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Abstract. Combined cooling, heat and power (CCHP), or trigeneration, sys-
tems based on gas engines as driving engines, are among the main prosperous
trends in energy-saving technologies. Addition reserves of enhancement of such
integrated energy systems efficiency increase fuel efficiency of their basic gas
engines by cyclic air cooling. The processing of the monitoring data on gas
engine fuel efficiency has proved inefficient operation of traditional cooling all
the engine room incoming air in the central conditioner fed by chilled water
from absorption lithium-bromide chiller using engine exhaust heat. An advanced
system of gas engine inlet air two-stage deep cooling by combined absorption-
ejector chiller with absorption chiller as a high-temperature stage and ejector
chiller as a low-temperature stage has been developed. The method of rational
loading of the proposed engine inlet air cooling system proved annual fuel
reduction by about 50 % higher than traditional cooling by absorption chillers in
temperate climatic conditions.

Keywords: Combined cooling � Heat � Power � Combustion engine � Ejector �
Absorption chiller

1 Introduction

The combined cooling, heat, and power (CCHP) gained widespread applications [1, 2].
Such trigeneration is considered as the main trend in energy-saving technologies [3, 4].
As driving engines in CCHP, gas engines (GE) are widely used [5, 6]. A large power
augmentation is gained in gas turbines (GT) [7, 8]. The fuel efficiency of basic engines
can be increased by cyclic air cooling [9, 10]. In a typical GE intake air cooling system,
all the ambient air incoming engine room is cooled in a central conditioner fed by
chilled water from absorption lithium-bromide chiller (ACh) using exhaust heat [11,
12]. Because of the large incoming air volume and heat influx to air in the engine room
from where it is sucked into the engine turbocharger, the intake air temperature is
considerably increased. It results in falling engine fuel efficiency.

In order to provide deeper engine cyclic air cooling in addition to ACh the
refrigerant is to be used [13, 14]. To evaluate the cooling effect, GE fuel consumption
and power output data at varying ambient air temperatures can be received by treating
GE fuel efficiency monitoring [12, 15].
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The study’s goal is to improve the fuel efficiency of the gas engine of the CCHP
plant by combined inlet air cooling in a two-stage absorption-ejector chiller utilizing
exhaust heat and rationally designed to provide close to maximum annual fuel
reduction.

2 Literature Review

An enhancement of fuel efficiency of combustion engines is possible by cooling cyclic
air in waste heat recovery chillers [16, 17]. The ACh are the most widely used in CCHP
plants and provide cooling air to about 15 ºC with a high coefficient of performance
(COP is 0.7 to 0.8) [18]. The refrigerant vapor-compression chillers consume electrical
energy to drive compressors and provide cooling air practically to any low temperature
[13]. The most simple in design refrigerant ejector chillers (ECh) can cool air to 5-10ºC
but with low COP of 0.2 to 0.3 [12, 13].

The efficiency of waste heat recovery cooling is especially high for the engines with
the combustion of water-fuel emulsion [19, 20]. It is achieved due to the application of
low temperature condensing surfaces [21, 22] providing deeper exhaust gas heat uti-
lization that leads to additional heat converted in refrigeration. For cooling cyclic air of
combustion engines, Jet technologies have a growing application [23]. They can be
used for cooling scavenge air in internal combustion engines (ICE) [24, 25]. Jet cooling
is especially effective in GT [26]. The high-efficiency heat exchangers should be
applied to reduce cooling system sizes [28, 29].

3 Research Methodology

The efficiency of gas engine inlet air cooling was investigated for the CCHP plant of
combined energy supply at the “Sandora”–“PepsiCo Ukraine” (Nikolaev, Ukraine).
The CCHP plant is equipped with two cogenerative Jenbacher gas engines,
JMS 420 GS-N.LC (rated electric power output PeISO = 1400 kW, heat power
Qh =1500 kW of each engine). The heat of exhaust gas, scavenge air-gas mixture,
engine jacket cooling water, and lubricating oil is used for heating water to about 90 °
C. The hot water is used in AR-D500L2 Century absorption Li-Br chiller to produce
chilled water of 7 to 12 °C, which is spent for technological needs and feeding to the
central air conditioner that provides cooling ambient air incoming the engine room,
from where it is sucked into the engine turbocharger.

The cooling capacity Q0∙spending for ambient air cooling is calculated according to
heat balance on coolant (chilled water from ACh):

Q0 ¼ cwðtw1�tw2ÞGw; ð1Þ

where cw – specific heat of water [kJ/(kg�K)]; tw1and tw2 – measured temperature of
water at the inlet and outlet of air cooler [°C]; Gw – water mass flow rate [kg/s].

The values of current volume fuel consumption Be.v, m
3 /h, and electrical power

output Pe, kW, of gas engine JMS 420 GS-N.LC was taken by treating corresponding
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monitoring data on Be.v and Pe in dependence on the air temperature at the engine inlet
ta2. Specific volume fuel consumption is calculated as be.v = Be /Pe, m

3 /kWh, and
specific mass fuel consumption as be = be.v qg = qgBe /Pe, kg /kWh, where qg –
density of fuel gas, kg/m3.

The results of monitoring data processing were used as a decrease in specific fuel
consumption Dbe due to engine intake air temperature drop Dt by 1 °C, i.e., Dbe /Dt.

The values of rational design cooling capacities needed for cooling air in ACh to
ta2 = 15 °C and in ECh to ta2 = 7 and 10 °C were calculated according to the devel-
oped method [10] with taking into account current effect in fuel reduction DB, kg/h,
due to cooling engine intake air at varying actual ambient air temperatures tamb and
relative humidities uamb.

The yearly varying real weather data collected in the weather datasets of the
meteorological center were used by applying the “online” program “mundomanz.com”.

The current fuel-saving B, kg, for hour time duration s, h, due to cooling engine
intake air with temperature decrease Dta, °C, is calculated according to correlation:

B ¼ Dta � s Dbe=Dtað Þ � Pe; ð2Þ

where Dta = tamb – ta2 – decrease in air temperature [°C]; tamb – ambient air
temperature [°C]; ta2 – air temperature at the air cooler outlet [°C].

The annual fuel saving
P

B, kg, is calculated by summarizing current fuel
reduction B on step by step (hour by hour) basis as

P
B:

X
B ¼

X
Dta � s Dbe=Dtað Þ � Pe½ � ð3Þ

The annual fuel saving
P

B in response to its consumption is used as a primary
criterion for assessing engine intake air cooling system efficiency yearly operation.

The values of cooling capacities Q0 spent for intake air cooling with temperature
decrease Dta are calculated as

Q0 ¼ ðca nDtaÞGa; ð4Þ

where: ca –specific heat of moist air [kJ/(kg�K)]; n – specific heat ratio of total heat,
including sensible and latent heat, to sensible heat rejected from the air during to its
cooling; Dta = ta – ta2 – decrease in air temperature [°C]; ta – ambient air temperature
[°C]; ta2 – air temperature at the air cooler outlet [°C]; Ga – air mass flow rate [kg/s].

A rational design cooling capacity Q0.rat is determined to exclude its unproductive
expenses caused by overestimating (oversizing chiller) without obtaining a noticeable
effect in increasing the annual fuel saving

P
B.

With this, the values of refrigeration capacity Q0.15 for cooling ambient air from its
current temperature tamb to the temperature ta2 = 15 °C and Q.10 for cooling ambient air
ta2 = 10 °C have been calculated for current site climatic conditions.
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4 Results

The scheme of a typical gas engine inlet air cooling system with an absorption chiller is
presented in Fig. 1.

In a typical gas engine inlet air cooling system, all the ambient air coming into the
engine room is cooled in the inlet air cooler of the central conditioner fed by chilled
water from the absorption chiller utilizing the exhaust heat of the engines. Because of
much more increased volume of incoming ambient air (about twice higher than engine
cyclic air mass flow) and heat influx to the cooled air from engine room surroundings
the temperature of intake air tin at the entrance of engine turbocharger suctioning it
from engine room can be considerably higher than 20 or 25 °C in hot summer days. At
the raised ambient air temperatures, the radiators (dry coolers) cannot cool the scavenge
air to the required reliable level of its temperature at the outlet of the scavenging air
cooler (of about 40 to 45 °C). It causes automatically decreasing the engine gas supply
to maintain a charged gas-air mixture temperature at the inlet of engine combustion
cylinders at the appropriate level.

Daily changes of specific gas consumption be received by treatment of monitoring
data on the fuel efficiency of JMS 420 GS-N.LC is presented in Fig. 2.
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A reduction of specific gas fuel consumption be is possible by addition decreasing
temperature of engine cyclic air with mass flow rate G, fed to the turbocharger directly,
as compared with typical cooling all the ambient air (of twice engine cyclic airflow G),
coming into the engine room, to the temperature tin of 20 to 25 °C and higher in hot
summer days.

The scheme of the developed gas engine cyclic air cooling system with refrigerant
ejector and absorption chillers is presented in Fig. 3.

According to this scheme, chilled water from the absorption Li-Br chiller with a
temperature of 7 °C is used as a coolant in high-temperature air cooler ACHT as the first
stage for cooling ambient air to 15 °C. The further subcooling air to 10 or 7 °C is
conducted in low-temperature air cooler ACLT by refrigerant boiling at the temperature
of about 2 to 4 °C from ECh as the second stage of the combined two-stage AECh. The
chilled air from a two-stage air cooler is directed through air ducting immediately to the
suction of the engine turbocharger.

The values of cooling capacities Q0.7,10,15 and heat Qh.7,10,15 required for cooling
engine inlet air to the temperatures 7, 10, and 15 °C are presented in Fig. 4 and Fig. 5.
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The values of available exhaust heat Qh, the heat required Qh.7,10,15 for cooling
ambient air to ta2 = 7, 10 °C (in AECh) and 15 °C (in ACh) in developed engine intake
air cooling system (in Fig. 3) and Qh.ACh.in in a typical existing system (ta2 = tin) and
corresponding remained heat DQh.7,10,15 in developed and DQh.ACh.in in typical sys-
tems are presented in Fig. 5.

The enhancement of gas engine fuel efficiency due to the application of developed
intake air cooling system can be estimated by decreasing current specific mass fuel
consumption Dbe and summarized daily values of mass fuel reduction

P
DBe due to

engine inlet air cooling to the temperatures of 7, 10 and 15 °C (Fig. 6).
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As Fig. 6 shows, the application of developed engine cyclic air cooling system
provides decreasing current specific fuel consumption Dbe by the values of 2 to
3 g/kWh at increased ambient air temperatures tamb, that leads to their summarized
daily values

P
Be of about 50 kg for gas engine JMS 420 GS-N.L of 1400 kW power

output, i.e., practically twice larger than by typical cooling in ACh.
The efficiency of the engine intake air cooling system and a rational value of its

design cooling capacity without system oversizing can be determined by a developed
method based on annual fuel saving as a primary criterion. With this, the annual fuel
saving RB is calculated by summarizing all the current fuel reductions B through step
by step procedure along with the overall range of cooling capacities Q0 for a considered
temperature of cooled air ta2 (Fig. 7).
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As Fig. 7 shows, a developed cooling system with combined AECh of design
cooling capacity Q0.10 about 70 kW, provides cooling ambient air to ta2 = 10 °C with
annual fuel saving

P
B10 about 12.3 t is closed to a maximum value.

It is seen, although a rate of increment of annual fuel saving
P

Babove this value is
negligible, the range of cooling capacities Q0 needed to provide a maximum value ofP

B, i.e., to cover the maximum current cooling duties Q0, is still wide. It approves a
considerable oversizing of the cooling system, designed traditionally to cover the
maximum current cooling needs Q0. So, the proper (rational) values of design cooling
capacities Q0 are determined for an appropriately sized cooling system.

As Fig. 7 shows, the application of the developed method of cooling system
rational designing allows to reduce the sizes of the system by about 15 to 20% due to
rational design cooling capacities Q0rat decreased by DQ0 = Q0max –Q0rat compared
with their maximum values Q0max calculated traditionally.

The method allows estimating the efficiency of applying the proposed advanced
cooling system with combined AECh for deeper engine inlet air cooling to ta2 = 7 and
10 °C as compared with traditional cooling to ta2 = 15 °C in ACh. As Fig. 7 shows,
applying a combined engine intake air cooling system to ta2 = 10 and 7 °C in AECh
provides annual fuel saving

P
B in 1.5 to 2.0 times higher than cooling to ta2 = 15 °C

in ACh for temperate climatic conditions.

5 Conclusions

The results of processing the monitoring data on the fuel efficiency of driving gas
engines in combined electricity, heat, and cooling generation plant have proved inef-
ficient operation of traditional cooling. All the engine room incoming air in central
conditioner fed by chilled water from absorption lithium-bromide chiller.

An advanced system of gas engine inlet air two-stage deep cooling by combined
absorption-ejector chiller has been developed.

The method of rational loading of the proposed engine inlet air cooling system
proved the increment of annual fuel reduction at raised ambient air temperatures by
about 50% compared with traditional cooling by absorption chillers.

An advanced cooling system provides decreasing specific fuel consumption by 2.0
to 3.0 g/kWh due to stabilized low temperature of the air at the suction of engine
turbocharger at increased ambient air temperatures.

The proposed system does not require considerable additional investments over the
existing one, so the ejector chiller generally consists of heat exchangers and can use
existing cooling towers to remove rejected heat (Fig. 4).
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