
Trace Semantics and Algebraic Laws
for MCA ARMv8 Architecture Based

on UTP

Lili Xiao and Huibiao Zhu(B)

East China Normal University, Shanghai, China
hbzhu@sei.ecnu.edu.cn

Abstract. Hardware architectures like x86 and ARM provide relaxed
memory models for efficiency reasons. The revised ARMv8 architec-
ture is multi-copy atomic (MCA), which brings relaxed-memory effects
through thread-local out-of-order, speculative execution and thread-local
buffering. In this paper, we investigate the trace semantics for the MCA
ARMv8 architecture, acting in the denotational semantics style based
on Unifying Theories of Programming (UTP). In order to present all
the valid execution results including reorderings of any program under
ARMv8, a trace expressed as a sequence of snapshots is introduced,
and it relies heavily on various dependencies. The snapshots record the
change of variables of different types of actions. We also study the alge-
braic laws for MCA ARMv8, including a set of sequential and parallel
expansion laws. The concept of head normal form is explored for each
program, and every program is described in the form of guarded choice
which can model the execution of a program with reorderings. Therefore,
the linearizability for ARMv8 is supported.

Keywords: Relaxed memory model · MCA ARMv8 architecture ·
Unifying Theories of Programming (UTP) · Trace semantics ·
Algebraic laws

1 Introduction

ARMv7 and early ARMv8 architectures defined a relaxed memory model used to
improve the performance of concurrent programs. This model is non multi-copy
atomic (non MCA). However, the complexity of implementation, verification and
reasoning produced by allowing non MCA behaviors does not bring in sufficient
performance benefits [1]. Then the revised ARMv8 architecture is shift to the
model under multi-copy atomic (MCA) semantics [2], which illustrates that when
a write is visible to some other thread, it becomes visible to all other threads.
Therefore, it simplifies the allowed behaviors of every program.

The MCA ARMv8 architecture maintains the buffer of each thread, throwing
away the redundant buffers in [3], shown in Fig. 1. Always, a memory write is
split into two steps, committing the write to buffer and propagating it to mem-
ory later. A read from location x demands to first check the private buffer to
c© Springer Nature Switzerland AG 2021
S. Qin et al. (Eds.): SETTA 2021, LNCS 13071, pp. 81–101, 2021.
https://doi.org/10.1007/978-3-030-91265-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91265-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-91265-9_5

82 L. Xiao and H. Zhu

see whether it contains such a write to the same location. If yes, the read oper-
ation terminates. Otherwise, the shared memory will be explored. TSO [4] and
ARMv8 are both MCA models [5], and TSO only omits store-load constraint.
However, ARMv8 releases store-store, store-load, load-store and load-load con-
straints, if a variety of dependencies (explained in the following section) do not
exist. In addition, ARMv8 supports speculative execution, which describes that
the instructions in a branch may execute before the evaluation of the branching
condition has completed. The cfence instruction is used to prohibit it.

Fig. 1. The MCA ARMv8 architecture.

To demonstrate how ARMv8 exhibits reorderings, consider the parallel pro-
gram (x := 1; y := 1)||(a := y; b := x). Since the statements x := 1 and y := 1
do not depend on each other, x := 1 and y := 1 can be reordered. If y := 1 is
scheduled firstly and then the reads from y and x happen, the variables a and b
can obtain 1 and 0 in the same execution.

Unifying Theories of Programming (UTP) [6] was developed by Hoare and
He in 1998. It aims at proposing a convincing unified framework to combine and
link operational semantics [7], denotational semantics [8] and algebraic semantics
[9]. In this paper, we consider the denotational semantics of the MCA ARMv8
architecture, where our approach is based on UTP and the trace structure is
applied. In our semantic model, a trace is in the form of the sequence of snap-
shots, and the snapshots record the changes on registers, buffers and memory
contributed by different types of actions. With the dependencies among those
actions, all the valid execution traces can be achieved. We also explore the alge-
braic laws for MCA ARMv8, including a set of sequential and parallel expansion
laws. On the basis of the laws, we can see that every program can be converted
into a guarded choice.

The operational and axiomatic models of MCA ARMv8 are introduced in
[1,10], while our investigation for it can not only support the linearizability
[11,12] of this architecture, but also support to deduce some interesting algebraic
properties of programs.

The remainder of this paper is organized as follows. We investigate the trace
semantics of the MCA ARMv8 architecture in Sect. 2. Section 3 presents a set
of algebraic laws including sequential and parallel expansion laws. Section 4 con-
cludes the paper and discusses the future work. We leave some technical defini-
tions and analyses in the appendix.

Trace Semantics and Algebraic Laws for MCA ARMv8 Based on UTP 83

2 Trace Semantics

2.1 The Syntax of ARMv8

In this section, we give the description of the programs under ARMv8 with
a simple imperative language, which is adapted and extended from [13]. In
the following syntax, e ranges over arithmetic expressions on real numbers, h
over Boolean expressions and p over programs. Particularly, a Fence instruction
is used to guarantee the absolute order of the memory accesses separated by
it, while speculative execution can be prevented by the control fence (cfence)
instructions. The program illustrated in the previous section is one quick exam-
ple.

v :: = ..., −2, −1, 0, 1, 2, ...
e :: = v | x | e1 + e2 | e1 ∗ e2 |...
h :: = true | false | e1 = e2 | ¬h | h1 ∨ h2 | h1 ∧ h2 |...
p :: = x := e | Fence | cfence | p1; p2 | if h then p1 else p2 | while h do p | p1||p2

2.2 The Semantic Model

This section investigates the denotational semantic model for the MCA ARMv8
architecture, with the application of the trace structure. We illustrate the behav-
iors of a process by a trace of snapshots, which records the sequence of actions.

A snapshot in a trace can be expressed as a triple (cont, oflag, eflag), where:

1. Generally, cont is composed of two elements var and val, denoting the data
state of one variable at a given moment. However, it can also be illustrated
as a branching condition h or Fence or cfence.

2. oflag works on distinguishing different types of operations, and Table 1 gives
a brief description of it.
(a) If cont is in the form of (var, val), oflag can be divided into three cate-

gories. When var is a global variable, committing to the buffer leads to
that oflag is 1, and propagating to the whole memory results in that
oflag is 2. When writing to a local variable, oflag is set to be 3.

(b) Otherwise, the corresponding oflag to a branching condition h or Fence
or cfence is 0 or −1 or −2.

Table 1. Different types of operations divided by the parameter oflag.

oflag Values

1 2 3 0 −1 −2

Types Committing Propagating Register write Branching condition Fence cfence

3. For a process, in order to include its environment’s behaviors, we introduce
the parameter eflag. Once the process does the action, eflag is set to be 1.
If the operation is performed by its environment, eflag is equal to 0.

84 L. Xiao and H. Zhu

The projection function πi(i ∈ {1, 2, 3}) is defined to get the i-th element of
a snapshot, e.g., π3(cont, oflag, eflag) = eflag. Then, if cont is in the form of
(var, val), we use the function πi(i ∈ {1, 2}) to obtain the relevant variable and
value, i.e., π1(π1(cont, oflag, eflag)) = var, π2(π1(cont, oflag, eflag)) = val.

We use the notation traces(P) to stand for all the valid execution results.
Two simple examples are shown below to provide an intuitive illustration of it.

Example 1.1. Consider the program a := 1; b := 1, where a and b are both
local. Because a := 1 and b := 1 do not have dependency, either a := 1 or b := 1
can be chosen to execute first. Then, two traces can be generated.
traces(a := 1; b := 1) =

{
〈((a, 1), 3, 1), ((b, 1), 3, 1)〉 , 〈((b, 1), 3, 1), ((a, 1), 3, 1)〉

}

Example 1.2. Given a program P ||Q, where P =df a := 1, Q =df b := 1,
and a and b are local, 〈((a, 1), 3, 1), ((b, 1), 3, 0)〉 is one of traces(P). Since the
former and latter are contributed by P and P ’s environment (i.e., Q), the third
elements are 1 and 0 respectively. Meanwhile, 〈((a, 1), 3, 0), ((b, 1), 3, 1)〉 is one
of traces(Q). Hence, P ||Q can produce one trace 〈((a, 1), 3, 1), ((b, 1), 3, 1)〉,
reflected in the trace semantics of parallel construct. �

2.3 Trace Semantics

In the following, we present the trace semantics traces(P) for each program P
under the MCA ARMv8 architecture.

Local Assignment. Local variables are written to the private registers in every
thread directly. Here, it is denoted by the second parameter 3 in the snapshot.

traces(a := e) =df {s ∧ 〈((a, r(e)), 3, 1)〉} where, π∗
3(s) ∈ 0∗

Here, the expression π∗
3(s) ∈ 0∗ informs that eflag in every snapshot of

the sequence s is 0, i.e., s is contributed by the environment. On the basis of
the introduction to the projection function π3, the notation π∗

3(s) denotes the
repeated execution of the function π3 on each snapshot in the trace s. Then,
with the application of this approach, a process can include its environment’s
behaviors. The notation =df refers to definitions, whereas s∧t stands for the
concatenation of traces s and t. Further, s∧T =df {s∧t | t ∈ T} and S∧T =df

{s∧t | s ∈ S ∧ t ∈ T}.
In addition, we introduce a read function named r to get the concrete value

of a variable, and the detailed definition of it is given in Appendix A (page 20).
Note that r(e) requires us to execute the read function of every variable which
appears in the expression e. For instance, r(x + y) is expressed as r(x) + r(y).
After getting the values of those variables, the value of the expression can be
calculated.

The definitions for traces(Fence) and traces(cfence) are similar.

traces(Fence) =df {s ∧ 〈(Fence,−1, 1)〉} where, π∗
3(s) ∈ 0∗

traces(cfence) =df {s ∧ 〈(cfence,−2, 1)〉} where, π∗
3(s) ∈ 0∗

Trace Semantics and Algebraic Laws for MCA ARMv8 Based on UTP 85

Global Assignment. We split the global assignment into two steps: (1) com-
mitting the write to the store buffer; (2) propagating it to the shared memory.
The two steps cannot be swapped.

traces(x := e) =df {u∧〈((x, r(e)), 1, 1)〉∧v∧〈((x, r(e)), 2, 1)〉}
where, π∗

3(u) ∈ 0∗ and π∗
3(v) ∈ 0∗

Similar to the explanation of local assignment, the environment can perform
any number of operations before each step of global assignment. Thus, two sub-
traces u and v are inserted, which are contributed by the environment. In the
above trace, (x, r(e)) denotes that the value of x is changed to r(e). The second
parameter being 1 or 2 says that the effect of x’s change has been brought to
buffer or memory. The assignment is done by the thread itself, i.e., eflag is 1.

Conditional and Iteration

Example 2. Consider the execution of conditional in P1, where the variables
x, y and z are global, and a and b are local.

if (x == 1) { if (x == 1) { if (x == 1) {
a := y; y := 1; cfence;

} else { } a := y;
b := z; }

}
(P1) (P2) (P3)

Now, we introduce the speculative execution [14] in conditional. Specula-
tive execution is that the instructions in a branch can be executed before the
branching condition is evaluated to increase performance. Because the specula-
tive execution is allowed by the specification of the MCA ARMv8 architecture,
the branching condition x == 1, a := y in one branch and b := z in another have
the same possibility to be performed firstly. The middle layer in Fig. 2 depicts
these three situations, and each framed part is done first.

Fig. 2. The illustration of if structure.

86 L. Xiao and H. Zhu

– When the evaluation x == 1 is scheduled, the conditional will behave the
same as a := y if the judgment is true, otherwise behave as b := z, shown as
the situations (1) and (2) in Fig. 2. The traces 〈(x == 1, 0, 1), ((a, r(y)), 3, 1)〉
and 〈(x! = 1, 0, 1), ((b, r(z)), 3, 1)〉 are related to these two situations.

– The conditional executes the load a := y first, and then evaluates the branch-
ing condition x == 1. If true, the process terminates successfully and pro-
duces the trace 〈((a, r(x)), 3, 1), (x == 1, 0, 1)〉. Otherwise, the result caused
by a := y is discarded. The conditional continues to carry out the instruction
b := z, and then generates the trace 〈(x! = 1, 0, 1), ((b, r(z)), 3, 1)〉. They are
described by the situations (3) and (4) in Fig. 2. The analysis of executing
b := z first is similar and presented in cases (5) and (6). �

Fig. 3. The dependency in if structure.

Now, we study the trace semantics of conditional. Firstly, to judge whether a
common statement can be speculatively executed, shown in Fig. 3(1), we intro-
duce the function NoDepd1(snap b, snap a). It defines the requirements that
snap b and snap a should achieve if there is no dependency between them:

(1) The assigned variable in snap a is not global, because a thread cannot dis-
card the result once it makes some changes in any location in the memory.

(2) dom(π1(snap b)) records the set of all the variables in the branching condi-
tion. The written variable in snap a cannot appear in the mentioned set.

(3) The variables read by snap a and those read by snap b do not contain the
same global variables. The former ones are denoted by dom(π2(π1(snap a)))
and the latter ones are represented as dom(π1(snap b)).

Here, snap a is one snapshot of an assignment. The snapshot of a condition
judgment h is denoted by snap b, which is in the form of (h, 0, 1).

NoDepd1(snap b, snap a) can be formalized as below. Here, we use Globals
to denote the set of all the global variables, and dom() stands for the variables
appearing in the argument. Note that the three formulas below correspond to
the three items above.

NoDepd1(snap b, snap a)

=df

⎛
⎝

(π1(π1(snap a)) /∈ Globals) ∧ ...(2.3.1)
(π1(π1(snap a)) /∈ dom(π1(snap b))) ∧ ...(2.3.2)((

dom(π2(π1(snap a))) ∩ dom(π1(snap b))
) ∩ Globals = ∅

)
...(2.3.3)

⎞
⎠

Secondly, for nested conditional, in order to investigate whether two branch-
ing conditions can be reordered, which is illustrated in Fig. 3(2), we give the

Trace Semantics and Algebraic Laws for MCA ARMv8 Based on UTP 87

definition of the function Nodepd2(snap b1, snap b2). If two branching condi-
tions do not depend on each other, the following condition that snap b1 and
snap b2 may not refer to the same global variables should be satisfied, which is
defined as Nodepd2(snap b1, snap b2).

Nodepd2(snap b1, snap b2) =df (dom(π1(snap b1)) ∩ dom(π1(snap b2))) ∩ Globals = ∅

For a condition judgment h, traces(h) =df {s∧〈snap b〉}, where π∗
3(s) ∈ 0∗,

and snap b = (h, 0, 1). It means that the environment is allowed to do any
number of operations before h, denoted by the sequence s.

Then, given a snapshot snap b of branching condition h and a trace t of all
the instructions in a branch, we interleave s∧〈snap b〉 and t which is formalized
as addCond(s∧〈snap b〉, t) to produce all the possible execution results.

addCond(s∧〈snap b〉, t)
=df hd(s∧〈snap b〉)∧addCond(tl(s∧〈snap b〉), t)

∪

⎛
⎜⎜⎜⎜⎝

(hd(t)∧addCond(s∧〈snap b〉, tl(t)))

�

⎛
⎝

π3(hd(t)) = 0
∨(π2(hd(t)) ∈ {1, 2, 3} ∧ NoDepd1(snap b, hd(t))) ...(2.3.4)

∨ (π2(hd(t)) = 0 ∧ NoDepd2(snap b, hd(t))) ...(2.3.5)

⎞
⎠ �

φ

⎞
⎟⎟⎟⎟⎠

where, addCond(〈〉, 〈〉) = {〈〉}
addCond(s∧〈snap b〉, 〈〉) = {s∧〈snap b〉}, addCond(〈〉, t) = {t},

During the process of interleaving, we skip all the environment behaviors
included in s and t. When meeting a snapshot in t which has dependency with
snap b (i.e., none of NoDepd1 or NoDepd2 can be satisfied shown as the formu-
las (2.3.4) and (2.3.5)), only the element in s∧〈snap b〉 can be scheduled. The
calculation of t will be explained in the later paragraph.

The notation hd(s) is used to denote the first snapshot of the trace s and
tail(s) stands for the result of removing the first snapshot in the trace s.

Therefore, we give the definition of conditional by applying addCond.

traces(if h then P else Q) =df

⋃
c1

addCond(s1, t1) � h �
⋃
c2

addCond(s2, t2)

where, c1 = s1 ∈ traces(h) ∧ t1 ∈ traces(P), c2 = s2 ∈ traces(¬h) ∧ t2 ∈ traces(Q)

Example 2: Continuation. Now, we give different scenarios to help under-
stand conditional better.
Case 1: As analyzed in Fig. 2, the traces of P1 are produced as below.

traces(P1) =

{ 〈(x == 1, 0, 1), ((a, r(y)), 3, 1)〉, 〈((a, r(x)), 3, 1), (x == 1, 0, 1)〉,
〈(x! = 1, 0, 1), ((b, r(z)), 3, 1)〉, 〈((b, r(z)), 3, 1), (x! = 1, 0, 1)〉

}

Case 2: Assume x and y in P2 are global variables. Then the instruction y := 1
cannot be executed before the branching condition x == 1.

traces(P2) =
{ 〈(x == 1, 0, 1), ((y, 1), 1, 1), ((y, 1), 2, 1)〉, 〈(x! = 1, 0, 1)〉}

88 L. Xiao and H. Zhu

Case 3: Consider the program P3. Although a is a local variable, the load a := y
cannot be performed before x == 1 since the special instruction cfence exists.

traces(P3) =
{ 〈(x == 1, 0, 1), (cfence, −2, 1), ((a, r(y)), 3, 1)〉, 〈(x! = 1, 0, 1)〉}

�

The trace semantics of Iteration is discussed based on that of Conditional
and least fixed point concept [15,16]. For while h do P , we consider it as
if h then (P ; while h do P) else II. Then, the trace semantics of it can be
achieved.

traces(while h do P) =df

∞⋃
n=0

traces{Fn(STOP)},

where, F (X) =df if h then (P ;X) else II,

F 0(X) =df X,

Fn+1(X) =df F (Fn(X))
= F (...(F︸ ︷︷ ︸

n times

(F (X)))...)

traces(II) =df {ε} and traces(STOP) =df {}

Sequential Composition. To facilitate making sequential composition between
two traces s and t, we continue to introduce two more functions firstly.

If x := e and y := f , which are represented by two snapshots snap a1 and
snap a2 under the formal model, do not have dependency, four constraints should
hold [17]. Here, x and y may be global or local, and e and f are expressions.

(1) The variables assigned in snap a1 and snap a2 are distinct, and they
can be extracted from these snapshots through π1(π1(snap a1)) and
π1(π1(snap a2)).

(2) y should not be referred to in e. In other words, the assigned variable in
snap a2 cannot be free in the variables read by snap a1 represented as
dom(π2(π1(snap a1))).

(3) The variables read by snap a2 which we use dom(π2(π1(snap a2))) to denote
should not contain the assigned variable in snap a1.

(4) The variables read by snap a1 and those by snap a2 can have the same
variables, but those variables must be local.

And we use the four lines below (i.e., (2.4.1), (2.4.2), (2.4.3) and (2.4.4)) in the
function NoDepd3(snap a1, snap a2) to outline the mentioned four conditions.

NoDepd3(snap a1, snap a2)

=df

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝

(π1(π1(snap a1)) �= π1(π1(snap a2))) ∧ ...(2.4.1)
(π1(π1(snap a2)) /∈ dom(π2(π1(snap a1)))) ∧ ...(2.4.2)
(π1(π1(snap a1)) /∈ dom(π2(π1(snap a2)))) ∧ ...(2.4.3)

((dom(π2(π1(snap a1))) ∩ dom(π2(π1(snap a2)))) ∩ Globals = ∅)...(2.4.4)

⎞
⎟⎟⎠

∨
(
(π2(snap a1) = 2 ∧ π2(snap a2)! = 2) ∨
(π2(snap a1) = π2(snap a2) = 2 ∧ π1(π1(snap a1)) �= π1(π1(snap a2)))

)

⎞
⎟⎟⎟⎟⎟⎟⎠

Trace Semantics and Algebraic Laws for MCA ARMv8 Based on UTP 89

In particular, the term forwarding, which has the equivalent effect with
bypassing [18] under TSO memory model, is illustrated by the last two lines
in the formula above. It says that the operation propagating to the shared mem-
ory does not depend on the load action later. However, if the load is also related
to a write to one location, two propagation actions should follow the principle
named modify order of the same location.

Example 3. Consider the sequential program x := 1; a := x, where a is local
and x is global. As explained above, the sub-traces 〈((x, 1), 2, 1), ((a, r(x)), 3, 1)〉
and 〈((a, r(x)), 3, 1), ((x, 1), 2, 1)〉 are both valid.

traces(x := 1; a := x) =
{ 〈((x, 1), 1, 1), ((x, 1), 2, 1), ((a, r(x)), 3, 1)〉,

〈((x, 1), 1, 1), ((a, r(x)), 3, 1), ((x, 1), 2, 1)〉
}

Here, the environment operations are not exhibited. We also ignore how to
make composition of these snapshots, and the technique of it is given later. �

There is an assignment x := e and a branching condition h, and they con-
form to program order. snap a is one snapshot of x := e, while snap b is the
snapshot of h. If the snapshots can be reordered, two requirements should be
met, defined by NoDepd4(snap a, snap b). One is that both of them cannot load
the same global variables, modeled as the former conjunct in the formula (2.4.5).
Informally, the other requirement is that x does not appear free in h. Hence, the
variables which snap b reads do not contain the variable which snap a writes.

Specially, if snap a is the snapshot of propagation, it and snap b do not have
dependency without any constraint according to forwarding, denoted by the
last line in the formula.

NoDepd4(snap a, snap b)

=df

⎛
⎝

(((
dom(π2(π1(snap a))) ∩ dom(π1(snap b))

) ∩ Globals = ∅

)
∧ (π1(π1(snap a)) /∈ dom(π1(snap b)))

)
...(2.4.5)

∨ π2(snap a) = 2

⎞
⎠

Then, we give a detailed introduction to the function seqcom(s, t) whose
target is to interleave two traces s and t. The result of interleaving two empty
traces is still empty. If one of them is empty and the other is nonempty, the
result follows the nonempty one.

seqcom(s, t)

=df

⎛
⎜⎜⎜⎝

hd(s)∧seqcom(tl(s), t)

∪

⎛
⎜⎝

(hd(t)∧seqcom(s, tl(t)))
� π3(hd(t)) = 0 ∨ ∨

i∈{1,2,3,4,5}
casei(s, t) �

φ

⎞
⎟⎠

⎞
⎟⎟⎟⎠

where, seqcom(s, 〈〉) = {s}, seqcom(〈〉, t) = {t}, seqcom(〈〉, 〈〉) = {〈〉}

The first snapshot in s can always be scheduled. However, if the first in the
next trace t wants to be triggered, it should satisfy the conditions that it is

90 L. Xiao and H. Zhu

contributed by the environment, or it is done by the thread itself but meets one
of the following five requirements. The requirements are expressed by casei where
i ∈ {1, 2, 3, 4, 5}. Table 2 gives a brief introduction to casei. It is worth noting
that, the mentioned conditions lead to the difference between this interleaving
introduced here and traditional interleaving [16].

Table 2. The description of Casei.

Cases Description

case1(s, t) If the first in the latter trace t is the snapshot of a Fence instruction,
how to make it be the head of the interleaving of s and t

case2(s, t) The snapshot of a cfence instruction is at the head of t

case3(s, t) One snapshot of a global assignment takes the lead in t

case4(s, t) A local assignment’s snapshot comes first in the trace t

case5(s, t) The branching condition is scheduled first in t

Now, we give the detailed formalization and illustration of those cases as
below. case1 is that the first in t is the snapshot of a Fence instruction, and it
wants to become the head of the interleaving of s and t. Then all the snapshots
in s, which are not done by the environment (The same applies to the following
cases), should only be related with local assignments. And those assignments
cannot read any global variables. The reason for these constraints is that for a
Fence instruction, all the po-previous memory access instructions, conditional
branch instructions and barriers are finished.

case1(s, t)

=df

⎛
⎝

π1(hd(t)) = Fence ∧ π3(hd(t)) = 1

∧ ∀a′ ∈ s •
(

π3(a′) = 1 →
(

π2(a′) = 3
∧ ∀x ∈ dom(π2(π1(a′))) • x /∈ Globals

))
⎞
⎠

The snapshot of a cfence instruction at the beginning of the next trace t would
like to be scheduled first. It requires that any snapshot related to a barrier or a
branching condition, does not occur in the trace s, which is formalized as case2.

case2(s, t) =df

⎛
⎜⎜⎝

π1(hd(t)) = cfence ∧ π3(hd(t)) = 1

∧ ∀a′ ∈ s •
⎛
⎝π3(a′) = 1 →

⎛
⎝

π2(a′)! = 0
∧π2(a′)! = −1
∧π2(a′)! = −2

⎞
⎠

⎞
⎠

⎞
⎟⎟⎠

Provided that the first snapshot hd(t) in t is resulted from committing or
propagating a memory write, it is impossible for the trace s to include the
snapshots of the Fence and cfence instructions, and branching conditions (Taking
no account of any environment operation). In other words, s is the sequence of
the snapshots of global and local assignments contributed by the thread itself,

Trace Semantics and Algebraic Laws for MCA ARMv8 Based on UTP 91

as well as some environment actions. Therefore, for each snapshot a′ in s, once
eflag is 1, NoDepd3 holds between the snapshots a′ and hd(t). This case is
modeled as below.

case3(s, t) =df

⎛
⎝

π1(π1(hd(t))) ∈ Globals ∧ π3(hd(t)) = 1

∧ ∀a′ ∈ s •
(

π3(a′) = 1 →
(

π2(a′)! = −1 ∧ π2(a′)! = −2
∧ π2(a′)! = 0 ∧ NoDepd3(a′, hd(t))

))
⎞
⎠

If the head in t, which is the snapshot of a local assignment, wants to be
executed first, there are mainly two cases. And case4 modeled as case4(s, t) =df

case4 1(s, t) ∨ case4 2(s, t) presents the both cases.
Now, we define the case case4 1 that the register write reg write is demanded

to read some global variables. Then, all the instructions, which are po-previous
to the write, may be branching conditions and assignments. If the previous is a
condition judgment, NoDepd1 is supposed to be satisfied between the snapshots
of it and reg write. Otherwise, NoDepd3 should hold between the snapshots of
reg write and the po-previous assignment.

case4 1(s, t)

=df

⎛
⎜⎜⎝

π1(π1(hd(t))) ∈ Locals ∧ π3(hd(t)) = 1
∧ ∃x ∈ domain(π2(π1(hd(t)))) • x ∈ Globals

∧ ∀a′ ∈ s •
(

π3(a
′) = 1 →

(
(π2(a

′) = 0 ∧ NoDepd1(a
′, hd(t))) ∨

(π2(a
′) = 1, 2, 3 ∧ NoDepd3(a

′, hd(t)))

))

⎞
⎟⎟⎠

Here, we use Locals to denote the set of all the local variables.
We start to give a brief introduction to case4 2. The difference from case4 1

is that in this case, the trace s can have the snapshot of Fence.

case4 2(s, t)

=df

⎛
⎜⎜⎜⎜⎝

π1(π1(hd(t))) ∈ Locals ∧ π3(hd(t)) = 1
∧ ∀x ∈ domain(π2(π1(hd(t)))) • x /∈ Globals

∧ ∀a′ ∈ s •
⎛
⎝π3(a

′) = 1 →
⎛
⎝

π2(a
′) = −1 ∨

(π2(a
′) = 0 ∧ NoDepd1(a

′, hd(t))) ∨
(π2(a

′) = 1, 2, 3 ∧ NoDepd3(a
′, hd(t)))

⎞
⎠

⎞
⎠

⎞
⎟⎟⎟⎟⎠

The analysis of a branching condition and that of a local assignment are
similar. Hence, we ignore the detailed definition, which is denoted by case5.

Finally, we give the definition of sequential composition.

traces(P ;Q) =
⋃
c

seqcom(s, t), where, c = s ∈ traces(P) ∧ t ∈ traces(Q)

Example 4. Consider the example P ;Q, where P =df x := 1, Q =df y := 1,
x and y are global variables. P ;Q is activated with x = y = 0. Figure 4 gives a
description of the trace of P (i.e., s) and Q (i.e., t) respectively. tr is one trace
of P ;Q, which is interleaved from P and Q.

For simplicity, we do not exhibit the environment operations. Although there
are many executing cases for P ;Q, we only analyze one scenario shown above.

92 L. Xiao and H. Zhu

Fig. 4. The illustration of sequential composition.

1. The head ((y, 1), 1, 1) in t has no dependency with every snapshot in s, in
consequence, it can be fetched firstly.

2. As the first element in s, ((x, 1), 1, 1) can be scheduled at any time, and here
it is triggered in the second step.

3. We put the snapshot ((y, 1), 1, 1) in the third position of the trace tr of P ;Q.
Then, ((x, 1), 2, 1) can only be placed in the forth of tr. �

Parallel Construct. In this section, we discuss the trace semantics of parallel
construct, which is formed by the merging of contributed components’ traces.

Example 5. We use the example P ||Q, where P =df x := 1 and Q =df a :=
1; b := x, to illustrate how the trace semantics of parallel composition can be
constructed. Here, the variable a and b are local, and x is a global variable.

Fig. 5. The illustration of merging.

Here, we consider one scenario for the execution of P ||Q. The operation
committing the write to x is performed first. Then Q carries out the read from
the location x. Finally, both processes complete their rest actions in proper order.

Then, the process P can produce the following sequence seq1 shown in Fig. 5.
The first and third snapshots are made by P itself, hence the last elements
of them are both 1. The remaining snapshots in seq1 with eflag being 0 are
contributed its environment Q. And Q yields the sequence seq2 of snapshots.

Regardless of the fact that one action is done by the process P or Q, it is
contributed by the parallel program P ||Q. Hence, their merge gives a trace of
P ||Q which is illustrated by seq in the above figure.

Note that, the thread Q carries out the read function r(x) when the sequential
composition just completes, because Q cannot classify the private and shared
information if the parallel composition starts to execute. As a consequence, the
value of r(x) in Fig. 5 is 0. �

Trace Semantics and Algebraic Laws for MCA ARMv8 Based on UTP 93

The sequence seq1 of process P and seq2 of Q are said to be comparable, if

1. π∗
i (seq1) = π∗

i (seq2), where i = 1, 2.
The above formula when i = 1 indicates that they are built from the same
sequence of states, when i = 2 stands for that two sequences of operation
type are the same.

2. Any state contributed by a parallel process cannot be made by both of its
components, i.e., 2 /∈ π∗

3(seq1) + π∗
3(seq2).

Next, their merge is defined as below.

Merge(seq, seq1, seq2) =df

⎛
⎜⎜⎝

(π∗
1(seq) = π∗

1(seq1) = π∗
1(seq2))∧

(π∗
2(seq) = π∗

2(seq1) = π∗
2(seq2))∧

(π∗
3(seq) = π∗

3(seq1) + π∗
3(seq2))∧

(2 /∈ π∗
3(seq1) + π∗

3(seq2))

⎞
⎟⎟⎠

Then, we define the trace semantics of parallel composition. The purpose for
concatenating the sequence s contributed by the environment of P is to facilitate
merging, and it is the same for Q, i.e., π∗

3(s) ∈ 0∗, and π∗
3(t) ∈ 0∗.

traces(P ||Q)

=df{tr|tr1 ∈ traces(P) ∧ tr2 ∈ traces(Q) ∧ (Merge(tr, tr∧
1 s, tr2) ∨ Merge(tr, tr1, tr∧

2 t))}

3 Algebraic Properties

Program properties can be expressed as algebraic laws (equations usually). In
this section, we investigate algebraic laws for the MCA ARMv8 architecture
including a set of sequential and parallel expansion laws. They can facilitate
producing all the valid in-order and out-of-order executions. In our approach,
every program can be expressed as a head normal form of guarded choice. There-
fore, the linearizability of MCA ARMv8 is supported.

3.1 Guarded Choice

The introduction to guarded choice is to support the sequential and parallel
expansion laws. It has the ability to model the execution of a program including
various reorderings under ARMv8. h&(action, tid, index)[q] � P is a guarded
component. Here, h is a Boolean condition, and others are defined below.

1. (a) If the element action is the operation writing to the store buffer taking
〈x = e〉 for example, q is in the form of h&(action′, tid, index′), and
action′ is propagating to the main memory x = e.

(b) Furthermore, action may be assigning to a local variable a = e or special
actions such as Fence and cfence. Then q is ε.

(c) In particular, h&(action, tid, index)[q] where action and q are both ε,
indicates that the configuration is of a branching condition.

94 L. Xiao and H. Zhu

2. tid is the identity of the thread which performs the action.
3. We use the parameter index to denote the location of an action, and it is

a pair shown as (num, isMem). num indicates the sequence number of the
action in the program order, and it starts from 1 for each single process.
isMem is to distinguish whether the action is propagation or not. If yes,
it is 2, otherwise, it is 1. Example 6 below helps to illustrate the intuitive
understanding of index.

Example 6. Consider the process P =df x := 1; a := x, where x and a are
global and local respectively. Since x := 1 is the first statement, two actions
〈x = 1〉 and x = 1 split from it have the same num. The value of num is 1
and it is framed in Fig. 6. 〈x = 1〉 and x = 1 target at the buffer and memory
respectively. Then the values of isMem are 1 and 2, and they are circled in
Fig. 6. The action a = x is extracted from the second statement a := x, thus its
num is 2. Because it is not a memory action, its isMem is 1. Hence the indices
of the three actions 〈x = 1〉, x = 1 and a = x are (1, 1), (1, 2) and (2, 1). �

We use Example 7 below to describe the intuitive understanding of tid.

Example 7. Consider the parallel process (P ||Q)||R shown in Fig. 7. The left
edge is assigned a label whose value is 1. Otherwise, the label is 2.

Fig. 6. The presentation of index. Fig. 7. The structure of thread id.

We assume that every sequential process has the thread id λ. For parallel
composition, the thread id of P ||Q is 〈1〉, and that of R is 〈2〉. Lower down,
the processes P and Q can be labeled by 〈1, 1〉 and 〈1, 2〉 respectively. From the
point of view of the tree structure, P , Q and R are all leaf processes. Please
note, for any thread id (i.e., tid), we have tid∧λ = tid. �

Now we introduce the concept of guarded choice, which is in the form of
[]i∈I{hi&(actioni, tidi, indexi)[qi] � P ′

i}, where hi&(actioni, tidi, indexi)[qi] �
Pi is a guarded component. For the component h&(action, tid, index)[q] � P ,
if h is satisfied, the subsequent is (action, tid, index)[q] � P .

Every program can be represented in the form of a guarded choice. And then
for MCA ARMv8, the guarded choice can only have the following three types.

1. []i∈I{hi&(actioni, tidi, indexi)[(action′
i, tidi, index′

i)] � P ′
i}

2. []i∈I{hi&(actioni, tidi, indexi) � P ′
i}

3. []i∈I{hi&(actioni, tidi, indexi)[(action′
i, tidi, index′

i)] � P ′
i}[]

[]j∈J{hj&(actionj , tidj , indexj) � Q′
j}

Trace Semantics and Algebraic Laws for MCA ARMv8 Based on UTP 95

– The first type of guarded choice is only composed of a set of global assignment
components. The operation committing any memory write can be scheduled
to execute, provided that the corresponding Boolean condition is satisfied.

– The second type of guarded choice is made up of local assignment, or Fence,
or cfence, or branching condition components.

– The third type can be obtained through combining the first and second types
of guarded choice.

3.2 Head Normal Form

Now, we assign every program P a normal form, which is named head normal
form, HF(P). HF (P) is in the form of guarded choice.
(1) For a global assignment, two actions committing to the write buffer and
propagating to the whole memory are separated from it. Therefore, the two
configurations corresponding to the above actions have the same num. However,
the value of isMem of the former is 1, while that of the latter is 2. And we use
the notation E to denote the empty process.

HF (x := e) =df []{true&(〈x = e〉, λ, (1, 1))[(x = e, λ, (1, 2))] � E}
(2) For a local assignment, after the first step expansion, there remains the empty
process. The treatment of Fence and cfence instructions is similar.

HF (a := e) =df []{true&(a = e, λ, (1, 1)) � E}HF (2–1)
HF (Fence) =df []{true&(Fence, λ, (1, 1)) � E}HF (2–2)

HF (cfence) =df []{true&(cfence, λ, (1, 1)) � E}HF (2–3)

(3) For conditional, h&(ε, λ, (1, 1)) and ¬h&(ε, λ, (1, 1)) are used to produce the
head normal form. That action is ε says that the evaluation does not have an
effect on the registers, buffers and the unique memory.

HF (if h then P else Q) =df ([]{h&(ε, λ, (1, 1)) � P,¬h&(ε, λ, (1, 1)) � Q})

(4) With regard to iteration, the analysis of it is similar to that of conditional.

HF (while h do P)

=df

(
[]{h&(ε, λ, (1, 1)) � (P ; while h do P), ¬h&(ε, λ, (1, 1)) � E})

The definition of the head normal form for sequential and parallel compo-
sition can be achieved, with the application of corresponding expansion laws
which are discussed in the following section.

3.3 Algebraic Laws

In this section, we study a set of sequential and parallel expansion laws. Based on
these laws, every program can be converted to a guarded choice, which supports
the linearizability of the MCA ARMv8 architecture.

96 L. Xiao and H. Zhu

Firstly, we focus on sequential expansion laws. Law (guar–1) indicates that
the sequential composition distributes leftward over guarded choice.

(guar–1) []i∈I{Pi};Q = []i∈I{Pi;Q}

As a special case of the law (guar–1), law (seq–1) teaches us to transfer
the program into configurations statement by statement. And the subsequent
program Q is only attached to the tail of the selected Pi.

(seq–1) Let P = []i∈I{hi&(actioni, tidi, indexi)[qi] � P ′
i}

Then P ;Q = []i∈I{hi&(actioni, tidi, indexi)[qi] � (P ′
i ;Q)}

After the transformation, we construct the relations among those config-
urations. Except for h&(action, tid, index)[q] fetched, the parameter num of
every configuration left increases 1 to guarantee the program order. Law (seq–2)
describes this, and seq denotes the sequence of the remaining configurations.

(seq–2) h&(action, tid, index)[q] � seq = (h&(action, tid, index) → q) ↪→ (seq ↑ 1)

Table 3. The description of three operators.

Operator Exhibiting
configurations

Program order
relation

Fixed executing
order

� √ × ×
↪→ √ √ ×
→ √ √ √

Note that, the operator � is used to connect the configurations with original
indices. Different from �, the operator ↪→ links the configurations whose indices
can reflect the program order (po) relation. The configurations connected by the
two operators above can still be reordered, but those linked by the operator →
cannot. Table 3 gives a brief and intuitive description of them.

Now, we give the definition of the function seq ↑ 1. Only num in each config-
uration in seq adds 1, and other parameters remain unchanged. Here, ‘/’ denotes
the replacement operator.

seq ↑ 1 =df ∀h&(action, tid, index) ∈ seq•
seq[h&(action, tid, (num + 1, isMem))/h&(action, tid, (num, isMem))]

Example 8. Consider the sequential process P ;Q, where P =df x := 1, Q =df

a := x, and x and a are global and local respectively.

Trace Semantics and Algebraic Laws for MCA ARMv8 Based on UTP 97

Fig. 8. The combination of configurations.

With the laws (seq–1) and (seq–2), we get the normal form of P ;Q formalized
as below. The combination of configurations of P and Q are shown in Fig. 8. For
simplicity, if the guard is true, it is ignored.

HF (x := 1; a := x) =(〈x = 1〉, λ, (1, 1))[(x = 1, λ, (1, 2))] � (a = x, λ, (1, 1))

=((〈x = 1〉, λ, (1, 1)) → (x = 1, λ, (1, 2))) ↪→ (a = x, λ, (2, 1)) �

Law (seq–3) is used to obtain all the configuration sequences (including the
results of reorderings) under MCA ARMv8. The first configuration with the
least num, formalized as c11, can always be scheduled. If we want to select the
configuration after the operator ↪→ and its num is greater than that of c11,
modeled as ci1 where i �= 1, the conditions covered by condi should be satisfied.

(seq–3) (c11 → c12 → ...c1n1) ↪→ (c21 → c22 → ...c2n2) ↪→ ...(cm1 → cm2 → ...cmnm)

= c11 → (c12 → ...c1n1) ↪→ (c21 → c22 → ...c2n2) ↪→ ...(cm1 → cm2 → ...cmnm)

[] c21 → (c11 → c12 → ...c1n1) ↪→ (c22 → ...c2n2) ↪→ ...(cm1 → cm2 → ...cmnm) if cond2

[] ...

[] cm1 → (c11 → c12 → ...c1n1) ↪→ (c21 → c22 → ...c2n2) ↪→ ... (cm2 → ...cmnm) if condm

condi has a number of situations, and these situations are similar to casej
under the trace model (page 10), where j ∈ {1, 2, 3, 4, 5}. For lack of space, we
only give the description and formalization of the situation that is corresponding
to case1, combining the features of the algebraic model in the following.

If the action in ci1 is a Fence instruction, any configuration c whose num is
less than that of ci1 can only have an action in the form of a = e. Furthermore,
the expression e does not refer to global variables. In a consequence, c has nothing
to do with any global variable, and we use dom to collect all the variables
appearing in a = e. Then this situation is formalized as below.

∀c •
(

(π1(π3(c)) < π1(π3(ci1))) →
(π1(c) is in the form of part of HF(2–1) ∧ ∀x ∈ dom(π1(c)) • x /∈ Globals)

)

Example 8: Continuation
According to the dependencies in Fig. 8, with the first application of the law
(seq–3), only the configuration (〈x = 1〉, λ, (1, 1)) can be the head. After remov-
ing it, we apply the law (seq–3) for the second time, and both of the remaining
configurations can be scheduled. The formalization is shown as below.

98 L. Xiao and H. Zhu

HF (x := 1; a := x) =(〈x = 1〉, λ, (1, 1)) → ((x = 1, λ, (1, 2)) ↪→ (a = x, λ, (2, 1)))

=(〈x = 1〉, λ, (1, 1)) → (x = 1, λ, (1, 2)) → (a = x, λ, (2, 1))

[](〈x = 1〉, λ, (1, 1)) → (a = x, λ, (2, 1)) → (x = 1, λ, (1, 2)) �

Next, we consider the parallel expansion law. Our parallel model can be
explained as an interleaving model. The detail we pay attention to is that when
the configuration in the left branch is selected, the prefix 〈1〉 should be added
to the corresponding tidi. The prefix 〈2〉 is attached to the corresponding tidj
with the configuration in the right being chosen.

(par–1) Let P = []i∈I{hi&(actioni, tidi, indexi) → P ′
i},

Q = []j∈J{hj&(actionj , tidj , indexj) → Q′
j}

Then P ||Q = []i∈I{hi&(actioni, 〈1〉∧tidi, indexi) → (P ′
i ||Q)}

[][]j∈J{hj&(actionj , 〈2〉∧tidj , indexj) → (P ||Q′
j)}

Example 9. Consider the parallel program P ||Q, where P =df x := 1, Q =df

a := 1; b := x, a and b are local variables, and x is a global variable.

HF (P ||Q) = HF (x := 1)||HF (a := 1; b := x)

=((〈x = 1〉, λ, (1, 1)) → (x = 1, λ, (1, 2)))||((a = 1, λ, (1, 1)) ↪→ (b = x, λ, (2, 1)))

=
(
(〈x = 1〉, λ, (1, 1)) → (x = 1, λ, (1, 2))

) ||
(

(a = 1, λ, (1, 1)) → (b = x, λ, (2, 1))
[] (b = x, λ, (2, 1)) → (a = 1, λ, (1, 1))

)

For lack of space, we only describe the generation of one sequence of P ||Q
shown in Fig. 9 here. �

Fig. 9. One configuration sequence of P ||Q.

4 Conclusion and Future Work

The MCA ARMv8 architecture allows out of order execution through thread-
local out-of-order, speculative execution and thread-local buffering. In this paper,
we have studied the trace semantics for ARMv8, acting in the denotational
semantics style. In addition, a set of algebraic laws including sequential and
parallel expansion laws has been investigated with the concept of the guarded
choice. Therefore, the linearizability of ARMv8 is supported in our model. Our
semantics study for MCA ARMv8 is based on UTP approach.

In the future, we would like to continue our work on ARMv8. We plan to
explore further relating theories for the ARMv8 architecture [19–21]. Using the
theorem proof assistant Coq [22–24] to formalize the UTP-based semantics for
ARMv8 is also in our plan.

Trace Semantics and Algebraic Laws for MCA ARMv8 Based on UTP 99

Acknowledgements. This work was partly supported by National Natural Science
Foundation of China (Grant Nos. 61872145 and 62032024) and Shanghai Collaborative
Innovation Center of Trustworthy Software for Internet of Things (Grant No. ZF1213).

A Read Function

Now, we present the read function r in detail. Above all, we need to judge if the
variable read from is global. If true, we introduce the function g to complete the
following operations. Otherwise, the function l is given. For simplicity, we only
use r(x) in the snapshots. Here, Globals is the set of all the global variables.

r(x, tr∧〈event〉) =df g(x, tr∧〈event〉) � x ∈ Globals � l(x, tr∧〈event〉)
r(x, 〈〉) =df g(x, 〈〉) � x ∈ Globals � l(x, 〈〉)

The read mechanism for global variables supported by this architecture is
that when a thread performs a read, if its buffer cannot provide the concrete
value, the shared memory will be explored.

g(x, tr∧〈event〉) =df

⎛
⎜⎜⎝

m(x, tr∧〈event〉)
�

(
w(x, tr∧〈event〉) = null ∨
cnt1(x, tr∧〈event〉) = cnt2(x, tr∧〈event〉) ...(A.1)

)
�

w(x, tr∧〈event〉)

⎞
⎟⎟⎠

g(x, 〈〉) =df m(x, 〈〉)

It means that the execution of g will jump to that of m, if the values of x have
not been committed to the buffer, or the writes to x have all been propagated
to the memory. The latter situation is modeled as the formula (A.1) in the trace
model. It illustrates that the number of the snapshots which contain x and target
at the buffer, and that aiming at memory contributed by the same thread are
identical. The numbers mentioned above can be calculated by the functions cnt1
and cnt2. We ignore the definition of cnt2, because it is similar to that of cnt1.

cnt1(x, tr∧〈event〉) =df

⎛
⎜⎜⎝

cnt1(x, tr) + 1

�

(
ASCII(π1(π1(event))) = ASCII(x)
∧π2(event) = 1 ∧ π3(event) = 1

)
�

cnt1(x, tr)

⎞
⎟⎟⎠

cnt1(x, 〈〉) =df 0

The function w is used to search the store buffer. Since we always want the
most recent value, the trace (the sequence of snapshots) will be checked in reverse
order, and the same is true for the functions as below. When executing w, for
each snapshot, we first examine whether its oflag and eflag are both 1, because
all threads can see their own buffers merely. If the conditions are satisfied, we
have a look at the variable contained in π1(π1(event)) of the snapshot. Once it is
identical to the one that we want to read, the corresponding value π2(π1(event))
is returned, and the process terminates. If we do not achieve anything until the
trace becomes ε, null will be assigned to this function.

100 L. Xiao and H. Zhu

w(x, tr∧〈event〉)

=df

⎛
⎝

(π2(π1(event)) � ASCII(π1(π1(event))) = ASCII(x) � w(x, tr))
� π2(event) = 1 ∧ π3(event) = 1 �

w(x, tr)

⎞
⎠

w(x, 〈〉) =df null

We know that ASCII is used to specify the binary numbers of common sym-
bols.

We use the function m to seek the shared memory for the value of a specific
variable. Due to the fact that the main memory is visible to all threads, we are
only demanded to check whether oflag of the snapshot we meet is 2 or not. The
remainder is similar to that of w. However, the difference between them is that
the return value of the function m is set to the initial value 0 if we cannot get
the value from the trace.

m(x, tr∧〈event〉)

=df

⎛
⎝

(π2(π1(event)) � ASCII(π1(π1(event))) = ASCII(x) � m(x, tr))
� π2(event) = 2 �

m(x, tr)

⎞
⎠

m(x, 〈〉) =df 0

When reading a variable from the register, what we should do is to check
whether oflag is 3 and eflag is 1, because the registers are all private.

l(x, tr∧〈event〉)

=df

⎛
⎝

(π2(π1(event)) � ASCII(π1(π1(event))) = ASCII(x) � l(x, tr))
� π2(event) = 3 ∧ π3(event) = 1 �

l(x, tr)

⎞
⎠

l(x, 〈〉) =df 0

Based on the read function generated from the read mechanism of the MCA
ARMv8 architecture, we can know that the private information will not be visible
to other threads.

References

1. Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., Sewell, P.: Simplifying ARM
concurrency: multicopy-atomic axiomatic and operational models for ARMv8.
Proc. ACM Program. Lang. 2(POPL), 1–29 (2017)

2. Pulte, C.: The Semantics of Multicopy Atomic ARMv8 and RISC-V. University of
Cambridge (2019)

3. Flur, S., et al.: Modelling the ARMv8 architecture, operationally: concurrency and
ISA. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 608–621 (2016)

4. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 391–407. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03359-9 27

https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27

Trace Semantics and Algebraic Laws for MCA ARMv8 Based on UTP 101

5. Colvin, R.J., Smith, G.: A wide-spectrum language for verification of programs on
weak memory models. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds.)
FM 2018. LNCS, vol. 10951, pp. 240–257. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-95582-7 14

6. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall, Engle-
wood Cliffs (1998)

7. Plotkin, G.D.: A Structural Approach to Operational Semantics. Aarhus University
(1981)

8. Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. MIT Press, Cambridge (1981)

9. Hoare, C.A.R., et al.: Laws of programming. Commun. ACM 30(8), 672–686 (1987)
10. Winter, K., Smith, G., Derrick, J.: Modelling concurrent objects running on the

TSO and ARMv8 memory models. Sci. Comput. Program. 184, 102308 (2019)
11. Smith, G., Winter, K., Colvin, R.J.: Linearizability on hardware weak memory

models. Formal Aspects Comput. 32, 1–32 (2019)
12. Winter, K., Smith, G., Derrick, J.: Observational models for linearizability checking

on weak memory models. In: International Symposium on Theoretical Aspects of
Software Engineering (TASE), pp. 100–107. IEEE (2018)

13. Kavanagh, R., Brookes, S.: A denotational semantics for SPARC TSO. Electron.
Notes Theor. Comput. Sci. 336, 223–239 (2018)

14. Colvin, R.J., Smith, G.: A high-level operational semantics for hardware weak
memory models, arXiv preprint arXiv:1812.00996 (2018)

15. Brookes, S.: Full abstraction for a shared-variable parallel language. Inf. Comput.
127(2), 145–163 (1996)

16. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Hoboken
(1985)

17. Smith, G., Coughlin, N., Murray, T.: Value-dependent information-flow security
on weak memory models. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM
2019. LNCS, vol. 11800, pp. 539–555. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-30942-8 32

18. Sorin, D.J., Hill, M.D., Wood, D.A.: A primer on memory consistency and cache
coherence. Synthesis Lect. Comput. Archit. 6(3), 1–212 (2011)

19. Zhu, H., Yang, F., He, J., Bowen, J.P., Sanders, J.W., Qin, S.: Linking opera-
tional semantics and algebraic semantics for a probabilistic timed shared-variable
language. J. Logic Algebraic Program. 81(1), 2–25 (2012)

20. He, J., Hoare, C.A.R.: From algebra to operational semantics. Inf. Process. Lett.
45(2), 75–80 (1993)

21. Hoare, C.A.R., He, J., Sampaio, A.: Algebraic derivation of an operational seman-
tics. In: Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp.
77–98 (2000)

22. Sheng, F., Zhu, H., He, J., Yang, Z., Bowen, J.P.: Theoretical and practical aspects
of linking operational and algebraic semantics for MDESL. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 28(3), 1–46 (2019)

23. Huet, G., Kahn, G., Paulin-Mohring, C.: The Coq Proof Assistant a Tutorial (2005)
24. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:

Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2013)

https://doi.org/10.1007/978-3-319-95582-7_14
https://doi.org/10.1007/978-3-319-95582-7_14
http://arxiv.org/abs/1812.00996
https://doi.org/10.1007/978-3-030-30942-8_32
https://doi.org/10.1007/978-3-030-30942-8_32

	Trace Semantics and Algebraic Laws for MCA ARMv8 Architecture Based on UTP
	1 Introduction
	2 Trace Semantics
	2.1 The Syntax of ARMv8
	2.2 The Semantic Model
	2.3 Trace Semantics

	3 Algebraic Properties
	3.1 Guarded Choice
	3.2 Head Normal Form
	3.3 Algebraic Laws

	4 Conclusion and Future Work
	A Read Function
	References

