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Preface

It has been just over 40 years since Norman G. Bowery discovered and named the
GABAB receptor. It has been 10 years since the last comprehensive book presenta-
tion focused on GABAB receptors.

The main goal of this book is to provide the field with a contemporary and
comprehensive perspective on the GABAB receptor, its physiological relevance, and
its therapeutic potential. The volume is organized into introductory and special
interest sections presented by experts who study the GABAB receptor from struc-
tural, signaling, pharmacologic, physiological, pathophysiological, and therapeutic
perspectives. More specifically, the first chapter of this volume focuses on a brief
history and the significance of the GABAB receptor, followed by a detailed presen-
tation of the structural basis of the GABAB receptor regulation and signaling in the
second chapter. The third chapter offers extensive background and knowledge on the
mechanisms and regulation of neuronal GABAB receptor-dependent signaling,
while the chapter “GABAB Receptor Chemistry and Pharmacology: Agonists,
Antagonists and Allosteric Modulators” provides an in-depth understanding of the
GABAB receptor chemistry and pharmacology through the presentation of the
development efforts of agonists, antagonists, and allosteric modulators over the
last few decades. Starting from the fifth chapter, a particular focus on the role of
GABAB receptors in neuropsychiatric disorders is presented, with the chapter
“GABAB Receptors and Drug Addiction: Psychostimulants and Other Drugs of
Abuse” covering the role of GABAB receptors on addiction, with a focus on
psychostimulants. The sixth and seventh chapters further add to the above, by
extensively presenting all the preclinical and clinical work, respectively, on the
GABAB receptor as it relates to alcohol use disorder. The eighth chapter provides
a detailed account of the role of GABAB receptors in pain, followed by an extensive
presentation of the role of GABAB receptors on anxiety and mood disorders in the
ninth chapter. Finally, the tenth chapter focuses on neurodegeneration and the role
GABAB receptors can play in this setting, and the eleventh and final chapter of this
book volume explores the role of GABAB receptors and cognitive processing in
health and disease.
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Abstract γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in
the brain. GABA type B (GABAB) receptors (GABABRs) are the only metabotropic
G protein-coupled receptors for GABA and can be found distributed not only in the
central nervous system, but also in the periphery. This chapter introduces important,
fundamental knowledge related to GABABR function and the various potential
therapeutic applications of the development of novel GABABR-active compounds,
as documented through extensive studies presented in subsequent chapters of this
Current Topic in Behavioral Neurosciences volume on the role of the neurobiology
of GABABR function. The compounds that have received increased attention in the
last few years compared to GABABR agonists and antagonists – the positive
allosteric modulators – exhibit better pharmacological profiles and fewer side
effects. As we continue to unveil the mystery of GABABRs at the molecular and
cellular levels, we further understand the significance of these receptors. Future
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directions should aim for developing highly selective GABABR compounds for
treating neuropsychiatric disorders and their symptomatology.

Keywords Animal models · Cognition · Drug and alcohol addiction · GABAB

receptors · Humans · Neurochemistry · Neurodegeneration · Neurodevelopmental
disorders · Pharmacology · Pharmacotherapy · Treatment

1 Introduction

It is an absolute honor to introduce the content of this book volume on the neuro-
biology of the metabotropic γ-aminobutyric acid (GABA) type B (GABAB) receptor
(GABABR). I cannot help point out that the goal this chapter aims to achieve is
challenging. How can anyone introduce and capture in a few pages the extensive
investigations conducted by esteemed colleagues on the neurobiology of GABAB

receptor function since its discovery and description in mammalian tissue by Nor-
man G. Bowery over 40 years ago? This chapter will only present a summary of the
overall work on the GABABR. The chapters to follow in this volume constitute
excellent contributions of the state-of-the-art in the GABABR research field, as they
provide extensive details on the structure, signal transduction, pharmacology, and
neurochemistry of GABABRs, but also on the role of GABABRs in a variety of
settings, such as drug and alcohol addiction, anxiety and mood disorders,
neurodevelopment, neurodegeneration, and cognitive processes in health and
disease.

GABA is the primary inhibitory neurotransmitter in the brain and one of the most
studied neurotransmitters in the brain over the last 50 years (Smart and Stephenson
2019). The GABABR is the only metabotropic G protein-coupled receptor (GPCR)
of the three identified and characterized receptors of GABA, and it belongs to Class
C of GPCRs. The history of the GABABR begins before these receptors were
identified and characterized, at the time when Norman G. Bowery was conducting
many highly innovative studies on the extrasynaptic and asynaptic GABA systems
in an effort to help solve the mystery of their presence in the ganglia and the
peripheral nerves, and their significance [as extensively reviewed by (Brown
2018)]. This early work took place in the early 1970s and it proved preparatory to
the discovery of the GABABR.

The pioneering work on the GABABR can only but be traced back to Norman
G. Bowery and his research team, when in 1979 and 1980, respectively, they
described for the first time a receptor that was responsive to GABA. This receptor
was activated by β-(4-chlorophenyl)-γ-aminobutyric acid (baclofen), the most exten-
sively studied GABABR agonist, but it was not responsive to bicuculline, a light-
sensitive competitive antagonist of GABAA receptors, in mammalian tissue (Bowery
et al. 1979, 1980). This response differentiated that newly identified receptor from
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the already identified and characterized GABAA receptor, which was responsive to
bicuculline.

Many years went by without any further advances, until extensive work by
Klemmens Kaupmann, Wolfgang Froestl, Bernard Bettler and colleagues, as well
as the groups of Jones and White and their colleagues, described the molecular
structure of the GABABR, characterized the gene sequence and identified the
heteromerization of the GABABR into subunits necessary to be assembled together
in order to generate a functional GABABR (Kaupmann et al. 1997, 1998; Jones et al.
1998; Kaupmann and Bettler 1998; White et al. 1998).

2 GABAB Receptor Structure, Function, and Distribution

All the experts participating in this volume have made major contributions to the
understanding of the neurobiology of the GABABR. Details of the structure, char-
acteristics, trafficking, and function of the GABABR heterodimer can be found in
many contributions in this volume, especially in Fritzius et al. (2020), Rose and
Wickman (2020), Nieto et al. (2021).

In more recent years, there is a lot more understanding of the GABABR at the
molecular and functional level (Bettler et al. 2004; Emson 2007; Schwenk et al.
2016; Shaye et al. 2021). GABABRs play a crucial role in mediating slow and long-
lasting synaptic inhibition through indirect neuronal K+ and Ca2+ channel gating and
through effects on other second messenger targets like cAMP. GABABRs consist of
principal and auxiliary subunits that influence receptor properties in different ways.
The principal subunits affect the surface expression and the axonal versus dendritic
distribution of these receptors, whereas the auxiliary subunits determine the potency
of agonists on the receptor and kinetics of the receptor response to them (Gassmann
and Bettler 2012). The two main subunits of the GABABRs are GABABR1 and
GABABR2. In order for the GABABR to be active and functional, these subunits
need to interact to form a stable heterodimer. Importantly, orthosteric agonists and
antagonists bind to GABABR1, while PAMs bind to the GABABR2 subunit. Most
recent findings show that GABABRs are receptor complexes consisting of primary
or other subunits, but also linked with and affecting numerous factors and proteins.
The homeostatic interaction between all these components plays an important role in
GABABR function.

Interestingly, GABABRs can be found on both presynaptic and postsynaptic
membranes. When presynaptic receptors are activated, they inhibit either the release
of GABA (in the case of autoreceptors on GABA neuronal terminals) or the release
of other neurotransmitters and peptides (in the case of heteroreceptors on other-than-
GABA-neurotransmitter neuronal terminals). When postsynaptic receptors are acti-
vated, they in turn activate K+ channels and induce slow inhibitory postsynaptic
potentials.

GABABRs are widely expressed and distributed in the mammalian central ner-
vous system (CNS) [e.g., (Bowery et al. 1984; Boyes and Bolam 2007; Metz et al.
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2011)], with the highest receptor densities occurring in the cerebral cortex, the
cerebellum, the interpeduncular nucleus, and the dorsal horn of the spinal horn
(Chu et al. 1990). Importantly, GABABRs can also be found in other brain areas,
such as the hippocampus, the thalamus, the amygdala and the basal ganglia, and
outside the CNS (please see below the section “Other conditions outside the CNS” in
this chapter). Thus, they are very widely expressed in mammalian tissues. As
expected, their distribution is not equal in the different brain areas. However,
lower distribution does not mean lower significance of these receptors in that
particular area (Bowery 2010).

3 GABAB Receptor Ligands: Agonists, Antagonists,
and Allosteric Modulators

The synthesis of the first exogenous GABA analogue (β-(4-chlorophenyl)-GABA
(baclofen) in 1962, followed by the identification of the three GABA receptor types,
paved the way for developing numerous GABABR agonists, partial agonists, inverse
agonists, and antagonists (Malcangio and Bowery 1995). Baclofen has been the most
extensively studied compound in both preclinical and clinical studies, and the only
GABABR-selective drug clinically approved for muscle relaxation in humans.

Positive allosteric modulators (PAMs) of GABABR were described 20 years ago
by Stephan Urwyler and colleagues (Urwyler et al. 2001; Urwyler 2011). Since then,
numerous PAMs have been reported in the literature by different research groups
and/or pharmaceutical companies. A major difference between GABABR agonists
and allosteric modulators is that the latter bind to a region of the GABABR different
from and outside of the ligand-binding (i.e., orthosteric) site. Through this action,
they either increase (i.e., in the case of PAMs) or decrease (i.e., in the case of
negative allosteric modulators; NAMs) the effects of GABA, without possessing
intrinsic agonistic activity, but only by modulating the endogenous GABA release
effects on the GABABRs (Ong and Kerr 2005; Kniazeff 2020). Thus, they produce
fewer and/or less severe side effects compared to the GABABR agonists or antag-
onists, and they activate the GABABR without inducing desensitization (Gjoni and
Urwyler 2008, 2009; Froestl 2010). Although numerous PAMs of the GABABR
have been developed over the years, it is only recently that the first NAM was
described (Porcu et al. 2021), leading the way toward the development of more
NAMs for therapeutic purposes.

It is critical to note that through extensive efforts spanning approximately four
decades, there has been only one GABABR compound – baclofen – approved for
clinical use as a muscle relaxant. The extensive and informative presentation of the
history of, as well as the development and characteristics of GABABR agonists,
partial agonists, inverse agonists, antagonists and allosteric modulators can be found
in Nieto et al. (2021) of this volume. This chapter, with other contributions in this
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volume, will help shed light on the future directions necessary for developing
GABABR-active compounds as potential therapeutic targets.

4 GABAB Receptors as Potential Therapeutic Targets

4.1 Drug and Alcohol Use Disorders

GABABRs are considered mediators or potential therapeutic targets for many neu-
ropsychiatric disorders, including drug addiction. The story of understanding of the
role of GABABRs in drug and alcohol use disorders has two main components, one
that focuses on the effects of the addictive drugs on GABABR signaling and the
other that focuses on the effects of GABABR compounds on those of drugs of abuse.
Extensive efforts in recent years have showcased the important role of these recep-
tors and their ligands on the effects of drugs of abuse, such as psychostimulants,
opioids and alcohol, in both preclinical and clinical studies. Alternatively, drugs of
abuse can evoke plasticity of GABABR-dependent signaling in the brain, with
changes marked at various molecular or cellular levels, such as RNA expression,
receptor trafficking, G protein coupling, and changes in the actions of effector
proteins, and affecting various neurotransmitter systems.

Although dopaminergic agents have been the primary therapeutic targets for drug
dependence treatment, in recent years, GABA and glutamate, with their
metabotropic GABABRs and glutamatergic receptors, have received increased atten-
tion as potential “alternative” approaches to dopamine-targeting compounds. More
specifically, considering the enhanced dopamine (DA) signaling in the
mesocorticolimbic circuitry through molecular and cellular mechanisms by drugs
of abuse (McCall et al. 2019), earlier efforts were mainly focused on the blocking
and/or inhibitory effects of DA-active compounds on the rewarding and reinforcing
effects of drugs of abuse in rodents. Furthermore, nowadays, the focus is not only on
a plethora of overlapping but distinct neurotransmitter pathways, including GABA
and glutamate systems, but also on further exploring and highlighting key
GABABR-related sex differences, which can potentially affect susceptibility to
drugs of abuse (DePoy et al. 2016; DeBaker et al. 2021). The presence of GABABRs
in different areas of the brain reward circuitry and how drugs of abuse induce
alterations in GABABR signaling is well-presented in Li and Slesinger (2021) of
this volume.

Numerous early studies at the preclinical level have shown that baclofen and
other GABABR agonists or mediators, such as GABA metabolism or reuptake
inhibitors, reduced the rewarding effects of cocaine, nicotine, morphine, and alcohol
in animal models mainly using rats and mice at different phases of drug dependence
[e.g., (Brebner et al. 1999; Xi and Stein 1999; Corrigall et al. 2000; Fattore et al.
2002; Paterson et al. 2004, 2005); for thorough reviews, please see Vlachou and
Markou (2010); Phillips and Reed (2014); Jacobson et al. (2018), as well as Holtyn
and Weerts (2020), Logge et al. (2020), Li and Slesinger (2021) of this volume].
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While these effects appeared promising, the side effects of the GABABR agonists
also presented in some of these studies (e.g., muscle relaxation, sedation, cognitive
deficits, fatigue, tolerance development, seizures) indicated that the development of
more selective agents with less side effects was necessary for many of these efforts to
translate to clinical testing and possible approval for therapeutic purposes.

In more recent years, studies have focused on the effects of PAMs and NAMs of
GABABRs on drugs of abuse [for thorough reviews, please see Agabio and
Colombo (2015); Filip et al. (2015); Maccioni and Colombo (2019)], as these
compounds have yielded more promising findings than those of GABABR agonists,
due to their mechanism of action and thus, fewer side effects. Extensive studies have
been conducted on the effects of GABABR compounds on the behavioral, cognitive,
locomotor, and rewarding effects of psychostimulants in particular; however, studies
on other drugs of abuse are still in their infancy.

Importantly, a limited number of studies with GABABR knock-out (KO) mice
lacking either the GABABR1 or the GABABR2 subunit (Vigot et al. 2006) have been
conducted in relation to drug addiction. The vast majority of them have focused on
the role the two subunits in the different phases of nicotine dependence (e.g., acute
administration or withdrawal phase) and some explore their relation to reward and
stress [e.g., (Varani et al. 2012, 2014, 2015, 2018; Jacobson et al. 2016)].

At clinical level, after so many years of research, still in 2021 only baclofen, a
GABABR agonist, is approved for use in humans as a muscle relaxant. Importantly,
it was also approved in France for treating alcohol use disorder in 2018, although
with controversy (Braillon et al. 2020). Numerous other studies have examined the
effects of baclofen on drug dependence in humans over many years and they have
not led to clinical approval. With regard to PAMs and their potential use in humans,
a study on only one compound, the PAM ADX71441 (developed by Addex Ther-
apeutics), was recently funded by the NIH for clinical studies on cocaine-dependent
individuals (Kalinichev et al. 2017). We can only but hope that in the next few years
more compounds will proceed to clinical trials and will be approved as safe therapies
for substance use disorders.

4.2 Pain and Analgesia

There is extensive evidence that GABABRs are involved in the processing of pain
signals and the induction of analgesia for chronic pain conditions (Pan et al. 2008;
Malcangio 2018). The contribution of GABABRs to the generation and modulation
of pain signals, their involvement in chronic pain states, and their potential use as
targets for developing novel analgesic compounds are discussed in detail by Dietmar
Benke in Benke (2020) of this volume.

Briefly, numerous studies at preclinical level have shown that GABABRs are
present in nociceptors (Enna and McCarson 2006; Hanack et al. 2015), which are
sensory neurons that respond to potentially harmful heat, mechanical, or chemical
stimuli. Nociceptors can transmit slow or fast signals, depending on whether they are
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unmyelinated or myelinated, respectively. Nociceptor synapses can be found in the
dorsal horn of the spinal cord where GABABRs have also been identified [e.g.,
(Zhou et al. 2017)]. More specifically, GABABRs or their subunits have been
identified in both central and peripheral axon endings of nociceptors, as well as in
dorsal horn interneurons and projection neurons, in supraspinal areas and in
descending pain control pathways. Considering the extensive presence of
GABABRs in all the loci and pathways mentioned above, researchers have investi-
gated the potential therapeutic effects of GABABR compounds in different kinds of
chronic pathological pain, such as inflammatory or neuropathic pain [e.g., (Barr et al.
2013; Meuwissen et al. 2020)], and the overall results have suggested that the
enhancement of GABABR activity can relieve or alleviate pain, although the exact
mechanisms with which the nociceptive processes are activated are complex.

4.3 Anxiety and Mood Disorders

Many studies over the last few years have shown that alteration of the function of the
GABABR can contribute to stress- and anxiety-related conditions and in affective
disorders. At the preclinical level, numerous studies have shown that GABABR
agonists reduce anxiety-like and depressive-like symptomatology in animal models,
although contradictory findings also exist (Mombereau et al. 2004; Cryan and
Kaupmann 2005; Cryan and Slattery 2010; Jacobson et al. 2018).

As noted above, the side-effect profile of GABABR agonists such as baclofen
(Agabio et al. 2013) is pronounced, reducing hope for the use of these types of
compounds as therapeutics for a number of conditions, including mood disorders.
Clinical studies of GABABR agonists and their effects in the setting of anxiety
disorders are more sparse. However, overall, preclinical and clinical findings,
presented in detail in Felice et al. (2020) of this volume suggest a possible thera-
peutic role of GABABR compounds in anxiety and depression, especially when the
focus switches to novel PAMs and NAMs, and proteins that affect GABABR
activity, which have been tested more extensively in recent years.

Importantly, research advancements in diagnostic and therapeutic procedures
such as the use of transcranial magnetic stimulation in major and treatment-resistant
depression patients (Fatih et al. 2021; Kinjo et al. 2021) have recently shown deficits
in GABABR neurophysiology (i.e., GABABR-mediated cortical inhibition) (Premoli
et al. 2014a, b, 2017; Veronezi et al. 2016; Lissemore et al. 2018) that is affected by
anti-depressant medication. Further advances in the use of innovative techniques are
expected to help elucidate the role of GABABR in anxiety and affective disorders.
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4.4 Neurodegeneration

A considerable role of the GABABR has been identified in neurodegeneration in
relation to both its neuropathology and symptomatology, and the potential use of
GABABR compounds as therapeutics. The GABAergic system has been linked with
numerous neurodevelopmental and neurodegenerative conditions (Kleppner and
Tobin 2001; Smart and Stephenson 2019; Murrell et al. 2020), although the initial
focus was on the GABAA receptors, and their agonists and antagonists [for reviews
see, (Solomon et al. 2019; Bhagat et al. 2021; Castellano et al. 2021)].

Several studies have implicated GABABRs and their subunits in the pathophys-
iology of Alzheimer’s disease, with changes in the density of expression of the
GABABRs identified [e.g., (Iwakiri et al. 2005; Pilipenko et al. 2018, 2019;
Dinamarca et al. 2019; Martín-Belmonte et al. 2020)]. Further, although the main
neuropathological features are diverse among neurodegenerative disorders,
GABABRs seem to be strongly implicated in the pathophysiology of Parkinson’s
disease [e.g., (de Groote et al. 1999; Enna et al. 2006; Yang et al. 2021); for a recent
review, see Roberts et al. (2021)] and Huntington’s disease [e.g., (Allen et al. 2009;
Rekik et al. 2011; Kim and Seo 2014; Holley et al. 2019; Barry et al. 2020)].
Extensive work has focused on the role of GABABRs on epilepsy, specifically on
temporal lobe epilepsy (TLE) (Princivalle et al. 2002, 2003; Chandler et al. 2003;
Straessle et al. 2003; Dugladze et al. 2013; Rocha et al. 2015; Sheilabi et al. 2018)]
and absence epilepsy [e.g., (Sperk et al. 2004; Han et al. 2013; Jafarian et al. 2021;
Pagès et al. 2021)]. GABABR antagonists may be of most therapeutic benefit for
the treatment of seizures in epilepsy. However, the difficulty lies not only in the
selectivity of these agents, which would minimize side effects, but mainly in the
route of administration (central or systemic) and the overall pharmacokinetics of
GABABR compounds.

An extensive presentation of the most recent developments on the role of GABA
and GABABRs in neurodegeneration, with a particular focus on Alzheimer’s and
Parkinson’s disease and epilepsy is presented in Princivalle (2021) of this volume.

4.5 Cognitive Processes in Neurodevelopment, Health
and Disease

The role of GABABRs in cognitive processes has been extensively studied from
different perspectives. The vast majority of the existing literature focuses on animal
models of learning and memory to assess the role of GABABRs in these processes.
Examples of the animal models used are active and passive avoidance paradigms, the
Morris water maze and radial arm maze, many working memory tasks (e.g., T and Y
mazes), and the novel-object recognition, and (dis) location tasks (Bowery 2006;
Serrats et al. 2017). However, a lot of work has also been conducted on how
cognition functions in neurodevelopment and neurodegeneration, and what may be
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the potential beneficial or therapeutic role that the GABABR can play in cognitive
development, decline, or enhancement (Heaney and Kinney 2016).

Examples of neurodevelopmental conditions more extensively studied under the
scope of the potential therapeutic role of the GABABR include autism spectrum
disorders, fragile X syndrome, and Down syndrome; examples of neurodegenerative
conditions are Alzheimer’s disease, epilepsy, and autoimmune anti-GABAB enceph-
alitis. Many studies have specifically examined the role of GABABRs in cognition,
learning, and memory processes in these conditions. Although there are controver-
sial findings in the literature, altogether, results from studies in this area, presented in
detail in the last chapter of this volume on the role of the GABAB receptors and
cognitive processing in health and disease (Vlachou 2021), indicate a potential
therapeutic role of GABABR compounds for treating cognitive dysfunction and
learning/memory impairments for some of these conditions, especially in neurode-
generative disorders. However, the ongoing effort to develop more selective
GABABR compounds with fewer side effects will help further elucidate how
alteration of GABABR function can help battle cognitive processes symptomatology
in health, neurodevelopment, and neurodegeneration.

4.6 Other Conditions Outside the CNS

Considering that the GABABR is present not only in the CNS, but also in the
periphery and even outside the nervous system, the potential therapeutic use of
GABABR compounds for symptoms and conditions outside the CNS has been
examined over a number of years. Although studies in this direction are not the
focus of this volume, the GABABR has been investigated as a potential target for the
treatment of gastroesophageal reflux disease, chronic abdominal pain, and overac-
tive bladder (Alstermark et al. 2008; Lehmann 2009; Hyland and Cryan 2010;
Brozmanová et al. 2013; Scarpellini et al. 2015). The focus on these conditions
was based on the findings that the GABABR is present in the gastrointestinal tract
and plays a role in the regulation of a number of processes including intestinal
motility, gastric acid secretion and gastric emptying, and esophageal sphincter
relaxation. AZD3355 (Lesogaberan) was a selective peripheral GABABR agonist,
which was tested for the treatment of gastroesophageal reflux disease in earlier years
in animal models or in human patients (Boeckxstaens et al. 2011; Canning et al.
2012; Shaheen et al. 2013), but more recent studies with the PAMs ADX71441 and
ADX71943 have shown analgesic effects in a rat model of bladder pain and in the
acetic acid-induced writhing test in mice and formalin tests in mice and rats,
respectively (Kalinichev et al. 2014; Kannampalli et al. 2017). The efforts in this
direction are focused on developing compounds that are peripherally selective and
thus show less side effects than centrally active GABABR agonists. Thus, peripher-
ally selective allosteric modulators may be the drugs of choice in this direction.

Other efforts try to shed light on the role of GABABRs in the treatment of
different types of gastrointestinal system-related cancers, such as colorectal or
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pancreatic cancer [e.g., (Al-Wadei et al. 2011; Banerjee et al. 2014; Schuller 2017;
An et al. 2021; Wang et al. 2021)]. Importantly, in the case of colorectal cancer, it
was recently shown that GABABR1 expression was significantly lower in tumor
tissues than those in non-tumor normal tissues, and that those colorectal cancer
patients with high GABABR1 expression lived longer (Wang et al. 2021). In the case
of pancreatic cancer, preclinical findings suggest that GABA itself, but not baclofen,
may be promising for the treatment of pancreatic cancer in tobacco smokers, as low
doses of nicotine within the range of nicotine replacement therapy induce
gemcitabine resistance in pancreatic cancer and GABA significantly reverses this
effect (Banerjee et al. 2014).

Most interesting findings derive from the recent profiling of GABAA and
GABABR expression in the myometrium of the human uterus (Söderhielm et al.
2018) and the significant role of the GABAB1R subunit in embryo implantation and
uterine decidualization in preclinical studies in mice (Chen et al. 2021). Studies in
the near future will shed light on the role of GABABR expression in the female
reproductive organs, pregnancy, and embryonic development.

5 Conclusion

Altogether, the most important conclusion deriving from all research conducted over
the last four decades is that the clinical promise of the GABABR agonists, antago-
nists, PAMs, and NAMs is extensive (Enna and Bowery 2004). Most of the efforts in
that direction focus on PAMs and NAMs in the last few years, due to their improved
and more selective pharmacological profile exhibiting more direct effects and less
side effects in the various neuropsychiatric and other disorders. To fully understand
the significant role of the GABABR research findings, one must delve into the
following chapters of this volume, which I hope you will find informative, enjoyable
and thought provoking.

Ultimately, I want to point out that the expanded “GABABR family” consists of
esteemed colleagues from around the world, all of whom have significantly contrib-
uted to the evolving history of the GABABR, and many of whom have kindly
participated and offered excellent contributions to this volume. In addition to the
recent loss of Norman G. Bowery (1944–2016), the “GABABR family” has lost two
more esteemed members in the last few years – including Wolfgang Froestl
(1946–2015), who was a leading scientist for the discovery of most of the early
GABABR agonists and antagonists, and Athina Markou (1961–2016), who offered
major contributions to the role of GABABR on drug dependence, specifically on
nicotine dependence, reward mechanisms, and depressive-like behavior. The author
of the first and last chapter and editor of this volume worked closely with both. I
want to dedicate this introductory chapter of the Current Topics in Behavioral
Neurosciences volume on the neurobiology of GABABRs to Athina Markou, my
postdoctoral mentor, who introduced me to the GABABR research and “family” and
made me love it as much as she did, and to Wolfgang Froestl, who was not only an
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excellent chemist and neuroscientist, but also one of the most gentle people I have
met in our field.
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Abstract GABAB receptors (GBRs), the G protein-coupled receptors for the inhib-
itory neurotransmitter γ-aminobutyric acid (GABA), activate Go/i-type G proteins
that regulate adenylyl cyclase, Ca2+ channels, and K+ channels. GBR signaling to
enzymes and ion channels influences neuronal activity, plasticity processes, and
network activity throughout the brain. GBRs are obligatory heterodimers composed
of GB1a or GB1b subunits with a GB2 subunit. Heterodimeric GB1a/2 and GB1b/2
receptors represent functional units that associate in a modular fashion with regula-
tory, trafficking, and effector proteins to generate receptors with distinct physiolog-
ical functions. This review summarizes current knowledge on the structure,
organization, and functions of multi-protein GBR complexes.
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1 Heterodimers Are theMinimal Functional Receptor Units

The GB1a and GB1b subunit isoforms were cloned in 1997 using a radioligand
binding approach (Kaupmann et al. 1997). This showed that GBRs belong to class C
GPCRs, which include metabotropic glutamate receptors, Ca2+-sensing receptors,
and taste receptors (Kaupmann et al. 1997). As for other class C GPCRs, GB1
subunits contain a large extracellular venus fly trap domain (VFTD), the typical
heptahelical transmembrane domain (7TMD), and an intracellular C-terminal
domain (Fig. 1). When expressed in heterologous cells, GB1 subunits exhibited
~tenfold lower affinity for GABA than native GBRs (Kaupmann et al. 1997, 1998;
White et al. 1998). In addition, GB1 subunits failed to exit the endoplasmic reticu-
lum (Couve et al. 1998) and to efficiently inhibit adenylyl cyclase or activate Kir3
channels (Kaupmann et al. 1997). This showed that GB1 subunits do not form
functional receptors by themselves. Soon after cloning of GB1 subunits, cDNA
homology searches and yeast-two-hybrid screens identified the sequence-related
GB2 subunit (Kaupmann et al. 1998; Kuner et al. 1999; Ng et al. 1999; White
et al. 1998). GB2 was again non-functional when expressed in heterologous cells
(Galvez et al. 2001). In situ hybridization studies showed that neurons generally
co-express GB1 and GB2 transcripts, which indicated that GB1 and GB2 subunits
might function together in a heterodimeric receptor. Co-expression of GB1 with
GB2 subunits indeed generated receptors with tenfold higher affinity for GABA that
also efficiently signaled to neuronal effectors, including adenylyl cyclase, Kir3
channels, and P/Q/N-type Ca2+ channels (Kaupmann et al. 1998; Kuner et al.
1999; Ng et al. 1999; White et al. 1998). This finding represented the earliest
demonstration of an obligatory heterodimeric G protein-coupled receptor (Marshall
et al. 1999). The GB1a and GB1b subunit isoforms derive from the same gene by
differential promoter usage and exhibit distinct expression patterns in the central
nervous system (Bischoff et al. 1999). Structurally, GB1a differs from GB1b by the
presence of two sushi domains in the N-terminal domain (SD1, SD2) (Blein et al.
2004) (Fig. 1). The N-terminal SD1 has an intrinsically disordered structure, while
SD2 is more compactly folded. The SDs function as axonal trafficking signals
(Biermann et al. 2010) and stabilize the receptor at the cell surface (Hannan et al.
2012). Accordingly, axons predominantly express GB1a/2 receptors, while the
somatodendritic compartment expresses GB1b/2 receptors. However, GB1a/2
receptors are also present in the dendrites but excluded from the spine heads, in
contrast to GB1b/2 receptors (Biermann et al. 2010; Dinamarca et al. 2019; Vigot
et al. 2006).

GBRs have evolved quality control signals that prevent unfolded or unassembled
subunits from exiting the endoplasmic reticulum (ER) and the Golgi apparatus. The
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Fig. 1 Structural model of the GBR heterodimer. The model is based on the published structures of
SD1 [PDB ID: 6HKC (Rice et al. 2019)], SD2 [1SRZ (Blein et al. 2004)], baclofen-bound VFTDs
[4MS4 (Geng et al. 2013)], active and inactive mGlu5 [6N51 and 6N52 (Koehl et al. 2019)], the
coiled-coil domain of GBRs [4PAS (Burmakina et al. 2014)] and the heterotrimeric G protein
complex [3SN6 (Rasmussen et al. 2011)]. GB1 and GB2 are colored in green and slate, respec-
tively. The active and inactive conformations of the 7TMDmGlu5 were used in GB1 and GB2,
respectively. The boxes in the C-terminal domain of GB1 indicate the retention motifs RSRR and
EKSRLL that control heterodimer assembly during biosynthesis
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intracellular C-terminal domain of GB1 subunits encodes the ER retention signal
RSRR, which is located distal to a coiled-coil heterodimerization domain (Margeta-
Mitrovic et al. 2000; Pagano et al. 2001) (Fig. 1). Prenylated rab acceptor family
2 (PRAF2) protein, an ER-resident molecule, binds to the ER retention signal and
prevents exit of the GB1 subunit from the ER (Doly et al. 2016). Coiled-coil
heteromerization of GB1 with GB2 subunits competitively displaces PRAF2 from
its binding motif and enables forward trafficking of the GB1/2 heterodimer in the
biosynthetic pathway. The coat protein complex I (COPI) also binds to the ER
retention signal and shuttles unassembled GB1 subunits from the cis-Golgi back to
the ER (Brock et al. 2005). An additional signal within the coiled-coil domain of
GB1, the di-leucine motif EKSRLL (Fig. 1), controls release of receptors from the
trans-Golgi network (Restituito et al. 2005). Msec7-1, a guanine-exchange factor
protein of the ARF family of GTPases, binds to this di-leucine motif and prevents
exit of unassembled GB1 subunits from the Golgi apparatus. Structural data show
that heterodimerization of GB1 with GB2 subunits occludes the di-leucine signal
and prevents Msec7-1 from binding (Burmakina et al. 2014).

At high cell surface density, GB1/2 heterodimers assemble by random collision
into higher-order oligomers of two or more heterodimers (Calebiro et al. 2013;
Comps-Agrar et al. 2011; Maurel et al. 2008; Schwenk et al. 2010; Stewart et al.
2018). It appears that in higher-order oligomers GB1 subunits arrange in a line via
the opposite sides of their 7TMDs, while GB2 subunits are on the side (Xue et al.
2019). Mutation of either E380 + L382, T410 + E412, or E413 in the VFTD of rat
GB1a (VFTDGB1a) disrupts the formation of higher-order oligomers (Comps-Agrar
et al. 2011; Stewart et al. 2018). Molecular modeling indicates that two G proteins
can couple to one GBR tetramer (Xue et al. 2019). Interestingly, however, higher-
order oligomerization limits the capacity of GBRs to activate G proteins, presumably
because only one of the agonist binding sites in the two neighboring GB1 subunits of
a GBR tetramer can be occupied (Stewart et al. 2018). It is unknown whether
suppression of G protein signaling in higher-order oligomers is of regulatory signif-
icance or not.

2 Signal Transduction in the Receptor Heterodimer

GB1 and GB2 subunits fulfill distinct functions in the receptor heterodimer. Only
GB1 contains a GABA binding site (Galvez et al. 1999), whereas GB2 couples to the
G protein (Duthey et al. 2002; Havlickova et al. 2002). GB2 additionally allosteri-
cally increases GABA affinity at GB1 (Kaupmann et al. 1998; White et al. 1998).
After binding of GABA at GB1, multiple allosteric interactions between subunit
domains are necessary to activate the G protein at GB2. X-ray structures of the
extracellular dimerization interface are now available (Geng et al. 2012, 2013). The
VFTDGB1/VFTDGB2 dimer structure shows that GB1 and GB2 subunits interact
sideways, facing opposite directions (Geng et al. 2013) (Fig. 2). Each VFTD has a
bi-lobed structure, where lobe 1 (LB1) is positioned more distant from the plasma
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membrane than LB2. A peptide hinge connects LB1 and LB2, enabling LB2 to move
in relation to LB1. In the heterodimer, VFTDGB1 and VFTDGB2 bind to each other
via LB1. The LB1/LB1 interaction is stabilized by multiple hydrophobic contacts
(Y113/Y117 in GB1b; Y118/W149 in GB2, amino acid numbering refers to human
sequences in the remainder of the manuscript), salt bridges (R141 in GB1b, D109 in
GB2), hydrogen bonds (E138 in GB1b, N110 in GB2), and multiple van der Waals
contacts (Geng et al. 2013). The hydrophobic patch is located at the center of the
interface and flanked by sites forming hydrogen bonds and water-mediated contacts.

Mutagenesis and X-ray crystallography studies show that agonists and antago-
nists bind to a large crevice between LB1 and LB2 in VFTDGB1 (Galvez et al. 1999;
Geng et al. 2013). Agonists and antagonists form multiple interactions with residues
in LB1, including hydrogen bonds with S130, S153, H170, and E349, van der Waals
contacts with W65, and water-mediated contacts with S131 (GB1b numbering)
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32 Å 29˚

S131
S130

H170

S153

Y250

E349

W65

W278

GABA

H2O

LB1

LB2

no ligand

with bound GABA

LB1

LB2

LB1

LB2

LB1

LB2

Fig. 2 Conformational changes in VFTDs during receptor activation. Structures of the VFTDs in
the absence of a ligand [PDB ID: 4MQE, top] and with GABA bound to VFTDGB1 [4MS3, bottom
(Geng et al. 2013)] are shown. Upon GABA binding, LB2 of VFTDGB1 (green) rotates by 29� and
moves toward VFTDGB2 (slate) by ~10 Å. In contrast, LB2 of VFTDGB2 rotates only by 9� upon
activation. Amino acid residues in VFTDGB1 involved in the binding of GABA are shown on the
right, with numbering of residues according to human GB1b (Geng et al. 2013). Y250, W278, and
S131 (water mediated contact) on LB2 interact with GABA and subsequently close the interface
between the LB domains. The 2F(o)-F(c) electron density map of GABA is shown as mesh at
σ ¼ 1.5 (right bottom)
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(Geng et al. 2013) (Fig. 2). Agonists additionally bind to Y250 and W278 in LB2.
The antagonists CGP54626 and SCH50911 also bind to W278 in LB2, which
increases antagonist-binding affinity (Geng et al. 2013). The large substituents at
either side of antagonists physically prevent VFTDGB1 closure, which stabilizes
VFTDGB1 in an open conformation (Geng et al. 2013). Conversely, agonists induce
VFTDGB1 closure (Geng et al. 2012; Kniazeff et al. 2004). Mutations that stabilize
VFTDGB1 closure therefore lead to constitutive activity. Upon agonist binding, LB2
in VFTDGB1 rotates 29� about a nearly horizontal axis, bringing LB2 close to LB1
and closing VFTDGB1 (Fig. 2). This rotation additionally moves VFTDGB1 closer to
LB2 of VFTDGB2 that remains in a constitutively open conformation stabilized by
hydrogen bonds between LB1 and LB2 (Geng et al. 2012). LB2 of VFTDGB2 twists
by ~9� about a nearly vertical axis, moving it toward LB2 of VFTDGB1. As a result, a
new LB2/LB2 interface forms that stabilizes VFTDGB1 in the closed conformation
and increases agonist affinity. The LB2/LB2 interface is essential for receptor
activation, as disruption of the interface by insertion of a glycan wedge precludes
receptor activation (Rondard et al. 2008). Conversely, a covalent disulfide bridge
linking the LB2 lobes locks the receptor in a constitutively active state (Geng et al.
2013). While agonist binding promotes VFTDGB1/VFTDGB2 interaction, it simulta-
neously causes a spatial reorientation of 7TMDGB1 and 7TMDGB2 that enables
activation of the G protein at 7TMDGB2 (Matsushita et al. 2010; Monnier et al.
2011). Allosteric activation of 7TMDGB2 occurs in cis and in trans via VFTDGB2

and 7TMDGB1, respectively (Monnier et al. 2011). Receptor activation disrupts an
ionic lock at the intracellular side of 7TMDGB2 (Binet et al. 2007). The ionic lock is
formed by a salt bridge between D688 in TM6 and K574 in TM3, which prevents
outward movement of TM6 and stabilizes the inactive closed conformation of the
7TMDGB2. Disruption of the ionic lock by mutation allosterically increases agonist
affinity. Recent studies show that crosslinking of the TM6-TM6 interaction between
GB1 and GB2 is sufficient for receptor activation and leads to constitutive activity
(Xue et al. 2019). Interestingly, GBRs also exhibit constitutive activity in the
absence of agonists (Galvez et al. 2001; Grunewald et al. 2002). This suggests that
GBRs exhibit high intrinsic conformational flexibility and spontaneously oscillate
between inactive and active states, similar as shown for the isolated VFTDs of
metabotropic glutamate receptor 2 (Olofsson et al. 2014).

Almost all known allosteric modulators of GBRs bind to 7TMDGB2 (Binet et al.
2004; Dupuis et al. 2006; Sun et al. 2016). The only exception is Ca2+, which binds
to S269 in LB1 of GB1a (S153 in GB1b) and thereby increases affinity for GABA
(Galvez et al. 2000; Wise et al. 1999) (Fig. 2). Positive allosteric modulators (PAMs)
at GBRs generally increase agonist potency and efficacy (Urwyler et al. 2005). Some
PAMs also have agonistic properties and activate the receptor in the absence of
orthosteric agonists, presumably by stabilizing the active conformation of
7TMDGB2. The negative allosteric modulator (NAM) CLH304 has inverse agonist
properties, suppressing basal activity as well as agonist-induced receptor activation,
likely by preventing 7TMDGB2 from reaching the active conformation (Chen et al.
2014; Sun et al. 2016). The binding sites of allosteric modulators in 7TMDGB2 are
unknown. Crystal structures of other class C G protein-coupled receptors suggest
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that allosteric modulators enter a cavity located between transmembrane domains
3, 5, 6, and 7 (Christopher et al. 2015; Dore et al. 2014; Gregory et al. 2011; Wu et al.
2014). A GB2 homology model predicts a hydrophobic binding pocket in 7TMDGB2

and identified potential amino acid residues involved in binding of allosteric mod-
ulators (Freyd et al. 2017).

3 Auxiliary KCTD Subunits

Several observations pointed to native GBRs being composed of more than just a
GB1 and a GB2 subunit. For example, GBR complexes isolated from brain tissue
had molecular masses of 0.6–1.1 MDa, while the heterodimer only accounts for
240 kDa (Schwenk et al. 2010). Moreover, the kinetic properties of native GBR
responses varied and differed from those of GB1/2 heterodimers expressed in
heterologous cells (Turecek et al. 2014). Quantitative proteomic approaches identi-
fied approximately 30 proteins that interact with GB1 or GB2 in the brain
(Dinamarca et al. 2019; Schwenk et al. 2010, 2016; Turecek et al. 2014). These
proteins provide a molecular basis to explain the functional diversity of native
GBRs. Known interactions between components of GBR complexes have been
summarized recently (Fritzius and Bettler 2020).

Abundant GBR-interacting proteins are the K+ channel tetramerization domain
(KCTD) proteins KCTD8, KCTD12, KCTD12b, and KCTD16 (herein collectively
referred to as the KCTDs) (Schwenk et al. 2010). The KCTDs are part of a larger
family of KCTD proteins comprising 26 members with sequence similarity to the
cytoplasmic tetramerization (T1, also known as BTB or POZ) domain of voltage-
gated K+ channels (Correale et al. 2013; Zheng et al. 2019). The KCTDs are
composed of the N-terminal T1 domain and a H1 domain, with both isolated
domains capable of forming oligomers (Correale et al. 2013; Fritzius et al. 2017).
KCTD8 and KCTD16 additionally encode a C-terminal H2 domain that scaffolds
effector channels and other receptor-associated proteins (see below). Structural
studies demonstrate that T1KCTD12 and T1KCTD16 form homopentamers (Pinkas
et al. 2017; Smaldone et al. 2016; Zheng et al. 2019; Zuo et al. 2019) (Figs. 3a
and 5). The T1KCTD16 pentamer is open, with a gap of 8–16 Å at its narrowest and
widest points. Since one T1KCTD16 monomer in the pentamer occupies 25 Å, the gap
in the pentamer is too small to accommodate a sixth T1KCTD16 monomer. Multiple
electrostatic interactions and nonpolar associations stabilize adjacent T1KCTD16
domains. Most of the conserved amino acid residues are involved in T1KCTD16
interactions, supporting that all four KCTDs assemble as pentamers.
Co-crystallization of T1KCTD16 with a C-terminal GB2 peptide shows that the
T1KCTD16 pentamer wraps around the peptide (Fig. 3a, b). The GB2 peptide loops
inside the central opening of the pentamer, entering and leaving the pentamer at its
N-terminal surface. The apex of the GB2 peptide loop forms a short helix that
contains the Y903 residue critical for KCTD binding (Correale et al. 2013; Schwenk
et al. 2010; Zheng et al. 2019) (Fig. 3a). X-ray crystallography reveals that Y903 is
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located in the middle of an extensive interaction interface (Zuo et al. 2019). The
interaction takes place off center in the central pore of the pentamer, opposite of the
gap. In each T1KCTD16 domain of the pentamer, the F80 residue protrudes into the
central pore. A slight offset due to a tilt of each T1KCTD16 monomer forms a spiraling
ladder of F80 residues in the inner wall of the pentamer (Fig. 3b). This arrangement
allows F80 residues to bind many side chains in a GB2 peptide of 25 amino acid
residues (Zheng et al. 2019). Consistent with the X-ray data, the F80A mutation

N
N

C

N

C

GB2 peptide

KCTD16 T1 pentamer bound to peptide

A

B

Fig. 3 Binding of the GB2 C-terminus to the T1KCTD16 pentamer. (a) Structure of a GB2
C-terminal peptide bound to the T1KCTD16 pentamer [PDB ID: 6M8R (Zheng et al. 2019)]. The
F80 (red) and Y903 (yellow) residues in T1KCTD16 and GB2, respectively, are highlighted.
T1KCTD16 domains form an open pentamer with C6 symmetry. A twist of the ring prevents the
sixth subunit from being inserted. Upon binding to the GB2 C-terminal peptide, the open pentamer
contracts by roughly 4–5 Å and creates a tight channel for the peptide (right). The orientation of the
complex is indicated by the N- and C-terminus of KCTD16. (b) The twisted ring structure enables
each T1KCTD16 subunit to form a distinct binding interface with the peptide. A cross-section of the
pentamer shows the interaction of each of the five T1KCTD16 domains with the GB2 peptide. The
F80 residues (red) and the T1KCTD16 domains are aligned vertically according to the position of
GB2 peptide
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completely abrogates KCTD16 binding to GBRs (Zuo et al. 2019). Interestingly,
binding of GB2 results in a compaction of the T1KCTD16 pentamer (Fig. 3a).

Reverse affinity purification experiments using KCTD-specific antibodies
revealed that KCTD8, KCTD12, KCTD12b, and KCTD16 not only bind to GB2
but also to the Gβγ subunits of the G protein (Turecek et al. 2014; Zheng et al. 2019).
Co-crystallization studies show that each H1KCTD12 pentamer binds five Gβγ sub-
units in a near perfect C5 rotational symmetry (Zheng et al. 2019) (Fig. 4). The five
Gβγ molecules form a tightly packed outer ring in which every Gβ subunit directly
contacts neighboring Gβ subunits as well as two adjacent H1 domains of the
pentamer. H1KCTD12 folds into a β sheet made up by five antiparallel β strands
(β1-5) interspersed with two short α helices (α1 and α2). The amino acids at and
around the loops between β1/β2 as well as β3/α2 bind to an acidic patch at the top of
the Gβ propeller (interface I) and a groove between the N-terminal helix and the β
propeller of Gβ (interface II) (Fig. 4). In H1KCTD12, R232 (contacting interface I on
Gβ) and R257 (contacting interface II on Gβ) are particularly important for the
interaction, as mutation of either residue completely abolishes Gβγ binding and
modulation of G protein signaling by KCTD12. The Gγ subunit is located periph-
erally and does not interact with the H1 domain. However, Gγ allows anchoring of
the complex at the plasma membrane (Figs. 4 and 5). When incubating KCTD12H1
with a substoichiometric amount of Gβγ, only full 5/5 complexes and free KCTD12
were observed, with no evidence of partial oligomers (Zheng et al. 2019). This
suggests that binding of H1KCTD12 to Gβγ is highly cooperative. Supported by 3D
reconstructions of electron microscopy images of the full-length KCTD12 protein in
complex with Gβγ (Zheng et al. 2019), the picture of a large multi-protein complex
emerges, in which KCTDs simultaneously bind via their T1 and H1 domains GB2
and Gβγ subunits, respectively (Fig. 5). Of note, Gβγ binding to the H1KCTD12
pentamer partially occludes the Gα binding-site on the surface of Gβγ, indicating
that the trimeric G protein does not assemble with KCTD12 into a pentameric
complex. This contrasts earlier biochemical findings that support that GBRs and
KCTDs form a complex with the heterotrimeric G protein (Turecek et al. 2014).
Co-crystallization of the H1 domain with Gβγ may therefore favor a structure that
differs from the structure of the full-length KCTD protein assembled with receptor
and the heterotrimeric G protein.

Dual binding of the KCTDs to the receptor and the G protein enables KCTDs to
regulate the kinetics of receptor signaling (Fritzius et al. 2017; Schwenk et al. 2010;
Seddik et al. 2012; Turecek et al. 2014). Pre-assembly of the G protein via the
KCTDs at the receptor significantly accelerates G protein signaling, most likely by
overcoming slow diffusion-limited association of the G protein with the receptor
(Turecek et al. 2014). When studying GBR-mediated K+ current responses, KCTDs
shorten both the rise time and the delay between agonist binding and the onset of K+

currents. The KCTDs are therefore responsible for the fast kinetics observed with
GBR-induced current responses in neurons (Schwenk et al. 2010; Turecek et al.
2014). While all KCTDs accelerate GBR signaling, selectively KCTD12 and
KCTD12b induce a rapid desensitization of GBR-mediated K+ currents (Schwenk
et al. 2010; Seddik et al. 2012) through an activity-dependent uncoupling of Gβγ
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from effector channels (Turecek et al. 2014; Zheng et al. 2019). Some neuronal
populations simultaneously express multiple KCTDs, raising the possibility that the
KCTDs form hetero-oligomers. Indeed, in heterologous cells, KCTD8, KCTD12,
and KCTD16 form hetero-oligomers in all possible combinations (Balasco et al.
2019; Fritzius et al. 2017). Association of KCTD12/16 hetero-oligomers with GBRs
in hippocampal pyramidal cells confers unique kinetic properties to GBR-induced
K+ currents, showing that hetero-oligomers increase the kinetic repertoire of GBR
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Fig. 4 The H1KCTD12/Gβγ complex. Top: H1KCTD12 pentamers and five Gβ1γ2 subunits form
together a complex with C5 symmetry [PDB ID: 6M8S, (Zheng et al. 2019)]. Each of the five
Gβ1γ2 subunits binds two H1KCTD12 subunits. The cutout shows R232 (interface I) and R257
(interface II) that are crucial for Gβ1 recognition. Bottom: Due to lipidation of Gβγ subunits, the
complex is expected to be tethered to the plasma membrane
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Fig. 5 Scheme of the multi-protein GBR/KCTD12/G protein signaling complex. The intracellular
part of the GBR (dark pink), a pentamer of KCTD12 proteins (green), Gβ (blue), and Gγ (orange)
subunits are depicted. The N-terminal T1 domain of the KCTDs forms an open pentamer that
interacts with the cytoplasmic tail of GB2 (the GB2 peptide, containing the amino acids D888 to
S913, co-crystallized with the T1KCTD16 is highlighted in bright pink). This part of GB2 loops inside
the central opening of the T1 pentamer, entering and leaving it at its N-terminal surface. The amino
acid Y903 (yellow circle) at the apex of the GB2 loop is critical for KCTD binding. A slight offset
due to a tilt of each T1KCTD16 monomer allows the pentamer to bind a large number of amino acid
side chains within the cytoplasmic tail of GB2. A short linker (35 Å) connects the N-terminal T1
domain with the C-terminal H1 domain of KCTDs, which binds to the Gβγ heterodimer of the G
protein. The scheme depicts the closed H1KCTD12 pentamer bound to five copies of Gβγ. Anchoring
of the Gγ subunit to the phospholipid bilayer tethers KCTDs to the plasma membrane. The expected
location of the C-terminal H2 domain present in KCTD16 and KCTD8 is indicated for three of the
KCTDs in the pentamer. Distances are derived from three-dimensional negative-stain electron
microscopy reconstructions (Zheng et al. 2019)
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signaling (Fritzius et al. 2017). Of note, the KCTDs exert little influence on allosteric
and orthosteric binding sites of GBRs (Rajalu et al. 2015).

Reverse-affinity purification experiments support that the KCTDs do not bind to
other GPCRs (Schwenk et al. 2016; Turecek et al. 2014). The KCTDs are
non-obligatory GBR components, which, however, are expressed by most neurons
(and some glial cells) in the vertebrate brain (Metz et al. 2011). Since the KCTDs
stably associate with the receptor and control receptor kinetics and surface expres-
sion (Ivankova et al. 2013), they should be viewed as auxiliary receptor subunits.

4 SD-Interacting Proteins

Proteomic studies showed that the β-amyloid precursor protein (APP), the adherence
junction-associated protein 1 (AJAP-1), and the PILRα-associated neural protein
(PIANP) form three distinct complexes with GB1a/2 receptors (Dinamarca et al.
2019; Schwenk et al. 2016). NMR studies identified sequence-related epitopes in the
extracellular domains of APP, AJAP-1, and PIANP that bind with nanomolar
affinities to the N-terminal SD1 of GB1a, with a rank order of affinities AJAP-
1 > PIANP >> APP (Dinamarca et al. 2019). APP is best known as the source of
β-amyloid (Aβ) peptides in Alzheimer’s disease. Electrophysiological and biochem-
ical experiments showed that binding of APP to GB1a is necessary for vesicular
trafficking of GBRs to axon terminals (Dinamarca et al. 2019), consistent with the
proposed role of the SDs in axonal trafficking (Biermann et al. 2010). Proteomic data
show that APP associates with calsyntenins and c-Jun N-terminal kinase-interacting
proteins (JIPs) that link the APP/GBR complex in cargo vesicles to the axonal
kinesin-1 motor. Of potential relevance for Alzheimer’s disease, complex formation
with GBRs stabilizes APP at the cell surface and reduces proteolysis of APP to Aβ
(Dinamarca et al. 2019). A related study showed that binding of the soluble form of
APP (sAPP) to the SD1 of GB1a inhibits neurotransmitter release, synaptic trans-
mission and spontaneous neuronal activity (Rice et al. 2019). The fact that a GBR
antagonist disinhibits sAPP-inhibited neurotransmitter release supports that sAPP
acts as a GBR agonist or positive allosteric modulator. However, it was also reported
that sAPP has no functional effects on GBR signaling in heterologous cells
(Dinamarca et al. 2019). Therefore, additional studies need to confirm sAPP effects
on GBR signaling. AJAP-1 and PIANP, the two other proteins binding to the SD of
GB1a, do not play a role in axonal trafficking of GBRs (Dinamarca et al. 2019).
These proteins localize to adherens junctions that stabilize cell-cell interactions
(Winkler et al. 2019; Yamada and Nelson 2007) and may be important for anchoring
GB1a/2 receptors at presynaptic sites, either in cis or through trans-synaptic inter-
actions. In support of this hypothesis, PIANP knock-out mice exhibit a deficit in
GBR-mediated inhibition of glutamate release in the hippocampus (Winkler et al.
2019).

Amyloid-like protein 2 (APLP2) and integral membrane protein 2B (ITM2B) and
ITM2C are additional transmembrane proteins that selectively co-purify with GB1a/
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2 receptors (Dinamarca et al. 2019; Schwenk et al. 2016). These proteins associate
with APP and are secondary interactors of GBRs. GBRs can therefore assemble with
multi-protein APP complexes into super-complexes (complexes of complexes).

5 Effector Channels

The best-studied GBR functions in the central nervous system are the gating of
voltage-sensitive Ca2+ (Cav) channels and inwardly rectifying Kir3-type K+ chan-
nels by the Gβγ subunits of the activated G protein (Gassmann and Bettler 2012).
GBRs inhibit N- and P/Q-type Cav channels, which suppress neurotransmitter
release at most synapses in the brain. GBR activation of Kir3 channels hyperpolar-
izes the membrane, shunts postsynaptic currents in the dendrites, and inhibits
neuronal firing. The α1B, α2, δ1, and δ2 subunits of N-type CaV channels
co-purify with the GB1, GB2, and KCTD16 subunits, supporting that these channels
bind to GBRs via KCTD16 (Schwenk et al. 2016). Association of GBR with N-type
CaV channels directly links the receptor to the presynaptic release machinery.
Proteomic work did not support a physical association of native GBRs with Kir3
channels (Schwenk et al. 2016), in contrast to earlier studies in heterologous
expression systems (Ciruela et al. 2010; David et al. 2006; Fowler et al. 2007). It
is possible that proteomic approaches miss weak interactions of Kir3 channels with
GBRs. Alternatively, overexpression of two membrane proteins in heterologous
cells may lead to artificial aggregates detected in BRET and immunoprecipitation
experiments. Proteomic work additionally identified novel effector channels of
GBRs, such as the transient receptor potential vanilloid 1 (TRPV1) (Hanack et al.
2015) and HCN2 channels (Schwenk et al. 2016). Sensitization of TRPV1 channels
is central to the initiation of pathological forms of pain. TRPV1 assembles in a
complex with GB1 (Hanack et al. 2015). Since agonist activity at GB1 reverts the
sensitized state of TRPV1 channels, it may be possible to exploit the TRPV1/GB1
complex for anti-pain therapy. HCN1 and HCN2, like N-type Cav channels, appear
to associate with GBRs through KCTD16 (Schwenk et al. 2016). HCN channels are
widely expressed in the heart and the central nervous system, where they are
involved in the generation of rhythmic activity (Biel et al. 2009). GBRs activate
HCN currents in dopaminergic neurons of the ventral tegmental area and thereby
shorten the duration of inhibitory postsynaptic potentials (Schwenk et al. 2016). The
mechanism of GBR-induced HCN channel activation is unknown but may include
(1) membrane hyperpolarization via Kir3 channels, (2) allosteric gating of HCN
channels by conformational changes in the receptor, and/or (3) dynamic interactions
of HCN channels with G protein subunits or second messengers.
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6 Additional Receptor-Associated Proteins

Additional components of native GBR signaling complexes are calnexin,
reticulocalbin-2, inactive dipeptidyl-peptidases 6/10, 14-3-3 proteins,
synaptotagmin-11, and neuroligin-3 (Schwenk et al. 2016). The anatomically and
temporally restricted expression of these proteins in the brain limits the set of
available receptor constituents in individual cells and further supports a modular
GBR architecture. For some of these receptor components binding sites on GB1,
GB2, or the KCTDs have been identified (Fritzius and Bettler 2020). Yeast-two-
hybrid screens identified several additional proteins that potentially interact with
GB1 or GB2 (Pin and Bettler 2016). These proteins may represent low-abundance or
transiently interacting GBR components that escaped detection in proteomic
approaches.

7 Concluding Remarks

During the past decade, numerous structural and biophysical studies have greatly
improved our understanding of the sequence of allosteric events involved in the
activation of heterodimeric GBRs. However, the structures of the full-length
heterodimeric GBR at atomic resolution in its active and inactive state, with and
without bound G protein or allosteric modulators, are still missing. Cryo-electron
microscopy appears to be a promising approach to obtain such high-resolution
structural information, which is necessary to validate and extend current concepts.
The functional relevance of higher-order GBR complexes is still unclear and needs
to be addressed in native tissue. The recognition that GBR heterodimers interact with
an inventory of ~30 proteins to form a variety of multi-protein complexes with
distinct kinetic properties, localizations, and functions represents a departure from
earlier concepts based on receptor protomers working in isolation. For some GBR
interacting proteins (KCTDs, APP, HCN channels), we have identified functional
effects and/or obtained high-resolution structures in association with the receptor.
However, we still lack functional and structural information for most of the receptor
components identified in proteomic approaches. Furthermore, much effort needs to
be devoted to the study of the structural dynamics in GBR complexes during
physiological processes. Understanding the structure and function of identified
GBR complexes in the brain hopefully will help to identify promising molecular
targets for therapeutic intervention.
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Abstract γ-Aminobutyric acid B receptors (GABABRs) are broadly expressed
throughout the central nervous system where they play an important role in regulat-
ing neuronal excitability and synaptic transmission. GABABRs are G protein-
coupled receptors that mediate slow and sustained inhibitory actions via modulation
of several downstream effector enzymes and ion channels. GABABRs are obligate
heterodimers that associate with diverse arrays of proteins to form modular
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complexes that carry out distinct physiological functions. GABABR-dependent
signaling is fine-tuned and regulated through a multitude of mechanisms that are
relevant to physiological and pathophysiological states. This review summarizes the
current knowledge on GABABR signal transduction and discusses key factors that
influence the strength and sensitivity of GABABR-dependent signaling in neurons.

Keywords Adenylyl cyclase · GABA · GABAB receptor · GIRK channel ·
Phosphorylation · Plasticity · RGS · Voltage-gated Ca2+ channel

1 Introduction

γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the adult
mammalian brain that crucially regulates the balance of excitation and inhibition that
is necessary for proper brain function (McCormick 1989, Wu and Sun 2015). GABA
acts on either the ionotropic GABAA or GABAC receptors (GABAARs or
GABACRs) or metabotropic GABAB receptors (GABABRs). GABAARs and
GABACRs are ligand-gated chloride channels that mediate fast synaptic inhibition
(Kittler et al. 2002), while GABABRs are G protein-coupled receptors (GPCRs) that
mediate slow synaptic inhibition throughout the central nervous system (CNS).
GABABRs were first identified by Dr. Norman Bowery in 1979 and became better
understood due to the development of selective agonists (e.g., baclofen) and antag-
onists, as well as the cloning of the receptor in 1997 (Bowery and Hudson 1979,
Bowery and Brown 1997, Kaupmann et al. 1997). Since then, our understanding of
GABABR structure and function has evolved dramatically. Discovery of the exis-
tence and functional relevance of GABABR subunit isoforms, interacting proteins,
macromolecular complexes, and regulatory mechanisms has revealed the diverse
and dynamic nature of GABABR-dependent signaling throughout the brain. At the
same time, dysregulation of GABABR activity has become increasingly recognized
as a driver of neurological and neuropsychiatric disorders (Gassmann and Bettler
2012, Fritzius and Bettler 2019). The goal of this review is to highlight some of the
key proteins involved in mediating and regulating GABABR-dependent signaling in
the brain, with an emphasis on mechanisms that fine-tune GABABR activity that are
relevant to physiology and disease.

2 GABABR Structure

Evidence from biochemical, electrophysiological, and behavioral studies revealed
that the predominant native GABABR is an obligatory heterodimer composed of the
GABAB1 (GB1) and GABAB2 (GB2) subunits (Fan et al. 2017, Møller et al. 2017).
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The fact that most neurons co-express GB1 and GB2 and that both subunits show
subcellular colocalization strongly suggested the formation of a complex
(Kaupmann et al. 1998a, Charles et al. 2001, Gonchar et al. 2001, Kulik et al.
2003). Functional studies in heterologous systems and subunit-specific knockout
mice (GB1�/� & GB2�/�) revealed that expression of both subunits is required for
electrophysiological and biochemical receptor responses (Schuler et al. 2001,
Gassmann et al. 2004, Gassmann and Bettler 2012). Further support for the existence
and relevance of the GABABR heterodimer stemmed from the striking overlap in
behavioral phenotypes between GB1�/� and GB2�/� mice, including spontaneous
seizures, hyperalgesia, hyperlocomotion, increased anxiety, a reduced threshold for
fear responses, and cognitive impairments (Gassmann et al. 2004, Gassmann and
Bettler 2012). Immunoprecipitation experiments provided some of the first direct
evidence of complex formation between GB1 and GB2, and later studies confirmed
these results using other biochemical assays and ultrastructural techniques (Schwenk
et al. 2016, Fan et al. 2017, Frangaj and Fan 2018). Crystal structures of GABABR
subunit domains have revealed that both GB1 and GB2 contain an extracellular
Venus flytrap (VFT) domain, a seven-transmembrane (7TM) domain, and an intra-
cellular carboxyl (C)-terminal domain (Frangaj and Fan 2018).

2.1 Ligand Binding

The VFT domain of GB1 contains the orthosteric binding site for GABA, as well as
other agonists and antagonists. GABA interacts with key residues in the GB1 VFT to
induce closure of the domain and stabilize its active conformation (Frangaj and Fan
2018). The GABA-binding site of GB1 is well conserved across species, unlike the
VFT domain of GB2 (Freyd et al. 2017). Consistent with a lack of genetic conser-
vation, the GB2 VFT cannot bind ligands, and the receptor still functions upon
deletion of the domain (Monnier et al. 2011, Møller et al. 2017). However, the GB2
VFT does enhance the agonist affinity for the GB1 VFT through direct interactions
that stabilize the agonist-bound state (Galvez et al. 2001, Liu et al. 2004).

2.2 Coupling to G Proteins

The 7TM domain of GB2 facilitates coupling between the receptor and G proteins.
The intracellular loops of the GB2 7TM domain are required for functional coupling,
as mutations in either the second or third intracellular loops prevent G protein
activation (Robbins et al. 2001, Duthey et al. 2002, Havlickova et al. 2002, Binet
et al. 2004). While GB1 is not required for G protein coupling, the GB1 7TM domain
enhances coupling efficiency (Fan et al. 2017).
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2.3 Cell Surface Trafficking

The C-terminal domains of both subunits form a coiled-coil structure that facilitates
heterodimerization and surface expression of GABABRs (Jiang et al. 2012,
Burmakina et al. 2014). When expressed alone in heterologous cells or native
neurons, GB1 did not reach the cell surface and was retained in the endoplasmic
reticulum (ER) (Couve et al. 1998, Gassmann et al. 2004). Although GB2 did reach
the cell surface when expressed alone, it remained non-functional: unable to respond
to GABA or the GABABR agonist baclofen (Schuler et al. 2001). When
co-expressed, GB2 traffics GB1 to the cell surface to generate a receptor capable
of high ligand affinity, G protein binding, and effector activation (Galvez et al.
2001).

Two sequences on the C-terminal tail of GB1 prevent exit from the ER (Restituito
et al. 2005, Fan et al. 2017). The first is the arginine-based ER retention/retrieval
(RSRR) motif, and the second is an upstream di-leucine (LL) motif. Mutations in the
RSRR motif enable GB1 to exit the ER and reach the cell surface in the absence of
GB2 (Margeta-Mitrovic et al. 2000, Calver et al. 2001, Pagano et al. 2001).
Combining RSRR mutations with LL mutations enhanced the exit of GB1 from
the ER (Margeta-Mitrovic et al. 2000, Restituito et al. 2005). These findings,
alongside the crystal structure of the GB1/GB2 coiled-coil complex (Burmakina
et al. 2014), revealed that interactions between the C-termini of GB1 and GB2 mask
the ER retention motif to enable trafficking of the receptor to the cell surface.
Subsequent investigations would discover that prenylated Rab acceptor 1 domain
family, member 2 (PRAF2) sequesters GB1 in the ER to prevent its progression to
the Golgi apparatus (Doly et al. 2016). PRAF2 directly interacts with the RSRR and
LL motifs of GB1 to prevent ER exit and is competitively displaced from GB1 by
GB2. The stoichiometry of PRAF2, GB1, and GB2 concentrations delicately con-
trols surface density of the GABABR (Doly et al. 2016). Beyond PRAF2, the
C-terminus of GB1 associates with a number of intracellular proteins involved in
receptor trafficking and heterodimerization (Table 1).

2.4 Alternative Splicing

The expression of multiple GB1 isoforms contributes to the diverse functions of
GABABRs. There are 14 known isoforms of GB1 (GB1a–n), which can be generated
by differential transcription or splicing of the mRNA (Bettler et al. 2004, Jiang et al.
2012, Xu et al. 2014). GB1a and GB1b are the most abundant isoforms in the brain
and are the only isoforms that are highly conserved across vertebrate species
(Kaupmann et al. 1997, 1998b, Benke et al. 1999, Bettler et al. 2004). Both isoforms
have some differences in their spatial and temporal expression patterns in the rodent
brain, as well as distinct subcellular localizations (Bettler et al. 2004, Jiang et al.
2012, Kasten et al. 2015, Castelli and Gessa 2016). In general, GB1a is expressed
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Table 1 Potential GABABR-interacting proteins

Interaction site(s) Impact(s) on signaling References

Core components

GB1a GB2 Agonist binding Gassmann and Bettler
(2012), Frangaj and Fan
(2018)

GB1b GB2 Agonist binding Gassmann and Bettler
(2012), Frangaj and Fan
(2018)

GB2 GB1a, GB1b, G
protein

G protein coupling Gassmann and Bettler
(2012), Frangaj and Fan
(2018)

G proteins (Gαi/o) GB2 (intracellu-
lar loops), KCTD
proteins

Mediate GABABR sig-
naling through down-
stream effectors

Schwenk et al. (2016),
Fritzius and Bettler
(2019)

KCTD proteins GB2
(C-terminus), G
protein (Gβγ)

Accelerate G protein
signaling, mediate fast
desensitization (KCTD
12/12b), increase agonist
potency (KCTD 12/16)

Turecek et al. (2014),
Fritzius and Bettler
(2019)

Peripheral components

RGS proteins G proteins (Gαi/
o), GABABRs
(GB1/GB2)

Negatively modulate G
protein (Gαi/o) signaling

Benians et al. (2005),
Fowler et al. (2007)

Gα inhibitory
interacting protein
(GINIP)

G protein (Gαi) Promotes G protein
signaling

Gaillard et al. (2014)

Ubiquitin-specific
protease 14 (USP14)

GB1 (2nd intra-
cellular loop)

Regulates post-
endocytotic
deubiquitination and
degradation of
GABABRs

Lahaie et al. (2016)

G protein-coupled
receptor interacting
scaffolding protein
(GISP)

GB1
(C-terminus)

Promotes GABABR sur-
face expression

Kantamneni et al.
(2007)

Shroom 4 (shrm4) GB1
(C-terminus)

Facilitates GABABR
trafficking to cell surface

Zapata et al. (2017)

Ras-associated pro-
tein 1 (Rap1)

GB1
(C-terminus)

Promotes GABABR sur-
face expression by stim-
ulating receptor
recycling

Zhang et al. (2015)

Marlin-1 GB1
(C-terminus)

Regulates GB2 protein
synthesis or vesicular
trafficking?

Couve et al. (2004)

NEM-sensitive
fusion (NSF) protein

GB1
(C-terminus),
GB2
(C-terminus)

Facilitates
PKC-mediated
GABABR
desensitization

Pontier et al. (2006)

(continued)
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Table 1 (continued)

Interaction site(s) Impact(s) on signaling References

Syntaxin-1A GB1
(C-terminus),
N-type channels,
G proteins (Gβγ)

Facilitates Gβγ-mediated
inhibition of N-type
channels, regulates prob-
ability of synaptic vesi-
cle fusion

Jarvis et al. (2000),
Vertkin et al. (2015)

Rat homologue of
B2-1/cytohesin-1
(msec-7-1)

GB1
(C-terminus, LL
motif)

Promotes GABABR sur-
face expression

Restituito et al. (2005)

Prenylated Rab
acceptor 1 domain
family, member
2 (PRAF2)

GB1
(C-terminus,
LL/RSRR motifs)

Intracellular retention of
GB1 in ER

Doly et al. (2016)

Coat protein I com-
plex (COPI)

GB1
(C-terminus,
RSRR motif)

Intracellular retention of
GB1 (facilitate retro-
grade transport of GB1
from Golgi to ER?)

McMahon and Mills
(2004), Brock et al.
(2005), Bettler and Tiao
(2006)

14-3-3 proteins GB1
(C-terminus,
RSRR motif),
KCTD8/16

Disrupt GABABR
heterodimerization,
decouple GABABRs
from GIRK channels

Couve et al. (2001),
Brock et al. (2005),
Laffray et al. (2012),
Workman et al. (2015),
Schwenk et al. (2016)

Tenascin/HNK-1 GB1
(N-terminus)

Inhibit of postsynaptic
GABABR-dependent
signaling

Saghatelyan et al.
(2003)

CCAAT/enhancer-
binding protein
homologous protein
(CHOP)

GB1a
(N-terminus),
GB2
(C-terminus)

Intracellular retention of
GABABRs in ER

Steiger et al. (2004),
Sauter et al. (2005)

Fibulin-2 GB1a (SD1) Receptor anchoring? Blein et al. (2004)

β-Amyloid precursor
protein (APP)

GB1a (SD1) Facilitates GB1a/GB2
receptor axonal
trafficking

Schwenk et al. (2016),
Dinamarca et al. (2019)

Secreted β-amyloid
precursor protein
(sAPP)

GB1a (SD1) Acts as an agonist/posi-
tive allosteric modulator
on GB1a/GB2 receptors?

Dinamarca et al. (2019),
Rice et al. (2019)

PILR-associating
neural protein
(PIANP)

GB1a (SD1) Anchors GB1a/GB2
receptors at presynaptic
terminals?

Schwenk et al. (2016),
Dinamarca et al. (2019)

Adherence junction-
associated protein
1 (AJAP1)

GB1a (SD1) Anchors GB1a/GB2
receptors at presynaptic
terminals?

Schwenk et al. (2016),
Dinamarca et al. (2019)

G protein-coupled
receptor kinases
4 and 5 (GRK4/5)

GB2 Promote agonist-induced
desensitization

Perroy et al. (2003),
Kanaide et al. (2007)

Multi-PDZ domain
protein 1 (Mupp1)

GB2
(C-terminus)

Promotes GABABR sur-
face stability and
signaling

Balasubramanian et al.
(2006)

(continued)
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presynaptically in axon terminals, while GB1b is expressed postsynaptically in
dendritic spines (Kasten et al. 2015). However, GB1a is also expressed postsynap-
tically in dendritic branches, although it is mostly excluded from dendritic spines
(Vigot et al. 2006, Kasten et al. 2015). In line with their distinct subcellular
distribution patterns, studies in hippocampal neurons from GB1a�/� and GB1b�/�

mice revealed that presynaptic (GB1a/GB2) GABABRs mediate inhibition of

Table 1 (continued)

Interaction site(s) Impact(s) on signaling References

β-Filamin GB2
(C-terminus)

Anchors GABABRs to
the cytoskeleton

Bettler et al. (2004)

Plakophilin-related
armadillo repeat
protein-interacting
PDZ protein
(PAPIN)

GB2
(C-terminus)

Promotes GABABR sur-
face stability and
signaling

Balasubramanian et al.
(2006)

Tamalin GB2
(C-terminus)

a Kitano et al. (2002)

Inactive dipeptidyl-
peptidases 6 and
10 (DPP-6/10)

KCTD12 a Schwenk et al. (2016)

Calsyntenin-3 APP Link APP/GABABR to
kinesin-1 motor to facil-
itate axonal trafficking

Schwenk et al. (2016),
Dinamarca et al. (2019)

c-Jun N-terminal
kinase-interacting
protein 3 (JIP-3)

APP Link APP/GABABR to
kinesin-1 motor to facil-
itate axonal trafficking

Schwenk et al. (2016),
Dinamarca et al. (2019)

Amyloid-like protein
2 (APLP2)

APP a Schwenk et al. (2016)

Integral membrane
proteins 2B and 2C
(ITM2B/C)

APP a Schwenk et al. (2016)

Potassium chloride
cotransporter
(KCC2)

a GABABR agonism trig-
gers internalization of
KCC2, altering driving
force for Cl�-permeable
GABAARs

Wright et al. (2017)

Neuroligin-3 a a Schwenk et al. (2016)

Reticulocalbin-2 a a Schwenk et al. (2016)

Synaptotagmin-11 a a Schwenk et al. (2016)

CLC-10 a a Schwenk et al. (2016)

Neuron-specific gene
family members
1 and 2 (NSG1/2)

a a Schwenk et al. (2016)

Calnexin a a Schwenk et al. (2016)
aNot determined
“?” represents presumed interaction sites or impacts on signaling
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neurotransmitter release, while postsynaptic (predominantly GB1b/GB2) GABABRs
generate slow inhibitory postsynaptic currents (Vigot et al. 2006).

GB1a is longer than GB1b (961 vs 841aa), as it contains two N-terminal protein
interaction motifs, known as sushi domains (Lee et al. 2010). Sushi domains are
highly conserved among species, are present in several GPCRs, and mediate protein
interactions in a wide array of adhesion proteins (Grace et al. 2004, Lehtinen et al.
2004). Interestingly, the two GB1a sushi domains (SD1 and SD2) are structurally
distinct (Blein et al. 2004), which may help to explain the different protein interac-
tions observed between domains (Blein et al. 2004, Biermann et al. 2010, Hannan
et al. 2012, Schwenk et al. 2016, Dinamarca et al. 2019, Rice et al. 2019). In addition
to stabilizing GB1a/GB2 receptors at the cell surface (Hannan et al. 2012, 2016), the
GB1a sushi domains are necessary and sufficient for axonal transport. Sushi domain
mutations prevent GB1a from reaching axon terminals, and fusing the sushi domains
to metabotropic glutamate receptor 1 (mGluR1) enables the somatodendritic protein
to traffic down axons (Biermann et al. 2010). Thus, sushi domains act as axonal
targeting signals, interacting with proteins to facilitate presynaptic transport. Several
studies have identified a variety of proteins that directly or indirectly interact with the
GB1a sushi domains (Table 1), with known or unknown functional influence. For
example, experiments combining affinity purifications with mass spectrometry iden-
tified a number of proteins in the rodent brain that associate with the GB1a sushi
domains. Of those identified, the β-amyloid precursor protein (APP), adherence
junction-associated protein 1 (AJAP-1), and PILRα-associated neural protein
(PIANP) directly bind, in a mutually exclusive manner, to GB1a SD1 (Schwenk
et al. 2016, Dinamarca et al. 2019). Binding of APP to SD1 is necessary for vesicular
trafficking of GABABRs to axon terminals and presynaptic receptor function
(Dinamarca et al. 2019). APP binds kinesin-1 adaptors of the c-Jun N-terminal
kinase-interacting protein (JIP) and calsyntenin (CSTN) protein families to link
APP/GB1a complexes to kinesin-1 motors that drive axonal transport (Valdés
et al. 2012, Schwenk et al. 2016, Dinamarca et al. 2019, Fritzius and Bettler
2019). APP/GB1a complexes also stabilize APP at the cell surface to limit
endosomal processing of APP to amyloid-beta (Aβ), a major component of plaques
in Alzheimer’s disease patients (Dinamarca et al. 2019). Taken together, APP/GB1a
complex formation links GABABR axonal transport to Aβ formation and supports
the notion that dysregulated axonal trafficking (Kins et al. 2006, Thinakaran and
Koo 2008) and reduced GABABR expression (Chu et al. 1990, Iwakiri et al. 2005,
Puthiyedth et al. 2016) observed in Alzheimer’s disease may promote Aβ production
(Dinamarca et al. 2019). The secreted form of APP (sAPP) has also been reported to
bind GB1a SD1 and activate presynaptic GABABRs in hippocampal neurons to
inhibit neurotransmitter release (Rice et al. 2019). The sAPP-induced inhibition of
neurotransmitter release was prevented by a GABABR antagonist, suggesting that
sAPP may function as an agonist or positive allosteric modulator of the GABABR
(Rice et al. 2019). In contrast to this report however, another study reported that
neither APP nor sAPP influenced GABABR-dependent G protein signaling in a
heterologous system (Dinamarca et al. 2019). Thus, further investigation is
warranted to clarify the functional relevance of sAPP-GABABR interactions.
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Beyond GB1a and GB1b, many of the GB1c-n isoforms have only been detected
at the mRNA level, and some are not conserved among species (Bettler et al. 2004,
Jiang et al. 2012, Xu et al. 2014). While the physiological relevance of these
isoforms remains unclear, there is a body of research to suggest that certain splice
variants may be capable of fine-tuning endogenous GABABR signaling in diverse
ways – from forming functional receptors to inhibiting receptor association or
function. For example, GB1c contains a single sushi domain (SD2) but shares a
similar expression pattern to GB1a in the human brain (Pfaff et al. 1999, Jiang et al.
2012). When co-expressed with GB2, GB1c can form functional receptors in
HEK-293 cells, suggesting that it may form a functional receptor in the rat brain,
where it is expressed at the protein level (Pfaff et al. 1999). While both sushi
domains are necessary for GB1a/GB2 stability, it is interesting to note that either
GB1a sushi domain is sufficient for axonal transport (Biermann et al. 2010, Hannan
et al. 2012). Thus, putative GB1c/GB2 receptors could theoretically function as
presynaptic receptors.

GB1e/g/h/i/j/l/m/n may exist as secreted proteins, as they lack cytoplasmic
domains and most, if not all, transmembrane domains (Jiang et al. 2012). GB1e is
expressed at a relatively low level in the CNS of both humans and rodents but is a
primary isoform in a variety of peripheral tissues. When expressed in heterologous
systems, GB1e is both secreted and membrane-associated. While GB1e cannot form
functional receptors when expressed with GB2, the strong interaction between the
subunits is sufficient to disrupt the normal association between GB1a and GB2, but
not sufficient to disrupt GB1a/GB2 receptor-mediated signaling through down-
stream effectors (Schwarz et al. 2000). GB1j is comprised of the two sushi domains
plus 72 amino acids and is secreted when expressed in HEK-293 cells (Tiao et al.
2008). Purified sushi domains of GB1j (lacking the 72aa) impaired the inhibitory
effect of GABABRs on evoked and spontaneous glutamate release, but did not
disrupt postsynaptic GABABR activity in hippocampal neurons (Tiao et al. 2008).
Although the entire protein was not studied, it was proposed that the sushi domains
may scavenge an extracellular binding partner of GB1a that retains GB1a/GB2
receptors in presynaptic terminals. Given the recent identification of protein assem-
blies that interact with GB1a sushi domains to facilitate axonal transport (Table 1), it
is theoretically possible that GB1 isoforms that contain sushi domains (GB1c/e/f/g/h/
i/j) may function as dominant negative inhibitors of GB1a axonal transport and
subsequent presynaptic GABABR activity. When expressed in Xenopus oocytes,
human-cloned GB1l and GB1m, but not GB1k, inhibited GB1a/GB2 receptor-
mediated K+ currents (Lee et al. 2010).

2.5 Oligomerization

At the cell surface, GABABRs can exist in an equilibrium between heterodimers,
tetramers, and higher-order oligomers in both heterologous systems and native
neurons (Maurel et al. 2008, Schwenk et al. 2010, Comps-Agrar et al. 2011,
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Gassmann and Bettler 2012, Calebiro et al. 2013). GABABR heterodimers assemble
by random collision into higher-order oligomers through weak and transient
GB1-GB1 interactions (Comps-Agrar et al. 2011, Calebiro et al. 2013, Stewart
et al. 2018, Xue et al. 2019). Destabilizing oligomers using competitors of the
GB1-GB1 interaction, or a GB1 mutant, revealed different G protein coupling
efficiencies depending on the oligomeric state of the GABABR – suggesting a
negative functional cooperativity among heterodimers within larger oligomers
(Comps-Agrar et al. 2011). In addition to the reduced G protein coupling efficiency,
recent reports also suggest that adjacent GABA-binding sites within GABABR
oligomers are not simultaneously occupied (Stewart et al. 2018).

2.6 GABABR Signalosome

There is general consensus that GABABRs function within macromolecular signal-
ing complexes and that diverse protein interactions within these complexes can
influence receptor activity, pharmacology, and localization. Proteomic approaches
have identified an array of proteins that make up the GABABR interactome and
contribute to the functional diversity of native GABABRs (Table 1) (Schwenk et al.
2010, 2016, Lujan and Ciruela 2012, Turecek et al. 2014, Fritzius and Bettler 2019).
Many of the GABABR-interacting proteins show spatially and temporally restricted
expression patterns throughout the brain, supporting the existence of dynamic and
modular GABABR complexes (Schwenk et al. 2016). Proteins within GABABR
complexes can be arranged in a hierarchy – from core components to peripheral
components.

The receptor “core” is comprised of GB1, GB2, the heterotrimeric G protein, and
K+ channel tetramerization domain (KCTD) proteins. Obligate receptor components
include GB1, GB2, and the heterotrimeric G protein, which represent the minimal
components required for receptor signaling (Fritzius and Bettler 2019).
Heterotrimeric G proteins critically link GABABR heterodimers to primary down-
stream effectors (Gassmann and Bettler 2012, Fritzius and Bettler 2019). While
GABABRs can function without KCTD proteins, KCTD proteins are primary
interactors that stably associate with GABABRs in the brain (Schwenk et al. 2010,
Turecek et al. 2014, Fritzius et al. 2017). Indeed, native neuronal KCTD proteins and
GABABR subunits robustly co-immunopurify with one another under stringent
solubilization conditions (Schwenk et al. 2016).

Components of the receptor core anchor a multitude of “peripheral” components
to form larger macromolecular complexes. Peripheral components include a wide
variety of proteins that interact with GB1, GB2, the heterotrimeric G protein, or
KCTD proteins (Tables 1 and 2). Some peripheral proteins influence receptor
activity, pharmacology, or localization, while the functional relevance of others
remains unknown (Schwenk et al. 2016, Fritzius and Bettler 2019).
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Table 2 Potential GABABR effectors

Effectors Interaction site(s) Function(s) References

Adenylyl cyclase Gαi/o (AC-I,
III, V, VI, VIII,
IX)

Inhibit cAMP production Sadana and Dessauer
(2009), Halls and Coo-
per (2017), Terunuma
(2018)Gβγ (AC-I) Inhibit cAMP production

Gβγ (AC-II, IV) Stimulate cAMP
production

G protein-gated
inwardly rectifying
K+ (GIRK) channel

Gβγ, GB1/GB2? Generate inhibitory post-
synaptic currents, shunt
excitatory input, inhibit
action potential
backpropagation, suppress
dendritic Ca2+ spikes

David et al. (2006),
Fowler et al. (2007),
Ciruela et al. (2010),
Lüscher and Slesinger
(2010), Gassmann and
Bettler (2012)

Voltage-gated Ca2+

channel
Gβγ, KCTD16
(N-type channels)

Inhibit Ca2+ influx, sup-
press neurotransmitter
release, suppress dendritic
Ca2+ spikes

Gassmann and Bettler
(2012), Schwenk et al.
(2016)

Facilitate Ca2+ influx,
enhance neurotransmitter
release (R-type and L-type
channels)

Workman et al. (2013),
Karls and Mynlieff
(2015), Zhang et al.
(2016)

Inhibition of N-type chan-
nels can suppress BK
channels

Garaycochea and
Slaughter (2016)

Transient receptor
potential vanilloid
1 (TRPV1) channel

GB1a GB1 reverts TRPV1
sensitization

Hanack et al. (2015)

Hyperpolarization-
activated cyclic
nucleotide-gated
2 (HCN2) channel

KCTD16 Shorten the duration of
inhibitory postsynaptic
potentials

Schwenk et al. (2016)

TREK-2 channel AKAP (tethers
PKA to TREK-2
channels)

Reduced PKA-mediated
tonic inhibition of TREK-2
channels triggers enhanced
TREK-2 channel activity
and postsynaptic
hyperpolarization

Deng et al. (2009)

Metabotropic glu-
tamate receptor
1 (mGluR1)

a Extracellular Ca2+ inter-
acts with GABABRs to
increase glutamate sensi-
tivity of mGluR1

Hirono et al. (2001),
Tabata et al. (2004)

GABABRs potentiate
mGluR1/transient receptor
potential canonical
3 (TRPC3) channel-
mediated slow excitatory
postsynaptic currents

Tian and Zhu (2018)

(continued)
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3 GABABR-Dependent Signaling in Neurons

GABABRs are expressed throughout the brain and are positioned within neurons at
both postsynaptic (dendritic spines and shafts) and presynaptic (axon terminals) sites
(Hammond and Mott 2015). In general, GABABR activation inhibits neurons
through G protein-dependent modulation of enzymes and ion channels. For exam-
ple, activation of postsynaptic GABABRs evokes a slow hyperpolarization of the
postsynaptic membrane via activation of G protein-gated inwardly rectifying K+

(Kir3/GIRK) channels (Lüscher and Slesinger 2010, Gassmann and Bettler 2012).
Activation of presynaptic GABABRs suppresses neurotransmitter release primarily
through inhibition of voltage-gated Ca2+ channels (VGCCs) and reduced Ca2+ influx
(Gassmann and Bettler 2012). Presynaptic GABABRs function as either
autoreceptors on GABAergic terminals or heteroreceptors on terminals releasing
other neurotransmitters. Thus, presynaptic GABABRs may be activated by GABA
released from GABAergic terminals, or spillover of GABA from neighboring
terminals, to suppress neurotransmitter release (Harrison et al. 1988, Wu and Saggau
1995, Boyes and Bolam 2003, Gassmann and Bettler 2012). By blocking the release
of different types of neurotransmitters, GABABRs can have excitatory or inhibitory
influences at the circuit level.

Table 2 (continued)

Effectors Interaction site(s) Function(s) References

M2 muscarinic
receptor (M2R)

GB2
(C-terminus)

Facilitates M2R signaling
by preventing agonist-
induced M2R/GIRK chan-
nel co-internalization

Boyer et al. (2009)

Ca2+-sensing
receptor (CaR)

GB1, GB2 GABABRs modulate CaR
cell surface expression and
signaling

Chang et al. (2007)

Transient receptor
potential melastatin
3 (TRPM3) channel

Gβγ GABABRs inhibit TRPM3
channels

Badheka et al. (2017),
Quallo et al. (2017)

GABAAR γ2s
subunit

GB1 Increases GB1 cell surface
expression, enhances
GABABR agonist-induced
internalization

Balasubramanian et al.
(2004)

ATF4/CREB2 and
ATFx

GB1
(C-terminus)

GABABR-mediated tran-
scriptional regulation

Nehring et al. (2000),
White et al. (2000),
Vernon et al. (2001)

aNot determined
“?” represents presumed interaction sites or impacts on signaling
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3.1 GABABR Coupling to G Proteins

Heterotrimeric G proteins mediate signaling by coupling receptors to enzymes, ion
channels, and other effector proteins. The heterotrimeric G protein is comprised of
three distinct subunits (α, β, γ); 35 subunits (16 Gα, 5 Gβ, 14 Gγ) have been
identified in humans (Milligan and Kostenis 2006, Hillenbrand et al. 2015). Inactive
heterotrimeric G proteins (Gαβγ) associate with GABABRs through direct interac-
tions with GB2 and KCTD proteins (Schwenk et al. 2016, Frangaj and Fan 2018,
Fritzius and Bettler 2019). Selective coupling of heterotrimeric G proteins to
GABABRs is primarily determined by the Gα subunit. Studies using N-
ethylmaleimide (NEM), antisense knockdown, and G protein toxins helped reveal
that prototypical GABABRs couple to pertussis toxin (PTX)-sensitive G proteins,
including most members of the Gαi and Gαo (Gαi/o) families (Morishita et al. 1990,
Knott et al. 1993, Odagaki et al. 2000, Odagaki and Koyama 2001, Milligan and
Kostenis 2006).

Gα subunits may guide functional coupling of GABABRs to different effectors.
In general, adenylyl cyclase is predominately regulated by Gαi, while GIRK chan-
nels and VGCCs are largely regulated by Gαo. In heterologous systems, constitu-
tively active mutants of Gαi1–3 proteins inhibited adenylyl cyclase, while Gαo
mutants did not (Wong et al. 1992). In a reconstituted system using G proteins
extracted from bovine cerebral cortex, GABABR coupling to adenylyl cyclase was
shown to involve Gαi (Gαi1 or Gαi2), but not Gαo (Nishikawa et al. 1997). In
transfected HEK-293 cells, functional coupling of GABABRs to GIRK channels
preferentially involved Gαo and Gαi2 (Leaney and Tinker 2000). Interestingly,
GB1a/GB2 receptors predominantly signaled through Gαo, while GB1b/GB2 recep-
tors signaled equally through Gαo and Gαi2 (Leaney and Tinker 2000). Slice
electrophysiological studies using myristoylated G protein peptide inhibitors in
ventrolateral periaqueductal gray neurons revealed that GABABR-GIRK currents
are mediated by Gαo1, but not Gαi1–3 (Mcpherson et al. 2018). Gαo, but not Gαi, was
also reported to couple GABABRs to VGCCs in dorsal root ganglion neurons
(Campbell et al. 1993, Menon-Johansson et al. 1993). While less is known regarding
the contribution of specific Gβ and Gγ subunits to GABABR-effector coupling,
Gβ2γ3 was identified as a mediator of GABABR-GIRK signaling (Schwindinger
et al. 2012). In addition, Gβ1, Gβ2, and Gγ2 co-immunopurified with native
neuronal GABABRs, suggesting their potential involvement in GABABR signal
transduction (Schwenk et al. 2016).

There is some evidence that GABABRs may also couple to PTX-insensitive G
proteins. Intracellular recordings in neurons from rat hippocampal slices showed that
exposure to PTX did not fully prevent the baclofen-induced suppression of excit-
atory postsynaptic potentials (EPSPs), suggesting that presynaptic
GABABR-dependent inhibition may be mediated through PTX-sensitive and
PTX-insensitive G proteins (Potier and Dutar 1993). Interestingly, a recent proteo-
mics study revealed that native GABABRs co-immunopurify with the
PTX-insensitive member of the Gαi/o family, Gαz (Simonds 1999, Schwenk et al.

Mechanisms and Regulation of Neuronal GABAB Receptor-Dependent Signaling 51



2016). While no functional evidence currently exists to support GABABR-Gαz
coupling, studies in heterologous systems show that Gαz can regulate adenylyl
cyclase, GIRK channels, and VGCCs through several Gαi/o-coupled GPCRs
(Jeong and Ikeda 1998, Wettschureck and Offermanns 2005). Activation of
GABABRs during a narrow window of development has also been reported to
increase intracellular Ca2+ in a subset of neonatal hippocampal neurons through
Gαq signaling and protein kinase C (PKC) α (PKCα) activation (Carter and Mynlieff
2004, Bray and Mynlieff 2009, Karls and Mynlieff 2015). Since GABABRs do not
functionally couple to PTX-insensitive Gαq to activate phospholipase C (PLC) in
heterologous systems, it remains unclear how functional coupling may occur in
neurons (Franek et al. 1999).

3.2 GABABR Regulation of Effectors

GABABRs regulate the activity of a variety of effectors through direct or indirect
interactions (Table 2). Here, we will review the functional relevance of GABABR-
mediated regulation of three prototypical effectors – GIRK channels, VGCCs, and
adenylyl cyclase.

3.2.1 GIRK Channels

GIRK channels are homo- or heterotetramers formed by four subunits (GIRK1–4);
GIRK1–3 show broad and overlapping expression throughout the CNS, while
GIRK4 is primarily found in the heart (Yang et al. 1995, Karschin et al. 1996,
Luján and Aguado 2015). While multiple GIRK channel subtypes are present
throughout the rodent brain, the GIRK1/2 heterotetramer is generally considered
the prototypical neuronal GIRK channel (Luján et al. 2014). GIRK channels are
predominantly distributed within the somatodendritic compartment, at both
perisynaptic and extrasynaptic sites (Luján and Aguado 2015). Here, they mediate
the postsynaptic inhibitory effect of multiple neurotransmitters through Gαi/o-
coupled GPCRs, including GABABRs (Andrade et al. 1986, Misgeld et al. 1995,
Lüscher et al. 1997, Lüscher and Slesinger 2010, Luján et al. 2014). Interestingly,
some ultrastructural and functional data suggest that GABABRs and GIRK channels
colocalize on axon terminals and that GABABR-GIRK signaling inhibits neuro-
transmission (Ladera et al. 2008, Fernández-Alacid et al. 2009, Michaeli and Yaka
2010, Luján et al. 2014). However, others did not find evidence that presynaptic
GABABRs activate GIRK channels to inhibit neurotransmission (Lüscher et al.
1997, Takahashi et al. 1998).

GABABR-GIRK signaling has been detected in many neuron types throughout
the brain (Lüscher and Slesinger 2010, Luján et al. 2014). GABABRs activate GIRK
channels through Gβγ dimers (Reuveny et al. 1994, Wickman et al. 1994, Lüscher
and Slesinger 2010, Whorton and MacKinnon 2013), whereby direct binding of Gβγ
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to GIRK channels enhances gating by stabilizing an interaction between the channel
and phosphatidylinositol-4,5-bisphosphate (PIP2), a cofactor required for channel
gating (Logothetis et al. 1987, Huang et al. 1998, Luján et al. 2014). Activation of
GIRK channels evokes a slow hyperpolarizing conductance via K+ efflux that can
shunt excitatory input (Nicoll 2004), inhibit backpropagation of action potentials,
and block the generation of dendritic Ca2+ spikes (Leung and Peloquin 2006). The
critical role of GIRK channels in tempering cellular excitability is evident in
GIRK2�/� mice, which are hyperactive and susceptible to spontaneous seizures
(Signorini et al. 1997, Blednov et al. 2001). These behavioral phenotypes are
similarly observed in GB1�/� and GB2�/� mice, underlining the importance of
both forms of inhibitory signaling throughout the brain (Gassmann et al. 2004).

GABABR-GIRK coupling efficiency can differ in individual neurons based on
GIRK channel subunit composition (Luján et al. 2014). For example, dopamine
neurons of the ventral tegmental area (VTA) have a lower GABABR-GIRK coupling
efficiency than adjacent GABA neurons. Thus, lower concentrations of baclofen
(or GABA) inhibit GABA neurons, while higher concentrations are required to
directly inhibit dopamine neurons. The absence of GIRK1 and presence of GIRK2
and GIRK3 in VTA dopamine neurons underlies this effect (Cruz et al. 2004).

There is evidence that GABABRs, G proteins, and GIRK channels form macro-
molecular signaling complexes that enable specific and rapid signaling upon recep-
tor activation (Lüscher and Slesinger 2010, Luján et al. 2014). GABABRs, Gαi/o-
type G proteins, and GIRK channels all associate with lipid rafts, suggesting that
they may interact together (Oh and Schnitzer 2001, Koyrakh et al. 2005, Becher et al.
2008). GABABRs and GIRK channels also co-cluster in the dendrites of rodent
hippocampal neurons (Kulik et al. 2006, Booker et al. 2013, Fajardo-Serrano et al.
2013) and cerebellar neurons (Ciruela et al. 2010, Luján et al. 2017). Immunopre-
cipitation experiments revealed GABABR/GIRK and Gαo/GIRK co-assemblies in
heterologous systems (Clancy et al. 2005, David et al. 2006, Ciruela et al. 2010) and
GABABR/GIRK co-assemblies in the mouse cerebellum (Ciruela et al. 2010, Luján
et al. 2017). Evidence in support of direct protein interactions largely comes from
biochemical assays in heterologous systems. BRET/FRET experiments revealed
close interactions (<100 Å) between GABABRs and GIRK2 homotetramers,
GIRK1/4 or GIRK1/3 heterotetramers, and Gαo proteins (David et al. 2006, Fowler
et al. 2007, Ciruela et al. 2010).

Some functional data also support the possibility of a pre-coupling of components
in the form of a macromolecular complex. GIRK channels expressed in heterologous
systems or native neurons can signal even in the absence of receptor activation,
supporting the possibility that some signaling components are pre-coupled
(Kahanovitch et al. 2017). Increasing the surface expression of GABABRs in
Xenopus oocytes reduced this basal GIRK channel activation, likely via
downregulation of GIRK channel surface expression during constitutive GABABR
internalization, as has been reported elsewhere (Padgett et al. 2012, Hearing et al.
2013, Lecca et al. 2016). This could indicate physical interactions among GABABRs
and GIRK channels and perhaps a pre-coupling between components of this signal-
ing cascade.
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There is also evidence against the existence of pre-coupled macromolecular
complexes and in favor of a collision-coupling mode of GABABR-GIRK signaling.
For example, increasing the surface expression of GABABRs in Xenopus oocytes
accelerated GIRK channel activation, suggesting that GABABRs or G proteins can
diffuse freely in the membrane to activate GIRK channels (Kahanovitch et al. 2017).
Furthermore, unlike the direct interactions reported in heterologous systems, native
neuronal GABABRs and GIRK channels did not co-immunopurify with one another
in a high-resolution proteomics study (Schwenk et al. 2016). Thus, the mode of
coupling between components of this signalosome remains unclear. Taken together,
these results suggest that a putative GABABR-G protein-GIRK complex may be
dynamic, allowing for dissociation and reassociation of components (Kahanovitch
et al. 2017). The formation of dynamic complexes, with low-affinity and/or transient
interactions, could explain why GABABRs and GIRK channels did not associate
in vivo (Schwenk et al. 2016).

3.2.2 Voltage-Gated Ca2+ Channels

VGCCs are regulated by many Gαi/o-coupled GPCRs, including GABABRs.
VGCCs are typically closed at resting membrane potentials but are opened by
membrane depolarization, leading to Ca2+ influx. Ca2+ influx depolarizes the cellular
membrane, facilitates synaptic vesicle release, and, as a secondary messenger,
regulates diverse physiological properties (Proft and Weiss 2015). VGCCs are
composed of pore-forming subunits encoded by ten mammalian genes. Seven
genes encode the high-voltage-activated Ca2+ channel subfamily including L-type
(CaV1.1 to 1.4), P/Q-type (CaV2.1), N-type (CaV2.2), and R-type (CaV2.3) channels,
while three genes encode low-voltage-activated T-type (CaV3.1–3.3) channels (Proft
and Weiss 2015). In general, GABABRs inhibit N- and P/Q-type channels in most
neurons and L-, T-, and R-type channels in select neuron populations (Maguire et al.
1989, Chalifoux and Carter 2011, Proft and Weiss 2015).

GABABR activation inhibits N- and P/Q-type channels in presynaptic terminals
of both glutamatergic and GABAergic neurons, as well as R-type channels in some
glutamatergic neurons (Wu and Saggau 1995, Proft and Weiss 2015, Burke and
Bender 2019). Inhibition of presynaptic VGCCs reduces Ca2+ influx and decreases
the probability of neurotransmitter release (Burke and Bender 2019). GABABRs
inhibit VGCCs through direct interactions between Gβγ and the channel (Herlitze
et al. 1996, Waard et al. 1997, Burke and Bender 2019). Mechanistically, Gβγ
binding to VGCCs slows channel activation kinetics and induces a positive shift in
the voltage dependence to inhibit Ca2+ influx (Bean 1989, Colecraft et al. 2000).
Gβγ-mediated inhibition can be relieved by strong depolarization or eventual disso-
ciation of Gβγ from the channel (Colecraft et al. 2000, 2001, Proft and Weiss 2015).
Postsynaptic GABABRs also inhibit several VGCC subtypes in dendrites and spines
(Pérez-Garci et al. 2006, Chalifoux and Carter 2011, Booker et al. 2018). Postsyn-
aptic GABABR-VGCC signaling prevents dendritic Ca2+ spikes to reduce cellular
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excitability and limit the actions of Ca2+ as a secondary messenger (Malenka 1991,
Pérez-Garci et al. 2006, Chalifoux and Carter 2011, Brini et al. 2014, Booker et al.
2018).

Similar to GIRK channels, GABABRs and VGCCs have been proposed to form
signaling complexes that facilitate tight functional coupling through membrane-
delimited Gβγ interactions. FRET experiments revealed that GB1a/GB2 receptors
associate with Gβγ and N-type channels in hippocampal pyramidal neuron boutons,
suggesting the formation of signaling complexes that facilitate GABABR/VGCC-
mediated presynaptic inhibition (Laviv et al. 2011). In line with this, a high-
resolution proteomics approach showed that native neuronal N-type channels assem-
ble with GB1a/GB2 receptors (Schwenk et al. 2016). Electrophysiological, bio-
chemical, and ultrastructural evidence also support the existence of postsynaptic
signaling complexes. GABABRs co-assemble and co-cluster with P/Q-type channels
in dendritic shafts of cerebellar Purkinje neurons (Luján et al. 2017) and co-cluster
with L-type channels in dendrites of hippocampal somatostatin interneurons to
inhibit postsynaptic Ca2+ influx (Booker et al. 2018).

While GABABR-VGCC signaling has well-documented inhibitory influences on
neurons, under certain conditions it can also exert excitatory influences. For exam-
ple, presynaptic VGCC inhibition often suppresses the release of inhibitory neuro-
transmitters (e.g., GABA, glycine) to disinhibit downstream neurons.
GABABR-mediated inhibition of N-type channels in rat retinal neurons also
suppressed big conductance Ca2+-activated K+ (BK) channels, which led to a net
increase in neuronal excitability (Garaycochea and Slaughter 2016). As mentioned
earlier, GABABRs activated L-type channels via Gαq signaling and PKCα activation
in neonatal hippocampal neurons (Carter and Mynlieff 2004, Bray and Mynlieff
2009, Karls and Mynlieff 2015). A similar activation of L-type channels through
GABABRs has been reported in response to N-methyl-D-aspartate receptor
(NMDAR) blockade (Workman et al. 2013). Lastly, GABABRs activated R-type
channels on medial habenula neurons to facilitate Ca2+ influx and trigger neuro-
transmitter release into the interpeduncular nucleus (Zhang et al. 2016,
Koppensteiner et al. 2017).

3.2.3 Adenylyl Cyclase

Adenylyl cyclase catalyzes the synthesis of cyclic AMP (cAMP), a key second
messenger that regulates diverse cellular processes (Smit and Iyengar 1998, Halls
and Cooper 2017). Ten adenylyl cyclase isoforms are expressed throughout the
mammalian brain – nine transmembrane isoforms (AC-I–IX) and one soluble
isoform (AC-X) (Sadana and Dessauer 2009, Halls and Cooper 2017). While all
transmembrane isoforms can be stimulated by direct interactions with Gαs, Gαi/o
proteins directly inhibit AC-I, AC-III, AC-V, AC-VI, AC-VIII, and AC-IX. The Gβγ
dimers also inhibit AC-I but can stimulate AC-II and AC-IV (Sadana and Dessauer
2009, Halls and Cooper 2017, Terunuma 2018). Thus, GABABRs can
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bidirectionally regulate adenylyl cyclase activity through typical Gαi/o- or Gβ-
γ-mediated inhibition or atypical Gβγ-mediated stimulation.

Several early studies had shown that GABABR agonists inhibit basal or forskolin-
stimulated adenylyl cyclase activity in neurons via PTX-sensitive G proteins
(Wojcik and Neff 1984, Knight and Bowery 1996, Simonds 1999, Bettler et al.
2004). Others found that GABABRs can stimulate adenylyl cyclase-induced cAMP
production during co-activation of Gαs-coupled receptors by norepinephrine, iso-
prenaline, histamine, or vasoactive intestinal polypeptide (Bettler et al. 2004). This
atypical Gβγ-mediated stimulation of adenylyl cyclase (AC-II and AC-IV) requires
the presence of active Gαs, thus demonstrating a form of G protein crosstalk between
GABABRs and Gαs-coupled GPCRs that augments cAMP production (Simonds
1999, Bowery et al. 2002, Calver et al. 2002). The GABABR-mediated bidirectional
regulation of cAMP levels was confirmed in vivo using microdialysis in freely
moving rats (Hashimoto and Kuriyama 2002).

Typical GABABR-induced reduction in cAMP and subsequent protein kinase A
(PKA) activity influence several downstream processes. Presynaptic reductions in
cAMP levels inhibit vesicle fusion and spontaneous neurotransmitter release
(Sakaba and Neher 2003, Rost et al. 2011). Postsynaptic reductions in PKA activity
alleviate an A-kinase anchoring protein (AKAP)-dependent tonic inhibition of
TREK2 channels (Deng et al. 2009), decrease the Ca2+ permeability of NMDARs
(Chalifoux and Carter 2010), enhance the magnitude of tonic GABAAR currents
(Connelly et al. 2013), and influence gene expression (Ghorbel et al. 2005, Fukui
et al. 2008, Schwirtlich et al. 2010). Taken together, GABABR-dependent regulation
of adenylyl cyclase is poised to influence diverse cellular processes across short and
long timeframes – by modifying neuronal excitability and synaptic transmission,
altering levels of intracellular secondary messengers (cAMP, Ca2+), and regulating
gene expression.

4 Regulation of GABABR-Dependent Signaling in Neurons

Tight control over the timing and strength of GABABR-dependent signaling is
crucial for establishing a proper inhibitory tone that balances excitation. In this
regard, signaling through GABABRs is subject to regulation via a myriad of
mechanisms.

4.1 Desensitization

Desensitization is a common regulatory mechanism of GPCRs to prevent
overstimulation. For many GPCRs, desensitization involves direct phosphorylation
of the receptor by GPCR kinase (GRK), followed by arrestin binding and dynamin-
dependent and clathrin-mediated endocytosis (Gurevich and Gurevich 2019).
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Internalized receptors accumulate in endosomal sorting compartments where they
may either be dephosphorylated and recycled back to the cell surface or targeted to
lysosomes for degradation (Benke et al. 2012, Iacovelli and De Blasi 2013,
Lefkowitz 2013).

While prolonged activation of GABABRs induces desensitization of the receptor
response, GABABR desensitization does not involve receptor internalization via the
classical GRK phosphorylation and arrestin recruitment pathway. Rather, surface
stability of GABABRs is regulated through a variety of phosphorylation-
independent and phosphorylation-dependent mechanisms (Fairfax et al. 2004,
Grampp et al. 2008, Benke et al. 2012, Raveh et al. 2015). Although GRKs do not
phosphorylate GABABRs, GRK4 and GRK5 still promote agonist-induced desen-
sitization of the GABABR response (Perroy et al. 2003, Fairfax et al. 2004, Kanaide
et al. 2007). Since GRK4 and GRK5 directly associated with GB2, where they
competed with the G protein for binding, they were proposed to induce desensitiza-
tion by uncoupling the G protein from the GABABR (Benke et al. 2012, Raveh et al.
2015). This interaction may be highly cell specific, as biochemical analyses reveal
that GRK4 and GRK5 are minimally expressed in tissues that have high GABABR
expression, including the cerebral cortex and hippocampus (Sallese et al. 2000, Sato
et al. 2015). GRK2 has also been reported to induce desensitization of several
inhibitory GPCRs through a phosphorylation-independent mechanism involving
the sequestration of βγ (Raveh et al. 2010, 2015). In a heterologous system, GRK2
increased desensitization of GABABR-GIRK currents by ~30% (Turecek et al.
2014).

4.2 Phosphorylation

Unlike many GPCRs, GABABR activity is not correlated with the overall phosphor-
ylation state of the receptor, as phosphorylation of different residues influences
GABABR activity in distinct ways (Perroy et al. 2003, Terunuma 2018). There are
five known phosphorylation sites on GABABRs that regulate endocytosis, surface
stability, and desensitization. These include serine 867 (S867) and S917/923 on GB1
and S783 and S892 on GB2. Several kinases mediate phosphorylation at these sites.

4.2.1 CaMKII

Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylates S867 on
primarily GB1b, leading to the dynamin-dependent endocytosis of GABABRs that
couple to GIRK channels (Guetg et al. 2010). Glutamatergic signaling
downregulates GABABRs (Guetg et al. 2010, Maier et al. 2010), in part through
the activation of NMDARs that enhance CaMKII-mediated phosphorylation of S867
to promote GABABR internalization (Guetg et al. 2010). Indeed, blockade of either

Mechanisms and Regulation of Neuronal GABAB Receptor-Dependent Signaling 57



CaMKII activity or phosphorylation of S867 was sufficient to prevent GABABR
internalization in hippocampal neurons (Guetg et al. 2010, Maier et al. 2010).

4.2.2 AMPK

AMP-activated protein kinase (AMPK) is a serine-threonine kinase that functions as
an energy sensor that is activated by increased cellular levels of AMP due to high
metabolic activity, or during anoxia or ischemia (Carling 2005, Carling et al. 2011).
AMPK binds to the C-terminus of GB1, where it can phosphorylate two sites on
GB1 (S917/923) and one site on GB2 (S783) (Kuramoto et al. 2007). The physio-
logical relevance of AMPK-induced phosphorylation at all three sites was examined
by measuring AMPK-mediated GABABR-GIRK coupling in HEK-293 cells. Phos-
phorylation of S783 on GB2 reduced desensitization of GABABRs and enhanced
GABABR-GIRK coupling by stabilizing receptors at the plasma membrane. Ische-
mic brain injury enhanced S783 phosphorylation in the hippocampus of rats, and
S783 phosphorylation promoted neuronal survival of cultured hippocampal neurons
after chemical anoxia (Kuramoto et al. 2007). Therefore, AMPK-mediated phos-
phorylation of S783 may play a neuroprotective role in limiting excitotoxicity by
maintaining GABABR inhibitory tone during times of high metabolic stress or
ischemic injury (Kuramoto et al. 2007).

AMPK-mediated phosphorylation of S783 is bidirectionally regulated by
glutamatergic signaling through NMDARs (Terunuma et al. 2010, Terunuma
2018). Transient activation of NMDARs enhances AMPK activity and promotes
S783 phosphorylation, while prolonged NMDAR activation promotes S783 dephos-
phorylation (Terunuma et al. 2010). Prolonged NMDAR activity activates protein
phosphatase 2A (PP2A), which dephosphorylates S783 and targets GABABRs for
lysosomal degradation, thus reducing surface expression and GABABR function.
Concurrent activation with GABABRs prevents the NMDAR/PP2A-mediated reduc-
tion in GABABR surface expression, likely via membrane hyperpolarization or
decreased Ca2+ permeability of NMDARs (Terunuma et al. 2010). Thus,
glutamatergic and GABAergic signaling delicately control the phosphorylation
state of GABABRs to regulate intracellular trafficking and cell surface stability.
Interestingly, studies using S783A knock-in mice, in which mutation of serine to
alanine decreases GABABR degradation, revealed that the S783A mutation selec-
tively enhanced postsynaptic, but not presynaptic, GABABR activity (Terunuma
et al. 2014). This suggests that presynaptic receptors are highly stable and have lower
rates of endocytosis than postsynaptic receptors that have higher rates of
phosphorylation-dependent internalization.

4.2.3 PKA

PKA phosphorylates the cytoplasmic tail of GB2 at S892, leading to increased
GABABR surface stability and reduced slow desensitization in HEK-293 and
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hippocampal cells (Couve et al. 2002). Prolonged activation of GABABRs inhibits
adenylyl cyclase to reduce PKA activity and S892 phosphorylation, which coincides
with increased endocytosis-independent GABABR degradation (Fairfax et al. 2004).
GABABR degradation induced by chronic exposure to baclofen is attenuated by
either PKA activation or co-stimulation of Gαs-coupled β-adrenergic receptors
(Couve et al. 2002, Fairfax et al. 2004, Benke 2010). Thus, PKA-induced phos-
phorylation of S892 and GABABR surface stability are bidirectionally regulated by
G protein signaling cascades that modulate PKA activity.

4.2.4 PKC

PKC has been reported to phosphorylate GB1 at an unknown site in Chinese hamster
ovary cells. Activation of GABABRs enhances PKC recruitment to the plasma
membrane, induces phosphorylation of GB1, and disrupts the direct interaction
between NEM-sensitive fusion (NSF) proteins and GABABRs to facilitate agonist-
induced, internalization-independent desensitization (Pontier et al. 2006).

4.3 Ubiquitination

Ubiquitination is a posttranslational modification that involves covalent attachment
of ubiquitin to a target protein, generally directing the protein to proteasomes or
lysosomes for degradation (Sarker et al. 2011). Many GPCRs undergo reversible
ubiquitin modifications that regulate receptor degradation, among other functions
(Dores and Trejo 2012, Cottrell 2013, Kommaddi and Shenoy 2013, Kennedy and
Marchese 2015). Ubiquitination is reported to regulate GABABR trafficking from
the endoplasmic reticulum to the cell surface via increased proteasomal degradation.
Lys(48)-linked polyubiquitination of lysines 767/711 in the GB2 C-terminus pro-
motes constitutive proteasomal degradation of GABABRs in cultured cortical neu-
rons, and inactivation of these sites increases cell surface receptor levels and
enhances GABABR signaling (Zemoura et al. 2013).

Ubiquitination of GB1 is also reported to control lysosomal degradation of
GABABRs. GB1 is ubiquitinated at multiple sites by Mind bomb-2 (MIB2), a
ubiquitin ligase catalyzing Lys(63)-linked ubiquitination, which promotes lyso-
somal degradation of GABABRs (Zemoura et al. 2016). Mutational inactivation of
putative GB1 ubiquitination sites prevented lysosomal degradation. Interestingly,
MIB2-induced ubiquitination is believed to contribute to the glutamate-induced
downregulation of GABABRs (Zemoura et al. 2016). A recent follow-up study
supports this notion, revealing that MIB2-induced GB1 ubiquitination is largely
dependent on the phosphorylation state of S867 on GB1. CaMKIIβ-induced S867
phosphorylation promotes, while S867 dephosphorylation inhibits, Lys(63)-linked
ubiquitination of GB1 (Zemoura et al. 2019).
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PKC has also been reported to promote ubiquitination, internalization, and
degradation of GABABRs. Cell surface GABABRs undergo PKC-mediated consti-
tutive ubiquitination and subsequent internalization, and deubiquitination of the
receptor is catalyzed post-endocytically by USP14, a deubiquitinase that directly
interacts with GB1 to target GABABRs for lysosomal degradation (Lahaie et al.
2016).

4.4 KCTD Proteins

The four KCTD proteins (KCTD8, 12, 12b, 16) assemble as homo- or heteromeric
pentamers on the C-terminus of GB2 (Fritzius et al. 2017, Pinkas et al. 2017, Fritzius
and Bettler 2019, Zuo et al. 2019), where they stabilize G proteins at the receptor and
regulate the kinetics of G protein-dependent signaling (Turecek et al. 2014, Zheng
et al. 2019). KCTD proteins accelerate the onset of GABABR-GIRK currents, and
KCTD12 and KCTD16 additionally increase agonist potency, as seen by a reduced
EC50 value of baclofen-evoked GIRK currents (Schwenk et al. 2010). KCTD12 and
KCTD12b also induce fast desensitization of GABABR-GIRK currents by directly
binding receptor-activated Gβγ dimers to uncouple Gβγ from GIRK channels
(Schwenk et al. 2010, Turecek et al. 2014, Fritzius et al. 2017, Fritzius and Bettler
2019, Zheng et al. 2019). Interestingly, PKA-mediated phosphorylation of S892 on
GB2 can regulate KCTD12-induced fast desensitization (Adelfinger et al. 2014).
PKA activation in hippocampal neurons slows, while PKA inhibition accelerates,
KCTD12-induced fast desensitization of GABABR-GIRK currents. PKA fails to
regulate desensitization in knock-in mice with a serine 892 to alanine mutation
(S892A), demonstrating that phosphorylation of S892 slows KCTD12-induced
fast desensitization in vivo (Adelfinger et al. 2014). In addition to regulating G
protein signaling kinetics, KCTD proteins also scaffold effector channels and other
proteins at the GABABR (Table 1). For example, N-type Ca2+ channels,
hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2) channels, and 14-3-
3 proteins associate with GABABRs through direct interactions with KCTD16
(Schwenk et al. 2016).

4.5 RGS Proteins

Regulator of G protein signaling (RGS) proteins are GTPase-accelerating proteins
(GAPs) that facilitate termination of G protein signaling by promoting hydrolysis of
GTP on active Gα to enable reassembly of the heterotrimeric G protein complex
(Anderson et al. 2009, Gerber et al. 2016). The mammalian RGS protein superfamily
is divided into eight subfamilies (RZ, R4, R7, R12, RA, GED, GRK, SNX) based on
amino acid sequence or structural similarity. While structural diversity among RGS
proteins does explain the existence of noncanonical cell signaling roles, the RGS
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homology domain that is critical for accelerating GTPase activity is highly
conserved among many members (Siderovski and Willard 2005, Gerber et al.
2016, Squires et al. 2018). RGS proteins across several subfamilies have been
shown to regulate the kinetics of G protein-dependent signaling through GABABRs.

4.5.1 R7 RGS/Gβ5

The R7 RGS protein family is composed of four members (RGS6, RGS7, RGS9,
RGS11) that play critical roles in fundamental neuronal processes, including vision,
motor control, reward behavior, and nociception (Anderson et al. 2009). R7 RGS
proteins form obligate heterodimers with G protein β5 (Gβ5) through interactions at
their Gγ-like domains (Snow et al. 1999, Witherow et al. 2000, Hollinger and Hepler
2002). RGS/Gβ5 heterodimers can then form reversible complexes with adaptor
proteins, including R7-binding protein (R7BP) (Drenan et al. 2005, Martemyanov
et al. 2005, Grabowska et al. 2008, Patil et al. 2018). When palmitoylated, R7BP
anchors the heterodimeric complex at the plasma membrane and prevents RGS
protein degradation (Drenan et al. 2005, 2006, Jia et al. 2011). R7BP also facilitates
the functional association of RGS/Gβ5 with GIRK channels to promote deactivation
of G proteins (Xie et al. 2010, Jia et al. 2014, Ostrovskaya et al. 2014). Indeed,
genetic ablation of either RGS6, RGS7, Gβ5, or R7BP prolongs deactivation
kinetics of GABABR-GIRK currents (Xie et al. 2010, Maity et al. 2012, Ostrovskaya
et al. 2014). Ablation of RGS7 or R7BP also enhanced the coupling efficiency of
GABABR-GIRK signaling, increasing the potency of baclofen-induced GIRK cur-
rents (Ostrovskaya et al. 2014).

In line with their functional association, biochemical, electrophysiological, and
ultrastructural evidence support the existence of macromolecular complexes formed
of RGS7/Gβ5, GABABRs, and GIRK channels on dendritic spines of hippocampal
CA1 pyramidal neurons (Xie et al. 2010, Fajardo-Serrano et al. 2013). Insights from
the RGS7-Gβ5-R7BP crystal structure reveal that the orientation of the complex is
compatible with macromolecular assemblies involving GABABRs and GIRK chan-
nels (Patil et al. 2018).

In addition to forming complexes with R7BP, RGS7/Gβ5 can also assemble with
G protein-coupled receptor 158 (GPR158) (Orlandi et al. 2012, Ostrovskaya et al.
2018). Formation of either complex is mutually exclusive and facilitates trafficking
of RGS7 to the plasma membrane (Orlandi et al. 2012). The ability of RGS7 to
negatively regulate GABABR signaling through GIRK channels or P/Q/N-type
channels is enhanced by R7BP but opposed by GPR158 (Ostrovskaya et al. 2018).
Interestingly, the RGS7/Gβ5-GPR158 complex has been reported to suppress
homeostatic regulation of cAMP by GABABRs (Orlandi et al. 2018). Altogether,
this suggests that RGS7/Gβ5 dimers exist in two separate complexes at the plasma
membrane that may guide RGS7-meditated regulation toward particular effector
systems.

Mechanisms and Regulation of Neuronal GABAB Receptor-Dependent Signaling 61



4.5.2 R4 RGS Proteins

Two members of the R4 RGS subfamily (RGS2 and RGS4) have been implicated in
negatively regulating GABABR-GIRK signaling in neurons. RGS2 reduces the
coupling efficiency of GABABRs with heteromeric GIRK2/3 channels in VTA
dopamine neurons. Evidence from immunoelectron microscopy and slice electro-
physiology in GIRK subunit-specific knockout mice suggests that the effect of
RGS2 on GABABR-GIRK signaling uniquely requires the GIRK3 subunit, and
FRET analysis revealed direct interactions between RGS2 and GIRK3 (Labouèbe
et al. 2007).

RGS4 has been proposed to form a signaling complex with GABABRs to
terminate GABABR-GIRK signaling. Double immunohistochemistry and immuno-
precipitation assays revealed that RGS4 and GABABRs associate together in the
prefrontal cortex and hypothalamus, and FRET analysis in transfected HEK-293
cells indicated direct interactions between RGS4 and either GB1 or GB2 (Fowler
et al. 2007, Kim et al. 2014). RGS4 enhances GIRK channel deactivation rates
within a second of agonist application in vitro, and RGS4 expression in GIRK-
transfected CHO cells mimics the fast deactivation kinetics observed in hippocampal
neurons and atrial myocytes (Doupnik et al. 1997). RGS4 has also been reported to
limit crosstalk between two Gαi/o-coupled receptors, GABABRs and A2 adenosine
receptors (A2Rs), in pyramidal neurons of the prefrontal cortex. Within single
dendritic spines, and through inhibition of PKA, GABABR activation inhibits
NMDARs, while A2R activation inhibits AMPARs. RGS4 appears capable of
limiting interference between the two receptors’ neuromodulatory functions, as
blocking RGS4 activity with either a small molecule inhibitor or an intracellular
anti-RGS4 antibody enables crosstalk between pathways. This raises the intriguing
possibility that RGS4 dysfunction in schizophrenia could disrupt pathway segrega-
tion and promote crosstalk that drives aberrant function (Gyorgy Lur et al. 2015).

4.5.3 RGS12

RGS12 negatively regulates presynaptic GABABR signaling through N-type chan-
nels in chick dorsal root ganglion neurons (Schiff et al. 2000). In addition to its
canonical GAP activity, RGS12 binds to the synprint region of N-type channels to
directly modulate Ca2+ signaling (Schiff et al. 2000, Richman et al. 2005).

5 Plasticity of GABABR-Dependent Signaling

Native GABABRs are multi-protein complexes with a remarkable diversity in
protein composition across space and time (Malitschek et al. 1998, Fritschy et al.
1999, Schwenk et al. 2016). This endows functional diversity to GABABR-mediated
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signaling across brain regions and cell types (Cruz et al. 2004, Gassmann and Bettler
2012, Terunuma 2018) and even between sexes (Al-Dahan et al. 1994, Kelly et al.
2003, Marron Fernandez de Velasco et al. 2015). GABABR-mediated signaling is
also plastic, changing throughout development (Moran et al. 2001, Luo et al. 2011,
Dlouhá et al. 2013, Karls and Mynlieff 2015, Cai et al. 2017), during pathophysi-
ological states (Fritzius and Bettler 2019), or in response to particular experiences
(Terunuma 2018). Potential mechanisms underlying differences or changes in
GABABR function can be remarkably diverse, as alterations in the expression/
structure/function of either core and peripheral proteins that make up GABABR
complexes, effector proteins, or regulatory proteins may have a dramatic influence at
the molecular, cellular, and organismal level. In addition to examples of GABABR
plasticity described earlier, listed below are a few proposed plasticity mechanisms,
among the many that have been reported.

5.1 Phosphorylation-Dependent Plasticity

Phosphorylation-dependent changes in GABABR and GIRK channel surface avail-
ability underlie several reports of GABABR plasticity. As discussed earlier,
sustained glutamatergic or GABAergic signaling can downregulate GABABRs
through several mechanisms, including receptor phosphorylation. Exposure to
drugs of abuse can also induce phosphorylation-dependent changes in GABABR
activity in vivo. For example, both acute and repeated exposure to cocaine
suppressed GABABR-GIRK signaling in VTA dopamine neurons and prelimbic
cortex pyramidal neurons, respectively, via phosphorylation-dependent internaliza-
tion of GABABRs and/or GIRK channels (Arora et al. 2011, Hearing et al. 2013).
Exposure to inescapable footshocks similarly suppressed GABABR-GIRK signaling
in the lateral habenula through increased PP2A activity and internalization of
GABABRs and GIRK channels (Lecca et al. 2016).

5.2 Plasticity of 14-3-3 Proteins

Multiple members of the 14-3-3 family of scaffolding proteins directly or indirectly
interact with GABABRs (Couve et al. 2001, Schwenk et al. 2016) and have been
proposed to regulate GABABR structure and function. For example, 14-3-3ζ is
overexpressed in the dorsal horn of neuropathic rats, where it inhibits GABABR
signaling through K+ channels and contributes to pain sensitization. Biochemical,
electrophysiological, and ultrastructural evidence suggest that 14-3-3ζ disrupts
GABABR-dependent signaling by dissociating GABABR heterodimers at the plasma
membrane (Laffray et al. 2012). Exposure to NMDAR antagonists, acting as rapid
antidepressants, increases the surface stability of 14-3-3η, which decouples
GABABR signaling from GIRK channels in the hippocampus of socially defeated
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(model of depression) rodents (Workman et al. 2015). The existence of several other
GABABR-interacting 14-3-3 isoforms raises the intriguing possibility of similar
interactions throughout the CNS (Schwenk et al. 2016).

5.3 Plasticity of RGS Regulation

As mentioned earlier, RGS2 negatively regulates the GABABR-GIRK coupling
efficiency in VTA dopamine neurons. Chronic exposure to either gamma
hydroxybutyrate (GHB) or morphine reduced RGS2 transcription and enhanced
the coupling efficiency of GABABR-GIRK signaling in VTA dopamine neurons
of mice (Labouèbe et al. 2007). Another interesting example involves plasticity of
GPR158, an RGS7/Gβ5-binding protein that suppresses homeostatic regulation of
cAMP by GABABRs (Orlandi et al. 2018). GPR158 is upregulated in the prefrontal
cortex of both humans with major depressive disorder and mice exposed to chronic
stress (Sutton et al. 2018). Viral overexpression of GPR158 in the mouse prefrontal
cortex induced depressive-like behaviors, while constitutive GPR158 ablation pro-
duced an antidepressant effect (Sutton et al. 2018). Thus, GPR158 plasticity and
GABABR-mediated dysregulation of cAMP levels in the prefrontal cortex may play
a prominent role in stress-induced depression.

6 Concluding Remarks

GABABRs are obligate heterodimers that interact with G proteins, effectors, and a
wide variety of proteins to form spatially and temporally modular complexes that
impart functional diversity to GABABR-dependent signaling throughout the brain.
Given the vital roles GABABRs play in regulating synaptic transmission and behav-
ior, as well as their links to disease, it is critical to understand the dynamic structure
and function of the GABABR signalosome. Further research aiming to identify the
functional roles of components within GABABR complexes, as well as mechanisms
underlying regulation/modulation of GABABR-dependent signaling, will occupy the
field for many years. A deeper understanding of the relationships between the
GABABR signalosome and pathophysiological states will yield insights that are
essential for drug discovery and development efforts. While drugs targeting
GABABRs are currently used on- and off-label to treat several disorders, broadening
drug design to more selectively target components within GABABR complexes, or
interactions between components, will likely increase the therapeutic potential of
new medicines (Berry-Kravis et al. 2018, Fritzius and Bettler 2019).
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Abstract The GABAB receptors are metabotropic G protein-coupled receptors
(GPCRs) that mediate the actions of the primary inhibitory neurotransmitter,
γ-aminobutyric acid (GABA). In the CNS, GABA plays an important role in
behavior, learning and memory, cognition, and stress. GABA is also located
throughout the gastrointestinal (GI) tract and is involved in the autonomic control
of the intestine and esophageal reflex. Consequently, dysregulated GABAB receptor
signaling is associated with neurological, mental health, and gastrointestinal disor-
ders; hence, these receptors have been identified as key therapeutic targets and are
the focus of multiple drug discovery efforts for indications such as muscle spasticity
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disorders, schizophrenia, pain, addiction, and gastroesophageal reflex disease
(GERD). Numerous agonists, antagonists, and allosteric modulators of the
GABAB receptor have been described; however, Lioresal® (Baclofen;
β-(4-chlorophenyl)-γ-aminobutyric acid) is the only FDA-approved drug that selec-
tively targets GABAB receptors in clinical use; undesirable side effects, such as
sedation, muscle weakness, fatigue, cognitive deficits, seizures, tolerance and poten-
tial for abuse, limit their therapeutic use. Here, we review GABAB receptor chem-
istry and pharmacology, presenting orthosteric agonists, antagonists, and positive
and negative allosteric modulators, and highlight the therapeutic potential of
targeting GABAB receptor modulation for the treatment of various CNS and periph-
eral disorders.

Keywords GABAB receptor pharmacology · Orthosteric and allosteric modulators ·
Therapeutic target

1 Introduction

γ-aminobutyric acid (GABA) is one of the most widely distributed amino acid
neurotransmitters in the central nervous system (CNS), acting as the primary neu-
rotransmitter responsible for neuronal inhibition. GABA activities are mediated
through two distinct classes of receptors; ionotropic GABAA and GABAA-ρ (for-
merly known as GABAC, and prominently expressed in the retina (Naffaa et al.
2017)) and metabotropic GABAB receptors (Bowery et al. 2004). GABAA and
GABAA-ρ ionotropic receptor subunits form ion channels that are selectively per-
meable to anions like chloride and are responsible for the transient and rapid
component of inhibitory postsynaptic potentials (Sigel and Steinmann 2012).
Whereas, the metabotropic GABAB receptors belong to the superfamily of G-
protein-coupled receptors (GPCRs) and mediate the slow and prolonged component
of synaptic inhibition via indirect gating of neuronal K+ and Ca2+ channels and
lowering levels of other second messenger targets like cAMP (Bowery et al. 2002).

GABAB receptors are broadly expressed and distributed in the CNS. They are
located pre- and postsynaptically; activation of presynaptic GABAB receptors by
GABA located on GABAergic terminals (autoreceptors) inhibits the release of
GABA, while activation of presynaptic GABAB receptors located on other nerve
terminals (heteroreceptors) inhibits the release of several other neurotransmitters
such as glutamate and bioactive peptides. In contrast, activation of postsynaptic
receptors activate K+ channels and induce slow inhibitory postsynaptic potentials
(Benarroch 2012). GABAB receptors are also located in the periphery along the
gastrointestinal (GI) tract where they regulate intestinal motility, gastric emptying,
gastric acid secretion, and esophageal sphincter relaxation (Clarke et al. 2018;
Lehmann et al. 2010; Ong and Kerr 1984). Dysregulated GABAB receptor function
has been implicated in a variety of neurodegenerative diseases and
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pathophysiological disorders, including Parkinson’s disease (Nambu 2012; Tyagi
et al. 2015), Alzheimer’s disease (Rice et al. 2019; Sun et al. 2020), Huntington’s
disease (Kim and Seo 2014), epilepsy (Billinton et al. 2001a; Teichgräber et al.
2009), spasticity (Francisco et al. 2001; Basmajian 1975; Korsgaard 1976), pain
(Neto et al. 2006; Enna and McCarson 2006; Murai et al. 2019), anxiety (Kalinichev
et al. 2017; Li et al. 2015) and depression (Cryan and Kaupmann 2005; Felice et al.
2012; Jacobson et al. 2018), schizophrenia (Glausier and Lewis 2017; Nair et al.
2020), narcolepsy (Black et al. 2014; Szabadi 2015), and addiction (Agabio and
Colombo 2014, 2015; Agabio et al. 2018; Maccioni and Colombo 2019; Ranson
et al. 2020). Owing to their presence in the gastrointestinal tract these receptors are
also implicated in a variety of GI disorders such as gastroesophageal reflux disease
(GERD) (Clarke et al. 2018; Lehmann et al. 2010; Ong and Kerr 1984; Lehmann
2009; Symonds et al. 2003).

2 Brief History

While GABA was discovered in the mammalian brain in 1950 (Awapara 1950;
Roberts and Frankel 1950), it was not recognized as an inhibitory neurotransmitter
until 1967 (Krnjević and Schwartz 1966; Dreifuss et al. 1969). Early attempts to
interrogate the GABA system led to the development of the synthetic agonist,
β-(4-chlorophenyl)-γ-aminobutyric acid, a poorly brain penetrant derivative of
GABA better known as baclofen (Keberle et al. 1969). In 1968 the identification
of the first GABA receptor antagonist “bicuculline”was reported (Curtis et al. 1970),
and in 1987, bicuculline and GABA receptor agonists such as isoguvacine facilitated
the cloning of the ionotropic GABAA receptor, a pentameric ligand gated ion
channel (Schofield et al. 1987).

The existence of the GABAB receptors (so named to distinguish it from the
GABAA receptor) first emerged in 1979. Dr. Norman Bowery and colleagues
discovered that GABA blocks the release of neurotransmitters such as norepineph-
rine from nerve terminals but this effect was not blocked by bicuculline, instead it
mimicked the effects of baclofen. It was also discovered that baclofen does not
interact with the GABAA site (Bowery et al. 1979, 1980, 1981). A third GABA
receptor with pharmacology distinct from GABAA and GABAB was identified in
1986 by virtue of the GABA response, “Cl-current blocked by picrotoxin,” being
both bicuculline and baclofen insensitive (Johnston 1986). This receptor was named
GABAC (now referred to as GABAA-ρ) and was later cloned in 1991 (Polenzani
et al. 1991). However, it was almost 20 years since being identified that the GABAB

receptor was cloned using expression cloning and radioligand binding of a high
affinity antagonist (1997) by the Bettler group (Kaupmann et al. 1997). Thus,
reagents that modulate the GABA receptors facilitated the cloning of, and have
since defined those receptors; the ionotropic receptors GABAA and GABAA-ρ are
defined as “bicuculline-sensitive, isoguvacine-sensitive” and
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“bicuculline-insensitive, baclofen-insensitive” respectively, and the metabotropic
GABAB receptor is defined as “bicuculline-insensitive, baclofen-sensitive.”

3 Structure and Signaling

In common with other GPCRs, the GABAB receptor is an integral membrane protein
that spans the cellular membrane with seven helices that are linked by three
extracellular loops and three intracellular loops and possesses an extracellular
N-terminus and an intracellular C-terminus. GABAB receptors are structurally
related to metabotropic glutamate receptors (mGluRs), and together with the
calcium-sensing receptor (CaSR), some pheromone and taste receptors, and orphan
GPCRs (receptors with no known ligands), belong to the family C (or family III) of
GPCRs (Bowery et al. 2002). Common to the members of family C GPCRs is the
large extracellular N-terminus that contains a domain homologous to the periplasmic
amino acid binding proteins (PBPs) found in bacteria. The X-ray structure of
GABAB receptor PBP-like domains revealed an orthosteric ligand binding pocket
that is made up of two globular lobes separated by a hinge region. The two lobes
(LB1 and LB2) close upon ligand binding, much like a Venus flytrap does when
touched by an insect, hence the globular domains in family C GPCRs are also
referred to as “Venus flytrap” (VFT) domains (Galvez et al. 1999); an agonist
binds and stabilizes the closed (active) conformation of the VFT, whereas an
antagonist stabilizes and retains the VFT subunit in the open (inactive)
configuration.

To date molecular cloning has identified two main GABAB receptor subunits,
namely GABAB1 and GABAB2 which arise from distinct genes (Kaupmann et al.
1997, 1998). At the protein level GABAB1 and GABAB2 receptors share 35%
identity and 54% similarity over their approximate length of 950 amino acid residues
and both subunits are highly conserved across mammalian species, sharing 90–95%
sequence homology between human, pig, rat, and mouse (Kaupmann et al. 1997).
An active functional GABAB receptor with high affinity for agonist ligands depends
upon the formation of a heterodimer between GABAB1 and GABAB2 receptor
subunits (Kaupmann et al. 1998; Marshall et al. 1999; Jones et al. 1998). The
association of the receptor subunits occurs, at least in part, through a coiled-coil
motif found in the respective carboxyl termini of GABAB1 and GABAB2 subunits. It
has been demonstrated in recombinant systems that GABAB1 is unable to reach the
cell surface in the absence of the GABAB2 subunit because GABAB1 contains
endoplasmic retention motifs in its carboxy tail that are masked only upon
heterodimerization with GABAB2 subunit (Couve et al. 1998; Pagano et al. 2001).
Interestingly, all orthosteric agonists and antagonists bind to the GABAB1VFT and
not to the GABAB2 subunit VFT. Upon binding, an agonist induces conformational
changes in the GABAB1 subunit which by virtue of its physical interaction with the
GABAB2 subunit promotes conformational changes in the latter subunit allowing it
to couple to its cognate G-protein promoting functional responses within the cell
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(Galvez et al. 2001; Margeta-Mitrovic et al. 2001; Robbins et al. 2001; Duthey et al.
2002).

GABAB receptors provide a crucial component of inhibitory neurotransmission
mainly via coupling to heterotrimeric Gi/o type G-proteins, activation of which
results in a Gα-mediated inhibition of cAMP production and a Gβγ-mediated
modulation of the activity of ion channels such as high voltage-activated Ca2+

(Cav) channels and G protein-coupled inwardly rectifying Kir3-type potassium
channels (GIRKs) (Morishita et al. 1990; Nishikawa et al. 1997). In rare cases and
non-neuronal cells, GABAB receptor activation can promote increases in intracellu-
lar calcium either via activation of phospholipase C and store-operated channels or
by inducing Ca2+ release from internal stores (Meier et al. 2008; New et al. 2006).
Furthermore, GABAB receptor activation has been reported to induce phosphoryla-
tion of the Extracellular-signal Regulated protein Kinase 1/2 (ERK1/2) in cerebellar
neurons, as well as in the CA1 field of the mouse hippocampus (Tu et al. 2007;
Vanhoose et al. 2002). Thus, GABAB receptor couples to multiple intracellular
signal transduction pathways (Fig. 1) regulating ion homeostasis as well as MAPK

Inactive Active

B1 B2

VFT

Sushi 
Domains

Fig. 1 Molecular diversity and signaling capacity of the GABAB receptor
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signaling leading to downstream effects that include blocked neurotransmitter
release and hyperpolarization of neurons (Bowery et al. 2002; Bettler et al. 2004),
and the modulation of autonomic control of the intestine and esophageal reflex
(Clarke et al. 2018; Ong and Kerr 1984; Lehmann 2009; Symonds et al. 2003).

4 Molecular Diversity and Complexity

Molecular diversity in the GABAB receptor system arises from expression of
multiple GABAB1 subunit isoforms of which 14 mammalian isoforms (GABAB

(1a-1n)) exist between various animal species and are generated by differential
transcription or splicing (Bettler et al. 2004), whereas the GABAB2 receptor encodes
a singular form of the receptor (Bettler et al. 2004; Billinton et al. 2001b). The two
predominant GABAB1 isoforms, termed GABAB(1a) and GABAB(1b), are generated
by use of alternative transcription start sites, whereas other less abundant isoforms
such as GABAB(1c), and GABAB(1e) are generated by alternative splicing. Only the
GABAB(1a) and GABAB(1b) variants have been identified as components of the
native receptor GABAB1/GABAB2 complex. Although the identification of these
variants is suggestive of pharmacologically distinct GABAB receptors, Ng and
colleagues reported that the anticonvulsant gabapentin acts as an agonist at
GABAB(1a) but not GABAB(1b) (Bertrand et al. 2001; Ng et al. 2001), this has
been widely disputed as heterodimers comprised of either GABAB(1a)/GABAB2 or
GABAB(1b)/GABAB2 are pharmacologically indistinguishable in heterologous sys-
tems (Jensen et al. 2002; Lanneau et al. 2001) and to date, no GABAB receptor
ligand differentiates between these molecular variants. However, studies facilitated
by the generation of GABAB1 isoform-specific knockout mice (Vigot et al. 2006)
demonstrated that GABAB1a- and GABAB1b-containing receptors have distinct
functions owing to their different locations within neurons, where GABAB1a recep-
tors are predominantly located presynaptically on axonal terminals and GABAB1b

postsynaptically on dendritic spines. Consequently, global GABAB1 receptor iso-
form knockout mice exhibit a wide spectrum of isoform-specific behaviors. For
example, using the isoform-specific knockout mice, Vigot et al. showed that
GABAB1a and not GABAB1b receptor was involved in impaired synaptic plasticity
in hippocampus long-term potentiation (Vigot et al. 2006). It was also shown by
Perez-Garci and colleagues that GABA B1b was responsible for mediating postsyn-
aptic inhibition of Ca2+ spikes, whereas presynaptic inhibition of GABA release was
mediated by GABAB1a (Pérez-Garci et al. 2006). Hence, based on numerous in vivo
findings, the existence of pharmacologically distinct GABAB receptors has been
proposed (Pinard et al. 2010).

GABAB(1a) and GABAB(1b) differ primarily in their extracellular amino-terminal
domains by a pair of sushi domains only present in the GABAB(1a) subunit of the
GABAB1(a)/GABAB2 heteromer (Bettler et al. 2004; Hawrot et al. 1998). Sushi
domains, or short consensus repeats, are conserved protein domains commonly
involved in protein–protein interactions mostly found in proteins involved in cell–
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cell adhesion. In the context of the GABAB receptor, the sushi domains have been
shown to play a role in targeting the GABAB(1a) receptor to specific subcellular
regions by means of interaction of these motifs with proteins in the extracellular
matrix or on the surface of neighboring cells (Hannan et al. 2012). The diversity in
GABAB1 isoforms may therefore provide a means for targeted subcellular localiza-
tion and/or coupling to distinct intracellular signaling pathways while also provid-
ing, in part, an explanation for the complex and diverse physiology effects of the
GABA/GABAB receptor axis observed in neuronal tissue and in vivo (Bettler and
Tiao 2006).

The molecular complexity of the GABAB receptor is further enhanced through
association of the receptor with numerous trafficking, effector, and regulatory pro-
teins, as well as other membrane-bound receptors. For example, the extracellular
matrix protein, fibulin-2, has been shown to bind to the first sushi domain of the
GABAB(1a) and target this receptor to axon terminals of excitatory synapses (Blein
et al. 2004). Likewise, amyloid precursor protein (APP), amyloid precursor protein-
like 2 (APLP2), and adherence junction associated protein-1 (AJAP1) interact with
the sushi domains and are also anticipated to direct axonal subcellular localization of
the GABAB(1a)/GABAB2 receptor complex (Dinamarca et al. 2019). Whereas
GABAB(1b)-containing heteromers more frequently show dendritic localization
(Vigot et al. 2006).

Furthermore, a subfamily of the potassium channel tetramerization domain
(KCTD) proteins (KCTD 8, 12, 12b, and 16) has been shown to exclusively and
constitutively interact with the GABAB2 carboxy-terminus acting as auxiliary sub-
units of the receptor to regulate the kinetics and outcome of G-protein signaling
(Bartoi et al. 2010; Schwenk et al. 2010). For example, the KCTD12 and 12b
subunits mediate desensitization of the receptor, whereas KCTD8 and 16 regulate
non-desensitizing activities. The receptor, KCTD subunits, and G-protein combined
form the core receptor signaling complex required for normal function of inhibitory
brain circuits. Recently, Zuo et al., reported a high-resolution crystal structure of the
KCTD16 oligomerization domain in complex with a GABAB2 C-terminal peptide
and together with mutational analysis defined the interface between KCTD16 and
GABAB2 revealing a potential regulatory site that modulates GABAB receptor
activity (Zuo et al. 2019).

Other proteins have been reported to transiently associate with the GABAB

receptor either directly through GABAB1 or GABAB2 carboxy terminal domains,
which include transcription factors (i.e., ATF-4 (CREB2) and CHOP (Gadd153)
(Nehring et al. 2000; Ritter et al. 2004; Sauter et al. 2005)) and scaffolding and
adaptor proteins (i.e., MUPP1, 14-3-3 protein, and NSF (Balasubramanian et al.
2007; Couve et al. 2001; Pontier et al. 2006)) or indirectly through multiprotein
complexes, which include neuroligin-3, synaptotagmin-11, and calnexin (Schwenk
et al. 2016). Novel functions of the GABAB receptor also arise through crosstalk
with other membrane receptors such as GABAA, mGluR1, NMDA, IGF-1, and TrkB
receptors. For a more comprehensive description of the GABAB receptor
interactome, see (Benke 2013; Fritzius and Bettler 2020).
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Recent biophysical and structural studies have demonstrated that GABAB recep-
tors can form higher-order multimeric receptor complexes and this has been shown
to occur in both heterologous systems and in brain membranes. These multimers
comprise oligomers of GABAB1 and GABAB2 heteromers that self-assemble
through association of their GABAB1 subunits into tetramers (dimers of dimers)
and octamers (dimers of tetramers) (Comps-Agrar et al. 2011, 2012; Maurel et al.
2008). Tetramers were found to decrease Gαi-protein coupling efficiency suggesting
that the multimers exhibit negative cooperativity between heterodimers (Calebiro
et al. 2013; Stewart et al. 2018). It has emerged that the core GABAB1/B2 receptor not
only assembles with itself (oligomerization) but can also form supercomplexes with
other multiprotein complexes that are likely spatiotemporally regulated in response
to neuronal and developmental cues (Fritzius and Bettler 2020). The role of higher-
order receptor complexes in GABAB receptor function and physiology requires
further investigation to determine the functional relevance of GABAB receptor
oligomerization in native tissue.

5 Agonists

As mentioned previously, the synthesis of the GABA analogue baclofen (-
β-(4-chlorophenyl)-GABA; Fig. 2) in 1962 as the prototypical GABAB receptor
agonist (Keberle et al. 1964) has greatly facilitated the molecular and biochemical
characterization of this receptor. Indeed, baclofen has served as an invaluable tool in
elucidating the electrophysiological and behavioral responses linked to the GABAB

receptor system revealing its versatility as a drug target to treat a wide variety of
diseases (Bowery 1993; Froestl et al. 1995a, b). Owing to its extensive therapeutic
potential, numerous attempts to improve baclofen’s pharmacokinetic properties and

Fig. 2 Exemplar chemical structures of GABAB receptor full agonists
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potency while maintaining selectivity have been pursued, but flat structure-activity
relationships (SAR) around baclofen have resulted in very limited success. Of the
217 GABAB receptor-associated molecules reported in ChemBL Database
(CHEMBL n.d.; Mendez et al. 2019), 55 compounds (42 agonists and 13 antago-
nists) are identified as being active at the GABAB receptor, most of which are
chemically classified as analogues of either GABA or baclofen. However, the
SAR investigations and the pharmacological properties of the resulting baclofen
analogues have revealed important information regarding the chemical characteris-
tics that endow baclofen with its activity at the GABAB receptor.

Following the resolution of baclofen in 1978 into the two enantiomers, (R)-(�)-
baclofen and (S)-(+)-baclofen (Olpe et al. 1978; Weatherby et al. 1984)
(CGP11973A and CGP11974A, respectively), in 1995, Froestl et al., demonstrated
that the observed physiological effects of baclofen are stereoselective. They showed
that the pharmacological action of baclofen is mediated by the R-(�)-enantiomer as
R-(�)-baclofen (also known as Arbaclofen; Fig. 2) inhibits the binding of [3H]-
baclofen to GABAB receptors in cat cerebellum with an IC50 of 15 nM, while the
S-(+)-enantiomer and racemic mixture display >100-fold and 3-fold higher IC50,
respectively (Froestl et al. 1995a). Many analogues of (R)-(�)-baclofen have been
generated to interrogate the role of the carboxylic acid, amine, and p-chlorophenyl
groups in attempts to increase potency and improve pharmacokinetic properties; as a
consequence, more agonists, partial agonists, and antagonists have been discovered
(Froestl 2010).

The first analogues that proved to be more potent than baclofen were generated by
replacing the carboxylic acid portion of GABA with phosphinic acid residues to
generate full agonists, CGP35024 (SKF97541) (Froestl et al. 1995a) and CGP27492
(Chapman et al. 1993) (Fig. 2), which have greater or equal affinity than baclofen for
the GABAB receptor and IC50s of 2 nM and 5 nM (Froestl et al. 1995a; Patel et al.
2001; Bon and Galvan 1996; Seabrook et al. 1990), respectively. Later SAR efforts
investigated the replacement of the p-chlorophenyl group of baclofen with hetero-
cycles. The absence of the chlorine atom from baclofen produces another potent
GABAB receptor agonist, phenibut, and like baclofen, the majority of the agonist
activity at the GABAB receptor is attributed to (R)-phenibut. Substitution with a
2-chlorothienyl group also provides an active albeit weaker agonist (IC50 ~ 0.6 μM)
(Example 2c; Fig. 2) as determined in the [3H] baclofen displacement assay (Bolser
et al. 1995). Further SAR and molecular modeling studies strongly implicated the
p-chlorophenyl group (and its heteroaromatic substituents) as critical in the binding
of baclofen and its analogues to the GABAB receptor (Costantino et al. 2001).

The phosphonous acid derivative, [(2R)-3-amino-2-fluoropropyl]phosphinic acid
(AZD3355; Fig. 2) is a high affinity, non-brain penetrant analogue of baclofen that
was developed by AstraZeneca and recently evaluated in clinical trials for the
treatment of gastroesophageal reflux disease (GERD) under the generic name
Lesogaberan® (Bredenoord 2009). AZD3355 has an EC50 of 9 nM compared to
GABA’s EC50 of 160 nM, and an increased binding affinity with a Ki of 5 nM versus
GABA’s 110 nM for inhibition of [3H]-GABA binding in rat brain (Niazi et al.
2011).
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It has been suggested that the low structural diversity of the existing orthosteric
GABAB receptor ligands may be due to the conformational space having not been
fully explored (Evenseth et al. 2019). In the early 2000s extensive mutagenesis
studies on the extracellular domain of the GABAB1 receptor subunit identified
critical residues in LB1 and LB2 that are key for both agonist and antagonist binding
(Galvez et al. 1999, 2000; Kniazeff et al. 2002). More recently, the first X-ray crystal
structures of the GABAB receptor heterodimeric complex between the extracellular
VFT domains of GABAB1 and GABAB2, alone and in complex with bound agonists
and antagonists were reported by Zuo et al., providing a more detailed understanding
of how ligands act on the receptor (Geng et al. 2013). They demonstrated that in the
inactive “apo” state and antagonist-bound state the VFT domains of both subunits
adopt an open conformation whereas in the active “agonist-bound” state only the
GABAB1 subunit binds agonist and on doing so adopts a closed conformation.

Knowledge gained from these studies has since facilitated the development of a
novel class of compounds that bind the orthosteric site of this receptor. In 2013,
Colby et al. reported the discovery of GABAB receptor agonists comprised of
β-hydroxy difluoromethyl ketones that represent the only structurally distinct
GABAB receptor agonists as they lack the carboxylic acid or amino group of
GABA (Example 10; Fig. 2) (Han et al. 2013). Additional analogues of the
β-hydroxy difluoromethyl ketones have since been analyzed by the Colby labora-
tory, and docking models using the X-ray structures solved by Zuo et al. strongly
suggest that these difluoromethyl ketones have similar binding modes to the
orthosteric agonists (Sowaileh et al. 2018). Although some preliminary in vivo
data suggest these compounds warrant further investigation as potential anxiolytic
drugs (Han et al. 2013), their clinical utility has yet to be explored.

More recently, Mao and colleagues reported on Cryo-EM structures of the full-
length inactive antagonist-bound and active agonist-bound in complex with Gαi
protein of the GABAB receptor. This work further supports the findings that agonist
binding stabilizes the closure of the GABAB1 VFT domain (Geng et al. 2013). The
Cryo-EM studies further revealed that agonist binding to GABAB1 VFT domain
induces rearrangement of the transmembrane (TM) interface between the GABAB

subunits and this in turn promotes opening of the third intracellular loop in the
GABAB2 subunit allowing it to bind Gαi (Mao et al. 2020). Collectively, the
structural studies of Zuo et al. and Mao et al. provide a deeper insight into
GABAB receptor activation that will greatly assist in the design of novel modulators
of the receptor.

6 Partial Agonists

Partial agonists are ligands that have varying degrees of intrinsic activities and
affinity at their cognate receptors. They bind to and activate the receptor but elicit
submaximal cell/tissue responses of the system relative to that produced by a full
agonist. The naturally occurring GABA metabolite, γ-hydroxybutyric acid (GHB)
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(Fig. 3), exhibits partial agonism at the GABAB receptor and is used clinically to
treat symptoms of narcolepsy, alcohol dependence and withdrawal, and also used
illicitly as a drug of abuse. However, experiments performed in GABAB1 receptor
null mice clearly show that not all the in vivo effects of GHB are GABAB receptor-
mediated (Wellendorph et al. 2005). GHB has both low and high affinity receptor
targets in the brain. The high affinity binding site is well characterized but has yet to
be incontrovertibly identified. Whereas, it is well established that the GABAB

receptor is the low affinity binding site where GHB acts as a partial agonist (Wong
et al. 2004). Several studies demonstrated this finding including those of Mathivet
et al. (1997); using binding experiments GHB was shown to have Ki ~ 100 μM
compared to baclofen Ki ~ 5 μM (Mathivet et al. 1997); and Lingenhoehl et al.
(1999); using recombinant systems expressing GABAB1/GABAB2 heteromer
together with Kir3 channels in xenopus oocytes showed that GHB activated these
receptors with an EC50 ~ 5 mM and a maximal stimulation of 69% relative to
baclofen. Furthermore, three GABAB receptor competitive antagonists,
CGP5426A, 2-hydroxysaclofen, and CGP35348 each completely blocked the
GHB-evoked response further supporting GHB is a weak, partial agonist
(Lingenhoehl et al. 1999).

Returning to the baclofen analogues, as mentioned CGP35024/SKF97541 (-
γ-aminopropyl(methyl)phosphinic acid) is a potent agonist harboring a methyl
substituent on the phosphinic acid moiety. Exchanging the methyl group for a
difluoromethyl group produces CGP47656 (γ-aminopropyl(difluoromethyl)-
phosphinic acid) (Fig. 3), rendering the molecule a partial agonist at the GABAB

receptor as demonstrated by measuring binding affinities (Urwyler et al. 2005), the
release of GABA from rat cortex (Froestl et al. 1995a; Gemignani et al. 1994), or the
cholinergic twitch contraction in guinea pig ileum (Marcoli et al. 2000). Replacing
the aromatic substituent at the 3-position of baclofen with a hydroxyl group also
produces partial agonistic activity as seen in 4-amino-3-hydroxybutanoic acid
(GABOB) (Fig. 3), with (R)-(�)-GABOB being tenfold less potent than racemic
baclofen in binding experiments from rat brain isolates (Hinton et al. 2008).

As noted above, CGP35348 (Fig. 4) and 2-hydroxysaclofen (Fig. 3) (Kerr et al.
1988) have previously been described as GABAB receptor neutral competitive

*Originally described as an antagonist.

Fig. 3 Exemplar structures of GABAB receptor partial agonists
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antagonists, having no intrinsic activity of their own and accordingly do not stim-
ulate [35S]-GTPγS-binding to membranes derived from CHO cells stably expressing
the GABAB receptor. However, in the presence of CGP7930 or GS39783 (positive
allosteric modulators, PAMs, of GABAB receptor) each “antagonist” stimulated
[35S]-GTPγS-binding to GABAB receptors with maximum efficiency of 31% and
35% of maximum GABA effect, respectively (Urwyler et al. 2005). A more sensitive
assay measuring GABA/GABAB receptor-mediated inhibition of forskolin-
stimulated cAMP accumulation revealed that CGP35348 and 2-hydroxysaclofen
can have intrinsic partial agonistic activity in certain assay conditions that is
enhanced by the PAMs. Thus, the PAMs revealed partial agonistic activity of
compounds that otherwise appear to be devoid of intrinsic activity. Furthermore,
the same experiments revealed that CGP7930 and GS39783 also possess intrinsic,
low partial agonistic activity (Urwyler et al. 2005), an observation also reported by
Binet et al. (Binet et al. 2004).

7 Antagonists

Following the 1979 discovery of a “bicuculline-insensitive, baclofen-sensitive”
GABA receptor, efforts were immediately undertaken to design antagonists for
this receptor. It was in the late 1980s that the first GABAB receptor antagonists
were described. (R)-Phaclofen (Fig. 4), the phosphonic acid analogue of baclofen,

Fig. 4 Exemplar chemical structures of GABAB receptor antagonists
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was one of the first discovered antagonists and was shown to block the slow
inhibitory postsynaptic potential in the rat hippocampus establishing the physiolog-
ical importance of this receptor (Dutar and Nicoll 1988). This discovery was closely
followed by the discovery of saclofen and (S)-2-hydroxysaclofen (Fig. 3), sulphonic
analogues of baclofen (Kerr et al. 1987). (R)-Phaclofen has a low affinity (~130 μM)
for the receptor in radioligand binding experiments using rat brain membranes (Kerr
et al. 1987), whereas (S)-2-hydroxysaclofen is tenfold more potent an antagonist at
the GABAB receptor than (R)-phaclofen in this assay.

In addition to their significant contributions in interrogating GABAB receptor
function and pharmacological activity, as with agonists, preclinical studies strongly
support GABAB receptor antagonists having clinical importance in the treatment of
various CNS disorders. GABAB receptor antagonists have been shown to suppress
absence seizures in preclinical animal models of epilepsy (Bernasconi et al. 1992;
Ostojić et al. 2013; Marescaux et al. 1992; Snead 3rd 1992), improve learning and
memory (Bianchi and Panerai 1993; Lasarge et al. 2009; Mondadori et al. 1993) and
have also been widely shown to have antidepressant-like activity in animal models
(Cryan and Kaupmann 2005; Felice et al. 2012; Jacobson et al. 2018; Cryan and
Slattery 2010; Frankowska et al. 2007; Mombereau et al. 2004; Nowak et al. 2006)
along with a rescue of withdrawal from drugs of abuse-induced stress (Vlachou et al.
2011). Anhedonia, a common symptom of both psychostimulant withdrawal and
depression, appears to be the key to the role of GABAB receptor in these disorders,
as previously described by Markou and colleagues (Markou et al. 1992, 1998).
Furthermore, the GABAB receptor has been shown to play a role in the regulation of
glucose homeostasis in vivo (Bonaventura et al. 2012), GABAB receptor antagonism
as well as receptor knockout mice shows improved glucose-stimulated insulin
secretion (Bonaventura et al. 2008; Braun et al. 2004).

Following the discovery of phaclofen and 2-hydroxysaclofen, additional antago-
nists were discovered leading to CGP35348 (3-aminopropyl(diethoxymethyl)-
phosphinic acid), a potent GABAB receptor antagonist and the first shown to
penetrate the blood-brain barrier; CGP36742 (3-aminopropyl(n-butyl)phosphinic
acid), the first orally bioavailable antagonist; and CGP46381, the phosphinic acid
bearing a methylcyclohexyl group. However, like their predecessors, these com-
pounds have low affinity (high μM range) for the GABAB receptor as does the
chemically distinct SCH50911 (Bolser et al. 1995) (Fig. 5). As a result of SAR
studies during the generation of these compounds, it was discovered that the nature
of the alkyl substituent on the phosphinic acid plays a critical role in ligand activity.
For example, a methyl substituent is present on the potent agonist CGP35024
(Fig. 2); when this is replaced with the difluoromethyl group of CGP47656
(3-aminopropyl(difluoromethyl)phosphinic acid), a decrease in activity at the
GABAB receptor is observed with CGP47656 (Fig. 3) acting as a partial agonist
(Froestl et al. 1995a; Urwyler et al. 2005; Gemignani et al. 1994; Marcoli et al.
2000). Increases in size of the substituent as with the butyl group in CGP36742
(Fig. 4) result in a derivative that displays antagonist activity at the GABAB receptor.
Hence, very modest structural modifications to the baclofen core can lead to
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significant changes in ligand activity ranging from potent agonism to partial agonism
to antagonism at the GABAB receptor (Pirard et al. 1995).

More potent antagonists have been developed since, displaying IC50 values in the
nanomolar range. The radical shift in potency was achieved by substituting the
amino group of existing GABAB modulators with benzyl substituents
(3,4-dichlorobenzyl or 3-carboxybenzyl) as in CGP55845 and CGP56433, respec-
tively. Other representatives of this generation of antagonists include CGP54626
(Fig. 4), and CGP62349, CGP52432, CGP56999, CGP54626, CGP64213 (Fig. 5);
all highly potent antagonists and all demonstrating learning and memory-improving
effects (Lasarge et al. 2009; Getova and Dimitrova 2007). These antagonists may
also have significant clinical potential in absence epilepsy (Bernasconi et al. 1992;
Marescaux et al. 1992; Snead 3rd 1992) as mice overexpressing the GABAB1a

isoform exhibit characteristics associated with atypical absence epilepsy (Stewart
et al. 2009).

8 Inverse Agonists

Given that GPCRs are believed to exist in equilibrium between inactive and active
conformational states in which there is a continuum of structural conformations
ranging from having no activity to being maximally active, these receptors have the
potential to be active in the absence of an activating ligand, a phenomenon termed
“constitutive activity.” Ligands that stabilize the fully “inactive” conformation,
thereby eliminating any intrinsic/constitutive activity the receptor may have, are
referred to as “inverse agonists” (Berg and Clarke 2018; Kenakin 2004). Many
GPCR-targeted drugs were initially characterized as “neutral” or “silent” antagonists
as their discovery predated inverse agonism as a pharmacological concept. It is now
estimated that at least 15% of compounds classified as antagonists have some

* Originally described as antagonists   # Originally described as a NAM

Fig. 5 Exemplar chemical structures of GABAB receptor inverse agonists
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intrinsic activity and that these drugs confer their therapeutic efficacy by reducing
constitutive receptor activity (Urwyler et al. 2005; Grunewald et al. 2002; Hirst et al.
2003; Mukherjee et al. 2006).

In the context of the GABAB receptor, constitutive receptor activity has been
demonstrated to modulate neurotransmitter release and neuronal excitability in the
absence of GABA. For example, in cerebellar Purkinje cells, GABAB receptor has
been shown to interact with extracellular calcium ions to increase the sensitivity of
the glutamate receptor 1 (mGluR1) to its endogenous ligand, glutamate, by forming
a complex with the mGlu1R (Tabata et al. 2004). The use of a selective GABAB

receptor inverse agonist could serve to eliminate enhanced glutamate mediated
mGluR1 activity which has been identified as an avenue with therapeutic potential
for the treatment of fragile X syndrome (Niswender and Conn 2010).

As noted, compounds CGP52432, CGP54626, CGP56999, CGP62349 (Fig. 5)
are closely related, sharing the same core structure, and were originally identified as
competitive antagonists at the GABAB receptor. As antagonists, these compounds
have the ability to block GABA/GABAB receptor-mediated inhibition of forskolin-
stimulated cAMP in GABAB receptor expressing recombinant systems. However,
following receptor desensitization resulting from sustained exposure to GABA, the
activity of this family of compounds switches from antagonism to inverse agonism
as demonstrated by the CGP54626-promoted increase in cAMP production. The
atypical SCH50911 antagonist that lacks large hydrophobic substituents behaved in
a similar manner (Gjoni and Urwyler 2009). Likewise, the structurally distinct
CLH304a previously reported as a negative allosteric modulator (NAM; Fig. 5)
(Chen et al. 2014) has also since been reported to exhibit inverse agonist properties
in the absence of an agonist (Sun et al. 2016).

9 Allosteric Modulators

While endogenous neurotransmitter GABA agonists (i.e., baclofen) and antagonists
(i.e., phaclofen) bind to the orthosteric site (VFT domain) in the GABAB1 subunit, it
is now widely accepted that the GABAB receptor modulators identified so far act at
allosteric sites (binding sites topographically distinct from the orthosteric ligand
binding site) and bind the transmembrane region of the GABAB2 subunit. Allosteric
modulators (AMs) are basically classified as either positive allosteric modulators
(PAMs) or negative allosteric modulators (NAMs). PAMs that possess intrinsic
agonist activity are referred to as “ago-PAMs.” A third class of allosteric ligand
has been described that binds to the receptor but has no intrinsic activity and no
apparent effect on endogenous ligand activity, hence it is referred to as a “silent
allosteric modulator” (SAM) (Burford et al. 2013). Importantly, since orthosteric and
allosteric ligands bind to topographically distinct sites of the receptor, both ligands
can interact with the receptor simultaneously and thus, each ligand can affect the
binding (binding cooperativity) and the intrinsic activity (activation cooperativity) of
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the other. Theoretical models describing these interactions have been discussed
extensively elsewhere (Keov et al. 2011; May et al. 2004).

Allosteric sites are attractive therapeutic targets because molecules that bind to
these sites can act in concert with an orthosteric ligand, and in doing so are believed
to offer several advantages over the use of orthosteric ligands alone (Kenakin and
Miller 2010). As allosteric modulators typically rely on the presence of the endog-
enous ligand, they have the ability to modify receptor activity in a spatial and
temporal manner by acting in concert with the endogenous receptor ligand (Kenakin
and Miller 2010). Therefore, allosteric modulators are believed to have the potential
to induce fewer side effects, as they simply modulate endogenous ligand-mediated
receptor activation. In addition, upon prolonged exposure, allosteric modulators are
less likely to induce GPCR desensitization compared to an orthosteric agonist, and
as such, are less likely to induce drug tolerance.

Allosteric modulators of the GABAB receptor have generated significant attention
for their therapeutic potential in the treatment of alcohol and drug addiction, anxiety,
depression, muscle spasticity, epilepsy, pain, and gastrointestinal disorders (Urwyler
2011). It is postulated that the use of a PAM (or ago-PAM) will achieve a more
desirable pharmacological signaling profiling and physiological responses by
enhancing GABA-mediated receptor signaling rather than artificially stimulating
the receptor with an exogenous agonist such as baclofen. Furthermore, GABAB

receptor allosteric modulators hold the promise of more favorable pharmacokinetics
compared to baclofen including improved bioavalability and brain exposure as well
as cytotoxicity. Hence, the potential advantages of GABAB receptor allosteric
modulation have led to the development of numerous small molecule allosteric
modulators, the majority of which are PAMs.

While many of the described GABAB receptor PAMs are structurally distinct,
based on the core structure they can be sorted into several groups (Fig. 6; each row
representing a distinct structural class). The discovery of GABAB receptor PAMs
was pioneered and first reported by Novartis scientists, Urwyler and colleagues, in
2001. These researchers demonstrated that small molecule CGP7930 (2,6-di-tert-
butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol; discovered in a high throughput
screening campaign) (Urwyler et al. 2001) potentiated GABA-stimulated [35S]-
GTPγS-accumulation in membrane preparations derived from CHO cells stably
expressing the GABAB receptor. Using various combinations of wildtype and
mutant GABAB subunits, Binet and colleagues investigated the mode of action of
CGP7930, determining that the heptahelical domain (HD) of GABAB2 was an
absolute requirement for CGP7930 PAM action and that CGP7930 could also
activate a truncated GABAB2 subunit corresponding to the HD only (Binet et al.
2004).

In 2003, Novartis reported on another group of structurally distinct GABAB

receptor PAMs, centered around GS39783 (N,N0-dicyclopentyl1–2-
methylsulfanyl-5-nitro-pyrimidine-4,6-diamine). Like CGP7930, GS39783 was
found to potentiate both affinity and maximal effects of GABA in biochemical and
electrophysiological assay systems (Urwyler et al. 2003). Dupuis et al. studied point
mutations in the TM region of GABAB2 to identify the residues within the HD that
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interact with GS39783 and found that mutations G706T and A708P in TM6 were
necessary and sufficient for GS39783 mediated agonist activation (Dupuis et al.
2006). Hence, both CGP7930 and GS39783 were found to bind to sites distinct from
known agonist and antagonist receptor binding sites, and to require the presence of
the GABAB2 receptor subunit.

*NAM CLH304a; an example of how subtle structural changes can change ligand activity

Fig. 6 Exemplar chemical structures of GABAB receptor allosteric modulators
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These findings prompted the pursuit of other molecules with similar PAM
activities and consequently, numerous GABAB receptor allosteric modulators have
been reported in the scientific and patent literature (accessible in SciFinder and
Espacenet) over the past two decades. Roche scientists further developed the
Novartis compounds by generating systematic modifications of CGP7930 structure
and arrived at the bicyclic structure of rac-BHFF (Malherbe et al. 2008). Interest-
ingly, it was found that both CGP7930 and rac-BHFF have intrinsic agonist activity,
and distinct and differentiating ligand-induced signaling profiles compared to bac-
lofen (Koek et al. 2013). Optimization of the genotoxic lead structure of the
pyrimidine derivative of GS39783 led to the development of non-toxic GABAB

receptor PAMs, such as BHF177 (N-[(1R,2R,4S)-bicyclo[2.2.1]heptan-2-yl]-2-
methyl-5-[4-(trifluoromethyl)phenyl]-4-pyrimidinamine) reported by Novartis in
2006 (Floersheim et al. 2006). A decade later additional analogs from this series
were reported by Porcu et al. (SSD114) (Porcu et al. 2016) and by our research group
and collaborators Li et al. (KK-92A and approximately 100 additional analogs)
(Li et al. 2017).

Substituted 5-membered heterocycles represent a substantial group of GABAB

receptor PAMs, with the first examples of structurally novel modulators reported by
AstraZeneca in patents aiming at the development of drugs for the treatment of
gastrointestinal diseases (Bauer et al. 2005). Specific examples presented in the
patents initially focused on imidazole derivatives that expanded in scope by scaffold
hopping to cover other five-membered core heterocycles such as pyrazoles,
oxazoles, and thiazoles. In 2011, a group led by Corelli identified COR627,
COR628 (Castelli et al. 2012), and COR659 (Mugnaini et al. 2013) as GABAB

receptor PAMs that displayed significant activity in vitro as GABAB receptor PAMs
by potentiating [35S]-GTPγS-binding induced by GABA while failing to exhibit
intrinsic agonist activity. While the thiophene-based core of the active molecule
differs from those reported by AstraZeneca, the substitution pattern resembles other
representative molecules in this group.

Extensive work of Hoffman-La Roche resulted in the identification of additional
classes of GABAB receptor PAMs disclosed in a series of patents published in 2006.
The reported active molecules are based on a quinoline (Malherbe et al. 2006) or
thieno[2,3-b]pyridine (Malherbe et al. 2007) as core heterocycles. A closely related
set of GABAB receptor PAMs was reported in 2009 in an AstraZeneca patent
(Cheng and Karle 2008). A separate group of GABAB receptor modulators represent
a series of substituted triazinediones developed by Addex Pharma (Riguet et al.
2007). The Addex lead compound, ADX71441, is an orally available small molecule
that demonstrated excellent preclinical efficacy and tolerability in several rodent
models of pain, addiction, and overactive bladder (OAB) and has also proven
efficacy in a genetic model of Charcot-Marie-Tooth Type 1A disease (CMT1A)
(Cao and Zhang 2020).

In patents from 2008 and 2009 AstraZeneca scientists disclosed a new group of
GABAB receptor PAMs based on bicyclic pyrimidinedione core, namely xanthines
(Cheng et al. 2008a) and pteridine-2,4(1H,3H)-diones (Cheng et al. 2008b). Related
structures were disclosed in 2015 by Orion Corporation (Prusis et al. 2015) and
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Abbvie in 2017. In 2011, GlaxoSmithKline reported CMPPE, a novel moiety that
positively modulated GABA-evoked in vitro [35S]-GTPγS-binding signal with an
EC50 value of 2.57 μM. The compound showed mild efficacy in a food consumption
test in rats, modest in vivo potentiation of baclofen-induced muscle relaxation in
mice, and poor metabolic stability in liver microsomal systems (Perdona et al. 2011).
Other companies followed the CMPPE track with a range of modulators containing a
modified core structure as the substitution pattern. Astellas Pharma reported a series
of thieno[2,3-d]pyrimidines in 2015 (Shiraishi et al. 2014), whereas Abbvie (Faghih
et al. 2016) and Richter Gedeon maintained pyrazolo[1,5-a]pyrimidinyl core in their
series (WO 2018167630). In a single patent Taisho Pharmaceutical (Borza et al.
2018) covered analogs with the core heterocycle replaced by pyrazolo[1,5-a][1,3,5]
triazine in addition to substituted pyrazolo[1,5-a]pyrimidines. ORM-27669, reported
by Orion Pharma in 2017, with its tricyclic core structure containing [1,2,4]triazolo
[4,3-a]pyrimidin-7(8H)-one represents a more original scaffold (de Miguel et al.
2019). Pretreatment with ORM-27669 reversed ethanol-induced neuroplasticity and
attenuated ethanol drinking but had no effects on cocaine-induced neuroplasticity or
self-administration.

Fendiline (Fig. 6) and its related arylalkylamines represent another unique struc-
tural class reported to be potential GABAB receptor PAMs. First reported as a
non-selective calcium channel blocker and as a positive allosteric modulator of
extracellular Ca2+ sensing receptors (CaSRs) (Nemeth et al. 1998), Fendiline is an
FDA-approved (albeit obsolete) drug used in the treatment of coronary heart disease.
Although not GABAB receptor specific, this compound is noteworthy as Ong and
Kerr evaluated activity of Fendiline and its analogues as PAMs of GABAB receptors
(Kerr et al. 2002, 2006) and demonstrated that the most potent analogue, (+)-N-1-
(3-chloro-4-methoxyphenyl)ethyl-3,3-diphenylpropylamine) exhibited an EC50 of
30 nM in modulating baclofen-mediated function using grease gap recording in rat
neocortical slices (Ong et al. 2005). However, direct action of Fendiline on GABAB

receptor activity has been disputed (Urwyler et al. 2004) and further investigations
are needed to determine the mechanism by which arylalkylamines enhance GABAB

receptor-mediated responses.
GABAB receptor negative allosteric modulators (NAMs) have also been pro-

posed as potential lead compounds for development into therapeutics for disorders
such as CNS hyperexcitability-related disorders including epilepsy, anxiety, nerve
damage, and low cognitive ability. Interestingly, modifications of GABAB receptor
PAM CGP7930 (Fig. 6) led to discovery of the first GABAB receptor NAM,
CLH304a, reported by Chen and colleagues in 2014 (Chen et al. 2014; Sun et al.
2016). CLH304a decreased agonist GABA-induced maximal effect of IP3 produc-
tion in HEK293 cells overexpressing GABAB receptor and Gαqi9 proteins without
changing the EC50. Moreover, it inhibited baclofen-induced ERK1/2 phosphorylation
and also blocked CGP7930-induced ERK1/2 phosphorylation in HEK293 cells
overexpressing GABAB receptor. This indicated that CLH304a (and some ana-
logues) may be allosteric modulators, as orthosteric antagonists like CPG54626
are unable to attenuate PAM mediated signaling. Indeed, it was demonstrated that
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the compounds of interest bound to an allosteric site, negatively regulating
orthosteric agonist mediated signaling (Chen et al. 2014).

10 Probe Dependency

An important aspect of allosteric modulation to be taken into consideration is that the
extent and direction (positive or negative) of the interaction between the orthosteric
and allosteric ligands depends on which orthosteric ligand is present; a phenomenon
known as “probe-dependency,” this is important as many individual GPCRs respond
to multiple endogenous ligands (May et al. 2004; Kenakin 2005). For the GABAB

receptor, only having one known endogenous ligand, probe-dependency might be
considered irrelevant. However, the potential combination of an allosteric modulator
with a synthetic therapeutic such as baclofen must also consider the possibility of
probe-dependent effects on receptor signaling and function.

Indeed, it has been demonstrated that baclofen shows improved efficacy and an
increased therapeutic window when administered in combination with GABAB

receptor PAMs (Maccioni et al. 2012). In preclinical studies, treatment with
GABAB receptor PAMs GS39783 and rac-BHFF potentiated the activity of low
doses of baclofen in relation to alcohol seeking behaviors (Maccioni et al. 2015).
Hence, the ability of PAMs to reduce the effective dose of baclofen not only has the
potential to improve efficacy in disease relevant measures, but also to expand the
therapeutic window of this drug by reducing the accompanying adverse side effects.
Thus, leveraging the probe-dependent effects of treatment with multiple receptor
ligands has the potential to “fine-tune” receptor signaling and facilitate the develop-
ment of improved strategies to target the GABAB receptor.

11 Biased Agonism/Functional Selectivity

It is well established that any given ligand for a GPCR does not simply possess a
single defined efficacy; rather, a ligand possesses multiple efficacies, depending on
the specific downstream signal transduction pathway being investigated. This diver-
sity is believed to be the result of conformational changes induced in the GPCR that
are ligand-specific and hence receptors can adopt various conformations that pref-
erentially activate/modulate one signaling pathway to the exclusion of others; a
phenomenon referred to as “functional selectivity” or “ligand bias” (Kenakin
2017; Smith et al. 2018; Spangler and Bruchas 2017). Conceptually, as with
allosteric modulation, functional selectivity is an appealing mechanism of therapeu-
tic intervention, as modulating only a select subset receptor signaling pathway may
allow for the development of drugs that demonstrate therapeutic efficacy without
recruiting pathways that lead to downstream adverse side effects (Kenakin and
Miller 2010).
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Functional selectivity can be achieved by modulating the receptor with a single
ligand or with multiple ligands. Our own studies identified a PAM, namely KK-92A
(4-(cycloheptylamino)-5-(4-(trifluoromethyl) phenyl)pyrimidin-2-yl) methanol) that
exhibits pathway-selective differential modulation of GABAB receptor signaling
when compared to the structurally related allosteric modulator BHF177 (Sturchler
et al. 2017). Using recombinant cell-based systems overexpressing the GABAB

receptor, KK-92A exhibited similar activity to BHF177 in potentiating GABA-
induced GABAB receptor-mediated inhibition of forskolin-stimulated cAMP pro-
duction and GABA-induced increase in intracellular Ca2+ levels. However, in
contrast to BHF177, in the absence of GABA, KK-92A exhibited intrinsic activity
with regard to ERK1/2 phosphorylation achieving ~70% maximum efficacy relative
to GABA maximum efficacy (Li et al. 2017), demonstrating ago-PAM activity and
pathway-selective effects.

12 GABAB Receptor-Targeted Pharmaceuticals

The presence of functional GABAB receptors in mammalian brain and the gastroin-
testinal tract has been known for more than 30 years. Given the widespread distri-
bution of GABA and the GABAB receptor in the CNS and periphery, it is not
surprising that activation of the GABAB receptor provokes a host of physiological
responses, and as a consequence, dysregulation of GABAB receptor activity was
proposed to be associated with various CNS diseases such as mood disorders
(Kalinichev et al. 2017; Li et al. 2015; Felice et al. 2012; Jacobson et al. 2018;
Cryan and Slattery 2010), epilepsy (Billinton et al. 2001a; Teichgräber et al. 2009),
addiction (Agabio and Colombo 2014, 2015; Agabio et al. 2018; Ranson et al. 2020;
Maccioni et al. 2015), Parkinson’s disease (Nambu 2012; Tyagi et al. 2015),
Alzheimer’s disease (Rice et al. 2019; Sun et al. 2020), Huntington’s disease (Kim
and Seo 2014) as well as peripheral diseases such as gastroesophageal reflux disease
(GERD) (Clarke et al. 2018; Lehmann et al. 2010). More recently, GABA has
emerged as a tumor signaling molecule in the periphery that controls tumor cell
proliferation (Young and Bordey 2009; Zhang et al. 2014; Jiang et al. 2012), and
stimulation of GABAB receptor signaling has been proposed as a novel target for the
treatment and prevention of pancreatic cancer (Schuller et al. 2008; Schuller 2018;
Al-Wadei et al. 2012). Numerous studies have shown potential clinical benefit of
targeting the GABAB receptor in the treatment of various CNS and peripheral
disorders, yet there is still only one therapeutic agent used clinically that selectively
activates the GABAB receptor, namely baclofen (Lioresal®).

As discussed, baclofen was originally synthesized in 1962 by chemists at Ciba,
Switzerland in an attempt to generate a more lipophilic, brain penetrant GABA
mimetic (Keberle et al. 1964). It was assessed in the treatment of epilepsy but failed
to show sufficient efficacy in the clinic. However, as a consequence of an incidental
finding in that it had positive effects on muscle spasticity (Hudgson and Weightman
1971), baclofen (Lioresal®) has been in clinical use since 1972, gaining FDA

GABAB Receptor Chemistry and Pharmacology: Agonists, Antagonists, and. . . 101



approval in 1977; long before its molecular target, the GABAB receptor was
discovered and its mechanism of action identified. As previously mentioned, it has
also shown therapeutic utility in a wide range of other off-label indications including
addiction and was recently approved in Europe and Australia for the treatment of
alcoholism (Agabio et al. 2018) but side effects such as sedation, nausea, muscle
weakness, and rapid onset of tolerance limit its use (Kent et al. 2020).

With baclofen, an improvement over GABA regarding blood-brain barrier per-
meability was achieved, however, baclofen still has low brain penetration attributed
to rapid efflux via the organic anion transporter (OAT3) (Ohtsuki et al. 2002). In
parallel to Ciba’s efforts in the 1960s to synthesize a GABAmimetic, a Russian team
(Perekalin et al) synthesized a phenyl derivative of GABA, namely phenibut (-
β-phenyl-γ-aminobutyric acid) that exhibits improved brain penetration over baclo-
fen. Phenibut (Cirocard®) has been in clinical use in Russia and some Eastern
European countries (not FDA-approved in USA) as a tranquilizer and cognition
enhancer (nootropic) since the 1960s and is still used for these indications as well as
for the treatment of mood and sleep disorders, PTSD, and a variety of neuropsychi-
atric diseases (Lapin 2001). However, phenibut suffers from many of the same
liabilities as baclofen; sedation, muscle weakness, nausea, tolerance, and more
recently has gained attention for its abuse potential (Jouney 2019).

Although baclofen has been in clinical use since 1972, it is far from an “ideal”
drug; in addition to the unwanted side effects mentioned above, it also suffers from
poor pharmacokinetic properties, including low brain penetration, limited absorp-
tion, short duration of action, rapid clearance from the blood, and narrow therapeutic
window (Kent et al. 2020). Despite the lack of good “drug-like” qualities, the clinical
success of baclofen has prompted numerous campaigns towards the identification
and development of new and improved compounds that modulate the GABAB

receptor and significant advances have been made. In 2009, XenoPort (now Arbor
Pharmaceuticals) introduced Arbaclofen Placaril (XP19986), a transported prodrug
of (R)-(�)-baclofen designed to possess a more favorable pharmacokinetic profile.
Arbaclofen is absorbed throughout the intestinal tract and is rapidly converted to (R)-
(�)-baclofen in tissues. It has been evaluated in Phase III clinical trials for GERD
and multiple sclerosis, but these trials were discontinued in 2011 and 2013, respec-
tively, due to lack of efficacy. It also reached Phase III trials in fragile X syndrome
(FXS) but did not meet the primary outcome of improved social avoidance in FXS
(Berry-Kravis et al. 2017). However, an extended release formula of Arbaclofen
(Arbaclofen-ER; Ontinua®) developed by Osmotica is under FDA review as of July
2020 for the treatment of spasticity in multiple sclerosis. Also, two independent
clinical trials evaluating benefit of Arbaclofen in children and adults with autism
spectrum disorder (ASD) were initiated in 2019 (NCT03682978 and NCT03887676,
respectively).

While XenoPort reported on Arbaclofen Placaril, AstraZeneca reported
AZD3355 (Lesogaberan®; Fig. 2), a high affinity analogue of baclofen that was
developed and evaluated in clinical trials for the treatment of GERD (Bredenoord
2009). AZD3355 is restricted peripherally and has a half-life of ~11 h in blood
(Niazi et al. 2011). Unfortunately, Phase IIb clinical trials were terminated owing to
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lack of efficacy in GERD patients. As AZD3355 is not brain penetrant and devoid of
unwanted CNS effects, with no other adverse effects reported, indicating that it is
safe in humans, it has been proposed that Lesogaberan® could be repurposed for the
treatment of type 1 diabetes; targeting the GABAB receptor in β cells to promote
β-cell survival (Tian et al. 2017).

GHB (γ-hydroxybutyric acid) is approved in some countries and used clinically
for the treatment of narcolepsy-related catalepsy (Xyrem®) (Szabadi 2015) and
rarely alcoholism (Alcover®) (Keating 2014). GHB also has the potential for
abuse and is used illicitly as a recreational drug and intoxicant (Busardò and Jones
2015). Although GHB itself is not FDA-approved for medical use, the first generic
version of Xyrem®, sodium oxybate (the sodium salt of GHB), recently (2017)
received FDA approval to treat symptoms of narcolepsy including excessive day-
time sleepiness and narcolepsy with cataplexy.

The first (and only to the best of our knowledge) clinical investigation of GABAB

receptor antagonists was an open trial with SGS742 (CGP36742; Fig. 4) (Bullock
2005) (Froestl et al. 2004). Even though its potency is low (IC50 � 40 μM (Froestl
et al. 1995b)), many preclinical studies showed benefit with SGS742 for spatial
memory improvement (Helm et al. 2005), the treatment of depression (Nowak et al.
2006), and arrest of cortical seizures (Mares and Kubova 2008). The initial Phase II
clinical trial, conducted in mild cognitive impairment patients, showed that SGS742
significantly improved attention, in particular choice reaction time and visual infor-
mation processing as well as working memory (Froestl et al. 2004). However, a
second Phase II trial was undertaken in mild to moderate Alzheimer’s disease
patients and no statistically significant improvement was detected prompting the
termination of the development program. The clinical implications of modulating the
GABAB receptor are outlined in Table 1.

13 Concluding Remarks

The GABAB receptor and its physiological roles are extremely complex, conse-
quently, dysregulation of this receptor is involved in a broad range of diseases, and
as such the GABAB receptor is considered a highly attractive therapeutic target for
the development of new anti-epileptic, antidepressant, analgesic, and anxiolytic
drugs, as well as for the treatment of cognitive disorders, drug addiction, and
depression. However, at present only one compound that targets the orthosteric
site of GABAB receptor is in clinical use, namely baclofen (Lioresal™); used to
treat muscle spasticity in multiple sclerosis, and more recently used off-label for
alcohol addiction. Unfortunately, side effects such as sedation, muscle weakness,
nausea, and the lack of efficacy observed in other indications, i.e., fragile X
syndrome, limit its therapeutic use. In addition to unwanted side effects baclofen
also suffers from low brain penetration, limited absorption, rapid tolerance, short
duration of action, and narrow therapeutic window. As described earlier, numerous
small molecule agonists, antagonists, and allosteric modulators of the GABAB
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Table 1 Current therapeutic use and potential clinical utility of GABAB receptor modulators

Pharmacology

aTherapeutic
use/bclinical potential

Approved
drug/cclinical trial References

Agonists/posi-
tive allosteric
modulators

aMuscle rigidity and
spasticity

Baclofen
(Lioresal®)
Arbaclofen-ER
(Ontinua®)

(Francisco et al. 2001; Basmajian
1975; Korsgaard 1976; Coffey
et al. 1993)

aGERD Baclofen
(Lioresal®)

(Clarke et al. 2018; Lehmann
et al. 2010; Ong and Kerr 1984;
Lehmann 2009; Symonds et al.
2003)

aCharcot-Marie tooth
type 1A

(Cao and Zhang 2020; Dyer
2013)

aPTSD/tranquilizer/
nootropic

Phenibut
(Cirocard®)
(Eastern Europe
only)

(Lapin 2001; Drake et al. 2003)

aCough suppression (Chung 2015; Martvon et al.
2020)

aAlcoholism and
addiction

Sodium oxybate/
GHB/(Alcover®),
Baclofen
(Lioresal®)

(Agabio and Colombo 2014,
2015; Agabio et al. 2018;
Maccioni and Colombo 2019;
Ranson et al. 2020)

bAnxiety (Kalinichev et al. 2017; Li et al.
2015)

bEpilepsy (Billinton et al. 2001a;
Teichgräber et al. 2009)

bCataplexy Sodium oxybate/
GHB (Xyrem®)

(Black et al. 2014; Szabadi 2015)

bBinge eating
disorder

(Broft et al. 2007; Tsunekawa
et al. 2019)

bParkinson’s disease (Nambu 2012; Tyagi et al. 2015)
bSchizophrenia (Glausier and Lewis 2017; Nair

et al. 2020)
bHuntington’s
disease

(Kim and Seo 2014; Kleppner
and Tobin 2001)

bSpatial learning and
memory

(Modaberi et al. 2019; Sahraei
et al. 2019)

bAutism spectrum
disorder (ASD)

Arbaclofen
cNCT03682978,
cNCT03887676

(Veenstra-VanderWeele et al.
2017; Frye 2014)

bFragile X syndrome
(FXS)

(Berry-Kravis et al. 2017; Zhang
et al. 2015)

bAlzheimer’s disease (Rice et al. 2019; Sun et al. 2020)
bAnalgesic
(fibromyalgia)

cNCT03092726 (Neto et al. 2006; Enna and
McCarson 2006; Murai et al.
2019)

bPancreatic cancer (Young and Bordey 2009; Zhang
et al. 2014; Jiang et al. 2012;

(continued)
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receptor have been described in the scientific and patent literature that have been
developed for their therapeutic potential; positive allosteric modulators, for example,
have been proposed to mitigate the unwanted side effects and reduce tolerance but
have yet to be approved for clinical use. Hence, identification of novel drugs
targeting the GABAB receptor that display improved efficacy and pharmacokinetic
properties and with a safer side effect profile is the subject of intense research and
many industrial scale drug discovery efforts.

As mentioned, the multifaceted GABAB receptor is extremely complex. How-
ever, the same complexity that has historically hindered development of GABAB

receptor-targeted therapeutics now provides the potential for discovery of GABAB

receptor disease-specific therapeutics. For example, GABAB receptor subtype-
selective ligands are highly desirable not only to dissect the physiological role of
the predominant receptor subtypes, GABAB1(a)/2 and GABAB1(b)/2, but also to
facilitate the development of more finely-tuned mode-of-action drugs to treat various
diseases. From a drug discovery perspective, it may be possible to selectively
modulate GABAB(1a) containing heteroreceptors by targeting their sushi domains,
case in point; amyloid precursor protein (APP) binds to the N-terminal sushi domain
of GABAB(1a) and acts as an axonal trafficking factor for GABAB receptors, it has
been proposed that prevention of APP binding to this domain may interfere with
GABAB receptor-mediated inhibition of glutamate release and thereby enhance
cognitive function in patients with Alzheimer’s disease and intellectual disabilities.
Likewise, the discovery of functionally selective ligands for the different GABAB

receptor effectors would provide powerful tools to identify a unique signaling profile
that results in the desired in vivo effects without recruiting the adverse side effects.

Table 1 (continued)

Pharmacology

aTherapeutic
use/bclinical potential

Approved
drug/cclinical trial References

Schuller et al. 2008; Schuller
2018; Al-Wadei et al. 2012)

bType 1 diabetes (Tian et al. 2017)

Antagonists/
negative allo-
steric
modulators

bDepression/mood
disorders

(Cryan and Kaupmann 2005;
Felice et al. 2012; Jacobson et al.
2018)

bType 2 diabetes (Bonaventura et al. 2008, 2012;
Braun et al. 2004)

bAbsence epilepsy/
seizures

(Bernasconi et al. 1992; Ostojić
et al. 2013)

bMild cognitive
impairment and
memory

(Lasarge et al. 2009; Mondadori
et al. 1993)

bSuccinic semi-
aldehyde dehydroge-
nase (SSADH)
deficiency

cNCT02019667 (Cortez et al. 2004; Didiášová
et al. 2020)

aTherapeutic use
bClinical potential
cClinical trail
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Alternatively, recent biophysical and structural studies have greatly improved our
understanding of the structural basis of GABAB receptor activation and modulation,
and proteomic studies have identified receptor-associated proteins that work in
concert with the receptor to orchestrate a variety of molecularly and functionally
distinct multiprotein “signalosome” complexes, while providing spatiotemporal
control of receptor activity. These findings also present new opportunities for drug
discovery, modulating specific protein:protein interactions mediated through sushi
domains of GABAB1(a) (as outlined above), C-terminal domain of GABAB1 and/or
GABAB2; or KCTD subunits, all present potential target sites for designing drugs
that selectively interfere with receptor function for disease-specific therapeutic
intervention.

Thus, the successful collaboration between medicinal chemistry and pharmacol-
ogy together with significant advances in our understanding of GABAB receptor
structure and activation mechanisms has drug hunters well-poised for the discovery
and development of chemically and mechanistically novel therapeutics targeting the
multi-tasking GABAB receptor for the treatment of a wide variety of disease states.
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Abstract Metabotropic GABAB receptors (GABABRs) mediate slow inhibition
and modulate synaptic plasticity throughout the brain. Dysfunction of GABABRs
has been associated with psychiatric illnesses and addiction. Drugs of abuse alter
GABAB receptor (GABABR) signaling in multiple brain regions, which partly
contributes to the development of drug addiction. Recently, GABABR ligands and
positive allosteric modulators (PAMs) have been shown to attenuate the initial
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rewarding effect of addictive substances, inhibit seeking and taking of these drugs,
and in some cases, ameliorate drug withdrawal symptoms. The majority of the anti-
addiction effects seen with GABABR modulation can be localized to ventral teg-
mental area (VTA) dopamine neurons, which receive complex inhibitory and excit-
atory inputs that are modified by drugs of abuse. Preclinical research suggests that
GABABR PAMs are emerging as promising candidates for the treatment of drug
addiction. Clinical studies on drug dependence have shown positive results with
GABABR ligands but more are needed, and compounds with better pharmacokinet-
ics and fewer side effects are critically needed.

Keywords Dopamine · Positive allosteric modulators (PAMs) · Synaptic plasticity ·
Ventral tegmental area (VTA)

1 Introduction

γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the brain
that activates both ionotropic GABAA receptors (GABAARs) and metabotropic
GABAB receptors (GABABRs) (Chebib and Johnston 1999). While GABAARs
are chloride channels that mediate fast inhibitory postsynaptic currents (IPSCs),
GABABRs mediate slower inhibition by activating the Gi/o G proteins and down-
stream second messengers (Odagaki and Koyama 2001; Chebib and Johnston 1999).
GABABRs are dimeric proteins consisting of two subunits, GABABR1 which
contains the ligand-binding site, and GABABR2 which contains a binding site for
allosteric modulators and is responsible for G protein coupling (Liu et al. 2004;
Galvez et al. 1999, 2000; Kniazeff et al. 2002; Binet et al. 2004; Dupuis et al. 2006).
The GABABR2 C-terminal domain also associates with auxiliary subunits called K+

channel tetramerization domain (KCTD) proteins, which modulate the activation
and desensitization kinetics of GABABRs (Schwenk et al. 2010; Turecek et al. 2014;
Seddik et al. 2012). Activation of postsynaptic GABABRs leads to opening of G
protein-activated inwardly rectifying K+ (GIRK) channels (Luscher et al. 1997;
Gahwiler and Brown 1985), resulting in membrane hyperpolarization and shunting
excitatory currents. Activation of presynaptic GABABRs leads to inhibition of
voltage-gated Ca2+ (CaV) channels, suppressing neurotransmitter release (Thompson
and Gahwiler 1992; Takahashi et al. 1998). In addition, the Gαi/o subunits inhibit
adenylyl cyclase and cAMP-dependent signaling (Enna 2001). GABABR activation
contributes to synaptic plasticity, either facilitating or inhibiting long-term potenti-
ation (LTP) depending on whether the GABABRs act pre- or postsynaptically
(Ulrich and Bettler 2007; Heaney and Kinney 2016; Morrisett et al. 1991; Olpe
et al. 1993; Davies and Collingridge 1996; Davies et al. 1991). Conversely, neuronal
activity also dynamically regulates GABABR surface expression and functional
signaling (Bettler and Tiao 2006). A growing body of evidence implicates GABABR
dysfunction in various psychiatric illnesses, and supports the therapeutic potential of
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GABABR ligands in treating these conditions, as well as movement and neurode-
generative disorders (Kumar et al. 2013; Bowery 2006). While this is discussed in
more detail in other chapters of this book, here we focus on the involvement of
GABABR in drug addiction. Drugs of abuse have been shown to alter GABABR
signaling in many brain regions, which can last for prolonged periods of time. Some
of these changes contribute to the development of behavioral and psychological
manifestations of addiction, while others may be compensatory mechanisms to
restore normal circuit function. The significant role the GABABR plays in the reward
circuit offers the possibility of using pharmacological GABABR modulation to
rescue circuit malfunction in addiction.

2 GABABR Signaling in the Reward Circuit

Dopamine (DA) neurons in the VTA are crucial players in reward and motivated
behaviors (Ranaldi 2014; Baik 2013). VTA DA neurons mediate the initial
reinforcing effects of drugs of abuse, and long-lasting adaptations in their synaptic
inputs and intrinsic activity partially underlie various behavioral manifestations of
drug addiction (Luscher and Malenka 2011; Self 2004; Wanat et al. 2009; Francis
et al. 2019). Glutamatergic inputs onto VTA DA neurons are known to be potenti-
ated by drugs of abuse (see Sect. 5.3) (Overton et al. 1999; Saal et al. 2003; Ungless
et al. 2001; Kalivas 1995). VTA DA neurons also receive GABAergic inputs from
both local VTA GABA interneurons, as well as afferents from many subcortical
regions including the nucleus accumbens (NAc), ventral pallidum (VP),
rostromedial tegmental nucleus (RMTg), and lateral hypothalamus (LH) (Fig. 1)
(Blacktop et al. 2016; Soden et al. 2020). Recent studies combining optogenetics and
pharmacology have attempted to resolve the specific receptors mediating these
inhibitory inputs (Nieh et al. 2015, 2016; Polter et al. 2018; Matsui et al. 2014;
Edwards et al. 2017), which will be discussed in more detail below. Some other brain
regions involved in reward function such as the amygdala, prefrontal cortex (PFC),
lateral habenula, dorsal and median raphe nuclei also express GABABRs (Margeta-
Mitrovic et al. 1999), but the functional role of GABABR signaling in these regions
in reward processes is less well studied.

2.1 The VTA Microcircuit

Both GABAARs and GABABRs are expressed on VTA DA and GABA neurons
(Ciccarelli et al. 2012). There are some indications that the two receptor types are
activated by distinct inputs to the VTA, since the GABAA and GABAB IPSPs occur
independently of each other and are differentially modulated by pharmacological
agents (Sugita et al. 1992). VTA DA and GABA neurons have different sensitivities
to GABAA and GABAB agonists as a result of differences in receptor subunit
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composition and coupling efficiency to GIRK channels, respectively (Tan et al.
2010; Cruz et al. 2004). Furthermore, VTA GABA interneurons inhibit DA neurons
preferentially through GABAA receptors (Fig. 1) (Edwards et al. 2017; Polter et al.
2018). These facts should be taken into consideration when interpreting the effects of
intra-VTA application of GABAergic drugs, as GABAAR and GABABR agonists/
antagonists can have bidirectional effects on DA neuron activity depending on
whether the DA or GABA neurons are primarily affected (Laviolette and van der
Kooy 2001; Laviolette et al. 2004; Cruz et al. 2004; Xi and Stein 1998). Neverthe-
less, in most in vivo studies GABABR ligands appear to bypass the VTA microcir-
cuit and act directly on DA neurons. For example, infusion of baclofen (a GABABR
agonist) locally into the VTA revealed decreases in DA release both within the VTA
(Klitenick et al. 1992) and in the NAc (Westerink et al. 1996). DA release and
locomotor activation in response to morphine, cocaine, and amphetamine were also
blocked by intra-VTA baclofen (Kalivas et al. 1990; Klitenick et al. 1992; Leite-
Morris et al. 2004). On the other hand, intra-VTA infusion of GABABR antagonist
elicits an increase in DA level (Giorgetti et al. 2002). This GABABR-mediated
inhibition of DA signaling serves as the basis for targeting GABABRs in the
treatment of drug addiction.

Fig. 1 Inhibitory inputs to VTA neurons. Main inhibitory inputs onto VTA dopamine neurons and
the receptors that mediate inhibition are illustrated. D1: medium spiny neurons (MSN) expressing
dopamine D1 receptor; GABA: VTA GABA interneurons; DA: VTA dopamine neurons; LH:
lateral hypothalamus; VP: ventral pallidum; RMTg: rostromedial tegmental nucleus; Lat: lateral;
Med: medial. Note that GABAAR-mediated inhibitions from D1MSNs to VTAGABA neurons and
from VTA GABA neurons to VTA DA neurons are weaker in VTA-Med compared to VTA-Lat
(Yang et al. 2018)
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Recently, GABABR signaling in VTA DA neurons has been shown to be more
nuanced than previously thought. Lateral VTA DA neurons that project to lateral
NAc shell have significantly larger baclofen-induced currents than medial VTA DA
neurons which project to medial NAc shell (Yang et al. 2018). Interestingly,
GABABR1 expression detected by in situ hybridization is relatively uniform across
different regions of the midbrain (Edwards et al. 2017), suggesting that other factors
may determine the functional variability of GABABR signaling in subpopulations of
VTA DA neurons.

2.2 GABAergic Inputs to the VTA

A wide range of subcortical regions send GABAergic projections to the VTA, and in
most cases they preferentially synapse on local GABA neurons in the VTA (Soden
et al. 2020). This pattern of innervation provides a potential mechanism of
feedforward disinhibition of dopamine neurons which can switch them from tonic
to burst firing to signal reward (Soden et al. 2020; Paladini and Tepper 1999). The
major sources of GABAergic input to VTA with relevance to addiction are discussed
below.

The RMTg is a GABAergic nucleus located just caudal to the VTA, and is
therefore sometimes referred to as the tail of the VTA (tVTA) (Kaufling et al.
2009; Jhou et al. 2009b). GABAergic axons from RMTg neurons project to
VTA/SNc DA neurons and provide tonic GABAAR-mediated inhibition of DA
neuron activity (Matsui and Williams 2011; Lecca et al. 2012). RMTg neurons are
activated by noxious stimuli through innervation by glutamatergic lateral habenular
neurons (Jhou et al. 2009a). Opioids and cannabinoids inhibit RMTg neurons and
result in disinhibition of DA neurons (Lecca et al. 2012). The opioid sensitivity is
specifically mediated by μ-opioid receptors, which are densely expressed on RMTg
neurons (Jhou et al. 2009b; Matsui and Williams 2011). Interestingly, persistent
induction of the transcription factor ΔFosB was observed in RMTg following
chronic exposure to cocaine and amphetamine, but not morphine (Perrotti et al.
2005). Additional studies are needed to determine whether GABA release from
RMTg afferents also activates GABABRs.

The LH sends both glutamatergic and GABAergic axons to the VTA (Kallo et al.
2015; Nieh et al. 2015). While both DA and GABA neurons of the VTA receive
excitatory input from LH, the GABAergic LH-VTA projection appears to preferen-
tially target GABA neurons (Nieh et al. 2016). Activation of this GABAergic
pathway results in disinhibition of VTA DA neurons and promotes approach
behavior (Nieh et al. 2016). LH-VTA GABAergic projection also encodes
cue-reward predictions to regulate learning (Sharpe et al. 2017). Picrotoxin-sensitive
GABAAR IPSCs have been observed in VTA neurons following LH activation,
whereas the presence of GABABR IPSCs has not yet been tested (Nieh et al. 2016).

The VP has reciprocal connections with VTA (Faget et al. 2016; Taylor et al.
2014). GABAergic inputs from the VP provide a tonic inhibition on VTA DA
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neuron firing (Floresco et al. 2003), although this pathway can also be acutely
activated by reward-associated cues (Smith et al. 2009). Silencing the GABAergic
VP to VTA projection disrupts reinstatement of cocaine seeking, which is not
recapitulated by GABAA antagonist (gabazine)-mediated direct disinhibition of
VTA DA neurons, suggesting that the GABAergic VP afferents likely also inhibit
non-DA neurons in the VTA (Mahler et al. 2014). Whether GABAergic VP afferents
signal through GABAARs or GABABRs on VTA neurons has not been established.

In the NAc, dopamine D1 receptor-expressing medium spiny neurons
(D1R-MSNs) send direct projections to the VTA, and comprise the “direct” path-
way. Initial studies found that D1R-MSNs preferentially target non-DA neurons, in
particular GABA neurons, even though a weak connection to DA neurons also exists
(Bocklisch et al. 2013; Xia et al. 2011; Matsui et al. 2014). This pathway signals
through GABAARs and is inhibited by μ-OR activation (Xia et al. 2011; Matsui et al.
2014). Optogenetic stimulation of the D1R-MSN terminals failed to evoke
GABABR IPSCs in VTA neurons, which can nevertheless be produced by electrical
stimulation (Xia et al. 2011). A more recent study, however, identified a NAc to
VTA DA connection that signals through GABABRs (Edwards et al. 2017). The
authors confirmed that NAc to VTA projection also inhibits GABA neurons via
GABAARs. Importantly, by combining immuno-electron microscopy and electro-
physiological measurements on the spatio-temporal dynamics of GABABR activa-
tion, Edwards et al. (2017) showed that NAc axon terminals form symmetric
synapses on DA cell bodies and dendrites, and that GABABRs on DA neurons are
activated by synaptic release of GABA. It will be important to determine whether the
same population of NAc MSNs contact both DA and GABA neurons in the VTA. In
contrast to the NAc input, VTA GABA neuron to DA neuron connection is mediated
largely by GABAARs, with only a small GABABR component (Edwards et al.
2017). Interestingly, VTA GABA neurons can inhibit presynaptic glutamate release
onto DA neurons through GABABRs, but not GABAARs (Chen et al. 2015).
GABABR-mediated inhibition of DA neuron terminal activity and DA efflux has
also been reported in the NAc (Saigusa et al. 2012; Pitman et al. 2014; Xi et al.
2003).

A recent study by Yang et al. (2018) provided more precise anatomical resolution
to the NAc-VTA connectivity on the medial-lateral axis (Fig. 1). Medial VTA
(VTA-Med) DA neurons form reciprocal connections with NAc medial shell
(NAc-Med), while lateral VTA (VTA-Lat) DA neurons are reciprocally connected
with NAc lateral shell (NAc-Lat) (Yang et al. 2018). Interestingly, the two pathways
show little overlap. Importantly, D1R-MSNs from NAc-Lat inhibit non-DA neurons
(likely GABA neurons) more strongly than DA neurons in VTA-Lat, resulting in an
overall excitation of VTA-Lat DA neurons (Yang et al. 2018). In contrast, NAc-Med
D1R-MSNs equally target DA and non-DA neurons and when stimulated result in an
overall inhibition of VTA-Med DA neurons. The inhibitory control by D1R-MSNs
described above is mediated by GABAARs, while GABABR-mediated inhibition is
induced by NAc-Med, but not NAc-Lat stimulation in about half of NAc-Lat
projecting DA neurons, but not in NAc-Med projecting DA neurons (Yang et al.
2018). The amplitudes of GABABR IPSCs (Yang et al. 2018) were smaller than in
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Edwards et al. (2017), a difference that could partly be explained by a more
widespread expression of ChR2 virus. What is the functional role of this
NAc-Med to VTA-Lat GABABR pathway? Intra-VTA antagonism of GABABR
with CGP 35348 removed the anxiety-like phenotype induced by NAc-Med
D1R-MSN stimulation, and at the same time revealed a rewarding effect of the
stimulation (Yang et al. 2018). This is consistent with GABABRs having a reward-
suppressing effect in the VTA (Willick and Kokkinidis 1995).

In summary, while a wide range of GABAergic inputs to the VTA has been
identified, their full characterization remains incomplete. Currently, it is well
established that these inputs can activate GABAARs on VTA DA and GABA
neurons to drive direct inhibition and disinhibition of DA neurons, respectively.
However, with the exception of NAc, the ability of these inputs to activate
GABABRs in the VTA and contribute to drug addiction has not been explored,
despite ample evidence that VTA neuron activity is modulated by GABABR ligands.
Future studies should address this gap in order to understand more completely
GABAergic control of DA neuron activity.

3 Impact of Addictive Drugs on GABABR Signaling
in the Reward Circuit

GABABR signaling undergoes activity-dependent plasticity and drug-evoked
changes. A recent review by Lalive and Lüscher (2016) provides a good description
of these processes and some underlying mechanisms. Here, we focus on the impact
of these drug-induced alterations in GABABR signaling on neurotransmission in the
brain reward circuit.

3.1 Psychostimulants

Cocaine acutely modulates GABABR signaling in the VTA in a bidirectional
manner. In acutely prepared VTA slices, relatively low concentrations of cocaine
(~0.1 μM) inhibit GABABR inhibitory postsynaptic potentials (IPSPs) on VTA DA
neurons via presynaptic 5-HT receptors, leading to disinhibition of DA neurons
(Cameron and Williams 1994). On the other hand, cocaine at 1 μM or higher
concentrations blocks dopamine reuptake and increases the level of extracellular
dopamine, which activates D1 receptors on afferent GABA terminals to facilitate
GABABR IPSP (Cameron and Williams 1993, 1994; Lacey et al. 1990; Brodie and
Dunwiddie 1990). Apart from immediate action, psychostimulants can also lead to
long-lasting changes in GABABR signaling, depending on the length of drug
exposure (acute vs. chronic) and time of measurement (early vs. late withdrawal).
A single injection of cocaine (15 or 30 mg/kg) decreases GABABR-GIRK signaling
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in VTA DA neurons for 3–4 days, possibly through a downregulation of surface
GIRK channels (Arora et al. 2011). Furthermore, a single injection of cocaine
(15 mg/kg) or amphetamine (10 mg/kg) increased AMPAR/NMDAR ratio in DA
neurons, but not GABA neurons in the VTA (Saal et al. 2003; Ungless et al. 2001).
This results in an altered excitation/inhibition balance on VTA DA neurons, enhanc-
ing DA signaling in the short term. On the other hand, a single cocaine or metham-
phetamine injection also diminished GABABR signaling in VTA GABA neurons
(Padgett et al. 2012), perhaps leading to more local GABA release as a compensatory
mechanism to dampen VTA DA activity.

Chronic psychostimulant exposure results in altered GABABR function within
the VTA and other brain regions. GABABR-GIRK signaling in VTA DA neurons
was diminished by either methamphetamine self-administration (Sharpe et al. 2014)
or repeated non-contingent injections (Munoz et al. 2016). Suppression of
GABABR-GIRK signaling was also observed in layer 5/6 pyramidal neurons of
dorsal medial prefrontal cortex (mPFC) following repeated cocaine treatment
(Hearing et al. 2013). This is consistent with the impaired ability of intra-mPFC
baclofen to inhibit glutamate transmission (Jayaram and Steketee 2004) and cocaine-
induced locomotor activity (Steketee and Beyer 2005). In the VTA, however,
microdialysis analysis of somatodendritic DA and glutamate release in freely mov-
ing rats revealed a different story. Intra-VTA infusion of GABABR antagonist CGP
55845A showed that at baseline, DA release is under tonic GABABR inhibition
while glutamate release is not (Giorgetti et al. 2002). After repeated amphetamine
injections, both DA and glutamate release in the VTA was affected by increased
GABABR inhibitory tone (Giorgetti et al. 2002). Interestingly, this was seen during
the early withdrawal period (3 days after last drug injection) but not at late with-
drawal times (10–14 days after last drug injection), consistent with the finding that
synaptic plasticity in the VTA that accompany psychostimulant sensitization is
transient (Zhang et al. 1997). In the dorsolateral septal nucleus (DLSN), a brain
region also implicated in reward function (Olds and Milner 1954), presynaptic
GABABR function was impaired after prolonged cocaine exposure, leading to
enhancement of GABA and glutamate release in this area (Shoji et al. 1997). On
the other hand, postsynaptic GABABR function was not altered by chronic cocaine
in DLSN (Shoji et al. 1997). In short, alterations in GABABR function by
psychostimulants can vary by brain region and timing.

Chronic cocaine exposure also decreased Giα and Goα G protein levels in VTA,
NAc, and locus coeruleus (LC) (Nestler et al. 1990), and decreased functional
coupling of GABABRs to G proteins in VTA and NAc (Kushner and Unterwald
2001; Xi et al. 2003). Similarly, chronic amphetamine also attenuated GABABR G
protein coupling in NAc in late withdrawal (Zhang et al. 2000). Altogether, the
diminished GABABR signaling promotes behavioral sensitization to the drug, even
though GABABR expression may remain unaltered (Li et al. 2002a). Cocaine
withdrawal can also indirectly reduce GABABR transmission through impairing
presynaptic GABA release, as seen at entopeduncular nucleus to lateral habenula
(LHb) synapses (Tan et al. 2018). Reduced GABABR transmission leads to higher
excitability of LHb neurons, and in combination with enhanced excitatory input as a
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result of diminished GABAAR signaling, they contribute to the negative symptoms
of cocaine withdrawal (Tan et al. 2018).

Animals that self-administer drugs of abuse can develop neuroadaptations asso-
ciated with motivated responding and craving for the drug that are absent in animals
passively receiving administered drug. Autoradiographic analysis using a GABABR
antagonist, [3H]CGP 54626 revealed a large decrease in binding in a wide range of
brain regions following a 10-day withdrawal in animals self-administering cocaine,
but not in yoked animals that received non-contingent injections of cocaine
(Frankowska et al. 2008). Decreases in GABABR binding were observed in the
PFC, dorsal striatum, NAc, amygdala, hippocampus, VTA and substantia nigra, all
regions important in the reward circuit. Whether the decreased GABABR levels in
these areas contribute to craving and relapse will require further study.

3.2 Nicotine

To date, there are few reports describing the impact of nicotine on GABABR
signaling. One group found that subcutaneous injection of 0.4 mg/kg nicotine for
14 days in rats abolished the baclofen-mediated inhibition of electrically evoked DA
release from VTA slices (Amantea and Bowery 2004), and reduced GABABR
coupling to G proteins in the mPFC and NAc (Amantea et al. 2004). However,
another study that chronically infused a much higher dose of nicotine (3.16 mg/kg/
day for 7 days prior to and during testing) found that the ability of intra-VTA
GABABR agonist to elevate the threshold for intracranial self-stimulation (ICSS)
is similar in vehicle and nicotine-treated rats (Paterson et al. 2005a, b). While the first
two studies examined GABABR function during nicotine withdrawal, the last study
was done during nicotine administration, which may contribute at least partly to the
discrepancies in these findings.

GABABR1 and GABABR2 RNA expression levels have been examined in rats
chronically exposed to oral nicotine or cigarette smoke. A decrease in GABABR1
expression was observed in the hippocampus following both chronic nicotine and
cigarette smoke (Li et al. 2002b). Interestingly the length of smoke exposure was
negatively correlated with the degree of decrease in GABABR1 RNA. In the PFC,
chronic nicotine led to a small decline in both GABABR1 and GABABR2 RNA
expression, while cigarette smoke increased the level of both receptor subunits
(Li et al. 2004). Whether the discrepancies are due to different route of exposure
or ingredients other than nicotine in the cigarette smoke remains to be investigated.
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3.3 Opioids

Acute morphine promotes glutamate release onto VTA DA neurons by removing
GABABR inhibition of glutamatergic inputs (Chen et al. 2015). Chronic morphine
treatment, however, increases GABABR signaling in the VTA during withdrawal,
which in turn reduces glutamate release and leads to a decrease in DA neuron
activity (Manzoni and Williams 1999). This may result from 1) enhanced GABA
release during withdrawal (Bonci and Williams 1997) and 2) increased coupling
efficiency of GABABR to GIRK channels through downregulation of RGS2, a
regulator of G protein signaling (Labouebe et al. 2007). Chronic infusion of mor-
phine via osmotic pumps has also been reported to increase both GABABR1 and
GABABR2 immunoreactivity in the globus pallidus (GP) and substantia nigra pars
reticulata (SNr) although the functional implication of these changes is still unclear
(Negrete-Diaz et al. 2019). On the other hand, chronic morphine treatment has also
been shown to decrease the activity of inhibitory Gi/o G proteins in the locus
coeruleus (Selley et al. 1997). Since GABABR and μ-opioid receptor both couple
to Gi/o G proteins, GABABR signaling is potentially affected in this region and
should be directly tested.

3.4 Cannabis

Tetrahydrocannabinol (THC) is the principal psychoactive cannabinoid in cannabis
and is a partial agonist for the cannabinoid receptor CB1, which signals via Gi/o as
does GABABR (Howlett et al. 1986; Bidaut-Russell et al. 1990). Chronic THC
treatment resulted in CB1 downregulation and desensitization in most brain regions,
whereas GABABR-stimulated G protein activation was not affected (Sim et al. 1996;
Selley et al. 2004). However, a heterologous attenuation of adenylyl cyclase inhibi-
tion was observed in mouse cerebellum for GABABR and adenosine A1 receptor
following long-term THC treatment (Selley et al. 2004). This may contribute to the
cross-tolerance to motor coordination deficits with cannabinoid, GABABR, and A1R
agonists. Garcia-Gil et al. (1999) demonstrated that perinatal exposure to THC in
male and female rats potentiates the motor inhibitory effect of baclofen in adult
animals, despite the fact that baclofen-stimulated G protein activation was not
changed, especially in the substantia nigra (Garcia-Gil et al. 1999). Whether
GABABR signaling in the reward circuit is altered by THC remains to be
investigated.
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3.5 Summary

In summary, drugs of abuse induce plasticity in GABABR signaling in various parts
of the brain, and these changes can take place at the level of RNA expression,
receptor trafficking, G protein coupling, as well as the effector proteins. It appears
that some of the changes contribute to the progression to addiction, while others may
be compensatory responses to other changes in neurotransmission. Studies on
psychostimulant-induced alterations in GABABR signaling have been most abun-
dant, whereas for other drugs we are still at the beginning of such investigations. It is
important to figure out which of the plastic changes are universal mechanisms to all
drugs of abuse, and which ones are drug-specific. Such knowledge will be beneficial
for devising therapeutic interventions targeted at GABABRs.

4 Effects of Genetic Manipulations of GABABR on Animal
Models of Drug Addiction

Mice lacking either the GABABR1 or GABABR2 subunit have been generated and
studied on the Balb/c genetic background (Gassmann et al. 2004; Schuler et al.
2001). Unfortunately, premature death in early adulthood was observed in knockout
(KO) mice on other backgrounds such as C57BL6/J, preventing behavioral charac-
terization (Prosser et al. 2001). Both GABABR1 and GABABR2 KO mice display
hyperlocomotion, hyperalgesia, and spontaneous epileptic seizures. GABABR1 KO
mice also have an anxious and antidepressant-like phenotype (Mombereau et al.
2004). Relatively few studies have examined the effects of GABABR KO mice on
drug addiction.

A series of studies conducted by Varani et al. on the GABABR1 KO in combi-
nation with pharmacological manipulations of GABABRs have demonstrated a role
for GABABRs in mediating acute effects of nicotine as well as nicotine withdrawal
symptoms with respect to reward and anxiety (Varani et al. 2012, 2014, 2015, 2018).
GABABRs are required for the acute locomotor, antinociceptive, and anxiolytic
effects of nicotine, as well as the neurochemical changes that give rise to anxiety
in nicotine withdrawal. On the other hand, GABABR activity counteracts the
rewarding effect of nicotine (Le Foll et al. 2008; Varani et al. 2018). While the
specific brain regions where GABABR activity is important for the nicotine effects
are still elusive, nicotine-dependent changes in c-fos and BDNF expression in
several brain areas involved in anxiety are absent in GABABR1 KO (Varani et al.
2012, 2014, 2015), and nicotine-induced increase in c-fos expression in NAc and
VTA is potentiated in GABABR1 KO (Varani et al. 2018).

The two alternatively spliced isoforms of GABABR1 subunit, GABABR1a and
GABABR1b, localize to the presynaptic and postsynaptic membrane, respectively
(Biermann et al. 2010; Vigot et al. 2006). GABABR1b lacks the N-terminal sushi
repeats that mediate axonal targeting in GABABR1a (Kaupmann et al. 1997;
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Biermann et al. 2010). In the hippocampus, GABABR1a-containing heteroreceptors
mediate inhibition of glutamate release while GABABR1b-containing
heteroreceptors mediate postsynaptic inhibition (Vigot et al. 2006). Isoform-specific
knockouts showed differential effects on locomotor response to cocaine: While
GABABR1b KO mice had higher basal locomotion, they failed to develop sensiti-
zation; GABABR1a KO had higher acute locomotor response as well as sensitization
to cocaine (Jacobson et al. 2016).

Selective deletion of GABABRs in VTA DA neurons has been carried out by
injecting an adeno-associated virus expressing Cre recombinase under the tyrosine
hydroxylase (TH) promoter (AAV-TH-iCre) into the VTA of mice with floxed
GABABR1. This manipulation decreased baclofen currents in DA neurons and
enhanced locomotor response to cocaine, while basal locomotion and morphine-
induced locomotion were unaltered (Edwards et al. 2017). Rifkin et al. (2018) used a
different approach to investigate the effect of reduced GABABR-activated GIRK
currents on drug sensitivity. A conditional knockout of sorting nexin 27, which
regulates surface expression of GIRK channels, led to reduced baclofen-induced
currents in VTA DA neurons and increased sensitivity to cocaine-dependent loco-
motor sensitization (Rifkin et al. 2018).

5 Effects of Pharmacological Manipulations on Animal
Models of Drug Addiction: Agonists, Antagonists,
and Positive Allosteric Modulators (PAMs)

Research in the past few decades has yielded substantial evidence for the therapeutic
potential of GABABR ligands in treating a variety of neurological disorders (Bowery
2006; Heaney and Kinney 2016; Jacobson et al. 2018; Kumar et al. 2013). At the
moment, baclofen is the only GABABR agonist approved for human use as a muscle
relaxant. In 2018, it was also approved in France for treating alcohol use disorder,
despite controversy regarding its efficacy and safety (Braillon et al. 2020; de
Beaurepaire et al. 2018). Recently several groups have attempted to validate its
effect for treating abuse of addictive substances by using animal models. The
common hypothesis is that activating GABABRs on VTA DA neurons dampen
their activity, thus reducing the rewarding effect of drugs of abuse and suppressing
the motivation to work for them. Indeed, baclofen has been shown to dose-
dependently reduce DA release in the NAc shell evoked by cocaine, nicotine, and
morphine (Fadda et al. 2003). GABABR agonists other than baclofen as well as
antagonists have also been studied in the context of drug addiction. A thorough
review of the chemistry and pharmacology of these ligands can be found in a recent
book chapter (Froestl 2010). A potential issue with GABABR orthosteric agonists
(e.g., baclofen) is the induction of side effects, including sedation, weakness,
vertigo, and headache (Agabio and Colombo 2015; Tyacke et al. 2010). Positive
allosteric modulators (PAMs) may provide a remedy for this problem. In general,
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allosteric modulators bind to a region of the GABABR outside of the ligand-binding
site, where they induce conformational changes that either increase (i.e., positive,
PAMs) or decrease (i.e., negative, NAMs) the effects of GABA. Therefore, they do
not possess intrinsic agonistic activity, but can modulate the effect of endogenous
GABA release on GABABRs. As a result, they are expected to produce fewer side
effects compared to orthosteric GABABR agonists (Filip et al. 2015). PAMs also
appear to activate the receptor without inducing desensitization, which is partially
responsible for the development of tolerance (Sturchler et al. 2017). CGP7930
(Urwyler et al. 2001) and GS39783 (Urwyler et al. 2003) were the first GABABR
PAMs discovered through compound screening in a GTPγ35S binding assay
(Table 1). They increased both the potency and efficacy of GABA at GABABR,
suggesting that they enhance not only agonist binding, but also receptor-G protein
coupling (Urwyler 2011). The GABABR PAM binding site was mapped to the
transmembrane domain of the GABABR2 subunit (Binet et al. 2004; Dupuis et al.
2006), Since then, new GABABR PAMs have been identified by screening

Table 1 List of GABABR PAMs and chemical names

Name Chemical name Structure Citation

BHF177 N-[(1R,2R,4S)-bicyclo[2.2.1]hept-2-yl]-2-methyl-
5-[4-(trifluoromethyl)phenyl]-4-pyrimidinamine

Guery et al.
(2007)

KK-92A (4-(cycloheptylamino)-5-(4-(trifluoromethyl)-
phenyl)pyrimidin-2-yl) methanol (analog of
BHF177)

Li et al.
(2017)

NVP998 (4-(bicyclo(2.2.1)heptylamino()-5-
(4-(trifluoromethyl)phenyl)pyrimidin-2-yl) nitrile
(analog of BHF177)

Sturchler
et al.
(2017)

CGP7930 3-(30,50-Di-tert-butyl-40-hydroxy)phenyl-2,2-
dimethylpropanol

Urwyler
et al.
(2001)

CMPPE 2-{1-[2-(4-chlorophenyl)-5-methylpyrazolo[1,5-a]
pyrimidin-7-yl]-2-piperidinyl}ethanol

Perdona
et al.
(2011)

GS39783 N,N0-Dicyclopentyl-2-methylsulfanyl-5-nitro-
pyrimidine-4,6-diamine

Urwyler
et al.
(2003)

rac-
BHFF

(R,S)-5,7-di-tert-butyl-3-hydroxy-3-
trifluoromethyl-3H-benzofuran-2-one

Malherbe
et al.
(2008)

GABAB Receptors and Drug Addiction: Psychostimulants and Other Drugs of Abuse 131



compound libraries or structural analogs of existing PAMs in GTPγ35S binding or
functional GABABR signaling assays (Table 1). In this section we will review
studies that tested the effects of GABABR ligands and PAMs in animal models of
addiction for the common drugs of abuse. There are also a few other recent reviews
on this topic (Filip et al. 2015; Filip and Frankowska 2008; Vlachou and Markou
2010; Phillips and Reed 2014).

5.1 Psychostimulants

5.1.1 Amphetamine and Methamphetamine

Baclofen given systemically (2–4 mg/kg) dose-dependently blocks the development
and expression of locomotor sensitization to amphetamine (Bartoletti et al. 2004,
2005; Cedillo and Miranda 2013). A GABABR PAM, CGP 7930, potentiated the
effect of low dose (2 mg/kg) baclofen in blocking both the development and
expression of amphetamine sensitization (Cedillo and Miranda 2013). GS39783,
another GABABR PAM, blocked expression of amphetamine conditioned place
preference (CPP) without affecting locomotion (Halbout et al. 2011). In rats self-
administering amphetamine, 1.8–5.6 mg/kg baclofen reduced responding under both
fixed ratio (FR) and progressive ratio (PR) schedule of reinforcement, which was
accompanied by an attenuation of amphetamine-induced DA level increase in the
NAc (Brebner et al. 2005).

Baclofen (1.25–5 mg/kg) dose-dependently attenuated both the acquisition and
expression of methamphetamine CPP (Li et al. 2001). Methamphetamine-induced
CPP is resistant to extinction, but 2 mg/kg baclofen given after daily extinction
sessions facilitated the extinction (Voigt et al. 2011a). Interestingly, two home cage
injections of GABABR PAMs (CGP 7930 or GS39783) in rats with established
methamphetamine CPP abolished the expression of CPP in a subsequent test (Voigt
et al. 2011a, b). This implicates GABABRs in the short-term maintenance of
memories associated with methamphetamine conditioning. Regarding methamphet-
amine self-administration, 2.5 and 5 mg/kg baclofen injection reduced break points
for all doses of methamphetamine on a PR schedule, indicating diminished motiva-
tion to work for the drug without apparent motor impairment (Ranaldi and Poeggel
2002). There is also evidence that baclofen rescues cognitive deficits induced by
methamphetamine. For example, methamphetamine-induced impairments of
prepulse inhibition and novel object recognition were ameliorated by systemic
baclofen at 2 mg/kg (Arai et al. 2009).

5.1.2 Cocaine

Baclofen (2 mg/kg) prevented cocaine-conditioned locomotion as well as stimulus-
induced glutamate release in the NAc (Hotsenpiller and Wolf 2003). Both the
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development and expression of locomotor sensitization to cocaine were also reduced
by baclofen as well as another GABABR agonist, SKF 97541 (Frankowska et al.
2009). Intra-mPFC baclofen blocked acute locomotor activation by cocaine and the
development of sensitization, but not the expression of sensitization (Steketee and
Beyer 2005). The GABABR PAM GS39783 modestly attenuated the development
of cocaine sensitization, and also blocked cocaine-induced activation of DARPP-32
and CREB in the NAc (Lhuillier et al. 2007).

The impact of GABABR ligands on cocaine self-administration has been exten-
sively studied for more than two decades. Roberts et al. (1996) showed in rats trained
to self-administer IV cocaine and tested on a progressive ratio task, that 2.5 mg/kg
baclofen significantly reduced the break points for all cocaine doses (0.18 to 1.5 mg/
kg/inj). In comparison, baclofen only slightly decreased responding for food reward.
This suggests that at low dosages, baclofen can specifically dampen the reinforcing
effect of cocaine without causing sedation or general disruption of performance,
which typically emerges at 5 mg/kg (Roberts et al. 1996). In a subsequent study, the
authors used a discrete trials procedure to probe baclofen’s effect on the initiation of
cocaine self-administration (Roberts and Andrews 1997). When each discrete trial
was separated by 30 min, rats showed a clear diurnal pattern of cocaine taking where
most of the infusions (1.5 mg/kg/inj) happen during the dark phase. The likelihood
of cocaine taking is low but increasing at the beginning of the dark phase, and much
higher in the middle of the dark phase. Baclofen (2.5 mg/kg) injection given at either
time point strongly suppressed drug taking. A range of baclofen doses (1.25–5.0 mg/
kg) were able to suppress cocaine taking while having no effect on food taking on a
second lever.

A study from Campbell et al. (1999) showed that baclofen treatment prior to the
7-h cocaine self-administration session (FR1) suppressed cocaine intake in a dose-
dependent manner. 2.5 and 5 mg/kg baclofen were effective in reducing cocaine
infusions especially in the first 4 h of the session. The suppression effect was also
stronger for the lower dose of cocaine (0.2 mg/kg/inj) compared to the higher dose
(0.4 mg/kg/inj). In comparison, cocaine-primed reinstatement was more effectively
blocked by baclofen at 1.25 & 2.5 mg/kg. Similarly, the Roberts group also found
that baclofen had a greater effect in suppressing lower unit dose (0.75 mg/kg/inj) of
cocaine intake on a FR1 schedule. Interestingly, the suppression can be attributed to
a period of non-responding at the beginning of the session, instead of a reduced rate
of responding (Brebner et al. 2000a). Regarding cue-induced reinstatement of
cocaine seeking, 2.5 & 5 mg/kg baclofen was able to suppress responding without
affecting food seeking. However, it is less effective on cocaine+cue primed rein-
statement (Froger-Colleaux and Castagne 2016).

To gain more insights on the mechanism of baclofen-mediated reduction in drug
intake/seeking, local infusions of baclofen into different brain regions have been
carried out in several studies. One study found that intra-VTA baclofen injection was
three times more potent than intra-NAc or intra-striatum baclofen in suppressing
cocaine self-administration (1.5 mg/kg/inj) on a progressive ratio task (Brebner et al.
2000b). Another study showed that intra-NAc or intra-VTA injection of baclofen,
but not intra-dorsal striatum injection, decreased responding for cocaine (0.66 mg/
kg/inj) on an FR5 schedule (Shoaib et al. 1998). Interestingly, in a more recent report
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by Backes and Hemby (2008), intra-VTA injection of the GABAAR antagonist
picrotoxin was found to inhibit cocaine self-administration to an extent comparable
to that seen with baclofen, and that the effect of picrotoxin could be blocked by the
GABABR antagonist 2-hydroxysaclofen. This suggests that picrotoxin likely acts by
disinhibiting VTA GABA neurons in the VTA, which in turn release GABA that act
on GABABRs on DA neurons.

CGP 44532, a highly selective and high-affinity GABABR agonist, dose-
dependently decreased cocaine self-administration on a progressive ratio schedule
as well as on a discrete trials procedure with little effect on food self-administration
(Brebner et al. 1999), similar to what has been reported for baclofen (Roberts and
Andrews 1997; Brebner et al. 2000a). This is likely not due to an anhedonia state
induced by CGP 44532, since it was found to be hedonically neutral in a brain
stimulation reward (BSR) rate-frequency paradigm (Dobrovitsky et al. 2002).
Cocaine-induced potentiation of BSR, however, was reduced by CGP 44532 in a
dose-dependent manner (Dobrovitsky et al. 2002). When tested in baboons, CGP
44532 decreased cocaine-primed reinstatement of cocaine seeking to a degree
comparable to that seen for baclofen (Weerts et al. 2007). However, both agonists
reduced responding for food as much as for cocaine under an FR10 schedule (Weerts
et al. 2005).

Several GABABR PAMs have been tested on cocaine self-administration, usually
in direct comparison with GABABR agonists. GABABR PAM CGP 7930 has been
shown to reduce cocaine self-administration without affecting food responding
across a range of doses (10–100 mg/kg), while high doses of the GABABR agonists
baclofen (5 mg/kg) and SKF 97541 (0.3 mg/kg) decreased food responding (Filip
et al. 2007). A similar pattern was found for cocaine or cue-induced reinstatement,
where CGP 7930 dose-dependently reduced cocaine seeking but not food seeking,
while both agonists reduced cocaine but also food seeking at high doses (Filip and
Frankowska 2007). Intriguingly, the same group found that while SCH 50911
(GABABR antagonist) blocked the effects of GABABR agonists and PAM on
cocaine self-administration, it also decreased cue-induce reinstatement for cocaine
but not for food (Filip and Frankowska 2007; Filip et al. 2007). Whether the latter
phenomenon may be due to a possible rewarding property of SCH 50911 or its
partial agonistic properties at the GABABRs is yet uncertain. Another GABABR
PAM GS39783 reduced responding for cues previously paired with cocaine when
administered i.p. at 30 and 100 mg/kg, and did not suppress locomotor activity at the
lower dose (30 mg/kg) (Halbout et al. 2011). In contrast, baclofen significantly
decreased locomotion at the minimal effective dose (2.5 mg/kg) for reducing cocaine
seeking (Halbout et al. 2011). GS39783 also attenuated cocaine’s rewarding effect in
that it reduced the threshold lowering effect of cocaine on ICSS (Slattery et al. 2005).
Unlike baclofen which elevated ICSS threshold, GS39783 has no effect on the
threshold, suggesting that it is hedonically neutral. When compared side-by-side,
CGP 7930 is somewhat more effective than GS39783 in reducing responding for
cocaine across different self-administration schedules, including PR, FR1 as well as
discrete trials (DT), a difference that may stem from the difference in drug bioavail-
ability (Smith et al. 2004). CMPPE, a relatively new GABABR PAM (Perdona et al.
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2011) abolished cue-induced cocaine reinstatement with no sign of sedation or body
weight loss, which would be observed with a high dose (3 mg/kg) of baclofen
(Vengeliene et al. 2018). Non-sedative doses of the GABABR PAM rac-BHFF
(Malherbe et al. 2008) attenuated cocaine self-administration and prevented the
cocaine-induced increase in AMPAR/NMDAR ratio in VTADA neurons (deMiguel
et al. 2018).

An important caveat of these self-administration studies is that they were
performed on male animals only, even though in humans, women are more likely
to progress from initial drug use to addiction (Van Etten and Anthony 1999). So far
only a few papers have touched on the sex differences in the effect of GABABR
ligands on cocaine self-administration. It was noted that baclofen has a greater effect
in decreasing the acquisition rate and percentage of cocaine self-administration in
female rats than in males (Campbell et al. 2002). The relationship between cocaine
use in adolescent and adulthood is also sexually dimorphic: males that display
escalating self-administration in adolescence develop habit-based inflexible behav-
iors in adulthood, while in females it was not the escalating animals, but ones with
low response rates that later develop behavioral inflexibility (DePoy et al. 2016).
Baclofen similarly reduced drug seeking in these animals when they were
re-exposed to cocaine-associated context in adulthood (DePoy et al. 2016). When
female rats were selectively bred for high (HiS) versus low (LoS) saccharin intake, a
pattern emerged in that HiS rats exhibited more cocaine self-administration and
higher reinstatement than LoS rats. While baclofen was effective in reducing
cocaine-primed reinstatement in both groups, it potentiated cocaine intake escalation
in HiS rats but attenuated it in LoS rats during long-access sessions (Holtz and
Carroll 2011). This highlights the potential complication of individual variability
which is especially relevant in human clinical trials in interpreting the effects of
GABABR modulation on drug addiction. More studies are needed in the future on
sex differences for drug addiction and treatment.

5.2 Nicotine

A recent review by Jacobson et al. (2018) provides an excellent summary of
preclinical studies on the effects of GABABR compounds on nicotine addiction.
Nicotine can directly activate VTA DA neurons through nicotinic acetylcholine
receptors, or enhance glutamate transmission onto DA neurons (Mansvelder et al.
2002; Zhao-Shea et al. 2011). Therefore, it is conceivable that GABABR activation
on VTA DA neurons should counteract the reinforcing effect of nicotine. Indeed,
intra-VTA infusion of baclofen as well as the GABAAR agonist muscimol reduced
nicotine self-administration in rats (Corrigall et al. 2000). Systemic baclofen and
CGP 44532 have been reported to decrease nicotine self-administration on both FR
and PR schedules, block nicotine CPP, and suppress cue-induced reinstatement
although high doses of these drugs frequently affect responding for food as well
(Paterson et al. 2004; Paterson et al. 2005b; Le Foll et al. 2008). Interestingly, the
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anxiolytic and anxiogenic effects produced by low and high doses of nicotine require
GABABR activity, since they are blocked by saclofen (Varani and Balerio 2012),
consistent with the absence of nicotine’s anxiolytic and anxiogenic responses in the
GABABR1 KO (Varani et al. 2012, 2014).

GABABR PAMs generally show more specificity than GABABR agonists in
attenuating nicotine’s stimulant and rewarding effects or nicotine self-administration
without nonspecific effects on locomotion or food seeking. GS39783 was able to
block the acquisition of nicotine CPP and nicotine-induced ΔFosB in the NAc
(Mombereau et al. 2007); it abolished nicotine-induced hyperlocomotion without
affecting basal locomotion (Lobina et al. 2011), and it potentiated the effect of a
sub-effective dose of the GABABR agonist CGP 44532 on nicotine reinforcement
without affecting food responding (Paterson et al. 2008). CGP 7930 also specifically
blocked nicotine’s locomotor and rewarding effects (Lobina et al. 2011; Paterson
et al. 2008). BHF177, a GABABR PAM characterized by Guery et al. (2007)
(Table 1), decreased responding for nicotine under FR and PR schedules without
affecting food responding, blocked cue-induced nicotine but not food seeking, and
abolished the reward-enhancing effect of nicotine on ICSS (Paterson et al. 2008;
Vlachou et al. 2011). A novel analog of BHF177 named KK-92A exhibited even
better selectivity for inhibiting nicotine taking and seeking over food responding
(Li et al. 2017). A recent study by Sturchler et al. compared the efficacies of
GS39783, BHF177 and a structural analog NVP998 both in vitro and in vivo
(Sturchler et al. 2017). Interestingly these PAMs exhibit different functional influ-
ence on intracellular signaling pathways and their effects show species selectivity.
NVP998 displays highest PAM activity at the human receptor while it has no effect
on nicotine self-administration in rats. This underscores the importance of testing
potential drugs in nonhuman primate models before moving on to clinical research.

5.3 Opioids

The main mechanism of opioid reward is through inhibition of midbrain GABA
neurons via μ-opioid receptors, and resulting disinhibition of VTA DA neuron
activity (Johnson and North 1992; Corre et al. 2018; Margolis et al. 2014; Matthews
and German 1984; Gysling and Wang 1983). Not surprisingly, GABABR agonists
have been reported to block the initial rewarding effect of opioids, and the effect can
be localized to the VTA. For example, morphine-induced CPP was dose-
dependently inhibited by intra-VTA infusion of baclofen prior to morphine injection
during acquisition, an effect that was suppressed by the GABABR antagonist
saclofen (Tsuji et al. 1996). Morphine-induced locomotor activation and sensitiza-
tion, as well as NAc c-fos activation were also dose-dependently blocked by intra-
VTA baclofen (Leite-Morris et al. 2004). Baclofen given systemically (2.5 & 5 mg/
kg) likewise inhibited the development of morphine sensitization and morphine-
induced DA release in the NAc (Fu et al. 2012). In animals that have developed
morphine CPP, systemic baclofen treatment after, but not before extinction sessions,
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dose-dependently facilitated the extinction process, presumably by affecting the
reconsolidation of morphine-related memories (Heinrichs et al. 2010). Injection of
baclofen into the cerebral ventricles decreased morphine self-administration while
the GABABR antagonist phaclofen increased self-infusions (Ramshini et al. 2013).
Another group also showed that systemic baclofen (1.8 mg/kg) decreased morphine
self-administration under FR1 schedule, and that GABABR antagonist SCH 50911
blocked this effect (Yoon et al. 2007). Similarly for heroin, systemic baclofen dose-
dependently decreased heroin self-administration, and the higher dose (1 mg/kg) of
baclofen completely prevented acquisition of self-administration, even when baclo-
fen treatment was discontinued after a week (Xi and Stein 1999). Baclofen also
abolished heroin-induced DA release in the NAc, an effect partially blocked by intra-
VTA saclofen. Intra-VTA infusion of baclofen (2 μg), however, increased heroin
self-administration in well-trained animals, which likely indicates a compensatory
response to reduced heroin reward at low baclofen dosage (Xi and Stein 1999). Intra-
NAc baclofen on the other hand did not affect heroin self-administration. The effects
of GABABR PAMs on opioid addiction have so far not been reported.

Opioid withdrawal results in a wide range of physiological and psychological
symptoms, which may precipitate relapse. Rodents also display withdrawal signs
following naloxone-precipitated withdrawal from chronic morphine treatment. Sys-
temic baclofen (2 or 20 mg/kg) treatment before naloxone injection attenuated
behavioral signs of morphine withdrawal in multiple studies (Bexis et al. 2001;
Pedron et al. 2016; Diaz et al. 2006). Infusion of baclofen into the locus coeruleus
also dose-dependently decreased withdrawal signs (Riahi et al. 2009).

5.4 Other Drugs/Reinforcers

Propofol is a PAM of the GABAAR and is widely used as an intravenous anesthetic.
It has abuse potential in humans and is self-administered in rats (LeSage et al. 2000).
The rewarding effect of propofol is postulated to be the result of its activation of
GABAARs on VTA GABA neurons, leading to disinhibition of VTA DA neurons.
Baclofen, either systemic (3 mg/kg) or intra-VTA (50 or 100 ng/side) suppressed
propofol self-administration under FR1 schedule without affecting motor activities
or food-maintained responses (Yang et al. 2011).

In rats trained to self-stimulate the medial forebrain bundle (MFB) upon discrim-
inative cue presentation, GABABR agonist baclofen, but not a GABAAR agonist or
NMDAR agonist, infused into the VTA resulted in a rightward shift of the current
intensity-operant response curve, indicating a dampening of the rewarding effect of
MFB stimulation (Willick and Kokkinidis 1995). In another study, GABABR
agonist CGP 44532, GABABR antagonists CGP 56433A and CGP 51176 all
increased thresholds for brain stimulation reward (Macey et al. 2001). In addition,
the antagonists had additive effects when given with the agonist, instead of blocking
its effect. This paradoxical result could be attributed to GABABR action at pre-
versus post-synaptic sites (Macey et al. 2001).
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5.5 Stress and Addiction

Stress is a common trigger of relapse in drug addiction (Sinha 2008). The role of
GABABRs in stress-induced reinstatement of drug seeking has been investigated in
animal models. Intra-VTA infusion of the GABABR antagonist 2-hydroxysaclofen
prevented reinstatement of cocaine seeking induced either by stress or intra-VTA
injection of corticotropin-releasing factor (CRF) (Blacktop et al. 2016). In compar-
ison, intra-VTA bicuculline (GABAAR antagonist) had no effect on cocaine rein-
statement. Stress-induced reinstatement depends on CRF actions in the VTA. CRF
can exert opposing actions through the two receptor types, CRF-R1 and CRF-R2
(Williams et al. 2014). Within the VTA, CRF is known to enhance glutamate release
(Wang et al. 2005), increase AMPAR/NMDAR ratio in DA neurons (Ungless et al.
2003), as well as promoting GABA release (Williams et al. 2014) and potentiating
GIRK-mediated inhibitory currents in DA neurons upon D2R and GABABR acti-
vation (Beckstead et al. 2009). The balance of these effects can be altered by cocaine
self-administration, in that CRF-R2-mediated facilitation of GABA release becomes
suppressed and the overall effect of CRF shifts to excitation (Williams et al. 2014).
Due to the complexity of GABAergic signaling in the VTA, it is difficult to conclude
whether the GABABR signaling responsible for stress-induced cocaine reinstate-
ment acts on DA neurons, local interneurons, or presynaptic terminals. Measure-
ments of VTA neuron activity and DA release may help clarify the mechanism.

Chronic restraint stress facilitated the development of morphine CPP, in that
stressed mice required lower doses and less conditioning sessions to develop a
preference for morphine (Meng et al. 2014). Baclofen injection (1.25 or 2.5 mg/
kg) 30 min before morphine conditioning abolished the emergence of stress-
precipitated morphine CPP (Meng et al. 2014). However, it was not determined
whether baclofen would also block the morphine CPP that develops over more
pairings regardless of stress pre-exposure. In separate experiments, 2.5 mg/kg
baclofen facilitated extinction of morphine CPP in stressed mice, and it prevented
forced swim-induced reinstatement of morphine CPP in both stressed and
non-stressed mice (Meng et al. 2014).

There are several instances where baclofen was used in conjunction with the
GABAAR agonist muscimol to inhibit neural activity of a specific brain region in a
drug addiction paradigm. Baclofen/muscimol injection into the NAc core or shell
suppressed context-induced reinstatement of cocaine seeking (Fuchs et al. 2008).
Baclofen/muscimol injection into the bed nucleus of the stria terminalis (BNST), a
key convergence point of cues and stress, reduced cue and/or yohimbine stress-
induced reinstatement of cocaine seeking (Buffalari and See 2011). The LHb
encodes aversive and anxiogenic states, and when inactivated by baclofen/muscimol
resulted in reduced cue-induced cocaine reinstatement in the presence of yohimbine
stress (Gill et al. 2013). Finally, baclofen/muscimol inactivation of BLA or ventral
hippocampus prevented stress-potentiated reacquisition of nicotine self-
administration (Yu and Sharp 2015). Whether GABABR modulation alone in
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these brain regions is sufficient to induce these behavioral effects remains to be
investigated.

5.6 Summary

So far, preclinical research has revealed a general pattern that GABABR agonists and
PAMs are capable of (1) attenuating the initial reinforcing/stimulating effect of
addictive drugs and blocking certain aspects of drug-induced plasticity; (2) reducing
self-administration of drugs on various reinforcement schedules; (3) reducing drug
seeking induced by cue, stress, or drug re-exposure; (4) attenuating withdrawal
symptoms for opioids. The first three effects have been localized to the VTA,
since intra-VTA application of GABABR ligands usually recapitulates the effects
seen with systemic application. Furthermore, GABABR-mediated inhibition of DA
neurons and resulting decrease in DA release is the principle mechanism of these
anti-reward effects. On the other hand, GABABR signaling can also mediate some
neural processes that contribute to drug addiction, especially in relation to stress and
anxiety during drug abstinence. Compared with GABABR agonists, GABABR
PAMs in most cases demonstrated comparable or better performance with less
undesirable nonspecific effects. Novel GABABR PAMs are continuously being
discovered and can be tested in the context of drug addiction. Future studies should
also investigate the pharmacokinetics and off-target activity of GABABR PAMs,
which are critical determinants of their clinical applicability. So far it is not known
whether other allosteric binding sites exist on GABABR or whether PAM binding
affects modulation by auxiliary subunits (KCTDs) (Filip et al. 2015), which also
interact with the GABABR2 subunit (Zuo et al. 2019; Zheng et al. 2019). Mapping of
the GABABR PAM binding site(s) will allow for in silico screening of new com-
pounds based on homology models, which may help accelerate the drug discovery
process.

6 Clinical Studies of GABABR Modulators in Drug
Addiction

For recent discussions on clinical trials using baclofen or other drugs that act
indirectly through the GABABR for the treatment of substance abuse, see (Tyacke
et al. 2010; Brebner et al. 2002; Phillips and Reed 2014; Agabio and Colombo
2015). To date, baclofen is the only GABABR ligand for which clinical data exist on
drug addiction treatment, although human studies using the GABABR PAM ADX
71441 developed by Addex Therapeutics (Kalinichev et al. 2017) for treating
cocaine use disorder have recently been funded by the NIH. In 2018 baclofen was
authorized for marketing as a treatment for alcohol use disorder in France although
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its effectiveness and safety have been questioned by a number of clinical studies
(Braillon et al. 2020; Palpacuer et al. 2018; Chaignot et al. 2018). With the
encouraging preclinical results discussed earlier, in the coming years we should
expect to see more GABABR PAMs in clinical studies.

Baclofen has been most extensively tested for cocaine use disorders. An open
label study in Los Angeles on 10 patients found that 20 mg baclofen given three
times per day (20 mg t.i.d.) decreased cocaine craving and use (Ling et al. 1998). A
subsequent randomized placebo-controlled trial by the same group however found
no significant effect of baclofen (20 mg t.i.d.) on cocaine craving although cocaine
use was reduced as confirmed by urine testing (Shoptaw et al. 2003). On the other
hand, in a few other studies cocaine craving in cocaine-dependent individuals was
reported to be suppressed by baclofen (60 mg per day) (Kaplan et al. 2004; Haney
et al. 2006). In addition, an fMRI study on cocaine-dependent individuals demon-
strated a baclofen-induced suppression of neural activation by subliminal cocaine
cues, but not sexual or aversive cues (Young et al. 2014). This provides a potential
mechanism for baclofen’s inhibition of cocaine craving. Interestingly, the subjective
“high” of cocaine was consistently found to be unaffected by baclofen (Rotheram-
Fuller et al. 2007; Haney et al. 2006; Lile et al. 2004; Ling et al. 1998). Discrepant
results were reported concerning baclofen modulation of the cardiovascular effects
of cocaine. While one study found a high dose of baclofen (60 mg) attenuated
cocaine (50 mg)-induced increase in heart rate (Haney et al. 2006), another study
showed that baclofen plus amantadine (30 mg and 100 mg t.i.d.) did not impact heart
rate or blood pressure changes with 20 and 40 mg cocaine (Rotheram-Fuller et al.
2007). Yet another study reported only an increase in systolic blood pressure with
45 mg cocaine, which was not affected by up to 30 mg of baclofen (Lile et al. 2004).

A multi-center double-blind study involving 160 individuals with severe cocaine
dependence tested the efficacy of an 8-week treatment with baclofen (60 mg/day) on
cocaine use (Kahn et al. 2009). Unfortunately, there was no difference between
baclofen and placebo groups in cocaine use (self-reported and urine test confirmed)
or craving. While the severity of cocaine dependence may have contributed to the
negative result, it has also been suggested that baclofen is more likely to help prevent
relapse than to initiate abstinence (Phillips and Reed 2014; Tyacke et al. 2010;
Brebner et al. 2002). Indeed, as discussed above, baclofen does not alter the
subjective experience in taking cocaine, but rather reduces craving during absti-
nence. In addition, the 60 mg/day dose that was recommended for treating spasticity
was well tolerated across aforementioned studies and may need to be gradually
augmented to achieve better effects on addiction treatment. In line with this, a
randomized double-blind trial of baclofen (20 mg t.i.d.) on methamphetamine
dependent individuals revealed a significant treatment effect only among those
who reported taking a higher percentage of baclofen (Heinzerling et al. 2006).

The acute effect of baclofen (20 mg) on cigarette smoking has been studied on
smokers using a double-blind within-subject design (Cousins et al. 2001). In the 3-h
ad libitum smoking period following drug administration, the number of cigarettes
smoked and nicotine craving were not changed by baclofen. Baclofen did however
decrease liking of cigarette smoking and produced a sedative/relaxing feeling. It
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would be of interest to see whether this acute change in subjective experience would
have long-term impact if baclofen is repeatedly paired with smoking. A more recent
double-blind placebo-controlled trial examined the effects of prolonged baclofen
treatment (9 weeks) on cigarette smoking (Franklin et al. 2009). Here a higher dose
of baclofen was used, i.e. 80 mg per day in 20 mg doses, which was titrated up over
12 days. Baclofen was significantly more effective in reducing the number of
cigarettes smoked per day although a decline in smoking over the 9 weeks was
seen in the placebo group as well. Importantly, baclofen did not produce more side
effects than placebo, except mild sedation. The authors attributed this lack of side
effects to the gradual increase of baclofen dose at the beginning of the study. These
findings are very encouraging and suggest that baclofen could potentially be used for
smoking relapse prevention. Future studies should also monitor cigarette consump-
tion after cessation of baclofen treatment, as it has been reported that abrupt
discontinuation of baclofen can produce withdrawal symptoms and relapse into
cocaine use (Kaplan et al. 2004).

There are very few clinical studies so far evaluating baclofen’s effect on opioid
dependence and withdrawal, possibly due to the availability of methadone and
buprenorphine as treatment options. One randomized double-blind clinical trial
compared the effects of baclofen (40 mg/day) and alpha-2A adrenergic receptor
agonist clonidine (0.8 mg/day) on opiate addicts undergoing detoxification, and
showed that baclofen was more effective in treating both the physical and mental
symptoms of withdrawal (Akhondzadeh et al. 2000). The side effects and retention
rate for the two drugs were similar while clonidine generated more problems relating
to hypotension (Ahmadi-Abhari et al. 2001). These studies suggest that baclofen
may serve as a better detoxification medication than clonidine. However, the lack of
placebo control in this trial prevented a direct evaluation of baclofen’s intrinsic
effects. Subsequently, the same group conducted a 12-week long double-blind
placebo-controlled trial to evaluate the effect of 60 mg/day baclofen on opioid
withdrawal (Assadi et al. 2003). It was found that retention rate was significantly
higher for the baclofen group, and that baclofen treatment was significantly better
than placebo in managing withdrawal and depressive symptoms. However, the rates
of opioid-positive urine did not differ between the groups. One drawback of the
present studies is the high dropout rate during the trial. In the future, larger clinical
trials should be conducted to help validate these findings.

Baclofen generally does not produce subjective effects indicative of abuse poten-
tial in humans. However, in cannabis users trained to discriminate THC from
placebo, baclofen alone (50 mg) was able to substitute for the THC discriminative
stimulus (Lile et al. 2012). This suggests that baclofen may help relieve some
symptoms associated with cannabis abstinence, such as craving and anxiety. Future
studies should evaluate the potential of baclofen and other GABABR ligands in
treating cannabis use disorders. Thus far, one study focusing on daily marijuana
smokers found that baclofen (60, 90 mg/day) dose-dependently reduced craving for
marijuana and tobacco during active smoking, yet it did not impact mood during
abstinence and did not prevent relapse (Haney et al. 2010). Actually, baclofen led to
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slight worsening of cognitive performance and early wake-ups during marijuana
abstinence.

In summary, clinical studies have demonstrated some preliminary success as well
as limitations for baclofen in addiction treatments. Baclofen appears to help amelio-
rate craving and withdrawal symptoms, and can help prevent relapse especially at
high doses. It may best serve as a compliment to existing forms of therapy and
medication, instead of a stand-alone treatment. Whether baclofen is also effective in
treating multidrug addiction will require more investigation. One limitation of
baclofen is its relatively short pharmacokinetic profile, which necessitates multiple
(3–4) doses per day. Typical dosage used is 60 mg per day given in three doses
although this was based on the recommendation for spasticity and should be adjusted
to achieve the best outcome for treating addiction. Many studies start with a lower
dose and titrate it up over the course of a few days, and this seems to help reduce side
effects. Another GABAergic drug vigabatrin induces a more prolonged increase in
GABA levels due to its molecular mechanism as an irreversible inhibitor of GABA
transaminase (Tyacke et al. 2010). However, the lack of GABABR specificity gives
rise to a wide range of side effects. With the development of newer GABABR
agonists and PAMs and the accumulating evidence that they are comparably or
more effective than baclofen in suppressing addiction-like behavior while having
less side effects in animal models, more efforts should be put in to push these drugs
towards clinical research. In addition, the development of drugs that target signaling
molecules downstream of GABABRs may also provide options for treating
addiction.

7 Conclusions

GABABR signaling plays important roles in the reward circuit, and advancing
techniques are enabling more in-depth dissection of the nuanced interactions
between drugs of abuse and GABABR signaling. On the other hand, pharmacolog-
ical research, both preclinical and clinical, has revealed great potential for GABABR
agonists and PAMs as a supplemental treatment for drug addiction, mainly in
suppressing craving, relapse, and withdrawal symptoms. Further research is needed
to find the most efficacious, specific, and practical GABABR agent for human use, as
well as to understand the potential long-term side effects due to GABABR modula-
tion in various parts of the brain.
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Abstract Preclinical research over the past several decades has demonstrated a role
for the γ-aminobutyric acidB (GABAB) receptor in alcohol use disorder (AUD). This
chapter offers an examination of preclinical evidence on the role of the GABAB

receptor on alcohol-related behaviors with a particular focus on the GABAB receptor
agonist baclofen, for which effects have been most extensively studied, and positive
allosteric modulators (PAMs) of the GABAB receptor. Studies employing rodent and
non-human primate models have shown that activation of the GABAB receptor can
reduce (1) stimulating and rewarding effects of alcohol; (2) signs of alcohol with-
drawal in rats made physically dependent on alcohol; (3) acquisition and mainte-
nance of alcohol drinking under a two-bottle alcohol versus water choice procedure;
(4) alcohol intake under oral operant self-administration procedures; (5) motivational
properties of alcohol measured using extinction and progressive ratio procedures;
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(6) the increase in alcohol intake after a period of alcohol abstinence (the alcohol
deprivation effect or ADE); and (7) the ability of alcohol cues and stress to reinstate
alcohol seeking when alcohol is no longer available. Baclofen and GABAB PAMs
reduce the abovementioned behaviors across different preclinical models, which
provides strong evidence for a significant role of the GABAB receptor in alcohol-
related behaviors and supports development of medications targeting GABAB

receptors for the treatment of AUD. This chapter highlights the value of examining
mechanisms of alcohol-related behaviors across multiple animal models to increase
the confidence in identification of new therapeutic targets.

Keywords Alcohol · Animal models · Baclofen · GABA · Positive allosteric
modulators

1 GABAB Receptors and Alcohol Use Disorders: Preclinical
Studies

Alcohol use disorder (AUD) can be a chronic, relapsing condition with many
individuals returning to heavy drinking after detoxification and abstinence.
Advances in our understanding of the behavioral, neurobiological, genetic, and
environmental mechanisms that perpetuate heavy alcohol use will shed light on
the most promising methods to promote sustained reductions in alcohol use. Central
to the advancement of our understanding of these mechanisms, and their interac-
tions, is the use of preclinical animal models that capture key aspects of AUD. While
it is not possible to model all aspects of the human disorder in animals, models have
been developed to study different features related to AUD. Examining these different
features separately affords more precise experimental control of alcohol exposure
and allows for control over the multiple, confounding influences involved in the
development and maintenance of AUD.

In considering animal models, it is important to remember that models are
constantly evolving as we learn more about AUD and its diagnosis. For example,
the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders
(DSM-IV) had two distinct disorders, alcohol abuse and alcohol dependence, with
specific diagnostic criteria for each. Diagnosis of alcohol dependence differed from
the historical use of the term “dependence,” which referred to a physiological
adaption to chronic alcohol consumption in which alcohol withdrawal syndrome
occurred when alcohol use was discontinued. This differentiation is important as
physical dependence is a function of dose and duration of drug exposure, and occurs
outside of substance use disorders (e.g., medications for pain, anxiety, or depres-
sion). The fifth edition of the DSM (DSM-5) now has a single disorder called AUD
with mild, moderate, and severe subclassifications based on the number of diagnos-
tic criteria met. AUD includes a range of drinking patterns and behavioral
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components, and spans a continuum of severity. Thus, the use of multiple animal
models that capture different features of AUD and encompass this continuum is
important.

The present chapter offers an examination of preclinical evidence on the role of
the GABAB receptor in alcohol-related behaviors with a particular focus on GABAB

receptor agonists and positive modulators, for which effects have been most exten-
sively studied. This includes baclofen, a GABAB receptor agonist that has been
studied in rodents and non-human primates, and positive allosteric modulators of
GABAB receptors (GABAB PAMs) – CGP7930, GS39783, BHF177, rac-BHFF,
ADX71441, CMPPE, COR659, and ORM-27669 – studied primarily in rodent
models. GABAB PAMs bind to sites of the GABAB receptor that are distinct from
the binding site of endogenous GABA or direct agonists, such as baclofen. GABAB

PAMs have no or modest intrinsic agonist activity; they activate the GABAB

receptor system only when and where endogenous GABA has been released and
can potentiate the action of endogenous GABA (or agonists; Urwyler 2016). The
following sections review preclinical evidence featuring baclofen (see Table 1 for
study details) and GABAB PAMs (see Table 2 for study details) and are organized by
the procedures utilized.

2 Locomotor Activity

Acutely, alcohol produces a biphasic effect on spontaneous locomotor behavior in
rodents, where lower doses stimulate activity and very high doses suppress activity
and produce a loss of the righting reflex (i.e., the rodent no longer flips onto its feet
when placed on its back) (Pohorecky 1977). Alcohol-induced stimulation of loco-
motor activity has been used to model the stimulating and euphorigenic effects of
alcohol in humans. It has been proposed that a drug that can reduce alcohol-induced
stimulation of locomotor activity in rodents may also reduce the euphorigenic effects
of alcohol in humans (Wise and Bozarth 1987). In a seminal study, acute intraper-
itoneal (i.p.) administration of 5 mg/kg baclofen prior to alcohol administration
prevented alcohol-induced stimulation of locomotor activity in mice (Cott et al.
1976). This finding was replicated in subsequent studies showing that acute admin-
istration of baclofen prior to alcohol prevented increases in locomotor activity
induced by low-to-moderate doses of alcohol in several different rat and mouse
strains (Arias et al. 2009; Boehm II et al. 2002; Broadbent and Harless 1999; Chester
and Cunningham 1999; Holstein et al. 2009a; Humeniuk et al. 1993; Quintanilla
et al. 2008; Shen et al. 1998). Acute administration of the GABAB PAM GS39783
(30 mg/kg, i.p.) also has been shown to suppress locomotor activity induced by acute
administration of 2 g/kg alcohol in mice (Kruse et al. 2012).
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3 Place Conditioning

Place conditioning can be used to study the rewarding and aversive effects of drugs.
The place conditioning apparatus used for rodents is typically a 2- or 3-sided
chambered compartment with dividers between sides; each side of the box has
distinct environmental cues (e.g., floor texture, color). Animals are treated with a
drug/dose and placed in one side of the compartment (CS+); vehicle administrations
are paired with the other side of the compartment (CS�). After repeated drug-CS+ or
vehicle-CS� pairings, the divider is removed and drug-free animals are tested for
side preferences. A conditioned place preference (CPP) assesses the rewarding
effects of drug administration by measuring increased approach and contact behav-
iors to the location containing the distinct environmental cues previously paired with
the drug and is measured as increased time spent in the drug-paired compartment
during the drug-free test.

The effects of activation of the GABAB receptor on CPP have been mixed. An
early study reported that the repeated administration of baclofen (before each
conditioning session) did not affect the acquisition of CPP associated with 2 g/kg
alcohol in mice (Chester and Cunningham 1999). In a subsequent study, acute
microinjection of baclofen into the ventral tegmental area (VTA) prior to preference
testing decreased CPP associated with 2 g/kg alcohol in mice (Bechtholt and
Cunningham 2005). One study has investigated effects of GABAB PAMs on CPP
using the positive modulators ORM-27669 and rac-BHFF. In that study, the repeated
administration of ORM-27669 or rac-BHFF (before each conditioning session) did
not significantly change the acquisition of CPP associated with 0.5 g/kg alcohol in
mice. The injection-free test session was conducted 48 h after the last conditioning
session, which may have contributed to the lack of effects of ORM-27669 and
rac-BHFF (de Miguel et al. 2018). Effects of baclofen and GABAB PAMs on CPP
have not been examined in rats.

4 Alcohol Withdrawal Syndrome

Heavy drinkers who abstain from alcohol use may experience alcohol withdrawal,
which can include mild to moderate symptoms such as tremors, irritability, or
anxiety to more severe symptoms such as delirium tremens, hallucinations, and
seizures (Saitz 1998). When animals are exposed to a period of chronic alcohol
consumption or administration, followed by a period of abstinence in which access
to alcohol is withheld, animals often show signs of withdrawal (e.g., tremors,
anxiety-like behavior, seizures, irritability/aggression) that can resemble those
observed in humans experiencing alcohol withdrawal (Becker 2000). In rats made
physically dependent on alcohol via repeated intragastric alcohol administration,
baclofen has been shown to reduce tremors and seizures (Colombo et al. 2000).
Baclofen was also effective in the reduction of anxiety-like behaviors and tremors in
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rats made physically dependent on alcohol by prolonged exposure to an alcohol-
containing diet (File et al. 1991; Knapp et al. 2007). However, in mice made
physically dependent by exposure to an alcohol-containing diet, baclofen did not
affect tremors or tail arch, and induced convulsive behavior (Humeniuk et al. 1994).

5 Alcohol Drinking

5.1 Acquisition and Maintenance of Alcohol Drinking

A common method to assess alcohol drinking is to give rodents access to alcohol and
water concurrently in two separate bottles in their home cages and measure con-
sumption of both fluids. This two-bottle “alcohol versus water” choice regimen
allows for measurement of the amount of alcohol that animals will consume volun-
tarily when alcohol and water are both available. Access to alcohol can be unlimited
(i.e., 24 h/day) or limited (i.e., <24 h/day or access on alternating days). Outbred
rodents (e.g., Swiss mice, Long-Evans rats, Wister rats) rarely consume sufficient
amounts of alcohol to achieve a blood alcohol level (BAL) of 0.08% or more
(Leeman et al. 2010). High alcohol intake and BALs exceeding 0.08% can be
obtained in inbred mouse (e.g., C57BL/6N; high-alcohol-preferring, HAP mice)
and rat (e.g., Sardinian alcohol-preferring, sP; University of Chile bibulous,
UChB; Alko Alcohol, AA rats) lines selectively bred for high alcohol drinking,
preference, or blood alcohol levels (Crabbe 2008), and such lines have been used
extensively to investigate novel pharmacotherapies, often in comparison to
non-preferring or low drinking strains.

Several studies have used the two (or more)-bottle “alcohol versus water” choice
regimen to investigate effects of baclofen on the acquisition and maintenance of
alcohol drinking. Water availability allows for evaluation of whether a change in
alcohol intake after administration of a test drug produced a specific effect on
alcohol. Some studies (Colombo et al. 2002, 2005) have shown that the repeated
administration of baclofen during initial access to alcohol decreased acquisition of
alcohol drinking in Sardinian alcohol-preferring (sP) rats given unlimited access to
alcohol. During initial access to alcohol, sP rats will typically escalate alcohol intake
over several sessions eventually reaching asymptote (Colombo et al. 2002, 2005).
However, baclofen increased acquisition of alcohol drinking in another study using
outbred Long-Evans rats given limited alcohol access (Smith et al. 1992). In most
studies, acute or repeated administration of baclofen reduced ongoing alcohol
drinking in several different rat (UChB, AA, sP, Long-Evans, and Wistar rats) and
mouse (Swiss, C57BL/6N, and HAP mice) strains (Boas et al. 2012; Colombo et al.
2000, 2004; Daoust et al. 1987; Kasten et al. 2015; Kemppainen et al. 2012; Peters
et al. 2012; Quintanilla et al. 2008; Stromberg 2004). In the studies in which
baclofen reduced the acquisition or maintenance of alcohol drinking, baclofen either
did not change water intake or increased water intake so that total fluid intake
remained unchanged, indicating a specific reductive effect on alcohol intake (Boas
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et al. 2012; Colombo et al. 2000, 2002, 2004, 2005; Kasten et al. 2015; Kemppainen
et al. 2012; Peters et al. 2012; Quintanilla et al. 2008; Stromberg 2004).

A few studies have used the two-bottle “alcohol versus water” choice regimen to
investigate effects of GABAB PAMs on the acquisition and maintenance of alcohol
drinking. In those studies, repeated treatment with GS39783 and CGP7930 during
initial access to alcohol decreased acquisition of alcohol drinking in alcohol-
preferring sP rats (Orru et al. 2005). Repeated administration of GS39783,
CGP7930, and rac-BHFF also reduced ongoing alcohol drinking in sP rats; these
effects were accompanied by increases in daily water intake, leaving daily total fluid
intake unchanged (Loi et al. 2013; Orru et al. 2005). Exposure to repeated cycles of
alcohol access and deprivation (i.e., chronic intermittent alcohol access) can generate
high levels of voluntary alcohol drinking in rodents (Crabbe et al. 2011; Hwa et al.
2011). Acute administration of the GABAB PAM ADX71441 reduced alcohol
intake, without altering water intake, in alcohol-preferring C57BL/6J mice repeat-
edly given intermittent alcohol access (Hwa et al. 2014).

5.2 Binge-Like Drinking

Binge drinking (drinking “too much, too fast”) is defined by the National Institute on
Alcohol Abuse and Alcoholism (NIAAA) as alcohol consumption sufficient to
achieve a blood alcohol level of 80 mg/dL (0.08%) or more within a 2–3 h drinking
period; this corresponds to consumption of about 0.8–1 g/kg. There are two mouse
models of binge-like drinking in which alcohol is voluntarily consumed – “drinking
in the dark” (DID) (Rhodes et al. 2005) and “scheduled high alcohol consumption”
(SHAC) (Finn et al. 2005) – that have been used to investigate effects of baclofen on
alcohol consumption. Under the DID procedure, brief periods of alcohol access
(2–4 h/day) are provided at fixed times during the early period of the dark phase of
the light/dark cycle. Under the SHAC procedure, water-restricted mice are given
daily access to water for periods of fluid availability ranging from 4 to 10 h; every
third day, access to alcohol is provided during the initial 30 min of fluid availability
followed by access to water during the remainder of the fluid-availability period.
Acute administration of baclofen reduced binge-like drinking in both models in
several different mouse strains, including C57BL/6J, high DID (HDID), and with-
drawal seizure control (WSC) mice (Crabbe et al. 2017; Kasten et al. 2015; Moore
et al. 2009; Tanchuck et al. 2011).

A few studies have used the DID procedure to investigate effects of GABAB

PAMs on binge-like drinking. In those studies, acute administration of GS39783,
ADX71441, rac-BHFF, and ORM-27669 reduced binge-like drinking in C57BL/6J
mice (de Miguel et al. 2018; Hwa et al. 2014; Linsenbardt and Boehm 2014).
Acutely administered GS39783 also has been shown to reduce binge-like drinking
in sP rats exposed to limited and unpredictable alcohol access during the dark phase
of the light/dark cycle. Water and food intake were unchanged (Colombo et al.
2015).
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Primate models have been developed that generate high levels of voluntary
alcohol intake and can produce binge-like drinking patterns (Baker et al. 2014,
2017; Kaminski et al. 2008; Katner et al. 2004, 2007; Weed et al. 2008; Weerts
et al. 2006). However, these models have not been well utilized to investigate effects
of baclofen or GABAB PAMs. Only two studies have examined effects of baclofen
using these primate models (Duke et al. 2014; Holtyn et al. 2017; see the “appetitive-
consummatory procedures” section for a description of these studies).

5.3 Relapse-Like Drinking

When animals are exposed to a period of alcohol drinking, followed by a period of
abstinence in which access to alcohol is withheld (i.e., deprivation), animals often
show a transient but marked increase in alcohol-drinking behavior upon return to
alcohol access. This phenomenon, termed the “alcohol deprivation effect” or ADE,
was first described in rats by Sinclair and Senter under the two-bottle “alcohol versus
water” choice regimen (Sinclair and Senter 1968). Since this initial finding, the ADE
has been observed in mice (Khisti et al. 2006; Melendez et al. 2006) and non-human
primates (Kornet et al. 1990; Weerts et al. 2006) under both two (or more)-bottle
“alcohol versus water” choice procedures (Spanagel et al. 1996; Wolffgramm and
Heyne 1995) and operant self-administration procedures (Heyser et al. 1997; Hölter
et al. 1997). The magnitude of the ADE is a function of the duration of alcohol
abstinence in mice, rats, and non-human primates (Middaugh et al. 2000; Rodd-
Henricks et al. 2000; Weerts et al. 2006), and in rodents, is augmented with repeated
alcohol deprivations (Oster et al. 2006; Rodd et al. 2003). It does not appear that
physical dependence is a primary factor in expression of the ADE; animals that show
the ADE do not show signs of a withdrawal syndrome upon alcohol abstinence
(Heyser et al. 1997), and when withdrawal symptoms are present, the ADE still
occurs after symptoms have dissipated (Cicero et al. 1971; Waller et al. 1982).

Four rodent studies have shown treatment with baclofen or the GABAB PAM
CMPPE to reduce ADE under the two-bottle “alcohol versus water” choice regimen.
In two studies, acute administration of baclofen upon return to alcohol access after
7 (Colombo et al. 2003a) or 14 (Colombo et al. 2006) days of alcohol abstinence
reduced ADE. Baclofen effects were specific to alcohol intake, as food and water
intake and spontaneous locomotor activity were unchanged. In the third study, rats
were exposed to repeated alcohol deprivations interspersed with long periods of
alcohol access. Repeated administration of baclofen (3 mg/kg) or CMPPE (10 and
30 mg/kg) during the final alcohol deprivation and return to alcohol access decreased
ADE. The reduction in ADE was accompanied by a decrease in spontaneous
locomotor activity for baclofen (suggestive of nonspecific effects), but not CMPPE
(Vengeliene et al. 2018).
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6 Operant Alcohol Self-Administration

Operant self-administration paradigms are commonly used to study voluntary alco-
hol intake in laboratory animals. Under this procedure, an animal performs a
response, such as pressing a lever, to obtain access to alcohol, and reinforcement
is demonstrated when self-administration of alcohol is greater when compared to
self-administration of the vehicle (what alcohol is mixed in). Baclofen and GABAB

PAM effects on alcohol self-administration have been investigated using a number
of different self-administration procedures (described below), including the fixed
and progressive ratio procedures, appetitive-consummatory procedures (“sipper”
and chained schedule of alcohol reinforcement procedures), and extinction and
reinstatement of alcohol seeking procedures.

6.1 Fixed Ratio (FR) Procedure

Under the prototypical fixed ratio (FR) procedure, a specific number of responses are
required to obtain access to alcohol. The response requirement to gain access to
alcohol remains unchanged within and across sessions. Several studies using the FR
procedure have shown that acute and repeated treatment with baclofen reduced both
the number of lever responses for alcohol and amount of self-administered alcohol in
several different rat and mouse strains (Anstrom et al. 2003; Besheer et al. 2004;
Dean et al. 2012; Janak and Michael Gill 2003; Liang et al. 2006; Lorrai et al. 2016;
Maccioni et al. 2005, 2012, 2018; Orrù et al. 2012; Walker and Koob 2007; Williams
et al. 2016). Similar findings have been reported with GABAB PAMs: acute treat-
ment with CGP7930, GS39783, rac-BHFF, BHF177, ADX71441, COR659, and
CMPPE (Augier et al. 2017; Liang et al. 2006; Lorrai et al. 2019; Maccioni et al.
2007, 2009, 2010b, 2012, 2017, 2018, 2019b; Orrù et al. 2012) and repeated
treatment with GS39783, rac-BHFF, and COR659 (Maccioni et al. 2015, 2019a)
reduced both the number of lever responses for alcohol and amount of self-
administered alcohol in rodents. Some of the GABAB PAMs (BHF177, rac-BHFF,
and CMPPE) had effects that were selective for alcohol as self-administration of
alternative reinforcers (e.g., sucrose or saccharin solutions) were unchanged, while
others (COR659 and ADX71441) had non-selective effects (Augier et al. 2017;
Maccioni et al. 2017).

Some studies also have investigated effects of combining low doses of GABAB

PAMs and baclofen. In the initial study of CGP7930 (Liang et al. 2006), the
combination of low doses of CGP7930 (10 mg/kg, i.p.) and baclofen (2 mg/kg, i.
p.) decreased alcohol self-administration in alcohol-preferring Indiana P rats. In the
same study, 10 mg/kg CGP7930 administered alone and 2 mg/kg baclofen admin-
istered alone were ineffective at reducing self-administration. This finding was
extended in subsequent studies showing that “ineffective” doses of GS39783
(5 mg/kg, i.g.) or rac-BHFF (5 mg/kg, i.g.) and baclofen (1 mg/kg, i.p.) reduced
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both the number of lever responses for alcohol and amount of self-administered
alcohol in rats (Maccioni et al. 2015). Both drug combinations (GS39783 + baclofen
and rac-BHFF + baclofen) were selective for alcohol (i.e., sucrose self-
administration in a control group did not change after administration of the drug
combinations).

6.2 Progressive Ratio (PR) Procedure

Under the within-session progressive ratio (PR) procedure, the number of responses
required to obtain access to alcohol is progressively increased after each delivery of
alcohol. The “breakpoint,” or the lowest ratio not completed, is taken as a measure of
the motivational properties of alcohol. Acute administration of baclofen reduced the
breakpoint for alcohol and the cumulative (overall) number of responses in several
rat strains (Maccioni et al. 2008b, 2012; Walker and Koob 2007). However, treat-
ment with baclofen also tended to reduce self-administration of sucrose or saccharin
solutions comparable to the self-administration of alcohol (Anstrom et al. 2003;
Colombo et al. 2003b; Janak and Michael Gill 2003; Maccioni et al. 2005, 2008b,
2012). Acute administration of the GABAB PAMs GS39783, ADX71441, BHF177,
COR659, and CMPPE reduced the breakpoint for alcohol in several rat strains,
including Wistar, sP, and P rats (Augier et al. 2017; Maccioni et al. 2008b, 2009,
2012, 2017, 2019b). Treatment with GS39783 and BHF177 did not alter breakpoints
for a nondrug, sucrose solution, whereas COR659 reduced breakpoints for sucrose.

6.3 Extinction and Reinstatement of Alcohol Seeking
Procedures

In the extinction and reinstatement procedures, alcohol seeking is observed under
conditions in which access to alcohol has been discontinued. Under the extinction
procedure, the cues presented are those that previously had been directly paired with
alcohol self-administration. Animals trained to self-administer alcohol will eventu-
ally stop responding if access to alcohol is discontinued. The persistence of
responding (e.g., the highest number of responses) provides a quantifiable measure
of the extent to which stimuli previously associated with alcohol maintain
responding in its absence. Acute administration of baclofen decreased lever pressing
during extinction of alcohol seeking in rats (Colombo et al. 2003b) and non-human
primates (Duke et al. 2014). The ability of a pharmacotherapy to facilitate extinction
may be important to the development of medications targeting alcohol cravings and
urges to drink.

The reinstatement paradigm measures the ability of an alcohol-associated stimu-
lus (cue-induced reinstatement), a priming dose of alcohol or another drug (drug-
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induced reinstatement), or a stressor such as a footshock (stress-induced reinstate-
ment) to reinstate responding (i.e., alcohol seeking) following extinction (i.e., in the
absence of alcohol). These procedures are designed to model conditions that can
trigger craving and relapse. Two studies in rats showed that acute administration of
baclofen prior to presentation of alcohol-associated stimuli reduced reinstatement of
alcohol seeking (Maccioni et al. 2008b; Vengeliene et al. 2018). Various GABAB

PAMs have shown efficacy in reducing alcohol- and stress-induced reinstatement of
alcohol seeking in sP and Wistar rats. Acute pretreatment with ADX71441 and
CMPEE prior to presentation of alcohol-associated stimuli or a stressor (footshock)
reduced reinstatement of alcohol seeking (Augier et al. 2017; Maccioni et al. 2019b;
Vengeliene et al. 2018), and repeated treatment with COR659 similarly reduced
cue-induced reinstatement of alcohol seeking (Maccioni et al. 2019a).

6.4 Appetitive-Consummatory Procedures

The “sipper” procedure and the chained schedule of alcohol reinforcement (CSR)
procedure have been developed to separately examine seeking and consumption
under conditions of ongoing alcohol availability. In these procedures, seeking is
defined as responding that produces the opportunity to consume alcohol. Under the
typical sipper procedure, developed by Samson et al. (1998), a specific number of
responses (e.g., 30 lever presses) were required to gain access to alcohol. Lever
responses in this phase were defined as appetitive alcohol seeking. Once the
response requirement was completed, alcohol was freely available for a fixed
duration (e.g., 20 min), which encompassed the consummatory phase. In two studies
that used the sipper procedure, baclofen reduced alcohol seeking but did not reduce
alcohol intake in male C57BL/6J mice and male Long-Evans rats (Czachowski et al.
2006; Tanchuck et al. 2011). One additional study used the “sipper” procedure to
examine effects of the GABAB PAM GS39783 on alcohol seeking and consumption
(Maccioni et al. 2010a). In that study, acute treatment with GS39783 decreased both
alcohol seeking and consumption in male sP rats. Selectively of effects of GS39783
on alcohol seeking and consumption were not investigated (Maccioni et al. 2010a).

The CSR, developed by Holtyn et al. (2014), Kaminski et al. (2008), and Weerts
et al. (2006), consisted of three sequential components – each contained different
schedule requirements – that modeled different phases of alcohol anticipation,
seeking, and consumption. Fulfilling the schedule requirement in each successive
component was necessary to progress to the next component with alcohol available
for self-administration only in the final component. The CSR can include fixed ratio
and within-session or across-session progressive ratio manipulations. Under the
CSR, baboons consume significant amounts of alcohol (�1.0 g/kg per day) to
reach BALs exceeding 0.08% (i.e., binge drinking) and maintain this level of
consumption 7 days per week for prolonged periods (Holtyn et al. 2014; Kaminski
et al. 2008). In the two studies that used the CSR procedure, administration of
baclofen during active daily drinking decreased alcohol self-administration
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behaviors and total consumption, but did not alter seeking responses (Duke et al.
2014; Holtyn et al. 2017). In contrast, when baclofen treatment was initiated during
abstinence, baclofen did not significantly alter alcohol self-administration upon
return to alcohol access conditions (Holtyn et al. 2017). Baclofen did, however,
facilitate extinction of responses previously reinforced by alcohol or by a non-alcohol
reinforcer (Tang, a calorically equivalent, orange-flavored beverage) under within-
session extinction conditions, particularly during early extinction (Duke et al. 2014).
Non-selective effects of baclofen on the non-alcohol reinforcer (i.e., Tang) and
transient side effects (i.e., vomiting, decreased food intake, and lethargy) also were
reported at the highest doses tested.

7 Discussion

The present chapter describes and highlights preclinical research on the role of the
GABAB receptor on alcohol-related behaviors. The therapeutic effects of the
GABAB receptor agonist, baclofen, in preclinical animal models of alcohol rein-
forcement, motivation, and self-administration are well established. Despite the
promising results in preclinical models, the use of baclofen in clinical practice
may be limited by side effects, such as sedation and motor incoordination (Garbutt
2018). Such effects were also suggested by some preclinical research. For example,
doses of baclofen that reduced alcohol self-administration potentiated the sedative
effects of alcohol, even at non-sedative doses of alcohol, and also reduced locomotor
activity (Besheer et al. 2004), or reduced self-administration of a non-alcoholic
reinforcer such as an orange-flavored sweet beverage (Duke et al. 2014; Holtyn
et al. 2017). Positive allosteric modulation of the GABAB receptor produced an
effect on alcohol self-administration and consumption similar to that produced by
baclofen. A potential advantage of GABAB PAMs is that they may possess a wider
therapeutic window compared to full agonists, such as baclofen. In general, the
GABAB PAMs have been shown to reduce alcohol self-administration at doses
lower than those inducing sedation and motor-incoordination.

To examine the selectivity of effects, preclinical studies have compared self-
administration and consumption of alcohol versus alternative, non-alcohol rein-
forcers (e.g., sucrose or saccharin solutions) following treatment with baclofen and
GABAB PAMs. The selectivity of the reducing effect of baclofen on alcohol self-
administration and consumption has been shown to be mixed, as treatment with
baclofen reduced consumption and self-administration of alternative, non-alcohol
reinforcers in some studies (Anstrom et al. 2003; Czachowski et al. 2006; Janak and
Michael Gill 2003; Maccioni et al. 2005, 2008b; Tanchuck et al. 2011). The majority
of studies examining GABAB PAMs have shown they selectively reduced alcohol
consumption and did not reduce consumption of other non-alcohol reinforcers
(Maccioni and Colombo 2019). Both baclofen and GABAB PAMs may be useful
treatments to promote alcohol abstinence and reduce drinking if it occurs, although
nonspecific effects of baclofen and some GABAB PAMs must be considered.
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The use of preclinical animal models is critical to understanding the development
of AUD and the consequences of chronic alcohol exposure. Furthermore, these
models provide valuable tools for the concurrent testing of potential pharmacother-
apies for AUD in a variety of paradigms. It is our contention that this concurrent
testing will increase the probability of developing a wider spectrum of efficacious
pharmacotherapies that can benefit a greater majority of individuals with AUD and
help identify the best candidates for advancement for in-human testing. The preclin-
ical studies reviewed in the present chapter have greatly increased our understanding
of the role of the GABAB receptor in the control of alcohol-related behaviors. The
demonstration that baclofen and GABAB PAMs modify alcohol-related behaviors
across multiple animal models allows greater confidence in the generality of the
findings.
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Abstract Harmful alcohol use and alcohol use disorders (AUD) result in major
health and community burden worldwide, yet treatment options are limited. Novel
pharmacotherapies are urgently required, and treatments involving GABAB recep-
tors have been used in treating alcohol-related disorders. This chapter will review the
clinical evidence of GABAB pharmacotherapies, such as baclofen and
γ-hydroxybutyric acid. This includes the use of these treatments in individuals
experiencing alcohol withdrawal symptoms and outlining the outcomes of studies
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of alcohol relapse prevention relapse including case studies, comparative studies and
randomised controlled trials. Laboratory research investigating biobehavioural
effects of baclofen will also be summarised and polymorphisms associated with
baclofen treatment, and safety concerns of GABAB treatments will be addressed. In
summary, pharmacological treatments targeting GABAB receptors such as baclofen
may be modestly effective in the management of alcohol use disorder, but safety
concerns limit the widespread applicability of the currently available agents.

Keywords Alcohol use disorder · Alcohol withdrawal · Baclofen · Neuroimaging ·
Pharmacotherapy · Psychophysiology · Randomised controlled trial · Treatment

1 Introduction

Harmful alcohol use is a pervasive worldwide issue linked to significant health and
community burden, accounting for 5.3% of all deaths and a causal factor in over
200 disease and injury conditions (World Health Organization 2018a). Globally, an
estimated 6.2% of men and 1.2% of women have alcohol use disorders (AUDs)
(World Health Organization 2018a). Diagnostic criteria for AUD have been devel-
oped and progressively validated and are included in the International Classification
of Diseases (World Health Organization 2018b) and the Diagnostic and Statistical
Manual of the American Psychiatric Association (American Psychiatric Association
2013). The cardinal features of AUD are loss of control over alcohol use and
continuing use despite evident harms. Other important diagnostic criteria result
from neuroadaptation leading to increased tolerance of the effects of alcohol and a
characteristic withdrawal syndrome upon cessation of alcohol consumption (Amer-
ican Psychiatric Association 2013). Alcohol-related liver disease is a particularly
important consequence of alcohol use (Thursz et al. 2018). Liver disease is the
leading cause of alcohol-related mortality (Asrani et al. 2019), and, conversely,
alcohol is the leading cause of advanced liver disease worldwide (Rehm et al.
2013). Liver disease complicates the pharmacological management of alcohol use
disorder (AUD) because drug metabolism may be impaired in the presence of liver
failure.

While alcohol use disorders are leading causes of preventable death, treatment
options are still limited. Currently, there are few pharmacological treatments specif-
ically indicated for alcohol dependence in Europe, the USA and Australia, including
acamprosate, naltrexone, nalmefene and disulfiram. These agents have been exten-
sively evaluated in a large number of double-blind, randomised controlled trials
(RCTs), a study design that randomly assigns participants to receive either a placebo
(or active placebo) or treatment, and considered the “gold-standard” research design
for evaluating treatment efficacy. RCTs of these agents have generally demonstrated
modest effect sizes for use in treatment of AUD (Johnson 2008), and treatment
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uptake in the community is low (Morley et al. 2016). There is thus an urgent need for
the development of novel agents for the treatment of alcohol use disorder that are
both more effective and more appealing to the target population.

2 Overview of Pharmacotherapies Modulating the GABAB
Receptor

A number of current therapeutic drugs influence GABAA transmission including
pregabalin, gabapentin and the benzodiazepines, but few act principally on GABAB

receptors, the focus of this review. Accordingly, we restrict this review of GABAB

receptor treatments for alcohol use disorders to agents that directly act upon the
GABAB receptor such as baclofen and γ-hydroxybutyric acid.

2.1 Baclofen

Baclofen is a selective GABAB receptor agonist that is emerging as a potential
treatment for alcohol dependence. Baclofen has minimal liver metabolism
(~10–15%), and few reported hepatic side effects (Addolorato et al. 2007), making
this drug of particular interest amongst those with alcohol-related liver disease.
Chronic alcohol use results in a downregulation of GABA receptor activity and
disinhibition of the dopaminergic pathway. GABAB receptors are expressed on
dopamine, and GABA neurons and preclinical studies have demonstrated that
baclofen can diminish self-administration of alcohol, maintenance and reinstatement
of alcohol-drinking behaviour (Agabio and Colombo 2014), possibly due to inhibi-
tion of the mesolimbic reward system.

There has been expanded utilisation of baclofen in the treatment of alcohol
dependence, particularly in Europe. Prescriptions for baclofen significantly
increased between 2007 and 2013 with a large proportion being initiated in primary
care (Chaignot et al. 2015). The provision of a temporary recommendation for
baclofen to be prescribed to alcohol-dependent patients was granted in France in
2014, and further approval was granted in October 2018 for use of baclofen in
alcohol-dependent patients up to a dose of 80 mg/day (Rolland et al. 2019).
Nonetheless, there is ongoing controversy in the field, and, among the few high-
quality trials in the literature, the results are mixed. The superiority of baclofen over
placebo is yet to be established (Agabio et al. 2018), and baclofen has been
recommended as a second-line treatment for alcohol use disorders for individuals
who do not respond to other treatments, though it can be an effective first-line
treatment for those with contraindications to currently approved medications.
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2.2 γ-Hydroxybutyric Acid

Sodium oxybate is the sodium salt of γ-hydroxybutyric acid (GHB). It has been
applied as a treatment for AUD since the early 1990s, particularly in European
countries such as Italy and Austria (Keating 2014). GHB is a short-chain fatty acid
structurally similar to GABA and is a weak agonist at the GABAB receptor (Sewell
and Petrakis 2010). It may be converted to GABA leading to direct activation of
GABAA and GABAB receptors, leading to sedative and anxiolytic manifestations
that also resemble alcohol-like effects (Bay et al. 2014). GHB is also a potent agonist
at the excitatory GHB receptor (Cash et al. 1999). It is likely that GABAergic
activity mediates the therapeutic effect of GHB on withdrawal and relapse in AUD
(Sewell and Petrakis 2010). As alcohol withdrawal results from reduced GABAergic
activity in the central nervous system, exogenous GHB may ameliorate alcohol
withdrawal through both its conversion to GABA and indirect activation of
GABAA receptors. GHB’s efficacy in relapse prevention may be as an effective
agonist treatment, as it affects the GABAA receptor in a similar fashion to alcohol.
This effect is analogous to the use of methadone for treatment of opioid dependence.

GHB can have a biphasic response upon dopamine release according to dose
concentration, which can increase the risk of overdose when GHB is used as a
treatment for AUD. At low concentrations of GHB, dopamine is released following
GHB receptor stimulation. However, dopamine release is inhibited by higher doses
of GHB that stimulate GABAB receptors (Caputo et al. 2009). This therefore pro-
duces a biphasic response, whereby lower doses of GHB cause euphoria, but higher
doses may lead to deep sedation and potentially fatal overdose (Keating 2014).
Consequently, abuse and toxicity limit the potential for therapeutic use of GHB.

One systematic review evaluating the use of GHB in the management of alcohol
withdrawal syndrome and also for relapse prevention (Leone et al. 2010) was
inconclusive regarding GHB’s efficacy over placebo or other pharmacological
treatments specifically for relapse prevention in AUD, due to an insufficient number
of RCTs. Recently, an expert group of European alcohol researchers and clinicians
evaluated the data for GHB in the treatment of AUD, and secondary analyses
indicated GHB is effective in alcohol-dependent patients with very high-risk drink-
ing (van den Brink et al. 2018). Nonetheless, these analyses were post hoc, and only
a small number of patients were included with a wide study duration range
(3–12 months).

3 Treatment for Alcohol Withdrawal Syndrome

Heavy drinkers that suddenly reduce their alcohol consumption or abstain altogether
may consequently experience symptoms of alcohol withdrawal. These symptoms
may range from mild to moderate effects, including tremors, anxiety, irritability and
agitation, to more severe effects including hallucinations, delirium tremens and
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seizures (Fiellin et al. 2002). Alcohol withdrawal syndrome (AWS), which com-
prises a cluster of these symptoms occurring in individuals with alcohol use disorder,
can occur after decreased chronic or heavy alcohol consumption or from cessation.
Resultant experienced physiological manifestations can be mild to moderate
(e.g. tremor, paroxysmal sweats, fever), but more severe presentations of symptoms
such as seizures and delirium can have serious outcomes, including death (Connor
et al. 2016). As several of these symptoms involve disruption of several neurotrans-
mitter systems, including inhibitory systems such as GABA, treatments for AWS
aim to target these systems to reduce these symptoms.

While benzodiazepines remain the preferred treatment for AWS, their use is
limited by abuse liability, tolerance, lack of efficacy in severe cases and complica-
tions related to sedation (Haber et al. 2009). Other pharmacotherapies for treating
alcohol withdrawal symptoms affecting GABAB receptors have been investigated,
such as baclofen, and the evidence of baclofen for treating AWS will be covered
briefly. Baclofen was initially used for treatment of AWS in alcohol-dependent
patients in two case report studies (a detailed examination of one or a small set of
patients administered a treatment) by the same research group (Addolorato et al.
2002b, 2003). In the first study (Addolorato et al. 2002b), a relatively low dose of
baclofen (10 mg day t.i.d.) was administered to five patients, who demonstrated a
rapid reduction of severity of AWS symptoms, as assessed using the Clinical
Institute Withdrawal Assessment for Alcohol-revised scale (CIWA-Ar) (Sullivan
et al. 1989). These patients maintained abstinence with continued baclofen treatment
for a subsequent 30 days, with no reported major side effects. Another single case
study of a patient (Addolorato et al. 2003) presenting with severe AWS who was
administered the comparatively high initial dose of baclofen (75 mg/day) demon-
strated significantly decreased AWS severity within 1 h of initial administration, and
after stabilisation the patient was abstinent for 30 days with a resultant lower
baclofen dose (30 mg/day) with no reported side effects.

Comparative studies that compare the target treatment versus an active “gold-
standard” treatment have evaluated baclofen versus benzodiazepines – considered
the gold-standard comparator for AWS treatment. Addolorato et al. (2006) found
that patients receiving either oral baclofen (30 mg/day for 10 days) or diazepam
(0.55–0.75 mg/kg/day for 6 consecutive days, with 25% tapered dose daily for days
7–10), experienced similar reductions in AWS severity, reflected by decreased
CIWA-Ar scores. Reddy et al. (2014) compared progressive reduction in baclofen
doses (30 mg/day t.i.d. reducing to 10 mg/day) versus chlordiazepoxide (75 mg/day
reducing to 25 mg/day) over 9 days and found both treatments decreased CIWA-Ar
scores, but baclofen was the less effective treatment. Recently, Gulati et al. (2019)
found comparable efficacy for baclofen (10 mg/day t.i.d.) and lorazepam (8–12 mg/
day t.i.d.) in an open-label study. However, in open-label study designs, the treat-
ment received is known to patients and researchers; this may lead to biased outcomes
as compared to blinded designs such as RCTs.

There have been two RCTs assessing the efficacy of baclofen for treating AWS
compared to placebo, including usual care for symptom-triggered benzodiazepine
treatment. In the first study (Lyon et al. 2011), patients with moderate AWS
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symptoms were randomised for a complete 3-day course of oral baclofen (n ¼ 18,
30 mg/day t.i.d.) or placebo (n ¼ 13), and baclofen treatment was associated with
significantly reduced lorazepam use for management of AWS. In a larger study by
Heppe et al. (2019) of 101 patients admitted for AWS, the same baclofen dose
regimen (n ¼ 50, 30 mg/day t.i.d.) compared to placebo (n ¼ 51) was administered
for 72 h. Baclofen did not significantly reduce progression of moderate of severe
AWS in these patients, although there was a trend of baclofen reducing
benzodiazepine use.

Taken together, while there is some evidence that baclofen may be effective in
reducing alcohol withdrawal symptoms, it does not have clear superiority over
benzodiazepines as a preferred pharmacotherapy for AWS. Two recent literature
reviews similarly concluded that the evidence was insufficient to justify routine use
of baclofen for AWS (Cooney et al. 2019; Liu and Wang 2019).

4 Relapse Prevention in Alcohol Use Disorders

Prevention of relapse is a major goal of pharmacotherapy of severe alcohol use
disorders (Freyer et al. 2016). Relapse involves resumption of heavy alcohol con-
sumption after a prolonged period of abstinence, and vulnerability to relapse is
clinically commonly associated with intense cravings desires to drink that are
often provoked by drinking-related cues (Becker 2008). It is a major obstacle to
treatment efforts, and patterns of fluctuating remission and relapse are common in
individuals in AUD treatment. Evidence from clinical studies of baclofen has been
reported here. Baclofen has been extensively evaluated as a potential pharmacother-
apy for relapse prevention in severe alcohol use disorder, with several case studies,
open-label studies and RCTs. Additionally, there have been multiple meta-analyses
evaluating the efficacy of baclofen (Bschor et al. 2018; Lesouef et al. 2014; Pierce
et al. 2018; Rose and Jones 2018). Despite this body of work, the evidence is still
equivocal regarding baclofen’s superiority over placebo for relapse prevention, as
presented in a recent consensus statement by leading researchers investigating
baclofen (Agabio et al. 2018). Low-to-moderate baclofen doses are defined here as
�60 mg/day, with high doses >60 mg/day (Pierce et al. 2018) – the latter including
very high doses of more than 300 mg/day (de Beaurepaire 2014).

4.1 Baclofen: Low-to-Moderate Doses

With regard to low-to-moderate dosing regimens, the initial RCT investigating
baclofen as a treatment of alcohol dependence was conducted by Addolorato et al.
(2002a), which demonstrated significantly higher rates of abstinence and reduced
alcohol intake after 4 weeks of baclofen (30 mg/day t.i.d.) treatment relative to
placebo in 39 Italian outpatients. In a subsequent double-blinded RCT (where both
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participants and researchers are blinded to treatment conditions) by the same
research group (Addolorato et al. 2011), a beneficial dose-response effect of baclo-
fen (30 mg/day versus 60 mg/day) was found, through secondary analyses, in
reducing the number of drinks per drinking day after 12 weeks compared to placebo,
with no reported significant differences for several alcohol dependence measures.
An Australian multisite double-blinded RCT by Morley et al. (2018a) of 104 out-
patients, with or without liver disease, demonstrated a greater time to lapse and
relapse for baclofen-treated patients (30 mg/day or 75 mg/day) and a significant
treatment effect for days abstinent compared to placebo.

Conversely, findings from a double-blinded RCT in the USA (Garbutt et al. 2010)
found no beneficial effect of baclofen (30 mg/day) versus placebo in 80 alcohol-
dependent patients randomised to 12 weeks of treatment. No significant effects were
seen for any reported drinking outcomes, although baclofen significantly reduced
subjective craving across the trial and reduced symptoms of anxiety. Similarly,
Ponizovsky et al. (2015) also did not observe any beneficial treatment effect of
baclofen during a 12-week RCT with a moderate dose (50 mg/day) in 64 alcohol-
dependent patients. Factors that may account for the disparity in these studies’
findings (Leggio et al. 2010) have included the relatively lower severity of AUD
in the USA study, coupled with a high placebo response for both studies (Garbutt
et al. 2010; Ponizovsky et al. 2015), as compared to studies demonstrating signifi-
cant baclofen treatment effects. Indeed, a recent meta-analysis showed that baclofen
was more effective for high drinking levels (Pierce et al. 2018), and similar effect
was found in the Australian baclofen trial (Rombouts et al. 2019), suggesting that
baclofen may have a significant beneficial effect in severe AUD cases only.

4.2 Baclofen: High-Doses

The use of high-dose baclofen was advocated by an influential anecdotal report
published by French cardiologist Olivier Ameisen (Ameisen 2004). This led to
widespread use of this medication, particularly in France. The first double-blinded
RCT of high-dose baclofen (Müller et al. 2015) was conducted in a sample of
German alcohol-dependent patients (N ¼ 56) administered individually titrated
baclofen doses (mean dose of 180 mg/day) versus placebo. There was a strong
positive treatment effect on abstinence rates, with a number needed to treat of 2.3.
Beraha et al. (2016) randomised 151 patients to high-dose baclofen (up to 150 mg/
day), low dose (30 mg/day) or placebo and found no beneficial treatment effect of
baclofen for time to first relapse or rates of abstinence. However, in post hoc
analyses, this group did report that higher doses were associated with a longer first
relapse. A long-term maintenance RCT of 180 mg/day in 320 patients by Reynaud
et al. (2017) found only a trend for a positive baclofen effect versus placebo at
6-month follow-up in reducing alcohol consumption, although they reported a
significant effect of baclofen to reduce craving.
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4.3 Specific Populations

The effectiveness of baclofen in treating AUD may be reliant on specific patient
characteristics increasing the probability of a favourable applicability of baclofen –

that is, a personalised approach to pharmacotherapy in these patients. One potential
reason of baclofen’s differential effects on different populations may be related to
greater depletion of brain GABA+ levels in specific populations, such as those with
ALD, which may predicate a more effective baclofen treatment response (Morley
et al. 2018b). Here, we briefly cover treatment effects of baclofen investigated in
individuals with AUD and comorbid issues, including liver disease and mood
disorders such as anxiety.

4.3.1 Alcohol-Related Liver Disease

Liver disease associated with alcohol is a major consequence of chronic alcohol
consumption with a dose-response relationship, which can be exacerbated by con-
ditions such as hepatitis C, with chronic infections of the hepatitis C virus leading to
both acute and long-term liver damage (Goldberg et al. 2017). Current approved
treatments for alcohol use disorders (e.g. disulfiram, naltrexone, nalmefene) are not
suitable for patients with liver disease as they are contraindicated due to metabolism
by the liver, whereas baclofen is processed primarily through the kidneys with low
liver metabolism (about 15%) (Davidoff 1985). Baclofen is thus an ideal candidate
for treating alcohol use disorder in patients with liver disease, and its effectiveness
has been investigated in this subgroup. An RCT by Addolorato et al. (2007)
demonstrated clear treatment effects of baclofen in reducing drinking outcomes
specifically in Italian patients with cirrhosis (N ¼ 84) in a 12-week trial, whereby
patients receiving baclofen (30 mg/day t.i.d) had higher rates of abstinence and
significantly reduced craving compared to placebo. This is contrasted by findings of
RCT of USA military veterans (Hauser et al. 2017) with comorbid chronic hepatitis
C and AUD, which found that a low dose of baclofen (30 mg/day) had no effect on
days abstinent or reducing alcohol use during a 12-week trial compared to placebo.
However, this sample was largely male (96.3% of sample) and had relatively low
levels of baseline consumption. Most recently, Morley et al. (2018a) have confirmed
the effectiveness of baclofen for treatment of AUD with high drinking levels and
comorbid liver disease, and this study is the first replication of the influential findings
of Addolorato et al. (2007). Furthermore, using magnetic resonance spectroscopy
imaging techniques, lower cortical levels of GABA were revealed in alcohol-
dependent patients with liver disease, and this suggests that a GABAB agonist may
restore GABA transmission in this setting (Morley et al. 2018b).
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4.3.2 Comorbid Anxiety

Morley et al. (2014) have previously reported no beneficial effect of baclofen
(30 mg/day, 60 mg/day) in an RCT in 42 alcohol-dependent patients in Australia.
No treatment effect was found for time to lapse or time to relapse, although a
beneficial treatment effect of baclofen to reduce alcohol consumption was found in
post hoc analyses in patients with a comorbid anxiety disorder. Further work by the
same group (Rombouts et al. 2019) analysing a subsequent larger trial (Morley et al.
2018a) failed to observe that anxiety was a significant predictor of baclofen to reduce
alcohol consumption. Garbutt et al. (2010) found that baclofen reduced anxiety
levels during treatment of AUD, although this sample was not diagnosed for
comorbid anxiety and did not find evidence of reduced drinking.

5 Meta-Analyses Assessing Baclofen’s Efficacy

The efficacy of baclofen in treating relapse in AUD is therefore unclear. This has
been further indicated through numerous meta-analyses conducted evaluating the
efficacy of baclofen, with multiple meta-analyses published in 2018 alone. The
inconsistency of findings between the individual trials can be partially explained
by differing criteria used for study inclusion, such as the subpopulations assessed,
and the reported outcomes. An earlier meta-analysis focused on RCTs using low
baclofen doses of 30 mg/day (Lesouef et al. 2014) and reported that baclofen
treatment had a significant effect on rates of abstinence but was limited by only
including studies administering a relatively low baclofen dose. More recently, one
meta-analysis determined that baclofen was associated with higher abstinence rates
in AUD samples versus placebo, but not with other drinking outcomes of increased
abstinence days or reduced heavy drinking days (Rose and Jones 2018). Alterna-
tively, the largest meta-analysis identified a modest positive effect superior to
placebo when considering noncomplicated AUD samples. Yet, baclofen’s overall
superior clinical utility was not clearly established, partly due to the significant
heterogeneity among the RCTs (Bschor et al. 2018). Moreover, another meta-
analysis examining alcohol-dependent samples indicates a dose-specific effect with
efficacy in low doses (<60 mg/day) for achieving abstinence, but no benefit in
higher doses (Pierce et al. 2018). Finally, benefit for those with high drinking levels
was identified by Pierce et al. (2018), an important finding that helps explain
numerous inconsistencies in the literature. In summary, it is apparent that there are
mixed findings from double-blinded RCTs evaluating baclofen as a pharmacother-
apy for AUD, and a consensus regarding superiority compared to placebo for
treatment of AUD has not been reached.
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6 Laboratory Studies Evaluating Craving
and Biobehavioural Effects of Baclofen

While several studies have evaluated baclofen in treating AUD, relatively few
studies have investigated the biobehavioural effects of baclofen by employing
psychophysiological techniques such as neuroimaging. Assessing these effects
using psychophysiological techniques may provide indications to how baclofen
may reduce drinking outcomes through a deeper understanding of how baclofen
acts on the central nervous system in humans. This can be identified more directly
with neuroimaging techniques, comparatively indirectly through measuring periph-
eral measures of response as well as the interaction baclofen may have with alcohol.
Moreover, as baclofen is assumed to reduce the subjective craving for alcohol,
demonstrating this using controlled laboratory techniques can elucidate the
biobehavioural mechanisms through which baclofen may attenuate these cravings.

An early study assessed acute dose effects of baclofen and in combination with
alcohol in a non-treatment seeking heavy drinking sample using doses containing
40 mg and 80 mg and no baclofen (Evans and Bisaga 2009). Overall, baclofen did
not affect subjective craving, and only modest increases in cardiovascular indices of
heart rate and blood pressure were observed. Both baclofen and alcohol did increase
sedation and impair cognitive performance, but there was no marked increase
observed in combination.

Another laboratory study observed that baclofen-treated participants, relative to
placebo, demonstrated reduced overall alcohol consumption for 2 days prior to, and
during, an alcohol administration task after a 7-day trial (Leggio et al. 2013).
Additionally, increased arterial blood pressure and salivation were seen during an
alcohol cue reactivity task, but no medication effect for subjective and physiological
responses to alcohol cues (Leggio et al. 2013). This same group has reported a lack
of anti-craving or anti-reinforcing effect following baclofen administration given
increased feelings of “high” and intoxication during an alcohol administration task
(Farokhnia et al. 2017). Baclofen-treated participants also displayed lower heart rate
during alcohol priming and administration, but few physiological differences were
reported during alcohol cue reactivity (Farokhnia et al. 2017), and the doses for these
two studies were relatively low (30 mg/day).

Follow-up analyses of the parent study (Farokhnia et al. 2017) found that the
interindividual variability in the pharmacokinetics of baclofen greatly influenced
biobehavioural outcomes, with a maximum baclofen concentration negatively cor-
relating with cue-elicited reported alcohol craving and alcohol-induced alcohol-
liking ratings (Farokhnia et al. 2018a). Moreover, when assessing baclofen effects
upon feeding and stress-related neuroendocrine responses, participants in the baclo-
fen group had higher levels of leptin compared to placebo, although no associated
alcohol consumption differences (Farokhnia et al. 2018b). As leptin has a key role in
mediating addictive and motivational behaviours, this may demonstrate a role of
GABAergic system in the shared neurobiology of gut-brain axis behaviours and the
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subsequent role of baclofen in dampening alcohol-, feeding- and stress-related
responses.

Lastly, dose-specific cue responses during an alcohol cue reactivity task were
examined in alcohol-dependent patients treated with low-dose (30 mg/day) or high-
dose (75 mg/day) baclofen or placebo after 2 weeks of treatment (Logge et al.
2019a). A range of psychophysiological indices were employed including skin
conductance, heart rate and heart rate variability. Only the high-dose baclofen-
treated patients demonstrated both more dynamic cue responses to appetitive water
and alcohol cues. Additionally, only those receiving high-dose showed increased
recovery after cues were removed as indicated by a return of high-frequency heart
rate variability levels to baseline levels before cue exposures. These two patterns of
dynamic cue responses and subsequent recovery reflect adaptive parasympathetic
autonomic nervous system activity which is involved in regulation of cue-elicited
responses, which is advantageous to controlling cue-elicited responses in AUD
(Logge et al. 2019a).

6.1 Functional Brain Activation Correlates with Baclofen

fMRI studies have assessed baclofen’s effects on cue-elicited craving and brain
activity in various patient samples and differing doses. Participants are shown
images of associated drinking cues while in an MRI scanner, and brain activities
during these images are compared to activity during control images to evaluate
regions of increased activity relevant to cues (Logge et al. 2019b). These studies
generally focused upon motivational pathways, including subcortical brain regions
of reward implicated in drug cue reactivity and cue salience, as well as brain
networks involved in processing and regulation of these cues (e.g. corticostriatal-
thalamic loop circuits) (Courtney et al. 2016; Jasinska et al. 2014).

Holla et al. (2018) found that participants administered a moderate dose (60 mg/
day) of baclofen for 2 weeks demonstrated increased brain activation from
pretreatment to posttreatment scan to alcohol cues compared to healthy controls.
This increased activation was seen in in the bilateral dorsal prefrontal cortex (PFC)
and rostral anterior cingulate cortex (ACC). Increased activation of ACC and
reduced insular cortex activity was also associated with longer time to lapse to
first alcohol use in the baclofen-treated participants. However, this study was limited
by the lack of a placebo group tested for comparison and was not completed within
the context of a RCT.

An fMRI cue reactivity study of individually titrated high-dose baclofen in
alcohol-dependent patients (Beck et al. 2018) showed a greater decrease in alcohol
cue-elicited brain activation from pretreatment baseline to treatment scan compared
to placebo-treated patients. These areas were primarily mesocorticolimbic areas
(i.e. left orbitofrontal cortex, bilateral amygdala, left ventral tegmental area
(VTA)). Furthermore, high-dose baclofen decreased alcohol cue-modulated

GABAB Receptors and Alcohol Use Disorders: Clinical Studies 205



functional connectivity between subcortical (i.e. VTA) and cortical regions (ACC,
medial PFC), with higher rates of abstinence for baclofen-treated patients.

Logge et al. (2019b) investigated whether there were dose-specific effects of
baclofen relating to cue reactivity and whether these effects were associated with
clinical outcomes. Participants receiving comparatively low (30 mg/day) or high
(75 mg/day) baclofen or placebo daily for 3 weeks underwent an fMRI cue reactivity
session. Interestingly, there were dose-specific effects in high-dose baclofen-treated
participants compared to placebo. Reduced brain activation in those receiving high-
dose baclofen, as compared to placebo, was seen in the dorsolateral and medial PFC
and ACC, which are key mesocorticolimbic brain regions implicated in reward in
addiction (see Fig. 1). Additionally, increased alcohol cue-elicited activation in key
prefrontal cortical and mesolimbic regions implicated in drug cue reactivity was
associated with more heavy drinking days after the scan session in the placebo-
treated patients compared to baclofen-treated patients.

In summary, assessment of psychophysiological indices of treatment effects,
including brain activity, has revealed how GABAB receptor pharmacotherapies
such as baclofen can modulate processes in the central and peripheral nervous
systems that may lead to observed drinking outcomes such as reduced consumption.
It should be noted that while these laboratory studies demonstrate dose-specific
effects of baclofen, higher doses are associated with more severe side effects and
are not more effective than lower doses in regard to clinical outcomes. Instead, these

Fig. 1 Greater brain activation to alcohol cues observed in alcohol-dependent patients receiving
placebo versus baclofen-treated patients (75 mg/day), showing regions of activation in key pre-
frontal regions implicated in drug cue reactivity including the medial prefrontal cortex (mPFC),
dorsal anterior cingulate cortex (dACC), dorsolateral prefrontal cortex (dlPFC) and supplementary
motor area (SMA). Displayed with p < 0.001 uncorrected. Colour bar indicates increasing
activation with T-scores of 3.4–5. Adapted from Logge et al. (2019b)

206 W. B. Logge et al.



studies of baclofen’s biobehavioural impacts may help to inform which subpopula-
tions may be best suited and amenable to treatment.

7 Polymorphisms Associated with Baclofen Treatment
Response

Although treatment with baclofen appears to be popular in the community, there is
significant heterogeneity, and not all individuals with alcohol dependence respond
favourably to baclofen. Thus, improvement in the ability to predict baclofen
response would have important clinical appeal. Advances in the understanding of
this heterogeneity will transform the management of alcohol use disorders, generat-
ing opportunity for a personalised approach (Enoch et al. 2012; Lee et al. 2014;
Wang and Wang 2016). It has been hypothesised by Enoch et al. (2016) that
downregulation of GABAB receptors leading to increased synaptic GABA may
increase the rewarding effects of alcohol and vulnerability for dependence. To this
degree, these authors demonstrated a significant and congruent association between
GABBR1 rs29220 and alcoholism in three populations with different ethnicity
(Finnish male, Plains Indian and African American sample), whereby the heterozy-
gotes were significantly more common in alcohol-dependent participants relative to
the controls. These authors noted that the GABBR1 rs29220, a non-coding intronic
single nucleotide polymorphism (SNP), could represent a tag for a common func-
tional SNP and postulated that this polymorphism could therefore be a predictor for
response to baclofen or its adverse effects in the treatment of alcoholism (Enoch et al.
2016). This association has now been identified in the recently completed Australian
baclofen study (Morley et al. 2018c) such that the rs29220 polymorphism moderated
the therapeutic effect of baclofen. Confirmation of this finding is anticipated in
prospective and/or independent cohorts.

8 Safety Concerns with Baclofen

Baclofen is associated with generally mild side effects, but this includes dose-
dependent sedation, which has a range of impacts including impairing driving skills
(Hetland and Carr 2014) or cognitive performance (Evans and Bisaga 2009).
Baclofen’s effects can also manifest as more severe sedation, particularly at higher
doses and combined with greater levels of alcohol consumption (Rolland et al.
2015). The majority of the RCTs reported no serious adverse events (SAEs)
(Addolorato et al. 2002a, 2007; Beraha et al. 2016; Garbutt et al. 2010; Hauser
et al. 2017; Morley et al. 2014; Müller et al. 2015; Ponizovsky et al. 2015), Those
reporting SAEs (Morley et al. 2018a; Reynaud et al. 2017) were largely determined
to be unrelated to study medication (for review, see Pierce et al. 2018). Poisoning
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with baclofen has been increasingly reported in regions where it is more commonly
used, particularly in France, where several poisoning cases have been reported after
use of baclofen for treatment of AUD (Boels et al. 2017). Of these cases, several
were considered serious, including four deaths. Similarly, in Australia, an increasing
number of calls to the Australian Poisons information service have been documented
and associated with increasing use of baclofen, presumably largely related to AUDs
(Jamshidi et al. 2018). Infrequently, dose escalation is found, and baclofen has some
degree of abuse liability (Dore et al. 2011). Moreover, abrupt cessation of baclofen
should be avoided as there has been some association with withdrawal delirium and
seizures (Nasti and Brakoulias 2011).

9 Conclusions

The GABAB receptor agonist baclofen has found a role in the treatment management
of AUDs, but its application is limited by modest effect size, toxicity and some
degree of abuse liability. The use of baclofen for alcohol withdrawal has limited
direct supportive evidence, but it may play an adjunctive role in some cases.
Understanding of the mechanisms underlying baclofen’s biobehavioural effects
using psychophysiological techniques may elucidate baclofen’s dose-specific effects
and identify suitable subpopulations. GHB is used in Italy, but abuse liability and
toxicity have precluded its adoption elsewhere notwithstanding evidence of some
efficacy. There have been recent developments of the therapeutic potential of
positive allosteric modulators (PAMS) in treatment of AUDs. PAMs have a dual
mode of action, enhancing the affinity of the GABAB receptors for GABA and
agonists while simultaneously potentiating their effects (Adams and Lawrence
2007). As this is suggested to result in fewer side effects and lower tolerance
compared to agonists alone, novel positive allosteric modulators appears promising,
but none are currently available at the clinical level (Maccioni and Colombo 2019).
Pharmacotherapies that target GABAB receptors therefore have a modest beneficial
effect in in the treatment of AUDs, but coupled with concerns about related side
effects, they currently have a limited applicability as a widespread treatment.
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Abstract A substantial fraction of the human population suffers from chronic pain
states, which often cannot be sufficiently treated with existing drugs. This calls for
alternative targets and strategies for the development of novel analgesics. There is
substantial evidence that the G protein-coupled GABAB receptor is involved in the
processing of pain signals and thus has long been considered a valuable target for the
generation of analgesics to treat chronic pain. In this review, the contribution of
GABAB receptors to the generation and modulation of pain signals, their involve-
ment in chronic pain states as well as their target suitability for the development of
novel analgesics is discussed.
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1 Introduction

Pain is a highly subjective and generally unpleasant sensation that has an essential
protective function to organisms. It provokes avoidance of harmful situations or
stimuli and indicates potential tissue damage and illness. The importance of pain for
survival is impressively demonstrated by humans insensitive to physical pain due to
mutations in the voltage-gated sodium channel Nav1.7. They frequently experience
severe injuries in their childhood before they learn alternative strategies to avoid
harmful situations (Bennett and Woods 2014). Pain has a major impact on wellbeing
and can be detrimental to the quality of life when it becomes chronic, i.e. if it persists
after healing of the pain-inducing injury.

There is a large body of literature indicating the involvement of GABAB receptors
in the modulation of pain signals and chronic pain states. They are thus considered as
promising drug targets for the development of novel analgesics. GABAB receptors
are ubiquitously expressed in the nervous system and are involved in all major
neurological functions and various neurological diseases (Gassmann and Bettler
2012).

GABAB receptors are heterodimeric G protein-coupled receptors comprising
GABAB1 and GABAB2 subunits (Jones et al. 1998; Kaupmann et al. 1998; Ng
et al. 1999; White et al. 1998). They are expressed in virtually all neurons at pre- as
well as postsynaptic locations (Kulik et al. 2002, 2003, 2006). Binding of the
neurotransmitter GABA to the receptor activates Gi/o proteins, which in turn mod-
ulate a number of effector systems. The most prominent effect of GABAB receptors
located in the soma and dendrites is the activation of G protein-coupled inwardly
rectifying potassium channels (GIRK channels), resulting in the hyperpolarization of
the neuronal membrane, thereby elevating the threshold for action potential gener-
ation (Luscher et al. 1997; Andrade et al. 1986; Greif et al. 2000; Otis et al. 1993). At
presynaptic sites, the most obvious effect of GABAB receptors is the inhibition of
voltage-gated Ca2+ channels, thereby reducing neurotransmitter release (Guyon et al.
2013; Mintz and Bean 1993; Chen and van den Pol 1998; Bussieres and El Manira
1999; Bean 1989; Lambert and Wilson 1996). Predominantly via these mechanisms,
GABAB receptors control the excitability and activity of neurons (Gassmann and
Bettler 2012).

GABAB receptors are expressed as two subtypes in the brain, GABAB1a,2 and
GABAB1b,2. They are assembled from two isoforms of the GABAB1 subunit
(GABAB1a and GABAB1b) (Kaupmann et al. 1997) in combination with the
GABAB2 subunit. GABAB1a and GABAB1b subunits are generated by alternative
promoter usage (Steiger et al. 2004) and differ only in their very N-terminal domain
by the addition of two sushi repeats in GABAB1a (Kaupmann et al. 1997; Hawrot
et al. 1998). Both subtypes are differentially regulated during development (Benke
et al. 1999; Fritschy et al. 1999, 2004) and serve distinct functional roles, which are
most likely caused by their distinct subcellular localization (Pérez-Garci et al. 2006;
Shaban et al. 2006; Vigot et al. 2006). GABAB1a is predominantly expressed at
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presynaptic terminals, whereas GABAB1b is mostly present at postsynaptic sites
(Vigot et al. 2006).

GABA and GABAB receptors are highly expressed in structures within pain
pathways, indicating their involvement in processing pain signals at different levels
(Hammond 1997; Enna and McCarson 2006). There is compelling evidence that
activation of GABAB receptors mediates analgesia, whereas GABAB receptor
antagonist increases the sensitivity to noxious stimuli (Hammond 1997). This not
only shows that activation of GABAB receptors by exogenously applied agonists can
relieve pain but also indicates the involvement of GABAB receptors in endogenous
processing of pain signals. This notion is further substantiated by the observation
that global deletion of GABAB receptors produces hyperalgesia (Schuler et al. 2001;
Gassmann et al. 2004). Here, the role of GABAB receptors in the processing of pain
signals and their potential as target for the development of analgesics is discussed.

1.1 Pain-Related Terminology

Allodynia: sensation of pain in response to a normally painless stimulus, such as light
touch
Analgesic: painkiller, drug to relieve pain by achieving analgesia
Analgesia: relief from pain, loss of pain sensation
Hyperalgesia: abnormally increased sensitivity to a painful stimulus
Hypoalgesia: decreased sensitivity to a painful stimulus
Nociception: detection of painful stimuli
Nociceptor: a sensory neuron that responds to harmful or potentially damaging
stimuli
Nocifensive behaviour: response to noxious or painful stimuli

2 Expression and Function of GABAB Receptors
in Nociceptive Pathways

Pain is an unpleasant sensation consisting of an affective-motivational (pain unpleas-
antness) and a sensory component (pain intensity) (Bell 2018). While the affective-
motivational component is processed in the brain, the sensory part (nociception)
involves peripheral and central structures. Pain signals are generated in the periphery
(e.g. skin, muscles, joints, viscera) and detected by nociceptors, which are primary
afferent neurons conveying the pain signals to the spinal cord (Fig. 1). The pain
signals are integrated by interneurons of the spinal cord and transmitted by projec-
tion neurons to the brainstem and diverse higher brain centres (ascending pathways)
for further processing leading to pain perception. In addition, pain signals are
modulated (inhibition or facilitation) by descending pathways originating in the
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brain (White et al. 2018) (Fig. 1). Descending pathways can inhibit ascending pain
signals and provide endogenous pain relief (e.g. stress-induced analgesia).

2.1 GABAB Receptors in Nociceptors

Noxious signals in peripheral tissues are sensed by so-called nociceptors.
Nociceptors are glutamatergic primary afferent neurons with branched nerve endings

Fig. 1 Simplified schematic view of structures involved in transmitting and modulating nocicep-
tive information relevant to GABAB receptors. Pain signals generated in the periphery (organ) are
detected by nociceptors (C and Aδ fibre nociceptors, orange), which convey the signals to the dorsal
horn of the spinal cord. Pain signals are extensively integrated by a complex network of excitatory
(red) and inhibitory (blue) interneurons abundantly (but not exclusively) located in the superficial
layers of the dorsal horn (laminae I and II). Pain signals are transmitted by projection neurons (large
red dot) to the brainstem and diverse higher brain centres (ascending pathways, red lines) for further
processing leading to pain perception. In addition, pain signals are modulated (inhibition or
facilitation) in the dorsal horn by descending pathways (blue lines) originating in the brain. AMY
amygdala, CTX cerebral cortex, DRt dorsal reticular nucleus, HY hypothalamus, NRM nucleus
raphe magnus, PAG periaqueductal grey, PB parabrachial nucleus, RVM rostral ventromedial
medulla
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in the innervated tissue, responding primarily to noxious signals (heat, mechanical
and chemical stimuli). Their cell bodies are located in the dorsal root ganglia (DRG),
and their central axon endings synapse in the dorsal horn of the spinal cord.
Nociceptors are categorized as fast-conducting (5–35 m/s) medium-diameter
(1–5 μm) myelinated neurons (Aδ-fibres) and slow-conducting (<2 m/s) small-
diameter (0.2–1.5 μm) unmyelinated neurons (C-fibres) (Albrecht and Rice 2010).
Aδ afferents convey fast sharp and well-localized pain, while C-fibre neurons give
rise to slow and diffuse pain sensation. GABAB1 and GABAB2 mRNAs and proteins
are well expressed in nociceptors (Charles et al. 2001; Towers et al. 2000; Engle
et al. 2006, 2012; Hanack et al. 2015; Yang et al. 2001; Desarmenien et al. 1984). In
the DRGs, GABAB receptors are mainly localized in the somata of Aδ and C-fibres.
In addition, GABAB receptors are highly expressed at central axon terminals of Aδ
and C-fibres, which target the superficial dorsal horn of the spinal cord (predomi-
nantly laminae I and II).

2.1.1 GABAB Receptors in Peripheral Axon Endings of Nociceptors

GABAB1 as well as GABAB2 subunit proteins were detected in free nerve endings of
nociceptors in dermal tissue of the hindpaw of mice (Whitehead et al. 2012). This
suggests the modulation of nociceptive signals via GABAB receptors already occurs
at the sites of signal generation.

Interestingly, GABAB1, but not GABAB2, was found at peripheral axon terminals
in a subset of nociceptors expressing transient receptor potential cation channel
subfamily V member 1 (TRPV1) (Hanack et al. 2015). TRPV1 is a non-selective
cation channel activated by a large variety of stimuli including heat, acidic condi-
tions and capsaicin. TRPV1 plays an important role in perception and integration of
noxious stimuli in peripheral tissues as well as in the development of pathological
pain (Moore et al. 2018). Different inflammatory mediators/pathways can dramati-
cally lower the activation threshold of TRPV1 in a phosphorylation-dependent
manner, leading to hyperalgesia (increased sensitivity to noxious stimuli).
GABAB1 appears to prevent the sensitization of TRPV1 by a noncanonical signal-
ling pathway that involves neither GABAB2 nor Gi/o proteins (Hanack et al. 2015).
Instead, GABAB1 appears to interact with TRPV1 upon agonist activation, inducing
most likely a conformational change that shields TRPV1 from sensitization by
preventing its PKC-mediated phosphorylation. Application of GABAB receptor
antagonists led to TRPV1 sensitization (Hanack et al. 2015), suggesting that tonic
activation of GABAB1 keeps the threshold for TRPV1 activation high, thereby
preventing sensitization of the system. Thus, the interaction of GABAB1 with
TRPV1 upon activation with GABA appears to be an endogenous mechanism to
inhibit sensitization of TRPV1. However, this mechanism fails under pathological
inflammatory conditions and leads to peripheral hyperalgesia. As application of
baclofen reduces peripheral inflammatory hyperalgesia (Hanack et al. 2015), acti-
vation of GABAB1 has the potential to counteract hyperalgesia. It is very likely that
under pathological inflammatory pain, GABAB1 and/or the release of GABA at
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peripheral nociceptor axon terminals is downregulated, cancelling the protective
function of GABAB1.

2.1.2 GABAB Receptors in Central Axon Endings of Nociceptors

The central axon endings of Aδ and C-fibres predominantly target interneurons in
laminae I–II of the dorsal spinal cord, where their signals are integrated and further
transmitted to supraspinal structures (Todd 2010; Zeilhofer et al. 2012b). GABAB

receptors are highly expressed at the central axon terminals of nociceptors. This is
indicated by the predominant expression of GABAB1a and GABAB2 mRNA
(Towers et al. 2000) and the finding that GABAB1a/2 receptors are largely targeted
to presynaptic axon terminals to inhibit transmitter release (Vigot et al. 2006). This
notion is further substantiated by radioligand binding studies after capsaicin-induced
degeneration of the afferent fibres (Price et al. 1984, 1987), transection of the dorsal
afferent fibres (Price et al. 1987) or virus-mediated knock-down of GABAB1a in
afferent fibres (Jones et al. 2005), which significantly reduced the expression of
GABAB receptors in their target area, the superficial laminae of the spinal cord.
From these studies, it has been estimated that about 40–50% of GABAB receptors in
the superficial dorsal horn are present in primary afferent terminals. Finally, it is well
established that GABAB receptor activation mediates presynaptic inhibition of Aδ
and C-fibre activity, with C-fibres being more strongly affected than Aδ fibres
(Ataka et al. 2000; Yang et al. 2001; Iyadomi et al. 2000; Yang and Ma 2011;
Gangadharan et al. 2009; Wang et al. 2007).

Although it is quite clear that presynaptic GABAB receptors regulate
glutamatergic transmission of nociceptors onto spinal cord interneurons, the contri-
bution of these receptors to the analgesic activity of baclofen has been questioned by
a recent study using a mouse line lacking GABAB1 in nociceptors (Gangadharan
et al. 2009). Conditional deletion of GABAB1 specifically in Aδ and C-fibres
(SNS-GABAB1

�/� mice) resulted in higher excitability of Aδ-fibres, but surpris-
ingly had no effect on basal nociceptive sensitivity or on the development of chronic
inflammatory and neuropathic pain (Gangadharan et al. 2009). Systemic adminis-
tration of baclofen exerted a similar analgesic activity in wildtype and
SNS-GABAB1

�/� mice, suggesting that GABAB receptors expressed in nociceptors
have only a minor contribution to the regulation of nociception and the analgesic
activity of baclofen on a global scale. It should be noted that supraspinal effects of
baclofen in these experiments might have masked regulatory functions of peripheral
presynaptic GABAB receptors. In addition, compensatory plastic adaptations should
be taken into consideration with the long-term deletion of GABAB1 in the
SNS-GABAB1

�/� mice.
Despite this negative finding, there is solid evidence for the regulation of

nociception via peripheral GABAB receptors. For instance, strong tonic activation
of sciatic Aδ-fibres in the dorsolateral hindpaw of mice induces a reduced nocicep-
tive sensitivity in dorsomedial saphenous C-fibres by a central GABAB receptor-
mediated mechanism (Jones et al. 2005). This intersegmental modulation is most
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likely due to the activation of GABAergic interneurons in the superficial dorsal horn
by the persistently activated Aδ-fibres, which in turn activate presynaptic GABAB

receptors on saphenous C-fibres, reducing excitatory transmitter release. In line with
this view, virus-mediated knock-down of GABAB1a in primary afferents diminished
sciatic Aδ-fibre generated hypoalgesia, indicating that this mechanism depends on
presynaptic GABAB receptors present in central primary afferent terminals (Jones
et al. 2005).

Another recent example for the involvement of peripheral presynaptic GABAB

receptors in the regulation of nociception and pathological pain is the modulation of
GABAB receptor activity by the Gα inhibitory interacting protein (GINIP) (Gaillard
et al. 2014). GINIP was discovered by screening for markers to discriminate sub-
populations of nociceptors. Its expression is restricted to two nonpeptidergic C-fibre
neuron populations that express MRGPRD or TAFA4 (low-threshold mechanore-
ceptors), which selectively target lamina II of the dorsal horn. GINIP interacts with
the activated Gαi protein and most likely stabilizes GABAB receptor signalling.
Deletion of GINIP strongly impaired baclofen-induced inhibition of high-voltage-
activated Ca2+ channels and diminished baclofen-mediated presynaptic inhibition in
lamina II interneurons. Most importantly, GINIP�/� mice displayed prolonged
mechanical hypersensitivity in a model of neuropathic pain that was, in contrast to
wild-type mice, not reversed by intrathecal administration of baclofen (Gaillard et al.
2014). This illustrates the importance of peripheral GABAB receptors located at the
central endings of nociceptors for the modulation of chronic pain states.

2.2 GABAB Receptors in Dorsal Horn Interneurons
and Projection Neurons

The central axon endings from nociceptors predominantly terminate in laminae I and
II of the dorsal horn where their signals are integrated by a complex network of
inhibitory and excitatory interneurons. The integrated signals are then transmitted to
supraspinal centres via glutamatergic projection neurons predominantly located in
lamina I (Todd 2010; Zeilhofer et al. 2012b). According to the ‘gate control theory of
pain’ postulated in 1965 by Melzack and Wall (1965), GABA/glycine-mediated
inhibition by interneurons of the dorsal horn provides a ‘gate’ that controls the
output of projection neurons to prevent their activation by innoxious stimuli. This
theory is well supported by experiments ablating or inactivating populations of
dorsal horn inhibitory interneuron. These experiments led to spontaneous pain
behaviour and hyperalgesia (Foster et al. 2015; Duan et al. 2014).

The superficial laminae of the dorsal horn exhibit highest expression of GABAB

receptors within the spinal cord. They are expressed on the axon terminals of
primary afferent neurons and on pre- and postsynaptic sites of interneurons (Wang
et al. 2007; Iyadomi et al. 2000). Activation of presynaptic GABAB receptors
inhibits transmitter release of both glutamatergic and GABAergic neurons resulting
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in a complex integration of signals via inhibition and disinhibition (Melin et al. 2013;
Zheng et al. 2010; Yang and Ma 2011; Yang et al. 2015).

GABAB receptors are also expressed in a subset of lamina I projection neurons
targeting the caudal ventrolateral medulla (Castro et al. 2006) and the parabrachial
nucleus (Brewer and Baccei 2018). Interestingly, neonatal tissue damage in the
hindpaw of mice specifically increased postsynaptic GABAB receptor function in
projection neurons targeting the parabrachial nucleus in the adult animals (Brewer
and Baccei 2018). Hindpaw injury in early neonatal rats induces acute hyperalgesia
followed by generalized hypoalgesia (Ren et al. 2004). It is likely that the increased
inhibitory postsynaptic GABAB receptor function in projection neurons targeting the
parabrachial nucleus contributes to the observed reduction in pain sensitivity.

2.3 GABAB Receptors in Supraspinal Areas

After integration in the dorsal spinal cord, noxious signals are relayed via ascending
fibre tracts (e.g. spinothalamic, spinoreticular, spinoparabrachial tracts) to diverse
subcortical and cortical brain structures including the periaqueductal grey, mesen-
cephalic and thalamic nuclei, amygdala, hypothalamus, insular cortex, anterior
cingulate cortex and somatosensory cortex (Bell 2018). Accordingly, upon noxious
stimuli, neuroimaging techniques revealed the activation of a complex pattern of
structures across the entire brain (commonly called the ‘pain matrix’), depending on
the kind of stimulus as well as on the emotional state (May 2007; Legrain et al.
2011). There is evidence that this system is not specifically dedicated to ‘pain’ but
has a more general function for processing sensory information irrespective of their
origin (Legrain et al. 2011).

As GABAB receptors are ubiquitously expressed in all these structures, they most
likely contribute to the processing of all kinds of noxious information in all relevant
brain areas to generate the sensation of pain. In general, due to its inhibitory nature,
activation of GABAB receptors predominantly has alleviating effects on pain sen-
sation. For instance, injection of the GABAB receptor antagonist CGP 35348 into the
anterior cingulate cortex (ACC), which is involved in the regulation of the affective
component of pain (Fuchs et al. 2014), was associated with the development of
mechanical hypersensitivity in naïve rats, whereas the GABAB receptor agonist
baclofen reduced hyperalgesia in neuropathic rats (partial sciatic nerve ligation)
(Migita et al. 2018). In line with this finding, application of the GABAB receptor
antagonist CGP 55845 increased the excitability of ACC neurons in healthy rats
(Nashawi et al. 2016). However, inhibition of GABAB receptors in the ACC had no
effect on the excitability of ACC neurons in rats with mechanical allodynia induced
with the anticancer drug paclitaxel, suggesting a deficiency in GABAB receptor-
mediated inhibition in this chronic pain state (Nashawi et al. 2016).

Another example of GABAB receptor-mediated modulation of pain signals is the
central amygdala. The central amygdala is involved in processing the emotional
components of pain and directly receives signals from activated lamina I projection
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neurons as well as relayed signals via neurons of the parabrachial nucleus
(Neugebauer et al. 2004). Activation of GABAB receptors at axon terminals of
parabrachial neurons reduced excitatory neurotransmission onto neurons in the
central amygdala via inhibition of N-type Ca2+ channels (Delaney and Crane
2016). Furthermore, activation of GABAB receptors in the ventrobasal complex of
the thalamus, which receives noxious information from neurons of the spinothalamic
tract and relays them primarily to the somatosensory cortex, reduced nociception in
models of acute and chronic inflammatory pain (Soares Potes et al. 2006; Potes et al.
2006a).

2.4 GABAB Receptors in Descending Pain Control Pathways

Supraspinal centres not only process ascending noxious signals to generate the
sensation of pain but also have a top-down modulatory effect on signal processing
at the level of the spinal cord dorsal horn. Descending control pathways arise from
the midbrain and brainstem. They can be inhibitory (reducing pain) or facilitatory
(enhancing pain) (Fig. 1). In this way, inputs from various brain areas reflecting
diverse cognitive or emotional states can influence processing of noxious signals in
the dorsal horn and thereby modulate the threshold for noxious signalling via
ascending projection neurons.

The ventrolateral part of the periaqueductal grey (PAG), located in the midbrain,
is an important integrative structure and a main site of the descending pain modu-
latory system. It receives input from various cortical areas, such as the thalamus,
hypothalamus and amygdala as well as noxious information from ascending spinal
cord projection neurons. It sends information to the spinal cord indirectly via the
nucleus raphe magnus (NRM) and the area of the rostral ventromedial medulla
(RVM) to the spinal cord (White et al. 2018; Lau and Vaughan 2014). GABAB

receptors are located at pre- and postsynaptic sites in PAG neurons to inhibit
transmitter release by inhibiting Ca2+ channels and mediate hyperpolarization by
activating K+ channels (Yang et al. 2003), respectively, with presynaptic GABAB

receptors being more sensitive to baclofen than postsynaptic receptors (Chen et al.
2017). There seems to be a tonic inhibition of presynaptic terminals by GABA acting
on presynaptic GABAB receptors (Li et al. 2017). Counterintuitively, activation of
GABAB receptors in the ventrobasal PGA by injection of baclofen reduced acute
pain (Levy and Proudfit 1979). Considering that stimulation of the PAG mediates
analgesia (Wang et al. 2016), activation of GABAB receptors very likely mediates an
overall disinhibition of PAG neurons, resulting in an excitatory output.

In contrast to the PAG, the dorsal reticular nucleus (DRt) in the medulla
oblongata, which is reciprocally connected with various brain areas as well as the
spinal dorsal horn, is involved in top-down facilitation of nociceptive signals
(Martins and Tavares 2017). Global stimulation of the DRt enhanced, whereas
inhibition reduced nociception (Almeida et al. 1996, 1999). GABAB receptors are
well expressed in DRt neurons (Pinto et al. 2008) and are activated by locally
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released GABA in response to peripheral inflammatory pain (Martins et al. 2015).
Knock-down of GABAB1a as well as local injection of the GABAB receptor antag-
onist CGP 35348 into the DRt reduced inflammatory pain in the second phase of the
formalin test, whereas injection of baclofen enhanced nociceptive behaviour
(Martins et al. 2015). As GABAB receptors are predominantly expressed in
enkephalinergic DRt neurons (Martins et al. 2015), local release of GABA upon
noxious stimulation might activate presynaptic GABAB receptors and inhibit the
release of endogenous opioids, abrogating tonic inhibition of projection neurons
descending to the spinal cord.

3 GABAB Receptors and Pathological Pain

In unfortunate circumstances, nociceptive pain can become pathological, i.e. pain
persists although the pain-causing insult has been removed. Chronic pain is a major
health problem as it is widespread and pharmacologically difficult to address and
massively affects life quality. Chronic pain is associated with profound plastic
changes in peripheral and central nociceptive pathways, resulting in enhanced pain
sensation to painful stimuli (hyperalgesia) or even in pain upon innocuous stimuli
(allodynia) such as light touch (Yam et al. 2018). Reduced inhibitory control
profoundly contributes to pain sensitization and the development of chronic pain
(Zeilhofer et al. 2012a; Gwak and Hulsebosch 2011).

3.1 GABAB Receptors and Inflammatory Pain

Inflammation is an endogenous response of the body to clean up damaged tissue and
promote its repair. Tissue damage triggers the production of a variety of inflamma-
tory mediators that activate nociceptors. Prolonged inflammation results in periph-
eral as well as central sensitization. Peripheral sensitization is caused by excessive
activation of nociceptors. In contrast, central sensitization results from plastic
changes leading to enhanced excitation of neurons in the dorsal horn and the brain
(Gangadharan and Kuner 2013; Basbaum et al. 2009).

Systemic application of baclofen diminished nocifensive behaviours in animal
models of acute and chronic inflammatory pain (Smith et al. 1994; Patel et al. 2001;
Shafizadeh et al. 1997). Thus, in principle, GABAB receptors at all anatomical levels
of the pain pathway could contribute to the analgesic effects of baclofen. Indeed,
there is evidence that baclofen acts at peripheral nociceptors as well as at spinal and
supraspinal levels to relieve inflammatory pain. For instance, direct injection of
baclofen into an inflamed rat paw produced an antinociceptive effect upon prosta-
glandin E2-induced hyperalgesia (Reis and Duarte 2006; Whitehead et al. 2012).
The antinociceptive effect of baclofen was prevented by pre-injecting K+ channel
blockers, indicating the involvement of GABAB receptor-activated K+ channels in
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the peripheral action of baclofen (Reis and Duarte 2006). Intrathecal injection of
baclofen also reduced inflammatory pain responses in rodents, demonstrating its
activity at spinal cord neurons (Patel et al. 2001; Dirig and Yaksh 1995; Naderi et al.
2005). Spinal application of baclofen reduced the activity of Aβ-, Aδ- and C-fibres in
rats with carrageenan-inflamed hindpaws (Sokal and Chapman 2003) and consider-
ably diminished c-Fos expression in dorsal horn neurons (Buritova et al. 1996)
consistent with increased GABAB receptor-mediated neuronal inhibition. Finally,
injection of baclofen in, for example, the ventrobasal complex of the thalamus (Potes
et al. 2006a, b) shows the effectiveness of baclofen at the supraspinal level.

As chronic peripheral inflammation leads to enhanced excitability of dorsal horn
neurons (Menetrey and Besson 1982; Takazawa et al. 2017), it is conceivable that
the altered excitation/inhibition balance may lead to plastic changes in the expres-
sion of GABAB receptors. However, currently there is no clear picture on the
regulation of GABAB receptor expression and its potential functional significance
in inflammatory pain states. For example, GABAB receptor mRNA (McCarson and
Enna 1999) and protein levels (Sands et al. 2003) appear to be upregulated in DRGs
and the dorsal horn 24 h after formalin-induced hindpaw inflammation in rats.
However, the increased GABAB1 and GABAB2 protein levels did not translate
into increased GABAB receptor function in the dorsal horn as measured by [35S]
GTPγS binding (Sands et al. 2003). On the other hand, a decrease of GABAB

receptors in the dorsal horn was observed 3–4 weeks after inducing inflammation
(Castro-Lopes et al. 1995), and, finally, in a rat model of orofacial inflammation,
GABAB receptors were downregulated in the trigeminal ganglion (Liu et al. 2019).
Thus, there seems to be no general rule for the regulation of GABAB receptor
expression in inflammatory pain states. Instead, a potential regulation of GABAB

receptor expression might underlie specific temporal and spatial conditions.
Besides regulating neuronal excitability, GABAB receptors appear to be involved

in other processes in inflammatory pain states. For instance, spinal GABAB receptors
also appear to modulate the local inflammatory response as shown in a mouse model
of arthritis (Bassi et al. 2016). Intrathecal injection of baclofen increased neutrophil
recruitment to the inflamed knee joint in a p38 MAPK-dependent manner. Thus, in
addition to the well-established analgesic activity, activation of spinal GABAB

receptors also appears to exert a pro-inflammatory effect. This should be taken
into account in the case of development analgesic drugs for the treatment of chronic
inflammation targeting GABAB receptors.

Another example is the control of interleukin 1β release from satellite glial cells in
trigeminal ganglia. GABAB receptors were recently found to be expressed in satellite
glial cells in trigeminal ganglia where they control the activity of inwardly rectifying
K+ channels (Takeda et al. 2015). Satellite glial cells ensheath trigeminal neurons,
are activated by neurotransmitters released from trigeminal neurons and appear to
play an important role in the development of hyperalgesia in response to inflamma-
tory stimuli via release of interleukin 1β (Takeda et al. 2009). Injection of baclofen
into the trigeminal ganglion after inducing orofacial inflammation reduced mechan-
ical allodynia, prevented downregulation of GABAB receptors in satellite glial cells
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and inhibited satellite glial cell activation as well as interleukin 1β release (Liu et al.
2019). This study provides intriguing indications that glial GABAB receptors adja-
cent to nociceptors may play a role in the regulation of orofacial inflammation.
However, this mechanism might be restricted to the trigeminal ganglia since
satellite glia cells in DRG neurons appear not to express GABAB receptors (Engle
et al. 2012).

3.2 GABAB Receptors and Neuropathic Pain

Neuropathic pain originates from nerve injury and diseases that lead to peripheral or
central neuronal damage such as diabetes (Schreiber et al. 2015), cancer (Davis
2018), multiple sclerosis (Khan and Smith 2014) and HIV (Aziz-Donnelly and
Harrison 2017). Neuropathic pain is associated with a multitude of plastic alterations
in the CNS leading to enhanced excitation and central sensitization (Gangadharan
and Kuner 2013; Sandkuhler 2009). These include a prominent reduction of
GABAergic inhibitory control (Zeilhofer et al. 2012a). Peripheral nerve damage
significantly reduced GABA levels as well as GABA release in the dorsal horn
(Eaton et al. 1998; Vaysse et al. 2011; Lever et al. 2003; Ibuki et al. 1997; Somers
and Clemente 2002). Restoration of GABA levels by viral overexpression of
GAD65 or injection of GABA-expressing cells into the dorsal horn significantly
reduced neuropathic pain in rats with peripheral nerve injury (Vaysse et al. 2011;
Jergova et al. 2012; Lee et al. 2007). Intrathecal injection of GABAA receptor and
GABAB receptor antagonists showed that both receptors mediated the
antinociceptive activity of GABA-expressing grafts (Jergova et al. 2012). Therefore,
enhancing GABAB receptor activity is a promising strategy to relieve
neuropathic pain.

In fact, systemic (Smith et al. 1994; Patel et al. 2001; Magnaghi et al. 2014) and
intrathecal administration (Bai et al. 2014; Liu et al. 2018; Zemoura et al. 2016; Dias
and Prado 2016; Hwang and Yaksh 1997; Malan et al. 2002; Lee et al. 2010; Gwak
et al. 2006) of baclofen as well as injecting it into supraspinal structures (Migita et al.
2018) alleviated nociceptive responses in animal models of neuropathic pain. This
implies, as in the case of chronic inflammatory pain, that GABAB receptors at all
levels of the pain pathway contribute to the analgesic effect of baclofen. Interest-
ingly, chronic intrathecal application of baclofen in a rat model of diabetic neuro-
pathic pain normalized elevated expression levels of NR2B-containing NMDA
receptors, most likely in a CREB-dependent manner (Liu et al. 2014; Bai et al.
2014). This illustrates that GABAB receptor activity not only counterbalances over-
excitation but can trigger diverse pathways to affect neuronal excitability at different
levels.

As neuropathic pain leads to diminished neuronal inhibition, a plastic
downregulation of GABAB receptors might be a contributing factor. However,
since baclofen still exhibits analgesic activity in animal models of neuropathic
pain, an excessive downregulation of GABAB receptors is very unlikely.
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In the rat model of streptozotocin-induced diabetes, hyperalgesia and allodynia
develop 3 weeks after a single injection of streptozotocin. This is accompanied by
increased glutamatergic excitatory activity in spinal cord neurons without changes in
GABAergic and glycinergic inhibitory postsynaptic currents, indicating a preserved
GABAergic tone under these conditions (Wang et al. 2007). However, GABAB

receptor-mediated inhibition of primary afferent terminals was significantly reduced,
which might be explained by downregulation of GABAB receptors at central noci-
ceptor terminals. Indeed, a robust loss of GABAB receptors in the spinal cord was
observed by Western blotting 5–7 weeks after induction of diabetes with
streptozotocin (Wang et al. 2011). Because the onset of nocifensive behaviour
(after 3 weeks) was not exactly paralleled by this robust GABAB receptor
downregulation (starting after 5 weeks), it is unlikely that the loss of GABAB

receptors is essential for the development of pain symptoms in this model of
neuropathic pain.

Another example for a considerable downregulation of GABAB receptors is
cancer-induced bone pain in rats (Zhou et al. 2017). In this model downregulation
of GABAB receptors in the spinal cord exactly followed the time course of mechan-
ical allodynia development. Chronic intrathecal application of baclofen partially
restored GABAB receptor expression, which was associated with a reduction of
elevated PKA and pCREB levels (Zhou et al. 2017). As activation of the
PKA/CREB pathway contributes to the development of cancer-induced bone pain
(Hang et al. 2013), there might be a link between downregulation of GABAB

receptors and the expression of chronic pain in cancer-induced bone pain.
Whereas there is clear evidence for downregulation of GABAB receptors in the

spinal cord in diabetes-induced and cancer-induced bone pain, inconsistent results
were reported from models of neuropathic pain induced by chronic constriction of
the sciatic nerve (CCI) and spinal nerve ligation (SNL). There is convincing evi-
dence that GABAB receptors are downregulated in DRG neurons after peripheral
nerve ligation (Engle et al. 2012), but no change was found in the dorsal horn (Engle
et al. 2006; Smith et al. 1994; Zemoura et al. 2016). However, Wu et al. (2011)
observed a strong reduction specifically in GABAB1a expression (expression
GABAB1b was not affected) 7 and 14 days after spinal nerve ligation. This suggests
that presynaptic GABAB receptors are mainly affected, most probably at central
nociceptor terminals. Downregulation of GABAB1a as well as nocifensive behaviour
was prevented or reduced, respectively, by intrathecal application of a p38-MAPK
inhibitor (Wu et al. 2011). As p38-MAPK is specifically activated in dorsal horn
microglia after spinal nerve ligation (Tsuda et al. 2004), this observation may link
microglia activation to the downregulation of GABAB1a so far by an unknown
mechanism.

The mechanism(s) involved in downregulating GABAB receptors under chronic
pain conditions are currently unknown. However, it is well established that neuronal
over-excitation caused by sustained activity of AMPA and NMDA receptors rapidly
downregulates GABAB receptors and thereby strongly reduces GABAB receptor-
mediated neuronal inhibition by enhancing lysosomal degradation of the receptors
(Maier et al. 2010; Guetg et al. 2010; Kantamneni et al. 2014; Terunuma et al. 2010;
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Zemoura et al. 2019). As chronic pain states are associated with considerably
enhanced glutamate receptor activity, this mechanism might be one factor contrib-
uting to GABAB receptor downregulation.

Another very intriguing mechanism impairing GABAB receptor activity under
conditions of neuropathic pain was proposed by Laffray et al. (2012). In the spinal
nerve ligation model of neuropathic pain, the GABAB receptor interacting protein
14-3-3ζ was found to be selectively upregulated in the ipsilateral dorsal horn.
Binding of 14-3-3ζ to GABAB receptors occurred at the plasma membrane and
interfered with heterodimerization of the receptors. This rendered the receptors
non-functional and diminished GABAB receptor signalling (Laffray et al. 2012).
Preventing the interaction of GABAB receptors with 14-3-3ζ using an interfering
synthetic peptide enhanced baclofen-mediated analgesia and, interestingly, partially
reversed nocifensive behaviours in neuropathic rats in the absence of baclofen. This
observation supports a role for diminished GABAB receptor signalling in the
development of neuropathic pain.

These examples suggest a rather complex regulation of GABAB receptors during
chronic pain states.

4 GABAB Receptors as Target for Treating Chronic Pain

The GABAB receptor agonist baclofen has a long history in the clinic for treating
severe spasticity caused by, e.g. multiple sclerosis, spinal cord injury and stroke. It
efficiently resolves spasm and relieves associated musculoskeletal pain (Slonimski
et al. 2004). In addition, a variety of small clinical studies and case reports demon-
strated the analgesic activity of baclofen in chronic pain states not associated with
spasticity, including trigeminal neuralgia, intractable post herpetic neuralgia, com-
plex regional pain syndrome, chronic pain after cerebral stroke, painful spinal cord
lesions and neuropathic pain after peripheral nerve injury (Fromm and Terrence
1987; Fromm et al. 1984; Zuniga et al. 2000; Hosny et al. 2004; van der Plas et al.
2013; Kopsky et al. 2015; Lind et al. 2008; Herman et al. 1992; Taira and Hori 2007;
Taira et al. 1995; Goto et al. 2013; Harmer and Larson 2002). Although baclofen is
often successful in patients not responding to common analgesics (e.g. opioids),
there are several drawbacks associated with baclofen that prevents its widespread
application. Baclofen has a relatively short half-life (2–4 h) and it poorly crosses the
blood-brain barrier. These characteristics require high doses for systemic applica-
tion, which can cause tolerance and severe side effects (Brennan and Whittle 2008).
For these reasons, baclofen is given in severe cases intrathecally with pumps. But
even then side effects such as drowsiness, confusion, disturbance of speech, gastro-
intestinal problems, nausea, hypotension, sexual dysfunction and many others were
observed (Slonimski et al. 2004). Therefore, baclofen will be reserved for severe
chronic pain states resistant to common analgesics or as an adjuvant in combination
with analgesics, e.g. opioids (Gatscher et al. 2002; Zuniga et al. 2000).
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Because GABAB receptors are ubiquitously expressed and are involved in
numerous physiological functions, their global activation will invariably be associ-
ated with unwanted effects. It is therefore rather unlikely that orthosteric GABAB

receptor agonists will be successful as first-line analgesics. Novel strategies like the
recent development of GABAB receptor positive allosteric modulators (Froestl
2010; Urwyler 2011) may have some potential for the generation of analgesics.
Positive allosteric modulators increase the affinity and efficacy of the receptor for
GABA, resulting in “use-dependent” potentiation of GABAB receptor activity. This
kind of activity enhancement appears to be associated with fewer side effects
(in particular sedation) in various animal models.

So far, only a very limited number of positive allosteric modulators were evalu-
ated in animal models of acute and chronic pain (Table 1). Regarding neuropathic
pain, only rac-BHFF was tested in the CCI model of neuropathic pain (Zemoura
et al. 2016). Although rac-BHFF increased the paw withdrawal threshold after
mechanical stimulation at a non-sedating oral dose in naïve mice, it was inactive
in neuropathic mice. However, after activation of GABAB receptors with a
subsaturating intrathecal dose of baclofen, rac-BHFF potentiated the analgesic effect
of baclofen (Zemoura et al. 2016). This observation indicates that the reduced
GABAergic tone (see above) in neuropathic mice was too low to permit efficient
allosteric modulation of GABAB receptors and pain relief. Thus, in pain conditions
associated with a considerably reduced GABAergic tone, allosteric modulators are
not expected to display sufficient analgesic activity. They may, however, be useful to
enhance the activity of low-doses of baclofen, which might result in fewer side
effects.

Regarding chronic inflammatory pain, the positive allosteric modulators
ADX71441 and ADX71943 reduced hyperalgesia in the formalin test and the
monosodium iodoacetate model of chronic osteoarthritis (Kalinichev et al. 2014,
2017). ADX71943 very poorly crosses the blood-brain barrier and therefore
exhibits, in contrast to ADX71441, no central effects (Kalinichev et al. 2014). In
the model of chronic osteoarthritis ADX71943 exhibited strongest analgesic activity
in the early, more inflammatory related, phase of the model and vanished in later
stages presumably related to a more centrally driven neuropathic pain state
(Kalinichev et al. 2017). Thus, peripherally acting allosteric modulators might be
effective in acute and early inflammatory pain without a prominent central compo-
nent. Such drugs are expected to lack the severe central side effects associated with
baclofen.

GABAB receptors are also involved in the regulation of visceral pain (Page et al.
2006; Loeza-Alcocer et al. 2019). In acute visceral pain, the positive allosteric
modulators CGP7930 (colon pain) (Brusberg et al. 2009) and ADX17441 (colon
and bladder pain) (Kannampalli et al. 2017) decreased nociceptive responses. The
analgesic effect of ADX17441 appeared to be predominantly mediated via periph-
eral and supraspinal sites since systemic and intra-cerebroventricular but not intra-
thecal administration was effective (Kannampalli et al. 2017). The observation that
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positive allosteric modulators of GABAB receptors show efficacy in models of both
colon and bladder pain is of some importance as bladder pain syndromes exhibit
co-morbidity with other functional pain syndromes such as irritable bowel syndrome
(Kim and Chang 2012; Malykhina et al. 2012).

Table 1 Drugs and strategies with GABAB receptor selective analgesic activity

Drug/
treatment Pain model Application Effect Reference

Positive allosteric modulators

Rac-BHFF Neuropathic pain
(CCI)

Systemic
(p.o.)

No effect Zemoura
et al. (2016)

ADX71943 Inflammatory pain

Formalin test Systemic
(p.o.)

Analgesic (peripheral) Kalinichev
et al. (2014)

Chronic
osteoarthritis

Systemic
(p.o.)

Analgesic only in early
phase (peripheral)

Kalinichev
et al. (2017)

ADX71441 Inflammatory pain
Chronic
osteoarthritis

Systemic
(p.o.)

Analgesic Kalinichev
et al. (2017)

Visceral pain
Colon distension

Systemic
(i.p.)

Analgesic Kannampalli
et al. (2017)

Spinal (i.t.) No effect

Supraspinal
(i.c.v.)

Analgesic

Bladder distension Systemic
(i.p.)

Analgesic

Spinal (i.t.) No effect

Supraspinal
(i.c.v.)

Analgesic

CGP7930 Visceral pain
(Colon distension)

Systemic
(i.v.)

Analgesic Brusberg
et al. (2009)

Drugs with unidentified binding site on GABAB receptors

α-Conotoxin
Vc1.1

Visceral pain
(Colon distension)

Peripheral
(intra-
colonic)

Analgesic Castro et al.
(2017)

Fucoidan Neuropathic pain
(Chemotherapeutic
drug-induced)

Repeatedly
systemic
(i.p.)

Analgesic (most likely
via upregulation of
GABAB receptors)

Hu et al.
(2017)

Isovaline Inflammatory pain
(Intraplantar PGE2)

Peripheral
(intraplantar
injection)

Analgesic Whitehead
et al. (2012)

Targeting protein-protein interactions with interfering peptides

GABAB

receptor/14-
3-3ζ

Neuropathic pain
(Spinal nerve
ligation)

Spinal (i.t.) Analgesic Laffray et al.
(2012)
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5 Conclusions

As discussed above, it is now well established that GABAB receptors play an
important role in the regulation of nociception and chronic pain at the peripheral,
spinal and supraspinal level. Despite the large body of literature recommending
baclofen as a potent analgesic for various pain states, it is rather questionable if
GABAB receptor agonists will develop into first- or second-line analgesics for the
treatment of chronic pain. This is mainly because the ubiquitous expression and the
various physiological functions of GABAB receptors will inevitably induce side
effects upon global activation. Because of their “use-dependent” action, positive
allosteric modulators promise fewer side effects than orthosteric agonists. However,
clinical data on their efficacy as analgesics and on their side effect profile is lacking
so far. Exclusively peripheral acting positive allosteric modulators might have a
great potential for the treatment of visceral pain because they are unlikely to be
associated with central side effects. This, however, presumes that visceral pain
signalling can effectively be inhibited at peripheral sites as the supraspinal compo-
nent will remain unaffected.

Because of the limitations of GABAB receptor agonists and allosteric modulators,
a promising strategy for future drug development targeting GABAB receptors might
focus on biased agonists affecting GABAB receptors but only activating selected
downstream pathways of the receptor, preferably involved in the pain state of
interest. An example of this strategy, for the treatment of chronic visceral pain,
might be α-conotoxin Vc1.1 (or ACV1), a synthetic peptide derived from the venom
of the marine cone snail Conus victoriae. Vc1.1 activates GABAB receptors via an
unidentified site (not via the orthosteric binding site) (McIntosh et al. 2009) and
selectively inhibits CaV2.2 as well as CaV2.3 (Berecki et al. 2014; Cuny et al. 2012)
in a c-src tyrosine kinase-dependent manner (Callaghan et al. 2008). Peripheral
(intra-colonic) administration of Vc1.1 reduced mechanical hypersensitivity by
inhibition of nociceptive signalling from the colon to the spinal cord (Castro et al.
2017). Vc1.1 most likely induces a very limited set of side effects, because it
displays antinociceptive activity upon peripheral administration (no central effects
expected) and activates only a subset of possible downstream effectors of GABAB

receptors (CaV2.2., CaV2.3).
Another example might be the upregulation of GABAB receptors by fucoidan, a

polysaccharide isolated from marine brown seaweeds. Fucoidan exerts a variety of
clinically relevant activities, including anticancer and anti-inflammatory effects
(Wang et al. 2019). Repeated systemic application of fucoidan was recently shown
to reduce hyperalgesia in the spinal nerve ligation model of neuropathic pain via an
unknown mechanism (Hu et al. 2014). In a model of chemotherapeutic drug-induced
neuropathic pain, fucoidan-mediated analgesia was accompanied with the
upregulation of GABAB receptor expression (Hu et al. 2017). As repeated adminis-
tration of fucoidan was required for its analgesic effect, it might well be that
increased GABAB receptor activity caused by its upregulation is a contributing
factor.
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Finally, a potential for developing novel highly specific therapeutic interventions
might be the targeting of pain-specific protein-protein interactions. As discussed
above (see Sect. 3.2), the group of Marc Laundry provided an excellent example of
such an approach regarding GABAB receptors and neuropathic pain (Laffray et al.
2012). Ideally, the development of interfering peptides to target pain-related protein-
protein interactions involving GABAB receptors requires the discovery of interac-
tions specifically associated with the pain state of interest. Future research needs to
show whether such an approach can overcome the limitations of GABAB receptor
agonists.
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Abstract Gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter
in the brain, acts at the ionotropic GABAA and GABAC receptors, and the
metabotropic GABAB receptor. This chapter summarizes the studies that have
investigated the role of the GABAB receptor in stress-related psychiatric disorders
including anxiety and mood disorders. Overall, clinical and preclinical evidences
strongly suggest that the GABAB receptor is a therapeutic candidate for depression
and anxiety disorders. However, the clinical development of GABAB receptor-based
drugs to treat these disorders has been hampered by their potential side-effects,
particularly those of agonists. Nevertheless, the discovery of novel GABAB receptor
allosteric modulators, and increasing understanding of the influence of specific
intracellular GABAB receptor-associated proteins on GABAB receptor activity,
may now pave the way towards GABAB receptor therapeutics in the treatment of
mood and anxiety disorders.
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1 Introduction

The inhibitory action of GABA is mediated by the ionotropic GABAA and GABAC

receptors, and the metabotropic GABAB receptor. The GABAA receptor is
bicuculline-sensitive and the subsequent opening of its transmembrane channel
which is permeable to chloride mediates rapid neuronal inhibition in the adult
brain. In 1979, Norman Bowery and colleagues published the discovery of a novel
type of GABA receptor that was described as being “atypical” and insensitive to the
GABAA receptor antagonist bicuculline (Bowery et al. 1979). Baclofen was identi-
fied to be a potent and selective agonist of this novel receptor, and in 1980 it was
demonstrated that baclofen acting on this novel receptor decreased neurotransmitter
release in the central nervous system (Bowery et al. 1980). This atypical receptor
described by Bowery and colleagues would later be referred to as the GABAB

receptor (Hill and Bowery 1981). The GABAB receptor is a G-protein-coupled
receptor that inhibits adenylate cyclase activity and mediates the slow and prolonged
component of synaptic inhibition (Bowery et al. 2004). GABAB receptors are
localized in most brain regions, and GABAB(1) receptor mRNA is detectable in
almost all neuronal cell populations and is highly expressed in the limbic system
(Bettler et al. 2004; McDonald et al. 2004). The receptor consists of two subunits,
GABAB(1) and GABAB(2), which heterodimerise to form the functional GABAB

receptor (Bettler et al. 2004). The GABAB(1) subunit contains the orthosteric ligand
binding site, while the GABAB(2) subunit is responsible for G-protein activation
and contains binding sites for positive allosteric modulators (Galvez et al. 2001;
Bettler et al. 2004; Binet et al. 2004; Gassmann and Bettler 2012). Isoforms of the
GABAB(1) receptor subunit have been identified (Lee et al. 2010) and the two
main isoforms expressed in the brain are GABAB(1a) and GABAB(1b) which form
GABAB(1a,2) and GABAB(1b,2) receptors, respectively (Lee et al. 2010). Structurally,
GABAB(1) isoforms differ only by the presence of a sushi domain in the N-terminal
ectodomain of the GABAB(1a) receptor subunit isoform (see Fig. 1).

Since its discovery, there has been a long-standing interest in the therapeutic
potential of the GABAB receptor. In this review, we will summarize the studies
assessing the role of the GABAB receptor in mood disorders, specifically in depres-
sion, and in anxiety disorders. Clinical and preclinical evidences supporting the role
for GABAB receptors in the pathophysiology of depression and anxiety disorders
will be summarized in addition to the preclinical evidence of the antidepressant and
anxiolytic effects of pharmacological and genetic modulation of GABAB receptor
activity. Unless otherwise stated, most of the preclinical studies discussed in this
chapter have been conducted in male rodents. Since most of this evidence is from
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preclinical studies, readers outside this research field are advised to first read Table 1,
which summarizes the behavioural tests used to assess depression-, antidepressant-
and anxiety-like behaviour in rodents (Cryan and Slattery 2007), prior to reading the
review.

2 Role of the GABAB Receptor in the Modulation
of Anxiety

2.1 Effects of GABAB Receptor Agonists and Positive
Allosteric Modulators on Anxiety-Like Behaviour

Baclofen is the first described GABAB receptor agonist (Bowery et al. 1980), which
was synthetized in 1962 by Heinrich Keberle in CIBA (Basel, Switzerland).

Fig. 1 Schematic representation of the GABAB receptor. GABAB receptors are composed of
GABAB(1) and GABAB(2) receptor subunits that form an active heterodimer. The GABAB(1)

receptor subunit is essential for the binding of GABA and GABAB receptor agonists and
antagonists. GABAB(1) receptor subunit presents as two main isoforms, namely GABAB(1a) and
GABAB(1b) that differ by the presence of a sushi domain in the N-terminal of the GABAB(1a) isoform.
Adapted from Cryan and Kaupmann (2005)
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Table 1 Behavioural tests used in anxiety and depression research

Behavioural tests Description

Anxiety

Elevated zero maze
(EZM)

Rodents are placed on the elevated zero maze consisting of two open
(stressful) and two enclosed (protecting) elevated areas that form a
zero or circle. Naturally, rodents display aversion to open areas.
Anxiolytic drug treatment increases the number of entries and time
spent in the open areas of the maze

Elevated plus maze
(EPM)

Rodents are placed on the elevated plus maze consisting of two open
arms and two closed arms. Naturally, rodents display aversion versus
open areas. Anxiolytic drug treatment increases number of entries and
time spent in the open arms

Light/dark box (LDB) Rodents are placed in an apparatus consisting of a light and dark
compartment. Naturally, rodents display aversion to illuminated
areas. Anxiolytic drug treatment increases the time spent and the
number of entries into the light compartment

Marble burying (MB) Rodents are placed in a cage containing bedding and a number of
novel marbles. Anxiolytic drug treatment reduces the number of
marbles buried

Stress-induced hyper-
thermia (SIH)

Temperature is measured twice at an interval of 15 min. The differ-
ence between the first and second measurements is a physiological
measure of anxiety. Anxiolytic drug treatment reduces the magnitude
of the increase in temperature which is observed in the second
measurement

Ultrasonic vocalizations Rodent pups when separated from their dams produce alarm calls that
are an index of anxiety. Anxiolytic drug treatment reduces the number
of alarm calls

Vogel conflict test Rodents are punished by electric shocks when trying to get either food
or water, and thus the number of times the animal goes to get food or
water decreases. Anxiolytic drugs increase the number of punished
responses in the presence of shock as compared to unpunished
responses

Staircase test Rodents are placed in an enclosed staircase with five steps. The
number of steps climbed and rearings made in a 3-min period are
observed. Anxiolytic drugs reduce rearing at doses that do not reduce
the number of steps climbed

Light-enhanced startle
(LES)

Startle reactivity is increased by presentation of a bright light. Because
LES is based on the innate aversion of rodents for bright light, it does
not require training sessions. Anxiolytic drug treatment reduces startle
potentiation

Fear-potentiated startle
(FPS)

The test consists of two training sessions in which an aversive foot
shock is paired with a neutral cue light. In the test session, presenta-
tion of this cue light is used to elicit startle potentiation. Anxiolytic
drugs reduce startle potentiation

Fear conditioning (FC) Rodents are placed in a FC box in which an aversive stimulus (electric
shock) is paired with a neutral context (such as a location) or stimulus
(such as a tone). This results in the expression of a fear response
(freezing behaviour) in the presence of the neutral context or neutral
stimulus alone. Anxiolytics reduce freezing behaviour

(continued)
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Baclofen was formulated as an antiepileptic drug and marketed in 1972 as Lioresal.
Currently, baclofen is indicated primarily to treat spasticity but it also has beneficial
effects in treating pain, is used off-label in the treatment of alcohol use disorder and
has been shown to inhibit the re-enforcing effects of many other addictive drugs
(Bowery et al. 2002). However, there is also much preclinical evidence suggesting
that GABAB receptor agonists such as baclofen may be potential therapeutic
approaches to treat anxiety disorders (Cryan et al. 2005; Cryan and Slattery 2010;
Felice et al. 2016) (summarized in Table 2).

Acute baclofen administration has been shown to reduce anxiety-like behaviour
in several rat and mouse models (Ketelaars et al. 1988; File et al. 1991, 1992; Nastiti
et al. 1991; Shephard et al. 1992; Andrews and File 1993; Amikishieva and
Semendyaeva 2007; Lu et al. 2016), although some conflicting findings have also
been reported. For instance, while one study reported that baclofen was effective in
the Vogel conflict test (Ketelaars et al. 1988), another study reported no such effect

Table 1 (continued)

Behavioural tests Description

Four-plate test Animals are exposed to a novel environment and exploratory behav-
iour is suppressed by the delivery of a mild electric foot shock
contingent on quadrant crossing. Animals can only escape from this
aversive situation by remaining motionless (passive avoidance).
Anxiolytic drugs increase exploratory behaviour

Depression

Forced swim test (FST) Rodents placed in an inescapable container of water engage in escape
oriented behaviours. After few minutes, the animal adopts an immo-
bile posture just making sufficient movements to keep its head above
water. Antidepressant drug treatment reduces time spent immobile

Tail suspension test
(TST)

Mice, when suspended from the tail, will adopt an immobile posture.
Antidepressant treatment decreases time spent immobile

Learned helplessness
(LH)

Animals exposed to inescapable shocks subsequently fail to escape
when an escape option is presented. Antidepressants increase the
number of escapes

Olfactory bulbectomy
(OB)

Removal of the olfactory bulbs causes several behavioural and neu-
rochemical alterations, which are only reversed by chronic antide-
pressant treatment

Maternal deprivation When rodents are separated from their dams during early postnatal life
they can develop a number of depression-like behaviours. Chronic
antidepressant treatment reverses those abnormal behaviours

Chronic mild stress
(CMS)

Rodents are subjected to a variety of unpredictable stressors which
leads to several behavioural alterations. Chronic treatment with anti-
depressants reverses those alterations

Social defeat stress
(SDS)

Rodents are exposed to physical interaction with an unfamiliar
aggressive animal, combined with sensory contact throughout the
stress procedure. This protocol, repeated daily, induces depression-
like behaviours that are reversed by antidepressant treatment

Adapted from Cryan and Slattery (2007)

GABAB Receptors: Anxiety and Mood Disorders 245



Table 2 Effects of GABAB receptor agonists and positive allosteric modulators (PAMs) on
anxiety-like behaviours in rodents

Drug Paradigm Finding References

Agonists

Baclofen Vogel
conflict

Acute treatment # anxiety in rats File et al. (1991)

Acute treatment # anxiety in rats Ketelaars et al.
(1988)

Acute treatment # anxiety in rats Shephard et al.
(1992)

Acute treatment $ in rats Agmo et al. (1991)

Acute treatment $ in rats Li et al. (2013)

EPM Acute treatment # anxiety in ethanol withdrawal
model in rats

File et al. (1992)

Acute treatment # anxiety in mice Amikishieva and
Semendyaeva
(2007)

Injection in the AcbSh$ in 24 h food-deprived
rats

Lopes et al. (2012)

Acute treatment $ in rats Li et al. (2013)

Acute treatment $ mice Dalvi and Rodgers
(1996)

Acute treatment $ in nicotine-induced anxiety
in mice

Varani and Balerio
(2012)

PND 14–28 treatment " anxiety in adult mice Sweeney et al.
(2014)

EZM Acute treatment $ in rats Frankowska et al.
(2007)

LDB Acute treatment $ in mice Li et al. (2013)

SI Microinjection in the BLA $ in rats Sanders and
Shekhar (1995)

SIH Acute treatment $ in rats Li et al. (2015)

LES Acute treatment $ in rats Li et al. (2015)

CGP44532 Four
plate

Acute treatment " anxiety in mice Partyka et al.
(2007)

SKF97541 EZM Acute treatment $ in rats Frankowska et al.
(2007)

PAMS

GS39783 EZM Acute treatment # anxiety in rats, mice Cryan et al. (2004)

Acute, chronic treatment # anxiety in mice Mombereau et al.
(2004)

EPM Acute, chronic treatment # anxiety in rats Cryan et al. (2004)

SIH Acute, chronic treatment # anxiety in mice Cryan et al. (2004)

LDB Acute, chronic treatment # anxiety in mice Mombereau et al.
(2004)

CGP7930 EZM Acute treatment # anxiety in rats Frankowska et al.
(2007)

(continued)
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(Agmo et al. 1991). However, the latter study also reported that higher doses of
baclofen induced motor deficits in rats which may have reduced the number of licks,
thus resulting in a potentially false negative finding in this test (Agmo et al. 1991).
Similarly, Li and colleagues have reported that baclofen had sedative but not
anxiolytic effects in rats in several behavioural tests (Li et al. 2015). Conflicting
findings have also been reported in mice whereby baclofen was anxiolytic in some
studies (Nastiti et al. 1991; Amikishieva and Semendyaeva 2007) but not in others
(Dalvi and Rodgers 1996; Varani and Balerio 2012; Li et al. 2013). In one such
study, baclofen increased punished drinking in the Vogel conflict test which would
be indicative of an anxiolytic effect, but the authors suggest that this finding may
also be due to analgesic effects of baclofen (Li et al. 2013). Motor impairing and
hypothermic effects are characteristic side-effects of GABAB receptor agonists, and
this likely confounds the interpretation of anxiety-related behavioural tests that are
dependent on motor activity (e.g. elevated plus maze, Vogel conflict test, etc.) or
body temperature (e.g. stress-induced hyperthermia) (Cryan et al. 2004). In addition,
the effects of baclofen on anxiety may depend upon the developmental stage of the
brain. For example, we have found that chronic treatment with R-baclofen during

Table 2 (continued)

Drug Paradigm Finding References

Acute treatment # anxiety in mice Jacobson and Cryan
(2008)

EPM Acute treatment $ in rats Jacobson and
Cryan (2008)

SIH Acute treatment # anxiety in mice Jacobson and
Cryan (2008)

Staircase Acute treatment # anxiety in mice Jacobson and
Cryan (2008)

rac-BHFF SIH Acute treatment # anxiety in mice Malherbe et al.
(2008)

BHF177 EPM Acute treatment $ in mice Li et al. (2013)

LDB Acute treatment $ in mice Li et al. (2013)

Vogel
conflict

Acute treatment $ in mice Li et al. (2013)

LES Acute treatment $ in rats (anxiolytic-like
effects in high but not low LES-responding rats)

Li et al. (2015)

ADX71441 MB Acute treatment # anxiety in mice Kalinichev et al.
(2017)

EPM Acute treatment # anxiety in mice, rats Kalinichev et al.
(2017)

AcbSh nucleus accumbens shell, BLA basolateral amygdala, EPM elevated plus maze, EZM
elevated zero maze, LDB light/dark box, LES light-enhanced startle, MB marble burying, PND
postnatal day, SI social interaction, SIH stress-induced hyperthermia
# = decreased; $ ¼ no effects; " ¼ increased
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early postnatal life (Postnatal day (PND) 14- PND 28) in mice induced anxiety-like
behaviour in adulthood in the elevated plus maze (EPM) but not in the stress-induced
hyperthermia (SIH) and marble burying (MB) tests (Sweeney et al. 2014). This
suggests that during early life GABAB receptor signalling might play a functional
role in programming anxiety behaviour in adulthood (Sweeney et al. 2014), although
this effect might also be test-specific.

Importantly, baclofen has several side-effects including sedation or somnolence,
hypothermia, vertigo and muscle relaxation (Agabio et al. 2013). Moreover,
repeated administration of GABAB agonists such as baclofen can induce receptor
tolerance/desensitization resulting in a reduced therapeutic response following
chronic administration (Lehmann et al. 2003). Thus, there has been great interest
in developing drugs that target the GABAB receptor but with a reduced side-effect
profile and that would not result in tolerance. As such, positive allosteric modulators
(PAMs) offer several advantages over receptor agonists such as baclofen
(Christopoulos 2002): (1) PAMs target more diverse sites that are distinct from the
highly evolutionary conserved orthosteric site thus potentially contributing to greater
selectivity; (2) PAM binding leads to potentiation of GABA-mediated effects on the
receptor rather than direct activation of the receptor; (3) saturation of allosteric
binding sites does not induce downregulation or overstimulation of the target
receptor; (4) PAMs are active only in tissues where the endogenous agonist is
present giving a more specific drug activity. Essentially, PAMs of GABAB receptors
offer the advantage of reduced risk for receptor desensitization/tolerance when
compared with classical GABAB receptor agonists such as baclofen (Gjoni and
Urwyler 2008, 2009).

The first GABAB receptor PAMs that were identified and characterized were
CGP7930 (Urwyler et al. 2001; Adams and Lawrence 2007) and GS39783 (Urwyler
et al. 2003), shortly followed by rac-BHFF (Malherbe et al. 2008), BHF177 (com-
pound # 27 (Guery et al. 2007)), CMPPE (Perdona et al. 2011), COR627 and
COR628 (Castelli et al. 2012).

Several preclinical studies have interrogated the effects of some of these GABAB

receptor PAMs on anxiety-like behaviour (summarized in Table 2). Chronic and
acute administration of GS39783 has been shown to induce anxiolytic-like effects
with no effects on locomotion, cognition, temperature or narcosis (Cryan et al. 2004;
Mombereau et al. 2004). A recent study identified the brain structures that are
modulated by GS39783 under either basal or mild stress (anxiogenic) conditions
which were induced by exposing mice to the open arm of an EPM (Pizzo et al. 2018).
Under basal conditions, GS39783 increased c-Fos expression in the amygdala
nuclei, cortical areas and periaqueductal gray (PAG) subregions, while it inhibited
c-Fos expression in the dorsal raphe nucleus (DRN) (Pizzo et al. 2018). Under stress
conditions (open arm exposure), GS39783 reversed stress-induced c-Fos expression
in the granular cell layer of the dentate gyrus of the hippocampus, no longer
increased c-Fos expression in the amygdala nor did it reduce c-Fos expression in
the DRN (Pizzo et al. 2018). Together, this suggests that GS39783 modulation of
anxiety may involve neural circuits involving the dentate gyrus of the hippocampus,
the amygdala and the DRN.
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CGP7930 has only modest anxiolytic-like effects in mice but a superior side-
effect profile than GABAB receptor agonists (Frankowska et al. 2007; Jacobson and
Cryan 2008). Specifically, CGP7930 was effective in the elevated zero maze (EZM)
in rats (Frankowska et al. 2007) and exhibited modest anxiolytic effects in the SIH,
staircase test and EZM in mice (Jacobson and Cryan 2008). However, CGP7930 had
no anxiolytic effects in the EPM in mice (Jacobson and Cryan 2008).

Both Rac-BHFF and BHF177 induce anxiolytic effects in some tests but not
others. Specifically, Rac-BHFF and BHF177 induced anxiolytic-like effects in the
SIH test in mice and rats, a test of the physiological anxiety response (Malherbe et al.
2008; Vinkers et al. 2010; Li et al. 2015). BHF177 induced anxiolytic-like effects on
light-enhanced startle (LES; a test based on the innate aversion of rodents for bright
light) in high-, but not low-LES responding rats in the staircase test (Li et al. 2015)
but was inactive in the EPM and light dark box test in mice (Li et al. 2013).
Importantly, BHF177, at doses over 40 mg/kg, caused hypothermia in contrast to
other GABAB receptor PAMs including CGP7930 and Rac-BHFF (Vinkers et al.
2010) which may have confounded findings in SIH test. On the other hand,
Rac-BHFF at the same dose that induced anxiolytic-like effects in the SIH
(100 mg/kg) did not enhance baclofen- and γ-hydroxybutyric acid (GHB)-induced
hypothermia (Koek et al. 2010), suggesting that its effects in the SIH test are not
confounded by effects of GABAB receptor modulation of body temperature. A novel
GABAB receptor PAM ADX71441 has also been shown to be effective in the MB
test in mice and in the EPM in mice and rats (Kalinichev et al. 2017). Recently,
Rondard and colleagues (Lecat-Guillet et al. 2017) developed time-resolved fluo-
rescence resonance energy transfer (trFRET) sensors which represent an innovative
tool to screen and identify new GABAB receptors PAMs with lower side-effect
profiles. Interestingly, trFRET revealed that GS39783 exhibits low intrinsic agonist
activity (as expected by a PAM), whereas CGP7930 and rac-BHFF display agonist-
PAMs characteristics (Lecat-Guillet et al. 2017). This finding is in agreement with
behavioural studies outlined above demonstrating that GS39783 induced anxiolytic-
like behavioural effects without affecting locomotion, cognition, temperature or
narcosis, and suggests that this drug may be a good target for clinical development.
Effects of PAMs on conditioned anxiety have also been examined. BHF177 did not
affect conditioned fear responses in the fear-potentiated startle (FPS) test in rats
(Li et al. 2015) and was ineffective in the Vogel conflict test (Li et al. 2013).
Similarly, treatment with GS39783 did not affect conditioned fear responses in
mice (Sweeney et al. 2013).

Taken together, preclinical evidence suggests that activation of the GABAB

receptor may induce anxiolytic-like effects particularly in tests of innate anxiety
whereby PAMs decrease innate anxiety in some tests but not others, and thus
perhaps do so in a test-specific manner. Importantly, these findings may also be
confounded by motor impairing and hypothermic effects.
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2.2 Effects of GABAB Receptor Loss of Function and GABAB

Receptor Antagonists on Anxiety-Like Behaviour

Given the evidence that agonists and PAMs of the GABAB receptor can exert
anxiolytic effects, several studies have also interrogated the impact of genetically
induced GABAB receptor loss of function and GABAB receptor antagonists on
anxiety-like behaviour (summarized in Table 3).

Mice lacking either the GABAB(1) or GABAB(2) receptor subunits exhibit an
anxious phenotype. Specifically, GABAB(1)

�/� mice were more anxious in the light
dark box (LDB) test and the staircase test (Mombereau et al. 2004). In addition, these
mice exhibited anxiety/panic-like behaviour in the EZM actively jumping off the
maze (Mombereau et al. 2004). Similarly, mice lacking the GABAB(2) receptor
subunit also exhibit anxiety-like behaviour in the LDB (Mombereau et al. 2005).
Anxiety behaviour has also been assessed in mice lacking specific isoforms of the
GABAB(1) receptor subunit. GABAB(1a)

�/� and GABAB(1b)
�/� mice did not exhibit

altered behaviour in innate tests of anxiety including in the EPM, SIH and MB tests
(Jacobson et al. 2007; O’Leary et al. 2014). Similarly, GABAB(1a)

�/� and GABAB

(1b)
�/� mice that underwent early life stress (via maternal separation) or chronic

stress in adulthood (via social defeat stress) did not exhibit differences in innate
anxiety behaviour when compared to wild type mice (O’Leary et al. 2014). On the
other hand, GABAB(1a)

�/� mice were unable to acquire conditioned taste aversion
(CTA), whereas GABAB(1b)

�/� mice were unable to extinguish aversive taste
memories in this test (Jacobson et al. 2006). Taken together, this suggests that loss
of function of either the GABAB(1) or GABAB(2) receptor subunit increases innate
anxiety, while loss of function of just one GABAB(1) receptor subunit isoform is not
sufficient to affect innate anxiety-like behaviour. However, changes in locomotor
activity can be a confounding factor of the behavioural tests, for instance GABAB

(1)
�/� and GABAB(1b)

�/� (but not GABAB(1a)
�/�) mice display hyperlocomotor

activity in a new environment (Mombereau et al. 2004; O’Leary et al. 2014).
In contrast to the findings in genetically altered mice, the effects of GABAB

receptor antagonists on anxiety behaviour are less clear (Table 3). Overall, however,
the findings suggest that GABAB receptor antagonists can induce anxiolytic-like
effects in rats (Zarrindast et al. 2001; Frankowska et al. 2007; Partyka et al. 2007) but
less so in mice (Dalvi and Rodgers 1996; Mombereau et al. 2004; Sweeney et al.
2014). When given systemically to rats, GABAB receptor antagonists were effective
in the EPM, EZM, Vogel conflict test and four-plate test (Zarrindast et al. 2001,
Frankowska et al. 2007, Partyka et al. 2007) but were ineffective when locally
administered into the basolateral amygdala or the shell of the nucleus accumbens
(Sanders and Shekhar 1995; Lopes et al. 2012). In mice, chronic treatment with the
GABAB receptor antagonist CGP56433A had no effect in the LDB test (Mombereau
et al. 2004). Similarly, acute treatment with the GABAB receptor antagonist CGP
52432 did not have anxiolytic effects in the EPM, MB and SIH tests (Dalvi and
Rodgers 1996; Sweeney et al. 2014) or in cued auditory fear conditioning (Sweeney
et al. 2013). However, the GABAB receptor antagonist CGP36742 induced
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Table 3 Effects of GABAB receptor inhibition or loss of function on anxiety-like behaviours in
rodents

Mice Paradigm Finding References

Genetic

GABAB(1)
�/� LDB " anxiety Mombereau et al. (2004)

Staircase test " anxiety Mombereau et al. (2004)

GABAB(2)
�/� LDB " anxiety Mombereau et al. (2005)

GABAB(1a)
�/� EPM $ anxiety Jacobson et al. (2007)

$ anxiety O’Leary et al. (2014)

SIH $ anxiety Jacobson et al. (2007)

$ anxiety O’Leary et al. (2014)

MB $ anxiety Jacobson et al. (2007)

FC Generalized fear to a neutral
context 24 h after training

Lynch et al. (2017)

GABAB(1b)
�/� EPM $ anxiety Jacobson et al. (2007)

$ anxiety O’Leary et al. (2014)

SIH $ anxiety Jacobson et al. (2007)

$ anxiety O’Leary et al. (2014)

MB $ anxiety Jacobson et al. (2007)

Antagonists

CGP 35348 EPM Acute treatment $ anxiety
in mice

Dalvi and Rodgers (1996)

Acute treatment # anxiety
in rats

Zarrindast et al. (2001)

CGP56433A LDB Chronic treatment $ anxiety
in mice

Mombereau et al. (2004)

SCH 50911 EZM Acute treatment # anxiety
in rats

Frankowska et al. (2007)

CGP 36742 EPM Acute treatment # anxiety
in rats

Partyka et al. (2007)

Vogel conflict Acute treatment # anxiety
in rats

Partyka et al. (2007)

Four plate Acute treatment # anxiety
in rats

Partyka et al. (2007)

CGP51176 Four plate Acute treatment anxiety $
in mice

Partyka et al. (2007)

Saclofen EPM Injection in the AcbSh
$ anxiety in 24 h
food-deprived rats

Lopes et al. (2012)

Acute treatment prevented
nicotine-induced anxiety
in mice

Varani and Balerio (2012)

(continued)
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anxiolytic-like effects in the four-plate test in mice (Partyka et al. 2007), and
the GABAB receptor antagonist 2OH-Saclofen reversed the effects of nicotine
treatment on anxiety-like behaviours in mice (Varani and Balerio 2012). In
addition, the GABAB receptor antagonist CGP 36216 when administered
intracerebroventricularly (ICV) or in the dorsal hippocampus or ventral hippocam-
pus induced fear generalization in mice treated after fear memory consolidation
(Lynch et al. 2017). Importantly, the clinical use of GABAB receptor antagonists has
been limited mainly by their potential side-effects including pain, gastroesophageal
reflux disease, drug addiction and proconvulsive action (Vergnes et al. 1997; Ghose
et al. 2011).

In summary, GABAB receptor agonists and PAMs exert anxiolytic-like effects,
while loss of function of the GABAB receptor (GABAB(1)

�/� and GABAB(2)
�/�

mice) induced anxiogenic-like effects. However, loss of function of either the
GABAB(1a) or GABAB(1b) receptor subunit isoform alone did not affect anxiety-
like behaviour, likely because these mice still express functional GABAB receptors
(GABAB(1b,2) or GABAB(1a,2), respectively). The impact of GABAB receptor antag-
onists on anxiety is at present somewhat less clear but sometimes similar to agonists/
PAMs appears to be anxiolytic. The precise mechanisms underlying the anxiolytic
effects of both GABAB receptor antagonists, and agonists/PAMS which would be
expected to have opposing pharmacological effects are not yet fully understood but
may be a function of the fact that GABAB receptors are found both pre-synaptically
and post-synaptically and that drugs might differ in their efficacy at these different
receptor sites and at different subunits of the receptor (Cryan and Kaupmann 2005;
Sun et al. 2016; Freyd et al. 2017). Nevertheless, the evidence overwhelmingly
supports the GABAB receptor as a valid drug development target for the treatment of
anxiety disorders.

Table 3 (continued)

Mice Paradigm Finding References

CGP52432 FC Acute treatment $ anxiety
in mice

Sweeney et al. (2013)

EPM PND 14–28 treatment
$ anxiety
in adult mice

Sweeney et al. (2014)

EPM elevated plus maze, EZM elevated zero maze, FC fear conditioning, LDB light/dark box, LES
light-enhanced startle, MB marble burying, PND postnatal day, SI social interaction, SIH stress-
induced hyperthermia, AcbSh nucleus accumbens shell
# = decreased; $ ¼ no effects; " ¼ increased
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3 Role of the GABAB Receptor in Depression
and Antidepressant Action

One of the first indications that the GABAB receptor may play a role in depression
came from preclinical studies reporting that chronic treatment with antidepressant
drugs or repeated electroconvulsive shock upregulated GABAB receptor binding and
function in the mouse and rat frontal cortex (Pilc and Lloyd 1984; Lloyd et al. 1985;
Suzdak and Gianutsos 1986; Gray and Green 1987; Szekely et al. 1987; Pratt and
Bowery 1993). More recently, it has been reported that chronic treatment with
antidepressants (fluoxetine, phenelzine, desipramine and tranylcypromine) increased
the expression of the GABAB(1a) receptor subunit isoform in the rat hippocampus
(Sands et al. 2004). As outlined below, it has since been shown that pharmacological
or genetic blockade of GABAB receptor activity exerts antidepressant-like effects.
While these effects of GABAB-receptor antagonist induction of antidepressant-like
behaviour seem to be opposing to antidepressant-induced upregulation of the
GABAB receptor, they might be due to drug selective effects on either or both
presynaptic and postsynaptic GABAB receptors (Cryan and Kaupmann 2005, Sun
et al. 2016, Freyd et al. 2017).

3.1 Effects of GABAB Receptor Agonists on Depression-Like
Behaviour

The effects of GABAB receptor agonists on depression-related behaviours in rodents
are summarized in Table 4. Several studies have reported that baclofen induced
antidepressant-like behaviour in the forced swimming test (FST) in both mice and
rats (Aley and Kulkarni 1989, 1990; Car and Wisniewska 2006; Frankowska et al.
2007; Khan et al. 2016). In agreement, it has also been reported that acute treatment
with the GABAB receptor agonist SKF 97541, or the GABAB receptor PAM, CGP
7930, induced antidepressant-like effects in the rat FST (Frankowska et al. 2007).
However, negative findings have also been reported. Indeed, the GABAB receptor
agonists Phaclofen and CGP 44532, and the PAM, GS39783, did not exhibit
antidepressant-like activity in the FST in mice or rats (Mombereau et al. 2004;
Slattery et al. 2005; Nowak et al. 2006; Araki et al. 2016; Pesarico et al. 2016).
Moreover, it was reported that chronic administration of baclofen exacerbated
learned helplessness in rats (Nakagawa et al. 1996b) and that baclofen attenuated
the effects of several antidepressants in the rat FST and in the learned helplessness
model (Nakagawa et al. 1996a, 1996b). More recently, a study showed the baclofen
inhibited the antidepressant-like effects of ketamine (which has rapid antidepressant
effects) in the mouse tail suspension test (TST) (Rosa et al. 2016). Taken together, it
is not yet entirely clear whether pharmacological activation of the GABAB receptor
has antidepressant-like effects.
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3.2 Effects of GABAB Receptor Blockade or Loss of Function
on Depression-Like Behaviour

In contrast to the data on GABAB receptor agonists and PAMs, we have much
stronger evidence that GABAB receptor blockade (either pharmacologically or
genetically) induces antidepressant-like behaviour (see Table 5). Most studies report
that chronic or acute treatment with GABAB receptor antagonists has antidepressant-
like effects in both mice and rats. For instance, the GABAB receptor antagonist,
CGP36742, exhibits antidepressant-like activity in mice in several behavioural tests
including the FST, chronic mild stress paradigm, olfactory bulbectomy model and

Table 4 Effects of GABAB receptor agonists and positive allosteric modulators (PAMs) on
depression-like behaviours in rodents

Drug Paradigm Finding References

Agonists

Baclofen FST Acute treatment # immobility in mice Aley and Kulkarni
(1989)

Acute treatment # immobility in mice Aley and Kulkarni
(1990)

Acute treatment # immobility in mice Khan et al. (2016)

Acute treatment # immobility in rats Car and
Wisniewska
(2006)

Acute treatment # immobility in rats Frankowska et al.
(2007)

Acute treatment $ immobility in isolation reared
mice

Araki et al. (2016)

LH Chronic treatment " escape failures in rats Nakagawa et al.
(1996a)

Chronic treatment " escape failures in
desipramine-treated rats

Nakagawa et al.
(1996b)

TST Acute treatment " immobility in mice treated with
ketamine/ascorbic acid

Rosa et al. (2016)

PAMs

SKF
97541

FST Acute treatment # immobility in rats Frankowska et al.
(2007)

CGP7930 Acute treatment # immobility in rats Frankowska et al.
(2007)

GS39783 Acute treatment $ immobility in mice Mombereau et al.
(2004)

Acute treatment $ immobility in mice Slattery et al.
(2005)

CGP
44532

Acute treatment $ immobility in mice Nowak et al.
(2006)

FST forced swim test, LH learned helplessness
# ¼ decreased; $ ¼ no effects; " ¼ increased
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the learned helplessness paradigm (Nakagawa et al. 1999; Nowak et al. 2006).
Similarly, the GABAB receptor antagonists CGP51176, CGP51176A,
CGP56433A, SCH50911 and CGP52432 also induced antidepressant-like effects
in both the mouse and rat FST (Mombereau et al. 2004; Slattery et al. 2005;
Frankowska et al. 2007; Felice et al. 2012). In addition, CGP51176A has also
been shown to reduce stress-induced anhedonia as measured by increased sucrose
consumption in the chronic mild stress rat model (Nowak et al. 2006).

Studies in genetically modified GABAB receptor mice have revealed findings
similar to that observed with receptor antagonists. GABAB(1)

�/� and GABAB(2)
�/�

mice exhibit an antidepressant-like phenotype in the FST (Mombereau et al. 2004,

Table 5 Effects of GABAB receptor inhibition or loss of function on depression-like behaviours in
rodents

Mice Paradigm Finding References

Genetic

GABAB(1)
�/� FST # immobility Mombereau et al. (2004)

GABAB(2)
�/� # immobility Mombereau et al. (2005)

GABAB(1a)
�/� FST # immobility O’Leary et al. (2014)

#immobility Jacobson et al. (2017)

MS " susceptibility O’Leary et al. (2014)

SDS " susceptibility Jacobson et al. (2017)

GABAB(1b)
�/� FST # immobility O’Leary et al. (2014)

MS " resilience O’Leary et al. (2014)

SDS " resilience O’Leary et al. (2014)

Antagonists

CGP36742 LH Acute treatment #
depression-like behaviour in rats

Nakagawa et al. (1999)

FST Acute treatment #
immobility in mice

Nowak et al. (2006)

CGP56433A FST Acute treatment #
immobility in mice

Mombereau et al. (2004)

Acute treatment #
immobility in mice

Slattery et al. (2005)

CGP51176 FST Acute treatment #
immobility in mice

Nowak et al. (2006)

Sucrose
preference

Chronic treatment #
anhedonia in the
CMS rat model

Nowak et al. (2006)

SCH 50911 FST Acute treatment #
immobility in mice

Frankowska et al. (2007)

CGP52432 FST Acute, subchronic and
chronic treatment #
immobility in mice

Felice et al. (2012)

CMS chronic mild stress, FST forced swim test, LH learned helplessness, MS maternal separation,
SDS social defeat stress
# ¼ decreased; $ ¼ no effects; " ¼ increased
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2005). In the TST, male but not female GABAB(1b)
�/� mice displayed decreased

immobility suggesting antidepressant-like phenotype whereas male and female
GABAB(1a)

�/� mice exhibited increased immobility, suggesting a depression-like
phenotype. In the FST, both GABAB(1a)

�/� and GABAB(1b)
�/� mice exhibited an

antidepressant-like phenotype (O’Leary et al. 2014). However, male but not female
GABAB(1b)

�/� mice are hyperactive in the open field test which may have contrib-
uted to the reduced immobility of males in the FST and TST (O’Leary et al. 2014).
Interestingly, GABAB(1a)

�/� mice are more susceptible whereas GABAB(1b)
�/�

mice are more resilient to early life stress (via maternal separation) and social defeat
stress in adulthood (O’Leary et al. 2014). Specifically, GABAB(1a)

�/� mice are more
susceptible to stress (maternal separation or social defeat stress) -induced anhedonia
as measured in the saccharin preference and female urine sniffing tests, and were also
more susceptible to social defeat stress-induced social avoidance (O’Leary et al.
2014). On the other hand, GABAB(1b)

�/� mice were resilient to stress-induced
anhedonia and psychosocial stress-induced social withdrawal (O’Leary et al.
2014). In addition, GABAB(1a)

�/� but not GABAB(1b)
�/� mice exhibited a blunted

8-OH-DPAT-induced corticosterone and adrenocorticotropic hormone (ACTH)
release, thus suggesting disrupted regulation of the hypothalamic-pituitary-adrenal
(HPA) axis which is the neuroendocrine stress response system (Jacobson et al.
2017).

Taken together, preclinical pharmacological studies and studies using genetically
altered GABAB receptor mice strongly suggest that inhibition of GABAB receptors
has therapeutic potential in the treatment of depression (Alexander 2017; Jacobson
et al. 2018). As described earlier, sometimes, the GABAB receptor agonist baclofen
has also been shown to have antidepressant-like effects in the forced swim test
(FST). The precise mechanisms underlying how opposing pharmacological manip-
ulations (agonist vs. antagonist) could exert similar antidepressant-like effects is
unknown. However, it may be a function of the fact that GABAB receptors are found
both pre-synaptically and post-synaptically, and that drugs might differ in their
selectivity for these differentially located GABAB receptors. The subunit composi-
tion of affected receptors might also influence behavioural responses to pharmaco-
logical agents. For example, it has been shown that mice lacking GABAB(1b)

receptor subunit isoform exhibit a stress-resilient phenotype, while mice lacking
the GABAB(1a) subunit are more stress-susceptible (O’Leary et al. 2014).

4 Clinical Evidence of the Role of GABAB Receptor
in Mood Disorders

The preclinical evidence of the therapeutic potential of GABAB receptor modulation
in the treatment of depression is also supported by clinical evidence. One of the first
clinical indications of a role for the GABAB receptor in depression comes from a
small study reporting that baclofen may worsen depressive like-symptoms (Post
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et al. 1991). In that study, patients with primary affective disorder were chronically
treated with baclofen (10–55 mg/day). Out of five patients, three exhibited increased
depression during baclofen treatment and these depressive symptoms improved
during baclofen withdrawal (Post et al. 1991). This baclofen-induced worsening of
depressive symptoms seems counterintuitive to its antidepressant-like effects in
preclinical studies. The reasons underlying this discrepancy are unclear but may
relate to the fact that preclinical assessments of baclofen were not done in animal
models of depression per se, e.g. stress-induced anhedonia, but were conducted
using “normal” animals in the FST which is a behavioural test of antidepressant-
drug-like activity and not a model of depression. Nevertheless, several studies also
reported that depressed patients displayed blunted baclofen-induced growth hor-
mone release (Marchesi et al. 1991; O’Flynn and Dinan 1993), further suggesting a
role for the GABAB receptor in depression. The effects of baclofen on depression
and anxiety-related clinical measures are contradictory, however, as summarized in a
recent review on its off-label use to treat alcohol use disorder (Agabio and Leggio
2018).

Postmortem studies have reported regional alterations in GABAB receptor
subunit expression in brains from depressed suicide victims (Ghose et al. 2011)
and depressed individuals (Klempan et al. 2009). Specifically, it was reported that
depressed suicide victims exhibited upregulation of the GABAB(2) receptor subunit
in cortical and subcortical brain regions compared with non-depressed suicide
victims (Klempan et al. 2009). More recently, it was reported that GABAB(1) and
GABAB(2) receptor subunit expression was reduced in the superior frontal cortex of
subjects with bipolar disorder (Fatemi et al. 2017). In the hippocampus of depressed
patients, GABAB(2) gene expression was reported to be increased by 50% (Ghose
et al. 2011). In addition, in the dentate gyrus of the hippocampus of these depressed
patients, there was a 30% decrease in the expression of the GABAB(1a) receptor
subunit isoform when compared with controls (Ghose et al. 2011). Interestingly, the
dentate gyrus is one of just a few brain areas where neurogenesis, the birth of new
neurons, occurs throughout life (Altman 1962a, b; Spalding et al. 2013; Boldrini
et al. 2018; Moreno-Jimenez et al. 2019). Hippocampal neurogenesis has been
implicated in the mechanism of antidepressant action (Santarelli et al. 2003; David
et al. 2009; O’Leary and Cryan 2014; Miller and Hen 2015) and recently we and
others reported that GABAB receptor antagonists that have antidepressant-like
behavioural effects increase hippocampal neurogenesis (Felice et al. 2012; Giachino
et al. 2014). We have also found that the stress-resilient behavioural phenotype of
GABAB(1b)

�/� mice is accompanied by resilience to stress-induced decreases in
adult hippocampal neurogenesis (O’Leary et al. 2014).

There is also evidence from human transcranial magnetic stimulation (TMS)
studies that there are alterations in GABAB receptor activity in depression. The
first such study suggested that GABAB neurophysiological deficits are closely
related to the pathophysiology of major depressive disorder (Levinson et al. 2010).
In that study, patients with major depressive disorder (MDD) exhibited decreased
cortical silence, a measure of intracortical inhibition thought to be a marker of
GABAB receptor neurotransmission. Other more recent studies have confirmed
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that depressed patients exhibit a decreased cortical silent period (a TMS measure of
GABAB receptor activity) (Veronezi et al. 2016). Accordingly, adolescents with
depression and a lifetime history of suicidal behaviours exhibited impaired long-
interval intracortical inhibition (LICI; which is a TMS measure of GABAB receptor-
mediated inhibition) when compared to healthy adolescents and to depressed ado-
lescents without a history of suicidal behaviour (Lewis et al. 2018). A follow-up
small study by the same group reported an association between increases in GABAB-
mediated cortical inhibition and a reduction in suicidal ideation over time in adoles-
cents treated for depression (Lewis et al. 2019). A paired-pulse TMS (ppTMS) study
revealed that patients with treatment resistant depression (TRD) exhibit more
reduced GABAA and GABAB receptor-mediated cortical inhibition compared to
non-TRD patients and healthy subjects (Jeng et al. 2019), thus suggesting a potential
role for GABAB receptor function in TRD. In addition, selective serotonin reuptake
inhibitor (SSRI) antidepressants were shown to modulate GABAB receptor-
mediated long-interval intracortical inhibition in non-TRD patients (Jeng et al.
2019), thus providing clinical evidence for a role of GABAB receptors in antide-
pressant action.

In contrast to depression, clinical studies interrogating a role for the GABAB

receptor in anxiety disorders are sparse and the evidence is largely indirect. Never-
theless, there is strong evidence that GABAergic neurotransmission plays a role in
the treatment and pathophysiology of anxiety disorders as benzodiazepines (which
act on the GABAA receptor) are used to treat anxiety disorders (Nemeroff 2003). In
terms of a potential role for GABAB receptors, baclofen has been shown to attenuate
the anxiety that is associated with alcohol withdrawal, post-traumatic stress, panic
disorder and traumatic spinal-cord lesions (Cryan et al. 2005).

In summary, both clinical and preclinical evidence strongly support a role for the
GABAB receptor in depression and anxiety disorders. However, the involvement of
the GABAB receptor in the pathophysiology of anxiety disorders is less explored in
clinical studies when compared with depression. Indeed, the majority of clinical
studies on the role of the GABAergic system in anxiety disorders are focused on the
GABAA receptor. However, it is worth noting that the GABAB receptor can con-
tribute to inhibition by also modulating GABAA receptor activity at presynaptic and
postsynaptic sites (Cryan et al. 2005; Tao et al. 2013), thus suggesting a potential
upstream modulating role for the GABAB receptor in anxiety disorders. Moreover,
preclinical studies suggest that agonists and PAMs of the GABAB receptor have
anxiolytic effects.

5 Conclusions and Perspectives

Although both preclinical and clinical studies suggest the GABAB receptor as a
potential target for the development of new therapeutic approaches for mood and
anxiety disorders, only one GABAB receptor-based compound, SGS272
(CGP36742, a GABAB receptor antagonist), progressed to Phase II clinical trials
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and was investigated as a potential treatment for cognitive deficits (Ghose et al.
2011). To date, however, no clinical trials assessing the effects of GABAB receptor
antagonists in depressed patients have ever been conducted. The development of
such antagonists of the GABAB receptor for the treatment of mood disorders is
mainly hampered by its potential side-effects, particularly the potential risk of
proconvulsive action. However, the abundance of preclinical evidence of the
antidepressant-like effects of GABAB receptor antagonists cannot be ignored, and
thus novel and more selective GABAB receptor antagonists with a better side-effect
profile could lead to new therapeutic approaches in the clinic. In 2014, the first
negative allosteric modulator (NAM) of the GABAB receptor was generated. This
was a CGP7930 analogue, called CLH304a (also named Compound 14) (Chen et al.
2014). In 2016, two additional novel NAMs, CLH391 and CLH393, were
synthetized based on the structure of CLH304a (Sun et al. 2016). It would be
expected that NAMs would have a better side-effect profile than antagonists and
as such, the discovery of these NAMs is very promising for the development of
innovative drugs that negatively modulate GABAB receptor action, and thus might
have antidepressant potential with a reduced side-effect profile.

The GABAB receptor plays a key role in anxiety disorders as demonstrated by a
plethora of preclinical evidence. PAMs represent promising drugs to treat anxiety-
like disorders with safer side-effect profiles than GABAB receptor agonists. ADX
71441 is the first GABAB receptor PAM approved for phase I clinical trial
(Kalinichev et al. 2017) indicated for alcohol use disorder, Charcot-Marie-Tooth
disease and nicotine dependence. However, future clinical trials are required to
evaluate the effects of PAMs in anxiety disorders.

Overall, the GABAB receptor represents a promising target to develop new
therapeutic treatments for depression and anxiety disorders. Since Bowery and
colleagues’ discovery of the GABAB receptor in 1979, thousands of studies inves-
tigating its role in mammals and non-mammals such as the drosophila model (Manev
and Dzitoyeva 2010) have been published. The introduction of genetic tools has
allowed the further study of the role of GABAB receptor subunits and their isoforms
in mice. Despite the drive of scientists to study the GABAB receptor, there is still a
lot unknown. In particular, side-effects associated with GABAB receptor modulation
hamper its path to become a relevant drug target. However, the introduction of novel
tools to study the GABAB receptor (e.g. FRET-Based Sensors) and the discovery of
novel GABAB receptor PAMs and NAMs will pave the way towards GABAB

receptor therapeutics in human disorders such as depression and anxiety disorders.
However, NAMs have yet to be tested in vivo. Intracellular GABAB receptor-
associated proteins may also be important targets to modulate GABAB receptor
activity because protein–protein interaction may allow more precise and temporal
GABAB receptor activity modulation. Particularly, the K+ channel tetramerization
domain (KCTD) that is associated with the GABAB2 receptor C-terminus is envis-
aged to be a promising target (Sereikaite et al. 2019).
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Abstract GABA is the main inhibitory neurotransmitter in the mammalian central
nervous system (CNS) and acts via metabotropic GABAB receptors. Neurodegen-
erative diseases are a major burden and affect an ever increasing number of humans.
The actual therapeutic drugs available are partially effective to slow down the
progression of the diseases, but there is a clear need to improve pharmacological
treatment thus find alternative drug targets and develop newer pharmaco-treatments.
This chapter is dedicated to reviewing the latest evidence about GABAB receptors
and their inhibitory mechanisms and pathways involved in the neurodegenerative
pathologies.

Keywords Alzheimer’s disease · GABAB receptors · Hippocampal sclerosis ·
Neurodegenerative diseases · Parkinson’s disease · Temporal lobe epilepsy

A. P. Princivalle (*)
Department of Bioscience and Chemistry, Biomolecular Research Centre, College of Health,
Wellbeing and Life Sciences at Sheffield Hallam University, Sheffield, UK
e-mail: a.p.princivalle@shu.ac.uk

© Springer Nature Switzerland AG 2021
Curr Topics Behav Neurosci (2022) 52: 267–290
https://doi.org/10.1007/7854_2021_222
Published Online: 17 March 2021

267

http://crossmark.crossref.org/dialog/?doi=10.1007/7854_2021_222&domain=pdf
mailto:a.p.princivalle@shu.ac.uk
https://doi.org/10.1007/7854_2021_222#DOI


1 Introduction

The GABAB receptor is the main inhibitory receptor in the mammalian brain (Curtis
1974; Krnjevic 1974). It was first described by Bowery et al. (1980) who used
pharmacology techniques to identify it, but for almost 20 years afterwards no other
study succeeded in confirming the presence of this receptor. In 1997 Kaupmann et al.
characterised the sequence of the receptor gene, transcript, protein, and the molec-
ular structure of the receptor. They also demonstrated the presence of alternative
splice variants of the GABAB receptor; these were different in the N-terminus
domain and named GABAB1a and GABAB1b. One year later the same group
(Kaupmann et al. 1998) and two others (Jones et al. 1998; White et al. 1998)
demonstrated that this receptor was not fully functional in cells enriched with it,
and they described a second GABAB receptor gene, transcript, protein, and the
molecular structure of the mature fully functional receptor. These two proteins
have therefore been defined as subunits of the fully functional receptor and given
the names of GABAB1 and GABAB2. The same studies also demonstrated for the
first time that, in order for a G-protein coupled receptor to be fully functional, it has
to work as a dimer composed of these two subunits. In a short period of time other
subunits were described (Isomoto et al. 1998) but with very minor roles and very low
expression.

After the molecular characterisation of the two main subunits, DNA or RNA
probes and antibodies became available or could be produced in order to study the
distribution and the level of expression of both the proteins and the transcripts. Thus,
many groups began to investigate distribution and expression levels of the GABAB

receptors. Many of these studies were focused on specific areas of the brain and
spinal cord in rodents, primates, and in humans. Animal models of various neuro-
degenerative diseases were used in order to shed light on the structure, expression,
and physiological and pathological roles of GABAB receptors in these conditions.

Electrophysiological and pharmacological evidence demonstrated abnormalities
of the GABAB receptor in many pathological conditions such as spasticity, epilepsy,
anxiety, depression, and cognitive deficits (Marescaux et al. 1992; Mott and Lewis
1994; Olpe et al. 1993; Meeren et al. 2004; Stewart et al. 2009; Gassmann and
Bettler 2012; Castelli and Gessa 2016). Further, more recently, involvement of the
GABAB receptor has been demonstrated in neurodegenerative diseases such as
Alzheimer’s (Dal Prà et al. 2019; Tang 2019), amyotrophic lateral sclerosis
(Schumacher et al. 2019), Huntington’s (Rosas-Arellano et al. 2018; Rekik et al.
2011), Parkinson’s (Hillman et al. 2012), essential tremors (Paris-Robidas et al.
2012), and autoimmune encephalitis (Moser et al. 2018; Maureille et al. 2019). In
this chapter the attention is focused on the role that GABAB receptors play in
epilepsy, and, more specifically, temporal lobe epilepsy associated with hippocam-
pal sclerosis TLE-HS. Attention is also given to two major neurodegenerative
diseases, Alzheimer’s (AD) and Parkinson’s disease (PD).
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2 GABAB Receptor and Its Effects

It is well known that GABAB receptors belong to the G-protein coupled (guanine
nucleotide binding protein) receptor family (Wojcik and Neff 1984; Hill et al. 1984;
Hill 1985; Karbon and Enna 1985; Andrade et al. 1986) and thus are associated with
slow synaptic neurotransmission. GABAB receptors were initially identified by their
insensitivity to the GABAA antagonist bicuculline and their selective activation by
(�)baclofen (Hill and Bowery 1981). Later, a number of compounds specific for
GABAB receptors were identified, e.g., the antagonist 2-hydroxy-saclofen and the
class of antagonists named CGP. Activation of GABAB receptors produces three
major effects: (a) increases in postsynaptic neuronal K+ conductance to generate
long-lasting inhibitory postsynaptic potentials (Dutar and Nicoll 1988);
(b) inhibition of adenylate cyclase activity, leading to a reduction in cAMP levels
(Wojcik and Neff 1984; Hill et al. 1984; Hill 1985; Karbon and Enna 1985; Andrade
et al. 1986; Rascol et al. 1989); (c) decrease of membrane Ca2+ flux GABAB receptor
activation mediated by G-proteins that are members of the pertussis toxin-sensitive
family Giα/Goα (Odagaki et al. 2000; Odagaki and Koyama 2001). These actions are
discussed separately below. More details about the history and structure of the
GABAB receptors can be found in chapters “Historical Perspective on the
GABAB Receptor” and “GABAB Receptor Structure”, respectively.

2.1 K+ Channels

When activated by an agonist, GABAB receptors increase K+ conductance, produc-
ing hyperpolarisation of the cell membrane, which has been reported in various brain
regions including the cortex (pyramidal cells; Connors et al. 1982; Karlsson and
Olpe 1989; Luhmann and Prince 1991), hippocampus (granule cells and interneu-
rons; Fujita 1979; Misgeld et al. 1984; Dutar and Nicoll 1988; Williams and Lacaille
1992), cerebellum (Schreurs et al. 1992; Vigot and Batini 1997), amygdala (Rainnie
et al. 1991), and thalamus (Hirsch and Burnod 1987; Crunelli and Leresche 1991;
Curró Dossi et al. 1992).

It has been reported that in K+ subunit deletion, G protein-activated inwardly
rectifying potassium (GIRK) channel 2 (GIRK2) mutant mice, in hippocampal
neurons, postsynaptic K+ currents induced by the GABAB receptor agonist baclofen
are reduced or absent, and it was demonstrated that deletion of GIRK2 did not
involve presynaptic inhibition. Therefore, GIRK-containing channels were shown
not to be responsible for presynaptic effects (Lüscher et al. 1997). In contrast, a K+

current is shown to be coupled to GABAB receptors on presynaptic terminals in
hippocampal cultures (Thompson and Gähwiler 1992), so changes in membrane K+

flux appear to be due to postsynaptic GABAB receptor activation (Saint et al. 1990).
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2.2 Ca2+ Channels

Baclofen and GABA depress somatic Ca2+ currents not only in peripheral neurons
(Dolphin and Scott 1986, 1987, 1990) but also in cultured mammalian hippocampal
and cerebellar neurons (Huston et al. 1990; Wojcik et al. 1990; Pfrieger et al. 1994).
GABAB receptor-mediated blockage of Ca2+ channels and coupling mechanisms are
involved (Scott et al. 1991). A reduction of Ca2+ currents can be considered
responsible for the depression of synaptic transmission by presynaptic GABAB

receptors (Huston et al. 1990).
More recent evidence showed that presynaptic neurotransmitter release is indeed

modulated by GABAB receptors through Ca2+ channels (White et al. 1998). Patch
clamp measurements from a presynaptic terminal indicate that baclofen reduced Ca2
+ currents, but had no effect on presynaptic K+ currents and this was G-protein
dependent (Takahashi et al. 1998).

2.3 Inhibition of Adenylate Cyclase

GABAB receptor agonists inhibit basal and forskolin-stimulated neuronal adenylate
cyclase in brain slices (Knight and Bowery 1996), through a G-protein dependent
mechanism that results in a reduced level of intracellular cAMP. When GABAB

receptors are activated, one α subunit is released from the G-protein and interacts
with AC to inhibit cAMP formation. The G-protein involved has been demonstrated
to be Giα/Goα, because ADP-ribosylation of the G-protein by pertussis toxin blocked
any receptor interaction (Asano and Ogasawara 1986; Xu and Wojcik 1986). The βγ
subunit of the G-protein interacts with K+ and Ca2+ channels and can potentiate
β-adrenoreceptor-mediated cAMP production (Knight and Bowery 1996), via cross
talk mechanisms (Lefkowitz 1992). More details about the physiology of GABAB

receptors can be found in chapter “GABAB Receptor Signal Transduction”.

3 GABAA Receptors

GABA acts also through GABAA receptors. GABAA receptors are ligand-gated Cl�

ion channels generating fast synaptic inhibition (Schofield et al. 1987; Smith and
Olsen 1995). GABAA receptors can be pharmacologically distinguished by the
competitive antagonist bicuculline, they are modulated by many therapeutic agents,
such as benzodiazepines (BZD), and are a potential drug target for a number of
neurological disorders. GABAA receptors are widely distributed in the CNS
(Fritschy and Mohler 1995). The existence of multiple GABAA receptor subunits
has been demonstrated by regional differences in affinity and distribution of binding
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sites for BZD receptor ligands (Niddam et al. 1987; Sieghart et al. 1987; Bureau and
Olsen 1990, 1993; Ruano et al. 1992).

4 GABAB in Neurodegenerative Diseases

Neurodegeneration is defined as the progressive atrophy and loss of function of
neurons, which is present in neurodegenerative diseases. Neurodegenerative dis-
eases are also characterised by deposition of proteins, due to a fault in post-
translational processing, specifically defective proteolysis, leading to overproduction
of misfolded proteins. There are several such proteins that undergo incorrect post-
translational processing; however, for the purpose of this chapter only the major
proteins involved are considered: tau, amyloid-β (Aβ), and α-synuclein.

4.1 GABAB in Alzheimer’s Disease

Alzheimer’s disease (AD), as mentioned above, is a neurodegenerative disease
described for the first time in 1907 by the Bavarian physician and pathologist
Alois Alzheimer (1864–1915). Unfortunately, since then, and over a century later,
the prevalence of AD has tremendously increased. It is now the fifth most common
cause of death globally. About 44 million people worldwide are living with demen-
tia, 70% due to AD (Dumurgier and Sabia 2020). The main symptoms of AD are:
loss of recent memory, disorientation to time and place, sometimes antisocial
behaviour –“loss of inhibitions”, lack of outward physical signs.

The symptoms observed are due to the specific regions of the brain affected by
neurodegeneration, which are the hippocampus and the cortex, where the loss of
neurons becomes increasingly evident with the progression of the disease (Fig. 1).
The hippocampus is the centre for processing and storing memories, and cortex is the
centre for high cognitive function built on memories.

The neuropathological features of AD are extracellular senile plaques made up by
amyloid-β protein, and intracellular neurofibrillary tangles (NFT) made up of paired
filaments and hyperphosphorylated tau protein (Fig. 2).

The majority of studies on AD are focused on the pathological processing of the
amyloid precursor peptide (APP) leading to the formation of amyloid-β, the resulting
build-up of amyloid plaques (Fig. 3), and also on the development of the tangles due
to hyperphosphorylation of the tau protein (Fig. 4). In addition to this, recent
evidence has shown that GABAB receptors also play a role in the pathology of AD.

The earliest indications for the role of GABAB receptors in AD emerged from a
quantitative autoradiography binding study. In this study, a significant decrease of
Bmax for GABAB receptors was reported in the cortex and hippocampus, especially
in the stratum moleculare of the dentate gyrus (DG), the stratum lacunosum-
moleculare, and the stratum pyramidale of CA1 (Chu et al. 1987a, b). Following
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Fig. 1 Brain imaging showing a control brain on the left and a brain affected by Alzheimer’s
disease on the right. (Credit: Queensland Brain Institute, The University of Queensland. qbi.uq.edu.
au/dementia)

Fig. 2 Neuropathological hallmarks of Alzheimer’s disease. Postmortem Bielschowsky silver
staining of frontal cortex from a patient with Alzheimer’s disease, showing the presence of a
neuritic amyloid plaque (arrow), consisting of aggregated extracellular amyloid β fibrils, and
intraneuronal neurofibrillary tangles (arrowheads), consisting of hyperphosphorylated tau protein.
(Taken from Winblad et al. 2016 with permission from Elsevier journals License Number
4947750098122)
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up from these early findings, it was reported that, in a mouse model of colchicine-
infused hippocampus, the sensory memory of the mice was impaired and also the
amount of GABA in the cortex was decreased. Conversely, in mice simultaneously
treated with colchicine and the GABAB antagonist CGP36742, memory loss was not
recorded. The researchers of that study therefore concluded that the GABAB receptor
antagonist CGP36742 could be a treatment for AD (Yu et al. 1997). More experi-
mental evidence obtained by immunohistochemistry emerged, corroborating the
differential expression of GABAB receptors in varying stages of AD according to
the Braak Staging. These data suggested that the expression of GABAB1 is stable in
CA1 through all the stages of the disease. In contrast, in the initial stages (Braak
III/IV) of the pathology, the expression of GABAB1 expression is higher in CA2-4,
which could be interpreted as a compensatory (or self-defending) mechanism where
the expression decreases with the progression of the disease (Braak V/VI), leading to
neuronal death and impairment between excitation and inhibition. From these data it

Fig. 3 Schematic representation of the amyloid-plaque formation. Adapted from https://www.
biolegend.com/amyloid_precursor_protein

Fig. 4 Brain images showing a normal postmortem sample on the left and the loss of pigmented
neurons in the pars compacta of the substantia nigra (SNpc) of a postmortem PD patient on the right
(black arrows)
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can be concluded that the formation of the NFTs in the hippocampus initially
induces an increased expression and, later, increasing NFT accumulation stops the
expression of this GABAB receptor specifically (Iwakiri et al. 2005).

In recent data, rat ex vivo brain sections containing the hippocampus were treated
with excess Aβ. These data demonstrated that, during the early stage of the disease,
amyloid-β causes a dysregulation between excitatory and inhibitory neurotransmis-
sion, leading to disruption of the neuronal network. These changes are significant in
the septo-hippocampal region, which processes learning and memory, according to
oscillatory activity at the synapses between fimbria and CA3 (Nava-Mesa et al.
2013). This group noted that the mechanism of action of amyloid-β was localised at
the postsynaptic region and presumably linked to GABAB and its K+ and Ca2+

channels via GIRK channels. These data suggest that amyloid-β modifies GIRK
channels in CA3 pyramidal neurons in a way that is linked to the functioning
of GABAB in the modulation of the hippocampal circuit. Another study on the
effect of amyloid-beta (Aβ) on gene expression demonstrated that the level of
expression of GIRK2, 3, and 4 subunits was decreased, but GABAB receptor
expression was unaffected. These data corroborate the previous observations show-
ing a relationship between the effect of Aβ and K+ channels linked to GABAB

receptors (Mayordomo-Cava et al. 2015). Another study showed that in a rat
streptozotocin-induced diabetic (STZ) model of sporadic AD, baclofen enhanced
memory, again showing a role for GABAB receptors in AD (Pilipenko et al. 2018).
One of the latest pieces of evidence that GABAB receptors play a role in AD is the
link between GABAB/APP and the formation of Aβ, emerging from a study on
sequence-related epitopes in APP with nanomolar affinity for the sushi-domain on
the N-terminal site of presynaptic GABAB1a receptors. This study demonstrates, by
using a proteomics approach, a multiprotein complex containing APP, c-Jun N-ter-
minal kinase-interacting protein (JIP) and calsyntenin, together with GABAB1a. This
multiprotein complex facilitates Aβ formation and blocks the axonal trafficking of
presynaptic of the GABAB receptor, decreasing its expression (Dinamarca et al.
2019). In a genetic mouse model of AD expressing a chimeric mouse/human
(Mo/Hu) APP-695 with mutations linked to familial AD (Oh et al. 2009), the use
of various immunohistochemical techniques demonstrated a decreased expression of
GABAB1 in the cell membrane surface of the stratum lacunosum-moleculare of CA1
pyramidal cells at 6 months of age. This reduced expression became more pro-
nounced at 12 months of age and was coupled with an increase of the subunit in the
intracellular compartment. Further, a reduction of GABAB receptors was observed in
the axon terminal synapsing pyramidal CA1 cells (Martín-Belmonte et al. 2020a).
The same group demonstrated a significant decrease of GABAB receptors in the
stratum moleculare of the DG, and also in axon terminals synapsing dendritic spines
of granule cells, more evident in the outer than in the inner molecular layer (Martín-
Belmonte et al. 2020b).

All these data taken together, starting from the earliest indication (Chu et al.
1987a, b) up to the most recent data (Martín-Belmonte et al. 2020a, b), indicate that
GABAB receptors, and particularly GABAB1a, have a decreased expression in the
hippocampus. The reported reductions in GABAB expression are specific to the
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hippocampal subregions; however, it seems a general trend extended to CA1, CA3,
and DG (which make up the trisynaptic circuit). Functionally, due to the decrease of
GABAB receptors, there is an augmented production of Aβ, because the lack of
GABAB receptors promotes the proteolysis of APP. This further supports the
conclusions that GABAB-mediated synaptic transmission is a major contributor in
AD and GABAB receptors may be a suitable target for more effective drugs to treat
AD. All these studies have focused their attention on GABAB1, firstly because its
expression was higher in the neuronal bodies and proximal dendrites where NFT
accumulates in AD (Iwakiri et al. 2005). Secondly, GABAB1a has been demonstrated
to form a complex with APP, whereas GABAB1b does not. Furthermore, the
GABAB1a knock-out mice model showed a lack “of GABAB axonal transport and
deficit in GBR-mediated inhibition of glutamate release”. This model also showed
that secreted APP functions as a GABAB1a ligand to modulate synaptic neurotrans-
mission (Dinamarca et al. 2019; Martín-Belmonte et al. 2020a, b).

4.2 GABAB in Parkinson’s Disease

Parkinson’s disease (PD) is another neurodegenerative disease, described for the first
time by James Parkinson (1817) in “An Essay on the Shaking Palsy”. Toodayan
(2018) PD is also known as paralysis agitans; it was first called Parkinson’s disease
by Jean-Martin Charcot in 1884. PD affects about 0.1–0.2% of the whole population.
The incidence of the disease increases with age affecting 1% of people over 60 years
of age. The main symptoms of PD are tremor at rest, muscle rigidity, and
bradykinesia. The symptoms observed are due to the specific region of the brain
affected by the loss of dopaminergic neurons: the substantia nigra (SN) (Fig. 4).

The main neuropathological features are Lewy bodies, which contain α-synuclein
(Fig. 5) in the SN and this is exhibited through impairment of voluntary movement
(Braak et al. 2003).

When the disease progresses these features spread to the cortex and neocortex
(Tysnes and Storstein 2017). Figure 6 below illustrates the whole circuit and the
inhibitory and excitatory connection.

Fig. 5 Photomicrographs
showing the presence of
Lewy bodies containing
α-synuclein. Taken from
https://www.alz.org/
alzheimers-dementia/what-
is-dementia/types-of-
dementia/lewy-body-
dementia
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When the dopaminergic neurons in the substantia nigra pars compacta (SNpc)
start to degenerate, the dopaminergic signal to the caudate and putamen is reduced.
The response of the caudate and putamen therefore becomes modified, which results
in an overall increase in the output of the interior globus pallidus (GPi). This
increases results in the inhibition of the thalamus. The thalamic excitatory signal
to the motor cortex is diminished, thus causing reduced motor control. Also, the
subthalamic nucleus (STN) plays a critical role in the regulation of movement, and
abnormal activity of its neurons is associated with basal ganglia motor symptoms
(McGregor and Nelson 2019).

The first evidence of involvement of GABAB receptors in PD emerged from
electrophysiological recordings in neurons isolated from the globus pallidus (GP) in
the presence of baclofen. The data showed that the GABAB-mediated effect was
present only in one of the subtypes of GP neurons with a small soma, and the
activation of GABAB modulated high-voltage-activated (HVA) calcium currents
which may have an impact on the basal ganglia circuit (Stefani et al. 1999). A 40%
decrease in the expression of GABAB receptors in the SNpc and in the GPi was
reported in a binding study utilising a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-induced PD monkey model (Calon et al. 2000). The same group also
demonstrated significant decreases in the mRNAs for GABAB1 (�69%) and
GABAB2 (�66%) in the SNpc, and that the decreased expression of GABAB1

mRNA was related to dopamine (DA) concentration (Calon et al. 2001). The same
group also analysed, via binding experiments, the expression of GABAB receptors in
human postmortem specimens and found a reduced binding in the putamen and
external globus pallidus (GPe) in PD patients compared with controls (Calon et al.
2003). Also, in a rat model of PD with induced lesions of the nigrostriatal pathway, a

Classic Model (Healthy) Classical Model (PD)

Motor Cortex Motor Cortex

Striatum
iMSN

SNc SNc

GPe

STN STN

ThalamusThalamus

Dopaminergic Direct Pathway Indirect Pathway

Inhibitory Excitatory

Brainstem/
spinal cord

Brainstem/
spinal cord

GPe

GPi/SNr GPi/SNr

dMSN
Striatum

iMSNdMSN

Fig. 6 Schematic
representation of the
nigrostriatal circuit in the
physiology and pathology of
Parkinson’s disease.
Adapted from (McGregor
and Nelson 2019; with
permission)
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reduction in GABAB mRNA was reported in the SNpc, whereas expression of the
GABAB1a subunit was significantly increased in the substantia nigra pars reticulate
(SNpr), entopeduncular nucleus, and the STN. Since these brain parts received
reduced GABAergic innervation due to the lesion, this could indicate that the
increased GABAB1a expression represents a compensatory mechanism (Johnston
and Duty 2003). The fine-tuned localization of GABAB1 receptors was investigated
by Smith et al. (2000), who found an immunopositive signal in the striatopallidal
complex in neuronal bodies and dendrites, striatal dendritic spine, axons, and axon
terminals. Analysis of GABAB1 receptor distribution via immunogold electron
microscopy showed extrasynaptic sites on dendrites, spines, and somata in the
striatopallidal complex and perisynaptically at the synapses in the GP.

Whole-cell patch-clamp recordings were used to investigate tonic activation of
GABAB receptors at pre- and post-synaptic levels, and the data indicated a major
tonic activation of presynaptic GABAB receptors on the STN terminals compared to
postsynaptic GABAB receptors on STN neurons. Therefore the presynaptic GABAB

receptors could be considered as a new therapeutic target for treating some of the PD
symptoms (Chen and Yung 2005).

It was later demonstrated through the frequency-dependent activation of post-
synaptic GABAB receptors that the GP regulates the activity of the STN. These
results clarify a novel way in which burst activity can be generated in the STN and
suggest that the effect of GABAB on STN neurons could generate abnormal burst
activity in PD (Hallworth and Bevan 2005).

Further proof of the role that the GABAB receptor plays has come from studies in
a rat model whereby the nigrostriatal pathway was depleted by treatment with
6-hydroxydopamine, and the rats were treated with the GABAB receptor antagonist
CGP 56999A. The results showed that the antagonist treatment attenuated the lack of
DA in the rat striatum (Enna et al. 2006).

A recently conducted investigation in an MPTP rat model demonstrated that
baclofen reversed the effect of PD-like induced symptoms (Tyagi et al. 2015).
Another recent study in a mouse model of PD proved that the loss of GABAergic
inhibition in the striatonigral connection led to motor impairment (Borgkvist et al.
2015), corroborating once more the role of GABAB receptors in PD and moreover
how it can be used as a potential drug target to treat certain parkinsonian symptoms.

It has long been established that DA plays a pivotal role in action selection and
learning in the nigrostriatal pathway. However, any link between DA and GABAB

receptors was not clearly defined until recently. The DA released into the striatum is
influenced by local neurons, the majority of which are GABAergic, though it was not
clear if it was a direct or indirect modulation via cholinergic innervation. Lopes et al.
(2019) established that in the striatum GABA is capable of inhibiting release of DA
via both ionotropic and metabotropic GABA receptors and that these actions are not
mediated by acetylcholine. These results also demonstrated a tonic inhibition of DA
release by striatal GABA, which occurs mainly via GABAB receptors. However,
there is still a lack of evidence of whether GABA receptors are expressed on DA
axons (Lopes et al. 2019).
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Previously, the main neuropathological features of PD were mentioned: Lewy
bodies containing α-synuclein and their accumulation in the intracellular space are
major factors in the disease. Emmanouilidou et al. (2016) have examined the
molecular pathway of α-synuclein secretion in mouse nucleus striatum and have
found a new synaptic network that regulates α-synuclein release. They showed that
α-synuclein secretion is a calcium-regulated mechanism depending on the activation
of the sulfonylurea receptor 1 (SUR1), which is an inwardly rectifying potassium ion
channel Kir6 subunit that senses intracellular levels of the nucleotide ATP. They also
demonstrated that modulation of GABA release through SUR1 located on
GABAergic neurons controls α-synuclein release through activation of the presyn-
aptic GABAB receptors. This study suggests that GABA transmission via SUR1 in
mouse striatum modulates the α-synuclein secretory pathway, providing new
insights for potential therapeutics to treat PD (Emmanouilidou et al. 2016). Also,
in a transgenic drosophila model carrying α-synuclein, it was shown that the
transgenic flies lacked the capability of climbing, and this action was reversed by
providing the drosophila with levodopa (L-DOPA_ or a GABAB (but not GABAA)
agonist in their food (Hillman et al. 2012).

There have been useful studies directed towards clarification of various mecha-
nisms underlying the pathophysiology of PD, of which those involving the role of
GABAB receptors have been summarised above. Taken together, all the evidence
available to date not only shows a fundamental role of GABAB receptors in PD, but
also that via more recently described GABAB receptor innervation and modulation
pathways there could be further potentials for better targeted therapies which may
treat PD symptoms in a more effective manner.

4.3 GABAB in Temporal Lobe Epilepsy

Different types of epilepsy are classified according to structural aetiology referring to
abnormalities visible on structural neuroimaging such as magnetic resonance imag-
ing (MRI). The structural malformations may be acquired or genetic. The majority of
focal seizures originate in the temporal lobes (Zentner et al. 1995).

A well-known form of epilepsy linked with structural malformation is temporal
lobe epilepsy associated with hippocampal sclerosis (TLE-HS). Temporal lobe
epilepsy (TLE) is the most common form of focal epilepsy. About 6 out of 10 people
with focal epilepsy have TLE. Seizures in TLE start in one point ( focus) and then
may involve both temporal lobes in the brain. TLE is subdivided in two types: mesial
temporal lobe epilepsy (MTLE) and neocortical temporal lobe epilepsy (NTLE).
MTLE encompasses the medial or internal structures of the temporal lobe. Seizures
often begin in the hippocampus or surrounding area and account for almost 80% of
all temporal lobe seizures. NTLE encompasses the outer part of the temporal lobe.
About 30–40% of patients affected byMTLE-HS are pharmaco-resistant (Engel 2001).
When seizures are prolonged and repeated they produce severe neuronal loss in the
temporal lobe, mostly observed in the hippocampus, entorhinal cortex, amygdala, and
other brain areas (Van Paesschen et al. 1997; Sutula and Hermann 1999).
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TLE-HS is not always considered or classified among the classical neurodegen-
erative diseases such as AD or PD. However, neurodegeneration in cornu ammonis
(CA) subregions (Fig. 7), aberrant mossy fibre (MF) sprouting (Sutula et al. 1989),
granule cell dispersion (Houser 1990), and astrogliosis (Seifert et al. 2010) have
been reported in the hippocampus in individuals with TLE-HS. Since the temporal
lobe is a major cortical structure involved in learning and memory (Halgren et al.
1991), recurrent spontaneous seizures (which are the primary triggering cause of
TLE-HS) result in damage to this structure and therefore memory is impaired
(Helmstaedter 2002).

Neurodegeneration associated with TLE-HS has been observed in the human
hippocampi (Fig. 7) and subsequently reproduced in rodent models. It is
characterised by affecting the so-called trisynaptic circuit (Fig. 8), specifically

CONTROL TLE/HS

Fig. 7 Cresyl violet/Luxol fast blue stained sections of human hippocampus: (a) control specimen;
(b) sclerotic specimen (not in scale). Taken from Princivalle PhD thesis (2003)

Fig. 8 The hippocampal Network: The hippocampus forms a principally uni-directional network,
with input from the entorhinal cortex (EC) that forms connections with the dentate gyrus (DG) and
cornu ammonis CA3 pyramidal neurons via the perforant path (PP – split into lateral and medial).
CA3 neurons also receive input from the DG via the mossy fibres (MF). They send axons to CA1
pyramidal cells via the Schaffer collateral pathway (SC), as well as to CA1 cells in the contralateral
hippocampus via the associational commisural (AC) pathway. CA1 neurons also receive inputs
directly from the PP and send axons to the Subiculum (Sb). These neurons in turn send the main
hippocampal output back to the EC, forming a loop. Taken from http://www.bristol.ac.uk/synaptic/
pathways/
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CA1 and CA3 subregions of the hippocampus, but not the CA2, DG, or subiculum;
the neurodegeneration reported is also associated with MF sprouting (Gloor 1991;
Sloviter 1994).

This neurodegeneration is accompanied by loss in GABAergic cells and altered
expression of inhibitory receptor subunits in the DG and other parts of the hippo-
campal formation (Sperk et al. 2004).

Inhibition mediated by GABA has been demonstrated to be reduced in neurons
surviving hippocampal sclerosis (HS) associated with TLE (Mangan et al. 1995;
Mangan and Lothman 1996). Evoked inhibitory post-synaptic potentials (IPSPs) in
neurons from TLE-HS samples have been shown to be reduced compared with
samples from patients with different structural lesions (Isokawa et al. 1991; Knowles
et al. 1992).

In order to account for this finding, a number of research groups proposed
different hypotheses for the decreased synthesis of GABA: (1) impairment in the
GABA transporters (GAT) or the glutamate decarboxylase (GAD) enzyme,
(2) reduced binding of GABA to the two receptor subtypes, GABAA and GABAB,
(3) reduced production of the receptors at transcriptional or translational level, or
(4) post-translational modifications in the hippocampal area. More recent evidence
emerged showing impairment in GABA (Thomas et al. 2003, 2005) and GABA
transporters (Mathern et al. 1999; Schijns et al. 2015). Also GABAA receptor sub-
units were demonstrated to be differentially expressed in both in human TLE-HS
hippocampal specimens (Loup et al. 2006) and in animal models (Pirker et al. 2003;
Mazzuferi et al. 2010), and in the amygdala and the entorhinal cortex of human
patients (Stefanits et al. 2019).

Most interesting for the purpose of this chapter is that anomalies in the expression
of GABAB receptors have been reported both in human TLE-HS and animal models
of it.

GABAB presynaptic receptor function has been demonstrated to be reduced in the
DG granule cells of both kindled and kainate rat models of epilepsy (Buhl et al.
1996; Haas et al. 1996). Similar reduction was reported also in CA1 of partially
(hippocampus)- or fully (amYgdala)-kindled rats (Asprodini et al. 1992; Wu and
Leung 1997); none of these studies reported malfunctions in the GABAB receptor-
mediated post-synaptic potentials. However, Mangan and Lothman (1996) observed
a reduction in both pre- and post-synaptic GABAB receptor function in CA1 neurons
in a rat hippocampal-kindling model. The GABAB1 and GABAB2 transcript expres-
sion patterns have been reported in great detail in the rat (Kaupmann et al. 1997,
1998; Muñoz et al. 1998; Bischoff et al. 1999; Benke et al. 1999; Liang et al. 2000;
Jones et al. 1998; Kuner et al. 1999; Ng et al. 1999; Clark et al. 2000) and in human
hippocampus (Berthele et al. 2001; Princivalle et al. 2003). The binding parameters
of agonists and antagonists for GABAB receptors have also been reported exten-
sively (Billinton et al. 2001; Princivalle et al. 2002; Furtinger et al. 2003). GABAB

receptors have been demonstrated to be differentially expressed in the hippocampus
of TLE-HS in rat and mouse models, as well as in human specimens (Princivalle
et al. 2001, 2003; Nishimura et al. 2005;Teichgräber et al. 2009; Rocha et al. 2015;
Sheilabi et al. 2018).
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Electrophysiological evidence indicated that GABAB receptor expression may be
an important factor for the onset of ictogenesis in the rat limbic system and, perhaps,
in MTLE patients (Avoli et al. 2004). Lang et al. (2014) demonstrated that GABAB

receptors regulate hippocampal hyperexcitability by inhibiting CA3 glutamatergic
synapses. They postulate that positive allosteric modulation of GABAB receptors
may be effective in reducing seizure-related hyperexcitability. All these data dem-
onstrate the loss of GABAB receptor function in TLE in rodents and humans.

The main common feature emerging from all these pieces of research evidence is
that the physiological role of GABA and GABAB receptors is to induce hyperpo-
larization. Later on, however, it came up to light that GABA not only has an
inhibitory action but could also have a depolarizing action, suggesting that GABA
transmission is also involved in promoting epilepsy (Köhling et al. 1998; Cohen
et al. 2002). In fact, Kantrowitz and colleagues (2005) demonstrated, by using
electrophysiological techniques, that GABAB receptors regulate the synaptic depo-
larization to GABA response, and also that blocking of GABAB receptors with the
specific antagonist CGP 55845A caused the depolarizing GABA response to
become excitatory and pro-convulsive. Additionally, in very recent years it has
been demonstrated in a mouse model of TLE that inhibition of presynaptic
GABAB receptors has a depolarising action on cholecystokinin-positive basket
cells [CCK(+) BCs], in the hippocampus, specifically in CA3 (Dugladze et al. 2013).

All this body of evidence highlights the pivotal role that the GABAB receptor
plays in TLE-HS, and the latest data particularly corroborate the importance that the
reduced expression of GABAB receptors has in the pathophysiology of TLE. In the
future, studies are needed to design, develop, and test innovative drugs which can
target GABAB receptors, specifically in the trisynaptic circuit.

5 Conclusions

It has long been recognised that GABA is the main inhibitory neurotransmitter in the
mammalian brain and that it acts via the GABAA and GABAB receptors. This
chapter has focused on the review of the role and mechanisms of action of
GABAB receptors in three neurological diseases, which appear similar in some
aspects and dissimilar in others. They are similar because they all show
neurodegeneration; they are dissimilar because the cerebral circuits involved in
their pathophysiology are different in PD versus AD and TLE/HS, and because the
main neuropathological features are different.

Altogether, the GABAB receptor plays a pivotal role in the inhibitory pathway in
order to control the balance between excitatory/inhibitory signals in the trisynaptic
circuit of the hippocampus, which has been described and demonstrated to have
neuronal loss, in both AD and TLE/HS. On the other hand, in PD, GABAB has been
shown to modulate excitatory/inhibitory signals via more newly described pathways
different from the trisynaptic circuit.
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Abstract GABAB receptors are implicated in numerous central nervous system-
based behaviours and mechanisms, including cognitive processing in preclinical
animal models. Homeostatic changes in the expression and function of these recep-
tors across brain structures have been found to affect cognitive processing. Numer-
ous preclinical studies have focused on the role of GABAB receptors in learning,
memory and cognition per se with some interesting, although sometimes contradic-
tory, findings. The majority of the existing clinical literature focuses on alterations in
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GABAB receptor function in conditions and disorders whose main symptomatology
includes deficits in cognitive processing. The aim of this chapter is to delineate the
role of GABAB receptors in cognitive processes in health and disease of animal
models and human clinical populations. More specifically, this review aims to
present literature on the role of GABAB receptors in animal models with cognitive
deficits, especially those of learning and memory. Further, it aims to capture the
progress and advances of research studies on the effects of GABAB receptor
compounds in neurodevelopmental and neurodegenerative conditions with cognitive
dysfunctions. The neurodevelopmental conditions covered include autism spectrum
disorders, fragile X syndrome and Down’s syndrome and the neurodegenerative
conditions discussed are Alzheimer’s disease, epilepsy and autoimmune anti-
GABAB encephalitis. Although some findings are contradictory, results indicate a
possible therapeutic role of GABAB receptor compounds for the treatment of
cognitive dysfunction and learning/memory impairments for some of these condi-
tions, especially in neurodegeneration. Moreover, future research efforts should aim
to develop selective GABAB receptor compounds with minimal, if any, side effects.

Keywords Animal models · Cognition · GABAB receptors · Humans · Learning ·
Memory · Neurodegeneration · Neurodevelopmental disorders · Pharmacotherapy ·
Treatment

1 Introduction

Metabotropic GABAB receptors (GABABRs) are implicated in numerous central
nervous system (CNS)-based behaviours and mechanisms, such as the cognitive
processes of learning and memory (Bowery 2006; Heaney and Kinney 2016; Serrats
et al. 2017), in preclinical animal models. Homeostatic changes in the levels and
functions of these receptors at molecular, cellular or neurochemical levels have been
found to affect those cognitive processes. Preclinical studies using a variety of
animal models have focused on the role of GABABRs in learning, memory and
cognition per se. Results from these studies, although sometimes contradictory, are
valuable and promising.

Additionally, several clinical conditions and disorders with variable symptom-
atology that are associated with cognitive deficits also show alterations in GABAB

receptor (GABABR) function (Heaney and Kinney 2016). These conditions include
neurodevelopmental disorders such as Down’s syndrome (DS), fragile X syndrome
(FXS) and autism spectrum disorders (ASD), neurodegenerative disorders, such as
Alzheimer’s disease (AD) and epilepsy, and other neuropsychiatric disorders, such
as schizophrenia. This correlation has spurred a number of studies that have focused
on investigating the role of GABABRs in cognitive processing in these clinical
conditions. The development and advances in imaging techniques have allowed
for a greater understanding of metabotropic GABAergic signalling pathways and
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their involvement in cognition (Murrell et al. 2020). An overall extensive account of
the role of GABABRs in neurodegeneration, with a focus on epilepsy and AD, is
presented elsewhere in this book volume (Princivalle 2021). In this chapter the focus
will be on cognitive processes identified in animal models of health and disease and
in human populations whose cognitive symptomatology is affected or altered by
GABABR mechanisms.

In a broad sense, GABABR agonists have been shown to impair learning and
memory processes, while GABABR antagonists improve them. These effects largely
depend on either the regulation of postsynaptic excitability or on the presynaptic
inhibition of neurotransmitter release. These effects also depend on the pre- and/or
post-synaptic pathways affected, methodological components of the experiment
(such as the tasks implemented, administration method and schedule, and the
doses used) and the duration of the effects. It is important to understand the role of
GABABR agonists, antagonists and positive allosteric modulators (PAMs) on cog-
nition in the general population, as well as in clinical populations, and the mecha-
nisms of action underlying their effects. Thus, the aim of this review chapter is to
examine these processes in detail and capture all existing literature in this area, in an
effort to shed some light on the potential use of GABABR compounds for the
treatment of cognitive impairments in neurodevelopmental, neurodegenerative
and/or neuropsychiatric disorders.

2 GABAB Receptors Mechanisms of Action

A detailed presentation of the GABABR structure, function, locations and mecha-
nisms of action is presented in this book volume chapters (Fritzius et al. 2020; Rose
and Wickman 2020). Briefly, slow sustained neuronal inhibition is mediated by
GABABRs (Brenowitz et al. 1998), which are heterodimeric G-protein-coupled
receptors (GPCRs) constructed from GABABR1a or GABABR1b and GABABR2
subunits present in neurons and glial cells throughout the CNS. These subunits need
to co-exist for the receptors to be functional. Through the activation of Gi/o proteins,
GABABRs limit cAMP accumulation, decrease neurotransmitter release and induce
neuronal hyperpolarization.

Taking into account their synaptic loci, GABABR activation acts in two ways,
both ways reducing glutamatergic signalling at excitatory synapses: (1) it reduces
presynaptic GABA and glutamate release through inhibition of presynaptic Ca+

channels in both inhibitory and excitatory synapses and (2) it causes hyperpolariza-
tion of postsynaptic neurons by activation of G protein-activated inwardly rectifying
potassium (K+) channels (GIRKs) (Pin and Bettler 2016). Further, in order for the
GABABRs to be activated, non-synaptic or volume transmission needs to take place,
which requires high levels of GABA release. This can be achieved via several
mechanisms, including simultaneous discharge of GABAergic interneurons (Holley
et al. 2019), very intense discharges in the thalamus, or by the activation of neuroglia
interneurons in the cortex (Sanchez-Vives et al. 2020).
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3 Effects of GABAB Receptors on Cognitive Processes:
Learning and Memory

Functional activation of GABABRs inhibits learning and memory processes, though
conflicting results have been reported. As cognitive processes and the effects of
GABABRs on them are assessed in the context of a vast number of conditions, this
section will initially focus on aspects relating to synaptic plasticity and long-term
potentiation (LTP) as they relate to cognition, and will then be divided into
behavioural procedures used in animal studies for the assessment of cognitive
processes in healthy and/or unhealthy populations. The effects of GABABRs on
cognition will be examined through a variety of procedures, such as: passive and
active avoidance tests, Morris Water Maze (MWM), Radial Arm Maze (RAM),
working memory tasks, novel object recognition (NOR) and (dis)location (NOL)
tasks and the Barnes maze.

3.1 GABAB Receptors, LTP and Synaptic Plasticity

LTP is a long-lasting increase in synaptic effectiveness after repeated high-frequency
stimulation, identified first in the hippocampus in 1973 by Bliss and Lomo (Bliss and
Lømo 1973; Lømo 2003, 2018). LTP is a synaptic plasticity mechanism that is
important for associative learning and creating memories and well-defined. More-
over, being well-defined, LTP is easy to measure and can be used as a readout for
cognitive deficits.

Evidence from numerous studies shows that the GABAergic system is involved
in LTP and other synaptic plasticity mechanisms in different areas of the brain,
including the hippocampus and the perirhinal cortex. Importantly, oscillatory and
synchronous activity is needed to induce synaptic plasticity and GABA seems to
play an essential role in controlling these oscillations (Kohl and Paulsen 2010).
Specific frequencies, such as gamma and theta, have been linked with memory
formation in animals and humans [e.g., (Axmacher et al. 2006; Jutras and Buffalo
2010)], and GABA-initiated synchronous inhibitory postsynaptic potentials (IPSPs)
in the hippocampus control these frequencies [e.g., (Gong et al. 2009; Mann and
Mody 2010)].

As an example of these processes, there appear to be functional interactions
between the GABAergic and cannabinoid (CB) systems in the hippocampus and
other brain areas. After LTP induction in the dentate gyrus (DG) of rats, either the
cannabinoid 1 receptor (CB1R) antagonist AM251 or the GABABR antagonist
CGP55845 was administered. While AM251 increased LTP, CGP55845 decreased
it, while their co-administration had differential effects on the population spike
(PS) amplitude and field excitatory postsynaptic potential (fEPSP). Data from this
study suggested that GABABR antagonists modulate cannabinoid outputs that
decrease synaptic plasticity, while during co-administration, CB1R antagonists can
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alter the release of GABA ultimately resulting in enhancement of LTP induction
(Nazari et al. 2016a, b). In a corresponding study by the same research group (Nazari
et al. 2016a), where either AM251 or baclofen was administered, results showed that
administration of either of the two compounds, AM251 or baclofen, increased both
the PS amplitude and the fEPSP slope, while co-administration of AM251 and
baclofen induced greater increases in PS amplitude and the fEPSP slope, further
strengthening LTP induction through GABABRs. These findings suggest that CB1R
activation in the hippocampus seems to affect synaptic function of GABAergic
interneurons located in the DG.

3.2 Active and Passive Avoidance Paradigms

In the active avoidance paradigm, animals (most commonly rodents) learn to avoid
an aversive stimulus by initiating a specific locomotor response. In this task, animals
are placed in a two-compartment shuttle box and learn the association between a
conditioned stimulus (CS), such as light or tone, and an unconditioned stimulus
(US), such as footshock. In this active avoidance paradigm, a conditioned avoidance
response is defined as when the animal moves to the opposite compartment during
the CS presentation (typically within 10 s) so as to avoid the shock. If the animal
does not move to the other compartment, footshock is delivered. However, this
footshock can be escaped by moving to the opposite compartment. Thus, perfor-
mance is measured by the latency to avoid (i.e., enter the other chamber before the
termination of the CS and the onset of the footshock) or escape (i.e., enter the other
chamber after the onset of footshock) the US. There are two primary versions of this
task: the one-way and the two-way. The first version always includes a defined safe
chamber (i.e., a specific chamber where the animal will never receive the US). The
second version does not define a specific chamber associated with the US. Instead,
the CS is utilized to signal the onset of the US. The active avoidance paradigm is a
cognitive task requiring spatial learning and cognitive coordination. It is useful for
assessing associative learning (operant conditioning), short- and long-term memory,
and it also provides procedures for testing acquisition, consolidation and retention
processes.

The most extensively studied GABABR-active compound in this paradigm has
been the GABABR agonist baclofen, with doses of 0.25 to 20 mg/kg. In the active
avoidance task, as with other tasks described in this chapter, baclofen has shown
contradictory findings, with both improved and impaired performance of mice and
rats. Studies in CD1 mice (Farr et al. 2000), Sprague-Dawley (Fogel et al. 2010) and
Long Evans rats (Stuchlik and Vales 2009) have shown an impairment in different
versions of the active avoidance task, a study using Wistar rats has shown no effect
(Kuziemka-Lȩska et al. 1999) and other studies have shown memory improvement
after administration of baclofen (Georgiev et al. 1988; Sharma and Kulkarni 1993),
an effect that is consistently shown with GABABR antagonists.
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In one of these studies, baclofen dose-dependently disrupted spatial learning and
locomotion in the place avoidance task. Spatial learning and memory (i.e., spatial
behaviour) refer to the ability of an organism to acquire and maintain, respectively, a
mental representation of their environment. Spatial behaviour allows an animal to
understand not only their location in relation to their surrounding environment, but
also the location and dimension of objects and/or stimuli in the environment and how
they are related to them and to each other. Importantly, assessment of the effects of
GABABR compounds on locomotor activity is a very important measure of possible
therapeutic effects (e.g., spasticity, hyperactivity induced by psychostimulants) or
locomotor side effects, as sometimes seen with GABABR agonists, such as baclofen
(e.g., motor impairment, muscle relaxation) in clinical settings and preclinical
studies, that can significantly influence aspects of performance in a variety of animal
models.

In the place avoidance task, animals are trained to move over a continuously
rotating arena, on which an imperceptible to-be-avoided sector is defined, remaining
stable with respect to the experimental room (Stuchlik and Vales 2009). In this study,
baclofen administered at 3.5 mg/kg 30 min before the task selectively disrupted
spatial behaviour in Long Evans rats, while doses of 4 and 6 mg/kg proved to
decrease both avoidance efficiency and locomotor activity. Another study in which
baclofen was administered 30 min before the task showed the opposite effect. In that
study, which used LAKA mice, baclofen was administered at 0.25 and 0.5 mg/kg,
and the 0.5 mg/kg dose was effective in improving one-way acquisition in mice
(Sharma and Kulkarni 1993). In studies using Wistar rats, baclofen administered
either 30 min pre-training (0.75 mg/kg, IP) or post-training (2, 5, 10, 20 mg/kg, IP)
either had no effect (Kuziemka-Lȩska et al. 1999) on the two-way acquisition or
improved the two-way consolidation (Georgiev et al. 1988). Moreover, intra-
pedunculopontine nucleus administration of baclofen 17 h post-training impaired
two-way consolidation in Sprague-Dawley rats whose REM sleep was disrupted
(Fogel et al. 2010). It is worth noting that the pedunculopontine nucleus has been
implicated in the generation of REM sleep. Further, as memory consolidation may
take place during increased post-learning REM sleep, any disruption of REM sleep
can have an impact on the animals’ subsequent performance in this task (Fogel et al.
2010). The variability of effects across doses already seen seems to be dependent on
not only the exact procedures used, but also the route of administration and the
species and strains used. The time of the administration does not seem to differ
among studies already mentioned.

A recent study examined the role of dorsal hippocampal (CA1) GABABRs on
harmaline-induced memory consolidation deficits in mice using the step-down
inhibitory avoidance task (Nasehi et al. 2017). Results from this study showed that
post-training intra-CA1 injections of the GABABR antagonist phaclofen, one of the
first GABABR antagonists described and the phosphonic acid derivative of baclofen,
had no effect, while baclofen (0.1 μg/mouse) impaired animals’ performance in this
task, suggesting a modulation of storage of information. In further experiments,
post-training infusion of harmaline (2 and 5 mg/kg, IP) decreased memory consol-
idation, while administration of phaclofen at a sub-effective dose (0.001 μg/mouse,
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intra-CA1) successfully blocked the deficits on memory consolidation induced by
the highest doses of harmaline (2 and 5 mg/kg, IP). Further, a low dose of baclofen
(0.001 μg/mouse, intra-CA1) potentiated impairment of memory consolidation
induced by harmaline (2 mg/kg, IP). These findings suggest that the CA1 GABABRs
are involved in memory consolidation and that harmaline interacts with the CA1
GABABRs to modulate this memory process (Nasehi et al. 2017).

Considerably more studies using the active avoidance task have used GABABR
antagonists rather than agonists (Getova et al. 1997; Getova and Bowery 1998; Farr
et al. 2000; Getova and Dimitrova 2007). The vast majority of these studies have
shown improvement in performance in the active avoidance paradigm. In these
studies (Getova et al. 1997; Getova and Bowery 1998; Getova and Dimitrova
2007), Getova and colleagues used the GABABR antagonists CGP 36742, CGP
55845, CGP56433, CGP 61344, CGP 62349, and CGP 71982, CGP 63360a,
CGP76290a, and CGP 76291a showing different affinity for the GABABR and
different potency [for a detailed presentation of GABABR antagonists, please see
Nieto et al. (2021)]. All studies were conducted using the two-way version of the
task and tested for both acquisition and retention in Wistar rats. With the exception
of CGP36742, which impaired performance in the task, and CGP 76291a, which did
not have an effect on acquisition, all other compounds improved performance.
Interestingly, in the case of CGP36742, when the one-way version of the task was
used, and the GABABR antagonist was administered repeatedly for two weeks, prior
to the task, it then also improved performance (Yu et al. 1997). Saclofen, another
GABABR antagonist, also improved performance in this task (Farr et al. 2000).
Altogether, these data support the involvement of GABABR’s in memory processes.

In the passive avoidance paradigm, which is classically used to assess short- or
long-term memory in animals (typically rats or mice), animals must react/behave
contrary to their innate tendency to avoid light. The apparatus used in this paradigm
is composed of two compartments, a black poorly illuminated compartment and a
white illuminated compartment. During the acquisition/conditioning phase, the
animal is placed in the white compartment. When the animal innately moves to
the black compartment, it receives a mild footshock. Thus, during the initial phase
the animal learns that moving to the dark compartment has negative consequences.
During the test phase the animal is again placed in the white compartment and the
passive avoidance response is examined. As opposed to the previous avoidance task
discussed, the avoidance of the dark compartment requires the animal to remain in
the white compartment and, therefore, the absence of movement (i.e., passive
avoidance response).

The passive avoidance task is useful for assessing memory performance, which is
positively correlated with the latency to escape from the white compartment; the
better the recollection, the greater the latency to move. It is also useful for studying
other mechanisms involved in cognition. A number of brain regions have been
implicated in mechanisms active during the passive avoidance task [e.g., (Bradley
et al. 2004)]; these include the hippocampus, medial prefrontal cortex (mPFC) and
basal forebrain for acquisition (Sharma and Kulkarni 1993; Zarrindast et al. 1998;
Kuziemka-Lȩska et al. 1999; Car and Wiśniewska 2006; Car and Michaluk 2012;
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Farahmandfar et al. 2017; Liu et al. 2017; Ebrahimi-Ghiri et al. 2018), and the
hippocampus, amygdala, anterior cingulate cortex (ACC), mPFC and nucleus
basalis magnocellularis (NBM) for consolidation (Zarrindast et al. 2002; Zarrindast
et al. 2008b; Kunisawa et al. 2017).

Most of the studies on active and passive avoidance memory retention tests have
used baclofen. Taking into account the species, the rodent strain, the routes of
administration and the doses used, the majority of these studies have shown memory
impairments, with some showing memory improvement and some showing no
effect. Baclofen doses used would range between 0.125 and 20 mg/kg through
systemic routes of administration, with variable directions of effect, while central
administrations, in the amygdala or intracerebroventricularly (ICV), have shown
impairments.

In one of the earliest studies, baclofen at doses of 2, 5 and 10 mg/kg injected
intraperitoneally (IP) immediately after training improved retention in both active
and passive avoidance tasks in male Wistar rats, while 20 mg/kg had no effect on
active avoidance performance (Georgiev et al. 1988). Baclofen also enhanced
memory in ICRC mice in the passive avoidance task, an effect that was blocked
by the GABABR antagonist CGP 35348 at a dose of 10 mg/kg (Saha et al. 1993).
Further, both pre-training and post-training administration of CGP 35348 (75, 150
and 300 mg/kg, IP) significantly reduced the amnesic effect induced by scopolamine
(1 mg/kg, IP) (Bianchi and Panerai 1993).

In another relevant study assessing cholinergic and GABAergic interactions on
learning and memory (Sharma and Kulkarni 1993), (+/�)baclofen (0.25, 0.5 and
1 mg/kg) and (�)baclofen (0.25 and 0.5 mg/kg) also induced memory enhancement
(for a discussion on the chirality of baclofen and the differences between the
baclofen enantiomers, (R)-(�)-baclofen and (S)-(+)-baclofen, please see Nieto
et al. (2021), whereas the GABABR antagonist CGP 35348 did not show any effect
per se, but reversed the (+/�)baclofen-induced delay in latency, without affecting
the retention enhancing action of (+/�)baclofen. When sub-effective doses of
GABA (50 mg/kg) and (+/�)baclofen (0.25 mg/kg) were co-administered, they
induced a significant improvement in both acquisition and retention. In contrast, a
different study assessing the effects of the cholinergic cognitive enhancer NS-105 on
memory in the passive avoidance task in Wistar rats showed that NS-105 reversed
cognitive impairment induced by baclofen (8 mg/kg, IP) (Ogasawara et al. 1999).
Moreover, intra-hippocampal injection of baclofen (0.25, 0.5, 1 and 2 μg) reduced
memory retention in rats, while intra-hippocampal injection of lower doses of the
GABABR antagonist CGP35348 (2.5, 5, 10 μg) did not affect and higher doses
(25 and 50 μg) decreased memory retention. The same doses of CGP35348 (2.5,
5 and 10 μg), which did not have an effect per se, reduced the effect of baclofen
(Zarrindast et al. 2002). Memory impairment with baclofen has been the primary
result of other studies by the same research group in NMRI mice (Zarrindast et al.
2004). Interestingly, baclofen (1, 1.5 and 2 μg) prior to injection of morphine
(20 mg/kg per day � 3 days) decreased the reversal of morphine-induced amnesia
in morphine sensitized-mice (Zarrindast et al. 2008b). It appears that, at least in some
of these studies, post-training administration of different doses of baclofen impairs
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memory retention while in some others even acquisition is impaired by administra-
tion of baclofen (Car and Wiśniewska 2006). It also appears that animals exhibiting
different behavioural stereotypes such as aggressiveness or submissiveness are
differentially affected by administration of 1 mg/kg of baclofen. In the passive
avoidance test, it was shown that baclofen produced amnesia in aggressive mice
and had a stronger amnesic effect in submissive mice (Dubrovina and Loskutova
2007). Moreover, a separate study has shown that GABABR activation with baclofen
accelerated extinction of fear memory in depressed-like mice (Dubrovina and
Zinov’ev 2008).

Contrary to the above findings, numerous studies have shown no effect of
baclofen in either of the passive avoidance measures (i.e., retrieval, consolidation,
retention) (Swartzwelder et al. 1987; Castellano et al. 1989; Car and Wiśniewski
1998; Zarrindast et al. 1998, 2008a; Kuziemka-Lȩska et al. 1999; Car et al. 2000;
Cryan et al. 2004; Car and Wiśniewska 2006). The lack of effect of baclofen in the
passive avoidance task measures in these studies may be due to differences in
experimental condition methodology, drug doses and routes of administration or
different rodent strains used.

Not many positive allosteric modulators (PAMs) for the GABABRs have been
developed, let alone tested for cognitive processes. In one of these few studies, the
GABABR PAM GS39783 did not show an effect in the passive avoidance task
neither in CD1 mice (1, 3, 10, 30, 100 mg/kg) nor in Sprague-Dawley rats (25, 50,
100 mg/kg) at all of the doses tested (Cryan et al. 2004).

In studies utilizing GABABR antagonists, administration of either of three
GABABR antagonists showed differential effects on the passive avoidance task,
when the gamma-hydroxybutyrolactone (GHBL) animal model was used. The
GHBL is an experimental model of absence seizures in rats and mice. Absence
seizures in humans involve brief and sudden lapses of consciousness, as well as mild
jerks of facial muscles electrophysiologically depicted as synchronous spike and
wave discharges in the EEG (Snead 1991). In a similar manner, the GHBL animal
model rapidly and consistently produces a combination of EEG and behavioural
changes which resemble the human condition. CGP71982 improved both learning
and memory retrieval, whereas CGP55845A and CGP62349 had no effect (Getova
and Bowery 2001). Interestingly, administration of the GABABR antagonist
CGP36742 (SGS742) improved the learning capacity of mice, rats and rhesus
monkeys, in a passive avoidance test, a partner recognition test and a conditional
spatial colour task, respectively (Mondadori et al. 1993; Froestl et al. 2004). More-
over, treatment with either CGP35348 or CGP36742 significantly blocked acquisi-
tion impairment induced by baclofen, consolidation impairment induced by baclofen
and NaNO2, and retrieval impairment induced by baclofen and 30% alcohol
(Yu et al. 1996). Phaclofen had no effect in the passive avoidance task (Zarrindast
et al. 1998; Dubrovina and Zinov’ev 2008).

Finally, some of the studies utilizing the passive avoidance task have examined
mutant mice that lack specific GABABR subtypes to further elucidate their role in
learning and memory processes. In one of these studies, Jacobson and colleagues
found that lack of either the GABABR1a or GABABR1b subunits had no effect on
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the passive avoidance task (Jacobson et al. 2007), while other studies have shown
memory impairments in GABABR1 KO (Schuler et al. 2001), at a time when the
splice variants of the heterodimeric receptor had not been characterized, or
GABABR2 KO mice (Gassmann et al. 2004) in the same task. Interestingly, in the
Jacobson study, latency to enter the dark side of a two-compartment trough-shaped
apparatus was greater at retention testing than during training, although there was no
effect of genotype on either training or retention latency (Jacobson et al. 2007). This
indicated that both mutant strains could remember the shock they received in the
dark compartment. The difference between the results of the Jacobson study and that
of Schuler and colleagues (Schuler et al. 2001), which showed profound memory
deficits in the retention phase of this test, can be attributed to the lack of both
functional isoforms of the GABABR1 in the latter study. This further indicates that
heterodimeric GABABR1 function is essential for the retention of passive shock-
avoidance training, and that this may be accomplished with either of the GABABR1a
or GABABR1b isoforms (Jacobson et al. 2007).

3.3 Morris Water Maze (MWM) and Radial Arm Maze
(RAM)

Primarily designed to measure spatial learning and recall, the Morris Water Maze
(MWM) is the most commonly used test to evaluate cognitive functions utilizing
mnemonic mechanisms. By employing a variety of sophisticated protocols or pro-
cedures in the MWM, such as the visible or hidden platform test, the transfer test,
and the relearning or repeated acquisition test, one can assess the acquisition and
spatial location of relevant visual cues. These visual cues are further processed,
consolidated, retained and retrieved, in order to successfully navigate, and thus
locate, a hidden platform, with the goal of escaping the water and surviving (i.e.,
implementing memory functions as survival skills). The MWM has recently been
used for the evaluation of ageing effects on memory, as well as those of drugs and
experimental lesions in rodents, especially as these relate to animal models of
neurodegenerative disorders with cognitive decline, such as Alzheimer’s and
Parkinson’s disease. As with other tasks, findings from studies using the MWM
are inconsistent. Studies using baclofen in mice or rats have shown impairment or no
effect in the maze, while results from studies examining the effects of antagonists
show effects in all directions, improvement, impairment or no effect.

More specifically, baclofen administered directly into the entorhinal cortex
15 min before training impaired learning and memory in the MWM in Sprague-
Dawley rats (Deng et al. 2009). However, in the same strain of rats, baclofen
administration 19 h before training systemically produced no effect (Li et al.
2014). Similar effects were identified in Wistar rats; intra-dorsal hippocampus
administration of baclofen impaired performance (Arolfo et al. 1998), while sys-
temic administration had no effect (Car and Michaluk 2012). In contrast, other
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studies in Wistar rats showed impairment in performance after systemic administra-
tion of baclofen 30 min before training (Nakagawa et al. 1995; Nakagawa and
Takashima 1997). These contradictory findings may be due to the different time
and doses of administration, taking into account that the same strain of rats was used
in both studies, as well as systemic administration. Most recently, differently timed
administrations of baclofen (right before pre-test or daily for 14 days, or repeatedly
for a month) did not affect performance in the MWM at any of the doses tested in
Wistar rats (Holajova and Franek 2018). Effect of GABABR blockade by adminis-
tration of the antagonist CGP35348 directly into the CA1 area of the hippocampus in
Wistar rats largely depended on the timing of administration, with post-training and
15 min pre-test administration showing no effect, and 15 min pre-training adminis-
tration showing an improvement in performance (Shahrzad and Nasser 2015).

In one study using numerous mouse strains to test the effect of CGP36742 on
spatial learning and recall, administered systemically 40 min before training,
C57BL/6 J and OF1 mice improved their performance compared to the control
mice, while CD1 and DBA/2 mice demonstrated impaired task performance (Sunyer
et al. 2007, 2009). Further, the performance of RGS7 KO mice indicated that RGS7,
which regulates the interaction between GABABRs and GIRK channels, is necessary
to acquire this task (Ostrovskaya et al. 2014). Most recently, Phf24-null rats were
developed by Serikawa and colleagues (Serikawa et al. 2019). Phf24 is known as
Gαi-interacting protein (GINIP) and is associated with GABABR. Interestingly,
Phf24 rats showed impairments in the MWM task. Another recent study focused
on the effects of exercise and baclofen administration in striatum-lesioned rats and
found that mild exercise and baclofen microinjection did not affect spatial learning
or motor activity impairments, while the combination of them alleviated spatial
learning and motor activity impairments in these rats (Modaberi et al. 2019).

The radial-arm maze (RAM) task is based on the natural survival tendency of
food-deprived rodents to learn and remember different spatial locations for food in
an eight-arm radial maze. A large number of protocols can be applied in this task
which can be very useful in assessing neural bases for learning and memory. In the
spatial working memory protocol, each arm of the maze is baited (i.e., food is placed
in the arm) and repeat entries into an arm that has already been visited signify a
working memory error. In the reference memory protocol, only some arms are baited
at the beginning of the session. First entry into a non-baited arm signifies a reference
memory error, and repeated entries to baited and non-baited arms are defined as
working memory errors. As with some of the tasks previously described, this task
can also be used with a large number of delays.

Most of the studies using the RAM to assess performance of animals per se, rather
than symptomatology related to other conditions (e.g., memory processes in animal
models of epilepsy), have used rats. Results from studies in rats using baclofen are
inconsistent which may possibly be due to the different doses used. As an example,
systemic administration of baclofen at a dose of 0.25 mg/kg (subcutaneously; SC) in
female Sprague-Dawley rats 20 min before the test showed an improvement in
performance, while a higher dose (1 mg/kg, SC) showed an impairment and all
other doses in between had no significant effect (Levin et al. 2004). Higher doses
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(1.25 and 2.5 m/kg, SC) had no effect in male Fisher 344 rats (Sidel et al. 1988).
Moreover, intra-septal administration of baclofen in male Sprague-Dawley rats
impaired consolidation in this task (Stackman and Walsh 1994). The septum has
not been mentioned previously in this chapter. Thus, briefly, it is a subcortical
structure in the forebrain that is found near the midline of the brain and its functions
are not as well-known as those of other structures (e.g., amygdala, hippocampus,
etc.). The septum in humans can be separated into two structures: the septum
pellucidum and septum verum. The first seems to be a relay station between the
hippocampus and the hypothalamus, and abnormalities in this structure are linked
with various neurological conditions. The second is part of the limbic system; it
receives afferent projections from the hippocampus, amygdala, and hypothalamus,
and the ventral tegmental area (VTA). It also sends projections to the hippocampus,
habenula, thalamus, VTA and hypothalamus and is linked with reward processes.

In one study using CD1 mice, either baclofen or the GABABR antagonist
CGP36742, both administered 15 min before the test, showed impairment and
improvement of performance in the RAM, respectively (Carletti et al. 1993). Fur-
ther, in two different studies, mice overexpressing GABABR1a (Wu et al. 2007) or
GABABR1b (Stewart et al. 2009) showed an impairment in performance in this task,
indicating the important role of GABABRs in learning and memory.

With the exception of two studies where neither CGP35348 or CGP46381
showed an effect, most studies using CGP35348 (doses ranging from 12.5 to
300 mg/kg, IP) administered 20–30 min before training, or CGP36742 (150 mg/
kg, IP) administered either 40 min before training or post-training, in male Long
Evans rats, showed an improvement in performance in the RAM (in the 25 to
250 mg/kg range of doses for CGP35348) (Staubli et al. 1999; Helm et al. 2005;
Chan et al. 2006).

In summary, these data suggest that GABABR activation impairs performance in
the MWM and RAM tasks in rodents, while the effects of GABABR antagonists
depend on the strain of rodents and doses of compounds used. Replication and
further testing of these strains with both baclofen and GABABR antagonists seems
necessary so as to better understand the level of activation or de-activation of
GABABRs required for specific learning and memory processes to be successfully
completed.

3.4 Working Memory Tasks

Working memory is defined as the capability to maintain the representation of a
stimulus that is no longer present and perform mental operations on this represen-
tation so as to perform a specific task. A number of spontaneous alternation tasks can
be used to study working memory in rodents. Some of the most commonly used ones
are the T, Y and double-Y mazes. The T-maze in particular is a simple task
commonly used for assessing spatial working memory in rats and mice, especially
as a delayed alternation task. Similarly to the T-maze, the Y maze spontaneous
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alternation test is also commonly used for assessing spatial working memory in rats
and mice, by measuring the willingness of rodents to spontaneously explore new
environments. As seen with other similar tasks, rats and mice typically prefer to
investigate a new arm of the maze rather than returning to one that was previously
visited. Briefly, the Y-shaped maze has three white, opaque plastic arms at a 120�

angle from each other. After introduction to the centre of the maze, the animal is
allowed to freely explore the three arms. Over time and multiple arm entries, the
animal naturally shows a tendency to enter a less recently visited arm. Performance
is measured in terms of the percentage of alternated arm choices compared to total
number of arm entries in order to calculate the percentage of alternations. The Y
maze spontaneous alternation test is used to quantify cognitive performance in
transgenic mice and identify novel potential therapeutic drugs for their effects on
cognition. A higher percentage of alternations indicates better working memory
(Miedel et al. 2017).

Another less commonly used set of tasks to assess spatial working memory are
the delayed matching to position/non-matching to position tasks (DMTP/DNMTP).
Either of these tasks, DMTP or DNMTP, measures short-term spatial memory,
which is a component of the working memory construct (Dudchenko 2004; Teutsch
and Kätzel 2019). When applied serially, they can also be used to measure reversal
learning (Yhnell et al. 2016). In the DMTP task, a water-deprived animal interprets
signals from two signal lights (left and right) and responds by pressing one of two
levers (left and right). In the initial (sample) phase, one signal light is illuminated
followed by a delay period where neither light is illuminated. Following the delay,
during the choice phase, both lights are illuminated, and the animal has a limited
amount of time to either respond at the lever in the same side to that which was
signalled prior to the delay (DMTP) or opposite to that which was signalled prior to
the delay (DNMTP), in the two versions of the task, respectively. The animal is
given water reward for correct answers. These tests capture spatial working memory
because the animal is required to maintain the representation of the stimulus, but it
does not need to mentally manipulate the representation.

Experiments utilizing these tasks in rats have only taken place with Sprague-
Dawley rats. In doses ranging from 0.03 to 3 nmol administered into the NBM,
medial septum, mediodorsal thalamus, baclofen induced impairment, in a dose-
dependent manner, although the exact effective doses differed depending on the
timing of the administration (DeSousa et al. 1994; Romanides et al. 1999; Erickson
et al. 2006). Contrary to these results, Escher and Mittleman showed that baclofen, in
the lowest dose tested (2.5 mg/kg, IP), improves performance in female C57BL/6J
and DBA/2 mice in the DMTP task when administered 10 min before the test
(Escher and Mittleman 2004). The same performance improvement effect has been
seen with phaclofen in this study (10, 30 mg/kg, IP), when administered 10 min
before the test in both mouse strains.

Results of the effects of antagonists in these tasks have been inconsistent,
possibly due to the route of administration, the doses, and the specific memory
process captured through the timing of the administrations (i.e., pre-training,
post-training, pre-test). Thus, CGP55845 showed no effect in male Fisher 344 rats
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when it was administered in the mPFC while it showed an impairment in perfor-
mance when administered 40 min before training (0.01 mg/kg, IP) (Bañuelos et al.
2014). It also showed no effect in B6/C3H mice (0.5 mg/kg, IP), when administered
2–3 h before training (Kleschevnikov et al. 2012a). In contrast, saclofen adminis-
tered directly into the DG of Sprague-Dawley rats 15 min before training improved
performance (Liu et al. 2014).

Importantly, both GABABR1a and GABABR1b isoforms are necessary for stan-
dard or improved task performance in these mazes, as shown through impaired
performance in this task exhibited by GABABR1a or GABABR1b KO mice
(Jacobson et al. 2007). In a more recent study, hippocampal protein levels of both
GABABR1 isoforms were increased in mice trained in this task compared to
untrained mice (Falsafi et al. 2015).

3.5 Novel-Object Recognition (NOR) and (Dis)Location
(NOL) Tasks

The NOR and NOL tasks are based on the natural tendency of rodents to explore
novelty. Both the NOR and NOL tasks measure the ability of animals to discriminate
between familiar and novel objects in their environment. In the acquisition/training
phase of the task, animals are allowed to freely explore two objects that are identical
in an experimental arena. The test phases of these tasks will occur within the same
day for the examination of short-term memory or in more than 24 h for the
examination of long-term memory. In the test phase of the NOR, two objects,
including one of the two previously placed (i.e., familiar) objects (i.e., the objects
present during the acquisition/training phase) and a novel one, are presented to the
animal. In the NOL, both of the original objects are presented in the test phase.
However, one object is placed at a different location. In either of the tasks, time spent
investigating the objects is recorded at each phase of testing. If the animal remem-
bers an object, it will not spend as much time investigating the familiar object in the
NOR, while in the NOL, the animal should spend less time investigating the object
that has not been relocated. The choice to explore the novel object reflects the use of
recognition memory processes, which in these two tasks activate both the prefrontal
cortex and the hippocampus (Lee et al. 2005; Akirav and Maroun 2006).

Importantly, a number of studies have shown that presynaptic GABABRs are
essential for NOR and NOL performance (Vigot et al. 2006; Jacobson et al. 2007;
Cullen et al. 2014). Or, alternatively, they have shown that if presynaptic GABABRs
are not present, this has deleterious effects in the NOR and NOL. Another study
using RGS7 KO mice showed the same impairments in both males and females. In
this study, RGS7 ablation increased GABABR-GIRK coupling sensitivity and
slowed GABABR-GIRK deactivation rates, indicating that these mice possibly
experience enhanced postsynaptic GABABR-mediated signalling (Ostrovskaya
et al. 2014). In contrast, mice with enhanced postsynaptic GABABR signalling did
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not change their performance in the NOR, but were impaired in the NOL, suggesting
that NOL may be a more sensitive task for this increased signalling than NOR
(Terunuma et al. 2014).

In a study by Pitsikas and colleagues (Pitsikas et al. 2003), the role of GABABR
on recognition memory in Sprague-Dawley rats was assessed by administration of
baclofen and the GABABR antagonist CGP 35348 using the NOR task. Results
showed that baclofen (0.5, 2 and 4 mg/kg, IP) dose-dependently impaired perfor-
mance in this task, with the highest dose tested showing a significant impairment,
suggesting an effect on acquisition and retention of information. Administration of
the GABABR antagonist CGP 35348 (100 and 300 mg/kg, IP) counteracted the
baclofen-induced performance deficits. These results indicated that GABABRs are
involved in recognition memory. More recent data in Sprague-Dawley rats in which
higher doses of baclofen (12.5, 25 mg/kg, IP) were administered at pre-training (19 h
before training) had the same impairment effect (Li et al. 2014). Other studies have
shown no effects of either baclofen or the GABABR antagonist CGP55845, with
systemic administration, in Wistar rats or NMRI mice, respectively (Car and
Wiśniewski 1998; Khanegheini et al. 2015) in the NOR. Moreover, the GABAB

receptor antagonist CGP35348, administered directly in the DG (1, 10 and 100 μg/μ
L) was recently identified as a possible therapeutic agent against the progression of
acute Aβ toxicity-induced memory impairment through its effects in the NOR in
adult male rats (Almasi et al. 2018).

Most recently, the GABABR PAMs GS39783 and CGP7930 and mGluR5
antagonist CDPPB were assessed in the NOR in an animal model of schizophrenia
(i.e., the MK-801 model) in Wistar rats (Wierońska et al. 2015). MK-801 (i.e.,
dizocilpine) is a non-competitive antagonist with a high affinity for the N-Methyl-D-
aspartate (NMDA) receptor, and a potent anticonvulsant. It binds on NMDA recep-
tors in various brain sites, particularly in the hippocampus. It is a neuroprotective
agent in animal models of stroke, trauma and Parkinsonism. However, it can also
induce psychotic behaviour and neuronal degeneration. Directly relevant to this
content, because of the above-mentioned effects, MK-801 is used as a cognitive
impairment/dysfunction associated with schizophrenia (CIAS) animal model
(Brown et al. 2014). Both CGP7930 and GS39783, administered IP 30 min before
MK-801 administration, dose-dependently reversed MK-801-induced deficits. The
effect of CGP7930 was observed at the dose of 1 mg/kg, while lower doses (0.1 and
0.5 mg/kg) and higher doses (2 and 5 mg/kg) were not effective. Further, in the
co-administration experiment, CDPPB (1mg/kg), and GS39783 (0.1mg/kg) were
administered at sub-effective doses, 30min before acute MK-801 administration.
The co-administration of these compounds induced clear antipsychotic-like effect in
the NOR task. Interactions of the GABAergic system with mGluRs in the same
animal model of cognitive symptoms in schizophrenia (i.e., the MK-801-induced
deficits model) were further assessed by the same research group, this time using the
mGluR4-selective orthosteric agonist, LSP4–2022 (Woźniak et al. 2016) with no
interaction effect in the NOR. Similar promising results have been identified in the
interactions between the muscarinic and GABAergic systems in the NOR as they
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relate to cognitive impairments in animal models of schizophrenia (Cieślik et al.
2019).

Additionally, in an effort to investigate whether the GABAergic system is
involved in the beneficial effects of betaine in cognitive processes through the
amelioration of water-immersion restraint stress (WIRS)-induced memory impair-
ments, adult male mice were co-administered betaine and GABABR agonists or
antagonists after WIRS and were assessed for memory functions using the NOR
3–6 days after WIRS (Kunisawa et al. 2017). The co-administration of the GABAA

receptor antagonist bicuculline (1 mg/kg) or the GABABR antagonist phaclofen
(10 mg/kg) 1 h after WIRS suppressed the memory-improving effects induced by
betaine. Additionally, administration of the GABAA receptor agonist muscimol
(1 mg/kg) or baclofen (10 mg/kg) 1 h after WIRS attenuated memory impairments.
These interesting findings indicate that the beneficial effects of betaine may be partly
mediated by the GABAergic system. Moreover, intra-hippocampal injection of
Cortistatin-14 (CST-14), a neuropeptide related to somatostatin, impaired recogni-
tion memory consolidation in mice through activation of GABABRs, among other
receptor systems, an effect that was shown through the reversal of CST-14 impair-
ment by saclofen in the NOR (Jiang et al. 2017).

Specifically for the NOL, except for some of the data presented through other
studies above, administration of baclofen or GABABR antagonist phaclofen in
NMRI mice had the same direction of effects, i.e., impairment in performance
(Khanegheini et al. 2015), while CGP55845 in B6/C3H mice, similarly to the result
in the NOR, had no effect (Kleschevnikov et al. 2012a).

3.6 Other Cognitive Tasks

Some other tests assessing the role of GABABRs in cognitive processes in rodents
have also been used, although the literature currently is not extensive. One of these
tests is the Barnes maze, a popular test for assessing spatial learning and memory in
rats and mice. In this test each animal is placed on top of the Barnes maze cyclic
platform, a brightly lit environment consisting of a specific number of holes around
its periphery. While on the open platform, rodents naturally seek a dark enclosed
space, which is provided in the form of a dark box (goal box) under one of the round
holes around the periphery of the platform. Except for examining the learning curve
of the animal over consecutive trials, the searching strategy of the animal can also be
important in this task. Although some animals randomly search for the correct hole,
others may use a certain pattern behaviour and systematically check each hole. When
animals move directly to the correct hole irrespective of their starting position, this
indicates that spatial memory has formed. The amount of time required for the
animal to locate the goal box using visuo-spatial cues surrounding the maze periph-
ery is measured.

In one of the studies using the Barnes maze, Li and colleagues tested the effects of
baclofen as well as the GABABR PAM BHF177 in C57BL/6 J mice by
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administering them either before the training or before the test. Baclofen and
BHF177 had no selective effects on spatial learning and memory in the Barnes
maze, except at doses that were sedative or pro-convulsant (Li et al. 2013). In
addition, in a most recent study (Sahraei et al. 2019), the role of systemic (1, 5 and
10 mg/kg, IP) and intra-nucleus accumbens (NAcc) (1, 5 and 10 μg/rat) injections of
baclofen on spatial memory impairments in stress-exposed rats were assessed.
Results showed that both the systemic and intra-NAcc administration of baclofen
dose-dependently reduced escape latency and total distance and increased velocity in
the treatment groups in the training trials. During the test, the rats that had received
5 mg/kg of baclofen had the highest target frequency, but there were no significant
differences in velocity, duration or distance to the target between the groups. These
findings suggested that baclofen can dose-dependently improve spatial memory, and
GABABRs in the NAcc play an important role in spatial memory.

Very few studies can also be identified using the conditional space colour task
and the social recognition task. In the first case, primates learn to locate a food
reward based on the colour and location of beakers. The complexity of the task can
be gradually increased, with three conditions implemented and training in between.
In the second case, animals are required to recognize a familiar animal by spending
less time interacting with it, compared to a novel animal in the same environment,
when both are presented at the same time. These tasks seem to require activation of
the prefrontal cortex and hippocampus, and the amygdala and hippocampus, respec-
tively. Studies by one research group have shown that either in Rhesus monkeys
(0.5 mg/kg) or in Sprague-Dawley rats (0.003 to 300 mg/kg), systemic administra-
tion of CGP36742 improved performance in these tasks (Mondadori et al. 1993;
Mondadori et al. 1996), indicating that inhibition of GABABR activation can
improve learning and memory in complex tasks and recall in social memory.

4 GABABR Involvement in Cognitive Performance
of Neurodevelopmental Conditions

4.1 GABABRs During Embryo-Foetal Development

GABABRs have been implicated in glial cell development in the peripheral nervous
system (PNS), although the exact function of GABA signalling is not known. Recent
studies have shown that GABA and GABABRs are expressed in premyelinating and
nonmyelinating Schwann cells throughout development and post injury, while
GABA through GABABRs does not seem to be involved in Schwann cell prolifer-
ation (Corell et al. 2015). Further, embryonic GABABR blockade alters cell migra-
tion, adult hypothalamic structure, and anxiety- and depression-like behaviours in
mice in a sex-specific manner (Stratton et al. 2014), while GABA also regulates
corticotropin releasing hormone levels in the paraventricular nucleus of the hypo-
thalamus in newborn mice (Stratton et al. 2011). Another earlier study showed that
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GABABRs were present in the ventromedial nucleus of the hypothalamus at all ages
examined, from embryonic day 13 to postnatal day 6 (Davis et al. 2002). A very
interesting study in rats at about that time, using in situ hybridization and RNase
protection assays (RPA) to investigate the early foetal expression of GABABR1 and
GABABR2 mRNAs on the development of the rat CNS (Kim et al. 2003), showed
that there was early and strong GABABR1 mRNA expression in the spinal cord,
medullar and cerebral cortex neuroepithelium of discrete brain regions on gestational
day (GD) 11.5. On GD 12.5, GABABR1 mRNAs were also found in the hippocam-
pal formation, cerebral cortex, intermediate and posterior neuroepithelium, and the
pontine neuroepithelium of the whole brain. Further, RPA results showed
GABABR1 mRNA was intensely expressed on GD 11.5 and GD 12.5, when it
was first detected in the ganglia, thalamus and cerebellum. Altogether, this data
suggested that GABABR1 might have a role in the early foetal brain and spinal cord
during pre- and post-synaptogenesis, neuronal maturation, proliferation and migra-
tion in the early development of the rat CNS. Data from the studies presented above
indicate that GABABRs play an important role in normal neurodevelopment and
that, conversely, if GABABR expression or function is for some reason (negatively)
influenced during different phases of development, this can result in various symp-
toms and neurodevelopmental conditions, affecting not only development, but also
cognition.

Changes in excitation and inhibition mechanisms are associated with
neurodevelopmental disorders whose primary symptomatology includes cognitive
and intellectual disabilities (Kramvis et al. 2020). Some of these conditions are ASD,
FXS and DS, as well as Rett’s and Tourette’s syndrome, and neurofibromatosis
(Deidda et al. 2014; Yamasue et al. 2019). Conversely, reduced GABAergic trans-
mission, resulting from fewer GABA receptors may upset the excitatory/inhibitory
balance which could result in both seizure-related disorders and intellectual impair-
ments common to ASD (Fatemi et al. 2014). Delayed synaptic maturation, abnormal
synaptic structure and/or function and alterations in intracellular signalling pathways
have been linked to the pathogenesis of these conditions (Hampson et al. 2011).
However, while DS and FXS are known to result from a specific genetic mutation,
the causes of the majority of cases of ASD are unknown.

4.2 Autism Spectrum Disorder (ASD)

Growing evidence suggests a possible role for GABA in the neuropathophysiology
of ASD (Blatt and Fatemi 2011; Enticott et al. 2013). Several lines of evidence
mainly from animal studies, but also from clinical trials, point to an imbalance
between neuronal excitation and inhibition in at least a subgroup of individuals
with ASD or corresponding animal models (Gandal et al. 2012; Silverman et al.
2015; Frye et al. 2016; Sinclair et al. 2017; Veenstra-Vanderweele et al. 2017).

At the clinical level, continuously growing evidence suggests that the function of
the GABAergic system is abnormally low in ASD (Fatemi et al. 2010). This
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indicates that administration of GABABR agonists or positive modulators may be
useful for the treatment of ASD symptomatology. In an earlier study (Oblak et al.
2010), GABABR density in individuals with ASD and controls was quantified in the
ACC and posterior cingulate cortex, areas important for socio-emotional and cog-
nitive processing, and the fusiform gyrus, an area important for identification of
faces and facial expressions. There were significant reductions in GABABR density
in all three regions examined, suggesting that alterations in this key inhibitory
receptor may contribute to the functional deficits in individuals with ASD.

In a 10-week randomized-controlled study aimed at evaluating the potential of
baclofen to enhance the effect of risperidone in children with ASD with moderate-to-
severe irritability symptoms (Mahdavinasab et al. 2019), researchers used the Aber-
rant Behaviour Checklist-Community Edition (ABC-C) for the outcome measures
on each of the follow-up visits. Results showed significant improvement for all the
ABC subscales used, including that of inappropriate speech, of relevance to this
chapter. Importantly, combined administration of baclofen and risperidone exerted a
greater effect on improvement of hyperactivity symptoms at both midpoint and
endpoint when compared with treatment with placebo plus risperidone, suggesting
the possibility of using baclofen as an additional treatment to risperidone for further
improvement of variable symptomatology in ASD.

Exploratory clinical trials conducted with STX209 (also known as arbaclofen or
R-(�)-baclofen; the R-(�)-enantiomer of baclofen) found improvement on several
outcome measures, including the ABC-Irritability (the primary endpoint) and the
Lethargy/Social Withdrawal subscales, the Social Responsiveness Scale, the CY-
BOCS-PDD and clinical global impression scales (Erickson et al. 2014; Veenstra-
Vanderweele et al. 2017). Results from these studies indicated that arbaclofen may
have the potential to improve symptoms in some children with ASD.

At the preclinical level, further exploration of the interactions between GABA
and glutamate networks in relation to ASD showed that a particular type I trans-
membrane protein with preferential expression in the mammalian CNS, which is
identified as PIANP, is involved in the control of behavioural traits in mammals and
interacts with GABABR1 (Winkler et al. 2019). In a specific strain of global PIANP
KO mice, researchers identified decreased size and altered cellular compositions of
the DG as well as the cerebellum and decreased the number of cerebellar Purkinje
cells. At a functional level, loss of PIANP led to impaired presynaptic
GABABR-mediated inhibition of glutamate release and altered gene expression in
the cortex, hippocampus, amygdala and hypothalamus including downregulation of
Erdr1, a gene linked to autism-like behaviour. At a behavioural level, PIANP
deficiency led to context-dependent enhanced anxiety and spatial learning deficits,
an altered stress response, severely impaired social interaction, and enhanced repet-
itive behaviour, all representative characteristics of ASD phenotypes (Winkler et al.
2019). This study suggested PIANP as a potential new candidate gene involved in
ASD, cerebellar and hippocampal pathology, and GABABR-mediated signalling.

In accordance with these recent findings, earlier results of the role of GABABRs
in N-methyl-D-aspartate-receptor (NMDAR) hypofunction were examined.
NMDAR signalling and, in particular, hypofunction is associated with intellectual
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disability and disorders, such as ASD and schizophrenia, with phenotypes of social,
cognitive and gamma (30–80 Hz) oscillatory abnormalities. Administration of the
GABABR agonist baclofen in NMDA-NR1(neo�/�) mice, a strain that shows
reduced expression of the necessary NR1 subunit to model disrupted developmental
NMDAR function, improved excitatory/inhibitory signalling balance, gamma-
signal-to-noise ratio, which predicts deficits in working memory, and broadly
reversed behavioural deficits (Gandal et al. 2012). These findings highlight a poten-
tial use of GABABR agonists for the treatment of common phenotypes in different
disorders showing NMDAR hypofunction.

Moreover, a very interesting recent study by Manz and colleagues (Manz et al.
2019) further elucidated the role of the interactions between the GABAergic and
glutamatergic systems in reward circuits as they affect goal-directed behaviour, by
identifying a new mechanism of feed-forward inhibition within the nucleus
accumbens. This is highly relevant to not only autism, but any other disorder
affected by reward circuit ‘malfunctions’, and motivational difficulties, such as
major depressive disorder and addiction. In this study (Manz et al. 2019), GABABR
function at glutamatergic synapses within parvalbumin (PV)-expressing interneu-
rons-embedded microcircuits in the NAcc core of male mice was explored. Results
showed that PV-interneurons within feed-forward microcircuits target GABAB

heteroreceptors on glutamate terminals. It is worth noting that activation of
presynaptically-expressed GABAB heteroreceptors decreases glutamatergic synaptic
strength by engaging a signalling pathway that interferes with the mechanism of
vesicular exocytotic release.

4.3 Fragile X Syndrome (FXS)

Fragile X syndrome (FXS) is a common syndrome within ASD and a monogenetic
cause of intellectual disability, co-existing with autism spectrum features, as well as
psychiatric and medical problems. FXS is caused by the lack of the fragile X mental
retardation protein (FMRP), a translational regulator of specific mRNAs at the
postsynaptic level (Tassone and Hagerman 2003; Zafarullah and Tassone 2019) in
different brain areas including the cerebellum (Maurin et al. 2015; Zhang et al.
2015). The lack of FMRP leads to atypical synaptic plasticity, potentially triggered
by a homeostatic disturbance between excitatory and inhibitory network functioning
at the level of the synapse (Zupan and Toth 2008; Pacey et al. 2009; Zeidler et al.
2018).

In the last decade or so, numerous studies have looked at the potential involve-
ment of GABABRs in FXS and its symptomatology (Adusei et al. 2010; Yamasue
et al. 2019) through the development of a corresponding animal model of the Fragile
X Mental Retardation 1 (Fmr1) knock out (Fmr1-KO) mouse (Kazdoba et al. 2014)
and through clinical trials with the GABABR agonists baclofen and arbaclofen
(Hopkins 2011). Fmr1-KO mice share several phenotypes with FXS patients includ-
ing cognitive deficits – of particular focus to this chapter – altered spine morphology,
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hyperactivity, sensory hypersensitivity, repetitive behaviours and macroorchidism
(Bakker and Oostra 2003). In regard to the Fmr1-KO mouse model, there are
divergent opinions in regard to the usefulness of it as a translational preclinical
disease model, either because of discrepancies within the Fmr1-KO mouse model
itself or because of the outcome measures currently used or because of both factors
combined making it an over-predictive model of clinical efficacy (Berry-Kravis et al.
2018).

When the expression and presence of GABABRs and their subunits was recently
examined (Kang et al. 2017), selective deficits in the GABABR1a subunit expression
were identified in Fmr1-KO mice, but the levels of the respective mRNAs remained
unaltered. Similar trends of GABABR1a expression were seen in the hippocampus of
a subset of FXS patients. Further, corresponding with other studies indicating that
GABABRs have a strong pre- and postsynaptic inhibitory effect on neurotransmis-
sion, with GABABR1a subunit-containing receptors mediating presynaptic inhibi-
tion in particular, deficits in the ability of GABABRs to suppress glutamate release
were identified in Fmr1-KO mice, while their ability to suppress GABA release and
induce postsynaptic hyperpolarization was unaltered. In the same study, administra-
tion of arbaclofen reversed the imbalance between excitatory and inhibitory neuro-
transmission in Fmr1-KO mice. Altogether, results from this study showed that
selective deficits in the activity of presynaptic GABABRs contribute to the patho-
physiology of FXS.

As seen in the study presented above, in general, administration of GABABR
agonists, such as baclofen or arbaclofen (Henderson et al. 2012), and PAMs, such as
CGP7930 (Zhang et al. 2015) or GS39783 (Pacey et al. 2011), corrects exacerbated
protein synthesis and multiple phenotypes in Fmr1-KO mice (Henderson et al. 2012;
Silverman et al. 2015), although in some cases tolerance also develops (Pacey et al.
2011), a side effect commonly seen with GABABR agonists, but less commonly
occurring with GABABR PAMs for many of their actions (Vlachou et al. 2011).
These are the two most commonly used GABAB compounds used in the FXS
preclinical studies. Similarly, acamprosate, which activates both GABAA and
GABABRs, also ameliorates several phenotypes in Fmr1-KO mice (Schaefer et al.
2017). The focus of this section though is on the effects of these compounds on
cognitive processes in these animal models or in the clinical trials.

In one of the recent studies, the Fmr1-KO mice showed increased
auditory-evoked high-frequency gamma (30–80 Hz) power, indicating sensory
hypersensitivity, compared to the C57BL/6 control mice, as measured by electroen-
cephalography, with no sex differences identified. The same study also showed,
among other behaviours, decreased T-maze spontaneous alternation, indicating
diminished working memory. The GABABR agonist racemic baclofen (i.e., the
racemic mixture of baclofen, containing the S-(+)-enantiomer and the R-(�)-enan-
tiomer of baclofen) normalized auditory-evoked neural oscillations and behavioural
deficits in the Fmr1-KO mice (Sinclair et al. 2017). In the most recent study by
Kramvis and colleagues (Kramvis et al. 2020), GABAergic signalling was investi-
gated in the mPFC of Fmr1-KO mice during prepubescence and adolescence.
Molecular and functional changes were detected, with the second being most
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prominent during early postnatal development and resulting in stronger inhibition,
through increased synaptic inhibitory drive and amplitude, and reduction of inhib-
itory short-term synaptic depression. Further, there was an increased number of
receptors opening during peak current in Fmr1-KO inhibitory synapses during
prepubescence. Changes in amplitudes and plasticity returned to normal during
adolescence, although the inhibitory drive was reduced in Fmr1-KO, while synaptic
kinetics were prolonged. Importantly, GABAB1R expression levels were different in
Fmr1-KOs compared to their WT littermate controls. These findings further indi-
cated the involvement of synaptic GABAergic changes in the mPFC, an area
strongly implicated in cognitive processing, in FXS pathology (Kramvis et al.
2020). Further confirmation of an imbalance between the excitatory and inhibitory
synapses in Fmr1-KO mice, this time in the cortico-hippocampal feed-forward
circuits formed by the temporoammonic (TA) pathway also comes from another
study (Wahlstrom-Helgren and Klyachko 2015). The TA is a direct, monosynaptic
pathway leading from layer III of the entorhinal cortex to the distal dendritic region
of area CA1 of the hippocampus. This projection has been implicated in a number of
functions including memory processing (i.e., encoding and retrieval) and spatial
navigation, generation of oscillatory activity, and control of hippocampal excitabil-
ity (Dvorak-Carbone 1999). The above introduced study showed that inhibitory, but
not excitatory, synapse dysfunction underlies cortico-hippocampal feed-forward
circuit abnormalities in these mice, an effect primarily mediated by presynaptic
GABAB receptor signalling in the TA pathway. The same study also found that
GABA release is reduced in TA-associated inhibitory synapses of Fmr1-KO mice
and this effect is regulated by GABABRs (Wahlstrom-Helgren and Klyachko 2015).

Some studies have suggested an overlap in pathophysiology of 16p11.2
microdeletion syndrome and FXS. Human chromosome 16p11.2 microdeletion is
among the most common gene copy number variations (CNVs) known to confer risk
for intellectual disability and ASD and affects an estimated 3 in 10,000 people. This
syndrome is characterized by intellectual disability, impaired language, communi-
cation and socialization skills, and ASD. Taking into account improvement in FXS
phenotypes observed following chronic treatment with arbaclofen, a recent study
aimed to examine the effects of chronic oral arbaclofen administration in two
generated mouse models of 16p11.2 microdeletion syndrome. Results showed that
chronic activation of GABABRs improved performance on a series of cognitive and
social tasks known to be impaired in the two different 16p11.2 deletion mouse
models, indicating that arbaclofen may be useful in treating some of the core
symptoms of human 16p11.2 microdeletion syndrome (Stoppel et al. 2018).

4.4 Down’s Syndrome (DS)

DS is a neurodevelopmental disorder caused by the triplication of Chromosome
21 (trisomy 21) and characterized by numerous neurodevelopmental alterations and
intellectual disability (Ohira et al. 1997; Hattori et al. 2000). Individuals with DS, as

312 S. Vlachou



well as DS animal models, such as the Ts65Dn (Ts) mouse model, exhibit impair-
ments in several cognitive processes, learning and memory domains, including
hippocampus-dependent declarative (in humans) or spatial (in rodents) memory
and visual recognition memory, the latter of which is largely controlled by the
perirhinal cortex (Roncacé et al. 2017). Numerous preclinical research strategies
have been examined in the last decade or so, with an aim to identify innovative
therapeutic approaches to DS symptomatology, one of which focuses on the mod-
ulation of GABABRs and the mechanisms or the pathways they influence.

The Ts65Dn (Ts) mouse model of DS is sensitive to an infantile spasms pheno-
type (Cortez et al. 2009; Blichowski et al. 2015). Further, it contains the core
genomic triplication of the DS critical region, which includes 3 copies of the
Kcnj6 gene that encodes the GABABR-coupled GIRK subunit 2 (GIRK2) channel
(Best et al. 2007; Cramer et al. 2010; Kleschevnikov et al. 2012a, b; Joshi et al.
2016). GIRK channels hyperpolarize neurons to inhibit synaptic transmission
throughout the nervous system (Harashima et al. 2006a, b; Zhou et al. 2012). The
GABABR-coupled GIRK2 channel is necessary for the GABABR agonist-induced
infantile spasms phenotype in hippocampal neurons and those of the DG, frontal
cortex and substantia nigra (Harashima et al. 2006a, b; Fernandez et al. 2007) of the
Ts mouse and may represent a novel therapeutic target for the treatment of infantile
spasms in DS (Blichowski et al. 2015). Importantly, LTP, a cellular model for
learning and memory, is impaired in the CA1 hippocampal area and the DG of Ts
and other DS animal models (Siarey et al. 1997; Kleschevnicov et al. 2004; Costa
and Grybko 2005; Belichenko et al. 2007; Yu et al. 2010; Kleschevnicov et al.
2017).

Contrary to the GABABR agonist-induced spasms in DS and other syndromes,
treatment with GABABR antagonists seems to improve cognitive performance,
especially hippocampus-based cognitive functions, with findings that suggest further
exploration of the GABABR antagonists’ therapeutic potential in DS. In one of these
studies using GABABR antagonists, CGP55845 restored memory of Ts mice in the
novel place recognition, NOR, and contextual fear conditioning tasks, although it
did not affect locomotion and performance in the T-maze. Further, CGP55845
increased hippocampal levels of brain-derived neurotrophic factor (BDNF) in Ts
mice, while treatment of hippocampal slices with the GABABR antagonists
CGP55845 or CGP52432 enhanced LTP in the DG of Ts mice (Kleschevnikov
et al. 2012a).

Altogether, this data indicate that either GABABR agonists or antagonists seem to
enhance cognitive processes in neurodevelopmental conditions and may be used
therapeutically to treat cognitive deficits, as long as the right GABABR location or
pathway can be targeted.
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5 Neurodegenerative Disorders

A detailed account of the role of GABABRs in neurodegeneration, with a special
focus on epilepsy and AD, is presented in Princivalle (2021). In this section, a brief
summary of relevant research in neurodegenerative disorders as related to cognitive
processes will be presented.

5.1 Alzheimer’s Disease (AD)

AD pathophysiology is largely known to be based on amyloid-β plagues and
neurofibrillary tangles accumulation in the brain tissue, mainly affecting regions of
the hippocampus and cortex, but also expanding to other areas of the brain as the
disease progresses. The degeneration of these brain areas is responsible for the
symptomatology of AD patients which features memory loss (especially short-
term memory and expanding to long-term memory) as its main or primary symptom,
and includes lack of inhibition and other cognitive functions controlled by the frontal
cortex, but also numerous gradual changes in behaviour.

As also discussed extensively in regard to most of the data on the effects of
GABABRs in cognitive and other processes, it appears that an imbalance between
excitatory and inhibitory synapses (Gigout et al. 2015) may be responsible for the
changes identified in GABABR numbers and/or function or their linked proteins in
AD patients or animal models, and these changes may be triggered by amyloid-β in
the hippocampus in the case of AD (Nava-Mesa et al. 2013; Mayordomo-Cava et al.
2015; Pilipenko et al. 2018, 2019). Thus, maintaining balance among the
GABAergic and other neurotransmitter systems can be considered a beneficial
strategy to slow down AD progression (Pilipenko et al. 2019). It is also important
to note that these GABAergic and other neurotransmitter changes at cellular and
network levels correlate with density of neurofibrillary tangles in the brain tissue.

As indicated previously, most of the recent data point out the role of presynaptic
GABABR1 in AD pathophysiology at cellular level. A most recent review of the role
of presynaptic function in AD gives a detailed account of these processes (Barthet
and Mulle 2020), including the ones that focus on the presynaptic GABABR1.

An etiological factor for AD is chronic cerebral hypoperfusion (CCH), a condi-
tion that constitutes one of the causes of vascular dementia (VaD). CCH causes
cognitive impairment and contributes to Alzheimer’s pathology. In an effort to
further understand this condition, a mouse model of CCH has been developed by
unilateral common carotid artery occlusion (UCCAO). This animal model shows
significant short-term memory deficits and mild long-term spatial memory impair-
ment, and selective neurodegeneration in the brain (Zhao et al. 2014), among other
effects on protein-related processes. Importantly, GABABR activation ameliorates
cognitive impairment via restoring the balance of hyperpolarization-activated cyclic-
nucleotide-gated cation nonselective (HCN) channels type 1 and 2 (HCN1 and
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HCN2, respectively) surface expression in the hippocampal CA1 area in rats with
CCH. HCN channels and GABABRs mutually co-regulate the function of neurons in
many brain areas including the hippocampus [for details on the molecular mecha-
nism of this interaction, please see (Li et al. 2014)].

Extensive preclinical studies have used either GABABR agonists or antagonists
to test for potential cognitive enhancing effects in AD animal models (Kumar et al.
2017; Almasi et al. 2018; Sahoo et al. 2018). In one of these studies, a non-transgenic
rat model of AD obtained by intracerebroventricular streptozotocin (ICV STZ)
injection was used (Pilipenko et al. 2018). Single or double ICV STZ injection
(s) chronically decrease cerebral glucose uptake and produce multiple effects that
resemble molecular, pathological and behavioural features of Alzheimer’s disease
(AD) (Grieb 2016). The effects of muscimol and baclofen at very low doses
(0.01–0.05 mg/kg) on spatial memory were assessed and the expression of cortical
and hippocampal proteins related to neuroinflammation. Baclofen enhanced memory
and anti-inflammatory effects, strongly indicating an important role of GABABRs in
AD (Pilipenko et al. 2018). Interestingly, findings from this study indicated that low
doses of GABABR agonists could be effective because they involve other allosteric
sites or cell signalling and regulatory pathways in these processes (Pilipenko et al.
2018). Moreover, the effects of GABABR activation on spatial memory and learning
ability in the AD rats were measured by the MWM, and results showed that baclofen
restored spatial memory and learning ability of AD rats and suppressed the neuronal
apoptosis and hippocampal atrophy by activating the PI3K/Akt signalling pathway,
once again indicating a therapeutic role for GABABR manipulations in AD (Sun
et al. 2020).

Importantly, one of the most successful progressions of GABABR-active com-
pounds into clinical trials and potentially an approval for the treatment of cognitive
dysfunction (i.e., memory and attentional performance) in AD was that of the
GABABR antagonist CGP36742 (SGS742). CGP36742 showed promising results
in animal models [e.g., (Brouillette et al. 2007)] and progressed to the first Phase II
clinical trial where it showed improvement in attentional performance (i.e., choice
reaction time and visual information processing) in mild AD patients. Was, Unfor-
tunately, a second Phase II clinical trial showed no statistically significant improve-
ment, and thus, CGP36742 did not reach Phase III trials (Steulet et al. 1996; Froestl
et al. 2004; Davies et al. 2005; Serrats et al. 2017).

However, efforts in this direction continue at preclinical level. In a most recent
study, the role of the GABABR antagonist CGP35348 was examined on the DG
GABABR inhibition and its effects on learning and memory impairments that had
been induced in adult male Wistar rats by microinjection of β-amyloid (Aβ) (Almasi
et al. 2018). Consistent with data from earlier studies on GABABR antagonists for
AD, results from this study indicated that microinjections of CGP35348 directly into
the hippocampus counteract the learning, memory and cognitive impairments
induced by Aβ and suggested that CGP35348 could be a possible therapeutic
compound against the progression of acute Aβ toxicity-induced memory impairment
(Almasi et al. 2018).
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Altogether, studies focusing on further understanding the effects of GABABR
compounds on cognitive impairments characterizing AD and other relevant condi-
tions have been promising and one can only hope that, although the exact targets
may vary, the efforts to develop effective GABABR drug treatments will continue in
this direction.

5.2 Epilepsy

Epilepsy is a disorder occurring in various forms, some of which would be more
common, such as the temporal lobe (TLE) or absence epilepsy (AE), and some
others would be rare types, such as the Dravet syndrome. The main characteristic
symptom of epilepsy is seizures. These seem to stem from an imbalance between
excitatory and inhibitory processes, or either of these types of synapses, inhibitory or
excitatory, being faulty. Importantly, in some forms of epilepsy, such as the TLE,
cognitive disturbances including amnesia commonly occur (Zapata et al. 2017).
Moreover, chronic atypical absence seizures characterizing AE are a component of
the Lennox-Gastaut syndrome, a disorder invariably associated with severe cogni-
tive impairment in children.

In clinical populations, case reports of specific types of epilepsy symptomatology
are very common. In one of these recent case reports (Zeman et al. 2016), researchers
focused on a patient in whom long-term, therapeutic administration of baclofen into
the cerebrospinal fluid (CSF) induced three distinct varieties of memory impairment:
(1) repeated, short periods of severe global amnesia, (2) accelerated long-term
forgetting, evident over intervals of days and (3) a loss of established autobiograph-
ical memories. The latter of these impairments persisted after discontinuation of
baclofen administration. These memory impairments are reported in TLE, specifi-
cally in the subtype of transient epileptic amnesia. This case report suggested a role
for GABAB signalling in the modulation of human memory functioning for different
duration and implicates it in ‘epileptic amnesia’ (Zeman et al. 2016).

A number of animal models have been developed in the past few years to
resemble the symptomatology of epilepsy. In most recent years, animal models of
epilepsy are also developed to resemble rare types of epilepsy or specific symptom-
atology of them (Löscher 2011; Grone and Baraban 2015; Pitkänen et al. 2017). In
these animal models, typically, GABABR agonists exacerbate, while GABABR
antagonists suppress the seizures (Han et al. 2013), suggesting a potential therapeutic
role of the antagonists for epilepsy and its cognitive dysfunctions (Enna 1997).
Importantly, and as it relates to AE, it appears that hippocampal circuitry in atypical
absence seizures is possibly responsible for the cognitive impairment in that disorder
(Han et al. 2013). GABABR antagonists can reverse both the seizures and the
impairment in cognition in experimental atypical absence seizures (Getova et al.
1997), suggesting a therapeutic use of these antagonists in the Lennox-Gastaut
syndrome, another type of rare epilepsy. The AY9944 model of chronic atypical
absence seizures in rats reliably reproduces the electrographic, behavioural,
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pharmacological and cognitive features of AE. Using this model, Chan and col-
leagues tested the hypothesis that the cognitive impairment associated with this
disorder involves a GABABR-mediated mechanism (Chan et al. 2006). Results
showed that CGP35348 blocked atypical absence seizures, restored LTP to normal
level and reversed the cognitive deficit in the AY9944-treated animals, suggesting a
possible therapeutic role of CGP35348 or other antagonists in this epilepsy type.
Importantly, the same research group later showed that overexpression of
GABABR1a in mice [R1a(+)] resulted in an atypical absence seizure phenotype
characterized by 3- to 6-Hz slow spike-and-wave discharges (SSWDs), reduced
synaptic plasticity and cognitive impairment, while the overexpressed GABABR1b
mice (R1b(+)) showed a less pronounced reduction in hippocampal LTP (Stewart
et al. 2009; Wang et al. 2009), thus indicating that, although abnormal levels of both
GABABR1 subunits are involved in AE, the abnormal function of GABABR1b
appears to have less of an involvement in AE symptomatology and cognitive
impairments. Acute or chronic administration of vigabatrin, which increases
GABA concentration by inhibiting GABA transaminase, increased activation of
GABABR in the frontal cortex and the reticular thalamic nucleus (Perescis et al.
2020), areas extensively implicated in cognitive functioning directly or indirectly.

5.3 Autoimmune Anti-GABAB Encephalitis and Cognitive
Impairments

Autoimmune synaptic encephalitis, although having been described in patients
diagnosed with epilepsy (Dubey et al. 2014), can occur as paraneoplastic neurolog-
ical syndromes, which are dysfunctions of the nervous system occurring in some
cancer patients, especially in patients diagnosed with tumours and small cell lung
cancer (Golombeck et al. 2016; Qiao et al. 2017; Li et al. 2018; Maureille et al.
2019). One such newly described, rare, but treatable form, is the autoimmune anti-
GABAB limbic encephalitis, which is associated with CSF elevated levels of
GABABR antibody titre. The main characteristics of this type of encephalitis are
cognitive decline, memory impairments, progressive seizures and behavioural dis-
order for a number of days or weeks (Lancaster et al. 2010; Su et al. 2015; Hui et al.
2016). In some of these patients, abnormalities in the hippocampal region,
parahippocampal gyrus, temporal and occipital lobe have been identified using
magnetic resonance imaging (MRI) (Cui et al. 2018). As this is a newly identified
condition, literature is limited and is mainly based on case reports (Chung et al.
2019; Yao et al. 2019; Qin et al. 2020), some of which suggest that it is most
common in middle-aged and elderly men (Zhu et al. 2020).
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6 Conclusions

It is clear from all presented research studies on the involvement of GABABRs in
cognitive processes that GABA as a neurotransmitter and specifically GABABRs are
involved in different components of cognition. Taking into account the spread of
GABABRs in the brain as well as their primary role of inhibition of processes, this
does not come as a surprise. However, although extensive research has focused on
the role of GABABRs in health and disease (Bowery 2006), in most cases there still
appears to be lack of clarity on the exact mechanisms involved, taking into account
the balance between presynaptic and postsynaptic GABABR activation and/or inhi-
bition throughout the brain. Yet again, the vast majority of these studies are
conducted in male animals, not allowing for identification of potential sex differ-
ences in the effects of the drugs tested.

Thus, with the exception of baclofen, which has been approved as a muscle
relaxant and anticonvulsant treatment, and not as a cognitive enhancer, no other
GABABR compound is used clinically. For example, there are no GABABR antag-
onists in the clinic for any population. With all cognitive effect discrepancies taken
into account, efforts should continue to help us elucidate the exact role of GABABR
subtypes in the different conditions affecting cognition, for both males and females,
and more compounds, possibly selectively targeting those subtypes, should be
developed with an aim to reach the bedside. It is a long effort ahead, but, existing
literature suggests, it is worth aiming at.
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