mitigate controlled-channel attacks. All these works are orthogonal to our app-
roach and can be integrated to Andromeda.

10 Conclusion

In this work, we present the design, implementation, and evaluation of
Andromeda, a framework that provides the first SGX interface for Android OS.
Using Andromeda, developers can explicitly use SGX for their applications via
the native API in C/C++ or the Java interface that provides access to the secure
enclaves through JNI bindings. Also, Andromeda offers services that enhance
Android’s security and provides protection schemes for applications that deal
with sensitive data.

As part of our future work, we plan to port Andromeda to SGX-compliant
approaches that do not depend on specific CPU models though, either using
software-only techniques [27], either on top of ARM TrustZone [20]. Also, we
plan to enhance our secure pairing mechanism by utilizing protocols that offer
mutually trusted secure communication channels between enclaves that reside
in different physical devices, similar to [22].

Acknowledgments. The research work was supported by the Hellenic Foundation
for Research and Innovation (HFRI) and the General Secretariat for Research and
Technology (GSRT), under the HFRI PhD Fellowship grant (GA. No. 2767). This work
was also supported by the projects CONCORDIA, C4IIoT and COLLABS, funded by
the European Commission under Grant Agreements No. 830927, No. 833828, and No.
871518. This publication reflects the views only of the authors, and the Commission
cannot be held responsible for any use which may be made of the information contained
therein.

References

1. Amazon’s AWS permission managements. https://aws.amazon.com/iam/details/
manage-permissions/

2. AMD Secure Encrypted Virtualization (SEV). https://developer.amd.com/amd-
secure-memory-encryption-sme-amd-secure-encrypted-virtualization-sev/

3. Android Keystore. https://developer.android.com/training/articles/keystore.html
4. Android Sensor API. https://developer.android.com/guide/topics/sensors/

sensors overview
5. Android Services. https://developer.android.com/guide/components/services.

html
6. Bosch IoT. https://www.bosch-iot-suite.com/permissions/
7. Crystax NDK. https://www.crystax.net/android/ndk/
8. Intel Software Guard Extensions (SGX). https://software.intel.com/en-us/sgx
9. Intel’s Skylake Processors. https://www.intel.com/content/dam/www/public/us/

en/documents/white-papers/ia-introduction-basics-paper.pdf
10. International Data Corporation. https://www.idc.com/promo/smartphone-

market-share/os

https://aws.amazon.com/iam/details/manage-permissions/
https://aws.amazon.com/iam/details/manage-permissions/
https://developer.amd.com/amd-secure-memory-encryption-sme-amd-secure-encrypted-virtualization-sev/
https://developer.amd.com/amd-secure-memory-encryption-sme-amd-secure-encrypted-virtualization-sev/
https://developer.android.com/training/articles/keystore.html
https://developer.android.com/guide/topics/sensors/sensors_overview
https://developer.android.com/guide/topics/sensors/sensors_overview
https://developer.android.com/guide/components/services.html
https://developer.android.com/guide/components/services.html
https://www.bosch-iot-suite.com/permissions/
https://www.crystax.net/android/ndk/
https://software.intel.com/en-us/sgx
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-introduction-basics-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-introduction-basics-paper.pdf
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os

216 D. Deyannis et al.

11. Mobile Operating System Market Share Worldwide. https://gs.statcounter.com/
os-market-share/mobile/worldwide

12. Samsung SmartThings. https://www.samsung.com/us/smart-home/smartthings/
13. Statista. https://www.statista.com/statistics/266136/global-market-share-held-

by-smartphone-operating-systems/
14. ARM LIMITED: ARM Security Technology - Building a Secure System using

TrustZone Technology (2009)
15. Arnautov, S., et al.: SCONE: secure linux containers with Intel SGX. In: OSDI

(2016)
16. Azab, A.M., et al.: Hypervision across worlds: real-time kernel protection from the

ARM TrustZone secure world. In: CCS (2014)
17. Azab, A.M., Ning, P., Wang, Z., Jiang, X., Zhang, X., Skalsky, N.C.: Hypersentry:

enabling stealthy in-context measurement of hypervisor integrity. In: CCS (2010)
18. Baumann, A., Peinado, M., Hunt, G.: Shielding applications from an untrusted

cloud with haven. ACM Trans. Comput. Syst. 33(3), 8:1–8:26 (2015)
19. Boivie, R., Williams, P.: Secureblue++: CPU support for secure execution. Tech-

nical Report (2012)
20. Brasser, F., Gens, D., Jauernig, P., Sadeghi, A.R., Stapf, E.: Sanctuary: Arming

TrustZone with user-space enclaves (2019)
21. Caddy Tom: Side-channel attacks (2011). https://link.springer.com/

referencework/10.1007%2F0-387-23483-7
22. Chalkiadakis, N., Deyannis, D., Karnikis, D., Vasiliadis, G., Ioannidis, S.: The

million dollar handshake: secure and attested communications in the cloud. In:
CLOUD (2020)

23. Colp, P., et al.: Protecting data on smartphones and tablets from memory attacks.
In: ASPLOS (2015)

24. Deyannis, D., Karnikis, D., Vasiliadis, G., Ioannidis, S.: An enclave assisted
snapshot-based kernel integrity monitor. In: EdgeSys (2020)

25. Deyannis, D., Papadogiannaki, E., Kalivianakis, G., Vasiliadis, G., Ioannidis, S.:
TrustAV: practical and privacy preserving malware analysis in the cloud. In:
CODASPY (2020)

26. Fernandes, E., Paupore, J., Rahmati, A., Simionato, D., Conti, M., Prakash, A.:
FlowFence: practical data protection for emerging IoT application frameworks. In:
Proceedings of the 25th USENIX Security Symposium. USENIX Security (2016)

27. Ferraiuolo, A., Baumann, A., Hawblitzel, C., Parno, B.: Komodo: using verification
to disentangle secure-enclave hardware from software. In: SOSP (2017)

28. Kuvaiskii, D., et al.: SGXBOUNDS: memory safety for shielded execution. In:
Proceedings of the Twelfth European Conference on Computer Systems. EuroSys
(2017)

29. Li, X., Hu, H., Bai, G., Jia, Y., Liang, Z., Saxena, P.: DroidVault: a trusted data
vault for android devices. In: ICECCS (2014)

30. Orenbach, M., Lifshits, P., Minkin, M., Silberstein, M.: Eleos: ExitLess OS services
for SGX enclaves. In: EuroSys (2017)

31. Pirker, M., Slamanig, D.: A framework for privacy-preserving mobile payment on
security enhanced ARM TrustZone platforms. In: TrustCom (2012)

32. Samsung: White Paper : An Overview of Samsung KNOX (2013). http://www.
samsung.com/my/business-images/resource/white-paper/2013/11/Samsung
KNOX whitepaper An Overview of Samsung KNOX-0.pdf

33. Santos, N., Raj, H., Saroiu, S., Wolman, A.: Using ARM TrustZone to build a
trusted language runtime for mobile applications. In: ASPLOS (2014)

https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.samsung.com/us/smart-home/smartthings/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://springerlink.bibliotecabuap.elogim.com/referencework/10.1007%2F0-387-23483-7
https://springerlink.bibliotecabuap.elogim.com/referencework/10.1007%2F0-387-23483-7
http://www.samsung.com/my/business-images/resource/white-paper/2013/11/Samsung_KNOX_whitepaper_An_Overview_of_Samsung_KNOX-0.pdf
http://www.samsung.com/my/business-images/resource/white-paper/2013/11/Samsung_KNOX_whitepaper_An_Overview_of_Samsung_KNOX-0.pdf
http://www.samsung.com/my/business-images/resource/white-paper/2013/11/Samsung_KNOX_whitepaper_An_Overview_of_Samsung_KNOX-0.pdf

Andromeda: Enabling Secure Enclaves for the Android Ecosystem 217

34. Schuster, F., et al.: VC3: trustworthy data analytics in the cloud using SGX. In:
Proceedings of the 2015 IEEE Symposium on Security and Privacy. S&P (2015)

35. Seo, J., et al.: SGX-Shield: enabling address space layout randomization for SGX
programs. In: NDSS (2017)

36. Shih, M.W., Lee, S., Kim, T., Peinado, M.: T-SGX: eradicating controlled-channel
attacks against enclave programs. In: NDSS (2017)

37. Tsai, C.C., Porter, D.E., Vij, M.: Graphene-SGX: A practical library OS for
unmodified applications on SGX. In: USENIX ATC (2017)

38. Wang, J., Stavrou, A., Ghosh, A.: HyperCheck: a hardware-assisted integrity mon-
itor. In: Jha, S., Sommer, R., Kreibich, C. (eds.) RAID 2010. LNCS, vol. 6307, pp.
158–177. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15512-
3 9

39. Zheng, X., Yang, L., Ma, J., Shi, G., Meng, D.: TrustPAY: trusted mobile payment
on security enhanced ARM TrustZone platforms. In: ISCC (2016)

https://doi.org/10.1007/978-3-642-15512-3_9
https://doi.org/10.1007/978-3-642-15512-3_9

Network Security

FEX – A Feature Extractor for Real-Time IDS

Andreas Schaad(B) and Dominik Binder(B)

Offenburg University of Applied Sciences, Badstrasse 24, 77652 Offenburg, Germany
{andreas.schaad,dominik.binder}@hs-offenburg.de

Abstract. In the field of network security, the detection of possible intrusions
is an important task to prevent and analyse attacks. Machine learning has been
adopted as a particular supporting technique over the last years. However, the
majority of related published work uses post mortem log files and fails to address
the required real-time capabilities of network data feature extraction and machine
learning based analysis [1–5]. We introduce the network feature extractor library
FEX, which is designed to allow real-time feature extraction of network data. This
library incorporates 83 statistical features based on reassembled data flows. The
introduced Cython implementation allows processing individual packets within
4.58 µs. Based on the features extracted by FEX, existing intrusion detection
machine learning models were examined with respect to their real-time capabili-
ties. An identified Decision-Tree Classifier model was thus further optimised by
transpiling it into C Code. This reduced the prediction time of a single sample
to 3.96 µs on average. Based on the feature extractor and the improved machine
learning model an IDS systemwas implemented which supports a data throughput
between 63.7 Mbit/s and 2.5 Gbit/s making it a suitable candidate for a real-time,
machine-learning based IDS.

Keywords: IDS ·Machine learning · Real-time · Feature extraction

1 Introduction

1.1 Background

Standard and well-proven network intrusion detection approaches include signature-
or anomaly-based detection techniques. Independently of the detection techniques used,
appropriate measures must be taken to extract and process valuable information from the
raw network data. Early IDS systems used basic statistical methods to process network
data, so that simple patterns can be identified. In themeantime, however, these procedures
have been largely replaced by machine learning based approaches, as these are able
to take more complex relationships in the data into account, which is resulting in an
improved intrusion detection rate [1–4]. However, the extraction of proper features from
the raw network data before applying anymachine-learning based analysis is a challenge
in itself. Such a feature extraction should not only be done post mortem on log files but
as close as possible to the real-time processing of network data. Such a real-time feature
extraction capability would enable both, training IDS models as well as using trained
models for real-time intrusion detection.

© Springer Nature Switzerland AG 2021
J. K. Liu et al. (Eds.): ISC 2021, LNCS 13118, pp. 221–237, 2021.
https://doi.org/10.1007/978-3-030-91356-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91356-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-91356-4_12

222 A. Schaad and D. Binder

1.2 Problem Statement and Contribution

A feature extractor, which generates the input values for a machine-learning algorithm
from raw network data, should be able to generate these features in real-time. The gen-
erated features must be processed immediately by the selected and pre-trained machine
learning model and feed the generated result back to the user.

One known openly available academic feature extractor without real-time function-
ality is the open source tool CICFlowMeter [5], which serves as a reference tool for the
real-time feature extractor presented and discussed in this paper.

This paper provides a framework for machine learning based real-time network
intrusion detection (we call it FEX). This includes both:

• the design of a performant real-time capable feature extractor; as well as
• the training and implementation of an IDS based on this extractor.

While the implementation of the IDS is intended to prove its practical suitability,
the feature extractor is also intended to be able to be used for further academic purposes
and is openly available on Github [11]. Due to the optimized runtime and the real-
time usability, the feature extractor should open up new possibilities like the use of
reinforcement learning techniques and improved support for online- instead of batch
learning [16]. The four main contributions of this work are therefore:

• Based on the existing reference tool CICFlowMeter, a new “real-time” feature extrac-
tor is designed and developed, including a data flow generation algorithm and
computational complexity assessment.

• To prove the correct functionality of the created feature extractor, the produced results
are compared with those of the identified reference tool [5].

• Based on a widely used network intrusion dataset [10], our feature extractor is used to
create a test/train dataset which is used to train and evaluate a detection model using
selected machine learning techniques.

• The feature extractor and the trained model are used for the implementation of an
IDS system to enable the calculation of the theoretical data throughput and assess its
real-time capability.

1.3 Paper Structure

Section 2 provides a review of the current state of the art in the area of intrusion detection
systems using machine learning techniques and in particular the CICFlowMeter system
our work uses as a reference benchmark (Sect. 2.3). Section 3 details the architecture,
discusses the algorithmic complexity and measures the implementation of our network
feature extractor FEX. Section 4 provides details on a model trained for the purposes of
detecting intrusions by using FEX. Section 5 demonstrates the real-time network traffic
extraction capabilities of FEX combined with the trained IDS model in the context of an
IDS implementation. Section 6 concludes the paper and provides a critical discussion.

FEX – A Feature Extractor for Real-Time IDS 223

2 Related Work

2.1 Network Intrusion Detection Techniques

An IDS is a type of software designed to automatically monitor and analyse events on a
computer system or network to detect possible intrusions [6]. In general, intrusions can
be described as events, which try to compromise certain security goals. These can be
analysed on the end device itself, i.e. the host, or can be detected by analysing the network
traffic. In case of a host-based IDSpossible intrusions are infections throughmalware, the
exploitation of vulnerabilities in applications or general unauthorized access to systems.
Since these attacks are usually carried out by an external attacker or, as in the case of
a malware infection, are likely dependent on network communication with the attacker,
an analysis of the entire network traffic is favorable in order to protect many end devices
simultaneously. For all IDS types, different methods of intrusion detection exist. These
can be divided into the three fields of anomaly-based, signature-based and specification-
based detection techniques. In the context of this paper we only focus on anomaly-
based detection techniques [7] which address the properties of normal user behavior.
Strong deviations from this benign behavior represent an anomaly. Over the recent years
machine learning techniques have been adopted to facilitate such an analysis.

2.2 Machine Learning Based Network Intrusion Detection

Only a limited amount of work appears to address machine learning based intrusion
detection focusing on real-time operation. In [1], a real-time flow-based network traffic
classification system was introduced. The used reconstruction of data flows is based on
the “TCP Session Reconstruct Tool”, which uses the TcpRecon algorithm. Based on
the reassembled data flows they extracted 14 statistical features to perform a machine
learning based classification. The evaluation of this system showed an average delivery
delay between 0.49 and 7.50 s. In [2], the authors presented a real-time IDS using a
Decision-Tree Classifier. The performed classification is based on 12 extracted features.
The authors state that the detection takes place within 2 s per record. They also claim the
classification itself only takes a few milliseconds, while the rest of the computation time
is needed for the performed preprocessing steps. In [3], a real-time IDS system for ultra-
high-speed big data environments based on a Hadoop implementation was introduced.
The authors claim that the system is highly suitable for real-time operation due to the
performance of the multilayered architecture used. The work contains a benchmark to
comparable systems, in which their system scored best, but no details regarding the
execution time or a processable data throughput can be taken from the work. In [4], a
deep learning based approach was introduced for real-time web intrusion detection. The
authors also claim the system is capable of real-time predictions, but no information
about the required computation time is given.

2.3 CICFlowMeter

In order to usemachine learning techniques for the analysis of network data, the datamust
first be brought into a suitable form through the so-called feature engineering process. For

224 A. Schaad and D. Binder

this purpose, the open source network traffic flow generator and analyser CICFlowMeter
[1] was developed. This tool processes network data and generates features based on the
received network packets. Thereby the CICFlowMeter creates bidirectional data flows,
which means that the respective direction of the packets is taken into account. A data
flow thereby always describes the communication between two communication partners
via the same ports and protocols (similar to the method described in Sect. 3.2). This
process can be done online, by receiving network data through a network interface, as
well as offline, by reading out stored data in a pcap file. After a data flow is terminated,
83 statistical features are calculated based on the collected information of the respective
data flow. These features describe the properties of the data flow to such an extent
that they can be used as input values for machine learning models. For example, the
first six features describe the metadata of the connection in the form of IPs, ports and
the time of creation of the data flow. From the perspective of the TCP/IP stack, data
from the transport layer is used, so that these features can be created independently of
the respective application. The termination of a data flow is determined in two ways.
In the case of a TCP connection, a data flow always ends when a packet with a FIN
flag is detected. However, since this option does not work for UDP packets due to the
statelessness and since it may happen, for example in the case of port-scans, that a TCP
connection is not terminatedwith a FIN flag, there is an additional timeout which ensures
the termination of a data flow.

The CICFlowMeter has already been used in several projects, which prove the func-
tionality of the tool such as classifying traffic for detection of VPN traffic [8] or traffic
from the TOR network [9]. In addition, the CICIDS2017 dataset is offered, which is
generated on the basis of the CICFlowMeter and of machine learning based IDS [10].
We will use this dataset for evaluating our work in the context of this paper.

While the tool is best suited for research work and the creation of datasets, it reaches
its limits when the functionality of real-time operation is required. Because this tool
comes in the form of a stand-alone application it is not possible to integrate it into a real
time process. The function of processing network data by receiving network data via a
network interface also runs in real time, but there is no possibility to process it directly
afterwards. Instead the data is stored in a CSV-file and can only be further processed
subsequently by an external program. Due to these limitations, the applicability of the
tool is very limited. An extension of the functions of this tool to include real-time
processing functionality would open up new application possibilities. In addition to real-
time IDS on machine learning basis, the said functionalities would also allow the use of
techniques like reinforcement learning and other time-dependent areas of application.
The following section discussed the design of the new feature extractor FEX based on
the CICFlowMeter to overcome the described limitations.

3 FEX - A Feature EXtractor for Machine Learning-Based IDS

Aswe saw in the previous section, the core functionality of the CICFlowMeter is already
highly suited for generating data flow oriented features based on raw network data.
However, it was also noted that this tool has major drawbacks with regard to the real-
time usage. As the CICFlowGenerator is a stand-alone application it is not possible

FEX – A Feature Extractor for Real-Time IDS 225

to use it directly for a real time application. Although the feature extraction can be
carried out during operation, there is no possibility to analyse and process the produced
features directly. To solve these problems, it would be ideal to provide this functionality
in form of a library. This allows the same computations to be carried out during operation
and gives the user a high degree of flexibility for the further handling of the generated
data. Exactly this was done in the context of this paper by the development of FEX,
which is presented in detail in the following. Though the basic structure as well as
the generated features are based on the CICFlowMeter, our own packet parsers and
extraction algorithms appear to be more suitable for real-time processing. FEX is openly
available as a Python/Cython library [11] with an overall design goal to reduce external
dependencies to a bare minimum.

Fig. 1. FEX architecture

3.1 Architecture

The architecture of the FEX library is shown in Fig. 1 as a technical architecture model
(TAM). This illustration shows how the library can be used via an external program
to perform the feature extraction process. In short, the components fulfil the following
function:

• From raw packet data the required information is parsed from the packet fields. The
raw packet data is received by the external program.

• Individual packets are assigned to a data flow based on information about the sender
and receiver.

• Each data flow contains features that describe the properties of the transported packets.
These are returned to the external program as output.

226 A. Schaad and D. Binder

3.2 Design

Packet-Sniffer/pcap-Reader
As a first step to work with network data, it must be retrieved in a proper form. This
can be done either during operation by sniffing on a network interface or offline by
reading in network data already stored in the form of a pcap-file. Since one of the aims
of this library is to provide the most flexible handling possible, the integration of this
component within the library has been omitted. The form of the input source can thus
be freely determined by the user. The only prerequisites are that the network data is
available in raw, unprocessed form and that a timestamp of the packet arrival is available
in microseconds.

Packet Parser
Since the packets were received in a raw form, these packet values must be parsed,
to access the transmitted data. Whilst several libraries provide such functionality, we
implemented a custom packet parser in order to extract only the bare minimum of
information from the packets and thus save valuable computing time in terms of real-
time functionality. This part of the code was written entirely in Cython and compiled
in C. Based on the extracted values the packet parser also creates the 5-tuple Flow-Id
which is required for the following flow reassembly.

Data Flows and Feature Extraction
Acentral element for the generation of features from the network data is the reassembly of
data flows. The data flows described here are represent the object of such a reassembled
data flow. Those objects are created by the flow generator from individual network
packets which have been preprocessed by the packet parser. By reconstructing the data
flows from the network data, the packets are assigned to their respective connection
between the communication partners involved. Based on these data flows, the actual
features are generated for each data flow. The internal state of each data-flowobject stores
the intermediate values required, which describe the information previously exchanged.
When adding further packets, these intermediate states are updated accordingly. The
generated features are 79 numerical values, which are used for the later application in
the machine learning task. In addition, there is the metadata of the data flow, which
enables a unique tuple for addressing the data flow according to the method mentioned
in Sect. 3.2.

Since a detailed explanation of the generation of the individual featureswith 79values
would be too extensive, these are now explained in a summarized form. Generally, the
bidirectionality of the connection for all data packets is taken into account during the
process of data flow generation. This means that when updating a data flow, the Flow
Generator always detects whether the new packet is incoming or outgoing relative to the
receiver. Due to the bidirectionality, most of the features occur for each of the two flow
directions. These values include very general information describing the packet transfer,
such as the duration of the data flow, the number of packets sent per direction, the size
of the content of the packets per direction, and the size of the payload and header of
those packets. Moreover, all set flags within a data flow are recorded and the summed
individually. In addition, it is separately noted whether the PSH and URG flags were set

FEX – A Feature Extractor for Real-Time IDS 227

when the connection was initialized. Information about the flags can only be retrieved
in a TCP-based connection, which is why in case of an UDP connection they keep the
value 0. Besides this simple information, which can be extracted directly by updating a
single variable each time a packet arrives, other statistical values are also derived. For
the generation of these statistical values, a statistical counter was developed, which is
described separately, since special considerations were made with regard to runtime and
memory complexity. This generation of values by the statistical counter was used for
the following information sources:

• all incoming/outgoing packets
• time between the transmission of all packets
• time between the transmission of incoming and outgoing packets
• active time of the data flow
• idle time within the data flow
• values regarding the length of the contents of the data flow

For all these sources of information, the number of observations, the sum, the mini-
mum, themaximum, the average, the variance and the standard deviation can be extracted
by the statistical counter. It should be noted that not all possible values were extracted
in every case. Here the format of the CICFlowMeter was strictly followed, so that the
same features are generated.

Statistics Summary Generator
As part of the feature extraction, statistical values of certain characteristics are gener-
ated. These are updated every time a new packet is added to a data flow. Features such as
the number of observations, the sum, the minimum and the maximum could be directly
implemented by updating a single variable for each. To calculate the variance and stan-
dard deviation West’s algorithm was used, which allows this operation in an optimised
manner without caching intermediate values [12]. Therefore the operation takes place
within a memory and execution complexity of O(1).

Flow Generator
The central component of the architecture is the FlowGenerator, as this element controls
the interaction of all other components:

• Individual packets must be assigned to the corresponding data flows. If no data flow
exists, a new one must be created.

• The termination of a data flow must be recognised and handled. This can be done by
the FIN-flag for TCP-connections or by a timeout.

• The features are generated by a data flow as soon as it is finished. Optionally, the
status of unfinished data flows can also be read out via the parameter of the output
Event.

The algorithm in Fig. 2 shows how the desired tasks are solved by the FlowGenerator.
The function receives the already parsed packet and processes it. For the explanation of
the processes, the pseudo code can be viewed in logical blocks:

228 A. Schaad and D. Binder

Fig. 2. Data flow generation algorithm

• After the initial initialisation of the variable (line 2–3), a check is first made to see
whether the packet to be processed can be assigned to an existing data flow (line 4–9).
Since these are bidirectional data flows, the 5-tuple of the data Flow-id is checked for
both the incoming and outgoing direction.

• Lines 10–17 handle the case in which the appropriate data flow exists and a timeout
was triggered by exceeding the given threshold. The features are therefore generated
for the previous state of the data flow. This data flow is then deleted and a new data
flow is initialized with the current packet.

• Lines 18–22 describe the case in which an existing data flow is terminated by receiv-
ing a FIN-flag. The data flow is updated a last time and the features are generated
afterwards.

FEX – A Feature Extractor for Real-Time IDS 229

• Lines 23–28 cover the case inwhich a data flow exists but is not terminated. Optionally
it is possible to receive features of an intermediate stage by specifying the outputEvent.

• Finally, lines 29–31 deal with the case where no existing data flow exists and a new
data flow is added to the set of existing data flows.

• At the end of the algorithm the array of features is always returned.

3.3 Evaluation

Fig. 3. Performance comparison FEX vs. CICFlowMeter

A critical aspect of the development,which also served asmotivation for the development
of theFEX library, is the runtimeperformance. In this step, this performanceof the feature
extraction process was measured in terms of runtime, CPU usage and memory usage
for the FEX library and the CICFlowMeter respectively (Quad Core Intel i5-8250U
8 Threads 64 bit @3,4 GHz, 24 GB RAM). In this test setup, both tools were used in
offlinemode to process an identical pcap file. Since for the latermachine learning process
(Sect. 4) it is necessary to create training data anyway, this comparison is carried out
directly on the basis of the dataset which will be used in that step. This dataset consists
of five individual files, each of which describes the network data of a weekday on which
attacks were carried out within the test network.

More details on this dataset are presented in Sect. 4.1. Since the CICFlowMeter tool
is only able to process a single file at a time, the decision was made to perform this
test only on one of the five pcap-files. Here the file was used which contains the data
from Thursday 06.07.2017. This file has a size of about 8.302 gigabytes and contains
about 9.322 million individual network packets. The processing by both tools took place

230 A. Schaad and D. Binder

successively, whereby the tool psrecord was used in parallel to record CPU and memory
usage in intervals of 100 µs. The recorded data are visualized in Fig. 3.

Based on the test experiment presented, the following observations are made:

• By using the FEX library the file could be processed within 42.7 s. CICFlowMeter
needed 256.3 s and thus six times longer.

• Based on the time measurement and the given number of 9.322 million packets it
can be calculated that on average the FEX library is able to process 218,313 packets
per second, while the CICFlowMeter can only process 36,371 packets/sec. In other
words, processing of a single packet by FEX takes 4.58µs while CICFlowMeter takes
27.49 µs.

• FEX uses a single thread for the primary processing of the packets, which can be seen
by the CPU usage. The CICFlowMeter, on the other hand, uses all available threads
(which were 8 in this test setup).

• The CPU load using FEX is almost constantly the same, while the CPU load of the
CICFlowMeter fluctuates strongly and even drops to 0% in the meantime.

• In both cases, it can be seen that the memory increases over the runtime. For the
CICFlowMeter this increase is clearly irregular.

• Both tools allocate more memory as processing progresses. For processing the 8.302
gigabyte file, the CICFlowMeter requires 2.599 gigabytes memory, while 2.284
gigabytes are required using FEX.

While these results look promising, a problem has been observed with respect to the
memory usage. In order to be able to process a high volume of data over a long period
of time in real-time operation, the FEX library was developed to store only a minimum
of necessary data. The observed unintentional allocation of memory is likely to be due
to the Python interpreter and will be addressed in future work.

4 Training a Model for Real-Time Intrusion Detection

This section now details the use of standard machine learning techniques to generate a
model for the detection of intrusions, based on features extracted by the FEX library. As
a first step, the used training dataset and the performed labelling of the attacks within
this dataset are described. Subsequently, the required preprocessing steps and sampling
methods are presented. For the training process itself, it was first considered which
library would be particularly suitable for real-time application. The machine learning
libraries used for this purpose are presented in Sect. 4.3. Using those selected libraries,
a comparison of different machine learning models was then carried out. The selected
models were examined regarding the quality of their results as well as their prediction
time to find a model suitable for real-time applications. For the selected model, a more
detailed evaluation of the results is performed. Results are compared with an identical
model produced with pre-processed data from the CICFlowMeter context [5].

FEX – A Feature Extractor for Real-Time IDS 231

4.1 Training Data and Labelling

The Intrusion Detection Evaluation Dataset (CICIDS2017) dataset was chosen, which
is available at the CIC [10]. This dataset contains recorded network data of a test envi-
ronment, which consists of a victim network and an attacker network. Over a period of
5 days, various attacks were carried out, which are shown in Table 1. The used dataset is
offered both in the raw form of 51.1 gigabytes of raw network data in form of a pcap-file,
as well as in an already processed form in the CSV format. Since the specially created
feature extractor is used in this step, the raw network data is used for the following
feature extraction process. Besides the new generated dataset, the offered pre-processed
version of the data processed by the CICFlowMeter will be used in Sect. 4.5, where the
results of the models created will be compared on the basis of the two feature extractors.

We label the created dataset using metadata that describes aspects of the various
attack scenarios performed, such as the machines involved (the IP of the attacker and
the target), the time period of the performed attack, the target port of the attack, and
the type of attack [10]. The labelling carried out on the basis of time periods and attack
types is also in Table 1. This table also shows how many entries of each attack class
are contained in the created dataset and in the dataset provided by CIC. The entries per
class were counted in this step to check the correctness of the labelling process. As it
can be seen from Table 1, there are only minimal differences in a few cases. Through
the shown labelling 13 different classes of attacks were created, which are grouped as
presented in [13]. The results of this process are shown in Table 1.

Table 1. Aggregated training data and labelling

4.2 Sampling

As the classes of the dataset used are highly imbalanced. This is also one of the short-
comings of the used dataset which is described in [13] in more detail. Here it is argued
that this imbalance results in a lower accuracy and a high false positive rate. To correct
the imbalance, a hybrid-resampling approach is chosen, in which first a partial under-
sampling and then an oversampling of the remaining classes is performed. In the step of

232 A. Schaad and D. Binder

under-sampling the strongly overrepresented classes Benign and DoS are reduced to the
size of the DoS class by randomly drawing samples. An oversampling is performed with
the remaining classes, so that all classes now contain a size of about 122,000 entries.
It is important to note that this process only refers to the training data. The separately
generated test dataset remained untouched, since carrying out this process on the test
dataset would strongly distort the produced result.

4.3 Library Selection

Since in this work special emphasis was placed on the time of execution, an attempt was
made to find suitable libraries for this purpose. We therefore compare the results of the
commonly used scikit − learn library [14], as well as the lesser known creme library
[15]. We made this selection because scikit – learn performs predictions in batches and
creme is an online machine learning library. In this context, we want to compare the
execution times of both concepts.

Table 2. Model evaluation results

4.4 Model Selection

Based on the selected libraries, different models were tested for each of the two libraries.
Due to the intended real-time application,we take the execution time aswell as the quality
of our prediction into account. For the selection of suitable models, a benchmark of the
creme library [15] was considered, in which the execution time of a binary classifier was
compared. Since we perform a multi-class-classification, the weighted F1-Score was
used to measure the quality of the generated result based on the untouched test dataset.
After the training step of the individual models, individual classifications were carried
out on the basis of the test dataset, which simulate real-time operation. For this purpose,
the required prediction time was measured in nanoseconds. This time measurement, as
well as the other results and information on how to carry out the comparison are shown
in Table 2. The following observations can be made based on the performed model
comparison:

• The average prediction time of the creme library’s Decision-Tree Classifier is the
fastest model at around eleven microseconds and almost five times faster than the
second fastest model.

• However, the weighted F1-Score of this fastest model is rather low at 0.88620, which
is why this model is almost unusable for the use in an IDS.

FEX – A Feature Extractor for Real-Time IDS 233

• The second fastest model, the Decision-Tree Classifier of the scikit − learn library,
requires on average about 50 µs for a prediction and shows the best results with a
weighted F1-Score of 0.99848.

• A comparison of the weighted F1-Scores between the two libraries shows that the
creme library performed worse in all cases. This may suggest that the models of this
library are not well suited for use in multi-class classification.

• Compared to the benchmark used for model selection [15], the models of the creme
library perform much slower in this test. A closer look at the implementation of the
benchmark showed that the measurement of scaling was not included in the times
indicated.

• Besides the scaling, the handling of multi-class classification also seems to play a role
in the execution time. The models that provide an inherent multiclass-classification
showed the fastest execution times. The OvR or OvO methods require additional
computational time.

Despite the worse execution time, the Decision-Tree-Classifier model of the scikit−
learn library is used in the following as it produces the best results. The computation time
a prediction was further optimised by translating themodel into C-Code using them2gen
library [17]. This C-Code was made accessible under Python using a Cython wrapper.
Through this optimisation the duration of a single prediction was further reduced to 3.96
µs on average.

4.5 Evaluation

In the previousmodel selection, theweighted F1-Score of the selectedmodelwas already
considered. In this section, a more in-depth evaluation of the model is carried out, which
allows further evaluation of the selected models performance as well as comparison to
CICFlowMeter.

Confusion Matrix
We evaluate the performance of the model by creating a creating a confusion matrix
(Fig. 4) based on untouched test data. As can be observed from the diagonal of the
matrix, almost all actual attackswere correctly classified. However notable false-positive
misclassifications are present for the Bot and Web Attack fields. We suspect this is due
to the small sample size of those classes (see Table 2) and our resampling process.

Comparison with CICFlowMeter
Our evaluation has shown that the produced results based on the data of the FEX library
are fairly suitable for an intrusion detection. At this point it is examined whether the
results are comparable to those that can be produced by the reference tool [5]. We
repeated the machine learning process with the provided training data of the CIC [10]
to compare the quality of both feature extractors based on individually trained models.
The previously presented training procedure was therefore repeated with the same steps.
Since this also includes the process of random sampling and the train-test-split, a certain
degree of randomness flows into the results.

Table 3 shows theweightedF1-Score for themodels usedwith both feature extractors,
from which we can conclude that both tools perform at least comparably well.

234 A. Schaad and D. Binder

Fig. 4. Normalised confusion matrix

Table 3. Comparison FEX vs. CICFlowMeter

5 Towards a Machine Learning Based Real-Time IDS

We now combine our FEX feature extraction framework with the trained intrusion detec-
tionmodel in order to implement an intrusion detection system that uses real-time traffic.
The details of the implementation are provided in [11] and we only report on the test
that were carried out and the calculated theoretical throughput of our system.

In order to measure the actual data throughput of the IDS, it is not directly possible to
add up the required time periods for processing of packets, feature generation and clas-
sification, since each packet is processed by the feature generator, but the classification
only takes place at a corresponding end of a data flow. This is also the reason why this
measurement of the duration was not carried out directly, but on the basis of two partial
measurements. In order to calculate a theoretical data throughput, two possible scenar-
ios are considered. In the first scenario, it is assumed that a classification necessarily
takes place after each packet. From a runtime point of view, this scenario represents the

FEX – A Feature Extractor for Real-Time IDS 235

worst-case scenario and the absolute minimum data throughput that can be processed
with certainty. In a second scenario we try to measure a more realistic behaviour. Within
the entire dataset used for the training and evaluation process, it is checked how many
packets a dataset consists of on average. To calculate not only the number of packets per
second, but also the data throughput, the size of a single packet is considered. Based on
the characteristics of the IPv4 and Ethernet v2 protocols we assume a minimum packet
size of 68 bytes and a maximum size of 1500 bytes for the following calculations.

In the worst case, we conclude that after each packet has arrived, in addition to the
feature extraction a classification is performed. In this worst case, depending on the
packet sizes, a data throughput between 63.7 Mbit/s and 1.405 Gbit/s can be processed.

In the realistic case it is assumed that a classification does not necessarily take place
after each packet. This case corresponds to the typical use case in which a classification
is only made after the completion of a data flow. Since it is not known howmany packets
a data flow is composed of in real operation, the frequency from the dataset (Sect. 4) is
used. The dataset consists of a total of 54.319 million packets, which form 2,829,500
data flows. The result for this realistic scenario is that a data throughput between 113.427
Mbit/s and 2.502 Gbit/s can be processed.

The calculated data throughput is thereby based on the average total processing time
per packet and the assumed minimum and maximum sizes of each packet. For the worst-
case calculation, the total processing time of 8.54µs result the feature extraction duration
of 4.58 µs and the optimised classification duration of 3.96 µs. For the realistic scenario
the classification duration was divided by the frequency of packets per data flow, since it
was assumed that the classification takes place after a data flow is terminated, resulting
in an average computation time of 4.8 µs.

6 Conclusion

Existing work in the field of machine learning based real-time IDS systems does not
adequately address the aspect of time sensitiveness. In [1] and [2] real-time IDS were
presented, which took into account the exact duration of data processing, but which were
rather slow. In [3, 4] it was further noticed that although a real-time capable architecture
was utilized, it is unclear whether this provides the necessary performance to be relevant
for real-timeoperation. In order to solve the identifiedproblem regarding the applicability
for a real-time analysis, appropriatemethodswere presented in this paper to provide such
a solution. This includes the creation of a high performance network feature extractor
(FEX), which is specially designed for real-time operation. In [2] it was described that
this process represents the bottleneck of their architecture, requiring about two seconds
computation time.This bottleneck could be avoided in ourworkbyusing the performance
advantages of a Cython implementation. Despite the larger amount of 83 statistical
features in the approach presented, the feature generation process requires only 4.58 µs
per packet. Furthermore, it was shown how the data generated by the feature generator
can be used to create a suitable machine learning model, producing sufficiently good
results. By translating the model into pure C-code, it was shown how the performance
could be increased remarkably by a factor of 12.63,which iswhy it is particularly suitable
for real-time operation. Such an optimisation method could not be found in any related

236 A. Schaad and D. Binder

work in this area. As a result of these two optimised processes, it was shown how a high-
performance, yet very simple IDS was implemented. To underline the performance, a
comparison of the computing time with [1] was made, which required between 0.49 and
7.50 s per packet on average. In our work, a similar process requires only between 4.8
and 8.54 µs. The suitability for real-time analysis can therefore be assumed without any
doubt. The objective of creating a real-time capable IDS is therefore fulfilled. Among
the available feature generators, no comparable alternative with a focus on real-time
processing could be found. The created FEX library is available as an open source
library [11].

References

1. Santiago, S., Castro e Silva, J., Maia, J.: NTCS: a real time flow-based network traffic classifi-
cation system. In: Proceedings of the 10th International Conference on Network and Service
Management, CNSM 2014, pp. 368–371 (2015)

2. Sangkatsanee, P., Wattanapongsakorn, N., Charnsripinyo, C.: Practical real-time intrusion
detection using machine learning approaches. Comput. Commun. 34, 2227–2235 (2011).
https://doi.org/10.1016/j.comcom.2011.07.001

3. Rathore, M.M., Ahmad, A., Paul, A.: Real time intrusion detection system for ultra-high-
speed big data environments. J. Supercomput. 72(9), 3489–3510 (2016). https://doi.org/10.
1007/s11227-015-1615-5

4. Kim, A., Park, M., Lee, D.H.: AI-IDS: application of deep learning to real-time web intrusion
detection. IEEE Access 8, 70245–70261 (2020)

5. Canadian Institute for Cybersecurity: Canadian Institute for Cybersecurity - Applications
- CICFlowMeter (formerly ISCXFlowMeter). https://www.unb.ca/cic/research/applications.
html

6. Mitchell, R., Chen, I.-R.: A survey of intrusion detection in wireless network applications.
Comput. Commun. 42, 1–23 (2014)

7. Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.: Network traffic anomaly detection
techniques and systems. In: Network Traffic Anomaly Detection and Prevention. CCN,
pp. 115–169. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65188-0_4

8. Lashkari, A.H., Gil, G.D.,Mamun,M.S.I., Ghorbani, A.A.: Characterization of encrypted and
VPN traffic using time-related features. In: Proceedings of the 2nd International Conference
on Information Systems Security and Privacy - Volume 1: INSTICC, pp. 407–414. SciTePress
(2016)

9. Lashkari, A.H., Gil, G.D., Mamun, M.S.I., Ghorbani, A.A.: Characterization of TOR traffic
using time based features. In: Proceedings of the 3rd International Conference on Information
Systems Security and Privacy - Volume 1 INSTICC, pp. 253–262. SciTePress (2017)

10. Canadian Institute for Cybersecurity: Intrusion Detection Evaluation Dataset (CICIDS2017).
https://www.unb.ca/cic/datasets/ids-2017.html

11. https://github.com/dobinder/FEX
12. West, D.H.D.: Updating mean and variance estimates: an improved method. Commun. ACM

22(9), 532–535 (1979)
13. Panigrahi, I.R., Borah, S.: A detailed analysis of cicids2017 dataset for designing intrusion

detection systems. J. Eng. Technol. 7, 479–482 (2018)
14. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–

2830 (2011)
15. Halford, M.: Creme - online machine learning in python. https://github.com/creme-ml/creme.

https://doi.org/10.1016/j.comcom.2011.07.001
https://doi.org/10.1007/s11227-015-1615-5
https://www.unb.ca/cic/research/applications.html
https://doi.org/10.1007/978-3-319-65188-0_4
https://www.unb.ca/cic/datasets/ids-2017.html
https://github.com/dobinder/FEX
https://github.com/creme-ml/creme

FEX – A Feature Extractor for Real-Time IDS 237

16. Geron, A.: Hands-onMachine Learningwith Scikit-Learn, Keras, and TensorFlow: Concepts,
Tools, and Techniques to Build Intelligent Systems, 2nd edn. O’Reilly UK Ltd, Newton

17. https://github.com/BayesWitnesses/m2cgen/

https://github.com/BayesWitnesses/m2cgen/

Identifying Malicious DNS Tunnel Tools
from DoH Traffic Using Hierarchical

Machine Learning Classification

Rikima Mitsuhashi1,2(B), Akihiro Satoh3, Yong Jin4, Katsuyoshi Iida2,
Takahiro Shinagawa1, and Yoshiaki Takai2

1 The University of Tokyo, Tokyo, Japan
mitsuhashi@os.ecc.u-tokyo.ac.jp, shina@ecc.u-tokyo.ac.jp

2 Hokkaido University, Hokkaido, Japan
{iida,ytakai}@iic.hokudai.ac.jp

3 Kyushu Institute of Technology, Fukuoka, Japan
satoh@isc.kyutech.ac.jp

4 Tokyo Institute of Technology, Tokyo, Japan
yongj@gsic.titech.ac.jp

Abstract. Although the DNS over HTTPS (DoH) protocol has desir-
able properties for Internet users such as privacy and security, it also
causes a problem in that network administrators are prevented from
detecting suspicious network traffic generated by malware and malicious
tools. To support their efforts in maintaining network security, in this
paper, we propose a novel system that identifies malicious DNS tunnel
tools through a hierarchical classification method that uses machine-
learning technology on DoH traffic. We implemented a prototype of
the proposed system and evaluated its performance on the CIRA-CIC-
DoHBrw-2020 dataset, obtaining 99.81% accuracy in DoH traffic filter-
ing, 99.99% accuracy in suspicious DoH traffic detection, and 97.22%
accuracy in identification of malicious DNS tunnel tools.

Keywords: DNS over HTTPS (DoH) · Network traffic classification ·
Suspicious DoH traffic · DNS tunnel · Malicious DNS tunnel tool
identification

1 Introduction

There is growing momentum to encrypt DNS traffic on the Internet for pri-
vacy and security concerns. A promising method to encrypt DNS traffic is DNS
over HTTPS (DoH), which uses SSL/TLS protocols for encryption and has been
standardized in RFC8484 [5]. DoH has already been implemented in the latest
versions of major web browsers, such as Firefox and Google Chrome. In a client
system, DoH can be used by installing proxy software such as cloudflared [4],
doh-proxy [10], dnscrypt-proxy [8] and doh-client [9] for all DNS domain name

c© Springer Nature Switzerland AG 2021
J. K. Liu et al. (Eds.): ISC 2021, LNCS 13118, pp. 238–256, 2021.
https://doi.org/10.1007/978-3-030-91356-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91356-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-91356-4_13

Identifying Malicious DNS Tunnel Tools from DoH Traffic 239

resolutions. For OS support, DoH is available in the insider preview build pro-
vided by the Windows Insider Program [15,16]. The structure of domain name
resolution using DoH is depicted in Fig. 1. DoH encrypts DNS traffic by using the
HTTPS protocol between the client and the DoH server that works as a DNS
full-service resolver, and the DoH server uses the conventional DNS protocol
with authoritative DNS servers on the Internet for domain name resolutions.

Fig. 1. Domain name resolution using DoH.

By encrypting DNS traffic using DoH technology, Internet users no longer
have to worry about privacy violations where someone can eavesdrop on domain
name resolutions when they visit websites, and the risk is reduced of their being
directed to an unintended website due to tampering by DNS cache poisoning
attacks [33]. On the other hand, DoH technology has a problem in that it prevents
network administrators from monitoring network traffic for providing network
security services. When malware communicates with a command and control
(C&C) server on the Internet by using DoH technology, the network adminis-
trators cannot detect the communication even if they are monitoring the entire
network. The existence of malware that uses DoH to communicate with C&C
servers has been confirmed [11]. Many large-scale malware attacks have also
been reported [18] and cyber-attacks will not stop on their own. Therefore, the
fact that network traffic cannot be monitored because of encryption is a criti-
cal issue for network administrators. To deal with this problem, a DoH server
could be set up in an organization’s network. The network administrator can
monitor the DNS traffic as usual since the DNS traffic between the DoH server
and the authoritative DNS server uses the conventional DNS protocol without
encryption. However, if the clients do not use that DoH server and instead use
public DoH servers provided by Internet service providers such as Google and
Cloudflare, again the network administrators cannot monitor the DNS traffic.

To determine proper network security solutions, network administrators need
to identify the original application programs that generate the malicious DoH
traffic, such as malicious DNS tunnel tools. Consequently, it is possible to block
traffic to the external websites to which the compromised internal computers
access and download the DNS tunnel tools and create rules that prohibit the
use of DNS tunnel tools or identify clients in which the DNS tunnel tools are
used. In the literature, several approaches have been proposed to detect malicious
DoH traffic [29,34]. However, the authors only proposed methods for detecting

240 R. Mitsuhashi et al.

malicious DoH traffic; their methods cannot identify the programs that gener-
ated the traffic. Therefore, network administrators cannot block the particular
problematic traffic generated by compromised computers or stop the spread of
vulnerabilities within their organization’s network.

Machine-learning technology is a useful way to identify DNS tunnel tools,
because it can automatically classify DoH traffic according to its characteristics.
However, when the technology is learning the features of DNS tunnel tools, the
DNS tools must be running and a DoH proxy has to be prepared to convert the
DNS traffic into DoH traffic. Moreover, a large amount of data must be gathered
over a long period to generate the training traffic flows since the amount of data
in a single packet is so small that it is difficult to determine whether or not the
traffic is malicious by verifying an individual packet. Furthermore, because the
DoH traffic is encrypted, the features for identifying DNS tunnel tools should be
found in the limited clues contained in the DoH, such as the packet header, packet
number, packet length, packet direction, and arrival interval between packets.
Thus, using machine-learning technology to identify DNS tunnel tools takes time
and effort. However, once the machine-learning model has been trained and is
up and running, it can analyze DoH traffic automatically.

In this paper, we propose a novel system that uses machine-learning tech-
nology on DoH traffic to identify malicious DNS tunnel tools that generate
encrypted DNS traffic. As shown in Fig. 2, we use a hierarchical network traffic
classification. The unique process in the proposed system is the 3rd stage, which
is the identification of malicious DNS tunnel tools. We have made parameter-
tuned models suitable for each stage of the classification, which enable us to
identify DNS tunnel tools with more accuracy.

Fig. 2. Concept of hierarchical network traffic classification.

We evaluated the proposed system on the CIRA-CIC-DoHBrw-2020
dataset [3] and found that the DoH traffic filtering had an accuracy and
F-score of 99.81% and 99.87%. As far as we know, this F-score is higher than any
of the previously reported ones. Regarding detection of suspicious DoH traffic,

Identifying Malicious DNS Tunnel Tools from DoH Traffic 241

the accuracy and F-score were 99.99% and 99.99%, respectively. The accuracy of
identifying malicious DNS tunnel tools was 97.22% and the F-score was 95.19%.
To the best of our knowledge, this is the first report to show the possibility of
identifying malicious DNS tunnel tools from an analysis of DoH traffic.

Our contributions are as follows.

– We propose a novel system that uses machine-learning technology on DoH
traffic to identify malicious DNS tunnel tools through a hierarchical classifi-
cation method.

– We show that the proposed system can identify malicious DNS tunnel tools
with enough accuracy that it can support security maintenance efforts by
network administrators.

– Experiments conducted on the CIC-DoHBrw-2020 dataset indicate that the
proposed system can distinguish DoH traffic from other HTTPS traffic more
accurately than the previous methods can.

The rest of this paper is organized as follows. Section 2 presents related work
on network traffic classification. Section 3 describes the proposed system design
of hierarchical network traffic classification. Section 4 shows the experimental
evaluation. Section 5 concludes the paper.

2 Related Work

2.1 Network Traffic Classification

Network traffic classification is a very active research area. In particular, a num-
ber of approaches to network traffic classification using machine-learning tech-
nology have been proposed [30]. As well, there are many reports on classification
of encrypted network traffic [19]. However, since DoH technology has a short
history and is still in the process of deployment as a practical application, few
research reports on DoH traffic classification are included in the survey papers.

Looking at the recently reported research on DoH network classification, D.
Vekshin et al. [36] identified DoH network traffic by classifying HTTPS traffic
by using machine learning. They also identified DoH clients such as Chrome,
Firefox, and Cloudflare by classifying DoH traffic. For both classifications, they
used the Ada-boosted decision tree model and obtained a classification accuracy
of 99.9%. The dataset they used was the access data to the domain names taken
from the top one million websites provided by Alexa [1]. M. MontazeriShatoori
et al. [29] used machine-learning technology to classify HTTPS and DoH traffic,
then benign and malicious DoH traffic. Both classifications used the random
forest model; the former yielded a 99.3% F-score and the latter a 99.9% F-score.
They used the CIRA-CIC-DoHBrw-2020 dataset for the evaluation. S. K. Singh
et al. [34] improved the accuracy of classifying benign and malicious DoH traffic
on the CIRA-CIC-DoHBrw-2020 dataset. They used the gradient boost model
and obtained 100% classification accuracy with the holdout method.

242 R. Mitsuhashi et al.

2.2 DNS Tunnel Detection

Many studies have been reported on attack methods and countermeasures
against DNS [20,24–26], and the research field of DNS tunnel detection has
received particular attention recently. Because domain name resolution based
on DNS is one of the most basic and indispensable services on the Internet,
attackers exploit the characteristics of DNS to build tunnels. A DNS tunnel is a
common technique attackers use to establish C&C nodes and to exfiltrate data
from networks [21].

Regarding recent reports on DNS tunnel detection, P. Yang et al. [38] tried to
detect DNS covert channels by using a stacking model. The DNS traffic was gen-
erated by the collection of tools, including dns2tcp, dnscat2, DeNiSe and Heyoka.
They used a stacking model that is an ensemble of three different algorithms
(K-nearest neighbors (KNN), support vector machine (SVM) and random for-
est). A. L. Buczak et al. [21] also detected DNS tunnels by analyzing network
traffic. They extracted features from a penetration testing effort and trained
random forest classifiers to distinguish normal DNS activity from DNS tunnel-
ing activity. D. Lambion et al. [28] detected malicious DNS tunnels by using a
convolutional neural network (CNN), random forest, and ensemble classifiers for
DNS traffic. They assessed the classifiers’ performance and robustness by expos-
ing them to one day of real-traffic data. Y. Chen et al. [22] proposed a framework
for DNS tunnel detection using long short-term memory (LSTM), gated recur-
rent unit (GRU) and CNN. A. Chowdhary et al. [23] presented two methods for
detecting DNS tunneling queries. The first method uses cache misses in a DNS
full-service resolver and the second method utilizes machine-learning technology
to classify a given DNS query. K. Wu et al. [37] introduced a three-stage DNS
tunnel detection method based on a character feature extraction, called FTPB,
which uses feature extraction to filter out the domain names resolved by the
DNS tunnels.

In summary, no studies on either network traffic classification or DNS tunnel
detection have reported on DoH traffic classification for identifying malicious
DNS tunnel tools. In contrast, in experiments conducted on the CIRA-CIC-
DoHBrw-2020 dataset, we have achieved the same or better accuracy than those
of previous methods of classification in the 1st and 2nd stage. In addition, we
also implemented DNS tunnel tool identification in the 3rd stage.

3 Design

In Sect. 2, we introduced some related work regarding the network traffic clas-
sification and investigated the methods of DNS tunnels detection. For network
administrators to maintain network security, they need to identify any malicious
tools communicating in the DoH traffic. In this section, we describe the design
of our system.

Identifying Malicious DNS Tunnel Tools from DoH Traffic 243

3.1 System Overview

To be able to identify the malicious tools used in the DoH communication, it
is necessary to analyze the characteristics of network traffic. We introduce a
hierarchical classification method to identify malicious tools. The key idea is to
determine the best machine-learning model for each stage of the traffic classifica-
tion. As shown in Fig. 3, the traffic data classification consists of three blocks: 1)
DoH traffic filtering, 2) suspicious DoH traffic detection, and 3) malicious DNS
tunnel tool identification. In the following subsections, we explain the details of
each block.

Fig. 3. Overview of proposed system to identify malicious DNS tunnel tools.

3.2 Capturing and Extracting the Features of Network Traffic

As DoH encrypts DNS traffic by using the SSL/TLS protocol, the proposed sys-
tem takes HTTPS traffic as input data. Although there are likely many different
types of traffic in a network, we can determine if the traffic is generated by
HTTPS from the source or destination port number of the packet. The HTTPS
traffic generated when the client connects to the web server or DoH server is
collected at the capture points shown in Fig. 4. The purpose of the client’s con-
nection to the web server is to retrieve web content. The client connects to the
normal DoH server to resolve domain names, but the malicious DNS tunnel
tools on the client might connect with a suspicious DNS server to receive attack
instructions or send sensitive information.

To classify the acquired network traffic with machine-learning models, sta-
tistical features are extracted from HTTPS traffic of two-way communications.
Each traffic is determined by the source IP address, destination IP address,
source port number, and destination port number. This information is included
in the header of the packet and can be used because it is not encrypted. Statis-
tical features of the traffic are extracted using a series of packets, e.g., number
of packets, packet direction, packet arrival time, and packet length, etc. The
payload of packets in the HTTPS traffic is encrypted, but these external char-
acteristics can be ascertained.

244 R. Mitsuhashi et al.

Fig. 4. Network connections and capture point of HTTPS traffic.

3.3 Model Decision and Training

In this subsection, we describe how to determine the model to be used at each
stage to implement a hierarchical classification for identifying malicious DNS
tunnel tools. In the proposed system, we use the XGBoost [35], LightGBM [27],
and CatBoost [31] libraries using the gradient boosting decision tree (GBDT)
algorithm. According to S. R et al. [32], these GBDT libraries have substan-
tial flexibility and considerably faster training times compared to other machine
learning algorithms at present. They also describe these libraries are widely
used in competitive machine learning contests like Kaggle [13] because of their
expected high classification accuracy. Generally, boosting is a general ensemble
technique that produces a strong classifier from a large number of weak clas-
sifiers. As for GBDT, the learning process is as follows. First, a very simple
tree that predicts a single number is used. Next, the residual error (observed
- predicted) of the tree is calculated. Then, the next decision tree is added to
reduce the residual error. If there is still a significant amount of error remaining,
another decision tree is added to decrease the error. By repeating this process,
a strong classifier is produced.

In addition to the use of high-performance machine-learning libraries, param-
eter tuning suitable for the dataset is also important to obtain high classification
accuracy. We present a method to determine a suitable machine-learning model
for traffic classification in Fig. 5. We first train the training data against the
parameter-tuned model. Next, we use the trained models to classify the valida-
tion data. By comparing the accuracy obtained from the classification of the val-
idation data, we can determine the best parameter-tuned model for the dataset.
The determined model is then trained again on the training and validation data
and used as a classifier for the test data. This process is carried out in each of the
three stages, resulting in the determination of three classifiers. Here we note the
problem of overfitting. Overfitting means that a machine-learning model which is
closely related to a particular dataset cannot accurately classify additional data.
If the parameter tuning overfits the model to the validation data, the model

Identifying Malicious DNS Tunnel Tools from DoH Traffic 245

does not classify the test data with sufficient accuracy. Therefore, the results of
parameter tuning need to be analyzed by using not only the classification results
of the validation data, but also those of the test data.

Parameter-tuned models

Model 2

Model 3

Training
data

Model 1

Trained modes

Model 2

Model 3

Model 1
Validation

data

Score comparison

Accuracy

Accuracy

Accuracy

Best scoring model

Training
data

Validation
data

Model 1 Model 1

Trained model
as classifier

Fig. 5. Model decision process of network traffic classification.

Table 1 shows the parameters used for tuning each model. The parameters
are described in the documentation of each model [2,14,17] as being effective in
improving classification accuracy. We create specific parameter values by spread-
ing out from the default values in a certain range. We then use a grid search to
find the combination that classifies the validation data with the highest accu-
racy. Here, XGBoost has 35 models, LightGBM has 56 models, and CatBoost
has 48 models, so a total of 139 different models are available.

Table 1. Parameters of grid search (underline indicates default parameters).

XGBoost LightGBM CatBoost

max depth:
2, 4, 6, 8, 10, 12, 14

num leaves:
7, 15, 31, 63, 127, 255, 511

max depth:
2, 4, 6, 8, 10, 12, 14, 16

max bin:
128, 256, 512, 1024, 2048

max bin:
127, 255, 511, 1023, 2047, 4095,
8191, 16383

l2 leaf reg:
1, 2, 3, 4, 5, 6

3.4 Network Traffic Classification

In order to make it possible to identify malicious tools used in DoH communi-
cations, the proposed system classifies network traffic in three stages. Analyzing
the network traffic in detail at each stage enhances the possibility of achiev-
ing classification with better accuracy. The classifier to be used in each stage is

246 R. Mitsuhashi et al.

the one determined by the system in Sect. 3.3. Figure 6 shows a diagram of the
classification, in which the 1st stage classifies the HTTPS traffic data into DoH
and non-DoH; the 2nd stage classifies the DoH traffic into normal DoH and sus-
picious DoH; and the 3rd stage identifies the suspicious DNS tunnel tools that
generated the DoH traffic. In terms of the 3rd stage, numerous DNS tunnel tools
are available, such as pick pocket, ozymands, DeNiSe, Heyoka, and many more.
From the perspective of a risk-based approach, it is effective to start by identi-
fying the high-risk ones and increase the number of targets step by step. Hence,
in this paper, we focus on identifying the well-known and frequently used DNS
tunnel tools: dns2tcp [6], dnscat2 [7] and iodine [12].

Fig. 6. Hierarchical classification to identify malicious DNS tunnel tools.

4 Evaluation

In Sect. 3, we presented the overall picture of the proposed system, explained how
to determine the machine-learning model to be used in the hierarchical classifi-
cation, and described the classification targets at each stage. In this section, we
evaluated the classification performance of an implementation of the proposed
system and analyzed the important features.

4.1 Implementation

On the basis of the design proposed in Sect. 3, we implemented the proposed
system as follows. In terms of the hardware environment, we used a machine
with an Intel Xeon Silver 4210R CPU, 96-GiB memory and Nvidia GeForce RTX
3080 GPU. The software environments were Ubuntu 20.04 with singularity 3.7.3
and Nvidia TensorFlow Release21.02 Container. The machine-learning libraries

Identifying Malicious DNS Tunnel Tools from DoH Traffic 247

that we ran and parameter-tuned were XGBoost 1.3.3, LightGBM 3.2.1, and
CatBoost 0.25.1. Note that XGBoost and CatBoost were run on the GPU, while
LightGBM was run on the CPU.

4.2 Dataset

The experimental evaluations used the CIRA-CIC-DoHBrw-2020 dataset. The
number of labels and traffic included in this dataset is shown in Table 2. Since
the dataset has a bias in the amount of traffic in each stage, it is important to
understand not only the results of the overall classification but also the results of
the classifications with a small amount of traffic. We extract 28 statistical traffic
features from the dataset as shown in Table 3. We use all the statistical traffic
features in each of the three stages.

Table 2. Labels and amount of traffic in the dataset.

Labels Traffic

1st stage (HTTPS) Non-DoH traffic 897494

DoH traffic 269643

2nd stage (DoH) Normal DoH traffic 19807

Suspicious DoH traffic 249836

3rd stage (Malicious DNS tunnel tool) dns2tcp 167486

dnscat2 35770

iodine 46580

We used stratified 10-fold cross-validation to classify the network traffic of
the dataset; thus, in each test evaluation, the training and test data were split in
the ratio of 9:1. We used accuracy, recall, precision, and F-score as the metrics
to measure the overall classification results and those of classifications with a
small amount of traffic. The formulas for each of these metrics are as follows.
Note that, for the multi-class classification in the 3rd stage, we also used the
macro-average of each metric.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F -score =
2 · Precision ·Recall

Precision + Recall
(4)

where TP means true positive, FP means false positive, FN means false neg-
ative, and TN means true negative. Furthermore, we use mean-time-between-
false-alarms (MTBFA) as a metric of classification. MTBFA is the average time

248 R. Mitsuhashi et al.

Table 3. List of statistical traffic features.

1 Number of flow bytes sent 15 Mode Packet Time

2 Rate of flow bytes sent 16 Variance of Packet Time

3 Number of flow bytes received 17 Standard Deviation of Packet Time

4 Rate of flow bytes received 18 Coefficient of Variation of Packet Time

5 Mean Packet Length 19 Skew from median Packet Time

6 Median Packet Length 20 Skew from mode Packet Time

7 Mode Packet Length 21 Mean Request/response time difference

8 Variance of Packet Length 22 Median Request/response time difference

9 Standard Deviation of Packet Length 23 Mode Request/response time difference

10 Coefficient of Variation of Packet
Length

24 Variance of Request/response time
difference

11 Skew from median Packet Length 25 Standard Deviation of Request/response
time difference

12 Skew from mode Packet Length 26 Coefficient of Variation of Request/response
time difference

13 Mean Packet Time 27 Skew from median Request/response time
difference

14 Median Packet Time 28 Skew from mode Request/response time
difference

between false alarms in monitoring, which is calculated by the following equation.
As the number of false alerts (false positives) increases due to the insufficient
classification accuracy of the system, MTBFA becomes shorter.

MTBFA =
Monitoring hours

Number of false alarms
(5)

4.3 Model Decision

Table 4 shows the best accuracy and parameters obtained by performing a grid
search on validation data. As all the parameters shown here are larger than
the minimum value of the search range and smaller than the maximum value,
we concluded that we did not need to extend the search range any further. By
comparing the accuracy at each stage, we decided to use the parameter-tuned
XGBoost for DoH traffic filtering in the 1st stage, the parameter-tuned Light-
GBM for suspicious DoH traffic detection in the 2nd stage, and the parameter-
tuned CatBoost for malicious DNS tunnel tool identification in the 3rd stage.
Note that, in some of the experiments, the system resources were insufficient.
As for the combination of max depth: 14 and L2 leaf reg: [1, 2, 3, 4, 5, 6] in the
3rd stage, CatBoost used the CPU because of a shortage of GPU memory.

Identifying Malicious DNS Tunnel Tools from DoH Traffic 249

Table 4. Best score and parameters obtained by grid search.

1st stage: DoH traffic
filtering

2nd stage: Suspicious
DoH traffic detection

3rd stage: Malicious
DNS tunnel tool
identification

XGBoost accuracy 0.9981 accuracy 0.99998 accuracy 0.9719

max depth 12 max depth 4 max depth 6

max bin 1024 max bin 512 max bin 1024

LightGBM accuracy 0.9981 accuracy 0.99997 accuracy 0.9721

num leaves 255 num leaves 15 num leaves 63

max bin 511 max bin 255 max bin 8191

CatBoost accuracy 0.9979 accuracy 0.99999 accuracy 0.9690

max depth 14 max depth 4 max depth 10

L2 leaf reg 5 L2 leaf reg 2 L2 leaf reg 4

4.4 Results of Malicious DNS Tunnel Tool Identification

The results of network traffic classification using test data and classifiers that
were selected in Sect. 4.3 are shown in Table 5. The results of identifying mali-
cious DNS tunnel tools in the 3rd stage were 97.22% in accuracy and 95.19%
in F-score. Moreover, the results of filtering DoH traffic in the 1st stage were
99.81% in accuracy and 99.87% in F-score, while the results of detecting sus-
picious DoH traffic in the 2nd stage were 99.99% in accuracy and 99.99% in
F-score. These results indicate that the performance of the proposed system is
sufficient to support network administrators in their efforts to maintain network
security. In addition, the results of our model were better or equal to those of
the other finalist models, which means that the overfitting problem associated
with the parameter tuning did not occur.

Looking at MTBFA in the 2nd stage, it was much longer than that in the
1st and 3rd stages. This is due to the high classification accuracy of the 2nd
stage, which is acceptable in a large-scale real network environment. In terms
of MTBFA in the 3rd stage, it was half an hour and shorter than that in the
2nd stage. To use the proposed system in a real network, it is desirable to be
a little longer. This can be achieved by improving the classification accuracy in
the 3rd stage. As for the three sequential stages, the metrics were calculated by
reflecting the false positives and false negatives of the 1st and 2nd stage to the
3rd stage. The classifiers were XGBoost in the 1st stage, CatBoost in the 2nd
stage, and LightGBM in the 3rd stage. Since the accuracy of classification in the
1st and 2nd stage was relatively high, the metrics in the 3rd stage were affected
slightly.

250 R. Mitsuhashi et al.

Table 5. Results of network traffic classification using test data.

Classifiers Accuracy Precision Recall F-score MTBFA

1st stage: DoH traffic
filtering

XGBoost 0.9981 0.9981 0.9994 0.9987 181 min

LightGBM 0.9981 0.9980 0.9995 0.9987 111 min

CatBoost 0.9979 0.9978 0.9995 0.9986 101 min

2nd stage: Suspicious DoH
traffic detection

CatBoost 0.9999 1.0 0.9999 0.9999 80683 min

LightGBM 0.9999 0.9999 0.9999 0.9999 48410 min

XGBoost 0.9999 0.9999 0.9999 0.9999 30256 min

3rd stage: Malicious DNS
tunnel tool identification

LightGBM 0.9722 0.9497 0.9543 0.9519 33 min

XGBoost 0.9706 0.9473 0.9518 0.9495 32 min

CatBoost 0.9691 0.9446 0.9494 0.9469 29 min

Three sequential stages: 0.9703 0.9487 0.9503 0.9494 31 min

A performance comparison between the proposed system and the systems
of the previous studies is shown in Table 6. All previous studies have used the
holdout method, which divides the dataset into training and test data, and then
evaluates them once. In contrast, the 10 fold cross-validation we used performed
10 evaluations using the training and test data, and then calculated the average
of these evaluations. To align the comparisons, we picked the best results from the
10 evaluations. In the 1st stage, which is DoH traffic filtering, our system had the
highest precision, recall, and F-score. In the 2nd stage, which is suspicious DoH
traffic detection, the results of tour system, like those of the previous studies,
reached 1.0 in precision, recall, and F-score. It should be noted that the holdout
method may decrease the values of these metrics depending on how the samples
are selected when splitting the dataset into training and test data. In the cross-
validation results of our system, the precision, recall, and F-score were 1.0, 0.9999
and 0.9999, respectively, with no significant loss in classification accuracy. As far
as we know, this is the first attempt to identify malicious DNS tunnel tools;
thus, there are no other studies that ours can be compared with.

Identifying Malicious DNS Tunnel Tools from DoH Traffic 251

Table 6. Comparison with previous studies using the holdout method.

Classifiers Precision Recall F-score

1st stage: DoH traffic filtering Random Forest [29] 0.993 0.993 0.993

XGBoost (ours) 0.9982 0.9995 0.9989

2nd stage: suspicious DoH
traffic detection

Random Forest [29] 0.999 0.999 0.999

Gradient Boost [34] 1.0 1.0 1.0

CatBoost (ours) 1.0 1.0 1.0

3rd stage: malicious DNS
tunnel tool identification

LightGBM (ours) 0.952 0.956 0.954

4.5 Consideration of Important Features

To analyze the background that enabled the hierarchical traffic data classifica-
tion, the most important features used by each classifier are listed in Table 7.
For filtering DoH traffic in the 1st stage, XGBoost used “Mode Packet Length”
as the most important feature, followed by “Mean Packet Time”. “Mode Packet
Length” means the packet length that appears most often in the traffic flow,
while “Mean Packet Time” refers to the average inter-arrival time of packets in
the traffic flow. The value of “Mode Packet Length” is much larger than that of
“Mean Packet Time”, indicating that the former feature is very important. The
average size of “Mode Packet Length” in the 1st stage is 164.0 for the non-DoH
traffic and 68.0 for the DoH traffic. This difference is due to the fact that the
non-DoH traffic contains a lot of data provided by the web server.

Regarding detecting suspicious DoH traffic in the 2nd stage, CatBoost con-
sidered “Mode Packet Length” to be the most important feature, followed by
“Median Packet Length”. Here, “Median Packet Length” means the packet
length that separates the higher half of the traffic flow from the lower half.
The average size of “Mode Packet Length” in the 2nd stage is 74.1 for the nor-
mal DoH traffic and 67.5 for the suspicious DoH traffic. This difference is due to
the fact that normal DoH traffic contains a lot of SSL/TLS key exchange data
between the client and DoH server. In contrast, suspicious DoH traffic has less
of that data, because most malicious DNS tunnel tools stay connected with the
DoH server for a long time.

Regarding identifying DoH tunnel tools in the 3rd stage, LightGBM consid-
ered “Median Request/response time difference” to be the most important fea-
ture, followed by “Skew from median Request/response time difference”, “Mode
Request/response time difference”, and “Skew from mode Request/response
time difference”. The top-four features are related to “Request/response time
difference”, which means the inter-arrival time of received packets in the
traffic flow. The remaining part of “Skew from median Request/response
time difference” means the value defined by the equation: 3 · (mean −
median)/standard deviation, while “Skew from mode Request/response time

252 R. Mitsuhashi et al.

Table 7. Most important features in hierarchical traffic data classification.

Classifiers Important features Value

1st stage: DoH traffic
filtering

XGBoost Mode Packet Length 0.7757

Mean Packet Time 0.0819

2nd stage: suspicious DoH
traffic detection

CatBoost Mode Packet Length 68.9465

Median Packet Length 13.5604

3rd stage: malicious DNS
tunnel tool identification

LightGBM Median Request/response
time difference

3694

Skew from median
Request/response time
difference

3304

Mode Request/response time
difference

2963

Skew from mode
Request/response time
difference

2290

difference” means the value calculated by the following equation: (mean −
mode)/standard deviation. The average size of “Median Request/response time
difference” in the 3rd stage is 0.2 for dns2tcp, 2.7 for dnscat2, and 1.4 for
iodine. Since these malicious DNS tunnel tools were developed by separate orga-
nizations, we assume that the difference in processing load on the suspicious
DNS server caused the difference in response time. We also considered the pos-
sibility that the geographical distance from the client to the suspicious DNS
servers could be responsible for the difference in response time, but rejected this
hypothesis because, according to the description of the CIRA-CIC-DoHBrw-
2020 dataset [3], all the malicious DNS tunnel tools used a single suspicious
DNS server in common.

4.6 Discussion

We list up some consideration points regarding the evaluation performed. First
of all, we used the most popular and famous DNS tunnel tools in the evalua-
tion considering the high possibility of use by attackers. In Sect. 3.4, we have
distinguished three DNS tunnel tools with high accuracy. We also agree that
there are many other types of malicious DNS tunnel tools, and the number may
increase. In this case, even if there are some different factors in the new tools,
some similarities may remain. Therefore, we expect that the proposed system
will also be effective to those new varieties and the specific evaluation will be
performed in future work.

Secondly, we performed the evaluations on a local network environment and
confirmed the effectiveness of the proposed system. In Sect. 4.5, we showed that
the request-response time feature of network traffic can be used to distinguish

Identifying Malicious DNS Tunnel Tools from DoH Traffic 253

between three malicious DNS tunneling tools. It should be noted that in the
data we used in our experiments, the malicious DNS servers that each DNS
tunnel tool connects to are in a common network and have similar performance
specifications. Therefore, we consider that in an environment with similar con-
ditions, the proposed classification using the request-response time feature will
work well. Regarding the evaluation in a real network environment, we plan to
deploy the proposed system on our campus network and confirm its effectiveness.

On the other hand, in case attackers modify parts of well-known DNS tunnel
tools or add new features to them, those tools may be out of the target of the
proposed system. Furthermore, the length of connection to the DoH server and
the DoH server capacity change based on the different operators. Therefore, we
consider that the increase of features specifying these factors will be necessary
for the deployment in a real network.

5 Conclusion

DoH technology has been developed to provide security and privacy for Internet
users by encrypting the DNS traffic. However, DoH has a significant disadvan-
tage because it prevents network administrators from analyzing network traffic
for ensuring network security. Although many studies on encrypted network traf-
fic classification and DNS tunnel detection have been reported, DoH is a new
protocol to which previous research results cannot be directly applied.

In this study, we attempted to identify DoH traffic generated by malicious
DNS tunnel tools. The payload of DoH traffic is encrypted; thus, its content
cannot be accessed. Therefore, we decided to use the statistical features of the
packets to analyze the traffic in detail. Our approach is a hierarchical traffic
classification in which each stage uses a parameter-tuned model that is suitable
for DoH network traffic. We designed, implemented, and evaluated our system
with three levels of network traffic classification. For the prototype, we prepared
139 different models by tuning the parameters of the XGBoost, LightGBM, and
CatBoost machine-learning libraries, which are expected to have high classifi-
cation accuracy. To prove that our system can identify malicious DNS tunnel
tools and evaluate its performance, we conducted a series of experiments using
the CIRA-CIC-DoHBrw-2020 dataset. The results showed that our system can
identify malicious DNS tunnel tools with 97.22% accuracy. They also showed
that it can filter DoH traffic from normal HTTPS network traffic with 99.81%
accuracy and detect suspicious DoH traffic from normal DoH traffic with 99.99%
accuracy. We also showed the features that the machine-learning model consid-
ered to be important during the classification and discussed the conditions under
which high classification accuracy can be achieved by using these features. Then,
we discussed several consideration points regarding the evaluation performed.

254 R. Mitsuhashi et al.

References

1. Amazon Alexa Voice AI. https://developer.amazon.com/en-US/alexa/. Accessed
17 July 2021

2. CatBoost Documentation - Parameters. https://catboost.ai/docs/concepts/
python-reference parameters-list.html. Accessed 16 June 2021

3. CIRA-CIC-DoHBrw-2020. https://www.unb.ca/cic/datasets/dohbrw-2020.html.
Accessed 15 June 2021

4. cloudflared. https://developers.cloudflare.com/cloudflare-one/connections/
connect-apps. Accessed 10 July 2021

5. DNS Queries over HTTPS (DoH) - Request For Comments 8484. https://tools.
ietf.org/html/rfc8484. Accessed 15 June 2021

6. dns2tcp. https://github.com/alex-sector/dns2tcp. Accessed 3 July 2021
7. dnscat2. https://github.com/iagox86/dnscat2. Accessed 3 July 2021
8. dnscrypt-proxy. https://github.com/DNSCrypt. Accessed 10 July 2021
9. doh-client. https://docs.rs/crate/doh-client/1.1.5. Accessed 10 July 2021

10. doh-proxy. https://github.com/facebookexperimental/doh-proxy. Accessed 10
July 2021

11. First-ever malware strain spotted abusing new DoH (DNS over HTTPS) pro-
tocol. https://www.zdnet.com/article/first-ever-malware-strain-spotted-abusing-
new-doh-dns-over-https-protocol/. Accessed 10 July 2021

12. iodine. https://code.kryo.se/iodine/. Accessed 3 July 2021
13. Kaggle. https://www.kaggle.com/. Accessed 16 June 2021
14. LightGBM Documentation - Parameters. https://lightgbm.readthedocs.io/en/

latest/Parameters.html. Accessed 16 June 2021
15. Windows Insiders can now test DNS over HTTPS. https://techcommunity.

microsoft.com/t5/networking-blog/windows-insiders-can-now-test-dns-over-
https/ba-p/1381282. Accessed 10 July 2021

16. Windows Insiders gain new DNS over HTTPS controls. https://techcommunity.
microsoft.com/t5/networking-blog/windows-insiders-gain-new-dns-over-https-
controls/ba-p/2494644. Accessed 10 July 2021

17. XGBoost Documentation - Xgboost Parameters. https://xgboost.readthedocs.io/
en/latest/parameter.html. Accessed 16 June 2021

18. Acar, A., Lu, L., Uluagac, A.S., Kirda, E.: An analysis of malware trends in enter-
prise networks. In: Lin, Z., Papamanthou, C., Polychronakis, M. (eds.) ISC 2019.
LNCS, vol. 11723, pp. 360–380. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30215-3 18

19. Aceto, G., Ciuonzo, D., Montieri, A., Pescapé, A.: Mobile encrypted traffic clas-
sification using deep learning: experimental evaluation, lessons learned, and chal-
lenges. IEEE Trans. Netw. Serv. Manag. 16(2), 445–458 (2019)

20. Ajmera, S., Pattanshetti, T.: A survey report on identifying different machine
learning algorithms in detecting domain generation algorithms within enterprise
network. In: Proceedings of 2020 11th International Conference on Computing,
Communication and Networking Technologies (ICCCNT), pp. 1–5 (2020)

21. Buczak, A.L., Hanke, P.A., Cancro, G.J., Toma, M.K., Watkins, L.A., Chavis, J.S.:
Detection of tunnels in PCAP data by random forests. In: Proceedings of the 11th
Annual Cyber and Information Security Research Conference (2016)

22. Chen, Y., Li, X.: A high accuracy DNS tunnel detection method without feature
engineering. In: Proceedings of 2020 16th International Conference on Computa-
tional Intelligence and Security (CIS), pp. 374–377 (2020)

https://developer.amazon.com/en-US/alexa/
https://catboost.ai/docs/concepts/python-reference_parameters-list.html
https://catboost.ai/docs/concepts/python-reference_parameters-list.html
https://www.unb.ca/cic/datasets/dohbrw-2020.html
https://developers.cloudflare.com/cloudflare-one/connections/connect-apps
https://developers.cloudflare.com/cloudflare-one/connections/connect-apps
https://tools.ietf.org/html/rfc8484
https://tools.ietf.org/html/rfc8484
https://github.com/alex-sector/dns2tcp
https://github.com/iagox86/dnscat2
https://github.com/DNSCrypt
https://docs.rs/crate/doh-client/1.1.5
https://github.com/facebookexperimental/doh-proxy
https://www.zdnet.com/article/first-ever-malware-strain-spotted-abusing-new-doh-dns-over-https-protocol/
https://www.zdnet.com/article/first-ever-malware-strain-spotted-abusing-new-doh-dns-over-https-protocol/
https://code.kryo.se/iodine/
https://www.kaggle.com/
https://lightgbm.readthedocs.io/en/latest/Parameters.html
https://lightgbm.readthedocs.io/en/latest/Parameters.html
https://techcommunity.microsoft.com/t5/networking-blog/windows-insiders-can-now-test-dns-over-https/ba-p/1381282
https://techcommunity.microsoft.com/t5/networking-blog/windows-insiders-can-now-test-dns-over-https/ba-p/1381282
https://techcommunity.microsoft.com/t5/networking-blog/windows-insiders-can-now-test-dns-over-https/ba-p/1381282
https://techcommunity.microsoft.com/t5/networking-blog/windows-insiders-gain-new-dns-over-https-controls/ba-p/2494644
https://techcommunity.microsoft.com/t5/networking-blog/windows-insiders-gain-new-dns-over-https-controls/ba-p/2494644
https://techcommunity.microsoft.com/t5/networking-blog/windows-insiders-gain-new-dns-over-https-controls/ba-p/2494644
https://xgboost.readthedocs.io/en/latest/parameter.html
https://xgboost.readthedocs.io/en/latest/parameter.html
https://doi.org/10.1007/978-3-030-30215-3_18
https://doi.org/10.1007/978-3-030-30215-3_18

Identifying Malicious DNS Tunnel Tools from DoH Traffic 255

23. Chowdhary, A., Bhowmik, M., Rudra, B.: DNS tunneling detection using machine
learning and cache miss properties. In: Proceedings of 2021 5th International Con-
ference on Intelligent Computing and Control Systems (ICICCS), pp. 1225–1229
(2021)

24. Ichise, H., Jin, Y., Iida, K.: Analysis of DNS TXT record usage and consideration of
botnet communication detection. IEICE Trans. Commun. E101(1), 70–79 (2018).
https://doi.org/10.1587/transcom.2017ITP0009

25. Ichise, H., Jin, Y., Iida, K., Takai, Y.: NS record history based abnormal DNS
traffic detection considering adaptive botnet communication blocking. IPSJ J. Inf.
Process. 28, 112–122 (2020). https://doi.org/10.2197/ipsjjip.28.112

26. Iuchi, Y., Jin, Y., Ichise, H., Iida, K., Takai, Y.: Detection and blocking of DGA-
based bot infected computers by monitoring NXDOMAIN responses. In: Proceed-
ings of 2020 7th IEEE International Conference on Cyber Security and Cloud Com-
puting (CSCloud)/2020 6th IEEE International Conference on Edge Computing
and Scalable Cloud (EdgeCom), pp. 82–87 (2020)

27. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In:
Proceedings of Advances in Neural Information Processing Systems, vol. 30 (2017)

28. Lambion, D., Josten, M., Olumofin, F., De Cock, M.: Malicious DNS tunneling
detection in real-traffic DNS data. In: Proceedings of 2020 IEEE International
Conference on Big Data (Big Data), pp. 5736–5738 (2020)

29. MontazeriShatoori, M., Davidson, L., Kaur, G., Habibi Lashkari, A.: Detec-
tion of DoH tunnels using time-series classification of encrypted traffic. In:
Proceedings of 2020 IEEE International Conference on Dependable, Auto-
nomic and Secure Computing, International Conference on Pervasive Intelli-
gence and Computing, International Conference on Cloud and Big Data Com-
puting, International Conference on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), pp. 63–70 (2020)

30. Pacheco, F., Exposito, E., Gineste, M., Baudoin, C., Aguilar, J.: Towards the
deployment of machine learning solutions in network traffic classification: a sys-
tematic survey. IEEE Commun. Surv. Tutor. 21(2), 1988–2014 (2019)

31. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.: CatBoost:
unbiased boosting with categorical features. In: Proceedings of Advances in Neural
Information Processing Systems, vol. 31 (2018)

32. Shyam, R., Ayachit, S.S., Patil, V., Singh, A.: Competitive analysis of the top
gradient boosting machine learning algorithms. In: Proceedings of 2020 2nd Inter-
national Conference on Advances in Computing, Communication Control and Net-
working (ICACCCN), pp. 191–196 (2020)

33. Siby, S., Juarez, M., Diaz, C., Vallina-Rodriguez, N., Troncoso, C.: Encrypted DNS
→ privacy? In: Proceedings of Network and Distributed Systems Security (NDSS)
Symposium 2020 (2020)

34. Singh, S.K., Roy, P.K.: Detecting malicious DNS over HTTPS traffic using machine
learning. In: Proceedings of 2020 International Conference on Innovation and Intel-
ligence for Informatics, Computing and Technologies, pp. 1–6 (2020)

35. Tianqi, C., Carlos, G.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794 (2016)

36. Vekshin, D., Hynek, K., Cejka, T.: DoH insight: detecting DNS over HTTPS by
machine learning. In: Proceedings of the 15th International Conference on Avail-
ability, Reliability and Security (2020)

https://doi.org/10.1587/transcom.2017ITP0009
https://doi.org/10.2197/ipsjjip.28.112

256 R. Mitsuhashi et al.

37. Wu, K., Zhang, Y., Yin, T.: FTPB: a three-stage DNS tunnel detection method
based on character feature extraction. In: Proceedings of 2020 IEEE 19th Interna-
tional Conference on Trust, Security and Privacy in Computing and Communica-
tions (TrustCom), pp. 250–258 (2020)

38. Yang, P., Wan, X., Shi, G., Qu, H., Li, J., Yang, L.: Naruto: DNS covert chan-
nels detection based on stacking model. In: Proceedings of the 2020 2nd World
Symposium on Software Engineering, pp. 109–115 (2020)

Detection of Malware, Attacks
and Vulnerabilities

Hybroid: Toward Android Malware
Detection and Categorization with
Program Code and Network Traffic

Mohammad Reza Norouzian1(B), Peng Xu1, Claudia Eckert1,
and Apostolis Zarras2

1 Technical University of Munich, Munich, Germany
norouzian@sec.in.tum.de

2 Delft University of Technology, Delft, The Netherlands

Abstract. Android malicious applications have become so sophisticated
that they can bypass endpoint protection measures. Therefore, it is safe
to admit that traditional anti-malware techniques have become cum-
bersome, thereby raising the need to develop efficient ways to detect
Android malware. In this paper, we present Hybroid , a hybrid Android
malware detection and categorization solution that utilizes program
code structures as static behavioral features and network traffic as
dynamic behavioral features for detection (binary classification) and cat-
egorization (multi-label classification). For static analysis, we introduce
a natural-language-processing-inspired technique based on function call
graph embeddings and design a graph-neural-network-based approach
to convert the whole graph structure of an Android app to a vector.
For dynamic analysis, we extract network flow features from the raw
network traffic by capturing each application’s network flow. Finally,
Hybroid utilizes the network flow features combined with the graphs’
vectors to detect and categorize the malware. Our solution demonstrates
97.0% accuracy on average for malware detection and 94.0% accuracy for
malware categorization. Also, we report remarkable results in different
performance metrics such as F1-score, precision, recall, and AUC.

1 Introduction

Android has become the most popular mobile operating system worldwide.
Unfortunately, it has become a primary target platform for attackers using
Android to launch millions of malicious applications due to its prominence.
Attackers dupe victims to reveal their sensitive information or perform mali-
cious operations, such as spying on users, propagating spam, or launching
unwanted advertisements. Simultaneously, investigation of Android malware,

M. R. Norouzian and P. Xu—These authors have contributed equally to this work and
share first authorship.

c© Springer Nature Switzerland AG 2021
J. K. Liu et al. (Eds.): ISC 2021, LNCS 13118, pp. 259–278, 2021.
https://doi.org/10.1007/978-3-030-91356-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91356-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-91356-4_14

260 M. R. Norouzian et al.

which includes malware detection and categorization, has become crucial for
security researchers and experts in both academia and industry. As a result,
numerous research studies have attempted to detect and categorize Android
malware [5,10,17,21,27–29,32].

Numerous approaches leverage the contextual information of Android appli-
cations, yet nearly none of them can monitor malware behaviors if we use contex-
tual information statically. For example, Li et al. [14] presented a classifier using
the Factorization Machine architecture, which extracts various Android applica-
tion features from manifest files (e.g., permissions and intents) and source code
(API calls). Similarly, Chen et al. [6] proposed an approach that detects Android
malware with Android application’s static features, such as permissions, com-
ponents, and sensitive API calls. Although these methods add an extra security
level to the Android platform, they come with their limitations, particularly for
those obfuscated applications when executed [7]. This problem can be mitigated
by introducing dynamic analysis, which monitors malware actions and analyzes
the captured behavior when running in a sandboxed environment.

In essence, similar to static analysis, there are two types of dynamic analysis
target Android applications. The first focuses on system-level behavior, extract-
ing features from API usage or system calls, whereas the latter extracts features
from network-level actions (i.e., data received or sent over the network). Analyz-
ing system-level malware behavior is expensive and slows down the processing
speed. In contrast, analyzing network-level activities is scalable and more cost-
efficient, while it often exposes the core behavior of malware when trying to
communicate with the attacker. Specifically, it can reveal the exfiltrated infor-
mation and the commands sent or received by the malware. From a network
perspective, monitoring and analyzing a system that extracts behavioral infor-
mation from the user causes less overhead on the end hosts. To detect legitimate
and malicious behavior, several approaches utilize the network traffic pattern of
Android applications [2,15,16,25,32]. Most of them concentrate on the manual
indicated features and build rule-based classifiers for detecting Android malware.
Sadly, sophisticated attacks can easily evade network-rule-based methods since
rule-based analysis relies on distinguishing expected versus anomalous behavior;
these methods may suffer when malware is modified to hide its footprints or
behavior. However, one of the main challenges of analyzing network-level activ-
ities is related to their offline inspection behavior.

In this paper, we present Hybroid , a hybrid framework for Android malware
detection and categorization based on static and dynamic features to overcome
the drawbacks mentioned above. From the users’ point of view, Hybroid does not
change anything of the Android application itself. We take the program code
inside apps as input for static analysis and present a Natural Language Pro-
cessing (NLP) inspired method based on the function call graph, which detects
obfuscated applications. In brief, we first design the opcode2vec, function2vec,
and graph2vec components to represent instructions, functions, and the entire
program’s information with vectors. Next, we take network traffic as input and
extract 13 features for dynamic analysis. Finally, we combine static and dynamic
analysis features and feed them into the machine learning and deep learning

Hybroid: Toward Android Malware Detection and Categorization 261

Start

PCAP

Testing
data

Training
data

Network flow
features

Packet
parser

Flow
events

Flow
aggregation

Normaliza-
tion

Feature
selection

APK static
analyzer

Graph
embedding

Opcode
embedding

Basic block
embedding

Static feature analysis

C1

C3

C4

C2
Combination of

features

Dynamic feature analysis

Classification

APKs

Program code
features

Model
training

Model
validation

Fig. 1. Hybroid architecture

networks for training and prediction. Our results show that Hybroid outperforms
most existing frameworks, as we get 97.0% accuracy for malware detection and
94.0% accuracy for malware categorization on average.

In summary, we make the following primary contributions:

– We present and open source Hybroid ,1 a hybrid framework for Android mal-
ware detection and categorization based on static and dynamic features.

– We design and implement automatic extraction of flow-based features from
the Android raw network traffic as a dynamic feature.

– We leverage NLP and convert machine codes, functions, and programs to
opcode2vec, function2vec, and graph2vec by embedding methods.

– We evaluate the accuracy of our approach using a real-world dataset and
show that Hybroid outperforms nearly all state-of-the-art solutions.

2 System Design

In this section, we describe the architecture of Hybroid (see Fig. 1), which com-
prises static and dynamic features. We extract static features by studying the
Control Flow Graph (CFG) of the Android bytecode and the dynamic features
by investigating the network flow data. Next, we combine these two groups of
features as input vectors to train a machine learning model. Essentially, our app-
roach is divided into three main parts: static features preparation (features from
program code), dynamic features preparation (features from network traffic),
and machine learning classification.

1 https://github.com/PegX/Hybroid.

https://github.com/PegX/Hybroid

262 M. R. Norouzian et al.

O
pc

od
e

em
be

dd
in

g

G
ra

ph
 e

m
be

dd
in

g

Program
code

 features

APKs

Basic block
embedding

Tagged CFGAPK static
analyzer

CFG
Opcode

Basic block

Representation learning

Fig. 2. Converting program code to vector

2.1 Static Features Preparation

Before getting into our methodology’s details, we have to extract the opcode,
basic block, and CFG from the Android APKs (Android application package).
We extract the CFG by utilizing the Androguard framework (APK static ana-
lyzer) and iterate each function in the program to get the basic block for each
function (method).2 Furthermore, we analyze each instruction and take opcode
as our basic term. After obtaining the opcode, basic block, and CFG, our pri-
mary approach is presented as follows. For the packing and obfuscated apps,
similar to Xu et al. work [26], Androguard can also help our Hybroid to extract
CFG and opcode from the apps, and we can also construct our graph structure.

Figure 2 depicts an overview of the steps involved in extracting features from
the code graph structure. The entire process includes three main steps: (i) opcode
embedding that converts the machine instructions into vectors, (ii) basic block
embedding that transforms a basic block of the program into a vector (basic
blocking embedding is done with Tagged CFG, which is used to combine multi-
opcode to a vector), and (iii) graph embedding that modifies the whole function
call graph into a vector. Finally, during the conversion of the opcode, basic block,
and function call graph into vectors, we utilize representation learning techniques
to learn the essential model parameters for getting the final 64-bit vector.

Representation Learning. To generate the node attribute in the CFG, we
leverage representation learning. Representation learning [4], which can learn
features from raw data automatically, has increasingly attracted researchers’
and engineers’ focus. Compared to those manually indicated attributed control
flow graph (ACFG) methods, like Xu et al. [30], Adagio [10], and Yan et al. [31],
Hybroid can extract ACFG automatically without preparing manual features
and avoiding the challenge of manual indicated methods (how to pick up the
useful features is a challenge) because of the representation learning. Addition-
ally, Hybroid borrows ideas from Natural Language Processing to assist the fea-
ture engineering. It uses the word2vec to convert instructions to vectors and
automatically learns the vector from the basic block’s raw instruction.

In brief, Hybroid static analysis part introduces representation learning as
the fundamental technique to represent code and use the control flow graph as
2 https://github.com/androguard.

https://github.com/androguard

Hybroid: Toward Android Malware Detection and Categorization 263

fundamental to organize the program. Additionally, it utilizes NLP to convert the
byte sequences (instruction and basic block) to vectors, used to replace the man-
ually indicated features [10,31]. Hybroid then feeds those generated vectors into
a learning-based classifier to extract static features. In other words, Hybroid uses
the transform learning technique to use the previously trained instruction2vec
model to convert the byte sequences to vectors.

Opcode Embedding. To simplify the procedure, we replace instruction
(opcode and operands) embedding with opcode embedding. The reason for this
replacement is the following. First, the opcode represents Dalvik’s instruction
behaviors, whereas the operands represent the parameters. Dalvik’s operands
are virtual registers in a virtual machine. Those values are significantly affected
by the underlying usage of Dalvik VM or ART VM. Thus, it is not possible to
enumerate them all. Additionally, if various malware samples in the same family
use the same malicious pattern, the opcode itself can capture these behaviors.

In theory, our opcode embedding method may suffer from the operand
removal problem [11]. A significant issue with operand removal is that all the
Invoke-Virtual instructions have the same embedding vector, no matter what
are the targets of the Invoke-Virtual instructions.3 For the opcode embedding
method, or opcode2vec, we map each opcode opi ∈ OP (where OP stands for the
whole Dalvik opcodes) to a vector of the real number, using the word2vec model
with the skip-gram method [18]. word2vec is an excellent feature learning tech-
nique, which is based on continuous bag-of-word and skip-gram techniques. The
skip-gram learning technique uses the current opcode to predict the surround-
ing opcodes. We train our opcode2vec model with a large corpus of opcodes
extracted from real applications.

Basic Block Embedding. In this work, we treat the basic block embedding
in the control flow graph similarly to the sentence embedding in the natural
language processing. Overall, we introduce our method for performing the basic
block (nodes in control flow graph) embedding, which are described as follows.
We utilize the weighted mean of a non-empty finite multi-set of instruction’s
opcode to calculate the basic block embedding. Assuming the function f includes
n-opcode and a l-dimensional vector represents each opcode, the weight of the
corresponding non-negative weights w1, w2, . . . , wn are given as: �̃f =

∑n
i=1 wixi∑n
i=1 wi

,
where xi represents the l-dimensional opcode embedding and wi stands for the
weighted of each opcode.

Graph Embedding. After deriving the basic block embedding, we take the
generated basic block embedding as the node embedding of the control flow
graph. In other words, we perform graph embedding on a control flow graph
level. The module’s ultimate purpose is to convert the graph representation into
a vector and then feed it as input for the neural network-based classifier. We take
structure2vec [9] graph embedding method to convert one graph to a vector.

3 All the calling instructions such as invoke-super, invoke-direct, invoke-static, and
invoke-interface suffer from the same problem.

264 M. R. Norouzian et al.

Algorithm 1: Graph embedding
Input: Instruction embedding vi : i ∈ I, control flow graph insider of a function

gf , parameter α
Output: Graph embedding vf : f ∈ F

1 Initialize μ0
v = �Rand, forallv ∈ V

2 for t=1 to T do
3 for v ∈ V do

4 lv =
∑

u∈N(v) μ
(t−1)
u

5 μ
(t)
v = tanh(W1xv + σ(lv))

6 vf = W2(
∑

v∈V μT
v)/len(V))

7 return vf

We utilize the Eqs. (1), (2), and (3) to convert a control flow graph to a
graph-vector, which stands for the whole Android application. In our work, our
graph-based control flow graph embedding includes two components. The first
one is the control flow graph extraction, and the other is the graph embedding
for each control flow graph, which is adapted from the structure2vec.

The graph vectors (nodes) are basic blocks for graph embedding, and the
edges are connections among those basic blocks in the CFG. Each vector (node)
contains a set of opcodes inside it. The basic block embedding constructs each
node’s feature. Finally, a p-dimensional vector μi is associated with each vertex
vi. We use adapted structure2vec to dynamically update the p-dimensional
vector μt+1

i during the training of the network. The updating process is executed
as follows:

μ(t+1)
v = F (xv,

∑

u∈Nv

μ(t)
u),∀v ∈ V. (1)

We randomly initialize the μ
(0)
v at each vertex. In practice, we design the

function F as follows:

F (xv,
∑

u∈Nv

μ(t)
u) = tanh(W1xv + σ(

∑

u∈N(v)

μu)) (2)

For an effective nonlinear transformation σ(.), we define σ(.) itself as an n
layer fully-connected neural network and the W1 is trainable parameter.

σ(l) = P1 ∗ ReLU(P2 ∗ . . . ReLU(Pnl)) (3)

The overall CFG-based embedding algorithm is illustrated in Algorithm1.
The graph embedding generates the vector embedding after all iterations, and
we use the average aggregation function as our last step to transform the vector
embedding to the graph-based function embedding.

After deriving our graph embedding for the function call graph, we design
a two-layer MLP (multilayer perceptron) network as our representation learn-
ing network to learn parameters used to convert the program code into vectors.

Hybroid: Toward Android Malware Detection and Categorization 265

Flow
aggregation

PCAP

Feature
selection

Flow events

Network
traffic

analyzer

Argus Normalization

Fig. 3. Dynamic analysis overview

In our network, malware detection is a binary classification issue. We label mal-
ware samples as 1 and benign samples as -1 at training. During testing, we treat
all predictions less than zero as benign and the rest as malicious.

vf(Gh) = α ∗ ((<gi, wi1> + bi1), wi2 + bi2) (4)

where the wi1, wi2 ∈ Rp is the weight of the two-layer MLP network and the
bi1, bi2 ∈ Rp is the offset from the origin of the vector space. In this setting,
a function call graph Gh is classified as malicious if f(Gh) > 0 and benign if
f(Gh) < 0. The vector vf(Gh) that corresponds to f(Gh) is collected as the
final representation of the program code. By using the above-stated methods,
we finally get a 64-bit vector representing the whole program code and present
the static features of program code.

Last but not least, we should mention the transductive and inductive embed-
ding. Our work relies on word2vec to convert instructions to vectors. This
requires relying on a large and representative dataset to train the embedding:
word2vec is a transductive approach and requires access to the entire alphabet.
As our method focuses on instruction mnemonics, our transductive approach of
word2vec did not influence the final results since graph embedding (convert the
control flow graph to vectors) is an inductive approach in which graphs of the
testing dataset are unknown at training time.

2.2 Dynamic Features Preparation

Figure 3 illustrates an overview of dynamic analysis (i.e., extracting features from
network traffic). The whole process involves three main steps. The first step is
the network flow generation that involves converting raw network traffic into net-
work flow events. Alternatively, we could use deep packet inspection to extract
network traffic features to understand the malware behavior better. However,
this tactic cannot be applied to most real-world scenarios due to privacy con-
cerns. In contrast, high-level flow features do not necessarily render a correct
picture of malware behavior. To address this gap, we leverage static analysis,
combining it with dynamic network analysis. In the second step, we normalize
the flow features extracted from Argus,4 and in the last step, we use feature
selection mechanisms to reduce and finalize our dynamic feature set.
4 https://openargus.org/.

https://openargus.org/

266 M. R. Norouzian et al.

Network Flow Generation. The raw data (PCAP files) captured from each
application network traffic is fed into a packet parser to analyze network behav-
iors. Our proposed solution uses the Argus network traffic analyzer to handle
the first phase of our dynamic analysis. Argus is an open-source tool that gener-
ates bidirectional network flow data with detailed statistics for each flow. Argus
defines a flow by a sequence of packets with same values for five tuples that are
Source IP , Source Port, Destination IP , Destination Port, and Protocol.

However, the output values of Argus features’ are almost numeric, except
for two categorical values: direction and flag states. To map them into discrete
values, we use the one-hot encoding that encodes categorical features as a one-hot
numeric array for our feature generation. The output of Argus involves numerous
flow events with around 40 feature sets related to each flow.

Since there are at least more than one flow events for each PCAP file, the
next step is to map each bunch of flow events into one data sample. To handle
this step, we aggregate the values of network flow features by calculating the
mean values, appending them to a single record. These steps mentioned above
perform as a preprocessing phase, which converts the raw network data into
numeric values that create a dataset ready to train any machine learning model.

Normalization. The extracted features must be normalized before being given
to the classification algorithms since their values vary significantly. For exam-
ple, if we chose Euclidean distance as a distance measure for classification, nor-
malization guarantees that every feature contributes proportionally to the final
distance. To achieve normalization, we use min-max scaling as shown below:

x1 = (x − min(x))/(max(x) − min(x)) (5)

where min(x) and max(x) represent range values. This method returns feature
values within the range [0, 1]. An alternative method would be using standard
scaling by subtracting the mean values of the features and then scaling them to
unit variance. However, this method would mitigate the differences in the values,
making the detection harder (we examined this experimentally).

Feature Selection. Selecting features is critical, as it affects the performance
of the model. There exist two main reasons to reduce the number of features:

1. Complexity Reduction: When the number of features increases, most machine
learning algorithms require more computing resources and time for execu-
tion. Thus, reducing the number of features is essential for saving time and
resources.

2. Noise Reduction: Extra features do not always help to improve the algorithm
performance. In contrast, they may produce severe problems related to model
overfitting. Therefore, selecting a set of useful features reduces the possibility
of model overfitting.

Before the training and testing phase, we implemented various feature selec-
tion algorithms to find the best set of final features for our analysis. We used
three feature selection algorithms: Pearson Correlation, Extra Trees Classifier

Hybroid: Toward Android Malware Detection and Categorization 267

Table 1. List of network flow features

Notation Traffic features

Mean Average duration of aggregated records

sTos Source TOS byte value

dTos Destination TOS byte value

sTtl Source to destination TTL value

dTtl Destination to source TTL value

TotBytes Total transaction bytes

SrcBytes Source to destination transaction bytes

DstWin Destination TCP window advertisement

SrcTCPBase Source TCP base sequence number

DstTCPBase Destination TCP base sequence number

Flgs er State flag for Src loss/retransmissions

Flgs es State flag for Dst packets out of order

Dir Direction of transaction

(extremely randomized trees), and a Univariate feature selection (select features
according to the highest k scores). At the end of the process, we selected 13
network flow features for our final dynamic analysis feature engineering. These
selected features describe the general behavior of the network activity for each
data sample and can be found in Table 1.

However, we perform an extra analysis to explore the quality of selected fea-
tures that are highly related to the target labels. We assume that any two features
are independent without being redundant. To investigate the redundancy score,
we use Kendall’s correlation method (Fig. 4). Notice that any two independent
features are interpreted as redundant if the correlation score is extremely high,
whereas a high correlation between dependent features is desired.

Observation of Malware Network Communications. We check the type
of communication to spot if the applications use secure communication channels
or transmit the data on unencrypted flows. We can make observations about the
entire encrypted data flows instead of just the handshake or individual packets.
This is done by extracting the features of each data record by flow-level instead
of packet-level approach. As we can see in Table 2, a relatively small number
of applications are using encryption for communication. When we compared
malicious to benign applications traffic, we found out that the communications
that initially start with more upload than download traffic are more likely to
be malicious. The reason is that when malware connects to a control server, it
often identifies itself with a client certificate, which is rarely seen during normal
TLS usage. Another aspect we notice is that after the initial connection to the
control server has been established, the channel is often kept open but idle, with
only regular keep-alive packets being sent.

268 M. R. Norouzian et al.

Fig. 4. Dynamic network flow feature correlation scores

When comparing these two aspects with what ordinary TLS traffic created
in an HTTPS session in a browser looks like, one can easily see a very different
behavior: when requesting a website, the initial upload usually consists only of
a GET request (little upload), with a large response in the form of web page
content being sent from the server (large download). However, Hybroid results
(see Sect. 3.5) of malware detection and categorization show that analyzing flow
metadata would be effective on encrypted flows too.

2.3 Machine Learning Classification

The classification aims to detect and categorize the APK samples, whether the
source APK is a benign application or a specific type of malware. In the begin-
ning, we tested various supervised learning algorithms (support vector machines,
naive Bayes, decision tree, random forests, and gradient boosting) to assess clas-
sifier performance. The differences of using various learning algorithms confirm
our methodology that the selected static and dynamic features help to iden-
tify the distinction between benign and malicious APKs. Test results revealed

Hybroid: Toward Android Malware Detection and Categorization 269

Table 2. Type of malware category communication networks

Category HTTP flow TLS flow

Adware 52.00% 8.00%

Ransomware 29.22% 0.00%

Scareware 61.38% 10.89%

SMSmalware 52.20% 10.28%

that SVM and naive Bayes demonstrated the worst performance and were thus
excluded from the tests.

For model validation, we used the cross-validation technique to test whether
the model can predict new samples that were not used in previous estimations.
The intention for cross-validation is to reduce the chance of overfitting or selec-
tion bias and improve the model’s generalization to an independent dataset.

3 Evaluation

We use different types of machine learning metrics to test and evaluate Hybroid .
To do so, we leverage a dataset that contains the original APK files and the
mobile network traffic data generated by the applications. Next, we seek to
identify the best detection classifier, and based on classifier performance, we
try to use different parameter engineering. We compare our solution with other
machine learning state-of-the-art related works, such as static and dynamic anal-
yses based detection. The extracted results prove the advantages of our proposed
solution, which combines the static and dynamic analysis of Android malware
into a unified classification procedure.

3.1 Experimental Setup

We implemented the proposed methods using Python, Scikit-Learn, Tensorflow,
and Keras. We set up our experiments on our Euklid server with 32 Core Pro-
cessor, 128 GB RAM, and 16 GB GPU. Besides, we used 5-fold cross-validation.
To obtain a reliable performance, we averaged the results of the cross-validation
tests, executed each time with a new random dataset shuffle.

3.2 Evaluation Metrics

Due to the imbalanced nature of the dataset (see Sect. 3.3), accuracy may not
be the only reliable indicator of classifier performance. Thus, the performance
of detection and categorization will be evaluated with metrics such as precision,
recall, and F-measure (F1-score). In general, the accuracy metric is used when
true negatives and true positives are crucial; the F1-score is used when false
positives and false negatives are more important. When the class distribution

270 M. R. Norouzian et al.

Table 3. Dataset descriptions

Name Number Description Distribution (%)

APK files 2,126 All program code files 100%

PCAP files 2,126 All the raw network traffic files 100%

Benign APKs 1,700 No. of benign APK 80%

Adware APKs 124 No. of Adware category APK 5.9%

Ransomware APKs 112 No. of Ransomware category APK 5.2%

Scareware APKs 109 No. of Scareware category APK 5.2%

SMSmalware APKs 101 No. of SMSmalware category APK 4.7%

is nearly equal, accuracy can be used, whereas the F1-score is a better met-
ric when we have imbalanced classes. However, in most real-life classification
problems, the datasets are imbalanced, and therefore, the F1-score is a better
metric to evaluate the model. However, since other related studies report accu-
racy as their primary evaluation metric, we also compare and consider accuracy
as a comparison metric. Another metric to evaluate our work is to consider the
receiver operating characteristic (ROC) curve, which presents the true positive
rate (TPR) against the false positive rate (FPR).

3.3 Dataset

For the dataset, we use the public CICAndMal2017 [13]. The benign applications
were collected from the Google play market published in 2015, 2016, and 2017.
On the other hand, the malicious ones were collected from various sources such
as VirusTotal5 and Contagio security blog6. The dataset includes 426 malware
and 1,700 benign samples with their corresponding network traffic raw data,
which are delicately captured from physical smartphone devices while running
the applications.

In the networking part, the phones’ behavior was generated by scripts, which
imitated normal phone usage like phone calls and utilized SMS along with GPS
spoofing and web browsing. Every phone was also connected to a Gmail, Face-
book, Skype, and WhatsApp account. The normal behavior of phones was cap-
tured in PCAP files that served as the entry point in our work. After infecting
every phone with malware from the malware pool provided with the dataset
in the form of APK files, the resulting network communication was collected.
Table 3 provides a short description of the CICAndMal2017 dataset.

3.4 Power Law and Opcode Embedding

Before moving to our evaluation tasks, we use the distribution of our opcode
to prove the reasonability of using natural processing language techniques in
5 https://virustotal.com.
6 http://contagiominidump.blogspot.com.

https://virustotal.com
http://contagiominidump.blogspot.com

Hybroid: Toward Android Malware Detection and Categorization 271

Fig. 5. Power-law distribution for Dalivk opcodes

our works. In order to get the reasonable opcode2vec module, we pre-train the
opcode2vec by the AndroZoo dataset. We extract all opcodes by the Androguard
tool and obtain 18,240,542 opcodes in total. Then, we take those opcodes as
our word corpus to train the opcode2vec model. Figure 5 presents the opcode
distribution for the above datasets. More specifically, it shows Dalvik’s opcode
distribution, which has 216 opcodes, and the top-20 opcodes are presented. They
all follow the power-law distribution, which makes borrowing word embedding
techniques from natural language processing to do opcode embedding reasonable.

3.5 Performance of Classifiers

In this section, the evaluation of the Android malware detection and categoriza-
tion algorithms is presented in detail. For the malware detection experiments,
we compare Hybroid with other related solutions. Figure 6 shows the differ-
ence between our solution and the other malware detection schemes. Hybroid
demonstrates an accuracy of 97.0% (Fig. 6-a), while CIC2017 [13], DREBIN [3],
SVM [8], and Adagio [10] demonstrate accuracy of 87.6%, 95.4%, 93.9%, and
89.3%, respectively. Other metrics, such as F1-score, precision, and recall, are
also presented in Figs. 6-b, 6-c, and 6-d.

In addition, Fig. 7 shows the ROC curve of our solution and the other com-
pared algorithms, while TPR is plotted against the FPR for the various thresh-
olds of the detection methods. As the ROC curve shows, Hybroid demonstrates
the best performance (represented by the purple line), which means that the
combination of static and dynamic features boosts the classifier performance.

272 M. R. Norouzian et al.

Fig. 6. Malware detection overall performance of different related works

Fig. 7. Malware detection ROC curve of different related works (Color figure online)

Besides, we can observe, Hybroid presents the best area under the ROC curve
(AUC), which is 99.6%, while the Adagio method shows the worst AUC of 86.7%.
The Fig. 7 also presents AUCs of the other compared solution classifiers.

To evaluate our work independently, we tested three various classifiers (deci-
sion tree, random forest, and gradient boosting) with static, dynamic, and com-
bined features. We tested these three classifiers to identify differences in the
performance of final classifiers. The obtained results confirmed that the com-
bination of static and dynamic features yields the best performance. Moreover,
we saw that the decision tree classifier demonstrates the lowest accuracy, preci-
sion, and recall compared to the other algorithms. Decision tree is also prone to
overfitting. Random forest presented higher accuracy, precision, and recall as a
more robust model than decision tree, limiting overfitting without substantially
increasing error. On the other hand, compared with random forest, gradient
boosting demonstrates the best metric results in our framework, implying that
it is the most effective supervised learning algorithm for our experiment.

Hybroid: Toward Android Malware Detection and Categorization 273

Fig. 8. Malware detection performance of the different classification algorithms

Fig. 9. Malware categorization performance of the different classification algorithms

Gradient boosting is similar to random forest with a set of decision trees but
with a main difference. It combines the results of week learners along the way,
unlike random forest combines the results by majority rules or averaging at the
end of the process. This accounts for the difference in the results.

Figure 8 shows the performance for the malware detection task. In the F1-
score of various classifiers, we witness that combined features with gradient
boosting achieve the best F1-score, which is 97%. Meanwhile, we only get 93%
with static features from the program code and 95% with dynamic features from
network flow. On the other hand, among the three classifiers with combined
features, the gradient boosting classifier yields the best precision result, which
is 97%. Meanwhile, random forest and decision tree demonstrate a precision of
96% and 91%, respectively.

Subsequent to the malware detection, we also evaluated Hybroid with the
malware categorization, which is a multi-label classification task. We see from
Fig. 9 that the gradient boosting classifier receives the best results with combined
features, namely 94% precision, 94% recall, and 94% F1-score. With the random
forests classifier, our Hybroid also demonstrates significant results with a 92%
F1-score. Figure 9(a, b, c) depicts the evaluation results with F1-score, recall,
and precision in detail.

Also, Fig. 10 illustrates the ROC curves for the malware categorization task.
Different curves show the different values of AUC. As it is shown, Hybroid

274 M. R. Norouzian et al.

demonstrates 97.6% macro accuracy on average for malware categorization, and
categorization of the benign class receives the best performance AUC for 99.5%.
For SMSware, we obtained the worst AUC, i.e., 94.6%. One potential reason
for this issue could be the small number of SMSware in the dataset (only 4.7%
samples are SMSware).

Fig. 10. Malware categorization ROC curve of gradient boosting

4 Limitation and Future Work

Although we combined static and dynamic analysis to improve the performance
of Hybroid , some issues need to be addressed in the future. The biggest chal-
lenge is the lack of labeled data for CICAndMal2017 by Lashkari et al. [13].
They include only 426 malware and 1,700 benign APKs and their correspond-
ing network traffic raw files. The main challenge is not having an alternative
good-quality public dataset that covers the network traffic captured on real
Android devices. For the malware detection, especially for the static feature-
based work, the dataset with 2,126 samples is too small. However, for the
networking dynamic feature-based work, 2,126 is a classic number. Actually,
most networking dynamic analysis studies evaluate their frameworks with simi-
lar numbers, such as Jeon et al. [12] evaluate on 1,401 samples (1,000 malware
and 401 benign) or Onwuzurike et al. [20] take 2,336 benign and 1,892 mal-
ware samples. Despite the static analysis work that needs more data samples,
the number for networking dynamic analysis is normal. To address the lack of
enough labeled data in the static analysis, we also separately trained and tested
our static graph-based model with 45,592 malware and 90,313 benign samples

Hybroid: Toward Android Malware Detection and Categorization 275

following TESSERACT [23] policies (we split 80% of the whole dataset for train-
ing and the other 20% for testing). These data samples are captured from the
AndroZoo7, VirusShare8, VirusTotal and we achieved the accuracy and F1-score
of 95.0% and 96.0% respectively which shows that our methodology demonstrate
competitive results on much larger dataset too.

Also, for the static analysis, Hybroid is affected by the obfuscated APKs,
and we cannot successfully extract graph features from 47 obfuscated APKs. To
further improve the robustness of Hybroid , we plan to extend CICAndMal2017
dataset in the near future to have more labeled network traffic data which are
captured from Android real devices.

5 Related Work

Detecting Android malware and categorizing its families have attracted much
attention from researchers as Android smartphones are gaining increasing pop-
ularity. Methods for Android malware detection are generally classified into tra-
ditional feature codes and machine learning.

For the traditional feature-based approaches, the detectors inspect the clas-
sical malicious behaviors. For example, program code-based malware detection
methods extract features from the code itself. Technically, those features include
permission [2,32], API call [1,3,22,32], N-gram [3], and CFG [10] based methods.
Malware detection methods that use permissions and intents extract them from
manifest files to detect Android malware [3]. In general, DREBIN performs a
comprehensive static analysis, gathering as many application features as possible.
These features are embedded in a joint vector space, such that typical malware
patterns can be automatically identified and used to explain our method’s deci-
sions. In contrast with our work, DREBIN takes permissions and intents from
manifest files, which cannot work for the obfuscated APKs. Meanwhile, Hybroid
takes the graph structure from the program code, which obfuscation cannot
affect. Additionally, we consider dynamic features from network flow, whereas
DREBIN only considers the static features.

Graph-based malware detection systems use the graph structure for detec-
tion purposes, such as the Apk2vec [19] and the Adagio [10]. Adagio [10] shows a
kernel-hashing-based malware detection system on the function call graph, which
is based on the efficient embeddings of function call graphs with an explicit fea-
ture map inspired by a linear-time graph kernel. In an evaluation with real
malware samples purely based on structural features, Adagio outperforms sev-
eral related approaches and detects 89% of the malware with few false alarms,
while it also allows for pinpointing malicious code structures within Android
applications. Both the Adagio and our solution are based on the function call
graph of Android applications. However, we design the graph embedding based
on the function call graph, whereas Adagio uses the kernel-hashing method.

7 https://androzoo.uni.lu.
8 https://virusshare.com.

https://androzoo.uni.lu
https://virusshare.com

276 M. R. Norouzian et al.

In addition, we also take the network flow into our Hybroid to obtain the dynamic
features.

Machine learning and deep learning techniques are also heavily introduced
into the network traffic analysis. Researchers use manual indicated features to
recognize a network traffic application pattern with traditional machine learn-
ing algorithms, such as traffic classification, network security, and anomaly
detection [15,25,32]. Finally, for network traffic analysis, there are three dif-
ferent granularities: raw packet, flow, and session levels [13,16,24,25]. CICAnd-
Mal2017 [13] takes network traffic as the dynamic features to detect and catego-
rize the Android malware. Compared to our work, it only considers the network
flow rather than other static features, such as program code, permissions, and
intents.

6 Conclusion

In this paper, we presented Hybroid , a layered Android malware classification
framework, which utilizes network traffic as a dynamic and code graph structure
as static behavioral features for malware detection. As a hybrid approach, it
extracts not only 13 network flow features from the original dumped network
dataset but also introduces NLP inspired technique based on function call graph
embedding that converts the whole graph structure of an Android application
into a vector. Hybroid utilizes the network flow features in combination with the
graphs vectors to detect and categorize the malware. Overall, it demonstrates an
average accuracy of 97.0% and 94.0% in detecting and categorizing the Android
malware, respectively. The empirical results imply that our stated solution is
effective in the detection of malware applications.

Acknowledgments. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreements No. 830892
(SPARTA), No. 883275 (HEIR), and No. 833115 (PREVISION).

References

1. Aafer, Y., Du, W., Yin, H.: DroidAPIMiner: mining API-level features for robust
malware detection in Android. In: Zia, T., Zomaya, A., Varadharajan, V., Mao, M.
(eds.) SecureComm 2013. LNICST, vol. 127, pp. 86–103. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-04283-1 6

2. Arora, A., Garg, S., Peddoju, S.K.: Malware detection using network traffic analysis
in Android based mobile devices. In: International Conference on Next Generation
Mobile Apps, Services and Technologies (2014)

3. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C.:
DREBIN: effective and explainable detection of Android malware in your pocket.
In: The Network and Distributed System Security Symposium (NDSS) (2014)

4. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

https://doi.org/10.1007/978-3-319-04283-1_6

Hybroid: Toward Android Malware Detection and Categorization 277

5. Canfora, G., De Lorenzo, A., Medvet, E., Mercaldo, F., Visaggio, C.A.: Effective-
ness of opcode ngrams for detection of multi family Android malware. In: Interna-
tional Conference on Availability, Reliability and Security (2015)

6. Chen, C., Liu, Y., Shen, B., Cheng, J.J.: Android malware detection based on
static behavior feature analysis. J. Comput. 29(6), 243–253 (2018)

7. Comparetti, P.M., Salvaneschi, G., Kirda, E., Kolbitsch, C., Kruegel, C., Zanero, S.:
Identifying dormant functionality in malware programs. In: 2010 IEEE Symposium
on Security and Privacy (2010)

8. Dai, G., Ge, J., Cai, M., Xu, D., Li, W.: SVM-based malware detection for Android
applications. In: ACM Conference on Security & Privacy in Wireless and Mobile
Networks (WiSec) (2015)

9. Dai, H., Dai, B., Song, L.: Discriminative embeddings of latent variable models for
structured data. In: International Conference on Machine Learning (ICML) (2016)

10. Gascon, H., Yamaguchi, F., Arp, D., Rieck, K.: Structural detection of Android
malware using embedded call graphs. In: ACM Workshop on Artificial Intelligence
and Security (2013)

11. Haq, I.U., Caballero, J.: A survey of binary code similarity. arXiv preprint
arXiv:1909.11424 (2019)

12. Jeon, J., Park, J.H., Jeong, Y.S.: Dynamic analysis for IoT malware detection with
convolution neural network model. IEEE Access 8, 96899–96911 (2020)

13. Lashkari, A.H., Kadir, A.F.A., Taheri, L., Ghorbani, A.A.: Toward developing a
systematic approach to generate benchmark Android malware datasets and classi-
fication. In: International Carnahan Conference on Security Technology (ICCST)
(2018)

14. Li, C., Mills, K., Niu, D., Zhu, R., Zhang, H., Kinawi, H.: Android malware detec-
tion based on factorization machine. IEEE Access 7, 184008–184019 (2019)

15. Malik, J., Kaushal, R.: CREDROID: Android malware detection by network traffic
analysis. In: ACM Workshop on Privacy-Aware Mobile Computing (2016)

16. Maŕın, G., Caasas, P., Capdehourat, G.: DeepMAL - deep learning models for mal-
ware traffic detection and classification. In: Data Science – Analytics and Appli-
cations, pp. 105–112. Springer, Wiesbaden (2021). https://doi.org/10.1007/978-3-
658-32182-6 16

17. McLaughlin, N., et al.: Deep Android malware detection. In: ACM Conference on
Data and Application Security and Privacy (CODASPY) (2017)

18. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems (2013)

19. Narayanan, A., Soh, C., Chen, L., Liu, Y., Wang, L.: apk2vec: semi-supervised
multi-view representation learning for profiling Android applications. In: 2018
IEEE International Conference on Data Mining (ICDM) (2018)

20. Onwuzurike, L., Almeida, M., Mariconti, E., Blackburn, J., Stringhini, G., De
Cristofaro, E.: A family of droids-Android malware detection via behavioral mod-
eling: static vs dynamic analysis. In: Annual Conference on Privacy, Security and
Trust (PST) (2018)

21. Onwuzurike, L., Mariconti, E., Andriotis, P., Cristofaro, E.D., Ross, G., Stringhini,
G.: MaMaDroid: detecting Android malware by building Markov chains of behav-
ioral models (extended version). ACM Trans. Priv. Secur. (TOPS) 22(2), 1–34
(2019)

22. Peiravian, N., Zhu, X.: Machine learning for Android malware detection using per-
mission and API calls. In: IEEE International Conference on Tools with Artificial
Intelligence (2013)

http://arxiv.org/abs/1909.11424
https://doi.org/10.1007/978-3-658-32182-6_16
https://doi.org/10.1007/978-3-658-32182-6_16

278 M. R. Norouzian et al.

23. Pendlebury, F., Pierazzi, F., Jordaney, R., Kinder, J., Cavallaro, L.: TESSERACT:
eliminating experimental bias in malware classification across space and time. In:
USENIX Security Symposium (2019)

24. Taheri, L., Kadir, A.F.A., Lashkari, A.H.: Extensible Android malware detection
and family classification using network-flows and API-calls. In: International Car-
nahan Conference on Security Technology (ICCST) (2019)

25. Wang, W., Zhu, M., Zeng, X., Ye, X., Sheng, Y.: Malware traffic classification
using convolutional neural network for representation learning. In: International
Conference on Information Networking (ICOIN) (2017)

26. Xu, P., Eckert, C., Zarras, A.: Detecting and categorizing Android malware with
graph neural networks. In: ACM/SIGAPP Symposium on Applied Computing
(SAC) (2021)

27. Xu, P., Eckert, C., Zarras, A.: Falcon: malware detection and categorization with
network traffic images. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds.)
ICANN 2021. LNCS, vol. 12891, pp. 117–128. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-86362-3 10

28. Xu, P., Kolosnjaji, B., Eckert, C., Zarras, A.: MANIS: evading malware detection
system on graph structure. In: ACM/SIGAPP Symposium on Applied Computing
(SAC) (2020)

29. Xu, P., Zhang, Y., Eckert, C., Zarras, A.: HawkEye: cross-platform malware detec-
tion with representation learning on graphs. In: Farkaš, I., Masulli, P., Otte, S.,
Wermter, S. (eds.) ICANN 2021. LNCS, vol. 12893, pp. 127–138. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-86365-4 11

30. Xu, X., Liu, C., Feng, Q., Yin, H., Song, L., Song, D.: Neural network-based graph
embedding for cross-platform binary code similarity detection. In: ACM SIGSAC
Conference on Computer and Communications Security (CCS) (2017)

31. Yan, J., Yan, G., Jin, D.: Classifying malware represented as control flow graphs
using deep graph convolutional neural network. In: IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN) (2019)

32. Zulkifli, A., Hamid, I.R.A., Shah, W.M., Abdullah, Z.: Android malware detec-
tion based on network traffic using decision tree algorithm. In: Ghazali, R., Deris,
M.M., Nawi, N.M., Abawajy, J.H. (eds.) SCDM 2018. AISC, vol. 700, pp. 485–494.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72550-5 46

https://doi.org/10.1007/978-3-030-86362-3_10
https://doi.org/10.1007/978-3-030-86362-3_10
https://doi.org/10.1007/978-3-030-86365-4_11
https://doi.org/10.1007/978-3-319-72550-5_46

A Novel Behavioural Screenlogger
Detection System

Hugo Sbai1(B) , Jassim Happa2 , and Michael Goldsmith1

1 University of Oxford, Oxford OX1 3QD, UK
hugo.sbai@balliol.ox.ac.uk

2 University of London, Royal Holloway, London WC1B 3RF, UK

Abstract. Among the various types of spyware, screenloggers are dis-
tinguished by their ability to capture screenshots. This gives them consid-
erable nuisance capacity, giving rise to theft of sensitive data or, failing
that, to serious invasions of the privacy of users. Several examples of
attacks relying on this screen capture feature have been documented in
recent years. Moreover, on desktop environments, taking screenshots is a
legitimate functionality used by many benign applications, which makes
screenlogging activities particularly stealthy. However, existing malware
detection approaches are not adapted to screenlogger detection due to
the composition of their datasets and the way samples are executed. In
this paper, we propose the first dynamic detection approach based on
a dataset of screenloggers and legitimate screenshot-taking applications
(built in a previous work), with a particular care given to the screenshot
functionality during samples execution. We also propose a tailored detec-
tion approach based on novel features specific to screenloggers. This last
approach yields better results than an approach using traditional API
call and network features trained on the same dataset (minimum increase
of 3.108% in accuracy).

Keywords: Screenloggers · Screenshots · Malware detection

1 Introduction

1.1 Context and Motivation

Spyware can be defined as software that gathers information about a person
or organisation without their consent or knowledge and sends it to another
entity [28]. The software is designed for secrecy and durability. A long-term
connection to the victim’s machine is established by the adversary, and once
spyware is installed on the victim’s device, it aims to steal information unno-
ticed.

Spyware is usually organised in multiple modules, each performing one or
more malicious activities, with the ability to use them according to the attacker’s
purpose [3]. Typical spyware modules include keystroke logging, screen logging,

c© Springer Nature Switzerland AG 2021
J. K. Liu et al. (Eds.): ISC 2021, LNCS 13118, pp. 279–295, 2021.
https://doi.org/10.1007/978-3-030-91356-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91356-4_15&domain=pdf
http://orcid.org/0000-0002-6411-1864
http://orcid.org/0000-0002-0860-5130
http://orcid.org/0000-0001-7808-0600
https://doi.org/10.1007/978-3-030-91356-4_15

280 H. Sbai et al.

URL monitoring, turning on the microphone or camera, intercepting sensitive
documents and exfiltrating them and collecting location information [28].

Among the aforementioned spyware modules, screenloggers have one of the
most dangerous functionalities in today’s spyware as they greatly contribute to
hackers achieving their goals.

Screenlogger users can be divided into two categories: financially moti-
vated actors and state-sponsored attackers. The first category targets impor-
tant industrial companies (e.g., BRONZE BUTLER [11]), online banking users
(e.g., RTM [25], FIN7 [10], Svpeng [11]), and even banks themselves (e.g., Car-
banak [25], Silence [26]). The second category, which is even more problematic,
targets critical infrastructure globally. For instance, the malware TinyZbot [8],
a variant of Zeus, has targeted critical infrastructure in more than 16 countries.
More precisely, the targets can be democratic institutions; for instance, XAgent
targeted the US Democratic Congressional Campaign Committee and the Demo-
cratic National Committee [19]. In Europe, Regin [26], took screenshots for at
least six years in the IT network of the EU headquarters. Diplomatic agencies
have also been compromised, for example by the North Korean malware Scar-
Cruft [16]. US defence contractors have also been hit by screenloggers such as
Iron Tiger.

Screenloggers have the advantage of being able to capture any information
displayed on the screen, offering a large set of possibilities for the attacker com-
pared to other spyware functionalities. Moreover, malware authors are inventive
when maliciously using screen captures. Indeed, screen captures have a wide
range of purposes. Some malware, such as Cannon and Zebrocy, only take one
screenshot during their entire execution as reconnaissance to see if the victim
is worth infecting [5,20]. Others hide what is happening on the victim’s screen
by displaying a screenshot of their current desktop (FinFisher [20,30]) or take
numerous screen captures for a close monitoring of the victim’s activity. This
allows spyware hackers to steal sensitive intellectual property data (BRONZE
BUTLER [4]), banking credentials (RTM [25], FIN7 [10], XAgent [19]), or moni-
tor day-to-day activity of banking clerks to understand the banks’ internal mech-
anisms (Carbanak [9], Silence [26]).

The screenshot capability is sometimes the unique functionality used in some
phases of an attack to observe while remaining stealthy. For instance, in the Car-
banak attack targeting banking employees [28], attackers used the screengrabs to
create a video recording of daily activity on employees’ computers. The hackers
amassed knowledge of internal processes before stealing money by impersonating
legitimate local users during the next phase of the attack.

These examples show that the screenshot functionality is widely used today
in modern malware programs and can be particularly stealthy, enabling powerful
attacks. Even in the case where no specific attack is performed, the simple fact
of monitoring and observing all the victims’ activity on their device is a seri-
ous invasion of privacy. Moreover, screenshots are likely to contain personally
identifiable information [24].

What makes the screenlogger threat even more problematic and stealthy is
that, on desktop environments, the screenshot functionality is legitimate and,

A Novel Behavioural Screenlogger Detection System 281

as such, is used by many benign applications (e.g. screen sharing for work
or troubleshooting, saving important information, creating figures, monitoring
employees). The necessity of capturing the screen has for instance increased with
telework, even on sensitive machines. Teleworkers, including bank employees or
lawyers, may need to control their office computer remotely from home, or to
share their screens during online meetings. Therefore, countering the screenlog-
ger threat cannot ‘simply’ be done by disabling the screenshot functionality on
sensitive machines. Other natural approaches such as white-listing are prone
to the ever more sophisticated strategies malware authors can deploy to inject
malicious code into legitimate processes or bypass the user’s consent.

Paradoxically, no work in the literature proposes a detection methodology
adapted to the specifics of screenshot-taking malware. This is what we aim to
do in this paper.

1.2 Contributions

More precisely, the contributions brought by this paper are:

– Training and testing of the detection model on a dataset composed exclusively
of screenshot-taking malware and legitimate applications representative of
the behaviours found in the wild: this allowed to identify the most effective
existing detection features for screenlogger detection.

– Creation of features adapted to the screenlogging behaviour using novel tech-
niques: instead of using hundreds of features and trusting a machine learning
model to select the most discriminating ones, we propose to use new features
that reflect a specific behaviour. The advantage is that malware authors will
not be able to misguide the detection system without changing their core
functionality. Indeed, existing detection models are prone to overfitting and
can easily be misguided by malware authors by acting on features unrelated
to the malicious functionalities of their programs.

– Samples execution methodology: in the malware detection field, it is com-
mon to automatically run thousands of malware samples in a controlled envi-
ronment to collect features without interacting with the samples. Such an
approach would unfortunately not work for screenloggers, as their malicious
functionality needs to be triggered at run time through interaction with the
malware program. To collect our features, we paid a particular care to ensure
that each malicious or legitimate program worked as intended during its exe-
cution (was taking screenshots).

1.3 Paper Outline

In this paper, we start by discussing the relevant literature (Sect. 2) and precis-
ing the scope of our work through a system model (Sect. 3) and a threat model
(Sect. 4). After that, we outline our experimental setup for screenlogger detec-
tion (Sect. 5). Then, we present a detection model based on state of the art
features (Sect. 6) and a novel detection model including features specific to the

282 H. Sbai et al.

screenlogging behaviour (Sect. 7). Finally, the performances of the two models
are compared and discussed (Sect. 8).

2 Literature Review

Several types of malware detection models can be found in the literature.
Signature-based methods give good results for known malware programs with

a low false-positive rate. However, they are vulnerable to obfuscation techniques
that are more and used by modern malware [31]. Moreover, signature-based
methods cannot detect malware integrating polymorphism and metamorphism
mechanisms because the signature of the malware changes every time a machine
is infected.

The drawback of anomaly-based detection techniques for detecting malware
in computer systems is that those systems contain and execute many processes
having many possible behaviours. This makes it difficult to define a “normal”
behaviour and can result in a high false-positive rate.

Static behaviour-based detection fails to overcome obfuscation tech-
niques [29]. Malware designers can use those techniques to disturb the analysis
process and hide the malicious behaviour of the program.

Dynamic behaviour-based detection can overcome obfuscation techniques, as
it analyses the runtime behaviour of the malware. Therefore, this technique is
widely used in recent malware detection works, which consider diverse types of
dynamic features such as API calls [12,13,22] and network traffic [6,18,23]. How-
ever, it was shown that the performance of a dynamic behaviour-based detection
model greatly depends on the dataset it was trained on. Indeed, the features
selected as the most discriminative vary according to the malware type [12,13].
Hence, if the dataset does not contain any screenshot-taking malware or very
few, the behaviours related to screenlogging would not be taken into account.

To the best of our knowledge, only one malware detection work explicitly
mentions screenloggers [15]. This work focused on detecting spyware and, more
specifically, keyloggers, screen recorders, and blockers. The authors proposed
a dynamic behavioural analysis through the hooking of kernel-level routines.
More precisely, the presented method is designed to detect screenloggers under
the Windows operating system. To this end, it hooks the GetWindowDC and
BitBilt functions. Then, to classify a screenshot-taking program as spyware or
benign, they used a decision tree considering the following features: frequency
of repetition, uniqueness of the applicant process, state of the applicant process
(hidden or not) and values of parameters in the system calls. The results showed
that the proposed method could detect screenloggers with an accuracy of 92%
and an error rate of 7%.

However, this method suffers from several weaknesses. Relying exclusively
on API calls may not be sufficient to distinguish screenloggers from legitimate
screenshot-taking applications. Indeed, by investigating existing screenloggers,
it is possible to notice that they may exhibit various behaviours, including the
fact that the screenshots frequency may be different from one screenlogger to

A Novel Behavioural Screenlogger Detection System 283

another. The frequency can be a few seconds, few minutes, or configurable by the
adversary. Screenshots can also be taken irregularly at each user event. Legit-
imate screenshot-taking applications are also diverse. Some of them, such as
screensharing applications, need to take screenshots at a high frequency, while
others like parental control make take screenshots at a lower frequency, and
others like screenshots editing applications may take screenshots occasionally.
Therefore, relying only on API calls may lead to high false positives and false
negatives rates on an extensive dataset containing different types of screenloggers
as well as benign screenshot-taking applications. It is not mentioned whether the
dataset used to test the method proposed in [15] contained benign screenshot-
taking programs, and there is no information about the nature and diversity
of screenloggers. Moreover, the authors perform the hooking on only two func-
tions, namely GetWindowsDC and BitBlt, whereas there are other ways of tak-
ing screenshots. For example, it is possible to use the GetDC function instead
of GetWindowsDC in order to obtain the device context.

3 System Model

The targeted systems are desktop environments. The main reason why our work
focuses on computer operating systems is that the screenshot functionality is a
legitimate functionality offered to any application. In contrast, on smartphones,
the principle is that apps cannot take screenshots of other apps, and the only way
to accomplish this is to exploit specific vulnerabilities or to divert some libraries.
However, many limitations exist for these techniques, such as permission required
from the user at the beginning of each session, or a recording icon displayed in the
notification bar. In sum, the architecture designs of mobile systems and computer
systems are fundamentally different, which may lead to different solutions.

Targeted victims may be any individual or organisation, ranging from typical
laptop users to small companies or powerful institutions. The victims are not
particularly security aware, which implies they are not necessarily cognizant of
the existing threats and will not install a specific protection against screenshots,
such as a specific viewer to open documents in a secure environment, which
prevents screenshots.

4 Threat Model

4.1 General Description

Our threat model is composed of a victim, an attacker and spyware with a
screenshot functionality.

In this model, a screenshot is defined as a reproduction in an image format of
what is displayed on the screen, even if all pixels may not be visible. Screenloggers
must rely on a functionality offered by the operating system to perform their
attack.

The adversary’s goals are diverse. They can range from general activity mon-
itoring, which requires to see the whole screen, to sensitive data theft, which can
be limited to some areas of the screen.

284 H. Sbai et al.

4.2 Operating Process

Attackers may infect a system using common methods such as trojans, social
engineering or through a malicious insider. The adversary has no physical access
to the victim’s device (except in the case of a malicious insider). They have no
knowledge about the system and tools installed on it before infection. We also
assume they have not compromised the victim’s device at a kernel level. Apart
from that, the attacker can use any technique to evade detection, including
hiding by injecting api calls into system or legitimate processes, dividing its
tasks between multiple processes, making the API calls out of sequence, spaced
out in time, or interleaved with other API calls.

To reach their objective, attackers take screenshots of the victim’s device. The
data may be either (1) extracted automatically using OCR tools inside the vic-
tim’s device locally, then sent to the attacker’s server using the victim’s network
interface or (2) extracted, also using OCR tools, on the attacker’s server after
screenshots have been transferred from the victim’s machine to the attacker’s as
compressed image files. The screenshots can also be analysed manually by the
attacker. Moreover, the screenshots may be taken and sent at regular or irregular
rates.

5 Experimental Setup

5.1 Malicious and Benign Datasets

In a previous work [27], we constructed the first dataset dedicated to malicious
and legitimate screenshot-taking applications.

To ensure that this dataset was as representative and complete as possible,
we included all the behaviours mentioned in the security reports referenced on
the MITRE ATT&CK screen capture page [21].

Regarding legitimate applications, we collected samples of five cataegories of
legitimate screenshot-taking applications: screen sharing, remote control, chil-
dren/employee monitoring, screencasting and screenshot editing. Each of these
categories exhibits different screenshot-taking and sending behaviours.

Our dataset contains 106 malicious samples and 87 legitimate samples.
Although these numbers might seem low compared to the thousands of sam-
ples traditionally used in general malware detection works, they correspond to
the number of samples used in detection works that target specific categories of
malware [17]. Moreover, these numbers are explained by the particular care that
must be given for each sample at runtime, as presented in the following section.

5.2 Experimental Framework

In a previous work [27], we realised that none of the screenlogger samples found
on available malware datasets (e.g. VirusShare, VirusTotal) were taking screen-
shots at runtime. This was mainly due to the specificities of screenshot trigger-
ing (need to receive a command from the malicious server, need to open certain

A Novel Behavioural Screenlogger Detection System 285

applications, ...). This means that, even if generalist malware detection works
might have been tested on screenlogger samples (among thousands of other mal-
ware samples), the screenshot functionality was probably not observed because
no attention was paid to screenshot-triggering.

Therefore, the samples we selected for our malicious dataset had to include
both the client and server parts.

Our malicious samples were run in two Windows 10 virtual machines to
allow the client and server parts to communicate and trigger the screenshot
functionality. Legitimate applications were also run in two machines when it
was required for screenshot-triggering.

During their execution, the behaviour of malicious and benign samples was
monitored using API Monitor and Wireshark.

To implement and test our detection models, we used the Weka framework,
which is a collection of machine learning algorithms for solving real-world data
mining problems [1].

More precisely, we used it to process the run-time analysis reports, select the
best detection features, select the classification algorithms, train and test the
models, and visualise the detection results.

6 Basic Detection Approach

To prove the effectiveness of our novel detection model, it was first necessary
to construct a model based on features from the malware detection literature.
These features were extracted (Sect. 6.1) and transformed (Sect. 6.2). Then a
machine learning model was trained and tested (Sect. 6.3) to select the most
effective features (Sect. 6.4).

6.1 Feature Extraction

When running the samples from our malicious and benign datasets in a controlled
environment, we collected reports on two aspects of their behaviours: API calls
(API Monitor reports) and network activity (Wireshark reports).

API Calls. This category of features was extracted from the reports produced
by API Monitor.

The first feature we used consisted in counting the number of occurrences of
each API call. For each malicious and benign API call report, the numbers of
occurrences of the API calls it contains was extracted in a .csv file.

In the literature, we found that malware programs try to dissimulate their
malicious functionality by introducing benign API calls to their API call
sequences. A popular way of performing malware detection using API calls is to
use the number of occurrences of API call sequences rather than API calls taken
alone. For this, the concept of N-grams is used. N-grams are sequences of N API
calls made successively by the studied program.

286 H. Sbai et al.

As a result, we also extracted features based on the number of occurrences of
2-gram and 3-gram API calls sequences. The values of N were intentionally kept
low for two reasons: (1) the number of features increases exponentially with N,
and (2) the detection performance often decreases as N increases.

Network Traffic. Using the .pcap files produced by Wireshark and the Argus
tool to isolate network flows [2], we extracted 47 network features found in the
literature. These features belong to four categories:

– Behaviour-based features [4,6]: these features represent specific flow
behaviours. For instance, they include the source and destination IP
addresses.

– Byte-based features [18]: these features use byte counts. For instance, they
include the average number of bytes from source to destination.

– Packet-based features [4,6,18]: these features are based on packet statistics.
For instance, they include the number of small packets (length< 400 bytes)
exchanged and the number of packets per second.

– Time-based features [4,6,18]: these features depend on time. For instance,
they include the minimum time a flow was idle before becoming active.

6.2 Detection Algorithm

Our detection model uses the Random Forest algorithm [7]. This algorithm trains
several decision trees and uses a majority vote to classify observations. Each
decision tree is trained on a random subset of the training dataset using a random
subset of features.

The main shortcoming of decision trees is that they are highly dependant
on the order in which features are used to split the dataset. Random Forest
addresses this issue by using multiple trees using different features.

We tested several parameters to optimise the performances of the model:

– Number of trees in the forest (by default 100).
– Number of randomly selected features for each tree.
– Maximum depth of the trees (by default unlimited).
– Minimum number of instance per leaf (by default 1 but can be raised to

prevent overfitting).

6.3 Model Training and Testing

To train and test our model, we used the k-fold cross-validation method (with
k = 10). This method consists in dividing our dataset into k blocks of the
same size. The blocks all have the same proportions of malware and legitimate
applications. For each block, we train the model on the k − 1 other blocks and
test it on the current block. The final detection results are obtained by adding
the results of each block.

Using cross-validation, we trained and tested our model using first API call
features only, then network features only, and, finally, using both categories of
features.

A Novel Behavioural Screenlogger Detection System 287

6.4 Feature Selection

Due to the high number of features used, to avoid overfitting, it was necessary
to select the most useful ones. A features is useful if it is informative enough
for our classification task, that is, if it enables to effectively distinguish between
malicious and benign behaviours.

For this task we used the Recursive Feature Elimination method [14]. Given
a number of features to select, this method iteratively trains our Random Forest
model using cross-validation and removes the least important features at each
iteration. The importance of a feature is given by the average of its Gini impurity
score for each decision tree in which it is used.

The Gini impurity of a feature that splits the samples at a node of a decision
tree reflects how ‘pure’ are the subsets produced by the split. In our case, a
subset is purer if it contains mostly screenloggers or mostly legitimate screenshot-
taking applications. For instance, a subset containing 75% malware and 25%
legitimate applications is purer than a subset that contains 50% malware and
50% legitimate applications. The impurity of a subset is given by the formula:

p(malware) ∗ (1 − p(malware)) + p(legitimate) ∗ (1 − p(legitimate))

That is: 2 ∗ p(malware) ∗ p(legitimate)
The Gini impurity of a feature is the weighted average of the impurity scores

of the subset it produces. The weights are computed using the number of samples
contained in each subset.

When the features are numerical values (which is our case), instead of com-
puting the impurity of the subsets produced by each single value, intervals are
used. More precisely, the Gini impurity of the feature is obtained through the
following steps:

– Step 1: The values of the feature are sorted.
– Step 2: The averages of each adjacent values are computed.
– Step 3: For each average value from Step 2, the Gini impurity of the feature

if the samples were split using this value is computed.
– Step 4: The Gini impurity of the feature is the minimum among the Gini

impurities from Step 3.

7 Optimised Detection Approach

The novel detection approach we propose is based on new features specific to
the screenlogger behaviour.

Thanks to the comparison made in our previous work between malicious
and legitimate screenshot-taking behaviours, we were able to identify promising
features for screenlogger detection. These features target specific behaviours that
can allow to distinguish between screenloggers and legitimate screenshot taking.

For some of these features, we had to record the times at which screen-
shots were taken by the applications. To this end, we used screenshot API call

288 H. Sbai et al.

sequences that we had identified in a previous work [27]. Indeed, there does
not exist a single API call that can be called to take a screenshot, but rather
a succession of API calls that must be called in a given sequence, each one of
them accomplishing a different task (e.g. retrieving the Device Context, creating
a bitmap, copying the content of one bitmap into another). Different functions
can be called at each stage of the sequence, which results in many sequences.

As the functions in the sequences take as parameters the return values of the
previous functions, it is impossible for them to be called out-of-order. Moreover,
as the return values are kept in memory until they are used as parameters, the
screenshot is detected even if the API calls are spaced in time.

For the features where we needed this information, we wrote a script that
ran through the API calls reports looking for screenshot sequences and recording
their time stamps.

7.1 Interaction with the User

Contrary to screenloggers, a majority of legitimate screenshot-taking applica-
tions require an interaction with the user to start taking screenshots.

To extract this feature, we had to identify the API calls which result from
user interaction. We found that, on Windows, some API calls involved in user
interaction can be called on other applications’ windows. As such, they could
easily be called by a malware program pretending to interact with the user,
whereas in fact, it does not even have a window.

Other API calls, mainly those involved in drawing on the window can only be
called by the application that created the window. If they are called by another
application, their return value is false. Therefore, we monitor this second cate-
gory of functions and, even if they are called, we verify their return value.

7.2 Visibility of the Screenshot-Taking Process

Unless they infiltrate themselves in legitimate processes, all the malicious sam-
ples of our dataset take screenshots through background processes hidden to the
user. Legitimate screenshot-taking applications, apart from children/employee
monitoring and some applications that create a background process for the
screenshot-taking (e.g. TeamViewer), use foreground processes. Thus, the fact
that the screenshots are taken by a background process increases the probability
of malicious activity.

7.3 Image Sending

A major part of legitimate screenshot-taking applications do not send screen-
shots over the network, contrary to our malware samples (no malware with the
local OCR exploitation feature was found). However, due to the limited moni-
toring time (3 min), we cannot tell for sure that the screenshots taken by a given
application will never be sent. Indeed, some malware can for instance schedule

A Novel Behavioural Screenlogger Detection System 289

the sending of screenshots. In such a case, even if image packets are not sent
during the monitoring time, it can be that these packets will be sent later.

Therefore, our ‘Image sending’ feature only reflects whether or not screen-
shots are sent during the monitoring time, and cannot be used to affirm that
an application does not send the screenshots it takes. Moreover, determining
whether a network packet contains an image is only possible when the packet is
not encrypted.

7.4 Remote Command Triggering

An important characteristic shared by almost all screenloggers is that their
screenshot-taking activity is triggered by a command received from their C&C
server.

Two kinds of screenshot-triggering commands can be distinguished: com-
mands for continuous capture of the screen and punctual commands for a single
screenshot. In the first case, only one command is received at the beginning
of the screenshot session, whereas in the second case, a command is received
before every screenshot event. To cover both cases, we chose to consider that the
screenshot-taking activity is triggered by a command even if only one screenshot
is preceded by the reception of a network packet.

We had to determine an adequate duration between the reception of the
command and the screenshot. Indeed, we only consider that the screenshot was
triggered by the network packet if this packet is received within a given time-
window T before the screenshot api call sequence. Concretely, for each screenshot
taken, we control if:

t(screenshot) − t(lastNetworkMessage) < T

Note that, to measure this feature accurately, it was necessary that the API calls
and network reports be generated at the exact same time.

By analysing our samples, we found that the maximum duration between
the command and the screenshot is 46 772 ms, the minimum duration is 0.0059
ms, the average duration is 83.044 ms and the median duration is 33.115 ms.
We conducted experiments with these different values for T .

Even if it was not found in our dataset, we account for the case where the
process receiving the command is different from the process taking the screen-
shots.

To the best of our knowledge, our detection model, through this feature,
is the first to make a correlation between two kinds of events (reception of a
command and screenshot API call sequences) for malware detection.

7.5 Asymmetric Traffic

One of the packet-based network feature we found in the literature is the ratio
between the number of incoming packets and the number of outgoing packets.

290 H. Sbai et al.

This feature fails to capture the asymmetric traffic displayed by most screen-
loggers as opposed to legitimate screenshot-taking applications (e.g. video call
with screen sharing). Indeed, in the case of screenloggers, the asymmetry lies
in the quantity of data exchanged, and not necessarily in the number of pack-
ets. It may be that the number of incoming and outgoing packets are equal, for
example in the case of punctual screenshot commands. In such a case, however,
the quantity of data received from the C&C server is significantly lower than the
quantity of data sent by the victim machine. Therefore, instead of measuring the
ratio between the number of incoming and outgoing packets, we use the ratio
between the numbers of bytes exchanged in both directions.

7.6 Captured Area

During our study, we observed that almost all malware capture the full screen as
opposed to legitimate applications which may target more specific areas of the
screen depending on their purpose. As a result, we implemented a ‘captured area’
feature which takes three values: full screen, coordinates and target window.

We had to identify, in our screenshot API call sequences, the elements that
show what area of the screen is captured. However, there is not only one way
to capture a given area of the screen, but several. For instance, to capture a
zone with given coordinates, one might get a cropped DC from the beginning
using the GetDC function with the desired coordinates as parameters, or take
the whole DC and do the cropping afterwards when copying the content of the
screen in the destination bitmap using BitBlt’s arguments.

Therefore, for each of the three values of the ‘captured area’ feature, we listed
the possible API call sequences which might be used.

Note that we consider that an application capturing more than the three
quarters of the screen’s area captures the full screen. This is to avoid malware
programs pretending that they capture a precise area when, in fact, only few
pixels are removed from the whole screen.

7.7 Screenshot Frequency

The last screenlogger-specific feature we created is the frequency of screenshots.
We consider that an application takes screenshots at a given frequency if we find
the same time interval between ten screenshots. Indeed, some malware programs
offer to take punctual screenshot as well as continuous screen capture. Therefore,
it is possible that not all the screenshots be taken at the same time interval.

Each time a screenshot API call sequence is found, we record its time stamp.
Then, we subtract the timestamps of consecutive sequences and compare the
intervals obtained. If more than ten intervals are found to be equal, the feature
takes the value of this interval. Screenshots taken using different sequences are
accounted for in this frequency calculation.

Some malware programs try to evade detection by dynamically changing the
screenshot frequency using random numbers. To cover this case, we consider that
the intervals are equal if they are within 15 s of each other.

A Novel Behavioural Screenlogger Detection System 291

8 Results and Comparison

8.1 Performance Measurements

Malware detection is a binary classification problem with two classes: malware
and legitimate application.

The measures used to assess the performances of our detection models are
the following:

– True Positives (TP): Number of malware programs classified as malicious.
– False Positives (FP): Number of legitimate applications classified as malicious.
– True Negatives (TN): Number of legitimate applications classified as legiti-

mate.
– False Negatives (FN): Number of malware programs classified as legitimate.
– Accuracy: Given by the formula TP+TN

TP+TN+FP+FN . Accuracy does not discrim-
inate between false positives and false negatives.

– Precision: Given by the formula TP
TP+FP . Precision is inversely proportional

to the number of false positives.
– Recall: Given by the formula TP

TP+FN . Recall is inversely proportional to the
number of false negatives.

– F-score: Given by the formula 2∗Precision∗Recall
Precision+Recall . Contrary to accuracy, F-

score decreases more rapidly if false positives or false negatives are high (i.e.
precision or recall are low).

In the case of malware detection, it is crucial that all malware programs be
detected, to avoid them causing important damage. On the other hand, classi-
fying a legitimate application as malware, even if it can be inconvenient for the
user, might not be as critical. As a result, we give a particular importance to
the false negatives and recall metrics.

8.2 Basic Detection Approach

Table 1 contains the results we obtained for the first detection approach using
features found in the literature.

Table 1. Detection results for the basic approach using features from the literature

Features Accuracy False negatives False positives Precision Recall F-measure

Network 94.301% 0.038 0.080 0.936 0.962 0.949

1-gram 92.228% 0.038 0.126 0.903 0.962 0.932

2-gram 88.601% 0.104 0.126 0.896 0.896 0.896

3-gram 83.938% 0.123 0.207 0.838 0.877 0.857

(1+2)-gram + network 94.301% 0.038 0.08 0.936 0.962 0.949

1-gram + network 94.301% 0.028 0.092 0.928 0.972 0.949

We can observe that network features seem to give better results overall than
API call features. Regarding API calls, using sequences of two and three calls

292 H. Sbai et al.

significantly decreases the performances of the model, with more than 10% of
malware classified as legitimate (vs 3.8% when individual API calls are used).

Combining network features and API call features does not improves the
results compared to using network features alone.

Additionally, using Recursive Feature Elimination, we identified the most
relevant API calls for screenlogger detection:

– strcpy s (Visual C++ Run Time Library)
– ntreleasemutant (NT Native API)
– isnan (Visual C++ Run Time Library)
– getobjectw (Graphics and Gaming)
– rtltimetotimefields (NT Native API)

We also identified the most relevant state of the art network features:

– Bytes per packet
– Total number of bytes in the initial window from source to destination
– Total number of bytes in the initial window from destination to source
– Total number of bytes from source to destination
– Average number of bytes in a subflow from source to destination

8.3 Optimised Detection Approach

Table 2 contains the results we obtained for the second detection approach using
the screenlogger-specific features we implemented.

Table 2. Detection results for the optimised approach using our specific features

Features Accuracy False negatives False positives Precision Recall F-measure

Specific features 97.409% 0.009 0.046 0.963 0.991 0.977

We can see that the detection performance is improved on all metrics: with
only 7 features, our model outperforms the first model based on hundreds of stan-
dard features. That is because our features capture specific malicious behaviours.

Moreover, a malware author would not be able to act on these features to mis-
lead the classifier without changing the malicious functionality. Indeed, to mis-
lead traditional classifiers based on numerous features, malware authors leverage
overfitting by acting on features unrelated the core functionality of their pro-
grams. When all the features target a specific behaviour, as in our case, this
cannot be done.

A Novel Behavioural Screenlogger Detection System 293

9 Conclusion

In this paper, we built a first Random Forest detection model using only API
calls and network features from the literature. This model was trained and tested
using our malicious and benign datasets. Using Recursive Feature Elimination
with Gini importance, we identified the most informative existing features for
screenlogger detection.

Then, we built a second model including novel features adapted to the screen-
logging behaviour. These features were collected using novel techniques. Partic-
ularly, we can cite:

– Using API call sequences to identify specific behaviours. Contrary to existing
works which only look at API called in a direct succession using the notion
of n-grams, we wrote scripts which keep track of the API calls return val-
ues and arguments to characterise some behaviours even if the calls are not
made directly one after the other. Numerous different sequences involved in
the screenshot-taking process were identified by analysing malware and legit-
imate applications. These sequences were also divided into three categories
depending on the captured area.

– Making a correlations between API calls made by an application and its net-
work activity. During their execution, the API calls and network activity of
our samples were simultaneously monitored. This allowed us to extract fea-
tures such as the reception of a network packet before starting the screenshot
activity or the sending of taken screenshots over the network.

When adding these novel features to the detection model, the detection accu-
racy increased by at least 3.108%. Indeed, it is well known that a detection model
based on less features is less likely to fall into overfitting. Moreover, a detec-
tion model based on features which have a logical meaning and reflect specific
behaviours, is less prone to evasion techniques often used by malware authors.

More generally, our results show that, for some categories of malware, a tai-
lored detection approach might be more effective and difficult to mislead than a
generalist approach relying on a great number of seemingly meaningless features
fed to a machine learning model.

In the future, we could extend our detection model to infection to allow for
an earlier and more effective detection. The detection model could also be inte-
grated into a defense-in-depth solution agaist screenloggers, including prevention
mechanisms.

References

1. Albert, B.: Weka 3: Machine learning software in Java. https://www.cs.waikato.
ac.nz/ml/weka/

2. Argus, O.: Argus. https://openargus.org
3. Bahtiyar, S.: Anatomy of targeted attacks with smart malware. Secur. Commun.

Netw. 9 (2017). https://doi.org/10.1002/sec.1767

https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/
https://openargus.org
https://doi.org/10.1002/sec.1767

294 H. Sbai et al.

4. Beigi, E., Jazi, H., Stakhanova, N., Ghorbani, A.: Towards effective feature selec-
tion in machine learning-based botnet detection approaches. In: 2014 IEEE Confer-
ence on Communications and Network Security, CNS 2014, pp. 247–255, December
2014. https://doi.org/10.1109/CNS.2014.6997492

5. Bogdan, B.: Six years and counting: inside the complex Zacinlo ad fraud operation,
bitdefender. https://labs.bitdefender.com/2018/06/six-years-and-counting-inside-
the-complex-zacinlo-ad-fraud-operation/

6. Boukhtouta, A., Mokhov, S., Lakhdari, N.E., Debbabi, M., Paquet, J.: Network
malware classification comparison using DPI and flow packet headers. J. Comput.
Virol. Hacking Tech. 11, 1–32 (2015). https://doi.org/10.1007/s11416-015-0247-x

7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/
10.1023/A:1010933404324

8. Charline, Z.: Viruses and malware: research strikes back. https://news.cnrs.fr/
articles/viruses-and-malware-research-strikes-back

9. The New Jersey Cybersecurity and Communications Integration Cell: Zbot/zeus.
https://www.cyber.nj.gov/threat-center/threat-profiles/trojan-variants/zbot-
zues

10. Sanger, D.E., Perlroth, N.: Bank hackers steal millions via malware. https://www.
nytimes.com/2015/02/15/world/bank-hackers-steal-millions-via-malware.html

11. Ecular, X., Grey, G.: Cyberespionage campaign sphinx goes mobile with anubis-
spy. https://www.trendmicro.com/enus/research/17/l/cyberespionage-campaign-
sphinx-goes-mobile-anubisspy.html

12. Han, W., Xue, J., Wang, Y., Huang, L., Kong, Z., Mao, L.: MalDAE: detecting and
explaining malware based on correlation and fusion of static and dynamic charac-
teristics. Comput. Secur. 83, 208–233 (2019). https://doi.org/10.1016/j.cose.2019.
02.007

13. Han, W., Xue, J., Wang, Y., Liu, Z., Kong, Z.: Malinsight: a systematic profiling
based malware detection framework. J. Netw. Comput. Appl. 125, 236–250 (2018).
https://doi.org/10.1016/j.jnca.2018.10.022

14. Jason, B.: Recursive feature elimination (RFE) for feature selection in Python.
https://machinelearningmastery.com/rfe-feature-selection-in-python/

15. Javaheri, D., Hosseinzadeh, M., Rahmani, A.: Detection and elimination of spy-
ware and ransomware by intercepting kernel-level system routines. IEEE Access 6,
78321–78332 (2018). https://doi.org/10.1109/ACCESS.2018.2884964

16. Josh, G., Brandon, L., Kyle, W., Pat, L.: SquirtDanger: the swiss army knife
malware from veteran malware author thebottle. https://unit42.paloaltonetworks.
com/unit42-squirtdanger-swiss-army-knife-malware-veteran-malware-author-
thebottle/

17. Stratosphere Labs: The CTU-13 dataset. A labeled dataset with botnet, normal
and background traffic. https://www.stratosphereips.org/datasets-ctu13

18. Lashkari, A.H., Kadir, A.F.A., Gonzalez, H., Mbah, K.F., Ghorbani, A.A.: Towards
a network-based framework for Android malware detection and characterization.
In: 2017 15th Annual Conference on Privacy, Security and Trust (PST), p. 233-
23309 (2017). https://doi.org/10.1109/PST.2017.00035

19. Lukas, S.: New telegram-abusing android rat discovered in the wild, welivesecu-
rity by eset. https://www.welivesecurity.com/2018/06/18/new-telegram-abusing-
android-rat/

20. Mikey, C.: Xagent malware arrives on Mac, steals passwords, screenshots, iPhone
backups. https://appleinsider.com/articles/17/02/14/xagent-malware-arrives-on-
mac-steals-passwords-screenshots-iphone-backups

https://doi.org/10.1109/CNS.2014.6997492
https://labs.bitdefender.com/2018/06/six-years-and-counting-inside-the-complex-zacinlo-ad-fraud-operation/
https://labs.bitdefender.com/2018/06/six-years-and-counting-inside-the-complex-zacinlo-ad-fraud-operation/
https://doi.org/10.1007/s11416-015-0247-x
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://news.cnrs.fr/articles/viruses-and-malware-research-strikes-back
https://news.cnrs.fr/articles/viruses-and-malware-research-strikes-back
https://www.cyber.nj.gov/threat-center/threat-profiles/trojan-variants/zbot-zues
https://www.cyber.nj.gov/threat-center/threat-profiles/trojan-variants/zbot-zues
https://www.nytimes.com/2015/02/15/world/bank-hackers-steal-millions-via-malware.html
https://www.nytimes.com/2015/02/15/world/bank-hackers-steal-millions-via-malware.html
https://www.trendmicro.com/enus/research/17/l/cyberespionage-campaign-sphinx-goes-mobile-anubisspy.html
https://www.trendmicro.com/enus/research/17/l/cyberespionage-campaign-sphinx-goes-mobile-anubisspy.html
https://doi.org/10.1016/j.cose.2019.02.007
https://doi.org/10.1016/j.cose.2019.02.007
https://doi.org/10.1016/j.jnca.2018.10.022
https://machinelearningmastery.com/rfe-feature-selection-in-python/
https://doi.org/10.1109/ACCESS.2018.2884964
https://unit42.paloaltonetworks.com/unit42-squirtdanger-swiss-army-knife-malware-veteran-malware-author-thebottle/
https://unit42.paloaltonetworks.com/unit42-squirtdanger-swiss-army-knife-malware-veteran-malware-author-thebottle/
https://unit42.paloaltonetworks.com/unit42-squirtdanger-swiss-army-knife-malware-veteran-malware-author-thebottle/
https://www.stratosphereips.org/datasets-ctu13
https://doi.org/10.1109/PST.2017.00035
https://www.welivesecurity.com/2018/06/18/new-telegram-abusing-android-rat/
https://www.welivesecurity.com/2018/06/18/new-telegram-abusing-android-rat/
https://appleinsider.com/articles/17/02/14/xagent-malware-arrives-on-mac-steals-passwords-screenshots-iphone-backups
https://appleinsider.com/articles/17/02/14/xagent-malware-arrives-on-mac-steals-passwords-screenshots-iphone-backups

A Novel Behavioural Screenlogger Detection System 295

21. Mitre: Screen capture. https://attack.mitre.org/techniques/T1113/
22. Mohaisen, D., Alrawi, O., Mohaisen, M.: AMAL: high-fidelity, behavior-based auto-

mated malware analysis and classification. Comput. Secur. 52, 251–266 (2015).
https://doi.org/10.1016/j.cose.2015.04.001

23. Nari, S., Ghorbani, A.: Automated malware classification based on network behav-
ior, pp. 642–647, January 2013. https://doi.org/10.1109/ICCNC.2013.6504162

24. Pan, E., Ren, J., Lindorfer, M., Wilson, C., Choffnes, D.: Panoptispy: character-
izing audio and video exfiltration from android applications. Proc. Priv. Enhanc.
Technol. 2018, 33–50 (2018). https://doi.org/10.1515/popets-2018-0030

25. Kaspersky Lab’s Global Research and Analysis Team: The great bank robbery:
Carbanak cybergang steals $1bn from 100 financial institutions worldwide.
https://www.kaspersky.com/about/press-releases/2015-the-great-bank-robbery-
carbanak-cybergang-steals-1bn-from-100-financial-institutions-worldwide

26. Symantec Security Response: Regin: top-tier espionage tool enables stealthy
surveillance. https://www.databreaches.net/regin-top-tier-espionage-tool-
enables-stealthy-surveillance/

27. Sbäı, H., Happa, J., Goldsmith, M., Meftali, S.: Dataset construction and analysis
of screenshot malware. In: 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom), pp. 646–
655 (2020). https://doi.org/10.1109/TrustCom50675.2020.00091

28. Shahzad, R., Haider, S., Lavesson, N.: Detection of spyware by mining executable
files, pp. 295–302, February 2010. https://doi.org/10.1109/ARES.2010.105

29. Shijo, P., Salim, A.: Integrated static and dynamic analysis for malware detection.
Procedia Comput. Sci. 46, 804–811 (2015). https://doi.org/10.1016/j.procs.2015.
02.149

30. Stefan, O.: The missing piece - sophisticated OS X backdoor discovered, securelist
by Kaspersky lab. https://securelist.com/the-missing-piece-sophisticated-os-x-
backdoor-discovered/75990/

31. You, I., Yim, K.: Malware obfuscation techniques: a brief survey. In: 2010 Interna-
tional Conference on Broadband, Wireless Computing, Communication and Appli-
cations, pp. 297–300 (2010). https://doi.org/10.1109/BWCCA.2010.85

https://attack.mitre.org/techniques/T1113/
https://doi.org/10.1016/j.cose.2015.04.001
https://doi.org/10.1109/ICCNC.2013.6504162
https://doi.org/10.1515/popets-2018-0030
https://www.kaspersky.com/about/press-releases/2015-the-great-bank-robbery-carbanak-cybergang-steals-1bn-from-100-financial-institutions-worldwide
https://www.kaspersky.com/about/press-releases/2015-the-great-bank-robbery-carbanak-cybergang-steals-1bn-from-100-financial-institutions-worldwide
https://www.databreaches.net/regin-top-tier-espionage-tool-enables-stealthy-surveillance/
https://www.databreaches.net/regin-top-tier-espionage-tool-enables-stealthy-surveillance/
https://doi.org/10.1109/TrustCom50675.2020.00091
https://doi.org/10.1109/ARES.2010.105
https://doi.org/10.1016/j.procs.2015.02.149
https://doi.org/10.1016/j.procs.2015.02.149
https://securelist.com/the-missing-piece-sophisticated-os-x-backdoor-discovered/75990/
https://securelist.com/the-missing-piece-sophisticated-os-x-backdoor-discovered/75990/
https://doi.org/10.1109/BWCCA.2010.85

DEVA: Decentralized, Verifiable Secure
Aggregation for Privacy-Preserving

Learning

Georgia Tsaloli1(B), Bei Liang2, Carlo Brunetta1, Gustavo Banegas3,
and Aikaterini Mitrokotsa1,4

1 Chalmers University of Technology, Gothenburg, Sweden
{tsaloli,brunetta}@chalmers.se

2 Beijing Institute of Mathematical Sciences and Applications, Beijing, China
lbei@bimsa.cn

3 Inria and Laboratoire d’Informatique de l’Ecole polytechnique,
Institut Polytechnique de Paris, Palaiseau, France

gustavo@cryptme.in
4 School of Computer Science, University of St. Gallen, St. Gallen, Switzerland

katerina.mitrokotsa@unisg.ch

Abstract. Aggregating data from multiple sources is often required in
multiple applications. In this paper, we introduce DEVA, a protocol that
allows a distributed set of servers to perform secure and verifiable aggre-
gation of multiple users’ secret data, while no communication between
the users occurs. DEVA computes the sum of the users’ input and pro-
vides public verifiability, i.e., anyone can be convinced about the cor-
rectness of the aggregated sum computed from a threshold amount of
servers. A direct application of the DEVA protocol is its employment
in the machine learning setting, where the aggregation of multiple users’
parameters (used in the learning model), can be orchestrated by multiple
servers, contrary to centralized solutions that rely on a single server. We
prove the security and verifiability of the proposed protocol and evaluate
its performance for the execution time and bandwidth, the verification
execution, the communication cost, and the total bandwidth usage of
the protocol. We compare our findings to the prior work, concluding
that DEVA requires less communication cost for a big amount of users.

Keywords: Secure aggregation · Privacy · Verifiability ·
Decentralization

1 Introduction

Mobile phones, wearables, and other Internet-of-Things (IoT) devices are all
connected to distributed network systems. These devices generate a significant
amount of data, that often need to remain private. These data in many cases need
to be aggregated to compute statistics, or even employed for user modeling and
c© Springer Nature Switzerland AG 2021
J. K. Liu et al. (Eds.): ISC 2021, LNCS 13118, pp. 296–319, 2021.
https://doi.org/10.1007/978-3-030-91356-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91356-4_16&domain=pdf
https://doi.org/10.1007/978-3-030-91356-4_16

DEVA 297

personalization via federated learning algorithms. Such an application scenario
gives rise to the secure data aggregation problem, the goal of which is to compute
sums of local updated parameters from individual users’ devices in a privacy-
preserving manner, i.e., any individual user’s update is not revealed in the clear.

In the federated learning setting, each user maintains her private data on her
mobile device, and shares local updated parameters (e.g., gradients) to the server.
The central server updates the training model using the aggregated updates and
performs the appropriate testing of the model. An advantage of federated training
is that it diminishes the risk of compromising the user’s privacy, since it allows
users (mobile devices or organizations) to collaboratively train learning models
under the orchestration of a central server, while the data remain located on the
sources (i.e., mobile devices or data centers of organizations).

The secure aggregation problem has received significant attention in the liter-
ature. Bonawitz et al. [13] proposed a practical and secure aggregation protocol
for federated learning, which enables a central server to compute the sum of
multiple users’ parameters and guarantees robustness in a dynamic environment
where users may drop out. Even though Bonawitz et al. [13] addressed the prob-
lem of maintaining user’s privacy (i.e., local gradients) in the learning process,
Xu et al. [21] considered another fundamental issue of data integrity in federated
learning, i.e., how to assure the correctness of the aggregated results returned
from the central server, since a malicious server might modify the aggregation
process [11], bias the final result and cause inferences according to its prefer-
ences [6,11,16,22]. To this end, Xu et al. provided a privacy-preserving and
verifiable aggregation protocol, VerifyNet [21]. The latter enables the users to
verify the correctness of the computed sum, while guaranteeing the users’ privacy
in the training process. In our work, we focus on the verifiability as considered
in [21], i.e., guaranteeing the correctness of the aggregated result. Bonawitz et
al.’s [13] and Xu et al.’s [21] solutions adopt a centralized architecture since a
single central server is responsible for the aggregation of the users’ parameters
and orchestrates the federated learning process. Even though a central server is
an important component of the federated learning process, a single server might
attempt to bias the model and cause inferences. For instance, the server may
tamper with the learning model so that it always misclassifies a certain pat-
tern in an image recognition system, or allows access to unauthorized users in
a biometric authentication system [5]. Decentralized systems have raised con-
siderable interest, since they distribute the storage and the computation among
multiple servers, thus allowing different organizations to collaboratively perform
computations and diminish the security threats incurred by centralized systems.

In this paper, we propose DEVA, a decentralized, verifiable and privacy-
preserving aggregation protocol, which enables multiple servers to jointly com-
pute the sum of the parameters of multiple users, and further to train and evalu-
ate a global learning model. We stress that although VerifyNet [21] achieves data
integrity in the process of training neural networks, it employs a single central
server for both the aggregation and for returning the verification results. In con-
trary, our DEVA protocol performs federated learning collaboratively by employ-
ing multiple servers for the aggregation process. A single server (hosted by a single

298 G. Tsaloli et al.

organization) might not be trusted by different organizations with similar objec-
tives (e.g., hospitals, banks) that want to collaboratively train learning mod-
els [7] and thus, multiple cloud servers can resolve this issue. The involvement of
multiple servers is challenging, since we need to find a way to obtain the aggregated
result from partial outputs, but also need to ensure the correctness of the com-
puted result. In this work, we make the following contributions: (i) We propose
DEVA, a protocol for securely computing the sum (aggregation) of n inputs from
multiple users, by employing multiple servers. OurDEVA has a constant number of
rounds, low communication cost for each server, and tolerates up to n−(tkey+1)m
users dropping out during the protocol execution, for tkey being a threshold value.
Contrary to the setting of only one central server that requires limited trust, in
DEVA no server has to be individually trusted and a fraction of the servers can col-
lude. DEVA also handles possible servers’ failure as it requires t+1 servers to com-
pute the sum. (ii) DEVA guarantees the individual user’s privacy, i.e., the servers
learn only the aggregated result of all users’ inputs without knowing any user’s
input itself. (iii) DEVA ensures the correctness of the computed sum by requiring
the employed servers to provide a proof about the correctness of their aggregated
results. We prove that it is infeasible for any adversary to deceive the users by
altering the aggregated results with a valid proof. (iv) DEVA is practical and we
present experimental results from our prototype implementation. DEVA provides
less communication cost for each user participating in the protocol. DEVA also
allows to maintain bandwidth cost since increased amount of users can be lever-
aged by having more servers.

Related Work. To solve the security, accuracy and privacy challenges in learn-
ing, some works have been proposed recently [12,13,15,16]. Phong et al. [12] pro-
posed a secure deep learning system based on additively homomorphic encryption,
Shokri et al. [16] proposed a privacy-preserving deep learning protocol focusing
on the trade-off between private and accurate learning. Bonawitz et al. [13] pro-
posed a secure aggregation protocol tailored for the federated learning process that
attempts to achieve a good balance between security, privacy and efficiency, being
robust to users dropping out. However, these solutions have multiple limitations:
(i) they assume a single server which is not suitable when different organizations
collaboratively train a model; and (ii) they provide no verifiability guarantees
of the learning model. We stress that Bonawitz et al. [13] discuss how to address
the input verifiability, i.e., verifying that the inputs are in the correct range; how-
ever, they do not deal with the issue of output verifiability, i.e., verifying that
the aggregated result is correct. Some works [4,5,10,17,21] attempted to address
the problem of verifiability (output correctness), but all of them require a central
server and additionally, either they ignore users dropping out [4,5,10] and privacy
leakages [5] or require special hardware [17] (thus, placing trust to the hardware
manufacturer) or costly computations for verification (low efficiency) [21]. They
consider a centralized system, while our goal is to avoid placing the trust to a sin-
gle server and allow different organizations (hosted by different cloud servers) to
collaboratively perform the learning process. Thus, we employ multiple servers
and achieve decentralized aggregation.

DEVA 299

2 Preliminaries

In this section, we show definitions and assumptions used throughout the paper.

Hash Functions. We employ a collision-resistant homomorphic hash func-
tion [23] satisfying additive homomorphism [9], i.e., H : x �→ gx where g is
a generator of the group G of prime order p.

Key Agreement. Let G be a cyclic group of order p prime with generator
g, e.g., groups based on elliptic curves [8]. Let us report the definition of the
Diffie-Hellman key agreement [3] and the related assumptions.

Assumption 1 (Discrete Logarithm Problem). Consider a cyclic group G

of order p prime with generator g. Given y ∈ G, the discrete logarithm problem
(dLog) requires to find the value x ∈ [0, p−1] such that gx = y. We assume the
advantage of solving the dLog problem to be negligible, i.e., εdLog < negl.

Assumption 2 (Diffie-Hellman Assumptions). Consider a cyclic group G

of prime order p with generator g and a, b ∈ [0, p−1]. Given elements (A,B) =(
ga, gb

)
, the computation Diffie-Hellman problem (CDH) requires to com-

pute the element gab ∈ G. The distinguishing Diffie-Hellman problem
(DDH) requires to correctly distinguish between (g, A,B, gab) and (g, A,B, gc)
for some random c ∈ [0, p−1]. We assume the advantage of solving the CDH and
the DDH problems to be negligible, i.e., εCDH < negl and εDDH < negl.

Definition 1 (Diffie-Hellman Key Exchange). Consider a Diffie-Hellman
key agreement scheme with algorithms (Ksetup,Kgen, Kagree) to be defined as:

– Ksetup(1λ) → pp: the setup algorithm takes as input the security parameter
and outputs the public parameters pp which contain a prime p, the description
of a cyclic group G of order p and a generator g for the group G.

– Kgen(pp,Ui) → (ski, pki): the user Ui samples a value ski ∈ [0, p−1] and com-
putes pki = ga. The key generation algorithm outputs (ski, pki) =

(
ski, gski

)
.

– Kagree(ski, pkj) → sij: the user Ui runs the key agreement algorithm with its
own secret ski and Uj’s public key pkj = gskj to obtain the agreed secret key
sij = pkski

j = gskj ·ski between the users Ui and Uj.

The key agreement is said to be correct if for any pp ← Ksetup(1λ), (ski, pki) ←
Kgen(pp,Ui), and (skj , pkj) ← Kgen(pp,Uj), it holds that sij = sji. The key
agreement scheme is said to be secure if for any pp ← Ksetup(1λ), (ski, pki) ←
Kgen(pp,Ui), as well as (skj , pkj) ← Kgen(pp,Uj), it holds that any PPT adver-
sary A has negligible probability to compute sij from (pki, pkj). The key agree-
ment’s security reduces to the CDH and dLog assumptions.

Secret Sharing. We provide the definition of a (t,m)-threshold secret sharing
scheme in order to achieve additive homomorphism in our protocols. Precisely:

300 G. Tsaloli et al.

Definition 2. A (t,m)-threshold secret sharing scheme allows a user Ui to split
a secret xi ∈ F, where F is the input domain, into m shares, such that any t + 1
shares can be used to reconstruct xi, while any set of at most t shares gives no
information about xi. Let S be the set such that |S| = m and T ⊆ S with |T | > t.
Then we consider two algorithms (SS.share,SS.recon):

– SS.share(t, xi, j,S) → {xij}j∈S : for a given threshold t, a secret input xi ∈ F,
an index j which corresponds to the receiver of the share and the set S, the
algorithm outputs a list of shares, namely, {xi1, . . . , xim}.

– SS.recon(t, {xij}j∈T , T) → xi: given a threshold t, |T | > t amount of shares
xij and the set T , the algorithm gives xi.

Shamir’s threshold secret sharing [14], as well as other secret sharing
schemes [18–20] have an homomorphic property, as described by Benaloh [1].
More precisely, these schemes allow to combine multiple secrets by performing
computations directly on shares. For linear functions, a (t,m) threshold scheme
has the additive homomorphic property if the sum of the shares are shares of the
sum [1]. Thus, with our notation, if we consider n secret inputs x1, . . . , xn and
denote the sum of shares of each j ∈ T by yj , then SS.recon(t, {yj}j∈T , T) → y,
where

y = x1 + . . . + xn. (1)

In fact, Shamir’s scheme is an additive homomorphic secret sharing scheme
and, therefore, we use it in the implementation of our protocol.

Zero-Knowledge Proofs of Discrete Logarithm Knowledge. We will need
a zero-knowledge proof of knowledge of a value α ∈ [0, p−1] such that A = gα and
B = hα given the group generators g, h and the corresponding values A,B. We
denote the protocol which generates this proof by DLEQ(g, h, A,B, α). Chaum
and Pedersen proposed a sigma protocol to perform this proof in [2]. Precisely,
the zero knowledge protocol we use is specified as follows: DLEQ(g, h, A,B, α):

– Proof.DLEQ(g, h, A,B, α): (i) for the given g, h, compute s1 = gs, s2 = hs

where s is a field element, chosen uniformly at random; (ii) for a hash function
Ha such that Ha(·) ∈ {0, 1}, compute c = Ha(g, h, A,B, s1, s2), (iii) compute
r = s + c · α, and (iv) output the proof (s1, s2, r).

– Verify.DLEQ(g, h, A,B, (s1, s2, r)): (i) for the aforementioned hash function,
compute c = Ha(g, h, A,B, s1, s2), (ii) check if both gr ?= s1·Ac and hr ?= s2·Bc

are satisfied, and (iii) if they are satisfied, accept the proof, otherwise abort.

3 Framework of a DECENTA Problem

In this chapter, we describe the DECENTA problem as well as the required prop-
erties that a solution to DECENTA must satisfy.

Problem Statement. Consider n users U1, . . . ,Un, each with a secret input xi,
and m servers S1, . . . ,Sm. A DECENTA problem aims to securely compute the
sum of the users’ secret inputs, i.e., y =

∑n
i=1 xi, by aggregating more than a

DEVA 301

certain amount of partial results; which are computed by the servers. Moreover,
the aggregated final result y can be publicly verified, i.e., anyone is able to check
if y is the correct sum of all users’ inputs without revealing their input itself.

In the setting of a DECENTA problem, no communication is allowed between
the users; thus rendering it suitable for application settings where an immense
number of users are participating, e.g., this is the case for the federated learning
setting, where a very large number of users participate via their mobile devices
and thus, cannot establish direct communications channels with other mobile
devices (need to rely on a server to play the intermediate communication role).
Furthermore, DECENTA supports a dynamic setting, where the participating
users (mobile devices) may drop out during the execution of the protocol and the
correct aggregation of the values of the remaining users (devices) is still possible.
The DECENTA problem captures both features of decentralization, since multiple
servers are involved in the system instead of a single centralized server, thus,
allowing a subset of the servers to be corrupted while still securely computing
the sum value; and verifiability since it allows the participating users to verify the
correctness of the computed result. A protocol solving the DECENTA problem
involves the following phases:

Setup: generation of all key pairs that are used during the protocol execution.
Shares and Public Values Generation: each user Ui hides its secret data
xi by splitting it into different shares that are sent to the servers instead of
the actual secret users’ data. Additionally, each user computes and publishes
some values that are used by a verifier to fulfill, later on, the verification
process.
Aggregation: it consists of all the steps that are needed to output partial
values by each server, which are appropriately used for the generation of the
final result y, and the proof (that y is indeed the correct sum), denoted by σ.
Verification: ultimately, combining suitably the result y and the proof σ,
this phase performed by a verifier gives out either 1, implying that y is the
actual correct sum of all users’ secret data xi, or 0 implying that y is incorrect.

Threat Model and Design Goal. We adopt the threat model proposed by Xu et
al., which is used to define the security of VerifyNet [21], a recently proposed
privacy-preserving and verifiable federated learning framework. In contrast to
the single server (i.e. centralized) setting used in VerifyNet, we adjust the threat
model to a decentralized multiple-server setting. Precisely, we consider that both
the cloud servers and the users follow the protocol’s execution as agreed, but they
may also try to infer information about other users’ data. Additionally to this,
in our protocol, we employ multiple servers with the following abilities: (i) a
threshold of the servers may collude to discover the users’ private inputs, and
(ii) they can modify their computed results and forge proofs in order to provide
an incorrect sum to be accepted.

Properties. We require a solution to the DECENTA problem to be correct, secure,
and verifiable. Below, we provide the corresponding definitions.

302 G. Tsaloli et al.

Definition 3 (Correctness). For all n users U1,U2, . . . ,Un with inputs
x1, . . . , xn, for all m servers S1, . . . ,Sm, where all Ui and Sj honestly execute
the protocol, and for all the partial values output by the servers Sj, the protocol
is correct if it satisfies the following requirement:

Pr

[

Verification(pub_pars, σ, y) = 1 ∧ y =
n∑

i=1

xi

]

= 1.

where pub_pars denotes all public parameters necessary for the protocol (if any),
y denotes the aggregated final result, which comes from the partial values output
by the servers during the protocol, and σ denotes the corresponding proof of y.

Definition 4 (Verifiability). For n users U1, . . . ,Un with inputs x1, . . . , xn,
that honestly execute the protocol, and any set of corrupted servers T =
{Sj1 , . . . ,Sj|T |} with |T | < m that are controlled by a PPT adversary A, i.e.,
∀j ∈ [j1, j|T |] such that Sj ∈ T , Sj gives {x1j , . . . , xnj} to A where xij is the
share given to the server Sj from the user Ui. A outputs the malicious partial
results on behalf of the corrupted servers Sj ∈ T , while the honest servers Sj /∈ T
output correct partial results. Then, if A outputs an aggregated result y′ together
with the corresponding proof σ′ such that y′ 	=

∑n
i=1 xi, we require that A can

pass the verification phase with negligible probability. More precisely, for any
PPT adversary A, it holds:

Pr [Verification(pub_pars, σ′, y′) = 1] ≤ ε,

for some negligible ε; pub_pars are the public parameters of the protocol.

Definition 5 (Security). Let T = {Sj1 , . . . ,Sj|T |} be the set of the corrupted
servers with |T | ≤ t which are controlled by the adversary A. The goal of the
adversary A is to infer sensitive information about the users’ data. We consider
security in the setting where all the servers (including the corrupted servers)
correctly execute the protocol. A protocol is t-secure if there is no leak of infor-
mation about the users’ data besides what can be derived from publicly available
information.

4 A DECENTA Solution: DEVA

In this section, we present DEVA, an interactive multi-round protocol, inspired
by Segal et al. [13] work, designed to solve the DECENTA problem.

DEVA Construction. At any point during the protocol, users may drop out,
i.e., a user Ui after sending the round-k messages, may not send the consecutive
round-(k + 1) messages, where k ∈ {1, 2, 3}. By the end of the last round, at
least t+1 servers together, where t ≤ m−1, will be able to produce an outcome
y and a proof σ, which are used to allow anyone to verify if y is indeed the sum
of all the inputs of the “involved” (active) users.

DEVA 303

Briefly, our idea is to split the secret input xi of each user Ui among m
servers via Shamir’s threshold secret sharing as described in Sect. 2, and provide
xij to server Sj . Given the property of Shamir’s secret sharing scheme to be
additive homomorphic, any subset of t + 1 servers will be enough to reconstruct
y (i.e., the sum of the inputs of the active users) from the given shares xij .
Our main concern is how to prove that the resulted sum y is correct without
revealing each user’s secret input. A naive way is that each user publishes a
value gxi , and the verification is to check if

∏
i g

xi = gy. We should note that
the public value gxi , probably reveals some information of xi, but not all xi

(due to the dLog assumption), so we need to randomize gxi with some random
value Rani that belongs in the employed group such that

∏
i Rani = 1, which

implies
∏

i(g
xi · Rani) =

∏
i g

xi = gy. More precisely, the trick is to generate a
randomness Rani for each user Ui, and looking ahead, Rani consists of a sequence
of agreed keys between Ui and each other user Ui′ .

Each user needs to execute a key agreement with the other participating
users. Thus, we assign groups of participating users to a unique server to reduce
the computational and communication costs. More precisely, we sort n users into
m groups, each of which consists of n/m amount of users. Here to simplify the
explanation, we assume m | n, for the general case m � n please refer to our
protocol in detail. Next, each group of n/m users generates their own random-
ness, via their corresponding server, following the trick proposed by Bonawitz
et al. [13] in which the server plays the role of a bulletin board and coordinates
the communications in each group. Later, we address the possible dropouts by
suitably adapting the approach in [13] to our case. We assume that, by the end
of the last round, there are at least tkey + 1 users which have not dropped out,
in each group of n/m users. Our DEVA protocol is described below:

Setup: all parties are given the security parameter λ, the numbers of users
n and servers m, thresholds t < m and tkey < � n

m�, honestly generated
pp ← Ksetup(1λ), parameter q such that Zq is the space from which inputs
are sampled, and a group G of prime order p to be used for key agreement.
All n users are partitioned into m disjoint subsets, i.e., Γ1, . . . , Γm where for
any j ∈ [1,m], Γi ∩Γj = ∅. Here, we assume n is divided by m, and | Γj |= n

m
for j ∈ [1,m].1
Round 1 - KeyGeneration for user Ui associated with Sj : Ui gen-
erates key pairs (skKAi , pkKAi) ← KA.Kgen(pp,Ui) along with the pairs
(skPKEi , pkPKEi) ← PKE.KeyGen(1λ); and publish (pkKAi , pkPKEi) before moving
to the next round;
Round 1 - KeyGeneration for server Sj associated with Γj : Sj collects
users’ public keys (We denote this set of users by Γ 1

j); broadcasts to all users
belonging to Γ 1

j the list of keys {(pkKAi , pkPKEi)}Ui∈Γ 1
j
, and goes to next round;

Round 2 - ShareKeys for user Ui associated with Sj : Ui receives the list
{(pkKAi , pkPKEi)}Ui∈Γ 1

j
broadcasted by the server Sj and proceeds to sharing

keys:
1 If m � n, then | Γj |= � n

m
� for j ∈ [1, m − 1] and | Γm |= n − (m − 1)� n

m
�.

304 G. Tsaloli et al.

◦ using a tkey-out-of-
∣
∣Γ 1

j

∣
∣, with tkey <

∣
∣Γ 1

j

∣
∣, secret sharing scheme, it gen-

erates shares of skKAi for each Ui′ ∈ Γ 1
j . More precisely, user Ui generates

skKAi,i′ ← SS.share(tkey, skKAi ,Ui′ , Γ 1
j);

◦ uses PKE to encrypt shares skKAi,i′ under the public key pkPKEi′ of
each other user Ui′ ∈ Γ 1

j . More precisely, Ui computes ci,i′ ←
PKE.Enc(pkPKEi′ , skKAi,i′);

Ui sends ciphertexts {ci,i′}Ui′ ∈Γ 1
j

to the server Sj , and goes to the next round;
Round 2 - ShareKeys for server Sj associated with Γ 1

j : Sj collects the
list of users Ui which have sent ci,i′ (we denote this set of users by Γ 2

j); and
sends to each user Ui′ ∈ Γ 2

j all ciphertexts under his public key pkPKEi′ , i.e.,
{ci,i′}Ui′ ∈Γ 2

j
;

Round 3 - ShareInputs for user Ui associated with Sj : Ui receives the
list of ciphertexts {ci′,i}Ui′ ∈Γ 2

j
broadcasted by Sj and proceeds to sharing its

input :
◦ with the list {pkKAi }Ui∈Γ 2

j
broadcasted by the server Sj , uses the key

agreement scheme to compute the agreed key between any two users
Ui,Ui′ ∈ Γ 2

j , i.e., sii′ ← KA.Kagree(skKAi′ , pkKAi);
◦ uses a t-out-of-m secret sharing scheme to generate shares of
the input xi for each server Sj′ for j′ ∈ [1,m], i.e., xij′ ←
SS.share(t, xi,Sj′ , {Sj′}j′∈[1,m]);
◦ randomly selects Ri

′ and computes Ri
′′ such that

Ri
′ + Ri

′′ = |G| · Int (2)

where Int denotes any positive integer, and computes the values

τi := gxi · gRi
′
, ρi := gRi

′′ ·
∏

i′∈Γ 2
j :i<i′

sii′ ·
∏

i′∈Γ 2
j :i>i′

si′i
−1.

Ui publishes and sends (τi, ρi) to the specified server Sj and, additionally,
sends xij′ to each server Sj′ where j′ ∈ [1,m], and goes to the next round;
Round 3 - ShareInputs for server Sj associated with Γ 2

j : Sj collects the
list of users Ui which have sent (τi, ρi) to Sj (denoted by Γ 3

j); then, Sj collects
the shared inputs xij of all Ui ∈

⋃m
j=1 Γ 3

j , i.e., {xij}Ui∈Ω where Ω :=
⋃m

j=1 Γ 3
j ;

Round 4 - Aggregation for user Ui associated with Sj : on receiving the
ciphertexts {ci′,i}Ui′ ∈Γ 2

j
of each user Ui′ , with the decryption key skPKEi , Ui

decrypts {ci′,i}Ui′ ∈Γ 2
j
. More precisely, Ui gets skKAi′,i ← PKE.Dec(skPKEi , ci′,i),

and sends a list of shares {skKAi′,i}Ui′ ∈Γ 2
j \Γ 3

j
to the server Sj ;

Round 4 - Aggregation for server Sj associated with Γj : Sj collects the
list of shares {skKAi′,i}Ui′ ∈Γ 2

j \Γ 3
j

from the users Ui (denote this set of users by
Γ 4

j) such that
∣
∣Γ 4

j

∣
∣ ≥ tkey; Consecutively, for each user Ui′ ∈ Γ 2

j \ Γ 3
j , the

server Sj :

DEVA 305

◦ evaluates the shared keys skKAi′ by running the SS.recon(tkey,

{skKAi′,i}i∈Γ 4
j
, Γ 4

j) reconstruction algorithm, and computes sii′ ←
KA.Kagree(skKAi′ , pkKAi), i.e., the agreed keys sii′ ;
◦ evaluates the missing values zi′ :=

∏
i∈Γ 3

j :i<i′ s−1
ii′ ·

∏
i∈Γ 3

j :i>i′ si′i, ∀Ui ∈
Γ 3

j ;
◦ computes ωi′ :=

∏
i∈Γ 3

j :i<i′(pkKAi)−1
∏

i∈Γ 3
j :i>i′ pkKAi for all users Ui ∈

Γ 3
j , and a proof Proof.DLEQ(g, ωi′ , pkKAi′ , zi′ , skKAi′) with witness skKAi′

using the ZK protocol in [2], described in detail in Sect. 2;
◦ computes the partial value yj :=

∑
Ui∈Ω xij ;

The list
(
{pkKAi }Ui∈Γ 3

j
, yj , {zi′ ,Proof.DLEQ(g, ωi′ , pkKAi′ , zi′ , skKAi′)}Ui′ ∈Γ 2

j \Γ 3
j

)

is finally given as the output by the server Sj ;
Public Verification: given a set of servers T where |T | > t, any verifier:

◦ gets from each server Sj the set of active users {pkKAi }Ui∈Γ 3
j
, and com-

putes ω̂i′ :=
∏

i∈Γ 3
j :i<i′(pkKAi)−1 ·

∏
i∈Γ 3

j :i>i′ pkKAi for each user Ui′ ∈
Γ 2

j \ Γ 3
j ;

◦ executes Verify.DLEQ(g, ω̂i′ , pkKAi′ , zi′ ,Proof.DLEQ(g, ωi′ , pkKAi′ , zi′ ,

skKAi′)) to check if it satisfies gsk
KA
i′ =pkKAi′ and (ω̂i′)sk

KA
i′ =zi′ , for each user

Ui′ ∈ Γ 2
j \Γ 3

j . If it fails, abort and output 0.
◦ computes the final result y := SS.recon(t, {yj}j∈T , T) given |T | servers,

the value σ as σ :=
m∏

j=1

(
∏

Ui∈Γ 3
j

τi ·
∏

Ui∈Γ 3
j

ρi ·
∏

Ui′ ∈Γ 2
j \Γ 3

j

zi′

)

and checks if

σ
?= H(y), for H defined to be the hash function described in Sect. 2. If

true, output (y, 1). Otherwise output 0.

Below, we state the DEVA’s satisfied properties.

Theorem 1 (DEVA Correctness). The DEVA protocol is correct, i.e., it holds
Pr

[
Verification(σ, y) = (y, 1)

]
= 1, where σ and y are the outputs of the protocol,

honestly executed by all users and servers.

We present and prove the following lemma which is necessary to prove DEVA’s
properties. We abuse notation by equivalently denoting Ui ∈ Γ 3

j as i ∈ Γ 3
j .

Lemma 1. It holds that

∏

i∈Γ 3
j

⎛

⎝
∏

i′∈Γ 2
j :i<i′

sii′
∏

i′∈Γ 2
j :i>i′

s−1
i′i

⎞

⎠ ·
∏

i′∈Γ 2
j \Γ 3

j

⎛

⎝
∏

i∈Γ 3
j :i<i′

s−1
ii′

∏

i∈Γ 3
j :i>i′

si′i

⎞

⎠

=
∏

i∈Γ 3
j

ρ̂i ·
∏

i′∈Γ 2
j \Γ 3

j

zi′ = 1
(3)

306 G. Tsaloli et al.

Proof (DEVA’s Lemma 1). Since Γ 2
j ≡ Γ 3

j ∪ (Γ 2
j \ Γ 3

j), for all i ∈ Γ 3
j , it holds

ρ̂i =

⎛

⎝
∏

i′∈Γ 3
j :i<i′

sii′
∏

i′∈Γ 2
j \Γ 3

j :i<i′
sii′

⎞

⎠ ·

⎛

⎝
∏

i′∈Γ 3
j :i>i′

s−1
i′i

∏

i′∈Γ 2
j \Γ 3

j :i>i′
s−1
i′i

⎞

⎠

Observe that
∏

i∈Γ 3
j

(∏
i′∈Γ 3

j :i<i′ sii′ ·
∏

i′∈Γ 3
j :i>i′ s−1

i′i

)
= 1, thus implying,

∏

i∈Γ 3
j

ρ̂i =
∏

i∈Γ 3
j

⎛

⎝
∏

i′∈Γ 2
j \Γ 3

j :i<i′
sii′

∏

i′∈Γ 2
j \Γ 3

j :i>i′
s−1
i′i

⎞

⎠

=
∏

i′∈Γ 2
j \Γ 3

j

⎛

⎝
∏

i∈Γ 3
j :i<i′

sii′
∏

i∈Γ 3
j :i>i′

s−1
i′i

⎞

⎠ =
∏

i′∈Γ 2
j \Γ 3

j

z−1
i′

��

Proof (DEVA’s Correctness - Theorem 1). Let Ω =
⋃m

j=1 Γ 3
j be the set of all

users that have sent shared inputs xij to their corresponding servers. For any T
set of servers with |T | > t, it holds:

y = SS.recon(t, {yj}j∈T , T)
see eq. (1)

=
∑

i∈Ω

xi (4)

By construction, we get the following relation that is needed later on:
∏

Ui∈Γ 3
j

ρi =
∏

i∈Γ 3
j

gRi
′′ ·

∏

i′∈Γ 2
j ,i′<i

sii′ ·
∏

i′∈Γ 2
j ,i′>i

s−1
ii′

Eq. (3)
=

∏

i∈Γ 3
j

gRi
′′ ·

∏

i∈Γ 3
j

ρ̂i (5)

Therefore, we can expand σ as follows:

σ =
m∏

j=1

⎡

⎣
∏

Ui∈Γ 3
j

τi

∏

Ui∈Γ 3
j

ρi

∏

Ui′ ∈Γ 2
j \Γ 3

j

zi′

⎤

⎦

Eq. (5)
=

m∏

j=1

⎡

⎣
∏

i∈Γ 3
j

gxi+Ri
′

⎛

⎝
∏

i∈Γ 3
j

gRi
′′ ∏

i∈Γ 3
j

ρ̂i

⎞

⎠
∏

i′∈Γ 2
j \Γ 3

j

zi′

⎤

⎦

=
m∏

j=1

⎡

⎣

⎛

⎝
∏

i∈Γ 3
j

gxi+Ri
′ ∏

i∈Γ 3
j

gRi
′′

⎞

⎠ ·

⎛

⎝
∏

i∈Γ 3
j

ρ̂i

∏

i′∈Γ 2
j \Γ 3

j

zi′

⎞

⎠

⎤

⎦

Lem. 1=
m∏

j=1

⎡

⎣
∏

i∈Γ 3
j

gxi+Ri
′ ∏

i∈Γ 3
j

gRi
′′

⎤

⎦ =
∏

i∈Ω

gxi+Ri
′+Ri

′′

Eq. (2)
= g

∑
i∈Ω xi

Eq. (4)
= gy

(6)

DEVA 307

Thus, we get that σ = gy = H(y) which shows that the verification will give 1
with probability 1, i.e., Pr [Verification(σ, y) = (y, 1)] = 1. ��

Theorem 2 (DEVA Verifiability). For n users {Ui}i∈[n] with inputs {xi}i∈[n]

such that y =
∑n

i=1 xi, which honestly execute the protocol, consider any set of
corrupted servers T = {Sj1 , . . . ,Sj|T |} with |T | < m which are controlled by a
PPT adversary A. The verifiability requirement of DEVA follows Definition 4
and it is specified as follows:

1. Users and servers run the protocol’s setup round 1 and round 2.
2. Execute round 3 and, ∀j ∈ [j1, j|T |] such that Sj ∈ T , the server Sj gives

{x1j , . . . , xnj} to A where xij is the share given to Sj from the user Ui.
3. Given the tuples output by the corrupted servers Sj ∈ T at the end of round 4,

A outputs
(
yj

∗, {z∗
i′ ,Proof.DLEQ(g, ω∗

i′ , pkKAi′ , z∗
i′ , skKAi′)}Ui′ ∈Γ 2

j \Γ 3
j

)
as a mali-

cious tuple. For honest servers Sj /∈ T , it honestly computes and publishes(
yj , {zi′ ,Proof.DLEQ(g, ωi′ , pkKAi′ , zi′ , skKAi′)}Ui′ ∈Γ 2

j \Γ 3
j

)
.

4. A outputs the aggregated result y′ and the corresponding proof σ′ such that
y′ 	= y.

For any PPT adversary A, DEVA satisfies Pr [Verification(σ′, y′) = 1] ≤ negl.

Proof (DEVA’s Verifiability - Theorem 2). Assume Verification(σ′, y′) = 1,
where y′ = y + Δ with Δ 	= 0. Due to the property of proof of knowledge,
with overwhelming probability A knows the secret keys (witnesses) skKAi′ of all
users that dropout at the end of round 2 and before round 3, such that the proof
Proof.DLEQ(g, ω∗

i′ , pkKAi′ , z∗
i′ , skKAi′) is valid, i.e., gsk

KA
i′ =pkKAi′ and (ω∗

i′)sk
KA
i′ =z∗

i′ . Let
Γ 2

j \Γ 3
j be the list of honestly dropped users at the end of round 2 and before

round 3. Let us consider the two possible cases:

– A reports an active user as dropped. W.l.o.g., denote this user as Ufd and let
zfd denote the related missing value computed2. Then, we get:

Verification(σ′, y′) = 1 ⇐⇒ σ′ = H(y′)

⇐⇒
m∏

j=1

⎡

⎣

⎛

⎝
∏

Ui∈Γ 3
j

τi

∏

Ui∈Γ 3
j

ρi

∏

Ui′ ∈Γ 2
j \Γ 3

j

zi′

⎞

⎠ zfd

⎤

⎦ = gy′

⇐⇒
m∏

j=1

⎡

⎣
∏

Ui∈Γ 3
j

τi

∏

Ui∈Γ 3
j

ρi

∏

Ui′ ∈Γ 2
j \Γ 3

j

zi′

⎤

⎦
m∏

j=1

zfd = gy+Δ

Eq. (6)⇐⇒ gy
m∏

j=1

zfd = gygΔ ⇐⇒
m∏

j=1

zfd = gΔ

2 A must know the secret key by either breaking the key agreement security or by
maliciously corrupting the user, e.g., by personally creating it.

308 G. Tsaloli et al.

– A reports a dropped out user as active. W.l.o.g., denote this user as Ufa and
let zfa denote the value computed for this user. Then, we get:

Verification(σ′, y′) = 1 ⇐⇒ σ′ = H(y′) (7)

and expanding σ′ we have:

σ′ =
m∏

j=1

⎡

⎣
∏

Ui∈Γ 3
j

τi

∏

Ui∈Γ 3
j

ρi

∏

Ui′ ∈Γ 2
j \(Γ 3

j ∪Ufa)

zi′

⎤

⎦

⇐⇒ σ′ =
m∏

j=1

⎡

⎣

⎛

⎝
∏

Ui∈Γ 3
j

τi

∏

Ui∈Γ 3
j

ρi

∏

Ui′ ∈Γ 2
j \(Γ 3

j ∪Ufa)

zi′

⎞

⎠ (zfaz−1
fa)

⎤

⎦

⇐⇒ σ′ =
m∏

j=1

⎡

⎣

⎛

⎝
∏

Ui∈Γ 3
j

τi

∏

Ui∈Γ 3
j

ρi

∏

Ui′ ∈Γ 2
j \Γ 3

j

zi′

⎞

⎠ z−1
fa

⎤

⎦

⇐⇒ σ′ =
m∏

j=1

⎡

⎣
∏

Ui∈Γ 3
j

τi

∏

Ui∈Γ 3
j

ρi

∏

Ui′ ∈Γ 2
j \Γ 3

j

zi′

⎤

⎦
m∏

j=1

z−1
fa

Eq. (6)⇐⇒ σ′ = gy
m∏

j=1

z−1
fa

Then, Eq. (7) becomes, equivalently:

Eq. (7) ⇐⇒ gy
m∏

j=1

z−1
fa = gy′ ⇐⇒ gy

m∏

j=1

z−1
fa = gy+Δ

Eq. (6)⇐⇒ gy
m∏

j=1

z−1
fa = gygΔ ⇐⇒

m∏

j=1

z−1
fa = gΔ

In both cases, finding Δ requires to solve a dLog problem which is assumed to
be hard. Thus, the only two cases that exist are not feasible. Therefore, it holds
Pr [Verification(σ′, y′) = 1] ≤ negl. ��

We consider security in the setting where at most t servers are corrupted by
the adversary A, namely, assume T = {Sj1 , . . . ,Sj|T |} be the set of the corrupted
servers such that |T | ≤ t. All those |T | servers are controlled by A and all
users and servers correctly execute the protocol. A has the knowledge of at
most tkey corrupted users’ secret inputs. A attempts to infer the remaining non-
corrupted users’ secret inputs. We show that the joint view of any set of less
than (t+1) corrupted servers and any set of less than (tkey +1) corrupted users
can be simulated, given the inputs of the corrupted users and only the sum of
the inputs of the remaining users. Intuitively, this means that those users and
servers learn nothing more than their own inputs, and the sum of the other users’
inputs. Consider n users U = {Ui}i∈[n] along with m servers S = {Sj}j∈[m], and

DEVA 309

U is partitioned into m disjoint subsets, i.e., U = Γ1, . . . , Γm where for any
j, j′ ∈ [1,m], Γj ∩ Γj′ = ∅. Let the input of each user Ui be xi. For simplicity,
we assume m divides n, and |Γj | = n

m for j ∈ [1,m]. Assume that the group
of users Γj corresponds to server Sj . Denote by Γ 1

j , Γ 2
j , Γ 3

j , Γ 4
j the subsets of

users in Γj that successfully sent their messages to the corresponding server Sj

at round 1, 2, 3 and 4 respectively, such that Γj ⊇ Γ 1
j ⊇ Γ 2

j ⊇ Γ 3
j ⊇ Γ 4

j . For
example, users in Γ 1

j \ Γ 2
j are those that abort after completing the execution

of round 1 but before sending the message to Sj in round 2. Let S ′ be the
corrupted servers such that |S ′| ≤ t, and U ′ the corrupted users such that |U ′| ≤
tkey. Let Real

U ′,S′,t,tkey

U,S ({xi}Ui∈U , {Γ 1
j , Γ 2

j , Γ 3
j , Γ 4

j }j∈[1,m]) be a random variable
representing the views of all corrupted users in U ′ and all corrupted servers in
S ′ after executing the above instantiated protocol, where the randomness is over
their internal randomness and the ones in the setup phase.

Theorem 3 (DEVA Security). There exists a PPT simulator Sim such that for
all t < m and tkey < � n

m�, U , S, U ′, S ′, {xi}Ui∈U ′ , and {Γ 1
j , Γ 2

j , Γ 3
j , Γ 4

j }j∈[1,m],
such that |S ′| ≤ t, |U ′| ≤ tkey, U ′ ⊆ U , S ′ ⊆ S, Γ 1

j ⊇ Γ 2
j ⊇ Γ 3

j ⊇ Γ 4
j for

j ∈ [1,m], and U ′ ⊂ (
⋃m

j=1 Γ 4
j), the output of Sim is computationally indistin-

guishable from the output of RealU
′,S′,t,tkey

U,S , or:

Real
U ′,S′,t,tkey

U,S
(
{xi}Ui∈U , {Γ 1

j , Γ 2
j , Γ 3

j , Γ 4
j }j∈[1,m]

)

c≈ Sim
U ′,S′,t,tkey

U,S
(
{xi}Ui∈U ′ , aux, {Γ 1

j , Γ 2
j , Γ 3

j , Γ 4
j }j∈[1,m]

)

where, by considering Ω :=
⋃

j∈[1,m] Γ
3
j , and aux :=

∑
Ui∈Ω\U ′ xi if

∣
∣Γ 4

j

∣
∣ > tkey

for ∀j ∈ [1,m]; otherwise aux := ⊥.

Proof (DEVA’s Security - Theorem 3). Let us construct the simulator Sim
by doing a sequence of games from the initial view of the real execution
Real

U ′,S′,t,tkey

U,S such that any two consecutive games are computationally indis-
tinguishable.

Game0: Real is exactly the joint view of the set of corrupted servers S ′ and
corrupted users U ′ in a real execution of the above instantiated protocol.
Game1: given the set of corrupted users U ′, let Υ 2

j := U ′∩Γ 2
j for all j ∈ [1,m].

In Game1, for all j ∈ [1,m], the ciphertexts that are received by honest users
Ui′ ∈ Γ 2

j \ Υ 2
j and sent from honest users Ui ∈ Γ 2

j \ Υ 2
j , are replaced with

encryptions of 0 instead of skKAi,i′ , i.e., computing ci,i′ ← PKE.Enc(pkPKEi′ , 0)
instead of ci,i′ ← PKE.Enc(pkPKEi′ , skKAi,i′). The IND-CPA security of the PKE
encryption scheme guarantees that this game is indistinguishable from the
previous one.
Game2: for all j ∈ [1,m], when the user Ui ∈ (Γ 2

j \ Γ 3
j) \ Υ 2

j generates
shares of skKAi , we substitute all shares of skKAi with shares of 0 (every user
Ui in the set (Γ 2

j \ Γ 3
j) \ Υ 2

j uses a different sharing of 0), and give those

310 G. Tsaloli et al.

shares to the corrupted users in set Υ 2
j in Round ShareKeys, i.e., com-

puting skKAi,i′ ← SS.share(tkey, 0,Ui′ , Υ 2
j) for Ui′ ∈ Υ 2

j instead of computing
skKAi,i′ ← SS.share(tkey, skKAi ,Ui′ , Υ 2

j). The properties of Shamir’s secret shar-
ing guarantee that the distribution of any |U ′| shares of 0 is identical to the
distribution of an equivalent number of shares of skKAi , making this game and
the previous one identically distributed.
Game3: for all j ∈ [1,m], for each user Ui ∈ (Γ 2

j \ Γ 3
j) \ Υ 2

j , instead of
computing ρi := gRi

′′ ·
∏

i′∈Γ 2
j :i<i′ sii′ ·

∏
i′∈Γ 2

j :i>i′ si′i
−1 and τi := gxi · gRi

′
,

we compute ρi := gζi ·
∏

i′∈Γ 2
j :i<i′ sii′ ·

∏
i′∈Γ 2

j :i>i′ si′i
−1 and τi := gηi , where

ζi := −ηi and ηi is sampled uniformly at random. Since Ri
′, Ri

′′ are uniformly
random values, this game and the previous one are identically distributed.
Game4: given the set of corrupted users U ′, let Υ 3

j := U ′∩Γ 3
j for all j ∈ [1,m].

In Game4, for all j ∈ [1,m], when user Ui ∈ Γ 3
j \Υ 3

j generates shares of skKAi , we
substitute all shares of skKAi with shares of 0 (every Ui ∈ Γ 3

j \Υ 3
j uses a different

sharing of 0), and give those shares to the corrupted users in set Υ 3
j in Round 2

- ShareKeys for user Ui, i.e., computing skKAi,i′ ← SS.share(tkey, 0,Ui′ , Υ 3
j) for

Ui′ ∈ Υ 3
j . The security of the threshold secret sharing scheme guarantee that

Game4 is identically distributed as Game3.
Game5: for a fixed user Ui∗ ∈ Γ 3

j \ Υ 3
j as well as for other users Ui ∈ (Γ 3

j \
Υ 3

j) \ {Ui∗}, we substitute si∗i = sii∗ with a uniformly random value, instead
of computing the value si∗i = sii∗ ← KA.Kagree(skKAi∗ , pkKAi). More precisely,
Sim computes, for any user Ui ∈ (Γ 3

j \ Υ 3
j) \ {Ui∗}:

ρi := gζi

⎛

⎝
i<i′
∏

i′∈Γ 2
j \{Ui∗ }

sii′

i>i′
∏

i′∈Γ 2
j \{Ui∗ }

si′i
−1

⎞

⎠

︸ ︷︷ ︸
ϑi

s̃ii∗ ,

where s̃ii∗ :=

{
sii∗ if i∗ > i

s−1
ii∗ if i∗ < i

and sii∗ = si∗i

is a random element of G, zi := ϑi · s̃ii∗ , and

ωi :=

⎛

⎝
i<i′
∏

i′∈Γ 2
j \{Ui∗ }

pkKAi′

i>i′
∏

i′∈Γ 2
j \{Ui∗ }

(pkKAi′)
−1

⎞

⎠ ˜pkKAi∗ ,

where ˜pkKAi∗ :=

{
pkKAi∗ if i∗ > i

(pkKAi∗)−1 if i∗ < i

DEVA 311

and generates Proof.DLEQ(g, ωi, pk
KA
i , zi, sk

KA
i) using the simulator of the ZK

proof. For the fixed user Ui∗ ∈ Γ 3
j \ Υ 3

j , Sim computes,

ρi∗ := gζi∗

⎛

⎝
i∗<i′
∏

i′∈Γ 2
j

si∗i′

i∗>i′
∏

i′∈Γ 2
j

si∗i′ −1

⎞

⎠

︸ ︷︷ ︸
ϑi∗

, zi∗ := ϑi∗ , and

ωi∗ :=
i∗<i′
∏

i′∈Γ 2
j

pkKAi∗

i∗>i′
∏

i′∈Γ 2
j

(pkKAi∗)−1

and generates Proof.DLEQ(g, ωi∗ , pkKAi∗ , zi∗ , skKAi∗) using the ZK proof’s sim-
ulator. The DDH assumption and ZK property assure Game5 to be indistin-
guishable from Game4.
Game6 or Sim: for all users Ui ∈ Γ 3

j \ Υ 3
j , instead of computing

τi := gxigRi
′
, ρi := gRi

′′

⎛

⎝
i<i′
∏

i′∈Γ 2
j

sii′

i>i′
∏

i′∈Γ 2
j

si′i
−1

⎞

⎠ = gRi
′′

(8)

·

⎛

⎝
i<i′
∏

i′∈Γ 2
j \(Γ 3

j \Υ 3
j)

sii′

i>i′
∏

i′∈Γ 2
j \(Γ 3

j \Υ 3
j)

si′i
−1

⎞

⎠

⎛

⎝
i<i′
∏

i′∈Γ 3
j \Υ 3

j

sii′

i>i′
∏

i′∈Γ 3
j \Υ 3

j

si′i
−1

⎞

⎠

we compute

τi := gηi , ρi := gζi

∏

i′∈Γ 2
j \(Γ 3

j \Υ 3
j):i<i′

sii′
∏

i′∈Γ 2
j \(Γ 3

j \Υ 3
j):i>i′

si′i
−1 (9)

where ηi and ζi are sampled uniformly at random and are subject to
∑

i∈
⋃m

j=1(Γ
3
j \Υ 3

j)

(ηi + ζi) = aux =
∑

i∈
(⋃m

j=1 Γ 3
j

)
\U ′

xi

To generate the shares of an input for each user Ui ∈
⋃m

j=1(Γ
3
j \Υ 3

j), given aux,
the simulator Sim randomly chooses x′

i such that
∑

i∈
⋃m

j=1 (Γ 3
j \Υ 3

j) x′
i = aux,

and shares x′
i among m servers using t-out-of-m secret sharing scheme, i.e.,

for each server Sj for j ∈ [1,m], xij ← SS.share(t, x′
i,Sj , {Sj}j∈[1,m]).

312 G. Tsaloli et al.

For τi and ρi generated as in Eq. (9), it implies that, for Ξj :=
⋃m

j=1(Γ
3
j \Υ 3

j),

∏

i∈Ξj

τi · ρi =
∏

i∈Ξj

⎡

⎣gηi · gζi ·

⎛

⎝
i<i′
∏

i′∈Γ 2
j \(Γ 3

j \Υ 3
j)

sii′

i>i′
∏

i′∈Γ 2
j \(Γ 3

j \Υ 3
j)

si′i
−1

⎞

⎠

⎤

⎦

= g
∑

i∈Ξj
(ηi+ζi) ·

⎡

⎣
∏

i∈Ξj

⎛

⎝
i<i′
∏

i′∈Γ 2
j \(Γ 3

j \Υ 3
j)

sii′

i>i′
∏

i′∈Γ 2
j \(Γ 3

j \Υ 3
j)

si′i
−1

⎞

⎠

⎤

⎦

= gaux ·

⎡

⎣
∏

i∈Ξj

⎛

⎝
i<i′
∏

i′∈Γ 2
j \(Γ 3

j \Υ 3
j)

sii′

i>i′
∏

i′∈Γ 2
j \(Γ 3

j \Υ 3
j)

si′i
−1

⎞

⎠

⎤

⎦

while for honestly generated τi and ρi as Eq. (8),

it holds that
∏

i∈Ξj

τi · ρi

=
∏

i∈Ξj

⎡

⎣gxi+Ri
′+Ri

′′ ·

⎛

⎝
i<i′
∏

i′∈Γ 2
j \(Γ 3

j \Υ 3
j)

sii′

i>i′
∏

i′∈Γ 2
j \(Γ 3

j \Υ 3
j)

si′i
−1

⎞

⎠

·

⎛

⎝
i<i′
∏

i′∈Γ 3
j \Υ 3

j

sii′

i>i′
∏

i′∈Γ 3
j \Υ 3

j

si′i
−1

⎞

⎠

⎤

⎦

= g
∑

i∈Ξj
xi ·

⎡

⎣
∏

i∈Ξj

⎛

⎝
i<i′
∏

i′∈Γ 3
j \Υ 3

j

sii′

i>i′
∏

i′∈Γ 3
j \Υ 3

j

si′i
−1

⎞

⎠

⎤

⎦

·

⎡

⎣
∏

i∈Ξj

⎛

⎝
i<i′
∏

i′∈Γ 2
j \(Γ 3

j \Υ 3
j)

sii′

i>i′
∏

i′∈Γ 2
j \(Γ 3

j \Υ 3
j)

si′i
−1

⎞

⎠

⎤

⎦

= gaux ·

⎡

⎣
∏

i∈Ξj

⎛

⎝
i<i′
∏

i′∈Γ 2
j \(Γ 3

j \Υ 3
j)

sii′

i>i′
∏

i′∈Γ 2
j \(Γ 3

j \Υ 3
j)

si′i
−1

⎞

⎠

⎤

⎦

This implies that, choosing ηi and ζi uniformly at random to compute τi and
ρi as in Eq. (9) is identically distributed with computing τi and ρi as in Eq. (8).
Since for all Ui ∈ Γ 3

j \Υ 3
j , ηi and ζi are sampled uniformly at random, to generate

τi and ρi, the simulator Sim does not need the knowledge of individual xi for
Ui ∈ Ξj but, instead, their sum

∑
i∈Ξj

xi = aux is sufficient for the simulation.
This implies the indistinguishability between Game5 and Game6. ��

5 Evaluation

This section describes several experimental results from the implementation of
our DEVA protocol. We explain the different findings of DEVA, and provide

DEVA 313

comparison to prior work of VerifyNet by Xu et al. [21]. We got our protocol’s
experimental results, by implementing a prototype in Python 3.8.3. The execu-
tion of the tests was on MacOS 10.14.6 over a MacBookPro (2017) with pro-
cessor Intel i7-7820HQ CPU @ 2.9GHz, with 16GB LPDDR3 2133MHz RAM,
1MB L2 cache and 8MB L3 cache. We used Diffie-Hellman over the elliptic
curve secp256k1 for the key agreement, the Shamir’s secret sharing scheme as
an additive homomorphic secret sharing scheme, and RSA-2048 as a public key
encryption scheme. The execution time provided is expressed in milliseconds
(ms), while the bandwidth is presented in kilobytes (kB). The source code of our
protocol is publicly released3.

5.1 Implementation Analysis

In this subsection, we explore how our DEVA protocol performs when considering
different parameters, e.g., number of users, number of servers or the amount of
dropout users and how this affects the communication bandwidth of the protocol
and the execution time required.

We are interested in (i) each user’s execution time and the output data size
in relation to the amount of employed servers but also to a different percent of
dropout users; (ii) each server’s execution time and input data size w.r.t. the
amount of users and the percentage of dropout users; (iii) the verification’s exe-
cution time and the data input size in relation to the amount of users, servers
and the number of dropout users considered; and lastly, (iv) the total commu-
nication bandwidth in relation to the amount of users, servers and number of
users that have dropped out.

We describe how our DEVA protocol performs and explain its behavior in
each case. The results for the different costs considered per user or per server
include all the rounds of the protocol (excluding Round 1). Specifically for the
server execution time the results contain the cost just from Round 4 where the
aggregation takes place, since no other computation is performed elsewhere by
the server.

Execution and Communication Cost Analysis Per User. Our decentralized pro-
tocol employs multiple servers for the computation to achieve less computation
time per user which is shown to be the case in Fig. 1. In fact, in this figure, it is
clear that when the amount of servers is increased, the required execution time
for each user decreases. We also observe that when we consider more users, the
execution time increases, which is expected since, in that case, each user belongs
to a bigger disjoint subset Γj ; therefore, needs to exchange information within
a bigger set of users. Lastly, comparing the two scenarios of dropout, 0% and
30% respectively, we notice minor differences. This happens because the dropout
of the users, in the experiments, occurs in Round 3, where the computational
costly operations that the user performs are already made. We should clarify
here that, in our implementation, dropout takes place at that point of the DEVA
3 All code will be released publicly after publication, but is already available to review-

ers upon request through the program committee.

314 G. Tsaloli et al.

0% Dropout

0

50

100

150

200

250

300

350

400

450

2 4 6 8 10
Servers

To
ta

l U
se

r T
im

e
(m

s)

30% Dropout

0

50

100

150

200

250

300

350

400

450

2 4 6 8 10
Servers

To
ta

l U
se

r T
im

e
(m

s)

100

200

300

400

500
Users

Fig. 1. User execution time for 0% and 30% of dropout users.

protocol with the aim to illustrate the maximum computation time from the
user side. Regarding the communication bandwidth that each user has in our
DEVA protocol, we expect that the employment of multiple servers results in
smaller communication cost for each user. This is because when the protocol
uses more servers, less amount of users are connecting to a single server; thus,
for e.g., a single user exchanges shares of keys with less users. This expectation
is represented in the Fig. 2. Additionally, the figure shows that when dropouts
of users occur, less output data are given by each user; which is reasonable since
less users are active in that case. Finally, when more users participate in the
DEVA protocol, more data communication is required from each user because of
the exchange of keys between the users.

0% Dropout

10
20
30
40
50
60
70
80
90

100
110
120

2 4 6 8 10
Servers

To
ta

l U
se

r D
at

a
O

ut
 (k

B
) 30% Dropout

10

20

30

40

50

60

70

80

2 4 6 8 10
Servers

To
ta

l U
se

r D
at

a
O

ut
 (k

B
)

100

200

300

400

500
Users

Fig. 2. User output data for 0% and 30% of dropout users.

Execution and Communication Cost Analysis Per Server. The execution time
required during the DEVA protocol per server depends on the number of servers
that participate in the protocol. More precisely, a big amount of servers par-
ticipating, offloads the execution time required for each server. On the other
hand, the amount of users can affect the time cost of the server in two ways.
Firstly, more users require more execution time for the server since each of them
handles more computations (since each server handles n

m users when it comes
to key sharing (Round 2)). Secondly, when there is a user dropout, servers
need to compute, among other values, the missing keys from the dropout users
as well as the proof Proof.DLEQ(g, ωi′ , pkKAi′ , zi′ , skKAi′) for each of them; thus,
requiring more execution time. The expected behavior of DEVA is illustrated
in Fig. 3. The bandwidth cost of each server is easily explained. Less data are
received when dropouts of users occur (less users send data to each server). Our

DEVA 315

experiments show a small difference due to when the dropout happens in the
implementation, as we have previously mentioned. Similarly, when more servers
are employed, each server receives less data because it handles less users. Our
expectations are clearly depicted in Fig. 4.

0% Dropout

0

5

10

15

20

25

30

35

100 150 200 250 300 350 400 450 500
Users

To
ta

l S
er

ve
r T

im
e

(m
s)

30% Dropout

0

5000

10000

15000

20000

25000

30000

35000

40000

100 150 200 250 300 350 400 450 500
Users

To
ta

l S
er

ve
r T

im
e

(m
s)

2

4

6

8

10
Servers

Fig. 3. Server execution time for 0% and 30% of dropout users.

0% Dropout

0
2500
5000
7500

10000
12500
15000
17500
20000
22500
25000

100 150 200 250 300 350 400 450 500
Users

To
ta

l S
er

ve
r D

at
a

In
 (k

B
) 30% Dropout

0
2500
5000
7500

10000
12500
15000
17500
20000
22500
25000

100 150 200 250 300 350 400 450 500
Users

To
ta

l S
er

ve
r D

at
a

In
 (k

B
)

2

4

6

8

10
Servers

Fig. 4. Server input data for 0% and 30% of dropout users.

DEVA Verification Time and Communication Cost. The verification exe-
cution time depends on several parameters that can affect the timing. Surely,
a bigger amount of servers should not influence the verification execution time,
while w.r.t. bigger amount of users or percent of dropout users, the verification
time is expected to increase. Figure 5 illustrates the expected behavior of our pro-
tocol, considering 500 users and 10 servers for the presented plots, respectively.
Regarding the input data needed for the verification, the amount of servers does
not affect the input data needed, while bigger dropouts of users require more
data. This is because for a smaller number of active users, less public keys are

0

25

50

75

100

125

150

175

200

2 4 6 8 10
Servers

Ve
rif

ic
at

io
n

Ti
m

e
(m

s)

0

25

50

75

100

125

150

175

200

100 150 200 250 300 350 400 450 500
Users

Ve
rif

ic
at

io
n

Ti
m

e
(m

s)

0

10

20

30
% Dropout

Fig. 5. Verification time of DEVA

316 G. Tsaloli et al.

received but more zero knowledge proofs need to be checked. In fact, observe
our experimental results depicted in Fig. 6.

50

70

90

110

130

150

170

2 4 6 8 10
Servers

Ve
rif

ic
at

io
n

In
pu

t D
at

a
(k

B
)

10

30

50

70

90

110

130

150

170

100 150 200 250 300 350 400 450 500
Users

Ve
rif

ic
at

io
n

In
pu

t D
at

a
(k

B
)

0

10

20

30
% Dropout

Fig. 6. Verification input data of DEVA.

DEVA Total Communication Cost (Bandwidth). Finally, the total band-
width of the DEVA protocol is shown in Fig. 7 and shows that when multi-
ple servers are employed the total bandwidth of DEVA decreases. Therefore,
using more servers results in less communication cost which reports precisely
our expectation. Moreover, we observe that DEVA requires smaller communi-
cation cost for more dropout users, demonstrating that our protocol handles
dropouts very well.

0% Dropout

0e+00
1e+04
2e+04
3e+04
4e+04
5e+04
6e+04
7e+04
8e+04
9e+04
1e+05

100 150 200 250 300 350 400 450 500
Users

To
ta

l B
an

dw
id

th
 (k

B
)

2

4

6

8

10
Servers

30% Dropout

0

10000

20000

30000

40000

50000

60000

70000

80000

100 150 200 250 300 350 400 450 500
Users

To
ta

l B
an

dw
id

th
 (k

B
)

Fig. 7. Total bandwidth of DEVA.

5.2 Comparison

In this subsection, we compare DEVA and the protocol provided by Xu et al. Ver-
ifyNet [21]. VerifyNet’s experiments are conducted on a Intel Xeon E5-2620 CPU
@ 2.10GHz, 16GB RAM running Ubuntu 18.04. To the best of our knowledge, the
authors did not publicly release their source code and, as an additional compli-
cation, the CPUs used for running the experiment are hard to compare since Xu
et al.’s machines are server-CPUs while DEVA’s experiments are obtained from
a laptop-CPU. For these reasons, we limit our comparison on just the amount
of data transmitted by the user. VerifyNet’s users have secret vectors of length
K = 1000 as input to the aggregation protocol. To fairly compare, we repeat-
edly execute our DEVA protocol K times in order to achieve the same amount
of aggregated bytes. We execute our experiments in a reasonably distributed
setting of m = 10 servers, threshold t = 1 and key threshold tkey = 1. In Fig. 8,

DEVA 317

we compare the amount of data transmitted for each user in executing DEVA or
VerifyNet with respect to different amounts of users n or vector sizes K. DEVA
is linearly dependent both in the amount of user n and vector size K, while
VerifyNet is linear in the vector size but quadratic in the amount of users. This
different increase factor implies that there will always be, for a fixed vector size
K, an amount of users from which our DEVA protocol is more efficient than Ver-
ifyNet. As previously discussed, this is due to the fact that in DEVA, the higher
the amount of servers, the smaller the amount of data transmitted by each user
because it belongs to a smaller subset Γj , while the size of this subset depends
on the amount of servers. On the other hand, DEVA is clearly not optimal when
considering large vector-inputs. It must be observed that VerifyNet is designed
to work with vectors, key aspect of the specific comparison. DEVA is penalized
since multiple executions must be made, thus, posing the DEVA’s extension, that
allows the usage of vectors as input, an interesting future development.

0

10000

20000

30000

40000

50000

60000

70000

80000

100 200 300 400 500
Users

U
se

r D
at

a
O

ut
 (k

B
)

VerifyNet

Our Primitive

2000
6000

10000
14000
18000
22000
26000
30000
34000
38000
42000
46000
50000

1000 1500 2000 2500 3000 3500 4000 4500 5000
Vector Size

U
se

r D
at

a
O

ut
 (k

B
)

Fig. 8. User’s data out comparison for fixed K = 1000 and n = 100.

6 Conclusion

We proposed DEVA, a secure and practical protocol that allows organizations
to collaboratively train their model by employing multiple cloud servers. It pro-
tects users’ privacy, handles users’ dropouts that occur at any round, and pro-
vides public output verifiability allowing anyone to check the correctness of the
aggregated parameters and thus, it provides greater transparency in the learning
process. Servers are independent in DEVA and only a threshold amount of them
is required to compute the sum. We provided the execution time and bandwidth
cost analysis of DEVA for different cases. DEVA is designed to deal well with a
large number of users compared to the state of the art, while a future direction
would be to extend our work integrating vector size inputs.

Acknowledgement. This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

318 G. Tsaloli et al.

References

1. Benaloh, J.C.: Secret sharing homomorphisms: keeping shares of a secret secret
(extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
251–260. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_19

2. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-48071-4_7

3. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

4. Emura, K.: Privacy-preserving aggregation of time-series data with public verifi-
ability from simple assumptions. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017.
LNCS, vol. 10343, pp. 193–213. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59870-3_11

5. Ghodsi, Z., Gu, T., Garg, S.: SafetyNets: verifiable execution of deep neural net-
works on an untrusted cloud. In: Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing Systems, pp. 4672–
4681 (2017)

6. Hitaj, B., Ateniese, G., Pérez-Cruz, F.: Deep models under the GAN: information
leakage from collaborative deep learning. In: Proceedings of CCS, pp. 603–618
(2017)

7. Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., et al.: Advances and open
problems in federated learning. CoRR, abs/1912.04977 (2019)

8. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
9. Krohn, M., Freedman, M., Mazieres, D.: On-the-fly verification of rateless era-

sure codes for efficient content distribution. In: IEEE Symposium on Security and
Privacy. Proceedings, Berkeley, CA, USA, pp. 226–240 (2004)

10. Leontiadis, I., Elkhiyaoui, K., Önen, M., Molva, R.: PUDA – privacy and unforge-
ability for data aggregation. In: Reiter, M., Naccache, D. (eds.) CANS 2015. LNCS,
vol. 9476, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
26823-1_1

11. Liu, Y., et al.: Trojaning attack on neural networks. In: 25th Annual Network and
Distributed System Security Symposium, NDSS. The Internet Society (2018)

12. Phong, L.T., Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep
learning via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur.
13(5), 1333–1345 (2018)

13. Segal, A., et al.: Practical secure aggregation for privacy-preserving machine learn-
ing. In: CCS (2017)

14. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
15. Shi, E., Chan, T.-H., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggrega-

tion of time-series data, vol. 2, January 2011
16. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Ray, I., Li, N.,

Kruegel, C. (eds.) Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pp. 1310–1321. ACM (2015)

17. Tramèr, F., Boneh, D.: Slalom: fast, verifiable and private execution of neural
networks in trusted hardware. In: Proceedings of ICLR (2019)

18. Tsaloli, G., Banegas, G., Mitrokotsa, A.: Practical and provably secure distributed
aggregation: verifiable additive homomorphic secret sharing. Cryptography 4(3),
25 (2020)

https://doi.org/10.1007/3-540-47721-7_19
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/978-3-319-59870-3_11
https://doi.org/10.1007/978-3-319-59870-3_11
https://doi.org/10.1007/978-3-319-26823-1_1
https://doi.org/10.1007/978-3-319-26823-1_1

DEVA 319

19. Tsaloli, G., Liang, B., Mitrokotsa, A.: Verifiable homomorphic secret sharing. In:
Baek, J., Susilo, W., Kim, J. (eds.) ProvSec 2018. LNCS, vol. 11192, pp. 40–55.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01446-9_3

20. Tsaloli, G., Mitrokotsa, A.: Sum it up: verifiable additive homomorphic secret
sharing. In: Seo, J.H. (ed.) ICISC 2019. LNCS, vol. 11975, pp. 115–132. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-40921-0_7

21. Xu, G., Li, H., Liu, S., Yang, K., Lin, X.: VerifyNet: secure and verifiable federated
learning. IEEE Trans. Inf. Forensics Secur. 15, 911–926 (2020)

22. Xu, W., Evans, D., Qi, Y.: Feature squeezing: detecting adversarial examples in
deep neural networks. In: 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA. The Internet Society (2018)

23. Yao, H., Wang, C., Hai, B., Zhu, S.: Homomorphic hash and blockchain based
authentication key exchange protocol for strangers. In: International Conference
on Advanced Cloud and Big Data (CBD), Lanzhou, pp. 243–248 (2018)

https://doi.org/10.1007/978-3-030-01446-9_3
https://doi.org/10.1007/978-3-030-40921-0_7

DVul-WLG: Graph Embedding Network
Based on Code Similarity for
Cross-Architecture Firmware

Vulnerability Detection

Hao Sun1, Yanjun Tong1, Jing Zhao1(B), and Zhaoquan Gu2

1 Dalian University of Technology, Dalian, China
zhaoj9988@dlut.edu.cn

2 Guangzhou University, Guangzhou, China

Abstract. Vulnerabilities in the firmware of embedded devices have led
to many IoT security incidents. Embedded devices have multiple archi-
tectures and the firmware source code of embedded devices is difficult
to obtain, which makes it difficult to detect firmware vulnerabilities. In
this paper, we propose a neural network model called DVul-WLG for
cross-architecture firmware vulnerability detection. This model analyzes
the similarity between the binary function of the vulnerability and the
binary function of the firmware to determine whether the firmware con-
tains the vulnerability. The similarity between functions is calculated
by comparing the features of the attribute control flow graph (ACFG)
of the functions. DVul-WLG uses Word2vec, LSTM (Long Short-Term
Memory) and an improved graph convolutional neural network (GCN)
to extract the features of ACFG. This model embeds instructions of
different architectures into the same space through canonical correla-
tion analysis (CCA), and expresses instructions of different architectures
in the form of intermediate vectors. In this way, the heterogeneity of
architectures can be ignored when comparing cross-architecture simi-
larity. We compared DVul-WLG with the advanced method FIT and
the basic method Gemini through experiments. Experiments show that
DVul-WLG has a higher AUC (Area Under the Curve) value. We also
detected vulnerabilities in the real firmware. The accuracy of DVul-WLG
is 89%, while FIT and Gemini are 78% and 73%, respectively.

Keywords: Vulnerability detection · Binary code similarity · Graph
embedding

1 Introduction

In the era of the Internet of Everything, embedded devices exist in all aspects of
daily life. Security issues caused by embedded devices have aroused widespread
concern. An embedded device is a closed system that boots into a unified software
package called firmware. The lack of security considerations at the beginning of
c© Springer Nature Switzerland AG 2021
J. K. Liu et al. (Eds.): ISC 2021, LNCS 13118, pp. 320–337, 2021.
https://doi.org/10.1007/978-3-030-91356-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91356-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-91356-4_17

DVul-WLG 321

the firmware design and the reuse of a large amount of code have resulted in
many vulnerabilities in the firmware. In addition, vulnerabilities in the firmware
can be easily exploited [1]. In July 2020, a research team discovered many serious
security vulnerabilities in three different home hubs Fibaro Home Center Lite,
Homematic, and eLAN-RF-003. These vulnerabilities can lead to sensitive data
leakage, remote code execution, and man-in-the-middle attacks. In December
2020, a hacker used an undiscovered vulnerability to forcibly open the door of a
third of PickPoint’s lockers, causing thousands of packages throughout Moscow
to be at risk of being stolen. From the above-mentioned network attack incidents,
it can be found that the vulnerabilities in the firmware have brought great secu-
rity risks. What’s worse is that we cannot use traditional vulnerability scanning
tools on PCs and mobile devices to detect firmware vulnerabilities.

The detection of firmware vulnerabilities has become increasingly important.
In order to solve this problem, some security researchers have proposed tech-
nologies to dynamically detect firmware vulnerabilities [2,3]. However, dynamic
detection technology has great limitations. Usually, the firmware is customized
for a specific embedded device, so that the detection method of a certain
device cannot be universal. The dynamic detection usually adopts the method of
firmware simulation. However, the parameters of NVRAM (Non-Volatile Ran-
dom Access Memory) are usually not available, causing security analysts to
repeatedly hijack certain functions to bypass exceptions so that the program
can be executed. This process is not always feasible and very time-consuming.
Therefore, for large-scale firmware vulnerability detection, static detection meth-
ods are more advantageous. The static detection method for firmware vulnera-
bilities must be universal and lightweight. Traditional static detection techniques
such as symbolic execution and stain analysis are not suitable. At present, many
static detection methods have solved the problem of detecting vulnerabilities at
the source code level [4,5]. However, it is difficult to obtain the source code of the
firmware, so these detection methods are not suitable. The detection method of
binary code similarity does not require firmware source code, and it is universal
and lightweight. Therefore, for firmware vulnerability detection, the detection
method of binary code similarity is advantageous and efficient.

As shown in Fig. 1, the binary function can be converted into an attribute
control flow graph (ACFG) by the IDA pro disassembly tool [6,7]. When per-
forming binary code similarity detection, first extract the features of ACFG,
these features can be used to represent ACFG, thereby representing the binary
function. Then the ACFG features are converted into feature vectors through the
pre-trained neural network. Finally, the vector distance formula is used to cal-
culate the distance between the feature vectors, and the vector distance is used
to express the similarity of the binary function. This paper divides the features
of ACFG into three categories: the semantic features of instructions, statistical
features and structural features of graphs. FIT [20] uses the method of word
embedding in natural language processing to extract the semantic information
of instructions. But the traditional word embedding models CBOW (Continuous
Bag-of-Words) [8] and Skip-Gram [9] can only consider the semantic relationship

322 H. Sun et al.

of instructions under the same architecture. However, firmwares with different
architectures often have the same vulnerabilities, so cross-architecture situations
should be considered when comparing similarities with vulnerable functions.
When comparing cross-architecture function similarity, it is not only necessary
to maintain the semantic association of instructions in the same architecture,
but also to maintain similar embeddings for instructions with the same seman-
tics between different architectures, which cannot be achieved by traditional
word embedding models. Regarding the structural features of the graph, Gemini
[10] designed an aggregation algorithm inspired by Struc2vec, which can aggre-
gate the features of the basic blocks to represent the graphical features of ACFG.
However, this method allows the adjacent nodes of each basic block in the graph
to have the same influence factor, and then attaches the attributes of the adjacent
nodes to the basic block itself through nonlinear changes. In fact, the influence
factors of adjacent nodes of the basic block are different, so Gemini’s extraction
of the structural features of ACFG is not accurate.

Fig. 1. Schematic diagram of binary code similarity detection.

In view of the above problems, the main challenges of this paper are in two
aspects: One is the semantic feature of ACFG. When comparing binary functions
of cross-architecture firmware, it is necessary to ensure the similarity of instruc-
tion semantics within the same architecture. At the same time, it is necessary to
ensure the relevance of instruction semantics under different architectures. The
second is the structural feature of ACFG graphics. The traditional GCN cannot
extract the structure information of the directed graph, while the ACFG is a
directed graph. We need to improve the GCN to be able to accurately extract
the structure information of the ACFG.

The main contributions of this paper are as follows:

1 This paper uses code similarity analysis to design a cross-architecture
firmware vulnerability detection model. The model combined with deep neu-
ral network can accurately extract the semantic and structural features of
ACFG.

DVul-WLG 323

2 In the process of cross-architecture instruction embedding, this paper com-
pares two classic word embedding models, CBOW and Skip-Gram. At the
same time, ARM instructions and MIPS instructions are embedded in the
same space through the canonical correlation analysis (CCA) method. When
comparing cross-architecture function similarity, the heterogeneity between
architectures can be ignored, so that the semantic features of instructions of
different architectures are compared in the same dimension, which improves
the accuracy of the comparison.

3 This paper uses DGCN [23] to improve the graph embedding aggregation algo-
rithm proposed by Gemini. According to the principle of DGCN, we assign
different influence factors to the adjacent nodes of the basic block. Through
experimental verification, the method in this paper can better extract the
structural features of ACFG.

The remaining organizational structure of this paper is as follows: In the
second section, we review more related work. In the third section, we describe
the method that Siamese Network embeds the features of ACFG to compare the
similarity. In the fourth section, we evaluate the effectiveness of our proposed
method through experimental analysis. Finally, summarize all the work of this
paper.

2 Relate Work

For our related work, this paper only discusses related technologies for binary
vulnerability detection. In 2008, Gao et al. proposed BinHunt [12], a new tech-
nique for discovering semantic differences in binary programs. They use tech-
niques such as graph isomorphism and symbolic execution to analyze the con-
trol flow graph of the binary program, and can identify the semantic difference
between the original program and the patch program, thereby revealing the vul-
nerabilities eliminated by the patch program. On this basis, Jiang et al. proposed
that the semantic differences between binary programs are easily interfered by
others using simple obfuscating functions. Therefore, they used deep pollution
and automatic input generation techniques to discover the semantic differences
of CFG [13]. However, this method of capturing binary vulnerabilities through
semantic differences relies on instruction semantics and is only suitable for a
single architecture.

In 2013, Martial et al. proposed a polynomial algorithm by fusing the BinDiff
algorithm with the Hungarian algorithm of bipartite graph matching [14]. The
graph-based edit distance calculates a meaningful similarity measure, which sig-
nificantly improves the matching accuracy between binary files. Flake proposed
a heuristic method of constructing isomorphism between function sets in the
same executable file but in different versions [15]. Pewny et al. observe the IO
behavior of basic blocks and obtain their semantics, thereby effectively revealing
the bugs in the binary code [16]. These methods all rely on accurate graphic
matching technology, and have high time complexity, and are not suitable for
large-scale binary vulnerability detection. DiscovRE [17] pre-filtered function

324 H. Sun et al.

pairs through digital features in order to reduce the costly calculation of graph
matching. However, this method is not reliable and will produce a large number
of false negatives.

In order to reduce the expensive cost of graph matching, the method of graph
embedding has become a good choice. Graph embedding refers to the mapping
of high-dimensional features in a graph to low-dimensional vector representa-
tions. The embedding vector can accurately represent the structural features in
the graph, the attribute features of each vertex, and the interactive information
between vertices and vertices [18]. For graph embedding vectors, we can use
distance formulas between vectors, such as cos distance, Euclidean distance etc.
to compare the similarity between graphics more easily. In 2016, Feng et al. [6]
first used a codebook-based method to convert the ACFG of a binary function
into a numerical vector, which makes it easier to calculate the similarity between
graphs. After that, CVSSA [19] accurately extracts the features of ACFG at the
binary function level through SVM. Gemini [10] proposed by Xu et al. uses a
neural network to calculate the embedding, which extracts features at the basic
block level, and then expresses the embedding of ACFG through an aggregate
function, which further improves the accuracy of graph embedding. However,
Gemini only expresses the embedding of the basic block through the statistical
features of the basic block, completely ignoring the semantic features in the basic
block, which will have a great limitation. When two basic blocks with completely
different semantics have similar statistical features, Gemini will consider the two
basic blocks to be similar. FIT [20] extracts the semantic features of instructions
through the Word2vec, but instructions of different architectures are embedded
in different spaces. FIT ignores the relevance of semantically equivalent instruc-
tions under different architectures, which leads to inaccurate comparisons of
semantic features of functions under different architectures.

3 Embedded Network

This section will introduce how to convert the ACFG of the binary function
into a graph embedding. For the embedded vector, the distance of the vector
is calculated by the cos distance formula, and then the similarity between the
binary functions is obtained. Here we introduce the theoretical model of the
Siamese Network, which can better explain how the graph embedding network
works.

3.1 Siamese Network

Siamese Network is a new type of neural network architecture. Siamese Network
can learn a similarity metric from training data, which is often used to evaluate
the similarity of input sample pairs. It has shown better capabilities in certain
fields, such as face recognition and signature verification etc. As shown in Fig. 2,
the Siamese Network architecture contains two identical sub-networks (the sub-
networks have the same configuration and parameters). In this paper, these

DVul-WLG 325

two networks are designed as ACFG graph embedded networks. These two sub-
networks can convert the input ACFG sample pair into a vector, and then judge
the similarity of the sample pair through the distance formula of the vector.

Fig. 2. Siamese network.

The training goal of Siamese Network is to maximize similarity when a given
pair of ACFG samples belong to the same category. The similarity should be
minimized when the sample pairs belong to different categories. Whether the
sample pairs belong to the same category depends on whether they are compiled
from the same source function. As shown in Fig. 2, the input sample pair ACFG1
and ACFG2 are converted into vectors V ec1 and V ec2 through the graph embed-
ding network. The similarity is measured by the cos distance of the vector, the
measurement formula is as follows:

cos(V ec1, V ec2) =
V ec1 · V ec2

||V ec1||||V ec2|| (1)

For the input sample pair, we will mark it, if the input is the same category,
mark it as +1, otherwise mark it as –1. Therefore, when training the Siamese
Network, the input is in the form of triples 〈ACFG1, ACFG2, Label〉. In this
paper, the loss function is only considered related to the parameters and input,
so the loss function is defined as follows:

L = (Label − cos(V ec1, V ec2))2 (2)

When the sample pair belongs to the same category, the closer the cos similarity
value is to 1, the smaller the loss value L. When the sample pairs belong to
different categories, the closer the cos similarity value is to 0, the smaller the
loss value L. Therefore, reducing the loss value L in the iterative process can
meet the training goal of Siamese Network.

326 H. Sun et al.

3.2 Embedding of Instruction Semantic Features

In Sect. 3.1, the overall architecture of Siamese Network is introduced. The most
important part is the graph embedding sub-network. How to convert ACFG
into vector representation is also the core work of this paper. As shown in Fig. 2,
the embedded network is mainly divided into three parts, namely instruction
embedding, block embedding and graph embedding. This section mainly intro-
duces instruction embedding.

Analogous to Word2vec of natural language processing, we regard each basic
block as a sentence, and the instructions in the basic block as words. The classic
word embedding models include CBOW and Skip-Gram. Both are composed of
three layers of feedforward neural networks, which are input layer, hidden layer
and output layer. The input of CBOW is the context of the word, and the context
is used to predict the word. The input of Skip-Gram is the word itself, and the
word is used to predict its context. The basic principles of the two are the same.
This paper takes CBOW as an example to introduce its working principle.

For a given word sequence w1, w2, ..., wn, wk is the word to be predicted, and
the sliding window size is c. The input layer is the context of wk in the slid-
ing window, and these words are represented by One-hot encoding. The weight
matrix from the input layer to the hidden layer is W1, and the word vector
of the input layer is multiplied by the weight matrix and averaged to obtain
the vector of the hidden layer. The weight matrix from the hidden layer to the
output layer is W2, and the vector of the hidden layer is multiplied by W2 to
get the vector of the output layer. The vector of the output layer is normalized
by the softmax function and the value with the largest corresponding position
in the vector is the predicted word. The objective function is to maximize the
maximum likelihood estimation:

1
n

n∑

t=1

∑

−c<j<c

logp(wk|wk+j) (3)

Whether using the CBOW model or the Skip-Gram model will cause a prob-
lem, the instruction embedding of the MIPS architecture and the instruction
embedding of the ARM architecture are not in the same space. This ignores the
semantic association of equivalent instructions between the two architectures,
resulting in inaccurate comparisons of cross-architecture similarity. Inspired by
[21] cross-language embedding, this paper uses CCA to embed MIPS and ARM
instructions into the same space. First, the MIPS and ARM instructions are
embedded in different spaces using the Word2vec model, and let Σ ∈ R

n1×d1

and Ω ∈ R
n2×d2 respectively denote the vector spaces of the instructions of the

two architectures. Instructions with equal semantics under the two architectures
are mapped to the same space, which is not as easy as multilingual embedding in
natural language. Because in natural language, the semantically equivalent words
in different languages can be obtained through the dictionary. The instructions
are different, and there is no dictionary-like translation between instructions of
different architectures. At the same time, instructions are not atomically struc-
tured like words. Instructions are composed of mnemonics and operands, and

DVul-WLG 327

different operands generate a large number of different instructions. In order to
solve this problem, we artificially regard instructions with the same mnemonic
as the same type of instructions, because most of the operations performed by
instructions with the same mnemonic are similar. Based on prior knowledge, this
paper uses mnemonics to map MIPS and ARM instructions. For example, ‘move’
in MIPS and ‘MOV’ in ARM are considered equivalent. Through the instruction
dictionary, let the instructions in the two subsets of Σ′ ⊆ Σ and Ω′ ⊆ Ω map
one by one. x and y denote a pair of equivalent instructions from Σ′ and Ω′

respectively. a and b represent the projection direction, then the vector of x and
y after the projection is expressed as:

x′ = aTx, y′ = bTy (4)

The correlation between the projection vectors x′ and y′ is expressed as:

ρ(x′, y′) =
E [x′y′]√

E [x′2] E [y′2]
(5)

The goal of our optimization is to maximize the correlation ρ(x′, y′) and output
two projection vectors a and b. Using these two projection vectors, all instruc-
tions of MIPS and ARM can be projected, which can be summarized as:

A,B = CCA(Σ′, Ω′) (6)

Σ∗ = ATΣ,Ω∗ = BTΩ (7)

3.3 Embedding of Structural Features of ACFG

After the instruction embedding is generated, the instruction sequence in the
basic block needs to be aggregated to generate the embedding of the basic block.
Considering that in natural language processing, word embedding is used to rep-
resent sentence embedding. For an ordered sequence of instructions, the RNN
model can effectively mine its semantic information and timing information.
However, the instruction sequence in some basic blocks is too long. If the RNN
model is used in training, the problem of gradient disappearance and gradient
explosion will occur. Therefore, this paper chooses the LSTM model that per-
forms better in long sequences. The LSTM model can summarize the instruction
sequence in the basic block, and finally express all the instruction sequences with
internal correlation through a vector. At the same time, the statistical features
of the combined basic block are shown in Table 1. The combined vector repre-
sents the embedding of the basic block. The basic block embedding formula is
as follows:

Bfea = Wb1Bemb + Wb2Bsta (8)

Wb1 and Wb2 represent the weight matrix of instruction semantic feature and
statistical feature, respectively.

328 H. Sun et al.

After the feature of each basic block is generated, the features of all basic
blocks need to be aggregated as the feature of ACFG. A simple method is to
add the features of all basic blocks to represent the features of ACFG. However,
this method cannot extract the structure of the graph, resulting in insufficient
accuracy of feature extraction. Inspired by Structure2vec, Gemini recursively
aggregates the features of basic blocks through the topological structure of graph.
After a few steps of recursion, the graph embedding network will calculate a
new vector representation for each basic block. This vector includes the features
of the basic block and the structural features of the graph. Gemini trains the
interaction between nodes through a fully connected neural network. The formula
is as follows:

μ(t)
v = tanh(W1xv + σ(

∑

u∈N(v)

μ(t−1)
u)) (9)

xv represents the feature vector of the basic block; W1 is the matrix coefficient
of the basic block feature; μv represents the new vector representation calcu-
lated by the graph embedding network for node v; N(v) represents the adjacent
node of the basic block v; σ represents the fully connected neural network. The
above formula can be understood as for any basic block v, the graph embedding
network calculates a new feature vector for it. This feature vector is obtained
by summing the features of all adjacent nodes of the basic block v and then
undergoing nonlinear changes, and finally adding to the feature vector of the
basic block v. This formula does consider the features of the basic block itself
and the topological features of the graph. But let all adjacent nodes of the basic
block have the same influence factor for summation. Although σ has a very
strong nonlinear transformation, it is still not accurate enough to represent the
structural features of the graph.

This paper has made improvements to this. Using GCN to extract the struc-
tural features of the topological graph has become one of the most effective
methods. GCN uses the Laplacian matrix of the graph to implement the con-
volution operation of the topological graph, and its propagation rules are as
follows:

ZF = H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2 H(l)W) (10)

Where Ã = A + IN ; A are the adjacency matrix of the graph; IN is the
identity matrix; D̃ is the degree matrix of Ã; H is the feature of each layer, for
the input layer H is the feature of the basic block; σ is the nonlinear activation
function; and W is the training parameter. This propagation formula can extract
the features of undirected graphs better. Unfortunately, ACFG is a directed
graph. If the propagation formula of GCN is used, the direction information of
the directed graph will inevitably be lost, which will have a great impact on
ACFG. In order to be able to use the powerful ability of GCN to extract graphic
features, we are inspired by the DGCN proposed by [11], and retain the direction
information of the graphic when using the GCN propagation formula.

As shown in Fig. 3, we add two matrices to ACFG, the in-degree matrix
ASin and the out-degree matrix ASout. In-degree matrix means that there is a

DVul-WLG 329

node k, and two nodes i and j point to node k at the same time {i ⇒ k ⇐ j},
let ASin+ = 1. On the contrary, if there is node k pointing to node i and j at
the same time {i ⇐ k ⇒ j}, let ASout+ = 1. These two matrices are symmetric
because ASin(i, j) = ASin(j, i) and ASout(i, j) = ASout(j, i). Therefore, these
two matrices can be constructed similar to undirected graph convolution, the
formula is as follows:

ZSin = H(l+1) = σ(D̃− 1
2

SinÃSinD̃
− 1

2
SinH(l)W) (11)

ZSout = H(l+1) = σ(D̃− 1
2

SoutÃSoutD̃
− 1

2
SoutH

(l)W) (12)

Through these two auxiliary formulas, the directionality of the graph can be
effectively expressed, and then the convolution formula of the undirected graph
is merged. The fusion method used in this paper is splicing, and the fusion
formula is as follows:

Z = Concat(ZF , αZSin, βZSout) (13)

α and β represent the different weights of in-degree convolution and out-degree
convolution, and this weight is obtained through learning. In this way, the struc-
ture of the directed graph ACFG can be extracted through the fused convolution
formula.

Fig. 3. DGCN second-order proximity.

Similar to the representation of basic block features, we combine graph
embedding and graph statistical features, as shown in the Function-level of
Table 1. The features of the final ACFG are expressed as follows:

Ffea = Wf1Z + Wf2Fsta (14)

Wf1 and Wf2 are the matrix coefficients of the graph embedding feature and
the graph statistical feature, and Fsta is the graph statistical feature.

330 H. Sun et al.

Table 1. Statistical features

Type Attribute name Type Attribute name

Block-Level No.of String Constants Function- level No.of Arithmetic Instructions

No.of Numeric Constants No.of Logic Instructions

No.of Arithmetic Instructions No.of Transfer Instructions

No.of Logic Instructions No.of Transmit Instructions

No.of Transfer Instructions No.of Basic Blocks

No.of Transmit Instructions No.of Edges

No.of Instructions No.of Function Calls

No.of Calls No.of Incoming Calls

No.of Offspring No.of Instructions

Betweeness No.of Variables

4 Evaluation

This section mainly introduces the details of the experiment, as well as evaluating
the effectiveness of instruction embedding for spatial projection and evaluating
the effectiveness of using DGCN to extract ACFG graph structures. This paper
compares the most advanced methods such as Gemini and FIT to prove the
effectiveness of the improved method. Finally, this paper detects real firmware
vulnerabilities and proves that the method proposed in this paper can be applied
to real firmware vulnerabilities detection.

4.1 Implementation

The experiment in this paper is deployed on a server with a 16-core CPU, 128GB
RAM, and 1TB SSD. This paper has established 3 data sets: (1) Data set I is used
to train the graph embedding model. As shown in Table 2, this papaer compiles
different versions of OpenSSL, BusyBox, and FindUtils into binary files of MIPS
and ARM architectures, and opens four different optimization levels: O0, O1, O2,
and O3. The data in the table represents the number of functions under different
architectures of different programs, each function represents an ACFG, a total of
59410 ACFGs. The extraction of ACFG uses IDA pro script written by Gemini,
which can effectively extract the features of ACFG. (2) Data set II is used to
verify the effectiveness of the graph embedding model. As shown in Table 3, we
compile multiple Unix Shell programs such as cat, shown, and cp into binary
programs under the two architectures of ARM and MIPS, and open O0 to O3
four optimization levels. There are 13587 ACFGs in total. (3) Data set III is the
firmware image obtained from real manufacturers, including manufacturers such
as D-Link, TP-Link, Netgear and Buffalo. This paper mainly obtains firmware
with corresponding vulnerabilities from various manufacturers, and is mainly
used for the detection of three vulnerabilities: CVE-2020-1967, CVE-2020-1971
and CVE-2017-15873. For each of these three vulnerabilities, 50 firmware images
are selected for detection.

DVul-WLG 331

This paper uses data set I to train Siamese Network, the Batch Size is 10, and
5 sets of similar sample pairs and 5 sets of dissimilar sample pairs are selected
each time. Similarity means that ACFG sample pairs are derived from the same
original function. Similar sample pairs are marked as <ACFG1,ACFG2,+1>,
and dissimilar sample pairs are marked as <ACFG1,ACFG2,-1>. The iterative
principle of the model training process can refer to the third section of this paper.
The learning rate during training is 0.001, the embedding depth of the model is
128, and the maximum number of iterations is 100. The trained model is tested
on data set II. The Batch Size is also set to 10 during the test, and 5 groups
of similar sample pairs and 5 groups of dissimilar sample pairs are selected each
time. Finally, the TPR (true positive) and FPR (false positive) under different
test sets are obtained, and the ROC curve is obtained.

Table 2. Data set I

OpenSSL BusyBox FindUtils

MIPS 21085 6700 2360

ARM 20513 6512 2240

Total 41598 13212 4600

Table 3. Data set II

cat chown cp dd ls rm

MIPS 528 1062 1466 788 2092 1048

ARM 480 980 1411 716 2039 977

Total 1008 2042 2877 1504 4131 2025

4.2 Effectiveness of Instruction Embedding Projection

As shown in Fig. 4(a), this paper takes the ‘MOV R0, R8’ instruction in ARM as
an example. It can be seen that due to the heterogeneity of the two architectures,
only the instruction with the mnemonic ‘MOV’ is close to the embedding space
of ‘MOV R0, R8’. Although Skip-Gram does embed instructions with similar
semantics in the same architecture into similar spaces. But for instructions with
similar semantics under different architectures, they are not in a similar embed-
ding space. In this regard, this paper constructs equivalent translations of MIPS
and ARM instructions, and uses CCA to project instructions in different spaces
into the same space. This allows instructions with similar semantics under dif-
ferent architectures to have similar spatial embeddings. As shown in Fig. 4(b),

332 H. Sun et al.

the similar embedding of the ‘MOV R0, R8’ instruction is no longer only the
instruction with ‘MOV’ as the mnemonic in ARM, but includes the instruction
with ‘move’ as the mnemonic in MIPS. This is in line with the expectation
that similar instructions in the same architecture have similar embeddings, and
instructions with similar semantics in different architectures also have similar
embeddings.

Fig. 4. Instruction embedding space.

In order to prove that the effect of instruction embedding after projection is
better than that of instruction embedding without projection, this paper makes
a comparison. The embedded instruction after projection is represented by Skip-
gram2, and the embedded instruction without projection is represented by Skip-
gram1. The block embedding of the two methods adopts the LSTM model, and
the graph embedding adopts the aggregation algorithm of Gemini. The result is
shown in Fig. 5. In the three different test sets, the model using Skipgram2 has
a higher AUC value. It can be proved that the effect of instruction embedding
after projection is better.

Fig. 5. Comparison of the effectiveness of instruction projection

4.3 Evaluation of Graph Embedding

The above has proved that the projected instructions have better perfor-
mance. But instruction projection is only optimized at the level of instruction

DVul-WLG 333

embedding. As described in Sect. 3.4, the graph embedding aggregation algo-
rithm proposed by Gemini is not accurate enough to extract the graph features
of ACFG. Therefore, we have improved the algorithm. We use c2 to represent
the improved aggregation algorithm, and c1 to represent the original algorithm
of Gemini. At the same time, because FIT uses SkipGram and Gemini’s aggre-
gation algorithm, we use Skipgram1 c1 to represent FIT. As shown in Fig. 6,
the ROC curves of CBOW2 c2 and Skipgram2 c2 are basically similar, where
CBOW2 indicates that the original instruction is embedded using CBOW, and
then the instruction is embedded in the re-projection. The effect of instruction
embedding using CBOW and Skipgram is similar, which is also easy to under-
stand, because the two models are the same in principle. In addition, we can
see that the improved effect of the aggregation algorithm is stronger than Skip-
gram2 c1, which further proves that the aggregation algorithm we proposed can
extract the features of the graph more effectively.

Fig. 6. Comparison of the effectiveness of instruction projection

It can be seen from the ROC curve that Gemini’s performance is not good.
We found that the data set used by Gemini, although the same source code
has been optimized by different compilers, has different optimization levels. But
most functions of the same origin have the same statistical features, which cause
the statistical features to occupy a large proportion in the learning process of the
graph embedding network. This will lead to a defect that the graph embedding
network ignores the semantic features of instructions in the learning process. As
shown in Fig. 7, Gemini will mistakenly regard basic blocks with similar statis-
tical features but completely different semantic information as similar, resulting
in a high number of false positives. In response to this problem, this paper mod-
ified the data set. We also compiled the same source code into binary codes with

334 H. Sun et al.

different optimization levels and different architectures. But we will try to select
similar functions with large differences in statistical features. The similar func-
tions defined here are the same as Gemini. Different binary functions compiled
from the same source function are similar functions.

Fig. 7. An example of a binary function with similar statistical features but different
semantics.

4.4 Vulnerability Detection of Real Firmware

In this section, we will detect vulnerabilities in real firmware and compare and
analyze the effectiveness of different methods. At the same time, it proves that
the three features of ACFG proposed in this paper are necessary for similarity
detection.As shown in Fig. 8, the four graphs are the statistics of the similarity
scores of DVul-WLG, FIT, Gemini and Base. Among them, Base means that the
model only uses the semantic features of instructions and the structural features
of graphics during the training process, and does not use statistical features, so
as to compare with other methods. We randomly selected 4000 similar sample
pairs from the data set (compiled by the same original function), among which
the top 80% with the highest DVul-WLG similarity score were in the interval
of [0.797, 1.0]. Therefore, the threshold of DVul-WLG is selected as 0.797. For
firmware functions that use DVul-WLG for similarity detection, if the similarity
score is higher than 0.797, it is considered that there are vulnerabilities in the
firmware function. Similarly, the threshold selection for FIT, Gemini and Base
is 0.741, 0.628 and 0.584 respectively. This also reflects that the model proposed
in this paper has a higher similarity score for similar function pairs.

As shown in Table 4, there are three types of vulnerabilities to detecte: (1)
CVE-2020-1967 is a high-risk vulnerability in OpenSSL. This vulnerability is
caused by the incorrect use of TLS and will lead to a null pointer reference.
Cause the server or client to crash when calling the SSL check chain() function.
This vulnerability mainly affect OpenSSL 1.1.1d, 1.1.1e and 1.1.1f versions. This

DVul-WLG 335

Fig. 8. Similarity scores of similar samples.

paper selects 50 firmwares with these three versions for testing. DVul-WLG suc-
cessfully identified 47 (94%), FIT successfully identified 40 (80%), Gemini suc-
cessfully identified 33 (66%) and Base successfully identified 25 (50%). (2) CVE-
2020-1971 is a denial of service vulnerability in OpenSSL. The failure to properly
handle the GENERAL NAME cmp function results in a null pointer reference,
which may lead to a denial of service. The main affected versions are OpenSSL
1.1.1˜1.1.1 h and OpenSSL 1.0.2˜1.0.2w. Among 50 selected firmwares, DVul-
WLG successfully identified 42 (84%), FIT successfully identified 38 (76%), Gem-
ini successfully identified 35 (70%), and Base successfully identified 23 (46%).
(3) CVE-2017-15873 is an integer overflow vulnerability in BusyBox, which can
cause write access violations. The mainly affects the version of BusyBox 1.27.2.
Among 50 selected firmwares, DVul-WLG successfully identified 45 (90%), FIT
successfully identified 39 (78%), Gemini successfully identified 42 (84%), and
Base successfully identified 30 (60%).

The above results can prove that the model DVul-WLG proposed in this
paper has higher accuracy than FIT. This is because this paper improves the
accuracy of extracting the structural features of ACFG graphics through the
improved GCN method, which proves that the structural features of graphics
are necessary when comparing the similarity of ACFG. The accuracy of DVul-
WLG and FIT is higher than that of Gemini. This is because Gemini did not
consider the semantic features of instructions, which can prove that the seman-
tic features of instructions are necessary when comparing ACFG similarities.
Finally, the accuracy of Base is the lowest. This is because Base does not use
the statistical features of ACFG. Therefore, statistical features are also neces-
sary when comparing the similarity of ACFG. In summary, the three features

336 H. Sun et al.

of ACFG proposed in this paper are all necessary for the comparison of ACFG
similarity.

Table 4. Real firmware vulnerability detection

CVE Number Vulnerability DVul-WLG FIT Gemini Base

CVE-2020-1967 SSL check chain 47 40 33 25

CVE-2020-1971 GENERAL NAME cmp 42 38 35 23

CVE-2017-15873 get next block 45 39 42 30

5 Conclusion

This paper proposes an ACFG embedding model based on code similarity detec-
tion, which can be used for firmware vulnerability detection. This paper uses the
method of instruction embedding to improve the accuracy of extracting seman-
tic information of instructions in ACFG. At the same time, in order to better
compare the similarity of instructions across architectures, this paper uses the
canonical correlation analysis (CCA) method to project instructions in differ-
ent spaces to the same space. Regarding the extraction of structural features
of ACFG graphics, because ACFG is a directed graph, the traditional GCN
method cannot be used to extract structural features. Therefore, this paper uses
the improved GCN method DGCN to extract the structural features of ACFG.
The model proposed in this paper can be used for actual firmware vulnerability
detection and has practical significance.

References

1. Davis, D.B.: ISTR,: Internet of things cyber attacks grow more diverse. Symatec.
Blogs/Exp. Perspect. 2019, 9 (2019)

2. Chen, D., et al.: Towards automated dynamic analysis for Linux-based embedded
firmware. In: NDSS, vol. 1 (2016)

3. Shoshitaishvili, Y., et al.: Firmalice-automatic detection of authentication bypass
vulnerabilities in binary firmware. In: NDSS, vol. 1 (2015)

4. Gauthier, F., Lavoie, T., Merlo, E.: Uncovering access control weaknesses and
flaws with security-discordant software clones. In: Proceedings of the 29th Annual
Computer Security Applications Conference. (2013)

5. Jang, J., Agrawal, A., Brumley, D.: ReDeBug: finding unpatched code clones in
entire OS distributions. In: 2012 IEEE Symposium on Security and Privacy. IEEE
(2012)

6. Feng, Q., et al.: Scalable graph-based bug search for firmware images. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (2016)

7. Hex Rays.https://hex-rays.com/

https://hex-rays.com/

DVul-WLG 337

8. Kenter, T., Borisov, A., De Rijke, M.: Siamese cbow: optimizing word embeddings
for sentence representations. arXiv preprint arXiv:1606.04640 (2016)

9. Song, Y., et al.: Directional skip-gram: explicitly distinguishing left and right con-
text for word embeddings. In: Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, vol. 2 (Short Papers). (2018)

10. Xu, X., et al.: Neural network-based graph embedding for cross-platform binary
code similarity detection. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (2017)

11. Tong, Z., et al.: Directed graph convolutional network. arXiv preprint
arXiv:2004.13970 (2020)

12. Gao, D., Reiter, M.K., Song, D.: BinHunt: automatically finding semantic differ-
ences in binary programs. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS 2008.
LNCS, vol. 5308, pp. 238–255. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88625-9 16

13. Ming, J., Pan, M., Gao, D.: iBinHunt: binary hunting with inter-procedural control
flow. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp.
92–109. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37682-5 8

14. Bourquin, M., King, A., Robbins, E.: Binslayer: accurate comparison of binary
executables. In: Proceedings of the 2nd ACM SIGPLAN Program Protection and
Reverse Engineering Workshop (2013)

15. Flake, H.: Structural comparison of executable objects. Detection of intrusions and
malware & vulnerability assessment. In: GI SIG SIDAR Workshop, DIMVA 2004.
Gesellschaft für Informatik eV (2004)

16. Pewny, J., et al.: Cross-architecture bug search in binary executables. In: 2015
IEEE Symposium on Security and Privacy. IEEE (2015)

17. Eschweiler, S., Yakdan, K., Gerhards-Padilla, E.: discovRE: efficient cross-
architecture identification of bugs in binary code. In: NDSS, vol. 52 (2016)

18. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and perfor-
mance: a survey. Knowl.-Based Syst. 151, 78–94 (2018)

19. Lin, H., et al.: Cvssa: cross-architecture vulnerability search in firmware based on
support vector machine and attributed control flow graph. In: 2017 International
Conference on Dependable Systems and Their Applications (DSA). IEEE (2017)

20. Liang, H., et al.: FIT: inspect vulnerabilities in cross-architecture firmware by deep
learning and bipartite matching. Comput. Secur. 99, 102032. (2020)

21. Faruqui, M., Dyer, C,: Improving vector space word representations using multilin-
gual correlation. In: Proceedings of the 14th Conference of the European Chapter
of the Association for Computational Linguistics (2014)

http://arxiv.org/abs/1606.04640
http://arxiv.org/abs/2004.13970
https://doi.org/10.1007/978-3-540-88625-9_16
https://doi.org/10.1007/978-3-540-88625-9_16
https://doi.org/10.1007/978-3-642-37682-5_8

Machine Learning for Security

Detect and Remove Watermark in Deep
Neural Networks via Generative

Adversarial Networks

Shichang Sun1, Haoqi Wang1, Mingfu Xue1(B), Yushu Zhang1, Jian Wang1,
and Weiqiang Liu2

1 College of Computer Science and Technology, Nanjing University of Aeronautics
and Astronautics, Nanjing 211106, China

{sunshichang,haoqi.wang,mingfu.xue,yushu,wangjian}@nuaa.edu.cn
2 College of Electronic and Information Engineering, Nanjing University

of Aeronautics and Astronautics, Nanjing 211106, China
liuweiqiang@nuaa.edu.cn

Abstract. Deep neural networks (DNN) have achieved remarkable per-
formance in various fields. However, training a DNN model from scratch
requires expensive computing resources and a lot of training data, which
are difficult to obtain for most individual users. To this end, intellectual
property (IP) infringement of deep learning models is an emerging prob-
lem in recent years. Pre-trained models may be stolen or abused by illegal
users without the permission of the model owner. Recently, many works
have been proposed to protect the intellectual property of DNN models.
Among these works, embedding watermarks into DNN based on back-
door is one of the widely used methods. However, the backdoor-based
watermark faces the risk of being detected or removed by an adversary.
In this paper, we propose a scheme to detect and remove backdoor-based
watermark in deep neural networks via generative adversarial networks
(GAN). The proposed attack method consists of two phases. In the first
phase, we use the GAN and few clean images to detect the watermarked
class and reverse the watermark trigger in a DNN model. In the second
phase, we fine-tune the watermarked DNN with the reversed backdoor
images to remove the backdoor watermark. Experimental results on the
MNIST and CIFAR-10 datasets demonstrate that, the proposed method
can effectively remove watermarks in DNN models, as the watermark
retention rates of the watermarked LeNet-5 and ResNet-18 models reduce
from 99.99% to 1.2% and from 99.99% to 1.4%, respectively. Meanwhile,
the proposed attack only introduces a very slight influence on the perfor-
mance of the DNN model. The test accuracy of the watermarked DNN
on the MNIST and CIFAR-10 datasets drops by only 0.77% and 2.67%,
respectively. Compared with existing watermark removal works, the pro-
posed attack can successfully remove the backdoor-based DNN water-
marking with fewer data, and can reverse the watermark trigger and the
watermark class from the DNN model.

Keywords: Deep neural networks · Intellectual property protection ·
Watermark removal · Generative adversarial networks · Fine-tuning

c© Springer Nature Switzerland AG 2021
J. K. Liu et al. (Eds.): ISC 2021, LNCS 13118, pp. 341–357, 2021.
https://doi.org/10.1007/978-3-030-91356-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91356-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-91356-4_18

342 S. Sun et al.

1 Introduction

In recent years, deep neural networks (DNN) have achieved remarkable per-
formance in many tasks [25,27], such as face recognition and natural language
processing. However, training a DNN model is expensive because it requires a lot
of training data and expensive computing resources. It is extremely difficult for
individual users to train high-performance DNN models. To this end, machine
learning as a service (MLaaS) [16] has become an emerging business paradigm
[25]. However, the copyright of DNN models may be infringed by malicious
users. For instance, unauthorized users may steal, illegally copy, abuse the DNN
models, or use the pirated models to provide illegal services without permission
[25,29]. The copyright of the DNN model has a high commercial value thus needs
to be protected [25], which has aroused serious concerns.

A variety of methods [1,14,20,26,29] have been proposed to protect the intel-
lectual property (IP) of deep neural networks. Among them, the backdoor-based
watermarking method [1,29] is one of the most popular methods. In backdoor
based watermarking method, the model owner first injects a specific watermark
trigger pattern, such as logo pattern or noise pattern [29], into clean images to
generate backdoor instances. Then, with these backdoor instances and the incor-
rect label, the model owner embeds the watermark into the DNN model through
training. During copyright verification, the model owner can send watermark
trigger samples (backdoor instances) to the suspicious DNN model to verify
whether the model is a pirated model.

However, recent works [2,6,13,17,28] have shown that the backdoor-based
watermarking method is vulnerable to watermark removal attacks. Shafieinejad
et al. [17] designed two attacks, the black-box attack and the white-box attack,
to remove the backdoor-based DNN watermark. The black-box attack is based
on the model extraction attack [19], and the white-box attack is achieved by
regularization and fine-tuning. Yang et al. [28] demonstrated that the DNN
watermark can be removed by distillation. Chen et al. [6] proposed a fined-
tuning based method to remove the watermark in deep neural networks. Liu et al.
[13] incorporated data augmentation and fine-tuning to remove DNN watermark
when a small amount of training data is available. Aiken et al. [2] proposed a
neural network laundering method based on Neural Cleanse [21] to remove the
backdoor-based watermarking. The works [17,28] do not actually remove the
watermark in the DNN model. Instead, they replace the original model with a
surrogate model. The works [6,13] require a lot of training data, thus are difficult
to be deployed in real-world scenarios. In this paper, we attempt to attack the
backdoor-based watermarking method from the following two aspects: reversing
the DNN watermark (more stronger capability) and removing the watermark by
using few training data (more feasible).

In this paper, we propose a novel two-phase watermark removal method via
generative adversarial networks (GAN) [8]. In the first phase, we use GAN to
detect and reverse the watermark from the watermarked DNN. Specifically, we
iteratively train GAN to generate perturbation patterns to simulate the water-
mark trigger pattern. During the training process, GAN will gradually modify

Detect and Remove Watermark in Deep Neural Networks via GAN 343

the generated perturbation pattern based on the output of the watermarked
DNN. After training, GAN can generate a perturbation pattern that is similar
to the real watermark trigger pattern. Additionally, we define a metric named
class normality to determine whether a class is a watermarked class. During
the training process, all classes will be detected. If the class normality of a cer-
tain class is less than the threshold, this class is considered as a watermarked
class. In the second phase, we fine-tune the watermarked DNN model with the
reversed backdoor images to remove the watermark. The proposed method can
obtain an excellent watermark removal effect by using only a small number of
training images (i.e., 5% of training data). As a comparison, existing watermark
removal methods, REFIT [6] and WILD [13], require at least 10% of training
data to remove the watermark. Besides, compared with REFIT [6] and WILD
[13], another significant advantage of our method is that, the proposed method
can not only remove the watermark, but can also reverse the watermarked class
and the watermark trigger from the watermarked model.

The contributions of this paper are summarized as follows:

• We propose a novel method to remove the backdoor-based DNN watermark
using GAN. First, the AdvGAN [23] is used to generate perturbations in
clean training images. Based on the feedback of the watermarked model, the
GAN is able to reverse an approximate watermark trigger with the gener-
ated perturbations. Second, we utilize the reversed watermark trigger images
and corresponding ground truth labels to fine-tune the watermarked DNN to
remove the watermark.

• The proposed GAN-based attack can not only detect the watermark, but can
reverse the watermark trigger. The attacker can obtain the precise target class
of the backdoor-based watermark, and the approximate position and rough
shape of the watermark trigger pattern.

• We have performed experiments on the MNIST [7] and CIFAR-10 [11]
datasets to evaluate the proposed method. Experimental results show that,
the test accuracy of the watermarked model trained on the MNIST [7] dataset
only drops by 0.77%, while the watermark retention rate of the model drops
from 99.99% to 1.2%. For the watermarked model trained on the CIFAR-10
[11] dataset, the watermark retention rate after the proposed attack is only
1.4%, and the test accuracy of the model only drops by 2.67%. Overall, the
proposed method can effectively remove the watermark in the DNN model,
while only have a very small influence on the performance of the DNN model.

The organization of this paper is as follows. The related work is reviewed
in Sect. 2. The proposed GAN-based watermark removal attack is elaborated
in Sect. 3. Experimental results are presented in Sect. 4. Finally, this paper is
concluded in Sect. 5.

2 Related Work

In this section, we review the DNN watermarking methods, DNN watermark
removal attacks, and GAN-based backdoor defense method.

344 S. Sun et al.

2.1 DNN Watermarking Works

Many DNN watermarking [1,14,20,29] methods have been proposed to protect
the IP of DNN. Uchida et al. [20] proposed to use a binary string as the water-
mark. They embedded the watermark into a selected layer of the host DNN
model through a parameter regularizer. Merrer et al. [14] leveraged a set of
adversarial examples as the watermark key set to query the suspected remote
model.

Backdoor used to be an attack method on DNN [5,24]. In the field of DNN
copyright protection, there are also many works [1,29] use backdoor to protect
the copyright of DNN. Adi et al. [1] proposed a backdoor-based DNN water-
marking method, in which the abstract images and randomly selected classes
are treated as the trigger set. The backdoor watermark is embedded into the
DNN model via the trigger set during training [1]. Zhang et al. [29] proposed
three backdoor-based watermark generation methods, which are the content-
based method, the unrelated data based method, and the noise-based method.

2.2 DNN Watermark Removal Works

At present, a few works have been proposed to attack the DNN watermarking
methods. Yang et al. [28] proposed to utilize a distillation method to remove
the DNN watermark. They demonstrated that parameters responsible for mem-
orizing the watermark are irrelevant to DNN model’s main functionality, thus
the distillation method can remove these redundant parameters (i.e., the water-
mark) [28]. However, since the distillation method aims at training a surrogate
model, the real watermark in the original DNN model has not been removed.
Wang et al. [22] attacked the watermarking scheme proposed in work [20] by
analyzing the statistical distribution of watermarked model’s parameters. The
attack method is a white-box attack, which is inapplicable to scenarios where
an attacker cannot obtain the model’s parameters.

There are also many works [2,6,13,17] aimed at attacking backdoor-based
watermarking methods [1,29]. Shafieinejad et al. [17] proposed two attacks to
remove the backdoor-based watermarking, which are the black-box attack and
the white-box attack. The black-box attack is achieved via the model extraction
attack [19], while the white-box attack is achieved based on regularization and
fine-tuning. It also aims at training a surrogate model rather than removing the
real watermark in the DNN model. Aiken et al. [2] proposed a neural network
laundering method based on Neural Cleanse [21]. Specifically, first, the Neural
Cleanse method [21] is performed to reverse the watermark pattern. Then a
neuron pruning approach is conducted to reset the backdoored neuron. Finally,
a model retraining method is used to remove the backdoor-based DNN water-
marks [2]. The main difference between the work [2] and this paper is as follows:
(i) The work [2] uses Neural Cleanse [21] to reverse the watermark, while our
method use AdvGAN [23] to reverse the watermark; (ii) The work [2] combines
neuron resetting and model retraining to remove the backdoor-based watermark
in DNN, while our method uses fine-tuning [18] to remove the backdoor-based

Detect and Remove Watermark in Deep Neural Networks via GAN 345

DNN watermark. Chen et al. [6] proposed a fine-tuning based method, named
REFIT, to remove the backdoor-based watermarks in DNN models. REFIT uti-
lizes unlabeled data and a learning rate schedule to fine-tune the model to remove
the watermark. Liu et al. [13] proposed a watermark removal attack, named
WILD, where a data augmentation approach along with a distribution align-
ment approach are used to fine-tune the watermarked model. Compared with
the works [6,13], our proposed method has the following advantages: (i) Our pro-
posed attack can not only detect the watermarked class, but can also reverse the
watermark trigger. By using the perturbations generated by GAN, our attack can
detect which class is the watermarked class. In addition, the proposed attack can
reverse the approximate watermark trigger, including the rough shape and the
rough location of the watermark trigger pattern. However, REFIT [6] and WILD
[13] can neither detect the watermarked class nor reverse the watermark trigger.
(ii) Our proposed attack method requires less training data, which ensures that
the proposed method is easier to be deployed in real-world scenarios.

2.3 Backdoor Defense Based on GAN

In the context of deep learning, two works based on GAN have been proposed
to defend against the DNN backdoor attack. Zhu et al. [30] proposed a method
(GangSweep) based on GAN to detect backdoors. Specifically, GangSweep first
generates some perturbation masks [30] as possible triggers for each class. Then,
it performs an outlier detection on these triggers to determine whether the
model has been attacked. After detecting the backdoor, GangSweep attempts
to remove the backdoor by using the generated trigger [30]. Chen et al. [4] pro-
posed DeepInspect to detect neural backdoors in black-box settings. Using a
conditional generative model (cGAN) [15], DeepInspect reconstructed the back-
door trigger from the black-box backdoored model. Our work is different from
GangSweep [30] and DeepInspect [4] in the following aspects: (i) Different usages
in different fields. Our method is an attack method used to remove the backdoor-
based DNN watermarking, while GangSweep [30] and DeepInspect [4] are defense
methods that are used to detect whether a model is implanted with a backdoor.
(ii) The structure of the used GAN is different. In our method, the AdvGAN
[23] that consists of a generator, a discriminator and the target model is used
to reverse the watermark trigger, while in GangSweep [30] and DeepInspect [4],
the GAN is composed of a generator and a discriminator. (iii) Implementation
details are different. Compared with GangSweep [30] and DeepInspect [4], we
use a different loss function to train the GAN.

3 The Proposed Method

3.1 Overview

The overview of the proposed attack is shown in Fig. 1. It can be divided into
two phases, i.e., watermark reversing and watermark removal. We will discuss
these two phases in Sect. 3.2 and Sect. 3.3, respectively.

346 S. Sun et al.

1) Watermark Reversing: We attempt to reverse the watermark trigger pat-
tern with perturbations generated by GAN [8]. Given a small amount of
training data and a target DNN model, we construct a GAN to output spe-
cial perturbation patterns. During the training process of GAN, all classes
of the target DNN model will be enumerated to find the possible watermark
class. Additionally, a metric named class normality is calculated to determine
whether a class is watermarked. The class normality measures the L2 distance
of the generated perturbation. If the class normality of a certain class is less
than the threshold, the class is considered to be watermarked. Furthermore,
the perturbations generated by GAN are considered as the reversed water-
mark trigger pattern.

2) Watermark Removal: We remove the watermark in the DNN by leveraging
fine-tuning [18]. Specifically, we use reversed watermark images with corre-
sponding ground truth labels to fine-tune the watermarked model so as to
remove the watermark.

Fig. 1. Overview of the proposed watermark removal attack.

3.2 Watermark Reversing

In the watermark reversing phase, we adopt the AdvGAN [23] to infer whether
there is a watermark in the target DNN model. The AdvGAN [23] consists of a
generator G, a discriminator D, and the target DNN model f , which is shown in
Fig. 2. The process of watermark reversing through AdvGAN is as follows [23].
First, a clean image x is fed into the generator G, which will output a specific
perturbation G(x). Second, the perturbation G(x) is added to the clean image
to craft an adversarial example G(x) + x. Third, G(x) + x will be input to the
discriminator and the target DNN model simultaneously. Discriminator D is used
to distinguish sample G(x) + x from the clean image x. The output of D will be
fed back to the generator G to encourage G to generate a more indistinguishable
sample in the next iteration. The generator and the discriminator are optimized
via the loss LGAN [23]:

LGAN = MSE(D(x), 1) + MSE(D(G(x) + x), 0) (1)

Detect and Remove Watermark in Deep Neural Networks via GAN 347

where MSE represents the mean square error [3]. LGAN ensures that the gen-
erated adversarial example is close to the original image x.

The target DNN model f takes the sample G(x) + x as input and outputs
the loss Lwm. In the proposed attack, Lwm is calculated as follows [23]:

Lwm = max(max{f(G(x) + x)i : i �= t} − f(G(x) + x)t, 0) (2)

where t is the ground truth class of the image x, and i represents any other class
except for t. Lwm ensures that the generated adversarial example G(x) + x is
classified as an incorrect class by the target model f .

In order to constrain the magnitude of the generated perturbation G(x), the
loss Lpert is calculated as follows:

Lpert = ||G(x)||2 (3)

Then, the overall objective function for attacking the target DNN model is as
follows:

L = λ1Lwm + λ2Lpert (4)

where λ1 and λ2 are two hyperparameters that are used to balance the above
two loss terms.

Fig. 2. The structure and workflow of AdvGAN [23], where G denotes the generator
and D denotes the discriminator.

In order to detect whether there is a watermark in the DNN model and which
class is the watermarked class, we define a metric named class normality. For
each class, the class normality is defined as the average value of Lpert. Generally,
the class normality of the watermarked class is much smaller than the class
normality of other normal classes. Given a DNN model f with a small number
of training images X, the process of detecting whether there is a watermark in
the target model f is summarized in Algorithm 1. First, we enumerate all N
classes and calculate the class normality for each class, as shown in lines 1–9 of
Algorithm 1. We denote the i-th class in the DNN model as yi (i = 1, 2, ..., N).
The steps of calculating the class normality are as follows.

348 S. Sun et al.

1) Select a set of images A′
i from training data X, where the ground-truth label

of the image is not yi.
2) Train the generator G with these selected images A′

i and model f .
3) For each image x in A′

i, generate a perturbation pattern G(x) and calculate
the loss Lpert.

4) Based on 3), calculate the class normality of class yi.

Then, the class normality of each class is sequentially compared with the thresh-
old T , as shown in lines 10–13 of Algorithm 1. If the class normality of a
class yi is smaller than T , yi is considered as a watermarked class ywm, where
i = 1, 2, . . . , N . Note that, based on experimental results, we empirically set the
threshold T to be 10.

Algorithm 1. Watermark reversing algorithm
Input: A small amount of training data X, target DNN model f , number of data

classes N , threshold T
Output: Watermarked class label ywm

1: for i = 1 to N do
2: Select some data Ai with the label yi from X;
3: Obtain train data A′

i = X − Ai;
4: Train the generator G with A′

i and f ;
5: for each x ∈ A′

i do
6: Generate a perturbation pattern G(x);
7: Lpert ← ||G(x)||2;
8: end for
9: Compute class normality of class yi (CNi): CNi = Average(Lpert);

10: if CNi < T then
11: ywm = yi;
12: break;
13: end if
14: end for
15: return ywm

After detecting the watermarked class ywm, the perturbation G(x) generated
by GAN is considered as the reversed watermark trigger. Generally, GAN can
generate a perturbation pattern for each image, which means that for different
images, different perturbation patterns will be generated. We empirically find
that, the perturbation pattern with the minimal L2 distance is more like the
real watermark trigger than other perturbation patterns, thus we consider the
perturbation pattern with minimal L2 distance as the watermark trigger.

In the proposed attack, we attempt to reverse the watermark trigger based
on perturbations. The generative adversarial networks is able to generate per-
turbations without destroying the image content, thus we leverage the GAN
[23] architecture to generate perturbations and reverse watermark triggers. The
target DNN model f makes the GAN generate perturbation pattern towards
the real watermark trigger. Based on the feedback of loss Lwm, the generator

Detect and Remove Watermark in Deep Neural Networks via GAN 349

G tends to craft perturbations in the opposite direction of the ground truth
label. If there exists a watermark in the model f , the generated perturbations
tend to trigger the watermark. More specifically, GAN will generate a rough
perturbation pattern at the position of the watermark trigger.

Figure 3 presents several example images of the reversed watermark trigger,
including clean images, watermarked images, and reversed watermark images.
As shown in Fig. 3(b) and Fig. 3(c), on the MNIST [7] dataset, the white square
trigger reversed by GAN is very similar to the real white square trigger. On
the CIFAR-10 [11] dataset, the position and the shape of the watermark trigger
in the reversed image are roughly correct. Similarly, as shown in Fig. 3(d) and
Fig. 3(e), the position and shape of the reversed “TEST” trigger roughly match
the real “TEST” trigger.

Fig. 3. Example images on the MNIST and CIFAR-10 datasets. (a) Clean images;
(b) watermarked images with a white square; (c) reversed watermark images (white
square); (d) watermarked images with a “TEST” pattern; (e) reversed watermark
images (“TEST” pattern).

3.3 Watermark Removal

In the watermark removal phase, we attempt to remove the DNN watermark
with the reversed watermark trigger. A fine-tuning [18] approach is performed
with the following steps.

1) Superimpose the reversed watermark trigger on few clean images. These
images with the watermark trigger are treated as training samples.

2) Assign the correct labels (i.e., the ground truth labels) to these training sam-
ples.

3) Fine-tune the watermarked DNN model with the above training samples.

The above fine-tuning process can effectively remove the watermark by using
a small amount of training data (i.e., only 5% training data of the dataset). In
addition, our watermark removal attack only has a slight impact on the perfor-
mance of the DNN model.

350 S. Sun et al.

4 Experimental Results

In this section, we evaluate the proposed watermark removal attack. First, we
introduce the experimental setup, including the dataset, DNN models, watermark
triggers, and evaluation metrics. Then, we evaluate the performance of the pro-
posed attack. Next, we discuss three parameters that may affect the performance
of the proposed method, i.e., the watermarked class, the amount of training data
during fine-tuning, and the number of fine-tuning epochs. Finally, we compare the
proposed attack with two existing watermark removal works [6,13].

4.1 Experimental Setup

Datasets. We use the MNIST [7] and CIFAR-10 [11] datasets to evaluate the
performance of the proposed method. MNIST is a handwritten image dataset
consisting of grayscale images with 10 classes [7]. There are 6,000 training images
and 1,000 test images for each class. The size of each image in the MNIST dataset
is 28 × 28. CIFAR-10 is a colored image dataset, which also contains 10 classes
[11]. There are 5,000 training images and 1,000 test images for each class. Each
image is a color image with a size of 32 × 32.

DNN Models. We adopt the LeNet-5 [12] and ResNet-18 [10] models for exper-
imental evaluations. To embed the watermark, we train the LeNet-5 model on
the MNIST [7] dataset for 80 epochs, and train the ResNet-18 model on the
CIFAR-10 [11] dataset for 100 epochs.

Watermark Triggers. We adopt two widely used patterns, the white square
[13] and the “TEST” logo [29] as watermark triggers. The white square is added
in the lower right corner of each image, and the “TEST” logo is added in the
lower left corner of each image. To embed the watermark, we sample 5% of the
data from the training set of the MNIST [7] and CIFAR-10 [11] datasets to craft
backdoor instances, and assign the label “7” as the target label. Note that, in
the CIFAR-10 [11] dataset, the label “7” corresponds to the “horse” class.

Evaluation Metrics. We use the following three metrics to evaluate the per-
formance of the proposed method.

1) Test Accuracy [9]: We evaluate the performance of DNN models by calcu-
lating the test accuracy before and after the proposed attack.

2) Watermark Retention Rate [13]: We adopt the watermark retention rate
to measure the watermark removal effect after applying the proposed attack.
Assuming that the number of watermark samples that are classified as the
target class is Sy, and the total number of watermark samples is S, then
the watermark retention rate is calculated by Sy/S [13]. The smaller the
watermark retention rate, the better the watermark removal effect.

3) Class Normality: We define a metric, named class normality, to determine
whether or not the DNN model has a watermark. As mentioned in Sect. 3.2,
for K training images, class normality of a class yi (i = 1, 2, . . . , N) is defined
as the average of all K losses (Lpert). If the class normality of yi is greater

Detect and Remove Watermark in Deep Neural Networks via GAN 351

than the predefined threshold T , the class yi is a watermark-free class. If
the class normality of yi is less than T , yi is a watermarked class. In our
experiment, T is empirically set to be 10.

4.2 Experimental Results

In this section, we evaluate the proposed attack on the MNIST [7] and CIFAR-10
[11] datasets, respectively. Two types of watermarks (i.e., white square [13] and
“TEST” pattern [29]) are embedded in LeNet-5 [12] and ResNet-18 [10] models,
respectively.

The performance of the proposed attack is shown in Table 1. It can be seen
that, for the DNN model with a “TEST” watermark, the test accuracy before
the attack is 99.34% (watermarked LeNet-5) and 86.11% (watermarked ResNet-
18), and the watermark retention rate before the attack is 99.99% (watermarked
LeNet-5) and 99.99% (watermarked ResNet-18). After applying the proposed
attack, the watermark retention rate of the watermarked LeNet-5 drops from
99.99% to 1.2%, while the test accuracy of the watermarked LeNet-5 is only
reduced by 0.77%. Similarly, on the CIFAR-10 dataset, the watermark reten-
tion rate of the watermarked ResNet-18 drops from 99.99% to 1.4%, while the
test accuracy of the watermarked ResNet-18 only drops by 2.67%. As shown in
Table 1, the proposed attack performs well on removing both the white square
watermark and the “TEST” pattern watermark. In a word, our proposed attack
can effectively remove watermarks in DNN models, while only having a slight
impact on the test accuracy of the DNN.

The reason why the proposed method is effective in removing watermarks in
DNN models is summarized as follows. First, we perform a GAN-based water-
mark reversing process, where the perturbation generated by GAN is considered
as a watermark trigger pattern. Then, we label the reversed watermark trigger
images with the correct class labels. Through fine-tuning [18], the watermarked
model can discard the previously learned watermark. In addition, the fine-tuning
process can enable the DNN model to maintain its test accuracy. The reason
is that the DNN model has many local minima, and through the fine-tuning,
another sub-optimal test accuracy can be found [6,20].

4.3 Parameter Discussion

In this section, we discuss the influence of different parameters on the perfor-
mance of the proposed attack. First, the impact of different watermarked classes
on the performance of the proposed attack is evaluated. Second, the impact of
the amount of training data and the number of epochs on the proposed attack
is discussed.

352 S. Sun et al.

Table 1. Test accuracy and watermark retention rate of the DNN model before and
after the watermark removal attack.

Dataset Model Watermark
types

Before the proposed
attack

After the proposed
attack

Test
accuracy

Watermark
retention
rate

Test
accuracy

Watermark
retention
rate

MNIST [7] Watermarked
LeNet-5 [12]

White
square

99.59% 99.93% 98.67% 1%

TEST
pattern

99.34% 99.99% 98.57% 1.2%

CIFAR-10 [11] Watermarked
ResNet-18
[10]

White
square

86.53% 99.96% 84.08% 1.42%

TEST
pattern

86.11% 99.99% 83.44% 1.4%

We first discuss the impact of different watermarked classes on the watermark
detection capability of the proposed attack. To this end, we perform experiments
on two benchmark datasets (i.e., MNIST [7] and CIFAR-10 [11]) for 4 times
respectively, and each time a target class is used as the watermarked class. In
addition, the threshold T used to identify the watermarked class is set to be 10.
On the MNIST [7] dataset, the selected target classes for embedding watermarks
are 1, 4, 7, and 9, respectively. The class normality of all ten classes are shown
in Table 2. It can be seen that the proposed method can accurately detect the
watermarked class. Specifically, among all the ten classes, only the class normal-
ity of the watermarked class is lower than threshold T and significantly lower
than the class normality of other normal classes. For instance, when the water-
marked class is 1, the class normality of class 1 is 7.565 (lower than 10), while
class normality of other classes are all in the range of 14–17 (higher than 10). On
the CIFAR-10 [11] dataset, the watermarked classes are set to be 0, 2, 5, and 7,
respectively. The class normality of all the ten classes are presented in Table 3.
It is shown that, after the proposed attack, the class normality of the water-
marked class (in a range of 7–8) is significantly smaller than the class normality
of other normal classes (in a range of 11–16). Therefore, the attacker can easily
determine whether the DNN model has a watermark from the class normality.
In conclusion, the proposed attack can accurately detect the watermarked class
from the watermarked model regardless of which class is the watermarked class.

In addition, we discuss the impact of different amounts of training data and
different numbers of fine-tuning epochs on the effect of watermark removal. We
set the training data used for fine-tuning to be 2%, 5%, and 10% of the train-
ing set, respectively. Specifically, on the MNIST dataset [7], 1,200, 3,000, 6,000
images are used to fine-tune the watermarked DNN, respectively. On the CIFAR-
10 dataset [11], 1,000, 2,500, 5,000 images are used to fine-tune the watermarked
DNN, respectively. Moreover, we use 10 epochs, 40 epochs, and 80 epochs to

Detect and Remove Watermark in Deep Neural Networks via GAN 353

Table 2. Class normality of ten different classes on the MNIST dataset. Four experi-
ments are performed, and the target classes (i.e., watermarked classes) are 1, 4, 7, and
9, respectively. The data in bold is the class normality below threshold T .

Target

class

Class

0 1 2 3 4 5 6 7 8 9

1 14.865 7.565 16.214 15.012 16.11 15.421 15.742 14.365 15.458 15.897

4 15.14 14.623 15.562 15.354 7.569 14.424 15.286 16.656 14.195 16.433

7 15.403 16.436 15.487 15.15 16.175 14.975 15.468 7.077 15.743 16.124

9 15.101 16.109 15.981 15.008 15.754 15.343 15.788 14.412 15.98 7.961

Table 3. Class normality of ten different classes on the CIFAR-10 dataset. Four exper-
iments are performed, and the target classes (i.e., watermarked classes) are 0, 2, 5, and
7, respectively. The data in bold is the class normality below threshold T .

Target

class

Class

0 1 2 3 4 5 6 7 8 9

0 7.112 14.589 13.124 14.124 12.441 13.745 12.118 13.547 12.778 12.745

2 12.578 12.734 7.11 13.254 12.52 14.112 12.584 14.257 13.122 11.245

5 13.589 12.968 12.475 13.785 12.714 7.569 12.325 12.956 13.678 11.989

7 12.449 12.495 11.973 13.252 11.955 15.456 11.545 7.692 12.214 12.488

fine-tune the watermarked DNN to remove the watermark, respectively. The
experimental results are presented in Table 4 and Table 5, respectively. It is
shown that, first, the amount of fine-tuning data will only slightly affect the per-
formance of the proposed method. The more the amount of fine-tuning data, the
better the watermark removal effect (i.e., the greater the difference between the
watermark retention rate before and after the attack) of the proposed method.
When using only 5% training data to fine-tuning the watermarked model, the
proposed method is sufficient to achieve a good watermark removal effect. Sec-
ond, as shown in Table 4 and Table 5, the number of fine-tuning epochs has
a certain impact on the proposed attack. The more the number of fine-tuning
epochs, the better the watermark removal effect of the proposed method. In con-
clusion, the proposed method is able to effectively remove the backdoor-based
watermark with a small amount of fine-tuning data and a number of fine-tuning
epochs.

354 S. Sun et al.

Table 4. Test accuracy and watermark retention rate after watermark removal on the
MNIST [7] dataset.

Watermark Percentage

of training

data

Test accuracy after watermark

removal

Watermark retention rate after

watermark removal

10 epochs 40 epochs 80 epochs 10 epochs 40 epochs 80 epochs

White

square

2% 87.92% 95.69% 96.63% 10.1% 8.42% 4.3%

5% 94.33% 97.7% 98.37% 3.2% 2.13% 1.8%

10% 96.79% 98.07% 98.67% 1.65% 1.57% 1%

TEST

pattern

2% 87.71% 95.1% 96.68% 10.12% 8.79% 4.3%

5% 94.13% 97.33% 98.04% 3.12% 2.33% 1.2%

10% 96.32% 98.27% 98.57% 2.14% 1.99% 1.2%

Table 5. Test accuracy and watermark retention rate after watermark removal on the
CIFAR-10 [11] dataset.

Watermark Percentage

of training

data

Test accuracy after watermark

removal

Watermark retention rate after

watermark removal

10 epochs 40 epochs 80 epochs 10 epochs 40 epochs 80 epochs

White

square

2% 38.93% 62.17% 65.93% 11.03% 10.22% 8.86%

5% 53.31% 77.1% 81.6% 10.1% 5.52% 1.5%

10% 73.13% 82.18% 84.08% 12.33% 5.48% 1.42%

TEST

pattern

2% 42.93% 61.86% 67.95% 11.42% 10.86% 8.32%

5% 51.97% 75.32% 81.08% 10.4% 5.81% 1.2%

10% 74.67% 83.6% 83.44% 12.17% 6.12% 1.4%

4.4 Comparison with Existing Works

We compare the proposed watermark removal method with two existing water-
mark removal methods, REFIT [6] and WILD [13], both of which are aimed at
removing the backdoor-based DNN watermark. Since the two works [6,13] do
not provide the source codes, it is difficult for us to reproduce these two works.
Besides, the work [6] does not provide relevant experimental results on water-
mark retention rate, so we cannot directly compare our attack method with
REFIT. Since Liu et al. [13] performs relevant experiments for both REFIT and
WILD, in this paper, we directly compare our work with the experimental results
presented in [13]. Specifically, we compare the proposed method with REFIT [6]
and WILD [13] on watermark removal, watermark detection, and watermark
reversing. Table 6 presents the compared results of the proposed watermark
removal method with REFIT [6] and WILD [13].

As shown in Table 6, on the MNIST [7] dataset, the watermark retention rates
of watermarked models before attacks are all close to 100%. After attacked by
REFIT [6], WILD [13] and our method, the watermark retention rates of water-
marked models are 3.27% (REFIT), 0.92% (WILD), 1.2% (ours), respectively.
Similarly, on the CIFAR-10 [11] dataset, the watermark retention rates of water-
marked models before attacks are close to 100%. After attacks, the watermark
retention rates are 1.71% (REFIT), 2.78% (WILD), 1.4% (ours), respectively. It
is shown that the proposed attack has a similar watermark removal capability as

Detect and Remove Watermark in Deep Neural Networks via GAN 355

REFIT [6] and WILD [13]. However, in addition to removing the watermark, the
proposed method can detect the watermarked class (watermark detection capa-
bility) and reverse the watermark trigger (watermark reversing capability). By
using the proposed method, an attacker can obtain knowledge about the target
class of the backdoor-based watermarks, and the approximate position and shape
of the backdoor trigger in images. The attacker can exploit the above informa-
tion for further attacks, such as illegally tampering with the watermarked model
and fraudulently claiming ownership of the model. For REFIT [6] and WILD
[13], they can neither detect the watermark nor reverse the watermark trig-
ger. The proposed method leverages the reversed watermark trigger to fine-tune
the watermarked model, which enables the proposed method can remove the
backdoor-based DNN watermark with only 5% of the training data. As a com-
parison, both REFIT [6] and WILD [13] require at least 10% of training data to
remove the backdoor-based watermark.

Table 6. Comparison of the proposed method with existing work on watermark
removal. The experimental results of REFIT [6] and WILD [13] are from [13], and
the watermark is based on “TEST” pattern. The percentage of training data refers to
the proportion of the amount of training data used in the fine-tuning process in the
entire dataset. Watermark detection capability means whether a method can detect
the watermarked class from the watermarked DNN. Watermark reversing capability
means whether a method can reverse the backdoor-based watermark trigger from the
watermarked DNN.

Dataset Method Watermark
retention
rate before
attack

Percentage
of training
data

Watermark
retention
rate after
attack

Watermark
detection
capability

Watermark
reversing
capability

MNIST
[7]

REFIT [6] 99.86% 10% 3.27% No No

WILD [13] 99.86% 10% 0.92% No No

Ours 99.99% 10% 1.2% Yes Yes

99.99% 5% 1.2%

CIFAR
-10 [11]

REFIT [6] 99.38% 10% 1.71% No No

WILD [13] 99.38% 10% 2.78% No No

Ours 99.99% 10% 1.4% Yes Yes

99.99% 5% 1.2%

5 Conclusion

Existing backdoor-based DNN watermarking methods are vulnerable to water-
mark removal attacks. This paper presents a GAN-based watermark removal
method. The proposed attack consists of two stages. In the first stage, an attacker
utilizes GAN [23] to detect the watermarked class and reverse the potential
watermark trigger in the DNN model. In the second stage, the attacker uses the
reverse watermark trigger pattern to fine-tune the watermarked model to remove

356 S. Sun et al.

the watermark. The proposed attack can effectively remove the backdoor-based
DNN watermarking by using only 5% training data. Experimental results show
that, under the proposed attack, the watermark retention rate of watermarked
LeNet-5 [12] reduces from 99.99% to 1.2%, and the watermark retention rate
of watermarked ResNet-18 [10] reduces from 99.99% to 1.4%. In the meantime,
the test accuracy of the DNN model is only slightly affected. Compared with
the existing watermark removal methods REFIT [6] and WILD [13], another
advantage of the proposed attack is that, this attack can reverse the watermark
class and trigger from the watermarked DNN model. This work reveals the vul-
nerability of the current backdoor-based DNN watermarking methods. In future
works, we will explore effective countermeasures against the proposed attack.

Acknowledgement. This work is supported by the National Natural Science Foun-
dation of China (No. 61602241).

References

1. Adi, Y., Baum, C., Cissé, M., Pinkas, B., Keshet, J.: Turning your weakness into
a strength: watermarking deep neural networks by backdooring. In: 27th USENIX
Security Symposium, pp. 1615–1631 (2018)

2. Aiken, W., Kim, H., Woo, S.S., Ryoo, J.: Neural network laundering: removing
black-box backdoor watermarks from deep neural networks. Comput. Secur. 106,
1–14 (2021)

3. Allen, D.M.: Mean square error prediction as a criterion for selecting regression
variables. Technometrics 13(3), 469–475 (1971)

4. Chen, H., Fu, C., Zhao, J., Koushanfar, F.: DeepInspect: a black-box trojan detec-
tion and mitigation framework for deep neural networks. In: Proceedings of the 28th
International Joint Conference on Artificial Intelligence, pp. 4658–4664 (2019)

5. Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv:1712.05526 (2017)

6. Chen, X., et al.: REFIT: a unified watermark removal framework for deep learning
systems with limited data. In: ACM Asia Conference on Computer and Commu-
nications Security, pp. 321–335 (2021)

7. Deng, L.: The MNIST database of handwritten digit images for machine learning
research [best of the web]. IEEE Sig. Process. Mag. 29(6), 141–142 (2012)

8. Goodfellow, I.J., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

9. Harrington, P.: Machine Learning in Action, 1st edn, Manning Publications, Shel-
ter Island, April 2012

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
(2016)

11. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical
Report (2009)

12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

13. Liu, X., Li, F., Wen, B., Li, Q.: Removing backdoor-based watermarks in neural
networks with limited data. In: 25th International Conference on Pattern Recog-
nition, pp. 10149–10156 (2020)

http://arxiv.org/abs/1712.05526

Detect and Remove Watermark in Deep Neural Networks via GAN 357

14. Merrer, E.L., Pérez, P., Trédan, G.: Adversarial frontier stitching for remote neural
network watermarking. Neural Comput. Appl. 32(13), 9233–9244 (2020)

15. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv:1411.1784
(2014)

16. Ribeiro, M., Grolinger, K., Capretz, M.A.M.: MLaaS: machine learning as a service.
In: 14th IEEE International Conference on Machine Learning and Applications,
pp. 896–902 (2015)

17. Shafieinejad, M., Lukas, N., Wang, J., Li, X., Kerschbaum, F.: On the robustness of
backdoor-based watermarking in deep neural networks. In: Proceedings of the ACM
Workshop on Information Hiding and Multimedia Security, pp. 177–188 (2021)

18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: Proceedings of the 3rd International Conference on Learning
Representations, pp. 1–14 (2015)

19. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine
learning models via prediction APIs. In: 25th USENIX Security Symposium, pp.
601–618 (2016)

20. Uchida, Y., Nagai, Y., Sakazawa, S., Satoh, S.: Embedding watermarks into deep
neural networks. In: Proceedings of the ACM on International Conference on Mul-
timedia Retrieval, pp. 269–277 (2017)

21. Wang, B., et al.: Neural cleanse: identifying and mitigating backdoor attacks in
neural networks. In: IEEE Symposium on Security and Privacy, pp. 707–723 (2019)

22. Wang, T., Kerschbaum, F.: Attacks on digital watermarks for deep neural networks.
In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp.
2622–2626 (2019)

23. Xiao, C., Li, B., Zhu, J., He, W., Liu, M., Song, D.: Generating adversarial exam-
ples with adversarial networks. In: Proceedings of the 27th International Joint
Conference on Artificial Intelligence, pp. 3905–3911 (2018)

24. Xue, M., He, C., Wang, J., Liu, W.: One-to-N & N-to-one: Two advanced back-
door attacks against deep learning models. IEEE Transactions on Dependable and
Secure Computing, pp. 1–17, early access (2020)

25. Xue, M., Wang, J., Liu, W.: DNN intellectual property protection: taxonomy,
attacks and evaluations (Invited paper). In: Great Lakes Symposium on VLSI, pp.
455–460 (2021)

26. Xue, M., Wu, Z., He, C., Wang, J., Liu, W.: Active DNN IP protection: a novel
user fingerprint management and DNN authorization control technique. In: 19th
IEEE International Conference on Trust, Security and Privacy in Computing and
Communications, pp. 975–982 (2020)

27. Xue, M., Yuan, C., Wu, H., Zhang, Y., Liu, W.: Machine learning security: threats,
countermeasures, and evaluations. IEEE Access 8, 74720–74742 (2020)

28. Yang, Z., Dang, H., Chang, E.: Effectiveness of distillation attack and countermea-
sure on neural network watermarking. arXiv:1906.06046 (2019)

29. Zhang, J., et al.: Protecting intellectual property of deep neural networks with
watermarking. In: Proceedings of the Asia Conference on Computer and Commu-
nications Security, pp. 159–172 (2018)

30. Zhu, L., Ning, R., Wang, C., Xin, C., Wu, H.: GangSweep: sweep out neural back-
doors by GAN. In: The 28th ACM International Conference on Multimedia, pp.
3173–3181 (2020)

http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1906.06046

Targeted Universal Adversarial
Perturbations for Automatic Speech

Recognition

Wei Zong1(B), Yang-Wai Chow1 , Willy Susilo1 , Santu Rana2 ,
and Svetha Venkatesh2

1 Institute of Cybersecurity and Cryptology (iC2), School of Computing and
Information Technology, University of Wollongong, Wollongong, NSW, Australia

{wzong,caseyc,wsusilo}@uow.edu.au
2 Applied Artificial Intelligence Institute (A2I2), Deakin University,

Geelong, VIC, Australia
{santu.rana,svetha.venkatesh}@deakin.edu.au

Abstract. Automatic speech recognition (ASR) is an essential technol-
ogy used in commercial products nowadays. However, the underlying deep
learning models used in ASR systems are vulnerable to adversarial exam-
ples (AEs), which are generated by applying small or imperceptible per-
turbations to audio to fool these models. Recently, universal adversar-
ial perturbations (UAPs) have attracted much research interest. UAPs
used to generate audio AEs are not limited to a specific input audio sig-
nal. Instead, given a generic audio signal, audio AEs can be generated
by directly applying UAPs. This paper presents a method of generating
UAPs based on a targeted phrase. To the best of our knowledge, our pro-
posed method of generating UAPs is the first to successfully attack ASR
models with connectionist temporal classification (CTC) loss. In addition
to generating UAPs, we empirically show that the UAPs can be consid-
ered as signals that are transcribed as the target phrase. We also show that
the UAPs themselves preserve temporal dependency, such that the audio
AEs generated using these UAPs also preserved temporal dependency.

Keywords: Audio adversarial example · Universal adversarial
perturbations · Automatic speech recognition · Deep learning ·
Machine learning

1 Introduction

To date, automatic speech recognition (ASR) [2,6,9,19] systems have been
deployed ubiquitously in popular commercial products, such as Google Assis-
tant, Amazon Alexa, and so on. An ASR system converts speech from audio
into text before further processing. Deep learning techniques play an important
role in modern ASR systems. Specifically, end-to-end ASR, which relies on recur-
rent neural network (RNN), was able to achieve human level performance when
tested on several benchmark datasets [2].
c© Springer Nature Switzerland AG 2021
J. K. Liu et al. (Eds.): ISC 2021, LNCS 13118, pp. 358–373, 2021.
https://doi.org/10.1007/978-3-030-91356-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91356-4_19&domain=pdf
http://orcid.org/0000-0003-3348-7014
http://orcid.org/0000-0002-1562-5105
http://orcid.org/0000-0003-2247-850X
http://orcid.org/0000-0001-8675-6631
https://doi.org/10.1007/978-3-030-91356-4_19

Targeted Universal Adversarial Perturbations 359

However, deep learning models suffer from the threat of adversarial examples
(AEs), which were first found in the image recognition domain [23]. An image
AE is generated by applying imperceptible perturbations to a benign (normal)
image, such that the resulting modified image will fool a deep learning model.
There are targeted and untargeted image AEs. Targeted AEs force a target
model to output predefined labels, while untargeted image AEs merely aim to
make the target model output an incorrect result [16]. In addition, adversaries
can assume a white-box or black-box threat model to generate AEs [4,10,30].
Under a white-box threat model, adversaries can access the internal workings of
the target model, including model weights, training data, etc. In contrast, under
a black-box threat model only input and output pairs can be obtained.

Besides image recognition, researchers also found that ASR models are vul-
nerable to audio AEs. In seminal work conducted by Carlini and Wagner [5],
they generated audio AEs by solving an optimization problem by constraining
the maximum norm of perturbations. Their work was improved in Qin et al.
[20] via incorporating psychoacoustics to hide perturbations below the hearing
threshold. However, such adversarial perturbations can only produce an AE for
a specific audio signal, and must be recalculated to produce AEs for different
audio signals. To overcome this shortcoming, researchers have investigated the
generation of AEs using universal adversarial perturbations (UAPs) that can be
applied directly to generic audio [1]. UAPs can be used to generate both untar-
geted and targeted audio AEs [17,26]. It should be mentioned that the concept
of UAPs was first introduced for image AEs [15].

Although a great amount of effort has been spent on attacking speaker verifi-
cation models, sound classification models, etc., there is limited research focused
on generating UAPs to attack ASR systems. For a given audio, ASR models deal
with an excessively large number of potential transcripts. This task is typically
more difficult compared to other classification models, which only output a fixed
set of labels. Early work was conducted by Neekhara et al. [17], in which they
generated UAPs for untargeted audio AEs. Compared to targeted audio AEs,
untargeted audio AEs are less interesting as they only make ASR models output
incorrect or even meaningless transcripts. Lu et al. [14] recently performed a pre-
liminary study on targeted UAPs to attack ASR models. However, their UAPs
cannot generate UAPs against models with connectionist temporal classifica-
tion (CTC) loss [8]. This severely limits their method since CTC loss is widely
deployed in modern ASR models that achieve state-of-the-art performance [2,9].

In this paper, we fill the research gap by proposing UAPs that can be applied
directly to audio to generate targeted audio AEs. Our main contributions are
summarized as follows:

• To the best of our knowledge, our UAP method is the first to successfully
attack CTC loss based ASR models. Most existing work focus on speaker
verification models, sound classification models, etc., instead of ASR models.

• Unlike previous work by Lu et al. [14], we improve the quality of audio AEs
by constraining the maximum norm of UAPs. Furthermore, we conducted

360 W. Zong et al.

a feasibility study to hide UAPs below the hearing threshold in a piece of
music.

• In addition to generating UAPs, we empirically show that UAPs can be con-
sidered to be signals that will be transcribed into the target phrase. The
generation of UAPs can then be viewed as training (modifying) UAPs to be
robust against modification using audio containing speech.

• We show that the UAPs themselves preserve temporal dependency, such that
the audio AEs generated by applying these UAPs also preserve temporal
dependency.

2 Related Work

Early work in this field by Neekhara et al. [17], studied the generation of untar-
geted UAPs by maximizing CTC loss for each input audio. Compared to random
noise, their UAPs can more effectively cause DeepSpeech [9] to output incorrect
transcripts. However, untargeted attack cannot predetermine the output of a
target model, and this makes untargeted attack less interesting than targeted
attack. In contrast, our work focuses on targeted UAPs which pose severe threats
because an adversary is able to control the output from a target model. Abdoli
et al. [1] proposed UAPs that can generate targeted audio AEs. Instead of attack-
ing ASR models, they attacked environmental sound classification and speech
command recognition models.

In other work, Xie et al. [26] proposed to incorporate transformations by
simulated room impulse response (RIR), so that audio AEs generated by their
UAPs were robust against such transformations. The purpose is to make audio
AEs still adversarial when played through speakers and received by microphones.
They focused on fooling speaker verification models. Compared to ASR models
which transcribe voice input, speak verification models aim to identify whether
input voice comes from a valid user. Li et al. [13] demonstrated that it is unnec-
essary to perturb all samples in an audio signal. They generated UAPs that were
much shorter than the input audio and the UAPs can be applied to an arbitrary
position within the input audio. To make audio AEs physically adversarial, they
used datasets of physically recorded RIRs instead of simulated RIRs.

As opposed to generating input-agnostic UAPs, another line of work focused
on training a generative model, so that perturbations can be efficiently generated
for previously unknown audio. Broadly speaking, the generative model represents
UAPs that are input-dependent. Wang et al. [24] trained a generative adversarial
network (GAN) to produce specific perturbations for an input audio. The output
of GAN can fool the prediction of command classification and music classification
models into outputing predetermined labels. Recent work by Li et al. [12] trained
a generator that can map random noise to targeted UAPs given an input audio.

In contrast with existing work, this research investigates targeted UAPs
against ASR models.

Targeted Universal Adversarial Perturbations 361

3 Problem Definition and Assumptions

Our goal is to generate UAPs δ that will result in targeted audio AEs when
applied to input audio. Note that δ is specific to a target phrase, such that a
different target phrase will require a different δ. We assume a white-box threat
model, under which the internal workings of the target model are accessible and
gradients with respect to the input can explicitly be calculated. Formally, let
δ ∈ R

m be perturbations of length m. δi:j = (δi, . . . , δj) denotes a slice of δ from
the ith to jth elements. Let f(·) represent the ASR model. Let D be a set of audio
with audio sample values ranging from [−1, 1], i.e. if x ∈ D then ||x||∞ ≤ 1. It
should be noted that the length x ∈ D varies. Without loss of generality, let n
represent the length of x: x ∈ R

n. It is required that n ≤ m, as given an input
audio, δ will first be truncated to the same length as the input. Then, an audio
AE is generated by applying δ to the input audio.

Specifically, we want to generate δ that satisfies:

P
x∈D

(f(x′) = t) ≥ η

such that ||δ||∞ ≤ τ
(1)

where t is a predefined target phrase, x′ is the modified audio with elements
clipped into [−1, 1]: x′ = max(min(x+δ1:n, 1),−1), η denotes the minimal success
rate of attack, and τ constrains the maximum norm of δ.

3.1 Evaluation

Given an input audio x ∈ R
n, we measure the distortion caused by δ in decibels

(dB):

dBx(δ) = 20 · log10
maxi δi

maxi xi

for i ∈ {1, 2, . . . , n}
(2)

This metric was initially defined by Carlini and Wagner [5] and is also used
in other work [1,14,17,26]. This metric is analogous to the maximum norm
measurement in the image AE domain.

4 Proposed Method

4.1 Universal Adversarial Perturbations

To generate UAPs that satisfy the requirements defined in Eq. 1, we solve the
following optimization problem:

min
δ

1
|D|

∑

x∈D
�adv(f(x′), t) + λ · �reg(δ, τ)

such that P
x∈D

(f(x′) = t) ≥ η

(3)

362 W. Zong et al.

where D is a set of input audio, x′ is the modified audio clipped into the range
[−1, 1]: x′ = max(min(x + δτ

1:n, 1),−1). δτ is the perturbations applied to x
and equals to δ clipped into a specific range: δτ = max(min(δ, τ),−τ), with τ
constraining the maximum norm. �adv(·) calculates the loss of the ASR model
and minimizing �adv(·) encourages the modified input x′ be to transcribed as t.
If a solution is found, δτ is returned as a UAP. To make δτ less suspicious, it is
preferred that τ be as small as possible. Thus, τ should be initialized to a large
value, then gradually decreased until a valid solution can no longer be found.

Instead of viewing x as the input audio and δτ as noise, we consider δτ

as a signal which is transcribed as t. From this perspective, x is considered as
“noise” applied to δτ , and δτ is robust against modification by adding x ∈ D.
We will validate this point of view later in Sect. 5. A recent study by Zhang
et al. [29] presented a similar idea in the image AE domain. They showed that
UAPs were highly correlated with the output logits of image classifiers so that
the classification was actually dominated by UAPs.

�reg(·) is the regularization term with λ for weighting. �reg(·) is defined as
follows:

�reg(δ, τ) =
m∑

i=1

max(|δi| − τ, 0) (4)

Minimizing �reg(·) encourages the maximum norm of δ to be within τ . This
prevents ∂�adv(f(x+δ′

1:n),t)
∂δi

from always being 0 when |δi| > τ .
In practice, we split the generation process into two stages. During stage 1,

we set τ = 1 and gradually let δτ be effective for more and more audio in D.
Stage 1 finishes when δτ can attack all audio in D, i.e. an audio AE is generated
by applying δτ to any audio in D. The purpose of this stage is to quickly find
a valid δτ , even though δτ may be too noisy. In stage 2, we focus on making δτ

less noisy by gradually decreasing τ until no valid solution can be found. This
two stage generation process is provided in Algorithm 1.

4.2 Robustness Against Room Impulse Response

In the audio AE domain, expectation over transformation (EOT) has been widely
used to make audio AEs robust against RIRs [20,22,25]. The purpose of being
robust against RIRs is to let audio AEs still be adversarial when played through
speakers and received by microphones. EOT [3] was initially proposed to make
image AEs robust against camera transformations.

In this research, we also deploy EOT to make our UAPs robust against RIR.
It should be mentioned that computation will be prohibitively expensive if too
many RIRs are considered [7]. To incorporate EOT, the optimization problem
define in Eq. 3 is modified as follows:

min
δ

E
h∈H

[
1

|D|
∑

x∈D
�adv(f(x′ ∗ h), t)] + λ · �reg(δ, τ)

such that E
h∈H

[P
x∈D

(f(x′ ∗ h) = t)] ≥ η

(5)

Targeted Universal Adversarial Perturbations 363

Algorithm 1. Two stage process for generating universal perturbations.
Input: target model, f ; a set of audio, D; target phrase, t; the minimum success
rate η;
Output: universal perturbations, δτ

initialize δ = 0
δτ = Stage1(δ) // generate valid UAPs
return Stage2(δτ , η) // make UAPs less noisy

function Stage1(δ)
initialize a subset G ⊂ D
while iterations < max iterations do

set success number s = 0
for each audio x ∈ G // G is shuffled for each iteration

increase s by 1 if f(x′) = t // x′ is the modified audio from Equation 3
modify δ via gradient decent

end for
if s is equal to |G| then

return δτ if |G| = |D|
add more audios into G from D

end if
end while

end function

function Stage2(δτ , η)
while failed iterations < max iterations do

set success number s = 0
for each audio x ∈ D // D is shuffled for each iteration

increase s by 1 if f(x′) = t // x′ is the modified audio from Equation 3
modify δ via gradient decent

end for
if s

|D| ≥ η then
set failed iterations = 0
decrease τ

else
increase failed iterations by 1

end if
end while
return δτ

end function

where H is the distribution of RIRs considered, and ∗ denotes convolution
operation.

Algorithm 2 provides the process used to solve the optimization problem
shown in Eq. 5. Specifically, δ is initialized as the solution found in Stage 1 of
Algorithm 1. For each audio, we randomly select an RIR to transform the audio.

364 W. Zong et al.

Algorithm 2. Process for generating robust universal perturbations.
Input: target model, f ; a set of audio, D; target phrase, t; a set of RIR, H; minimum
success rate η; initial values for δ, δinit;
Output: robust universal perturbations, δτ

initialize δ = δinit, τ = 1
while failed iterations < max iterations do

set success number s = 0
for each audio x ∈ D // D is shuffled each time

select a random RIR h ∼ H
increase s by 1 if f(x′ ∗ h) = t // x′ is the audio from Equation 5
modify δ via gradient decent

end for
if s

|D| ≥ η then
set failed iterations = 0
decrease τ

else
increase failed iterations by 1

end if
end while
return δτ

τ constrains the maximum norm of δτ , and it gradually decreases until no valid
solution can be found.

5 Results and Discussion

5.1 Setup

In this study, we used DeepSpeech2 as the target model, which is an end-to-end
RNN based ASR model with CTC loss [2]. We used the open source implementa-
tion of DeepSpeech2 V21 with Librispeech [18] as the dataset since a pre-trained
model on this dataset was released. Specifically, we randomly extracted 150
audio with durations from 2 to 4 seconds from the “dev-clean” dataset to gen-
erate UAPs. We also extracted all audio with duration 2 to 4 seconds from the
“test-clean” dataset for evaluation. We used the following 5 target phrases to
generate UAPs: “power off”, “open the door”, “turn off lights”, “use airplane
mode”, “visit malicious dot com”. It should be noted that target phrases cannot
be too long. This is because it is overly challenging to force a target model to
output transcripts that are too long for short input audio.

Throughout the experiments, if not otherwise indicated, we used the following
settings. The Adam method [11] was used for optimization with a learning rate
of 0.001. τ , which controls the maximum norm of UAPs as shown in Eq. 3 and

1 https://github.com/SeanNaren/deepspeech.pytorch.

https://github.com/SeanNaren/deepspeech.pytorch

Targeted Universal Adversarial Perturbations 365

Eq. 5, was initially set to 1.0 then decreased by being multiplied with 0.8. The
minimum success rate η was fixed at 0.8 for both Eq. 3 and Eq. 5. Without
incorporating EOT, the maximum iterations to lower the maximum norm of
UAPs was set to 30. If EOT was incorporated, the maximum iterations was set
to 60, because it is more computationally expensive to converge in this case.

5.2 Generating Universal Adversarial Perturbations

Fig. 1. Iteration trend when generating UAPs.

We first used the Stage1 function in Algorithm 1 to generate UAPs for the 5
target phrases. As previously mentioned, the aim of this stage is to generate
valid UAPs, even though they may be noisy. The time taken to generate UAPs
for the target phrases: “power off”, “open the door”, “turn off lights”, “use
airplane mode”, “visit malicious dot com”, it took 5.0, 2.8, 7.8, 4.2 and 7.9
hours respectively. Obviously, the generation time for different target phrases
is different. This may be because target phrases that are seen less frequently
during training of the target model will require more iterations. At the start of
the generation process, the audio set only contained 1 audio. When the generated
UAPs were able to attack all audio in the current set, we added a new audio
to the set, i.e. the size of the set increased by 1. This strategy is beneficial for
convergence since the UAPs for a specific set only needs to handle one new audio.
The set at the end of the process contained 150 audio.

Figure 1 shows the iteration trend to generate UAPs capable of attacking
all audio as we gradually increase the size of the audio set. To clearly show
the iteration trend, we present a moving average based on 3 data points. The
horizontal axis represents the number of audio used to train UAPs, while the

366 W. Zong et al.

vertical axis indicates the number of iterations needed for the UAPs to attack
all audio in the set. Early on when the size of the set was small, the number
of iterations increased as more audio were added to the set. This is reasonable
since the UAPs had to attack a greater number of audio, so more computation
was required to find a solution. However, interestingly the iterations started to
decrease when the size of the audio set reached around 20. This can be explained
from the point of view that the generated UAPs are considered as signals that are
transcribed into the target phrase, while audio containing speech are considered
as noise being applied to UAPs. From that perspective, it is intuitive that after
a while, the UAPs become more robust despite additional audio being added to
the set. In other words, when UAPs are robust against a large set of audio, fewer
iterations are required to find a solution to attack the newly added audio.

Fig. 2. Increase in success rate as the UAPs attacked an increasing number of audio.

To test the performance of the generated UAPs, we applied the UAPs to all
audio with a duration between 2 to 4 s from the “test-clean” set. As shown in
Fig. 2, the success rate of UAPs increased as more audio was used for training.
In the Figure, the horizontal axis represents the number of audio used to train
UAPs, while the success rate was calculated by applying UAPs to all 736 audio
with a duration between 2 to 4 seconds from “test-clean” set. The increase in
success rate is complementary to the above discussion that UAPs become more
robust against new audio as the size of training set increases.

UAPs generated using Stage1 alone were too noisy to be used in practice as
they easily cause suspicion. Stage2 was used to constrain the maximum norm of
UAPs. To effectively decrease the maximum norm, UAPs were only required to
attack 80% of audio in the audio set by setting η = 0.8. Intuitively, lowering η
will lead to smaller maximum norm of UAPs.

Targeted Universal Adversarial Perturbations 367

Table 1. Minimized maximum norm of universal perturbations

Target phrase Success rate (S1)* Max norm (S1)+ Median dB

“Power off” 66.71% (97.42%) 0.107 (0.991) –12.47

“Open the door” 51.63% (99.59%) 0.044 (0.673) –19.37

“Turn off lights” 46.88% (97.55%) 0.086 (0.997) –13.54

“Use airplane mode” 46.33% (99.32%) 0.069 (0.902) –15.44

“Visit malicious dot com” 59.51% (94.02%) 0.107 (0.994) –12.03

*:The success rate of UAPs by Stage2 compared to Stage1 (S1).
+:Maximum norm of UAPs by Stage2 compared to Stage1 (S1).

Fig. 3. Comparing UAPs generated using Stage1 and Stage2 with the target phrase
“power off”. (a) UAPs generated using Stage1 alone were very noisy; (b) Stage2 con-
strained the maximum norm of UAPs to a small value.

Table 1 presents the results of the 5 UAPs. It took around 1 hour to finish
Stage2 for each UAPs. We can see that the maximum norm of UAPs was greatly
reduced after Stage2. UAPs generated using Stage1 and Stage2 with “power off”
as the target phrase is compared in Fig. 3. Although the success rate on the test
audio decreased because we set η = 0.8 instead of 1.0, the UAPs were still
effective to attack over 45% of audio from the test set.

To give a sense of the distortion cause by our UAPs, Carlini and Wagner [5]
reported that the 95% interval for distortion using their approach was between
−15 dB to −45 dB. While our UAPs introduce more distortion compared with
their approach, the key thing to note is that their perturbations are only effective
for a specific audio input and must be recalculated for different audio, as opposed
to UAPs which are universal and able to attack generic audio.

368 W. Zong et al.

5.3 Preserving Temporal Dependency

Table 2. An example depicting preserved temporal dependency for UAPs

Slice* Power off Use airplane mode Visit malicious dot com

0.1 p Use

0.2 pon Use Visit

0.3 po Use air Visit mali

0.4 po Use airplane Visit malicious

0.5 power Use airplane mode Visit malicious dotd co

0.6 power off Use airplane mode Visit malicious dot com

0.7 power off Use airplane mode Visit malicious dot com

0.8 power off Use airplane mode Visit malicious dot com

0.9 power off Use airplane mode Visit malicious dot com

1.0 power off Use airplane mode Visit malicious dot com

*:Slice refers to the first kth portion of the input audio, e.g., 0.5
refers to the first half of the audio.

Temporal dependency (TD) was proposed as an important property to detect
audio AEs by Yang et al. [27]. The key assumption is that benign audio preserves
TD while audio AEs do not. Specifically, let Sk denote the transcript of the first
kth portion of input audio. Let S{whole,k} denote the first kth portion of the
entire transcript, such that the length of S{whole,k} is equal to the length of
Sk. If S{whole,k} is not consistent with Sk, this means the audio is potentially
adversarial.

In our experiments, we found that UAPs generated by Stage2 can be tran-
scribed as the target phrase and preserved TD. This finding is complementary
to our point view that UAPs can be considered as signals that are transcribed as
the target phrase. The results for the target phrases: “power off”, “use airplane
mode” and “visit malicious dot com”, are shown in Table 2. The experimental
results show that the transcripts of differently sliced UAPs were consistent with
the corresponding portions of the target phrase. An interesting observation is
that when k ≥ 0.6, all the partial UAPs were accurately transcribed as the target
phrase. This is intuitive because the duration of the UAPs was 4 seconds, and
were required to attack 80% of audio with duration between 2 to 4 seconds by
design. Thus, the first portion of the UAPs were transcribed as the target phrase
and robust against modification. The remaining parts of UAPs then aimed to
suppress output from DeepSpeech2, i.e. forcing DeepSpeech2 to output nothing
for those parts.

Targeted Universal Adversarial Perturbations 369

Table 3. AUC of temporal dependency detection*

k = 1/2 k = 2/3 k = 3/4

WER CER LCP WER CER LCP WER CER LCP

Power off 0.91 0.37 0.91 0.70 0.45 0.73 0.56 0.47 0.60

Open the door 0.43 0.43 0.31 0.35 0.36 0.19 0.28 0.35 0.18

Turn off lights 0.61 0.45 0.32 0.48 0.41 0.31 0.49 0.45 0.36

Use airplane mode 0.84 0.51 0.55 0.60 0.43 0.41 0.45 0.40 0.34

Visit malicious dot com 0.72 0.54 0.65 0.53 0.49 0.51 0.43 0.43 0.40

*:The maximum value for WER, CER and LCP for each target phrase is highlighted.

As the UAPs preserved TD, this suggests that audio AEs generated by apply-
ing UAPs would also preserve TD. Therefore, we calculated the same metrics
proposed by Yang et al. [27] to validate if our audio AEs generated using the
UAPs were able to avoid TD detection2. These metrics were area under curve
(AUC) score of word error rate (WER), AUC of character error rate (CER), and
AUC of longest common prefix (LCP).

The audio AEs used in the experiment were those successfully generated by
applying our Stage 2 UAPs to the test audio. Table 3 shows the experimental
results for k = 1

2 , 2
3 , 3

4 . We can see that TD detection only achieved good per-
formance with WER and LCP on detecting audio AEs with the target phrase
“power off” when k = 1

2 . This implies that the first half of the UAPs for “power
off” was not robust enough. To improve the robustness against TD detection
for “power off” when k = 1

2 , a potential solution is to increase the value of η in
Stage2. If η = 1.0, the first half of the UAPs for “power off” will be forced to
be robust, although this will result in a larger maximum norm for UAPs. Other
than the “power off” target phrase, we can see from Table 3 that most AUC
scores were below 0.75. This indicates that audio AEs generated by our UAPs
were overall robust against TD detection.

5.4 Robustness Against Gaussian Noise

Table 4. Success rates of audio AEs generated using UAPs against Gaussian noise

std = (0.001) std = (0.01) std = (0.1)

“Power off” 98.57% 85.95% 0.00%

“Open the door” 98.42% 69.21% 0.00%

“Turn off lights” 98.84% 81.16% 0.00%

“Use airplane mode” 97.36% 72.14% 0.00%

“Visit malicious dot com” 98.63% 87.90% 0.00%

As discussed above, UAPs were trained to be robust against modification using
audio containing speech. Table 4 further shows that audio AEs generated by
2 We used the open source implementation from https://github.com/AI-secure/

Characterizing-Audio-Adversarial-Examples-using-Temporal-Dependency.

https://github.com/AI-secure/Characterizing-Audio-Adversarial-Examples-using-Temporal-Dependency
https://github.com/AI-secure/Characterizing-Audio-Adversarial-Examples-using-Temporal-Dependency

370 W. Zong et al.

applying UAPs to test audios were also robust against Gaussian noise until
std = 0.01.

5.5 Robustness Against Room Impulse Response

Table 5. Robustness of UAPs their corresponding audio AEs against RIRs

Stage2 Robustness

UAPs AEs Max Norm UAPs AEs Max Norm

“Power off” 0.00% 0.00% 0.107 85.00% 55.57% 0.210

“Open the door” 70.00% 1.90% 0.044 100.00% 61.41% 0.086

“Turn off lights” 0.00% 0.00% 0.086 55.00% 33.83% 0.210

“Use airplane mode” 0.00% 0.00% 0.069 70.00% 40.49% 0.210

“Visit malicious dot com” 0.00% 0.00% 0.107 60.00% 41.71% 0.328

We generated 100 RIRs from virtual rooms with dimension (width, length,
height) using pyroomacoustics 0.4.23. 80 RIRs were used for training while 20
RIRs used were for testing. height was set to 3.5 while width = length and we
randomly sampled their values from U(4, 6). The time it takes for the RIR to
decay by 60 dB was randomly sampled from U(0.15, 0.20). Locations of micro-
phones and audio sources were randomly sampled inside the virtual rooms.

To test the robustness against RIR, each audio AE was transformed by a
random RIR from the 20 RIRs. We also transformed the UAPs by all the 20
RIRs and to check whether UAPs themselves are robust against RIRs. When
using Algorithm 2 to generate robust UAPs, we set the maximum iterations
to 60.

Table 5 shows the results of comparing robust UAPs generated using Algo-
rithm 2 with UAPs generated by Stage2. Table 5 also compares the robustness
of audio AEs, which were generated by applying the corresponding UAPs to test
audio. Although there was an exception for UAPs of “open the door”, UAPs gen-
erated by Stage2 and corresponding audio AEs were obviously not robust against
RIRs. In contrast, UAPs generated using Algorithm 2 and their corresponding
audio AEs were robust against RIRs. It should be noted that robustness against
RIRs was obtained at the cost of significantly larger maximum norm.

5.6 Limitation

Our experiments showed that the quality of audio AEs generated by applying
UAPs was poor. The distortion caused by UAPs will be worse if we make them
robust against RIRs. While it will be difficult to lower the maximum norm of
UAPs further while keeping them adversarial, we can potentially hide UAPs
below the hearing threshold of unsuspicious sound. This may be a promising
3 https://pypi.org/project/pyroomacoustics/.

https://pypi.org/project/pyroomacoustics/

Targeted Universal Adversarial Perturbations 371

future direction. A potential scenario is where an adversary plays unsuspicious
adversarial audio in the background, while the victim speaks to a voice interface,
thereby causing the underlying ASR model to be fooled. A similar idea was
proposed by Commandersong [28], in which they hid perturbations within a
song. However, their method may not be robust for speech, which is common
for voice interfaces.

In this section, we present a feasibility study on hiding UAPs below the
hearing threshold in a piece of piano music. We incorporated the masking loss
proposed by Qin et al. [20], which hid perturbations below the hearing threshold
of speech. Specifically, we replaced the lreg(·) in Eq. 3 with the masking loss.
Instead of generating UAPs from scratch, we used UAPs generated by Stage2
of Algorithm 1 as initial values. It should be mentioned that audio AEs were
generated by applying UAPs together with the music.

Measuring the maximum norm of UAPs is meaningless in this case because
large values in UAPs would be masked by the music. Therefore, we measured
the Perceptual Evaluation of Speech Quality (PESQ), which was proposed to
automatically measure degradation in the context of telephony [21]. The values
range from 1.0 to 4.5 with larger values indicating better quality.

After running 30 iterations, we successfully generated UAPs by setting η =
0.5. The PESQ between the original music and music distorted by UAPs was
2.97, which means moderate quality. The success rate of generating audio AEs
from test audios was 30.71%. This shows UAPs hidden in music are still able to
attack generic audio.

6 Conclusion and Future Work

In the audio AE domain, there is limited work focusing on generating UAPs
against ASR models. In this research, we filled this research gap by propos-
ing the first successful targeted UAPs against ASR models with CTC loss. We
analyzed UAPs from the point of view that UAPs can be considered as signals
that were transcribed as the target phrase. To decrease the distortion caused
by UAPS, we tried to minimize the maximum norm of UAPs. In addition, we
showed that UAPs themselves preserved temporal dependency, such that the
audio AEs generated by applying UAPs also preserved temporal dependency.
UAPs and the corresponding audio AEs were also robust against Gaussian noise.
We demonstrated the possibiliy of hiding UAPs below the hearing threshold of
unsuspicious sound, such as music. Future work will focus on generating UAPs
with reduced distortion.

References

1. Abdoli, S., Hafemann, L.G., Rony, J., Ayed, I.B., Cardinal, P., Koerich. A.L.:
Universal adversarial audio perturbations. arXiv preprint arXiv:1908.03173 (2019)

2. Amodei, D., et al.: Deep speech 2: end-to-end speech recognition in English and
mandarin. In: International Conference on Machine Learning, pp. 173–182 (2016)

http://arxiv.org/abs/1908.03173

372 W. Zong et al.

3. Athalye, A., Engstrom, L., Ilyas, A., Kwok, K.: Synthesizing robust adversarial
examples. In: International Conference on Machine Learning, pp. 284–293. PMLR
(2018)

4. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

5. Carlini, N., Wagner, D.: Audio adversarial examples: targeted attacks on speech-
to-text. In: 2018 IEEE Security and Privacy Workshops (SPW), pp. 1–7. IEEE
(2018)

6. Chan, W., Jaitly, N., Le, Q.V., Vinyals, O.: Listen, attend and spell: a neural
network for large vocabulary conversational speech recognition. In: 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP
2016, Shanghai, China, 20–25 March 2016, pp. 4960–4964. IEEE (2016)

7. Du, X., Pun, C., Zhang, Z.: A unified framework for detecting audio adversarial
examples. In: Chen, C.W., et al. (eds.), MM 2020: The 28th ACM International
Conference on Multimedia, Virtual Event/Seattle, WA, USA, 12–16 October 2020,
pp. 3986–3994. ACM (2020)

8. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In Proceedings of the 23rd International Conference on Machine Learning, pp. 369–
376 (2006)

9. Hannun, A., et al.: Deep speech: scaling up end-to-end speech recognition. arXiv
preprint arXiv:1412.5567 (2014)

10. Ilyas, A., Engstrom, L., Athalye, A., Lin, J.: Black-box adversarial attacks with
limited queries and information. In: Dy, J.G., Krause, A. (eds.), Proceedings
of the 35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, 10–15 July 2018, volume 80 of Proceedings of
Machine Learning Research, pp. 2142–2151. PMLR (2018)

11. Kingma, D.P., Ba. J.: Adam: a method for stochastic optimization. In: Bengio, Y.,
LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)

12. Li, J., et al.: Universal adversarial perturbations generative network for speaker
recognition. In: IEEE International Conference on Multimedia and Expo, ICME
2020, London, UK, 6–10 July 2020, pp. 1–6. IEEE (2020)

13. Li, Z., Wu, Y., Liu, J., Chen, Y., Yuan. B.: Advpulse: universal, synchronization-
free, and targeted audio adversarial attacks via subsecond perturbations. In: Lig-
atti, J., Ou, X., Katz, J., Vigna, G. (eds.), CCS 2020: 2020 ACM SIGSAC Con-
ference on Computer and Communications Security, Virtual Event, USA, 9–13
November 2020, pp. 1121–1134. ACM (2020)

14. Lu, Z., Han, W., Zhang, Y., Cao. I.: Exploring targeted universal adversarial per-
turbations to end-to-end ASR models. arXiv preprint arXiv:2104.02757 (2021)

15. Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., Frossard., P.: Universal adversarial
perturbations. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1765–1773 (2017)

16. Moosavi-Dezfooli, S.-M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate
method to fool deep neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)

17. Neekhara, P., Hussain, S., Pandey, P., Dubnov, S., McAuley, J.J., Koushanfar, F.:
Universal adversarial perturbations for speech recognition systems. In: Kubin, G.,
Kacic, Z. (eds.) Interspeech 2019, 20th Annual Conference of the International
Speech Communication Association, Graz, Austria, 15–19 September 2019, pp.
481–485. ISCA (2019)

http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/2104.02757

Targeted Universal Adversarial Perturbations 373

18. Panayotov, V., Chen, G., Povey, D., Khudanpur, S.: Librispeech: an ASR corpus
based on public domain audio books. In: 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 5206–5210. IEEE (2015)

19. Park, D.S., Chan, W., Zhang, Y., Chiu, C., Zoph, D.S., Cubuk, E.D., Le, Q.V.:
Specaugment: A simple data augmentation method for automatic speech recogni-
tion. In: Kubin, G., Kacic, Z. (eds.) Interspeech 2019, 20th Annual Conference
of the International Speech Communication Association, Graz, Austria, 15–19
September 2019, pp. 2613–2617. ISCA (2019)

20. Qin, Y., Carlini, N., Cottrell, G.W., Goodfellow, I.J., Raffel, C.: Imperceptible,
robust, and targeted adversarial examples for automatic speech recognition. In:
Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9–15 June 2019, Long Beach, CA, USA, pp. 5231–5240 (2019)

21. Rix, A.W., Beerends, J.G., Hollier, M.P., Hekstra, A.P.: Perceptual evaluation of
speech quality (PESQ)-a new method for speech quality assessment of telephone
networks and codecs. In: IEEE International Conference on Acoustics, Speech, and
Signal Processing, ICASSP 2001, 7–11 May, 2001, Salt Palace Convention Center,
Salt Lake City, Utah, USA, Proceedings, pp. 749–752. IEEE (2001)

22. Schönherr, L., Eisenhofer, T., Zeiler, S., Holz, T., Kolossa, D.: Imperio: Robust
over-the-air adversarial examples for automatic speech recognition systems.
In: ACSAC 2020: Annual Computer Security Applications Conference, Virtual
Event/Austin, TX, USA, 7–11 December, 2020, pp. 843–855. ACM (2020)

23. Szegedy, C., et al.: Intriguing properties of neural networks. In: Bengio, Y., LeCun,
Y. (eds.) 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14–16, 2014, Conference Track Proceedings (2014)

24. Wang, D., Dong, L., Wang, R., Yan, D., Wang, J.: Targeted speech adversarial
example generation with generative adversarial network. IEEE Access 8, 124503–
124513 (2020)

25. Xie, Y., Li, Z., Shi, C., Liu, J., Chen, Y., Yuan, B.: Enabling fast and universal
audio adversarial attack using generative model. arXiv preprint arXiv:2004.12261
(2020)

26. Xie, Y., Shi, C., Li, Z., Liu, J., Chen, Y., Yuan, B.: Real-time, universal, and
robust adversarial attacks against speaker recognition systems. In: 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP
2020, Barcelona, Spain, 4–8 May 2020, pp. 1738–1742. IEEE (2020)

27. Yang, Z., Li, B., Chen, P., Song, D.: Characterizing audio adversarial examples
using temporal dependency. In: 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net
(2019)

28. Yuan, X., et al.: Commandersong: A systematic approach for practical adversarial
voice recognition. In 27th {USENIX} Security Symposium ({USENIX} Security
18), pages 49–64, 2018

29. Zhang, C., Benz, P., Imtiaz, T., Kweon, I.S.: Understanding adversarial examples
from the mutual influence of images and perturbations. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14521–
14530 (2020)

30. Zhao, P., et al.: On the design of black-box adversarial examples by leveraging
gradient-free optimization and operator splitting method. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 121–130 (2019)

http://arxiv.org/abs/2004.12261

Voxstructor: Voice Reconstruction from
Voiceprint

Panpan Lu1, Qi Li2, Hui Zhu1, Giuliano Sovernigo2, and Xiaodong Lin2(B)

1 Xidian University, Xi’an, China
lupanpan@stu.xidian.edu.cn, zhuhui@xidian.edu.cn

2 University of Guelph, Guelph, Canada
{qli15,gsovernigo,xlin08}@uoguelph.ca

Abstract. With the rapid development of machine learning technolo-
gies, voiceprint has become widely used as a personal identifier in daily
life. Because of that, it is essential to determine to what extent a
voiceprint derived from machine learning can be inverted to obtain the
original speaker characteristic. However, the reconstruction of voiceprint
templates is still a challenging issue. It has also not been proven whether
the widespread use of voiceprint poses a privacy leakage risk. In this
paper, we implement the first comprehensive, holistic, and system-
atic reconstruction study targeting voiceprint templates. We present
Voxstructor, a voiceprint-based voice constructor that can be used for
bulk template reconstruction attacks. An attacker can reconstruct a
new voice based only on the victim’s voiceprint data instead of the
voice itself. Specifically, we formalize the voice reconstruction work as an
objective optimization problem and merge voice cloning with voiceprint
template conversion work. We have conducted extensive experiments on
multiple mapping models, loss functions, voiceprint template extraction
models, scoring methods, and two types of speaker verification attacks.
Thorough experiments show that our attacks are effective, achieving a
fairly high success rate which is similar to the results generated by voice
cloning methods. The time overhead of Voxstructor is far less than other
attacks. Our study not only demonstrates the need for protection of
voiceprint templates in speaker recognition systems, but also shows that
Voxstructor can be used as a privacy measure tool for voiceprint privacy-
preserving schemes.

Keywords: Privacy · Reconstruction · Speaker verification ·
Voiceprint

1 Introduction

The application of speaker recognition systems is on the rise, such as in banking,
voice assistants, online authentication among numerous others. At the same time,
the attacks against speaker recognition systems become correspondingly more

P. Lu and Q. Li—Contributed equally.

c© Springer Nature Switzerland AG 2021
J. K. Liu et al. (Eds.): ISC 2021, LNCS 13118, pp. 374–397, 2021.
https://doi.org/10.1007/978-3-030-91356-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91356-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-91356-4_20

Voxstructor: Voice Reconstruction from Voiceprint 375

common. Several representative attack methods have been proposed separately,
such as adversarial noise [1–3], replay attack [4], speech synthesis [5], and others.
All these attacks point out the vulnerability of some modules in the speaker
recognition system.

It is well known that a speaker recognition system operates by extracting
the voiceprint vector from the speaker’s speech, and then comparing it with
the stored voiceprint to calculate the similarity. This process can be used to
determine the identity of the speaker. Voiceprints are typically compact binary or
real-valued feature representations that are extracted from voice samples or voice
features to increase the efficiency and accuracy of similarity computation. Over
the past couple of decades, a large number of approaches have been proposed
for voiceprint [6–8].

In this paper, we focus on template reversibility and reconstruction attacks
in speaker recognition systems. In a voiceprint reconstruction attack, if voice can
be reconstructed from the target’s voiceprint, it can be used to gain access to the
target through the target or other user-registered systems, thus threatening the
target’s interests and safety. Template reconstruction attacks generally assume
that templates of target subjects and the corresponding black-box template
extractor can be accessed [9]. First, templates of target users can be exposed
in hacked databases. Second, the corresponding black-box template extractor
can potentially be obtained by purchasing the speaker recognition SDK. To our
knowledge, almost all of the speaker recognition vendors store voiceprints with-
out template protection.

There are existing works on face template reconstruction [9], but these can-
not be applied to voiceprint reconstruction. Faces are static features and do
not change dynamically. Human voice however, changes dynamically with con-
tent, emotion, and other factors. Voiceprints are text-independent for increasing
recognition accuracy, which makes it more difficult to reconstruct the target’s
speech. Similar work has been done such as voice synthesis [5,10], and adver-
sarial voice attack [1–3]. However, such work requires the original speech of the
target as input, which is difficult to obtain these speeches in reality.

To address the issues of voiceprint reconstruction, inspired by voice cloning
[5,10], we propose a voice constructor from voiceprint, called Voxstructor (“vox”,
as derived from the etymology of “voice”). First, we use a common voiceprint
extractor such as i-vector as a black box to extract voiceprint. Second, we use
multiple neural networks to construct a mapping transformation model from
voiceprint to speaker embedding in voice clones. Third, the speaker embedding
is used to generate speech from existing voice cloning technology. In our study of
voiceprint reconstruction attacks, we made no assumptions about subjects used
to train the target speaker recognition system. Therefore, we use Kaldi’s pre-
trained voiceprint extractors in our research, and use public datasets to train our
attack model. We experiment and analyze our mapping transformation model
from multiple loss functions and multiple model structures. We also abstract
several attack scenarios, conduct experiments and analysis for these scenarios.
In summary, we make the following contributions:

376 P. Lu et al.

– We conduct a comprehensive study on the reversibility of voiceprint. To
our best knowledge, this is the first study on voiceprint reconstruction and
voiceprint privacy.

– Voxstructor is developed for reconstructing voice samples from voiceprint.
We implement and analyze voiceprint reconstruction under three mapping
network structures, three loss functions, three voiceprint extractors and three
discrimination thresholds while achieving a very high attack success rate.

– We discuss the multiple implications of our scheme. It not only exposes the
reversibility and sensitivity of the voiceprint, but also demonstrates the need
for privacy protection. Moreover, it can be used in several aspects such as
computer forensics, and privacy-preserving effect metrics.

The remainder of this paper is organized as follows. We review the relevant
background information in Sect. 2. The proposed scheme and the performance
evaluation are followed in Sect. 3 and Sect. 4 respectively. In Sect. 5, we review
some related works. Finally, we draw our conclusion in Sect. 6.

2 Background

In this section, we introduce the basic knowledge of the speaker verification
system and threat model.

2.1 Speaker Verification System

Fig. 1. Overview of the proposed system for reconstructing voices from the correspond-
ing templates.

Speaker recognition is an automatic technology which can recognize the speaker’s
identity according to the sound characteristics extracted from their speech. The
flow of a speaker verification system (SVS) is shown with the dashed box in

Voxstructor: Voice Reconstruction from Voiceprint 377

the normal flow in Fig. 1, which mainly includes five modules. Microphone is
used to collect user’s registered voice and verification voice. Extractor is used
to extract speaker characteristics in voice. Database is used to store user’s
registered voiceprint template. Scoring module is used to match speaker fea-
ture vector extracted from verification voice with registered voiceprint template
stored in database and outputs a similarity score. Decision module is used
to compare the result of scoring module with threshold and gives the decision
result of pass or fail.

At present, there are several popular technologies used in speaker recognition
system as follows.

I-Vector. The method based on the i-vector involves modeling the global dif-
ference, and modeling the speaker and channel as a whole [6]. In this way, the
restrictions on the training corpus are relaxed, the calculation is simple, and the
performance is better. The i-vector contains both the speaker differential infor-
mation and the channel differential information, so it is necessary to remove the
channel interference in the i-vector and use channel compensation technology
to eliminate the channel interference. An i-vector can be written as 400 or 600
dimensional vector.

X-Vector. Snyder et al. [7] defined the x-vector and proposed an extraction
model based on a multi-layer delayed neural network, which can transform the
input features at the frame level into the feature expression at the sentence level.
The embedded vector extracted from the model is called the x-vector, which can
be used similarly to the i-vector. The dimension of this vector is 512, and it also
contains the channel information. Channel compensation technology is needed
to eliminate the interference (PLDA classifier is used in the training process).

Resnet34 Model. Heo et al. [8] proposed the Resnet34 voiceprint extraction
model based on residual networks. In this paper, different loss functions are
used to train the model. Comparing the accuracies of the models, GE2E and the
original network (AP + softmax) have the highest accuracy.

Scoring Methods. It consists of three main scoring methods in SVS systems:
PLDA, cosine distance, and Euclidean distance. As a channel compensation algo-
rithm of i-vector and x-vector, PLDA is widely used in SVS because its compen-
sation effect is better than other channel compensation algorithms (such as LDA)
and the scoring methods are based on calculating log likelihood. Research shows
that channel information will cause the size of feature vector to change, while
speaker information mainly affects the direction of i-vector feature vector [6], so
cosine distance weakens the influence of channel information to a certain extent.
Finally, Euclidean distance is widely used as a way to measure the distance
between two points (vectors). Here we combine it with the Resnet34 model as
an SVS to show the effect of Euclidean distance in the field of voiceprint feature
recognition.

378 P. Lu et al.

2.2 Threat Model

Fig. 2. Attack scenarios, where * means that PLDA is not used for SVS with Resnet34
as the voiceprint extractor, and # means that EU-DIS is only used for SVS with
Resnet34 as the voiceprint extractor. θ1, θ2, θ3 are based on EER, high user experience
degree, and high security degree respectively.

We assume that the adversary has the voiceprint template of the registered
speaker and hopes to design a voice sample to defeat the SVS.

The scenario of the template reconstruction attack is shown in Fig. 1. The
adversary obtains the target’s voiceprint template through some means, such as
purchasing it illegally or obtaining it through unauthorized access, for example,
caused by software vulnerabilities in the SVS such as buffer overflow privilege
escalation. Then the adversary uses it to reconstruct the target’s voice through
voxstructor, and uses the voice to attack the target’s speaker verification sys-
tem. According to whether the voiceprint template obtained by the adversary
is from the target SVS, there are two types of attacks in voiceprint reconstruc-
tion attack: (1) intra-utterance, the reconstructed voiceprint template comes
from the victim registration voiceprint template stored in the target SVS; (2)
inter-utterance, the reconstructed voiceprint template comes from the victim’s
unregistered voiceprint template.

Our proposed voiceprint reconstruction attack is a black-box attack. In other
words, the attacker can attack the system without knowing the neural network
model in the SVS (such as structure, parameters, and training data set, etc.). The
reason is that the proposed voiceprint reconstructor does not need to understand
the neural model, and only needs to input the voiceprint template to reconstruct
the victim’s voice.

In our attack model, in order to fully demonstrate the effect of voiceprint
reconstruction attack, we design six SVSs based on three mainstream voiceprint
extraction models (i-vector, x-vector, Resnet34) and three popular scoring meth-
ods (PLDA, Euclidean distance, cosine distance). According to the system’s
availability and security requirements, we set three different thresholds based on
the system accuracy evaluation target equal error rate (EER), high user expe-
rience degree, and high security degree for each SVS. Including two types of
attacks, as shown in Fig. 2, there are a total of 36 attack scenarios.

Voxstructor: Voice Reconstruction from Voiceprint 379

3 Voxstructor

Voxstructor is mainly realized by voice cloning technology [5] and voiceprint
mapping model. Figure 3 shows the structure diagram of voxstructor. Voiceprint
templates are transformed into the speaker embedding vectors by mapping
model, and the vector and text content are synthesized into mel spectrograms
by the synthesizer, and the reconstructed speech is generated by the vocoder.
In this section, we will introduce the details and technologies in the process of
voiceprint reconstruction.

Fig. 3. Voxstructor structure diagram.

3.1 Voice Cloning

Google proposes real-time voice cloning (RTVC) technology, which is based on a
text-to-speech (TTS) synthesis system that can generate speech audio in differ-
ent speaker’s voices [5]. The technology consists of three main components: (1)
Speaker encoder network: a multilayer LTSM network, trained as a speaker verifi-
cation task, that generates a fixed dimensional embedding vector speaker embed-
ding from only a few seconds of reference speech of the target speaker, which
has the characteristics of the speaker; (2) Synthesizer: a Tacotron 2-based [11]
inter-sequence synthesis network that generates mel spectrograms from text con-
ditional on the speaker embedding vector generated in the speaker encoder; (3)
Vocoder: an autoregressive WaveNet-based [12] vocoder network that converts
the generated in the synthesizer mel spectrograms into time domain waveform
samples, thus generating the speech audio of the target person. While voice
cloning provides our research with a strong base, our voiceprint reconstruction
converts different forms of voiceprint templates into speaker embedding vectors,
synthesizes mel spectrograms with text through Synthesizer, and finally gener-
ates speech files through the vocoder.

3.2 Problem Formation

Given a target person’s voiceprint template x, the target person’s voice v is
reconstructed from x, and v must be similar enough to the target person’s voice

380 P. Lu et al.

in order to pass the SVS. In other words, the voiceprint x′ extracted from v by
the voiceprint extractor in the SVS and the registered template x can be scored
against the threshold after passing the scoring method. Therefore, we wish the
difference between x and x′ to be as small as possible. Then the problem is
formalized as:

min d(x, x′), (1)

where d represents the distance between the two vectors.
Our ultimate goal is to reconstruct the voice from the voiceprint, i.e., we wish

to construct a voiceprint reconstructor v = R(x, t), where t is the text of the
reconstructed voice, and v can pass the SVS. The known voice cloning technique
[5] for cloning voice is: v = g(se, t), where se is the origin speaker embedding of
speaker’s voice. Therefore we can introduce the mapping model m(.) to establish
the link between x and se: se′ = m(x), then the voice reconstruction machine
can be expressed as:

v = R(x, t) = g(m(x), t). (2)

Because we build a link between voiceprint and speaker embedding, the prob-
lem Eq. (1) can be transformed to Eq. (3):

min d(se, se′). (3)

In summary, our goal is to find mapping model m(.), which can achieve min
d(se, se′).

3.3 Mapping Model

The mapping models are three-layer fully connected structures and convolu-
tional neural network, which have simple structures, easy implementation, and
few parameters. The normalization of the voiceprint is needed before the input
model. According to three different types of voiceprint characteristics, we design
three different mapping models. (1) I2E: this model maps i-vector to speaker
embedding; (2) X2E: this model maps x-vector to speaker embedding; (3) R2E:
this model maps the voice eigenvector extracted by Resnet34 to speaker embed-
ding. The mapping model we proposed is not limited to these three types.

Let D(·, ·) denote the reconstruction loss function between different speaker
embedding, v denote a training voice sample from the public datasets, f(·) denote
voiceprint extractor function, g(·) denote voice cloning function, t denote the text
in the reconstructed voice, θ denote the parameters of mapping model, e denote
the speaker embedding extractor function. According to Eq. (1) and Eq. (3), the
objective function for training mapping models can be formulated as

arg min
θ

L(v, θ) = arg min
θ

1
N

N∑

i

D(f(vi), f(g(mθ(f(vi)), t))) (4)

≈ arg min
θ

1
N

N∑

i

D(mθ(f(vi)), e(vi)), (5)

Voxstructor: Voice Reconstruction from Voiceprint 381

where N denotes the number of voice samples. After training, we can get
the reconstructed voice sample v′ using the target’s voiceprint x: v′ =
g(mθ(f(vi)), t).

We use three different loss functions (MSELoss, L1Loss and SmoothL1Loss)
as D(·, ·) in Eq. (4) to train our model, so as to show the influence of differ-
ent distance measurement methods on the voiceprint mapping model. For each
mapping model, we use the above loss functions to train the mapping models,
which contains nine models.

4 Experiment Evaluation

We evaluate the reconstruction attack capability of Voxstructor1 in a SVS from
the following four aspects: effectiveness, efficiency, human perceived similarity
and privacy-reserving methods effect metric. Then, we introduce the datasets,
experimental design and the above four aspects. For convenience and clarity, we
list the abbreviations used in the experiment in Table 1.

Table 1. The list of notations used in the experiments.

Notations Descriptions

Average-utterance Voxstructor based on the mean voiceprint

CONV MSE & convolutional network

Inter-utterance Voxstructor based on the Unregistered voiceprint

Intra-utterance Voxstructor based on the registered voiceprint

IV-COS i-vector & cosine distance as score

IV-PLDA i-vector as voiceprint & PLDA as score

L1L L1 loss & fully connected network

L1L-text2 L1L & use second text to generate

L1LNO L1L & without normalization

MSE MSE loss & fully connected network

Rand-vector Randomly generated voiceprint vectors

Rand-wav 4874 randomly generated voices

RN-EU Resnet & euclidean distance as score

RN-COS Resnet & cosine distance as score

Smooth Smooth loss & fully connected network

RTVC Voice generated by voice cloning tool

RTVC-text2 RTVC & use second text to generate

XV-PLDA x-vector as voiceprint & PLDA as score

XV-COS x-vector & cosine distance as score

1 https://github.com/voxstructor/voxstructor.

https://github.com/voxstructor/voxstructor.

382 P. Lu et al.

4.1 Dataset and Design

Dataset. The databases we used are voxceleb1 [13] and librispeech [14]. Vox-
celeb1 contains about 100000 voice samples of 1251 celebrities from YouTube
Videos. The data is reasonably gender balanced (55% male). For the speaker
verification system, the data set can be divided into a development set and a
test set, and there is no overlap between them.

Librispeech is the most authoritative mainstream open-source dataset to
measure speech recognition technology. It is an audiobook data set containing
text and voice. The data comes from the audio recordings of reading materi-
als from the Librivox project, and is carefully subdivided and consistent. Each
recording is split into segments of 10 s and linked to its corresponding section of
the accompanying text.

Design. In order to better and more comprehensively evaluate the voice recon-
struction attack capability of Voxstructor, we target three speaker verification
systems: i-vector, x-vector and deep residual network ResNset34 model. These
are test in the most popular open-source platform-kaldi [15]. In addition, we use
the more popular PLDA, cosine distance, and Euclidean distance as the scoring
methods for speaker verification systems. The i-vector extractor and the corre-
sponding PLDA use the pre-trained model from the open source tool Kaldi2.
The x-vector model and its PLDA also use the pre-trained Kaldi model3. The
Resnet34 model uses the pre-trained model from Joon et al. [16]. The perfor-
mance of these six systems can be seen in Table 2.

To be able to fully represent the Voxstrutor voice reconstruction capability,
we use all the voices in the test set (40 users, 4874 voices) to register the speaker
verification system and reconstruct the voices according to the corresponding
voiceprint. We also consider the case that some current speaker verification sys-
tems register users with a voiceprint template that averages the vectors extracted
from multiple voices of the user. Therefore, we also use the average voiceprint of
the four voices of each user in the test set to register the system and reconstruct
the voice based on this voiceprint template. In addition, we selected 100 speakers
from the tran-clean-100 in LibriSpeech with clear and noiseless speech to test
the reconstruction ability of Voxstructor.

Evaluation Criteria. We use false rejection rate (FRR), false acceptance rate
(FAR), and equal error rate (EER) to express the performance of the SVS. We
use the attack pass rate to evaluate the ability of the voice-reconstruction attack,
i.e., the percentage of voices reconstructed from the voiceprint that pass the
speaker verification system. To evaluate the efficiency of the voice reconstruction
attack, the execution time of the reconstructed voice is used as a metric.

2 https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb/v1.
3 https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb/v2.

https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb/v1.
https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb/v2.

Voxstructor: Voice Reconstruction from Voiceprint 383

Table 2. Performance of the six baseline SVSs (%).

SVS Threshold EER FRR FAR

IV-PLDA –1.000 5.342 5.371 5.313

–6.000 — 1.193 17.487

3.000 — 14.846 1.278

IV-COS 0.060 13.831 13.807 13.855

–0.020 — 1.283 67.869

0.128 — 41.559 1.012

XV-PLDA −3.000 3.134 3.303 2.964

–8.000 — 1.288 7.635

1.000 — 7.269 1.103

XV-COS 0.670 9.722 9.369 10.074

0.530 — 1.082 32.847

0.770 — 33.330 1.145

RN-EU 80.000 5.199 5.795 4.602

87.000 — 1.129 18.722

75.000 — 13.971 1.145

RN-COS 0.350 1.880 1.023 2.736

0.390 — 2.322 1.198

4.2 Effectiveness

Target Model. In order to evaluate the effectiveness of the voiceprint recon-
struction attack, we designed six speaker verification systems (IV-PLDA, IV-
COS, XV-PLDA, XV-COS, RN-EU, RN-COS) using a combination of the three
most popular voiceprint extraction methods and three scoring methods, PLDA,
Euclidean distance, and cosine distance. For simplicity, IV is used to denote i-
vector, XV to denote x-vector, RN to denote Resnet34, and PLDA, EU, COS
to denote the three scoring methods of PLDA, Euclidean distance, and cosine
distance, respectively.

Here, we set three thresholds for each system. The first threshold is deter-
mined based on the EER, which is a relatively good compromise between avail-
ability and security of the verification system. The second will be determined
based on the FRR value of 1.0% , i.e., the verification system focuses on avail-
ability. The third will be determined based on the FAR value of 1.0% , i.e., the
verification system focuses on security. It is worth noting that similar to other
biometric verification techniques, the input voice (or extracted voiceprint from
the user input) and the stored voiceprint usually do not match perfectly. As a
result, a matching score threshold must be set for SVS to verify the identity of
user. In the RN-COS system, the FRR can be taken as 1.023% when the EER
is 1.88%, so the second threshold is not set.

384 P. Lu et al.

Table 3. The pass rates of Voxstructor, RTVC and rand guessing under intra-utterance
type (%).

Model SVS Threshold Voxstructor RTVC Rand vector Rand-wav

I2E IV-PLDA –1.000 77.754 84.773 1.950 0.636

–6.000 97.106 98.071 10.979 6.731

3.000 41.822 54.853 0.082 0.041

IV-COS 0.060 41.137 52.626 11.264 15.224

–0.020 88.162 91.711 66.886 66.639

0.128 7.817 13.993 0.431 1.847

X2E XV-PLDA –3.000 72.522 79.889 3.099 2.586

–8.000 90.971 93.803 16.745 16.068

1.000 48.964 60.456 0.349 0.369

XV-COS 0.670 89.208 86.869 0.000 0.041

0.530 99.713 99.036 0.000 0.759

0.770 45.466 46.492 0.000 0.000

R2E RN-EU 80.000 64.854 67.357 0.533 12.946

87.000 88.531 90.008 5.929 52.216

75.000 40.870 44.276 0.021 1.785

RN-COS 0.350 63.192 70.086 0.000 1.149

0.390 45.568 53.037 0.000 0.041

Voiceprint Reconstruction Results. To evaluate the voice reconstructed
based on different voiceprint forms, we test the pass rate of the voice recon-
structed with different types of voiceprints in the corresponding SVS. In addi-
tion, we designed two sets of comparison experiments, one is to test the pass
rate of the original voice of registered users directly synthesized by the real-time
voice cloning tool (RTVC) [5] in six speaker verification systems. The other is to
verify the pass rate of random guesses, we generated two forms of data sets ran-
domly based on the test set of voxceleb1, one randomly generated voice vector
set (rand vector) and the other randomly generated voice set (rand wav). The
pass rates of Voxstructor, RTVC and rand guessing under intra-utterance case
are shown in Table 3, where the loss function of the Voxstructor is the L1Loss
function. We verify the impact caused by the voiceprint after reconstruction on
the SVS based on 4874 voices in the voxceleb test set. The results show that
our attack scheme is fully effective and can achieve similar results to RTVC, far
exceeding the two random guesses.

As shown in Table 4, the pass rates of voice reconstructed based on average
voiceprint are higher than common intra-uttenance case. This result indicates
that the mean voiceprint-based reconstruction attack is much more effective
against the SVS based on their models than the single speech-based voiceprint

Voxstructor: Voice Reconstruction from Voiceprint 385

reconstruction attack. That is, the mean voiceprint of multiple voices of a user
is better at characterizing the user’s voice than the voiceprint of a single voice.

Table 4. The pass rates of different datasets, average-utterance, intra-utterance and
inter-utterance (%).

Model SVS Threshold librispeech voxceleb Average Intra Inter

I2E IV-PLDA –1.000 96.000 77.754 85.000 77.754 48.133

–6.000 100.000 97.106 97.500 97.106 83.772

3.000 84.000 41.822 47.500 41.822 18.366

IV-COS 0.060 81.000 41.137 52.500 41.137 28.706

–0.020 95.000 88.162 90.000 88.162 80.764

0.128 43.000 7.817 20.000 7.817 4.369

X2E XV-PLDA –3.000 94.000 72.522 72.500 72.522 44.944

–8.000 100.000 90.971 95.000 90.971 71.989

1.000 84.000 48.964 42.500 48.964 23.544

XV-COS 0.670 100.000 89.208 100.000 89.208 71.729

0.530 100.000 99.713 100.000 99.713 95.758

0.770 66.000 45.466 85.000 45.466 23.293

R2E RN-EU 80.000 82.000 64.854 87.500 64.854 49.968

87.000 92.000 88.531 100.000 88.531 80.064

75.000 66.000 40.870 80.000 40.870 28.112

RN-COS 0.350 93.000 63.192 92.500 63.192 40.027

0.390 82.000 45.568 80.000 45.568 24.624

In the inter-utterance case, the pass rate of the reconstructed speech from
our voiceprint reconstruction scheme is about 20% lower in SVSs than in the
intra-utterance case. This shows that even for different voices of the same per-
son, there are still relatively large differences and it is still not a good way to
model a person’s speech characteristics. The result is a good illustration of the
limitations and drawbacks of short speech registration in speaker verification
systems. However, this pass rate is still fatal to SVSs, and once the voiceprint of
a registered user of all SVSs is leaked, then SVS using the same model as that
SVS will also be threatened.

The pass rates of two datasets in the intra-utterance case are shown in
Table 4, where the loss function of the model is the L1Loss function. As can
be seen from the table, among these six SVSs, the pass rate of the speech recon-
structed by Voxstructor based on the voiceprint in librispeech speech can reach
more than 90% in the SVS with the threshold value of voxceleb, which is about
20% higher than the pass rate tested with voxceleb data. This is mainly due to
the fact that the voxceleb speech is mainly from YouTube videos, which contains

386 P. Lu et al.

additional background noise, while the librispeech speech is clean speech from
audiobook readings.

Effect of Loss Functions. In order to test the effect of different loss functions
on the mapping models, we designed three loss functions, L1Loss, MSELoss,
and SmoothL1Loss, to train our proposed three models, I2E, X2E, R2E, and
test their pass rates. The pass rates of the mapping models trained with different
loss functions are shown in Table 5. The results show that SmoothL1Loss has the
highest accuracy for i-vector voiceprints and MSELoss has the highest accuracy
for x-vector and Resnet voiceprints.

Table 5. The pass rates of different loss function under intra-utterance type (%).

Model SVS Threshold L1L MSE Smooth

I2E IV-PLDA –1.000 77.754 76.790 80.176

–6.000 97.106 96.696 97.496

3.000 41.822 41.740 43.854

IV-COS 0.060 41.137 43.906 45.507

–0.020 88.162 89.516 89.577

0.128 7.817 9.643 10.423

X2E XV-PLDA −3.000 72.522 72.604 71.681

–8.000 90.971 91.525 90.806

1.000 48.964 49.292 48.245

XV-COS 0.670 89.208 88.346 89.229

0.530 99.713 99.815 99.733

0.770 45.466 43.188 44.337

R2E RN-EU 80.000 64.854 67.111 64.198

87.000 88.531 91.075 88.941

75.000 40.870 42.388 39.352

RN-COS 0.350 63.192 65.429 64.362

0.390 45.568 47.476 46.984

Model Structure. For the mapping models in the proposed scheme, we also
design a set of comparison experiments using three different structures of map-
ping models for the acoustic vectors. These are namely the fully connected,
convolutional, and unnormalized.

The pass rates of the fully connected mapping model, the fully connected
mapping model without normalization of the voiceprint, and the convolution-
based mapping model in the speaker verification system are shown in Table 6.
As we can see, the pass rate for the unnormalized fully-connected mapping model

Voxstructor: Voice Reconstruction from Voiceprint 387

of the voiceprint is very low, about 70% lower than that of the normalized fully-
connected model. It was observed that in the reconstruction for i-vector and
Resnet voiceprint, the pass rates of the fully connected structure is almost the
same as that of the convolutional structure. And the fully connected structure
outperforms the convolutional structure in the reconstruction for the x-vector.
This indicates that the correlation between the components of the voiceprint
template is small and there is no local receptive field.

Table 6. The pass rates of different mapping models under intra-utterance type (%).

Model SVS Threshold L1L L1LNO CONV

I2E IV-PLDA –1.000 77.754 8.537 77.940

–6.000 97.106 21.547 97.189

3.000 41.822 1.642 42.110

IV-COS 0.060 41.137 13.500 44.112

–0.020 88.162 66.229 89.516

0.128 7.817 0.985 10.176

X2E XV-PLDA −3.000 72.522 1.847 52.473

–8.000 90.971 6.587 79.356

1.000 48.964 0.451 29.079

XV-COS 0.670 89.208 21.892 78.539

0.530 99.713 29.237 99.056

0.770 45.466 7.571 28.272

R2E RN-EU 80.000 64.854 2.400 61.202

87.000 88.531 11.899 86.725

75.000 40.870 0.472 36.048

RN-COS 0.350 63.192 1.805 57.858

0.390 45.568 0.677 41.157

Due to the limited space, we only show the pass rates in the intra-utterance
attack type here, and the pass rate for the inter-utterance type can be found in
the Appendix.

Text Independence. Finally, to characterize the text-independent speaker
verification system, two different texts were used to synthesize two sets of speech.
Text 1 is: “This is being said in my own voice. The computer has learned to do
an impression of me.” Text 2 is: “The prince loves his roses, but felt disappointed
by something the rose said. As doubt grows, he decides to explore other planet.”
We synthesize two sets of speech based on the two texts after mapping the
voiceprints using a mapping model trained with the L1Loss loss function. In
addition, to compare and demonstrate the effect of our reconstruction scheme

388 P. Lu et al.

to reconstruct two different contents of speech in a text-independent system, we
take the speech from the voxceleb1 test set directly through the RTVC tool to
synthesize two sets of speech with different texts.

The pass rates of the voice reconstructed using two different English texts
with the mapped vectors through the speaker verification system is shown in
Table 7 and Table 16 (see Appendix). The results indicate that our attack can still
achieve a high pass rate even when generating a voice with different text content
than the original registered voice. The pass rate for both texts is essentially the
same. This shows that Voxstructor is fully applicable to diverse attacks and can
generate commands with sensitive semantics to further threaten the security of
smart voice assistants, smart homes, and other environments.

Table 7. Pass rate of text-independent under Intra-utterance type (%).

Model SVS Threshold L1L L1L-TEXT2 RTVC RTVC-TEXT2

I2E IV-PLDA –1.000 77.754 74.635 84.773 82.865

–6.000 97.106 95.834 98.071 97.353

3.000 41.822 39.113 54.853 52.719

IV-COS 0.060 41.137 39.598 52.626 51.252

–0.020 88.162 88.059 91.711 92.983

0.128 7.817 6.483 13.993 12.659

X2E XV-PLDA –3.000 72.522 67.063 79.889 76.093

–8.000 90.971 86.723 93.803 91.340

1.000 48.964 45.392 60.456 56.105

XV-COS 0.670 37.669 36.808 52.626 51.252

0.530 86.972 86.233 91.711 92.983

0.770 7.448 6.011 13.993 12.659

R2E RN-EU 80.000 64.854 88.141 67.357 86.438

87.000 88.531 98.420 90.008 97.435

75.000 40.870 69.696 44.276 67.152

RN-COS 0.350 63.192 67.009 70.086 69.655

0.390 45.568 49.097 53.037 53.775

4.3 Efficiency

We test the time of synthesizing sound in our voiceprint reconstruction scheme
on a Windows PC with NVIDIA p5000 GPU. The test time is shown in Table 8.
Our voiceprint reconstruction attack can reconstruct the user’s voice from the
voiceprint vector without accessing the verification system. However, the FAKE-
BOB proposed in the paper [1] not only needs a segment of speech as the original
speech of the target speech, but also needs to visit the verification system many

Voxstructor: Voice Reconstruction from Voiceprint 389

times to make the speech conversion successful. Therefore, the time consumed by
our proposed voiceprint reconstruction attack is much less than that of FAKE-
BOB attack, which is 80 times faster than that of FAKEBOB attack.

Table 8. The time consumed by voiceprint reconstruction attack and FAKEBOB
attack (seconds).

I2E X2E R2E FAKEBOB

Time (seconds) 23.781 27.254 25.340 2014

4.4 Manual Listening Experiment

We randomly select 10 people from librispeech and pick 2 sentences each at
random. We extract three voiceprints for each sentence and reconstruct them
using Voxstructor to get 3 *2 * 10 = 60 new voices. At the same time, we use
RTVC to generate the same 2 * 10 = 20 strips. These are combined, and we invite
10 volunteers to perform a manual listening test to evaluate the similarity with
the original speech. We ask the testers to score the speech on a scale of 0–5,
where a score of 0 indicates that it is completely unlike the original speech and
a score of 5 indicates that it is identical. The results of the manual scoring are
shown in Table 9.

Table 9. The manual listening scores of voxstructor and voice cloning [5].

I2E X2E R2E Average of three RTVC

Scores 4.12 3.86 3.94 3.97 4.25

From Table 9, we can see that the average score of Voxstructor reconstructed
out is 3.97, and the average score of RTVC is 4.25. The results show that the
effect of our reconstructed speech using voiceprints is very close to the effect
of RTVC using voice directly. Furthermore, both resemble the original voice so
much that humans cannot distinguish whether it is the generated voice or not.

4.5 Privacy-Preserving Methods Metric

Due to the sensitive nature of voiceprint biometrics, many privacy-preserving
speaker recognition schemes have been developed in recent years. Thus, it is
important to evaluate the effectiveness of these privacy protection mechanisms.
In order to show the effectiveness of Voxstructor on the metric of voiceprint-
based privacy-preserving schemes, we designed the following experiments.

390 P. Lu et al.

Setup: This experiment is also conducted mainly under the intra-utterance case.
The test data are obtained from 20 different speakers’ voices in librispeech’s tran-
clean-100. We test the pass rates of reconstructed voice from the three kinds
of protected voiceprints by Voxstructor in their SVSs. In order to exclude the
influence of the voice text in the metric of the privacy protection scheme of the
voiceprint, we reconstruct the voice content as well as the content of the original
voice text. We metric for four current privacy-preserving methods for voiceprint.

– MR: multiplying the voiceprint value by a random number for protection
purpose.

– ARV: Adding the voiceprint by a random vector for protection purpose.
– MOM: multiplying the voiceprint by an orthogonal matrix for protection

purpose.
– MMV: multiplying the voiceprint by an orthogonal matrix followed by a ran-

dom vector for protection purposes, where the elements in the random vector
and the random orthogonal matrix are generated by normal distribution, and
we designed the mean value to be 0 and the scalar vertebral difference to be
0, 0.5, 1, 2, 3, 4, 5, to verify its pass rate in the SVS, respectively.

Results: For the MR approach, the protection method of multiplying the
voiceprint by a random number does not achieve the effect of protecting the
voiceprint because the voiceprint will be normalized when the voiceprint map-
ping model of Voxstructor is passed.

Table 10. Pass rate of Voxstructor for ARV privacy-preserving schemes (%).

SVS Threshold std-0 std-0.5 std-1 std-2 std-3 std-4 std-5

IV-PLDA –3.000 95.000 95.000 95.000 60.000 25.000 40.000 25.000

-8.000 100.000 100.000 100.000 75.000 60.000 50.000 45.000

1.000 95.000 80.000 70.000 40.000 20.000 20.000 10.000

IV-COS 0.060 100.000 95.000 100.000 80.000 75.000 65.000 60.000

-0.020 100.000 100.000 100.000 100.000 100.000 95.000 95.000

0.128 80.000 75.000 65.000 35.000 30.000 30.000 20.000

XV-PLDA –3.000 100.000 100.000 100.000 100.000 95.000 95.000 85.000

-8.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

1.000 95.000 95.000 100.000 100.000 85.000 85.000 70.000

XV-COS 0.670 100.000 100.000 100.000 100.000 100.000 90.000 90.000

0.530 100.000 100.000 100.000 100.000 100.000 100.000 100.000

0.770 65.000 75.000 80.000 65.000 55.000 50.000 35.000

RN-EU 80.000 95.000 100.000 100.000 100.000 100.000 95.000 90.000

87.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

75.000 95.000 95.000 95.000 95.000 90.000 85.000 80.000

RN-COS 0.350 95.000 100.000 95.000 90.000 90.000 75.000 55.000

0.390 80.000 90.000 90.000 80.000 80.000 65.000 45.000

For the ARV, MOM, and MMV approaches, our test data are shown in
Table 10, Table 11, and Table 12 respectively. When the variance is small, the
Voxstructor pass rate is very high. When the variance is large, the pass rate of

Voxstructor: Voice Reconstruction from Voiceprint 391

the reconstructed speech is low. The privacy of the voice template is fully pro-
tected at this time. Therefore, we can conclude that the pass rate of Voxstruc-
tor is inversely correlated with the degree of privacy protection. In conclusion,
Voxstructor can be used as a tool for evaluating privacy-preserving approaches
for speaker verification systems.

Table 11. Pass rate of Voxstructor for MOM privacy-preserving schemes (%).

SVS Threshold std-0 std-0.5 std-1 std-2 std-3 std-4 std-5

IV-PLDA –3.000 95.000 10.000 25.000 20.000 10.000 30.000 10.000

–8.000 100.000 45.000 40.000 45.000 45.000 45.000 40.000

1.000 95.000 0.000 10.000 10.000 5.000 20.000 0.000

IV-COS 0.060 100.000 60.000 75.000 85.000 70.000 70.000 55.000

–0.020 100.000 85.000 90.000 95.000 95.000 95.000 90.000

0.128 80.000 20.000 30.000 20.000 25.000 25.000 5.000

XV-PLDA −3.000 100.000 20.000 15.000 0.000 15.000 15.000 5.000

–8.000 100.000 25.000 35.000 20.000 25.000 20.000 20.000

1.000 95.000 15.000 0.000 0.000 10.000 10.000 0.000

XV-COS 0.670 100.000 10.000 10.000 10.000 10.000 10.000 20.000

0.530 100.000 40.000 50.000 40.000 45.000 40.000 35.000

0.770 65.000 5.000 5.000 0.000 0.000 0.000 0.000

RN-EU 80.000 95.000 60.000 40.000 50.000 35.000 45.000 60.000

87.000 100.000 90.000 85.000 85.000 80.000 95.000 95.000

75.000 95.000 45.000 15.000 25.000 10.000 35.000 45.000

RN-COS 0.350 95.000 25.000 5.000 10.000 10.000 15.000 5.000

0.390 80.000 10.000 5.000 5.000 5.000 10.000 5.000

5 Related Work

At present, there are many studies on the security of intelligent voice system.
In this part, we discuss the attacks on an intelligent voice system and compare
them with Voxstructor.

Li et al. [2] introduce an imperceptible disturbance into the original speech
signal to defeat the SVS. From the perspective of voiceprint template, they
generate the sample voice for spoofing SVSs by leveraging the Genetic algo-
rithm, the fitness function in which is mainly designed according to the similar-
ity score between the target’s voiceprint and the voiceprint extracted from the
sample speech. Comparatively, Voxstructor does not need multiple iterations to
reconstruct voice, so its efficiency is high. Additionally, Voxstructor can real-
ize the black-box attack without knowing the voiceprint extraction model. The

392 P. Lu et al.

Table 12. Pass rate of Voxstructor for MMV privacy-preserving schemes (%).

SVS Threshold std-0 std-0.5 std-1 std-2 std-3 std-4 std-5

IV-PLDA –3.000 95.000 15.000 40.000 20.000 20.000 52.000 20.000

–8.000 100.000 35.000 65.000 45.000 30.000 30.000 35.000

1.000 95.000 0.000 20.000 10.000 10.000 5.000 0.000

IV-COS 0.060 100.000 55.000 60.000 55.000 50.000 70.000 70.000

–0.020 100.000 100.000 95.000 85.000 95.000 90.000 90.000

0.128 80.000 30.000 25.000 30.000 15.000 30.000 30.000

XV-PLDA –3.000 100.000 10.000 20.000 10.000 15.000 20.000 20.000

–8.000 100.000 35.000 40.000 40.000 25.000 45.000 35.000

1.000 95.000 5.000 10.000 0.000 5.000 5.000 15.000

XV-COS 0.670 100.000 5.000 15.000 20.000 15.000 15.000 30.000

0.530 100.000 30.000 55.000 50.000 50.000 40.000 55.000

0.770 65.000 5.000 0.000 5.000 0.000 0.000 0.000

RN-EU 80.000 95.000 60.000 45.000 65.000 70.000 50.000 55.000

87.000 100.000 95.000 85.000 90.000 85.000 85.000 85.000

75.000 95.000 20.000 30.000 40.000 35.000 20.000 25.000

RN-COS 0.350 95.000 10.000 5.000 35.000 25.000 15.000 5.000

0.390 80.000 10.000 0.000 10.000 15.000 5.000 0.000

voiceprint mimicry attack [3], realized the gray box or black box attack, but
it is in essence an adversarial voice attack. That is to say, only through most
iterations can the sample speech contain the target’s voiceprint template. The
FAKEBOB proposed by Chen et al. [1] attacks speaker recognition systems (e.g.
SV, OSI, CSI). However, FAKEBOB also needs to access the system several
times, while Voxstructor does not need access to one. In summary, compared
with adversarial voice attacks, our voiceprint reconstruction attack can quickly
reconstruct the target’s voice from the voiceprint template without additional
voice samples.

The spoofing attack is to mimic the target’s voice to trick the SVS. There
are four main kinds of attacks. The first and second attacks are mimicking and
replaying. The attacker creates a speech sample by mimicking or pre-recording
the speech sample of a given target speaker, which are the simplest ways to cheat
the speaker verification system. However, playback technology can not meet the
requirements of text-dependent SVS when producing specific utterances, and
mimic is quite hard to find in reality. Our voiceprint reconstruction attack can
meet this kind of attack scenario. The third one is voice synthesis [17]. The
attacker uses text to speech (TTS) synthesis system to synthesize the target’s
audio. However, the training of this synthesis model requires the target’s speech
set of at least tens of minutes. Voxstructor does not need to obtain any speech
set of the target, it only needs the target’s voiceprint. The fourth attack is voice

Voxstructor: Voice Reconstruction from Voiceprint 393

conversion [18]. It is to modify the voice of one speaker (source) to make it sound
like the voice of another speaker (target) without changing the language content.
However, this kind of attack also needs the target’s voice to train the transfer
function. In addition, our attack can reconstruct the voice of most targets in a
short time, which other spoofing attacks cannot achieve.

6 Conclusion

In this paper, we conducted the first comprehensive and systematic research
on voiceprint reconstruction, by proposing a novel, efficient voiceprint re-
constructor, called Voxstructor. At the same time, our voiceprint reconstruction
attack was verified under 36 attack scenarios. This paper not only reveals the
high sensitivity of voiceprint template through a large number of experiments,
but also has the following significance:

– Voxstructor can carry out high simulation and batch spoofing attack on
speaker recognition system. And it automatically completes the attack end-
to-end without human participation.

– Voxstructor can be used to measure the effect of voiceprint privacy protection
method; it can also be used to measure privacy in voiceprint. For noise-added
privacy-preserving schemes, Voxstructor can also reconstruct the voice sample
very well and achieve a high pass rate.

– Voxstructor can be used in computer forensics. This technology can also
restore the voice of the suspect from the voiceprint of the suspect to pro-
vide evidence or clues for the police.

Acknowledgments. This work was supported by National Natural Science Foun-
dation of China (61972304 and 61932015), National Natural Science Foundation of
Shaanxi Province (2019ZDLGY12-02), and Natural Sciences and Engineering Research
Council of Canada (NSERC).

Appendix

Experimental Results About Inter-utterance Case
The pass rates of Voxstructor, RTVC and rand guessing under inter-utterance
case are shown in Table 13. The pass rate of Voxstructor is close to that of RTVC
with speech as direct input and significantly higher than that of the two random
guessing schemes. These results illustrate that Voxstructor is still valid under
inter-utterance case.

394 P. Lu et al.

Table 13. Pass rate of Voxstructor, RTVC and rand guessing under inter-utterance
case.

Model SVS Threshold L1L RTVC Rand vector Rand-wav

I2E IV-PLDA –1.000 48.133 57.194 1.782 0.743

–6.000 83.772 88.186 11.039 7.480

3.000 18.366 26.122 0.228 0.058

IV-COS 0.060 28.706 33.622 11.659 15.747

–0.020 80.764 83.648 65.292 66.840

0.128 4.369 6.389 0.562 1.644

X2E XV-PLDA –3.000 44.944 49.326 3.188 2.822

–8.000 71.989 74.143 16.625 15.501

1.000 23.544 28.997 0.403 0.292

XV-COS 0.670 71.729 69.077 0.000 0.037

0.530 95.758 94.677 0.000 0.732

0.770 23.293 23.844 0.000 0.000

R2E RN-EU 80.000 49.968 51.723 0.514 12.349

87.000 80.064 80.938 5.790 51.909

75.000 28.112 28.818 0.016 1.713

RN-COS 0.350 40.027 46.288 0.000 1.002

0.390 24.624 29.915 0.000 0.095

The pass rates of three loss functions under inter-utterance case are shown
in Table 14. The pass rates of three mapping models under inter-utterance case
are shown in Table 15. The pass rates of text-independent reconstructed voice
under inter-utterance case are shown in Table 16. These results show that the
discussion we made in the main text for the intra-utterance case is also applicable
in the inter-utterance case.

By comparing the results in both cases, the pass rate in the intra-utterance
case is higher than that in the inter-utterance case. This once again shows that
there are still relatively large differences even for different voices of the same
person, and short voice sample is still not a good source to model a person’s
speech characteristics in SVSs.

Voxstructor: Voice Reconstruction from Voiceprint 395

Table 14. Pass rates of three loss function under inter-utterance case (%)

Model SVS Threshold L1L MSE Smooth

I2E IV-PLDA –1.000 48.133 46.456 48.027

–6.000 83.772 81.459 83.756

3.000 18.366 17.528 17.294

IV-COS 0.060 28.706 28.955 29.194

–0.020 80.764 81.437 80.488

0.128 4.369 4.343 4.894

X2E XV-PLDA –3.000 44.944 44.462 43.464

–8.000 71.989 71.162 71.013

1.000 23.544 23.698 22.446

XV-COS 0.670 71.729 69.852 70.053

0.530 95.758 95.970 96.124

0.770 23.293 20.827 21.193

R2E RN-EU 80.000 49.968 50.917 48.059

87.000 80.064 81.400 79.539

75.000 28.112 27.736 25.361

RN-COS 0.350 40.027 40.308 40.758

0.390 24.624 25.027 25.180

Table 15. Pass rates of three mapping models under inter-utterance case (%)

Model SVS Threshold L1L L1LNO CONV

I2E IV-PLDA –1.000 48.133 8.313 46.822

–6.000 83.772 21.332 84.371

3.000 18.366 1.650 16.218

IV-COS 0.060 28.706 13.547 29.517

–0.020 80.764 64.862 80.323

0.128 4.369 1.071 4.592

X2E XV-PLDA –3.000 44.944 1.873 32.446

–8.000 71.989 6.626 61.347

1.000 23.544 0.408 14.292

XV-COS 0.670 71.729 21.797 62.306

0.530 95.758 28.823 95.180

0.770 23.293 8.187 14.825

R2E RN-EU 80.000 49.968 2.126 47.879

87.000 80.064 11.893 78.298

75.000 28.112 0.477 25.764

RN-COS 0.350 40.027 1.803 38.234

0.390 24.624 0.530 23.712

396 P. Lu et al.

Table 16. Pass rates of text-independent reconstructed voice under inter-utterance
case

Model SVS Threshold L1L L1L-TEXT2 TRVC TRVC-TEXT2

I2E IV-PLDA –1.000 48.133 45.332 57.194 54.578

–6.000 83.772 80.085 88.186 86.462

3.000 18.366 16.881 26.122 23.947

IV-COS 0.060 28.706 26.808 33.622 33.473

−0.020 80.764 80.398 83.648 84.093

0.128 4.369 3.197 6.389 5.483

X2E XV-PLDA –3.000 44.944 40.801 49.326 45.003

–8.000 71.989 65.767 74.143 69.220

1.000 23.544 21.814 28.997 25.973

XV-COS 0.670 71.729 77.200 69.077 71.898

0.530 95.758 96.739 94.677 95.599

0.770 23.293 28.181 23.844 24.173

R2E RN-EU 80.000 49.968 78.287 51.723 76.485

87.000 80.064 95.594 80.938 94.639

75.000 28.112 53.218 28.818 52.195

RN-COS 0.350 40.027 42.815 46.288 46.760

0.390 24.624 26.007 29.915 30.636

References

1. Chen, G., et al.: Who is real bob? adversarial attacks on speaker recognition sys-
tems. In: 2021 2021 IEEE Symposium on Security and Privacy (SP), pp. 55–72,
Los Alamitos, CA, USA, IEEE Computer Society, May 2021

2. Li, Q., Zhu, H., Zhang, Z., Lu, H., Wang, F., Li., L.: Spoofing attacks on speaker
verification systems based generated voice using genetic algorithm. In: ICC 2019–
2019 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE
(2019)

3. Zhang, L., Meng, Y., Yu, J., Xiang, C., Falk, B., Zhu, H.: Voiceprint mimicry
attack towards speaker verification system in smart home. In: IEEE INFOCOM
2020-IEEE Conference on Computer Communications, pp. 377–386. IEEE (2020)

4. Huang, L., Pun, C.-M.: Audio replay spoof attack detection by joint segment-
based linear filter bank feature extraction and attention-enhanced Densenet-Bilstm
network. IEEE ACM Trans. Audio Speech Lang. Process. 28, 1813–1825 (2020)

5. Jia, Y., et al.: Transfer learning from speaker verification to multispeaker text-to-
speech synthesis. arXiv preprint arXiv:1806.04558 (2018)

6. Dehak, N., Kenny, P., Dehak, R., Dumouchel, P., Ouellet, P.: Front-end factor
analysis for speaker verification. IEEE Trans. Speech Audio Process. 19(4), 788–
798 (2011)

http://arxiv.org/abs/1806.04558

Voxstructor: Voice Reconstruction from Voiceprint 397

7. Snyder, D., Garcia-Romero, D., Sell, G., Povey, D., Khudanpur, S.: X-vectors:
robust DNN embeddings for speaker recognition. In: 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5329–5333.
IEEE (2018)

8. Soo Heo, F., Lee, B.-J., Huh, J., Chung. J.S.: Clova baseline system for the voxceleb
speaker recognition challenge 2020. arXiv preprint arXiv:2009.14153 (2020)

9. Mai, G., Cao, K., Yuen, P.C., Jain, A.K.: On the reconstruction of face images
from deep face templates. IEEE Trans. Pattern Anal. Mach. Intell. 41(5), 1188–
1202 (2019)

10. Seong, J.-W., Lee, W., Lee, S.: Multilingual speech synthesis for voice cloning. In:
Unger, H., et al. (eds.) IEEE International Conference on Big Data and Smart
Computing, BigComp 2021, Jeju Island, South Korea, 17–20 January 2021, pp.
313–316. IEEE (2021)

11. Shen, J., et al.: Natural TTS synthesis by conditioning Wavenet on Mel spectro-
gram predictions. In: 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 4779–4783. IEEE (2018)

12. van den Oord, A., et al.: Wavenet: a generative model for raw audio. arXiv preprint
arXiv:1609.03499 (2016)

13. Nagrani, A., Chung, J.S., Zisserman, A.: Voxceleb: a large-scale speaker identifica-
tion dataset. arXiv preprint arXiv:1706.08612 (2017)

14. Panayotov, V., Chen, G., Povey, D., Khudanpur, S.: Librispeech: an ASR corpus
based on public domain audio books. In: 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 5206–5210. IEEE (2015)

15. Povey, D., et al.: The Kaldi speech recognition toolkit. In: IEEE 2011 Workshop
on Automatic Speech Recognition and Understanding. IEEE Signal Processing
Society, IEEE Catalog No.: CFP11SRW-USB,December 2011

16. Chung, J.S., et al.: In defence of metric learning for speaker recognition, In: Inter-
speech (2020)

17. De Leon, P.L., Pucher, M., Yamagishi, J., Hernaez, J., Saratxaga, I.: Evaluation of
speaker verification security and detection of HMM-based synthetic speech. IEEE
Trans. Audio Speech Lang. Process. 20(8), 2280–2290 (2012)

18. Mukhopadhyay, D., Shirvanian, M., Saxena, N.: All your voices are belong to us:
stealing voices to fool humans and machines. In: Pernul, G., Ryan, P.Y.A., Weippl,
E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 599–621. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24177-7 30

http://arxiv.org/abs/2009.14153
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1706.08612
https://doi.org/10.1007/978-3-319-24177-7_30

Word-Map: Using Community Detection
Algorithm to Detect AGDs

Futai Zou(B), Qianying Shen, and Yuzong Hu

School of Cyber Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

{zoufutai,sjtusqy,huyz97}@sjtu.edu.cn

Abstract. Domain generation algorithms (DGA) are widely used by
malware families to realize remote control. Researchers have tried
to adopt deep learning methods to detect algorithmically generated
domains (AGD) automatically. Some detection methods based on only
domain strings alone are proposed. Usually, such methods analyze the
structure and semantic features of domain strings. Among various types
of AGDs, dictionary-based AGDs are unique for their semantic simi-
larity to normal domains, which makes such detection based on only
domain strings difficult. In this paper, we observe that the relationship
between domains generated based on a same dictionary shows graphi-
cal features. We focus on the detection of dictionary-based AGDs and
propose Word-Map which is based on community detection algorithm
to detect dictionary-based AGDs. Word-map achieved great accuracy,
recall rate, false positive rate, and missing rate on testing sets.

Keywords: Algorithmically generated domains · Community
detection · Machine learning

1 Introduction

In cyberattacks such as botnets and APT attacks, when attackers success-
fully invade a computer, the next step is to establish a communication channel
between the server and the infected machine to facilitate further manipulation
and information theft. Domain generation algorithm (DGA) plays a key role
in the communication between and C&C servers [1]. In order to avoid detec-
tion, usually, attackers will not hard-code the server’s IP address or set a fixed
domain in the malicious code but apply DGA to dynamically generate a batch
of algorithmically generated domains (AGDs) [2].

Algorithmically generated domains (AGDs) refer to a group of domains gen-
erated in batches based on a string of random seeds [3]. The random seeds are
shared between the malicious code inserted in the infected machines and attack-
ers. Since the cost of registering a domain is relatively high nowadays, attackers
often choose several domains to register from a set of AGD generated based on
a certain seed. The malicious codes inserted in the infected machines generate
c© Springer Nature Switzerland AG 2021
J. K. Liu et al. (Eds.): ISC 2021, LNCS 13118, pp. 398–414, 2021.
https://doi.org/10.1007/978-3-030-91356-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91356-4_21&domain=pdf
https://doi.org/10.1007/978-3-030-91356-4_21

Word-Map: Using Community Detection Algorithm to Detect AGDs 399

all the alternate domains through the seed, and then tries these domains one by
one until successfully connect to the malicious server. Since it is impossible to
know in advance which domain names the attacker will register every day, all of
these AGDs must be detected in order to achieve an effective defense effect. Ran-
dom seeds are often hidden and may change with time, which makes them more
difficult to detect. According to different generation algorithms, AGDs can be
roughly divided into four categories: arithmetic based, hashing based, permuta-
tion based, and word dictionary based [4]. The first three types of AGDS are often
in the forms of a random combination of letters and numbers, which is obviously
different from the normal domain names in aspects of lexical and semantic char-
acteristics. There are many methods that use only the domain strings for detec-
tion based on this distinction. Dictionary based AGDs discussed in this paper
are generated from a random combination of commonly used English words,
the lexical and semantic characteristics of which show little difference with nor-
mal domains. As a result, detection methods based on the lexical and semantic
characteristics are not effective anymore. Information beside the domain strings
themselves are needed to achieve a good detection rate.

In this paper, a new method named Word-Map is proposed to solve the
problem that dictionary-based AGDs are difficult to detect using lexical and
semantic characteristics. Word-Map is designed to achieve two effects: actively
mine DGA dictionaries and accurately detect dictionary-based AGDs. The key
idea of Word-Map is to convert the problem of dictionary-based AGDs detec-
tion into a community detection problem on a word map which is constructed
based on the co-occurrence of words in a certain set of domains. Data used as
a training set and testing set in this paper are composed of Suppobox domains
from DGArchive dataset and Alexa Top 1M domains. Suppobox domains come
from three different dictionaries. Word-Map has achieved good results on test-
ing sets. The accuracy and recall rate of Word-map on domains from same DGA
dictionaries, domains from different DGA dictionaries and imbalanced dataset
is respectively above 98.0% and 93.0%.

This paper has 3 main contributions:

1) We are the first to apply community detection algorithm to solve the problem
of detecting dictionary based AGDs. We prove that community detection
algorithm performs well in extracting DGA dictionaries from a mix of DGA
dictionary words and normal words.

2) We provide a light, efficient and accurate method called Word-Map to detect
dictionary based AGDs. By detecting DGA words community on word graphs
obtained from a domain string set first, we extract structure features of these
communities to train a decision tree to classify word communities as a DGA
dictionary word or a normal word.

3) We optimize the domain splitting and AGD dictionary distraction meth-
ods, thus improving the word splitting effect and minimize the size of AGD
dictionaries.

400 F. Zou et al.

2 Related Work

The low cost and flexibility of DGA technology makes it widely used in malicious
code, which seriously threatens network security. Therefore, researches on the
detection methods of AGDs have always been a hot issue. The earliest AGDs
detection methods focused on the reverse of the domain generation algorithms.
Theoretically, such methods are able to completely capture all the AGDs, how-
ever, they consume too many resources, and are challenged by the rapid change of
domain generation algorithms and random seeds. Subsequent research methods
began to utilize characteristics of AGDs, such as the statistical characteristics of
DNS traffic [5,6] and the characteristics of the domain strings themselves [7,8].
To lower cost, it is best to detect AGDs using domain strings only without rely-
ing on any other information such as context information of DNS traffic. This
section focuses on the researches that use domain strings only for detection.
Word-Map proposed in this paper also belongs to this type of detection method.

AGD strings are often a random combination of letters and numbers, which
are obviously different from normal domain strings in aspects of lexical and
semantic characteristics. At present, AGD detection methods are generally based
on this difference. Detection methods develop from the extraction of statistical
features to the use of machine learning, and then the application of deep learn-
ing and generative adversarial networks. In 2014, Miranda et al. [7] proposed a
detection method based on the length distribution of domains, which extracts
the n-gram distance of single characters, number of layers, number of digits,
number of upper and lower case letters, number of hyphens and other features
of second-level domain strings, and then use these features to train a regres-
sion model to detect AGDs. This method can detect 12 DGA families, and its
accuracy on testing set is higher than 95%. Tommy Chin et al. [9] proposed a
two-layer machine learning model to detect and cluster AGDs.

With the development of deep learning, there are also many researchers
attempt to apply natural language processing experience to the detection of
AGDs. Jonathan Woodbridge et al. [10] proposed a detection method based on
LSTM. This method does not need to extract features in advance, but get the
embeddings of domain strings in advance and then trains a LSTM network to
classify domains into AGDs or benign domains. Koh J Jet al. [11] proposed a
context-sensitive domain string embedding method, and apply a simple fully-
connected classifier to achieve domain detection. This method performs well on
small data sets. Some researchers also try to address the problem that dictionary-
based AGDs are not easy to detect. Hyrum S et al. [12] found in the research
that the letter distribution of Suppobox AGDs (a typical kind of dictionary
based AGDs) are consistent with the Alexa Top 1,000,000 domains, which means
there exists no significant difference statistically between Suppobox AGDs and
Alexa domains. The research group further proposed using the idea of adversar-
ial learning to realize the detection of AGDs. Through the confrontation between
the generator and the detector, the detector is strengthened, and thus its abil-
ity to detect dictionary based domains is improved. Mayana Pereira et al. [13]
tried to start from the perspective of graph structure to realize the detection

Word-Map: Using Community Detection Algorithm to Detect AGDs 401

of dictionary AGDs names. This method uses the longest substring method to
extract the AGDs name dictionary, and judges whether a group of words is a
DGA dictionary based on the graph’s node degree, path length, ring number,
and other characteristics. Kate Highnam et al. [14] proposed a hybrid neural net-
work Bilbo, using CNN and LSTM networks in parallel to score the possibility
of domain strings being generated based on dictionaries.

Many previous AGD detection methods are based on the statistical,lexical
and semantic characteristics of the domain strings, and therefore were limited
in the face of dictionary based AGDs. The introduction of deep learning and
adversarial learning can solve this problem to a certain extent but perform not
that well in the face of domains generated from unknown dictionaries. In response
to this problem, this paper proposes a new method named Word-Map which
analyzes the co-occurrence relationship of words in a certain set of domains and
applies community detection algorithm to actively mine DGA dictionaries and
detect the dictionary based AGDs. It is flexible and light, as well as performs
well on testing data.

3 Methodology

Overview. This section will introduce Word-Map. Word-Map can realize the
extraction of unknown DGA dictionary and the detection of dictionary based
AGDs. In order to better understand this method, this section will introduce the
graph structure, community detection algorithm, and the final dictionary based
AGDs classification method in detail.

The key idea of Word-Map is to convert the detection of dictionary-based
AGDs into a community detection problem. An obvious phenomenon is that the
co-occurrence probability of words from the same DGA dictionary in the dictio-
nary based AGDs is much higher than the co-occurrence probability common
words in benign domains. First, we cut domain based AGDs into words, and then
use the co-occurrence relationship in original domains to associate these words.
It can be intuitively understood that the connections between the words from
DGA domains composed of a same DGA dictionary will be very tight, which
means these words are more likely to form a community. However, the words
obtained from benign domain strings often do not show such characteristics.
Since this method can actively detect DGA dictionaries, it is able to effectively
detect dictionary based AGDs without knowing DGA dictionaries in advance.

The main workflow of Word-Map is as follows: After obtaining the domain
string, firstly pre-process the domain string by removing the top-level domain
name and only retaining the second-level domain strings. For AGDs, group them
according to the top-level domain strings. Then, cut the second-level domain
strings into words, and construct these words into a word graph according to
their co-occurrence in original domain strings. As to the word graphs, use the
infomap algorithm to detect communities. At last, extract the features of these
independent word communities to train a decision tree. Use the decision tree to
determine whether a certain word community is a DGA dictionary or not. For a

402 F. Zou et al.

domain, if the components of its second-level domain all belong to a single DGA
dictionary, it is determined as a dictionary based AGD.

Word Graph
Word Graph Construction. For a domain string set D = d1, d2,, di,,
dn, we process each domain name by removing the top-level domain string, and
only retaining the second-level domain string. Then we get a second-level domain
string set S = s1, s2,., si,..., sn. Then we cut each element in S into single
English words.

The splitting of second-level domain strings is actually a word splitting prob-
lem of English words without spaces. A mature tool named Wordninja [15] can
be used to solve this problem efficiently. This paper uses Wordninjia to cut the
domain strings into words. Inspired by Pereira M et al. [13], we also tried to use
the longest substring method for word splitting. However, it’s proved to have
several limitations which would be explained later.

For a domain name set D, after domain string splitting, a word set W can
be obtained, and each word in the word set is a vertex. These word vertexes
will then be connected by edges according to their co-occurrence relationship in
D. If two vertexes have appeared together in any domain string in D, then they
will be connected with 2 directed edges. In this way, for a domain name set D,
a word graph G = (V, E) can be obtained, where V represents the vertex set, of
which the elements are words; and E represents the edge set, indicating the co-
occurrence relationship between word vertexes. An example of the composition
process is shown below:

Fig. 1. Word graph of dictionary based AGDs

Fifty domain strings are randomly chosen from the dictionary based AGDs
dataset which are from the same dictionary. After cutting domain strings into
words, a word graph is constructed according to the co-occurrence relationship
between words. As shown in Fig. 1, there are 21 word nodes and 100 directed
edges.

Word-Map: Using Community Detection Algorithm to Detect AGDs 403

Fig. 2. Word graph of Alexa Domains

Fifty domain strings are randomly chosen from the Alexa domains dataset.
After cutting domain strings into words, a word graph is constructed according
to the co-occurrence relationship between words. As shown in Fig. 2, there are
72 word nodes and 60 directed edges. We can see that the average degree of
vertexes in this graph is less than 1. It’s because some domains are too short to
be cut, therefore becoming isolated vertex in the word graph.

Through 2 word graphs above, it can be intuitively observed that for an
equivalent amount of dictionary based AGDs and Alexa domains, dictionary
based AGDs will be cut into fewer word vertexes, however dictionary based
AGDs word vertexes of are more closely connected, and the average degree of
vertexes is higher. This shows that the word vertexes obtained from dictionary
based AGDs are more closely related, which makes them easier to be classified
into a community.

Community Detection on Word Graph
Introduction of Infomap. The key idea of Word-Map is to convert the detection
of dictionary-based AGDs into a community detection problem on word graphs.
The key step is to use the Infomap [16,17] algorithm to perform community
detection on word graphs.

Infomap is a community detection algorithm based on information theory.
Infomap uses the principle of minimum entropy to address the problem of com-
munity detection as an optimal encoding and compression problem. Probability
flows between vertexes are used to represent the information flow between nodes.
The random walk method is used to simulate the flow of information between
vertexes. The core premise assumption of the Infomap algorithm is that a rea-
sonable community division can lead to shorter codes.

404 F. Zou et al.

Infomap uses a two-layer coding structure to encode both communities and
vertexes. Different communities have different codes. Different vertexes have dif-
ferent codes. A vertex code s can be reused in different communities. At the same
time, Infomap also encodes the action of jumping out of a community. Figure 3
shows the encoding result of Infomap. Figure 3-A shows the path of some random
walks in a graph. We hope to encode these paths with a string of codes. The
better the encoding method is, the shorter the codes will be; Fig. 3-B shows the
result of Huffman coding. The total length of the encoding is 314 bits; Fig. 3-C
shows the two-layer encoding structure of Infomap. Taking the red vertexes as
an example, the community code of the red community is 111, and the code
of leaving the red community is 0001. Vertexes inside the red community have
their own codes. The code describing a random walk path within a community
starts with the community code and ends with the leaving action code. This cod-
ing result is 243 bits, which is 32% shorter than the result of Huffman coding.
Figure 3-D blurs specific vertex codes, and only shows the community codes.

Fig. 3. Workflow of Infomap [16]

The Infomap algorithm can be simply summarized as the following three
steps:

1) Initialization, each vertex is regarded as an independent community;
2) Randomly sample a sequence of vertexes in the graph, try to assign each

vertex to the community where its neighbor vertex is located in order, and
then compute the average length of codes. Assign the vertex into the current
community if the average code length is shorter and do nothing if not;

3) Repeat step 2 until L(M) can no longer be optimized.

Words Community. The following figures are examples of community detection
results of word graphs obtained from dictionary based AGDs, Alexa domains,
and mixed domains.

Word-Map: Using Community Detection Algorithm to Detect AGDs 405

Fig. 4. Communities detected from the word graph of Alexa domains

As shown in Fig. 4, 46 communities were detected on the word graph obtained
from 50 Alexa domains as shown in Fig. 2. The largest community is composed
of 6 blue-colored vertexes in the center of Fig. 4, of which the total degree is 14
and the average degree is 2.33. For other communities, The number of vertexes is
1 (isolated vertex), 2 (word vertexes obtained from a same domain string) or 3.
It can be seen that words obtained by splitting Alexa domains have no obvious
clustering characteristics.

As shown in Fig. 5, 2 communities were detected on the word graph obtained
from 50 dictionary based AGDs as shown in Fig. 1. The two communities are
composed of 40 and 24 vertexes respectively, of which the total degrees is 739 and
261 respectively and the average degree is 18.48 and 10.88 respectively. Com-
pared to Fig. 4, it can be seen that words obtained by splitting dictionary based
AGDs have obvious clustering characteristics. Also, there are obvious differences
in aspects of the number of vertexes, the total degrees of vertexes, and the aver-
age degree of vertexes between AGD communities and Alexa communities.

Mix the 50 Alexa domains and 50 dictionary based AGDs mentioned before
and get the word graph of the mixed domains. 48 communities were detected on
the word graph. The biggest two communities (blue and green colored vertexes
in the center of Fig. 6) have 40 and 24 vertexes respectively. Their total degrees
are 739 and 261, and their average degrees are 18.48 and 10.88. The number
of vertexes of the remaining communities is all no bigger than 6, and their
total degrees are no bigger than 14, while average degrees no bigger than 2.5.
Comparing Fig. 6 with Fig. 4 and Fig. 5, it can be seen that dictionary based
AGDs and Alexa domains have been effectively distinguished from each other.

406 F. Zou et al.

Fig. 5. Communities detected from the word graph of Dictionary based AGDs

Fig. 6. Communities detected from the word graph of mixed domains

It can be seen intuitively that there are several differences between dictio-
nary based AGD community and Alexa community: 1) The number of vertexes
in dictionary based AGD communities is much bigger than that of Alexa com-
munities. 2) The total and average degrees of the vertexes of dictionary based
AGD are much bigger than those Alexa communities. Therefore, after commu-

Word-Map: Using Community Detection Algorithm to Detect AGDs 407

nity detection, these two features can be collected to train a decision tree to
classify whether a community is dictionary based AGD community or not.

Fig. 7. Extract features of word communities

After extracting AGD dictionaries from the domain sets, we use a simple
method to determine whether a domain string is a dictionary based AGD.

Dictionary-Based AGDs Detection. After extracting AGD dictionaries
from the domain sets, we use a simple method to determine whether a domain
string is a dictionary based AGD or not. For a domain string, if all the words
obtained from this string belonging to a same AGD dictionary, the domain string
is judged as a dictionary based AGD.

4 Experiments and Results

4.1 Dataset

Dataset used in the experiments contains a total of 1,313,571 dictionary based
AGDs domains and 1,000,000 benign domains. Dictionary based AGDs come
from the Suppobox domains in the DGArchive dataset [18], and benign domains
are chosen from Alexa Top 1M domains. Ground Truth Data As shown in Table 1,

Table 1. Ground truth data

Type Count Dictionary

Alexa Domain 100,000 /

100,000 Dictionary 1

Dictionary-based AGD 100,000 Dictionary 2

100,000 Dictionary 3

408 F. Zou et al.

we randomly select 1,000,000 Alexa domains and 1, 200, 000 dictionary based
AGDs to make up the training set, where the dictionary based AGDs are com-
posed of words from three different dictionaries named D1, D2, and D3. We ran-
domly select 100,000 Alexa domains and 100,000 dictionary based AGDs from
the rest data to make up the testing set, where the dictionary based AGDs are
also composed of words from three different dictionaries named D1, D2, and D3.

4.2 Metrics

This paper uses two indicators, precision and recall, to verify the performance of
word-map. TP refers to the situation that the sample is a AGD and the detection
result also shows that it is a AGD; FP refers to the situation that the sample is a
benign domain while and the detection result shows that it is a AGD; TN refers
to the situation that the sample is a benign domain name the detection result
also shows that it is a benign domain; FN refers to the situation that the sample
is a AGD, while and the detection result shows that it is a benign domain.

Accuracy = (TP+TN)/(TP+FN+FP+TN) refers to the proportion of all
correctly classified domains to all domains. Recall rate = (TP)/(TP+FN)) refers
to the proportion of all dictionary based AGDs that are found. False positive
rate = FN/(TP+FN). Missing rate = 1 – recall rate.

4.3 Performance on Testing Data

We designed three different experiments to verify the performance of Word-
map on domains from the same DGA dictionary, domains from different DGA
dictionaries and imbalanced data sets. The first group of experiments verifies the
performance of Word-map on domains from the same DGA dictionary. A total of
3 rounds of independent experiments were conducted. The specific composition
of the training set and testing set is shown in Table 2.

The results of three independent experiments are shown in Table 3.
The second group of experiments verifies the performance of Word-map on

domains from different DGA dictionaries. A total of 3 rounds of independent
experiments were conducted. The specific composition of the training set and
testing set is shown in Table 4.

The results of three independent experiments are shown in Table 5.

Table 2. Experiments on domains from same DGA dictionaries

Dataset Training set Testing set

Alexa D1 D2 D3 Alexa D1 D2 D3

Round1 50,000 50,000 0 0 50,000 50,000 0 0

Round2 50,000 0 50,000 0 50,000 0 50,000 0

Round3 50,000 0 0 50,000 50,000 0 0 50,000

Word-Map: Using Community Detection Algorithm to Detect AGDs 409

Table 3. Performance on domains in same DGA dictionaries

Round1 Round2 Round3 Average

Accuracy 99.72% 99.53% 99.84% 99.67%

Recall rate 100.0% 99.94% 99.97% 99.97%

Missing rate 0.00% 0.06% 0.03% 0.03%

False positive rate 0.56% 0.88% 0.29% 0.58%

Table 4. Experiments on domains from different DGA dictionaries

Dataset Training set Testing set

Alexa D1 D2 D3 Alexa D1 D2 D3

Round1 50,000 50,000 0 0 50,000 0 25,000 25,000

Round2 50,000 0 50,000 0 50,000 25,000 0 25,000

Round3 50,000 0 0 50,000 50,000 25,000 25,000 0

Table 5. Performance on domains from different DGA dictionaries

Round1 Round2 Round3 Average

Accuracy 99.29% 99.43% 99.14% 99.29%

Recall rate 99.72% 99.91% 99.57% 99.73%

Missing rate 0.28% 0.09% 0.43% 0.27%

False positive rate 1.14% 1.04% 1.29% 1.16%

The third group of experiments verifies the performance of Word-map on
the imbalanced dataset. A total of 3 rounds of independent experiments were
conducted. The specific composition of the training set and testing set is shown
in Table 6.

Table 6. Experiments on imbalanced datasets

Dataset Training set Testing set

Alexa D1 D2 D3 Alexa D1 D2 D3

Round1 50,000 500 500 500 50,000 500 500 500

Round2 50,000 500 500 0 50,000 0 0 500

Round3 50,000 500 0 0 50,000 500 0 0

410 F. Zou et al.

The results of three independent experiments are shown in Table 7.

Table 7. Performance on imbalanced dataset

Round1 Round2 Round3 Average

Accuracy 98.76% 98.63% 98.85% 98.80%

Recall rate 93.07% 92.87% 93.26% 93.07%

Missing rate 6.93% 7.13% 7.74% 7.27%

False positive rate 0.57% 0.80% 0.59% 0.68%

Based on the results of three rounds of experiments, it can be seen that
Word-map performs best on a single dictionary to generate DGA domain name
data sets, with the highest accuracy rate, and both the accuracy rate and the
recall rate are about 99%. This shows that when the generation dictionary has
been mastered, Word-map can accurately detect the dictionary based AGDs.
The performance of Word-map on domains from different DGA dictionaries is
slightly inferior to the performance on domains from same DGA dictionaries,
but it also remains above 99%, which shows that Word-map has good enough
ability to mine new dictionaries. On the imbalanced data set, the accuracy rate
of Word-map is maintained above 98%, and the recall rate is maintained at
about 93%, which fully shows that Word-map can adapt to the situation in the
real world where the AGDs is far less than the normal domains.

4.4 Improvement in Word Splitting and Dictionary Extraction

For word splitting and dictionary extraction, Pereira M et al. [14] applied the
longest substring method. The longest substring method refers to finding the
longest substring of each pair of strings in the domain string set. If the length
of a longest substring is greater than the threshold (in[14], set to 3) and does
not overlap with any previous substring, this substring is added to the AGD
dictionary. To avoid adding benign words into the dictionary, they filter out
words with degrees less than 3.There are two main limitations of the longest
substring method. One is that the algorithm has a high complexity; the second
is that the threshold of the longest substring is difficult to determine. If the
threshold is too low, common letter combinations like “ere” will be added into
the dictionary, making the dictionary too large and introduce a lot of noise; if
the threshold is too high (for example, 5), many short words will be filtered out,
affecting the extraction effect of the final DGA dictionary.

To improve the word splitting efficiency and minimize the size of AGD dictio-
nary, we adopt Wordninja to split domain strings and Infomap to detect AGD
words. We respectively select 1, 000 domains from W1, W2, W3, and Alexa
domains randomly. As shown in Table 8, the size of word dictionaries extracted
by Word-Map is far smaller than that extracted by Longest Substring Method.

Word-Map: Using Community Detection Algorithm to Detect AGDs 411

Table 8. Dictionary size

Word-Map LSM

W1 106 1094

W2 194 2194

W3 158 1543

Alexa 1236 17892

*LSM: Longest Substring Method

Table 9. False positive rate

Word-Map LSM

W1 0.62% 6.11%

W2 0.58% 5.79%

W3 0.59% 6.09%

As shown in Table 9, it’s proved that optimizing the word splitting and dictio-
nary extraction can help to get a lower false positive rate. Compared to longest
substring method, Word-Map extracted a smaller AGD dictionary and achieve
a lower false positive rate.

4.5 Comparison with Other Methods

This section will compare the pros and cons of the algorithm proposed in
this article with machine learning detection methods based on artificial fea-
ture extraction and deep learning detection methods based on automatic feature
extraction in detecting dictionary based AGDs.

For artificial features, We extract two aspects of domains: formation feature
and network features, including Domain Name Length, Maximum Count of Con-
secutive Characters, Count of Uppercase Letters in Domain Name, Numbers in
Domain Name, Count of Special Characters in Domain Name, Ratio of Vowels
and Consonants, Entropy Calue of Domain Name, Probability of Character Con-
version, Count of IP Addresses, Count of NS Records, Geographical Distribution
of IP Addresses, Average TTL, Standard Seviation of TTL, Survival Time of
Domain Name, and Domain Name Active Time.

As shown in Table 10, the detection effect of machine learning methods based
on manual feature extraction is generally not rational. The accuracy of the logis-
tic regression algorithm and naive Bayes algorithm is less than 80%, and the

Table 10. Comparison with feature based machine learning methods

Algorithms Same dictionary Different dictionaries Imbalanced dataset

Accuracy Recall rate Accuracy Recall rate Accuracy Recall rate

LR 78.92% 48.28% 72.36% 40.17% 68.52% 38.09%

SVM 85.75% 84.31% 80.54% 81.21% 79.15% 74.10%

Decision Tree 82.95% 70.37% 80.06% 69.07% 76.94% 63.25%

Random forest 80.57% 68.73% 74.42% 63.98% 72.94% 60.52%

Naive Bayesian 79.25% 49.88% 74.66% 42.74% 70.13% 39.79%

Word-map 99.67% 99.97% 99.29% 99.73% 98.80% 93.07%

412 F. Zou et al.

Table 11. Comparison with deep learning methods

Algorithms Same dictionary Different dictionaries Imbalanced dataset Embedding method

Accuracy Recall rate Accuracy Recall rate Accuracy Recall rate

RNN 89.29% 88.98% 87.03% 86.73% 86.29% 85.81% Character level

LSTM 90.89% 90.91% 88.93% 88.29% 87.12% 87.03%

GRU 89.12% 89.04% 87.86% 87.58% 87.15% 86.99%

CNN 87.63% 87.12% 85.98% 85.17% 84.09% 83.70%

BPTT 89.32% 89.07% 88.05% 87.74% 86.92% 86.63%

RNN 90.58% 90.34% 89.21% 89.05% 87.91% 87.39% Word level

LSTM 92.09% 91.13% 91.21% 90.92% 89.93% 89.42%

GRU 90.67% 90.32% 89.16% 88.87% 88.05% 87.76%

CNN 88.24% 87.83% 87.11% 86.39% 86.28% 85.83%

BPTT 91.13% 90.98% 90.06% 89.27% 89.25% 88.77%

Word-map 99.67% 99.97% 99.29% 99.73% 98.80% 93.07% —–

recall rate is less than 50%. Decision tree algorithm and random forest algo-
rithm perform slightly better, but the accuracy rate is just over 80%, and the
recall rate is basically less than 70%. In contrast, the accuracy rates of the best
performing SVM algorithm on the three data sets are only 85.75%, 80.54% and
79.15%, and the recall rates are only 84.31%, 81.21% and 74.10%. The accuracy
of this algorithm on the three data sets is 99.67%, 99.29% and 98.80%, and the
recall rate is 99.97%, 99.73% and 93.07%. Through comparison, it can be found
that the accuracy and recall rate of the machine learning algorithm is far lower
than the algorithm in this paper, especially in the recall rate, the gap is very
large. This fully shows that for dictionary-type DGA domain names, the detec-
tion rate of the machine learning algorithm based on artificial features is very
unsatisfactory, and the algorithm in this paper has a good performance.

As shown in Table 11, the detection effect of the deep learning method based
on automatic feature extraction is slightly better when using word-level embed-
ding than using character-level embedding. Compared with the two, word-level
embedding can learn the characteristics of dictionary DGA domain names. For
different deep learning models, LSTM performs best in comparison. With single-
level embedding, the accuracy rates on the three data sets are only 92.09%,
91.21% and 90.92%, which are still significantly lower than 99.67%, 99.29% and
98.80% of the algorithm in this paper.

At the same time, it can be seen from the experimental results that the detec-
tion effect of the deep learning method based on automatic feature extraction
on multi-dictionary domain names and unbalanced data sets is far lower than
that on a single dictionary domain name. Compared with this article In terms
of algorithm, the stability of the detection effect is slightly inferior.

Experiments show that the Word-map algorithm proposed in this article
has obvious advantages on accuracy, recall, or pan-China capabilities of differ-
ent datasets and negative samples compared with the deep learning detection
algorithm based on automatic feature extraction.

Word-Map: Using Community Detection Algorithm to Detect AGDs 413

5 Conclusion

This paper proposes a new method named Word-map to the problem that dic-
tionary based AGDs are difficult to detect, which converts the problems of DGA
dictionary extraction and AGD detection into a problem of community discovery
on word graphs. Word-map applies decision tree to classify DGA dictionary word
Communities and normal domain word communities so that to discover DGA
dictionaries actively and detect dictionary based AGDs accurately. This paper
uses Suppobox domains and Alexa Top 1M domains from the DGArchive dataset
as the training set and testing set. Suppobox domains comes from three differ-
ent dictionaries. The accuracy and recall rate of Word-map on domains from
same DGA dictionaries, domains from different DGA dictionaries and imbal-
anced dataset is respectively above 98% and 93.0%. Compared with state-of-art
machine learning methods, Word-map also performs better.

The main contribution of Word-map is that it apply community detection
algorithm to dictionary based AGDs name detection for the first time. Word-
map uses the community detection algorithm to mine DGA dictionaries, extract
features of the DGA dictionary word communities from the perspective of the
graph structure. In general, Word-map is low cost and flexible, as well as has a
high detection rate of dictionary based AGDs.

Acknowledgements. This work is supported by National Key Research and Devel-
opment Program of China under Grant No.2020YFB1807500.

References

1. Zeidanloo, H.R., Manaf, A.A.: Botnet command and control mechanisms. In: 2009
Second International Conference on Computer and Electrical Engineering. vol. 1,
pp. 564–568. IEEE (2009)

2. Feily, M., Shahrestani, A., Ramadass, S.A.: Survey of botnet and botnet detec-
tion. In:2009 Third International Conference on Emerging Security Information,
Systems and Technologies, pp. 268–273. IEEE (2009)

3. Plohmann, D., Yakdan, K., Klatt, M., et al.: A comprehensive measurement study
of domain generating malware. In: 25th USENIX Security Symposium (USENIX
Security 2016). pp. 263–278 (2016)

4. Sood, A.K., Zeadally, S.: A taxonomy of domain-generation algorithms. IEEE
Secur. Privacy 14(4), 46–53 (2016)

5. Tu, T.D., Guang, C., Xin, LY.: Detecting bot-infected machines based on analyzing
the similar periodic DNS queries. In: 2015 International Conference on Commu-
nications, Management and Telecommunications (ComManTel), pp. 35–40. IEEE
(2015)

6. Luo, X., Wang, L., Xu, Z., An, W.: LagProber: detecting DGA-based malware by
using query time lag of non-existent domains. In: Naccache, D., et al. (ed.) ICICS
2018. LNCS, vol. 11149, pp. 41–56. Springer, LagProber: detecting DGA-based
malware by using query time lag of non-existent domains (2018). https://doi.org/
10.1007/978-3-030-01950-1 3

https://doi.org/10.1007/978-3-030-01950-1_3
https://doi.org/10.1007/978-3-030-01950-1_3

414 F. Zou et al.

7. Mowbray, M., Hagen, J.: Finding domain-generation algorithms by looking at
length distribution. In: 2014 IEEE International Symposium on Software Relia-
bility Engineering Workshops, 395–400. IEEE (2014)

8. Yu, B., Pan, J., Hu, J., et al.: Character level based detection of AGDs names. In:
2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 IEEE
(2018)

9. Chin, T., Xiong, K., Hu, C., et al.: A machine learning framework for studying
domain generation algorithm (DGA)-based malware. In: International Conference
on Security and Privacy in Communication Systems, pp. 433–448. Springer, Cham
(2018)

10. Woodbridge, J., Anderson, H.S., Ahuja, A., et al.: Predicting domain gen-
eration algorithms with long short-term memory networks. arXiv preprint
arXiv:1611.00791 (2016)

11. Koh, J.J., Rhodes, B.: Inline detection of domain generation algorithms with
context-sensitive word embeddings. In: 2018 IEEE International Conference on
Big Data (Big Data). pp. 2966–2971. IEEE (2018)

12. Anderson, H.S., Woodbridge, J., Filar, B.: DeepDGA: adversarially-tuned domain
generation and detection. In: Proceedings of the. ACM Workshop on Artificial
Intelligence and Security, vol. 2016, pp. 13–21 (2016)

13. Pereira, M., Coleman, S., Yu, B., et al.: Dictionary extraction and detection of algo-
rithmically generated domain names in passive DNS traffic. In: International Sym-
posium on Research in Attacks, Intrusions, and Defenses, pp. 295–314. Springer,
Cham (2018)

14. Highnam, K., Puzio, D., Luo, S., et al.: Real-time detection of dictionary dga
network traffic using deep learning. arXiv preprint arXiv:2003.12805 (2020)

15. Wordninja. https://github.com/keredson/wordninja. Accessed July 2021
16. Rosvall, M., Bergstrom, C.T.: Maps of information flow reveal community structure

in complex networks. arXiv preprint physics.soc-ph/0707.0609 (2007)
17. Rosvall, M., Axelsson, D., Bergstrom, C.T.: The map equation. The Eur. Phys. J.

Special Topics 178(1), 13–23 (2009)
18. Plohmann, D., Yakdan, K., Klatt, M., Bader, J., Gerhards-Padilla, E.: A com-

prehensive measurement study of domain generating malware. In: 25th USENIX
Security Symposium, pp. 263–278 (2016)

http://arxiv.org/abs/1611.00791
http://arxiv.org/abs/2003.12805
https://github.com/keredson/wordninja

Author Index

Akhavani, Seyed Ali 161

Banegas, Gustavo 296
Binder, Dominik 221
Brunetta, Carlo 296

Cherkaoui-Semmouni, Meryem 42
Chow, Yang-Wai 358

Deyannis, Dimitris 195

Eckert, Claudia 259

Gaire, Raj 70
Goldsmith, Michael 279
Gu, Zhaoquan 320

Happa, Jassim 279
Hu, Lei 3
Hu, Yuzong 398

Iida, Katsuyoshi 238
Ioannidis, Sotiris 195

Jafarbeiki, Sara 70
Jin, Yong 238
Jueckstock, Jordan 161

Kapravelos, Alexandros 161
Karnikis, Dimitris 195
Kermanshahi, Shabnam Kasra 70
Kirda, Engin 161

Lai, Shangqi 70
Li, Jingyu 54
Li, Luyang 139
Li, Qi 374
Liang, Bei 296
Lin, Xiaodong 374
Liu, Bowen 95
Liu, Weiqiang 341
Liu, Yining 177
Liu, Yuejun 3
Lu, Jiqiang 54

Lu, Long 161
Lu, Panpan 374

Meng, Weizhi 177
Miao, Fuyou 117
Mitrokotsa, Aikaterini 296
Mitsuhashi, Rikima 238

Nitaj, Abderrahmane 42
Norouzian, Mohammad Reza 259

Pasalic, Enes 139

Rana, Santu 358

Sakzad, Amin 70
Satoh, Akihiro 238
Sbai, Hugo 279
Schaad, Andreas 221
Shen, Qianying 398
Shinagawa, Takahiro 238
Sovernigo, Giuliano 374
Steinfeld, Ron 70
Su, Junhua 161
Sun, Hao 320
Sun, Shichang 341
Susilo, Willy 42, 358

Takai, Yoshiaki 238
Tan, Teik Guan 26
Tang, Qiang 95
Tao, Yang 3
Tong, Yanjun 320
Tonien, Joseph 42
Tsaloli, Georgia 296

Vasiliadis, Giorgos 195
Venkatesh, Svetha 358

Wang, Haoqi 341
Wang, Jian 341
Wang, Tianyu 3
Wang, Xinyan 117
Wei, Yongzhuang 139
Wu, Wenling 139

416 Author Index

Xu, Jun 3
Xu, Peng 259
Xue, Mingfu 341

Yu, Xiaobo 177

Zarras, Apostolis 259
Zhang, Hailong 139

Zhang, Yushu 341
Zhao, Jing 320
Zhao, Lei 177
Zhou, Jianying 26, 95
Zhou, Yongbin 3
Zhou, Yu 139
Zhu, Hui 374
Zong, Wei 358
Zou, Futai 398

	 Preface
	 Organization
	 Contents
	Cryptology
	Integer LWE with Non-subgaussian Error and Related Attacks
	1 Introduction
	1.1 Our Contribution
	1.2 Organization of the Paper

	2 Preliminaries
	2.1 Notation
	2.2 Gaussian and Subgaussian
	2.3 The ILWE Problem
	2.4 Lattice Based Fiat-Shamir Signatures

	3 The Non-subgaussian ILWE Problem
	4 Low-Bit's Randomness Leakage Attack
	4.1 The Randomness Leakage Attack
	4.2 Extend to Lower Bits

	5 The Careless Implementation Attack
	5.1 Gaussian Randomness
	5.2 Uniform Randomness

	6 Experimental Results
	6.1 Lower-Bit Randomness Leakage Attack
	6.2 Careless Implementation Attack with Uniform Randomness
	6.3 Careless Implementation Attack with Gaussian Randomness

	7 Conclusion
	A Proof of Proposition 1
	References

	Layering Quantum-Resistance into Classical Digital Signature Algorithms
	1 Introduction
	2 Background
	2.1 Digital Signature Basics
	2.2 Zero-Knowledge Proof

	3 Proposed Quantum-Resistant Digital Signatures
	3.1 Quantum-Resistant Digital Signature Scheme
	3.2 Realizing the Proposed Digital Signature Scheme
	3.3 Performance Measurement

	4 Real-Life Deployment
	4.1 Deployment Summary
	4.2 Exploring Migration

	5 Related Work
	6 Conclusion
	References

	Cryptanalysis of RSA Variants with Primes Sharing Most Significant Bits
	1 Introduction
	2 Preliminaries
	2.1 A Useful Lemma
	2.2 Continued Fractions
	2.3 Lattice Reduction

	3 The Attack Based on Continued Fraction Algorithm
	4 The Attack Based on Coppersmith's Method
	5 Comparison with Former Attacks
	6 Conclusion
	References

	Cryptanalysis of Two White-Box Implementations of the SM4 Block Cipher
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 The SM4 Block Cipher

	3 Collision-Based Attack on Yao and Chen's White-Box SM4 Implementation
	3.1 Yao and Chen's White-Box SM4 Implementation
	3.2 Attacking Yao and Chen's White-Box SM4 Implementation

	4 Collision-Based Attack on Xiao and Lai's White-Box SM4 Implementation
	5 Concluding Remarks
	References

	A Non-interactive Multi-user Protocol for Private Authorised Query Processing on Genomic Data
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Biology Background
	2.2 Cryptographic Background

	3 Proposed Solution
	3.1 System Model Overview
	3.2 Threat Model

	4 NIMUPrivGenDB Construction
	5 Security Definitions and Analysis
	6 Implementation and Evaluation
	7 Conclusion
	References

	Bigdata-Facilitated Two-Party Authenticated Key Exchange for IoT
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution
	1.3 Paper Organisation

	2 IoT-Oriented AKE Security Model
	2.1 IoT-Oriented AKE Setting
	2.2 Preliminary Notions
	2.3 Game-Based Security Definitions

	3 The Proposed AKE Protocol
	3.1 Initialisation Phase
	3.2 Description of the Proposed AKE Protocol

	4 Security Analysis
	4.1 CDH and SDH Assumptions
	4.2 Security Proofs

	5 Performance Evaluation and Enhancements
	5.1 Parameter Selection and Implementation Results
	5.2 Efficiency Enhancement for the IoT
	5.3 Comparison with Existing Protocol(s)

	6 Conclusion
	References

	Randomized Component Based Secure Secret Reconstruction in Insecure Networks
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution
	1.3 Organization

	2 Preliminaries
	2.1 Asmuth-Bloom (t,n) SS Scheme
	2.2 Harn (t,n) Secure Secret Reconstruction Scheme
	2.3 Miao Randomized Component Based (t,n) SSR Scheme

	3 Scheme Model and Security Goals
	3.1 Scheme Model
	3.2 Security Goals

	4 Basic Proposed SSR Scheme
	4.1 Scheme
	4.2 Correctness Analysis
	4.3 Security Analysis

	5 Improved Bivariate Polynomial Based SSR Scheme
	5.1 Scheme
	5.2 Correctness Analysis
	5.3 Security Analysis

	6 Properties and Comparisons
	6.1 Properties
	6.2 Comparisons

	7 Conclusion
	References

	Transparency Order of (n,m)-Functions—Its Further Characterization and Applications
	1 Introduction
	2 Preliminaries
	3 Differential Transparency Order—A Novel DPA Concept
	3.1 Differential Transparency Order
	3.2 CPA Efficiency Using RTO and DTO—A Comparison

	4 Is DTO Affine Invariance?
	5 Lower and Upper Bounds on DTO
	6 Conclusions
	References

	Web and OS Security
	Browserprint: An Analysis of the Impact of Browser Features on Fingerprintability and Web Privacy
	1 Introduction
	2 Research Questions
	3 Methodology
	3.1 Feature Gathering
	3.2 Browser Fingerprinting APIs
	3.3 Browser Testing Platform

	4 Analysis
	4.1 Analysis of the Browser Features
	4.2 Browser Fingerprintability

	5 Related Work
	6 Conclusion
	References

	TridentShell: A Covert and Scalable Backdoor Injection Attack on Web Applications
	1 Introduction
	2 Background and Related Work
	2.1 Static Webshell Detection
	2.2 Java Bytecode Instrumentation Technique
	2.3 Webshell Backdoor

	3 Our Proposed Attack: TridentShell
	3.1 Attack Vector
	3.2 Methodology
	3.3 Implementation

	4 Evaluation
	4.1 Experimental Design and Settings
	4.2 Effectiveness of Our Approach
	4.3 Robustness of TridentShell
	4.4 Limitations and Future Work

	5 Conclusion
	References

	Andromeda: Enabling Secure Enclaves for the Android Ecosystem
	1 Introduction
	2 Background
	2.1 Intel SGX
	2.2 The Android OS

	3 Threat Model and Assumptions
	4 Andromeda Architecture
	4.1 Trusted Execution and Storage
	4.2 Andromeda Services

	5 Implementation
	5.1 Setting up SGX for Android
	5.2 Running an SGX Application

	6 Andromeda Framework
	6.1 Andromeda Keystore
	6.2 Native Development
	6.3 Andromeda Java API

	7 Evaluation
	7.1 Security Analysis
	7.2 Performance Analysis

	8 Discussion and Limitations
	9 Related Work
	10 Conclusion
	References

	Network Security
	FEX – A Feature Extractor for Real-Time IDS
	1 Introduction
	1.1 Background
	1.2 Problem Statement and Contribution
	1.3 Paper Structure

	2 Related Work
	2.1 Network Intrusion Detection Techniques
	2.2 Machine Learning Based Network Intrusion Detection
	2.3 CICFlowMeter

	3 FEX - A Feature EXtractor for Machine Learning-Based IDS
	3.1 Architecture
	3.2 Design
	3.3 Evaluation

	4 Training a Model for Real-Time Intrusion Detection
	4.1 Training Data and Labelling
	4.2 Sampling
	4.3 Library Selection
	4.4 Model Selection
	4.5 Evaluation

	5 Towards a Machine Learning Based Real-Time IDS
	6 Conclusion
	References

	Identifying Malicious DNS Tunnel Tools from DoH Traffic Using Hierarchical Machine Learning Classification
	1 Introduction
	2 Related Work
	2.1 Network Traffic Classification
	2.2 DNS Tunnel Detection

	3 Design
	3.1 System Overview
	3.2 Capturing and Extracting the Features of Network Traffic
	3.3 Model Decision and Training
	3.4 Network Traffic Classification

	4 Evaluation
	4.1 Implementation
	4.2 Dataset
	4.3 Model Decision
	4.4 Results of Malicious DNS Tunnel Tool Identification
	4.5 Consideration of Important Features
	4.6 Discussion

	5 Conclusion
	References

	Detection of Malware, Attacks and Vulnerabilities
	Hybroid: Toward Android Malware Detection and Categorization with Program Code and Network Traffic
	1 Introduction
	2 System Design
	2.1 Static Features Preparation
	2.2 Dynamic Features Preparation
	2.3 Machine Learning Classification

	3 Evaluation
	3.1 Experimental Setup
	3.2 Evaluation Metrics
	3.3 Dataset
	3.4 Power Law and Opcode Embedding
	3.5 Performance of Classifiers

	4 Limitation and Future Work
	5 Related Work
	6 Conclusion
	References

	A Novel Behavioural Screenlogger Detection System
	1 Introduction
	1.1 Context and Motivation
	1.2 Contributions
	1.3 Paper Outline

	2 Literature Review
	3 System Model
	4 Threat Model
	4.1 General Description
	4.2 Operating Process

	5 Experimental Setup
	5.1 Malicious and Benign Datasets
	5.2 Experimental Framework

	6 Basic Detection Approach
	6.1 Feature Extraction
	6.2 Detection Algorithm
	6.3 Model Training and Testing
	6.4 Feature Selection

	7 Optimised Detection Approach
	7.1 Interaction with the User
	7.2 Visibility of the Screenshot-Taking Process
	7.3 Image Sending
	7.4 Remote Command Triggering
	7.5 Asymmetric Traffic
	7.6 Captured Area
	7.7 Screenshot Frequency

	8 Results and Comparison
	8.1 Performance Measurements
	8.2 Basic Detection Approach
	8.3 Optimised Detection Approach

	9 Conclusion
	References

	DEVA: Decentralized, Verifiable Secure Aggregation for Privacy-Preserving Learning
	1 Introduction
	2 Preliminaries
	3 Framework of a DECENTA Problem
	4 A DECENTA Solution: DEVA
	5 Evaluation
	5.1 Implementation Analysis
	5.2 Comparison

	6 Conclusion
	References

	DVul-WLG: Graph Embedding Network Based on Code Similarity for Cross-Architecture Firmware Vulnerability Detection
	1 Introduction
	2 Relate Work
	3 Embedded Network
	3.1 Siamese Network
	3.2 Embedding of Instruction Semantic Features
	3.3 Embedding of Structural Features of ACFG

	4 Evaluation
	4.1 Implementation
	4.2 Effectiveness of Instruction Embedding Projection
	4.3 Evaluation of Graph Embedding
	4.4 Vulnerability Detection of Real Firmware

	5 Conclusion
	References

	Machine Learning for Security
	Detect and Remove Watermark in Deep Neural Networks via Generative Adversarial Networks
	1 Introduction
	2 Related Work
	2.1 DNN Watermarking Works
	2.2 DNN Watermark Removal Works
	2.3 Backdoor Defense Based on GAN

	3 The Proposed Method
	3.1 Overview
	3.2 Watermark Reversing
	3.3 Watermark Removal

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 Parameter Discussion
	4.4 Comparison with Existing Works

	5 Conclusion
	References

	Targeted Universal Adversarial Perturbations for Automatic Speech Recognition
	1 Introduction
	2 Related Work
	3 Problem Definition and Assumptions
	3.1 Evaluation

	4 Proposed Method
	4.1 Universal Adversarial Perturbations
	4.2 Robustness Against Room Impulse Response

	5 Results and Discussion
	5.1 Setup
	5.2 Generating Universal Adversarial Perturbations
	5.3 Preserving Temporal Dependency
	5.4 Robustness Against Gaussian Noise
	5.5 Robustness Against Room Impulse Response
	5.6 Limitation

	6 Conclusion and Future Work
	References

	Voxstructor: Voice Reconstruction from Voiceprint
	1 Introduction
	2 Background
	2.1 Speaker Verification System
	2.2 Threat Model

	3 Voxstructor
	3.1 Voice Cloning
	3.2 Problem Formation
	3.3 Mapping Model

	4 Experiment Evaluation
	4.1 Dataset and Design
	4.2 Effectiveness
	4.3 Efficiency
	4.4 Manual Listening Experiment
	4.5 Privacy-Preserving Methods Metric

	5 Related Work
	6 Conclusion
	References

	Word-Map: Using Community Detection Algorithm to Detect AGDs
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experiments and Results
	4.1 Dataset
	4.2 Metrics
	4.3 Performance on Testing Data
	4.4 Improvement in Word Splitting and Dictionary Extraction
	4.5 Comparison with Other Methods

	5 Conclusion
	References

	Author Index

