
Reasoning About Iteration and Recursion
Uniformly Based on Big-Step Semantics

Ximeng Li1,3(B), Qianying Zhang2, Guohui Wang2,
Zhiping Shi1(B), Yong Guan3(B)

1 Beijing Key Laboratory of Electronic System Reliability and Prognostics,
Capital Normal University, Beijing, China

{lixm,shizp}@cnu.edu.cn
2 Beijing Engineering Research Center of High Reliable Embedded System,

Capital Normal University, Beijing, China
3 Beijing Advanced Innovation Center for Imaging Theory and Technology,

Capital Normal University, Beijing, China
guanyong@cnu.edu.cn

Abstract. A reliable technique for deductive program verification
should be proven sound with respect to the semantics of the program-
ming language. For each different language, the construction of a sep-
arate soundness proof is often a laborious undertaking. In language-
independent program verification, common aspects of computer pro-
grams are addressed to enable sound reasoning for all languages. In this
work, we propose a solution for the sound reasoning about iteration and
recursion based on the big-step operational semantics of any program-
ming language. We give inductive proofs on the soundness and relative
completeness of our reasoning technique. We illustrate the technique
at simplified programming languages of the imperative and functional
paradigms, with diverse features. We also mechanize all formal results in
the Coq proof assistant.

1 Introduction

It is commonly accepted that a reliable technique for deductive program verifica-
tion should be designed with the formal semantics of the programming language
as foundation. With the formal semantics used as axioms, a mathematical proof
of a desired property for the target program can be constructed. Direct program
proofs based on operational semantics are often cumbersome. Due to language
constructs that may incur unbounded program behavior, inductive proofs along
the structure of semantic derivations (e.g., [27]) are expected.

An established method for simplifying the verification is by devising a pro-
gram logic (e.g., [18,34]) for the programming language. Program logics effec-
tively reduce the burdens in dealing with many aspects of the verification, such
as the reasoning about loops, recursive function calls, memory layout of objects,
concurrency, etc. The effectiveness of program logics has been demonstrated by
powerful tools (e.g., [6,9,10,20]) and significant projects (e.g., [30,37]).

A price to pay for enjoying the power of program logics, however, is the
considerable amount of effort often needed in establishing their soundness and
c© Springer Nature Switzerland AG 2021
S. Qin et al. (Eds.): SETTA 2021, LNCS 13071, pp. 61–80, 2021.
https://doi.org/10.1007/978-3-030-91265-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91265-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-91265-9_4

62 X. Li et al.

completeness wrt. the baseline semantics – often an operational semantics. There
have been a plethora of programming languages designed and implemented to
meet the needs of different domains. The recent development of blockchain tech-
nology alone has led to the creation of multiple languages, such as Solidity [5],
Yul [7], Scilla [36], Move [3], Michelson [2], EVM bytecode language [41], etc.
Developing one program logic for each language that could be used in scenarios
where correctness is of serious concern would require a huge amount of efforts.

To combat the cumbersomeness of direct program proofs based on opera-
tional semantics, while avoiding the full complexity in the development of pro-
gram logics, one could seek to establish the infrastructure necessary for reasoning
about specific kinds of language features, for any languages with those features.
The results in [26] and [25] show how to deal with fundamental language fea-
tures that may cause unbounded behavior, such as iteration and recursion, in
a language-independent fashion. In [26], a technique is proposed to generate
inductive invariants from annotated loop invariants. In [25], a method is pre-
sented to turn the semantics of a programming language into a program verifier
by applying coinductive reasoning principles. Both developments are built on
the small-step execution relation of programs.

Small-step semantics [31] is known to be a fine-grained approach to the defi-
nition of operational semantics. It supports a way to model concurrent execution.
It also enables the differentiation of looping and abnormal termination. Big-step
semantics (or natural semantics [15,21]), on the other hand, can be easier to
formulate. For instance, the design of the semantic configurations need not track
the intermediate control states. Big-step semantics can also be easier to use. It
does not require the consideration of both derivation sequences and derivation
trees at the same time, in performing proofs. There exist many formalizations
of big-step semantics (e.g., [4,11,17,23,28,42]) with practical uses.

In this work, we propose a technique for reasoning about iteration and recur-
sion in deductive program verification based on big-step operational semantics.
For any programming language with a big-step semantics, once a generic pred-
icate is defined to hold on the premises and corresponding conclusions for the
semantic rules, a theorem becomes available – the theorem turns the verifica-
tion of partial correctness results into symbolic execution of the target program
with auxiliary information from the user specification. For loops and recursive
function calls, this auxiliary information is provided in the same form via the
specification, enabling the same pattern of reasoning. We illustrate our technique
using verification tasks involving simplified imperative and functional languages.
We mechanize the proofs of all formal results [8] in the Coq proof assistant [1].

The main technical contributions of this article are:

– a language-independent technique simplifying the deductive verification of
iterative and recursive program structures based on big-step semantics,

– proofs for the soundness and relative completeness of the technique,
– illustration of the technique with the verification of example programs in

simplified programming languages of different paradigms,
– mechanization of proofs and verification examples in the Coq proof assistant.

Reasoning About Iteration and Recursion Uniformly 63

We provide an infrastructure that handles the routine part of the work in
reasoning about programming constructs with potentially unbounded behavior,
based on a common model of big-step execution in a proof assistant. This pro-
vides a basis for a language-independent deductive program verifier.

Structure. The remaining part of this article is structured as follows. In Sect. 2,
we introduce the reasoning technique, and prove its soundness. In Sect. 3, we
illustrate the technique with a toy example that is developed in detail. In Sect. 4,
we present further verification examples targeting simplified imperative and func-
tional languages. In Sect. 5, we discuss the completeness of the technique. In
Sect. 6, we discuss related work. In Sect. 7, we discuss potential extensions of the
current development. Finally, we conclude in Sect. 8.

2 The Technique

The proposed verification technique can be used to check that the potential exe-
cution results of a program satisfy pre-specified conditions. The potential execu-
tion results are estimated by a combination of concrete computation according
to the big-step semantics of the programming language, and abstract inference
according to the auxiliary information in the specification. The abstract infer-
ence helps realize what is usually accomplished with loop invariants in reasoning
about loops, and with function contracts in reasoning about function calls.

2.1 Specifications

We capture the execution status of programs by configurations. We capture the
results of program execution by result configurations. For imperative languages, a
configuration can be a pair of a program and a state, and a result configuration
can be a state. For functional languages, a configuration can be a functional
expression, and a result configuration can be a canonical form.

Let C be the set of all possible configurations ranged over by c, for programs
written in some language. Let R be the set of all possible result configurations
ranged over by r, for programs in the same language. We do not rely on any
assumptions about the structure of the elements in C or in R.

A specification is a function Φ ∈ C → P(R). For a configuration c, if c
contains the complete program to be verified, then Φ(c) is the set of result con-
figurations capturing the required range for the execution results of the program.
Otherwise, Φ(c) is the expected set of potential results obtained by executing
some statement within the overall program. This set provides auxiliary informa-
tion for the verification.

2.2 Semantic Derivation and Correctness

We model the set of rules of a big-step operational semantics by a predicate
rule ∈ (C × R)∗ → (C × R) → {tt ,ff }. Each semantic rule is captured as

rule [(c1, r1), . . . , (cn, rn)] (c, r)

64 X. Li et al.

Here, the list [(c1, r1), . . . , (cn, rn)] models the list of premises of the rule, and
(c, r) models the conclusion of the rule. Each premise or conclusion consists of
a configuration in the set C and a corresponding result configuration in the set
R. A side condition in a semantic rule can be captured by a condition on the
parameters c1, . . . , cn, r1, . . . , rn, c, and r, in a concrete definition of rule.

A semantic derivation concluding that the configuration c can be evaluated
to the result configuration r in the big-step semantics is captured by

deriv(c, r) := ∃k : ∃c1, . . . , ck : ∃r1, . . . , rk :
rule [(c1, r1), . . . , (ck, rk)] (c, r) ∧
∀i ∈ {1, . . . , k} : deriv(ci, ri)

Hence, the configuration c can be evaluated to the result configuration r, or
(c, r) can be derived in the big-step semantics, if there is a semantic rule with
(c, r) as conclusion, and each premise of the rule can itself be derived in the
big-step semantics. Intuitively, if deriv(c, r) can be established, then there is a
finite derivation tree rooted at (c, r).

With the notion of semantic derivation defined above, we formalize the notion
of partial correctness as the validity of specifications.

valid(Φ) := ∀c, r : deriv(c, r) ⇒ r ∈ Φ(c)

A specification Φ is valid, if for each configuration c, any result configurations
semantically derivable from c is a member of Φ(c).

2.3 Specification-Aware Inference and Verification

We infer the potential execution results of a configuration under a given speci-
fication Φ according to the following definition.

inferΦ(c, r) := ∃k : ∃c1, . . . , ck : ∃r1, . . . , rk :
rule [(c1, r1), . . . , (ck, rk)] (c, r) ∧
∀i∈{1, . . . , k} : resΦ(ci, ri)

resΦ(c, r) := r ∈ Φ(c) ∧ (Φ(c) = R ⇒ inferΦ(c, r))

The result configuration r is infered from the configuration c with the help of
the specification Φ, if there is a semantic rule with (c, r) as conclusion, and for
each premise (ci, ri) of the semantic rule, ri is a potential result for ci according
to Φ, as is captured by the auxiliary predicate resΦ. The expression resΦ(ci, ri)
says that the possible candidates for ri are constrained by the information con-
tained in the specification about ci. In addition, if Φ does not provide any useful
information about ci (i.e., Φ(ci) = R), then ri should be inferable from ci.

Intuitively, the application of the semantic rules in the inference corresponds
to the symbolic execution of the target program. The information in the specifica-
tion can be used to overcome the inability to symbolically execute the constructs
with potentially unbounded behavior, such as iteration and recursion.

We formulate the condition to be verified on specifications Φ using the pred-
icate verif . In other words, verif (Φ) is the syntactical correctness condition.

Reasoning About Iteration and Recursion Uniformly 65

verif (Φ) := ∀c, r : inferΦ(c, r) ⇒ r ∈ Φ(c)

A specification Φ is verified, if for each configuration c, any result configurations
that can be infered from c with the help of Φ are contained in Φ(c).

2.4 Soundness

We prove the implication from verif (Φ) to valid(Φ). The following lemma is a
key component of this proof.

Lemma 1. If verif (Φ) holds, and deriv(c, r) holds, then inferΦ(c, r) holds.

Proof. According to the definition of deriv(c, r), if this predicate holds, then
there is a finite derivation tree generated by the following inference rule.

deriv(c1, r1) . . . deriv(cm, rm) rule [(c1, r1), . . . , (cm, rm)] (c, r)

deriv(c, r)

The proof is by induction on the derivation tree for deriv(c, r).
From deriv(c, r), we have deriv(c1, r1), . . . , deriv(cm, rm), and

rule [(c1, r1), . . . , (cm, rm)] (c, r) (1)

for some m, c1, . . . , cm, r1, . . . , rm.
For each i ∈ {1, . . . , m}, we have inferΦ(ci, ri) from deriv(ci, ri) and the

induction hypothesis. We show that resΦ(ci, ri) holds by distinguishing between
the cases where Φ(ci) = R and where Φ(ci) �= R.

– Suppose Φ(ci) = R. Then, it holds that r ∈ Φ(ci). Hence, we have resΦ(ci, ri)
because of inferΦ(ci, ri), and the definition of resΦ.

– Suppose Φ(ci) �= R. From inferΦ(ci, ri), and verif (Φ), we have ri ∈ Φ(ci).
Hence, we have resΦ(ci, ri) according to the definition of resΦ.

Hence, for each i ∈ {1, . . . ,m}, we have resΦ(ci, ri). Thus, we can deduce
inferΦ(c, r) using (1) and the definition of inferΦ. This completes the proof. 	

Using this lemma, the soundness theorem can be obtained directly.

Theorem 1 (Soundness). If verif (Φ) can be established, then valid(Φ) holds.

Proof. Assume verif (Φ) and deriv(c, r). Then, we have inferΦ(c, r) according to
Lemma 1. Thus, we can deduce r ∈ Φ(c) using verif (Φ). 	

The application of this theorem reliably turns the problem of establishing the
validity of a specification Φ into the problem of proving verif (Φ), irrespective
of the language used for the program that is specified in Φ. The examples in
Sect. 3 and Sect. 4 show that the proof of verif (Φ) is free from induction for
reasoning about iterative and recursive programming constructs, once auxiliary
information summarizing the effects of these constructs is provided.

66 X. Li et al.

Remark 1. Lemma 1 suggests that an abstract form of computation is obtained
leveraging verified user specification. This abstract computation over-approxi-
mates the concrete computation, which indicates a potential connection with
abstract interpretation [16]. However, we do not attempt at a formal interpreta-
tion of our technique in the framework of abstract interpretation in this work.

3 Illustrative Example

In this section, we illustrate our technique using a toy example. In this example,
a program computing the factorial of a natural number is written in the While
language [27]. We show how the big-step semantics of the While language can
be formulated with the rule predicate introduced in Sect. 2.2. We then show how
the functional correctness of the factorial program can be specified and proven.

3.1 Big-Step Semantics of the While Language

The main syntactical categories of the While language are arithmetic expres-
sions a, Boolean expressions b, and statements S. A statement can be skip that
performs no operation, an assignment x := a, a sequential composition S1;S2, a
branching statement if b then S1 else S2, or a loop while b do S. Let the set of
all statements be Stmt .

For programs in the While language, the states σ are elements of Σ:=Var →
Z. Here, Var is the set of variables and Z is the set of integers. The evaluation
of arithmetic expressions and Boolean expressions in states can be formalized
by defining evaluation functions A and B, respectively, as in [27].

For the semantics of the While language, the set C of configurations is
Stmt ×Σ, and the set R of result configurations is Σ. We formulate the big-step
semantics by defining the predicate rule, as in Fig. 1. In each line, a combination
of the parameter values for which rule holds is given.

rule [] (skip, σ , σ)

rule [] (x := a, σ , σ[x a σ])

rule [(S1, σ , σ), (S2, σ , σ)] (S1;S2, σ , σ)

rule [(S1, σ , σ)] (if b then S1 else S2, σ , σ) if B b σ = tt

rule [(S2, σ , σ)] (if b then S1 else S2, σ , σ) if B b σ = ff

rule [(S, σ , σ), (while b do S, σ , σ)] (while b do S, σ , σ) if B b σ = tt

rule [] (while b do S, σ , σ) if B b σ = ff

Fig. 1. The semantic rules for the statements of the While language

There is a direct correspondence between the formulation in Fig. 1 and a
formulation using inference rules (e.g., [27]). For instance, the inference rule for
the loop while b do S in the case where the conditional expression evaluates to
true can be formulated as

Reasoning About Iteration and Recursion Uniformly 67

〈S, σ〉 → σ′′ 〈while b do S, σ′′〉 → σ′

〈while b do S, σ〉 → σ′ if B�b�σ = tt

It is captured exactly by the second last line in the definition of rule in Fig. 1.

3.2 Factorial Program and Its Specification

Consider the program Sfac in the While language. The program computes the
factorial m! where m is the initial value of the program variable m.

Sfac := (fac := m;Swh)
Swh := (while 1 < m do (m := m − 1; fac := fac ∗ m))

Let Pm be the set of states where fac has the value m!. Let P ′
m,fac be the

set of states where fac has the value fac ∗ (m − 1)!.

Pm := {σ′[fac �→ m!] | σ′ ∈ Σ}
P ′

m,fac := {σ′[fac �→ fac ∗ (m − 1)!] | σ′ ∈ Σ}
We consider the following specification for the program.

Φfac(〈Sfac, σ〉) := Pm if m = σ(m) ∧ m > 0 ∧ σ ∈ Σ

Φfac(〈Swh, σ〉) := P ′
m,fac if m = σ(m) ∧ m > 0 ∧ fac = σ(fac) ∧ σ ∈ Σ

Φfac(c) := Σ if c is not of the above forms

The specification says that when Sfac finishes execution started in a state where
the value of m is m > 0, the value of fac will be m!. The specification also
contains the auxiliary claim that when the loop Swh finishes execution started
in a state where fac has the value fac and m has the value m > 0, the value of
fac will be equal to the product of fac and (m − 1)! (noting that 0! = 1).

3.3 Proof of the Factorial Program

A direct proof of the factorial program Sfac based on the big-step operational
semantics of the While language would require an induction on the shape of
derivation trees (e.g., [27]) to establish a suitable invariant for the loop Swh.

Using the technique of Sect. 2, we aim at establishing valid(Φfac). With The-
orem 1, it suffices to show verif (Φfac) – for all c and r, assuming inferΦfac(c, r),
we attempt to show r ∈ Φfac(c).

1. Firstly, assume c is 〈Sfac, σ〉, where σ(m) > 0. Then, Φfac(c) is Pm, where m =
σ(m). Using inferΦfac(〈Sfac, σ〉, r) and the semantics of the While language in
Fig. 1, it is not difficult to obtain

rule [(〈fac := m, σ〉, σ′′), (〈Swh, σ
′′〉, r)] (〈Sfac, σ〉, r)

for some σ′′ such that resΦfac(〈fac := m, σ〉, σ′′) and resΦfac(〈Swh, σ
′′〉, r).

Since Φfac(〈fac := m, σ〉) = R, we deduce inferΦfac(〈fac := m, σ〉, σ′′) from

68 X. Li et al.

resΦfac(〈fac := m, σ〉, σ′′). Hence, we deduce σ′′ = σ[fac �→ σ(m)]. Hence, we
have σ′′(m) = σ(m) > 0. Hence, we have Φfac(〈Swh, σ

′′〉) = P ′
σ′′(m),σ′′(fac) =

{σ′[fac �→ σ′′(fac) ∗ (σ′′(m) − 1)!] | σ′ ∈ Σ} = {σ′[fac �→ σ(m)!] | σ′ ∈
Σ} = Pm. Moreover, from resΦfac(〈Swh, σ

′′〉, r) we have r ∈ Φfac(〈Swh, σ
′′〉).

Ultimately, we have r ∈ Pm.
2. Secondly, assume c is 〈Swh, σ〉, where σ(m) > 0. Then, Φfac(c) is P ′

m,fac , where
m = σ(m), and fac = σ(fac). Using inferΦfac(〈Swh, σ〉, r) and the semantics
of the While language in Fig. 1, we have the following two cases.
(a) We have m ≤ 1, rule [] (〈Swh, σ〉, σ), and r = σ. Since m > 0 and

m ≤ 1, we have m = 1. Hence, it is not difficult to deduce r ∈ P ′
m,fac .

(b) We have m > 1, and

rule [(〈m := m − 1; fac := fac ∗ m, σ〉, σ′′), (〈Swh, σ
′′〉, r)] (〈Swh, σ〉, r)

for some σ′′ such that resΦfac(〈m := m − 1; fac := fac ∗ m, σ〉, σ′′) and
resΦfac(〈Swh, σ

′′〉, r). From the former we have

inferΦfac(〈m := m − 1; fac := fac ∗ m, σ〉, σ′′)

The specification Φfac provides no information about the two assign-
ments, m := m − 1 and fac := fac ∗ m. Hence, inferΦfac applies to these
two individual assignments, and it can be deduced that σ′′ = σ[m �→
m − 1, fac �→ fac ∗ (m − 1)]. Hence, we have σ′′(m) = m − 1 > 0.
Hence, Φfac(〈Swh, σ

′′〉) = P ′
σ′′(m),σ′′(fac) = {σ′[fac �→ (fac ∗ (m − 1)) ∗

(m − 1 − 1)!] | σ′ ∈ Σ} = P ′
m,fac . Moreover, from resΦfac(〈Swh, σ

′′〉, r)
we have r ∈ P ′

σ′′(m),σ′′(fac). Ultimately, we have r ∈ P ′
m,fac .

In the other cases, we have Φfac(c) = R. Hence, it trivially holds that r ∈ Φfac(c)
The proof is thus complete. 	

The above proof of the factorial program does not require the use of induc-
tion. Essentially, the induction required for the loop is already encapsulated in
the proof of Theorem 1.

3.4 Comparison with Hoare-Style Program Verification

A Hoare-style specification of the factorial program would be {m = n ∧ n >
0} Sfac {fac = n!} Here, n is a logical variable that is used to record the initial
value of the program variable m. This specification corresponds to our definition
of Φfac(〈Sfac, σ〉) for σ(m) > 0. The latter is more verbose for its explicit reference
to states. On the other hand, the use of the latter specification spares the efforts
to define an assertion language for each specific programming language.

In Hoare logic, the verification of the program can be performed with the
loop invariant 1 ≤ m ≤ n ∧ fac = n ∗ (n − 1) ∗ · · · ∗ m. It captures the condition
that is preserved under the effects of a single round of loop. In comparison, the
specification Φfac features the loop variant Φfac(〈Swh, σ〉) (with σ(m) > 0). It
captures the cumulative effects of the loop from the start of any round to the

Reasoning About Iteration and Recursion Uniformly 69

end of the last round. It can be seen that different ways of thinking are required
in coming up with the two kinds of specifications. With the proposed technique,
the same style as Φfac can be used for different programming languages, for both
loops and recursive functions, as can be seen in Sect. 4.

In Hoare logic, the reasoning about programs is often performed in a back-
ward fashion. For a statement that is neither a loop nor a function call, a pre-
condition is derived from the post-condition based on the logical rule for the
statement. For a loop or a function call, the pre-condition is inferred based on
the invariant of the loop or the contract of the function. In our technique, the
reasoning is performed in a forward fashion. If a specification provides no infor-
mation about a configuration, a result configuration is derived directly using the
semantics. For instance, the result configuration σ[fac �→ σ(m)] is derived from
the configuration 〈fac := m, σ〉 using the semantics in the factorial example. Oth-
erwise, the specification is used to infer the potential result configurations. For
instance, the specification Φfac is used to infer the potential result configurations
for the configuration 〈Swh, σ[fac �→ σ(m)]〉 in the factorial example.

In Hoare-style program verification, a loop invariant is justified by assum-
ing that it holds after a round of loop, and showing that it also holds before
that round. In our technique, a loop variant is justified by executing one
round of loop from each configuration satisfying the pre-condition of the loop
variant, and showing that no more result configurations are possible accord-
ing to the loop variant for each configuration reached after that round (e.g.,
〈Swh, σ[m �→ m − 1, fac �→ fac ∗ (m − 1)]〉 in the factorial example), than for the
original configuration (e.g., 〈Swh, σ〉 in the factorial example) before that round.

4 Verification of Iterative and Recursive Programs

In this section, we evaluate our technique with two further examples. In the two
examples, programming languages of the imperative and functional paradigms
are used, respectively, to implement the functionality of merging two sorted lists
of integers into a single sorted list of integers.

4.1 Extended While Language and Array-Merging Program

Extended While Language. The programming language of this section is an
extension of the While language. This extension contains the extra features of
one-dimensional arrays and functions.

We give the syntax for arithmetic expressions a, Boolean expressions b, and
statements S. We then explain the constructs present in the extension only.

a ::= n | x | X | X[a] | a + a | a − a | a ∗ a | a / a

b ::= true | false | a = a | a < a | b && b | !b
S ::= var x | arr X[n] | x := a | X[a] := a | skip |

if b then S else S | while b do S | S;S | f(a, . . . , a) → [x, . . . , x]

70 X. Li et al.

ρmg := [merge ([S,T, i, m, n], [], Smg)]

Smg := var j; var k; j := m+ 1; k := i;Swh;Si,m;Sj,n

Swh := while i ≤ m&& j ≤ n do (

(if S[i] ≤ S[j] then T[k] := S[i]; i := i+ 1 else T[k] := S[j]; j := j+ 1);

k := k+ 1)

Si,m := while i ≤ m do (T[k] := S[i]; i := i+ 1; k := k+ 1)

Sj,n := while j ≤ n do (T[k] := S[j]; j := j+ 1; k := k+ 1)

Fig. 2. The program ρmg that merges sorted array fragments

Here, X is an array identifier, and X[a] is the expression used to retrieve the
element of the array X at the index a. In addition, var x is the declaration of
the variable x, arr X[n] is the declaration of the array with identifier X and size
n, X[a1] := a2 is an assignment of the result of a2 to the element of the array
X indexed at a1, and f(a1, . . . , am) → [x1, . . . , xn] is a call to the function with
identifier f with arguments a1, . . . , am and return variables x1, . . . , xn. If some
argument ai is an array, then it is passed by reference in the call. We denote the
set of all statements of the extended While language by Stmtewh.

A program in the extended While language is a mapping ρ from each function
identifier f to a triple ([w1, . . . , wm], [x1, . . . , xn], S) or ⊥. Here, each wi (i ∈
{1, . . . , m}) is a parameter of the function that is either a variable x or an array
X. Each xi (i ∈ {1, . . . , n}) is a return variable of the function. The S is the
statement of the function. If ρ(f) = ⊥, then there is no function defined for the
function identifier in the program.

For programs of the extended While language, a state σ is a pair (s, ι). Here,
s ∈ (Var ∪ Arr → Z⊥) ∪ (Z → Z) is a store that maps each variable to an
optional integer that is the value of the variable, maps each array name to an
optional integer representing the starting location of the array, and maps each
location to an integer that is the value stored at the location. In addition, ι ∈ Z

is the next fresh location that can be used as the starting location of an array.
For σ = (s, ι), we write σ(a) for s(a). We denote the set of all states by Σewh.

For the extended While language, the set C of configurations is Stmtewh ×
Σewh, and the set R of result configurations is Σewh. For space reasons, we omit
the definition of the rule predicate that captures the big-step semantics of the
extended While language. This definition can be found in the extended version
of this paper, as well as the formalization in the Coq proof assistant.

Array-Merging Program and Its Verification. The program ρmg as shown
in Fig. 2 merges the elements in two sorted fragments of an array S into one
sorted fragment in a different array T.

The only function in this program is merge. Formally, this function is the
triple ([S,T, i, m, n], [], Smg). The parameters i and m represent the initial and

Reasoning About Iteration and Recursion Uniformly 71

final index, respectively, for the first fragment of the array S participating in
the merger. The second fragment participating in the merger is from the index
represented by m + 1 to the index represented by n in the same array S. The
target array fragment of the merger is from the index represented by i to the
index represented by n, in the array T.

For the specification of the program, we use a few pieces of auxiliary
notation. We write Xh

l for a triple (X, l, h) that represents the fragment of
the array X from the index l to the index h. We write (|Xh

l |)σ for the list
[σ(� + l), . . . , σ(� + h)] where � = σ(X), i.e., the list of elements of the array
X from the index l to the index h. We write occ [z1, . . . , zn] for the func-
tion h mapping each integer z to the number of occurrences of z in the list
[z1, . . . , zn] of integers. For two such functions h1 and h2, we write h1 ⊕ h2 for
the function λz.h1(z)+h2(z). We write sorted [z1, . . . , zn] to express that the list
[z1, . . . , zn] of integers is sorted in ascending order. We write sep(Xh1

l1
, Y h2

l2
, σ)

to express that the elements of the array X from the index l1 to the index
h1 occupy a separate memory area from that occupied by the elements of the
array Y from the index l2 to the index h2, in the state σ. In addition, we write
[u1, . . . , un]σ

′
σ to express for each i ∈ {1, . . . , n}, the value of each ui is the same

in the states σ and σ′. Here, ui can be a variable x or an array fragment Xh
l .

In the latter case, that the value of Xh
l is the same in the two states means

∀i : l ≤ i ≤ h ⇒ σ(σ(X) + i) = σ′(σ′(X) + i).
For the program ρmg, we devise the specification Φmga. We denote the starting

index for the first source array fragment in S as well as for the target array
fragment in T by l. We use l as a global parameter in the specification.

We specify the function merge as

Φmga(〈merge(X, Y, al, am, ah) → [], σ〉ρms) :=

{σ′ | occ (|Xh
l |)σ = occ (|Y h

l |)σ′ ∧ sorted (|Y h
l |)σ′ }

if A�al�σ= l ∧ 0≤ l≤m<h ∧ sorted (|Xm
l |)σ ∧ sorted (|Xh

m+1|)σ ∧ sep(Xh
l , Y h

l , σ)

where m = A�am�σ ∧ h = A�ah�σ

This specification says that if we call the function merge with two array identifiers
X and Y , and expressions al, am, ah that evaluate to l, m and h, such that

– 0 ≤ l ≤ m < h holds,
– the array fragments Xm

l and Xh
m+1 are sorted in the pre-state,

– the array fragments Xm
l and Xh

m+1 are separated in the pre-state,

then the number of occurrences of each integer in the target array fragment Y h
l

in the post-state is the same as its number of occurrences in the source array
fragment Xh

l in the pre-state, and the target array fragment Y h
l is sorted in

ascending order in the post-state.
The core part of the function merge is the loop statement Swh (see Fig. 2).

We specify this loop as

72 X. Li et al.

Φmga(〈Swh, σ〉ρms) :=

{σ′ | (i ≤ σ′(i) = m + 1 ∧ j ≤ σ′(j) ≤ n ∨ j ≤ σ′(j) = n + 1 ∧ i ≤ σ′(i) ≤ m) ∧
σ′(k) = k + σ′(i) − i + σ′(j) − j ∧ [m, n, S,T,Sn

l ,Tk−1
l]σ

′
σ ∧

occ (|Sσ′(i)−1
i |)σ ⊕ occ (|Sσ′(j)−1

j |)σ = occ (|Tσ′(k)−1
k |)σ′ ∧ sorted (|Tσ′(k)−1

l |)σ′ ∧
(σ′(i) ≤ m ∧ σ′(k) ≥ l + 1 ⇒ A�S[i]�σ′ ≥A�T[k−1]�σ′) ∧
(σ′(j) ≤ n ∧ σ′(k) ≥ l + 1 ⇒ A�S[j]�σ′ ≥A�T[k−1]�σ′) }

if 0 ≤ l ≤ i ≤ m < j ≤ n ∧ k = i + j − m − 1 ∧
(k ≥ l + 1 ⇒ A�S[i]�σ≥A�T[k−1]�σ ∧ A�S[j]�σ≥A�T[k−1]�σ) ∧
sorted (|Sm

i |)σ ∧ sorted (|Sn
j |)σ ∧ sorted (|Tk−1

l |)σ ∧ sep(Sn
l ,Tn

l , σ)

where i = σ(i) ∧ j = σ(j) ∧ k = σ(k) ∧ m = σ(m) ∧ n = σ(n)

In the specification, we are concerned with pre-states in which either the
overall loop is yet to be executed, or some rounds of the loop have been completed
and some further rounds are to be executed. We constrain these pre-states with
a few further conditions. One of these conditions states that the elements with
indexes i and j that are to be compared in the next round are both greater than
or equal to the last element that has been set in the target array fragment. For
each pre-state that satisfies all the conditions in the “if” part, several conditions
are asserted for the potential post-state σ′. A key condition here says that the
two fragments Sσ′(i)−1

i and S
σ′(j)−1
j in the source array that are scanned between

the reaching of the pre-state and the post-state agree with the fragment Tσ′(k)−1
k

that is filled between the reaching of the pre-state and the post-state. Another
key condition says that the fragment Tσ′(k)−1

l of the target array that is already
filled in the post-state for the loop is sorted in ascending order.

Without specification inference, the two remaining loops in the array-merging
program also need to be explicitly specified. The specification of these two loops
is much less involved than that for the first loop, and it is omitted here. With
the technique of Sect. 2, the validity of Φmga can be established.

Theorem 2. It holds that valid(Φmga).

With the help of Theorem 1, the proof requires no induction for reasoning about
the loops. This proof boils down to symbolic execution with the help of a series
of auxiliary lemmas about the memory layout.

Remark 2. The global parameter l in the specification Φmga relates the auxiliary
information about calls to merge and about the loops in this function. The role
of l can be compared to that of a logical variable in a concrete program logic.
Such global parameters are captured in the Coq formalization by an explicit
argument in the specifications. The type of this argument can be instantiated
according to the needs in verifying each specific program. The verification of a
program is required to go through for all possible values of this argument.

Reasoning About Iteration and Recursion Uniformly 73

4.2 Eager Functional Language and List-Merging Program

Eager Functional Language. The language considered in this section is a
fragment of the eager functional language as discussed in [33].

e ::= n | true | false |
e + e | e − e | e ∗ e | e/e |
e = e | e < e | ¬e | e ∧ e |
if e then e else e |
nil | e :: e | listcase e of (e, e) |
x | e e | λx.e | letrec x = λx .e in e

cf ::= icf | bcf | fcf | lcf

icf ::= . . . | −2 | −1 | 0 | 1 | 2 | . . .

bcf ::= true | false
fcf ::=λx.e

lcf ::= nil | cf :: cf

Fig. 3. The expressions and canonical forms of the eager functional language

A program of the eager functional language is an expression. The syntax
for expressions is given in the left part of Fig. 3. Here, n is a numeral, x is a
variable, e e′ is an application, λx.e is a lambda abstraction, nil is the empty list,
and e1 :: e2 is the list obtained by prefixing the list e2 with the element e1. The
expression listcase e of (e′, e′′) branches to e′ or e′′ depending on whether the
result of e is the empty list nil. The expression letrec x = λx′.e′ in e binds x to
λx′.e′ in e. This expression allows x to be used in e′, thereby allowing recursion.
We denote the set of all expressions by Expr .

The evaluation of expressions results in canonical forms cf as given in the
right part of Fig. 3. A canonical form cf can be a canonical form icf for integers,
a canonical form bcf for Boolean values, a canonical form fcf for functions, or a
canonical form lcf for lists. We denote the set of all canonical forms by Cf .

For the eager functional language, the set C of configurations is Expr , and
the set R of result configurations is Cf . For space reasons, we omit the definition
of the rule predicate that captures the big-step semantics of the eager functional
language. This definition can be found in the extended version of this paper, as
well as the formalization in the Coq proof assistant.

List-Merging Program and Its Verification. The program emg(lcf1, lcf2)
below merges two sorted lists, lcf1 and lcf2, into a single sorted list. More con-
cretely, the variable merge is bound to the expression λx.λx′.elcase that destructs
the lists that are bound to x and x′, respectively. In case one of the lists is empty,
the result of the merger is the other list. Otherwise, the result of the merger is
obtained by prefixing the smaller head element of the two given lists over the
merging result of the remaining parts of the lists.

emg(lcf1, lcf2) := letrec merge = (λx.λx′.elcase) in merge lcf1 lcf2
elcase := listcase x of (x′, λi.λr.listcase x′ of (x, λi′.λr′.eif))

eif := if i ≤ i′ then i :: merge r x′ else i′ :: merge x r′

74 X. Li et al.

To develop a specification for the list-merging program, we define a piece
of auxiliary notation. We write 〈|lcf |〉 for the mathematical list of integers
represented by the canonical form lcf for lists. Formally, we define 〈|nil|〉:=[],
〈|icf :: lcf |〉 :=icf :: zs if zs = 〈|lcf |〉 ∧ zs ∈ Z

∗, and 〈|lcf |〉:=⊥ otherwise.
We devise the a specification for the list-merging program, Φmgl. Using the

function occ and the predicate sorted introduced in Sect. 4.1, we specify the
expression emg(lcf1, lcf2) as

Φmgl(emg(lcf1, lcf2)) :=
{lcf | ∃zs ∈ Z

∗ : zs = 〈|lcf |〉 ∧ occ zs = occ zs1 ⊕ occ zs2 ∧ sorted zs}
if zs1 ∈ Z

∗ ∧ zs2 ∈ Z
∗ ∧ sorted zs1 ∧ sorted zs2

where zs1 = 〈|lcf1|〉 ∧ zs2 = 〈|lcf2|〉

This specification says that given list canonical forms lcf1 and lcf2 that are both
sorted in ascending order, the result of executing emg(lcf1, lcf2) is a list canonical
form lcf . The list canonical form lcf contains the elements as contained in either
lcf1 or lcf2. Furthermore, the list canonical form lcf is sorted in ascending order.

To support the verification of the specification for emg(lcf1, lcf2), we specify
an unfolded form of this expression. The execution of this unfolded form either
terminates directly, or gives the same form again.

Φmgl((λx.letrec merge = λx.λx′.elcase in λx′.elcase) lcf1 lcf2) :=
{lcf | ∃zs ∈ Z

∗ : zs = 〈|lcf |〉 ∧ occ zs = occ lcf1 ⊕ occ lcf2 ∧ sorted zs}
if zs1 ∈ Z

∗ ∧ zs2 ∈ Z
∗ ∧ sorted zs1 ∧ sorted zs2

where zs1 = 〈|lcf1|〉 ∧ zs2 = 〈|lcf2|〉

This specification reflects that the unfolded expression (λx.letrec merge =
λx.λx′. elcase inλx′.elcase) lcf1 lcf2 delivers analogous guarantees to those deliv-
ered by the original expression emg(lcf1, lcf2).

With the technique of Sect. 2, the validity of Φmgl can be established.

Theorem 3. It holds that valid(Φmgl).

With the help of Theorem 1, the proof requires no induction for reasoning about
the recursive applications of the function bound to merge. This proof boils down
to symbolic execution with the help of a few auxiliary lemmas about substitution
and evaluation related to canonical forms.

Remark 3. It might appear that the auxiliary information needed for the verifi-
cation of the list-merging program should be for expressions of the form merge .
However, these expressions cannot be evaluated, because information about the
actual function bound to merge is missing. The form that recurs in the evaluation
of emg(lcf1, lcf2) is actually (λx.letrec merge = λx.λx′.elcase in λx′.elcase) .

Reasoning About Iteration and Recursion Uniformly 75

5 On Completeness of the Technique

It is untrue that any valid specification can be verified. Intuitively, a specification
Φ that is valid but missing the necessary auxiliary information such as loop
variants might not be verifiable.

Consider the factorial example in Sect. 3, and the specification Φ′
fac that is

the same as Φfac except that Φ′
fac maps 〈Swh, σ〉 where σ(m) > 0 to Σ. The

specification Φ′
fac is valid as the specification Φfac is. This is because Φ′

fac is
a loosened version of Φfac. However, Φ′

fac cannot be verified using our proposed
technique. Due to missing auxiliary information, the verification procedure leads
to a non-terminating symbolic execution of the factorial program.

In the following, we show that for a given specification that is valid, there
is always a more informative specification Φ′ than Φ that is verifiable. Formally,
a specification Φ′ is at least as informative as a specification Φ, as denoted by
Φ � Φ′, if for each configuration c, it holds that Φ(c) ⊇ Φ′(c).

The lemma below says the specification mapping each configuration to the
set of all the semantically derivable result configurations can be verified.

Lemma 2. Let Φ� be the specification satisfying Φ�(c) = {r | deriv(c, r)} for all
configurations c. Then, verif (Φ�) can be established.

Proof. We show that for all c and r, if inferΦ�(c, r), then r ∈ Φ�(c). This boils
down to showing if inferΦ�(c, r), then deriv(c, r). Below, we give an inductive
proof of this statement.

Assume inferΦ�(c, r). Then, there exist some m, c1, . . . , cm, r1, . . . , rm, such
that resΦ�(c1, r1), . . . , resΦ�(cm, rm), and

rule [(c1, r1), . . . , (cm, rm)] (c, r) (2)

For each i, we show that deriv(ci, ri) holds by distinguishing between the cases
where Φ�(ci) = R and Φ�(ci) �= R.

– Suppose Φ�(ci) = R. Then we deduce inferΦ�(ci, ri) from resΦ�(ci, ri). Hence,
we have deriv(ci, ri) from the induction hypothesis.

– Suppose Φ�(ci) �= R. We have ri ∈ Φ�(ci) using resΦ�(ci, ri). Hence, we have
deriv(ci, ri) using the definition of Φ�.

Ultimately, we have deriv(ci, ri) for each i ∈ {1, . . . , m}, and we obtain
deriv(c, r) using (2). This completes the proof. 	

The following theorem says that for each valid specification Φ, there is a
specification that is at least as informative as Φ, and that can be verified.

Theorem 4 (Relative Completeness). For each valid specification Φ, there
exists a specification Φ′ such that Φ � Φ′, and verif (Φ′) can be established.

Proof. We first show that the specification Φ� in Lemma 2 is at least as infor-
mative as any valid specification. Let Φ be a specification satisfying valid(Φ).

76 X. Li et al.

Let c be an arbitrary configuration. Let r be any result configuration satisfying
r ∈ Φ�(c). We have deriv(c, r) from the definition of Φ�. Hence, we have r ∈ Φ(c)
because of valid(Φ). Hence, Φ�(c) ⊆ Φ(c) holds. Hence, we have Φ � Φ�. More-
over, we have verif (Φ�) using Lemma 2. This completes the proof. 	

If the program contained in a configuration exhibits only bounded behavior,
then the corresponding result configuration can be obtained through symbolic
execution. Hence, it is not necessary that a verifiable specification should cover
these configurations. In an informal sense, this argument supports that for a
specification to be verified, it is only necessary to provide auxiliary information
about constructs such as loops and recursive function calls in the specification.

6 Related Work

Inductive invariants [24] are well-studied means to sound program verification
directly based on operational execution models. An inductive invariant needs to
be preserved by all the possible atomic steps that can be taken in the execution
of the target program. This requirement often leads to difficulties in identifying
the exact condition that qualifies as an inductive invariant, and that enables the
verification of the target program.

In [26], a method is proposed to generate inductive invariants from induc-
tive assertions. The method is based on a small-step execution relation. Mini-
mal information about the syntactical structure of the programming language is
required in the generation of the inductive invariants. In comparison, our tech-
nique targets big-step operational semantics, and its soundness does not rely on
the reduction of the verification problem to the generation of inductive invari-
ants.

In [25], a technique is proposed to generate sound program verifiers based on
existing formalizations of small-step semantics in proof assistants. The soundness
of the technique is established with a coinductive argument. In comparison,
our technique targets big-step operational semantics, and is based on inductive
reasoning. Nevertheless, we are inspired by this work in the style of language-
independent program specifications and the form of completeness statements.

In [40], a language-independent verification technique based on reachability
logics and semantics formulated in rewriting systems is introduced. In com-
parison, our technique can only be used for big-step semantics. However, our
technique can be used with semantic definitions using inductive predicates in a
proof assistant, and requires only the logical foundation of the proof assistant to
function. Our technique also has a succinct, inductive argument for soundness.

Several developments provide means to systematically derive abstract seman-
tics from concrete semantics such as big-step operational semantics and its vari-
ants [12,13,35]. Among these, [12] proposes a language-independent notion of
skeletal semantics that can be instantiated to obtain concrete and abstract
semantic interpretations. However, the emphasis of these developments is in
obtaining automated static analyses of programs, rather than in exploiting user-
provided specification in the deductive verification of deep correctness properties.

Reasoning About Iteration and Recursion Uniformly 77

To some extent, language-independent program verification can also be sup-
ported by encoding the target languages or target programs in the same language
(e.g., WhyML, Boogie, etc.) or calculus (e.g., CSP, the π-calculus, etc.) support-
ing verification. This encoding can be considerably more light-weight than the
direct formalization of the syntax and semantics of the source language. How-
ever, when the features of the source language are sufficiently complicated, it
can be highly non-trivial to justify the encoding.

In Unifying Theories of Programming [14,19,22,29,32,38], the semantics of
programming constructs (e.g., assignment, conditional, sequential composition,
parallel composition, etc.) involved in diverse languages is formulated in a rela-
tional calculus. The connection between different kinds of semantics – algebraic
semantics, denotational semantics, and operational semantics – is investigated.
In comparison, we study the verification of programs based on a common model
of big-step opperational semantics. We do not look at concrete programming
constructs, or investigate the connection between different types of semantics.

7 Future Directions

Reuse of Existing Formalization of Semantics. For the related language-
independent verification techniques based on small-step operational seman-
tics [25,26], it is not difficult to obtain a verification infrastructure by directly
reusing an existing formalization of semantics. This is because a small-step
semantics readily provides a step relation that can be used to interface with the
verification framework. In comparison, we have only shown that our language-
independent verification technique can be applied after the big-step semantics
of the target language is formalized via a predicate that explicitly captures the
premises and conclusions of the semantic rules. Although the big-step semantics
formulated using this predicate closely resemble their classical formulation, it is
desirable if a higher level of reusability can be enabled. A potential solution is to
construct a program that automatically transforms a formalization of big-step
semantics into a formulation with the rule predicate. Such transformation could
be attempted using the MetaCoq framework [39] to achieve seamless integration
with the Coq proof assistant.

Integration of Techniques for Other Aspects of Deductive Verification.
The purpose of the present work is not to simplify the overall task of deduc-
tive program verification beyond achievable by existing techniques. Instead, the
focus has been the ability to reason about different types of programming con-
structs that potentially cause unbounded behavior, in a uniform way. This abil-
ity helps simplify the reasoning about these programming constructs, relative
to direct inductive proofs based on big-step operational semantics. To construct
a full-fledged language-independent program verifier in a proof assistant, effec-
tive treatment of other aspects of deductive program verification (e.g., memory
layout, mathematical reasoning in diverse problem domains, etc.) is required. In
principle, it is desirable to deal with the language-generic and language specific

78 X. Li et al.

aspects of program verification separately (as advocated in UTP [19]). Con-
cretely, existing formalization of program logics and mathematical theories in
proof assistants are expected to provide the essential technical ingredients for
simplifying the remaining aspects of verification tasks.

8 Conclusion

To tackle the problem caused by the proliferation of programming languages in
deductive program verification, we provide a language-independent verification
technique that addresses the cross-cutting concern of reasoning about program-
ming constructs potentially causing unbounded behavior. Typically, these con-
structs include loops and recursive functions in different forms. The proposed
technique can be applied to any programming language with a big-step opera-
tional semantics. The user of this technique need not set up inductions for the
loops and recursive calls in performing a program proof, but performs symbolic
execution of the program based on the big-step semantics, and with the help
of a specification containing auxiliary information about these constructs. The
technique admits succinct, inductive arguments for soundness and relative com-
pleteness that are verified in the Coq proof assistant along with other formal
claims [8]. It has been illustrated with verification examples targeting languages
of different paradigms. It provides a basis for a language-independent program
verifier based on big-step operational semantics in proof assistants.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China (61876111, 62002246).

References

1. The Coq proof assistant. https://coq.inria.fr/
2. Michelson - the language of Tezos. https://www.michelson.org/
3. The move language. https://developers.libra-china.org/docs/crates/move-

language/index.html
4. A sequential imperative programming language - syntax, semantics, Hoare logics

and verification environment. https://www.isa-afp.org/entries/Simpl.html
5. Solidity. https://docs.soliditylang.org/en/v0.8.0/
6. VCC: A verifier for concurrent C. https://www.microsoft.com/en-us/research/

project/vcc-a-verifier-for-concurrent-c/
7. Yul. https://docs.soliditylang.org/en/v0.8.0/yul.html
8. Formalization of the verification technique in Coq (2021). https://github.com/

lixm/ind-verify/tree/master
9. Ahrendt, W., Beckert, B., Bubel, R. (eds.): Deductive Software Verification - The

KeY Book. From Theory to Practice. Lecture Notes in Computer Science, vol.
10001. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-49812-6

10. Appel, A.W.: Verified Software Toolchain - (invited talk). In: Barthe, G. (ed.)
ESOP 2011. LNCS, vol. 6602, pp. 1–17. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-19718-5 1

https://coq.inria.fr/
https://www.michelson.org/
https://developers.libra-china.org/docs/crates/move-language/index.html
https://developers.libra-china.org/docs/crates/move-language/index.html
https://www.isa-afp.org/entries/Simpl.html
https://docs.soliditylang.org/en/v0.8.0/
https://www.microsoft.com/en-us/research/project/vcc-a-verifier-for-concurrent-c/
https://www.microsoft.com/en-us/research/project/vcc-a-verifier-for-concurrent-c/
https://docs.soliditylang.org/en/v0.8.0/yul.html
https://github.com/lixm/ind-verify/tree/master
https://github.com/lixm/ind-verify/tree/master
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/978-3-642-19718-5_1

Reasoning About Iteration and Recursion Uniformly 79

11. Blazy, S., Leroy, X.: Mechanized semantics for the Clight subset of the C language.
J. Autom. Reason. 43(3), 263–288 (2009)

12. Bodin, M., Gardner, P., Jensen, T.P., Schmitt, A.: Skeletal semantics and their
interpretations. Proc. ACM Program. Lang. 3(POPL), 44:1–44:31 (2019)

13. Bodin, M., Jensen, T.P., Schmitt, A.: Certified abstract interpretation with pretty-
big-step semantics. In: Proceedings of the 2015 Conference on Certified Programs
and Proofs (CPP), pp. 29–40 (2015)

14. Cavalcanti, A., Wellings, A., Woodcock, J.: The safety-critical Java memory model:
a formal account. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp.
246–261. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-
0 20

15. Clément, D., Despeyroux, J., Despeyroux, T., Kahn, G.: A simple applicative lan-
guage: mini-ML. In: Proceedings of the 1986 ACM Conference on LISP and Func-
tional Programming (LFP), pp. 13–27 (1986)

16. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Fourth
ACM Symposium on Principles of Programming Languages (POPL), pp. 238–252
(1977)

17. Hirai, Y., et al.: Defining the ethereum virtual machine for interactive theorem
provers. In: Brenner, M. (ed.) FC 2017. LNCS, vol. 10323, pp. 520–535. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 33

18. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

19. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Pearson College Div
(1998)

20. Jung, R., Krebbers, R., Jourdan, J., et al.: Iris from the ground up: a modular
foundation for higher-order concurrent separation logic. J. Funct. Program. 28,
e20 (2018)

21. Kahn, G.: Natural semantics. In: Brandenburg, F.J., Vidal-Naquet, G., Wirsing,
M. (eds.) STACS 1987. LNCS, vol. 247, pp. 22–39. Springer, Heidelberg (1987).
https://doi.org/10.1007/BFb0039592

22. Ke, W., Li, X., Liu, Z., Stolz, V.: rCOS: a formal model-driven engineering method
for component-based software. Front. Comput. Sci. China 6(1), 17–39 (2012)

23. Klein, G., Nipkow, T.: Jinja is not Java. Arch. Formal Proofs (2005)
24. McCarthy, J.: Towards a mathematical science of computation. In: Proceedings of

the 2nd IFIP Congress on Information Processing, pp. 21–28 (1962)
25. Moore, B., Peña, L., Rosu, G.: Program verification by coinduction. In: Ahmed, A.

(ed.) ESOP 2018. LNCS, vol. 10801, pp. 589–618. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-89884-1 21

26. Moore, J.S.: Inductive assertions and operational semantics. In: Geist, D., Tronci,
E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 289–303. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-39724-3 27

27. Nielson, H.R., Nielson, F.: Semantics with Applications: An Appetizer. Undergrad-
uate Topics in Computer Science, Springer, Heidelberg (2007). https://doi.org/10.
1007/978-1-84628-692-6

28. Nipkow, T., von Oheimb, D.: Javalight is type-safe - definitely. In: Proceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pp. 161–170 (1998)

29. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus. Formal
Aspects Comput. 21(1–2), 3–32 (2009)

https://doi.org/10.1007/978-3-642-21437-0_20
https://doi.org/10.1007/978-3-642-21437-0_20
https://doi.org/10.1007/978-3-319-70278-0_33
https://doi.org/10.1007/BFb0039592
https://doi.org/10.1007/978-3-319-89884-1_21
https://doi.org/10.1007/978-3-319-89884-1_21
https://doi.org/10.1007/978-3-540-39724-3_27
https://doi.org/10.1007/978-1-84628-692-6
https://doi.org/10.1007/978-1-84628-692-6

80 X. Li et al.

30. Pierce, B.C.: The science of deep specification (keynote). In: Visser, E. (ed.)
Companion Proceedings of the 2016 ACM SIGPLAN International Conference
on Systems, Programming, Languages and Applications: Software for Humanity
(SPLASH), p. 1 (2016)

31. Plotkin, G.D.: A structural approach to operational semantics. Lecture notes,
DAIMI FN-19 (1981)

32. Qin, S., Dong, J.S., Chin, W.-N.: A semantic foundation for TCOZ in unifying
theories of programming. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003.
LNCS, vol. 2805, pp. 321–340. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45236-2 19

33. Reynolds, J.C.: Theories of Programming Languages. Cambridge University Press,
Cambridge (1998)

34. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceeding of 17th IEEE Symposium on Logic in Computer Science (LICS), pp.
55–74 (2002)

35. Schmidt, D.A.: Natural-semantics-based abstract interpretation (preliminary ver-
sion). In: Mycroft, A. (ed.) SAS 1995. LNCS, vol. 983, pp. 1–18. Springer, Heidel-
berg (1995). https://doi.org/10.1007/3-540-60360-3 28

36. Sergey, I., Nagaraj, V., Johannsen, J., et al.: Safer smart contract programming
with Scilla. Proc. ACM Program. Lang. 3(OOPSLA), 185:1–185:30 (2019)

37. Sewell, T.A.L., Myreen, M.O., Klein, G.: Translation validation for a verified OS
kernel. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pp. 471–482 (2013)

38. Sheng, F., Zhu, H., He, J., et al.: Theoretical and practical approaches to the
denotational semantics for MDESL based on UTP. Formal Aspects Comput. 32(2–
3), 275–314 (2020)

39. Sozeau, M., Anand, A., Boulier, S., et al.: The MetaCoq project. J. Autom. Reason.
64(5), 947–999 (2020)

40. Stefanescu, A., Park, D., Yuwen, S., et al.: Semantics-based program verifiers for all
languages. In: 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pp. 74–91 (2016)

41. Wood, G.: Ethereum: a secure decentralised generlised transaction ledger. https://
gavwood.com/paper.pdf

42. Yang, Z., Lei, H.: Lolisa: formal syntax and semantics for a subset of the Solidity
programming language. CoRR, abs/1803.09885 (2018)

https://doi.org/10.1007/978-3-540-45236-2_19
https://doi.org/10.1007/978-3-540-45236-2_19
https://doi.org/10.1007/3-540-60360-3_28
https://gavwood.com/paper.pdf
https://gavwood.com/paper.pdf

	Reasoning About Iteration and Recursion Uniformly Based on Big-Step Semantics
	1 Introduction
	2 The Technique
	2.1 Specifications
	2.2 Semantic Derivation and Correctness
	2.3 Specification-Aware Inference and Verification
	2.4 Soundness

	3 Illustrative Example
	3.1 Big-Step Semantics of the While Language
	3.2 Factorial Program and Its Specification
	3.3 Proof of the Factorial Program
	3.4 Comparison with Hoare-Style Program Verification

	4 Verification of Iterative and Recursive Programs
	4.1 Extended While Language and Array-Merging Program
	4.2 Eager Functional Language and List-Merging Program

	5 On Completeness of the Technique
	6 Related Work
	7 Future Directions
	8 Conclusion
	References

