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Abstract. The paper deals with issues related to the calculation and design of
prestressed crane structures of span type. The problem consists of the further
application and use of a refined mathematical model of a preformed crane
bridge, which allows analytically investigating its deformed behavior according
to actual operating conditions. This paper analyzes the mathematical models of
the main girders of overhead cranes adapted for use. The most dangerous
positions for them with a movable transverse load are considered. The authors
provide a refined mathematical model of an overhead crane with prestressed
beams based on the general theory of stability of elastic systems. In the design
scheme, the resulting vertical movable load was distributed over several trans-
verse movable loads, corresponding to the actual conditions of its loading. In
this work, equations for the deflection curve of a span were obtained, which
made it possible to additionally investigate its static stiffness, depending on the
nature and action of a temporary moving load. The results obtained in this work
can be used to modernize cranes to increase their lifting capacity, extend their
service life without dismantling, and improve existing structures and engi-
neering calculation methods under actual operating conditions.

Keywords: Overhead crane � Prestress � Main girders � Static rigidity �
Flexural stiffness � Deflected mode � Deformed condition

1 Introduction

The subject of consideration is preliminarily stressing the structures: artificial creation
of internal forces and stresses to obtain or increase necessary beneficial qualities before
operation [1]. The concept of prestressing is based on the property of statically inde-
terminate mechanical systems to allow internal forces and stresses in their elements in
the absence of external force effects [2].

Span cranes with prestressed main girders are widely used in mechanical engi-
neering. Metal bridges of such cranes have a lower moment of inertia of the section.
Therefore they are much lighter and cheaper than metal structures of conventional
cranes operating under the same operating modes and the same load capacities [3].
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At the same time, they are more deformable [4]. Therefore, the criteria for calcu-
lating and designing such metal structures are linked inextricably with the causes of
their failures [5]. One of the main reasons for malfunctioning a structure is its unac-
ceptably large elastic deformations [6, 7]. So, for example, a significant deflection or
bending of span beams can lead to distortions of the end beams, slipping of the running
wheels of freight bogies, and unnecessary power consumption for overcoming the slope
of the load belt [8, 9].

In this regard, a more accurate determination of the deformation value of the bridge
and analysis of its behavior under load will not only improve the operating conditions
of the beam and the crane as a whole but also lead to a number of positive measures
such as reducing the weight of the crane's metal structure and its cost [10]. Since the
crane girder is subjected to longitudinal-transverse bending, the deformed state of the
crane bridge must be taken into account using the deflection arrow of the girder itself.

Thus, the purpose of this work is to further study the span beam for static stiffness.
And the issues considered in it, in which the nature of the loading of the beam is put
forward in the first place with the maximum approximation of the design scheme to the
actual constructive form, are relevant [11].

For achieving this goal, it is necessary to solve the following tasks: consider and
analyze the already known mathematical models of an overhead crane with prestressed
main beams; to develop a mathematical model of an overhead crane with prestressed
main beams, which allows you to study its deformed behavior according to the actual
conditions of its operation; analyze the results obtained.

2 Literature Review

The analysis of publications on the topic under study shows that the moments
unloading a prestressed crane bridge do not depend on the position of the external load
and its value [12] (Fig. 1).

As a result, one of the disadvantages is the case when a movable cart with a load is
located above the support or near it [13]. In this connection, the reverse deflections of
the bridge can be commensurate with the working deflections of the beam and even

Fig. 1. Prestressed crane bridge.
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exceed its permissible deflections. Thus, the calculation of the prestressed main beam
for the third limiting state is carried out according to the accepted design scheme for the
two most unfavorable loading cases [14, 15]: when the movable vertical load F is in the
middle of the span l, that is, the current coordinate of deflection determination x = 0.5
or l, where the calculated deflections are checked; when the load F is above the support,
where the current coordinate of deflections is x = 0 or x = l. In this case, the reverse
bends of the prestressed bridge are checked.

Analysis of the design scheme for the first case of loading shows that the scheme is
significantly simplified and cannot accurately reflect the actual operating conditions of
the span beam. This is because the scheme does not consider distributing the con-
centrated vertical load F between the corresponding n number of crane wheels. The
distribution of the force F between the wheels leads to an increase in the lateral forces
F1, F2,…, Fn acting on the beam and complicates the design scheme. But neglect of
this factor leads to overestimated values of the calculated deflection of the bridge, and
in some cases - to unreasonably overestimated reserves of its static or dynamic
stiffness.

The analysis of the second case of loading suggests that the accepted design scheme
of the span beam also does not correspond to the maximum approximation of the
scheme to the real structural one. So, the design scheme does not consider the per-
missible minimum distance from the axis of the drive wheels to the axis of the crane
rail. Therefore, in a confirmed case of loading, one of the wheels of the cargo carriage
at its extreme position will always be at a distance lb from the end beam, which
significantly reduces the value of the calculated bridge deflection (Fig. 2).

Neglect of this factor, as in the first case of loading, can lead to overestimated
reserves of the crane bridge according to the deformation criterion of performance.

Fig. 2. The design scheme of the crane bridge.
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3 Research Methodology

When constructing the proposed refined mathematical model, it is assumed that all the
crane elements are solid, the beam operates in an elastic stage, rests on ideal hinges,
and its bending is carried out in the area of the load suspension. We distribute the
transverse working load (from the weight of the bogie with the rated load) between the
wheels of the freight bogie and represent it by vertical forces F1, F2. Then, using the
method of superposition of deflections known from the theory of stability of elastic
systems (caused separately by each of the transverse forces F1 and F2, acting together
with the total longitudinal eccentrically applied force S), we compose the differential
equations of the deflection curve for the left section of the prestressed beam

EI � €y1;L ¼ �F1l1
l

x� P y1;L � e
� �

;

EI � €y2;L ¼ �F2l2
l

x� P y2;L � e
� �

:

Deflection arrow differential equations for right beam segment

EI � €y1;R ¼ �F1 l� l1ð Þ l� xð Þ
l

x� P y1;R � e
� �

;

EI � €y2;R ¼ �F1 l� l2ð Þ l� xð Þ
l

x� P y2;R � e
� �

:

where EI is the bending rigidity of the beam in the plane of the load suspension; l is the
length of the beam; x is the current coordinate of the location of deflections (bends) y1
and y2, respectively, from the forces F1 and F2; l1, l2 − distances from the proper
support of the beam to the place of action of transverse loads, respectively F1 and F2.

To simplify the subsequent mathematical calculations, we introduce the notation

k2 ¼ S
EI

:

Then the above differential equations take the form

€y1;L þ k2y1;L ¼ �F1l1
lEI

x þ k2e; ð1Þ

€y2;L þ k2y2;L ¼ �F2l2
lEI

x þ k2e; ð2Þ

€y1;R þ k2y1;R ¼ �F1ðl � l1Þðl � x)
lEI

þ k2e; ð3Þ
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€y2;R þ k2y2;R ¼ �F2ðl � l2Þðl � xÞ
lEI

þ k2e: ð4Þ

The general solutions of these equations will be, respectively, for the expression (1)

y1;L ¼ C1cos(kxÞþC2sin(kxÞ � F1l1
Sl

x þ e; ð5Þ

for the expression (2)

y2;L ¼ C3cos(kxÞþC4sin(kxÞ � F2l2
Sl

x þ e; ð6Þ

for the expression (3)

y1;R ¼ C5cos(kxÞþC6sin(kxÞ � F1ðl � l1Þðl � xÞ
Sl

þ e; ð7Þ

for the expression (4)

y2;R ¼ X7cos(kxÞþC8sin(kxÞ � F2ðl � l2Þðl � xÞ
Sl

þ e: ð8Þ

Integration constants C1, C3, C5, C7 are determined from the conditions at the beam
ends, where its deflections are equal to zero.

y1;L
� �

x¼0¼ 0; thenC1 ¼ �e; y2;L
� �

x¼0¼ 0; then C3 ¼ �e;

y1;R
� �

x¼l¼ 0; thenC5 ¼ �C6tg klð Þ � e secðklÞ;

y2;R
� �

x¼l¼ 0; thenC7 ¼ �C8tg klð Þ � e secðklÞ:

Other integration constants are determined from the conditions that at the point of
application of the transverse forces F1 and F2, both sections of the beam deformation
curve have the same deflection.

y1;L
� �

x¼l�l1
¼ y1;R

� �
x¼l�l1

; y2;L
� �

x¼l�l2
¼ y2;R

� �
x¼l�l2

and the common tangent.

ð _y1;RÞx¼l�l1 ¼ ð _y1;RÞx¼l�l1 ; ð _y2;LÞx¼l�l2 ¼ ð _y2;RÞx¼l�l2 :

Then, expressions for determining the integration constants C2, C4, C6, C8 will have the
following final form
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C2 ¼ F1sin(kl1Þ
Sk sin(klÞ � e tg kl

2

� �
; C4 ¼ F2sin(kl2Þ

Sk sin(klÞ � e tg kl
2

� �
;

C6 ¼ � F1sin(kðl � l1ÞÞ
Sk sin(klÞ � e tg kl

2

� �
; C8 ¼ � F2sink(l � l2Þ

Sksin klð Þ � e tg kl
2

� �
;

Substitute the obtained expressions for the constants C1, …, C8 into the corre-
sponding initial Eqs. (5)−(8) and denote, after some transformations, the following
expressions for the left and right sections of the deflection curve of the crane bridge

y1;L ¼ F1

S
sin(kx)sin(kl1Þ

k sin(klÞ � xl1
l

� �
� eU; ð9Þ

y2;L ¼ F2

S
sin(kx)sin(kl2Þ

k sin(klÞ � xl2
l

� �
� eU; ð10Þ

y1;R ¼ F1

S
sin(kðl � x))sin(kðl � l1ÞÞ

k sin(klÞ � (l � xÞðl � l1Þ
l

� �
� eU; ð11Þ

y2;R ¼ F2

S
sin(kðl � x))sin(kðl � l2ÞÞ

k sin(klÞ � ðl � xÞðl � l2Þ
l

� �
� eU: ð12Þ

Applying the method of superposition of deflections, we obtain the total deflection yP
of the bridge when the forces F1 and F2 act simultaneously together with the eccentric
longitudinal force S. Adding expressions (9) and (10), we find the equations for the
deflection curve for the left section of the beam (0 � x � (l − l2))

yR;L ¼ y1;L þ y2;L

¼ 1
S

sin(kxÞ
k sin(klÞ ðF1sin(kl1Þ þ F2sin(kl2ÞÞ � x

l
ðF1l1 þ F2l2Þ

� �
� 2eU:

Adding expressions (11) and (12), we find the equations of the deflection curve for
the right section of the beam (x � (l − l2))

yR;R ¼ y1;R þ y2;R ¼ 1
S

sin(kðl � xÞÞ
k sin(klÞ ðF1sin(kðl � l1ÞÞ þ F2sin(kðl � l2ÞÞ

� �
� ðl � xÞ

l

� F1ðl � l1Þ þ F2ðl � l2Þð Þ � 2eU:

Taking into account the above, we will compose the equation of the deflection
curve of the span between the wheels of the cargo trolley in the section between the
vertical loads F1 and F2
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yR ¼ �2eU þ F1

S
sin(kx)sin(kl1Þ

k sin(klÞ � xl1
l

� �

þ F2

S
sin(kðl � x))sin(kðl � l2ÞÞ

k sin(klÞ � ðl � xÞðl � l2Þ
l

� �
:

For studying the span beam’s stress state, it is necessary to differentiate twice the total
equations of the deflection curves

_yRL ¼ cos(kxÞ
S sin(klÞ ðF1sin(kl1Þ þ F2sin(kl2ÞÞ � F1l1 þ F2l2

Sl

� 2ek cos(kx)tg
kl
2

� �
� sin(kxÞ

� �
;

_yRR ¼ coskðl � xÞ
Ssinkl

ðF1sin(kðl � l1ÞÞ þ F2sin(kðl � l2ÞÞÞ � F1ðl � l1Þ þ F2ðl � l2Þ
Sl

� 2ek cos(kx)tg
kl
2

� �
� sin(kxÞ

� �
;

_yR ¼ �2ek cos(kx)tg
kl
2

� �� �
� sin(kxÞ þ F1cos(kx)sin(kl1Þ

S sin(klÞ � F1l1 � F2ðl � l2Þ
Sl

� F2cos(kðl � x))sin(kðl � l2ÞÞ
S sin(klÞ :

After the first differentiation, the expressions obtained above represent the small angles
of rotation of the ends of the beam, which can be used in the design of a prestressed
crane bridge. After the second differentiation, we obtained

€yRL ¼ � k sin(kx)
S sin(kl)

F1sin(kl1Þ þ F2sin(kl2ÞÞ þ 2ek2(sin(kx)tg
kl
2

� �
þ cos(kxÞ

� �
;

€yRR ¼ � k sin(kðl � xÞÞ
S sin(klÞ ðF1sin(kðl � l1ÞÞ þ F2sin(kðl � l2ÞÞÞ

þ 2ek2 sin(kx)tg
kl
2

� �
þ cos(kxÞ

� �
;

€yR ¼ 2ek2 sin(kx)tg
kl
2

� �
þ cos(kxÞ

� �

� F1sin(kx)sin(kl1Þ þ F2sin(k(l � x))sin(kðl � l2Þ
S sin(klÞ :

In the final form, the equations of bending moments are
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ML ¼� EI €yRLð Þ ¼ sinðkxÞ
k sinðklÞ

F1 sinðkl1ÞþF2 sinðkl2Þð Þ � 2eS cosðkxÞþ sinðkxÞtg kl
2

� �� �
;

MR ¼ �EIð€yRRÞ ¼ sin(k(l � xÞÞ
k sin(klÞ ðF1sin(kðl � l1ÞÞ þ F2sin(kðl � l2ÞÞÞ

�2eS cos(kx) + sin(kx)tg
kl
2

� �� �
:

M ¼ �EIð€yRÞ ¼ F1sin(kx)sin(kl1Þ þ F2sin(k(l � x))sin(kðl � l2ÞÞ
k sin(klÞ

� 2eS cos(kx) + sin(kx)tg
kl
2

� �� �
:

4 Results

Based on the obtained expressions for the deflection curves of the prestressed beam,
mathematical studies of its deformed state were carried out. The base is a beam with a
span of L = 10.5 m. For overhead cranes with a lifting capacity of F = 1000 kg, an I-
beam No. 24M is recommended [16]. Conveniently, the weight load is distributed
between the wheels of the cargo trolley and F1 = F2 = 500 kg is considered. The dis-
tance between the forces F1 and F2 is taken as A = 0.560 m. It corresponds to the
distance between the wheels of the TE1–521 electric hoist. Part of the calculation results
in the form of conditional deflections y/[y] of the main beam for a group of operation
mode 4K, with an allowable value of conditional deflections [y/l] = 2⋅10−3 is presented
in Table 1. Graphic interpretation of calculations in the form of deflection curves beams
are given for the ratio of transverse and longitudinal forces F / S = 1.5 (Fig. 3).

Table 1. Conditional deflections of the main beam.

F1 þF2
Si

Position carts Calculation scheme

Acting The proposed
e1 ¼ e2 e1 6¼ e2 e1 ¼ e2 ¼ 0 e1 ¼ e2

F1 þF2

1.25
Mid-span 0.92 0.96 1.05 0.72
Near the support −0.17 −0.12 −0.11

F1 þF2

1.5
Mid-span 0.88 0.94 0.68
Near the support −0.20 −0.16 −0.04

F1 þF2

1.75
Mid-span 0.85 0.9 0.63
Near the support −0.25 −0.18 −0.06

F1 þF2
2

Mid-span 0.8 0.85 0.51
Near the support −0.3 −0.23 − 0.1
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Deflection arrows 2, 4, 6, 7 are shown when the crane is operating with a load in the
middle of the span. And arrows of bends 1, 3, 5 − when placing one of the cart's
wheels near the support at a distance of lb − the minimum permissible safety zone for
overhead cranes. Strain curves 1−4 are obtained by applying an accepted mathematical
model for prestressed beams. For deflections 1, 2, the beam was subjected to the action
of longitudinal forces applied on one line of action with eccentricity e1 = e2, and
deflections 3 and 4 were obtained in the case of applying compressive forces with
different eccentricities e1 6¼ e2. Deflection curve 7 is built for a conventional crane
bridge without prestress.

The analysis of the obtained results shows that the deformations of the unloaded
beam do not exceed the deflections of a conventional crane bridge. The mathematical
models used in the calculation and design of prestressed span beams are significantly
simplified and do not always correspond to the actual conditions of its operation, and
the deformations of the crane bridge are overestimated significantly. Thus, the
deflection arrows 5 and 6, obtained using a new mathematical model proposed by the
authors, say that the values of the deflections and deflections of the beam are, on
average, 20% and 25% less, respectively, than in the currently used design scheme. The
results obtained should be further used to improve existing structures and engineering
calculation methods, both at the design stage and in actual operating conditions. At the
same time, in the proposed new model, the use of several vertical forces F1, F2, …, Fn,
although it corresponds to the actual loading conditions of the beam, significantly
complicates its calculation according to the main criteria of performance.

5 Conclusions

In work, a more accurate mathematical model of a prestressed crane bridge was pro-
posed and investigated. Its use makes it possible to significantly reduce the calculated
deformations of the span beams compared to the previously adopted mathematical
models of span beams.

The results obtained in this work can be further used for the modernization of
cranes to increase their lifting capacity, increase the service life without dismantling,
and improve existing structures and engineering calculation methods during design and
in actual operation.

Fig. 3. Deflection curves of a prestressed beam.
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