
169© European Society of Medical Imaging Informatics  
(EuSoMII) 2022 
M. Fatehi, D. Pinto dos Santos (eds.), Structured Reporting in 
Radiology, Imaging Informatics for Healthcare Professionals, 
https://doi.org/10.1007/978-3-030-91349-6_8

Structured Reporting 
and Artificial Intelligence

Salvatore Claudio Fanni, 
Michela Gabelloni,  
Angel Alberich-Bayarri, 
and Emanuele Neri

Contents
8.1  Introduction  170

8.2  Natural Language Processing: How Does It Work? An 
Overview on the Technical Workflow  171
8.2.1  Feature Extraction  171
8.2.2  Feature Processing, from Machine Learning to Deep 

Learning  173

8.3  Application of Natural Language Processing in Radiology  175

8.4  Structured Reporting as AI Annotation Strategy  177

8.5  Quantitative Structured Reporting  178

 References  181

S. C. Fanni · M. Gabelloni · E. Neri 
Academic Radiology, Department of Translational Research, University 
of Pisa, Pisa, Italy 

Italian Society of Medical and Interventional Radiology, SIRM 
Foundation, Milan, Italy
e-mail: michela.gabelloni@unipi.it; emanuele.neri@unipi.it 

A. Alberich-Bayarri (*) 
Quantitative Imaging Biomarkers in Medicine (QUIBIM SL), Valencia, Spain
e-mail: angel@quibim.com

8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91349-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-91349-6_8#DOI
mailto:michela.gabelloni@unipi.it
mailto:emanuele.neri@unipi.it
mailto:angel@quibim.com


170

8.1  Introduction

Structured radiology reporting has proved to be not only useful 
but also necessary in order to achieve completeness, comparabil-
ity, and quantification and to minimize ambiguity [1]. The intro-
duction of electronic medical record (EMR) holds the promise of 
advancing clinical research by allowing analysis of data contained 
in the radiology reports; unfortunately, this is extremely difficult 
in free-form text, while it is quicker and easier in structured 
reports [2].

Nowadays, structured reporting is still not widely used due to 
many reasons, such as the fact that technical difficulties and lack 
of integration make it time consuming; therefore, many radiology 
reports remain unstructured and use a free-form language [3].

Artificial intelligence (AI) may be the way to overcome these 
issues.

AI is a large area of study in the field of computer science, 
which deals with the development of tools able to perform human 
tasks or processes such as learning, reasoning, and self-correc-
tion [4].

A subfield of AI is natural language processing (NLP), also 
defined as “information extraction” or “text mining.”

NLP is already part of our daily life, although little is known. 
For example, the system that separates valid e-mails from spam is 
based on text classification performed by an NLP tool.

NLP is a computer-based method that analyzes free-form text, 
in our case radiology reports, by combining linguistics, statistical, 
and AI methods, like machine learning (ML) or deep learning 
(DL).

The final output of this process is a structured format of spe-
cific itemized elements with a predefined organization and stan-
dardized terminology for each element [3].

From this analysis, NLP automatically identifies and extracts 
features, which ML or DL algorithm process, for example, to 
classify radiology reports [5].

Nevertheless, NLP will be useful in a transition period, passing 
from unstructured to structured reporting. The appropriateness of 
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software and templates integration will allow for fast reporting 
also in a structured way [6–8], shortening the elapsed time in the 
reporting process [9]. The two biggest radiological scientific soci-
eties, the Radiological Society of North America (RSNA) and the 
European Society of Radiology (ESR), established the template 
library advisory panel (TLAP) to endorse specific structured 
reporting templates. The most relevant template database can be 
accessed through the RadReport portal (www.radreport.org), cre-
ated by the RSNA.

The use of structured reporting templates is also the way in 
which images to be used for the creation of AI models can be 
properly annotated with the radiological findings.

A further step in the structured reporting is the inclusion of 
automatically generated quantitative imaging biomarkers in the 
report. The goal is not to create a fully quantitative report, which 
would resemble the way in which blood tests are reported, but to 
combine the findings detected by the radiologist with the associ-
ated annotations and quantitative metrics derived with a perfect 
combination between quantitative data and radiologist impres-
sions.

8.2  Natural Language Processing: How Does 
It Work? An Overview on the Technical 
Workflow

8.2.1  Feature Extraction

NLP analysis starts off with preprocessing feature extraction, 
which is articulated in various steps. The different tools used in 
clinical practice and research implement in various ways the dif-
ferent possible steps that we are going to describe.

The first preprocessing steps are segmentation, sentence split-
ting, and tokenization.

Segmentation is defined as the identification of radiology 
reports sections, and the successive processing steps may be per-
formed on every section or just a subset.
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Further processing steps are divided into sentences, defined as 
sentence splitting, and into words, that is, tokenization [5].

Words, when separated, are characterized by considering the 
respective lexical root (stemming). Eventual spelling mistakes are 
fixed, and eventual abbreviations are expanded.

After normalization of the words, the syntactic analysis assigns 
part of speech of the words (noun, adjective, verb), their gram-
matical structure, and dependency relations [10].

The next stage is the semantic analysis, in order to identify for 
each word an individual concept and their modification by other 
contiguous terms. A concept is defined as a unique entity with a 
definite and unambiguous meaning. To standardize the medical lan-
guage processing, the different software adopted medical lexicons. 
Lexicons are collections of precise definitions of concepts, each one 
with a preferred term and a list of possible synonymous or specific 
semantic [3]. Such lexicons are manually created by experts but may 
also be combined with existing lexicons; one of the most used is the 
Unified Medical Language System (UMLS) Metathesaurus [11].

When semantic analysis is completed, each individual concept 
is ideally output as a separate item in a structured format, which 
includes other contiguous concepts that modify it (e.g., for the 
concept of pneumonia, the anatomic location, or chronicity).

The primary NLP technologies used for these purposes are pat-
tern matching and linguistic analysis.

Pattern matching is the simplest technique for searching text, 
and it is frequently integrated into more complex NLP tasks: it is 
based on matching of pattern, that is, a sequence of characters, to 
a given text.

Pattern matching, for example, is used in the above-mentioned 
process of stemming, in order to reduce a given word to its root 
and facilitate the connection to the relative lexicon concept.

Pattern matching could be used even to determine whether a 
concept is present or absent. NegEx is a pattern matching based 
on an algorithm, used to detect negation lexical words, such as 
“no” or “absent,” within a small number of words before and after 
a specific concept [12].

Linguistic analysis is a more complex computer algorithm that 
uses syntactic and semantic knowledge to infer what concepts are 
cited in the text and how each concept is related to other contigu-
ous concepts.
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Limitations of this approach are ambiguity, incorrect grammar 
use, and misspellings.

An example of NLP resource based exclusively on linguistic 
analysis is Medical Extraction and Encoding (MedLEE), devel-
oped at New York Presbyterian Hospital [13]. MedLEE processes 
chest X-ray reports using semantic knowledge, and the final out-
put is a structured format with a list of findings and associated 
modifiers for each finding [14].

8.2.2  Feature Processing, from Machine Learning 
to Deep Learning

The combined steps mentioned above produce the NLP features. 
Features are individual properties or characteristics of the subject 
of analysis. One of the simplest features in NLP is the n-grams, 
i.e., the consecutive number of words in a text.

However, concepts identified by semantic analysis have been 
shown to be more predictive features compared to n-grams [15]. 
Unfortunately, not all the words contained in the text can be 
reduced to a concept, such as conjunction or adverbs, however 
relevant and significant to achieve a complete comprehension of 
the radiological report.

The extracted features could be used to achieve text classifica-
tion or information extraction. To solve this task, textual features 
can be processed by statistical, machine learning (ML), deep 
learning (DL) approach, or even hybrid approach.

ML is the branch of AI that studies the development of com-
puter algorithms able to learn from data [16]. While the statistical 
approach utilizes hand-crafted statistics rules, the machine learn-
ing approach automatically generates the classification rules.

ML can be used even to achieve linguistic tasks.
The Statistical Assertion Classifier (StAC) performs the same 

function of the previously mentioned pattern-matching-based tool 
NegEx. However, StAC works with a completely different and 
more complex technique. In fact, StAC is an ML algorithm that 
learns what negations are by analyzing radiology reports previously 
labeled by humans for the presence/absence of negations [17].
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The ML algorithm is mostly integrated in NLP processing with 
the purpose of classification of radiology reports analyzing the 
extracted features.

The simplest way is to classify reports by analyzing the pres-
ence/absence of findings and their possible combination.

For example, if findings such as pneumonia or infiltrates are 
described in a chest x-ray report by an NLP tool, then the report is 
likely classified as positive for pneumonia [18].

Machine learning algorithms perform report classification 
tasks by analyzing data and automatically determining which fea-
tures correlate with a positive or negative result.

In order to achieve these results, machine learning methods pre-
viously require training labeled data to establish a connection 
between the extracted features and predefined class. Care must be 
taken in the choice of the number and type of data because the per-
formance of the classifier strongly depends on the training set [19].

A subfield of machine learning is deep learning (DL). In DL, the 
algorithm learns without any prior human feature selection [20].

DL models are based on artificial neural networks (ANNs), 
inspired by the neural cortex, where each neuron is connected 
with other neurons [20].

ANNs are a collection of artificial neurons organized in mul-
tiple layers, structured as input, hidden computation, and output 
layers [21].

The information is fed through the input layer, processed 
through the hidden layers, and the result is produced from the 
output layer.

The most used ANNs are convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs). A CNN model is 
usually composed of numerous convolutional layers followed by 
a few fully connected layers [22]. CNN uses a repeating pattern in 
the dataset [20].

As in images, repeating patterns also appear in the free-form 
text [23].

Conversely, RNNs process sequential information, which is 
ideal in NLP, because sentences are sequences of words. The 
neurons in RNNs are connected sequentially, like a long chain, 
each passing the respective output to the next neuron. The sequen-
tial passing of information creates a memory; unfortunately, in 
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long- distance sentences, the “memory effect” loses effectiveness, 
while the memory diminishes passing through numerous layers.

To overcome this issue, a subtype of RNNs has been devel-
oped, the long short-term memory network, which is more effec-
tive for analyzing long and complex radiology reports [24].

DL algorithms have outperformed traditional NLP methods in 
various tasks, leading to a significant increase in research in this 
field [25].

For these reasons, it is expected that DL applications in NLP 
will play a largest and important role in clinical practice in com-
ing years.

8.3  Application of Natural Language 
Processing in Radiology

NLP in radiology is already used for many purposes, and the larg-
est application categories are the following:

 – Identifying/classifying findings
 – Identifying cases/cohort for research studies
 – Identifying follow-up recommendations
 – Imaging protocol determinations
 – Diagnostic surveillance
 – Assessing the quality of radiologic practice

The major benefit is automation and evaluation of large 
amounts of data in a reasonable time, while performing these 
tasks without using NLP and AI is at least unthinkable.

One of the first applications of NLP was identifying/classify-
ing findings. In 1998, Knirsch et al. compared MedLEE, a tradi-
tional NLP tool based on linguistic analysis, with experts review 
in order to identify chest x-ray reports suspicious for tuberculosis. 
The purpose was to identify automatically from the radiological 
report of the patient who needs respiratory isolation protocol. The 
agreement was 89–92% focusing on the presence/absence of six 
pre-selected keywords in the report [26].

MedLEE is also one of the first NLP tools used for identifying 
cases/cohort for research studies.
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Hripcsak et al. used MedLEE for large-scale research on radio-
logical reports, in order to test four different hypotheses. The 
automated analysis has made it possible to analyze a huge number 
of reports: 889.921! [27].

AI represented one of the most important innovations in the 
NLP field; in fact, ML and DL methods outperformed different 
times the traditional tools. In order to compare different NLP 
tools, different quantitative parameters have been used. F1 score 
is one of these parameters; it is a harmonized average of sensitiv-
ity and positive predictive value (PPV) and is frequently used as 
an overall measure of NLP tools’ performance.

An application of NLP has been to classify radiology reports of 
contrast material-enhanced CT of the chest performed to evaluate 
pulmonary embolism. In 2012, Chapman et al. developed an NLP 
tool named PeFinder (i.e., pulmonary embolism finder) for this pur-
pose. PeFinder classified reports based on the presence/absence and 
location of pulmonary embolism, chronicity, and  certainty. PeFinder 
applied an extension of NegEx to identify lexical clues and define 
concepts (i.e., pulmonary embolism). This simple technology 
achieved good results, such as high sensitivity and specificity [28].

Cheng et al. in 2018 compared a CNN model with peFinder, 
which was considered the best available software for this specific 
purpose.

However, the CNN model outperformed PeFinder based on F1 
score (0.938 vs. 0.867) [29].

Miao et al. evaluated the extraction of BI-RADS findings from 
breast ultrasound reports. They compared three different types of 
NLP approach: a traditional role-based approach, a machine- 
learning approach, and an RNN model. The RNN model per-
formed better than the other methods [30].

Another important application for NLP is the automatic iden-
tification of follow-up recommendations from radiology reports. 
Nowadays, this task remains challenging due to a lack of stan-
dardized/structured reporting.

In 2019, Carrodeguas et  al. assessed about 1000 radiology 
reports for this purpose, evaluating traditional NLP tools 
(iSCOUT) and ML (Support Vector Machine) and DL models 
(RNN network). The highest F1 sore was achieved by ML models 
(0.85), while iSCOUT and DL models performed at 0.71.
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Imaging protocol determination is a helpful application for 
NLP in radiology in order to save time and potentially standardize 
and decrease errors of contrast material injection.

In 2017, Trivedi et al. used the Watson DL protocol to evaluate 
the need for intravenous contrast injection in musculoskeletal 
MRI based on the free-text of clinical indication provided for the 
study. The DL protocol achieved an accepting accuracy (80–
90%), resulting in a good clinical decision support tool [31].

Another important NLP task that needs to be mentioned is 
diagnostic surveillance in order to safeguard clinical practice 
and potentially reduce the chance of errors in communication 
between radiologists and clinicians. NLP tools developed for this 
specific task raise alerts for the presence of predetermined find-
ings/conditions contained in the radiology report.

Rink et al. developed a hybrid approach involving a custom-
ized lexicon, manually defined patterns and an ML model (sup-
port vector machine) able to identify appendicitis based on 
individual statements of radiological reports. The model achieves 
a sensitivity of 91% and PPV of 83% [32].

Last but not least, NLP is a helpful tool for quality assessment 
of radiologic practice. NLP tools covering this task identify spe-
cific quality indicators used for internal quality assurance, com-
parison to guidelines, and legal purpose.

For example, Lacson et al. used iSCOUT to select reports with 
pulmonary nodules and verify the concordance between node 
management and recommendations from the Fleischner Society 
Guidelines [33].

8.4  Structured Reporting as AI Annotation 
Strategy

Appropriate implementation of structured reporting is based on 
templates. Integrating the healthcare enterprise (IHE) initiative 
developed a standard for the presentation of structured reports 
through the working group on Management of Radiology 
Reporting Templates (MRRT). It specifies which technology 
should be used for template development and describes how these 
templates should be managed and integrated into radiology infor-
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mation systems or PACS reporting orchestrators and their migra-
tion to these environments. In contrast, MRRT does not define how 
template- based reports are transmitted from a radiology informa-
tion system or PACS to an electronic health record system.

Structured reports can also be stored in DICOM format since 
the current standard definition considers the “DICOM-SR” 
modality. In the standard, the guidelines to be followed in the 
DICOM-SR object creation and the encoding of the information 
contained are specified. Furthermore, DICOM-SR objects can 
also include the annotations (i.e., measurements, regions of inter-
est, among others) performed by the radiologist using the tools 
available in a PACS workstation. Measurements and annotations 
provide meaningful information to complement the qualitative 
findings included in the report.

The combination of the HL7 standard with DICOM-SR 
enriches the report with clinical information relevant to patient 
diagnosis through the images obtained.

Structured reporting enables the development of deep learning 
algorithms thanks to the seamless annotation performed while 
reporting. Annotation is mainly performed today from retrospec-
tive data by NLP techniques, as seen in previous sections. 
Nevertheless, a risk to generate inaccuracies and uncertainties not 
only in annotation but also in the creation of deep learning models 
has already been in the case of the CheXNet paper [34, 35].

As an improved and scalable annotating methodology, 
research experiences have already demonstrated the feasibility 
of using the data from structured reports completed in clinical 
routine for training deep learning algorithms, highlighting the 
potential of structured reporting for the future of radiology in 
the context of AI and deep learning as the main technique 
applied [36–38].

8.5  Quantitative Structured Reporting

Structured reports can also be the way in which AI algorithms and 
image analysis results are communicated and integrated into hos-
pital information systems such as the PACS, RIS, or EHR.
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Quantitative features are today being generated in the form of 
imaging biomarkers by applying computational algorithms to the 
analysis of medical images. Computational imaging algorithms 
can either be based on AI (driven by data) or on conventional 
computer vision algorithms (driven by model). The main aim of 
quantitative imaging biomarkers is to early detect disease before 
symptoms, to establish a diagnosis and staging if the disease and 
symptoms are already present, to predict patient outcomes, and to 
evaluate treatment response during follow-up.

The extracted imaging biomarkers provide quantitative infor-
mation on their spatial distribution (parametric images) and their 
magnitude (intensity). The textural analysis of signal intensity 
properties from different voxels in a region of interest, through the 
extraction of quantitative features, allows for the evaluation of 
first-order histogram characteristics (intensity, skewness, kurto-
sis) and second-order parameters (energy, information, correla-
tion, among many others). The process of extracting hundreds or 
thousands of these features and using AI-based classifiers whose 
output is a clinical endpoint is called radiomics.

With regard to radiological workflow integration, even if these 
imaging biomarkers and radiomics capabilities may be available 
in a research or academic domain, their integration within radiol-
ogy information systems such as the RIS and PACS is still not 
straightforward. As an example, we can obtain the percentage of 
the affected lung in the computed tomography images of a 
COVID-19 patient, but current systems will not allow integrating 
this value seamlessly in the radiology report (without manually 
typing it) or performing population-based queries such as “show 
me all cases analyzed during the last year with a % of affected 
lung higher than 20%.”

The final results of AI and imaging biomarker extraction algo-
rithms must be available in the radiology structured reporting 
environment in order for the radiologists to be able to accept, 
amend, or reject this information.

As of now, quantitative structured reports can be generated in a 
parallel streamline that allows integrating final reports as an annex 
to the conventional radiology reporting. These quantitative reports 
can be generated by the use of HTML or Jade templates that are 
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installed in an environment or ecosystem hosting different appli-
cations and orchestrating AI analysis in the radiology routine. An 
example of the quantitative structured report obtained from the 
application of convolutional neural networks (CNNs) for the 
detection of ground glass opacities and the quantification of lung 
damage can be appreciated in Fig. 8.1.

Fig. 8.1 Quantitative structured report generated from an AI pipeline that 
calculates the percentage of the affected lung by COVID-19 opacities and the 
probability of being a positive case
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