
Shengchao Qin
Jim Woodcock
Wenhui Zhang (Eds.)

LN
CS

 1
30

71 Dependable
Software Engineering
Theories, Tools, and Applications

7th International Symposium, SETTA 2021
Beijing, China, November 25–27, 2021
Proceedings

Lecture Notes in Computer Science 13071

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Shengchao Qin • Jim Woodcock •

Wenhui Zhang (Eds.)

Dependable
Software Engineering
Theories, Tools, and Applications

7th International Symposium, SETTA 2021
Beijing, China, November 25–27, 2021
Proceedings

123

Editors
Shengchao Qin
Teesside University
Middlesbrough, UK

Jim Woodcock
University of York
York, UK

Wenhui Zhang
Institute of Software, Chinese Academy
of Sciences
Beijing, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-91264-2 ISBN 978-3-030-91265-9 (eBook)
https://doi.org/10.1007/978-3-030-91265-9

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-3028-8191
https://orcid.org/0000-0001-7955-2702
https://orcid.org/0000-0002-9621-5772
https://doi.org/10.1007/978-3-030-91265-9

Preface

This volume contains the papers presented at SETTA 2021: the 7th International
Symposium on Dependable Software Engineering Theories, Tools and Applications
held during November 25–27, 2021 in Beijing.

The purpose of SETTA is to bring international researchers together to exchange
research results and ideas on bridging the gap between formal methods and software
engineering. The interaction with the Chinese computer science and software engi-
neering community is a central focus point. The aim is to show research interests and
results from different groups so as to initiate interest-driven research collaboration.
Past SETTA symposiums were successfully held in Nanjing (2015), Beijing (2016),
Changsha (2017), Beijing (2018), Shanghai (2019), and Guangzhou (2020).

SETTA 2021 included a main track and a journal first track. Its main track attracted
39 submissions co-authored by researchers from 12 countries. Each submission was
reviewed by at least 3 Program Committee members with help from additional
reviewers. The Program Committee discussed the submissions online and 16 papers
were finally accepted for presentation at the conference. The journal first track of
SETTA 2021 was organized in partnership with the Journal of Computer Science and
Technology. It attracted 14 eligible submissions. Those accepted by the journal fol-
lowing a standard review process were expected to be presented as part of the SETTA
2021 conference program. The program also included three keynote speeches given by
Joost-Pieter Katoen from RWTH Aachen University, Frits Vaandrager from Radboud
University, and Charles Zhang from the Hong Kong University of Science and
Technology.

SETTA 2021 was sponsored and organized by the Institute of Software, Chinese
Academy of Sciences. We are grateful to the local organizing committee for their hard
work in making SETTA 2021 a successful event. Our warmest thanks go to the authors
for submitting their papers to the conference. We thank the members of the steering
committee for their support in organizing this event. We thank all the members of
Program Committee for completing reviews on time, and being active in discussions
during the review process. We also thank the additional reviewers for their effort that
helped the Program Committee to decide which submissions to accept. Special thanks
go to our invited speakers for presenting their research at the conference. Finally, we
thank the conference general chair, Chen Zhao, the publicity chair, Fu Song, and the
local organization chair, Zhilin Wu.

October 2021 Shengchao Qin
Jim Woodcock
Wenhui Zhang

Organization

Program Committee

Yamine Ait Ameur IRIT/INPT-ENSEEIHT, France
Richard Banach The University of Manchester, UK
Lei Bu Nanjing University, China
Milan Ceska Faculty of Information Technology, Brno University

of Technology, Czech Republic
Sudipta Chattopadhyay Singapore University of Technology and Design,

Singapore
Liqian Chen National University of Defense Technology, China
Yu-Fang Chen Academia Sinica, Taiwan, China
Alessandro Cimatti Fondazione Bruno Kessler, Italy
Florin Craciun Babes-Bolyai University, Rome
Yuxin Deng East China Normal University, China
Wei Dong National University of Defense Technology, China
Hongfei Fu Shanghai Jiao Tong University, China
Jan Friso Groote Eindhoven University of Technology, The Netherlands
Nan Guan City University of Hong Kong, China
Dimitar Guelev Bulgarian Academy of Sciences, Bulgaria
Thai Son Hoang University of Southampton, UK
Chao Huang University of Liverpool, UK
Yu Jiang Tsinghua University, China
Sebastian Junges University of California, Berkeley, USA
Guoqiang Li Shanghai Jiao Tong University, China
Yi Li Nanyang Technological University, Singapore
Yang Liu Nanyang Technological University, Singapore
Zhiming Liu Southwest University, China
Tiziana Margaria Lero, Ireland
Dominique Mery Université de Lorraine, LORIA, France
Stefan Mitsch Carnegie Mellon University, USA
Jun Pang University of Luxembourg, Luxembourg
Dave Parker University of Birmingham, UK
Yu Pei The Hong Kong Polytechnic University, China
Shengchao Qin (Co-chair) Teesside University, UK
Mickael Randour F.R.S.-FNRS/Université de Mons, Belgium
Stefan Schupp TU Wien, Austria
Zhiping Shi Capital Normal University, China
Fu Song School of Information Science and Technology,

Shanghai Tech University, China
Jeremy Sproston University of Turin, Italy

Ting Su East China Normal University, China
Jun Sun Singapore Management University, Singapore
Meng Sun Peking University, China
Andrea Turrini Institute of Software, Chinese Academy of Sciences,

China
Tarmo Uustalu Reykjavik University, Iceland
Jaco van de Pol Aarhus University, Danmark
Jim Woodcock (Co-chair) University of York, UK
Xiaofei Xie Kyushu University, Japan
Zhiwu Xu Shenzhen University, China
Bai Xue Institute of Software, Chinese Academy of Sciences,

China
Chenyi Zhang Jinan University, China
Wenhui Zhang (Co-chair) Institute of Software, Chinese Academy of Sciences,

China

Additional Reviewers

Bouwman, Mark
Chen, Zhe
Cheng, Zheng
Cui, Zhanqi
Dupont, Guillaume
Li, Ming
Li, Renjue
Liu, Bo
Luan, Xiaokun
Maarand, Hendrik
Martens, Jan
Shi, Hao
Tsai, Wei-Lun

van Spaendonck, Flip
Vandenhove, Pierre
Wang, Jiawan
Wang, Rui
Wu, Hongjun
Wu, Xiuheng
Yang, Dong
Zhan, Bohua
Zhang, Qianying
Zhao, Ying
Zheng, Wei
Zhu, Xue-Yang
Zhuo, Zhang

viii Organization

Abstracts of Keynote Speeches

Mechanically Finding the Right Probabilities
in Markov Models

Joost-Pieter Katoen

Modelling and Verification of Software Group, RWTH Aachen University,
Aachen, Germany

Markov chains are central in performance and dependability analysis, whereas Mark-ov
decision processes are key in stochastic decision making and planning in AI. A stan-
dard assumption in these models is that all probabilities are precisely known a priori. In
many cases, this assumption is too severe. System quantities such as component fault
rates, molecule reaction rates, packet loss ratios, etc. are often not, or at best partially,
known.

This talk surveys the analysis of parametric Markov models whose transitions are
labelled with functions over a finite set of parameters. These models are symbolic
representations of uncountably many concrete probabilistic models, each obtained by
instantiating the parameters. We consider various analysis problems for a given logical
specification u: do all parameter instantiations within a given region of parameter
values satisfy u?, which instantiations satisfy u and which ones do not?, and how can
all such instantiations be characterised, either exactly or approximately?

We address theoretical complexity results and describe the main ideas underlying
state-of-the-art algorithms that established an impressive leap over the last decade
enabling the fully automated analysis of models with millions of states and thousands
of parameters. Examples from distributed computing, satellites and AI illustrate the
applicability of these parameter synthesis techniques.

A New Approach for Active Automata
Learning Based on Apartness

Frits W. Vaandrager

Institute for Computing and Information Sciences, Radboud University,
Netherlands

We present L#, a new and simple approach to active automata learning. Instead of
focusing on equivalence of observations, like the L� algorithm and its descendants, L#

takes a different perspective: it tries to establish apartness, a constructive form of
inequality. L# does not require auxiliary notions such as observation tables or dis-
crimination trees, but operates directly on tree-shaped automata. L# has the same
asymptotic query and symbol complexities as the best existing learning algorithms, but
we show that adaptive distinguishing sequences can be naturally integrated to boost the
performance of L# in practice. Experiments with a prototype implementation, written
in Rust, suggest that L# outperforms existing algorithms.1

1 (Based on joint work with Bharat Garhewal, Jurriaan Rot & Thorsten Wissmann)

Enterprise-Scale Static Analysis: A Pinpoint
Experience

Charles Zhang

Department of Computer Science and Engineering, HKUST, Hong Kong

Despite years of research and practice, modern static analysis techniques still cannot
detect oldest and extremely well understood software bugs such as the Heartbleed, one
of the most spectacular security flaws of the recent decade. A remedy, as what we have
attempted through the successful commercialization of the Pinpoint platform (PLDI
s18), is to make static program analysis aware of the basic characteristics of the modern
enterprise-scale software system. The talk focuses on discussing these characteristics
and how Pinpoint addresses them pragmatically as well as its future directions. Pin-
point is a LLVM-based cross-language static analysis platform and deployed in major
Chinese tech companies such as Tencent, Baidu, Huawei, and Alibaba.

Contents

Systems Development

Translating a Large Subset of Stateflow to Hybrid CSP with Code
Optimization. 3

Panhua Guo, Bohua Zhan, Xiong Xu, Shuling Wang, and Wenhui Sun

DeepGlobal: A Global Robustness Verifiable FNN Framework. 22
Weidi Sun, Yuteng Lu, Xiyue Zhang, and Meng Sun

Leveraging Event-B Theories for Handling Domain Knowledge
in Design Models . 40

Ismail Mendil, Yamine Aït-Ameur, Neeraj Kumar Singh,
Dominique Méry, and Philippe Palanque

Program Analysis and Verifiation

Reasoning About Iteration and Recursion Uniformly Based on Big-Step
Semantics. 61

Ximeng Li, Qianying Zhang, Guohui Wang, Zhiping Shi, and Yong Guan

Trace Semantics and Algebraic Laws for MCA ARMv8 Architecture
Based on UTP . 81

Lili Xiao and Huibiao Zhu

Formal Analysis of 5G AKMA. 102
Tengshun Yang, Shuling Wang, Bohua Zhan, Naijun Zhan, Jinghui Li,
Shuangqing Xiang, Zhan Xiang, and Bifei Mao

Verifying the Correctness of Distributed Systems
via Mergeable Parallelism . 122

Teng Long, Xingtao Ren, Qing Wang, and Chao Wang

Testing and Fault Detection

Mutation Testing of Reinforcement Learning Systems 143
Yuteng Lu, Weidi Sun, and Meng Sun

AIdetectorX: A Vulnerability Detector Based on TCN and Self-attention
Mechanism. 161

Jinfu Chen, Bo Liu, Saihua Cai, Weijia Wang, and Shengran Wang

MC/DC Test Cases Generation Based on BDDs . 178
Faustin Ahishakiye, José Ignacio Requeno Jarabo,
Lars Michael Kristensen, and Volker Stolz

Software Quality

Predicting and Monitoring Bug-Proneness at the Feature Level 201
Shaozhi Wei, Ran Mo, Pu Xiong, Siyuan Zhang, Yang Zhao,
and Zengyang Li

CSFL: Fault Localization on Real Software Bugs Based on the
Combination of Context and Spectrum. 219

Yue Yan, Shujuan Jiang, Shenggang Zhang, and Ying Huang

A Distributed Simplex Architecture for Multi-agent Systems 239
Usama Mehmood, Scott D. Stoller, Radu Grosu, Shouvik Roy,
Amol Damare, and Scott A. Smolka

Satisfiability, Reachability and Model Checking

OURS: Over- and Under-Approximating Reachable Sets for Analytic
Time-Invariant Differential Equations. 261

Ruiqi Hu, Meilun Li, and Zhikun She

ESAMPLER: Efficient Sampling of Satisfying Assignments
for Boolean Formulas . 279

Yongjie Xu, Fu Song, and Taolue Chen

API Usage Pattern Search Based on Model Checking 299
Xue-er Ding, Jun Niu, and Jia Wang

Author Index . 321

xvi Contents

Systems Development

Translating a Large Subset of Stateflow
to Hybrid CSP with Code Optimization

Panhua Guo1, Bohua Zhan2,3(B), Xiong Xu2,3, Shuling Wang2,3,
and Wenhui Sun1

1 Beijing Jiaotong University, Beijing, China
{phguo1,whsun1}@bjtu.edu.cn

2 SKLCS, Institute of Software, Chinese Academy of Sciences, Beijing, China
{bzhan,xux,wangsl}@ios.ac.cn

3 University of Chinese Academy of Sciences, Beijing, China

Abstract. Stateflow is a graphical language for modeling hierarchical
transition systems, well-known for the complexity of its semantics, which
is only informally explained in its user manual. Formal analysis and
verification of Stateflow models usually proceed by first translating a
subset of Stateflow to a formal language with precise semantics. Most
existing work address only “safe” subset of Stateflow and ignore the most
complex semantic issues. Moreover, it is difficult to balance simplicity of
the translation algorithm with conciseness of the resulting model. In this
paper, we describe a two-stage process for translating a large subset of
Stateflow to Hybrid CSP, where the first stage is mostly syntax-directed
and addresses each feature of Stateflow separately, and the second stage
is a code optimization step that simplifies the resulting model using
information from static analysis. We thoroughly validate the translation
process using a hand-designed set of benchmarks, as well as larger case
studies from existing work.

1 Introduction

Model-based design (MBD) is a software engineering practice for building com-
plex systems. Instead of implementing the system directly, one first builds an
abstract model of the system. The model is then subjected to simulation and
analysis. Afterwards the concrete system may be produced by code generation
from the model. This approach helps engineers catch design-errors early, avoid-
ing costly changes later in the project as result of mistakes in design that are
discovered only during testing.

Simulink/Stateflow is a modeling tool developed by MathWorks, considered
as a de-facto industry standard for model-based design of embedded systems.
Simulink [16] is well-suited for modeling dynamical systems and control laws.
Stateflow [17] is a toolbox in Simulink for modeling hierarchical transition sys-
tems. Stateflow is well-known for the complexity of its semantics. Recent versions
of its user manual run over 1400 pages, which still cannot cover its semantics with
full precision. The semantics is ultimately defined by the behavior of simulation
within Matlab/Simulink.
c© Springer Nature Switzerland AG 2021
S. Qin et al. (Eds.): SETTA 2021, LNCS 13071, pp. 3–21, 2021.
https://doi.org/10.1007/978-3-030-91265-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91265-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-91265-9_1

4 P. Guo et al.

For formal analysis of Stateflow, through either model checking or theorem
proving, it is necessary to obtain a formal description of Stateflow models, at
least for the subset of Stateflow intended to be handled. The formal semantics
is often associated with a translation procedure to a formal language. There
have been many works studying the semantics of Stateflow and its translation
to various formal languages. All these work necessarily concerns only a subset of
Stateflow. Moreover, the translation procedures are usually quite involved, and
it is difficult to balance the simplicity of translation algorithm with conciseness
of the resulting model.

In this work, we address the above challenge by proposing a method of trans-
lation that consists of two stages. The first stage is mostly syntax-directed, con-
sidering each feature of Stateflow separately. The second stage performs whole-
program code optimization on the resulting model using information from static
analysis. We necessarily still consider a subset of features in Stateflow, but the
subset is larger compared to existing work. The translation procedure is both
relatively easy to understand as well as yielding concise results.

For the formal language, we choose Hybrid CSP (HCSP) [13,25]. The lan-
guage has the advantage of having all the necessary features for modeling syn-
chronous and asynchronous hybrid systems, in particular those expressed using
Simulink/Stateflow. In addition to the usual program constructs, HCSP con-
tains constructs for communication, evolution by ODEs, internal and external
choice, and interrupt of ODEs by communications. A Hoare logic has been
defined for verifying HCSP programs using theorem proving [15,21]. Existing
work (which the current work is based on) defined translation of a limited sub-
set of Simulink/Stateflow to HCSP along with verification of the resulting mod-
els [26,27]. This has been applied to the verification of controlled descent of a
lunar lander [24], and part of the Chinese Train Control System [1]. However,
the translation algorithm is quite complicated, involving a large number of extra
communications. For translation to HCSP, it is especially important that the
resulting model is concise and easy to understand, as the main verification tool
is theorem proving, which requires the human user to understand details of the
model and why it is correct.

After defining and implementing the translation algorithm, we validate the
translation process using a large number of benchmark examples. Each example
is hand-designed, and intended to illustrate some aspect of the Stateflow seman-
tics. In full, we constructed a benchmark set consisting of 100 examples, covering
a wide range of semantic issues. We also evaluate the translation using larger
case studies from existing work.

In summary, the contributions of this paper are as follows:

1. We propose a two-stage translation procedure from a large subset of State-
flow to Hybrid CSP, that is both relatively simple to understand, as well as
producing concise results.

2. As part of the process, we describe code optimization of Hybrid CSP programs
based on information from static analysis.

Translating a Large Subset of Stateflow to Hybrid CSP 5

3. We introduce a large set of benchmark examples which serve to clarify various
aspects of Stateflow semantics, that can be used to validate this as well as
other translation procedures from Stateflow.

The remainder of this paper is organized as follows. Section 2 reviews Hybrid
CSP, including some small language extensions that are used in this paper.
Section 3 explains the semantics for the subset of Stateflow that we consider,
with a focus on tricky semantical aspects and restrictions on models. In Sect. 4,
we describe the first stage of the translation, considering each semantic feature
in turn. Section 5 presents the second stage, using code optimization for Hybrid
CSP. We describe the validation of the translation procedure in Sect. 6, related
work in Sect. 7 and conclude in Sect. 8 with a discussion of future work.

2 Hybrid CSP

First, we briefly introduce the target of translation: Hybrid CSP (HCSP), includ-
ing some language extensions that are used in this paper. HCSP [13,25] is an
extension of CSP (Communicating Sequential Processes) [11] for modeling the
concurrent execution of multiple processes with synchronizing communication
between them. HCSP extends CSP by adding continuous evolution following an
ordinary differential equation, as well as the possibility to interrupt execution
with communication. A detailed explanation of HCSP can be found in [23].

Extensions to HCSP that are used in this paper are as follows.

– First, whereas the original HCSP allow only real numbers as values, we allow
values to also be strings, lists, and records (dictionary mapping from strings
to values). String values are used to give a more convenient representation
of state activity. Lists (which also appear in [26]) are used to represent the
stack of event broadcasts, as well as to emulate Matlab arrays and matrices.
Records are used to represent messages in Stateflow. Only real numbers can
be involved in continuous evolution following ODEs.

– Second, we allow explicit declaration of procedures. Procedures are already
allowed implicitly through recursions in the original HCSP. In this paper,
we permit declaring named procedures before the main process. To reduce
complexity, procedure arguments and return values are not allowed. Proce-
dure arguments can be emulated using stacks represented by lists, and return
values can be emulated by setting a special variable ret.

In summary, the syntax of HCSP is as follows:

lname :: = var | lname[e] | lname.field
P :: = skip | lname := e | ch?lname | ch!e | P ;Q | P � Q | P ∗ | if B then P1 else P2 |

�i∈I(ioi → Qi) | 〈ẋ = e&B〉 | 〈ẋ = e&B〉 � �i∈I(ioi → Qi) | @proc
proc :: = proc name = P
ps :: = (proc)∗P
S :: = ps | ps‖csps

Here lname are terms that can occur on the left side of assignments, including
variables, array indices, and fields. e are expressions, whose syntax we omit, but

6 P. Guo et al.

includes the usual arithmetic operators as well as operations on lists. HCSP com-
mands, in the order listed above, are skip, assignment, input, output, sequence,
internal choice, repetition, conditional, external choice, evolution by ODE, inter-
rupt, and procedure calls. Using these, we can define additional constructs such
as one-sided condition B → P and delay wait(e) [23]. Procedure definition proc
follow the syntax proc name = P , where P is a command. A sequential process
ps is given by a list of procedure definitions followed by the main command.
Finally, an HCSP program S is formed by parallel composition of sequential
processes.

3 A Brief Tour of Stateflow Semantics

In this section, we give an overview of the subset of Stateflow that we cover.
This is necessarily brief, as Stateflow is a very rich language. We will focus on
the particularly tricky aspects of the semantics, illustrated by examples. We will
also describe the restrictions we put on the model along with their justifications.
Most of these restrictions are also checked by Matlab, and will produce a warning
or error if violated.

3.1 States

The core of a Stateflow model is the hierarchy of states. Each state is either at
the top level or is contained in another state, and is one of two types: AND-state
or OR-state. States that are siblings (contained in the same parent state) must
have the same type. During the course of execution of the system, each state is
either active or inactive. If the children of a state are AND-states, then if the
state is active all its children are active. Otherwise, if the state is active, exactly
one of its children is active.

Each state specifies three actions: entry, during, and exit (abbreviated as en,
du, and ex). Entry action is executed when the state is entered. During action
is executed when the state remains active for one iteration (that is, no outgoing
transitions can be carried out). Exit action is executed when the state exits. We
will discuss this point more thoroughly in Sect. 3.4.

3.2 Transitions

Transitions are edges that go between states. Each transition specifies a label
of the form E[C]{ca}/{ta}, where E is an event, C is the condition (boolean
expression), ca is the condition action, and ta is the transition action. All four
components are optional. If event E is specified, then the transition can be
carried out only if E is present. Broadcast of events will be discussed in more
detail in Sect. 3.5. If condition C is specified, the transition can be carried out
only if C holds. After passing the checks for E and C, the condition action ca
is executed immediately. The transition action ta is executed at the end of the
transition (this will become more clear when we discuss junctions in Sect. 3.3).

Translating a Large Subset of Stateflow to Hybrid CSP 7

Transitions are further divided into outer transitions and inner transitions.
The distinction can be seen from the drawing of the Stateflow diagram: outer
transitions leave from the outer boundary of a state, whereas inner transitions
leave from the inner boundary of a state.

Transition edges can cross levels of the state hierarchy. These are called inter-
level transitions (or super-transitions). For any transition, we define the parent
of the transition as follows. For a transition from state s to state t, its parent
is the lowest common ancestor between s and t, with exactly one exception: if
the transition is an outer transition from state s to itself, then its parent is the
parent of s. Let a be the parent of a transition from s to t, carrying out the
transition exits all states between s and a, including s but not a, and enters all
states between a and t, including t but not a. We impose the restriction that
for an inter-level transition, all states along the path from s to a and from a
to t, but not including a, are OR-states. If this condition does not hold, exiting
the chain from s to a and entering the chain from a to t will require entry and
exit from siblings, which significantly complicates the semantics and can lead to
various ambiguities.

3.3 Junctions

Junctions can be considered as intermediate points in a multi-step transition.
Traversal through junctions proceed in a depth-first manner: at the initial state
and at each junction, the outgoing transitions are tried in order. The search
stops the first time another state is reached. During the traversal, condition
actions are executed, and their effects are not reverted even if search along the
corresponding path fails. The transition actions are executed in the order they
are encountered, after reaching a final state. More precisely, it happens between
exiting from the starting states and entering the final states.

Junctions can form loops. However, we impose the restriction that all tran-
sitions within a loop do not have transition actions. If this restriction is not
imposed, quite complex scenarios can be constructed which are difficult for code
generation (see Fig. 1).

Fig. 1. An example of an invalid junction loop. Simulink reports an error on this
example and would not permit simulation. The natural interpretation would be that
the junction loop will be traversed 5 times, each time outputting c and adding an output
of t to the transition action. Then the overall behavior is output c 5 times, followed
by output t 5 times. An unbounded number of transition actions can be accumulated
in the loop, which poses difficulty in model transformation and code generation.

8 P. Guo et al.

There can be inter-level transitions to a junction. Hence junctions do not
have to be located in the same parent state as the starting and ending states.
We observe that if a junction is located in another state, going through the
junction will not induce entry or exit of that state. This is illustrated in Fig. 2.

Fig. 2. This example shows going through a junction located in another state will not
induce entry or exit of that state. While the middle junction is located within state B,
carrying out the transition from A1 to C2 does not involve entering or exiting B.

3.4 State Lifecycle

We are now ready to describe the execution of a state, and its entry and exit
procedures. When a state is entered, first execute its en action. Then, recursively
enter its child states. If the child states are AND-states, all of them will be
entered in a pre-defined order. Otherwise, the default transition is entered. The
one exception is when the state has been entered previously and has a history
junction. In that case the child state that is active last time is entered again.

For executing a state in each iteration, first the outer transitions are
attempted in order. If one of the outer transitions can be carried out, execution
of the state finishes. Otherwise, the du action of the state is executed, followed
by attempting each of the inner transitions. If one of the inner transitions can
be carried out, execution of the state finishes here. Otherwise, the active child
states are executed in order.

To exit from a state, first exit from the active child states. If the child states
are AND-states, the order of exit is in reverse to that of entry. Then perform
the ex action of the state, and finally set the state to be inactive.

3.5 Events and Temporal Events

Events may be raised in the condition and transition actions when carrying
out a transition. The key to understanding events is that raising an event causes
immediate execution of its target: the entire Stateflow chart for broadcast events,
and the target state in the chart for directed events. Hence, raising events can
result in recursive calls of arbitrary depth, and changes to status of states in the
chart. Infinite recursion can occur if one is not careful, especially for broadcast
events. For this reason, it is usually advised to use directed events to a small part
of a chart. However, we consider the semantics of both broadcast and directed
events in full in this paper.

Temporal events are used to specify that a transition can be carried out a
certain number of ticks or seconds after entering into a state. If the condition is
specified by the number of ticks, it is called implicit events. If the condition is
specified by the number of seconds, it is called absolute time events.

Translating a Large Subset of Stateflow to Hybrid CSP 9

3.6 Early Return

Early return is one of the most complicated semantic feature of Stateflow. It
concerns the possibility that event handling during the execution of an action
can modify the context of execution, so that it no longer makes sense to carry
out the remainder of the action. Most of the time, explanation of early return is
associated with condition actions, as illustrated in Fig. 3.

Fig. 3. Simple example of early return. In this example, when the transition from A1
to A2 occurs, event E is broadcast, which results in a transition from A to B. So when
broadcasting E returns, the state A1 is no longer active, and it no longer makes sense
to continue the transition to A2.

However, early return can happen in other contexts as well, and interacts
with the traversal through junctions. The full list of scenarios is given in the
Stateflow user manual [17], but appears to not be covered in existing research
studying translation of Stateflow. We handle all of the following cases:

– Entry, during and exit actions: early return occurs when the state is no longer
active.

– Condition action: early return occurs when the original source state is no
longer active.

– Transition action: early return occurs when either the parent of the transition
is no longer active, or when the parent already has an active child (since
transition actions occur after the source state of the transition has exited, its
parent should have no active child at the time).

In summary, early return from an action occurs after handling an event, if
the context for executing the action is no longer present. It should be noted that
early return cares only whether a state is active at the end of handling an event,
not whether it is left in the middle. This is illustrated in Fig. 4.

3.7 Data and Messages

A Simulink model can contain multiple Stateflow charts, and data can be trans-
mitted between charts using either input/output ports, data store memory, or
messages. Each chart specify its input/output ports, and lines are drawn from
output of one chart to input of another chart to specify data channels. Data
store memory represents global data that can be accessed by all charts.

Messages is another feature of Stateflow that is rarely covered in existing
work on translation. Similar to data and events, messages can be used to trans-
mit information between charts or within a chart. However, the semantics of

10 P. Guo et al.

Fig. 4. Lack of early return when source state is left in the middle. In this example,
the event broadcast of E leads to exit and re-entry of state A and A1. When it returns,
A1 is still active, so the remainder of the condition action and the transition action
will be carried out.

messages is different from that of both data and events. Messages are kept in
queues. When a transition specifies the name of a message in its event, one mes-
sage is consumed from the queue. This message will be active until the end of
iteration, so other transitions specifying the same type of message will not con-
sume another message from the queue. Data in the message can then be referred
to in conditions, either in the same transition or in another transition. The same
data will be used in future iterations, as long as it is not covered by consuming
another message of the same type.

3.8 Functions and Graphical Functions

Any condition or action in a Stateflow chart can invoke functions defined in
Matlab or within the chart. It is possible to include regular Matlab functions
inside Stateflow charts. It is also possible to define functions using a transition
system consisting of junctions, called graphical functions.

We consider translation of graphical functions as well as a limited language of
Matlab functions. We aim at supporting the most-often used features in Matlab,
including assignments, conditionals, arrays, and some basic functions (such as
min and max). The behavior of graphical functions is similar to that of ordinary
junctions, as described in Sect. 3.3.

3.9 Continuous Evolution

Stateflow can also be used to specify continuous evolution, independent from the
use of Simulink blocks outside the chart. This is done by adding assignments of
the form x dot = e to the during action of states, indicating that the derivative
of x is e. Arbitrary combination of differential equations with other features of
Stateflow can easily lead to semantic problems, so a large number of restrictions
on the use of continuous evolution are imposed by Matlab. For example, evalua-
tion of e should be free of side-effects, as is evaluation of conditions in transitions
out of a state. Moreover, there should not be condition actions in a transition
that does not immediately lead to another state. Violating any of these rules
can cause actions with side effects to be executed arbitrary number of times. We
impose the same restrictions in our work, but cover the most frequently used
cases in our translation.

Translating a Large Subset of Stateflow to Hybrid CSP 11

4 Translation from Stateflow

In this section, we describe the method of translation from Stateflow to HCSP.
Each Stateflow chart is translated into a single HCSP process. Sharing of data
between charts, including the use of input/output ports, data store memory, and
messages, are translated to communications in HCSP. For each chart, we produce
two main procedures: initialization init Chart and iteration exec Chart. So the
overall process for each chart is @init Chart; (@exec Chart)*. For charts with
differential equations, ODE commands with boundary are used in @exec Chart,
and the time length of each iteration is not fixed. Otherwise, each @exec Chart
contains a wait command indicating waiting for a duration equal to the sample
time of the chart.

Due to space constraints, we cannot cover all aspects of the translation in
detail. Instead, we will discuss the key aspects, in order to illustrate the general
approach.

4.1 Variables

Each variable that appears in the Stateflow chart will be translated to variables
of the same name in the HCSP program. There are further control variables in
the HCSP program serving various functions. These are summarized in Table 1.
We use 〈name〉 to denote the name of the state currently referred to.

Table 1. Description of control variables

Role Name Range Description

Activity 〈name〉 st States with OR-state
children

Empty string indicates no
active child, otherwise
name of the active child

Event stack EL Global Stack of broadcast and
directed events

Input queue IQU Global Queue for input messages

Local queue LQU Global Queue for local messages

History variable 〈name〉 hist States with history
junction

Empty string indicates
never entered before,
otherwise name of the last
entered child state

Tick counter 〈name〉 tick States with implicit
event

−1 if state is not active,
otherwise number of ticks
since last entry

Time counter 〈name〉 time States with absolute
time event

−1 if state is not active,
otherwise number of
seconds since last entry

Return value ret Global Return value for procedures

12 P. Guo et al.

The global variables include EL for the event stack, and IQU and LQU for queue
of input and local messages. ret is used for return value from procedures.

For representing activity of states in the Stateflow diagram, we opt for a
different approach than what is usual in the past. Instead of using one boolean
variable for each state to represent whether it is active, we use one variable
〈name〉 st of type string for each state that has OR-states as children. The
string is empty if none of the child states is active. Otherwise, it is set to the
name of the child state that is active. Using this approach, we reduce both the
number of variables used and the number of assignments necessary for transition
between states.

Several variables are used for states with additional features: 〈name〉 hist for
states with history junctions, 〈name〉 tick for states with an outgoing transition
guarded by an implicit event, and 〈name〉 time for states with an outgoing
transition guarded by an absolute time event.

4.2 States

For each state, we create three procedures entry 〈name〉, during 〈name〉 and
exit 〈name〉 corresponding to entry, during, and exit of the state. The content of
these procedures are described below. They reflect the state lifecycle in Sect. 3.4,
along with additional bookkeeping for history junctions and temporal events.

Entry. The following actions are performed in order for entering into a state.
1. If the current state is an OR-state, set the activity variable of the parent
state. 2. If the parent state has history junction, set the history variable of
the parent state. 3. If the state has implicit (resp. absolute time event) on an
outgoing transition, reset the tick counter (resp. time counter) of the state to
0. 4. Perform the en action of the state. 5. Enter into child states by calling
corresponding entry procedures. If the child states are AND-states, enter each
child state in sequence. Otherwise, enter according to history variable (if present)
or by taking the default transition.

During. The following actions are performed for execution on a state. 1. Initialize
a variable 〈name〉 done to zero. 2. As long as 〈name〉 done is zero, perform each
of the outgoing transitions by calling the procedure given in Sect. 4.3, assigning
〈name〉 done to the return value of the call. 3. If 〈name〉 done is zero, perform
the during action of the state. 4. As long as 〈name〉 done is zero, perform each
of the inner transitions of the state. 5. If 〈name〉 done is still zero, recursively
call the during procedure of active child states.

Exit. The following actions are performed for exiting from a state. 1. Perform
the ex action of the state. 2. If there are implicit (resp. absolute time events),
reset the tick counter (resp. time counter) of the state to −1. 3. Exit from child
states by calling appropriate exit procedures. 4. Set the activity variable of the
parent state to the empty string.

Translating a Large Subset of Stateflow to Hybrid CSP 13

Example. We give an example illustrating the order of steps. Suppose a state A
has entry action x = 1 and exit action x = 0, and two child AND-states A1 and
A2. It also has implicit events. Then the entry procedure is:

Chart_st := "A"; A_tick := 0; x := 1; @entry_A1; @entry_A2

and the exit procedure is:

@exit_A2; @exit_A1; x := 0; A_tick := -1; Chart_st := ""

4.3 Transitions and Junctions

We now consider the translation for transitions, junctions, and early return. As
discussed in Sect. 3, traversal through junctions follows a depth-first-search: at
the starting state and each intermediate junction, test each of the transitions in
order and with backtracking, stopping when another state is reached. From this
point of view, it is natural to assign a procedure for each junction. However, there
are further complications: during the traversal, the ensuing behavior is influenced
by the state we started from, as well as the list of accumulated transition actions.
This difficulty is addressed in [6] using the concept of continuations. We follow
similar ideas in our work.

We maintain a dictionary whose keys are triples consisting of the current
junction, starting state, and list of accumulated transition actions, and values
are names of corresponding HCSP procedures. During the translation process,
whenever a new combination of junction, starting state, transition actions is
encountered, a new entry is created in the dictionary with a fresh procedure
name, and the corresponding procedure is generated. Note that this works only
if there are no junction loops that contain transition actions (so the example in
Fig. 1 must be excluded).

The content of the junction procedures are as follows: 1. If an ending state is
reached, carry out the transition by first exiting from the source states, execute
the transition actions with detection of early return, and finally entering the
target states. 2. Otherwise, initialize a variable 〈name〉 done to zero. 3. As long
as 〈name〉 done is zero, perform each of the outgoing transitions, with detection
of early return on the condition action. New procedures are created for the
situation after transition if necessary. Then assign 〈name〉 done to the return
value of the call. 4. Set return value ret to the value of 〈name〉 done at the
end.

4.4 Events

Raising events are performed by first pushing the name of the event onto the
stack EL, call the procedure for executing either the full chart or the state the
event is directed to, and finally popping the stack EL. Care need to be taken to
test for early return conditions.

For example, suppose the chart consists of simple OR-states A and B, with a
transition from A to B having label {E;x = 1}/{y = 1}. This will be translated
to the following HCSP code:

14 P. Guo et al.

EL := push(EL,"E"); @during_Chart; EL := pop(EL);
Chart_st == "A" -> x := 1; @exit_A; y := 1; @entry_B

4.5 Order of Execution of Charts

When there are multiple Stateflow charts in the model, a subtle question arises
as to the order of execution between these charts. Different orders of execution
can result in different behavior due to sharing and transmission of data between
charts. We implement the following order of execution which works in all our
examples (although the “official” semantics remains to be clarified): if chart B
receives data or messages from chart A, then B is executed after A. Otherwise,
follow the alphabetical order according to the name of charts. The correct order
is ensured in the HCSP program using a control process, which sends starting
and ending signals to processes for each chart in the above order, using the
communication commands in HCSP.

4.6 Translation of Continuous Evolution

Specifying continuous evolution within during actions of states (Sect. 3.9) allows
one to model mix of discrete and continuous behaviors. Most works on formal
semantics and translation of Stateflow consider only its discrete aspects [6,7,19].
C2E2 [4,5] handles continuous evolution in Stateflow, but not its more complex
discrete features. In this work, we handle both aspects of Stateflow at the same
time, making use of the ODE with boundary construct in HCSP.

For each state with continuous evolution, we first collect all ODEs (specified
as du action of the state and its ancestors) as ẋ = e. Next, we collect all conditions
on transitions out of the state or its ancestors, and let B be the disjunction of all
these conditions. Then, at the end of iteration, we add a command stating that
if the state is active (and no descendent state containing ODEs is active), then
the continuous evolution 〈ẋ = e&B〉 is executed, so that evolution follows ẋ = e
until one of the outgoing transitions from the state can possibly be carried out.

5 Code Optimization

In this section, we present the code optimization process for HCSP. We perform
four kinds of code optimization: inlining of procedures, peephole optimization,
constant propagation, and dead code elimination. These are among the most
standard code optimization steps performed by compilers, and are presented,
for example, in [2,18] for ordinary programming languages. However, as far as
we know this is the first time the process is presented for HCSP.

5.1 Inlining of Procedures

During the translation process, we are free with the creation of procedures. For
example, three procedures are created for entry, during and exit of each state, and
one procedure is created for each possible combination of junction, initial state,

Translating a Large Subset of Stateflow to Hybrid CSP 15

and list of accumulated transition actions. This allows a simple description of the
translation, but makes the resulting code difficult to follow. This is addressed by
inlining, where calls to a procedure is replaced by its body. Not all procedures
can be inlined – the obstacle coming from recursive definitions that are results
of broadcast events and junction loops. For the remaining cases, heuristics are
needed to avoid blowing up the size of the code. For our purpose, we use the
heuristic that a procedure will be inlined if it does not have recursive calls, and
is either called at most once, or consists of at most two commands. Note as the
ensuing simplifications reduce the size of some procedures, more procedures can
be inlined following this rule.

5.2 Peephole Optimization

Peephole optimization concerns optimizations that can be performed locally,
without analyzing the context in which the code appears. In our case, we perform
the following peephole optimizations:

1. Remove appearances of skip within a sequence of commands.
2. Evaluate constant expressions (for example, 3 < 5 to true).
3. If the guard in a condition command is true (resp. false), remove the guard

(resp. the entire command).
4. Likewise, if the guard in an if-then-else command is constant true (resp.

false), take the if branch (resp. the else branch).

For example, the command

if 0 = 1 then x := x + 1 else skip; y := y + 1

is simplified to y := y + 1, using the above rules 2, 4, and 1 in sequence.
The use of peephole optimizations mean that we do not need to consider

special cases (such as transitions without condition action) to generate concise
code. Such cases (which results in a condition command with guard true) will
be simplified at this stage. Peephole optimization is also effective when combined
with the following two steps.

5.3 Constant Propagation

Constant propagation consists in replacing variables appearing in commands
with constants, when it can be shown that it is the only assignment to the vari-
able that can reach the command. For example, in the following code fragment,
which may result from translating a chart where the only child state of A is A1:

A st := "A1"; A st == "A1" -> P

Constant propagation will change the condition A st == "A1" into "A1" ==
"A1", which is then simplified to true, so the guard can be eliminated alto-
gether, resulting in simplified code A st := "A1"; P.

Implementation of constant propagation requires building the control flow
graph of an HCSP program, then computing the reaching definitions, which

16 P. Guo et al.

records for each atomic command and test in conditional statement, what are the
assignments that can potentially reach it. Such computations are standard [18].
In the context of HCSP, we need to be careful that in addition to regular assign-
ments, variables can also be modified by input communication, ODEs, external
choice and interrupt. We also assume that any variable may be assigned during
procedure calls (that is, no interprocedural analysis is implemented).

5.4 Dead Code Elimination

Dead code elimination concerns elimination of code whose execution will not have
any effect. In particular, this includes assignments to variables that will never be
read. In the previous example, after simplifying the program to A st := "A";
P, if there is no more reference to A st in the ensuing code (more precisely, before
another assignment to A st), then the assignment can be removed altogether,
simplifying the code to P.

Dead code elimination requires performing live variable analysis, which com-
putes for each position in the code, which variables are potentially read after
this position. Again, this is a standard computation by backward propagation
from locations where variables are read. Then, any assignment whose assigned
variable will certainly not be read can be removed. Note that unlike constant
propagation, we cannot remove input communications, ODEs and interrupts in
this way, as they have effect that is observable from outside the process.

6 Evaluation

We implemented the translation and code optimization procedure in Python,
as part of the Mars toolchain1. As input to the procedure, we use XML files
exported by Matlab/Simulink. This is a structured textual representation of
the graphical Stateflow model. The representation already includes information
about ordering between transitions from a state/junction, as well as ordering
of execution for AND-states. The implementation is based on the existing work
of [26], sharing the method of reading XML files, as well as the infrastructure
of building HCSP programs. However, the translation procedure is completely
redone, and the code optimization process is new.

6.1 Benchmarks

When designing translating procedures from a language as complex as State-
flow, it is important to validate the process by testing it on a large variety
of test cases, comparing the execution results in Stateflow with the result of
executing the translated HCSP program. For this purpose, we hand-designed a
set of benchmark examples, covering various aspects of the semantics that we
described in Sect. 3. The benchmarks are listed in Table 2. They are divided into

1 Source code and examples available at https://gitee.com/bhzhan/mars.

https://gitee.com/bhzhan/mars

Translating a Large Subset of Stateflow to Hybrid CSP 17

Table 2. Description of benchmark examples. Nraw is the average size of HCSP pro-
gram before code optimization. Nsimp is the average size after code optimization, with
ratio (Nraw − Nsimp)/Nraw in brackets.

Name #Tests Description Nraw Nsimp

States 8 Entry, during, exit action of states; order
of entry and exit for hierarchical states;
history junctions; OR-states and
AND-states; self loops

150 67 (55%)

Transitions 8 Inter-level transitions; outer and inner
transitions, ordering between transitions;
condition and transition actions

149 61 (59%)

Junctions 8 Branches and loops in junctions; effect of
location of junctions; backtracking;
condition and transition actions with
junctions

209 59 (72%)

EarlyReturn 20 Early return logic, including those for
entry and exit action, condition and
transition actions. Early return logic in
the presence of junctions

174 81 (53%)

Events 12 Broadcast and directed events; nested
events; implementing recursion using
events; combination of directed event
with early return

259 121 (53%)

Temporal 8 Implicit and absolute time events; waiting
for a random amount of time; after,
before, and at. Reset of counter by
transitions

111 68 (39%)

Messages 8 Sending and processing of messages:
expiration, queuing, and skipping of
messages

184 86 (53%)

Functions 10 Matlab functions and graphical functions:
functions with multiple inputs and
outputs; arrays; conditionals; graphical
functions with loops

114 47 (59%)

Data 12 Communication between charts; data
store memory; order of execution between
charts

180 94 (48%)

Continuous 6 Continuous evolution following ODEs;
combination with multiple outer
transitions and hierarchical states

158 92 (42%)

Total 100 173 80 (54%)

several groups, according to the aspect of semantics they are intended to test.
The table contains a detailed description of each group, showing the variety of
cases that are tested. Moreover, the table shows size of HCSP program generated
(in number of commands) before and after code optimization. Overall, we see
that code optimization is fairly effectively, reducing average code size by more
than half.

18 P. Guo et al.

We briefly describe the validation process. In the Stateflow examples, we
insert print commands that output messages to the console at certain steps,
as well as show values of variables. These are translated to log commands in
the HCSP program. By placing print commands at locations of interest and
observing the output on the two sides, we can compare the behavior of models
before and after translation, including fine details about the order of execution of
steps. This allows us to automatically validate the translation on all benchmark
examples.

6.2 Case Studies

In addition to the benchmarks, we also tested the translation on larger case
studies from existing work. This includes the stop watch example from [6,7]. A
more complex case study comes from [14], which models the Real-Time Publish
and Subscribe Protocol (RTPS) using Stateflow. The model contains many of
the advanced features described in Sect. 3, including junctions, directed events,
temporal events, functions and graphical functions, probabilistic choice, commu-
nication between charts, and so on. Several of these features are not supported in
the translation described in [26], so it cannot process this model. Using the trans-
lation procedure described in this paper, we are able to successfully translate the
model, and the result of simulation of the resulting HCSP program agrees with
that using Simulink (all messages are successfully sent after interaction between
the sender and receiver using heartbeats, acknacks, and resends).

7 Related Work

There is a long series of work on formal semantics, translation, and verification of
Stateflow and similar hierarchical modeling languages. The precursor to State-
flow is Statecharts, introduced by Harel in [8]. Formal semantics of Statecharts
is studied in detail in [9,12]. A version of the semantics, in terms of hierarchical
automata, is formalized by Helke et al. in Isabelle/HOL [10].

The semantics of Stateflow, however, is significantly different from that of
Statecharts. In particular, the former is deterministic while the latter is highly
nondeterministic. Tiwari et al. [20] presented a translation of Stateflow models to
communicating pushdown automata, using the stack to record event broadcasts.
Hamon and Rushby proposed an operational semantics for Stateflow in [7], and
Hamon followed it by introducing a denotational semantics [6]. The denotational
semantics is more complete, supporting inter-level transitions in full, as well as
directed events. It also makes key use of continuations to deal with transition
actions, and we follow a similar technique in Sect. 4.3.

Scaife et al. introduced a “safe” subset of Simulink/Stateflow and described
the translation of this subset into Lustre [19]. This definition of safe subset is
intended to correspond to common industrial guidelines, and avoids constructs
that could result in semantic ambiguities. Notably, it excludes unbounded event
broadcasting. In comparison, our work imposes fewer such limits, in particular
unbounded event broadcasting and certain loops in junctions are allowed. Chen

Translating a Large Subset of Stateflow to Hybrid CSP 19

et al. [3] proposed a translation from a larger subset of Stateflow into CSP#,
allowing verification using the PAT model checker. The work handles broadcast-
ing in full, history junctions, and temporal events. However, it does not consider
early return, nor is there any discussion of how functions, data exchange, and
messages are handled. Yang et al. [22] proposed a translation of Stateflow to
timed automata, covering features such as temporal events and interrupts. The
procedure is quite complex, translating a general state into four timed automata,
handling respectively the event stack, state actions, condition action, and tran-
sition action.

C2E2 [4,5] is a verification tool for hybrid systems, which takes as input
Stateflow models, and interprets the ODEs located in the during action of states.
However, the tool does not handle the more complex features of Stateflow.

The current work can be seen as an extension the work of Zou et al. [26,27],
which proposed translation of Simulink/Stateflow to HCSP, followed by verifi-
cation using hybrid Hoare logic. Compared to these work, we streamlined the
translation process by dividing it into two stages, and made several simplify-
ing changes, including the encoding of state activity and the treatment of event
broadcasts. These yields translated results that are easier to understand. In
addition, we cover more features of Stateflow, including complete treatment of
inter-level transitions and early return, as well as messages, functions, and con-
tinuous evolution.

8 Conclusion and Future Works

In this paper, we presented a procedure for translating Stateflow models to the
formal language Hybrid CSP. The procedure is distinguished by having two
stages. The first stage has a modular design, handling each feature of Stateflow
relatively independently. The second stage is a code optimization step for Hybrid
CSP, which simplifies some of the verbosity introduced in the first stage. The
result is a translation process that covers a large subset of Stateflow, but still
easy to understand, as well as yielding concise Hybrid CSP models.

Based on the current work, we intend to explore several future directions:

– First, much improvement can be made to the code optimization process, e.g.
by considering interprocedural analysis, to compute which variables may be
changed during a procedural call. This would allow us to perform further
simplifications by analyzing what could not change during event handling
or other procedure calls. Along similar lines, we will also consider allowing
parameters and return values for procedures, which could lead to more natural
translation results as well as more powerful optimizations.

– For some of the simpler examples, the translation result does not contain
arrays or procedure definitions. Hence they can be verified using hybrid Hoare
logic, although it still requires substantial effort to verify programs of mod-
erate length. For other examples, the result of translation contains newer
elements in Hybrid CSP, including records and procedure definitions, which

20 P. Guo et al.

is not supported in the current version of hybrid Hoare logic. In the future,
we intend to further reduce the effort of proofs using hybrid Hoare logic, as
well as extending it to handle the newer elements.

– While we have thoroughly validated the translation procedure using bench-
mark examples, it is still possible that errors remain in the description of the
procedure or its implementation. Much stronger confidence in the correctness
of translation can be obtained by formalizing the semantics of Stateflow in
a proof assistant such as Coq or Isabelle, and then verifying the correctness
of translation by proving that the behavior of the model before and after
translation always agree according to the semantics on the two sides.

Acknowledgement. This work was partially supported by the National Natural Sci-
ence Foundation of China under Grant Nos. 61972385, 62032024, and the Chinese
Academy of Sciences Pioneer 100 Talents Program under Grant No. Y9RC585036.

References

1. Ahmad, E., Dong, Y., Larson, B.R., Lü, J., Tang, T., Zhan, N.: Behavior modeling
and verification of movement authority scenario of Chinese train control system
using AADL. Sci. China Inf. Sci. 58(11), 1–20 (2015)

2. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and
Tools. Addison-Wesley Series in Computer Science. World Student Series Edition.
Addison-Wesley, Boston (1986)

3. Chen, C., Sun, J., Liu, Y., Dong, J.S., Zheng, M.: Formal modeling and validation
of stateflow diagrams. Int. J. Softw. Tools Technol. Transf. 14(6), 653–671 (2012)

4. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool
for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 68–82. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0 5

5. Fan, C., Qi, B., Mitra, S., Viswanathan, M., Duggirala, P.S.: Automatic reachabil-
ity analysis for nonlinear hybrid models with C2E2. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9779, pp. 531–538. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41528-4 29

6. Hamon, G.: A denotational semantics for stateflow. In: Proceedings of the 5th ACM
International Conference on Embedded Software EMSOFT 2005, Jersey City, NJ,
USA, 18–22 September 2005, pp. 164–172 (2005)

7. Hamon, G., Rushby, J.M.: An operational semantics for stateflow. Int. J. Softw.
Tools Technol. Transf. 9(5–6), 447–456 (2007)

8. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

9. Harel, D., Naamad, A.: The STATEMATE semantics of statecharts. ACM Trans.
Softw. Eng. Methodol. 5(4), 293–333 (1996)

10. Helke, S., Kammüller, F.: Formalizing statecharts using hierarchical automata.
Archive of Formal Proofs 2010 (2010)

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Hoboken
(1985)

12. Hooman, J., Ramesh, S., de Roever, W.P.: A compositional axiomatization of
statecharts. Theor. Comput. Sci. 101(2), 289–335 (1992)

https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.1007/978-3-319-41528-4_29
https://doi.org/10.1007/978-3-319-41528-4_29

Translating a Large Subset of Stateflow to Hybrid CSP 21

13. Jifeng, H.: From CSP to Hybrid Systems, pp. 171–189. Prentice Hall International
(UK) Ltd., Great Britain (1994)

14. Lin, Q., Wang, S., Zhan, B., Gu, B.: Modelling and verification of real-time pub-
lish and subscribe protocol using Uppaal and Simulink/Stateflow. J. Comput. Sci.
Technol. 35(6), 1324–1342 (2020)

15. Liu, J., et al.: A calculus for hybrid CSP. In: Ueda, K. (ed.) APLAS 2010. LNCS,
vol. 6461, pp. 1–15. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17164-2 1

16. MathWorks: SimulinkR© User’s Guide (2018). http://www.mathworks.com/help/
pdf doc/simulink/sl using.pdf

17. MathWorks: StateflowR© User’s Guide (2018). http://www.mathworks.com/help/
pdf doc/stateflow/sf ug.pdf

18. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-662-03811-6

19. Scaife, N., Sofronis, C., Caspi, P., Tripakis, S., Maraninchi, F.: Defining and trans-
lating a “safe” subset of Simulink/Stateflow into Lustre. In: Proceedings of the
Fourth ACM International Conference on Embedded Software, EMSOFT 2004,
Pisa, Italy, 27–29 September 2004, pp. 259–268 (2004)

20. Tiwari, A., Shankar, N., Rushby, J.M.: Invisible formal methods for embedded
control systems. Proc. IEEE 91(1), 29–39 (2003)

21. Wang, S., Zhan, N., Zou, L.: An improved HHL prover: an interactive theorem
prover for hybrid systems. In: Butler, M., Conchon, S., Zäıdi, F. (eds.) ICFEM
2015. LNCS, vol. 9407, pp. 382–399. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-25423-4 25

22. Yang, Y., Jiang, Y., Gu, M., Sun, J.: Verifying simulink stateflow model: timed
automata approach. In: Proceedings of the 31st IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2016, Singapore, 3–7 September
2016, pp. 852–857 (2016)

23. Zhan, N., Wang, S., Zhao, H. (eds.): Formal Verification of Simulink/Stateflow Dia-
grams, A Deductive Approach. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-47016-0

24. Zhao, H., Yang, M., Zhan, N., Gu, B., Zou, L., Chen, Y.: Formal verification of
a descent guidance control program of a lunar lander. In: Jones, C., Pihlajasaari,
P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 733–748. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06410-9 49

25. Chaochen, Z., Ji, W., Ravn, A.P.: A formal description of hybrid systems. In: Alur,
R., Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 511–530.
Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0020972

26. Zou, L., Zhan, N., Wang, S., Fränzle, M.: Formal verification of simulink/state-
flow diagrams. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS,
vol. 9364, pp. 464–481. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24953-7 33

27. Zou, L., Zhan, N., Wang, S., Fränzle, M., Qin, S.: Verifying simulink diagrams
via a hybrid hoare logic prover. In: Proceedings of the International Conference
on Embedded Software, EMSOFT 2013, Montreal, QC, Canada, 29 September–4
October 2013, pp. 9:1–9:10 (2013)

https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1007/978-3-642-17164-2_1
http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf
http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf
http://www.mathworks.com/help/pdf_doc/stateflow/sf_ug.pdf
http://www.mathworks.com/help/pdf_doc/stateflow/sf_ug.pdf
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-319-25423-4_25
https://doi.org/10.1007/978-3-319-25423-4_25
https://doi.org/10.1007/978-3-319-47016-0
https://doi.org/10.1007/978-3-319-47016-0
https://doi.org/10.1007/978-3-319-06410-9_49
https://doi.org/10.1007/BFb0020972
https://doi.org/10.1007/978-3-319-24953-7_33
https://doi.org/10.1007/978-3-319-24953-7_33

DeepGlobal: A Global Robustness
Verifiable FNN Framework

Weidi Sun, Yuteng Lu, Xiyue Zhang, and Meng Sun(B)

School of Mathematical Sciences, Peking University, Beijing, China
{weidisun,luyuteng,zhangxiyue,sunm}@pku.edu.cn

Abstract. Feed forward neural networks (FNNs) have been deployed
in a variety of domains, though achieving great success, also pose severe
safety and reliability concerns. Existing adversarial attack generation and
automatic verification techniques cannot formally verify a network glob-
ally, i.e., finding all adversarial dangerous regions (ADRs) of a network is
out of their reach. To address this problem, we develop a global robust-
ness verifiable FNN framework DeepGlobal with three components: 1)
a rule-generator finding all potential boundaries of a network by logical
reasoning; 2) a new network architecture Sliding Door Network (SDN)
enabling rule generation in a feasible way; 3) a selection approach which
selects real boundaries from the generated potential boundaries. The
ADRs can be further represented by the identified real boundaries. We
demonstrate the effectiveness of our approach on both synthetic and real
datasets.

Keywords: Feed forward neural networks · Robustness · Global
verification

1 Introduction

Feed forward neural networks (FNNs) have been applied to a variety of domains
and achieved great success. Reliance on FNNs’ decisions in safety-critical appli-
cations makes their behaviour correctness of high importance. Recent researches
have shown that the correctness of FNNs is threatened by their susceptibility to
human-imperceptible adversarial perturbations [1,6,21].

To explore FNNs’ robustness, existing research attempts mainly fall into
three categories: crafting adversarial examples, automatic verification, and pre-
diction explanation. Given an input sample, adversarial example generation tech-
niques [2,9,15,20,22] cannot guarantee that no adversarial example exists around
the given input, when they fail to generate adversarial examples. Automatic ver-
ification mainly focuses on the guarantee of local robustness [4,8,14,18,23], i.e.,
the robustness of a single input’s neighbourhood. These verification approaches
can provide a rigorous local robustness proof that adversarial examples do not
exist in a local region. However, the local robustness only takes a small part of
the input space into account, and thus cannot guarantee the robustness of the
c© Springer Nature Switzerland AG 2021
S. Qin et al. (Eds.): SETTA 2021, LNCS 13071, pp. 22–39, 2021.
https://doi.org/10.1007/978-3-030-91265-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91265-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-91265-9_2

DeepGlobal: A Global Robustness Verifiable FNN Framework 23

whole network for every possible input. Along with the automatic verification
thread of local robustness, the technique developed in [19] goes a step further.
It evaluates the local robustness of each sample in a test dataset and treats the
expected value of evaluation results as the indicator of “global robustness”. The
technique in [19] can be considered as finding expected maximum safe radius
over the test dataset. However, the selection of the test dataset would directly
influence the estimation of global robustness. The efforts in prediction explana-
tion related to our work focus on attributing predictions to input features. They
are based on reachable set computation [24], back-propagating the prediction
score [10], computing local linear approximations [17] or cooperative game the-
ory [13]. The closest work to ours, focuses on inferring input-output properties
of neural networks [7]. Nevertheless, these techniques cannot provide a compre-
hensive and formal analysis for the whole input space. We can easily identify two
stumbling blocks on the path of FNNs’ global verification: the complex activation
patterns1 and the large input space. It is computationally unacceptable to anal-
yse all possible activation patterns or traverse input space to provide evidence
for FNNs’ dependable operation.

In this paper, we develop a global robustness verifiable FNN framework
named DeepGlobal which can perform in the role of FNNs and explicitly present
the decision boundaries. With the help of these boundaries, we can warn the
machine learning engineers of all DeepGlobal’s adversarial dangerous regions
(ADRs, i.e., the input regions consisting of inputs which are susceptible to small
adversarial perturbations). DeepGlobal consists of three components:

– a rule-generator which is used for mapping classification rules from output to
input to find potential boundaries;

– a new network design Sliding Door Network (SDN) that enables feasible rule-
generation

– a selection approach which selects real boundaries from the generated poten-
tial boundaries.

Real boundaries are the decision boundaries of classification which divide the
inputs into different classes. The ADRs can be represented as the neighbour-
hood of real boundaries, since adversarial examples only appear around these
boundaries.

Particularly, we address the “two stumbling blocks” by means of the follow-
ing methods, respectively. Firstly, we design a new activation function Sliding
Door Activation (SDA), with which the number of possible activation patterns
is dramatically reduced to circumvent the complexity issue. Secondly, instead of
treating inputs as the basis of robustness analysis like existing works, we clus-
ter the input space into multiple regions to address the input space explosion
challenge. To the best of our knowledge, this is the first work that can verify
global robustness formally. We evaluate the effectiveness of our framework on
the MNIST [12] and Fashion-MNIST [16] datasets. We also design a synthetic
case study to show the feasibility of our global verification method.

1 Activation pattern is the state about which neurons are activated during the execu-
tion of a FNN.

24 W. Sun et al.

Fig. 1. Architectures of neuron and a FNN.

The rest of this paper is structured as follows. We firstly provide the back-
ground of FNNs and ADRs in Sect. 2. Secondly, we introduce the naive rule-
generation method in Sect. 3. The SDN network design and the corresponding
rule-generator are elaborated in Sect. 4. Section 5 then presents the selection app-
roach for SDN’s rule-generation result. We demonstrate SDNs’ effectiveness in
reducing rule-generation cost and the feasibility of global verification in Sect. 6.
Finally, we conclude our paper and present the possible future work in Sect. 7.

2 Background

2.1 Feed Forward Neural Networks

A FNN consists of an input layer, some hidden layers, and an output layer. Each
layer is composed of neurons and these neurons connect the adjacent layers
by weighted edges. In this paper, each neuron (layer) is treated as two virtual
neurons (layers): pre-activation and activation neuron (layer), denoted by x′

h,i

(L′
h) and xh,i (Lh), respectively. An example is shown in Fig. 1. In Fig. 1(a), the

activation neurons in Layerh are xh,0, xh,1, xh,2 and the pre-activation neurons
are x′

h,0, x
′
h,1, x

′
h,2. In Fig. 1(b), the activation layers are L1, L2, L3 and the

pre-activation ones are L′
1, L

′
2, L

′
3. The formal definition of FNN is shown as

follows:

Definition 1 (Feed Forward Neural Networks). A FNN can be defined as
a quaternion (L,L′,W,A) where

– L = {Lh |h ∈ {0, ..., N}} is the set of layers in which L0 is the input layer,
Lhs (0 < h < N) are the activation hidden layers, and LN is the activation
output layer. The neurons in these layers are represented as xh,i, which means
the i-th neuron in Lh.

– L′ = {L′
h |h ∈ {1, ..., N −1}} is the set of pre-activation layers. The neurons

in these layers are represented as x′
h,i, which means the i-th neuron in L′

h.

DeepGlobal: A Global Robustness Verifiable FNN Framework 25

– W = {(Wh, Bh) |h ∈ {1, ..., N}} include matrices of weights Whs and bias
arrays Bhs. Each Wh represents the matrix that consists of the weights ωh,i,js
connecting the neurons xh−1,i in Lh−1 and x′

h,j in L′
h. Each Bh represents

the biases of L′
h, and the i-th element of Bh is denoted by bh,i.

– A = {Ah |h ∈ {1, ..., N}} is a set of activation functions Ah : L′
h → Lh such

as ReLU or softmax.

The forward-propagation can be defined as a function whose input x is a
vector:

F (x) = AN (WNAN−1(...A1(W1x + B1)...) + BN)

There is an ideal classification function f : X → C for every classification
task, where X and C are used to represent the input set and class set, respec-
tively. This function f maps every input to the correct class, and F (x) is trained
to approximate f .

2.2 Adversarial Dangerous Regions

FNNs have been deployed to a range of safety-critical applications which makes
their robustness of high importance. A robust FNN F must satisfy the smooth-
ness assumption [5], i.e., for any input x, and a small perturbation δ, F (x+δ) ≈
F (x). This assumption is in line with the actual human visual capabilities. For
humans, if A looks similar to B, A and B should belong to the same class.

However, FNNs are susceptible to adversarial perturbations, in other words,
not robust. To introduce FNNs’ susceptibility more intuitively, we provide Fig. 2
which shows a binary classification task where the inputs in orange regions C1 are
classified as “0” and the inputs in blue region C2 are classified as “9”. As shown
in Fig. 2, I1, I2, I3, I4 are four inputs, and the black line between C1 and C2 is
FNN’s boundary. The input I3 near the boundary is correctly classified as “9”
by the FNN. We slightly perturb I3 by I4−I3. Though the result I4 looks like I3,
I4 is wrongly classified as “0”. If we limit the size of perturbation δ to ||δ||2 ≤ ε,

Fig. 2. A binary classification task where the inputs in orange regions C1 are classified
as “0” and the inputs in blue region C2 are classified as “9”. Iis (0 < i < 5) are the
inputs. (Color figure online)

26 W. Sun et al.

all inputs belonging to the shadow region in Fig. 2 are susceptible to adversarial
perturbations. Since the shadow region is the boundary’s neighborhood and the
neighborhood radius is ε. ADRs can be defined as {x|||x − y||k < ε, y ∈ B}
where k ≥ 1, ε is the given dangerous distance and B is the set of inputs in real
boundaries. In this paper, we focus on finding all the boundaries, so as to find
all ADRs.

3 Naive Rule-Generation

FNNs compare the output values to classify the inputs, e.g., if a output value
yk is bigger than other outputs ∧

j �=k
yk > yj , the corresponding input belongs to

class k. It is natural to use some inequations like yk > yj to divide the input
space into several regions, so as to address the input space explosion challenge.
These inequations named classification rules in the input space could be achieved
by the rule-generation method, as elaborated below. Before introducing the clas-
sification rules in detail, we first present a warm up example.

Example 1. Considering the one-layer network in Fig. 3(a), a classification rule
in the output space is (y0 > y1) which represents a blue region in output space
shown as Fig. 3(b). The rule-generation method we proposed aims for mapping
classification rules to the input space. For example, the activation pattern “all
neurons are active” means that (y0 = y′

0 ∧ y1 = y′
1 ∧ y′

0 > 0 ∧ y′
1 > 0). As

(y′
0 = x1 ∧ y′

1 = x0), (y0 > y1) and (y′
0 > 0 ∧ y′

1 > 0) are equivalent to
(x1 > x0) and (x1 > 0 ∧ x0 > 0), respectively. Thus (y0 > y1)’s mapping result
under this activation pattern is (x0 > 0 ∧ x1 > 0 ∧ x1 > x0). If we change the
activation pattern to “y0 is active and y1 is inactive”, the equivalent condition
of this activation pattern is (y0 = y′

0∧y1 = 0∧y′
0 > 0∧y′

1 < 0), because ReLU
assigns 0 to y1. Thus (y′

0 > 0 ∧ y′
1 < 0) is equivalent to (x1 > 0 ∧ x0 < 0);

(y0 > y1) is equivalent to (x1 > 0); the mapping result is (x0 < 0 ∧ x1 > 0).
Obviously, the activation pattern determines the mapping result. The mapping
result (x0 > 0 ∧ x1 > 0 ∧ x1 > x0) represents a blue region in input space shown
in Fig. 3(c).

With the intuition from the warm up example, we now elaborate the rule-
generation for FNNs. The classification rules are some inequations recorded
as Ph,γ,η in Layerh. These inequations make up the disjunctive normal form2

∨γ ∧η Ph,γ,η where γs are the indexes of conjunctions and ηs are the indexes of
propositions, i.e., inequations in these conjunctions. We need to map the rules
in output space like ∧

j �=k
yk > yj to input space.

The mapping is divided into two parts: the output and hidden layer part. For
the output layer, the comparison rules like yk > yj can be directly mapped to

2 In boolean logic, a disjunctive normal form (DNF) is a canonical normal form of a
logical formula consisting of a disjunction of conjunctions; it can also be described
as an OR of ANDs. For example, (A ∧ B) ∨ C (A, B, C are three propositions) is a
DNF meaning (A and B) or C.

DeepGlobal: A Global Robustness Verifiable FNN Framework 27

Fig. 3. The one-layer network and regions of classification rules. (Color figure online)

the corresponding pre-activation layer based on the order-preserving activation
function. Taking softmax as an example, yj = softmax(

∑
i ωN,i,jxN−1,i + bN,j)

and yk = softmax(
∑

i ωN,i,kxN−1,i + bN,k) lead to a result:

yk > yj ⇔ (
∑

i ωN,i,kxN−1,i + bN,k >
∑

i ωN,i,jxN−1,i + bN,j)

Thus, we replace every variable yj in inequations with the corresponding poly-
nomial

∑
i ωN,i,jxN−1,i + bN,j to obtain the classification rules in LayerN−1.

Generally, the derived rules for the output layer can be formalized by the fol-
lowing function

MAP-OUT(yk > yj) = (
∑

i ωN,i,kxN−1,i + bN,k >
∑

i ωN,i,jxN−1,i + bN,j)

and the mapping result of ∧
j(j �=k)

yk > yj is ∧
j(j �=k)

MAP-OUT(yk > yj), i.e., the

classification rules in LayerN−1. The mapping function for the hidden layer is
formalized as MAP-HIDDEN. Hidden layers cannot be processed in the same
way as output layer because the activation patterns influence the mapping result
as shown in Example 1. We denote the set of active neurons’ indexes by Θ and
use Θ to represent the activation pattern. For simplicity, we record Ph,γ,η as
Ph and the mapping result of Ph under Θh as MAP-FIX (Θh, Ph) where Θh is
the activation pattern of Layerh. MAP-FIX (Θh, Ph) is the conjunction of some
classification rules in Layerh−1. MAP-FIX works like the rule-generation with
fixed activation pattern in Example 1. The function MAP-HIDDEN is shown as
follows where Δh denotes all activation patterns of Layerh:

MAP-HIDDEN(Δh, Ph) = ∨
Θh∈Δh

MAP-FIX(Θh, Ph)

28 W. Sun et al.

The mapping result of ∨γ ∧η Ph,γ,η is ∨γ∧η ∨
Θh∈Δh

MAP-FIX (Θh, Ph,γ,η), i.e.,

all possible Layerh−1’s classification rules which lead to the ∨γ ∧η Ph,γ,η in
Layerh. However, the immense time cost makes the rule-generation infeasible
for FNNs. Taking a FNN with ReLU activation function as an example, each
neuron has two activation states, there are 2mh activation patterns in Δh where
mh is the number of neurons in Layerh. The time cost of whole rule-generation
is O(Πh2mh) = O(2

∑
h mh). Thus, we present a network design which enables

rule-generation in a feasible way.

4 Sliding Door Network for Feasible Rule-Generation

To handle the complexity issue, we present a network design, SDN, and the corre-
sponding rule-generation method MSDN . SDN reduces the number of activation
patterns by grouping the neurons in each layer to overcome the infeasibility
problem in rule-generation for FNNs.

4.1 Sliding Door Network

Fig. 4. Sliding door activation. Gh,1 and Gh,3 are active door and inactive door respec-
tively and other activation results are the copy of other groups.

Compared with FNNs, SDN has two different components: an activation function
SDA and the loss function design for supporting SDA.

Sliding Door Activation. SDA takes a pre-activation layer into account and
divides neurons into several groups evenly. The grouping bases on neurons’
subscripts, e.g., if we divide the layer L′

h in Fig. 4 with 10 neurons into 5
groups, the adjacent neurons are in the same group and the grouping result
is Gh,j = {x′

h,i|2j ≤ i < 2j +2} (0 ≤ j < 5). Neurons in the same group behave
the same way, i.e., they are in the same activation state, so as to relieve the
explosion of activation pattern number, which is caused by the combination of
neurons’ activation states. These groups are classified by SDA into three cat-
egories: active group with all positive neurons (e.g., Gh,1 and Gh,4 in Fig. 4),
inactive group in which all neurons are negative (e.g., Gh,3 in Fig. 4), and trivial
groups with mixing of both positive and negative neurons (i.e., Gh,0 and Gh,2

in Fig. 4).

DeepGlobal: A Global Robustness Verifiable FNN Framework 29

In order to reduce the complexity, SDA selects the first active (inactive)
group as active (inactive) door for each pre-activation layer. For example in
Fig. 4, Gh,1 and Gh,3 are active door and inactive door respectively. Based on
the assigned doors, we define SDA as:

xh,i = SDA(x′
h,i) =

⎧
⎪⎨

⎪⎩

0 if x′
h,i belongs to inactive door;

αx′
h,i if x′

h,i belongs to active door;
x′

h,i otherwise.

Fig. 5. Architecture of SDN

To increase the network expres-
siveness, SDA strengthens the active
door by α and assigns 0 to inac-
tive door’s neurons. Other groups
are sent to the corresponding pre-
activation layer directly. During exe-
cution, for each pre-activation layer,
the position of the two doors might
change instantly up to the states of
the groups, behaving like a sliding
door, thus the name of our activation
function. Figure 5 shows the entire
network architecture, replacing the
ReLU in FNNs with the proposed
SDA for each layer.

Loss Function Design. If a
pre-activation layer cannot provide
active or inactive door, the expres-
siveness of SDN will be weakened. To avoid this issue, we design a regularization
term to penalize the absence of either of the two doors. If the active (inactive)
door does not appear in L′

h, we will find the group Gh,α (Gh,β) in L′
h with

most active (inactive) neurons, and adjust the weights to make the negative
(positive) neurons in Gh,α (Gh,β) tend to be positive (negative) so as to create
active (inactive) groups. Thus, besides the typical data fitting loss, we add a
regularization term to encourage the emergence of such groups, defined as:

Loss(W) = (
∑n

i=1(yi − ŷi)2 + λ
∑

h(
∑

x′
h,i∈Gh,α,x′

h,i<0 −x′
h,i

+
∑

x′
h,i∈Gh,β ,x′

h,i>0 x′
h,i))

where W denotes all the weights and biases to be trained, and λ is the user-
given penalty parameter, (

∑
x′

hbi,h−1i∈Gh,α,x′
h,i<0 −x′

h,i) forces Gh,α to become

an active door and (
∑

x′
h,i∈Gh,β ,x′

h,i>0 x′
h,i) forces Gh,β to become an inactive

door.

30 W. Sun et al.

4.2 Rule-Generation for SDN

As there is no difference between FNNs’ and SDNs’ output layer activation
functions, MAP-OUT can be reused for the rule-generation of SDN’s output
layer. Thus, we focus on mapping between hidden layers in this section. The
construction process of MAP-HIDDEN for SDN is as follows.

We denote the set of neurons in the active door of layer L′
h as ΘA

h , the set
of neurons in the inactive door as ΘI

h, and other neurons are in ΘT
h . Considering

the condition that a rule in Lh is Ph =
∑

i

cixh,i + b > 0, and the activation

pattern Θh is fixed where Θh = {ΘA
h , ΘI

h, ΘT
h }, we record the mapping result of

Ph under Θh as MAP-FIX(Θh, Ph) with three components:
1) SDNInherit.

SDNInherit = (
∑

i∈ΘA
h

αci(
∑

t

ωh,t,ixh−1,t + bh,i)

+
∑

i∈ΘT
h

ci(
∑

t

ωh,t,ixh−1,t + bh,i) + b > 0)

where we replace the neurons in Ph belonging to ΘA
h with the corresponding

polynomial, i.e.,
∑

t ωh,t,ixh−1,t + bh,i multiplied by α due to SDA activation,
the neurons in ΘT

h with the corresponding polynomial meanwhile remove the
neurons in ΘI

h to obtain SDNInherit. SDNInherit is Ph’s direct mapping
result which does not contain the rules describing activation states.

2) SDNActiveCon.

SDNActiveCon =
∧

i∈ΘA
h

(
∑

t
ωh,t,ixh−1,t + bi,h−1 > 0)

It describes the activation state that “all the corresponding pre-activation neu-
rons of ΘA

h are greater than 0” and we replace these pre-activation neurons with
corresponding polynomial.

3) SDNInactiveCon.

SDNInactiveCon =
∧

i∈ΘI
h

(
∑

t
−ωh,t,ixh−1,t − bh,i > 0)

It describes the activation state that “all the corresponding pre-activation neu-
rons in ΘI

h are less than 0” and we replace these pre-activation neurons with
corresponding polynomial. The function MAP-FIX can be further represented
as follows:

MAP-FIX(Θh, Ph) = SDNInherit ∧ SDNActiveCon ∧ SDNInactiveCon

Taking all the activation patterns into account, we can obtain the function
MAP-HIDDEN.

MAP-HIDDEN(Δh, Ph) = ∨
Θh∈Δh

MAP-FIX(Θh, Ph)

DeepGlobal: A Global Robustness Verifiable FNN Framework 31

The combination of MAP-OUT and MAP-HIDDEN is the complete rule-
generation function MSDN :

MSDN (Δh, Ph) =

{
MAP-OUT(Ph) h = N

MAP-HIDDEN(Δh, Ph) h < N

Thus the mapping result of all the rules ∨γ∧ηPh,γ,η in Layerh is ∨γ∧ηMSDN (Δh,
Ph,γ,η) which is the collection of rules for Layerh−1. Each |Δh| equals to mh

2 +
mh + 1 where mh is the number of groups in L′

h.
Compared with the naive rule-generation, the SDN has O(Πimi

2) activation
patterns which is greatly less than the number of FNN’s activation patterns
O(2

∑
h mh), enabling the classification rules to be generated in a more feasible

manner.

5 Selection Approach for Generated Rules

This section is divided into two parts: 1) the pre-processing of generated rules;
2) the real boundaries selection approach.

5.1 Pre-processing of Generated Rules

The generated rules are in the form of ∨γ ∧η P0,γ,η where each conjunction form
∧ηP0,γ,η corresponds to an activation pattern of SDN. We define a strict total
order ≺ for these conjunction forms, and assign serial numbers to the conjunction
forms according to the order.

Definition 2 (Strict total order ≺ of conjunction forms). Given two con-
junction forms of rules R1 and R2 the corresponding activation patterns are Θ1

and Θ2. Layerh is the bottom layer where Θ1 is different from Θ2. Gh,i and
Gh,j are the active doors of Θ1 and Θ2 in Layerh respectively. Gh,i′ and Gh,j′

are the inactive doors respectively. If an activation pattern does not have active
door (inactive door) in Layerh, the active door (inactive door) will be recorded
as Gh,num (Gh,num′) where num (num′) is the number of groups in Layerh.
R1 ≺ R2 iff i < j ∨ (i = j ∧ i

′
< j

′
).

As regions and activation patterns are in one-to-one correspondence to con-
junction forms, we use the serial numbers to represent regions and activation
patterns. In this way, these serial numbers can help us to store the rules in a
B+ tree and retrieve the conjunction forms. Specially, the coverage relationship
of regions is implied in serial numbers which serves as the basis of the searching
scope narrowing strategy in real boundaries selection.

32 W. Sun et al.

5.2 Real Boundaries Selection Approach

Fig. 6. The regions represented by ∨γ ∧η P0,γ,η(0 � γ � 3)

Fig. 7. C3 is the region formed
by conjunction form Ri and
C4 ∪ C1 is formed by Rj , the
region C4 satisfying Rj is cov-
ered by Ri’s region.

Before presenting the real boundaries selection
approach, we need to answer two questions: 1)
what is the relation between the rules and the
potential boundaries of SDNs; 2) how can we
select the real boundaries from the potential
boundaries.
• Question 1: what is the relation between
the rules and the potential boundaries of
SDNs?

The classification rules ∨γ ∧η P0,γ,η represent
some regions in input space as shown in Fig. 6.
Each region corresponds to a conjunctive form in
DNF, e.g., C0 corresponds to ∧ηP0,0,η(0 � η � 3).
The four inequations P0,0,0, P0,0,1, P0,0,2, P0,0,3 are
four boundaries of C0. These boundaries (inequa-
tions) are the potential boundaries, namely that
the rules are the potential boundaries. However, only some of potential bound-
aries are real boundaries indicated by solid lines in Fig. 6.
• Question 2: how can we select the real boundaries from the potential
boundaries?

To answer this question, we should figure out what kind of potential bound-
aries cannot be real. A potential boundary is not real if it is inside the regions.
More specifically, given a region C and its potential boundary P0, P0 is not real
in two cases:

1. P0 is covered by C’s connected region;
2. P0 is the common boundary of C and C’s connected region.

DeepGlobal: A Global Robustness Verifiable FNN Framework 33

The first case is caused by the overlapping of regions. The regions represented
by conjunction forms may cover each other as shown in Fig. 7 (Fig. 7 is a part
of Fig. 6, i.e., C1 ∪ C3 in Fig. 6). C3 is the region formed by Ri and C4 ∪ C1 is
formed by Rj (Ri and Rj are conjunction forms like ∧ηP0,γ,η in the generated
rules ∨γ ∧η P0,γ,η). The dashed lines are potential boundaries in Rj , however,
they are covered by C3. That is why dashed lines are not real. The second case
is shown in Fig. 6. The common boundary of C0 and C1 is not real, since it is
inside the C0 ∪ C1.

The three steps of real boundary selection are as follows:

1. Find the connected regions for every region. Both cases for a region’s
unreal boundaries are caused by its connected regions. Thus, we firstly use
simplex method [3] to find the connected regions for every region. To judge
whether the regions of Ri and Rj are connected, we apply simplex method
to Ri ∧ Rj

3. If the result of simplex method is nonempty, Ri and Rj are con-
nected. In addition, we narrow the searching scope for this step by Theorem 1.
For every Rj , only Ris satisfying the necessary condition in Theorem 1 are
possible to be connected to Rj . Thus, we do not need to search all conjunction
forms for finding Rj ’s connected regions which greatly reduces the time cost.

2. Remove the covered parts of regions. If the covered parts of regions are
removed, unreal boundaries in the first case are removed as well. For each
Ri, we “flip” the potential boundaries of its connected regions and conjunct
these flipped boundaries with Ri to cut the covered parts out of Ri’s region.
Taking Fig. 7 as an example, we flip the boundaries Phs of C3 to get ¬Phs and
conjunct each ¬Ph with Rj to form new regions ¬Ph ∧Rjs. Then we abandon
the empty new regions and merge the others. Cut by ¬P0,3,0 and ¬P0,3,1, the
merged new region is C1 which does not include the covered part.

3. Remove the common boundaries. We realize this step in a similar way
like step 2. For example, in Fig. 6, P0,0,0 is the common potential boundary
of C0, C1. If we want to remove the common part to get C0’s real boundary,
we flip the boundaries of C1 and use them to cut the dashed common part
out of P0,0,0. Then we merge the nonempty segment to get the real boundary.
Cut by P0,1,0, the solid part of P0,0,0 is the selection result and the dashed
common part is removed.

Theorem 1. Given regions Ci and Cj (j > i) with activation patterns Θi and
Θj respectively, Layerh is the bottom layer where Θi is different from Θj. Gh,k

and Gh,t are the active doors of Θi and Θj in Layerh respectively and Gh,k′ and
Gh,t′ are the inactive doors.

Ci and Cj are connected ⇒ (k = t ∧ k
′
= t

′
) ∨ (k = t ∧ k

′ = t
′
)

Algorithm 1 is the real boundaries selection approach. We explain Algo-
rithm 1 to show how the selection approach works. The first part (Line 1 to 2)
pre-processes the classification rules. With the help of the order in Definition 2,
3 We replace > in Ri ∧ Rj with � to make simplex method feasible.

34 W. Sun et al.

Algorithm 1. Selection Approach
Require: an SDN N , classification rules Cons
Ensure: real boundaries set T
1: T ← Cons
2: T ← PreProcess(T)
3: for leaf in T do
4: if ValidSimplex(leaf) then
5: leaf ← None
6: end if
7: end for
8: for leaf in T do
9: if leaf != None then

10: for potential connected R in T [: leaf.index] do
11: leaf← RemoveCover(leaf ,R)
12: leaf.connect.append(R)
13: end for
14: end if
15: end for
16: for leaf in T do
17: for R in leaf.connect do
18: leaf← RemoveCommon(leaf ,R)
19: R← RemoveCommon(R,leaf)
20: end for
21: end for
22: return T

we assign serial numbers to conjunction forms and store them in a B+ tree T .
The second part (Line 3 to 7) eliminates the conjunction forms without feasible
region to reduce the time cost. We apply simplex algorithm to Ris. If the result
is None, the corresponding region of Ri is empty, i.e., Ri is invalid. Then we
assign None to invalid Ris to eliminate them. The third part (Line 8 to 15)
corresponds to step 1 and 2. It finds the connected regions according to step 1
and uses step 2 to remove the covered parts for each valid Ri. The connected
regions for each Ri are recorded in this part as well. The fourth part (Line 16
to 21) is step 3 which removes the common boundaries. If Ri shares a common
boundary with its connected region, we remove the common part for both of
them. Line 22 finally returns the real boundaries.

6 Experiments

The evaluation of our work concentrates on two aspects: 1) the effectiveness of
reducing rule-generation cost based on SDNs, 2) the feasibility of global veri-
fication. In the first part, we compare our method with the FNNs on MNIST
and Fashion-MNIST. In the second part, we show the effectiveness of global
verification.

DeepGlobal: A Global Robustness Verifiable FNN Framework 35

6.1 Effectiveness of Reducing Rule-Generation Cost

We compare 1) the rule-generation cost of SDNs and FNNs with same capability
(evaluated by accuracy on train set); 2) the capability of SDNs and FNNs with
same rule-generation cost (evaluated by number of conjunction forms in gener-
ated rules). Table 1 and Table 2 are the comparison results on MNIST dataset
and Fashion-MNIST dataset respectively. The details of SDNs are shown as
follows:

– Each SDN has two hidden layers Layer1 and Layer2;
– These SDNs have 15, 21, 21, 31 groups in Layer1, respectively and 11, 11, 16,

22 groups in Layer2, respectively. We name these SDNs as (15,11), (21,11),
(21,16), and (31,22) based on their architecture features;

– Each group in Layer1 and Layer2 has two neurons.
– The α in these SDNs are 2.

Each FNN has two hidden layers. The structure is represented in a tuple, e.g.,
(20,20) represents a FNN with 20 neurons in two layers respectively. Cross
entropy loss and Adam [11] are used to train all the networks.

The evaluation results in Table 1 show that compared with the FNNs which
have roughly the same rule-generation cost, SDNs have greater capability. The
accuracy of SDNs on train set are 2.18, 1.99, 2.01, 1.55% higher than FNNs
respectively.

Fig. 8. Adversarial examples are in the
first line and the samples in second line
are classified correctly

Besides, the accuracies of SDNs and
the sat-rate increase as the numbers of
groups in each layer increase.

If the capability of SDNs and
FNNs are roughly the same, the rule-
generation costs of FNNs are 8374,
17436, 33979, 34124 times as SDNs’. The
performance of SDNs is even better on
Fashion-MNIST which is more compli-
cated than MNIST. Compared with the
FNNs with roughly the same rule-generation cost, accuracies of SDNs are 11.08,
11.36, 11.30, 1.62% higher respectively. Compared with the FNNs with roughly
the same capability, the rule-generation costs of FNNs are 33498, 1115956,
2174684, 2183949 times as SDNs’.

Table 1 and Table 2 show that SDNs greatly reduce the cost of rule-generation
which makes the global robustness verification more feasible.

6.2 Feasibility of Global Verification

We show some adversarial examples selected from the ADRs of SDN (21,11) in
Fig. 8. To draw an visualized conclusion about whether our method correctly
finds all the real boundaries in input space, we visually demonstrate the feasi-
bility of our approach on a two-dimensional synthetic dataset (as conclusion on

36 W. Sun et al.

Table 1. Evaluation on MNIST where sat-rate is the frequency of layers which can
provide both active door and inactive door in evaluation

SDN Structure (15,11) (21,11) (21,16) (31,22)

Accuracy (%) 94.92 95.02 95.28 95.42

Sat-rate (%) 87.22 90.05 98.32 99.79

Cost 32053 61579 126399 503451

FNNs (with same cost) Structure (8,7) (10,6) (10,7) (10,9)

Accuracy (%) 92.74 93.03 93.26 93.87

Cost 32768 65536 131072 524288

FNNs (with same capability) Structure (14,14) (15,15) (16,16) (17,17)

Accuracy (%) 94.69 94.97 95.28 95.42

Cost 2.68 ∗ 108 1.07 ∗ 109 4.29 ∗ 109 1.71 ∗ 1010

Table 2. Evaluation on fashion-MNIST

SDN Structure (15,11) (21,11) (21,16) (31,22)

Accuracy (%) 86.04 86.35 86.42 86.51

Sat-rate (%) 90.48 92.36 95.13 99.81

Cost 32053 61579 126399 503451

FNNs (with same cost) Structure (8,7) (10,6) (10,7) (10,9)

Accuracy (%) 74.96 74.99 75.12 84.89

Cost 32768 65536 131072 524288

FNNs (with same capability) Structure (15,15) (18,18) (19,19) (20,20)

Accuracy (%) 85.97 86.31 86.43 86.51

Cost 1.07 ∗ 109 6.87 ∗ 1010 2.74 ∗ 1011 1.09 ∗ 1012

high-dimensional space is hard to be visualized) shown in Fig. 9(a) where the
top-right inputs belongs to the first class and others belong to the second class.

We train a SDN with 100 neurons4 on the synthetic dataset and generate
SDN’s boundaries. The generation is conducted using a laptop with 1 Intel i7-
9750H 2.60 GHz CPU and 1 NVIDIA Rtx 2080Max-Q GPU which takes 193.61 s.
The results of the trained SDN are visually shown in Fig. 9(b) where the inputs in
the top-right region are classified as the first class and other inputs are classified
as the second class.

The potential boundaries found by our method are in Fig. 10(a). These poten-
tial boundaries are the boundaries of regions. Some of potential boundaries are
real and the others are inside the top right region. The real boundaries selected
by our approach are in Fig. 10(b). Given a danger distance, the ADR is shown as
the shadow region around real boundaries. The results show that the proposed
DeepGlobal framework is effective to identify the real boundaries and the ADRs.

4 Each hidden layer has ten doors and each door has five neurons. The α in this SDN
is 2.

DeepGlobal: A Global Robustness Verifiable FNN Framework 37

(a) Synthetic dataset (b) Classification result

Fig. 9. Synthetic dataset and classification result

(a) Potential boundaries (b) Real boundaries and adversarial re-
gion

Fig. 10. Potential boundaries, real boundaries, and adversarial region

7 Conclusion

In this paper, we present a global robustness verifiable FNN framework Deep-
Global. To the best of our knowledge, this is the first work that provides a com-
plete solution to achieving global robustness verification for neural networks.
Based on the rule-generation, we analyse the relationship between activation
patterns and classification rules, and design a new network SDN to generate
rules in a feasible way. The proposed selection approach further reduces compu-
tational complexity and makes the global robustness verification more efficiently.
Our evaluation results show that the SDN can greatly reduce the rule-generation
cost. Moreover, the global verification can be achieved, which is unattainable by
existing techniques. The proposed global verification framework and the SDN
network design are particularly useful for safety-critical applications, especially
for classification tasks that are eager for rigorous robustness. Developing verifi-
able framework for large-scale networks is our further research direction.

38 W. Sun et al.

Acknowledgement. This research was supported by the Guangdong Science and
Technology Department (Grant No. 2018B010107004) and the National Natural Sci-
ence Foundation of China under Grant No. 62172019, 61772038, 61532019.

References

1. Biggio, B., Fumera, G., Roli, F.: Security evaluation of pattern classifiers under
attack. CoRR abs/1709.00609 (2017)

2. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks.
In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA,
22–26 May 2017, pp. 39–57 (2017)

3. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press,
Princeton (1998)

4. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: Proceedings of 2018 IEEE Symposium on Security and Privacy,
SP 2018, San Francisco, California, USA, 21–23 May 2018, pp. 3–18 (2018)

5. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adaptive Computa-
tion and Machine Learning. MIT Press, Cambridge (2016)

6. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015. Conference
Track Proceedings (2015)

7. Gopinath, D., Converse, H., Pasareanu, C.S., Taly, A.: Property inference for deep
neural networks. In: 34th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2019, San Diego, CA, USA, 11–15 November 2019, pp.
797–809 (2019). https://doi.org/10.1109/ASE.2019.00079

8. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

9. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

10. Kindermans, P., et al.: Learning how to explain neural networks: patternnet and
patternattribution. In: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018. Conference Track Pro-
ceedings (2018)

11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
7–9 May 2015. Conference Track Proceedings (2015)

12. LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits
(1998). http://yann.lecun.com/exdb/mnist/. Accessed 4 Jan 2020

13. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions.
In: Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 Decem-
ber 2017, pp. 4765–4774 (2017)

https://doi.org/10.1109/ASE.2019.00079
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
http://yann.lecun.com/exdb/mnist/

DeepGlobal: A Global Robustness Verifiable FNN Framework 39

14. Mirman, M., Gehr, T., Vechev, M.T.: Differentiable abstract interpretation for
provably robust neural networks. In: Proceedings of the 35th International Confer-
ence on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
10–15 July 2018, pp. 3575–3583 (2018)

15. Papernot, N., McDaniel, P.D., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: IEEE European Symposium
on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, 21–24 March
2016, pp. 372–387 (2016)

16. Research, Z.: Fashion MNIST: an MNIST-like dataset of 70,000 28x28 labeled
fashion images (2017). https://github.com/zalandoresearch/fashion-mnist

17. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, San Francisco, CA,
USA, 13–17 August 2016, pp. 1135–1144 (2016). https://doi.org/10.1145/2939672.
2939778

18. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. In: Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden,
13–19 July 2018, pp. 2651–2659 (2018)

19. Ruan, W., Wu, M., Sun, Y., Huang, X., Kroening, D., Kwiatkowska, M.: Global
robustness evaluation of deep neural networks with provable guarantees for the
hamming distance. In: Proceedings of the Twenty-Eighth International Joint Con-
ference on Artificial Intelligence, IJCAI 2019, Macao, China, 10–16 August 2019,
pp. 5944–5952 (2019)

20. Suya, F., Chi, J., Evans, D., Tian, Y.: Hybrid batch attacks: finding black-box
adversarial examples with limited queries. CoRR abs/1908.07000 (2019)

21. Szegedy, C., et al.: Intriguing properties of neural networks. In: 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16
April 2014. Conference Track Proceedings (2014)

22. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety testing
of deep neural networks. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS,
vol. 10805, pp. 408–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89960-2 22

23. Wu, M., Wicker, M., Ruan, W., Huang, X., Kwiatkowska, M.: A game-based
approximate verification of deep neural networks with provable guarantees. Theor.
Comput. Sci. 807, 298–329 (2020)

24. Xiang, W., Tran, H., Johnson, T.T.: Reachable set computation and safety verifi-
cation for neural networks with ReLU activations. CoRR abs/1712.08163 (2017)

https://github.com/zalandoresearch/fashion-mnist
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1007/978-3-319-89960-2_22
https://doi.org/10.1007/978-3-319-89960-2_22

Leveraging Event-B Theories for Handling
Domain Knowledge in Design Models

Ismail Mendil1(B), Yamine Aı̈t-Ameur1, Neeraj Kumar Singh1,
Dominique Méry2, and Philippe Palanque3

1 INPT-ENSEEIHT/IRIT, University of Toulouse, Toulouse, France
{ismail.mendil,yamine,nsingh}@enseeiht.fr

2 Telecom Nancy, LORIA, Université de Lorraine, Metz, France
dominique.mery@loria.fr

3 IRIT, Université de Toulouse, Toulouse, France
palanque@irit.fr

Abstract. Formal system modelling languages lack explicit constructs
to model domain knowledge, hindering clear separation of this knowl-
edge from system design models. Indeed, in many cases, this knowledge
is hardcoded in the system formal specification or is simply overlooked.
Providing explicit domain knowledge constructs and properties would
yield a significant improvement in the robustness and confidence of the
system design models. Therefore, it speeds up formal verification of safety
properties and advances system certification since certification standards
and requirements rely on domain knowledge models. The purpose of this
paper is to show how formal system design models can benefit from
explicit handling of domain knowledge, represented as ontologies. To
this end, state-based Event-B modelling language and theories are used
to model system models and domain knowledge ontologies, respectively.
Our proposition is exemplified by the TCAS (Traffic Collision Avoid-
ance System) system, a critical airborne avionic component. Finally, we
provide an assessment highlighting the overall approach.

Keywords: Domain knowledge · Ontologies · System engineering ·
State-based formal methods · Safety proofs · Invariant preservation ·
Event-B

1 Introduction

Context. Due to the high level of confidence required, critical systems are sub-
jected to a variety of validation and verification (V&V) activities. Engineering
these critical systems requires the use of numerous engineering techniques and
methods, standards and certification processes, etc. Formal methods have proved
their capability to handle complex verification and validation techniques set up
at different development phases. They are grounded on mathematical and logic
theories and are equipped with a proof system used to check formalised proper-
ties. They advocate the design of a formal model specifying the desired system
c© Springer Nature Switzerland AG 2021
S. Qin et al. (Eds.): SETTA 2021, LNCS 13071, pp. 40–58, 2021.
https://doi.org/10.1007/978-3-030-91265-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91265-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-91265-9_3

Leveraging Event-B Theories for Handling Domain Knowledge 41

behaviours and the description of a set of properties expressing requirements,
usually safety and security requirements. The underlying proof system allows
to check the properties on the formalised system model. Various formal meth-
ods are available and several tools have been developed to support both system
modelling and property verification using automatic verification procedures like
model checking techniques (e.g. Promela/SPIN, NuSMV, Uppaal) or SMT and
SAT solvers (e.g. Z3, CVC4), interactive theorem proving based on higher order
logic or type theory (e.g. Isabelle/HOL [35], Coq [11]).

If we consider a system specification S and a set of property requirements R,
then property verification consists in proving that requirements can be proved
from the specification by establishing S � R.

In this case, the designed formal model associated to a specification S must
make explicit all the knowledge required to write a specification, in particular the
domain knowledge provided by the domain and the context where the system
is supposed to evolve i.e. S encapsulates the whole formal system description
needed to establish R. The seminal work of [46] and [12,13] suggests to separate
so called Domain Knowledge from the specification and proposes the well-known
triptych K,S � R where K formalises domain knowledge. This separation is
motivated by two main arguments: first domain knowledge is usually stable and
reusable and second its formalisation is made explicit through K.

Motivation. In general, system engineering approaches, particularly formal
methods, do not offer explicit constructs allowing the designer to define formal
models of domain knowledge, nor mechanisms to import such existing models.
However, there exist formal modelling languages and/or meta-models, sometimes
standardised [18], that support the formalisation of such domain knowledge. It
is often the case that transformations are required to reuse, in the set up formal
method, already defined knowledge domain formalisations. As a result, hetero-
geneous formalisations are obtained, so sharing and reuse are compromised.

Our Claim. We believe that ontologies, seen as an explicit shared specification
of a conceptualisation [25] suit with the requirement of domain knowledge shar-
ing and reuse. We advocate that domain knowledge must be formalised as an
ontology formally modelled as datatypes theories with axioms, theorems and
reasoning capabilities, once and for all, in the used system development formal
method. Moreover, we claim that this formalisation shall not impact system
modelling languages nor system models. Last, to avoid semantic heterogeneity,
both ontologies, system specifications and requirements shall be formalised in a
single shared mathematical setting, Event-B [1] with set theory and First order
logic in our case.

Objective of This Paper. We propose to use the Event-B [1] proof and refine-
ment formal method to express both domain knowledge as ontologies formalised
using Event-B theories, and system specification and requirements formalised
as Event-B models (machines and invariants). As ontologies constructs are not
present as first order concepts in Event-B, we introduce an Event-B meta-theory,
based on generic and abstract datatypes and operators, describing an ontology

42 I. Mendil et al.

model formalising an ontology modelling language (e.g. OWL [6]), further instan-
tiated to derive specific domain ontologies. These ontologies become shareable,
reusable and referencable by any Event-B model using typing, operators and
properties guaranteed by proving both ontology instantiated theorems and Well-
Definedness (WD) Proof Obligations (POs).

Structure of This Paper. Next section presents the Event-B state-based method
and theories used to formalise our models. Section 3 is devoted to an overview
of the state of the art in handling domain knowledge in system models. Our
approach is synthesised in Sect. 4. Then, Sect. 5 presents a generic theory encod-
ing OWL-like ontologies. In Sect. 6, we address the problem of domain knowl-
edge handling in system design through the case of Aircraft Critical Interactive
Systems design. Section 7 provides an assessment of our approach and Sect. 8
concludes the paper.

2 Event-B: A Refinement and Proof-Based Formal
Method

2.1 Core Event-B

First-order logic (FOL) and set theory underpin the Event-B [1] modelling lan-
guage. The design process consists of a series of refinements1 of an abstract model
(specification) leading to a final concrete model. The core modeling components
of the Event-B language are Contexts, Machines and Theories.

CONTEXT ContextName
EXTENDS contexti
SETS si
CONSTANTS ci
AXIOMS

A
THEOREMS

Tctx
END

MACHINE MachineName
REFINES machinei
VARIABLES x
INVARIANTS I(x)
VARIANTS V (x)
EVENTS

EVENT
ANY a
WHERE G(x, α)
THEN

x : | BAP (x, α, x′)
END

THEORY TheoryName
IMPORT Theory1, ...
TYPE PARAMETERS T1, T2, ...
DATATYPES

Datatype1(T1, ...)
CONSTRUCTORS

cstr1(p: T1, ...)
OPERATORS

operator1 <nature> (p1 : T1)
well-definedness W D(p1, ...)
direct definition D
...

AXIOMATIC DEFINITIONS
AxiomaticDefinitionsName1

Types AT1
Operators

operator1 <nature> (p1 : T1)
well-definedness W D(p1, ...)

Axioms Axm1, ...
THEOREMST hm1, ...
END

Listing 1.1. Basic Event-B building blocks: context, machine and theory

Event-B Contexts. Contexts (see Listing 1.1) define the static part of a model.
They introduce definitions, axioms and theorems describing the required con-

1 As refinement is not necessary to understand our contribution, it has been skipped.
More details can be found in [1].

Leveraging Event-B Theories for Handling Domain Knowledge 43

cepts and their properties. Carrier sets s defining algebraically new types (pos-
sibly constrained in axioms or other extending contexts), constants c, axioms A
and theorems Tctx are introduced.

Event-B Machines. A machine (see Listing 1.1) describes the dynamic part of
a model as a transition system. A set of possibly parameterised and/or guarded
events (transitions) modifying a set of state variables (state) represents the core
concepts of a machine. Variables x, invariants I(x), theorems Tmch(x), variants
V (x) and events evt (possibly guarded by G and/or parameterised by α) are
defined in a machine. Invariants and theorems formalise system safety while
variants define convergence properties (reachability).

Before-After Predicates (BAP) express state variables changes using prime
notation x′ to record the new value of a variable x after a change. The “becomes
such that” :| substitution is used to define the next (transition or event) value
of a state variable. We write x :| BAP(x, x′) to express that the next value of
x (denoted by x′) satisfies the predicate BAP(x, x′) defined on before and after
values of variable x. When a parameter α is involved in a variable the BAP is
expressed as x :| BAP(α, x, x′).

Proof Obligations (PO) and Property Verification. To establish the correctness of
an Event-B model (machine) the POs (automatically generated from the calculus
of substitutions) need to be proved.

Table 1. Relevant Proof Obligations

PO designation PO formal definition

(1) Ctx Theorems (THM) A ⇒ Tctx (For contexts)

(2) Mch Theorems (THM) A ∧ I(x) ⇒ Tmch(x) (For machines)

(3) Initialisation (INIT) A ∧ G(α) ∧ BAP(α, x′) ⇒ I(x′)

(4) Invariant preservation (INV) A ∧ I(x) ∧ G(x, α) ∧ BAP(x, α, x′) ⇒ I(x′)

The main POs, relevant for this paper, are listed in Table 1. They require to
demonstrate that both contexts (1) and machines (2) theorems hold, initialisa-
tion (3) and each event preserves invariants (induction (4)).

Core Well-definedness (WD). WD POs are associated to all Event-B built-in
operators of the Event-B modelling language. For example a WD proof obligation
for the division operator WD(a÷b) is WD(a)∧WD(b)∧b �= 0 and for conjunction
WD(P ∧ Q) is WD(P) ∧ (P =⇒ WD(Q)). These proof obligations are defined
for every operator of the core Event-B language.

2.2 Event-B Extensions with Theories

To handle additional abstract concepts beyond set theory and first order logic,
an Event-B extension supports externally defined mathematical objects, mod-
elled as theories [2,17]. Close to other proof assistants (e.g. Isabelle/HOL [35],

44 I. Mendil et al.

PVS [36]), this capability is convenient when modelling, using data types, con-
cepts not available in core Event-B.

Theories for Abstract Data Types. They define types (possibly inductive) carried
by sets and operators. They introduce axioms and theorems, and use the Event-
B sequent calculus as proof system to prove theorems. The concepts defined in
theories can be imported by Event-B models and used in further developments.

Well-Definedness (WD) in Theories. An important feature provided by Event-
B theories relates to the definition of well-definedness conditions. Each defined
operator may be associated to a condition guaranteeing its correct definition.
When the operator is used (either in the theory or in an Event-B machine or
context), this well-definedness condition generates a proof obligation requiring
to establish that this condition holds, i.e. the use of the operator is correct.
The theory developer defines these WD conditions, which are then added to the
native Event-B WD POs. We extensively use this feature for defining domain
knowledge operators.

Theory description (see Listing 1.1). Theories define and make available new
data types, operators and theorems. Data types (DATATYPES clause) are asso-
ciated with constructors i.e. operators to build inhabitant of the defined type.
They may be inductive. A theory may define various operators further used in
Event-B expressions. They may be predicates built using classical first order
logic or expressions producing actual values (<nature> tag). Operators applica-
tions (predicates or expressions) can be used in other Event-B theories, contexts
and/or machines. They enrich the modelling language as they may occur in the
definitions of axioms, theorems, invariants, guards, assignments, etc.

As mentioned above, an operator may be associated with WD conditions
encoding specific requirements. It defines, as a PO, the condition under which
the operator is used. Each time the operator is used, this PO must be proved.

Operators may be defined explicitly using an explicit (“direct”) equivalent
definition, in the direct definition clause, (e.g., in the case of a constructive
definition), or defined axiomatically in the AXIOMATIC DEFINITIONS clause, (e.g.
a set of axioms). At the definition level, operators application mode is charac-
terised: infix or prefix, or if they are commutative and/or associative. Last, a
theory defines a set of axioms, completing the definitions, and theorems. Theo-
rems are proved from the definitions and axioms.

We mention that many theories have been defined for sequences, lists, groups,
reals, differential equations, etc.

Associated Proof System. As mentioned in [17], soundness of theories is achieved
through the definition of soundness proof obligations generated following the
standard approach of Event-B and their proofs are carried out using the sequent
calculus of Event-B encoded in the Rodin provers. They rely on a set-theoretic
formalisation of operators. More details can be found in [2,17]. Theories are also
tightly integrated in the proof process. Depending on their definition (direct or

Leveraging Event-B Theories for Handling Domain Knowledge 45

axiomatic), operators definitions are expanded either using their direct defini-
tion (if available) or by enriching the set of axioms (behaving as hypotheses in
proof sequents) using their axiomatic definition. Theorems may be imported as
hypotheses and, like other theorems, they may be used in the proof as any other
one. They are accessible by the interactive and automatic provers, and SMT
solvers of Rodin.

Event-B and its IDE Rodin. Rodin2 is an open source, Eclipse-based Integrated
Development Environment for modelling in Event-B. It offers resources for model
editing, automatic PO generation, project management, refinement and proof,
model checking, model animation and code generation. Event-B’s theories exten-
sion is available under the form of a plug-in, developed for the Rodin platform.
Many provers like predicate provers, SMT solvers, are plugged to Rodin.

Application of the B method. Event-B method has been successfully applied to
design critical systems for applications, like control system for the Meteor line
14 in Paris or the VAL shuttle for Paris CDG airport [9], medical devices [39],
autonomous systems [41], security protocols [10], control-command systems [22]
and distributed protocols [33,47]. More information can be found in [16,38].

3 Related Works

The contribution presented in this article is at the intersection of three scientific
themes studied by the scientific community for decades.

Ontologies and Domain Modelling. Ontologies, as explicit knowledge models [25],
have been extensively studied in the literature and applied in several domains
spanning semantic web, artificial intelligence, information systems, system engi-
neering etc. Several approaches for describing, designing and formalising ontolo-
gies for these application domains have been proposed. Models, browsers like
Protégé or PlibEditor, repositories like JENA-SDB, TripleStore, OntoDB or
OntoHub query languages like RQL, SPARQL or OntoQL, reasoners like Pellet,
RACER or KAON, annotators like CREAM, Terminae or SAWSDL and trans-
lators have been proposed to engineer ontologies. Many ontologies have been
described for several engineering domains and annotation mechanisms were pro-
posed to establish links to domain objects like texts, images, videos and engineer-
ing models. Most of mentioned approaches rely on XML-based formats and are
applied to the semantic web. As they are grounded on descriptive logics, they pay
lot of attention to the decidability criterion for automated reasoning and infer-
ence purposes (which may limit the scope of addressed knowledge models and
logics). To the best of our knowledge, formal annotation of formal design models
and their analysis have not been set up using the above mentioned approaches
or tools.

2 http://www.event-b.org/index.html.

http://www.event-b.org/index.html

46 I. Mendil et al.

Explicit Domain Models in Formal Methods. Formalisation of domain knowl-
edge witnessed high interest in the formal methods community where many
approaches and frameworks were proposed in Coq [11], Isabelle/HOL [35] with
ISADof [14,15] Framework, PVS [36], Event-B with theories [2,17] (e.g. control
theory for control-command systems [21,23]) and critical systems [4], DOL -
Distributed Ontology Model and Specification Language based on CASL alge-
braic specification [34] integrated to the OntoHub ontology repository and RSL
- RAISE Specification Language [13] for transportation, shipping, and logistic
systems. In [20], the authors present a two-layered language ground on higher-
order logic of Coq formal system as a lower layer, and ontology language as upper
layer for expressing and specifying contexts. Indeed, the higher-order KDTL lan-
guage [8,19] supports the definition of new contextual categories and facts on
the basis of low-order context. The language provides means to support compa-
rability of diverse and non-countable information as well as numeric data.

Although the approaches cited above tackle the problem of formalising
domain knowledge and provide modular frameworks, they differ from the mod-
elling level where they apply. Two kinds of modelling levels incorporating
domain knowledge have been identified. On the one hand, the modelling level
that offers domain-specific language constructs, in particular constructs for
ontologies allowing the explicit definition of ontology components like classes,
properties and instances. In general, such approaches adopt a deep modelling
style by explicitly encoding both syntax and semantics of some ontology descrip-
tion language like OWL. On the other hand, the second modelling language
level adopts a shallow modelling style. It encodes domain knowledge concepts
directly in the hosting formal modelling language using its syntactic and seman-
tic constructs. Knowledge domain concepts are not made explicit in the obtained
models.

Domain Knowledge in System Design. In [29], the authors clearly state the chal-
lenge of linking domain knowledge and design models. A mathematical analysis
of models and meta models, ontologies, modelling and meta-modelling languages
is included. Design models annotation by domain-specific knowledge has been
studied for state-based methods in [4] as well. More recently, the textbook [5]
reviewed many cases of exploiting explicit models of domain knowledge by sys-
tem models spanning medical systems, e-voting systems, distributed systems etc.
Indeed, [40] presents a four steps modelling approach based on the methodol-
ogy described in [4]. It relies on Event-B contexts as domain knowledge models
for ontologies for verifying medical protocols. An assessment of the proposed
approach is given through a complex case study of a real-life reference protocol
(electrocardiogram (ECG) interpretation) covering a wide variety of protocol
characteristics related to different heart conditions. [30] showcases how Event-B
theories may be used to capture domain-specific abstract data types (ADTs)
and build dynamic systems using the developed structures. The authors adopt
an incremental approach to model domain knowledge concepts in parallel with
the refinement of the model. The approach uses Event-B theories so it benefits
from the use of the operators endowed with well-definedness conditions. The case

Leveraging Event-B Theories for Handling Domain Knowledge 47

studies used to illustrate the approach also define inference rules for easing the
proving process. The work of [45] describes a meta model for a domain mod-
eling language built from OWL and PLIB which is part of the SysML/KAOS
requirements engineering method that includes a goal modeling language. The
formal semantics of SysML/KAOS models is specified, verified, and validated
using the Event-B method. Goal models provide machines and events of the
Event-B specification while domain models provide its structural part (sets and
constants with their properties and variables with their invariant). The proposal
is exemplified through a case study dealing with a localization component for an
autonomous vehicle Last, focusing on Event-B, a proposal of simplified ontology
description language was put forward and illustrated on case studies in [27,28].
The approach was based on context extension where the design models need to
discharge proof obligation in form of theorems to validate the compliance of the
formal design models to the formalised domain knowledge.

The approaches mentioned above illustrate interesting solutions to the for-
malisation and incorporation of domain knowledge in formal design models. How-
ever, several limitations are identified. They constitute part of the challenges we
address in our proposal. First, some of these approaches lack a general frame-
work such as ontologies for defining domain knowledge in standardised way.
They require to formalise the domain properties and their proofs in Event-B
contexts. They do not offer explicit mechanisms enforcing domain knowledge
constraints on the design models. The designer has to handle these constraints
while formalising systems models.

Last, they strongly focus on full automation for reasoning and inference and
target decidable fragments of logic like descriptive logics which do not enable the
expression of all properties encountered in engineering domain (e.g. expression
of arithmetic properties).

The main purpose of this paper is to define a general proof-based framework
addressing the limitations identified above. It relies on engineering ontologies
in the view of [3] to model domain knowledge as Event-B theories—a collection
of data types and operators with well-definedness conditions—and use typing to
annotate system design models formalised in Event-B.

4 Domain Knowledge in State-Based Formal Methods:
The Case of Event-B

Formal methods are equipped with constructs allowing to support formal system
developments and reasoning. In general these methods separate the system spec-
ification from the properties expressing requirements. They do not offer built-in
constructs to axiomatise domain knowledge. In our approach, we propose to use
the capability of formal methods to describe, import and (re-)use theories in the
system design models.

In the sequel, we use Event-B theories to model domain ontologies as a col-
lection of data types, constructors and operators defined by specific axioms.
Each operator is accompanied with WD (Well-Definedness) properties defining

48 I. Mendil et al.

the conditions for correct use of each operator. When an operator is used (i.e.
applied), a WD proof obligation, corresponding to this condition, needs to be
proved (discharged). Indeed, once the theory formalising an ontology is designed,
models import and use its data types and operators and the corresponding WD
proof obligations require to be discharged. As a consequence, domain knowledge
model is factorised once and for all in a single reusable and shareable theory
and second it does not require, from the designer, to write domain knowledge
invariants and properties required to guarantee correctness of the design models.
Indeed, the use of operators brings, for free, WD conditions as proof obligations
to be discharged. Each design model is annotated by domain knowledge through
typing. Event-B theories offer services and capabilities to implement the notion
of design models conforming to domain knowledge constraints expressed by the-
ories. These theories provide data types and operators for expressiveness while
requiring discharging of WD conditions ensuring conformance checking.

At this level, a formal setting to write theories for domain knowledge mod-
elling is missing. A domain knowledge modelling language shall be used for this
purpose.

Next sections describe an Event-B based development process allowing to
handle domain knowledge as formal ontologies and annotate formal models using
typing. A generic theory for ontologies is presented and a case study issued from
aircraft cockpits engineering showcases the overall approach.

5 Ontologies as Event-B Theories

From Sect. 3, we conclude that ontologies, as descriptive knowledge models for
domains, are powerful models for knowledge representation and reasoning, and
from Sect. 4 we also conclude that Event-B, and more generally state-based
formal methods, are suitable for enforcing design models to reference domain
knowledge concepts and express their constraints as well-definedness conditions.

To define our ontologies, we rely on defined ontology modelling languages
(OML) like OWL [6] or PLIB [37]. In our case, provided that it can be described
using data-types based on set theory and first order logic, whatever is the ontol-
ogy modelling language, it can be described by Event-B theories.

Our approach proposes a formal parameterised theory, acting as a meta-
theory associated to the OML and each ontology is described as a theory instance
of this meta-theory. More precisely, the ontologies we use are based on a theory
inspired from OWL3 where domain knowledge is formalised as collections of
classes, properties and instances.

Listing 1.2 shows an extract of OntologiesTheory theory allowing the for-
malisation of OWL-based ontologies. It is parameterised by C, P, and I which
stand for classes, properties and instances. The Ontology(C,P,I) data type is
built using the consOntology constructor based on seven components: classes,
properties, instances (i.e. set of classes, properties and instances respec-
tively), classProperties for associating classes to properties, classInstances
3 https://www.w3.org/TR/owl-features/.

https://www.w3.org/TR/owl-features/

Leveraging Event-B Theories for Handling Domain Knowledge 49

for relating instances to classes, classAssociations defining a set of property-
named binary associations and instanceAssociations for representing the
associations between instances. Besides the ontology structure, operators are
defined to manipulate, access and update an ontology.

In Listing 1.2, the getInstanceAssociations, instanceHasPropertyVal
uei, addValueOfAnInstanceProperty and removeValueOfAnInstanceProp
erty operators define access to properties of a class and instances of an
association, check if a property is valued and add/remove a property value.
The isA relationship encoding class subsumption is defined and the theorem
isATransitivityThm, stating its transitivity, is proven.

THEORY OntologiesTheory
TYPE PARAMETERS

C, P, I
DATATYPES

Ontology(C, P, I)
CONSTRUCTORS

consOntology(classes: P(C), properties: P(P), instances: P(I),
classProperties: P(C × P), classInstances: P(C × I),
classAssociations: P(C × P × C),

instanceAssociations: P(I × P × I))
OPERATORS

isWDClassProperites <predicate> (o : Ontology(C, P, I))
. . .

getClassProperties <expression> (o : Ontology(C, P, I)
. . .

isWDInstancesAssociations <predicate> (o : Ontology(C, P, I))
. . .

getInstanceAssociations <expression> (o : Ontology(C, P, I)

isWDOntology <predicate> (o : Ontology(C, P, I))
direct definition

isWDClassInstances(o) ∧ isWDClassProperites(o) ∧
isWDClassAssociations(o) ∧ isWDInstancesAssociations(o)

. . .
isWDinstanceHasPropertyValuei <predicate>

. . .
instanceHasPropertyValuei <predicate>
(o : Ontology(C, P, I), ipv: P I × P × I), i: I, p: P, v: I)
well-definedness

isWDinstanceHasPropertyValuei(o, ipv, i, p)
direct definition

v ∈ ipv[{i �→ p}]

getInstancesOfaClass <expression> (o : Ontology(C, P, I), c: C)
well-definedness

isWDOntology(o) ∧ ontologyContainsClasses(o, {c})
direct definition

getClassInstances(o)[{c}]
addValueOfAnInstanceProperty <expression>

. . .
removeValueOfAnInstanceProperty <expression>

. . .
isA <predicate>
(o : Ontology(C, P, I), c1: C, c2: C)
well-definedness

isWDOntology(o)
ontologyContainsClasses(o, {c1, c2})

direct definition
getInstancesOfaClass(o, c1) ⊆ getInstancesOfaClass(o, c2)

THEOREMS
isATransitivityThm: ∀o, c1, c2, c3 · o ∈ Ontology(C, P, I)∧

c1 ∈ C ∧ c2 ∈ C ∧ c3 ∈ C∧
ontologyContainsClasses(o, {c1, c2, c3})
⇒ (isA(o, c1, c2) ∧ isA(o, c2, c3) ⇒ isA(o, c1, c3))

Listing 1.2. Excerpt of ontologies theory OML

Thanks to its type system, Event-B theories support the description of other
operators e.g. arithmetic or defined-types operators. These operators are associ-
ated to WD conditions (logical expressions) to ensure correct use and to preserve
a valid ontology structure at instantiation. When an operator is applied, gener-

50 I. Mendil et al.

ated WD proof obligations need to be proved. Hence, depending on the chosen
OML, Event-B theories permit the modelling of complex domain knowledge.

Important Note. The choice of the OML is driven by the needs and complexity
of the domain knowledge of interest: system engineering. It requires other mod-
elling capabilities like property derivation using arithmetic expressions or context
dependent properties and associated proof rules (see [3,4] for more details). To
handle engineering knowledge, we use first-order logic with arithmetic in our
OML. This richer expressive power leads to semi-automatic proofs requiring
interactive proof effort4.

6 Application to the Design of Critical Interactive
Systems

We highlight the importance of system design models annotation relying on
explicit formalised domain knowledge via the development of a critical interactive
system (CIS): TCAS - Traffic Collision Avoidance System.

In this section, We describe the development of a critical interactive system
(CIS): the TCAS - It is critical to the safe flight of any aircraft, namely Traffic
Collision Avoidance System. We show the importance of formalising domain
information and its integration to the system design model.

The formal development of this case study relies on domain knowledge for-
malised as an instantiated theory (Displayability Theory) of the ontology
model (see Listing 1.2). Then, the definition of the knowledge related to the spe-
cific case of aircraft objects displayability is obtained by instantiating of the latter
ontology using an Event-B context (see Listing 1.4), where the seven components
of the ontology are defined and used to build the aircraftOntology ontology.

6.1 The TCAS Case Study

Fig. 1. Protection volume

TCAS is an airborne avionics sys-
tem that acts as a last resort safety
net to mitigate risks of midair col-
lisions. TCAS tracks aircraft in
the surrounding airspace exploiting
position sent by their transponders
to detect collision risks. If an impe-
dent collision is detected, TCAS
issues a Resolution Advisory (RA)
to the flight crews of concerned air-
crafts. These advisories ask them to
climb or descend at a given vertical
rate to prevent collision [24,43].
4 Automatic reasoners (decidable logics) like Pellet [42] or Racer [26] apply to less rich

OML than the one offered by Event-B theories.

Leveraging Event-B Theories for Handling Domain Knowledge 51

TCAS computes a virtual protected volume (Fig. 1) which includes the posi-
tion of the aircrafts nearby. This volume depends on the aircraft speed and
trajectory. It is permanently updated. Some of the information related to vol-
ume is displayed in a cockpit screen for flight crew usage. An example of such
display can be found in [44]. Due to space constraints, we only focus on a single
critical safety property: TCAS must display, on a PFD (Primary Flight Display)
cockpit screen, the current status of all the aircrafts in the volume. Beyond, a
critical aircraft (due to its proximity) must be visible.

6.2 A Domain Ontology for the Critical Interactive Systems

Two steps are required to build the domain ontology.

THEORY DisplayabilityTheory
IMPORT OntologiesTheory
AXIOMATIC DEFINITIONS

IOOntology
TYPES

IOClasses , IOP roperties , IOInstances
OPERATORS

isIOOntologyWD < predicate >
(o : Ontology(IOClasses, IOP roperties, IOInstances))

visible < expression >: IOInstances
hidden < expression >: IOInstances
critical < expression >: IOInstances
safe < expression >: IOInstances
hasVisibility < expression >: IOP roperties
hasCriticality < expression >: IOP roperties
visibility < expression >: IOClases
criticality < expression >: IOClases
isVisibleWDi < predicate > ...
isVisiblei < predicate >

(o : Ontology(IOClasses, IOP roperties, IOInstances),
ipvs : P(IOInstances × IOP roperties × IOInstances),
i : IOInstances)

well-definedness
isVisibleWDi(o, ipvs, i)

setCriticaliWD < predicate > ...
setCriticali < expression >

(o : Ontology(IOClasses, IOP roperties, IOInstances),
ipv : P(IOInstances × IOP roperties × IOInstances),
i : IOInstances)

well-definedness
setCriticaliWD(o, ipvs, i)

AXIOMS
axm1 : ∀o · o ∈ . . . ⇒ (isIOOntologyW D(o) ⇔ isW DOntology(o)
axm2 : partition(IOP roperties, {hasV isibility}, {hasCriticality})
axm3 : {visibility, criticality} ⊆ IOClasses
axm4 : ∀o, ipv, i · o ∈ . . . ⇒ (isV isibleW Di(o, ipv, i) ⇔

i ∈ dom(dom(ipv)))
axm5 : ∀o, ipv, io ∈ . . . ⇒ (isV isiblei(o, ipv, i) ⇔

instanceHasP ropertyV aluei(o, ipv, i, hasV isibility, visible)
...
axm18 : ∀o, ipv, i · o ∈ . . . ⇒ (setCriticaliW D(o, ipv, i) ⇔

i ∈ dom(dom(ipv)) ∧ isV isiblei(o, ipv, i))
axm19 : ∀o, ipv1, ipv2, i · o ∈

Ontology(IOClasses, IOProperties, IOInstances)∧
ipv1 ∈ P(IOInstances × IOProperties × IOInstances)∧
ipv2 ∈ P(IOInstances × IOProperties × IOInstances)∧
i ∈ IOInstances ⇒ (ipv2 = setCriticali(o, ipv1, i) ⇔
ipv2 = (ipv1 \ {i �→ hasCriticality �→ safe})∪
{i �→ hasCriticality �→ critical})

Listing 1.3. Exerpt of Displayability theory

An Ontology of Interactive Objects. First, we define a generic domain
knowledge model for interactive objects (IOs) by instantiating the ontology the-
ory (see Listing 1.2) to get the DisplayabilityTheory Event-B theory (IO
ontology - Listing 1.3). It axiomatises a collection of specific operators with WD

52 I. Mendil et al.

conditions entailing displayability properties of critical IOs. Indeed, IOClasses,
IOProperties, IOInstances types and two kinds of operators (predicates and
expressions) are defined. Predicates check if a property holds in the system
variable or introduce WD conditions required for other operators. Besides, we
create constant operators like visible, hidden, critical, safe which are
instances of IOInstances and hasVisibility, hasCriticality being elements
of IOProperties.

The instanceHasPropertyValuei operator of OntologiesTheory is a pred-
icate with five arguments: ontology, system variable, instance, property and value.
The predicate is true when the 3-tuple instance �→ property �→ value is in sys-
tem variable. For example, the operator isVisiblei uses it to state that an IO
is visible if and only if its property hasVisibility relates the IO to visible and
complies with the ontology schema (see instanceHasPropertyValuei in Listing
1.2). We adopted the same methodology for writing all operators.

For instance, we define the WD condition for setCriticali as a predi-
cate setCriticaliWD encapsulating the conditions needed to use this oper-
ator: i ∈ dom(dom(ipv)) stating that i must be in the model variable and
isVisiblei(o,ipvs,i) meaning that the IO i must be visible. Last, for domain
coverage purposes, the domain knowledge model (theory) is self-contained, i.e.
defined concepts and properties are manipulated using theory operators only (no
other IO manipulation is allowed). Thus, proved theorems hold for all IOs.

Remark. From system engineering perspective, this assumption means that a
designer shall only use the types and operators supplied by the theory encoding
the domain knowledge ontology.

CONTEXT InstantiationContext
CONSTANTS

aircraftClass, aircraftInstances, ClassProperties, ClassInstances
ClassAssociations, instanceAssociation, aircraftOntology,
thingClass, thingInstances,

AXIOMS
axm1 : partition(IOClasses, {thingClass}, {aircraftClass},

{visibility}, {criticality})
axm2 : partition(IOInstances, {aircraftInstances},

{visible}, {hidden}, {safe}, {critical})
axm3 : thingInstances = IOInstances
axm4 : ClassP roperties =

{aircraftClass} × {hasV isibility, hasCriticality}
axm5 : ClassInstances = (

{aircraftClass} × aircraftInstances)
∪({visibility} × {visible, hidden})
∪({criticality} × {critical, safe})
∪(thingClass × thingInstances)

axm6: ClassAssociations ∈ P(IOClasses × IOP roperties×
IOClasses)

axm7 : ClassAssociations =
({aircraftClass} × {hasV isibility} × {visibility})
∪({aircraftClass} × {hasCriticality} × {criticality})

axm8 : instanceAssociation =
(aircraftInstances × {hasV isibility} × {hidden})
∪(aircraftInstances × {hasCriticality} × {safe})

axm9 : aircraftOntology = consOntology(IOClasses,
IOP roperties, IOInstances, ClassP roperties,
ClassInstances, ClassAssociations, instanceAssociation)

ConformThm10 : isIOOntologyWD(aircraftOntology)
isAthm11 : isA(aircraftOntology, aircraftClass, thingClass)

END

Listing 1.4. Context of instantiation

Leveraging Event-B Theories for Handling Domain Knowledge 53

Instantiation for Aircraft Description IO (Listing 1.4). Displayability
Theory is instantiated in the context OntologyInstantiation Context to
define the specific IOs concepts and properties used in the TCAS models. For
our development, three classes are introduced: aircraftClass (is a thing by
isAthm11)), visibility and criticality. The latter two classes are bor-
rowed from the DisplayabilityTheory theory. In addition, we introduce the
aircraft Instances using an extensional axiom axm2 (Event-B partition
operator asserts that the first argument is the disjoint union of the others).
Afterwards, aircraftOntology is built in axm9. Last, note that ConformThm9
theorem is proved from the constituent of the ontology to ensure that this ontol-
ogy is WD by isWDIOontology (Listings 1.3 and 1.2).

6.3 Ontology-Based Annotation of TCAS Design Model

The Event-B machine model TheoryOperatorsBasedModel (Listing 1.5) handles
the safety requirement stating that a critical aircraft must be visible thanks to the
annotation of the state variable system using isVariableOfOntology predicate
operator in inv1 and to the use of setCriticali operator, borrowed from the
DisplaybilityOntology, in the event CorrectAircraftStatusUpdate.

Indeed, isVariableOfOntology ensures that system variable fully complies
with aircraftOntology rules. From the proof perspective, the guards of the
event guarantee correct variable updating and invariant preservation. As a ben-
efit, the two theories exempt the designer from writing domain-related proper-
ties, thus focusing only on the system-specific model. Listing 1.5 shows important
parts of the TCAS model, noticebly the event CorrectAircraftStatusUpdate
allows to update the aircraft i status so that it is visible (see its definition of
setCriticali in Listing 1.3). The guards ensure that the operation is performed
in a well-defined fashion through the use of the necessary WD operators.

MACHINE TheoryOperatorsBasedModel
SEES InstantiationContext
VARIABLES system
INVARIANTS

inv1 : isV ariableOfOntology(aircraftOntology, system)
INITIALISATION

THEN

act1 : system : |system′ ⊆ instanceAssociation
EVENT CorrectAircraftStatusUpdate

ANY i
WHERE

grd1 : ontologyContainsInstances(aircraftOntology, {i})
grd2 : isV isibleW Di(aircraftOntology, system, i)
grd3 : isV isiblei(aircraftOntology, system, i)
grd4 : isSafeW D(aircraftOntology, system, i)
grd5 : isSafe(aircraftOntology, system, i)
grd6 : isW DSetCriticali(aircraftOntology, system, i)

THEN
act1 : system := setCriticali(aircraftOntology, system, i)

. . .

Listing 1.5. Ontology theory based annotated model

54 I. Mendil et al.

7 Assessment

The complete Event-B development including all the theories and models may
be downloaded from https://www.irit.fr/∼Ismail.Mendil/recherches/

Previous Work. [31] proposed a correct-by-construction Event-B development
of TCAS featuring many functionalities. However, domain knowledge formalisa-
tion is not explicit and domain-specific rules are hardcoded in the design models.
Here, we improved our approach making domain knowledge explicit by annotat-
ing models with ontologies, using data types formalised as Event-B theories.
Consequently, automatic domain oriented WD proof obligations are generated
and proved in the annotated design models. It is worth noticing that these the-
ories are built and proved once and for all.

Explicit Domain Knowledge and Reusability. The proposed ontology modelling
language (an Event-B theory) makes it possible to design, systematically, a series
of theories, composing and/or extending each other, to model various domain
knowledge as instances of the generic theory of Listing 1.2. In addition, domain
theories and system models are formalised (integrated) in the single setting of
Event-B (Set theory and first order logic) avoiding semantic mismatch that may
occur in case of heterogeneous modelling language semantics. Besides, Listing 1.2
generic theory of ontologies supports engineering standards formalisation. Con-
fidence in the consistency of the standard rules is achieved by proving WD and
theorems. Last, theorems of the theory are proved once and for all. Like domain
knowledge types and operators, these theorems are reused in system models.

Reduction of Modelling Effort. When models are annotated by references to
ontology (Listing 1.5) through typing in Event-B theories, guards are described
by WD conditions (grd3 - grd5) systematically borrowed from the ontology
when an operator is applied. They are mined, in a systematic way, from the
well-definedness conditions of the used operator in act1. This model provides
assistance to the designer as domain knowledge operators applications allow a
designer to identify the operator WD conditions for its correct application.

Enhanced Safety of System Models. We presented an Event-B model (machine)
defined for TCAS based on annotation of state variables through typing with
domain theory defined types (Listing 1.5). This model based on WD and avoids
the designer having to explicitly write invariants. This is a major strength of
our approach as it assists the designer by describing explicitly safety properties
in the domain ontology (Event-B theory of Listings 1.3 and 1.4) as axioms and
theorems and by embedding these safety properties in the design model through
the WD proof obligation. The designer uses operators in the models that brings
their WD proof obligations that ensure safety when discharged (No need to write
explicitly the invariants, this work is achieved on the ontology side).

https://www.irit.fr/~Ismail.Mendil/recherches/

Leveraging Event-B Theories for Handling Domain Knowledge 55

Asynchronous Evolution. The neat separation of the general domain knowledge
on which the system depends and the specific features of the system under study
enforces the separation of concepts principle and promotes formal specification
modularisation enabling the orthogonality principle i.e. both domain and sys-
tem design models may evolve asynchronously with limited impact on previous
developments. In case of evolution, solely the proof obligations generated due to
this evolution are discharged again.

8 Conclusion and Future Work

The work presented in this paper takes advantage of foundations and methods of
knowledge modeling and reasoning on the one hand and formal system engineer-
ing on the other hand. This work defines a uniform framework integrating both
domain knowledge, system specification and safety requirements in a unique for-
mal modelling setting and proof system offered by Event-B. It advocates the
1) explicit modelling of domain knowledge by ontologies as a well-accepted for-
mal modelling framework and the 2) separation of domain and system models.
The proposition yields three important advantages in formal modelling state-of-
the-art. Indeed, it becomes possible to 1) refer to (annotation) domain models
concepts (types, operators, etc.), 2) automatically bring, in the system model,
checking of well-definedness proof obligations for robustness purposes, and 3)
allow asynchronous evolution of both domain and system models thanks to the
separation of concerns. However, this evolution does not prevent from checking
new occurring proof obligations and/or old ones that may not be preserved.

The overall approach was showcased using a formalised an OWL-based
domain modelling language as an Event-B theory where data types, operators
and Well-Definedness play a central role. We used this formal ontology language
to describe a domain theory for critical interactive systems (CIS) concepts and
safety rules for displaying aircraft in TCAS. Moreover, the system engineering
domain was exemplified to shed the light on the gain in robustness when using
the Well-Defined operators of a domain theory. An assessment is provided to
evaluate efficiency of knowledge formalisation and integration in our approach.
Finally, the formalized theories developed in this paper were used to annotate
design models as part of our approach for standard conformance in [32]. A large
part of ARINC 661 [7] standard describing Cockpit Display Systems (CDS) inter-
faces used in all aircrafts has been formalised. This standard plays important
role to minimise costs as well as to meet certification requirements.

Future Work. The current study opened a number of new research directions.
From the foundational perspective, we intend to formalise knowledge models
composition with theory composition operators (importation, extension and
instantiation) in order to handle heterogeneity and multi-view problems of
complex systems while maintaining consistency of obtained Event-B theories.
Another significant perspective consists in addressing other engineering domains,
specifically transportation systems.

56 I. Mendil et al.

References

1. Abrial, J.R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Leuschel, M., Schmalz, M., Voisin, L.:
Proposals for mathematical extensions for Event-B. Technical report (2009)

3. Aı̈t Ameur, Y., Baron, M., Bellatreche, L., Jean, S., Sardet, E.: Ontologies in
engineering: the OntoDB/OntoQL platform. Soft. Comput. 21(2), 369–389 (2017)

4. Aı̈t Ameur, Y., Méry, D.: Making explicit domain knowledge in formal system
development. Sci. Comput. Program. 121, 100–127 (2016)

5. Aı̈t Ameur, Y., Nakajima, S., Méry, D.: Implicit and Explicit Semantics Integration
in Proof-Based Developments of Discrete Systems. Springer, Heidelberg (2021).
https://doi.org/10.1007/978-981-15-5054-6

6. Antoniou, G., van Harmelen, F.: Web ontology language: OWL. In: Staab, S.,
Studer, R. (eds.) Handbook on Ontologies. International Handbooks on Informa-
tion Systems, pp. 67–92. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24750-0 4

7. ARINC: ARINC 661 specification: Cockpit Display System Interfaces To User
Systems. By AEEC, Published by SAE, 16701 Melford Blvd., Suite 120, Bowie,
Maryland 20715 USA, June 2019

8. Barlatier, P., Dapoigny, R.: A type-theoretical approach for ontologies: the case of
roles. Appl. Ontol. 7, 311–356 (2012)

9. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: a successful application
of b in a large project. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999.
LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48119-2 22

10. Benaissa, N., Méry, D.: Cryptographic protocols analysis in event B. In: Pnueli,
A., Virbitskaite, I., Voronkov, A. (eds.) PSI 2009. LNCS, vol. 5947, pp. 282–293.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11486-1 24

11. Bertot, Y., Castran, P.: Interactive Theorem Proving and Program Development:
Coq’Art The Calculus of Inductive Constructions, 1st edn. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-662-07964-5

12. Bjørner, D.: Software Engineering 3 - Domains, Requirements, and Software
Design. Texts in Theoretical Computer Science. An EATCS Series, Springer, Hei-
delberg (2006). https://doi.org/10.1007/3-540-33653-2

13. Bjørner, D.: Domain analysis and description principles, techniques, and modelling
languages. ACM Trans. Softw. Eng. Methodol. 28(2), 8:1–8:67 (2019)

14. Brucker, A.D., Wolff, B.: Isabelle/DOF: design and implementation. In: Ölveczky,
P.C., Salaün, G. (eds.) SEFM 2019. LNCS, vol. 11724, pp. 275–292. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30446-1 15

15. Brucker, A.D., Wolff, B.: Using ontologies in formal developments targeting certi-
fication. In: Ahrendt, W., Tapia Tarifa, S.L. (eds.) IFM 2019. LNCS, vol. 11918,
pp. 65–82. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34968-4 4

16. Butler, M., et al.: The first twenty-five years of industrial use of the B-method. In:
ter Beek, M.H., Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 189–209.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58298-2 8

17. Butler, M., Maamria, I.: Practical theory extension in Event-B. In: Liu, Z., Wood-
cock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol.
8051, pp. 67–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39698-4 5

https://doi.org/10.1007/978-981-15-5054-6
https://doi.org/10.1007/978-3-540-24750-0_4
https://doi.org/10.1007/978-3-540-24750-0_4
https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/978-3-642-11486-1_24
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/3-540-33653-2
https://doi.org/10.1007/978-3-030-30446-1_15
https://doi.org/10.1007/978-3-030-34968-4_4
https://doi.org/10.1007/978-3-030-58298-2_8
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-642-39698-4_5

Leveraging Event-B Theories for Handling Domain Knowledge 57

18. Calegari, D., Mossakowski, T., Szasz, N.: Heterogeneous verification in the context
of model driven engineering. Sci. Comput. Program. 126, 3–30 (2016)

19. Dapoigny, R., Barlatier, P.: Modeling ontological structures with type classes in
Coq. In: Pfeiffer, H.D., Ignatov, D.I., Poelmans, J., Gadiraju, N. (eds.) ICCS-
ConceptStruct 2013. LNCS (LNAI), vol. 7735, pp. 135–152. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35786-2 11

20. Dapoigny, R., Barlatier, P.: Formalizing context for domain ontologies in Coq. In:
Brézillon, P., Gonzalez, A.J. (eds.) Context in Computing, pp. 437–454. Springer,
New York (2014). https://doi.org/10.1007/978-1-4939-1887-4 27

21. Dupont, G., Aı̈t-Ameur, Y., Pantel, M., Singh, N.K.: Handling refinement of con-
tinuous behaviors: a refinement and proof based approach with Event-B. In: 13th
International Symposium TASE, pp. 9–16. IEEE Computer Society Press (2019)

22. Dupont, G., Aı̈t-Ameur, Y., Pantel, M., Singh, N.K.: Proof-based approach to
hybrid systems development: dynamic logic and Event-B. In: Butler, M., Raschke,
A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 155–170.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4 11

23. Dupont, G., Aı̈t-Ameur, Y., Pantel, M., Singh, N.K.: Formally verified architecture
patterns of hybrid systems using proof and refinement with Event-B. In: Raschke,
A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS, vol. 12071, pp. 169–185. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-48077-6 12

24. EUROCONTROL: Airborne collision avoidance system (ACAS) guide, December
2017

25. Gruber, T.R.: Towards principles for the design of ontologies used for knowledge
sharing. In: Guarino, N., Poli, R. (eds.) Formal Ontology in Conceptual Analysis
and Knowledge Representation. Kluwer Academic Publisher’s (1993)

26. Haarslev, V., Möller, R.: Description of the RACER system and its applications,
vol. 2083, January 2001

27. Hacid, K., Ait-Ameur, Y.: Strengthening MDE and formal design models by ref-
erences to domain ontologies. a model annotation based approach. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 340–357. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 24

28. Hacid, K., Aı̈t Ameur, Y.: Handling domain knowledge in design and analysis of
engineering models. Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 74, 1–21
(2017)

29. Henderson-Sellers, B.: On the Mathematics of Modelling, Metamodelling. Springer
Briefs in Computer Science, Ontologies and Modelling Languages. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-29825-7

30. Hoang, T.S., Voisin, L., Butler, M.: Domain-specific developments using rodin
theories. In: Ait-Ameur, Y., Nakajima, S., Méry, D. (eds.) Implicit and Explicit
Semantics Integration in Proof-Based Developments of Discrete Systems, pp. 19–
37. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5054-6 2

31. Mendil, I., Singh, N.K., Aı̈t Ameur, Y., Méry, D., Palanque, P.A.: An integrated
framework for the formal analysis of critical interactive systems. In: 27th Asia-
Pacific Software Engineering Conference, APSEC 2020, Singapore, 1–4 December
2020, pp. 139–148. IEEE (2020)

32. Mendil, I., Aı̈t-Ameur, Y., Singh, N.K., Méry, D., Palanque, P.: Standard
conformance-by-construction with Event-B. In: Lluch Lafuente, A., Mavridou,
A. (eds.) FMICS 2021. LNCS, vol. 12863, pp. 126–146. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-85248-1 8

https://doi.org/10.1007/978-3-642-35786-2_11
https://doi.org/10.1007/978-1-4939-1887-4_27
https://doi.org/10.1007/978-3-319-91271-4_11
https://doi.org/10.1007/978-3-030-48077-6_12
https://doi.org/10.1007/978-3-319-47166-2_24
https://doi.org/10.1007/978-3-642-29825-7
https://doi.org/10.1007/978-981-15-5054-6_2
https://doi.org/10.1007/978-3-030-85248-1_8

58 I. Mendil et al.

33. Méry, D., Singh, N.K.: Analysis of DSR protocol in Event-B. In: Défago, X., Petit,
F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 401–415. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24550-3 30

34. Mossakowski, T.: The distributed ontology, model and specification language –
DOL. In: James, P., Roggenbach, M. (eds.) WADT 2016. LNCS, vol. 10644, pp.
5–10. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72044-9 2

35. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-order Logic. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45949-9

36. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

37. Pierra, G.: The PLIB ontology-based approach to data integration. In: Jacquart,
R. (ed.) Building the Information Society. IIFIP, vol. 156, pp. 13–18. Springer,
Boston, MA (2004). https://doi.org/10.1007/978-1-4020-8157-6 2

38. Romanovsky, A.B., Thomas, M. (eds.): Industrial Deployment of System Engi-
neering Methods. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
33170-1

39. Singh, N.K.: Using Event-B for Critical Device Software Systems. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-1-4471-5260-6

40. Singh, N.K., Ait-Ameur, Y., Méry, D.: Formal ontological analysis for medical
protocols. In: Ait-Ameur, Y., Nakajima, S., Méry, D. (eds.) Implicit and Explicit
Semantics Integration in Proof-Based Developments of Discrete Systems, pp. 83–
107. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5054-6 5

41. Singh, N.K., Aı̈t Ameur, Y., Pantel, M., Dieumegard, A., Jenn, E.: Stepwise formal
modeling and verification of self-adaptive systems with event-b. the automatic rover
protection case study. In: 21st International Conference on Engineering of Complex
Computer Systems, ICECCS, pp. 43–52 (2016)

42. Sirin, E., Parsia, B.: Pellet: an OWL DL reasoner. In: Description Logics, pp.
212–213 (2004)

43. ED 143 - Minimum Operational Performance Standards for Traffic Alert and Col-
lision Avoidance System II (TCAS II) (2013)

44. U.S. Department of transportation, F.A.A.: Introduction to TCAS 2, version 7.1,
February 2011

45. Tueno, S., Laleau, R., Mammar, A., Frappier, M.: Integrating domain modeling
within a formal requirements engineering method. In: Ait-Ameur, Y., Nakajima,
S., Méry, D. (eds.) Implicit and Explicit Semantics Integration in Proof-Based
Developments of Discrete Systems, pp. 39–58. Springer, Singapore (2021). https://
doi.org/10.1007/978-981-15-5054-6 3

46. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans.
Softw. Eng. Methodol. 6(1), 1–30 (1997)

47. Zoubeyr, F., Aı̈t Ameur, Y., Ouederni, M., Tari, A.: A correct-by-construction
model for asynchronously communicating systems. Int. J. Softw. Tools Technol.
Transf. 19(4), 465–485 (2017)

https://doi.org/10.1007/978-3-642-24550-3_30
https://doi.org/10.1007/978-3-319-72044-9_2
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/978-1-4020-8157-6_2
https://doi.org/10.1007/978-3-642-33170-1
https://doi.org/10.1007/978-3-642-33170-1
https://doi.org/10.1007/978-1-4471-5260-6
https://doi.org/10.1007/978-981-15-5054-6_5
https://doi.org/10.1007/978-981-15-5054-6_3
https://doi.org/10.1007/978-981-15-5054-6_3

Program Analysis and Verifiation

Reasoning About Iteration and Recursion
Uniformly Based on Big-Step Semantics

Ximeng Li1,3(B), Qianying Zhang2, Guohui Wang2,
Zhiping Shi1(B), Yong Guan3(B)

1 Beijing Key Laboratory of Electronic System Reliability and Prognostics,
Capital Normal University, Beijing, China

{lixm,shizp}@cnu.edu.cn
2 Beijing Engineering Research Center of High Reliable Embedded System,

Capital Normal University, Beijing, China
3 Beijing Advanced Innovation Center for Imaging Theory and Technology,

Capital Normal University, Beijing, China
guanyong@cnu.edu.cn

Abstract. A reliable technique for deductive program verification
should be proven sound with respect to the semantics of the program-
ming language. For each different language, the construction of a sep-
arate soundness proof is often a laborious undertaking. In language-
independent program verification, common aspects of computer pro-
grams are addressed to enable sound reasoning for all languages. In this
work, we propose a solution for the sound reasoning about iteration and
recursion based on the big-step operational semantics of any program-
ming language. We give inductive proofs on the soundness and relative
completeness of our reasoning technique. We illustrate the technique
at simplified programming languages of the imperative and functional
paradigms, with diverse features. We also mechanize all formal results in
the Coq proof assistant.

1 Introduction

It is commonly accepted that a reliable technique for deductive program verifica-
tion should be designed with the formal semantics of the programming language
as foundation. With the formal semantics used as axioms, a mathematical proof
of a desired property for the target program can be constructed. Direct program
proofs based on operational semantics are often cumbersome. Due to language
constructs that may incur unbounded program behavior, inductive proofs along
the structure of semantic derivations (e.g., [27]) are expected.

An established method for simplifying the verification is by devising a pro-
gram logic (e.g., [18,34]) for the programming language. Program logics effec-
tively reduce the burdens in dealing with many aspects of the verification, such
as the reasoning about loops, recursive function calls, memory layout of objects,
concurrency, etc. The effectiveness of program logics has been demonstrated by
powerful tools (e.g., [6,9,10,20]) and significant projects (e.g., [30,37]).

A price to pay for enjoying the power of program logics, however, is the
considerable amount of effort often needed in establishing their soundness and
c© Springer Nature Switzerland AG 2021
S. Qin et al. (Eds.): SETTA 2021, LNCS 13071, pp. 61–80, 2021.
https://doi.org/10.1007/978-3-030-91265-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91265-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-91265-9_4

62 X. Li et al.

completeness wrt. the baseline semantics – often an operational semantics. There
have been a plethora of programming languages designed and implemented to
meet the needs of different domains. The recent development of blockchain tech-
nology alone has led to the creation of multiple languages, such as Solidity [5],
Yul [7], Scilla [36], Move [3], Michelson [2], EVM bytecode language [41], etc.
Developing one program logic for each language that could be used in scenarios
where correctness is of serious concern would require a huge amount of efforts.

To combat the cumbersomeness of direct program proofs based on opera-
tional semantics, while avoiding the full complexity in the development of pro-
gram logics, one could seek to establish the infrastructure necessary for reasoning
about specific kinds of language features, for any languages with those features.
The results in [26] and [25] show how to deal with fundamental language fea-
tures that may cause unbounded behavior, such as iteration and recursion, in
a language-independent fashion. In [26], a technique is proposed to generate
inductive invariants from annotated loop invariants. In [25], a method is pre-
sented to turn the semantics of a programming language into a program verifier
by applying coinductive reasoning principles. Both developments are built on
the small-step execution relation of programs.

Small-step semantics [31] is known to be a fine-grained approach to the defi-
nition of operational semantics. It supports a way to model concurrent execution.
It also enables the differentiation of looping and abnormal termination. Big-step
semantics (or natural semantics [15,21]), on the other hand, can be easier to
formulate. For instance, the design of the semantic configurations need not track
the intermediate control states. Big-step semantics can also be easier to use. It
does not require the consideration of both derivation sequences and derivation
trees at the same time, in performing proofs. There exist many formalizations
of big-step semantics (e.g., [4,11,17,23,28,42]) with practical uses.

In this work, we propose a technique for reasoning about iteration and recur-
sion in deductive program verification based on big-step operational semantics.
For any programming language with a big-step semantics, once a generic pred-
icate is defined to hold on the premises and corresponding conclusions for the
semantic rules, a theorem becomes available – the theorem turns the verifica-
tion of partial correctness results into symbolic execution of the target program
with auxiliary information from the user specification. For loops and recursive
function calls, this auxiliary information is provided in the same form via the
specification, enabling the same pattern of reasoning. We illustrate our technique
using verification tasks involving simplified imperative and functional languages.
We mechanize the proofs of all formal results [8] in the Coq proof assistant [1].

The main technical contributions of this article are:

– a language-independent technique simplifying the deductive verification of
iterative and recursive program structures based on big-step semantics,

– proofs for the soundness and relative completeness of the technique,
– illustration of the technique with the verification of example programs in

simplified programming languages of different paradigms,
– mechanization of proofs and verification examples in the Coq proof assistant.

Reasoning About Iteration and Recursion Uniformly 63

We provide an infrastructure that handles the routine part of the work in
reasoning about programming constructs with potentially unbounded behavior,
based on a common model of big-step execution in a proof assistant. This pro-
vides a basis for a language-independent deductive program verifier.

Structure. The remaining part of this article is structured as follows. In Sect. 2,
we introduce the reasoning technique, and prove its soundness. In Sect. 3, we
illustrate the technique with a toy example that is developed in detail. In Sect. 4,
we present further verification examples targeting simplified imperative and func-
tional languages. In Sect. 5, we discuss the completeness of the technique. In
Sect. 6, we discuss related work. In Sect. 7, we discuss potential extensions of the
current development. Finally, we conclude in Sect. 8.

2 The Technique

The proposed verification technique can be used to check that the potential exe-
cution results of a program satisfy pre-specified conditions. The potential execu-
tion results are estimated by a combination of concrete computation according
to the big-step semantics of the programming language, and abstract inference
according to the auxiliary information in the specification. The abstract infer-
ence helps realize what is usually accomplished with loop invariants in reasoning
about loops, and with function contracts in reasoning about function calls.

2.1 Specifications

We capture the execution status of programs by configurations. We capture the
results of program execution by result configurations. For imperative languages, a
configuration can be a pair of a program and a state, and a result configuration
can be a state. For functional languages, a configuration can be a functional
expression, and a result configuration can be a canonical form.

Let C be the set of all possible configurations ranged over by c, for programs
written in some language. Let R be the set of all possible result configurations
ranged over by r, for programs in the same language. We do not rely on any
assumptions about the structure of the elements in C or in R.

A specification is a function Φ ∈ C → P(R). For a configuration c, if c
contains the complete program to be verified, then Φ(c) is the set of result con-
figurations capturing the required range for the execution results of the program.
Otherwise, Φ(c) is the expected set of potential results obtained by executing
some statement within the overall program. This set provides auxiliary informa-
tion for the verification.

2.2 Semantic Derivation and Correctness

We model the set of rules of a big-step operational semantics by a predicate
rule ∈ (C × R)∗ → (C × R) → {tt ,ff }. Each semantic rule is captured as

rule [(c1, r1), . . . , (cn, rn)] (c, r)

64 X. Li et al.

Here, the list [(c1, r1), . . . , (cn, rn)] models the list of premises of the rule, and
(c, r) models the conclusion of the rule. Each premise or conclusion consists of
a configuration in the set C and a corresponding result configuration in the set
R. A side condition in a semantic rule can be captured by a condition on the
parameters c1, . . . , cn, r1, . . . , rn, c, and r, in a concrete definition of rule.

A semantic derivation concluding that the configuration c can be evaluated
to the result configuration r in the big-step semantics is captured by

deriv(c, r) := ∃k : ∃c1, . . . , ck : ∃r1, . . . , rk :
rule [(c1, r1), . . . , (ck, rk)] (c, r) ∧
∀i ∈ {1, . . . , k} : deriv(ci, ri)

Hence, the configuration c can be evaluated to the result configuration r, or
(c, r) can be derived in the big-step semantics, if there is a semantic rule with
(c, r) as conclusion, and each premise of the rule can itself be derived in the
big-step semantics. Intuitively, if deriv(c, r) can be established, then there is a
finite derivation tree rooted at (c, r).

With the notion of semantic derivation defined above, we formalize the notion
of partial correctness as the validity of specifications.

valid(Φ) := ∀c, r : deriv(c, r) ⇒ r ∈ Φ(c)

A specification Φ is valid, if for each configuration c, any result configurations
semantically derivable from c is a member of Φ(c).

2.3 Specification-Aware Inference and Verification

We infer the potential execution results of a configuration under a given speci-
fication Φ according to the following definition.

inferΦ(c, r) := ∃k : ∃c1, . . . , ck : ∃r1, . . . , rk :
rule [(c1, r1), . . . , (ck, rk)] (c, r) ∧
∀i∈{1, . . . , k} : resΦ(ci, ri)

resΦ(c, r) := r ∈ Φ(c) ∧ (Φ(c) = R ⇒ inferΦ(c, r))

The result configuration r is infered from the configuration c with the help of
the specification Φ, if there is a semantic rule with (c, r) as conclusion, and for
each premise (ci, ri) of the semantic rule, ri is a potential result for ci according
to Φ, as is captured by the auxiliary predicate resΦ. The expression resΦ(ci, ri)
says that the possible candidates for ri are constrained by the information con-
tained in the specification about ci. In addition, if Φ does not provide any useful
information about ci (i.e., Φ(ci) = R), then ri should be inferable from ci.

Intuitively, the application of the semantic rules in the inference corresponds
to the symbolic execution of the target program. The information in the specifica-
tion can be used to overcome the inability to symbolically execute the constructs
with potentially unbounded behavior, such as iteration and recursion.

We formulate the condition to be verified on specifications Φ using the pred-
icate verif . In other words, verif (Φ) is the syntactical correctness condition.

Reasoning About Iteration and Recursion Uniformly 65

verif (Φ) := ∀c, r : inferΦ(c, r) ⇒ r ∈ Φ(c)

A specification Φ is verified, if for each configuration c, any result configurations
that can be infered from c with the help of Φ are contained in Φ(c).

2.4 Soundness

We prove the implication from verif (Φ) to valid(Φ). The following lemma is a
key component of this proof.

Lemma 1. If verif (Φ) holds, and deriv(c, r) holds, then inferΦ(c, r) holds.

Proof. According to the definition of deriv(c, r), if this predicate holds, then
there is a finite derivation tree generated by the following inference rule.

deriv(c1, r1) . . . deriv(cm, rm) rule [(c1, r1), . . . , (cm, rm)] (c, r)

deriv(c, r)

The proof is by induction on the derivation tree for deriv(c, r).
From deriv(c, r), we have deriv(c1, r1), . . . , deriv(cm, rm), and

rule [(c1, r1), . . . , (cm, rm)] (c, r) (1)

for some m, c1, . . . , cm, r1, . . . , rm.
For each i ∈ {1, . . . , m}, we have inferΦ(ci, ri) from deriv(ci, ri) and the

induction hypothesis. We show that resΦ(ci, ri) holds by distinguishing between
the cases where Φ(ci) = R and where Φ(ci) �= R.

– Suppose Φ(ci) = R. Then, it holds that r ∈ Φ(ci). Hence, we have resΦ(ci, ri)
because of inferΦ(ci, ri), and the definition of resΦ.

– Suppose Φ(ci) �= R. From inferΦ(ci, ri), and verif (Φ), we have ri ∈ Φ(ci).
Hence, we have resΦ(ci, ri) according to the definition of resΦ.

Hence, for each i ∈ {1, . . . ,m}, we have resΦ(ci, ri). Thus, we can deduce
inferΦ(c, r) using (1) and the definition of inferΦ. This completes the proof. 	

Using this lemma, the soundness theorem can be obtained directly.

Theorem 1 (Soundness). If verif (Φ) can be established, then valid(Φ) holds.

Proof. Assume verif (Φ) and deriv(c, r). Then, we have inferΦ(c, r) according to
Lemma 1. Thus, we can deduce r ∈ Φ(c) using verif (Φ). 	

The application of this theorem reliably turns the problem of establishing the
validity of a specification Φ into the problem of proving verif (Φ), irrespective
of the language used for the program that is specified in Φ. The examples in
Sect. 3 and Sect. 4 show that the proof of verif (Φ) is free from induction for
reasoning about iterative and recursive programming constructs, once auxiliary
information summarizing the effects of these constructs is provided.

66 X. Li et al.

Remark 1. Lemma 1 suggests that an abstract form of computation is obtained
leveraging verified user specification. This abstract computation over-approxi-
mates the concrete computation, which indicates a potential connection with
abstract interpretation [16]. However, we do not attempt at a formal interpreta-
tion of our technique in the framework of abstract interpretation in this work.

3 Illustrative Example

In this section, we illustrate our technique using a toy example. In this example,
a program computing the factorial of a natural number is written in the While
language [27]. We show how the big-step semantics of the While language can
be formulated with the rule predicate introduced in Sect. 2.2. We then show how
the functional correctness of the factorial program can be specified and proven.

3.1 Big-Step Semantics of the While Language

The main syntactical categories of the While language are arithmetic expres-
sions a, Boolean expressions b, and statements S. A statement can be skip that
performs no operation, an assignment x := a, a sequential composition S1;S2, a
branching statement if b then S1 else S2, or a loop while b do S. Let the set of
all statements be Stmt .

For programs in the While language, the states σ are elements of Σ:=Var →
Z. Here, Var is the set of variables and Z is the set of integers. The evaluation
of arithmetic expressions and Boolean expressions in states can be formalized
by defining evaluation functions A and B, respectively, as in [27].

For the semantics of the While language, the set C of configurations is
Stmt ×Σ, and the set R of result configurations is Σ. We formulate the big-step
semantics by defining the predicate rule, as in Fig. 1. In each line, a combination
of the parameter values for which rule holds is given.

rule [] (skip, σ , σ)

rule [] (x := a, σ , σ[x a σ])

rule [(S1, σ , σ), (S2, σ , σ)] (S1;S2, σ , σ)

rule [(S1, σ , σ)] (if b then S1 else S2, σ , σ) if B b σ = tt

rule [(S2, σ , σ)] (if b then S1 else S2, σ , σ) if B b σ = ff

rule [(S, σ , σ), (while b do S, σ , σ)] (while b do S, σ , σ) if B b σ = tt

rule [] (while b do S, σ , σ) if B b σ = ff

Fig. 1. The semantic rules for the statements of the While language

There is a direct correspondence between the formulation in Fig. 1 and a
formulation using inference rules (e.g., [27]). For instance, the inference rule for
the loop while b do S in the case where the conditional expression evaluates to
true can be formulated as

Reasoning About Iteration and Recursion Uniformly 67

〈S, σ〉 → σ′′ 〈while b do S, σ′′〉 → σ′

〈while b do S, σ〉 → σ′ if B�b�σ = tt

It is captured exactly by the second last line in the definition of rule in Fig. 1.

3.2 Factorial Program and Its Specification

Consider the program Sfac in the While language. The program computes the
factorial m! where m is the initial value of the program variable m.

Sfac := (fac := m;Swh)
Swh := (while 1 < m do (m := m − 1; fac := fac ∗ m))

Let Pm be the set of states where fac has the value m!. Let P ′
m,fac be the

set of states where fac has the value fac ∗ (m − 1)!.

Pm := {σ′[fac �→ m!] | σ′ ∈ Σ}
P ′

m,fac := {σ′[fac �→ fac ∗ (m − 1)!] | σ′ ∈ Σ}
We consider the following specification for the program.

Φfac(〈Sfac, σ〉) := Pm if m = σ(m) ∧ m > 0 ∧ σ ∈ Σ

Φfac(〈Swh, σ〉) := P ′
m,fac if m = σ(m) ∧ m > 0 ∧ fac = σ(fac) ∧ σ ∈ Σ

Φfac(c) := Σ if c is not of the above forms

The specification says that when Sfac finishes execution started in a state where
the value of m is m > 0, the value of fac will be m!. The specification also
contains the auxiliary claim that when the loop Swh finishes execution started
in a state where fac has the value fac and m has the value m > 0, the value of
fac will be equal to the product of fac and (m − 1)! (noting that 0! = 1).

3.3 Proof of the Factorial Program

A direct proof of the factorial program Sfac based on the big-step operational
semantics of the While language would require an induction on the shape of
derivation trees (e.g., [27]) to establish a suitable invariant for the loop Swh.

Using the technique of Sect. 2, we aim at establishing valid(Φfac). With The-
orem 1, it suffices to show verif (Φfac) – for all c and r, assuming inferΦfac(c, r),
we attempt to show r ∈ Φfac(c).

1. Firstly, assume c is 〈Sfac, σ〉, where σ(m) > 0. Then, Φfac(c) is Pm, where m =
σ(m). Using inferΦfac(〈Sfac, σ〉, r) and the semantics of the While language in
Fig. 1, it is not difficult to obtain

rule [(〈fac := m, σ〉, σ′′), (〈Swh, σ
′′〉, r)] (〈Sfac, σ〉, r)

for some σ′′ such that resΦfac(〈fac := m, σ〉, σ′′) and resΦfac(〈Swh, σ
′′〉, r).

Since Φfac(〈fac := m, σ〉) = R, we deduce inferΦfac(〈fac := m, σ〉, σ′′) from

68 X. Li et al.

resΦfac(〈fac := m, σ〉, σ′′). Hence, we deduce σ′′ = σ[fac �→ σ(m)]. Hence, we
have σ′′(m) = σ(m) > 0. Hence, we have Φfac(〈Swh, σ

′′〉) = P ′
σ′′(m),σ′′(fac) =

{σ′[fac �→ σ′′(fac) ∗ (σ′′(m) − 1)!] | σ′ ∈ Σ} = {σ′[fac �→ σ(m)!] | σ′ ∈
Σ} = Pm. Moreover, from resΦfac(〈Swh, σ

′′〉, r) we have r ∈ Φfac(〈Swh, σ
′′〉).

Ultimately, we have r ∈ Pm.
2. Secondly, assume c is 〈Swh, σ〉, where σ(m) > 0. Then, Φfac(c) is P ′

m,fac , where
m = σ(m), and fac = σ(fac). Using inferΦfac(〈Swh, σ〉, r) and the semantics
of the While language in Fig. 1, we have the following two cases.
(a) We have m ≤ 1, rule [] (〈Swh, σ〉, σ), and r = σ. Since m > 0 and

m ≤ 1, we have m = 1. Hence, it is not difficult to deduce r ∈ P ′
m,fac .

(b) We have m > 1, and

rule [(〈m := m − 1; fac := fac ∗ m, σ〉, σ′′), (〈Swh, σ
′′〉, r)] (〈Swh, σ〉, r)

for some σ′′ such that resΦfac(〈m := m − 1; fac := fac ∗ m, σ〉, σ′′) and
resΦfac(〈Swh, σ

′′〉, r). From the former we have

inferΦfac(〈m := m − 1; fac := fac ∗ m, σ〉, σ′′)

The specification Φfac provides no information about the two assign-
ments, m := m − 1 and fac := fac ∗ m. Hence, inferΦfac applies to these
two individual assignments, and it can be deduced that σ′′ = σ[m �→
m − 1, fac �→ fac ∗ (m − 1)]. Hence, we have σ′′(m) = m − 1 > 0.
Hence, Φfac(〈Swh, σ

′′〉) = P ′
σ′′(m),σ′′(fac) = {σ′[fac �→ (fac ∗ (m − 1)) ∗

(m − 1 − 1)!] | σ′ ∈ Σ} = P ′
m,fac . Moreover, from resΦfac(〈Swh, σ

′′〉, r)
we have r ∈ P ′

σ′′(m),σ′′(fac). Ultimately, we have r ∈ P ′
m,fac .

In the other cases, we have Φfac(c) = R. Hence, it trivially holds that r ∈ Φfac(c)
The proof is thus complete. 	

The above proof of the factorial program does not require the use of induc-
tion. Essentially, the induction required for the loop is already encapsulated in
the proof of Theorem 1.

3.4 Comparison with Hoare-Style Program Verification

A Hoare-style specification of the factorial program would be {m = n ∧ n >
0} Sfac {fac = n!} Here, n is a logical variable that is used to record the initial
value of the program variable m. This specification corresponds to our definition
of Φfac(〈Sfac, σ〉) for σ(m) > 0. The latter is more verbose for its explicit reference
to states. On the other hand, the use of the latter specification spares the efforts
to define an assertion language for each specific programming language.

In Hoare logic, the verification of the program can be performed with the
loop invariant 1 ≤ m ≤ n ∧ fac = n ∗ (n − 1) ∗ · · · ∗ m. It captures the condition
that is preserved under the effects of a single round of loop. In comparison, the
specification Φfac features the loop variant Φfac(〈Swh, σ〉) (with σ(m) > 0). It
captures the cumulative effects of the loop from the start of any round to the

Reasoning About Iteration and Recursion Uniformly 69

end of the last round. It can be seen that different ways of thinking are required
in coming up with the two kinds of specifications. With the proposed technique,
the same style as Φfac can be used for different programming languages, for both
loops and recursive functions, as can be seen in Sect. 4.

In Hoare logic, the reasoning about programs is often performed in a back-
ward fashion. For a statement that is neither a loop nor a function call, a pre-
condition is derived from the post-condition based on the logical rule for the
statement. For a loop or a function call, the pre-condition is inferred based on
the invariant of the loop or the contract of the function. In our technique, the
reasoning is performed in a forward fashion. If a specification provides no infor-
mation about a configuration, a result configuration is derived directly using the
semantics. For instance, the result configuration σ[fac �→ σ(m)] is derived from
the configuration 〈fac := m, σ〉 using the semantics in the factorial example. Oth-
erwise, the specification is used to infer the potential result configurations. For
instance, the specification Φfac is used to infer the potential result configurations
for the configuration 〈Swh, σ[fac �→ σ(m)]〉 in the factorial example.

In Hoare-style program verification, a loop invariant is justified by assum-
ing that it holds after a round of loop, and showing that it also holds before
that round. In our technique, a loop variant is justified by executing one
round of loop from each configuration satisfying the pre-condition of the loop
variant, and showing that no more result configurations are possible accord-
ing to the loop variant for each configuration reached after that round (e.g.,
〈Swh, σ[m �→ m − 1, fac �→ fac ∗ (m − 1)]〉 in the factorial example), than for the
original configuration (e.g., 〈Swh, σ〉 in the factorial example) before that round.

4 Verification of Iterative and Recursive Programs

In this section, we evaluate our technique with two further examples. In the two
examples, programming languages of the imperative and functional paradigms
are used, respectively, to implement the functionality of merging two sorted lists
of integers into a single sorted list of integers.

4.1 Extended While Language and Array-Merging Program

Extended While Language. The programming language of this section is an
extension of the While language. This extension contains the extra features of
one-dimensional arrays and functions.

We give the syntax for arithmetic expressions a, Boolean expressions b, and
statements S. We then explain the constructs present in the extension only.

a ::= n | x | X | X[a] | a + a | a − a | a ∗ a | a / a

b ::= true | false | a = a | a < a | b && b | !b
S ::= var x | arr X[n] | x := a | X[a] := a | skip |

if b then S else S | while b do S | S;S | f(a, . . . , a) → [x, . . . , x]

70 X. Li et al.

ρmg := [merge ([S,T, i, m, n], [], Smg)]

Smg := var j; var k; j := m+ 1; k := i;Swh;Si,m;Sj,n

Swh := while i ≤ m&& j ≤ n do (

(if S[i] ≤ S[j] then T[k] := S[i]; i := i+ 1 else T[k] := S[j]; j := j+ 1);

k := k+ 1)

Si,m := while i ≤ m do (T[k] := S[i]; i := i+ 1; k := k+ 1)

Sj,n := while j ≤ n do (T[k] := S[j]; j := j+ 1; k := k+ 1)

Fig. 2. The program ρmg that merges sorted array fragments

Here, X is an array identifier, and X[a] is the expression used to retrieve the
element of the array X at the index a. In addition, var x is the declaration of
the variable x, arr X[n] is the declaration of the array with identifier X and size
n, X[a1] := a2 is an assignment of the result of a2 to the element of the array
X indexed at a1, and f(a1, . . . , am) → [x1, . . . , xn] is a call to the function with
identifier f with arguments a1, . . . , am and return variables x1, . . . , xn. If some
argument ai is an array, then it is passed by reference in the call. We denote the
set of all statements of the extended While language by Stmtewh.

A program in the extended While language is a mapping ρ from each function
identifier f to a triple ([w1, . . . , wm], [x1, . . . , xn], S) or ⊥. Here, each wi (i ∈
{1, . . . , m}) is a parameter of the function that is either a variable x or an array
X. Each xi (i ∈ {1, . . . , n}) is a return variable of the function. The S is the
statement of the function. If ρ(f) = ⊥, then there is no function defined for the
function identifier in the program.

For programs of the extended While language, a state σ is a pair (s, ι). Here,
s ∈ (Var ∪ Arr → Z⊥) ∪ (Z → Z) is a store that maps each variable to an
optional integer that is the value of the variable, maps each array name to an
optional integer representing the starting location of the array, and maps each
location to an integer that is the value stored at the location. In addition, ι ∈ Z

is the next fresh location that can be used as the starting location of an array.
For σ = (s, ι), we write σ(a) for s(a). We denote the set of all states by Σewh.

For the extended While language, the set C of configurations is Stmtewh ×
Σewh, and the set R of result configurations is Σewh. For space reasons, we omit
the definition of the rule predicate that captures the big-step semantics of the
extended While language. This definition can be found in the extended version
of this paper, as well as the formalization in the Coq proof assistant.

Array-Merging Program and Its Verification. The program ρmg as shown
in Fig. 2 merges the elements in two sorted fragments of an array S into one
sorted fragment in a different array T.

The only function in this program is merge. Formally, this function is the
triple ([S,T, i, m, n], [], Smg). The parameters i and m represent the initial and

Reasoning About Iteration and Recursion Uniformly 71

final index, respectively, for the first fragment of the array S participating in
the merger. The second fragment participating in the merger is from the index
represented by m + 1 to the index represented by n in the same array S. The
target array fragment of the merger is from the index represented by i to the
index represented by n, in the array T.

For the specification of the program, we use a few pieces of auxiliary
notation. We write Xh

l for a triple (X, l, h) that represents the fragment of
the array X from the index l to the index h. We write (|Xh

l |)σ for the list
[σ(� + l), . . . , σ(� + h)] where � = σ(X), i.e., the list of elements of the array
X from the index l to the index h. We write occ [z1, . . . , zn] for the func-
tion h mapping each integer z to the number of occurrences of z in the list
[z1, . . . , zn] of integers. For two such functions h1 and h2, we write h1 ⊕ h2 for
the function λz.h1(z)+h2(z). We write sorted [z1, . . . , zn] to express that the list
[z1, . . . , zn] of integers is sorted in ascending order. We write sep(Xh1

l1
, Y h2

l2
, σ)

to express that the elements of the array X from the index l1 to the index
h1 occupy a separate memory area from that occupied by the elements of the
array Y from the index l2 to the index h2, in the state σ. In addition, we write
[u1, . . . , un]σ

′
σ to express for each i ∈ {1, . . . , n}, the value of each ui is the same

in the states σ and σ′. Here, ui can be a variable x or an array fragment Xh
l .

In the latter case, that the value of Xh
l is the same in the two states means

∀i : l ≤ i ≤ h ⇒ σ(σ(X) + i) = σ′(σ′(X) + i).
For the program ρmg, we devise the specification Φmga. We denote the starting

index for the first source array fragment in S as well as for the target array
fragment in T by l. We use l as a global parameter in the specification.

We specify the function merge as

Φmga(〈merge(X, Y, al, am, ah) → [], σ〉ρms) :=

{σ′ | occ (|Xh
l |)σ = occ (|Y h

l |)σ′ ∧ sorted (|Y h
l |)σ′ }

if A�al�σ= l ∧ 0≤ l≤m<h ∧ sorted (|Xm
l |)σ ∧ sorted (|Xh

m+1|)σ ∧ sep(Xh
l , Y h

l , σ)

where m = A�am�σ ∧ h = A�ah�σ

This specification says that if we call the function merge with two array identifiers
X and Y , and expressions al, am, ah that evaluate to l, m and h, such that

– 0 ≤ l ≤ m < h holds,
– the array fragments Xm

l and Xh
m+1 are sorted in the pre-state,

– the array fragments Xm
l and Xh

m+1 are separated in the pre-state,

then the number of occurrences of each integer in the target array fragment Y h
l

in the post-state is the same as its number of occurrences in the source array
fragment Xh

l in the pre-state, and the target array fragment Y h
l is sorted in

ascending order in the post-state.
The core part of the function merge is the loop statement Swh (see Fig. 2).

We specify this loop as

72 X. Li et al.

Φmga(〈Swh, σ〉ρms) :=

{σ′ | (i ≤ σ′(i) = m + 1 ∧ j ≤ σ′(j) ≤ n ∨ j ≤ σ′(j) = n + 1 ∧ i ≤ σ′(i) ≤ m) ∧
σ′(k) = k + σ′(i) − i + σ′(j) − j ∧ [m, n, S,T,Sn

l ,Tk−1
l]σ

′
σ ∧

occ (|Sσ′(i)−1
i |)σ ⊕ occ (|Sσ′(j)−1

j |)σ = occ (|Tσ′(k)−1
k |)σ′ ∧ sorted (|Tσ′(k)−1

l |)σ′ ∧
(σ′(i) ≤ m ∧ σ′(k) ≥ l + 1 ⇒ A�S[i]�σ′ ≥A�T[k−1]�σ′) ∧
(σ′(j) ≤ n ∧ σ′(k) ≥ l + 1 ⇒ A�S[j]�σ′ ≥A�T[k−1]�σ′) }

if 0 ≤ l ≤ i ≤ m < j ≤ n ∧ k = i + j − m − 1 ∧
(k ≥ l + 1 ⇒ A�S[i]�σ≥A�T[k−1]�σ ∧ A�S[j]�σ≥A�T[k−1]�σ) ∧
sorted (|Sm

i |)σ ∧ sorted (|Sn
j |)σ ∧ sorted (|Tk−1

l |)σ ∧ sep(Sn
l ,Tn

l , σ)

where i = σ(i) ∧ j = σ(j) ∧ k = σ(k) ∧ m = σ(m) ∧ n = σ(n)

In the specification, we are concerned with pre-states in which either the
overall loop is yet to be executed, or some rounds of the loop have been completed
and some further rounds are to be executed. We constrain these pre-states with
a few further conditions. One of these conditions states that the elements with
indexes i and j that are to be compared in the next round are both greater than
or equal to the last element that has been set in the target array fragment. For
each pre-state that satisfies all the conditions in the “if” part, several conditions
are asserted for the potential post-state σ′. A key condition here says that the
two fragments Sσ′(i)−1

i and S
σ′(j)−1
j in the source array that are scanned between

the reaching of the pre-state and the post-state agree with the fragment Tσ′(k)−1
k

that is filled between the reaching of the pre-state and the post-state. Another
key condition says that the fragment Tσ′(k)−1

l of the target array that is already
filled in the post-state for the loop is sorted in ascending order.

Without specification inference, the two remaining loops in the array-merging
program also need to be explicitly specified. The specification of these two loops
is much less involved than that for the first loop, and it is omitted here. With
the technique of Sect. 2, the validity of Φmga can be established.

Theorem 2. It holds that valid(Φmga).

With the help of Theorem 1, the proof requires no induction for reasoning about
the loops. This proof boils down to symbolic execution with the help of a series
of auxiliary lemmas about the memory layout.

Remark 2. The global parameter l in the specification Φmga relates the auxiliary
information about calls to merge and about the loops in this function. The role
of l can be compared to that of a logical variable in a concrete program logic.
Such global parameters are captured in the Coq formalization by an explicit
argument in the specifications. The type of this argument can be instantiated
according to the needs in verifying each specific program. The verification of a
program is required to go through for all possible values of this argument.

Reasoning About Iteration and Recursion Uniformly 73

4.2 Eager Functional Language and List-Merging Program

Eager Functional Language. The language considered in this section is a
fragment of the eager functional language as discussed in [33].

e ::= n | true | false |
e + e | e − e | e ∗ e | e/e |
e = e | e < e | ¬e | e ∧ e |
if e then e else e |
nil | e :: e | listcase e of (e, e) |
x | e e | λx.e | letrec x = λx .e in e

cf ::= icf | bcf | fcf | lcf

icf ::= . . . | −2 | −1 | 0 | 1 | 2 | . . .

bcf ::= true | false
fcf ::=λx.e

lcf ::= nil | cf :: cf

Fig. 3. The expressions and canonical forms of the eager functional language

A program of the eager functional language is an expression. The syntax
for expressions is given in the left part of Fig. 3. Here, n is a numeral, x is a
variable, e e′ is an application, λx.e is a lambda abstraction, nil is the empty list,
and e1 :: e2 is the list obtained by prefixing the list e2 with the element e1. The
expression listcase e of (e′, e′′) branches to e′ or e′′ depending on whether the
result of e is the empty list nil. The expression letrec x = λx′.e′ in e binds x to
λx′.e′ in e. This expression allows x to be used in e′, thereby allowing recursion.
We denote the set of all expressions by Expr .

The evaluation of expressions results in canonical forms cf as given in the
right part of Fig. 3. A canonical form cf can be a canonical form icf for integers,
a canonical form bcf for Boolean values, a canonical form fcf for functions, or a
canonical form lcf for lists. We denote the set of all canonical forms by Cf .

For the eager functional language, the set C of configurations is Expr , and
the set R of result configurations is Cf . For space reasons, we omit the definition
of the rule predicate that captures the big-step semantics of the eager functional
language. This definition can be found in the extended version of this paper, as
well as the formalization in the Coq proof assistant.

List-Merging Program and Its Verification. The program emg(lcf1, lcf2)
below merges two sorted lists, lcf1 and lcf2, into a single sorted list. More con-
cretely, the variable merge is bound to the expression λx.λx′.elcase that destructs
the lists that are bound to x and x′, respectively. In case one of the lists is empty,
the result of the merger is the other list. Otherwise, the result of the merger is
obtained by prefixing the smaller head element of the two given lists over the
merging result of the remaining parts of the lists.

emg(lcf1, lcf2) := letrec merge = (λx.λx′.elcase) in merge lcf1 lcf2
elcase := listcase x of (x′, λi.λr.listcase x′ of (x, λi′.λr′.eif))

eif := if i ≤ i′ then i :: merge r x′ else i′ :: merge x r′

74 X. Li et al.

To develop a specification for the list-merging program, we define a piece
of auxiliary notation. We write 〈|lcf |〉 for the mathematical list of integers
represented by the canonical form lcf for lists. Formally, we define 〈|nil|〉:=[],
〈|icf :: lcf |〉 :=icf :: zs if zs = 〈|lcf |〉 ∧ zs ∈ Z

∗, and 〈|lcf |〉:=⊥ otherwise.
We devise the a specification for the list-merging program, Φmgl. Using the

function occ and the predicate sorted introduced in Sect. 4.1, we specify the
expression emg(lcf1, lcf2) as

Φmgl(emg(lcf1, lcf2)) :=
{lcf | ∃zs ∈ Z

∗ : zs = 〈|lcf |〉 ∧ occ zs = occ zs1 ⊕ occ zs2 ∧ sorted zs}
if zs1 ∈ Z

∗ ∧ zs2 ∈ Z
∗ ∧ sorted zs1 ∧ sorted zs2

where zs1 = 〈|lcf1|〉 ∧ zs2 = 〈|lcf2|〉

This specification says that given list canonical forms lcf1 and lcf2 that are both
sorted in ascending order, the result of executing emg(lcf1, lcf2) is a list canonical
form lcf . The list canonical form lcf contains the elements as contained in either
lcf1 or lcf2. Furthermore, the list canonical form lcf is sorted in ascending order.

To support the verification of the specification for emg(lcf1, lcf2), we specify
an unfolded form of this expression. The execution of this unfolded form either
terminates directly, or gives the same form again.

Φmgl((λx.letrec merge = λx.λx′.elcase in λx′.elcase) lcf1 lcf2) :=
{lcf | ∃zs ∈ Z

∗ : zs = 〈|lcf |〉 ∧ occ zs = occ lcf1 ⊕ occ lcf2 ∧ sorted zs}
if zs1 ∈ Z

∗ ∧ zs2 ∈ Z
∗ ∧ sorted zs1 ∧ sorted zs2

where zs1 = 〈|lcf1|〉 ∧ zs2 = 〈|lcf2|〉

This specification reflects that the unfolded expression (λx.letrec merge =
λx.λx′. elcase inλx′.elcase) lcf1 lcf2 delivers analogous guarantees to those deliv-
ered by the original expression emg(lcf1, lcf2).

With the technique of Sect. 2, the validity of Φmgl can be established.

Theorem 3. It holds that valid(Φmgl).

With the help of Theorem 1, the proof requires no induction for reasoning about
the recursive applications of the function bound to merge. This proof boils down
to symbolic execution with the help of a few auxiliary lemmas about substitution
and evaluation related to canonical forms.

Remark 3. It might appear that the auxiliary information needed for the verifi-
cation of the list-merging program should be for expressions of the form merge .
However, these expressions cannot be evaluated, because information about the
actual function bound to merge is missing. The form that recurs in the evaluation
of emg(lcf1, lcf2) is actually (λx.letrec merge = λx.λx′.elcase in λx′.elcase) .

Reasoning About Iteration and Recursion Uniformly 75

5 On Completeness of the Technique

It is untrue that any valid specification can be verified. Intuitively, a specification
Φ that is valid but missing the necessary auxiliary information such as loop
variants might not be verifiable.

Consider the factorial example in Sect. 3, and the specification Φ′
fac that is

the same as Φfac except that Φ′
fac maps 〈Swh, σ〉 where σ(m) > 0 to Σ. The

specification Φ′
fac is valid as the specification Φfac is. This is because Φ′

fac is
a loosened version of Φfac. However, Φ′

fac cannot be verified using our proposed
technique. Due to missing auxiliary information, the verification procedure leads
to a non-terminating symbolic execution of the factorial program.

In the following, we show that for a given specification that is valid, there
is always a more informative specification Φ′ than Φ that is verifiable. Formally,
a specification Φ′ is at least as informative as a specification Φ, as denoted by
Φ � Φ′, if for each configuration c, it holds that Φ(c) ⊇ Φ′(c).

The lemma below says the specification mapping each configuration to the
set of all the semantically derivable result configurations can be verified.

Lemma 2. Let Φ� be the specification satisfying Φ�(c) = {r | deriv(c, r)} for all
configurations c. Then, verif (Φ�) can be established.

Proof. We show that for all c and r, if inferΦ�(c, r), then r ∈ Φ�(c). This boils
down to showing if inferΦ�(c, r), then deriv(c, r). Below, we give an inductive
proof of this statement.

Assume inferΦ�(c, r). Then, there exist some m, c1, . . . , cm, r1, . . . , rm, such
that resΦ�(c1, r1), . . . , resΦ�(cm, rm), and

rule [(c1, r1), . . . , (cm, rm)] (c, r) (2)

For each i, we show that deriv(ci, ri) holds by distinguishing between the cases
where Φ�(ci) = R and Φ�(ci) �= R.

– Suppose Φ�(ci) = R. Then we deduce inferΦ�(ci, ri) from resΦ�(ci, ri). Hence,
we have deriv(ci, ri) from the induction hypothesis.

– Suppose Φ�(ci) �= R. We have ri ∈ Φ�(ci) using resΦ�(ci, ri). Hence, we have
deriv(ci, ri) using the definition of Φ�.

Ultimately, we have deriv(ci, ri) for each i ∈ {1, . . . , m}, and we obtain
deriv(c, r) using (2). This completes the proof. 	

The following theorem says that for each valid specification Φ, there is a
specification that is at least as informative as Φ, and that can be verified.

Theorem 4 (Relative Completeness). For each valid specification Φ, there
exists a specification Φ′ such that Φ � Φ′, and verif (Φ′) can be established.

Proof. We first show that the specification Φ� in Lemma 2 is at least as infor-
mative as any valid specification. Let Φ be a specification satisfying valid(Φ).

76 X. Li et al.

Let c be an arbitrary configuration. Let r be any result configuration satisfying
r ∈ Φ�(c). We have deriv(c, r) from the definition of Φ�. Hence, we have r ∈ Φ(c)
because of valid(Φ). Hence, Φ�(c) ⊆ Φ(c) holds. Hence, we have Φ � Φ�. More-
over, we have verif (Φ�) using Lemma 2. This completes the proof. 	

If the program contained in a configuration exhibits only bounded behavior,
then the corresponding result configuration can be obtained through symbolic
execution. Hence, it is not necessary that a verifiable specification should cover
these configurations. In an informal sense, this argument supports that for a
specification to be verified, it is only necessary to provide auxiliary information
about constructs such as loops and recursive function calls in the specification.

6 Related Work

Inductive invariants [24] are well-studied means to sound program verification
directly based on operational execution models. An inductive invariant needs to
be preserved by all the possible atomic steps that can be taken in the execution
of the target program. This requirement often leads to difficulties in identifying
the exact condition that qualifies as an inductive invariant, and that enables the
verification of the target program.

In [26], a method is proposed to generate inductive invariants from induc-
tive assertions. The method is based on a small-step execution relation. Mini-
mal information about the syntactical structure of the programming language is
required in the generation of the inductive invariants. In comparison, our tech-
nique targets big-step operational semantics, and its soundness does not rely on
the reduction of the verification problem to the generation of inductive invari-
ants.

In [25], a technique is proposed to generate sound program verifiers based on
existing formalizations of small-step semantics in proof assistants. The soundness
of the technique is established with a coinductive argument. In comparison,
our technique targets big-step operational semantics, and is based on inductive
reasoning. Nevertheless, we are inspired by this work in the style of language-
independent program specifications and the form of completeness statements.

In [40], a language-independent verification technique based on reachability
logics and semantics formulated in rewriting systems is introduced. In com-
parison, our technique can only be used for big-step semantics. However, our
technique can be used with semantic definitions using inductive predicates in a
proof assistant, and requires only the logical foundation of the proof assistant to
function. Our technique also has a succinct, inductive argument for soundness.

Several developments provide means to systematically derive abstract seman-
tics from concrete semantics such as big-step operational semantics and its vari-
ants [12,13,35]. Among these, [12] proposes a language-independent notion of
skeletal semantics that can be instantiated to obtain concrete and abstract
semantic interpretations. However, the emphasis of these developments is in
obtaining automated static analyses of programs, rather than in exploiting user-
provided specification in the deductive verification of deep correctness properties.

Reasoning About Iteration and Recursion Uniformly 77

To some extent, language-independent program verification can also be sup-
ported by encoding the target languages or target programs in the same language
(e.g., WhyML, Boogie, etc.) or calculus (e.g., CSP, the π-calculus, etc.) support-
ing verification. This encoding can be considerably more light-weight than the
direct formalization of the syntax and semantics of the source language. How-
ever, when the features of the source language are sufficiently complicated, it
can be highly non-trivial to justify the encoding.

In Unifying Theories of Programming [14,19,22,29,32,38], the semantics of
programming constructs (e.g., assignment, conditional, sequential composition,
parallel composition, etc.) involved in diverse languages is formulated in a rela-
tional calculus. The connection between different kinds of semantics – algebraic
semantics, denotational semantics, and operational semantics – is investigated.
In comparison, we study the verification of programs based on a common model
of big-step opperational semantics. We do not look at concrete programming
constructs, or investigate the connection between different types of semantics.

7 Future Directions

Reuse of Existing Formalization of Semantics. For the related language-
independent verification techniques based on small-step operational seman-
tics [25,26], it is not difficult to obtain a verification infrastructure by directly
reusing an existing formalization of semantics. This is because a small-step
semantics readily provides a step relation that can be used to interface with the
verification framework. In comparison, we have only shown that our language-
independent verification technique can be applied after the big-step semantics
of the target language is formalized via a predicate that explicitly captures the
premises and conclusions of the semantic rules. Although the big-step semantics
formulated using this predicate closely resemble their classical formulation, it is
desirable if a higher level of reusability can be enabled. A potential solution is to
construct a program that automatically transforms a formalization of big-step
semantics into a formulation with the rule predicate. Such transformation could
be attempted using the MetaCoq framework [39] to achieve seamless integration
with the Coq proof assistant.

Integration of Techniques for Other Aspects of Deductive Verification.
The purpose of the present work is not to simplify the overall task of deduc-
tive program verification beyond achievable by existing techniques. Instead, the
focus has been the ability to reason about different types of programming con-
structs that potentially cause unbounded behavior, in a uniform way. This abil-
ity helps simplify the reasoning about these programming constructs, relative
to direct inductive proofs based on big-step operational semantics. To construct
a full-fledged language-independent program verifier in a proof assistant, effec-
tive treatment of other aspects of deductive program verification (e.g., memory
layout, mathematical reasoning in diverse problem domains, etc.) is required. In
principle, it is desirable to deal with the language-generic and language specific

78 X. Li et al.

aspects of program verification separately (as advocated in UTP [19]). Con-
cretely, existing formalization of program logics and mathematical theories in
proof assistants are expected to provide the essential technical ingredients for
simplifying the remaining aspects of verification tasks.

8 Conclusion

To tackle the problem caused by the proliferation of programming languages in
deductive program verification, we provide a language-independent verification
technique that addresses the cross-cutting concern of reasoning about program-
ming constructs potentially causing unbounded behavior. Typically, these con-
structs include loops and recursive functions in different forms. The proposed
technique can be applied to any programming language with a big-step opera-
tional semantics. The user of this technique need not set up inductions for the
loops and recursive calls in performing a program proof, but performs symbolic
execution of the program based on the big-step semantics, and with the help
of a specification containing auxiliary information about these constructs. The
technique admits succinct, inductive arguments for soundness and relative com-
pleteness that are verified in the Coq proof assistant along with other formal
claims [8]. It has been illustrated with verification examples targeting languages
of different paradigms. It provides a basis for a language-independent program
verifier based on big-step operational semantics in proof assistants.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China (61876111, 62002246).

References

1. The Coq proof assistant. https://coq.inria.fr/
2. Michelson - the language of Tezos. https://www.michelson.org/
3. The move language. https://developers.libra-china.org/docs/crates/move-

language/index.html
4. A sequential imperative programming language - syntax, semantics, Hoare logics

and verification environment. https://www.isa-afp.org/entries/Simpl.html
5. Solidity. https://docs.soliditylang.org/en/v0.8.0/
6. VCC: A verifier for concurrent C. https://www.microsoft.com/en-us/research/

project/vcc-a-verifier-for-concurrent-c/
7. Yul. https://docs.soliditylang.org/en/v0.8.0/yul.html
8. Formalization of the verification technique in Coq (2021). https://github.com/

lixm/ind-verify/tree/master
9. Ahrendt, W., Beckert, B., Bubel, R. (eds.): Deductive Software Verification - The

KeY Book. From Theory to Practice. Lecture Notes in Computer Science, vol.
10001. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-49812-6

10. Appel, A.W.: Verified Software Toolchain - (invited talk). In: Barthe, G. (ed.)
ESOP 2011. LNCS, vol. 6602, pp. 1–17. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-19718-5 1

https://coq.inria.fr/
https://www.michelson.org/
https://developers.libra-china.org/docs/crates/move-language/index.html
https://developers.libra-china.org/docs/crates/move-language/index.html
https://www.isa-afp.org/entries/Simpl.html
https://docs.soliditylang.org/en/v0.8.0/
https://www.microsoft.com/en-us/research/project/vcc-a-verifier-for-concurrent-c/
https://www.microsoft.com/en-us/research/project/vcc-a-verifier-for-concurrent-c/
https://docs.soliditylang.org/en/v0.8.0/yul.html
https://github.com/lixm/ind-verify/tree/master
https://github.com/lixm/ind-verify/tree/master
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/978-3-642-19718-5_1

Reasoning About Iteration and Recursion Uniformly 79

11. Blazy, S., Leroy, X.: Mechanized semantics for the Clight subset of the C language.
J. Autom. Reason. 43(3), 263–288 (2009)

12. Bodin, M., Gardner, P., Jensen, T.P., Schmitt, A.: Skeletal semantics and their
interpretations. Proc. ACM Program. Lang. 3(POPL), 44:1–44:31 (2019)

13. Bodin, M., Jensen, T.P., Schmitt, A.: Certified abstract interpretation with pretty-
big-step semantics. In: Proceedings of the 2015 Conference on Certified Programs
and Proofs (CPP), pp. 29–40 (2015)

14. Cavalcanti, A., Wellings, A., Woodcock, J.: The safety-critical Java memory model:
a formal account. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp.
246–261. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-
0 20

15. Clément, D., Despeyroux, J., Despeyroux, T., Kahn, G.: A simple applicative lan-
guage: mini-ML. In: Proceedings of the 1986 ACM Conference on LISP and Func-
tional Programming (LFP), pp. 13–27 (1986)

16. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Fourth
ACM Symposium on Principles of Programming Languages (POPL), pp. 238–252
(1977)

17. Hirai, Y., et al.: Defining the ethereum virtual machine for interactive theorem
provers. In: Brenner, M. (ed.) FC 2017. LNCS, vol. 10323, pp. 520–535. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 33

18. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

19. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Pearson College Div
(1998)

20. Jung, R., Krebbers, R., Jourdan, J., et al.: Iris from the ground up: a modular
foundation for higher-order concurrent separation logic. J. Funct. Program. 28,
e20 (2018)

21. Kahn, G.: Natural semantics. In: Brandenburg, F.J., Vidal-Naquet, G., Wirsing,
M. (eds.) STACS 1987. LNCS, vol. 247, pp. 22–39. Springer, Heidelberg (1987).
https://doi.org/10.1007/BFb0039592

22. Ke, W., Li, X., Liu, Z., Stolz, V.: rCOS: a formal model-driven engineering method
for component-based software. Front. Comput. Sci. China 6(1), 17–39 (2012)

23. Klein, G., Nipkow, T.: Jinja is not Java. Arch. Formal Proofs (2005)
24. McCarthy, J.: Towards a mathematical science of computation. In: Proceedings of

the 2nd IFIP Congress on Information Processing, pp. 21–28 (1962)
25. Moore, B., Peña, L., Rosu, G.: Program verification by coinduction. In: Ahmed, A.

(ed.) ESOP 2018. LNCS, vol. 10801, pp. 589–618. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-89884-1 21

26. Moore, J.S.: Inductive assertions and operational semantics. In: Geist, D., Tronci,
E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 289–303. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-39724-3 27

27. Nielson, H.R., Nielson, F.: Semantics with Applications: An Appetizer. Undergrad-
uate Topics in Computer Science, Springer, Heidelberg (2007). https://doi.org/10.
1007/978-1-84628-692-6

28. Nipkow, T., von Oheimb, D.: Javalight is type-safe - definitely. In: Proceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pp. 161–170 (1998)

29. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus. Formal
Aspects Comput. 21(1–2), 3–32 (2009)

https://doi.org/10.1007/978-3-642-21437-0_20
https://doi.org/10.1007/978-3-642-21437-0_20
https://doi.org/10.1007/978-3-319-70278-0_33
https://doi.org/10.1007/BFb0039592
https://doi.org/10.1007/978-3-319-89884-1_21
https://doi.org/10.1007/978-3-319-89884-1_21
https://doi.org/10.1007/978-3-540-39724-3_27
https://doi.org/10.1007/978-1-84628-692-6
https://doi.org/10.1007/978-1-84628-692-6

80 X. Li et al.

30. Pierce, B.C.: The science of deep specification (keynote). In: Visser, E. (ed.)
Companion Proceedings of the 2016 ACM SIGPLAN International Conference
on Systems, Programming, Languages and Applications: Software for Humanity
(SPLASH), p. 1 (2016)

31. Plotkin, G.D.: A structural approach to operational semantics. Lecture notes,
DAIMI FN-19 (1981)

32. Qin, S., Dong, J.S., Chin, W.-N.: A semantic foundation for TCOZ in unifying
theories of programming. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003.
LNCS, vol. 2805, pp. 321–340. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45236-2 19

33. Reynolds, J.C.: Theories of Programming Languages. Cambridge University Press,
Cambridge (1998)

34. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceeding of 17th IEEE Symposium on Logic in Computer Science (LICS), pp.
55–74 (2002)

35. Schmidt, D.A.: Natural-semantics-based abstract interpretation (preliminary ver-
sion). In: Mycroft, A. (ed.) SAS 1995. LNCS, vol. 983, pp. 1–18. Springer, Heidel-
berg (1995). https://doi.org/10.1007/3-540-60360-3 28

36. Sergey, I., Nagaraj, V., Johannsen, J., et al.: Safer smart contract programming
with Scilla. Proc. ACM Program. Lang. 3(OOPSLA), 185:1–185:30 (2019)

37. Sewell, T.A.L., Myreen, M.O., Klein, G.: Translation validation for a verified OS
kernel. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pp. 471–482 (2013)

38. Sheng, F., Zhu, H., He, J., et al.: Theoretical and practical approaches to the
denotational semantics for MDESL based on UTP. Formal Aspects Comput. 32(2–
3), 275–314 (2020)

39. Sozeau, M., Anand, A., Boulier, S., et al.: The MetaCoq project. J. Autom. Reason.
64(5), 947–999 (2020)

40. Stefanescu, A., Park, D., Yuwen, S., et al.: Semantics-based program verifiers for all
languages. In: 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pp. 74–91 (2016)

41. Wood, G.: Ethereum: a secure decentralised generlised transaction ledger. https://
gavwood.com/paper.pdf

42. Yang, Z., Lei, H.: Lolisa: formal syntax and semantics for a subset of the Solidity
programming language. CoRR, abs/1803.09885 (2018)

https://doi.org/10.1007/978-3-540-45236-2_19
https://doi.org/10.1007/978-3-540-45236-2_19
https://doi.org/10.1007/3-540-60360-3_28
https://gavwood.com/paper.pdf
https://gavwood.com/paper.pdf

Trace Semantics and Algebraic Laws
for MCA ARMv8 Architecture Based

on UTP

Lili Xiao and Huibiao Zhu(B)

East China Normal University, Shanghai, China
hbzhu@sei.ecnu.edu.cn

Abstract. Hardware architectures like x86 and ARM provide relaxed
memory models for efficiency reasons. The revised ARMv8 architec-
ture is multi-copy atomic (MCA), which brings relaxed-memory effects
through thread-local out-of-order, speculative execution and thread-local
buffering. In this paper, we investigate the trace semantics for the MCA
ARMv8 architecture, acting in the denotational semantics style based
on Unifying Theories of Programming (UTP). In order to present all
the valid execution results including reorderings of any program under
ARMv8, a trace expressed as a sequence of snapshots is introduced,
and it relies heavily on various dependencies. The snapshots record the
change of variables of different types of actions. We also study the alge-
braic laws for MCA ARMv8, including a set of sequential and parallel
expansion laws. The concept of head normal form is explored for each
program, and every program is described in the form of guarded choice
which can model the execution of a program with reorderings. Therefore,
the linearizability for ARMv8 is supported.

Keywords: Relaxed memory model · MCA ARMv8 architecture ·
Unifying Theories of Programming (UTP) · Trace semantics ·
Algebraic laws

1 Introduction

ARMv7 and early ARMv8 architectures defined a relaxed memory model used to
improve the performance of concurrent programs. This model is non multi-copy
atomic (non MCA). However, the complexity of implementation, verification and
reasoning produced by allowing non MCA behaviors does not bring in sufficient
performance benefits [1]. Then the revised ARMv8 architecture is shift to the
model under multi-copy atomic (MCA) semantics [2], which illustrates that when
a write is visible to some other thread, it becomes visible to all other threads.
Therefore, it simplifies the allowed behaviors of every program.

The MCA ARMv8 architecture maintains the buffer of each thread, throwing
away the redundant buffers in [3], shown in Fig. 1. Always, a memory write is
split into two steps, committing the write to buffer and propagating it to mem-
ory later. A read from location x demands to first check the private buffer to
c© Springer Nature Switzerland AG 2021
S. Qin et al. (Eds.): SETTA 2021, LNCS 13071, pp. 81–101, 2021.
https://doi.org/10.1007/978-3-030-91265-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91265-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-91265-9_5

82 L. Xiao and H. Zhu

see whether it contains such a write to the same location. If yes, the read oper-
ation terminates. Otherwise, the shared memory will be explored. TSO [4] and
ARMv8 are both MCA models [5], and TSO only omits store-load constraint.
However, ARMv8 releases store-store, store-load, load-store and load-load con-
straints, if a variety of dependencies (explained in the following section) do not
exist. In addition, ARMv8 supports speculative execution, which describes that
the instructions in a branch may execute before the evaluation of the branching
condition has completed. The cfence instruction is used to prohibit it.

Fig. 1. The MCA ARMv8 architecture.

To demonstrate how ARMv8 exhibits reorderings, consider the parallel pro-
gram (x := 1; y := 1)||(a := y; b := x). Since the statements x := 1 and y := 1
do not depend on each other, x := 1 and y := 1 can be reordered. If y := 1 is
scheduled firstly and then the reads from y and x happen, the variables a and b
can obtain 1 and 0 in the same execution.

Unifying Theories of Programming (UTP) [6] was developed by Hoare and
He in 1998. It aims at proposing a convincing unified framework to combine and
link operational semantics [7], denotational semantics [8] and algebraic semantics
[9]. In this paper, we consider the denotational semantics of the MCA ARMv8
architecture, where our approach is based on UTP and the trace structure is
applied. In our semantic model, a trace is in the form of the sequence of snap-
shots, and the snapshots record the changes on registers, buffers and memory
contributed by different types of actions. With the dependencies among those
actions, all the valid execution traces can be achieved. We also explore the alge-
braic laws for MCA ARMv8, including a set of sequential and parallel expansion
laws. On the basis of the laws, we can see that every program can be converted
into a guarded choice.

The operational and axiomatic models of MCA ARMv8 are introduced in
[1,10], while our investigation for it can not only support the linearizability
[11,12] of this architecture, but also support to deduce some interesting algebraic
properties of programs.

The remainder of this paper is organized as follows. We investigate the trace
semantics of the MCA ARMv8 architecture in Sect. 2. Section 3 presents a set
of algebraic laws including sequential and parallel expansion laws. Section 4 con-
cludes the paper and discusses the future work. We leave some technical defini-
tions and analyses in the appendix.

Trace Semantics and Algebraic Laws for MCA ARMv8 Based on UTP 83

2 Trace Semantics

2.1 The Syntax of ARMv8

In this section, we give the description of the programs under ARMv8 with
a simple imperative language, which is adapted and extended from [13]. In
the following syntax, e ranges over arithmetic expressions on real numbers, h
over Boolean expressions and p over programs. Particularly, a Fence instruction
is used to guarantee the absolute order of the memory accesses separated by
it, while speculative execution can be prevented by the control fence (cfence)
instructions. The program illustrated in the previous section is one quick exam-
ple.

v :: = ..., −2, −1, 0, 1, 2, ...
e :: = v | x | e1 + e2 | e1 ∗ e2 |...
h :: = true | false | e1 = e2 | ¬h | h1 ∨ h2 | h1 ∧ h2 |...
p :: = x := e | Fence | cfence | p1; p2 | if h then p1 else p2 | while h do p | p1||p2

2.2 The Semantic Model

This section investigates the denotational semantic model for the MCA ARMv8
architecture, with the application of the trace structure. We illustrate the behav-
iors of a process by a trace of snapshots, which records the sequence of actions.

A snapshot in a trace can be expressed as a triple (cont, oflag, eflag), where:

1. Generally, cont is composed of two elements var and val, denoting the data
state of one variable at a given moment. However, it can also be illustrated
as a branching condition h or Fence or cfence.

2. oflag works on distinguishing different types of operations, and Table 1 gives
a brief description of it.
(a) If cont is in the form of (var, val), oflag can be divided into three cate-

gories. When var is a global variable, committing to the buffer leads to
that oflag is 1, and propagating to the whole memory results in that
oflag is 2. When writing to a local variable, oflag is set to be 3.

(b) Otherwise, the corresponding oflag to a branching condition h or Fence
or cfence is 0 or −1 or −2.

Table 1. Different types of operations divided by the parameter oflag.

oflag Values

1 2 3 0 −1 −2

Types Committing Propagating Register write Branching condition Fence cfence

3. For a process, in order to include its environment’s behaviors, we introduce
the parameter eflag. Once the process does the action, eflag is set to be 1.
If the operation is performed by its environment, eflag is equal to 0.

84 L. Xiao and H. Zhu

The projection function πi(i ∈ {1, 2, 3}) is defined to get the i-th element of
a snapshot, e.g., π3(cont, oflag, eflag) = eflag. Then, if cont is in the form of
(var, val), we use the function πi(i ∈ {1, 2}) to obtain the relevant variable and
value, i.e., π1(π1(cont, oflag, eflag)) = var, π2(π1(cont, oflag, eflag)) = val.

We use the notation traces(P) to stand for all the valid execution results.
Two simple examples are shown below to provide an intuitive illustration of it.

Example 1.1. Consider the program a := 1; b := 1, where a and b are both
local. Because a := 1 and b := 1 do not have dependency, either a := 1 or b := 1
can be chosen to execute first. Then, two traces can be generated.
traces(a := 1; b := 1) =

{
〈((a, 1), 3, 1), ((b, 1), 3, 1)〉 , 〈((b, 1), 3, 1), ((a, 1), 3, 1)〉

}

Example 1.2. Given a program P ||Q, where P =df a := 1, Q =df b := 1,
and a and b are local, 〈((a, 1), 3, 1), ((b, 1), 3, 0)〉 is one of traces(P). Since the
former and latter are contributed by P and P ’s environment (i.e., Q), the third
elements are 1 and 0 respectively. Meanwhile, 〈((a, 1), 3, 0), ((b, 1), 3, 1)〉 is one
of traces(Q). Hence, P ||Q can produce one trace 〈((a, 1), 3, 1), ((b, 1), 3, 1)〉,
reflected in the trace semantics of parallel construct. �

2.3 Trace Semantics

In the following, we present the trace semantics traces(P) for each program P
under the MCA ARMv8 architecture.

Local Assignment. Local variables are written to the private registers in every
thread directly. Here, it is denoted by the second parameter 3 in the snapshot.

traces(a := e) =df {s ∧ 〈((a, r(e)), 3, 1)〉} where, π∗
3(s) ∈ 0∗

Here, the expression π∗
3(s) ∈ 0∗ informs that eflag in every snapshot of

the sequence s is 0, i.e., s is contributed by the environment. On the basis of
the introduction to the projection function π3, the notation π∗

3(s) denotes the
repeated execution of the function π3 on each snapshot in the trace s. Then,
with the application of this approach, a process can include its environment’s
behaviors. The notation =df refers to definitions, whereas s∧t stands for the
concatenation of traces s and t. Further, s∧T =df {s∧t | t ∈ T} and S∧T =df

{s∧t | s ∈ S ∧ t ∈ T}.
In addition, we introduce a read function named r to get the concrete value

of a variable, and the detailed definition of it is given in Appendix A (page 20).
Note that r(e) requires us to execute the read function of every variable which
appears in the expression e. For instance, r(x + y) is expressed as r(x) + r(y).
After getting the values of those variables, the value of the expression can be
calculated.

The definitions for traces(Fence) and traces(cfence) are similar.

traces(Fence) =df {s ∧ 〈(Fence,−1, 1)〉} where, π∗
3(s) ∈ 0∗

traces(cfence) =df {s ∧ 〈(cfence,−2, 1)〉} where, π∗
3(s) ∈ 0∗

Trace Semantics and Algebraic Laws for MCA ARMv8 Based on UTP 85

Global Assignment. We split the global assignment into two steps: (1) com-
mitting the write to the store buffer; (2) propagating it to the shared memory.
The two steps cannot be swapped.

traces(x := e) =df {u∧〈((x, r(e)), 1, 1)〉∧v∧〈((x, r(e)), 2, 1)〉}
where, π∗

3(u) ∈ 0∗ and π∗
3(v) ∈ 0∗

Similar to the explanation of local assignment, the environment can perform
any number of operations before each step of global assignment. Thus, two sub-
traces u and v are inserted, which are contributed by the environment. In the
above trace, (x, r(e)) denotes that the value of x is changed to r(e). The second
parameter being 1 or 2 says that the effect of x’s change has been brought to
buffer or memory. The assignment is done by the thread itself, i.e., eflag is 1.

Conditional and Iteration

Example 2. Consider the execution of conditional in P1, where the variables
x, y and z are global, and a and b are local.

if (x == 1) { if (x == 1) { if (x == 1) {
a := y; y := 1; cfence;

} else { } a := y;
b := z; }

}
(P1) (P2) (P3)

Now, we introduce the speculative execution [14] in conditional. Specula-
tive execution is that the instructions in a branch can be executed before the
branching condition is evaluated to increase performance. Because the specula-
tive execution is allowed by the specification of the MCA ARMv8 architecture,
the branching condition x == 1, a := y in one branch and b := z in another have
the same possibility to be performed firstly. The middle layer in Fig. 2 depicts
these three situations, and each framed part is done first.

Fig. 2. The illustration of if structure.

86 L. Xiao and H. Zhu

– When the evaluation x == 1 is scheduled, the conditional will behave the
same as a := y if the judgment is true, otherwise behave as b := z, shown as
the situations (1) and (2) in Fig. 2. The traces 〈(x == 1, 0, 1), ((a, r(y)), 3, 1)〉
and 〈(x! = 1, 0, 1), ((b, r(z)), 3, 1)〉 are related to these two situations.

– The conditional executes the load a := y first, and then evaluates the branch-
ing condition x == 1. If true, the process terminates successfully and pro-
duces the trace 〈((a, r(x)), 3, 1), (x == 1, 0, 1)〉. Otherwise, the result caused
by a := y is discarded. The conditional continues to carry out the instruction
b := z, and then generates the trace 〈(x! = 1, 0, 1), ((b, r(z)), 3, 1)〉. They are
described by the situations (3) and (4) in Fig. 2. The analysis of executing
b := z first is similar and presented in cases (5) and (6). �

Fig. 3. The dependency in if structure.

Now, we study the trace semantics of conditional. Firstly, to judge whether a
common statement can be speculatively executed, shown in Fig. 3(1), we intro-
duce the function NoDepd1(snap b, snap a). It defines the requirements that
snap b and snap a should achieve if there is no dependency between them:

(1) The assigned variable in snap a is not global, because a thread cannot dis-
card the result once it makes some changes in any location in the memory.

(2) dom(π1(snap b)) records the set of all the variables in the branching condi-
tion. The written variable in snap a cannot appear in the mentioned set.

(3) The variables read by snap a and those read by snap b do not contain the
same global variables. The former ones are denoted by dom(π2(π1(snap a)))
and the latter ones are represented as dom(π1(snap b)).

Here, snap a is one snapshot of an assignment. The snapshot of a condition
judgment h is denoted by snap b, which is in the form of (h, 0, 1).

NoDepd1(snap b, snap a) can be formalized as below. Here, we use Globals
to denote the set of all the global variables, and dom() stands for the variables
appearing in the argument. Note that the three formulas below correspond to
the three items above.

NoDepd1(snap b, snap a)

=df

⎛
⎝

(π1(π1(snap a)) /∈ Globals) ∧ ...(2.3.1)
(π1(π1(snap a)) /∈ dom(π1(snap b))) ∧ ...(2.3.2)((

dom(π2(π1(snap a))) ∩ dom(π1(snap b))
) ∩ Globals = ∅

)
...(2.3.3)

⎞
⎠

Secondly, for nested conditional, in order to investigate whether two branch-
ing conditions can be reordered, which is illustrated in Fig. 3(2), we give the

Trace Semantics and Algebraic Laws for MCA ARMv8 Based on UTP 87

definition of the function Nodepd2(snap b1, snap b2). If two branching condi-
tions do not depend on each other, the following condition that snap b1 and
snap b2 may not refer to the same global variables should be satisfied, which is
defined as Nodepd2(snap b1, snap b2).

Nodepd2(snap b1, snap b2) =df (dom(π1(snap b1)) ∩ dom(π1(snap b2))) ∩ Globals = ∅

For a condition judgment h, traces(h) =df {s∧〈snap b〉}, where π∗
3(s) ∈ 0∗,

and snap b = (h, 0, 1). It means that the environment is allowed to do any
number of operations before h, denoted by the sequence s.

Then, given a snapshot snap b of branching condition h and a trace t of all
the instructions in a branch, we interleave s∧〈snap b〉 and t which is formalized
as addCond(s∧〈snap b〉, t) to produce all the possible execution results.

addCond(s∧〈snap b〉, t)
=df hd(s∧〈snap b〉)∧addCond(tl(s∧〈snap b〉), t)

∪

⎛
⎜⎜⎜⎜⎝

(hd(t)∧addCond(s∧〈snap b〉, tl(t)))

�

⎛
⎝

π3(hd(t)) = 0
∨(π2(hd(t)) ∈ {1, 2, 3} ∧ NoDepd1(snap b, hd(t))) ...(2.3.4)

∨ (π2(hd(t)) = 0 ∧ NoDepd2(snap b, hd(t))) ...(2.3.5)

⎞
⎠ �

φ

⎞
⎟⎟⎟⎟⎠

where, addCond(〈〉, 〈〉) = {〈〉}
addCond(s∧〈snap b〉, 〈〉) = {s∧〈snap b〉}, addCond(〈〉, t) = {t},

During the process of interleaving, we skip all the environment behaviors
included in s and t. When meeting a snapshot in t which has dependency with
snap b (i.e., none of NoDepd1 or NoDepd2 can be satisfied shown as the formu-
las (2.3.4) and (2.3.5)), only the element in s∧〈snap b〉 can be scheduled. The
calculation of t will be explained in the later paragraph.

The notation hd(s) is used to denote the first snapshot of the trace s and
tail(s) stands for the result of removing the first snapshot in the trace s.

Therefore, we give the definition of conditional by applying addCond.

traces(if h then P else Q) =df

⋃
c1

addCond(s1, t1) � h �
⋃
c2

addCond(s2, t2)

where, c1 = s1 ∈ traces(h) ∧ t1 ∈ traces(P), c2 = s2 ∈ traces(¬h) ∧ t2 ∈ traces(Q)

Example 2: Continuation. Now, we give different scenarios to help under-
stand conditional better.
Case 1: As analyzed in Fig. 2, the traces of P1 are produced as below.

traces(P1) =

{ 〈(x == 1, 0, 1), ((a, r(y)), 3, 1)〉, 〈((a, r(x)), 3, 1), (x == 1, 0, 1)〉,
〈(x! = 1, 0, 1), ((b, r(z)), 3, 1)〉, 〈((b, r(z)), 3, 1), (x! = 1, 0, 1)〉

}

Case 2: Assume x and y in P2 are global variables. Then the instruction y := 1
cannot be executed before the branching condition x == 1.

traces(P2) =
{ 〈(x == 1, 0, 1), ((y, 1), 1, 1), ((y, 1), 2, 1)〉, 〈(x! = 1, 0, 1)〉}

88 L. Xiao and H. Zhu

Case 3: Consider the program P3. Although a is a local variable, the load a := y
cannot be performed before x == 1 since the special instruction cfence exists.

traces(P3) =
{ 〈(x == 1, 0, 1), (cfence, −2, 1), ((a, r(y)), 3, 1)〉, 〈(x! = 1, 0, 1)〉}

�

The trace semantics of Iteration is discussed based on that of Conditional
and least fixed point concept [15,16]. For while h do P , we consider it as
if h then (P ; while h do P) else II. Then, the trace semantics of it can be
achieved.

traces(while h do P) =df

∞⋃
n=0

traces{Fn(STOP)},

where, F (X) =df if h then (P ;X) else II,

F 0(X) =df X,

Fn+1(X) =df F (Fn(X))
= F (...(F︸ ︷︷ ︸

n times

(F (X)))...)

traces(II) =df {ε} and traces(STOP) =df {}

Sequential Composition. To facilitate making sequential composition between
two traces s and t, we continue to introduce two more functions firstly.

If x := e and y := f , which are represented by two snapshots snap a1 and
snap a2 under the formal model, do not have dependency, four constraints should
hold [17]. Here, x and y may be global or local, and e and f are expressions.

(1) The variables assigned in snap a1 and snap a2 are distinct, and they
can be extracted from these snapshots through π1(π1(snap a1)) and
π1(π1(snap a2)).

(2) y should not be referred to in e. In other words, the assigned variable in
snap a2 cannot be free in the variables read by snap a1 represented as
dom(π2(π1(snap a1))).

(3) The variables read by snap a2 which we use dom(π2(π1(snap a2))) to denote
should not contain the assigned variable in snap a1.

(4) The variables read by snap a1 and those by snap a2 can have the same
variables, but those variables must be local.

And we use the four lines below (i.e., (2.4.1), (2.4.2), (2.4.3) and (2.4.4)) in the
function NoDepd3(snap a1, snap a2) to outline the mentioned four conditions.

NoDepd3(snap a1, snap a2)

=df

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝

(π1(π1(snap a1)) �= π1(π1(snap a2))) ∧ ...(2.4.1)
(π1(π1(snap a2)) /∈ dom(π2(π1(snap a1)))) ∧ ...(2.4.2)
(π1(π1(snap a1)) /∈ dom(π2(π1(snap a2)))) ∧ ...(2.4.3)

((dom(π2(π1(snap a1))) ∩ dom(π2(π1(snap a2)))) ∩ Globals = ∅)...(2.4.4)

⎞
⎟⎟⎠

∨
(
(π2(snap a1) = 2 ∧ π2(snap a2)! = 2) ∨
(π2(snap a1) = π2(snap a2) = 2 ∧ π1(π1(snap a1)) �= π1(π1(snap a2)))

)

⎞
⎟⎟⎟⎟⎟⎟⎠

Trace Semantics and Algebraic Laws for MCA ARMv8 Based on UTP 89

In particular, the term forwarding, which has the equivalent effect with
bypassing [18] under TSO memory model, is illustrated by the last two lines
in the formula above. It says that the operation propagating to the shared mem-
ory does not depend on the load action later. However, if the load is also related
to a write to one location, two propagation actions should follow the principle
named modify order of the same location.

Example 3. Consider the sequential program x := 1; a := x, where a is local
and x is global. As explained above, the sub-traces 〈((x, 1), 2, 1), ((a, r(x)), 3, 1)〉
and 〈((a, r(x)), 3, 1), ((x, 1), 2, 1)〉 are both valid.

traces(x := 1; a := x) =
{ 〈((x, 1), 1, 1), ((x, 1), 2, 1), ((a, r(x)), 3, 1)〉,

〈((x, 1), 1, 1), ((a, r(x)), 3, 1), ((x, 1), 2, 1)〉
}

Here, the environment operations are not exhibited. We also ignore how to
make composition of these snapshots, and the technique of it is given later. �

There is an assignment x := e and a branching condition h, and they con-
form to program order. snap a is one snapshot of x := e, while snap b is the
snapshot of h. If the snapshots can be reordered, two requirements should be
met, defined by NoDepd4(snap a, snap b). One is that both of them cannot load
the same global variables, modeled as the former conjunct in the formula (2.4.5).
Informally, the other requirement is that x does not appear free in h. Hence, the
variables which snap b reads do not contain the variable which snap a writes.

Specially, if snap a is the snapshot of propagation, it and snap b do not have
dependency without any constraint according to forwarding, denoted by the
last line in the formula.

NoDepd4(snap a, snap b)

=df

⎛
⎝

(((
dom(π2(π1(snap a))) ∩ dom(π1(snap b))

) ∩ Globals = ∅

)
∧ (π1(π1(snap a)) /∈ dom(π1(snap b)))

)
...(2.4.5)

∨ π2(snap a) = 2

⎞
⎠

Then, we give a detailed introduction to the function seqcom(s, t) whose
target is to interleave two traces s and t. The result of interleaving two empty
traces is still empty. If one of them is empty and the other is nonempty, the
result follows the nonempty one.

seqcom(s, t)

=df

⎛
⎜⎜⎜⎝

hd(s)∧seqcom(tl(s), t)

∪

⎛
⎜⎝

(hd(t)∧seqcom(s, tl(t)))
� π3(hd(t)) = 0 ∨ ∨

i∈{1,2,3,4,5}
casei(s, t) �

φ

⎞
⎟⎠

⎞
⎟⎟⎟⎠

where, seqcom(s, 〈〉) = {s}, seqcom(〈〉, t) = {t}, seqcom(〈〉, 〈〉) = {〈〉}

The first snapshot in s can always be scheduled. However, if the first in the
next trace t wants to be triggered, it should satisfy the conditions that it is

90 L. Xiao and H. Zhu

contributed by the environment, or it is done by the thread itself but meets one
of the following five requirements. The requirements are expressed by casei where
i ∈ {1, 2, 3, 4, 5}. Table 2 gives a brief introduction to casei. It is worth noting
that, the mentioned conditions lead to the difference between this interleaving
introduced here and traditional interleaving [16].

Table 2. The description of Casei.

Cases Description

case1(s, t) If the first in the latter trace t is the snapshot of a Fence instruction,
how to make it be the head of the interleaving of s and t

case2(s, t) The snapshot of a cfence instruction is at the head of t

case3(s, t) One snapshot of a global assignment takes the lead in t

case4(s, t) A local assignment’s snapshot comes first in the trace t

case5(s, t) The branching condition is scheduled first in t

Now, we give the detailed formalization and illustration of those cases as
below. case1 is that the first in t is the snapshot of a Fence instruction, and it
wants to become the head of the interleaving of s and t. Then all the snapshots
in s, which are not done by the environment (The same applies to the following
cases), should only be related with local assignments. And those assignments
cannot read any global variables. The reason for these constraints is that for a
Fence instruction, all the po-previous memory access instructions, conditional
branch instructions and barriers are finished.

case1(s, t)

=df

⎛
⎝

π1(hd(t)) = Fence ∧ π3(hd(t)) = 1

∧ ∀a′ ∈ s •
(

π3(a′) = 1 →
(

π2(a′) = 3
∧ ∀x ∈ dom(π2(π1(a′))) • x /∈ Globals

))
⎞
⎠

The snapshot of a cfence instruction at the beginning of the next trace t would
like to be scheduled first. It requires that any snapshot related to a barrier or a
branching condition, does not occur in the trace s, which is formalized as case2.

case2(s, t) =df

⎛
⎜⎜⎝

π1(hd(t)) = cfence ∧ π3(hd(t)) = 1

∧ ∀a′ ∈ s •
⎛
⎝π3(a′) = 1 →

⎛
⎝

π2(a′)! = 0
∧π2(a′)! = −1
∧π2(a′)! = −2

⎞
⎠

⎞
⎠

⎞
⎟⎟⎠

Provided that the first snapshot hd(t) in t is resulted from committing or
propagating a memory write, it is impossible for the trace s to include the
snapshots of the Fence and cfence instructions, and branching conditions (Taking
no account of any environment operation). In other words, s is the sequence of
the snapshots of global and local assignments contributed by the thread itself,

Trace Semantics and Algebraic Laws for MCA ARMv8 Based on UTP 91

as well as some environment actions. Therefore, for each snapshot a′ in s, once
eflag is 1, NoDepd3 holds between the snapshots a′ and hd(t). This case is
modeled as below.

case3(s, t) =df

⎛
⎝

π1(π1(hd(t))) ∈ Globals ∧ π3(hd(t)) = 1

∧ ∀a′ ∈ s •
(

π3(a′) = 1 →
(

π2(a′)! = −1 ∧ π2(a′)! = −2
∧ π2(a′)! = 0 ∧ NoDepd3(a′, hd(t))

))
⎞
⎠

If the head in t, which is the snapshot of a local assignment, wants to be
executed first, there are mainly two cases. And case4 modeled as case4(s, t) =df

case4 1(s, t) ∨ case4 2(s, t) presents the both cases.
Now, we define the case case4 1 that the register write reg write is demanded

to read some global variables. Then, all the instructions, which are po-previous
to the write, may be branching conditions and assignments. If the previous is a
condition judgment, NoDepd1 is supposed to be satisfied between the snapshots
of it and reg write. Otherwise, NoDepd3 should hold between the snapshots of
reg write and the po-previous assignment.

case4 1(s, t)

=df

⎛
⎜⎜⎝

π1(π1(hd(t))) ∈ Locals ∧ π3(hd(t)) = 1
∧ ∃x ∈ domain(π2(π1(hd(t)))) • x ∈ Globals

∧ ∀a′ ∈ s •
(

π3(a
′) = 1 →

(
(π2(a

′) = 0 ∧ NoDepd1(a
′, hd(t))) ∨

(π2(a
′) = 1, 2, 3 ∧ NoDepd3(a

′, hd(t)))

))

⎞
⎟⎟⎠

Here, we use Locals to denote the set of all the local variables.
We start to give a brief introduction to case4 2. The difference from case4 1

is that in this case, the trace s can have the snapshot of Fence.

case4 2(s, t)

=df

⎛
⎜⎜⎜⎜⎝

π1(π1(hd(t))) ∈ Locals ∧ π3(hd(t)) = 1
∧ ∀x ∈ domain(π2(π1(hd(t)))) • x /∈ Globals

∧ ∀a′ ∈ s •
⎛
⎝π3(a

′) = 1 →
⎛
⎝

π2(a
′) = −1 ∨

(π2(a
′) = 0 ∧ NoDepd1(a

′, hd(t))) ∨
(π2(a

′) = 1, 2, 3 ∧ NoDepd3(a
′, hd(t)))

⎞
⎠

⎞
⎠

⎞
⎟⎟⎟⎟⎠

The analysis of a branching condition and that of a local assignment are
similar. Hence, we ignore the detailed definition, which is denoted by case5.

Finally, we give the definition of sequential composition.

traces(P ;Q) =
⋃
c

seqcom(s, t), where, c = s ∈ traces(P) ∧ t ∈ traces(Q)

Example 4. Consider the example P ;Q, where P =df x := 1, Q =df y := 1,
x and y are global variables. P ;Q is activated with x = y = 0. Figure 4 gives a
description of the trace of P (i.e., s) and Q (i.e., t) respectively. tr is one trace
of P ;Q, which is interleaved from P and Q.

For simplicity, we do not exhibit the environment operations. Although there
are many executing cases for P ;Q, we only analyze one scenario shown above.

92 L. Xiao and H. Zhu

Fig. 4. The illustration of sequential composition.

1. The head ((y, 1), 1, 1) in t has no dependency with every snapshot in s, in
consequence, it can be fetched firstly.

2. As the first element in s, ((x, 1), 1, 1) can be scheduled at any time, and here
it is triggered in the second step.

3. We put the snapshot ((y, 1), 1, 1) in the third position of the trace tr of P ;Q.
Then, ((x, 1), 2, 1) can only be placed in the forth of tr. �

Parallel Construct. In this section, we discuss the trace semantics of parallel
construct, which is formed by the merging of contributed components’ traces.

Example 5. We use the example P ||Q, where P =df x := 1 and Q =df a :=
1; b := x, to illustrate how the trace semantics of parallel composition can be
constructed. Here, the variable a and b are local, and x is a global variable.

Fig. 5. The illustration of merging.

Here, we consider one scenario for the execution of P ||Q. The operation
committing the write to x is performed first. Then Q carries out the read from
the location x. Finally, both processes complete their rest actions in proper order.

Then, the process P can produce the following sequence seq1 shown in Fig. 5.
The first and third snapshots are made by P itself, hence the last elements
of them are both 1. The remaining snapshots in seq1 with eflag being 0 are
contributed its environment Q. And Q yields the sequence seq2 of snapshots.

Regardless of the fact that one action is done by the process P or Q, it is
contributed by the parallel program P ||Q. Hence, their merge gives a trace of
P ||Q which is illustrated by seq in the above figure.

Note that, the thread Q carries out the read function r(x) when the sequential
composition just completes, because Q cannot classify the private and shared
information if the parallel composition starts to execute. As a consequence, the
value of r(x) in Fig. 5 is 0. �

Trace Semantics and Algebraic Laws for MCA ARMv8 Based on UTP 93

The sequence seq1 of process P and seq2 of Q are said to be comparable, if

1. π∗
i (seq1) = π∗

i (seq2), where i = 1, 2.
The above formula when i = 1 indicates that they are built from the same
sequence of states, when i = 2 stands for that two sequences of operation
type are the same.

2. Any state contributed by a parallel process cannot be made by both of its
components, i.e., 2 /∈ π∗

3(seq1) + π∗
3(seq2).

Next, their merge is defined as below.

Merge(seq, seq1, seq2) =df

⎛
⎜⎜⎝

(π∗
1(seq) = π∗

1(seq1) = π∗
1(seq2))∧

(π∗
2(seq) = π∗

2(seq1) = π∗
2(seq2))∧

(π∗
3(seq) = π∗

3(seq1) + π∗
3(seq2))∧

(2 /∈ π∗
3(seq1) + π∗

3(seq2))

⎞
⎟⎟⎠

Then, we define the trace semantics of parallel composition. The purpose for
concatenating the sequence s contributed by the environment of P is to facilitate
merging, and it is the same for Q, i.e., π∗

3(s) ∈ 0∗, and π∗
3(t) ∈ 0∗.

traces(P ||Q)

=df{tr|tr1 ∈ traces(P) ∧ tr2 ∈ traces(Q) ∧ (Merge(tr, tr∧
1 s, tr2) ∨ Merge(tr, tr1, tr∧

2 t))}

3 Algebraic Properties

Program properties can be expressed as algebraic laws (equations usually). In
this section, we investigate algebraic laws for the MCA ARMv8 architecture
including a set of sequential and parallel expansion laws. They can facilitate
producing all the valid in-order and out-of-order executions. In our approach,
every program can be expressed as a head normal form of guarded choice. There-
fore, the linearizability of MCA ARMv8 is supported.

3.1 Guarded Choice

The introduction to guarded choice is to support the sequential and parallel
expansion laws. It has the ability to model the execution of a program including
various reorderings under ARMv8. h&(action, tid, index)[q] � P is a guarded
component. Here, h is a Boolean condition, and others are defined below.

1. (a) If the element action is the operation writing to the store buffer taking
〈x = e〉 for example, q is in the form of h&(action′, tid, index′), and
action′ is propagating to the main memory x = e.

(b) Furthermore, action may be assigning to a local variable a = e or special
actions such as Fence and cfence. Then q is ε.

(c) In particular, h&(action, tid, index)[q] where action and q are both ε,
indicates that the configuration is of a branching condition.

94 L. Xiao and H. Zhu

2. tid is the identity of the thread which performs the action.
3. We use the parameter index to denote the location of an action, and it is

a pair shown as (num, isMem). num indicates the sequence number of the
action in the program order, and it starts from 1 for each single process.
isMem is to distinguish whether the action is propagation or not. If yes,
it is 2, otherwise, it is 1. Example 6 below helps to illustrate the intuitive
understanding of index.

Example 6. Consider the process P =df x := 1; a := x, where x and a are
global and local respectively. Since x := 1 is the first statement, two actions
〈x = 1〉 and x = 1 split from it have the same num. The value of num is 1
and it is framed in Fig. 6. 〈x = 1〉 and x = 1 target at the buffer and memory
respectively. Then the values of isMem are 1 and 2, and they are circled in
Fig. 6. The action a = x is extracted from the second statement a := x, thus its
num is 2. Because it is not a memory action, its isMem is 1. Hence the indices
of the three actions 〈x = 1〉, x = 1 and a = x are (1, 1), (1, 2) and (2, 1). �

We use Example 7 below to describe the intuitive understanding of tid.

Example 7. Consider the parallel process (P ||Q)||R shown in Fig. 7. The left
edge is assigned a label whose value is 1. Otherwise, the label is 2.

Fig. 6. The presentation of index. Fig. 7. The structure of thread id.

We assume that every sequential process has the thread id λ. For parallel
composition, the thread id of P ||Q is 〈1〉, and that of R is 〈2〉. Lower down,
the processes P and Q can be labeled by 〈1, 1〉 and 〈1, 2〉 respectively. From the
point of view of the tree structure, P , Q and R are all leaf processes. Please
note, for any thread id (i.e., tid), we have tid∧λ = tid. �

Now we introduce the concept of guarded choice, which is in the form of
[]i∈I{hi&(actioni, tidi, indexi)[qi] � P ′

i}, where hi&(actioni, tidi, indexi)[qi] �
Pi is a guarded component. For the component h&(action, tid, index)[q] � P ,
if h is satisfied, the subsequent is (action, tid, index)[q] � P .

Every program can be represented in the form of a guarded choice. And then
for MCA ARMv8, the guarded choice can only have the following three types.

1. []i∈I{hi&(actioni, tidi, indexi)[(action′
i, tidi, index′

i)] � P ′
i}

2. []i∈I{hi&(actioni, tidi, indexi) � P ′
i}

3. []i∈I{hi&(actioni, tidi, indexi)[(action′
i, tidi, index′

i)] � P ′
i}[]

[]j∈J{hj&(actionj , tidj , indexj) � Q′
j}

Trace Semantics and Algebraic Laws for MCA ARMv8 Based on UTP 95

– The first type of guarded choice is only composed of a set of global assignment
components. The operation committing any memory write can be scheduled
to execute, provided that the corresponding Boolean condition is satisfied.

– The second type of guarded choice is made up of local assignment, or Fence,
or cfence, or branching condition components.

– The third type can be obtained through combining the first and second types
of guarded choice.

3.2 Head Normal Form

Now, we assign every program P a normal form, which is named head normal
form, HF(P). HF (P) is in the form of guarded choice.
(1) For a global assignment, two actions committing to the write buffer and
propagating to the whole memory are separated from it. Therefore, the two
configurations corresponding to the above actions have the same num. However,
the value of isMem of the former is 1, while that of the latter is 2. And we use
the notation E to denote the empty process.

HF (x := e) =df []{true&(〈x = e〉, λ, (1, 1))[(x = e, λ, (1, 2))] � E}
(2) For a local assignment, after the first step expansion, there remains the empty
process. The treatment of Fence and cfence instructions is similar.

HF (a := e) =df []{true&(a = e, λ, (1, 1)) � E}HF (2–1)
HF (Fence) =df []{true&(Fence, λ, (1, 1)) � E}HF (2–2)

HF (cfence) =df []{true&(cfence, λ, (1, 1)) � E}HF (2–3)

(3) For conditional, h&(ε, λ, (1, 1)) and ¬h&(ε, λ, (1, 1)) are used to produce the
head normal form. That action is ε says that the evaluation does not have an
effect on the registers, buffers and the unique memory.

HF (if h then P else Q) =df ([]{h&(ε, λ, (1, 1)) � P,¬h&(ε, λ, (1, 1)) � Q})

(4) With regard to iteration, the analysis of it is similar to that of conditional.

HF (while h do P)

=df

(
[]{h&(ε, λ, (1, 1)) � (P ; while h do P), ¬h&(ε, λ, (1, 1)) � E})

The definition of the head normal form for sequential and parallel compo-
sition can be achieved, with the application of corresponding expansion laws
which are discussed in the following section.

3.3 Algebraic Laws

In this section, we study a set of sequential and parallel expansion laws. Based on
these laws, every program can be converted to a guarded choice, which supports
the linearizability of the MCA ARMv8 architecture.

96 L. Xiao and H. Zhu

Firstly, we focus on sequential expansion laws. Law (guar–1) indicates that
the sequential composition distributes leftward over guarded choice.

(guar–1) []i∈I{Pi};Q = []i∈I{Pi;Q}

As a special case of the law (guar–1), law (seq–1) teaches us to transfer
the program into configurations statement by statement. And the subsequent
program Q is only attached to the tail of the selected Pi.

(seq–1) Let P = []i∈I{hi&(actioni, tidi, indexi)[qi] � P ′
i}

Then P ;Q = []i∈I{hi&(actioni, tidi, indexi)[qi] � (P ′
i ;Q)}

After the transformation, we construct the relations among those config-
urations. Except for h&(action, tid, index)[q] fetched, the parameter num of
every configuration left increases 1 to guarantee the program order. Law (seq–2)
describes this, and seq denotes the sequence of the remaining configurations.

(seq–2) h&(action, tid, index)[q] � seq = (h&(action, tid, index) → q) ↪→ (seq ↑ 1)

Table 3. The description of three operators.

Operator Exhibiting
configurations

Program order
relation

Fixed executing
order

� √ × ×
↪→ √ √ ×
→ √ √ √

Note that, the operator � is used to connect the configurations with original
indices. Different from �, the operator ↪→ links the configurations whose indices
can reflect the program order (po) relation. The configurations connected by the
two operators above can still be reordered, but those linked by the operator →
cannot. Table 3 gives a brief and intuitive description of them.

Now, we give the definition of the function seq ↑ 1. Only num in each config-
uration in seq adds 1, and other parameters remain unchanged. Here, ‘/’ denotes
the replacement operator.

seq ↑ 1 =df ∀h&(action, tid, index) ∈ seq•
seq[h&(action, tid, (num + 1, isMem))/h&(action, tid, (num, isMem))]

Example 8. Consider the sequential process P ;Q, where P =df x := 1, Q =df

a := x, and x and a are global and local respectively.

Trace Semantics and Algebraic Laws for MCA ARMv8 Based on UTP 97

Fig. 8. The combination of configurations.

With the laws (seq–1) and (seq–2), we get the normal form of P ;Q formalized
as below. The combination of configurations of P and Q are shown in Fig. 8. For
simplicity, if the guard is true, it is ignored.

HF (x := 1; a := x) =(〈x = 1〉, λ, (1, 1))[(x = 1, λ, (1, 2))] � (a = x, λ, (1, 1))

=((〈x = 1〉, λ, (1, 1)) → (x = 1, λ, (1, 2))) ↪→ (a = x, λ, (2, 1)) �

Law (seq–3) is used to obtain all the configuration sequences (including the
results of reorderings) under MCA ARMv8. The first configuration with the
least num, formalized as c11, can always be scheduled. If we want to select the
configuration after the operator ↪→ and its num is greater than that of c11,
modeled as ci1 where i �= 1, the conditions covered by condi should be satisfied.

(seq–3) (c11 → c12 → ...c1n1) ↪→ (c21 → c22 → ...c2n2) ↪→ ...(cm1 → cm2 → ...cmnm)

= c11 → (c12 → ...c1n1) ↪→ (c21 → c22 → ...c2n2) ↪→ ...(cm1 → cm2 → ...cmnm)

[] c21 → (c11 → c12 → ...c1n1) ↪→ (c22 → ...c2n2) ↪→ ...(cm1 → cm2 → ...cmnm) if cond2

[] ...

[] cm1 → (c11 → c12 → ...c1n1) ↪→ (c21 → c22 → ...c2n2) ↪→ ... (cm2 → ...cmnm) if condm

condi has a number of situations, and these situations are similar to casej
under the trace model (page 10), where j ∈ {1, 2, 3, 4, 5}. For lack of space, we
only give the description and formalization of the situation that is corresponding
to case1, combining the features of the algebraic model in the following.

If the action in ci1 is a Fence instruction, any configuration c whose num is
less than that of ci1 can only have an action in the form of a = e. Furthermore,
the expression e does not refer to global variables. In a consequence, c has nothing
to do with any global variable, and we use dom to collect all the variables
appearing in a = e. Then this situation is formalized as below.

∀c •
(

(π1(π3(c)) < π1(π3(ci1))) →
(π1(c) is in the form of part of HF(2–1) ∧ ∀x ∈ dom(π1(c)) • x /∈ Globals)

)

Example 8: Continuation
According to the dependencies in Fig. 8, with the first application of the law
(seq–3), only the configuration (〈x = 1〉, λ, (1, 1)) can be the head. After remov-
ing it, we apply the law (seq–3) for the second time, and both of the remaining
configurations can be scheduled. The formalization is shown as below.

98 L. Xiao and H. Zhu

HF (x := 1; a := x) =(〈x = 1〉, λ, (1, 1)) → ((x = 1, λ, (1, 2)) ↪→ (a = x, λ, (2, 1)))

=(〈x = 1〉, λ, (1, 1)) → (x = 1, λ, (1, 2)) → (a = x, λ, (2, 1))

[](〈x = 1〉, λ, (1, 1)) → (a = x, λ, (2, 1)) → (x = 1, λ, (1, 2)) �

Next, we consider the parallel expansion law. Our parallel model can be
explained as an interleaving model. The detail we pay attention to is that when
the configuration in the left branch is selected, the prefix 〈1〉 should be added
to the corresponding tidi. The prefix 〈2〉 is attached to the corresponding tidj
with the configuration in the right being chosen.

(par–1) Let P = []i∈I{hi&(actioni, tidi, indexi) → P ′
i},

Q = []j∈J{hj&(actionj , tidj , indexj) → Q′
j}

Then P ||Q = []i∈I{hi&(actioni, 〈1〉∧tidi, indexi) → (P ′
i ||Q)}

[][]j∈J{hj&(actionj , 〈2〉∧tidj , indexj) → (P ||Q′
j)}

Example 9. Consider the parallel program P ||Q, where P =df x := 1, Q =df

a := 1; b := x, a and b are local variables, and x is a global variable.

HF (P ||Q) = HF (x := 1)||HF (a := 1; b := x)

=((〈x = 1〉, λ, (1, 1)) → (x = 1, λ, (1, 2)))||((a = 1, λ, (1, 1)) ↪→ (b = x, λ, (2, 1)))

=
(
(〈x = 1〉, λ, (1, 1)) → (x = 1, λ, (1, 2))

) ||
(

(a = 1, λ, (1, 1)) → (b = x, λ, (2, 1))
[] (b = x, λ, (2, 1)) → (a = 1, λ, (1, 1))

)

For lack of space, we only describe the generation of one sequence of P ||Q
shown in Fig. 9 here. �

Fig. 9. One configuration sequence of P ||Q.

4 Conclusion and Future Work

The MCA ARMv8 architecture allows out of order execution through thread-
local out-of-order, speculative execution and thread-local buffering. In this paper,
we have studied the trace semantics for ARMv8, acting in the denotational
semantics style. In addition, a set of algebraic laws including sequential and
parallel expansion laws has been investigated with the concept of the guarded
choice. Therefore, the linearizability of ARMv8 is supported in our model. Our
semantics study for MCA ARMv8 is based on UTP approach.

In the future, we would like to continue our work on ARMv8. We plan to
explore further relating theories for the ARMv8 architecture [19–21]. Using the
theorem proof assistant Coq [22–24] to formalize the UTP-based semantics for
ARMv8 is also in our plan.

Trace Semantics and Algebraic Laws for MCA ARMv8 Based on UTP 99

Acknowledgements. This work was partly supported by National Natural Science
Foundation of China (Grant Nos. 61872145 and 62032024) and Shanghai Collaborative
Innovation Center of Trustworthy Software for Internet of Things (Grant No. ZF1213).

A Read Function

Now, we present the read function r in detail. Above all, we need to judge if the
variable read from is global. If true, we introduce the function g to complete the
following operations. Otherwise, the function l is given. For simplicity, we only
use r(x) in the snapshots. Here, Globals is the set of all the global variables.

r(x, tr∧〈event〉) =df g(x, tr∧〈event〉) � x ∈ Globals � l(x, tr∧〈event〉)
r(x, 〈〉) =df g(x, 〈〉) � x ∈ Globals � l(x, 〈〉)

The read mechanism for global variables supported by this architecture is
that when a thread performs a read, if its buffer cannot provide the concrete
value, the shared memory will be explored.

g(x, tr∧〈event〉) =df

⎛
⎜⎜⎝

m(x, tr∧〈event〉)
�

(
w(x, tr∧〈event〉) = null ∨
cnt1(x, tr∧〈event〉) = cnt2(x, tr∧〈event〉) ...(A.1)

)
�

w(x, tr∧〈event〉)

⎞
⎟⎟⎠

g(x, 〈〉) =df m(x, 〈〉)

It means that the execution of g will jump to that of m, if the values of x have
not been committed to the buffer, or the writes to x have all been propagated
to the memory. The latter situation is modeled as the formula (A.1) in the trace
model. It illustrates that the number of the snapshots which contain x and target
at the buffer, and that aiming at memory contributed by the same thread are
identical. The numbers mentioned above can be calculated by the functions cnt1
and cnt2. We ignore the definition of cnt2, because it is similar to that of cnt1.

cnt1(x, tr∧〈event〉) =df

⎛
⎜⎜⎝

cnt1(x, tr) + 1

�

(
ASCII(π1(π1(event))) = ASCII(x)
∧π2(event) = 1 ∧ π3(event) = 1

)
�

cnt1(x, tr)

⎞
⎟⎟⎠

cnt1(x, 〈〉) =df 0

The function w is used to search the store buffer. Since we always want the
most recent value, the trace (the sequence of snapshots) will be checked in reverse
order, and the same is true for the functions as below. When executing w, for
each snapshot, we first examine whether its oflag and eflag are both 1, because
all threads can see their own buffers merely. If the conditions are satisfied, we
have a look at the variable contained in π1(π1(event)) of the snapshot. Once it is
identical to the one that we want to read, the corresponding value π2(π1(event))
is returned, and the process terminates. If we do not achieve anything until the
trace becomes ε, null will be assigned to this function.

100 L. Xiao and H. Zhu

w(x, tr∧〈event〉)

=df

⎛
⎝

(π2(π1(event)) � ASCII(π1(π1(event))) = ASCII(x) � w(x, tr))
� π2(event) = 1 ∧ π3(event) = 1 �

w(x, tr)

⎞
⎠

w(x, 〈〉) =df null

We know that ASCII is used to specify the binary numbers of common sym-
bols.

We use the function m to seek the shared memory for the value of a specific
variable. Due to the fact that the main memory is visible to all threads, we are
only demanded to check whether oflag of the snapshot we meet is 2 or not. The
remainder is similar to that of w. However, the difference between them is that
the return value of the function m is set to the initial value 0 if we cannot get
the value from the trace.

m(x, tr∧〈event〉)

=df

⎛
⎝

(π2(π1(event)) � ASCII(π1(π1(event))) = ASCII(x) � m(x, tr))
� π2(event) = 2 �

m(x, tr)

⎞
⎠

m(x, 〈〉) =df 0

When reading a variable from the register, what we should do is to check
whether oflag is 3 and eflag is 1, because the registers are all private.

l(x, tr∧〈event〉)

=df

⎛
⎝

(π2(π1(event)) � ASCII(π1(π1(event))) = ASCII(x) � l(x, tr))
� π2(event) = 3 ∧ π3(event) = 1 �

l(x, tr)

⎞
⎠

l(x, 〈〉) =df 0

Based on the read function generated from the read mechanism of the MCA
ARMv8 architecture, we can know that the private information will not be visible
to other threads.

References

1. Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., Sewell, P.: Simplifying ARM
concurrency: multicopy-atomic axiomatic and operational models for ARMv8.
Proc. ACM Program. Lang. 2(POPL), 1–29 (2017)

2. Pulte, C.: The Semantics of Multicopy Atomic ARMv8 and RISC-V. University of
Cambridge (2019)

3. Flur, S., et al.: Modelling the ARMv8 architecture, operationally: concurrency and
ISA. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 608–621 (2016)

4. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 391–407. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03359-9 27

https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27

Trace Semantics and Algebraic Laws for MCA ARMv8 Based on UTP 101

5. Colvin, R.J., Smith, G.: A wide-spectrum language for verification of programs on
weak memory models. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds.)
FM 2018. LNCS, vol. 10951, pp. 240–257. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-95582-7 14

6. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall, Engle-
wood Cliffs (1998)

7. Plotkin, G.D.: A Structural Approach to Operational Semantics. Aarhus University
(1981)

8. Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. MIT Press, Cambridge (1981)

9. Hoare, C.A.R., et al.: Laws of programming. Commun. ACM 30(8), 672–686 (1987)
10. Winter, K., Smith, G., Derrick, J.: Modelling concurrent objects running on the

TSO and ARMv8 memory models. Sci. Comput. Program. 184, 102308 (2019)
11. Smith, G., Winter, K., Colvin, R.J.: Linearizability on hardware weak memory

models. Formal Aspects Comput. 32, 1–32 (2019)
12. Winter, K., Smith, G., Derrick, J.: Observational models for linearizability checking

on weak memory models. In: International Symposium on Theoretical Aspects of
Software Engineering (TASE), pp. 100–107. IEEE (2018)

13. Kavanagh, R., Brookes, S.: A denotational semantics for SPARC TSO. Electron.
Notes Theor. Comput. Sci. 336, 223–239 (2018)

14. Colvin, R.J., Smith, G.: A high-level operational semantics for hardware weak
memory models, arXiv preprint arXiv:1812.00996 (2018)

15. Brookes, S.: Full abstraction for a shared-variable parallel language. Inf. Comput.
127(2), 145–163 (1996)

16. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Hoboken
(1985)

17. Smith, G., Coughlin, N., Murray, T.: Value-dependent information-flow security
on weak memory models. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM
2019. LNCS, vol. 11800, pp. 539–555. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-30942-8 32

18. Sorin, D.J., Hill, M.D., Wood, D.A.: A primer on memory consistency and cache
coherence. Synthesis Lect. Comput. Archit. 6(3), 1–212 (2011)

19. Zhu, H., Yang, F., He, J., Bowen, J.P., Sanders, J.W., Qin, S.: Linking opera-
tional semantics and algebraic semantics for a probabilistic timed shared-variable
language. J. Logic Algebraic Program. 81(1), 2–25 (2012)

20. He, J., Hoare, C.A.R.: From algebra to operational semantics. Inf. Process. Lett.
45(2), 75–80 (1993)

21. Hoare, C.A.R., He, J., Sampaio, A.: Algebraic derivation of an operational seman-
tics. In: Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp.
77–98 (2000)

22. Sheng, F., Zhu, H., He, J., Yang, Z., Bowen, J.P.: Theoretical and practical aspects
of linking operational and algebraic semantics for MDESL. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 28(3), 1–46 (2019)

23. Huet, G., Kahn, G., Paulin-Mohring, C.: The Coq Proof Assistant a Tutorial (2005)
24. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:

Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2013)

https://doi.org/10.1007/978-3-319-95582-7_14
https://doi.org/10.1007/978-3-319-95582-7_14
http://arxiv.org/abs/1812.00996
https://doi.org/10.1007/978-3-030-30942-8_32
https://doi.org/10.1007/978-3-030-30942-8_32

Formal Analysis of 5G AKMA

Tengshun Yang1,2, Shuling Wang1,2, Bohua Zhan1,2(B), Naijun Zhan1,2,
Jinghui Li3, Shuangqing Xiang3, Zhan Xiang3, and Bifei Mao3

1 SKLCS, Institute of Software, CAS, Beijing, China
{yangts,wangsl,bzhan,znj}@ios.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China
3 Trustworthiness Theory Research Center, Huawei Technologies Co., Ltd.,

Shenzhen, China
{jinghui.li,xiangshuangqing,xiangzhan1,maobifei}@huawei.com

Abstract. Security and privacy of users’ information in mobile commu-
nication networks have drawn increasing attention. The development of
5G system has demanded new protocols to realize authentication and key
management service. AKMA (Authentication and Key Management for
Application) service aims at establishing authenticated communication
between users and application functions. For this purpose, the 3GPP
group has standardized 5G AKMA service in Technical Specifications
defining the 5G AKMA security architecture and procedures. To ensure
security of communication between users and applications, AKMA ser-
vice should meet strong security properties. In this paper, we apply for-
mal methods to model and analyze the AKMA service. We construct
a formal model of AKMA in the Tamarin verification tool, and spec-
ify the security properties extracted from informal descriptions given in
the Technical Specifications. We identify the security assumptions for
each security property during the modeling process. We prove that some
properties are not satisfied, and by analyzing the counterexamples con-
structed by Tamarin, put forward some potential attacks. Moreover, we
propose some suggestions and fixes for the 5G AKMA service.

1 Introduction

With mobile communication networks widely used across the world, more and
more people subscribe to their home networks and communicate with each other
or use online services, such as phone calls, emails, and entertainment applica-
tions. Much of these communications occur through public channels, which can
be intercepted or suffer from other kinds of attacks. In order to ensure secu-
rity and privacy of subscribers and application providers communicating along
insecure channels, 3GPP (3rd Generation Partnership Project) has been speci-
fying the security architecture, i.e. security features and mechanisms, for the 5G
System and the 5G Core, and the security procedures performed within the 5G
System including 5G Core and 5G New Radio in the Technical Specification (TS)
[7]. One of the main mechanisms is to support authentication and key manage-
ment aspects for applications, that is mutual authentication between users and
c© Springer Nature Switzerland AG 2021
S. Qin et al. (Eds.): SETTA 2021, LNCS 13071, pp. 102–121, 2021.
https://doi.org/10.1007/978-3-030-91265-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91265-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-91265-9_6

Formal Analysis of 5G AKMA 103

application providers. Specifically, a major aim of this service is to allow applica-
tion providers to authenticate users without knowing the users’ identifier, with
the home network of the user as an intermediary.

5G AKMA (Authentication and Key Management for Application) is a novel
cellular-network-based delegated authentication service. This service, specified
in 3GPP TS 33.535 [8], aims to provide a protocol to support authentication
and key management aspects for applications based on subscription credentials.
In AKMA, application provider, denoted by AKMA Application Function (AF),
delegates the authentication of application user (UE) to the corresponding home
network (HN) where the user subscribes. In this way, application provider could
verify the identity of the user through home network without having chance to
acquire knowledge and information of the user, especially, the real identifier of
the user. The standardization of 5G AKMA service started with Release 16 in
2019 and the latest version was specified in Release 17. In this paper, according
to the version 17.1.0 of Release 17 of the Technical Specification (TS) [8], we
will provide the first formal model of 5G AKMA and also verify formally the
security requirements using Tamarin.

Formal Methods. In this paper, we apply formal methods to analyze the
AKMA service, using the Tamarin verification tool [31]. Tamarin specifies pro-
tocols as a set of rewrite rules acting on a multiset of facts, and properties as
two-sorted first-order logic assertions. By writing appropriate actions in the rules
and in the trace, it is possible to formulate various threat models, such as Dolev-
Yao [20] and eCK [27], as well as various authentication specifications [29]. Using
a backward-search style algorithm [33], Tamarin attempts to prove the proper-
ties or find a counterexample. The counterexamples help users find potential
attacks of protocols.

Contribution. In this work, we formally specify the standard’s security
assumptions and requirements of 5G AKMA, and build the first formal model
of 5G AKMA for a precise security analysis. First, we construct a formal model
of 5G AKMA, as specified in TS 33.535 [8], as a set of rewrite rules in Tamarin.
As we describe in Sect. 4, the model contains main features and functions in
the protocol. During the modeling process, we identity the security assumptions
about the protocol for guaranteeing the security properties, which are implicitly
stated in the standard documents. Next, we model the classical properties (e.g.
secrecy, weak agreement, non-injective agreement) and check them in Tamarin.
During the verification, for some of these security properties, Tamarin returns a
counterexample showing that the model does not satisfy the given property. We
then analyze the attacks according to the counterexamples and put forward the
potential security and privacy problems about AKMA protocol. Also, we give
suggestions to fix these problems.

104 T. Yang et al.

Related Work. In the earlier generations of mobile network, the correspond-
ing services were also specified by 3GPP. GBA (Generic Bootstrapping Architec-
ture) [5] and BEST (Battery Efficient Security for very low Throughput Machine
Type Communication (MTC) devices) [4], served use cases similar to that of
AKMA in the 3rd and 4th generation respectively. 5G AKMA inherits and
evolves features of GBA and BEST, performs better in all kinds of requirements
(refering to 3GPP TR33.835 [1]). In [23], Khan et al. analyzed potential AKMA
requirements and compared AKMA with GBA and BEST. Beyond that, they
put forward two new privacy requirements arose from AKMA applications, devel-
oped a privacy mode for fulfilling them and analyzed the security and privacy
of their solution informally. In another work [24], they introduced designated
authentication system and summarized recent work about AKMA.

There are lots of work on formal modeling and verification of security sys-
tems. For adversaries, the most important models are Dolev-Yao model [20],
eCK model [27], and its extension SeCK model [32]. The adversaries are given
different powers for each of them. Especially, the eCK model inherits the spirit
of Bellare and Rogaway [14] and Canetti and Krawczyk [17,25] by an experi-
ment in which the adversary is given many corruption powers for various key
exchange sessions and must solve a challenge on a test session. Formal modeling
languages and logics are used for modeling security protocols, and for capturing
security properties, facilitating verification and debugging. These work include
the process algebra CSP [21,29,34,35], BAN logic [16], applied π-calculus [9],
Horn clauses [15], TLA [10,28], rewriting system [31] and so on. Some secu-
rity protocol verification tools are developed based on these theories, such as
Tamarin [31], Maude-NPA [18], ProVerif [15], and so on. Tamarin will be intro-
duced in Sect. 3. The Maude-NPA tool [18] supports protocols specified as linear
role-scripts and properties specified as symbolic states [22]. ProVerif [15] models
a protocol as a set of Horn clauses, analyzes them using a two-phase resolution
algorithm, and uses abstractions to obtain an efficient analysis method.

There are lots of work on verification of security protocols. Protocols with
loops and non-monotonic mutable global states such as TESLA protocols,
YubiKey and YubiHSM protocols were considered in [26,30]. In [11], ARPKI
protocol with many messages and multiple parties was modeled and analyzed.
The group protocols STR and GDH based on Diffie-Hellman were verified on
security and privacy. TLS 1.3 and 5G AKA protocol were analyzed in [12,19],
which are important for Internet security and also widely used to establish secure
channels in a variety of contexts. Significantly, 3GPP [2] formally analyzes the
3G AKA protocol using TLA [28] on the absence of failure scenarios and uses
BAN logic [16] on proving security goals respectively.

2 AKMA in 5G System

In this section, we give an informal introduction to the 5G AKMA service. We
first describe the main entities of the service, and then present the steps of the
protocol in detail. See the Technical Specification [8] for further information.

Formal Analysis of 5G AKMA 105

2.1 General Architecture

There are three main entities (roles) in the 5G AKMA service, as shown in Fig. 1.
We explain them below.

Fig. 1. AKMA architecture

1. User Equipment (UE): represents user of the service, consisting of two parts:
Mobile Equipment (ME) and Universal Integrated Circuit Card (UICC).

2. Home Network (HN): represents the mobile network provider. HN has all of
the information about its subscribers, and is always considered to be credible.
Home network plays the role of authenticating users and helps application
providers to reach an agreement with the users on session keys in the AKMA
service. There are several functions located within the HN, as follows:

– UDM (Unified Data Management): stores information about all sub-
scribers of the home network.

– AAnF (AKMA Anchor Function): manages temporary information about
subscribers, and generates temporary session keys KAF for the application
functions.

– AUSF (Authentication Server Function): connection between UDM and
AAnF, obtains the 5G authentication vector from UDM and generates
relative AKMA materials.

– NEF (Network Exposure Function): when the target AF is located outside
the HN, establishes connection between AAnF and AF.

In general, there is also a Serving Network (SN) which the user connects to
when roaming. In this paper, we consider only the case when the user is not
roaming, that is, SN is part of the HN, so we do not consider SN separately.

3. Application Function (AF or AApF): also called application provider or ser-
vice provider, represents the online services that the user may wish to use.
The goal of AKMA is to help to establish a secure channel (exchange a secret
key) between AF and UE, with authentication of UE delegated to its corre-
sponding HN.

106 T. Yang et al.

Every user in the cellular network subscribes to a home network and has
a unique long-term identifier SUPI (Subscription Permanent Identifier) and a
long-term key K. These are stored at both UE and HN.

It is worth noting that the mutual authentication between HN and AF is not
part of the AKMA service. That is, it should be prepared before the execution
of the protocol. According to TS 33.501 [7], mutual authentication based on
client and server certificates shall be performed between the HN and AF using
TLS protocol. In our modeling of the protocol in Sect. 4, we will model their
communication in a private channel.

2.2 5G AKMA Protocol

5G AKMA protocol specifies the functions and behaviors of the AKMA service.
We will begin by introducing the primary authentication step, which is a prereq-
uisite but not a key part of the protocol. Next, we will present the interactions
between UE, HN and AF step by step.

Primary Authentication. Before AKMA service can start, UE and HN must
execute mutual authentication. This primary authentication step is known as 5G
Authentication and Key Agreement (5G AKA [7]). Prior generations of cellular
networks have different AKA protocols: 3G has UMTS AKA protocol [3]; 4G has
LTE AKA protocol [6]; in 5G, besides AKA protocol, there exists EAP-AKA′ [7].
Whether to use 5G AKA or EAP-AKA′ is decided by HN.

As mentioned above, UE has its unique and permanent identifier SUPI and
secret key K, which are also stored in HN. Roughly speaking, when 5G AKA
protocol runs, HN sends a random number to UE. With the random number and
information of the UE, both UE and AUSF in HN side would generate KAUSF,
which will be used for generating subsequent keys during AKMA.

Deriving AKMA Materials. The steps for deriving AKMA materials are
shown in Fig. 2. After UE finishes primary authentication with HN, and before it
initiates communication with an AKMA Application Function (AF), it generates
the AKMA Anchor Key KAKMA and A-KID from KAUSF (Steps 3, 4). The A-KID
(AKMA Key Identifier) consists of A-TID (AKMA Temporary UE Identifier)
and HN-ID (identity of home network).

After receiving KAUSF from UDM, AUSF stores this key and generates the
AKMA Anchor Key KAKMA and A-KID from KAUSF (Steps 3, 4). Then AUSF
sends the AKMA key materials (KAKMA, A-KID) together with the SUPI of UE
to AAnF (Step 5). AUSF does not need to store any AKMA key materials after
sending them to AAnF.

When AAnF receives the AKMA key materials from AUSF, it first deletes
the old materials with the same SUPI (if there exists any). This means, if re-
authentication runs, AAnF only stores the latest materials from AUSF, and each
UE only has one AKMA key material at any time in AAnF. Then AAnF would
give a response back to AUSF (Step 6).

Formal Analysis of 5G AKMA 107

Fig. 2. Deriving AKMA materials (taken from [8])

Deriving AKMA Application Key for a Specific AF. The steps for deriv-
ing AKMA application key are shown in Fig. 3. If UE attempts to connect to AF
without initiating AKMA protocol, AF would reject the request with an AKMA
initiation message. Then UE would re-send the request in accordance to AKMA.

Fig. 3. Deriving AKMA application key for a specific AF (taken from [8])

108 T. Yang et al.

UE initiates the AKMA protocol by sending the A-KID to AF (Step 7).
Since the A-KID contains identity of HN, AF would attempt to establish con-
nection with the HN. The following steps are divided into two cases, depending
on whether AF is located inside HN or not.

If AF is located within HN, it connects with AAnF directly. AF forwards the
A-KID together with its own identity (AF-ID) to the AAnF in the HN (Step 8).
Then AAnF checks the presence of the UE specific KAKMA key corresponding to
the received A-KID. If the material does not exist, AAnF returns an error mes-
sage. Otherwise, according to the AF-ID received and the AKMA key material,
AAnF generates KAF (Step 9). Moreover, AAnF decides an expiration time for
the key. It then sends the key KAF with its expiration time as a response back
to AF (Step 10). If any step in the procedure fails, UE would receive a reject
response and need to re-request with the latest A-KID.

If AF is located outside HN, it connects to NEF rather than AAnF, which
enables and authorizes external AF accessing AKMA service and forwards the
request to AAnF. NEF plays a role of intermediary between AF and AAnF.
Most of the procedure is the same as above.

When AF receives the session key KAF and KAF expiration time, it responds
to UE (Step 11). Since UE has all AKMA key materials, i.e. the latest KAKMA,
it can also generate KAF by itself. Significantly, when the session key expires,
AF ends the session with UE, but UE has a chance to refresh KAF, depending
on the protocol at the interface between AF and UE, i.e. the Ua∗ protocol. If
this protocol supports refresh of KAF, AF may refresh KAF at any time using
the Ua∗ protocol.

There are several Key Derivation Functions (KDFs) involved in the AKMA
protocol. Each KDF accepts a number of input arguments. For generating each
kind of key, some of the arguments are constant, while others depend on identi-
fiers and existing keys. The key KAKMA is derived from SUPI and KAUSF. The
temporary identifier A-TID is also derived from SUPI and KAUSF, but with dif-
ferent settings of constants. The key KAF is derived from identifiers for AF and
KAKMA. See [8] for more details.

3 Tamarin Prover

In this section, we give a brief introduction to the Tamarin verification tool [36].
Tamarin is a powerful tool for symbolic modeling and analysis of security pro-
tocols. It takes as input a security protocol model, specifying the actions taken
by agents running the protocol in different roles (e.g., the protocol initiator,
the responder, and the trusted server), a specification of the adversary, and a
specification of the protocol’s desired properties [36]. With the above inputs,
Tamarin verifies whether the protocol satisfies the properties. Tamarin supports
verification when there are an arbitrary number of sessions. This is reflected in
modeling the state as a multiset of facts, where each new session is modeled by
applying the corresponding initialization rule and adding new (linear) facts to
the state. Hence, the state space is potentially infinite. Tamarin deals with the

Formal Analysis of 5G AKMA 109

infinite state space using a backward-search style algorithm, starting from the
violation of the property to be verified, and checking how the violation can result
from applying the rules. The search does not always terminate as the verifica-
tion problem can be shown to be undecidable. If the search terminates, Tamarin
either proves that the property is satisfied, or finds a trace as counterexample
against the property. The user interface shows the trace as a visual chart, which
can be examined, to analyze for possible mistakes in the constructed model, the
statement of properties, or the protocol itself. Since the verification problem is
undecidable, to partially remedy the situation that does not terminate, Tamarin
also provides an interactive mode where the user can guide the tool through the
verification. We now introduce the usage of Tamarin from two aspects: modeling
and property specification.

3.1 Modeling

In Tamarin, messages are described using terms, which are formed from variables,
constants, and functions. For example, the theory of symmetric encryption is
given by two functions dec and enc. The term enc(m, k) denotes encryption of
message m with key k, and the term dec(m, k) denotes decryption. Moreover, a
set of identities specify the equational theory. For example, symmetric encryption
has the equation dec(enc(m, k), k) = m.

The protocol is specified using an expressive language based on multiset
rewriting rules. These rules construct a labeled transition system whose states
are multisets of facts, which give a symbolic representation of the current state of
the protocol, messages on the network, and adversary knowledge. In Tamarin, the
sort of a variable is expressed using the following prefixes: ~ for fresh variables,
$ for public variables, # for temporal variables, indicating the order of actions.
There are three types of builtin fact symbols: Fr for generating a fresh value, In
for receiving a message from the untrusted network, Out for sending a message to
the untrusted network. As Tamarin assumes Dolev-Yao style attackers [20], the
adversary can intercept any message that is output through Out, and insert any
message as In. The adversary can construct new terms from existing knowledge
(modulo rewriting rules), but cannot break the cryptography. For example, in
the symmetric encryption theory above, the adversary cannot derive m if he
knows only enc(m, k), but will be able to do so if he additionally knows k, by
constructing dec(enc(m, k), k) and rewriting to m. In addition to the three builtin
fact symbols, Tamarin allows defining any number of custom fact symbols. By
default, a fact symbol is linear, meaning each fact with that symbol can be
used only once. A fact symbol can be declared as permanent by prepending an
exclamation sign (!).

Each rule consists of a list of premises, a list of conclusions, and a list of
actions. A rule can be executed if each premise in the rule is present in the
current multiset. The transition corresponding to executing this rule removes all
premises from the multiset (except the permanent facts), and inserts conclusions
into the multiset. The actions of the rule are appended together to form the trace
of execution.

110 T. Yang et al.

We illustrate these concepts with an example, in which agents A and B share
a long-term key k, and A uses this key to send an encrypted message to B.

Example 1. In the protocol, A encrypts m with k and sends it to B.

rule Initial: [Fr(k)] --> [!Ltk($A, k), !Ltk($B, k)]

rule Send_A: [!Ltk($A, k), Fr(m)] --[Send_mes(A, m)]-> [Out(enc(m, k))]

rule Recv_B: [!Ltk($B, k), In(enc(m, k))] --[Recv_mes(B, m)]-> []

In the above code, each line specifies a rule of the protocol. If there are no
actions in the rule, the premises and conclusions are joined by -->. Otherwise,
the list of actions is written in the middle of the arrow. Terms preceded by the
symbol $ are public terms (known to everyone including the adversary).

3.2 Property Specification

Security properties are defined over traces, formulated in terms of many-sorted
first-order logic formulas over messages and timepoints, and checked against
traces of the transition system. Using this logic, we can specify various secrecy
and authentication properties.

Continuing Example 1, we show how to describe various levels of authentica-
tion specifications according to [29]. The following lemma specifies non-injective
agreement between two agents A and B, meaning whenever B completes a run
of the protocol, apparently with A, then A has been previously running the
protocol, apparently with B, and they agree on the message m:
lemma Non_injective_agreement:

"All m #i. Recv_mes(B, m) @ i ==> (EX #j. Send_mes(A, m) @ j & j < i)"

This property holds for the above example. The only way Recv mes(B,m)
can appear in the trace is for rule Recv B to be executed. This can occur only if
a term enc(m,k) is input. Since the adversary does not know k, there is no way
for him to construct the message enc(m,k). So the input can only come from
rule Send A, which creates the action Send mes(A,m) at an earlier timepoint.

However, the following stronger property, injective agreement, does not hold:

lemma Injective_agreement:
"All m #i. Recv_mes(B, m) @ i

==> (Ex #j. Send_mes(A, m) @ j & j < i
& not (Ex #i2. Recv_mes(B, m) @ i2 & not (#i2 = #i)))

This is because the adversary can intercept the message enc(m,k) and resend
it, resulting in another execution of the rule Recv B. Clearly this protocol is too
weak to guard against replay attacks.

4 Modeling and Specifying Properties of AKMA

In this section, we describe the detailed model of AKMA protocol and specify
its properties of interest in Tamarin.

Formal Analysis of 5G AKMA 111

4.1 Threat Model

As we mentioned above, Tamarin assumes Dolev-Yao model for attackers. Adver-
sary obeys the assumption of encryption, i.e., they can decrypt the secret mes-
sages only when having the corresponding key. In addition, we consider more
advanced security properties corresponding to more powerful adversaries or
compromised parties, following the eCK model [27]. In particular, we take into
account the possibility of key reveal and the possibility that some of the entities
have been compromised. In our protocol, the SUPI and K of a compromised UE
could be revealed and the adversary would impersonate its identity to communi-
cate with HN and AF. If HN is compromised, the information in UDM would be
revealed and all information of the subscribers would be leaked, together with
their asymmetric encryption key pairs, which play an important role in other
protocols such as 5G AKA. Following [27], we define the concept of clean session
as follows:

Definition 1 (Clean session). We say a session is clean if neither of the
following conditions holds:

1. One of the parties is an adversary-controlled party. This means in particular
that adversary could reveal all private information known to the party, and
perform all communications and computations on behalf of the compromised
party;

2. Any of the long-term, temporary and session keys is revealed by adversary.

Considering the following lemma:

All x #i. Secret(X) @i ==> not (Ex #j. K(x) @j)

it would be unsatisfiable when the agent is compromised. We call an agent is
Honest(written as Honest(X)) if and only if the agent is not compromised. We
indicate assumptions on honest agents by labeling the corresponding rule that
the required action fact appears in with an Honest(A) action fact, where we
assume A is honest. Intuitively, we explain the meaning of Honest by comparing
the case where Honest is present in the properties and actions, and the case
where it is not. If Honest is not present, then the meaning is that secrecy (or
some other desired property) can be violated when any agent is compromised,
whereas if Honest is present, then the meaning is that the desired property can
be violated only when an agent participating in the protocol is compromised.

Therefore, following standard techniques of modeling using Tamarin [12,33],
we model Honest participants and key reveals as follows. For each long-term,
temporary, and session key that could be revealed, we add a rule which outputs
the key (so it becomes known to the adversary), with an action of the form
Reveal(X,type), where X is the participant who owns the key, and type specifies
the type of the key. Moreover, at steps of the protocol where Running, Commit
and Confirmation actions are inserted (see the protocol rules in Sect. 4.2), we
also insert actions of the form Honest(X), which indicates that X should be

112 T. Yang et al.

an honest participant of the protocol, i.e., should not be compromised. Hence,
Ex X m #r. Reveal(X, m) @ r & Honest(X) @ i means some participant of
the protocol who is running (or finished) at time i has its secret key revealed
(the session is not clean) at some time r. With this proposition, the considered
lemma would be modified:

All x #i. Secret(X) @i ==> not (Ex #j. K(x) @j)

| (Ex X m #r. Reveal(X, m) @r & Honest(X)@i)

Propositions of this form will appear frequently in the properties stated
below, which are usually of the form either security conditions are satisfied,
or the session is not clean.

4.2 Modeling the AKMA Service in Tamarin

In this part, we analyze the functions and behaviors of AKMA service, including
some of the underlying assumptions, then describe the model of the protocol in
Tamarin.

Assumptions. As mentioned in Sect. 2, we make several reasonable assump-
tions about AKMA service:

1. Communication between UE and AF occurs along public channels. Hence it
is subject to eavesdropping, interception and injection by the adversary. The
protocol should remain secure under such attacks.

2. We assume that the communication inside HN is always clean and credible,
as detailed in Sect. 4.1.

3. We only consider the case where AF can communicate directly with AAnF,
without NEF as an intermediary. Hence, we do not include NEF in our model.
Relaxing this assumption requires only changing the communication between
AF and AAnF to taking two steps instead of only one step, which should not
affect the security arguments about the protocol.

4. Mutual authentication between AAnF and AF occurs before running AKMA
using the TLS protocol [7], which provides integrity, replay, and confidential-
ity protection of communication along a private channel. Following previous
work [12,13], we abstract this to a secure channel between HN and AF. In
Tamarin, the channel is modeled with four rules, representing four behaviors
respectively: sending messages into the channels, receiving messages from the
channel, eavesdropping messages from the channel, injecting messages into
the channel (the latter two describe the behavior of the adversary).

5. Primary authentication using AKA is a prerequisite but not a proper part of
AKMA service, and there are already a lot of work analyzing the 5G AKA
protocol. Therefore, we assume the communication between HN and UE to
be secure and private.

Formal Analysis of 5G AKMA 113

Significantly, we make some assumptions about permanent information: the
subscriber credentials, i.e. SUPI, K of the UE, which are shared between UE
and HN, should initially be secret, provided they are not compromised.

We also make some assumptions about compromised entities. In our model,
there are no private and permanent information related to AFs. Therefore, we
only need to consider compromised UE and HN. As we show in Sect. 5.1, the
failure of non-injective agreement property is due to compromised HN. For com-
promised UEs, adversaries would know all secret information like SUPI and K.
Likewise, adversaries could access SUPI and K of all subscribers from compro-
mised HNs.

KDFs in the Protocol. Parameters of each key derivation function have been
specified by 3GPP. These are abstracted for convenience of modeling. We define
the KDF of KAUSF with three parameters: identity of HN, K of UE and the
random number HN sent to UE, while actually the parameters of KAUSF deriva-
tive function contains 〈CK, IK〉 generated from K of UE, identity of HN and
the random number; The A-KID and KAKMA are generated from the same key
KAUSF, and the only difference is the setting of constants, so the parameters are
SUPI of UE, KAUSF and C1 (or C2); The parameters of the KDF of KAF contain
KAKMA and identity of the AF.

Protocol Rules. We list some rules in the protocol and the corresponding
Tamarin code below, in order to illustrate the modeling process.

– We model the process of redoing primary authentication. When AAnF
receives a new AKMA key via fact AUSF KEY, it deletes the old AKMA key
materials by removing AAnF1 and only stores the latest message from AUSF
by adding AAnF. The restriction in the action indicates that the rule would
only trigger when K AKMA new does not equal K AKMA and A TID new does
not equal A TID.

rule Re_pri_auth:

[AAnF1(~id_HN, ~SUPI, <A_TID, ~id_HN>, K_AKMA),

AUSF_KEY(~SUPI, K_AUSF, ~id_HN, K_AKMA_new, <A_TID_new, ~id_HN>)]

--[_restrict(NotEqual(K_AKMA_new, K_AKMA)),

_restrict(NotEqual(A_TID_new, A_TID)),

K_AKMA_Re_Register(~id_HN)]->

[AAnF(~id_HN, ~SUPI, <A_TID_new, ~id_HN>, K_AKMA_new)]

– Application Session Establishment Request: After UE and HN generated
AKMA key materials, UE starts a session request to AF with its A-KID (con-
taining the AKMA Temporary UE Identifier A-TID and HN-ID according to
the TS [8]). Fact UE KEY indicates that UE possesses all the information
defined by the parameters. Fact UE KEY1 is produced to indicate that these
information does not disappear after this transition.
For two-party protocols, to analyze the desired authentication properties,
we label the appropriate rules in the responder party B with an action fact

114 T. Yang et al.

Commit(b, a, <‘A’, ‘B’, t>) and in the initiator party A with the corresponding
action fact Running(a, b, <‘A’, ‘B’, t>). Likewise, Confirmation(a, b, <‘A’, ‘B’,
t>) is added into the action fact in appropriate rules. We show the complete
rule UE send request constructed in Tamarin as follows, but due to limited
space, we will not list these actions in the remaining rules of this section.
rule UE_send_request:

[UE_KEY(~SUPI, K_AUSF, K_AKMA, <A_TID, ~id_HN>, K_AF, ~id_AF),

!Sub(~SUPI, ~id_HN),

!AF(~id_AF)]

--[UE_send_request(~SUPI),

Secret(<’A_KID’, <A_TID, ~id_HN>>, ~SUPI),

Running(<A_TID, ~id_HN>, ~id_AF, <’UE’, ’AF’, <’A_KID’, <A_TID, ~id_HN>>>),

Running(~SUPI, ~id_HN, <’UE’, ’HN’, <’A_KID’, <A_TID, ~id_HN>>>),

Running(<A_TID, ~id_HN>, ~id_AF, <’UE’, ’AF’, <’K_AF’, K_AF>>),

Honest(<A_TID, ~id_HN>),

Honest(~id_AF),

Honest(~id_HN)]->

[Out(<A_TID, ~id_HN>),

UE_KEY1(~SUPI, K_AUSF, K_AKMA, <A_TID, ~id_HN>, K_AF, ~id_AF)]

– Naanf AKMA ApplicationKey Get Request: AF forwards the request of UE
with the identity of AF to HN, indicated by msg, via a secure channel cid.

– Naanf AKMA ApplicationKey Get Response: HN generates the session key
KAF and sends it through a message (indicated by session msg) back to AF
as a response.

rule AAnF_Send_K_AF:

[Fr(~exptime),

AAnF_KEY(~id_HN, ~SUPI, <A_TID, ~id_HN>, K_AKMA, K_AF, ~id_AF),

!AF(~id_AF),

RcvS(~cid, ~id_AF, ~id_HN, < <A_TID, ~id_HN>, ~id_AF >)]

--[HN_Response(~id_HN, K_AF)]->

[SndS(~cid, ~id_HN, ~id_AF, < K_AF, ~exptime >)]

– Application Session Establishment Response: After receiving the session key
together with other information, AF would start an implicit authentication.
In the specification [8], when AF receives a request from UE with its A-KID,
AF would return a response without any parameters to UE. In order to let UE
and AF confirm the session key, we add a key-confirmation round trip. When
AF obtains the session key and the expiration time from AAnF, it would hash
the session key with “AF” and send the hash value to UE. UE would confirm
the hash value, then hash the session key with “UE” and send the hash value
to AF. The implicit authentication is finished when UE and AF have both
confirmed the hash values. We list the case for UE key confirmation.

rule UE_Key_Confirmation:

[In(f(K_AF, ’AF’)),

UE_KEY1(~SUPI, K_AUSF, K_AKMA, <A_TID, ~id_HN>, K_AF, ~id_AF),

!AF(~id_AF)]

--[UE_Key_Confirmation(~SUPI, K_AF)]->

[Out(f(K_AF, ’UE’))]

Formal Analysis of 5G AKMA 115

4.3 Specifying Properties

Now we introduce the properties of interest and describe them in the Tamarin
prover. First, we introduce Lowe’s taxonomy of authentication properties [29],
which consists of four authentication levels from one party’s view and many
security properties are extended from these four basic properties. Considering
the authentication of the given two parties A and B, from party A’s point of
view, the authentication levels are defined as follows:

1. Aliveness: Whenever A completes a run of the protocol, apparently with B,
then B has previously been running the protocol (not necessarily with A);

2. Weak agreement: Whenever A completes a run of the protocol, apparently
with B, then B has previously been running the protocol, apparently with A
(but not necessary agreeing on the same messages);

3. Non-injective agreement: In addition to the condition for weak agreement,
the parties A and B also agree on the same message;

4. Injective agreement: In addition to the conditions for non-injective agree-
ment, there is a unique matching partner instance for each completed run of
an agent, which effectively prevents replay attacks.

In Technical Specifications and Technical Requirements by 3GPP [1,7,8], we
find that many security requirements are based on these four authentication
properties, as well as confidentiality of some messages. Therefore, we will mainly
characterize security of AKMA service in terms of these properties.

– Weak agreement between UE and AF is defined by the following lemma.

lemma weakagreement_UE_AF:
all-traces

"All A B t #i. Commit(A, B, <’UE’, ’AF’, t>) @i
==> (Ex t2 #j. Running(B, A, t2) @j)

| (Ex X m #r. Reveal(X, m) @r & Honest(X) @i)"

The weak agreement between AF and HN, HN and AF, UE and HN can be
defined similarly.

– Non-injective agreement between UE and AF (agreeing on the target session
key KAF):

lemma Non_injective_agreement:

all-traces

"All A B t #i.

Confirmation(<’AF’, A>, <’UE’, B>, <’UE’, ’AF’, <’K_AF’, t>>) @i

==> (Ex #j. Running(B, A, <’UE’, ’AF’, <’K_AF’, t>>) @j & j < i)

| (Ex D m #l. Reveal(D, m) @l & Honest(D) @i)"

– Confidentiality of A-KID and KAF. We find the leakage of A-KID will result in
lots of security problems and we check its security. Meanwhile, The protocol
must prevent the session key KAF from being revealed, i.e., adversaries will
never know the session key. We list the latter case.

116 T. Yang et al.

lemma secure_K_AF:
all-traces

"All n A #i. Secret(<’K_AF’, n>, A) @i
==> (not (Ex #j. K(n) @j))

| (Ex X data #r. Reveal(X, data) @r & Honest(X) @i)"

Moreover, we describe the executability of the AKMA protocol, i.e., it is
possible to complete the protocol and agree on a session key for the first time
and more than once.

We specified our model and properties through Tamarin1. The total number
of lines of code is approximately 500.

5 Results and Analysis

We verify the properties listed in Sect. 4.3 using Tamarin. Except that the ver-
ification time of non-injective agreement between UE and AF is close to 30 s
and the verification time of confidentiality of KAF is about 15 s, the verification
time of resting properties is less than 6 s. We present the verification results,
and for the properties that fail to hold, analyze the counterexamples returned
by Tamarin. For each counterexample, we put forward some potential attacks
and propose suggestions.

5.1 Verification Results and Analysis

First of all, the executability of the protocol, the weak agreement between AF
and HN, HN and AF, UE and HN, and confidentiality of KAF turn out to be
correct. The protocol does protect the secrecy of the session key. The confiden-
tiality of A-KID turns out to be incorrect, which is obvious because A-KID is
transferred along public channels. Next we mainly discuss the main properties
that do not hold for the service.

Weak Agreement Between UE and AF. For weak agreement between UE and
AF, we construct two lemmas, one with implicit authentication, and one without.
The first one turns out to be correct, but the second fails. For the second case,
Tamarin returns the following counterexample: (1) UE starts a session request
to an AF (denoted by AF1) with A-KID of UE; (2) the leakage of A-KID occurs,
then adversary M connects another AF (denoted by AF2) with this A-KID; (3)
AF2 thinks that UE should have connected AF2 before and asks HN for the
session key KAF, while UE only connects to AF1 and generates KAF1. Therefore
M would not communicate with AF2 and could not complete the protocol. In
conclusion, if there is no implicit authentication to confirm the session key, weak
agreement between UE and AF would not be satisfied, although nothing harmful
would actually happen.

1 The code is publicly available at https://github.com/TengshunYang/5G-AKMA.

https://github.com/TengshunYang/5G-AKMA

Formal Analysis of 5G AKMA 117

We find that the main problem is the leakage of A-KID. In real life, adver-
saries would eavesdrop the A-KID, or a malicious AF would play the role of
adversary and forward the received A-KID to another AF, i.e. linkability between
AFs, which is mentioned as a privacy violation in [23,24]. Adversary could imper-
sonate UE’s identity and start a session with AF. Although the adversary has
no way to obtain the session key except by stealing from the UE, it would result
in waste of trust and materials. Here we describe the situation of linkability
between AFs as follows: (1) UE starts a session with an AF (denoted by AF1),
and completes AKMA service with AF1 successfully; (2) With the possession
of A-KID, AF1 would forward it to another AF (denoted by AF2). Knowing
the A-KID helps AF2 distinguish the UEs, even without knowing the user’s true
identity. AFs in the collusion group would share all the information of users with
the same A-KID with each other, which would result in leakage of users such as
history, hobbies and habits, etc. After combining all the information, the user’s
true identity could be revealed.

Non-injective Agreement. Non-injective agreement property between UE and
AF turns out to be incorrect, indicating that either weak-agreement between
UE and AF does not hold, or UE and AF could not agree on the session key
KAF. Tamarin returns a counterexample: (1) UE starts a session request to the
AF with A-KID1; (2) AF forwards this message to HN and expects a session
key as a response; (3) The interchange between HN and AF occurs. HN sends
back to AF another A-KID2 (actually consisting of A-TID and identifier of
AF) together with identifier of HN. As a result, this A-KID2 plays the role of
KAF, which could be computed by adversaries as a hash value for confirmation.
Therefore, the confirmation in the protocol would execute successfully.

The reason for the above situation comes from the interchange between AF
and HN and the leakage of A-KID. Considering the practical situation, the prob-
ability of HN being compromised is small and the AKMA service is assumed to
trust HNs. Therefore, the interchange between HN and AF is not likely to hap-
pen. We conclude that the counterexample is unreasonable. However, to elimi-
nate the counterexample, we make a simple fix to the rule AAnF send K AF as
follows: when AAnF sends the session key together with expiration time, AAnF
also adds A-KID into the message.

rule AAnF_Send_K_AF:

let

session_msg = < K_AF, ~exptime, <A_TID, ~id_HN> >

msg_In = < <A_TID, ~id_HN>, ~id_AF >

in

[Fr(~exptime),

AAnF_KEY(~id_HN, ~SUPI, <A_TID, ~id_HN>, K_AKMA, K_AF, ~id_AF),

!AF(~id_AF),

RcvS(~cid, ~id_AF, ~id_HN, msg_In)]

--[_restrict(Equal(fst(msg_In), <A_TID, ~id_HN>)),

HN_Response(~id_HN, K_AF)]->

[SndS(~cid, ~id_HN, ~id_AF, session_msg)]

118 T. Yang et al.

With this fix, the property is satisfied. Significantly, this fix helps AF distin-
guish between KAF for different users. Actually in the execution of the protocol,
the message would contain the session id, which is a default setting in mobile
network. In a word, we prove the importance and value of the session id.

5.2 Suggestions

According to the results of verification using Tamarin, several of the security
properties that we expect to hold actually fail for the initial model we con-
structed for AKMA. We find that leakage of A-KID plays an important role
in disturbing the protocol, such as, waste of materials and causing linkability
between AFs, which is harmful to users’ privacy. So we suggest adding protec-
tion for the communication of A-KID. For example, pre-construct a channel for
UE and AF with asymmetric encryption, or use TLS protocol. Aiming at resolv-
ing the collusion among AFs, dynamic A-KID or increasing the frequency of
primary authentication are worth considering.

Moreover, in the technical specification [8], the session key KAF could still be
used while UE restarts a primary authentication. We find that the leakage of KAF

would result in the situation where more than one dishonest UEs (impersonating
the original UE) connect to one AF with the leaked KAF, which would use the
service from AF or even steal properties and private information, even though
these dishonest UEs have never started primary authentication. We suggest that
HN could inform the AF when the session key KAF expires ahead of the time
when UE starts a primary authentication. It would reduce the risk of leakage,
at the price of only one message.

6 Conclusion

We have formalized for the first time the 5G AKMA service specified in TS
33.535 [8], using Tamarin verification tool. The formalization includes the for-
mal model of the AKMA service, the security properties that are expected to
hold, the verification, the potential attacks of the AKMA service and some sug-
gestions for fixing the problems. During the modeling, we identify formally the
assumptions for the security properties to hold. For the security properties that
do not hold, we analyze the corresponding counterexamples and construct the
potential attacks, and at the end, suggest some fixes for the model to resolve the
attacks and weaknesses. For future work, we will follow the future development of
the AKMA standard and update the formalization. We will also consider the pri-
vacy requirements of 5G AKMA and their formalization, e.g. the privacy caused
by the linkability between AFs mentioned in this paper deserving consideration.

Acknowledgements. This work is supported in part by the NSFC under grants No.
61625206, 61972385, 62002351 and 61732001, and by the CAS Pioneer Hundred Talents
Program under grant No. Y9RC585036.

Formal Analysis of 5G AKMA 119

References

1. 3GPP: TR33.835 v16.1.0 Study on authentication and key management for appli-
cations based on 3GPP credential in 5G. https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=3483

2. 3GPP: TR33.902 v4.0.0 3g Security; Formal Analysis of the 3G Authentica-
tion Protocol. https://portal.3gpp.org/desktopmodules/Specifications/Specificat
ionDetails.aspx?specificationId=2337

3. 3GPP: TS33.102 v16.0.0 3G Security; Security architecture. https://portal.3g
pp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=
2262

4. 3GPP: TS33.163 v16.2.0 Battery Efficient Security for very low throughput
Machine Type Communication (MTC) devices (BEST). https://portal.3gpp.org/
desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3128

5. 3GPP: TS33.220 v17.1.0 Generic Authentication Architecture (GAA); Generic
Bootstrapping Architecture (GBA). https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=2280

6. 3GPP: TS33.401 v16.3.0 3GPP System Architecture Evolution (SAE); Security
architecture. https://portal.3gpp.org/desktopmodules/Specifications/Specificatio
nDetails.aspx?specificationId=2296

7. 3GPP: TS33.501 v17.1.0 Security architecture and procedures for 5G system
(Release 17). https://portal.3gpp.org/desktopmodules/Specifications/Specificatio
nDetails.aspx?specificationId=3169

8. 3GPP: TS33.535 v17.1.0 Authentication and Key Management for Applica-
tions (AKMA) based on 3GPP credentials in the 5G System (5GS). https://port
al.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specification
Id=3690

9. Abadi, M., Blanchet, B., Fournet, C.: The applied pi calculus: mobile values, new
names, and secure communication. J. ACM 65(1), 1:1–1:41 (2018)

10. Armando, A., et al.: The AVISPA tool for the automated validation of internet
security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005). https://doi.org/
10.1007/11513988 27

11. Basin, D.A., Cremers, C., Kim, T.H., Perrig, A., Sasse, R., Szalachowski, P.:
Design, analysis, and implementation of ARPKI: an attack-resilient public-key
infrastructure. IEEE Trans. Dependable Secur. Comput. 15(3), 393–408 (2018)

12. Basin, D.A., Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R., Stettler, V.: A
formal analysis of 5G authentication. In: Lie, D., Mannan, M., Backes, M., Wang,
X. (eds.) Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, ON, Canada, 15–19 October 2018,
pp. 1383–1396. ACM (2018)

13. Basin, D.A., Radomirovic, S., Schmid, L.: Modeling human errors in security pro-
tocols. In: IEEE 29th Computer Security Foundations Symposium, CSF 2016, Lis-
bon, Portugal, 27 June–1 July 2016, pp. 325–340. IEEE Computer Society (2016)

14. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

15. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules.
In: 14th IEEE Computer Security Foundations Workshop (CSFW-14 2001), Cape
Breton, Nova Scotia, Canada, 11–13 June 2001, pp. 82–96. IEEE Computer Society
(2001)

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3483
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3483
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2337
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2337
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2262
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2262
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2262
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3128
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3128
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2280
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2280
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2296
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2296
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3169
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3169
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3690
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3690
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3690
https://doi.org/10.1007/11513988_27
https://doi.org/10.1007/11513988_27
https://doi.org/10.1007/3-540-48329-2_21

120 T. Yang et al.

16. Burrows, M., Abadi, M., Needham, R.M.: A logic of authentication. ACM Trans.
Comput. Syst. 8(1), 18–36 (1990)

17. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

18. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

19. Cremers, C., Horvat, M., Hoyland, J., Scott, S., van der Merwe, T.: A comprehen-
sive symbolic analysis of TLS 1.3. In: Thuraisingham, B.M., Evans, D., Malkin, T.,
Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, 30 October–03 November
2017, pp. 1773–1788. ACM (2017)

20. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198–207 (1983)

21. Donovan, B., Norris, P., Lowe, G.: Analyzing a library of security protocols using
Casper and FDR. In: In Workshop on Formal Methods and Security Protocols
(1999)

22. Escobar, S., Meadows, C.A., Meseguer, J.: A rewriting-based inference system for
the NRL protocol analyzer and its meta-logical properties. Theor. Comput. Sci.
367(1–2), 162–202 (2006)

23. Khan, M., Ginzboorg, P., Niemi, V.: Privacy preserving AKMA in 5G. In:
Mehrnezhad, M., van der Merwe, T., Hao, F. (eds.) Proceedings of the 5th
ACM Workshop on Security Standardisation Research Workshop, London, UK,
11 November 2019, pp. 45–56. ACM (2019)

24. Khan, M., Ginzboorg, P., Niemi, V.: AKMA: Delegated Authentication System of
5G (2021). https://doi.org/10.13140/RG.2.2.28186.36804

25. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

26. Künnemann, R., Steel, G.: YubiSecure? Formal security analysis results for the
Yubikey and YubiHSM. In: Jøsang, A., Samarati, P., Petrocchi, M. (eds.) STM
2012. LNCS, vol. 7783, pp. 257–272. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38004-4 17

27. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5 1

28. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
16(3), 872–923 (1994)

29. Lowe, G.: A hierarchy of authentication specification. In: 10th Computer Security
Foundations Workshop (CSFW 1997), Rockport, Massachusetts, USA, 10–12 June
1997, pp. 31–44 (1997)

30. Meier, S.: Advancing automated security protocol verification. Ph.D. thesis, ETH
(2013)

31. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.13140/RG.2.2.28186.36804
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-642-38004-4_17
https://doi.org/10.1007/978-3-642-38004-4_17
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48

Formal Analysis of 5G AKMA 121

32. Sarr, A.P., Elbaz-Vincent, P., Bajard, J.-C.: A new security model for authen-
ticated key agreement. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS,
vol. 6280, pp. 219–234. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15317-4 15

33. Schmidt, B., Meier, S., Cremers, C.J.F., Basin, D.A.: Automated analysis of Diffie-
Hellman protocols and advanced security properties. In: 25th IEEE Computer
Security Foundations Symposium, CSF 2012, Cambridge, MA, USA, 25–27 June
2012, pp. 78–94 (2012)

34. Schneider, S., Holloway, R.: Using CSP for protocol analysis: the Needham-
Schroeder public-key protocol. Technical report (1996)

35. Schneider, S.A.: Security properties and CSP. In: 1996 IEEE Symposium on Secu-
rity and Privacy, Oakland, CA, USA, 6–8 May 1996, pp. 174–187. IEEE Computer
Society (1996)

36. Tamarin Team: Tamarin-Prover Manual: Security Protocol Analysis in the Sym-
bolic Model. https://tamarin-prover.github.io/manual/. Accessed 7 Jan 2021

https://doi.org/10.1007/978-3-642-15317-4_15
https://doi.org/10.1007/978-3-642-15317-4_15
https://tamarin-prover.github.io/manual/

Verifying the Correctness of Distributed
Systems via Mergeable Parallelism

Teng Long1(B) , Xingtao Ren1, Qing Wang1, and Chao Wang2

1 School of Information Engineering, China University of Geosciences,
Beijing 100083, China

{longteng,xintao,qingw}@cugb.edu.cn
2 Centre for Research and Innovation in Software Engineering, School of Computer

and Information Science, Southwest University, Chongqing, China
wangch1@swu.edu.cn

Abstract. Distributed systems are the most basic elements of establish-
ing services that deal with a large number of terminals (including clients
and servers). Message passing is one of the communication methods in
distributed systems. Verification of asynchronous distributed systems is
valuable and challenging because of unpredictable interleavings and pos-
sible network faults. Asynchronous mode has better performance than
the synchronous one, but asynchronous completion makes the task of
specifying correct behaviors more difficult. In this paper, we propose a
simple procedure for verifying the safety properties of asynchronous pro-
grams that satisfies the assumption of mergeable parallelism. And we
characterize inference rules to describe the sequence combination that
satisfies the conditions of the receiving operations. The program’s exe-
cution can be reduced to executions with sets of fixed order. A proof is
provided to show its soundness. The correctness of the mergeable mes-
sage passing programs could be verified by a state-of-the-art verification
framework. It can be used in various message passing cases.

Keywords: Asynchronous · Distributed systems · Hoare triples ·
Mergeable parallelism · Message passing programs

1 Introduction

Distributed systems are essential for building services to support the growing
number of clients. Safety properties guarantee that nothing bad happens, includ-
ing the correctness of protocols, error states being unreachable, free of deadlock,
etc. However, it is not easy to verify these properties of distributed programs.
One reason is the highly asynchronous events in distributed execution. Due to
the existence of asynchronous events, invariants become more complicated. Even
worse, in some cases, the asynchronous invariants are related to the contents of

Supported by National Natural Science Foundation of China (No. 62002332, 62072443,
62002298, 61972364).

c© Springer Nature Switzerland AG 2021
S. Qin et al. (Eds.): SETTA 2021, LNCS 13071, pp. 122–140, 2021.
https://doi.org/10.1007/978-3-030-91265-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91265-9_7&domain=pdf
http://orcid.org/0000-0001-9773-418X
https://doi.org/10.1007/978-3-030-91265-9_7

Verifying the Correctness of Distributed Systems via Mergeable Parallelism 123

a number of unbounded message buffers. Many previous work proposed verifi-
cation approaches, such as partial-order techniques [9], bounded analysis [3,4],
synthesized technique [6]. However, they did not consider all the possible inter-
leavings.

Asynchronous message passing programs are designed to be executed in par-
allel among different processes (i.e., servers and clients). To prove the correctness
of an asynchronous message passing program, researchers tried to reduce the ver-
ification in an asynchronous system to the verification in a simpler system [1].
The above paper uses the method of removing the message buffer to get sequen-
tial programs, but the scope of application is limited. For example, in a program
that includes rounds, it is still possible for the receiver to randomly receive mes-
sages from different rounds, and it cannot be converted into a sequential program
in this way. In order to solve more practical problems, we found that mergeable
parallelism and its corresponding reduction may be an ideal solution. Moreover,
our method is simpler, with reduction, any given trace of a mergeable program
can be regarded as the execution sequence on a single instance of the rewritten
concurrent program.

In this paper, we propose a novel approach for the analysis and verification of
asynchronous message passing programs. If an original program has mergeable
parallelism (a limited form of non-determinism network), it can be rewritten
to a new one which is featured by a set of explicitly paralleled processes with
the same code with atomic parts. The approach provides a simple procedure for
analyzing a sequence of operations in one instance of above paralleled processes.
The matching send-receive operation pairs can be generated by the inference
rule that describes the sequence combination that satisfies the conditions of
the receiving operations. With these rules, executions with sets of fixed order
can be obtained to prove the safety properties in asynchronous message passing
programs.

Our key insight is that, a subclass (distributed consensus) of protocols fits
the assumption of mergeable parallelism, as they usually only loop through a
set of processes, meanwhile many of them in a limited type of network in which
the receive operation’s matching send operation is only in a single process or in
a set of processes with the same code. We will explore remaining subclasses of
protocols in the future.

The paper is organized as follows: First, we propose a simple example to
show the overview of our method. And then the basic concepts of asynchronous
message passing programs are introduced, followed by the formal definitions of
mergeable parallelism. Then, we proposed inference rules, simplified reasoning
and the soundness proof. A merging algorithm is given, where a control flow
graph is constructed for one parallel instance. The evaluation illustrates the
effectiveness of this method in various message passing cases. The paper is ended
with related work and conclusions.

2 Overview

We will start by demonstrating our approach on a simple example.

124 T. Long et al.

P ::

⎡
⎣

for(q : Q){
m1 : id ← receive(q);
m2 : send(id, ack)}

⎤
⎦ Q(j) ::

⎡
⎣

l1 : send(P, j)
l2 : v ← receive(P);
l3 : assert (v = ack)

⎤
⎦

Fig. 1. SimpleMP

SimpleMP is a program in which a set of processes Q (running the same code)
exchange messages with a single process P in Fig. 1 (including send and receive
operations). Process P executes a loop which iterates over all processes q in Q.
For each process q in Q, it first sends its identifier j and subsequently waits for
a reply from P . Each iteration, P first waits for a message from q and, upon
receipt, sends an “ack” message to q. The goal is to verify that, for all the q, it
may only ever receive “ack”. The CFG for P and the CFG for some Q(j) is in
Fig. 2. The dotted lines in Fig. 2 represent the enabling conditions for receiving
operations. [BP > 0] and [Bj > 0] indicate that the buffers of process P and
process Q(j) are not empty, respectively.

Mergeable Parallelism. A program is mergeable if (i) each process only receives
messages either from a single process or from the same statement in a set of
processes (running the same code), and (ii) for each iteration, a single process can
exchange messages with only one specific process. For such mergeable program,
its asynchronous execution can be reduced to an equivalent synchronous one.

For each iteration, P communicates only with a certain Q(id), and in addi-
tion, all receives in the program either come from a single process or from a
set of processes that run the same code, so SimpleMP is mergeable. According

Fig. 2. SimpleMP: The CFGs of P and
Q(j)

Fig. 3. SimpleMP: The CFG of [P I] ⊕
Q(j)

Verifying the Correctness of Distributed Systems via Mergeable Parallelism 125

to the rewriting Algorithm 1, we get a set of static (but unbounded) groups
of processes that constraints by a unique template [P I] ⊕ Q(j) in Fig. 3, where
symbol ⊕ means the communication between one iteration of P and some Q(j).

Simplified Reasoning. A set of Hoare triples could be given by standard technol-
ogy for the unique template. And then we use the inference rules: Sequencing-C,
Symmetry, and Conjunction. The Sequencing-C rule is also necessary to consider
both the combinatorial entailment relation [7] and the enabled conditions of the
receive operations. The remaining two rules can only be used for the operations
executed by Q.

Rule Sequencing-C composes two Hoare triples sequentially with enabled
conditions, which can reflect the precedence order between the send and receive
operations. Rule Symmetry permutes Q’s identifiers. Rule Conjunction composes
two Hoare triples by conjoining pre- and post-conditions.

In Fig. 3, the statements in the atomic part should be executed sequentially
and atomically. While the conditional transitions (dotted line) could be executed
sequentially. It shows that if the fetched message in the atomic block is legal (the
message was indeed sent before being received by P), the corresponding sending
operation can be combined through the rule Symmetry and Sequencing-C. The
above renaming and combination transformations are the applications of Liption’s
mover theorem. The triples will result in false, which means that it is impossible
for some Q(ide) to receive the messages without sending its id to P in advance.

3 Asynchronous Message Passing Programs

Asynchronous message passing programs (MPP) are featured with an explicit
parallel composition and unbounded iteration. Its syntax is shown in Fig. 4:

i ∈ Identifiers I ∈ ParamIdentifiers w ∈ {i, I}
Expressions e ::= c Constants

| x(i) Variables
| f(e) Local Computation

Statements S ::= x(i) = e Assignment
| x(i) = recv(w) Specified Message Receive
| x(i) = recv(∗) Unspecified Message Receive
| send(w, e) Message Send
| assert(e) Assertion

Programs T ::= [S]i Singleton
| T ;T Sequential Composition
| T ||T Parallel Composition
| {T}atomic Atomic
| for(i : I){T} Iteration

i:IT Iterated Parallel Composition

Fig. 4. Syntax of asynchronous message passing programs

– Expressions include constants c, variables indexed by its unique process iden-
tifier x(i), and f(−→e) the local computation without sending or receiving any
messages. x(i) refers to variable x in process i.

126 T. Long et al.

– Statements include assignment, message receive, message send and assertion.
There are two cases for message receive: one is with a specified sender w, the
other is with an unknown sender ∗. w can be either a process identifier i or
a set of process identifiers I.

– Programs can be seen as singleton ones [S]i, which represents process i exe-
cuting statement S. Furthermore, it supports sequential composition. Atomic
part is not proposed by the programmer, but is generated by the rewriting pro-
cedure.“Iteration” for(i : I){T} is used to show the sequential instantiations
of T for i in the process identifiers set I. “Iterated Parallel Composition” �i:IT
is used to show the parallel instantiations of T for i in the process identifiers set
I. We regard the above two definitions as two types of templates. The program
can be seen as a parallel composition of multiple templates of the above types.

We define a configuration c = (ι, B, ϕ), where ι is a vector of local statements,
ι[ρp ← ρ] is a function that returns the same statements as ι except for the
statement of process p where it returns ρ. B is a function from the process
identifier to the values of the content of the buffer. ϕ[x ← v] is a function that
returns the same values as ϕ on all variables except for x where it returns v.
The asynchronous semantics of send and receive operations in MPP are shown
in Fig. 5 and Fig. 6, where tgt() is the send/receive operations target statement
and src() is the send/receive statement.

– Semantics of Send Operations: The effect of a send operation is to enqueue
a message to the buffer of the recipient.

– Semantics of Receive Operations: The effect of a receive operation is to
dequeue a message from the non-empty local buffer.

q ∈ ID
ρp = src(send), ρ = tgt(send)

ι, B, ϕ
send(q,v):p−−−−−−−→ ι[ρp ← ρ], B(q) ← B(q) · v, ϕ

Fig. 5. Asynchronous semantics of c
Send−−−→ c′

B(q) = v · b
ρq = src(rec), ρ = tgt(rec)

ι, B, ϕ
x←rec(∗):q−−−−−−−→ ι[ρq ← ρ], B(q) ← b, ϕ[x(q) ← v]

Fig. 6. Asynchronous semantics of c
Receive−−−−−→ c′

4 Mergeable Message Passing Programs

We define a property of message passing programs called mergeable that satisfies
the conditions in Definition 1.

Verifying the Correctness of Distributed Systems via Mergeable Parallelism 127

To illustrate the matching between sending and receiving information, we
denote sets Sj = {sj : s ∈ S, j ∈ N} and Rj = {rj : r ∈ R, j ∈ N}, where S is a
set of send operations, R is a set of receive operations, and N is the number of
kinds of different send or receive operations. Given a send operation s ∈ Si and
a receive operation r ∈ Ri, which are related to the same message, this pair is
called a matching pair, otherwise it is called a mismatched pair.

Proc(A), A ∈ S ∪R denote the set of processes that the operation A belongs
to. Com(A), A ∈ S ∪ R denote the set of processes that the operation A com-
municates with.

Definition 1 (Mergeable Parallelism). Let M is an MPP. Then M has
mergeable parallelism if:

– for each receive operation set Rj j ∈ N , its matching send operation s ∈ Sj

must satisfy the following conditions:

• Proc(s) = {p} (p is an identifier variable) which means that s belongs to a
single process p, or

• Proc(s) = {I} (I is a paramidentifier variable) which means that s belongs
to a set of processes running the same code.

– For operations a1 and a2 in a single process (Proc(a1) = p and Proc(a2) = p),
for each iteration there are no such different processes i, j ∈ I that Com(a1) =
i and Com(a2) = j.

5 Simplified Reasoning

We propose inference rules with additional pre/post-enabled conditions.

Definition 2 (Basic Hoare triple). A basic Hoare triple is valid in the form
[C]{ϕ}〈σ : i〉{ψ}[C ′] where

– σ can be seen as a send or receive statement. We will discuss these two state-
ments next, and the processing of the remaining statements is similar to that
of [7].

– 〈σ : i〉 shows the statement σ executed by process i.
– A trace τ = 〈σ : i〉〈σ : j〉 . . . 〈σ : k〉 is a sequence of statements which are

executed by process i, j, . . . , k, respectively.
– ϕ and ψ are formulas with variables in sequential instantiations and indexed

variables parallel instantiations.
– The pre-enabled condition [C] and the post-enabled condition [C ′] indicate the

status of buffer with an additional variable b. The process that appears in C
is i, while the process that appears in C ′ is either i or j �= i with j must be
in σ, where σ ∈ S ∪ R is a send/receive operation.

Definition 3 (Rule: Sequencing-C). Rule Sequencing-C shown in Fig. 7 is
extended from rule Sequencing [7] with enabled conditions on the buffer status.
It is composed of two Hoare triples where both the first triple’s post-condition and
post- enabled condition imply the second triple’s pre-condition and pre- enabled
condition.

128 T. Long et al.

[C1]{ϕ0}τ0{ϕ1}[C] ϕ1 ϕ1, C C [C]{ϕ1}τ1{ϕ2}[C2]
[C1]{ϕ0}τ0; τ1{ϕ2}[C2]

Fig. 7. Rule: Sequencing-C

[C]{ϕ σ : i ψ}[C]
[C[π]]{ϕ[π] σ : π(i) ψ[π]}[C [π]]

Fig. 8. Rule: Symmetry

Definition 4 (Rule: Symmetry [7]). Rule Symmetry shown in Fig. 8 per-
mutes process identifiers. π : N → N is a permutation.

Definition 5 (Rule: Conjunction [7]). Rule Conjunction shown in Fig. 9,
consists of two Hoare triples by conjoining the pre-condition and post-condition.

5.1 Analysis by Inference Rules

Given a mergeable message passing program M and the error situation (e.g.
assert(e), where e related to inconsistent message value), if a Hoare triple
{true}τ{false} is derivable by using the above three inference rules, the trace
τ is called infeasible.

We will construct a set of Hoare triples by using inference rules in M.

– The analysis related to the enabled condition is shown by rule Sequencing-C.
These conditions will finally be satisfied according to the order of statements
in the code of a process, and the precedence order between send and their
corresponding receive operations.

– Symmetry rule can only be used to permute the process identifiers between
parallel instantiations.

– Conjunction rule can not be used for statements in sequential instantiations,
as the execution of each statement in such an process is not concurrently.

The analysis by inference rules are shown as follows:

Sequencing-C. The composition operation by using rule Sequencing-C is sym-
bolled as ◦c. Symbol p ⊕ qi denotes a program as an instance of communication
between P and �i∈IQ. Suppose the premises (related to a matching send-receive
pair in instance p ⊕ q1) in its CFG Gp⊕q1 are as follows:

[C0]{ϕ0}τ{ψ0}[C0] [C1]{ϕ1}τ{ψ1}[C1]
[C0 ∧ C1]{ϕ0 ∧ ϕ1} τ {ψ0 ∧ ψ1}[C0 ∧ C1]

Fig. 9. Rule: Conjunction

Verifying the Correctness of Distributed Systems via Mergeable Parallelism 129

ρp⊕q1,p = src(send), ρp⊕q1,q1 = tgt(send)

ρp⊕q1,q1 = src(rec), ρ′
p⊕q1,q1 = tgt(rec)

The symbol ρp⊕q1,p describes the statement of p in Gp⊕q1 . ρp⊕q1,p =
src(send) and ρp⊕q1,q1 = tgt(send) indicate that the send operation
〈send(q1, v) : p〉 is from process p to process q1.

We get Hoare triples (A) and (B) as follows:

(A) {ϕ}〈send(q1, v) : p〉{ϕ}[bq1 > 0]

bq1 is an additional variable that describes the status of process q1’s mes-
sage buffer: bq1 > 0 means nonempty. It is used to analyze whether the receive
operation is enabled. We omit the pre/post enabled condition of [true].

(B) [bq1 > 0]{ϕ}〈msg ← receive(p) : q1〉{ϕ[msg(q1) ← v]}

The guard [bq1 > 0] here is the pre-enabled condition for receive operation in
process q1. The receive operation 〈msg ← receive(v) : q1〉 is blocked if bq1 > 0
is not satisfied. Although the control position is not in the Hoare triple, all
situations can be described by applying rule Symmetry.

We can get the following triple (A ◦c B) by applying rule Sequencing-C.

(A ◦c B) {ϕ}〈send(q1, v) : p;msg ← receive(p) : q1〉{ϕ[msg(q1) ← v]}

The matching send-receive pair in p ⊕ q1 can be seen in Fig. 10.

q1 ∈ I
ρp⊕q1,p = src(send), ρp⊕q1,q1 = tgt(send), ρp⊕q1,q1 = src(rec), ρp⊕q1,q1

= tgt(rec)

ι, B, ϕ
send(q1 ,v):p;msg←rec(p):q1−−−−−−−−−−−−−−−−−−−→ ι[ρp⊕q1,p ← ρp⊕q1,q1], B, ϕ[msg(q1) ← v]

Fig. 10. Matching Send;Receive-Parallel

Sequencing-C:Blocked. Suppose the premises (related to a mismatched and
blocked send-receive pair in different instances p⊕ q1 and p⊕ q2) are as follows:

Fig. 11. Sequencing-C:Blocked (Color figure online)

130 T. Long et al.

ρp⊕q1,p = src(send), ρp⊕q1,q1 = tgt(send)

ρp⊕q2,q2 = src(rec), ρ′
p⊕q2,q2 = tgt(rec)

The mismatched send-receive operations in p and q2 (the yellow nodes in
Fig. 11) will be shown as Hoare triples (A) and (B′):

(B′) [bq2 > 0]{ϕ}〈msg ← receive(p) : q2〉{ϕ[msg(q2) ← v]}

The condition [bq2 > 0] will not be hold, so q2 is blocked. The mismatched
and blocked send-receive pair can be rewritten to two different matching pairs
through the following two strategies in Fig. 11, respectively.

– Strategy 1 (red route): Waiting for the “For” loop of p program to execute
to a certain iteration, which has a matching send (A′),

(A′) {ϕ}〈send(q2, v) : p〉{ϕ}[bq2 > 0]

and then applying rule Sequencing-C directly to get (A′ ◦c B′) that shows the
matching send-receive pair in p ⊕ q2.

(A′ ◦c B′) {ϕ}〈send(q2, v) : p;msg ← receive(v) : q2〉{ϕ[msg(q2) ← v]}

– Strategy 2 (blue route): We first apply rule SYM(1:1)
1, get (B) from (B′),

and then use rule Sequencing-C to get (A ◦c B) that mentioned above.

Sequencing-C:Enabled. Suppose the premises (related to a mismatched and
enabled send-receive pair in instances p ⊕ q1 and p ⊕ q2) are as follows:

ρp⊕q1,q1 = src(send), ρp⊕q1,p = tgt(send)

ρp⊕q2,p = src(rec), ρ′
p⊕q2,p = tgt(rec)

The send operation is enabled, meanwhile, the receive operation in p is enabled,
as the condition [bp > 0] is hold. However, it is possible to take 〈msg ←
receive(q2) : p〉. We may get mismatched but still enabled send-receive pair
with additional buffer premise bp = w · b in Fig. 12.

B(p) = v(q2) · b
ρp⊕q1,q1 = src(send), ρp⊕q1,p = tgt(send), ρp⊕q2,p = src(receive), ρp⊕q2,p = tgt(receive)

ρ,B, ϕ
send(p,v):q1 ;msg←receive(q2):p−−−−−−−−−−−−−−−−−−−−−−→ ρ[ρp⊕q1,q1 ← ρp⊕q1,p, ρp⊕q2,p ← ρp⊕q2,p],

B(p) ← b · v(q1), ϕ[msg ← v(q2)]

Fig. 12. Mismatched-Enabled Send;Receive-Parallel

1 SYM(1:1) means that the reason for using rule Symmetry is because the send oper-
ation is unique for the recipient q2.

Verifying the Correctness of Distributed Systems via Mergeable Parallelism 131

Fig. 13. Sequencing-C:Enabled (Color figure online)

[bp > 0] is presented in the Hoare triple as the pre-enabled condition, because
bp = w · b should be hold in the premises. We have Hoare triples (C) and (D) as
follows:

(C) [bp > 0]{ϕ}〈send(p, v) : q1〉{ϕ}[bp > 0]

(D) [bp > 0]{ϕ}〈msg ← receive(q2) : p〉{ϕ[msg ← υ(q2)]}[bp > 0]

We may get mismatched but still enabled send-receive pair (the yellow nodes
in Fig. 13) with additional buffer premise [bp > 0] by the composition (C ◦c D).

(C ◦c D) [bp > 0]{ϕ}〈send(p, v) : q1;msg ← receive(q2) : p〉{ϕ[msg ← v(q2)]}[bp > 0]

However, the mismatched but enabled send-receive pair is just the interme-
diate part of the execution of several matched send-receive pairs asynchronously.
There are two strategies available in Fig. 13:

– Strategy 1 (red route): Waiting for the “For” loop of p program to execute
to a certain iteration, which has a matching receive (D′).

(D′) [bp > 0]{ϕ}〈msg ← receive(q1) : p〉{ϕ[msg ← v(q1)]}[bp > 0]

and then applying rule Sequencing-C to get (C ◦c D′).

(C ◦c D
′
) [bp > 0]{ϕ}〈send(p, v) : q1;msg ← receive(q1) : p〉{ϕ[msg ← v(q1)]}[bp > 0]

– Strategy 2 (blue route): We first apply rule SYM(1:n)
2, get (C ′) from (C),

(C ′) [bp > 0]{ϕ}〈send(p, v) : q2〉{ϕ}[bp > 0]

and then use rule Sequencing-C to get (C ′ ◦c D).

(C′ ◦c D) [bp > 0]{ϕ}〈send(p, v) : q2;msg ← receive(q2) : p〉{ϕ[msg ← v(q2)]}[bp > 0]

Because the number of messages earlier than q1 in the buffer is limited, we
can apply the blue route several times to get the all the earlier messages in buffer
bp. And finally, with the red route to get message q1.
2 SYM(1:n) means that the reason for using rule Symmetry is because the send oper-

ations from a set of processes qj , j ∈ [1...n], j �= i are symmetrical.

132 T. Long et al.

5.2 The Soundness of Using Inference Rules

Theorem 1. Given a mergeable MPP M, there is Tr(M) = inf ruleTr(M),
where Tr(M) is a set of traces of M under the asynchronous semantics and
inf ruleTr(M) is a set of statements sequences generated by using several infer-
ence rules.

Proof. The correctness is established by analyzing pairs of send-receive opera-
tions in different traces. According to the definition, control flow graph for the
rewritten program in M includes all matching send-receive pairs.

Therefore, for a send operation s1 ∈ Si, the execution of s1 will enable the
matching receive operation r1 to be taken into the rewritten program.

– If the matching r1 is the immediate successor of s1 in Tr(M), it must be
the immediate successor in inf ruleTr(M) as well, after using Sequencing-C
rule directly.

– If the immediate successor is not the matching r1 in Tr(M),
• if s1 is the unique send operation, two strategies for Sequencing − C :

Blocked can be used.
• if s1 is an indexed send operation, two strategies for Sequencing − C :

Enabled can be used.
These operations could be executed as a combination by using Sequencing-C
and Symmetry rules, s o r1 can be the immediate successor to its matching
s1 in inf ruleTr(M).

For a send operation s1 ∈ Si, if s1 is blocked, the matching receive operation
r1 in the rewritten program will be blocked, too.

– If s1 is blocked, the pre-enabled condition for its matching receive operation
will not be hold. Because the receiving operation r1 and its matching sending
operation s1 are both blocked in inf ruleTr(M), no inference rule can be
used, and r1 will be blocked until its enabled condition is established.

It shows that any assertion checking problem for an MPP can be reduced to
the Hoare triples that is closed by rule Sequencing-C, Symmetry and Conjunc-
tion. And the fixed order execution sequence that generated by analyzing Hoare
triples with inference rules will simplified the reasoning.

6 Algorithm

Suppose that we have an MPP P || �j:N Q with two kinds of processes P and Q.
The merging procedure corresponds to three steps:

1. Firstly, we list all parts of loop in P , and check its mergeable parallelism,
respectively. If it is valid, the procedure continues. Otherwise, it fails.

2. For each iteration of the loop part, we construct a CFG [P I] ⊕ Qj by redi-
recting edges that do not violate the inductiveness property of the original
CFGs.

3. Finally, an iterated parallel composition �j:N [P I] ⊕ Qj will be proposed.
If there are several parts of loop in P , we combine them as a sequence of
composition parallels.

Verifying the Correctness of Distributed Systems via Mergeable Parallelism 133

Algorithm 1. Merging(GP , GQj
)

1: Loop(GP) = {GP1 , GP2 , . . . GPL}
2: for each κ ∈ [1..L] do
3: [P I] = Iter(GPκ)
4: if V alid([P I]) then
5: for each stm in [P I] do
6: AtomicSet = AtomicBlock(stm)
7: GM = Link(stm, GQj)
8: end for
9: [P I] ⊕ Qj = Create(AtomicSet, GM)

10: Connect([P I] ⊕ Qj)
11: end if
12: end for

6.1 Algorithm Merging

– The input to the Algorithm 1 includes CFGs GP for P , and GQj
for an

instance Q(j), where j ∈ N .
– Loop(GP) is the list of all the parts of loop in GP . The loop in P is split into

L parts as {GP 1 , GP 2 , . . . GP L}.
– [P I] is one iteration of loop part GP κ .
– V alid([P I]) is the merging condition that all the communications in [P I] are

related to the same Q(j). Otherwise, the CFGs cannot be merged into one
for [P I] ⊕ Q(j) , as P communicates with different processes Q(j)s in one
iteration. The issue is beyond the scope of this paper.

– AtomicBlock: The initial set of AtomicBlock is empty. All the statements in
[P I] will be added. If the statement in [P I] is a send operation and not the
last one, the matching receive operation in [P I] ⊕ Qj is added accordingly. If
the statement in [P I] is a receive operation and not the first one, the matching
send operation in [P I] ⊕ Qj is added accordingly.

– Link(stm,GQj
): If there are matching pairs such that msg(stm) =

msg(stm′), stm′ ∈ GQj
, we will redirect the direction of the edges according

to tgt(s) = src(r) where tgt(s) is the send operation’s target statement and
src(r) is the matching receive statement.

– Connect([P I]⊕Qj): If there is only one part of loop in P , there exists only one
element: an iterated parallel composition �j:N [P I] ⊕ Qj . Otherwise, if there
are several parts of loop in P , these parts can be connected as a sequence of
each composition parallels with “;”.

6.2 Validity of the Algorithm

The order of statements in the code of process P is preserved in [P I] ⊕ Q(j)
that is obtained by the algorithm. Suppose there is 〈R1 : P 〉 〈S2 : P 〉 in P ,
there must be a part of atomic block in [P I] ⊕ Q(j), such as atomic{. . . ; 〈R1 :
P 〉; . . . ; 〈S2 : P 〉; . . . }. As each parallel instance of �j:N [P I] ⊕ Q(j) just consider

134 T. Long et al.

one iteration of P , 〈R1 : P 〉 〈S2 : P 〉 is still hold in the atomic block for
[P I] ⊕ Q(j).

The order of statements in the code of process Q(j) is still preserved in
[P I] ⊕ Q(j). Suppose there is 〈S1 : j〉 〈R2 : j〉 in Q(j), there are 〈S1 :
j〉 po 〈R1 : P 〉 and 〈S2 : P 〉 po 〈R2 : j〉 in [P I] ⊕ Q(j), where po is
the precedence order between matching send-receive pairs. According to the
definition of “mergeable parallelism”, we have 〈R1 : P 〉 j 〈S2 : P 〉 related to
the specific j, where j means the relation is based on the communication with
the same j in some iteration. According to the transitivity, 〈S1 : j〉 po 〈R1 :
P 〉 j 〈S2 : P 〉 po 〈R2 : j〉 maintains the partial order in Q(j).

7 Experimental Evaluation

7.1 Examples

We illustrate our approach with the following examples [1]. Simple exam-
ples (SimpleMP, SimpleAP) are related to an unbounded number of processes
Q(j), j ∈ Q and a single process P . These processes are symmetric. Process
P executes a loop which iterates over all Q processes. The orders of send and
receive operations are different in SimpleMP and SimpleAP. Complex examples
include the examples with several parts of loops in a single process (CompMO),
the examples with two sets of unbounded number of processes(CompMM) and
Comp3Master which is related to the task distribution among a server, a master
and several clients.

Example 2PC is the classic two-phase-commit protocol [16]. RoundNI [2] adds
a round identifier r ∈ R, and each process q ∈ Q uses a repeat statements to
receive and send messages from multiple rounds.

The judgment of the indexed mapping variable requires the additional con-
straint of the round: according to the order of the round, messages received
outside the current round will cause an error.

There are still some cases that our methods cannot deal with. The bad exam-
ple EXBAD is not mergeable, as the sever process communicates with different
clients in the same iteration.

7.2 Experimental Results

We implemented our rewriting algorithm in a prototype tool ASYSIM3. It takes
asynchronous message passing protocols in the language from Fig. 4 as input. All
experiments were run on a 2.50 GHz AMD A12-9700P RADEON R7,10 COM-
PUTE CORES 4C+6G CPU with 4 GB memory. We applied it to several dis-
tributed cases. Table 1 summarizes our results.

In Table 1, the column labeled Temp indicates the number of different tem-
plates. In the column labeled RT, we recorded the time to rewrite the merge-
able parallelism examples. The rewriting procedure of EXBAD failed, and it took
3 https://github.com/SmallBuffer/Asynchronous-simplification.

https://github.com/SmallBuffer/Asynchronous-simplification

Verifying the Correctness of Distributed Systems via Mergeable Parallelism 135

15 ms to get a reminder that it could not be merged. The transformation in [1]
is limited by the form of the sequence program, so it is not applicable to some
of our examples (2PC and RoundNI).

Table 1. Results

Examples Temp RT(ms) Result

SimpleMP 2 24 success

SimpleAP 2 41 success

CompMO 2 32 success

CompMM 2 24 success

Comp3Master 3 50 success

2PC 2 68 success

RoundNI 2 36 success

EXBAD 2 15 fail

The rewritten programs are verified on top of the state-of-the-art tool Duet4

[7]. Duet provides a procedure for unbounded parallelism. By adopting Duet’s
technology, the mergeable algorithm (Algorithm 1) can be regarded as the front
end of the verification framework. We separately recorded the running time PT
in Duet before and after rewriting each case. The results are visualized in line
graphs from Figs. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 and 27. This shows
that with our method it performs better on these cases.

Fig. 14. PTs for SimpleMP (compari-
son)

Fig. 15. PT for SimpleMP (after)

8 Related Work

The work in [1] transformed a message passing program to a canonical sequen-
tial program. If the transformation is successful, the program will avoid error or
4 https://github.com/zkincaid/duet.

https://github.com/zkincaid/duet

136 T. Long et al.

Fig. 16. PTs for SimpleAP (compari-
son)

Fig. 17. PT for SimpleAP (after)

Fig. 18. PTs for CompMO (compari-
son)

Fig. 19. PT for CompMO (after)

Fig. 20. PTs for CompMM (compari-
son)

Fig. 21. PT for CompMM (after)

Verifying the Correctness of Distributed Systems via Mergeable Parallelism 137

Fig. 22. PTs for 3Master (compari-
son)

Fig. 23. PT for 3Master (after)

Fig. 24. PTs for 2PC (comparison) Fig. 25. PT for 2PC (after)

Fig. 26. PTs for RoundNI (compari-
son)

Fig. 27. PT for RounNI (after)

138 T. Long et al.

deadlock. Several cases had their canonical sequentialization, which is not suffi-
cient. The extended work [11] proposed several new rewrite rules, synchronizing
all the possible parts. The rewritten program consists of the synchronized parts
and the remaining parts. As the synchronous invariants are not complicated, they
can use traditional methods to get the verification condition and apply SMT-
solver. The traditional methods transform the program partially, while our work
transforms the whole program. Furthermore, the analysis of sequence obtained
by applying several inference rules on a single instance is simpler than that of
the synchronous invariants.

Lipton’s theory [17] of movers designates certain program actions as either
left or right movers, depending on how they commute with actions performed by
concurrently executing threads. Left and right movers can be combined to pro-
duce a single action, resulting in a program with fewer possible interleavings of
actions. The extended work in [5], proposed gated atomic actions to simplify the
verification of assertions. Based on these prior work, [14,15] considered the send
action as calling a procedure, and the receive action as just the sub-procedure
related to it. The concept of “atomic action” was used in different layers of the
programs. However, the method can not be applied in consensus protocols. In
[13], they propose a purely sequential program as the transformation result. In
this paper, we use an atomic related concept to show how the operations in a
rewritten singleton program is executed atomically. The transformation result in
our method is a concurrent one, in which, it is possible to apply several inference
rules to capture all the behaviors of the original program.

The k-synchronizability technique [3] dealt with a set of send actions and a
set of receive actions. Instead of having unbounded size, it optimized the size
of a message buffer to k. However, it is still not applicable to parameterized
systems [8] such as the series of Paxos protocols [10,18–20]. In this paper, we
also handle a series of send and receive operations through simplified reasoning
for programs who has mergeable parallelism.

The idea in [12] is to learn a proof by sampling error traces, proving them
to be infeasible, and then assembling these proofs into an argument where every
error trace is infeasible. As an extension, the article [7] proposed an abstract
mathematical structure and corresponding inference rules to automatically ver-
ify multi-threaded programs. However, this structure cannot handle the case of
asynchronous message passing.

9 Conclusion

The contribution of this paper is the notion of mergeable parallelism, with which
the program’s executions can be reduced to execution sequences with set of fixed
order. The reduced program is with a unique template consisting of some atomic
blocks with matching send and receive operations, and the correctness of the
rewritten program can be verified by state-of-the-art analysis methods. In the
future, we will consider the application and extension of this method in round
interference scenarios with the additional well-founded expressions.

Verifying the Correctness of Distributed Systems via Mergeable Parallelism 139

References

1. Bakst, A., von Gleissenthall, K., Kici, R.G., Jhala, R.: Verifying distributed
programs via canonical sequentialization. PACMPL 1(OOPSLA), 110:1–110:27
(2017). https://doi.org/10.1145/3133934

2. Bernstein, A.J.: Analysis of programs for parallel processing. IEEE Trans. Electron.
Comput. 15(5), 757–763 (1966). https://doi.org/10.1109/PGEC.1966.264565

3. Bouajjani, A., Enea, C., Ji, K., Qadeer, S.: On the completeness of verifying mes-
sage passing programs under bounded asynchrony. In: Computer Aided Verification
- 30th International Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, 14–17 July 2018, Proceedings, Part II, pp.
372–391 (2018). https://doi.org/10.1007/978-3-319-96142-2 23

4. Desai, A., Garg, P., Madhusudan, P.: Natural proofs for asynchronous programs
using almost-synchronous reductions. In: Proceedings of the 2014 ACM Interna-
tional Conference on Object Oriented Programming Systems Languages & Appli-
cations, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA, 20–24 October
2014, pp. 709–725 (2014). https://doi.org/10.1145/2660193.2660211

5. Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In: Proceedings
of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2009, Savannah, GA, USA, 21–23 January 2009, pp. 2–15 (2009).
https://doi.org/10.1145/1480881.1480885

6. Esparza, J., Ganty, P., Majumdar, R.: Parameterized verification of asynchronous
shared-memory systems. J. ACM 63(1), 10:1–10:48 (2016). https://doi.org/10.
1145/2842603

7. Farzan, A., Kincaid, Z., Podelski, A.: Proof spaces for unbounded parallelism. In:
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2015, Mumbai, India, 15–17 January 2015,
pp. 407–420 (2015). https://doi.org/10.1145/2676726.2677012

8. Farzan, A., Kincaid, Z., Podelski, A.: Proving liveness of parameterized programs.
In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2016, New York, NY, USA, 5–8 July 2016, pp. 185–196 (2016).
https://doi.org/10.1145/2933575.2935310

9. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2005, Long Beach, California, USA,
12–14 January 2005, pp. 110–121 (2005). https://doi.org/10.1145/1040305.1040315

10. Garćıa-Pérez, Á., Gotsman, A., Meshman, Y., Sergey, I.: Paxos consensus, decon-
structed and abstracted. In: Programming Languages and Systems - 27th European
Symposium on Programming, ESOP 2018, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece,
14–20 April 2018, Proceedings, pp. 912–939 (2018). https://doi.org/10.1007/978-
3-319-89884-1 32

11. von Gleissenthall, K., Kici, R.G., Bakst, A., Stefan, D., Jhala, R.: Pretend syn-
chrony: synchronous verification of asynchronous distributed programs. PACMPL
3(POPL), 59:1–59:30 (2019). https://doi.org/10.1145/3290372

12. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In:
Static Analysis, 16th International Symposium, SAS 2009, Los Angeles, CA, USA,
9–11 August 2009. Proceedings, pp. 69–85 (2009). https://doi.org/10.1007/978-3-
642-03237-0 7

https://doi.org/10.1145/3133934
https://doi.org/10.1109/PGEC.1966.264565
https://doi.org/10.1007/978-3-319-96142-2_23
https://doi.org/10.1145/2660193.2660211
https://doi.org/10.1145/1480881.1480885
https://doi.org/10.1145/2842603
https://doi.org/10.1145/2842603
https://doi.org/10.1145/2676726.2677012
https://doi.org/10.1145/2933575.2935310
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1007/978-3-319-89884-1_32
https://doi.org/10.1007/978-3-319-89884-1_32
https://doi.org/10.1145/3290372
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1007/978-3-642-03237-0_7

140 T. Long et al.

13. Kragl, B., Enea, C., Henzinger, T.A., Mutluergil, S.O., Qadeer, S.: Inductive
sequentialization of asynchronous programs. In: Donaldson, A.F., Torlak, E. (eds.)
Proceedings of the 41st ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, PLDI 2020, London, UK, 15–20 June
2020, pp. 227–242. ACM (2020). https://doi.org/10.1145/3385412.3385980

14. Kragl, B., Qadeer, S.: Layered concurrent programs. In: Computer Aided Verifi-
cation - 30th International Conference, CAV 2018, Held as Part of the Federated
Logic Conference, FloC 2018, Oxford, UK, 14–17 July 2018, Proceedings, Part I,
pp. 79–102 (2018). https://doi.org/10.1007/978-3-319-96145-3 5

15. Kragl, B., Qadeer, S., Henzinger, T.A.: Synchronizing the asynchronous. In: 29th
International Conference on Concurrency Theory, CONCUR 2018, 4–7 Septem-
ber 2018, Beijing, China, pp. 21:1–21:17 (2018). https://doi.org/10.4230/LIPIcs.
CONCUR.2018.21

16. Lampson, B., Sturgis, H.E.: Crash recovery in a distributed data storage system.
In: Technical report XEROX Palo Alto Research Center (1976)

17. Lipton, R.J.: Reduction: a new method of proving properties of systems of pro-
cesses. In: Conference Record of the Second ACM Symposium on Principles of
Programming Languages, Palo Alto, California, USA, January 1975, pp. 78–86
(1975). https://doi.org/10.1145/512976.512985

18. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verifi-
cation by interactive generalization. In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2016,
Santa Barbara, CA, USA, 13–17 June 2016, pp. 614–630 (2016). https://doi.org/
10.1145/2908080.2908118

19. Sergey, I., Wilcox, J.R., Tatlock, Z.: Programming and proving with dis-
tributed protocols. PACMPL 2(POPL), 28:1–28:30 (2018). https://doi.org/10.
1145/3158116

20. Taube, M., et al.: Modularity for decidability of deductive verification with applica-
tions to distributed systems. In: Proceedings of the 39th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2018, Philadel-
phia, PA, USA, 18–22 June 2018, pp. 662–677 (2018). https://doi.org/10.1145/
3192366.3192414

https://doi.org/10.1145/3385412.3385980
https://doi.org/10.1007/978-3-319-96145-3_5
https://doi.org/10.4230/LIPIcs.CONCUR.2018.21
https://doi.org/10.4230/LIPIcs.CONCUR.2018.21
https://doi.org/10.1145/512976.512985
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/3158116
https://doi.org/10.1145/3158116
https://doi.org/10.1145/3192366.3192414
https://doi.org/10.1145/3192366.3192414

Testing and Fault Detection

Mutation Testing of Reinforcement
Learning Systems

Yuteng Lu, Weidi Sun, and Meng Sun(B)

School of Mathematical Sciences, Peking University, Beijing 100871, China
{luyuteng,weidisun,sunm}@pku.edu.cn

Abstract. Reinforcement Learning (RL), one of the most active
research areas in artificial intelligence, focuses on goal-directed learn-
ing from interaction with an uncertain environment. RL systems play
an increasingly important role in many aspects of society. Therefore, its
safety issues have received more and more attention. Testing has achieved
great success in ensuring safety of the traditional software systems. How-
ever, current testing approaches hardly consider RL systems. To fill this
gap, we propose the first Mutation Testing technique specialized for RL
systems. We define a series of mutation operators simulating possible
problems RL systems may encounter. Next, we design test environments
that could reveal possible problems within the RL systems. The muta-
tion score specialized for RL systems is proposed to analyze the extent of
potential faults and evaluate the quality of test environments. Our evalu-
ation in three popular environments, namely FrozenLake, CartPole, and
MountainCar demonstrates the practicability of the proposed techniques.

Keywords: Mutation Testing · Reinforcement Learning · AI Safety

1 Introduction

Reinforcement Learning (RL) has achieved unprecedented progress in a diverse
set of domains, including games [1], news recommendation [2] and safety-critical
applications, such as self-driving cars [3], healthcare [4], robotics manipulation
[5]. Such wide adoption of RL techniques, especially in safety-critical areas, puts
forward new challenges to the security and robustness of RL systems.

Unfortunately, RL systems often produce unexpected or incorrect behaviors
for different reasons. It is even more worrying that RL systems might be sub-
ject to adversarial attacks [6], resulting in disastrous consequences such as fatal
accidents of self-driving cars.

Motivated by the great success of testing techniques in traditional software
systems, more and more researches focus on testing Supervised Learning, in par-
ticular classification problems. However, current testing researches for artificial
intelligence hardly consider RL systems. To fill this gap, we design, implement,
and evaluate a Mutation Testing technique specialized for RL systems.

c© Springer Nature Switzerland AG 2021
S. Qin et al. (Eds.): SETTA 2021, LNCS 13071, pp. 143–160, 2021.
https://doi.org/10.1007/978-3-030-91265-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91265-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-91265-9_8

144 Y. Lu et al.

As one of the most important testing techniques for traditional software,
Mutation Testing [7] can be applied at different levels. Based on mutation oper-
ators simulating potential errors of the software systems, Mutation Testing cre-
ates faulty programs called mutants. The quality of test data could be examined
by its ability to detect differences in behaviors between mutants and the corre-
sponding original software.

Even if testing for artificial intelligence systems is still at an early stage, it
is comforting that there has been pioneering work to design Mutation Testing
techniques specialized for DL systems [8]. However, [8] only investigates Super-
vised Learning and does not take RL systems into account. RL is different from
Supervised Learning and Unsupervised Learning. RL agent with explicit goals
learns how to interact with an uncertain environment so as to achieve its goals.
Supervised Learning learns from training data with labels to obtain a func-
tion that maps input data to corresponding output labels. Thus, we design the
Mutation Testing technique, including mutation operators and mutation scores,
specialized for RL systems to fill this gap.

A RL system contains an agent, seeking to achieve a goal, and its environ-
ment. The agent interacts with its environment and the agent’s action a could
affect the future state s of the environment, thereby affects the options available
to the agent at later times. Simultaneously, the agent always tries to maximize
the amount of reward r, send by its environment after corresponding action a
affects environment, over the long run. States, rewards, and actions are the main
elements of the RL system.

Based on the features of RL systems, it is reasonable to design mutation
operators by injecting potential faults at the state level and the reward level.
For original agents trained by original RL system, after injecting potential faults
into original RL system to obtain mutated RL system, we could get mutated
agents. Intuitively, there should be behavior differences between original agents
and mutated agents in the environment. To measure the differences and the test
environment quality quantitatively, we propose the Mutation Testing metrics
(mutation score) for RL systems. Furthermore, the same agent is supposed to
behave differently in different environments. By modifying the original environ-
ment, we can get different test environments. Similar to Mutation Testing for
traditional software, the quality of the test environment could be evaluated by
mutation scores. Besides, we also design agent-level mutation operators, directly
mutating RL agents. Eventually, we design a set of test environments that could
find possible faults within RL systems.

In the evaluation phase, we apply the two most classic algorithms, namely
Q-Learning [9] and DQN [10]. Our main contributions are summarized as follows:

(1) We design element-level and agent-level mutation operators for RL systems
to introduce diverse potential faults as comprehensively as possible.

(2) We propose the mutation testing metrics (mutation score) specific for RL
systems.

(3) We design a set of test environments that could find possible faults within
RL systems based on mutation score changes.

Mutation Testing of Reinforcement Learning Systems 145

The rest of the paper is organized as follows. We begin with backgrounds
on Reinforcement Learning and Mutation Testing in Sect. 2. Section 3 proposes
element-level and agent-level Mutation Testing techniques for RL systems. And
then, we propose mutation scores for RL systems in Sect. 4. How to design test
environments is presented in Sect. 5. Experimental results are shown in Sect. 6.
We discuss related work in Sect. 7. Finally, Sect. 8 concludes and outlines future
work.

2 Background

2.1 Reinforcement Learning

Reinforcement Learning, different from Supervised Learning and Unsupervised
Learning, focuses on goal-directed learning from interaction with an environment
in order to achieve the long-term goal of the RL agent. RL agent can sense states
of its environment, choose actions to influence the environment and will obtain
corresponding rewards after each action. In general, RL agents learn how to
interact with their environment through trial-and-error so as to maximize the
total amount of rewards obtained throughout the long run. Thus, RL is different
from Supervised Learning, learning from a labeled training set, and Unsupervised
Learning, finding the structure hidden in unlabeled data.

The learning process of RL agents can be referred to as the finite Markov
Decision Process (finite MDP). A particular finite MDP always contains state
sets, action sets and the one-step dynamics of the environment. Formally, the
finite MDP can be formulated as (S, A, P, r, γ). Specifically, S is the finite state
space, A is the finite action space, the one-step dynamics of the environment is
transition probability P : S×A×S → [0, 1], r : S×A → R is the reward function
and γ ∈ [0, 1) is the discount-rate parameter. At each time step t, the agent
observes a state st and takes action at ∼ π(st) according to its policy π. Then,
the agent will receive the immediate reward rt = r(st, at) of at at state st. The
better the selected action, the higher the corresponding reward, which defines
what are the good and bad events for an agent. Immediately afterward, the agent
will observe next state st+1 at time step t+1. The goal of RL agent is to learn the
optimal policy π∗, which maximizes the cumulative reward R0 =

∑
i=0...∞ ri.

The RL framework shown in Fig. 1 presents the interaction between a learning
agent and its environment.

2.2 Mutation Testing

Mutation Testing is a fault-based testing technique. Mutation operators are
designed to simulate various faults that original program P may be suffered.
Based on mutation operators, a set of faulty programs P′, called mutants, are
constructed by injecting faults into the corresponding original program P. Intu-
itively, there should be behavior differences between original program P and
mutants P′. Thus, these mutants P′ could be used to execute against a given

146 Y. Lu et al.

Fig. 1. The framework of Reinforcement Learning

test set T to assess the quality of the test set T. If the test result for a mutant
p′ ∈ P′ is different from the result of running the original program P for a test
data t ∈ T, then p′ is killed and the fault injected by the corresponding mutant
operator is detected. Otherwise, p′ is survived. The general process is shown in
Fig. 2.

Fig. 2. The process of Mutation Testing

In traditional software testing, mutation score is used for indicating the qual-
ity of test set and providing further feedback for the test enhancements. The
mutation score is the ratio of the number of killed mutants over the total number
of generated mutants. Different from traditional mutation score, DeepMutation
[8] proposes the mutation score specific to Supervised Learning, focusing on clas-
sification problems. Due to RL’s characteristics and natural behavior differences
of original agents and mutated agents, using above scores is prone to lose the
precision of evaluating the environment’s quality. Thus, the above scores are not
applicable to RL systems. In this paper, we design and propose the mutation
score specific to RL systems. The practicability of proposed scores is convinced
by experiments.

Mutation Testing of Reinforcement Learning Systems 147

3 Mutation Testing Specific to RL Systems

Traditional Mutation Testing introduces potential faults into software systems
by modifying the program. Different from traditional software systems, which is
the implementation of control flows directly specified by developers, agents of
RL systems interact with and influence corresponding environments.

As described above, the learning process of RL agent can be referred to as the
finite MDP (S, A, P, r, γ). States, rewards and actions are the main elements
of the RL system. Therefore, we should specifically and pointedly introduce
potential defects into these critical elements instead of simply modifying the
source code. In this section, we propose Mutation Testing techniques for RL
systems. Specifically, we propose a set of mutation operators, containing element-
level mutation operators and agent-level mutation operators. Furthermore, we
design and implement a universal Mutation Testing framework for RL systems.

3.1 Element-Level Mutation Operators

RL systems may encounter various risks. We design two types of element-
level mutation operators, namely state-level mutation operators and reward-
level mutation operators, which simulate potential risks to inject faults into RL
systems.

Formally, the interaction between a learning agent and its environment can
be defined in terms of three main elements, namely states, actions, and rewards.
At time step t, the learning agent observes the environment’s state st, and on
that basis, selects action at. As a consequence of its action at, the agent receives
corresponding numerical reward rt and finds itself in a new state st+1 at next
time step. Proposed element-level mutation operators are designed based on
the potential risks that agents could suffer during observing the environment’s
states and receiving numerical rewards. Note that potential risks may be due to
mechanical faults1, hacker attacks [11] or source code errors introduced by the
developers.

Reward-Level Mutation Operators. As we mention above, hacker attacks
[11] and source code errors could introduce potential risks into RL systems.
Specifically, abnormal rewards could be introduced by attacks and source code
errors. Considering the characteristics of RL training process (i.e., the objective
of agents is to maximize the expected total reward over a time period), abnormal
rewards will lead learning agents to go in the wrong direction. Based on this fact,
we design the following reward-level operators.

* Reward Reduction: The reward, defining what is good or bad for the
agent, is the primary basis for altering the policy. Using humans as an analogy,
rewards are somewhat like happiness (if high) or pain (if low). The Reward

1 Many learning agents in the RL system have a large number of sensors to observe
the environment.

148 Y. Lu et al.

Reduction operator modifies part of the rewards to reduce the original higher
rewards. Intuitively, Reward Reduction will make the agent run in the opposite
direction.
* Reward Increase: Contrary to the Reward Reduction operator, the
Reward Increase operator modifies part of the rewards to increase the original
smaller rewards.

State-Level Mutation Operators. These proposed mutation operators simu-
late the practical potential risk. RL systems are widely deployed in domains such
as autonomous driving. The learning agents in autonomous driving scenarios use
sensors to observe the environment. However, sensors could suffer mechanical
faults during the process of observing the environment. Our state-level mutation
operators are designed based on the potential existence of mechanical faults.

* State Loss: Normally, the learning agent should observe the environment’s
state st0 , and on that basis, select action at0 at time step t0. Because the
sensors possibly suffer from robustness issues, it is not uncommon that some
state-action pairs (st, at) can be lost2. The State Loss operator hides some
of the state-action pairs to simulate such kind of faults.
* State Delay: At each time step t, the state-action pair (st, at) and cor-
responding reward rt are supposed to be recorded in time. Based on correct
and timely records, RL system is able to get the learning agent as expected.
If the sensors delay the transmission of observation, state-action pairs and
corresponding rewards will be recorded inaccurately. For example, state sti
may be incorrectly associated with action atj , where i > j, when such fault
happens. Thus, the State Delay operator introduces this risk by associating
sti with atj selectively.
* State Repetition: To better understand this operator, we use autonomous
driving cars as an example. When the vehicle is moving forward, but the
sensors fail to update the new observations, new action will be repeatedly
associated with the last observation. We call this situation State Repetition.
Corresponding operator associates a fixed state with a series of continuous
actions.
* State Error: The State Error operator constructs wrong connections
between states and actions. Although it is possible to associate each state
with a wrong action, merely constructing a few wrong associations is enough
to inject such potential risk and cause huge damage.

3.2 Agent-Level Mutation Operators

Now, we have proposed the element-level Mutation Testing operators for RL
systems. In order to cover more possible faults, we propose and implement a set
of agent-level mutation operators. Training an agent to complete a task within

2 Corresponding rewards are also considered as lost too.

Mutation Testing of Reinforcement Learning Systems 149

an uncertain environment is the goal of RL system. The trained agent contains a
policy to guide it to select action. Typically, the policy can be a Q-table [9] or a
Neural Network [10]. Thus, we could directly mutate the trained agents to cover
more potential risks. Actually, agent-level mutation operators are achieved by
directly mutating agent’s policy (i.e., corresponding Q-table or Neural Network).

* Q-Table Fuzzing (QF): Q-table stores the maximum expected future
rewards for corresponding state-action pairs. A natural and efficient way to
mutate the Q-table is to fuzz its stored rewards. Obviously, the mutated Q-
table will possibly change the agent’s choice of action at each state. The QF
operator follows the distribution selected in advance, such as the Gaussian
distribution, to mutant stored rewards in Q-table.
* Input-Layer Neuron Removal (INR): The Neural Networks in RL
take the states of the environment as input and output a vector containing
Q-values for each possible action. The INR operator removes some neurons
in the input layer, which will cause the trained agent to ignore part of the
environmental information.
* Output-Layer Neuron Disappearance (OND): The OND operator
tries to simulate the situation where agent cannot complete some actions. It
can be achieved by removing chosen neurons in the output layer.
* Output-Layer Neuron Addition (ONA): Different from OND opera-
tor, the ONA operator simulates the opposite situation where agent will do
some unexpected behaviors. The way to achieve it is adding chosen neurons
in the output layer.

The rationality of these operators stems from potential mistakes program-
mers may make. We should note that the main source of such mistakes is the
natural complexity3 of environments in RL system.

3.3 Mutation Testing Framework for RL Systems

At each time steps, the learning agent makes an observation of the environment
state s ∈ S, selects an action a ∈ A. And the action a is applied back to the envi-
ronment in time, modifying its state and getting corresponding reward r. Based
on the correct results of these interactions, a RL agent A is obtained. Now, we
follow the proposed framework to start element-level Mutation Testing process.
First, we apply mutation operators to RL systems, the record of interaction will
be mutated, which means that some actions will be uncorrelated with states. For
example, some state-action pairs could be discarded, which corresponds to the
State Loss mutation operator. And then, the mutated interaction will be con-
sidered in the training process to produce a mutated RL agent A′. In the third
step, the generated agent should be executed in the environment for evaluating
its quality based on mutation score, which will be defined in the next section.

3 The numbers of states that the agent should observe in different environments are
with huge difference.

150 Y. Lu et al.

A higher-quality environment could be used to find out more potential
risks contained in RL systems. The specific flow of proposed framework is
shown in Fig. 3.

Fig. 3. Element-level Mutation Testing Framework

In contrast to the element-level technique, agent-level technique directly
mutates agent A to obtain mutated agent A′. Using the agent-level mutation
technique to generate mutated agent is more efficient because such technique
will reduce time consumption of the training process.

The detailed flow is demonstrated in Fig. 4. In the first step, we should obtain
a RL agent A based on correct records of interactions. And then, we mutate
agent A by the agent-level mutation operators to generate agent A′. Finally,

Mutation Testing of Reinforcement Learning Systems 151

same as element-level Mutation Testing technique, A′ will be executed in the
test environment to evaluate environment’s quality based on the same mutation
score defined in Sect. 4.

Fig. 4. Agent-level Mutation Testing Framework

4 Mutation Scores Specific to RL Systems

We design the mutation scores specific to RL systems to evaluate the quality
of the test environment quantitatively. The mutation score is the ratio of the
number of killed mutants over the total number of generated mutants. What we
should emphasize is that for an input, the corresponding output of traditional
software is deterministic. However, due to the inherent randomness of environ-
ment, every time the agent runs in the same environment, the result may be
different. Apparently, we must define what means the mutated agent is killed
first.

What needs to be underlined here is that for different tasks, the standards
for measuring the performance of the agent are different. Actually, different

152 Y. Lu et al.

standards depend on the goals of the corresponding tasks. We take self-driving
cars as an example. If the goal of the car is to drive safely, the standard for
measuring its performance can be whether there will be no accidents within
the episode. Specifically, if there is no accident during the episode, the agent’s
performance will be recorded as 1 quantitatively. Otherwise, the performance
will be recorded as 0. Alternatively, the duration of the accident-free period can
also be used as a measure of performance.

Example 1. We use the classic environment, FrozenLake, as an example to
explain the above definition more vividly. Specifically, the RL system trains an
agent, expecting it to find a walkable path to the goal tile from the starting point
on a slippery ice surface with holes in this environment. The agent may fall into
the hole, which will cause the episode to end immediately. In addition, if the
agent successfully reaches the goal, the episode will also end. Let A and A′ be an
original agent and a mutated agent respectively. Both agents will be executed in
the environment for n episodes. Agent will receive a reward of 1 if it reaches the
goal, and zero otherwise. The sum of rewards received by A (A′) in n episodes is
recorded as m (m′). Thus, m′

n and m
n are respectively the average performances

of A′ and A running n episodes in the same environment. If m′
m ((m

′
n) ÷ (mn) =

m′
m) is less than the predetermined threshold θ, then A′ is considered killed.

Following the above example, we give the formal definition of the killed agent.
Based on this definition, we could give the formal definition of mutation score.
It is worth noting that the mutation score is used to measure the environment’s
ability to find out potential risks contained in the agent.

Definition 1 (Killed agent). The original agent and the mutant agent
obtained by training are denoted as A and A′ respectively, and they both run
in the environment E for n episodes. We record their performance quantitatively
in each episode, and calculate the average of n performances, denoted as p and
p′, which corresponds to A and A′. If p′

p is less than the predetermined threshold
θ, then A′ is considered killed.

Definition 2 (Mutation score). We denote a set of generated mutated agents,
which contains N mutants, and environment as Ā′ and E respectively. After all
the mutants in Ā′ have been executed in E, we could get the total number of
killed mutants, denoted as N ′. Mutation score corresponding to E is defined as
N ′
N .

5 Design of Test Environments

Reinforcement Learning has been widely deployed in various safety-critical sce-
narios, such as autonomous vehicles, healthcare, and robotics manipulation.
Intelligent agents trained by RL systems with potential errors may put human life
and property at great risk. However, the hidden risks and errors in RL systems
are not easy to be accurately located. Thus, test environments able to discover

Mutation Testing of Reinforcement Learning Systems 153

hidden risks in the RL system are urgently needed. Based on our mutation test
framework, we put forward the idea of how to design a test environment that
can locate potential problems in the RL system. Generally speaking, we want
to use the designed test environment to find out what specific risks are injected
in the RL system. We must note that the environment for agent training and
executing is the same, which is different from the difference between training
data and test data in Supervised Learning.

The test environment should be designed according to different characteris-
tics of the risks introduced by operators. For example, reward-level mutation will
cause the mutated agent to have a wrong perception of what is happiness or pain.
If the agent mistakes happiness as pain, corresponding to Reward Reduction, in
the latter part of the training process, it will be difficult to achieve original goals
successfully. So in practice, when the RL system encounters such a reward-level
issue, making the trained agent produce poor performance, what should we do?

First, we design a new environment (i.e., the test environment) to offset the
risks within the RL system. Specifically, we can obtain the test environment
by modifying the original environment so that the agent can obtain positive
rewards or the goal can be achieved at an earlier stage. Then, based on the test
environment, we use the original RL system and the mutated RL system to train
the corresponding agents respectively. Intuitively, due to the characteristics of
injected mutation, the system can train the agent normally at the earlier stage.
Therefore, the trained mutated agent will have the ability to complete tasks in
the new environment. In this way, the mutated agents are expected to produce
better performance and even comparable to the original agent’s performance.

So, we finally execute mutated agents and original agent in the test environ-
ment and calculate respective mutation scores of the test environment. Through
the change of mutation scores, we could detect potential errors in the RL system.

Example 2. We again take FrozenLake as an example. For a mutated RL sys-
tem injected with Reward Reduction operator, corresponding mutated agents
trained in the environment E (shown in Fig. 5(a)) given by Gym always have
poor performance, which means E will have a high mutation score. However,
the designed test environment ET , shown in Fig. 5(b), has lower mutation score
for the certain potential error (i.e., the Reward Reduction issue) contained in the
system, while still has high scores or even higher scores for other errors. In fact,
ET is designed with the idea of offsetting the Reward Reduction risk. Thus, with
the help of the above mutation score changes, we can identify the problem
contained in the system. This example is guaranteed by experiment.

In conclusion, by designing a test environment to offset the characteristics
of possible errors, following our framework and observing changes in mutation
scores, potential errors contained in the system may be accurately located. The
test environment that causes the more drastic changes in scores, the more capable
it is to find out more potential errors. The following experiments prove the
validity and feasibility of the proposed idea. We hope that it can be the beginning
of designing test environments for RL system.

154 Y. Lu et al.

(a) Original Environment (b) Test Environment

Fig. 5. Environments

6 Evaluation

We have evaluated and implemented the proposed Mutation Testing framework
for two successful RL systems, Q-Learning and DQN, in three popular environ-
ments, namely FrozenLake, CartPole, and MountainCar. The technique’s useful-
ness has been demonstrated through experiments. The implementation is based
on Keras 2.2.2, Gym 0.17.3 and TensorFlow 1.10.0 backend. All our experiments
were run on a server running CentOS 7.6 with 2 Xeon Gold 5118 2.30 GHz CPUs,
120 GB system memory and 8 NVIDIA Titan XP GPU.

RL algorithm is the core of the RL system. Q-learning introduced by Watkins
[9] is one of the most widely used RL algorithms and uses the Bellman optimality
equation. DQN [1,10] combines Q-learning with Deep Neural Networks to learn
policies over large state spaces efficiently. We select three popular publicly avail-
able environments FrozenLake, CartPole, and MountainCar as the evaluation
environments.

– FrozenLake: An agent stands on a frozen lake, which is a slippery ice surface
with holes. The agent’s goal is to walk from the start point to the goal without
falling into the holes.

– Cartpole: There is an unstable pole attached to a cart. The cart moves along
a frictionless track by applying forces to it. The goal is to keep the unstable
pole balanced (i.e., the pole remains upright) by applying appropriate forces.
We can better understand the environment through this video. The condition
for the end of episode is that the pole is over 15◦ from vertical or the cart
moves more than 2.4 units from the center.

– MountainCar: A vehicle is located at the bottom of the valley between a lower
hill and a higher hill. The vehicle’s goal is to hit the flag by climbing up the
higher hill. However, the vehicle cannot directly climb the higher hill due to
its weak engine. So, the only way to hit the flag is to drive back and forth
until enough momentum is built for climbing.

https://www.youtube.com/watch?v=XiigTGKZfks&t=147s

Mutation Testing of Reinforcement Learning Systems 155

Based on the idea of offsetting the characteristics of potential risks, we
have designed corresponding test environments for these three environments.
For example, when the RL system training in environment FrozenLake suffers
a potential risk at the reward-level, we can use the test environment shown in
Fig. 5(b) to locate the risk. If the RL system in environment MountainCar suffers
from reward-level attacks, we could get the test environment by changing the
position of the flag. Specifically, we could move the flag from the mountaintop
of the higher hill to the hillside of the higher hill to lower its position. Besides,
for the same reward-level issues in environment CartPole, we could reduce the
length of frictionless track to create the test environment. In fact, by reducing
the length, the condition for the end of episode can be changed to moving less
than 2.4 units from the center, which means that the episode is easier to end.
For state-level risks, we take environment FrozenLake as an example. In the sit-
uation where the RL system suffers from risks simulated by State Loss operator,
we could obtain the test environment by modifying the ice surface around the
starting point.

In the original environments (i.e., FrozenLake, CartPole, or MountainCar),
we train the original agents and the mutated agents based on the RL system
and the mutated RL system respectively. Then, let the obtained agents execute
in the original environment to get their performance. Based on the results, we
could find out the killed mutants and calculate the mutation score corresponding
to the original environment. Analogously, we could calculate the mutation score
corresponding to the test environment.

Through experiments, we have seen that when different mutation operators
are injected into the RL system, even for the same group of original environment
and test environment, the relationship between their mutation scores could have
a huge difference. As shown in Fig. 6, we use the environments in Fig. 5(a) and
Fig. 5(b) as a group. The two bars on the left corresponds to the case where
the RL system is injected by Reward Reduction operator. We can see that the
mutation score of E much higher than the mutation score of ET . However, when
we inject state-level operators into the RL system, corresponding to the bar on
the right, there is no significant difference between the mutation score of E and
the mutation score of ET . Such change in quantitative relationships can guide us
in locating potential errors, which shows that the designed test environment does
have the ability to looking for errors. When we inject more similar errors into the
RL system and train to get more mutants. Following the above process, we could
find out errors contained in the system based on the designed environment. The
bars on the right correspond to the case of injecting Q-Table Fuzzing operator.
This experimental result inspires us to explore the connections between element-
level operators and agent-level operators in the future.

156 Y. Lu et al.

Fig. 6. Comparison of Mutation Scores

Threats To Validity. The inherent randomness of environment could be a
threat to validity. Specifically, randomness may lead to different results when the
agent does the same action in the same environment. To counter such issue, we let
the agent run multiple times in the same environment to eliminate randomness
as much as possible.

Besides, agents trained by the same RL system will also have differences in
their ability to solve problems. This issue could be another threat to validity.
To counter this problem, we train to obtain multiple agents and consider their
average performances as a measurement for RL system capabilities to eliminate
differences in the performance of different agents as much as possible.. The selec-
tion of the predetermined threshold θ could be the third threat to validity. In
the above experiment, we use θ = 0.8.

7 Related Work

In this section, we summarize the most relevant work about Mutation Testing,
Reinforcement Learning and security of AI systems.

7.1 Mutation Testing

In late 1970s, three pioneering works [12–14] gave birth to Mutation Testing. It
has made great achievements in the traditional software field, and been success-
ful in assessing the effectiveness of test data. Over the past decades, traditional

Mutation Testing of Reinforcement Learning Systems 157

Mutation Testing techniques are widely studied and applied to many domains,
such as programming languages, integration testing, network-based protocols
and Android apps. [15] proposes a mutation-based criterion, named Interface
Mutation, suitable for integration testing. [16] introduces mutants to give devel-
opers an insight into the signatures used by network-based intrusion detection
systems. [17] presents an automated Mutation Testing framework for Android
apps. 38 mutation operators have been proposed and over 8,000 mutants have
been generated by injecting these operators into more than 50 apps.

Nowadays, as AI systems are widely deployed in safety-critical applications,
some pioneering works [8,18,19] began to apply Mutation Testing to AI sys-
tems. DeepMutation [8] proposes a Mutation Testing framework specialized for
Supervised Learning (e.g., classification problems) and achieves great success.
DeepMutation++ [18] supports Mutation Testing for both feed-forward neural
networks and stateful recurrent neural networks. Wang et al. [19] propose an
approach able to detect adversarial examples for DNNs at runtime based on
Mutation Testing. As we know, our work is first Mutation Testing framework
specialized for RL systems.

7.2 Reinforcement Learning

The DQN [10], combining Q-learning [9] and DNN, achieve shocking perfor-
mance on classic Atari 2600 games. Its performance is comparable to that of a
professional human player across 49 games of Atari 2600. After that, more and
more work is devoted to improving the RL algorithm. For example, [20] stud-
ies diverse independent improvements to the DQN and combines them to pro-
vide state-of-the-art performance. [21] explores how to solve Atari games with
fewer interactions. With such development, more and more RL systems have
been applied to our lives. Since safety is the most basic requirement, RL algo-
rithms considering safety have been proposed. [22] proposes a safe RL algorithm,
called Parallel Constrained Policy Optimization (PCPO), for autonomous vehi-
cles. Based on PCPO, potential risks can be taken into account during training.
We believe that there will be more work to ensure the safety of the RL systems
in the future.

7.3 AI Safety

Adversarial attacks [23,24] have raised more and more concerns about safety
of artificial intelligence. [25] proposes a novel verification algorithm for solving
queries on DNN with ReLU activation functions. DeepXplore [26] is the first
white-box testing framework for Supervised Learning. Ma et al. [27] present a
set of multi-granularity coverage criteria for testing DNNs. [28] presents Deep-
Importance, a systematic testing framework containing an Importance- Driven
test adequacy criterion. [29] focuses on testing for RL systems. And [30] intro-
duces on two efficient, exact and over-approximate reachability algorithms for
NN-based control systems with a RL controller.

158 Y. Lu et al.

8 Conclusion and Future Work

In this paper, we have designed, implemented, and evaluated Mutation Testing
techniques for RL systems. We hope that this work could initiate the jour-
ney of exploring Mutation Testing for RL systems. A set of mutation opera-
tors, including element-level operators and agent-level operators, are designed
to inject potential risks that could be introduced by mechanical faults, attacks
or developers. We also propose corresponding Mutation Testing frameworks.
Moreover, the proposed mutation scores can be used to measure the quality of
environments and guide the design of test environments. Our experiments show
that Mutation Testing provides a promising avenue for evaluating environments
and building robust RL systems. In the future, we would perform more in-depth
investigation on the design of more test environments. And we will explore the
relations between these mutation operators and human faults.

Acknowledgement. This research was supported by the Guangdong Science and
Technology Department (Grant No. 2018B010107004) and the National Natural Sci-
ence Foundation of China under Grant No. 62172019, 61772038, 61532019.

References

1. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

2. Zheng, G., et al.: DRN: a deep reinforcement learning framework for news rec-
ommendation. In: Proceedings of the 2018 World Wide Web Conference on World
Wide Web, WWW 2018, Lyon, France, 23–27 April 2018, pp. 167–176. ACM (2018)

3. El Sallab, A., Abdou, M., Perot, E., Yogamani, S.K.: Deep reinforcement learning
framework for autonomous driving. Electron. Imaging 2017(19), 70–76 (2017)

4. Yu, C., Liu, J., Nemati, S.: Reinforcement learning in healthcare: a survey. CoRR,
abs/1908.08796 (2019)

5. Kober, J., Peters, J.: Reinforcement learning in robotics: a survey. In: Wiering,
M., van Otterlo, M. (eds.) Reinforcement Learning. Adaptation, Learning, and
Optimization, vol. 12, pp. 579–610. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-27645-3 18

6. Sun, J., et al.: Stealthy and efficient adversarial attacks against deep reinforce-
ment learning. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, 7–12 February 2020, pp.
5883–5891. AAAI Press (2020)

7. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Software Eng. 37(5), 649–678 (2011)

8. Ma, L., et al.: DeepMutation: mutation testing of deep learning systems. In: 29th
IEEE International Symposium on Software Reliability Engineering, ISSRE 2018,
Memphis, TN, USA, 15–18 October 2018, pp. 100–111. IEEE Computer Society
(2018)

9. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8, 279–292 (1992)

https://doi.org/10.1007/978-3-642-27645-3_18
https://doi.org/10.1007/978-3-642-27645-3_18

Mutation Testing of Reinforcement Learning Systems 159

10. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

11. Nguyen, T.T., Reddi, V.J.: Deep reinforcement learning for cyber security. CoRR
(2019)

12. Lipton, R.: Fault diagnosis of computer programs. Ph.D. thesis, Carnegie Mellon
University (1971)

13. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for
the practicing programmer. Computer 11(4), 34–41 (1978)

14. Hamlet, R.G.: Testing programs with the aid of a compiler. IEEE Trans. Software
Eng. 3(4), 279–290 (1977)

15. Delamaro, M.E., Maldonado, J.C., Mathur, A.P.: Interface mutation: an approach
for integration testing. IEEE Trans. Software Eng. 27(3), 228–247 (2001)

16. Vigna, G., Robertson, W.K., Balzarotti, D.: Testing network-based intrusion detec-
tion signatures using mutant exploits. In: Atluri, V., Pfitzmann, B., McDaniel, P.D.
(eds.) Proceedings of the 11th ACM Conference on Computer and Communica-
tions Security, CCS 2004, Washington, DC, USA, 25–29 October 2004, pp. 21–30.
ACM (2004)

17. Moran, K., et al.: MDroid+: a mutation testing framework for android. In: Chau-
dron, M., Crnkovic, I., Chechik, M., Harman, M. (eds.) Proceedings of the 40th
International Conference on Software Engineering: Companion Proceeedings, ICSE
2018, Gothenburg, Sweden, 27 May–03 June 2018, pp. 33–36. ACM (2018)

18. Hu, Q., Ma, L., Xie, X., Yu, B., Liu, Y., Zhao, J.: DeepMutation++: a mutation
testing framework for deep learning systems. In: 34th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2019, San Diego, CA, USA,
11–15 November 2019, pp. 1158–1161. IEEE (2019)

19. Wang, J., Dong, G., Sun, J., Wang, X., Zhang, P.: Adversarial sample detection
for deep neural network through model mutation testing. In: Atlee, J.M., Bultan,
T., Whittle, J. (eds.) Proceedings of the 41st International Conference on Software
Engineering, ICSE 2019, Montreal, QC, Canada, 25–31 May 2019, pp. 1245–1256.
IEEE/ACM (2019)

20. Hessel, M., et al.: Rainbow: combining improvements in deep reinforcement learn-
ing. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th Innovative Appli-
cations of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Edu-
cational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, 2–7 February 2018, pp. 3215–3222. AAAI Press (2018)

21. Kaiser, L., et al.: Model based reinforcement learning for atari. In: 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–
30 April 2020 (2020)

22. Wen, L., Duan, J., Li, S.E., Xu, S., Peng, H.: Safe reinforcement learning for
autonomous vehicles through parallel constrained policy optimization. CoRR,
abs/2003.01303 (2020)

23. Szegedy, C., et al.: Intriguing properties of neural networks. In: Bengio, Y., LeCun,
Y. (eds.) 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, 14–16 April 2014, Conference Track Proceedings (2014)

24. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference
Track Proceedings (2015)

160 Y. Lu et al.

25. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

26. Pei, K., Cao, Y., Yang, J., Jana, S.: DeepXplore: automated whitebox testing
of deep learning systems. In: Proceedings of the 26th Symposium on Operating
Systems Principles, Shanghai, China, 28–31 October 2017, pp. 1–18. ACM (2017)

27. Ma, L., et al.: DeepGauge: multi-granularity testing criteria for deep learning sys-
tems. In: Huchard, M., Kästner, C., Fraser, G. (eds.) Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, ASE
2018, Montpellier, France, 3–7 September 2018, pp. 120–131. ACM (2018)

28. Gerasimou, S., Eniser, H.F., Sen, A., Cakan, A.: Importance-driven deep learning
system testing. In: ICSE 2020: 42nd International Conference on Software Engi-
neering, Seoul, South Korea, June 27–19 July 2020, pp. 702–713. ACM (2020)

29. Uesato, J., et al.: Rigorous agent evaluation: an adversarial approach to uncover
catastrophic failures. In: 7th International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019 (2019)

30. Tran, H.-D., Cai, F., Lopez, D.M., Musau, P., Johnson, T.T., Koutsoukos, X.D.:
Safety verification of cyber-physical systems with reinforcement learning control.
ACM Trans. Embed. Comput. Syst. 18(5s), 105:1–105:22 (2019)

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5

AIdetectorX: A Vulnerability Detector Based
on TCN and Self-attention Mechanism

Jinfu Chen(B), Bo Liu, Saihua Cai(B), Weijia Wang, and Shengran Wang

Jiangsu University, Zhenjiang 212013, China
{jinfuchen,caisaih}@ujs.edu.cn, boliu@stmail.ujs.edu.cn

Abstract. A vulnerability detector should have both excellent detection capabili-
ties (such as high accuracy, low false positive rate, low false negative rate, etc.) and
little time overhead. However, existing vulnerability detection methods often rely
on manual intervention by human experts or result in high false positives and high
false negatives. Additionally, the development of deep learning techniques has
prompted many scholars to conduct research in the field of vulnerability detec-
tion. Since Temporal Convolutional Networks (TCN) have causal relationships
between their convolutional layers and can process information in parallel, while
self-attention mechanism can attach more attention to the information related to
vulnerabilities. Therefore, in this paper, we combineTCNand self-attentionmech-
anism for vulnerability detection. This leads to the design and implementation of
an improved deep learning-based vulnerability detector, called AIdetectorX. We
conduct experiments on publicly available and widely used datasets for evaluating
the effectiveness of AIdetectorX. Evaluation results suggest that AIdetectorX is
effective for vulnerability detection and that combining TCN and self-attention
mechanism can lead to higher detection capabilities and decrease time overhead.

Keywords: Deep learning · Software security · Vulnerability detection ·
Temporal convolutional network · Self-attention mechanism

1 Introduction

Software vulnerabilities are still a very thorny issue, despite many efforts that we have
made in pursuit of the software quality and security. Since vulnerabilities cannot be
prevented, an efficient strategy is to detect the vulnerabilities that may be exploited
by attackers, so as to avoid irreparable losses. Current vulnerability detection methods
can be divided into three categories: code similarity-based vulnerability detection [1,
2], rule-based vulnerability detection [3, 4], and machine learning-based vulnerability
detection [5, 6]. The core idea of code similarity-based vulnerability detection is that
the same vulnerabilities is likely to be contained in the similar program code. However,
it is difficult to detect the vulnerabilities that are not caused by code duplication, which
results in the high false negative rate. For the rule-based vulnerability detection methods,
they usually have high false positive rate and false negative rate because the vulnerabil-
ity rules defined by the human experts are subjective and a few cases are difficult to be

© Springer Nature Switzerland AG 2021
S. Qin et al. (Eds.): SETTA 2021, LNCS 13071, pp. 161–177, 2021.
https://doi.org/10.1007/978-3-030-91265-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91265-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-91265-9_9

162 J. Chen et al.

fully considered in the vulnerability rules. For the machine learning-based vulnerability
detection methods, they define the features by the human experts to characterize vul-
nerabilities and use machine learning to automatically detect vulnerabilities rather than
relying on the vulnerability rules manually defined by the human experts.

With the popularity of deep learning, it has been widely used in many areas, such
as anomaly detection, software language modeling, and code clone detection. However,
deep learning in vulnerability detection ismuch less used.As thefirst deep learning-based
vulnerability detection system dubbed VulDeePecker [7], which uses the Bidirectional
Long Short-Term Memory (BLSTM) network to detect vulnerabilities at slice-level.
VulDeePecker applies deep learning to the field of vulnerability detection, while freeing
the human experts from the tedious task on manually defining features and effectively
reducing the false positive rate and false negative rate. Although it is a successful detector
for vulnerability detection, there are still some shortcomings, such as excessive time
overhead and insufficient detection capabilities.

Among numerous neural networks, Recurrent Neural Network and its variants (i.e.,
LSTM and GRU), or simply RNNs for short, can sequentially process temporal data
and are gradually becoming the dominant trend in various temporal tasks, but the time
overhead is excessive when dealing with large-scale data. Compared to RNNs, Tem-
poral Convolutional Networks (TCN) [8, 9] can process information in parallel, which
compensates for the excessive time overhead caused by processing data sequentially in
RNNs. Additionally, even if LSTM is designed to include a forget gate, it cannot fully
remember all historical information, which will be gradually forgotten when a piece
of information is invalid. However, TCN is a type of Convolutional Neural Networks
(CNNs) in which the convolutional layers are correlated, which ensures that historical
and future information is not lost. Currently, TCN has been used for URL classification,
intrusion detection, etc. [10]. In this paper, we initiate the study of using TCN instead
of RNNs for vulnerability detection and conduct a series of experiments to compare
TCN and RNNs in terms of detection capabilities and time overhead. The experimen-
tal results show that the vulnerability detector using TCN can achieve higher accuracy
while reducing false positive rate and false negative rate without incurring excessive
time overhead.

Since neural networks require input equal-length vectors, we transform programs
into vector representations that can be fed to TCN for training the model. In the process
of vulnerability detection, vulnerabilities only appear in certain statements. It is not nec-
essary to pay much attention to some statements that are not related to vulnerabilities.
Therefore, we remove non-ASCII characters and comments, and then treat some vari-
ables and function declarations in programs that are not related to vulnerabilities with
uniform naming. Furthermore, most neural network models use dense layers to gener-
alize the detection capabilities of the model. However, too many dense layers do not
significantly improve the detection capabilities, but rather waste time and increase com-
putational overhead.Therefore,we attempt to introduce self-attentionmechanism [11] on
TCN to paymuch attention to themajor statements and effectively ignore the influence of
theminor statements, thereby further improving the detection capabilities. Self-attention
mechanism is similar to a scoring function, as it gives more weight to important state-
ments and less weight to irrelevant statements. Currently, the self-attention mechanism

AIdetectorX: A Vulnerability Detector 163

has been used for defect prediction, malware classification, malicious URL detection,
etc. [12, 13]. In this paper, we introduce the self-attention mechanism on TCN to further
improve the improve the accuracy, precision, and F1-measure and to reduce the false
positive rate and false negative rate in vulnerability detection.

The major contributions of this paper can be summarized as follows.
First, we use TCN as an alternative to RNNs for vulnerability detection, which leads

to higher detection capabilities and less time overhead.
Second, we introduce self-attention mechanism to further improve the detection

capabilities of the vulnerability detector proposed in this paper.
Third, we design and implement three vulnerability detectors to verify TCN and

self-attention mechanism for vulnerability detection.
The remainder of this paper can be organized as follows. Section 2 presents the design

of AIdetectorX. Section 3 introduces the experimental design. Section 4 describes the
experimental results. Section 5 discusses threats to validity. Section 6 concludes the
present paper and future work.

2 Design of AIdetectorX

Our objective is to design a vulnerability detector that can better detect vulnerabilities
while reducing time overhead. Since TCN is thought to outperform RNNs in many tasks
and self-attention mechanism has been shown to significantly enhance RNNs in other
fields, we initiate the study of using TCN and self-attention mechanism for vulnerability
detection. In this section, we first introduce how to transform programs into vector
representation that can be fed to TCN. And then, we describe how to use TCN to train
the model and how to use self-attention mechanism to improve detection capabilities.
Finally, we present the design of AIdetectorX proposed in this paper.

2.1 Program Representation

Since neural networks require equal-length vectors as input and programs cannot be
directly transformed to feature vectors, we need to consider how to transform programs
into input for the neural networks. This section introduces how to pre-process the pro-
gram, and the operation of transforming the programs into vectors can be concluded as
the following four steps.

First, we extract library/API function calls from the programs and divide them into
two categories: forward calls and backward calls. Forward calls are function calls that
take one or more inputs directly from external inputs, such as command lines, programs,
sockets, or files. For forward calls, statements that are affected by input arguments are
critical, because they may be vulnerable to inappropriate argument values. Backward
calls are function calls that do not take any external input directly from the environment
in which the program is running. For backward calls, statements that affect argument
values are critical, because they may make library/API function calls vulnerable. And
then, we generate program slices corresponding to the arguments of the library/API
function calls extracted from the training program and define two types of slices (i.e.,
forward and backward slices), where forward slices correspond to statements that are

164 J. Chen et al.

affected by the relevant argument, and backward slices correspond to statements that
can affect the relevant argument. For each argument in a forward library/API function
call, one or more forward slices are generated. In case of multiple forward slices, the
forward slices of the argument will branch after the function call. For each argument in
a backward library/API function call, one or more backward slices will be generated. In
case of multiple backward slices, the backward slices of the argument will be merged
before the function call. Figure 1 illustrates an example of the transformation from
program to a code gadget.

1 void test(char *str)
2 {
3 int MAXSIZE = 40;
4 char buf[MAXSIZE];
5 strcpy(buf, str);
6 printf(“result: %s\n”, buf);
7 }
8 int main(int argc, char **argv)
9 {
10 char *userstr;
11 if(argc > 1){
12 userstr = argv[1];
13 test(userstr);
14 }
15 return 0;
16 }

8 int main(int argc, char **argv)
10 char *userstr;
11 if(argc > 1)
12 userstr = argv[1];
13 test(userstr);
1 void test(char *str)
3 int MAXSIZE = 40;
4 char buf[MAXSIZE];
5 strcpy(buf, str);

Fig. 1. Illustrating the generation of code gadgets.

Second, we assemble the programs into code gadgets according to data and control
dependency, and label their ground truth. Given a library/API function call and the
corresponding program fragment, we group statements into a single fragment for code
segments belonging to the same user-defined function, in the order in which they appear
in the user-defined function. If any statement is duplicated, we eliminate the duplicate
statement and keep only one. Additionally, each code gadget needs to be marked with
ground truth (e.g., “1” for vulnerable and “0” for non-vulnerable). If the code gadget
corresponds to a known vulnerability in the training dataset, it is marked with a “1”;
otherwise, it is marked with a “0”.

Third, to eliminate the impact of irrelevant information as much as possible, we
need to map user-defined variables and functions to symbolic names (e.g., “var_1” and
“fun_1”) and remove non-ASCII characters and comments (because they are irrelevant to
vulnerabilities). This avoids the impact of irrelevant information on the neural network.
Figure 2 shows an example of unified renaming of function and variable names. For
example, in the generation of the code gadget in Fig. 2, the user defines a variable userstr
on line 4, we rename it to var_1 and rename it wherever userstr is used in the rest of
the code. Notably, the renaming operation is done automatically using regularization
techniques.

Finally, we use the word2vec tool to encode the code gadgets into equal-length
vectors. Since the coded vectors vary in length, we need to consider two cases for

AIdetectorX: A Vulnerability Detector 165

8 int main(int argc, char **argv)
10 char *userstr;
11 if(argc > 1){
12 userstr = argv[1];
13 test(userstr);
1 void test(char *str)
3 int MAXSIZE = 40;
4 char buf[MAXSIZE];
5 strcat(buf, str);

8 int main(int argc, char **argv)
10 char *var_1;
11 if(argc > 1){
12 var_1 = argv[1];
13 fun_1(var_1);
1 void fun_1(char *var_2)
3 int var_3 = 40;
4 char var_4[var_3];
5 fun_2(var_4, var_2);

Fig. 2. Illustrating the generation of code gadgets.

formatting the vectors. For a forward slice, if the vector length is greater than τ (i.e., the
pre-given vector length), we truncate the front part; otherwise, we pad zeros at the end
of the vector. For a backward slice, if the vector length is greater than τ, we truncate the
back part; otherwise, we pad zeros at the beginning of the vector. In this paper, we set
the vector length τ to 100.

2.2 TCN Layer

The structure of TCN includes causal convolution, dilated convolution, and residual
connection, which can directly exploits the powerful features of convolution to extract
features across time steps.

Causal Convolution. The value of current layer at time t only depends on the value
of previous layer at time t and before. The difference from traditional CNNs is that
causal convolution cannot anticipate future data. Its structure is unidirectional, but not
bidirectional. This means that only causes can have the consequences, thus it is a strict
time constraint model, which is why it is called the causal convolution. If the variable
x from long ago is to be considered, then the number of convolutional layers must
be increased. The increase of the number of convolutional layers can bring about the
problems of disappearance of gradients, complex training, and poor fitting effect.

Dilated Convolution. Causal convolution still has the problem that exists in traditional
CNNs, that is, the modeling time is limited by the size of convolution kernel. If we
want to capture longer dependency, it is necessary to linearly stack many layers. To
solve this problem, dilated convolution was proposed in recent years. Different from
traditional convolution, dilated convolution allows interval sampling of the input during
convolution, and the sampling rate is controlled by d. The d = 1 in the bottom layer
means that every point is sampled during the input, and middle layer d = 2 means that
every 2 points are sampled as input during the input. Generally, the higher of level, the
larger size of d. In this way, convolutional network can use fewer layers to obtain a large
receptive field.

Residual Connection. Residual connection has been proved to be an effective method
for training deep networks, which allows the network to transmit information in a cross-
layer manner.

166 J. Chen et al.

Since RNNs need to process information sequentially, which results in a high time
overhead. However, the computational process of TCN does not depend on previous
information, and each computation is independent (i.e., parallel processing information),
which can improve data processing speed. Additionally, TCN can better control the
length of information remembered by the model through stacking more convolutional
layers, using larger dilation coefficients and increasing the filter size. There is a cause-
and-effect relationship between the layers of convolutional network, which means that
no historical information or future data is missing. And even if the LSTM has memory
gates, it cannot remember all historical information (especially if it is useless and is
gradually forgotten). Since the back propagation of TCN and the temporal direction
of sequence are different, which avoids the problem of vanishing gradient or exploding
gradient that often occurs in RNNs. Training themodel using TCN requires lessmemory,
especially for long input sequences [9], thus, we use TCN (i.e., Conv layers) instead of
traditional RNNs to detect vulnerability.

2.3 Self-attention Layer

The attention mechanism can be divided into three steps: obtaining query vectors (q) and
keyvectors (k) basedon input vectors, calculating the correlationαi,j (i.e., attention score)
between each query vector (qi) and each key vector (kj), and extracting the important
information according to attention score αi,j. Given N sets of input information X = [x1,
…, xN], where each vector xi (i ∈ [1, N]) represents an input information. Each input
vector xi in X is multiplied by Wq and Wk to obtain qi and ki, respectively. And then,
the correlation αij between each two input information xi and xj is calculated separately,
where the correlation between each two input information is calculated using the scaled
dot product [11], as shown in (1). Notice that each input vector xi also calculates the
correlation with itself.

αi,j = qi · kj

√
dk

(1)

Each attention score calculated in (1) needs to be normalized by softmax to obtain
α′, whose formula is shown in (2).

α′
i,j = exp(αi,j)

n∑

k=1
exp(αi,k)

(2)

According to α′
i,j, we can obtain the degree of association between the current input

vector xi and each input vector xj. Each input vector xi in X is multiplied by Wv to obtain
the value vector (v). Then it is multiplied with the corresponding attention fraction in
turn and accumulated to obtain the output vector bi, as shown in (3). Self-attention

AIdetectorX: A Vulnerability Detector 167

mechanism can be accelerated using a matrix where each output vector bi is computed
in parallel,Q = Wq · X,K = Wk · X, and V = Wv · X. UsingQ andK, A’ is computed and
multiplied by V to obtain the output vector. The formula of self-attention mechanism is
shown in (4).

bi =
n∑

j=1

α′
i,jv

j (3)

Attention(Q, K, V) = softmax(
QKT

√
dk

)V (4)

The purpose of self-attention mechanism is to focus on some details based on our
goals, rather than analyzing the global situation. Therefore, the core task is how to iden-
tify the part we want to focus on based on our goals, and how to further analyze it after
finding that part of the details. For example, the vulnerabilities occur in library/API
function calls without much attention to other statements (e.g., declaring variables and
initialization). Self-attention mechanism is equivalent to scoring each piece of infor-
mation in the sequence individually (i.e., the more critical the information, the higher
the score). Through continuous training, the model can achieve the optimal information
weight, so as to obtain more accurate vulnerability detection. Therefore, we present the
vulnerability detector that introduces self-attention mechanism (VulDeePecker+) and
plot its structure.

2.4 Overview of AIdetectorX

Since the superior time overhead and generalization capabilities of TCN over RNNs,
we apply it to vulnerability detection. In the process of training the model, we need to
pre-process programs into vector representations for inputting TCN layers. Additionally,
self-attention mechanism can set a higher weight on the information that needs more
attention in the temporal data, thus highlighting important information.We can introduce
self-attention mechanism to further improve the detection capabilities of the detector.
Figure 3 depicts the structure of the vulnerability detector based on TCN and self-
attention mechanism. The process for detecting vulnerabilities using AIdetectorX is as
follows.

(1) Transforming training programs into the equal-length vector representation.
(2) Inputting the transformed vector representations into TCN for training the model.
(3) Improving vulnerability detection capabilities using self-attention mechanism.
(4) Transforming testing programs into the equal-length vector representation.
(5) Detecting vulnerabilities using the trained model.

Since programs cannot be directly fed to the neural network, we need to transform the
programs into vector representation. Section 2.1 describes how to transform the programs
into the equal-length vectors in detail. Second, we input the vectors into TCN (kernel
size is 3, filters are 128, 128, and 64, and dilation rates are 1, 2, and 4, respectively).
This differs from previous deep learning-based vulnerability detection methods. TCN

168 J. Chen et al.

is a CNN structure that was devised in 2016 to handle temporal data, which has the
advantage of accommodating more information and effectively reduce time overhead.

In this paper, we initially transform programs into vector representation that can
be input the neural network, and use TCN instead of traditional RNNs for training the
model. Then, we introduce self-attention mechanism to replace dense layers [14] for
improving vulnerability detection capabilities. The more complex the model, the better
the detection, but this undoubtedly increases the complexity and time overhead of the
model. The time overhead is a very important factor, and excessive training time is inap-
propriate. The introduction of self-attention mechanism addresses this issue effectively,
and self-attention mechanism will focus on the information that is more important. It is
equivalent to set a higher weight to some important information, and adjusting the corre-
sponding parameters during the next back propagation. After continuous optimization,
we can obtain a model with excellent vulnerability detection capabilities. Additionally,
to avoid the errors caused by a bad random selection of the training set, we use 10-fold
cross-validation to select the best parameter values and save it for vulnerability detection
during the testing phase to validate the model.

Input layer

Conv1 layer

Conv2 layer

Conv3 layer

Softmax layer

Attention layer +

Flatten layer

Fig. 3. AIdetectorX: A brief structure that combines TCN and self-attention mechanism.

3 Experimental Design

3.1 Evaluation Metrics

The effectiveness of vulnerability detection methods can be evaluated by the following
five widely-used metrics [15]: accuracy (A), false positive rate (FPR), false negative

AIdetectorX: A Vulnerability Detector 169

rate (FNR), precision (P), and F1-measure (F1). In these metrics, the A measures the
correctness of all detected programs; the FPR measures the proportion of false positive
programs to the entire population of programs that are not vulnerable; the FNRmeasures
the proportion of false negative programs to the entire population of programs that are
vulnerable; the Pmeasures the correctness of detected vulnerable programs; the F1 is the
overall effectiveness considering both precision and FNR. Let TP denotes the number of
vulnerable samples that are correctly judged as the vulnerable programs by the model,
FP denotes the number of non-vulnerable samples that are incorrectly judged as the
vulnerable programs by the model, TN denotes the number of non-vulnerable samples
that are correctly judged as the non-vulnerable programs by the model, and FN denotes
the number of vulnerable samples that are incorrectly judged as the non-vulnerable
programs by the model. Then, the above four variables (i.e., TP, FP, TN, FN) can be
used to calculate the evaluation metrics, and it is shown in Table 1.

Table 1. Evaluation metrics

Metric Formula

Accuracy A = TP+TN
TP+TN+FP+FN

False positive rate FPR = FP
FP+TN

False negative rate FNR = FN
TP+FN

Precision P = TP
TP+FP

F1-measure F1 = 2·P·(1−FNR)
P+(1−FNR)

3.2 Comparative Vulnerability Detector

The comparative vulnerability detector, VulDeePecker, is a deep learning-based system.
The structure of VulDeePecker consists of a BLSTM layer (i.e., multiple bidirectional
LSTM layers), two dense layers, and a softmax layer. In the experiments, the parameters
of VulDeePecker are set as follows: (1) The number of neurons in the neural network is
set to 300; (2) The dropout is set to 0.5; (3) The batch size is set to 64; (4) The number
of epochs is set to 10; (5) The length of the input vector is set to 100. Additionally,
the Adamax is chosen as the optimizer with the learning rate of 0.002, and the loss
function is chosen as binary cross entropy. It is worth noting that in original design of
VulDeePecker, the size of epochs is 4 and the length of the input vector is 50. However,
this results in a lot of important information being lost due to the small vector length
setting, and the network does not converge sufficiently when the number of epochs is 4.

In contrast, the structure of AIdetectorX consists of an input layer, a TCN layer (i.e.,
multiple convolutional layers), an attention layer, a flatten layer, and a softmax layer.
The parameters of AIdetectorX are similar to those of VulDeePecker. In the design of
TCN layer, we set the size of filters to 128, the number of kernel size to 3, and the size
of dilation rate to 1, 2, and 4, respectively.

170 J. Chen et al.

3.3 Evaluation Datasets

To evaluate the efficiency of the proposed vulnerability detector in this paper, we con-
duct extensive experiments on the publicly available and widely used datasets, which
is available at https://github.com/CGCL-codes/VulDeePecker. The datasets are used to
evaluate VulDeePecker, so as to avoid the errors caused by different datasets. The used
dataset contains two categories (i.e., buffer errors and resource management errors),
where 17,725 samples are vulnerable programs and 43,913 samples are non-vulnerable
programs. Among the 17,725 vulnerable programs, 10,440 programs are related to buffer
error vulnerabilities (recorded as BE-ALL) and the rest 7,285 vulnerable programs are
related to resource management error vulnerabilities (recorded as RM-ALL), while the
programs that contain both buffer error vulnerabilities and resource management error
vulnerabilities are recorded as HY-ALL. Table 2 summarizes some specific information
of the used datasets.

Table 2. Evaluation datasets

Dataset Code gadgets Vulnerable code gadgets Not vulnerable code gadgets

BE-ALL 39,753 10,440 29,313

RM-ALL 21,885 7,285 14,600

HY-ALL 61,638 17,725 43,913

3.4 Experimental Produce

TCN and self-attention mechanism are implemented in Python3 using the Keras, and the
experiments are running on a NVIDIA GeForce GTX 1050 Ti GPU with 6.1 computa-
tional capabilities and Intel Core i5-8400 CPU operating at 3.50 GHz. Additionally, we
apply 10-fold cross-validation to train the neural network model and choose the optimal
parameter values.

First, we propose the idea of using TCN instead of RNNs for vulnerability detec-
tion. We design and implement a TCN-based vulnerability detector (i.e., TCNDetector)
and conduct a comparative experiment with VulDeePecker. The advantages of TCN are
not only in its detection capabilities, but also in its time overhead. To validate its time
complexity, we compare the training and detection times of TCNDetector and VulDeeP-
ecker. Additionally, we also verify the detection capabilities of TCN with other RNNs,
we design the third experiment for comparing it with LSTM, GRU, and BGRU. Tables 3,
4 and 5 summarize the results of these three experiments.

Second, to verify whether self-attention mechanism can be introduced into the field
of vulnerability detection to improve detection capabilities, we implement a vulnerabil-
ity detector based on BLSTM and self-attention mechanism (i.e., VulDeePecker+). We
compare VulDeePecker+ with the deep learning-based vulnerability detection system
without self-attention mechanism (i.e., VulDeePecker). To verify whether the success of

https://github.com/CGCL-codes/VulDeePecker

AIdetectorX: A Vulnerability Detector 171

self-attention mechanism can be combined with TCNDetector to further improve detec-
tion capabilities, we implement a vulnerability detector based on TCN and self-attention
mechanism (i.e., AIdetectorX) and compare it with TCNDetector. The experimental
results are shown in Table 6.

4 Results and Discussions

Our experiments focus on answering the following three research questions (RQs):

• RQ1: Can TCN replace RNNs for better vulnerability detection capabilities and less
time overhead?

• RQ2: Can self-attention mechanism further improve vulnerability detection capabil-
ities?

4.1 Experiments for Answering RQ1

When given a piece of data, RNNs often suffer from the vanishing gradient problem
and exploding gradient problem because of sharing the parameters over different time
periods. However, TCN can process data in parallel rather than sequentially, thus, TCN
is less likely to suffer from the above two problems. Additionally, RNNs need to save
the information for each step when they are used, it can consume a lot of memory.
In contrast, TCN shares the convolution kernels in each layer, which results in lower
memory usage. To investigate which neural network is more suitable for vulnerability
detection, we conduct comparative experiments on VulDeePecker (based on BLSTM)
and TCNDetector (based on TCN) to answer RQ1, and the experimental results are
shown in Table 3.

Table 3. Effectiveness of TCNDetector

System Dataset A (%) FPR (%) FNR (%) P (%) F1 (%)

VulDeePecker BE-ALL 91.18 10.05 7.56 90.18 91.29

RM-ALL 94.81 6.17 4.18 93.94 94.86

HY-ALL 91.83 8.71 7.61 91.37 91.87

TCNDetector BE-ALL 92.76 7.37 7.08 92.64 92.77

RM-ALL 95.61 5.62 3.15 94.51 95.65

HY-ALL 93.54 6.27 5.64 92.83 93.59

We can observe from Table 3 that the vulnerability detector using TCN (i.e., TCN-
Detector) outperforms the vulnerability detector using BLSTM (i.e., VulDeePecker) in
terms of vulnerability detection because there is a causal relationship between the layers
of the convolutional network in TCN. We conclude that the neural network has the best
detection on the RM-ALL dataset because there are only 16 library/API function calls

172 J. Chen et al.

related to resourcemanagement errors and 124 function library/API calls related to buffer
overflow errors. Neural networks can process faster and get better detection for simple
data. This is because more complex data requires deeper neural networks. Too many
neural network layers increase the time overhead and may lead to unsatisfactory detec-
tion due to overfitting. On BE-ALL and RM-ALL datasets, TCNDetector outperforms
VulDeePecker in detection, while on HY-ALL dataset, the accuracy of TCNDetector is
93.54%, an improvement of 1.71% compared to VulDeePecker’s 91.83%. The FPR and
FNR are 6.27%. and 5.64% lower thanVulDeePecker by 2.44% and 1.97%, respectively.
TCNDetector is better than VulDeePecker for precision and F1-measure (i.e., 92.83%
and 93.59% for TCNDetector vs. 91.37% and 91.87% for VulDeePecker).

The positive and negative examples in the original paper are not processed, so their
false negative rate is relatively high, which is due to the large proportion of normal
samples, and the neural network cannot learn the vulnerability features effectively. In
this paper, we use undersampling to equalize the sample and sacrifice a certain false
positive rate for a more reasonable false negative rate.

Additionally, time overhead is an issue to consider in deep learning, and the advan-
tages of TCN are not only in its detection capabilities, but also in its time overhead.
Table 4 summarizes the time complexity of VulDeePecker and TCNDetector, including
training time and detection time. The training time refers to the time consumed in trans-
forming the training programs to the input of the neural network and the time consumed
in training the model. The detection time refers to the time consumed in transforming the
testing programs to the input of the neural network and the time consumed in detecting
whether the program contains some vulnerabilities.

Table 4. Effectiveness of TCNDetector

System Dataset Training time (s) Detection time (s)

VulDeePecker BE-ALL 1776.87 27.99

RM-ALL 1244.06 17.14

HY-ALL 3039.05 53.12

TCNDetector BE-ALL 152.64 15.37

RM-ALL 105.92 8.12

HY-ALL 162.03 33.71

The experimental results in Table 4 demonstrate that the usage of TCN significantly
reduces the time overhead compared to BLSTM. That is, TCN is more suitable for
vulnerability detection thanBLSTM.There are 39,753 programs on theBE-ALLdataset.
We observe that the training and detection times of VulDeePecker are 1776.87 s and
27.99 s, respectively, while the training and detection times of TCNDetector are 152.64 s
and 15.37 s, respectively.

Furthermore, there are 21,885 programs on the RM-ALL dataset.We observe that the
training and detection times ofVulDeePecker are 1244.06 s and 17.14 s, respectively, and
the training and detection times ofTCNDetector are 105.92 s and 8.12 s, respectively. The

AIdetectorX: A Vulnerability Detector 173

training time and detection time increase with the number of programs. VulDeePecker
requires 3039.05 s to train on the HY-ALL dataset, which is more than the combined
training time required to run on the BE-ALL and RM-ALL datasets, while TCNDetector
takes 162.03 s to train the model, only 9.39 s more than the time required to train on
the BE-ALL dataset. However, TCN is not necessarily superior to other neural networks
in vulnerability detection. To further evaluate the efficiency of TCN, we implement
three vulnerability detectors based on LSTM, GRU and BGRU, respectively. And then,
we compare these three vulnerability detectors with BLSTM-based and TCN-based
vulnerability detectors on the entire dataset, and the compared results are shown in
Table 5.

Experimental results in Table 5 show that TCN performs better than other neural
networks, (B)LSTM perform better than (B)GRU, and bidirectional neural networks are
more effective than unidirectional neural networks, which provides some guidance for
later scholars in vulnerability detection. And then, we set up different epochs to verify
TCN and RNNs, where the accuracy, FPR, F1-measure, and training time are used to
measure the detection capabilities of these neural networks. Experimental results on
these metrics are as recorded in Fig. 4, where the X-axis indicates the epochs and the
Y-axis represents accuracy, FPR, F1-measure, and time overhead, respectively. Since
F1-measure integrates FNR and precision, we do not plot the variation curves of the
FNR and precision.

Table 5. Effectiveness of TCNDetector

Neural network A (%) FPR (%) FNR (%) P (%) F1 (%)

GRU 91.24 9.13 8.37 90.92 91.27

LSTM 91.62 8.81 7.95 91.27 91.65

BGRU 91.25 8.92 8.06 90.71 91.31

BLSTM 91.83 8.71 7.61 91.37 91.87

TCN 93.54 6.27 5.64 92.83 93.59

It can be observed from Fig. 4 that with the increase of the epochs, the neural network
models become much better. When the number of epochs is equal to 10, the model has
been trained very well and it not be further improved when the training is continued, but
it will result in the waste of the computational capabilities and time overhead. When the
number of epochs is less than 6, the differences between the different neural networks are
very significant. When the number of epochs is equal to 3, the accuracy and F1-measure
reach 91.76% and 91.88%, respectively, while the time cost on training the model is only
85.31 s. In contrast, under the same good results (that is, the accuracy and F1-measure of
LSTMare 91.62% and 91.65%when the epoch is equal to 10, respectively), the time cost
of other networks is at least 694.59 s. When the number of iterations equals 10, the time
overhead of TCN is only 162.03 s and its detection capability is significantly better than
other neural networks, and the time overhead of TCN does not increase exponentially.

174 J. Chen et al.

From an overall perspective, as epochs increase, accuracy and F1-measure continue
to increase and then level off, and FPR continues to decrease and then level off, but
time overhead continues to increase. Furthermore, the bidirectional neural network is
better than the unidirectional neural network in terms of detection performance, but its
time overhead is larger. In contrast, the TCN used in this paper not only achieves higher
detection performance but also does not have a significant increase in time overhead as
epochs increase.

(a) Accuracy (b) FPR

(c) F1-measure (d) Time overhead

Fig. 4. Evaluation metrics for different epochs of five neural networks.

4.2 Experiments for Answering RQ2

Although RNNs are good enough for vulnerability detection, but there are some lim-
itations. The RNN model would be more complex when a lot of information need to
be remembered. Additionally, the computational capabilities are still a bottleneck that
would limit the development of neural networks. Although some optimization operations
(such as local connections, weight sharing, and pooling) can make the neural networks
simpler, thus alleviating the conflict between the model complexity and the expressive-
ness, but the long-range dependency problem in RNNs is not sufficiently memorable for

AIdetectorX: A Vulnerability Detector 175

the information. Self-attention mechanism can dynamically generate weights to solve
the long-range dependency problem and focus on more important information.

To verify whether self-attention mechanism can improve effectiveness in vulnerabil-
ity detection, we introduce self-attention mechanism on VulDeePecker (i.e., VulDeeP-
ecker+) and compare it with VulDeePecker under the same conditions. We set all the
parameters of the model to be the same as the default parameters of VulDeePecker, and
experimental results are described in Table 6.

As described in Table 6, the vulnerability detector that introduces self-attention
mechanism (i.e., VulDeePecker+) can effectively improve vulnerability detection capa-
bilities. This is because VulDeePecker+ can better focus on the statements related to
vulnerabilities and not so much on statements that are not relevant to vulnerabilities.
This greatly avoids the influence of invalid information on the neural network and thus
improve detection capabilities.

The above experimental results demonstrate that TCN is better suitable for detect-
ing vulnerabilities than BLSTM, and the results also validate the effectiveness of self-
attention mechanism for improving detection capabilities. In this experiment, we further
introduce self-attention mechanism to improve TCNDetector, namely AIdetectorX. We
conduct a comparative experiment to compare AIdetectorX with TCNDetector for veri-
fying whether self-attentionmechanism can be used in TCN to further improve detection
capabilities. Experimental results are shown in Table 6.

In general, this paper proposes a TCN-based vulnerability detector (i.e., TCNDe-
tector) and compares it with other RNNs-based vulnerability detectors that. The exper-
imental results show that TCN not only outperforms RNNs in terms of detection capa-
bilities, but also requires very little time overhead. Additionally, this paper introduces

Table 6. Effectiveness of TCNDetector

System Dataset A (%) FPR (%) FNR (%) P (%) F1 (%)

VulDeePecker BE-ALL 91.18 10.05 7.56 90.18 91.29

RM-ALL 94.81 6.17 4.18 93.94 94.86

HY-ALL 91.83 8.71 7.61 91.37 91.87

VulDeePecker+ BE-ALL 92.24 9.38 6.13 90.89 92.36

RM-ALL 95.47 5.21 3.84 94.85 95.51

HY-ALL 92.71 7.94 5.96 92.34 93.18

TCNDetector BE-ALL 92.76 7.37 7.08 92.64 92.77

RM-ALL 95.61 5.62 3.15 94.51 95.65

HY-ALL 93.54 6.27 5.64 92.83 93.59

AIdetectorX BE-ALL 93.67 7.26 5.17 92.69 93.75

RM-ALL 97.32 3.73 1.64 96.36 97.34

HY-ALL 95.26 4.79 4.68 95.21 95.26

176 J. Chen et al.

self-attentionmechanism onVulDeePecker (i.e., VulDeePecker+) to verifywhether self-
attention mechanism can enhance the detection capabilities of the detector, and the
experimental results demonstrate that self-attention mechanism can effectively improve
detection capabilities. As a final experiment, we introduce self-attention mechanism to
TCNDetector (i.e., AIdetectorX) and compare it with the current state-of-the-art vulner-
ability detection system (i.e., VulDeePecker), the AIdetectorX proposed in this paper
can enhance the accuracy, precision and F1-measure while reducing the FPR and FNR.

5 Threats to Validity

A threat to external validity is that results are derived from only three datasets and may
not hold on other datasets. To reduce this threat, we use publicly available and widely
used datasets on GitHub, a well-known open-source community. The public dataset
contains 61,638 programs (i.e., HY-ALL dataset). We further mitigate this threat with
10-fold cross-validation.

Another threat to external validity is that conclusions are directed at programswritten
in C/C++, which may not apply to programs written in other programming languages.
However, the approach presented in this paper is a generic solution and it would be
interesting in future to detect vulnerabilities in other languages (e.g., Java).

A threat to construct validity is that neural network structure and model parameters
may affect detection performance. To reduce this threat, we carefully design the neural
network architecture and select TCN and self-attention mechanism as the hidden layers.
Furthermore, we set the parameters to default values or values that are widely used in
the deep learning community.

A threat to internal validity is that detection capabilities may be strongly dependent
on vector representation. To reduce this threat, we remove comments and non-ASCII
characters and uniformly name functions and variables. Additionally, we pad zeros or
perform delete operations on each vector to obtain equal-length vectors for input to the
neural network.

6 Conclusions

In this paper, we combine the advantages of TCN and self-attentionmechanism and have
presented AIdetectorX, which is a vulnerability detector that applies TCN to vulnera-
bility detection and introduces self-attention mechanism to further improve detection
capabilities. To validate the effectiveness of TCN and self-attention mechanism in vul-
nerability detection, we conduct extensive experiments on publicly available and widely
used datasets, where the data are real and available to avoid bias in the experimental
results caused by different datasets. Experimental results suggest that TCN is a supe-
rior neural network to RNNs in terms of detection capabilities and time overhead, and
self-attentionmechanism can effectively improve the detection capabilities of the vulner-
ability detector. AIdetectorX is not a flawless vulnerability detector yet. The limitations
of the present study discussed below are interesting open problems for future research.

Since deep learning requires input fixed-length vectors, which undoubtedly loses
some information (possibly some critical information), we will consider how to better

AIdetectorX: A Vulnerability Detector 177

represent programs to accommodate more information in the future research. In future
work, we will consider whether there are neural networks that are more suitable for vul-
nerability detection that can further improve the performance on vulnerability detection
methods. Additionally, the present experiments are limited to buffer error vulnerabilities
and resource management error vulnerabilities. We will perform a series of experiments
on other available types of vulnerabilities.

References

1. Kim, S., Woo, S., Lee, H., Oh, H.: VUDDY: a scalable approach for vulnerable code clone
discovery. In: 38th IEEE Symposium on Security and Privacy, San Jose, CA, USA, pp. 595–
614. IEEE (2017)

2. Li, Z., Zou, D., Xu, S., Jin, H., Qi, H., Hu, J.: Vulpecker: an automated vulnerability detection
system based on code similarity analysis. In: 32nd Annual Conference on Computer Security
Applications, Los Angeles, California, USA, pp. 201–213. ACM (2016)

3. Flawfinder. https://dwheeler.com/flawfinder. Accessed 18 June 2021
4. Checkmarx. https://www.checkmarx.com. Accessed 18 June 2021
5. Walden, J., Stuckman, J., Scandariato, R.: Predicting vulnerable components: software met-

rics vs text mining. In: 25th International Symposium on Software Reliability Engineering,
Naples, Italy, pp. 23–33. IEEE (2014)

6. Yamaguchi, F., Maier, A., Gascon, H., Rieck, K.: Automatic inference of search patterns for
taint-style vulnerabilities. In: 36th IEEE Symposium on Security and Privacy, San Jose, CA,
USA, pp. 797–812. IEEE (2015)

7. Li, Z., et al.: VulDeePecker: a deep learning-based system for vulnerability detection. In: 25th
Annual Network and Distributed System Security Symposium, San Diego, California, USA,
pp. 1–15. ISOC (2018)

8. Lea, C., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional networks: a unified app-
roach to action segmentation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915,
pp. 47–54. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_7

9. Bai, S., Kolter, J.Z., Koltun,V.: An empirical evaluation of generic convolutional and recurrent
networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018)

10. Li, Z., Qin, Z., Shen, P., Jiang, L.: Intrusion detection using temporal convolutional networks.
In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. CCIS, vol. 1142, pp. 168–178.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36808-1_19

11. Vaswani, A., et al.: Attention is all you need. In: 31st International Conference on Neural
Information Processing Systems, Long Beach, CA, USA, pp. 6000–6010. ACM (2017)

12. Zhang, B., Xiao, W., Xiao, X., Sangaiah, A.K., Zhang, W., Zhang, J.: Ransomware classifi-
cation using patch-based CNN and self-attention network on embedded N-grams of opcodes.
Futur. Gener. Comput. Syst. 110, 708–720 (2020)

13. Xiao, X., Zhang, D., Hu, G., Jiang, Y., Xia, S.: CNN–MHSA: a convolutional neural network
and multi-head self-attention combined approach for detecting phishing websites. Neural
Netw. 125, 303–312 (2020)

14. Tan,Z.,Wang,M.,Xie, J.,Chen,Y., Shi,X.:Deep semantic role labelingwith self-attention. In:
32nd AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, pp. 4929–
4936. AAAI Press (2018)

15. Pendleton, M., Garcia-Lebron, R., Cho, J.H., Xu, S.: A survey on systems security metrics.
ACM Comput. Surv. 49(4), 1–35 (2016)

https://dwheeler.com/flawfinder
https://www.checkmarx.com
https://doi.org/10.1007/978-3-319-49409-8_7
http://arxiv.org/abs/1803.01271
https://doi.org/10.1007/978-3-030-36808-1_19

MC/DC Test Cases Generation Based
on BDDs

Faustin Ahishakiye1(B), José Ignacio Requeno Jarabo1,2,
Lars Michael Kristensen1, and Volker Stolz1

1 Western Norway University of Applied Sciences, Bergen, Norway
{fahi,jirj,lmkr,vsto}@hvl.no

2 Complutense University of Madrid, Madrid, Spain
jrequeno@ucm.es

Abstract. We present a greedy approach to test-cases selection for sin-
gle decisions to achieve MC/DC-coverage of their Boolean conditions.
Our heuristics take into account “don’t care” inputs through three-
valued truth values that we obtain through a compact representation
via reduced-ordered binary decision diagrams (roBDDs). In contrast to
an exhaustive, resource-consuming search for an optimal solution, our
approach quickly gives frequently either optimal results, or otherwise
produces “good enough” results (close to the optimal size) with little
complexity. Users obtain different—possibly better—solutions by per-
muting the order of conditions when constructing the BDD, allowing
them to identify the best solutions within a given time budget. We com-
pare variations on metrics that guide the heuristics.

1 Introduction

Software testing techniques that achieve coverage effectiveness and provide test
cases are cost intensive [31]. Certification standards for safety assurance such as
DO-178C [28] in the domain of avionic software systems require software with
the highest safety level (Level A) to show modified condition decision coverage
(MC/DC) [10]. One of the advantages of MC/DC is that for a decision with
n conditions, it may be satisfied with less test cases: between a lower-bound
of n + 1 and upper-bound of 2n test cases, compared to multiple condition
coverage (MCC) which requires 2n test cases. MC/DC requires that each con-
dition in a decision shows an independent effect on that decision’s outcome by
(1) varying just that condition while holding fixed all other possible conditions
(UC-MC/DC), or (2) varying just that condition while holding fixed all other

This work was supported by the Spanish Ministry of Science and Innovation under
project FAME (grant nr. RTI2018-093608-B-C31), the Comunidad de Madrid under
project FORTE-CM (grant nr. S2018/TCS-4314) co-funded by EIE Funds of the Euro-
pean Union, the SFI Smart Ocean NFR Project 309612/F40, and the NFR Project
COEMS Training Network 309527.

c© Springer Nature Switzerland AG 2021
S. Qin et al. (Eds.): SETTA 2021, LNCS 13071, pp. 178–197, 2021.
https://doi.org/10.1007/978-3-030-91265-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91265-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-91265-9_10

MC/DC Test Cases Generation Based on BDDs 179

possible conditions that could affect the outcome. This criterion of showing inde-
pendence effect for conditions is unique for MC/DC compared to other structure
coverage criteria.

While trying all possible combinations is exhaustive and requires tremendous
resources [18], as well as becoming impracticable for a high number of conditions
[19,23], finding a test set equal or closer to n + 1 with MC/DC assurance is also
a non-trivial task [15,24]. Therefore, it is important to investigate new strategies
for generating good test suites both in terms of number of test cases [10] and
coverage adequacy [14,34] with little complexity and with reasonable resources.

In this paper, we present a novel and alternative approach to test case gen-
eration satisfying MC/DC based on reduced-ordered binary decision diagrams
(roBDDs) which are a concise representation of Boolean expressions. roBDDs are
widely used in different areas such as computer aided design (CAD) tasks [26],
symbolic model checking [11,26], and verification of combinational logic [20,29].
Due to their reduced form compared to other Boolean expressions representa-
tions such as disjunctive or conjunctive normal form, truth tables and formula
equivalence [35]; roBDDs offer a unique normal form and were also already used
in test cases generation [17,22] for different coverage criteria other than MC/DC.

We present an algorithm that takes as input the roBDD representing a
Boolean expression and constructs a set of MC/DC pairs. For a decision of
n conditions, we generate n pairs that contain between n + 1 to 2n test cases
altogether. We select paths based on their length in roBDDs and reuse factor
(α()). The reuse factor refers to the number of pairs that use a given path.

We propose and compare heuristics with different preferences with respect to
three-valued truth-values (1, 0 and ?) and the length of paths in the roBDD. All
of them maximize the reuse factor (α()) together with a second criteria, namely:
the longest paths in BDD (HLPN , HLPB), the longest paths which may merge
(HLMMN , HLMMB), and the longest paths with better size (HLPBS). Each type
of heuristic implements two different flavors which sort the BDD paths depending
on the interpretation of the reuse factor as a natural number (HLPN , HLMMN)
or as a boolean value (HLPB , HLMMB) (e.g., α(p, ψ) < α(q, ψ)). Our algorithm
is implemented in Python and the PyEDA library [13]. We test our algorithm
on the Traffic Alert and Collision Avoidance System (TCAS II) benchmarks [33]
which are widely used in the literature [17,19,21,22,37].

BDDs are sensitive to conditions ordering, such that different orders yield
different BDDs and their size in the worst case grows to 22

n

nodes [27]. As the
number of nodes increases there are many paths to select MC/DC pairs from.
We present evidence that to find an optimal or “good enough” solutions, instead
of a search with backtracking, it is sufficient to try a few different permutations.

The rest of this paper is organized as follows: in Sect. 2 we present our termi-
nology, notations and a background on MC/DC and BDDs. Section 3 describes
our approaches and algorithm for generating test cases satisfying MC/DC based
on BDDs. Section 4 explains the implementation of our algorithm and discuss
the results. In Sect. 5 we provide the state of the art of the existing related work.
Finally, we present the concluding remarks and future work in Sect. 6.

180 F. Ahishakiye et al.

2 Background

In this section, we provide the background on MC/DC and BDDs. We present
several basic definitions and terminology which are used throughout this paper.
Conditionals in source code, as well as logical expressions in software specifica-
tions can be formalized as Boolean expressions. Both BDDs and MC/DC deal
with Boolean expressions.

Definition 1 (Boolean expression). A Boolean expression is defined as an
expression that can be evaluated to either true (T) or false (F) and can contain
connectives: NOT, AND, OR, XOR (exclusive-or), denoted by ¬, ∧, ∨, and ⊕
respectively.

There has been some confusion on what is a condition and decision in the
context of source code and the Certification Authorities Software Team (CAST)
provided suitable definitions [7]: each occurrence of a condition is considered as
a distinct condition, whereas we treat multiple occurrences of a variable as one
condition, where c and ¬c are strongly coupled conditions.

Definition 2 (Condition). A condition denotes a logical indivisible (atomic)
expression containing no Boolean operators except for the unary operator (¬). It
contains a Boolean variable represented by a, b, c,. . ., defined over “0” or “1”.

Definition 3 (Decision). A decision is a Boolean expression composed of con-
ditions and zero or more Boolean operators. It is denoted by D = c1�c2�c3 · · ·�
ci � · · · � cn, where ci, (1 ≤ i ≤ n) are Boolean conditions and � stands for a
binary Boolean operator. A decision is also known as a Boolean function.

Definition 4 (Two/Three-valued test case). Given a decision D, a test
case is a truth vector tc = (I1, I2, I3, · · · , In) where Ii ∈ {0, 1} (respectively,
{0, 1, ?}) are the inputs assigned to each conditions. ? is known as “don’t care”
meaning that a condition does not need to be evaluated due to short-circuiting.
A set of test cases for a given decision is called a test suite. We denote the
projection onto the truth-value at the position corresponding to some condition
c in the test case tc as tc[c].

2.1 Modified Condition Decision Coverage (MC/DC) Criterion

We first give the well-known definitions for two-valued truth values, and will
later extend the definitions into the three-valued setting. MC/DC subsumes the
existing logical coverage criteria such as condition coverage (CC): each condition
is tested once true and false, decision coverage (DC): a decision is evaluated once
true and once false, and multiple condition coverage (MCC): an exhaustive test-
ing that requires all possible combination of inputs. For MC/DC each condition
has to independently affect the decision’s outcome. According to DO-178C [28]
and CAST-10 [7] the following definition has been provided for MC/DC:

MC/DC Test Cases Generation Based on BDDs 181

Definition 5 (MC/DC [30]). A decision is said to be MC/DC covered iff: (i)
Every point of entry and exit in the program has been invoked at least once, (ii)
every condition in a decision in the program has taken all possible outcomes at
least once, (iii) every decision in the program has taken all possible outcomes at
least once, (iv) each condition in a decision has shown to independently affect
that decision’s outcome by: (1) varying just that condition while holding fixed
all other possible conditions(UC-MC/DC), or (2) varying just that condition
while holding fixed all other possible conditions that could affect the outcome
(Masking MC/DC).

The coverage of program entry and exit in the Definition 5 is not directly con-
nected with the main point of MC/DC [32], as we only consider expressions,
not programs. The most interesting part of the MC/DC definition is showing
the independent effect, which demonstrates that each condition of the decision
has a defined purpose. The item (1) in the definition defines the unique cause
MC/DC which is the original MC/DC [9]. The item (2) has been introduced
in DO-178C to clarify that so-called Masked MC/DC is allowed [6,28]. Masked
MC/DC means that it is sufficient to show the independence effect of a condition
by holding fixed only those conditions that could actually influence the outcome.
In our analysis, we are interested in generating MC/DC test cases that show an
independence effect of each condition in the decision with acceptable size.

Definition 6 (Independence effect of a condition, independence pair,
⊕c). Given two test cases tc, tc′ for a decision D, we call tc independent from tc′

on condition c, iff i) D(tc) = ¬D(tc′) (they evaluate to opposite truth values),
and ii) tc⊕ctc

′, where ⊕c means they differ exactly only in the input position
corresponding to condition c. We then say that “tc and tc′ form an independence
pair” (for some condition c), written uc(tc, tc′).

We will later see that in our three-valued interpretation, a test case cannot form
an independence pair if it does not contain enough concrete input to evaluate to
either true or false. We now reformulate the general definition of MC/DC from
Definition 5 for our purposes:

Definition 7 (MC/DC-cover). Given a decision D and set of test cases ψ,
we say that ψ MC/DC-covers D, iff ∀c ∈ D, ∃tc, tc′ ∈ ψ : tc ⊕c tc′ ∧ uc(tc, tc′)
(tc is independent from tc′ for every condition c).

In other words, a set is an MC/DC-cover for a decision D, if for every condition,
there exists a pair of test cases in that set which shows the independence effect
of that condition by evaluating to opposing truth values.

Example 1. Consider a decision D = (a ∧ b) ∨ c. The truth table representing
MCC and all possible MC/DC pairs is given in Table 1(a). Each pair is showing
the independence effect for a condition. The advantage of MC/DC over MCC
can be seen from Table 1(a). MCC requires eight test cases whereas all possible
MC/DC pairs contain seven test cases. Indeed, only the four test cases shown in
Table 1(b) are required to achieve MC/DC [9,10]. However, choosing a set equal
or closer to minimal number of test cases is non-trivial for testers, especially

182 F. Ahishakiye et al.

Fig. 1. roBDD: D =
(a ∧ b) ∨ c

Table 1. MCC & MC/DC pairs for D = (a ∧ b) ∨ c

tc a b c D MC/DC pairs

1 0 0 0 0

2 0 0 1 1 c(1, 2)

3 0 1 0 0

4 0 1 1 1 c(3, 4)

5 1 0 0 0

6 1 0 1 1 c(5, 6)

7 1 1 0 1 a(3, 7), b(5, 7)

8 1 1 1 1

(a) MCC & All MC/DC pairs

π a b c D MC/DC pairs

1 0 ? 0 0

2 1 1 ? 1 a(1, 2)

3 1 0 0 0 b(2, 3)

4 1 0 1 1 c(3, 4)

(b) MC/DC set of paths

tc a b c D MC/DC pairs

1 0 1 0 0

2 1 1 0 1 a(1, 2)

3 1 0 0 0 b(2, 3)

4 1 0 1 1 c(3, 4)

(c) MC/DC set of test cases

when there is more than one MC/DC pair for a certain condition, for example,
condition c can be covered by either of three pairs (indicated in parentheses), as
shown in Table 1(a).

Chilenski et al. [9,10] investigated that for a decision D with n conditions,
UC-MC/DC can be achieved with a minimal number of n+1 tests while Masking
MC/DC be achieved with a minimal number of 	2∗(

√
n)� tests. This is achieved

by choosing MC/DC pairs that overlap where every condition past the first one
(which requires two test cases), only adds a single test case to the existing set.

Lemma 1 (Minimal MC/DC-Covers [1,9]). If a coverage set exists for a
decision D with n conditions, then there also exists a smaller set (possibly with
different test cases) thereof with exactly n + 1 test cases such that it MC/DC-
covers D for UC MC/DC.

2.2 Overview on Binary Decision Diagrams (BDDs)

BDDs are canonical representations of Boolean functions compared to other
Boolean expressions representations such as disjunctive normal form (DNF),
conjunctive normal form (CNF), truth tables and formula equivalence [35]. To
reduce BDDs, conditions in a decision need to be ordered and duplicated termi-
nals and isomorphic sub-trees have to be merged. The resulting graph is known
as reduced ordered BDD (roBDD) and is shown in Fig. 1 for the Example 1.

BDDs represent formulas compact in the sense that it takes little memory to
store the representation, the number of nodes in a roBDD is reduced and there
is exactly one optimal and unique graph for each Boolean expression [35].

Definition 8 (Path through an roBDD, π, π[x]). Given an roBDD for some
decision D over Boolean variables x0, . . . , x1. We denote a path from the root
of the BDD to a terminal with π, and write π[x] = 1 if the path takes the true-
branch in the node labelled with condition x (0/false respectively), and π[x] =? if
the path does not pass through a node labelled with condition x. That is, although
paths through the roBDD can be of different lengths, for uniformity we always
represent them as a vector with n elements.

MC/DC Test Cases Generation Based on BDDs 183

We also extend the evaluation of a decision wrt. some inputs (D(0 . . . 0))
to BDDs and use D(π) to denote the three-valued truth-value that the path
represents. The obvious correspondence between a test case and a path through
the roBDD is that a test case may provide more truth-values as inputs than
are strictly necessary on this path. For example, an MC/DC pair of paths for
condition a is {(0?0), (11?)} as shown in row 1 & 2 of Table 1(b). The fully
instantiated test cases for this pair are {(010), (110)} (row 1 & 2, Table 1(c)).

3 Approaches and Algorithm for Test Cases Generation

Our approach and heuristics for test cases generation are based on roBDDs that
guide our search for test case selection. We start with a set of roBDDs paths
from the root and construct sets satisfying MC/DC for all conditions, where
each set contains n MC/DC pairs.

BDDs are sensitive to variable ordering: to deal with the ordering effect,
we collect solutions for a number of permutations on the variable ordering. As
the number of conditions in a decision increases, the number of permutations
(n! for n conditions) increases over-exponentially. Since generating the set of
solutions for all permutation would be infeasible in those cases, we show that
for few permutations we generate some test suites of minimal size, based on the
selection methods defined in Subsect. 3.2. In the following, we assume that all
BDDs that occur are roBDDs.

3.1 Theorems and Definitions for MC/DC in Terms of BDDs

The core of our contribution is as follows: our algorithm produces a set of three-
valued test cases, which we can instantiate to fulfill the original definition of
MC/DC. We first extend general results from the standard two-valued Boolean
logic to a three-valued logic.

Definition 9 (Three-valued independence pair, ⊕3
c). Given two three-

valued test cases tc, tc′ for a decision D, we write uc3(tc, tc′) iff i) D(tc) =
¬D(tc′) (they evaluate to opposite concrete truth values), and ii) tc⊕3

ctc
′, where

⊕3
c means at least one of the inputs for some condition c is a concrete truth

value, and for every other condition the three-valued inputs coincide or one of
them is “?”.

Example 2. Let D(X,Y,Z) = X ∧ ((¬Y ∧ ¬Z) ∨ (Y ∨ Z)). Consider tc = (0??)
with D(tc) = 0 and tc′ = (11?) with D(tc′) = 1 respectively, hence uc3(tc, tc′).
Observe that hence also e.g. uc3(011, 11?) and uc(011, 111).

We next show that each three-valued independence pair can be instantiated to
some two-valued independence pair by suitable substitution of unknown values.
In the following, for readability, we describe functions from our implementation
through their properties instead of operationally. The first function combines
two compatible test cases into a single one. We need this later in our algorithm
to refine existing test cases such that we keep only one test case when two cases
overlap.

184 F. Ahishakiye et al.

Definition 10 (merge(tc, tc′)). Given test cases tc, tc′, we obtain σ = merge
(tc, tc′), where ∀c ∈ C, (σ[c] = tc[c] ∧ tc′[c] = ?) ∨ (σ[c] = tc′[c] ∧ tc[c] = ?).

In other words, merge substitutes some ? in a pair of paths, such that all
conditions have equal values. The result is undefined if they disagree in one
position where one has true and the other false. This can be understood as
unifying both test cases with each other, taking ? as free variables.

Note that we ignore the actual outcome when merging wrt. a decision, but
only ever consider the inputs. As we will also consider test cases that differ in
exactly one position, we define the following variation:

Definition 11 (mergex(tc, tc′)). Given test cases tc, tc′, we obtain σ =
mergex(tc, tc′), where ∀c ∈ C\{x}, (σ[c] = tc[c] ∧ tc′[c] = ?) ∨ (σ[c] = tc′[c] ∧
tc[c] = ?) ∧ σ[x] = tc[x] (emphasis added).

Note that this definition is biased to reproduce the truth-value in the desig-
nated position x from the first input, and we will consequently later see it applied
twice, once from left to right argument, and also from right to left argument.

Example 3. We have mergec2((1?0), (11?)) = (110), but mergec2((11?), (1?0)) =
(11?), with c2 the condition that is placed in the last position.

Definition 12 (Specialization �). Given three-valued test cases p, q, we say
that p � q iff ∃p′ : p = merge(p′, q) (“ p specializes q”).

Due to the same format for a test case and for a roBDD path (see Definition
8), both concepts are interchangeable and � can specialize any of them. The
relation � is a partial order (straightforward).

Theorem 1 (Usefulness of three-valued MC/DC). Given a decision D
and set ϕ of three-valued test-cases that is a three-valued MC/DC cover for D,
i.e., ∀c ∈ D : ∃tc, tc′ ∈ ϕ, tc ⊕3

c tc′ ∧ uc3(tc, tc′). Then there exists a two-valued
set of test cases ψ ⊆ 2B|D|

, such that:

(1) ∀tc, tc′ ∈ ϕ : uc3(tc, tc′) ⇒ ∃u, u′ ∈ ψ : u ⊕c u′ ∧ u � tc ∧ u′ � tc′

(each test case pair in ϕ has been specialised)
(2) ∀u, u′ ∈ ψ : D(u) = ¬D(u′) ∧ u ⊕c u′ ⇒ ∃tc, tc′ ∈ ϕ : uc3(tc, tc′)

∧ u � tc ∧ u′ � tc′(ψ is the smallest set that specialises ϕ).

It follows that ψ is an MC/DC-cover for D.

Proof. (1) Because of uc3(tc, tc′), tc or tc′ have a concrete value in c and coincide
for the rest of conditions ci, except for those positions ci where one of the test
cases is ?. Hence, u = mergeci(tc, tc

′) returns a new test case where u � tc as
the ? are instantiated (symmetrically, u′ = mergeci(tc

′, tc)), excluding condition
c. MC/DC imposes that u[c] = ¬u′[c], so the selection of tc and tc’ satisfies
that either a) tc[c] = ¬tc′[c], or b) tc[c] =? or tc′[c] =?. In b), u[c] = tc[c] and
u′[c] = tc′[c]: if any of these values is a ?, then they are properly instantiated so
that u ⊕c u′.

MC/DC Test Cases Generation Based on BDDs 185

(2) As u⊕c u′, u and u′ are equal except for condition c. Then, tc and tc′ are
constructed by replacing a finite number of positions in u (similarly, u′) with ?
such that they keep uc3(tc, tc′). Because tc and tc′ are abstractions of u and u′,
u � tc ∧ u′ � tc′.

Due to the specialization relation, multiple sets of two-valued test cases can
be constructed that satisfy the above property: ϕ may contain a test case tc with
“don’t care” for some condition c, and also “don’t care” for every other partner
tc′ in the pairs it is participating in. Then, this input c can be instantiated
to either truth value. Our Algorithm 1, which uses the roBDD to populate ϕ,
guarantees that there will exist at least a pair tc, tc′ such that tc[c] = ¬tc′[c] for
every condition c, if the decision can be MC/DC-covered.

Next, we define the function that identifies suitable test cases that we might
want to add our set ψ. Based on the following criteria, for every uncovered
condition the algorithm adds a new test case together with a complementary
one such that the pair shows the independence effect of the condition.

Definition 13 (Reuse factor α(π, ψ), α=3(π, ψ)). Given the set of MC/DC
pairs of paths (π⊥, π�) ∈ ψ with D(π⊥) = 0 and D(π�) = 1, the reuse fac-
tor α(π, ψ) represents the number of pairs in ψ that use π. It is calculated as
α(π, ψ) := |{(π, (π⊥, π�)) | π = π⊥ ∨ π = π�, (π⊥, π�) ∈ ψ}|.

Relation to BDDs. A pair (tc, tc′) of test cases showing the independence of
some condition ci has a vivid graphical interpretation on the BDD. It corresponds
to a pair of paths (π⊥, π�) such that:

1. the tests evaluate the opposite truth values (i.e., D(tc) = ¬D(tc′));
2. tc � π⊥, tc′ � π� (order wlog., the test cases may contain more input than

strictly necessary).
3. both reach some node vci using the same path through BDD(D)

(i.e., π⊥[j] = π�[j] for 0 ≤ j < i);
4. their paths from vci exit on either edge (i.e., π⊥[i] = ¬π�[i]);
5. after vci , both test cases take compatible choices along the paths for the

remaining conditions, so that the independence property holds
(i.e., π⊥[j] =3 π�[j] for i < j < n).

This means especially that the two paths cannot cross (after the condition-
node vci), since this would immediately indicate an incompatible choice.

Figure 2 represents the overview on the selection of MC/DC pairs from the
roBDD. The roBDD contains the root node labeled by R, non-terminal nodes
labeled with conditions and two terminal nodes (0 and 1). The nodes are con-
nected by solid and dashed edges representing assignments of 1 and 0 to each
condition respectively. Every condition c may be represented multiple times on
the BDD (nodes vc). There may exist multiple paths to such a node. For every
path reaching a (non-terminal) node, we attempt to extend it to construct pairs
that show the independence effect of that condition. It is not guaranteed that

186 F. Ahishakiye et al.

(a) Pair selection (b) Reuse effect

Fig. 2. Overview on MC/DC pairs selection path from BDD and reuse effect

the two complementary paths lead to opposite terminal nodes and our algo-
rithm must explicitly check it step-by-step (modulo “don’t care”-steps). The
figure shows a representative of such pairs, (π⊥, π�): they share the same prefix
for all ordered conditions up to vc. They then proceed in lock-step through the
two branches to the terminals.

Figure 2(b) illustrates some of the effects that we aim to achieve: as we search
for pairs in the order of the roBDD, we will obtain some pair (shown in blue)
from the heuristics (e.g. based on “longest path”) which differs directly in the
condition R for the root node. The next condition A in the order exists only in
the left subtree, and we prefer a pair for it that reuses one of the previous path.
Here, this can only be the left path for R, and hence we check if for the path
that condition A shares with condition R we can construct a compatible path
to the opposite terminal after leaving the node for A through the opposite edge
(red pair). For condition B, we attempt to construct a pair by reusing the right
branch for condition R (blue), and another one that uses the path that we used
before both for R and A. We either take the only pair that fulfils our criteria, or
again have the heuristics break a potential tie, here resulting in the green pair
for condition B.

Due to the structure of roBDD, the derived test cases correspond to MC/DC
+ short circuit [5,6] where a test case can be composed with a three-valued
assignment (0: false, 1:true, and ?:not evaluated(a condition does not appear
along the path)). Therefore, to find the test cases that satisfy Unique Cause
MC/DC [9], the “don’t care” assignments will be replaced by either 0 or 1
pairwise (by the corresponding value at the same position in the partner path).

3.2 Algorithm and Heuristics for Test Cases Generation

Our approach for MC/DC test case generation for a decision D is based on the
three-valued paths that are extracted from the equivalent roBDD. The MC/DC
coverage criteria requires a pair of test cases that shows the independence effect
for every condition. The presence of “don’t care” values in a BDD path gives us
some flexibility when instantiating it to a test case and finding the complemen-

MC/DC Test Cases Generation Based on BDDs 187

tary test case that leads to the opposite Boolean evaluation. As the wildcards
may specialize to any Boolean value, we propose a greedy algorithm that tries to
minimize the overall number of test case pairs for a decision D with n conditions
from 2n to a value as close as possible to n + 1.

To this end, our method is divided in two stages: during the first phase, it
initializes the MC/DC test suite with paths that are extracted from the BDD
through any of our predefined heuristics, which intend to maximize the reuse
factor in order to reduce the differences among test cases. Secondly, the selected
BDD paths are specialized so that the wildcards take a concrete value while
preserving the independence effect. We lift this property to sets of pairs of test
cases with the definition of instantiate which computes the smallest set such
that it guarantees that all members have been merged if possible:

∀(s, s′) ∈ instantiate(S) :
∃(p, p′) ∈ S : uc3(p, p′) ∧ s � p ∧ s′ � p′ (instantiated from S)
∧ ∀(p, p′) ∀(q, q′) ∈ S : s � p ∧ p � q ∧ p � q′ ⇒ s = p ∧ s′ = p′(least upper bound)
∧ ∃c : mergec(s, s

′) = s ∧ mergec(s
′, s) = s′ (fully merged).

This approach takes n = |C| iterations, and each iteration adds a pair consist-
ing of at most two new paths to the set. If S is empty, we can abort as this means
there does not exist any pair showing the independence effect of that condition,
and hence the decision D cannot be covered with the MC/DC-property. Corre-
spondingly, unless we abort, the final set will contain n pairs, consisting of at
most 2n individual paths. By construction, these pairs will provide three-valued
MC/DC-coverage of the decision.

This leaves us two points to address: i) can we avoid constructing the set
of all pairs for a condition, but instead only use a relevant, smaller subset as
input to the heuristics, and ii) can we present evidence that our heuristics have
a high likelihood of picking pairs that not only reuse a path from the already
selected pairs (if possible), but also contributes a fresh path that will be reused

Algorithm 1: MC/DC Test case generation
Input: An roBDD over conditions C with root r for a formula ϕ
Output: Set ψ of pairs of test cases that MC/DC-cover ϕ with

|C| + 1 ≤ | ⋃{{tc, tc′}|(tc, tc′) ∈ ψ}| ≤ 2|C|.
1 ψ = Ø;
2 forall c ∈ C do

3 Let S := {(π�
vc

, π⊥
vc

) | where π�
vc

, π⊥
vc

are paths from the root r via some vc

to 	 and ⊥ respectively, such that [π�
vc

]⊕c[π
⊥
vc

]}.
4 Abort if S = Ø: no MC/DC cover of ϕ possible.
5 Let (p, q) := H(ψ, S) be the result of applying a given heuristics H, such

that ∃(p′, q′) ∈ S : p = mergec(p
′, q′), q = mergec(q

′, p′).
6 ψ = instantiate(ψ ∪ {p, q})

7 end

188 F. Ahishakiye et al.

in the future. We address the first point through algorithmic construction, and
evaluate the second through a series of experiments using the TCAS case study.

Algorithmic Description. Any approach to a potentially optimal solution must
reuse a test case that has already been selected as a partner in a pair for some
other condition when selecting a pair for some other condition. It is hence clear
that not all pairs for a condition may have to be constructed and evaluated.
Rather, we first attempt to directly derive a pair from the existing set of test
cases (by flipping only the corresponding condition), and only revert to deriving
a new pair of completely fresh paths if such a derived path does not exist.
Depending on the heuristics, identifying a completely fresh pair may entail a
complete enumeration of pairs: it may be looking for the longest path with most
reuse-potential (least number of “don’t care”), which could ultimately be the
last pair a given traversal of the BDD yields.

The representation as a BDD gives us an advantage in building fresh pairs: by
exploring the tree from the root, the ordered labels tell us when we can preempt
a search because the condition of interest does not exist in the remaining subtree,
and we can continue our search in a sibling. Compared to an exploration of the
corresponding truth-table, this effectively allows us to skip over irrelevant rows.
We next formalize the notion of path-length in the roBDD.

Definition 14 (Length of a path/test case, |σ|/|tc|). Given a path σ in the
roBDD for a decision D from the root to a terminal, we denote the length of the
path with |σ|. The length of a test case |tc| is that of the underlying path.

Note that since a test case can have more concrete inputs than are necessary for
the path we have in the BDD, the length of a test case may be lower than the
number of concrete inputs in that test case.

We propose five selection methods for test cases generation. All of them max-
imize the reuse factor (α()) together with a second criteria, namely: the longest
paths in BDD (HLPN , HLPB), the longest paths which may merge (HLMMN ,
HLMMB), and the longest paths with better size (HLPBS). Each type of heuris-
tic implements two different flavors which sort the BDD paths depending on the
interpretation of the reuse factor as a natural number (HLPN , HLMMN) or as
a boolean value (HLPB , HLMMB) (e.g., α(p, ψ) < α(q, ψ)). We compare them
with the random reuser (HRR) method as a baseline, which takes the first new
path that forms a new pair with an existing test.

HLP N /HLMMN : This method chooses pairs of paths satisfying MC/DC based
on the longest paths in BDDs with the highest reused factor. In case multiple
pairs have equal reuse, we choose one where additionally the sum of the lengths
is longest. The longest path or higher reuse factor may be better since it can be
reused by many conditions that appear along the path.

HLPN (ψ, S) := (mergec(p, q),mergec(q, p)) where (p, q) ∈ S

such that either (in order):

MC/DC Test Cases Generation Based on BDDs 189

1. α(p, ψ) > 0 ∧ α(q, ψ) > 0 ∧ ∀(p′, q′) ∈ S : α(p′, ψ) > 0 ∧ α(q′, ψ) > 0
⇒ |p| + |q| ≥ |p′| + |q′|

(both test cases were already in the set)
2. ∀(p′, q′) ∈ S : α(p, ψ) + α(q, ψ) ≥ α(p′, ψ) + α(q′, ψ) (highest reuse)

∧ (α(p, ψ) + α(q, ψ) = α(p′, ψ) + α(q′, ψ) ⇒ |p| + |q| ≥ |p′| + |q′|)
(longest path) .

HLP B/HLMMB : The previous heuristic HLPN looks at the reuse of the paths
in a pair: the existing path may have reuse > 0, and may occur in multiple pairs
in the existing set. Its partner path may also be derived from another existing
pair. Since it is not clear that past performance (“high reuse = used in multiple
pairs by someone before”) is an indication for future performance (“does it have
more likelihood to be useful in future pairs?”), we also evaluate a variant that
only prefers that there is some reuse, but not how much:

HLPB(ψ, S) := (mergec(p, q),mergec(q, p)) where (p, q) ∈ S :
α(p, ψ) + α(q, ψ) > 0 (has some reuse)

∧ ∀(p′, q′) ∈ S : α(p′, ψ) + α(q′, ψ) > 0 ⇒ |p| + |q| ≥ |p′| + |q′|(longest path).

The difference between this method and the previous one is that here we
consider the reuse factor as Boolean. That is, we choose a pair with the longest
paths in BDDs and we check if one of the paths is already reused as a part of an
earlier pairs or not. This may give rise to greater non-determinism since more
potential partners are considered equivalent.

Longest Paths Best Size (HLP BS): selects MC/DC pairs where the paths
have together the highest reuse and the sum of the lengths is strictly the longest.

4 Implementation of MC/DC Test Cases Selection

In this section we describe how we evaluate our approach for the heuristics pro-
posed in Sect. 3. For each heuristic, one run of Algorithm 1 derives a set of
test cases for a decision with MC/DC-coverage if it exists. Our heuristics are
sensitive to exactly one parameter: the ordering of conditions when constructing
the BDD. Furthermore, there is some inherent non-determinism: a heuristic picks
randomly among equally best-ranked pairs. It is quite common to observe equiv-
alent pairs with identical reuse and identical path-length. Secondary sources of
non-determinism include e.g. iteration over unordered structures like sets which
are implementation-specific to a given Python platform.

To give a proper evaluation, we control these in the following way: every
heuristic is applied for a number of permutations of the order of the conditions
for each decision. For decisions with a low number of conditions, we can hence
even exhaustively evaluate the outcome of the heuristics for all permutations. In
addition, we repeat a run on a given permutation, exploring different random
choices within the equivalent best pairs.

190 F. Ahishakiye et al.

Fig. 3. Test cases generation framework

Our framework is based on the PyEDA library [13] and implemented in
Python. We test our algorithm on the Traffic Alert and Collision Avoidance
System (TCAS II) benchmark [25,33] which has been frequently used in litera-
ture [17,19,21,22,37]. The benchmark refers to specifications written as Boolean
expressions (decisions) which are logically evaluated to true or false depending
on the truth values assigned to the contained conditions.

Below, we present detailed results for a well-known set of TCAS II decisions
that can be reproduced with the code in our open source repository1. We do
not report execution times for our experiment, as our implementation is not
optimized in any way beyond obvious algorithmic constructions to minimize
BDD-traversal.

4.1 Experimental Setup

Figure 3 shows our test cases generation framework. Our setup takes as input the
roBDD for a given decision, the number of permutations, and the number of runs
that we perform for each process of test cases generation. The selection method
refers to the different heuristics proposed in Sect. 3: HLPN , HLPB , HLMMN ,
HLMMB , HLPBS and HRR. The benchmarks refer to the specifications written
as Boolean expressions (decisions) which are logically evaluated to true or false
depending on the truth values assigned to the contained conditions. MC/DC
test specifications are the meaning of what is MC/DC in the context of roBDDs
and three values logic (cfr. Theorem 1 and Definition 9). We consider the reuse
factor in our MC/DC analysis to reuse as much as possible the existing selected
TCs and finally, we produce n MC/DC pairs as output for each decision with the
size of n+m solutions. Our results show that we produce mostly n + 1 solutions
and the rest of solutions are less than 2n with 100% MC/DC.

1 https://github.com/selabhvl/py-mcdc/.

https://github.com/selabhvl/py-mcdc/

MC/DC Test Cases Generation Based on BDDs 191

(a) % of n+1 solutions (b) % of n+2 solutions

Fig. 4. Comparison of % for n + 1 and n + 2 solutions for different heuristics

4.2 Experimental Results

Figure 4(a) and (b) present our results as the percentage of generated solutions
of sizes n + 1 and n + 2 for TCAS II based on our heuristics and the baseline
RR heuristic. We consider 5040 different orders at most for each decisions (this
exhaustively covers all orders for decisions with up to seven conditions). This
sample size already yields evidence that repeated application of the algorithm
to different orders will discover a (close to) optimal solution reasonably quickly.

For each heuristic we collect all possible sets of MC/DC covering test cases.
MC/DC coverage is calculated as the percentage of the number of covered con-
ditions to the total number of conditions in a decision. In case the MC/DC
coverage percentage is less than 100%, it means that MC/DC is not fulfilled for
that decision. We present results for solutions of size n+1 (optimal) and n+2 for
our heuristics as shown in Fig. 4. The charts for the heuristics can be reproduced
from our open repository. From the TCAS II benchmark results in Fig. 4 and 5,
we highlight the following:

1. Our heuristics find the test suite sets of n + 1 solutions for each decision,
whereas HRR failed to find any minimal solution for D15. Our heuristics
perform better compared to HRR for 18 out of 20 decisions and have equal
results for two decisions in terms of which heuristic has frequently the high-
est of n + 1 solutions with 100% MC/DC. This shows that the approach of
permuting order is a viable strategy to eventually obtain an optimal results.

2. HLPB and HLMMB out-perform all others with 10 cases (50%) having the
highest % of n+1 solutions.

3. Comparing the HLPB to HLMMB ,HLPB is 2 cases (10%) higher than
HLMMB .

4. We observed that HLMMN is 2 cases (10%) higher than HLPN .
5. HLPBS has better results in some decisions than HLMMN and HLPN .
6. In three decisions (D2, D5 and D7), HRR has better results than some of our

our heuristics. We attribute this outcome to random chance.

192 F. Ahishakiye et al.

7. From Fig. 4(b) which represents the n + 2 solutions, we can see that for the
decisions in which we did not find the highest percentage of n + 1 solutions
now we have a high % of n + 2 solutions, which indicates that our test suites
generated are closer to lower bound (n + 1) of MC/DC minimal set.

Fig. 5. Probability distribution of n + m solutions for 5040 permutations, 6 runs

MC/DC Test Cases Generation Based on BDDs 193

In summary, our results show that we produce mostly n+1 solutions and the
rest of solutions are less than 2n with 100% MC/DC adequacy. Figures 5(a)–(f)
show the probability distribution of n+m TCs generated for 5040 permutations,
6 runs for different heuristics. The x-axis shows the number of test cases (m)
additional to the minimal solution (n+1). The labels show the decision number
and the contained conditions as presented in [25]. All the solutions are have
less than 2n test cases, as the maximum observed for m is 6 while the range of
number of conditions is 6 to 14. Figures 5 shows that most solutions are much
closer to the minimal size (to the left) than to the worst case.

Another challenge which is not directly related to our approach but to
MC/DC is the coupled and masked conditions where it is difficult to get a full
MC/DC coverage with masked condition. For example the decision D10 in the
TCAS II benchmark has two conditions (b and h) which are masked. Out of the
nine conditions, hence only seven are retained in the roBDD and we compute
our minimal solution accordingly.

For the complex example D15 in the 20 TCAS II decisions, our algorithm
takes on average 0.7 s (incl. time for constructing the BDD) for a single run
on an Intel(R) Core(TM) i7-7700 CPU @3.60 GHz Linux machine with 64 GB
RAM. From the proposed heuristics, we recommend the longest paths with reuse
as Boolean number(HLPB) as it shows high performance both in terms of high
percentage of n+1 solutions and short time to compute the solutions compared
to the rest of the heuristics.

5 Related Work

Automatic test data generation approaches were proposed in [4,16,36] and are
based on greedy or meta-heuristic search strategy. They use search algorithms
to extract test paths from the control flow graph of a program, then invoke an
SMT solver to generate test data [16] and afterwards reduce the test-suite with a
greedy algorithm. The drawback for this approach is that often infeasible paths
are selected, resulting in significant wasted computational effort. We did not
investigate test data generation here, only boolean inputs to a single decision.

Kitamura et al. [25] and Yang et al. [37] use a SAT solver to construct minimal
MC/DC test suites. That is, the MC/DC criterion is encoded in a single query,
and the solver produces a suitable assignment for test case inputs if it exists, or
times out. In contrast to the exhaustive nature of SAT queries which may lead
to timeouts, our approach delivers a single answer in much less time, but may
require repetition to find an optimal solution.

Some of their results do not satisfy UC-MC/DC in some cases, and generate
test cases only for Masking MC/DC. There are also some conditions which are
reported as infeasible, while the MC/DC pairs for those conditions can be found.
For example in [25], decisions 6 and 8 of the TCAS II benchmarks have test suites
with 3 and 4 test cases for 8 and 9 conditions respectively which cannot satisfy
MC/DC.

A study of enhanced MC/DC coverage criterion for software testing based
on n-cube graphs and gray code is presented in [8]. It is an exhaustive approach

194 F. Ahishakiye et al.

that takes input as a Boolean expression, builds the n-cube graph, and deduces
test cases from all vertices of the graph. Their test cases selection is based on the
weight of each test case in a similar way that we calculate the reuse factor of a
path. The main difference is that they have to construct the n-cube graph which
have the same effect as exhaustive traversal of a truth table and the resulting
size of the test suite is not minimal.

Gay et al. [14,15], developed a technique to automatically generate test cases
using model checkers for masking MC/DC. Using the JKind model checker, they
produce a list of all test inputs and then select the desired test cases while
preserving the coverage effectiveness. Their test suite reduction algorithm used
to reduced the original test-suite does not guarantee to find the smallest set.
They tested their approaches on different real-world avionics systems where they
achieved an average MC/DC coverage of 67.67%.

Comar et al. [12] discussed MC/DC coverage in terms of BDD coverage. They
examine the set of distinct paths through the BDD that have been taken based
on the control flow graph. Based on BDDs they investigated the formalization
and comparison of MC/DC to object branch coverage, but the test cases selection
is out of their scope. We extend the formalization and definitions of MC/DC in
terms of BDDs in the context of test cases selection.

The roBDDs have been used in [17,22] for test cases generation, and highlight
the properties and benefits of roBDDs, however, MC/DC was not considered
as coverage criterion. Like our approach, their greedy approach incrementally
selects a pair of paths where only one condition changes for every condition.

6 Conclusion and Future Works

We presented a heuristics-based approach for generating test cases for a Boolean
decision (given as roBDD) that satisfy the MC/DC criterion. We evaluate our
approach on the TCAS II Benchmark and results shows that we frequently find
solutions which are equal or close to the minimal number of test cases without
expensive back-tracking.

Our approach is sensitive to variable ordering in the BDD as each order yields
a different roBDD. We obtained MC/DC solutions of size n + 1 by performing
few permutations of conditions in a decision for all tested decisions. We present
also the other possible solutions which show full MC/DC coverage. In general,
our solutions have a size ranging from n + 1 to 2n, with a high percentage of
size n + 1 or n + 2 solutions, where even the latter, although not optimal, may
be acceptable to a user. We proposed different heuristics and compared their
properties. All our heuristics perform better than HRR. HLPB and HLMMB

out-perform all other heuristics with 10 times (50%) having highest percentage
of n + 1 solutions. We recommend HLPB since it is 10% better than HLMMB .

For the future work we plan to extend our algorithm so that we support
data input coverage where conditions are not abstracted, which requires tak-
ing constraints into consideration. We will also attempt to integrate our test
case generation algorithm into our MC/DC measurement tool and model [2,3].

MC/DC Test Cases Generation Based on BDDs 195

Although the experimental data shows that we always find an optimal solution,
it remains open if this is a general property of our approach.

References

1. Adacore. Technical report on OBC/MCDC properties. Technical report, Couver-
ture project (2010)

2. Ahishakiye, F., Jakšić, S., Stolz, V., Lange, F.D., Schmitz, M., Thoma, D.: Non-
intrusive MC/DC measurement based on traces. In: International Symposium on
Theoretical Aspects of Software Engineering (TASE), pp. 86–92. IEEE (2019)

3. Ahishakiye, F., Requeno Jarabo, J.I., Kristensen, L.M., Stolz, V.: Coverage analysis
of net inscriptions in coloured Petri net models. In: Ben Hedia, B., Chen, Y.-F.,
Liu, G., Yu, Z. (eds.) VECoS 2020. LNCS, vol. 12519, pp. 68–83. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-65955-4 6

4. Awedikian, Z., Ayari, K., Antoniol, G.: MC/DC automatic test input data genera-
tion. In: Annual Conference on Genetic and Evolutionary Computation Conference
(GECCO), pp. 1657–1664. ACM (2009)

5. Bordin, M., Comar, C., Gingold, T., Guitton, J., Hainque, O., Quinot, T.: Object
and source coverage for critical applications with the COUVERTURE open analy-
sis framework. In: European Congress Embedded Real Time Software and Systems
(ERTS), pp. 1–9 (2010)

6. Certification Authorities Software Team (CAST). Rationale for accepting masking
MC/DC in certification projects. Technical Report: Position Paper CAST-6 (2001)

7. Certification Authorities Software Team (CAST). What is a “Decision” in appli-
cation of Modified Condition/Decision Coverage (MC/DC) and Decision Coverage
(DC)? Technical Report: Position Paper CAST-10 (2002)

8. Chang, J.-R., Huang, C.-Y.: A study of enhanced MC/DC coverage criterion for
software testing. In: Annual International Computer Software and Applications
Conference (COMPSAC), pp. 457–464 (2007)

9. Chilenski, J.J.: An investigation of three forms of the modified condition decision
coverage (MC/DC) criterion. Technical report, Office of Aviation Research (2001)

10. Chilenski, J.J., Miller, S.P.: Applicability of modified condition/decision coverage
to software testing. Softw. Eng. J. 9(5), 193–200 (1994)

11. Clarke, E.M., Jr., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (1999)

12. Comar, C., Guitton, J., Hainque, O., Quinot, T.: Formalization and comparison
of MC/DC and object branch coverage criteria. In: European Congress Embedded
Real Time Software and Systems (ERTS), pp. 1–10 (2011)

13. Drake, C.R.: PyEDA: data structures and algorithms for electronic design automa-
tion. In: Python in Science Conference (SciPy) (2015)

14. Gay, G., Rajan, A., Staats, M., Whalen, M., Heimdahl, M.P.E.: The effect of pro-
gram and model structure on the effectiveness of MC/DC test adequacy coverage.
ACM Trans. Softw. Eng. Methodol. 25(3), 1–34 (2016)

15. Gay, G., Staats, M., Whalen, M., Heimdahl, M.P.E.: The risks of coverage-directed
test case generation. IEEE Trans. Softw. Eng. 41(8), 803–819 (2015)

16. Ghani, K., Clark, J.A.: Automatic test data generation for multiple condition and
MC/DC coverage. In: International Conference on Software Engineering Advances
(ICSEA), pp. 152–157 (2009)

https://doi.org/10.1007/978-3-030-65955-4_6

196 F. Ahishakiye et al.

17. Gong, H., Li, J., Li, R.: CTFTP: a test case generation strategy for general
Boolean expressions based on ordered binary label-driven Petri nets. IEEE Access
8, 174516–174529 (2020)

18. Halin, A., Nuttinck, A., Acher, M., Devroey, X., Perrouin, G., Baudry, B.: Test
them all, is it worth it? Assessing configuration sampling on the JHipster Web
development stack. Empir. Softw. Eng. 24(2), 674–717 (2019)

19. Hallé, S., La Chance, E., Gaboury, S.: Graph methods for generating test cases with
universal and existential constraints. In: El-Fakih, K., Barlas, G., Yevtushenko, N.
(eds.) ICTSS 2015. LNCS, vol. 9447, pp. 55–70. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-25945-1 4

20. Hu, A.J.: Formal hardware verification with BDDs: an introduction. In: IEEE
Pacific Rim Conference on Communications, Computers and Signal Processing
(PACRIM), vol. 2, pp. 677–682. IEEE (1997)

21. Jones, J.A., Harrold, M.J.: Test-suite reduction and prioritization for modified
condition/decision coverage. IEEE Trans. Softw. Eng. 29(3), 195–209 (2003)

22. Kalaee, A., Rafe, V.: An optimal solution for test case generation using ROBDD
graph and PSO algorithm. Qual. Reliab. Eng. Int. 32(7), 2263–2279 (2016)

23. Kandl, S., Chandrashekar, S.: Reasonability of MC/DC for safety-relevant software
implemented in programming languages with short-circuit evaluation. Computing
97(3), 261–279 (2014). https://doi.org/10.1007/s00607-014-0418-5

24. Kangoye, S., Todoskoff, A., Barreau, M.: Practical methods for automatic MC/DC
test case generation of Boolean expressions. In: IEEE AUTOTESTCON, pp. 203–
212. IEEE (2015)

25. Kitamura, T., Maissonneuve, Q., Choi, E.-H., Artho, C., Gargantini, A.: Optimal
test suite generation for modified condition decision coverage using SAT solving.
In: Gallina, B., Skavhaug, A., Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol.
11093, pp. 123–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99130-6 9

26. Meinel, C., Theobald, T.: Algorithms and Data Structures in VLSI Design, 1st
edn. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-642-58940-9

27. Newton, J., Verna, D.: A theoretical and numerical analysis of the worst-case size
of reduced ordered binary decision diagrams. ACM Trans. Comput. Log. 20(1),
1–36 (2019)

28. Pothon, F.: DO-178C/ED-12C versus DO-178B/ED-12B: changes and improve-
ments. Technical report, AdaCore (2012). https://www.adacore.com/books/do-
178c-vs-do-178b

29. Reda, S., Salem, A.M.: Combinational equivalence checking using Boolean satisfi-
ability and binary decision diagrams. In: Design, Automation and Test in Europe.
Conference and Exhibition (DATE), pp. 122–126. IEEE (2001)

30. Rierson, L.: Developing Safety-Critical Software: A Practical Guide for Aviation
Software and DO-178C Compliance. CRC Press (2013)

31. Tassey, G.: The economic impacts of inadequate infrastructure for software testing
(2002)

32. Vilkomir, S.A., Bowen, J.P.: Reinforced condition/decision coverage (RC/DC): a
new criterion for software testing. In: Bert, D., Bowen, J.P., Henson, M.C., Robin-
son, K. (eds.) ZB 2002. LNCS, vol. 2272, pp. 291–308. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45648-1 15

33. Weyuker, E., Goradia, T., Singh, A.: Automatically generating test data from a
Boolean specification. IEEE Trans. Softw. Eng. 20(5), 353–363 (1994)

34. Weyuker, E.J., Weiss, S.N., Hamlet, D.: Comparison of program testing strategies.
In: Symposium on Testing, Analysis, and Verification (TAV), pp. 1–10. ACM (1991)

https://doi.org/10.1007/978-3-319-25945-1_4
https://doi.org/10.1007/978-3-319-25945-1_4
https://doi.org/10.1007/s00607-014-0418-5
https://doi.org/10.1007/978-3-319-99130-6_9
https://doi.org/10.1007/978-3-319-99130-6_9
https://doi.org/10.1007/978-3-642-58940-9
https://www.adacore.com/books/do-178c-vs-do-178b
https://www.adacore.com/books/do-178c-vs-do-178b
https://doi.org/10.1007/3-540-45648-1_15

MC/DC Test Cases Generation Based on BDDs 197

35. Worrell, J.: Logic and proofs-binary decision diagrams. https://www.cs.ox.ac.uk/
people/james.worrell/lec5-2015.pdf

36. Wu, T., Yan, J., Zhang, J.: Automatic test data generation for unit testing to
achieve MC/DC criterion. In: International Conference on Software Security and
Reliability (SERE), pp. 118–126. IEEE Computer Society (2014)

37. Yang, L., Yan, J., Zhang, J.: Generating minimal test set satisfying MC/DC crite-
rion via SAT based approach. In: Annual ACM Symposium on Applied Computing
(SAC), pp. 1899–1906. ACM (2018)

https://www.cs.ox.ac.uk/people/james.worrell/lec5-2015.pdf
https://www.cs.ox.ac.uk/people/james.worrell/lec5-2015.pdf

Software Quality

Predicting and Monitoring
Bug-Proneness at the Feature Level

Shaozhi Wei, Ran Mo(B), Pu Xiong, Siyuan Zhang, Yang Zhao,
and Zengyang Li

School of Computer, Central China Normal University, Wuhan, China
wsz@mails.ccnu.edu.cn, moran@mail.ccnu.edu.cn, zengyangli@ccnu.edu.cn

Abstract. Enabling quick feature modification and delivery is impor-
tant for a project’s success. Obtaining early estimates of software fea-
tures’ bug-proneness is helpful for effectively allocating resources to the
bug-prone features requiring further fixes. Researchers have proposed
various studies on bug prediction at different granularity levels, such as
class level, package level, method level, etc. However, there exists little
work building predictive models at the feature level. In this paper, we
investigated how to predict bug-prone features and monitor their evolu-
tion. More specifically, we first identified a project’s features and their
involved files. Next, we collected a suite of code metrics and selected a
relevant set of metrics as attributes to be used for six machine learn-
ing algorithms to predict bug-prone features. Through our evaluation,
we have presented that using the machine learning algorithms with an
appropriate set of code metrics, we can build effective models of bug
prediction at the feature level. Furthermore, we build regression models
to monitor growth trends of bug-prone features, which shows how these
features accumulate bug-proneness over time.

Keywords: Code metrics · Machine learning · Feature bug prediction

1 Introduction

Bug prediction has been an active research area for decades, numerous studies
have been proposed to predict the most bug-prone software units at different
granularity levels [5,14,15,18,24,30,33,36], such as class level, package level,
method level, module level, etc. For example, Giger et al. [14] developed bug
prediction models at method level. Gyimothy et al. [15] predicted the failure-
proneness at class level. Schroter et al. [36] and Nagappan et al. [33] have pro-
posed to predict defects at package and module levels respectively.

However, there has been little work that investigates to build bug prediction
models at feature level. A recent work by Wan et al. [42] has presented that
defect prediction at the feature level is the most preferred level of granularity by
practitioners, such bug predictions could help practitioners gain an insight into
software quality at the feature level. Being able to rapidly delivery and modify
c© Springer Nature Switzerland AG 2021
S. Qin et al. (Eds.): SETTA 2021, LNCS 13071, pp. 201–218, 2021.
https://doi.org/10.1007/978-3-030-91265-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91265-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-91265-9_11

202 S. Wei et al.

features is important for a project’s success [11,31], it is helpful to obtain early
estimates on the bug-proneness of features. Such estimates could identify bug-
prone features requiring further modifications, which helps developers effectively
and efficiently allocate resources to the bug-prone features to assist in quick
fixings.

In this paper, we focused our investigations on developing bug prediction
models at the feature level and monitoring how bug-prone features accumulate
bug-proneness over time. To proceed our study, we first leveraged a feature
detection method in [31] to identify all features in a project. For each identified
feature, we calculated its code metrics and labeled it either as bug-prone or not
bug-prone based on this feature’s bug-proneness calculated from a project’s bug
data. Next, to address the difficulty caused by noisy or redundant independent
variables in each dataset, we leveraged CFS method [17] to select an appropriate
set of code metrics for each dataset. Using the selected code metrics as the
input attributes, we applied six machine learning algorithms to develop bug
prediction models at the feature level. Furthermore, we monitor the evolution of
each bug-prone feature. The accurate prediction could help developers identify
which features are likely to be bug-pone, and monitoring their evolution could
help developers further to understand how each feature has been accumulating
bug-proneness over time.

Based on our evaluation analyses on six open source projects, we have found
that, by using machine learning techniques and an appropriate set of code met-
rics, we can build predictive models which accurately predict bug-prone fea-
tures. However, different projects may need different sets of code metrics as
input attributes. Besides, we analyzed how a bug-prone feature evolves over
time with respect to its bug-proneness. We have found that 47.8%, 18.9%, and
33.2% of all bug-prone features could fit into linear, exponential and logarithmic
regression models respectively, indicating these features have been accumulating
bug-proneness steadily, drastically or slowly.

This work extends the state of the art as follows:

– To the best of our knowledge, our work is the first empirical study on predict-
ing bug-proneness at feature level. This work reports how to systematically
build feature-level bug prediction models by using code metrics and machine
learning techniques.

– We investigate whether a single set of code metrics are generalized to all
projects on predicting bug-proneness at the feature level.

– Instead of just building predictive models, we extend to build regression mod-
els which could help analyze and monitor how a project’s bug-prone features
accumulate bug-proneness over time.

2 Background and Related Work

Bug prediction has been extensively studied in the past decades. Researchers
have proposed numerous predictive models at different granularity levels, such
as method level, class level, file level, package level, module level etc.

Predicting and Monitoring Bug-Proneness at the Feature Level 203

2.1 Bug Prediction at Class or File Level

Numerous studies have been proposed to predict bug-prone classes or files in
a software project. Gyimothy et al. [15] calculated the code metrics from the
source code of Mozilla, then based on these metrics, they leveraged two statisti-
cal methods and two machine learning techniques to predict the failure-proneness
of each class. In the study of Ostrand et al. [34], the authors developed a negative
binomial regression model using file size and file change information, and demon-
strated the model could effectively predict the expected number of faults in each
file in the next release of a software project. Cataldo et al.’s work [5] reported
a strong correlation between density of change coupling and failure proneness
of a file. Yan et al.’s study [43] used both supervised and unsupervised models
to predict defects at file level and compared the effectiveness of two types of
prediction models.

2.2 Bug Prediction at Method Level

Researchers have also studied various bug prediction models at method level.
For example, Kim et al. [24] proposed a model which could accurately predict
future faults at method level by using cached histories. Giger et al.’s study [14]
investigated to build bug prediction models at method level. The authors pre-
sented that their models based on method-level code metrics and change metrics
could be used to accurately predict bug-prone methods. They also showed that
change metrics outperformed source code metrics on bug prediction, and pre-
sented that their models are robust with respect to different distributions of
samples. Hata et al. [18] extracted method-level histories and developed bug
prediction model at method level by using the extracted histories. Their results
presented that method-level bug prediction consumed less effort to find bugs than
both package-level and file-level predictions. Yang et al.’s research [44] analyzed
the relationship between dependency clusters and fault proneness at function
(method) level. They demonstrated that their function-level prediction model
could significantly increase the performance of fault-proneness prediction, and
the inter-dependent functions are often more fault-prone than the other func-
tions.

2.3 Bug Prediction at Coarse-Grained Level

Defect prediction at a coarse granularity has also been widely studied to facilitate
understanding the bug-proneness of software systems. For example, Schroter et
al. [36] leveraged failure history at different levels and the usage relationships
between components to predict fault-prone components, and demonstrated that
the prediction model using package-level defect history could have a better per-
formance. Mishra et al. [30] proposed an approach of Support Vector based
Fuzzy Classification System (SVFCS), which combined the advantages of SVM,
FIS and Genetic algorithms to effectively predict defects at package level. Men-
zies et al. [29] applied Naive Bayes learner on a set of complexity metrics to

204 S. Wei et al.

predict module-level defects. They presented that the static code metrics should
be treated as probabilistic, not categorical indicators, and these code metrics
could be used to accurately predict defects at module level. Nagappan et al. [33]
found that fault-prone software modules are statistically correlated with code
complexity measures. The authors investigated various complexity metrics and
demonstrated that these metrics were useful and successful for defect predic-
tion. They also demonstrated there was no single set of metrics could be the
best predictors in all projects.

2.4 Bug Prediction at Other Granularity Levels

Considering a software system could be structured as many interacting software
entities at multiple granularity perspectives, such as component level, subsys-
tem level, file level, etc. Zimmermann et al.’s work [46] explored the effective
predictors for cross-project bug prediction. Mockus and Weiss [32] investigated
change-level defect prediction, that is, examining the probability that a change
to software will cause a failure. They used the properties of a change to be
the predictors, such as added or deleted LOC in a change, the number of files
and modules affected by a change, the type of a change. Their results showed
that their approach was useful for predicting new failures. Kamei et al. [23]
proposed an effort-aware linear regression (EALR) model for the defect predic-
tion at change level. Yang et al. [45] also proposed a LT model for just-in-time
change-level defect prediction, and compared the performance of unsupervised
and supervised approaches.

As we have shown in the above studies, bug prediction at different granu-
larity levels has been widely studied. Our study complementarily contributes to
this field by investigating bug prediction at the feature level using code met-
rics and machine learning algorithms. Moreover, we provide regression models
to represent how the bug-prone features evolve over time.

3 Study Design

3.1 Feature Identification

The objective of this work is to come up with bug prediction models at the feature
level. For this purpose, we first need to identify features of software projects. Mo
et al. [31] recently proposed an approach to identify features by examining a
project’s revision history and issue tracking system. They also demonstrated
that features identified by their approach could form a maintenance unit that
should be maintained and developed separately. Our work treats each feature as
a software unit separately, predicts and monitors the bug-proneness of each unit
at the feature level. Therefore, following the technique in [31], we identified each
feature by matching a new feature ticket within a commit.

For example, Fig. 1 shows a Git commit from one of our studied projects.
Based on the message of this commit, we can observe that 1) this commit is

Predicting and Monitoring Bug-Proneness at the Feature Level 205

made to implement the issue, AMQ-5123, which is labeled as a new feature in
this project’s JIRA1 issue tracking system; 2) Five java files were changed for
this commit. Thus, we could extract a feature, which consists of all these java
files. If there exists multiple commits in revision history for the same feature
(i.e. multiple commits labeled with the same new feature ID), we then consider
the feature contains the union of all involved files. After examining a project’s
revision history and issue tacking records, we can identify all features in this
project, and for each feature, we can know its involved files.

Fig. 1. An example commit for feature identification

3.2 Attributes: Code Metrics

In this paper, we leveraged ten code metrics to build our bug prediction models
at the feature level. These metrics could represent a software project’s charac-
teristics, and all of them have been widely used for bug prediction at different
granularity levels [5,14,25,29,30,33,41]. In this paper, we presented how these
metrics could be used for building predictive models at feature level. Next, we
briefly described each of the code metrics as follows:

– Cyclomatic complexity. McCabe [28] proposed cyclomatic complexity to
measure the code complexity by calculating the number of linearly indepen-
dent paths through a program’s source code. The higher of the metric value,
the more complex the source code is.

– CK metrics suite. Chidamber and Kemerer [6] proposed six metrics which
focus on measuring the characteristics of Object-oriented programs. We
briefly introduced these metrics as follows: 1) WMC: the number of local
methods in a class; 2) DIT: the maximum depth of the inheritance tree in a
class; 3) NOC: the number of immediate subclassess of a class; 4) CBO: the
number of other classes that are coupled to this class; 5) RFC: the sum of
number of methods called within the class’s bodies and the number of class’s
methods; and 6) LCOM: the number of methods in a class that are not related
through the sharing of some of the class’s fields.

1 https://www.atlassian.com/software/jira.

https://www.atlassian.com/software/jira

206 S. Wei et al.

– Fan-in and Fan-out. Fan-in is calculated as the number of calling subpro-
grams and the number of global variables read by a class; Fan-out is calculated
as the number of called subprograms and the number of global variables set
by a class.

– Lines of Code (LOC). LOC is the number of lines of code in a file. This size
metric has been widely accepted among the software engineering community.
Various studies [25,41] have demonstrated that LOC could be used as an
effective indicator for bug prediction.

Given a project’s source code as input, we calculated these code metrics by
using a static analysis tool, Understand2. In order to have all metrics apply to
features, we summarized the metrics across each feature. For each metric X, we
computed the total number per feature. As an example, considering the WMC
metric, which counts the number of local methods per class, we calculated the
sum of WMC of all files3 involved in a feature to be the WMC of this feature.

3.3 Labeled Classes: Bug-Prone and Not Bug-Prone Feature

In this work, the developed prediction models are used to predict the outcome
labels for each upcoming feature, that is, to classify an upcoming feature as
bug-prone or not bug-prone.

Bug Data. To quantify the bug-proneness of a feature. We first proposed a
history measure, Bug Rate (BR), which represents the bug-proneness of a file. To
calculate a file’s bug rate, we mined a project’s revision history and bug reports
by using the pattern matching method in [38]: if a bug ticket ID recorded in the
bug tracking reports was identified in a commit’s message, then we thought this
commit was made for a bug fix, and each file in this commit were considered to
be changed once for a bug fix. After analyzing all these bug-fixing commits, we
could calculate each file’s bug rate, which indicates how many times a file has
been changed for bug fixes. To have this bug rate measure apply to features,
we then calculated the sum of bug rates of all files involved in a feature to be
the bug rate of this feature. A feature with a higher value of bug rate will be
considered as more bug-prone.

Labeling. Our study trains and validates the prediction models at feature level
with the binary target classes. Therefore, we labeled each feature in our dataset
either as bug-prone or not bug-prone as follows:

Feature =

{
bug-prone, if BR ≥ Pt

not bug-prone, otherwise
(1)

where Pt represents the value at a particular percentile rank following the
distribution of all features’ bug rates per project. A feature will be terms as
bug-prone if its bug rate ranks above the particular percentile. In this work,
2 https://scitools.com/.
3 In this paper, a file means a source file which contains one or more classes. A feature

often contains multiple files.

https://scitools.com/

Predicting and Monitoring Bug-Proneness at the Feature Level 207

we studied two levels of bug-proneness, denoted to BR80th and BR65th . Using
BR80th as an example, if a feature’s bug rate ranks over 80th percentile in a
project, meaning that this feature’s bug rate is large than 80% of all features
in the project, we then labeled this feature as bug-prone. Otherwise we labeled
this feature as not bug-prone. To substantiate our analysis, we also studied the
bug-proneness level of BR65th , where the bug rates of features that termed as
bug-prone rank above 65th percentile, meaning that these features are more bug-
prone than 65% of all features in a project in terms of the bug rate measure.

3.4 Machine Learning Algorithms

We leveraged six supervised machine learning algorithms to build models for
feature-level bug prediction. We conducted the predictions by using the default
setting of Weka4 tool, which contains a collection of machine learning algorithms
for data mining tasks. Next, we briefly described various machine learning tech-
niques used in our study.

– Decision Tree (DT) classifies data or predicts values by using a tree repre-
sentation where each leaf node indicates a class label and the internal nodes
of this tree represent the attributes of the data.

– Naive Bayes (NB) is one of the simple probabilistic classifiers [26]. Naive
Bayes algorithm leverages Bayes Theorem to calculate the conditional prob-
ability of all classes from the training data, and assumes the attributes to be
independent.

– K-Nearest Neighbors (KNN) is a non-parametric, lazy learning algo-
rithm, which could be used to classify new samples based on a similarity
measure [9].

– Random Forest (RF) is an ensemble of decision trees, which could build
predictive models for classification [4]. It outputs the class by using the aver-
age results from its included decision trees to improve the predictive accuracy
and control over-fitting of the decision trees.

– Multilayer Perceptron (MLP) is a class of feedforward artificial neural
network. A MLP contains at least three layers that simulate the biological
neurons [19]: an input layer for receiving data; an output layer for making a
decision; and one or more hidden layers acting as computational engines.

– Support Vector Machine (SVM) is a discriminative classifier formally
defined by a separating hyper-plane [8]. Given a set of labeled training sam-
ples, an SVM training algorithm could build a model to output an optimal
hyper-plan which could differentiate new samples into one category or the
other.

3.5 Researched Projects

To conduct our evaluation, we analyzed six open source projects with different
size and in different domains: ActiveMQ5 is a multi-protocol, Java-based mes-
4 https://www.cs.waikato.ac.nz/∼ml/weka/.
5 http://activemq.apache.org/.

https://www.cs.waikato.ac.nz/~ml/weka/
http://activemq.apache.org/

208 S. Wei et al.

saging server; Camel6 is an Integration framework; Cassandra7 is a distributed
NoSQL database management system; Hibernate ORM8 is an object-relational
mapping framework for java environments; Hive9 is a data warehouse software
infrastructure; Wicket10 is a component-based web application framework.

For each project, we selected its latest release as our subject, Table 1 shows
the basic facts for each studied project. Column “Rel.” indicates the selected
release of each project. Column “#Files” shows the number of files in the selected
release of a project. For each project, our analysis just focuses on its source files,
so all test or example files have been filtered out. Column “#Com.” shows the
number of commits extracted from the studied revision history of each project.
Column “#Ft” shows the number of identified features from each project. Col-
umn “#Bugs” presents the number of bug issues calculated by examining a
project’s bug reports and revision history. Column “History” shows the number
of months of each project’s revision history we studied, from its beginning to the
selected release date.

Table 1. Researched projects

Rel #Files #Com. #Ft #Bugs History

ActiveMQ 5.15.9 2,526 6,091 205 1,695 159

Camel 2.21.5 8,697 21,1260 968 2,776 142

Cassandra 3.11.4 1,744 14,701 270 2,914 119

Hibernate 5.4.1 4,073 5,686 141 1,506 138

Hive 2.3.4 4,203 7,785 403 4,921 122

Wicket 8.3.0 2,558 12,255 110 1,701 172

4 Evaluation

4.1 Research Questions

We proceeded our empirical study by investigating the following research ques-
tions:

RQ1: Is there a single set of metrics that predicts bug-prone features over
all projects?

RQ2: Can we build effective bug prediction models at the feature level?
RQ3: Is it possible to monitor the bug-proneness of bug-prone features?

6 http://camel.apache.org/.
7 http://cassandra.apache.org/.
8 http://hibernate.org/.
9 https://hive.apache.org/.

10 https://wicket.apache.org/.

http://camel.apache.org/
http://cassandra.apache.org/
http://hibernate.org/
https://hive.apache.org/
https://wicket.apache.org/

Predicting and Monitoring Bug-Proneness at the Feature Level 209

Using a set of code metrics as attributes often encounters the issue of Multi-
collinearity due to the existence of inter-correlations among the metrics. Thus,
we first analyzed whether there exists a single set of code metrics which is gen-
eralized to all projects (RQ1).

Then we investigated how to build bug prediction models at the feature level,
and whether the developed models could effectively predict a feature as bug-prone
or not bug-prone (RQ2); Accurate prediction would identify the features that
are likely to be bug-pone, which helps developers efficiently allocate resources
for quick fixings.

Furthermore, we explored to model and monitor growth trends of the bug-
prone features (RQ3). Positive answer to RQ3 would help developers understand
how each bug-prone feature evolve over time in terms of bug-proneness, and even
guide future modifications.

4.2 Prediction Model Development

To develop bug prediction models with code metrics and machine learning tech-
niques, we used the ten-fold cross validation technique [40]. In ten-fold cross-
validation, the original dataset will be randomly divided into 10 subsets with
equal size. Next, the technique will iteratively performs 10 times where nine
subsets will be used for training and the other one will be used for validation.
During each iteration, a subset will be used exactly once as the validation data.
The results from 10 folds would then be summarized to present a single estima-
tion. The advantage of this technique is that all observations are used for both
training and validation, thus could reduce validation bias [10,35].

4.3 Evaluation Method

In order to evaluate the performance of our bug prediction models at the feature
level, we selected three widely used performance metrics: Accuracy, F-measure
and AUC.

We first selected a traditional metric, Accuracy, which indicates the ratio of
the number of correct predictions to the total number of input samples. How-
ever, accuracy may not work very well when prediction models are applied on
imbalanced data (i.e., the number of samples belonging to each class is differ-
ent) [13,20]. F-measure takes both precision and recall into consideration, it is
the Harmonic Mean between precision and recall which assesses how precise and
how robust a classifier is [7,39]. Besides, various studies [20,37,39] proposed ROC
analysis and demonstrated that Area Under ROC Curve (AUC) could effectively
reflect the performance of prediction models built on imbalanced data, which just
likes our dataset where the distributions of two classes (bug-prone or not bug-
prone) are imbalanced. AUC could effectively deal with the skewness from class
distributions.

210 S. Wei et al.

4.4 Results

RQ1: Is there a single set of metrics that predicts bug-prone features
over all projects?

One difficulty from using a set of metrics as attributes is the issue of multi-
collinearity among metrics, since there often exists inter-correlations among the
code metrics, which causes noisy and redundant independent variables from each
dataset [12,17]. Thus, the initial step in building prediction models is often to
select the relevant set of attributes to be used in a ML algorithm. Attribute selec-
tion methods [3,12,17] have been widely studied for reducing the dimensionality
of attribute space and removing redundant or noisy attributes. In our paper,
we leveraged the Correlation-based Feature Selection (CFS) method to select an
appropriate set of attributes for building prediction models. Hall’s work [17] has
shown that the CFS method could identify the attributes that have high indi-
vidual predictive ability on the class, but are not correlated between each other.
Moreover, numerous existing studies [2,10,27] have used the CFS method and
demonstrated its effectiveness in attribute selection for developing prediction
models.

We conducted attribute selections for both bug-proneness levels. For each
project, we applied CFS method on its two datasets, and the attributes selected
from each dataset are shown in Table 2. According to this table, the first straight-
forward observation to make is that:

all the ten code metrics have been selected more than once for building feature-
level prediction models, but there isn’t a single set of metrics that has been selected
for predicting bug-prone features over all projects. Even for the same project, if
we choose different bug-proneness level for labeling, the selected attributes could
be different. This result is consistent to the other work at different granularity
levels [14,33].

Answer: There is no single set of code metrics is suitable for the feature-
level bug prediction over all projects.

RQ2: Is it possible to build effective bug prediction models at the
feature level?

To answer this question, we used the selected attributes (discussed in RQ1) in
the six machine learning algorithms to build prediction models for each dataset
(each project has two datasets derived from both two bug-proneness levels).
Table 3 shows the effectiveness of our predictive models reflected by the per-
formance metrics. Column 3–5 show the Accuracy, F-measure and AUC values
with respect to BR80th bug-proneness level. Similarly, column 6–8 show values
of the three performance metrics with respect to BR65th .

Using column 3–5 at the first row in Table 3 as an example, where the bug-
proneness level of BR80th was adopted to label bug-prone or not bug-prone fea-
tures. We applied Decision Tree (DT) algorithm with the selected code metrics:
WMC, NOC, CBO, DIT, LCOM, Fan-out (discussed in Table 2) to develop a

Predicting and Monitoring Bug-Proneness at the Feature Level 211

Table 2. Selected code metrics after applying CFS method

Bug-proneness level: BR80th

ActiveMQ WMC, NOC, CBO, DIT, LCOM, Fan-out

Camel NOC, CBO, Cyclomatic, Fan-in

Cassandra WMC, CBO

Hibernate WMC, CBO, RFC, Fan-in, LOC

Hive Fan-in, LOC

Wicket WMC, NOC, RFC, Fan-in

Bug-proneness level: BR65th

ActiveMQ NOC, CBO, RFC, LCOM, Fan-out

Camel NOC, CBO, Cyclomatic, Fan-in, LOC

Cassandra CBO, DIT, Cyclomatic, Fan-out, LOC

Hibernate CBO, LCOM, Cyclomatic, Fan-out, LOC

Hive Fan-in, LOC

Wicket WMC, NOC, Cyclomatic, Fan-in

bug prediction model. The results show that the developed prediction model
achieves a very good performance: Accuracy is 93.2%, F-measure is 0.929 and
AUC is 0.838. According to the whole Table 3, we can observe that, for all the
values of the three performance metrics, most of them (79% of all metric values)
are higher than 0.8, and many of them (35% of all metric values) are even higher
than 0.9. As a result, we believe that we are able to effectively build bug predic-
tion model at the feature level by leveraging ML algorithms with an appropriate
set of code metrics.

Answer: Using an appropriate set of code metrics for each dataset, we
could apply machine learning techniques to build feature-level bug prediction
models achieving high Accuracy, F-measure and AUC.

RQ3: Is it possible to monitor the bug-proneness of features?
So far we could use the developed prediction models to accurately classify

a feature as bug-prone or not bug-prone. In this way, we can help development
teams efficiently allocate resources to the bug-prone features for quick fixings.
Besides, could we monitor how each bug-prone feature accumulate bugs-proneness
over time? If so, development teams would be able to model the growth trends of
each feature’s bug-proneness, and guide possible future modifications. Using this
kind of information, development teams could assess the severity of each bug-
prone feature, rank even prioritize each feature’s possible fixes. For example, if
featurei’s bug-proneness increases exponentially, and featurej ’s bug-proneness
increases smoothly, we may rank featurei with a higher priority for future mod-
ifications.

212 S. Wei et al.

Table 3. Results of prediction models using different ML techniques

Project ML BR80th BR65th

ACC F-m AUC ACC F-m AUC

ActiveMQ DT 0.932 0.929 0.838 0.854 0.855 0.883

NB 0.898 0.896 0.935 0.834 0.824 0.865

KNN 0.888 0.888 0.855 0.878 0.878 0.866

RF 0.922 0.92 0.94 0.868 0.868 0.949

MLP 0.907 0.905 0.943 0.849 0.841 0.907

SVM 0.868 0.842 0.679 0.746 0.695 0.639

Camel DT 0.90 0.896 0.902 0.831 0.830 0.864

NB 0.885 0.881 0.892 0.79 0.771 0.844

KNN 0.887 0.888 0.84 0.853 0.854 0.841

RF 0.913 0.911 0.958 0.88 0.880 0.932

MLP 0.888 0.882 0.888 0.813 0.810 0.862

SVM 0.866 0.851 0.709 0.767 0.730 0.671

Cassandra DT 0.863 0.865 0.866 0.881 0.881 0.893

NB 0.774 0.744 0.697 0.644 0.566 0.685

KNN 0.907 0.909 0.886 0.896 0.895 0.879

RF 0.893 0.891 0.947 0.867 0.867 0.948

MLP 0.874 0.869 0.921 0.837 0.836 0.911

SVM 0.789 0.702 0.495 0.637 0.544 0.508

Hibernate DT 0.922 0.922 0.909 0.823 0.826 0.786

NB 0.901 0.896 0.918 0.78 0.757 0.880

KNN 0.943 0.941 0.871 0.844 0.842 0.824

RF 0.929 0.929 0.966 0.837 0.839 0.921

MLP 0.922 0.921 0.925 0.801 0.796 0.904

SVM 0.809 0.735 0.534 0.667 0.563 0.565

Hive DT 0.916 0.919 0.912 0.913 0.914 0.926

NB 0.806 0.766 0.855 0.677 0.598 0.814

KNN 0.921 0.921 0.897 0.906 0.906 0.890

RF 0.923 0.924 0.967 0.931 0.931 0.965

MLP 0.916 0.919 0.950 0.898 0.899 0.950

SVM 0.806 0.766 0.574 0.675 0.594 0.576

Wicket DT 0.964 0.964 0.962 0.809 0.811 0.862

NB 0.955 0.954 0.988 0.873 0.866 0.898

KNN 0.955 0.954 0.904 0.909 0.910 0.909

RF 0.936 0.936 0.968 0.873 0.873 0.946

MLP 0.964 0.962 0.905 0.773 0.762 0.838

SVM 0.809 0.739 0.543 0.673 0.566 0.538

Predicting and Monitoring Bug-Proneness at the Feature Level 213

At this step, we investigated how each of the bug-prone features accumulate
bug-proneness during software evolution. To make a larger scope of investigation,
we analyzed all the bug-prone features labeled at the bug-proneness level of
Bug65th , since the set of bug-prone features at Bug80th level is just a subset
of it. To proceed this investigation, we first constructed an evolution sequence
for each feature in terms of its bug rate: for each bug-prone feature, we back-
forwardly calculated its bug rates based on different periods of revision history.
For example, if featurei is one of the bug-prone features in project A, which
was released in 2018-08, and the feature started to accumulate bugs (i.e. its bug
rate became larger than 0, and started to increase) in 2016-10. For this featurei,
we back-forwardly decreased its history period by a 6-month history interval to
calculate a series of values of the bug rate. In this way, we would calculate the
bug rate sequence of featurei by using four history periods: 2016-10 - 2017-02,
2016-10 - 2017-08, 2016-10 - 2018-02, and 2016-10 - 2018-08. For all bug-prone
features in our studied projects, we repeated the calculations to obtain all bug
rate sequences.

Secondly, we selected three widely used regression models to simulate the
growth trend of each feature’s bug-proneness. The three models reflect three
types of growth trends in practice:

– Linear Model. It indicates a feature’s bug rate increases linearly, meaning
that this feature has been accumulating bug-proneness steadily.

– Exponential Model. It indicates a feature’s bug rate increases exponentially,
meaning that this feature has been accumulating bug-proneness dramatically,
and the speed becomes faster and faster;

– Logarithmic Model. It indicates a feature’s bug rate increases slower and
slower, meaning that this feature accumulated bug-proneness quickly at the
beginning, but it is accumulating bug-proneness very slow now.

Given a sequence of bug rates of a feature, we modeled the feature’s growth
trend to one of the three models: linear, exponential and logarithmic regression
models, which indicated the feature was accumulating bugs in different trends.
For each feature, the regression model with highest R2 would be selected to be
the best fit for it. Besides, the P-value of each fitting model should be less than
0.05, which guarantees that the derived model is significant.

In this work, we categorized the regression models by following the guidelines
in [16,22], where the authors described R2 = 0.75, 0.5 and 0.25 as substantial,
moderate and weak models, respectively. We summarized all the fitting results in
Table 4. Column “#Features” shows the total number of bug-prone features we
analyzed for each project. Columns “Lin”, “Exp” and “Log” present the number
of features whose growth trends fit into linear, exponential or logarithmic models
respectively. The following “P.” columns show the corresponding ratios to the
total number of bug-prone features. In the column of “0.5 <= R2 < 0.75”, we
only used “Num” and “P.” columns to show the number and percentage of the
features fitted into a moderate model, that is, the R2 ranges from 0.5 to 0.75.

Using “Camel” in Table 4 as an example, we can observe that 339 fea-
tures were labeled as bug-prone at the bug-proneness level of Bug65th , and
99.7% of these features could be substantially modeled by the regression models

214 S. Wei et al.

Table 4. Distribution of bug-prone features’ regression models in terms of bug rate

Project #Features R2 >= 0.75 0.5 <= R2 < 0.75

Lin P. Exp P. Log P. Total P. Num P.

ActiveMQ 72 72 100.0% – – – – 71 100.0% – –

Camel 339 122 36.0% 6 1.8% 210 61.9% 338 99.7% 1 0.3%

Cassandra 95 81 85% – – 14 15% 95 100% – –

Hibernate 50 44 88% 6 12% – – 50 100% – –

Hive 142 15 10.6% 127 89.4% 0 0% 142 100% – –

Wicket 39 18 46% – – 21 54% 39 100% – –

Total 737 352 47.8% 139 18.9% 245 33.2% 736 99.9% 1 0.1%

(a) An Example of Linear Regression
(b) An Example of Exponential Regres-
sion

(c) An Example of Logarithmic Regres-
sion

Fig. 2. Example features fitting into different regression models

(R2 >= 0.75). 36.0% of all these features could fit into a linear model, meaning
that these features has accumulated bug-proneness steadily. 1.8% and 61.9% of
all these features could fit into the exponential and logarithmic models respec-
tively. Only 1 feature, 0.3% of all the studied features, couldn’t fit into a sub-
stantial, but fitted into a moderate regression model.

The last row of Table 4 presents that, considering all the studied features
over all projects together, almost all of them (99.9%) could fit into a substantial

Predicting and Monitoring Bug-Proneness at the Feature Level 215

regression model. 47.8% of them could be modeled by linear models. For both
exponential and logarithmic models, there are 18.9%, 33.2% of all the studied
features that follow a substantial fitting respectively.

Figure 2 shows the examples for all types of regression models derived from
our studied features. Using Fig. 2a as an example to illustrate the results, we
can observe that the selected release date of this project is “2019-03”, and files
in this feature started to accumulate bugs before 2007-03. The growth trend of
this feature’s bug rates is fitted into a linear model, which has a R2 = 0.98,
with a formula as: y = 15.05x + 32.96. Figure 2b and 2c show the cases where
growth trends of these two features’ bug-proneness fit into an exponential and a
logarithmic regression model respectively.

Answer: In terms of the bug rate measure, almost all of the bug-prone fea-
tures (99.9% of all bug-prone features) can substantially fit into a regression
model, wherein 47.8%, 18.9% and 33.2% of all these features could fit into
the linear, exponential and logarithmic models respectively. Thus, we can
effectively monitor the bug-proneness of each bug-prone feature and present
how this feature accumulates bugs over time.

5 Threats to Validity

First, to calculate the bug rate, we use the pattern matching method in [38] to
identify a bug-fixing commit if its change message contains a bug ticket ID. A
file’s bug rate will be the number of times a files involved in bug-fixing commits.
However, we cannot guarantee that the bug data extracted from revision history
are not biased. Prior studies [1,21] have shown that: 1) a file changed in a bug-
fixing commit doesn’t necessarily implies this file is changed for a bug fix; 2) and
there is sometimes no explicit link which could be used for targeting the bug-
fixing commits in revision history. Thus findings with respect to the research
questions could be impacted by the accuracy of available data. We acknowledge
this is a threat to internal validity and requires more investigation.

Second, the selection of bug-proneness level may rise a threat to internal
validity. We labeled each feature based on the bug rate measure. Different bug-
proneness levels could lead to different distributions of labeled classes, which
may have an influence on building the bug prediction models. To weaken the
interference of noise in data result, we used both bug-proneness levels of Bug65th
and Bug80th . Our results have presented that, for both levels, our approach could
develop accurate bug prediction models at the feature level. Besides, project
practitioners could select bug-proneness level of the input dataset based on their
own interests.

Third, a threat to external validity is in our data set. We only analyzed six
open-source projects. To partially address this problem, we selected the projects
having different sizes and in different domains.

216 S. Wei et al.

Forth, we only analyzed the projects that use Git for version control and use
JIRA for issue tracking, hence we can not claim that our results are generalizable
to other projects managed by other version control or issue tracking systems.
We are planning to repeat our experiments to a broader set of projects.

6 Conclusion

In this paper, we have studied how to develop bug prediction models at the
feature level. More specifically, for each dataset, we selected an appropriate set
of static code metrics as the attributes to be used for six machine learning
algorithms, and developed a feature-level bug prediction model.

From our analyses on six open source projects, we have demonstrated that:
based on an appropriate set of code metrics, we can apply machine learning algo-
rithms to build feature-level bug prediction models achieving good performance
in terms of Accuracy, F-Measure and AUC metrics. But there isn’t a common
set of code metrics applied to all studied projects; For all the bug-prone fea-
tures, we can effectively model the growth trends of their bug-proneness, so that
we can monitor how these bug-prone features accumulate bugs during software
evolution.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China under the grant No. 62002129, the Hubei Provincial Natural Science
Foundation of China under the grant No. 2020CFB473, and the Fundamental Research
Funds for the Central Universities under the grant No. CCNU19TD003.

References

1. Antoniol, G., Ayari, K., Penta, M.D., Khomh, F., Gueheneuc, Y.-G.: Is it a bug or
an enhancement?: a text-based approach to classify change requests. In: Proceed-
ings of the 2008 Conference of the Center for Advanced Studies on Collaborative
Research: Meeting of Minds, pp. 23:304–23:318 (2008)

2. Arisholm, E., Briand, L.C., Johannessen, E.B.: A systematic and comprehensive
investigation of methods to build and evaluate fault prediction models. J. Syst.
Softw. 83(1), 2–17 (2010)

3. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine
learning. Artif. Intell. 97(1–2), 245–271 (1997)

4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
5. Cataldo, M., Mockus, A., Roberts, J.A., Herbsleb, J.D.: Software dependencies,

work dependencies, and their impact on failures. IEEE Trans. Softw. Eng. 35(6),
864–878 (2009)

6. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994)

7. Chinchor, N.: MUC-4 evaluation metrics. In: Proceedings of the 4th Conference on
Message Understanding, pp. 22–29 (1992)

8. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

Predicting and Monitoring Bug-Proneness at the Feature Level 217

9. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theor.
13(1), 21–27 (2006)

10. de Carvalho, A.B., Pozo, A., Vergilio, S.R.: A symbolic fault-prediction model
based on multiobjective particle swarm optimization. J. Syst. Softw. 83(5), 868–
882 (2010)

11. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code:
a taxonomy and survey. J. Softw. Maint. Evol.: Res. Pract. 25, 53–95 (2011)

12. Forman, G.: An extensive empirical study of feature selection metrics for text
classification. J. Mach. Learn. Res. 3, 1289–1305 (2003)

13. Gao, K., Khoshgoftaar, T.M., Napolitano, A.: Combining feature subset selection
and data sampling for coping with highly imbalanced software data. Int. J. Softw.
Eng. Knowl. Eng. 115–146 (2015)

14. Giger, E., D’Ambros, M., Pinzger, M., Gall, H.C.: Method-level bug prediction. In:
Proceedings of the ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM 2012, pp. 171–180 (2012)

15. Gyimothy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented metrics
on open source software for fault prediction. IEEE Trans. Softw. Eng. 31(10),
897–910 (2005)

16. Hair, J.F., Ringle, C.M., Sarstedt, M.: PLS-SEM: indeed a silver bullet. J. Mark.
Theory Pract. 19(2), 139–151 (2011)

17. Hall, M.A.: Correlation-based feature selection for discrete and numeric class
machine learning. In: Proceedings of the Seventeenth International Conference on
Machine Learning, pp. 359–366 (2000)

18. Hata, H., Mizuno, O., Kikuno, T.: Bug prediction based on fine-grained module
histories. In: Proceedings of the 34th International Conference on Software Engi-
neering, pp. 200–210 (2012)

19. Haykin, S.: Neural Networks: A Comprehensive Foundation. 2nd edn. (2004)
20. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data

Eng. 21(9), 1263–1284 (2009)
21. Herzig, K., Just, S., Zeller, A.: It’s not a bug, it’s a feature: how misclassification

impacts bug prediction. In: Proceedings of the 2013 International Conference on
Software Engineering, pp. 392–401 (2013)

22. Joseph, J., Hair, F., Hult, G.T.M., Ringle, C., Sarstedt, M.: A Primer on Partial
Least Squares Structural Equation Modeling (PLS-SEM). Sage, Thousand Oak
(2013)

23. Kamei, Y., et al.: A large-scale empirical study of just-in-time quality assurance.
IEEE Trans. Softw. Eng. 39(6), 757–773 (2013)

24. Kim, S., Zimmermann, T., James Whitehead, J.E., Zeller, A.: Predicting faults
from cached history. In: Proceedings of 29thInternational Conference on Software
Engineering, pp. 489–498 (2007)

25. Koru, A.G., Zhang, D., Emam, K.E., Liu, H.: An investigation into the functional
form of the size-defect relationship for software modules. IEEE Trans. Softw. Eng.
35(2), 293–304 (2009)

26. Lewis, D.D.: Naive (bayes) at forty: the independence assumption in information
retrieval. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp.
4–15. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026666

27. Malhotra, R., Khanna, M.: An empirical study for software change prediction using
imbalanced data. Empir. Softw. Eng. 22(6), 2806–2851 (2017). https://doi.org/10.
1007/s10664-016-9488-7

28. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 2(4), 308–320
(1976)

https://doi.org/10.1007/BFb0026666
https://doi.org/10.1007/s10664-016-9488-7
https://doi.org/10.1007/s10664-016-9488-7

218 S. Wei et al.

29. Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn
defect predictors. IEEE Trans. Softw. Eng. 33(1), 2–13 (2007)

30. Mishra, B., Engg, C., Shukla, K.: Defect prediction for object oriented software
using support vector based fuzzy classification model. Int. J. Comput. Appl. (2012)

31. Mo, R., Cai, Y., Kazman, R., Feng, Q.: Assessing an architecture’s ability to sup-
port feature evolution. In: Proceedings of the 26th Conference on Program Com-
prehension, pp. 297–307 (2018)

32. Mockus, A., Weiss, D.M.: Predicting risk of software changes. Bell Labs Tech. J.
5(2), 169–180 (2000)

33. Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures.
In: Proceedings of 28th International Conference on Software Engineering, pp.
452–461 (2006)

34. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Predicting the location and number of
faults in large software systems. IEEE Trans. Softw. Eng. 31(4), 340–355 (2005)

35. Pai, G.J., Dugan, J.B.: Empirical analysis of software fault content and fault prone-
ness using Bayesian methods. IEEE Trans. Softw. Eng. 33(10), 675–686 (2007)

36. Schröter, A., Zimmermann, T., Zeller, A.: Predicting component failures at design
time. In: Proceedings of the 2006 ACM/IEEE International Symposium on Empir-
ical Software Engineering, ISESE 2006, pp. 18–27 (2006)

37. Shatnawi, R.: Improving software fault-prediction for imbalanced data. In: 2012
International Conference on Innovations in Information Technology (IIT), pp. 54–
59 (2012)

38. Sliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? In: Pro-
ceedings of the 2005 International Workshop on Mining Software Repositories, pp.
1–5 (2005)

39. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for
classification tasks. Inf. Process. Manage. 45(4), 427–437 (2009)

40. Stone, M.: Cross-validation choice and assessment of statistical predictions. J. Roy.
Stat. Soc. 36, 111–133 (1974)

41. Syer, M.D., Nagappan, M., Adams, B., Hassan, A.E.: Replicating and re-evaluating
the theory of relative defect-proneness. IEEE Trans. Softw. Eng. 41(2), 176–197
(2015)

42. Wan, Z., Xia, X., Hassan, A.E., Lo, D., Yin, J., Yang, X.: Perceptions, expectations,
and challenges in defect prediction. IEEE Trans. Softw. Eng. 46, 1241–1266 (2018)

43. Yan, M., Fang, Y., Lo, D., Xia, X., Zhang, X.: File-level defect prediction: unsu-
pervised vs. supervised models. In: 2017 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), pp. 344–353 (2017)

44. Yang, Y., et al.: An empirical study on dependence clusters for effort-aware fault-
proneness prediction. In: Proceedings of the 31st IEEE/ACM International Con-
ference on Automated Software Engineering, ASE 2016, pp. 296–307 (2016)

45. Yang, Y., et al.: Effort-aware just-in-time defect prediction: simple unsupervised
models could be better than supervised models. In: Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pp. 157–168 (2016)

46. Zimmermann, T., Nagappan, N., Gall, H., Giger, E., Murphy, B.: Cross-project
defect prediction: a large scale experiment on data vs. domain vs. process. In:
Proceedings of the the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, ESEC/FSE 2009, pp. 91–100 (2009)

CSFL: Fault Localization on Real Software Bugs
Based on the Combination of Context

and Spectrum

Yue Yan1,2, Shujuan Jiang1,2(B), Shenggang Zhang1,2, and Ying Huang1,2

1 Engineering Research Center of Mine Digitalization, China University of Mining and
Technology, Ministry of Education, Xuzhou 221116, China

shjjiang@cumt.edu.cn
2 School of Computer Science and Technology, China University of Mining and Technology,

Xuzhou 221116, China

Abstract. Spectrum-based fault localization has been intensively studied
recently. Previous studies have shown that the traditional spectrum-based fault
localization applies statistical analysis on the coverage information about failed
or passed tests to calculate the suspiciousness of program elements by specific
formula. However, the traditional spectrum-based fault localization does not con-
sider the propagation of faults, it only counts whether a single program element
is covered by failed or passed tests. In this work, we propose an approach of
Context and Spectrum based Fault Localization (CSFL), which combines pro-
gram context analysis with spectrum for fault localization. Program context can
not only improve the effectiveness of fault localization, but also provides help
for developers. CSFL has been studied on 414 real bugs from the widely used
Defects4J benchmark. The experimental results show that CSFL outperforms the
SBFL techniques (e.g., localizing 61 more faults within Top-1). Furthermore, we
also investigate the time cost of CSFL.

Keywords: Software fault localization · Spectrum-based · Context analysis ·
Real software bugs

1 Introduction

Software testing is the most time-consuming and labor-intensive key step in the software
life cycle. Accurately locating the faults is both the highest priority and the most signifi-
cant for software testing. Early fault localization ismostly set by developers artificially or
relying on coding experience and personal intuition.Manual method of fault localization
is costly in terms of time and labor. At present, many semi-automatic methods for fault
localization have been proposed, such as spectrum-based fault localization (SBFL) [1],
mutation-based fault localization [2], machine learning-based fault localization [3], etc.
Recently, the most widely used method in the field of fault localization is the spectrum-
based fault localization. The program spectrum can describe the execution information,
such as the execution information of conditional branches or loop paths, which can be

© Springer Nature Switzerland AG 2021
S. Qin et al. (Eds.): SETTA 2021, LNCS 13071, pp. 219–238, 2021.
https://doi.org/10.1007/978-3-030-91265-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91265-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-91265-9_12

220 Y. Yan et al.

used to track the behavior of program elements [4]. With the information of the program
spectrum, it is possible to determine which elements are related to the program failure
and narrow the search range for faults.

Among the existing fault localization methods, SBFL has been extensively studied
because of its lightness and effectiveness. SBFL is based on a certain granularity of the
program spectrum for fault localization. SBFL has many formulas, such as Tarantula
[5], Ochiai [6], DStar [7], Jaccard [8], Kulczynski2 [9] and so on, which simply apply
statistical analysis to the coverage data of failed or passed tests to calculate the sus-
piciousness of code elements. The basic assumption is that the code executed by more
failed tests is more likely to be the fault. Despite widely studied, SBFL has a limitation in
design, that is, SBFL only pays attention to the individual elements of the program, and
does not consider the connections among the elements. In some cases, many potential
faults are not located or only the statements that trigger the fault can be found, and it is
hard to find the root statements that caused the fault by SBFL.

Program context [10] refers to the control flow or data flow information of the
program. In fact, some researchers have proposed using context information for error
location [11–13]. However, the previous works are mainly conducted on Siemens suite
from SIR [9] for experimental evaluation, the bugs are artificial bugs instead of real
bugs. Pearson et al. [14] had found that the fault localization technology of artificial
bugs is not very effective on real bugs. Therefore, fault localization approaches need to
be evaluated on real bugs.

To bridge the gap, we propose an approach of Context and Spectrum based Fault
Localization (CSFL), which combines the context analysis of programs with SBFL for
locating real software bugs. The time cost of the previous works [10, 11] that applied
context analysis of program for fault localization was high. In order to reduce the time
complexity, CSFL limits the scope when performing the context analysis.

In order to evaluate our CSFL, we conduct experiments on the Defects4J bench-
mark (v2.0.0) [15]. Experimental results show that the effectiveness of CSFL for fault
localization is better than the technologies that pure based on spectrum, such as Ochiai,
Dstar2, Jaccard and Tarantula. For example, CSFL can find 96 faults within Top-1,
which is 61 faults more than Ochiai.

The main contributions of this work are summarized in the following two aspects:

(1) We propose an approach that combines program context analysis with SBFL for
fault localization.

(2) We conduct experimental evaluation on real software bugs. The experimental results
have shown that our approach has improved the effectiveness of fault localization
compared with traditional SBFL technologies. In addition, we explore the time cost
of CSFL.

The rest of this article is organized as follows.We introduce the background of SBFL
and context analysis in Sect. 2, and describes the basic framework of our approach in
Sect. 3. The research questions and evaluation are elaborated in Sect. 4. The experimental
results and analysis are described in Sect. 5. We present the related work in Sect. 6.
Finally, we conclude our work in Sect. 7.

CSFL: Fault Localization on Real Software Bugs Based on the Combination 221

2 Background

We mainly describe the research background of CSFL by introducing spectrum-based
fault localization and context-based fault localization.

2.1 Spectrum-Based Fault Localization

As early as 1987, in order to find program elements related to time, the idea of using
program spectra to achieve fault localization was first proposed in a study on the millen-
nium bug problem [16]. Since then, SBFL has attracted extensive attention and research
from scholars [17]. It has gradually matured in the field of software fault localization
and has become the mainstream method.

The general form of spectrum matrix as shown in Table 1. The set of program
elements is expressed as E = {e1, e2, · · · , eM }, the set of test cases of the program
is indi- cated as T = {t1, t2, · · · , tN }. The table represents test cases of the program
(column 1), the program elements (column 2), and the execution results of tests (column
3). Where P or F describes that the test result is passed or failed. The table indicates the
element is covered or not covered through the test by 1 or 0 respectively (rows 3–7).

Table 1. Spectrum matrix.

T e1 e2 e3 · · · eM

t1 n11 n01 n11 · · · n11

t2 n10 n10 n00 · · · n10

t3 n10 n00 n10 · · · n10

· · · · · · · · · · · · · · · · · ·
tN n11 n01 n01 · · · n11

SBFL collects code coverage information during the execution of a test case firstly,
and then calculates the suspicious value of the program element by a predefined formula.
One of the assumptions of SBFL is that the statement covered by the failed test is more
likely to be a fault than the statement covered by the passed test. The granularity of
elements varies with requirements. Common granularities include statements,

functions, and methods. Different spectrum-based fault localization techniques
follow the same paradigm, but use different formulas to calculate the suspicious score.

After obtaining the spectra and matrix file of the program, calculating the suspicious
value of elements according to the specific formula of SBFL technique. Then, we output
the suspicious value in descending order to the rank list. We define the commonly used
symbols in the SBFL formulas as shown in Table 2 [18].

222 Y. Yan et al.

Table 2. Common symbols in SBFL.

Notation Meaning

P A program

NCF Number of failed test cases that cover a statement

NUF Number of failed test cases that do not cover a statement

NCS Number of successful test cases that cover a statement

NUS Number of successful test cases that do not cover a statement

NC Total number of test cases that cover a statement

NU Total number of test cases that do not cover a statement

NS Total number of successful test cases

NF Total number of failed test cases

ti The ith test case

Recent studies [7, 19] often discuss the comparison among the SBFL formulas. Xie
et al. [20] divided the formula into 6 groups and evaluated the performance of different
SBFL formulas. We pick four formulas with better performance to study: Ochiai [6],
Tarantula [5], DStar2 [21] and Jaccard [22]. Their definitions are shown in Table 3.

Table 3. SBFL formulas.

Name Formula

Ochiai Ochiai(e) = NCF√
NF ·(NCF+NCS)

Tarantula Tarantula(e) = NCF/NF
NCF/NF+NCS/NS

DStar2 DStar2(e) = N 2
CF

NCS+(NF−NCF)

Jaccard Jaccard(e) = NCF
NCF+NUF+NCS

SBFL only counts whether a single program element is covered by failed or passed
tests. The propagation of faults is not considered in SBFL [10]. But the program elements
are not independent, the elements influence each other. The dependency among program
elements is also very important for fault localization.

2.2 Context-Based Fault Localization

Taking advantage of various types of contextual information can greatly enrich the infor-
mation expression of entities. Therefore, researchers apply context information to fault
localization in software testing [23]. Program elements are not all independent individ-
uals. For structured programs such as sequence, selection, and loop, input statements,

CSFL: Fault Localization on Real Software Bugs Based on the Combination 223

output statements, assignment statements, and conditional statements can all reflect the
guiding role of context information. Regarding variables, the definition and utilization of
variables also reflect the context information of the dependencies. Path coverage infor-
mation through successful and failed test cases collected by SBFL also reflects context
information of running status.

The context information of the program can be obtained through the control depen-
dency graph and the data dependency graph. Our work mainly makes use of the context
information contained from the data dependence of the variables in the program for fault
localization. Data dependence is concerned with the interaction between the definition
and utilization of variables.

According to the definition of data flow analysis by Herman [24], in the control
dependency graph, if there is a control path between the definition node of the variable
x and the utilization node, and there is no redefinition node of x along the path, these
two nodes make up a Definition Use Pair (DUP), represented as a triple (def, use, var).
Where def represents the definition node of the variable, use represents the utilization
node of the same variable, and var represents the variable. CSFL collects contextual
information mainly along with the def and use of a var.

3 Approach

In this section, we introduce the basic framework of the CSFL firstly. Then, we describe
how to obtain contextual information. Finally, in order to facilitate understanding, we
show a case study.

3.1 Basic Framework

The basic framework of CSFL is shown in Fig. 1. We get the coverage information
through the tests executing source code firstly. When the execution of test cases is
finished, the elements will be divided into four categories: covered by failed tests, not
covered by failed tests, covered by passed tests, not covered by passed tests. SBFL

Fig. 1. Basic framework of CSFL

224 Y. Yan et al.

mainly performs statistical analysis on the statements covered by the failed test cases.
Secondly, we calculate the suspicious value of the statements based on the coverage
matrix by predefined formula. Sorting the statements in descending order of suspicious
value. We use the Readline() method in Java to get the top N statements in the ranked
list. Then, we analyze the data dependence of the top N statements by the tool Soot.
Finally, we resort to the context information and the suspicious statements in the ranked
list for fault localization.

A comprehensive context analysis will take a lot of time. In order to reduce the
time cost, CSFL analyzes some of the statements in the list. After gaining the context
information, we reorder the ranked list for fault localization. We add up the suspicious
values of the data-dependent statements, and assign the sum to the suspicious statements
as the new suspicious value. For example, the data dependence statements of e1 contain
ei and ej. The suspicious values of e1, ei and ej are s1, si and sj respectively. We add
the suspicious values s1, si and sj to sum, sum = s1 + si + sj, and assign sum to s1.
Then, we resort to the suspicious statements according to the new suspicious value.
The new suspicious value rank list is the final results of CSFL, which is the basis for
fault localization. Even if the fault element is not found in the ranked list, the context
information of the suspicious statements can also provide a direction for the developer
to locate the fault.

Generally, program elements can refer to classes, methods, or statements. Our work
is carried out at statement granularity. There are threemain reasons whywe choose state-
ment granularity. Firstly, context analysis is mainly for analyzing control dependence
and data dependence, the class or method granularity is too coarse. Secondly, the large
amount of code of our experiment object prompts us to research on statements, other-
wise the developers still need to spend a lot of efforts to locate faults. Finally, the faults
in the bug version are accurate to the statement, so our research is based on statement
granularity.

3.2 The Algorithm of Context Analysis

The execution result of the software largely depends on the execution context of the
program, including not only the execution traces, but also the data status of each variable,
and the current system environment state. Therefore, CSFL combines the analysis of the
program context with traditional fault location techniques to help developers locating
faults more accurately.

CSFL: Fault Localization on Real Software Bugs Based on the Combination 225

Algorithm 1: Context Analysis Algorithm.
Inputs: S //source code of program

= { ℎ , , 2, } //formulas of SBFL
Ranklist //ranked list of suspicious value

Outputs: D // dataset of dependence elements
Procedure Begin :
1: while ≠ do :
2: Calculate suspicious value of elements in S ;
3: Rank the elements in descending order " Ranklist ;
4: end while
5: for N = 1, 3, 5, 10 do :
6: Readline (1, N) ; ! Ranklist // read the top N statements
7: loading the class file through the class name by tool Soot;
8: converting the class file into a Jimple file ;
9: variables in Jimple file " valueBox ;
10: for variable in valueBox do :
11: if (variable != constant) then // judgment the Type of variable
12: searching the data dependence variables in SootMethod or SootClass ;
13: data dependence variables " D ;
14: return D ;
15: end if
16: end for
17: end for

CSFL mainly uses the data dependence of variables in the statements as the context
information, analyzing the dependence of variables through DUP [24]. Algorithm 1
describes the process of context analysis in detail and shows the key steps to obtain
context information. Firstly, we calculate a sorted list of suspicious values through a
certain formula of SBFL (lines 1–4). Secondly, we use the Readline() method in Java
library to read the top N statements in the sorted list (lines 5–6), N = {1, 3, 5, 10}.

According to the class name contained in the statement, loading the class file and
convert the class file into a Jimple file by Soot (line 7). We convert the Jimple file into
soot related objects (such as SootClass, SootMethod, ValueBox) and store variables in
Jimple file to ValueBox correspondingly (lines 8–9). Then, we traverse the variables in
the valueBox and eliminate constants (lines 10–11). We search for the variable to be
analyze among the soot objects (line 12). If a statement that contains the variable is
found, the statement is added to the data dependence set (line 13). Finally, returning
the data dependence set (line 14). After that, we use context information and suspicious
statements for fault localization.

3.3 The Case Study of CSFL

We take the Chart project bug 5 in the Defects4J benchmark as an example for spe-
cific analysis, as shown in Table 4. The table shows the top 5 statements with the sus-
picious value calculated by Ochiai [19] (column 1), the data dependence statements

226 Y. Yan et al.

(column 2) and the fault statements (column 3). The top 5 statements and the data
dependence statements will be the final results for fault statements. We can observe
that the top 5 suspicious statements do not include any fault statements. The context
dependence statements of the second suspicious statement include the fault statement
org.jfree.data.xy.XYSeries.java#548. It can be found from the examples that it is feasible
to apply context analysis for fault localization.

Table 4. The case study of context analysis.

Top-5 statements Data dependence
statements

Buggylines of Chart_5

org.jfree.data.xy.XYSeries#527 null org/jfree/data/xy/XYSeries.java#548#
org/jfree/data/xy/XYSeries.java#544#org.jfree.data.xy.XYSeries#564 541/547/548/549/556

org.jfree.data.xy.XYSeries#563 563/352/692

org.jfree.data.xy.XYSeries#570 570/388/689

org.jfree.data.xy.XYSeries#541 null

3.4 Time Cost Reduction

Context analysis requires static analysis of the code. The context within and between
classes is complicated, and the time cost is a challenge for CSFL. In order to reduce
the time cost, we have tried to apply program slicing technology to narrow the scope of
context analysis, but the experimental results show that this method is not suitable for
contextual fault localization. The reason may be that the program slicing destroyed the
code structure.

At last, we have limited the depth of data dependence analysis to reduce the time
cost. Because the propagation of faults is limited, the dependence will be reduced after
multiple layers function calls among statements, and the probability of causing software
faults will also be reduced. Therefore, we consider the data dependence within three
layers function calls.

4 Evaluation

In this section, the research questions are proposed firstly, and then we introduce the
subjects and implementation of the experiment. Finally, we describe the evaluation
measurements.

4.1 Research Questions

This work explores the following questions:

RQ1: How does CSFL perform for real faults localization?

CSFL: Fault Localization on Real Software Bugs Based on the Combination 227

RQ2: Howmuch effectiveness has CSFL improved compared with the traditional SBFL
techniques?
RQ3: How About the Time Cost of CSFL?

4.2 Experimental Subjects

To investigate the RQs, we use the Defects4J benchmark [25] of version 2.0.0 that has
been widely used in software testing. We use 6 subjects that contained 414 real faults.
The detailed information of these subjects is shown in Table 5. Where jfreechart is a
framework for creating charts, closure-compiler is a JavaScript compiler for optimiza-
tion,Apache commons-lang and commons-math are supplements to the existing libraries
in the JDK, and joda-time is a standard time library (column 2).Wemainly use the project
identifier to describe in the following (column 1).

Table 5. Details of Defects4J benchmark.

Identifier Project #Bugs #Test #KLoc

Chart Jfreechart 26 2,205 96

Closure Closure-compiler 154 9527 128

Lang Commons-lang 64 2245 22

Math Commons-math 106 3602 85

Mockito Mockito 38 1366 23

Time Joda-time 26 4130 28

Total 414 23075 382

In Table 5, the #Bugs represents the total number of faults in the benchmark (column
3), the #Tests represents the total number of test cases for each project (column 4), the
#KLoC represents the number of lines of code in the program (column 5).

4.3 Implementation Details

Wemainly introduce the implementation details of four different SBFL technologies and
context analysis in this section. In Sect. 2, we have provided the formulas of SBFL,which
are based on the code coverage information. We use the open-source tool Gzoltar [26] to
count the coverage information and calculate the suspicious value of the corresponding
element by Java program.

For the implementation of context analysis, we mainly analyze the context infor-
mation of the data dependence of variables. Soot is a Java compilation optimization
framework, which can be used to realize data flow analysis and control flow analysis of
Java bytecode programs. Soot further generates the data flowgraphby converting the Java
program into the intermediate code Jimple program. We mainly parse the intermediate
code Jimple file and output the dependent nodes of the variables.

228 Y. Yan et al.

4.4 Measurements

In order to evaluate the effectiveness of CSFL, we use threemeasurements:Exam,Recall
at Top-N and Percentage of Total_lines, which are widely used in the researches [3, 11,
12].

Exam Score
Exam is used to measure the percentage of program elements that need to be checked by
the developer among all candidate program elements before reaching the first expected
fault element, reflecting the relative rankingof fault elements and theoverall effectiveness
of the fault localization. Exam shows the search cost for fault localization. Therefore,
many previous studies [18, 27, 28] also used Exam, the calculation formula as follows.

Exam = Number of statements examined

Total number of candidate statements in the list
× 100% (1)

Recall at Top-N
Top-N is used to measure how many faults can be located among the top N elements of
all candidates. In a survey conducted by Kochhar et al. [20], 73% of developers thought
it was acceptable to check 5 procedural elements, and almost all developers believed
that checking 10 elements was the upper limit of its acceptable level. Therefore, we
consider the number of faults contained in the top N elements, where N ∈ {1,3,5,10}.
Note that even when multiple faulty elements of a fault are localized within top N, it is
only counted once.

Percentage of Total_lines
In specific calculations, even if one element is matched, it will be counted as catching the
fault, it is a coarse evaluation for faults with multiple elements. So we define Percentage
of Total_lines that represents the ratio of fault elements be located to total fault elements,
as shown in formula 2. If we find more fault elements in top N elements, the Number
of statements Located will be larger. Percentage of Total_lines reflects the accuracy of
techniques for fault localization to a certain extent.

Percentage of Total_lines = Number of statements Located

Total number of Buggylines
× 100% (2)

5 Results Analysis

5.1 RQ1: How Does CSFL Perform in Locating Real Faults?

To answer this question, we compare the effectiveness of CSFL with the SBFL tech-
nologies (Ochiai, Tarantula, Dstar2 and Jaccard). We combine the context analysis
technology with the four technologies respectively, and conduct experiments to evaluate
the effectiveness of fault localization. The detailed experimental results are from the
perspective of the three measurements of Top-N, Exam and Percentage of Total_lines.

CSFL: Fault Localization on Real Software Bugs Based on the Combination 229

We first analyze the Top-N measurement. Table 6 shows the compared techniques
(column 1), and the number of faults located in every range (columns 2–5). FromTable 6,
we can find that CSFL can locate more faults than other technologies, and CSFL-Ochiai
can locate 61more faults in Top-1 thanOchiai.CSFL-Ochiai has located 213 faults in the
Top-10. It can be found that CSFL get better effect than pure spectrum-based techniques.
CSFL supplements effective context information on the basis of SBFL for accurate fault
localization. The experimental results prove that combining context analysis and SBFL
to locate faults is feasible.

In addition, we can observe that the performance of CSFL-Ochiai in Top-3, Top-5
and Top-10 is better than CSFL-Tarantula, CSFL-Dstar2 and CSFL-Jaccard, indicating
that Ochiai is more fully utilized contextual information than the others. We mainly use
CSFL-Ochiai as an example for comparison analysis.

Table 6. Effectiveness of different techniques.

Techniques Top-1 Top-3 Top-5 Top-10

CSFL-Ochiai 96 149 182 213

CSFL-Tarantula 93 142 176 204

CSFL-Dstar2 84 132 163 188

CSFL-Jaccard 97 145 179 211

Ochiai 35 84 113 157

Tarantula 34 77 106 147

Dstar2 32 75 102 135

Jaccard 36 81 108 155

Table 6 is an overall reflection of the total number of faults located by all techniques
in the Top-N range. Next, we will analyze the effectiveness of various technologies for
each project in Table 7.

The Table 7 lists the Defects4J projects studied in this work (column 1), CSFL and
the compared techniques (column 2). On the whole, the number of faults that CSFL
located in the six projects is greater than that of the other four technologies (columns
3–6). Through observation, we can find that CSFL has improved the most onMath and
Lang projects. The table contains the Exam score of technique for every project (column
7). We can find that the Exam score of CSFL is within an acceptable range, which is
similar to other techniques.

In order to evaluate the effectiveness of CSFL more intuitively, we analyze the
proportion of fault localization. It can be found from Fig. 2 that CSFL has the highest
ratio compared to the other technologies in fault located, it has located 19.4%more faults
than Dstar2 in Top-5 most obviously. With the increase of range Top-N, the proportion
of faults located also gradually increases. We can observe that the fault located ratios
of Tarantula, Dstar2 and Jaccard are small, especially the effects of Tarantula and
Dstar2 are very close. The reason may be that the principle of statistical analysis of code
coverage is similar.

230 Y. Yan et al.

Table 7. Effectiveness of different techniques for every project.

Subjects Techniques Top-1 Top-3 Top-5 Top-10 Exam

Chart Ochiai
Tarantula
Dstar2
Jaccard

3 7 10 14 0.15

3 7 10 13 0.144

4 6 10 11 0.17

3 7 10 14 0.152

CSFL 10 15 19 20 0.149

Closure Ochiai
Tarantula
Dstar2
Jaccard

6 16 22 38 0.252

6 13 20 31 0.253

7 19 22 35 0.28

6 15 22 35 0.253

CSFL 14 28 35 47 0.249

Lang Ochiai
Tarantula
Dstar2
Jaccard

4 13 19 33 0.204

4 13 19 32 0.213

3 12 19 28 0.267

4 13 19 33 0.205

CSFL 18 28 37 45 0.216

Math Ochiai
Tarantula
Dstar2
Jaccard

15 26 34 42 0.154

16 27 35 43 0.157

9 18 25 32 0.22

16 27 34 43 0.154

CSFL 36 48 55 61 0.176

Mockito Ochiai
Tarantula
Dstar2
Jaccard

5 14 18 19 0.066

3 9 13 18 0.07

5 13 17 18 0.084

5 12 16 19 0.071

CSFL 11 18 22 24 0.07

Time Ochiai
Tarantula
Dstar2
Jaccard

2 8 10 11 0.156

2 8 9 10 0.157

4 7 9 11 0.155

2 7 9 11 0.157

CSFL 7 12 14 16 0.157

CSFL: Fault Localization on Real Software Bugs Based on the Combination 231

Fig. 2. Percentage of faults located by different techniques

With the range of search faults increases,more andmore context information is added
in CSFL. Will it bring higher search costs to developers? Fig. 3 shows the comparison
between CSFL and the other techniques in Exam. From Fig. 3 we can observe that there
is no significant difference between CSFL and other techniques in Exam. Compared
with other techniques, the Exam of CSFL is higher than that of Ochiai, Tarantula and
Jaccard in the Lang and Math projects, and it is very close to the Exam of these three
technologies in the other four projects. CSFL can locate almost twice as many faults as
the other four technologies, but the search cost has not increased. The main reason is
that we performed a series of sorting when adding context information to the sorting
list, which can advance the ranking of faults.

Fig. 3. Exam of different techniques

We also evaluate how many fault elements can be located by different techniques.
We use the evaluation measurement Percentage of Total_lines to calculate the ratio of
the number of located fault elements to total fault elements. The following analysis
provides the Percentage of Total_lines for each project within Top-N (N = {1,3,5,10})
respectively.

232 Y. Yan et al.

From Fig. 4-a, we can observe that the Percentage of Total_lines within Top-1 of
CSFL is higher than that of other SBFL techniques, and the performance is most obvious
in the Chart project. CSFL also locates the most fault statements in the other projects
within Top-1. Closure project has the lowest Percentage of Total_lines within Top-1 of
all techniques.

In the Fig. 4-b, 4-c and 4-d, we can also find the similar trend as the search range
Top-N increases, so does the Percentage of Total_lines. In Fig. 4-d, CSFL in Top-10
can locate up to 60% of the fault elements for the Lang project, which is more than
double the effect of other techniques. However, we can also find that CSFL and the other
techniques perform the worst in the Closure project. Within the Top-10, CSFL can only
locate 12% of the fault elements of theClosure project, and the other techniques perform
worse. The main reason may be that the code structure of Closure project is special, we
will continue to study so as to achieve better effectiveness. Based on the above, CSFL
performs better than the other techniques in any range for fault localization.

(a) (b)

(c) (d)

Fig. 4. Percentage of total lines within Top-N

5.2 RQ2: How Much Efficiency Has CSFL Improved?

To answer RQ2, we specifically introduce how much performance CSFL improves over
traditional SBFL techniques. Figure 5 shows the percentage of faults located by CSFL
compared to the other techniques in different search ranges. Figure 6 shows the average
improved percentage of faults located.

CSFL: Fault Localization on Real Software Bugs Based on the Combination 233

Figure 5 shows the combination of context with four techniques and their own effec-
tiveness for fault localization. Overall, we can find that CSFL-Ochiai, CSFL-Tarantula,
CSFL-Dstar2 andCSFL-Jaccard perform better thanOchiai, Tarantula,Dstar2 and Jac-
card respectively.CSFL-Ochiai has more than 14% improvement compared withOchiai
within Top-1. The highest growth occurred between CSFL- Jaccard and Jaccard in the
Top-5 range, which is about 17%, which fully illustrates the advantages of CSFL.

We can observe that the combination of context and Ochiai performs best in every
range. For example, CSFL-Ochiai is 2%, 3%, 1% higher than CSFL-Tarantula, CSFL-
Dstar2, CSFL-Jaccard respectively within Top-5. The percentage of faults located by
CSFL in Top-5 has increased more than that in Top-10 shows that the number of faults
located is not entirely proportional to the search range.

Fig. 5. Improvement of CSFL compared with other four techniques

From Fig. 6, it can be observed that the average improvement rate of CSFL in
different search ranges is not less than 15%. The biggest improvement is in Top-5 range,
and the lowest improvement is in Top-1 range. The main reason for that is the context
information of statements contained in Top-1 is limited.With the expansion of the search
scope to Top-5, the improvement rate of CSFL is also increasing.

Fig. 6. Average improvement of CSFL

234 Y. Yan et al.

However, when the search range is expanded to Top-10, the improvement rate of
CSFL is lower than that of Top-5. The main reason for the trend changed is that there
is too much contextual information analyzed in Top-10, and a lot of useless redundant
information will affect fault localization. Based on the above experimental evaluation,
we can get that CSFL is better than the traditional SBFL techniques in the performance
of fault localization.

5.3 RQ3: How About the Time Cost of CSFL?

CSFL combines context analysis with traditional SBFL techniques for fault localization,
and the time complexity has always been a challenge for context analysis. The context
of each program statement may have dozens of lines. In order to reduce the time cost,
we limit the data dependence depth analyzed to three in the specific implementation.
That is, we analyze the data flow within three-layers function calls of the variable. In
Table 8, we assessed the time cost of CSFL for each project in second.

Table 8. Efficiency of different techniques.

Subjects Context collection Computation

Top-1 Top-3 Top-5 Top-10

Chart 48 s 114 s 144 s 318 s 0.12 s

Closure 528 s 840 s 1230 s 2436 s 0.24 s

Lang 96 s 174 s 306 s 834 s 0.12 s

Math 222 s 348 s 552 s 966 s 0.3 s

Mockito 258 s 378 s 576 s 1062 s 0.18 s

Time 54 s 78 s 204 s 330 s 0.12 s

Table 8 shows the experimental projects (column 1), the time consumed for collect-
ing context information (columns 2–5), and the time consumed for CSFL computation
(column 6). The computation time includes the time to generate the spectrum and sort
the statements. From Table 8, we can observe that the time is mainly spent on collecting
context information. The computation time is very small for the whole, and the most
used is only 0.3 s, which is basically negligible.

For the largest project Closure and the widest search range Top-10, the time for
collecting context information is 2436 s, which is acceptable for most researchers. For
small projects such as Time, the time within Top-1 is less than 1 min, which is relatively
low for the technique of fault localization. As the search range Top − N decreases, the
time cost is also greatly reduced. The study of Xie et al. [20] showed that for more than
70% of researchers, the greatest afford ability is to check the code in Top-5. It can be
found that the time cost of most projects in Top-5 is within 600 s.

CSFL: Fault Localization on Real Software Bugs Based on the Combination 235

5.4 Threats to Validity

Our experimental evaluation shows CSFL is more effective than using SBFL techniques
for fault localization. However, there are threat to internal validity and external validity
in CSFL.

The threat to internal validity is the potential mistake in our implementation of the
CSFL. To reduce this threat, our implementation utilizes mature tools such as Gzoltar
[26] and Soot [29]. Furthermore, we have checked most of the experimental results to
verify their correctness manually.

The external validity threat mainly comes from the experimental subjects. The exper-
imental evaluation in our work is based on the six projects of the Defects4J bench-
mark [15]. When CSFL is applied to other test benchmarks or other projects within the
Defects4J benchmark, we cannot clearly state CSFL will achieve the same results. Only
by conducting such analysis and experimental evaluation on other projects can eliminate
this threat.

6 Related Work

In this section, we discuss related work with respect to two aspects. On one hand, we
explain spectrum-based fault localization investigated in ourwork. On the other hand, we
discuss the approaches that combine context with spectrum based for fault localization.

6.1 Spectrum-Based Fault Localization

Spectrum-based fault localization is one of the commonly used fault location techniques
[1], which is broadly utilized in program debugging. In the previous decade, many SBFL
techniques had been proposed. Tarantula [5] was a representative method proposed by
Jones and Harrold early. Abreu et al. [6] did a more thorough study and proposed a
better formula named Ochiai, which was widely in the fault localization domain. Wong
et al. [21] proposed an approach named DStar(D*), which can automatically suggest
suspicious locations for fault localization without any prior information about program
structure or semantics. It should be noted that * in the D* formula is usually assigned
the value 2 [14]. Chen et al. [30] proposed Jaccard technique, which is a statistically
based fault localization algorithm. Recently, some other formulas were proposed [9, 31,
32]. Although SBFL has many different formulas, they follow the same paradigm.

There were many studies compared the different spectrum-based fault localization
formulas [7, 19]. However, there is no formula claiming that it can outperform all others
under every scenario [18]. In addition to the influence of different formulas on the
effectiveness for fault localization. Since SBFL mainly relies on coverage information
of pass or fail tests, the attributes of the test suite directly affect fault localization [33,
34].

Furthermore, many studies tried to improve SBFL technique with other optimized
information such as suspicious variables [35] and quality assessment [36] or incorporated
techniques like data-augmenteddiagnosis [37]withSBFL. In contrast,we further explore
the effectiveness of SBFL by combining context information.

236 Y. Yan et al.

6.2 Combination of Context and Spectrum-Based for Fault Localization

Researchers tried to improve SBFL through program context. Ma et al. [10] proposed a
fault localization method based on the combination dependency network. By calculating
the combination dependency probability of each sentence, and then the propagation
context of the sentence was analyzed for fault localization. The difference between
CSFL and Ma’s work is that CSFL applies data dependence as context information, and
reorders the sorted list of suspicious statements for fault localization.

Wang et al. [11] mentioned the addition of context information to improve the effec-
tiveness of SBFL, but the definition of the context in the work is all suspicious program
elements that have been executed by failed tests except the element itself. The definition
of context information in CSFL is different fromWang’s work. Our definition of context
information is more specific and deeper. Ferenc et al. [12] proposed adding contextual
information to the suspicion ranking table to provide feedback to developers. However,
their work also needed the feedback from developers, and it was the key step of Ferenc’s
work. In the real process for fault localization, the developer is unable to provide accurate
feedback. CSFL has a complete framework for fault localization that do not need much
feedback from developers.

Not only that, but previous works mainly focused on artificial fault, and did not
highlight the advantages of context analysis. In contrast, CSFL is carried out on the
real software faults. The substantial increase in the amount of code in CSFL can further
fully integrate the context analysis, the effectiveness of fault localization has also been
improved significantly.

7 Conclusion

In this work, we propose an approach that combines context analysis with SBFL for
fault localization. The experimental evaluation is carried out on 414 real software faults
in the widely used Defects4J benchmark, which shows that CSFL can outperform the
traditional SBFL techniques. For example, it can locate 61 more faults than the Ochiai
within Top-1. The experimental results also show that the Exam score of CSFL is not
obviously different from other techniques. In addition, we have investigated the time
cost of CSFL, which is acceptable to most researchers.

Acknowledgment. The authors wish to thank the reviewers and editors for suggesting improve-
ments and for their helpful comments. Thisworkwas supported in part byNationalNatural Science
Foundation of China under grant No. 61673384.

References

1. Harrold, M.J., Rothermel, G., Sayre, K., Wu, R., Yi, L.: An empirical investigation of the
relationship between spectra differences and regression faults. J. Softw. Test., Verication,
Reliab. 10(3), 171–194 (2000)

2. Mike, P., Yves, L.T.: Metallaxis-FL: mutation-based fault localization. J. Softw. Test.,
Verication, Reliab. 25(5–7), 605–628 (2015)

CSFL: Fault Localization on Real Software Bugs Based on the Combination 237

3. Li, X., Li, W., Zhang, Y., Zhang, L.: DeepFL: integrating multiple fault diagnosis dimen-
sions for deep fault localization. In: Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2019), Association for Computing
Machinery, pp. 169–180 (2019)

4. Reps, T., Ball, T., Das, M., Larus, J.: The use of program profiling for software main-
tenance with applications to the year 2000 problem. In: Jazayeri, M., Schauer, H. (eds.)
ESEC/SIGSOFT FSE -1997. LNCS, vol. 1301, pp. 432–449. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63531-9_29

5. Jones, J.A., Harrold, M.J.: Empirical evaluation of the tarantula automatic fault-localization
technique. In: Proceedings of the 20th IEEE/ACM international Conference on Automated
software engineering, pp. 273–282 (2005)

6. Abreu, R., Zoeteweij, P., Van Gemund, A.J.: An evaluation of similarity coefficients for
software fault localization. In: Dependable Computing, 2006. PRDC06. 12th Pacifjc Rim
International Symposium on, pp. 39–46 (2006)

7. Wong, W.E., Debroy, V., Li, Y., Gao, R.: Software fault localization using dstar (d*). In:
Software Security and Reliability (SERE), In: 2012 IEEE Sixth International Conference on,
pp. 21–30 (2012)

8. Abreu, R., Zoeteweij, P., Van Gemund, A.J.: On the accuracy of spectrum-based fault
localization. In: Testing: Academic and Industrial Conference Practice and Research
Techniques-MUTATION, TAICPART-MUTATION 2007, pp. 89–98 (2007)

9. Naish, L., Lee, H.J., Ramamohanarao, K.: A model for spectra based software diagnosis.
ACM Trans. Softw. Eng. Methodol. (TOSEM) 20(3), 11 (2011)

10. Ma, P., Wang, Y., Su, X., Wang, T.: A novel fault localization method with fault propagation
context analysis. In: 2013 Third International Conferenceon Instrumentation, Measurement,
Computer, Communication and Control, Shenyang, pp. 1194–1199 (2013)

11. Wang, Y., Huang, Z., Li, Y., Fang, B.: Lightweight fault localization combined with fault
context to improve fault absolute rank. Sci. China Inf. Sci. 60(9), 092113:1-092113:16 (2017)

12. Horvth, F., Lacerda, V.S., Beszdes, Á., Vidcs, L., Gyimthy, T.: A new interactive fault local-
ization method with context aware user feedback. In: 2019 IEEE 1st International Workshop
on Intelligent Bug Fixing (IBF), pp. 23–28 (2019)

13. Zhang, Z., Tan, Q., Mao, X., et al.: Effective fault localization approach based on enhanced
contexts. J. Softw. 30(2), 266–281 (2019)

14. Pearson, S., et al.: Evaluating and improving fault localization. In: International Conference
on Software Engineering, pp. 609–620 (2017)

15. Just, R., Jalali, D., Ernst, M.D.: Defects4J: a database of existing faults to enable controlled
testing studies for Java programs. In: Proceedings of the International SymposiumonSoftware
Testing and Analysis (ISSTA), pp. 437–440 (2014)

16. Collofello, J.S., Cousins, L.: Towards automatic software fault localization through decision-
to-decision path analysis. In: Proceedings of National Computer Conference, pp. 539–544
(1987)

17. Agrawal, H., DeMillo, R.A., Spafford, E.H.: An execution backtracking approach to program
debugging. IEEE Softw. 8(5), 21–26 (1991)

18. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault localization.
IEEE Trans. Softw. Eng. 42(8), 707–740 (2016)

19. Xie, X., Wong, W., Chen, T., Xu, B.: Spectrum-based fault localization: testing oracles are no
longer mandatory. In: Proceedings of the 11th International Conference on Quality Software,
pp. 1–10 (2011)

20. Xie, X., Chen, T.Y., Kuo, F.-C., Baowen, X.: A theoretical analysis of the risk evaluation
formulas for spectrum-based fault localization. ACM Trans. Softw. Eng. Methodol. 22(4),
1–40 (2013). https://doi.org/10.1145/2522920.2522924

https://doi.org/10.1007/3-540-63531-9_29
https://doi.org/10.1145/2522920.2522924

238 Y. Yan et al.

21. Wong, W.E., Debroy, V., Gao, R., Li, Y.: The dstar method for effective software fault
localization. IEEE Trans. Reliab. 63(1), 290–308 (2014)

22. Artzi, S., Kiezun, A., et al.: Finding bugs in web applications using dynamic test generation
and explicit-state model checking. IEEE Trans. Softw. Eng. 36(4), 474–494 (2010)

23. https://bitbucket.org/rjust/fault-localization-data
24. Herman, P.M.: A data flow analysis approach to program testing. Aust. Comput. J. 8(3), 92–96

(1976)
25. Martinez, M., Durieux, T., Xuan, J., Sommerard, R., Monperrus, M.: Automatic repair of real

bugs: an experience report on the defects4j dataset (2015). arXiv preprintarXiv:1505.07002
26. https://gzoltar.com/
27. Jiang, J., Wang, R., Xiong, Y., Chen, X., Zhang, L.: combining spectrum-based fault local-

ization and statistical debugging: an empirical study. In: 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 502–514 (2019)

28. Reis, S., Abreu, R., d’Amorim, M.: Demystifying the combination of dynamic slicing
and spectrum-based fault localization. In: Twenty Eighth International Joint Conference on
Artificial Intelligence IJCAI 19, pp. 4760–4766 (2019)

29. https://github.com/soot-oss/soot
30. Chen, M.Y., Kiciman, E., Fratkin, E., Fox, A., Brewer, E.: Pinpoint: problem determination

in large, dynamic Internet services. In: Proceedings International Conference on Dependable
Systems and Networks, pp. 595–604 (2002)

31. Wong, W.E., Debroy, V., Choi, B.: A family of code coverage-based heuristics for effective
fault localization. J. Syst. Softw. 83(2), 188–208 (2010)

32. Zeller, A.: Isolating cause-effect chains from computer programs. In: Proceedings of the 10th
ACM SIGSOFT Symposium on Foundations of Software Engineering, pp. 1–10 (2002)

33. Baudry, B., Fleurey, F., Traon, Y.L.: Improving test suites for efficient fault localization. In:
28th international conference on Software engineering, pp. 82–91 (2006)

34. Yu, Y., Jones, J.A., Harrold, M.J.: An empirical study of the effects of test-suite reduction on
fault localization. In: International Conference on Software Engineering (ICSE), pp. 201–210
(2008)

35. Kim, J., Kim, J., Lee, E.: Vfl: Variable-based fault localization. Inf. Softw. Technol. 107,
179–191 (2019)

36. Liu, C., Ma, C., Zhang, T.: Improving spectrum-based fault localization using quality assess-
ment and optimization of a test suite. In: 2020 IEEE20th InternationalConference onSoftware
Quality, Reliability and Security Companion (QRS-C), pp. 72–78 (2020)

37. Elmishali, A., Stern, R., Kalech, M.: Data-augmented software diagnosis. In: Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, pp. 4003–4009 (2016)

https://bitbucket.org/rjust/fault-localization-data
http://arxiv.org/abs/1505.07002
https://gzoltar.com/
https://github.com/soot-oss/soot

A Distributed Simplex Architecture
for Multi-agent Systems

Usama Mehmood1(B), Scott D. Stoller1, Radu Grosu2, Shouvik Roy1,
Amol Damare1, and Scott A. Smolka1

1 Department of Computer Science, Stony Brook University, Stony Brook, USA
umehmood@cs.stonybrook.edu

2 Department of Computer Engineering, Technische Universität Wien,

Vienna, Austria

Abstract. We present the Distributed Simplex Architecture (DSA), a
new runtime assurance technique that provides safety guarantees for
multi-agent systems (MASs). DSA is inspired by the Simplex control
architecture of Sha et al., but with some significant differences. The tradi-
tional Simplex approach is limited to single-agent systems or a MAS with
a centralized control scheme. DSA addresses this limitation by extend-
ing the scope of Simplex to include MASs under distributed control. In
DSA, each agent runs a local instance of traditional Simplex such that the
preservation of safety in the local instances implies safety for the entire
MAS. Control Barrier Functions play a critical role. They are used to
define DSA’s core components (the baseline controller and the decision
module’s switching logic between advanced and baseline controllers) and
to verify the safety of a DSA instance in a distributed manner. We pro-
vide a general proof of safety for DSA, and present experimental results
for several case studies, including flocking with collision avoidance, safe
navigation of ground rovers through way-points, and the safe operation
of a microgrid.

Keywords: Runtime assurance · Simplex architecture · Control
barrier functions · Distributed flocking · Reverse switching

1 Introduction

A multi-agent system (MAS) is a group of autonomous, intelligent agents that
work together to solve tasks and carry out missions. MAS applications include
the design of power systems and smart-grids [1,2], autonomous control of robotic
swarms for monitoring, disaster management, military battle systems, etc. [3],
and sensor networks [4]. Many MAS applications are safety-critical. It is therefore
paramount that MAS control strategies ensure safety.

This work is supported in part by NSF awards OIA-2040599, CCF-1918225, CCF-
1954837, CPS-1446832 and ONR award N000142012751.

c© Springer Nature Switzerland AG 2021
S. Qin et al. (Eds.): SETTA 2021, LNCS 13071, pp. 239–257, 2021.
https://doi.org/10.1007/978-3-030-91265-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91265-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-91265-9_13

240 U. Mehmood et al.

Fig. 1. Architectural overview of DSA. Agents are homogeneous and operate under
DSA control; the figure zooms in on DSA components for agent i. Sensed state of
agent i’s jth neighbor denoted as Si,j . AC, BC, and DM take as input the state of the
agent and its neighbors.

In this paper, we present the Distributed Simplex Architecture (DSA), a new
runtime assurance technique that provides safety guarantees for MASs under
distributed control. DSA is inspired by Sha et al.’s Simplex Architecture [5,6],
but differs from it in significant ways. The Simplex Architecture provides runtime
assurance of safety by switching control from an unverified (hence potentially
unsafe) advanced controller (AC) to a verified-safe baseline controller (BC), if
the action produced by the AC could result in a safety violation in the near
future. The switching logic is implemented in a verified decision module (DM).
The applicability of the traditional Simplex Architecture is limited to systems
with a centralized control architecture.

DSA, illustrated in Fig. 1, addresses this limitation by re-engineering the
traditional Simplex architecture to widen its scope to include MASs. Also, as in
[7], it implements reverse switching by reverting control back to the AC when it
is safe to do so.

In DSA, for each agent, there is a verified-safe BC and a verified switching
logic such that if all agents operate under DSA, then safety of the MAS is
guaranteed. The BC and DM along with the AC are distributed and depend
only on local information. DSA itself is distributed in that it involves one local
instance of traditional Simplex per agent such that the conjunction of their
respective safety properties yields the desired safety property for the entire MAS.
For example, consider our flocking case study, where a group of robotic agents
is moving cohesively, and we want to establish collision-freedom for the entire
MAS. This can be accomplished in a distributed manner by showing that each
local instance of Simplex, say for agent i, ensures collision-freedom for agent i
and its neighboring agents.

DSA allows agents to switch their mode of operation independently. At any
given time, some agents may be operating in AC mode while others are operating
in BC mode. Our approach to the design of the BC and DM leverages Control
Barrier Functions (CBFs), which have been used to synthesize safe controllers
[8–10], and are closely related to Barrier Certificates used for safety verification
of closed dynamical systems [11,12]. A CBF is a mapping from the system’s (i.e.,
plant’s) state space to a real number, with its zero level-set partitioning the state
space into safe and unsafe regions. If certain inequalities on the derivative of the

A Distributed Simplex Architecture for Multi-agent Systems 241

CBF in the direction of the state trajectories (also known as Lie derivative) are
satisfied, then the corresponding control actions are considered safe (admissible).

In DSA, the BC is designed as an optimal controller with the goal of increas-
ing a utility function based on the Lie derivatives of the CBFs. As CBFs are
a measure of the safety of a state, optimizing for control actions with a higher
Lie derivative values provides a direct way to make the state safer. The safety
of the BC is further guaranteed by constraining the control action to remain in
a set of admissible actions that satisfy certain inequalities on the Lie derivatives
of the CBFs. CBFs are also used in the design of the switching logic, as they
provide an efficient method for checking whether an action could lead to a safety
violation during the next time step.

We demonstrate the effectiveness of DSA on several example MASs, including
a flock of robots moving coherently while avoiding inter-agent collisions, ground
rovers safely navigating through a series of way-points, and safe operation of a
microgrid.

2 Background

2.1 Simplex Architecture

The Simplex Control Architecture relies on a verified-safe baseline controller
(BC) in conjunction with the verified switching logic of the Decision Module
(DM) to guarantee the safety of the plant, while permitting the use of an unver-
ifiable, high-performance advanced controller (AC); see agent i in Fig. 1.

Let the admissible states of a system be those which satisfy all safety con-
straints and operational limits. All other states are inadmissible. The goal of the
Simplex Architecture is to ensure that the system never enters an inadmissible
state. The set R of recoverable states is a subset of the admissible states such
that the BC, starting from any state in R, guarantees that all future states
are also in R. The recoverable set takes into account the inertia of the physical
system, giving the BC enough time to preserve safety.

The DM’s forward switching condition (FSC) evaluates the control action
proposed by the AC and decides whether to switch to the BC. A common tech-
nique used to develop an FSC is to shrink the recoverable region by a margin
based on the maximum time derivative of the state and the length of a time
step, and switch to BC if the current state lies outside this smaller set.

2.2 Control Barrier Functions

Control Barrier Functions (CBFs) [13,14] are an extension of the Barrier Cer-
tificates used for safety verification of hybrid systems [11,12]. CBFs are a class
of Lyapunov-like functions used to guarantee safety for nonlinear control sys-
tems by assisting in the design of a class of safe controllers that establish the
forward-invariance of safe sets [10,15]. Our presentation of CBFs is based on
[14].

242 U. Mehmood et al.

Consider a nonlinear affine control system

ẋ = f(x) + g(x)u (1)

with state x ∈ D ⊂ R
n, control input u ∈ U , and functions f and g that are

locally Lipschitz. The set R of recoverable states is defined as the super-level set
of a continuously differentiable function h : D ⊂ R

n → R. The recoverable set
R and its boundary ∂R are given by:

R = {x ∈ D ⊂ R
n|h(x) ≥ 0} (2)

∂R = {x ∈ D ⊂ R
n|h(x) = 0} (3)

The time derivative of h(x) along the direction of the state evolution is

dh(x)
dt

=
∂h(x)

∂x
ẋ =

∂h(x)
∂x

(f(x) + g(x)u) (4)

which can be restated in the Lie derivative formulation as

dh(x)
dt

= Lfh(x) + Lgh(x)u. (5)

For all x ∈ D, if there exists an extended class K function α : R → R (strictly
increasing and α(0) = 0) such that the following condition on the Lie derivative
of h is satisfied:

sup
u∈U

[Lfh(x) + Lgh(x)u + α(h(x))] ≥ 0 (6)

then h is a valid CBF. Condition (6) implies the existence of a control action
for all x ∈ D, such that the Lie derivative of h is bounded from below by
−α(h(x)). Furthermore, for x ∈ ∂R, condition (6) reduces to a result for set
invariance known as Nagumo’s theorem [16,17]. Condition (6) is used to define
the set K(x) of control actions that establish the forward invariance of set R;
i.e., starting from x ∈ R, the state will always remain inside the set R:

K(x) = {u ∈ U : Lfh(x) + Lgh(x)u + α(h(x)) ≥ 0} (7)

The following theorem is from [14].

Theorem II.1. For the control system given in Eq. (1) and recoverable set R
defined in (2) as the super-level set of some continuously differentiable function
h : Rn → R, if h is a CBF for all x ∈ D and ∂h

∂x �= 0 for all x ∈ ∂R, then any
controller u such that ∀x ∈ D : u(x) ∈ K(x) ensures forward-invariance of the
set R.

Proof. See [14]. Condition (6) on the Lie derivative of h reduces, on the bound-
ary of R, to the set invariance condition of Nagumo’s theorem: for x ∈ ∂R,
ḣ ≥ −α(h(x)) = 0. Hence, according to Nagumo’s theorem [16,17], the set R is
forward-invariant.

A widely used technique for the synthesis of CBFs is SOS-optimization [18]
based search, which can be applied to a polynomial approximation of the systems
dynamics. Other methods of synthesizing CBFs are surveyed in [14].

A Distributed Simplex Architecture for Multi-agent Systems 243

3 Distributed Simplex Architecture

This section describes the Distributed Simplex Architecture (DSA). We for-
mally introduce the MAS safety problem and then discuss the main components
of DSA, namely, the distributed baseline controller (BC) and the distributed
decision module (DM).

Let an instance of DSA be symmetric if every agent uses the same switching
condition and baseline controller. Moreover, DSA, or more precisely the MAS
it is controlling, is homogeneous if every constituent agent is an instance of the
same plant model.

Consider a MAS consisting of k homogeneous agents, denoted as M =
{1, ..., k}, where the nonlinear control affine dynamics for the ith agent are:

ẋi = f(xi) + g(xi)ui (8)

where xi ∈ D ∈ R
n is the state of agent i and ui ∈ U ⊂ R

m is its control input.
For an agent i, we define the set of its neighbors Ni ⊆ M as the agents whose
state is accessible to i either through sensing or communication. Depending on
the application, the set of neighbors could be fixed or vary dynamically. For
example, in our flocking case study (Sect. 4), agent i’s neighbors (in a given
state) are the agents within a fixed distance r of agent i; we assume agent i can
accurately sense the positions and velocities of these agents.

We denote a combined state of all of the agents in the MAS as the vector
x = {xT

1 , xT
2 , . . . xT

k }T and denote a state of the neighbors of agent i (including
i itself) as xNi

. DSA uses discrete-time control: the DMs and controllers execute
every η seconds. We assume that all agents execute their DM and controllers
simultaneously; this assumption simplifies the analysis.

Admissible States. The set of admissible states A ⊂ R
kn consists of all states

that satisfy the safety constraints. A constraint C : Dk → R is a function from
k-agent MAS states to the reals. In this paper, we are primarily concerned with
binary constraints (between neighboring agents) of the form Cij : D × D → R,
and unary constraints of the form Ci : D → R. Hence, the set of admissible
states, A ⊂ R

kn are the MAS states of x ∈ R
kn such that all of the unary and

binary constraints are satisfied.
Formally, a symmetric instance of DSA is tasked with solving the following

problem. Given a MAS defined as in Eq. (8) and x(0) ∈ A, design a BC and DM
to be used by all agents such that the MAS remains safe; i.e. x(t) ∈ A, ∀ t > 0.

Recoverable States. For each agent i, the local admissible set Ai ⊂ R
n is

the set of states xi ∈ R
n that satisfy all unary constraints. The set Si ⊂ Ai

is defined as the super-level set of the CBF hi : Rn → R, which is designed to
ensure forward-invariance of Ai. Similarly, for a pair of neighboring agents i, j
where i ∈ M, j ∈ Ni, the pairwise-admissible set Aij ⊂ R

2n is the set of pairs
of states that satisfy all binary constraints. The set Sij ⊂ Aij is defined as the

244 U. Mehmood et al.

super-level set of the CBF hij : R2n → R designed to ensure forward-invariance
of Aij . The recoverable set Rij ⊂ R

2n, for a pair of neighboring agents i, j where
i ∈ M, j ∈ Ni, is defined in terms of Si, Sj and Sij .

Si = {xi ∈ R
n|hi(xi) ≥ 0} (9)

Sij = {(xi, xj) ∈ R
2n|hij(xi, xj) ≥ 0} (10)

Rij = (Si × Sj) ∩ Sij (11)

The recoverable set R ⊂ A for the entire MAS is defined as the set of system
states for which (xi, xj) ∈ Rij for every pair of neighboring agents i, j. Note that
if agent i and j’s controllers satisfy the following constraints based on the Lie
derivatives of hi, hj and hij , similar to the constraints in (7), the pairwise state
of agents i and j will remain in Rij according to Theorem II.1.

Lfhi(xi) + Lghi(xi)ui + α(hi(xi)) ≥ 0 (12a)

Lfhj(xj) + Lghj(xj)uj + α(hj(xj)) ≥ 0 (12b)

Lfhij(xi, xj) + Lghij(xi, xj)
[
ui

uj

]
+ α(hij(xi, xj)) ≥ 0 (12c)

Constraint Partitioning. Note that the constraints in (12) are linear in the
control variable. For ease of notation, we write the unary constraints as Aiui ≤ bi

and the binary constraints as [Pij Qij] [ui
uj] ≤ bij .

The binary constraint in (12c) is a condition on the control actions of a pair
of agents. For a centralized MAS, the global controller can pick coordinated
actions for agents i and j to ensure the binary constraint (12c) is satisfied. For
a decentralized MAS, however, the distributed control of the two agents can-
not independently satisfy the binary constraint without running an agreement
protocol.

As DSA is a distributed control framework, we solve the problem of the
satisfaction of binary constraints by partitioning a binary constraint into two
unary constraints such that the satisfaction of the unary constraints by agents i
and j implies the satisfaction of the binary constraint (but not necessarily vice
versa) [10].

Pijui ≤ bij/2
Qijuj ≤ bij/2

}
⇒ [

Pij Qij

] [
ui

uj

]
≤ bij (13)

Moreover, the equal partitioning of the binary constraint ensures that the agents
share an equal responsibility in maintaining it. The admissible control space for
agent i, denoted by Li, is the intersection of half-spaces of the hyper-planes
defined by the linear constraints.

Li = {ui ∈ U | ∀j ∈ Ni : Aiui ≤ bi ∧ Pijui ≤ bij/2} (14)

Theorem III.1. Given a MAS indexed by M and with dynamics as in (8), if
the controller for each agent i ∈ M chooses an action ui ∈ Li, thereby satisfying
the Lie derivative constraints on the respective CBFs, and x(0) ∈ R, then the
MAS is guaranteed to remain safe.

A Distributed Simplex Architecture for Multi-agent Systems 245

Proof. If all agents choose an action from their respective admissible control
spaces Li, then the forward-invariance of the set Si for all i ∈ M and Sij for all
i ∈ M, j ∈ Ni is established by Theorem II.1. Therefore, Rij is forward-invariant
for all i ∈ M, j ∈ Ni and consequently R is forward-invariant.

3.1 Baseline Controller

The BC is a distributed controller tasked with keeping the state of an agent in
the safe region. For an agent i, the BC’s control law depends on i’s state xi and
the states of its neighbors xj ,∀j ∈ Ni. In our design, the BC is strictly focused
on safety, leaving mission-critical objectives to the AC. Specifically, the BC is
designed to move the system away from unsafe states and toward safer states as
quickly as possible.

We design the BC as the solution to the following constrained multi-objective
optimization (MOO) problem where the utility function is the weighted sum of
objective functions based on the Lie derivatives of the CBFs hi and hij intro-
duced above:

u∗
i = argmax

ui

1
hi

(Lfhi + Lghiui) +
∑
j∈Ni

1
hij

(Lfhij + Lghij

[
ui

0

]
)

s.t. ui ∈ Li

(15)

The bottom component of the column vector in the last term is agent i’s
prediction for agent j’s next control action uj . Since we consider MASs in which
agents are unable to communicate their planned control actions, agent i simply
predicts that uj = 0. This approach has been shown to work well in prior work on
distributed model-predictive control for flocking [19] , where the control actions
are accelerations. Despite its complex form, at any given time, the utility function
in Eq. (15) is linear in ui, as the values of all other quantities are fixed. Since
the constraints are also linear, the optimization problem in Eq. (15) is a linear
program and hence can be efficiently solved in real-time.

Recall that, by definition, the CBFs quantify the degree of safety of a state
with respect to the given safety constraints, with larger (positive) values indicat-
ing safer states. A positive value of the Lie derivative indicates that the proposed
action will lead to a state that has a higher CBF value and therefore is safer.

The solution to the optimization problem (15) is a control action that max-
imizes the weighted sum of the Lie derivatives of the CBFs. We note that in a
weighted-sum formulation of a MOO problem, it is possible that some objective
functions are negative in the optimal solution. We ensure the selected action ui

is safe by constraining ui to be in the admissible control space Li, defined in
Eq. (14).

The weights in the utility function in Eq. (15) prioritize certain safety con-
straints over others. We use state-dependent weights in the form of inverses of
the CBFs, thereby giving more weight to maximizing the Lie derivatives of CBFs
corresponding to safety constraints that are closer to being violated.

246 U. Mehmood et al.

3.2 Decision Module

Each agent’s DM implements the switching logic for both forward and reverse
switching. Control is switched from the AC to the BC if the forward switching
condition (FSC) is true. Similarly, control is reverted back to the AC (from the
BC) if the reverse switching condition (RSC) is true. For an agent i, the state
of the DM is denoted as DMi ∈ {AC,BC}, with DMi = AC (DMi = BC)
indicating that the advanced (baseline) controller is in control. DSA starts with
all agents in the AC mode; i.e., DMi(t) = AC for all t ≤ 0 and i ∈ M; this is
justified by the assumption that x(0) ∈ R.

We derive the switching conditions from the CBFs as follows. To ensure
safety, the FSC must be true in a state xNi

(t) if an unrecoverable state is reach-
able from xNi

(t) in one time step η. The check for one-step reachability of an
unrecoverable state is based on computing the Taylor series approximation of
the CBF at the current time t, and evaluating it one time step in the future,
i.e., at time t + η. The Taylor series approximation of the CBF is a function
of its time-derivatives and can be regarded as a function of time based on the
dynamics of the system for a given value of the control input; we take the control
input of agent i to be the command proposed by the AC at time t and use the
worst-case commands as the control inputs for the neighboring agents j ∈ Ni.
The worst-case commands are defined as the control inputs that minimize the
value of the Taylor approximation of the CBF. If the Taylor series approximation
of any of the CBFs is negative during the next time step η, we switch control
to the BC. We denote the Taylor series approximation of the CBF h as ĥ. This
results in an FSC of the following form:

FSC(xNi
, t) = ∃tc ∈ (t, t + η] | (ĥi(tc) < 0) ∨ (∃j ∈ Ni | ĥij(tc) < 0) (16)

We derive the RSC using a similar approach, except the inequalities are
reversed, the worst-case commands are used as the control inputs for all the
agents, and an m-time-step reachability check with m > 1 is used; the latter is
to prevent frequent back-and-forth switching between the AC and BC. The RSC
holds if the Taylor series approximations of all the CBFs remain positive during
the next m · η seconds.

RSC(xNi
, t) = ∀tc ∈ (t, t + m · η] | (ĥi(tc) > 0) ∧ (∀j ∈ Ni | ĥij(tc) > 0) (17)

We experimented with various orders of Taylor series approximations in our
case studies. Since the time step η is typically small, even low-order Taylor series
approximation gives very good results, i.e., ĥ(t + η) is very close to the exact
value h(t + η). The switching condition can be made more rigorous by taking
into account the remainder error in the Taylor series approximation; Taylor’s
theorem provides a bound on the remainder error. We will explore this idea in
future work.

A Distributed Simplex Architecture for Multi-agent Systems 247

3.3 Safety Theorem

Our main result is the following safety theorem for DSA.

Theorem III.2. Given a MAS indexed by M with dynamics specified as in
Eq. (8), if each agent operates under DSA with the BC as in Eq. (15), the
switching logic as in Eqs. (16) and (17), and x(0) ∈ R ⊂ R

kn, then the MAS
will remain safe.

Proof. The proof proceeds by considering both possible DM states for an arbi-
trary agent i, and establishing that i’s next state is safe. First, consider agent i
at time t with DMi(t) = AC. As the FSC is false, the one-step reachability check
associated with the FSC ensures that the CBFs for unary and binary safety con-
straints are strictly positive in the next state xi(t+ η); i.e. hi(xi(t+ η)) > 0 and
∀j ∈ Ni : hij(xi(t + η), xj(t + η)) > 0. Hence the next state is recoverable.

Subsequently, consider agent i at time t with DMi(t) = BC. The unary
safety constraint is satisfied for agent i as the BC’s action is constrained within
the admissible control space. Next, we show that the binary safety constraints
with all neighboring agents are also satisfied. We divide the neighbors of i into
two sets based on their DM states: the set of neighbors in AC mode and the
set of neighbors in BC mode are denoted as N AC

i and N BC
i , respectively. The

neighbors in BC mode choose their control actions from their corresponding
admissible control spaces as in Eq. (14). As agent i also chooses its control action
from its admissible control space, according to Theorem III.1, the neighbors in
BC mode will satisfy the binary safety constraints with agent i. As for neighbors
in AC mode, due to the one-step reachability check in their FSC, in state xi(t+η),
the pairwise CBFs satisfy hij(xi(t + η), xj(t + η)) ≥ 0 for all j ∈ N AC

i . Hence,
xi(t+η) is recoverable for DMi(t) = BC. We have proven that for any agent i and
time step t, if xi(t) is recoverable, then xi(t + η) is recoverable. By assumption,
x(0) ∈ R. Therefore, by induction, x(t) ∈ R for t > 0.

4 Flocking Case Study

We evaluate DSA on the distributed flocking problem with the goal of preventing
inter-agent collisions. Consider a MAS consisting of k robotic agents with double
integrator dynamics, indexed by M = {1, . . . , k}:

[
ṗi

v̇i

]
=

[
0 I2×2

0 0

] [
pi

vi

]
+

[
0

I2×2

]
ai (18)

where pi, vi, ai ∈ R
2 are the position, velocity and acceleration of agent i ∈ M,

respectively. The magnitudes of velocities and accelerations are bounded by v̄
and ā, respectively. Acceleration ai is the control input for agent i. As DSA is
a discrete-time protocol, the state of the DM and the ai’s are updated every η
seconds. The state of an agent i is denoted by the vector si = [pT

i vT
i]T . The state

of the entire flock at time t is denoted by the vector s(t) = [p(t)T v(t)T]T ∈ R
4n,

where p(t) = [pT
1 (t) · · · pT

n (t)]T and v(t) = [vT
1 (t) · · · vT

n (t)]T are the vectors
respectively denoting the positions and velocities of the flock at time t.

248 U. Mehmood et al.

We assume that an agent can accurately sense the positions and velocities of
nearby agents within a fixed distance r. The set of the spatial neighbors of agent
i is defined as Ni(p) = {j ∈ M | j �= i ∧ ‖pi − pj‖ < r}, where ‖ · ‖ denotes the
Euclidean norm. For ease of notation, we sometimes use s and si to refer to the
state variables s(t) and si(t), respectively, without the time index.

The MAS is characterized by a set of operational constraints which include
physical limits and safety properties. States that satisfy the operational con-
straints are called admissible, and are denoted by the set A ∈ R

4k. The desired
safety property is that no pair of agents is in a “state of collision”. A pair of
agents is considered to be in a state of collision if the Euclidean distance between
them is less than a threshold distance dmin ∈ R

+, resulting in a binary safety
constraint of the form: ‖pi − pj‖ − dmin ≥ 0 ∀ i ∈ M, j ∈ Ni. Similarly, a state
s is recoverable if all pairs of agents can brake (de-accelerate) relative to each
other without colliding. Otherwise, the state s is considered unrecoverable.

4.1 Synthesis of Control Barrier Function

Let Rij ⊂ R
8 be the set of recoverable states for a pair of agents i, j ∈ M. The

flock-wide set of recoverable states, denoted by R ⊂ R
4k, is defined in terms of

Rij . As in [15], the set Rij is defined as the super-level set of a pairwise CBF
hij : R8 → R: Rij = {si, sj | hij(si, sj) ≥ 0}. The flock-wide set of recoverable
states R ⊂ A is defined as the set of system states in which (si, sj) ∈ Rij , for
every pair of neighboring agents i, j.

In accordance with [15], the function hij(si, sj) is based on a safety con-
straint over a pair of agents i, j ∈ M. The safety constraint ensures that for
any pair of agents, the maximum braking force can always keep the agents at
a distance greater than dmin from each other. As introduced earlier, dmin is
the threshold distance that defines a collision. Considering that the tangential
component of the relative velocity, denoted by Δv, causes a collision, the con-
straint regulates Δv by application of maximum acceleration to reduce Δv to
zero. Hence, the safety constraint can be represented as the following condition
on the inter-agent distance ‖Δpij‖ = ‖pi − pj‖, the braking distance (Δv)2/4ā,
and the safety threshold distance dmin:

∥∥Δpij

∥∥ − (Δv)2

4ā
≥ dmin (19)

hij(si, sj) =
√

4ā(
∥∥Δpij

∥∥ − dmin) − Δv ≥ 0 (20)

The braking distance is the distance covered while the relative speed reduces
from Δv to zero under a deceleration of 2ā. The constraint in Eq. (19) is re-
arranged to get the CBF hij given in Eq. (20).

Combining Eqs. (20) and (12c), we arrive at the linear constraint on the
accelerations for agents i and j, which constrains the Lie derivative of the CBF
in (20) to be greater than −α(hij). We set α(hij) = γh3

ij , as in [15], where
γ ∈ R

+, resulting in the following constraint on the accelerations of agents i, j:

A Distributed Simplex Architecture for Multi-agent Systems 249

ΔpT
ij(Δaij)

‖Δpij‖ − (ΔvT
ijΔpij)2

‖Δpij‖3
+

‖Δvij‖2
‖Δpij‖

+
2āΔvT

ijΔpij

‖Δpij‖
√

4ā(‖Δpij‖ − dmin)
≥ −γh3

ij

(21)

where the left-hand side is the Lie derivative of the CBF hij and Δpij = pi − pj ,
Δvij = vi − vj , and Δaij = ai − aj are the vectors representing the relative
position, the relative velocity, and the relative acceleration of agents i and j,
respectively. We further note that the binary constraint (21) can be reformu-
lated as [Pij Qij] [ai

aj] ≤ bij , and hence can be split into two unary constraints
Pijui ≤ bij/2 and Qijuj ≤ bij/2, following the convention in Eq. (13). The set
of safe accelerations for an agent i, denoted by Ki(si) ⊂ R

2, is defined as the
intersection of the half-planes defined by the Lie-derivative-based constraints,
where each neighboring agent contributes a single constraint:

Ki(si) =
{
ai ∈ R

2 | Pijui ≤ bij/2, ∀j ∈ Ni

}
(22)

With the CBFs for collision-free flocking defined in (20) and the admissible
control space defined in (22), the BC, FSC, and RSC follow from (15), (16), and
(17), respectively. We use Taylor approximation of order one to compute FSC
and RSC.

4.2 Advanced Controller

We use the Reynolds flocking model [20] as the AC. In the Reynolds model,
the accelerations ai for each agent is a weighted sum of three acceleration terms
based on simple rules of interaction with neighboring agents: separation (move
away from your close-by neighbors), cohesion (move towards the centroid of
your neighbors), and alignment (match your velocity with the average velocity of
your neighbors). The acceleration for agent i is ai = wsa

s
i + wca

c
i + wala

al
i , where

ws, wc, wal ∈ R
+ are scalar weights and as

i , a
c
i , a

al
i ∈ R

2 are the acceleration terms
corresponding to separation, cohesion, and alignment, respectively. We note that
the Reynolds model does not guarantee collision avoidance. Nevertheless, when
the flock stabilizes, the average distance to the closest neighbors is determined
by the weights of the interaction terms.

4.3 Experimental Results

The number of agents in the MAS is k = 15. The other parameters used in
the experiments are r = 4, ā = 5, v̄ = 2.5, dmin = 2, and η = 0.1s. The
length of the simulations is 50 s. The initial positions and the initial velocities
are uniformly sampled from [−10, 10]2 and [−1, 1]2, respectively, and we ensure
that the initial state is recoverable. The weights of the Reynolds model terms are
chosen experimentally to ensure that no pair of agents are in a state of collision
in the steady state. They are set to ws = 3, wc = 1.5, and wal = 0.5.

250 U. Mehmood et al.

3 mean MPD min MPD max MPD d
min

0 10 20 30 40 50
Time

0

0.5

1

1.5

2

2.5

3

D
is

ta
nc

e

(a) Reynolds Model

0 10 20 30 40 50
Time

0

0.5

1

1.5

2

2.5

3

D
is

ta
nc

e

(b) Reynolds Model with DSA

Fig. 2. The minimum pairwise distance (MPD) for a flock of size 15, calculated over
100 simulation runs, with and without DSA.

To demonstrate the effectiveness of DSA in preventing inter-agent collisions,
we generated 100 simulation runs using two different control strategies, starting
from the same set of random initial configurations. In the first set of 100 sim-
ulations, Reynolds model is used to control all agents for the duration of the
simulations. In the second set of 100 simulations, Reynolds model is wrapped
with a verified safe BC and DM designed using DSA.

We define the minimum pairwise distance (MPD), as the minimum Euclidean
distance between any pairs of agents in the flock, i.e., min

i,j∈M
‖pi−pj‖. Figure 2 shows

the spread of MPD at each time step, by plotting its mean, minimum, and
maximum values, calculated over 100 simulation runs.

As evident from Fig. 2(b), the minimum MPD is greater than dmin for the
entire duration of the simulation runs, indicating that DSA is able to prevent
inter-agents collisions for the 100 simulations. In contrast, as shown in Fig. 2(a),
Reynolds model results in safety violations during the first 42 s (Only the last 8 s
are collision-free in all 100 simulations) and the mean MPD crosses the safety
threshold at around 16 s. Moreover, operating under DSA, the distribution of
MPD is relatively uniform over the duration of the simulations. We further note
that the average time the agents spend in BC mode is only 3.44% of the total
duration of the simulation, indicating that DSA is largely non-invasive. Videos
of flocking under both control strategies are available online.1

The simulation results clearly demonstrate the effectiveness of DSA in guar-
anteeing inter-agent collision avoidance. We also ran simulations where all agents
are solely under the control of the BC. As the BC is strictly focused on safety,
we observed that the flock fragments as agents safely move out of the sensing
ranges of other agents.

The flocking case study clearly illustrate the guiding principles and benefits
of DSA. In particular, it shows that: (a) the AC is not always safe, but (b) the
combination of the AC and BC in DSA is safe, and (c) DSA outperforms the BC.

1 https://youtu.be/E ufaJRnfvo, https://youtu.be/PZz6nUA5fD8.

https://youtu.be/E_ufaJRnfvo
https://youtu.be/PZz6nUA5fD8

A Distributed Simplex Architecture for Multi-agent Systems 251

(a) Trajectories of agents passing through
WPs. Red/blue segments indicate AC/BC
mode.

0 10 20 30 40 50
Time/s

0

0.5

1

D
is

ta
nc

e

closest neighbor distance d
min

(b) Distance to closest neighbor for all
agents.

Fig. 3. Experimental results for way-point case study. (Color figure online)

5 Way-Point Case Study

This section describes the problem setup and experimental results for the way-
point (WP) control case study. The agent model is the same as the one used
for the flocking case study, given in Eq. (18). The experimental setup is shown
in Fig. 3, where the agents, initially positioned along the top of the figure, are
to navigate through a series of WPs while maintaining a safe distance from one
another. The WPs are represented by the black squares. The CBFs, BC and DM
are same as those defined for the flocking problem; see Sect. 4

The AC is a rule-based controller where each agent accelerates towards its
next WP (ignoring the other agents) until the final WP is reached. Agents are
assigned one WP from each row such that they are on a collision course if they
follow the AC’s commands.

5.1 Experimental Results

The number of agents used in the experiment is eight and the number of WPs
an agent is required to visit is four (one in each row). Initially, the agents are
at rest with their positions represented by the red dots in Fig. 3(a). The final
positions are shown as green dots. The duration of the simulation is 60 s. The
other parameters used in the experiments are r = 1.0, ā = 0.8, v̄ = 0.2, dmin =
0.15, and η = 0.05 s. The trajectories of the agents are given in Fig. 3(a), where
the segments in blue indicate when the BC is in control. Figure 3(b) plots the
smallest inter-agent distances, indicating that the agents maintain a safe distance
from one another. A video of the simulation is available online.2

2 https://youtu.be/AcC8iUI0TjU.

https://youtu.be/AcC8iUI0TjU

252 U. Mehmood et al.

6 Microgrid Case Study

With an increasing prevalence of distributed energy resources (DERs) such as
wind and solar power, electrification using microgrids (MGs) has witnessed
unprecedented growth. Unlike traditional power systems, MG DERs do not have
rotating components such as turbines. The lack of rotating components can lead
to low inertia, making MGs susceptible to oscillations resulting from transient
disturbances [21]. Ensuring the safe operation of an MG is thus a challenging
problem. In this case study, we demonstrate the effectiveness of DSA in main-
taining MG voltage levels within safe limits.

The MG we consider is a network of k droop-controlled inverters, indexed by
M = {1, . . . , k}. The dynamics of each inverter is modeled as [21–24]:

θ̇i = ωi (23a)

τiω̇i = ω0
i − ωi + λp

i (P
set
i − Pi) (23b)

τiv̇i = v0
i − vi + λq

i (Q
set
i − Qi) (23c)

where θi, ωi, and vi are respectively the phase angle, frequency, and voltage of
inverter i, i ∈ M. The state vector for the MG is denoted by s = [θT ωT vT]T ∈
R

3k, where θ, ω, and v are respectively vectors representing the voltage phase
angle, frequency, and voltage at each node of the MG. A pair of inverters are
considered neighbors if they are connected by a transmission line. Also, λp

i and
λq

i are droop coefficients of “active power vs frequency” and “reactive power vs
voltage” droop controllers, respectively. τi ∈ R

+ is the time constant used for the
low-pass filters that are processing the active and reactive power measurements.
Finally, ω0

i and v0
i are the nominal frequency and voltage values.

Pi and Qi are the active and reactive powers injected by inverter i into the
system:

Pi = vi

∑
j∈Ni

vj(Gi,j cos θi,j + Bi,j sin θi,j)

Qi = vi

∑
j∈Ni

vj(Gi,j sin θi,j − Bi,j cos θi,j)
(24)

where θi,j = θi−θj , and Ni ⊆ M is the set of neighbors. Gi,j , Bi,j are respectively
conductance and susceptance values of the transmission line connecting inverters
i and j.

P set
i and Qset

i are the active power and reactive power setpoints. The inverters
have the ability to change their respective power setpoints according to the MG’s
operating conditions. This is modeled as:

P set
i = P 0

i + up
i , Qset

i = Q0
i + uq

i (25)

where P 0
i and Q0

i are the setpoints for the nominal operating condition, and up
i

and uq
i are control inputs.

A Distributed Simplex Architecture for Multi-agent Systems 253

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time/s

-0.4

-0.2

0

0.2
V

/p
.u

.
without DSA with DSA limits

Fig. 4. Voltage graph at node 4 of the MG network.

6.1 Synthesis of Control Barrier Function

The safety property for the MG network is a set of unary constraints restricting
the voltages at each node to remain within safe limits. The recoverable set Ri ⊂
R

3 for inverter i is defined as the super-level set of a CBF hi : R3 → R. We follow
the SOS-optimization technique given in [24] to synthesize the CBFs. Since the
power flow Eq. (23) are nonlinear, we apply a third-order Taylor series expansion
to approximate the dynamics in polynomial form. We then follow the three-step
process given in [24] to obtain the CBF for each MG node. We then calculate
the admissible control space according to Eq. (14), and the BC, FSC, and RSC
follow from Eqs. (15), (16), and (17), respectively. We have experimented with
various orders of Taylor approximations for the computation of FSC and RSC.

6.2 Advanced Controller

The AC sets the active/reactive power setpoints to their nominal values. Thus,
the AC does not limit voltage and frequency magnitudes but is only concerned
with stabilizing frequency and voltage magnitudes to their nominal values.

6.3 Experimental Results

We consider a 6-bus MG [24]. Disconnecting the MG from the main utility, we
replace bus 0 with a droop-controlled inverter (Eq. (23)), with inverters also
placed on buses 1, 4 and 5. Bus 0 is the reference bus for the phase angle.
Nominal values of voltage and frequency, as well as the active/reactive power
set-points, were obtained by solving the steady-state power-flow equations given
in Eq. (24); these were then used to shift the equilibrium point to the origin.
Droop coefficients λp

i and λq
i were set to 2.43 rad/s/p.u. and 0.20 p.u./p.u., τi

was set to 0.5 s, and the control period η was set to 0.01 s. Loads are modeled as
constant power loads, and a Kron-reduced network [25] with only the inverter
nodes was used for analysis. The safe set is defined in terms of the shifted (around
the 0 p.u.) nodal voltage magnitudes as follows: vi ≥ −0.4 p.u. ∧ vi ≤ 0.2 p.u.

The duration of the simulation is two seconds. Our results show that with
DSA, the voltage at each node remains within safe limits; without DSA, safety
limits are exceeded. Figure 4 gives the voltage plot at node 4. When the MG

254 U. Mehmood et al.

is operating under the control of DSA and the voltage approaches the upper
limit, a switch from AC to BC occurs. Subsequently, the BC reduces the voltage
inducing a reverse switch. The voltage profiles at the other nodes are similar.

7 Related Work

The original Simplex architecture [5,26] was developed for systems comprising
a single controller and a single (non-distributed) plant. With DSA, we extend
the scope of Simplex to MASs under distributed control. RTA [27,28] is a run-
time assurance technique that can be applied to component-based systems. In
this case, however, each RTA wrapper (i.e., each Simplex-like instance) indepen-
dently ensures a local safety property of a component. For example, in [27], RTA
instances for an inner-loop controller and a guidance system are uncoordinated
and operate independently. In contrast, in DSA, each agent takes the states
of neighboring agents into account when making control decisions, in order to
ensure that pairwise safety constraints are satisfied.

A runtime verification framework for dynamically adaptive multi-agent sys-
tems (DAMS-RV) is proposed in [29]. DAMS-RV is activated every time the
system adapts to a change in the system itself or its environment. This method
relies on a monitoring phase to observe and identify changes that occur in agent
collaboration so that verification can be carried out on the system operating in
new contexts. In contrast, DSA does not require such intermediary supervision.
In [30], a dynamic policy model that can be used to express constraints on agent
behavior is presented. These constraints limit agent autonomy to lie within well-
defined boundaries. Constraint specifications are kept simple by allowing the
policy designer to decompose a specification into components and define the
overall policy as a composition of these smaller units. In contrast, DSA uses
CBFs to compute the requisite safety regions.

In [10,14,15,31], CBF-based methodologies have been used for runtime safety
assurance of MASs. For example, in [10,15], a formal framework for collision
avoidance in multi-robot systems is presented. A CBF-based wrapper around
an advanced controller guarantees forward invariance of a safe set. The wrapper
solves an optimization problem involving the Lie derivative of the CBF to com-
pute minimal changes to the AC’s output needed to ensure safety. In contrast,
in DSA, no attempt is made to minimally perturb the AC’s output. Instead we
rely on CBF-based switching logic in the DM to forward switch to the BC if the
AC’s output is not recoverable.

In [32], a shield-based technique for runtime verification of multi-agent sys-
tems is presented. In this approach, which does not require global information,
every agent has a shield consisting of two components: a pathfinder that corrects
the behavior of the agent, and an ordering mechanism that dynamically modifies
the priority of the agent. An upper bound is derived on the maximum deviation
for any agent from its original behavior. In contrast, DSA relies on forward and
reverse switching between an agent’s advanced and baseline controllers to safely
allow completion of mission goals.

A Distributed Simplex Architecture for Multi-agent Systems 255

8 Conclusion

We have presented the Distributed Simplex Architecture, a runtime assurance
technique for the safety of multi-agent systems. DSA is distributed in the sense
that it involves one local instance of traditional Simplex per agent such that the
conjunction of their respective safety properties yields the desired safety property
for the entire MAS. Moreover, an agent’s switching logic depends only on its own
state and that of neighboring agents. We demonstrated the effectiveness of DSA
by successfully applying it to flocking, way-point visiting, and microgrid control.
As future work, we plan to apply DSA to non-homogenous MASs and implement
it on a physical platform.

In some situations, the BC’s optimization problem might become infeasible.
For example, for the flocking case study, infeasibility of the BC’s optimization
problem is possible if the agents are crowded in a small region. One possible
solution for infeasibility is to design aggressive control barrier functions that
guarantee feasibility at the cost of performance. For the flocking case study, one
such solution is a CBF that enforces the braking manoeuvre [10].

References

1. Nasir, M., Jin, Z., Khan, H.A., Zaffar, N.A., Vasquez, J.C., Guerrero, J.M.: A
decentralized control architecture applied to DC nanogrid clusters for rural elec-
trification in developing regions. IEEE Trans. Power Electron. 34(2), 1773–1785
(2019)

2. Boussaada, Z., Curea, O., Camblong, H., Bellaaj Mrabet, N., Hacala, A.: Multi-
agent systems for the dependability and safety of microgrids. Int. J. Interact.
Design Manuf. (IJIDeM) 10(1), 1–13 (2014). https://doi.org/10.1007/s12008-014-
0257-9

3. Tahir, A., Böling, J., Haghbayan, M.-H., Toivonen, H.T., Plosila, J.: Swarms of
unmanned aerial vehicles - a survey. J. Ind. Inf. Integr. 16, 100106 (2019)

4. Tynan, R., O’Hare, G.M.P., Marsh, D., O’Kane, D.: Multi-agent system architec-
tures for wireless sensor networks. In: Sunderam, V.S., van Albada, G.D., Sloot,
P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3516, pp. 687–694. Springer,
Heidelberg (2005). https://doi.org/10.1007/11428862 94

5. Seto, D., Sha, L.: A case study on analytical analysis of the inverted pendulum real-
time control system. Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, Technical report CMU/SEI-99-TR-023 (1999)

6. Sha, L.: Using simplicity to control complexity. IEEE Softw. 18(4), 20–28 (2001)
7. Phan, D.T., Grosu, R., Jansen, N., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural

simplex architecture. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.)
NFM 2020. LNCS, vol. 12229, pp. 97–114. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-55754-6 6

8. Gurriet, T., Singletary, A., Reher, J., Ciarletta, L., Feron, E., Ames, A.: Towards
a framework for realizable safety critical control through active set invariance.
In: 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems
(ICCPS), pp. 98–106 (2018)

https://doi.org/10.1007/s12008-014-0257-9
https://doi.org/10.1007/s12008-014-0257-9
https://doi.org/10.1007/11428862_94
https://doi.org/10.1007/978-3-030-55754-6_6
https://doi.org/10.1007/978-3-030-55754-6_6

256 U. Mehmood et al.

9. Egerstedt, M., Pauli, J.N., Notomista, G., Hutchinson, S.: Robot ecology:
constraint-based control design for long duration autonomy. Annu. Rev. Control.
46, 1–7 (2018)

10. Wang, L., Ames, A.D., Egerstedt, M.: Safety barrier certificates for heterogeneous
multi-robot systems. In: 2016 American Control Conference (ACC), pp. 5213–5218.
IEEE (2016)

11. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2 32

12. Prajna, S.: Barrier certificates for nonlinear model validation. Autom. 42(1), 117–
126 (2006)

13. Wieland, P., Allgöwer, F.: Constructive safety using control barrier functions. IFAC
Proc. Vol. 40(12), 462–467 (2007). 7th IFAC Symposium on Nonlinear Control
Systems

14. Ames, A.D., Coogan, S., Egerstedt, M., Notomista, G., Sreenath, K., Tabuada,
P.: Control barrier functions: Theory and applications. In: 18th European Control
Conference, ECC 2019, pp. 3420–3431. IEEE, Naples (2019)

15. Borrmann, U., Wang, L., Ames, A.D., Egerstedt, M.: Control barrier certificates
for safe swarm behavior. In: Egerstedt, M., Wardi, Y. (eds.) ADHS. Series IFAC-
PapersOnLine, vol. 48, no. 27, pp. 68–73. Elsevier (2015)

16. Blanchini, F., Miani, S.: Set-Theoretic Methods in Control. 1st edn. Birkhäuser
Basel (2007)

17. Blanchini, F.: Set invariance in control. Automatica 35(11), 1747–1767 (1999)
18. Wang, L., Han, D., Egerstedt, M.: Permissive barrier certificates for safe stabiliza-

tion using sum-of-squares. In: 2018 Annual American Control Conference, ACC
2018, pp. 585–590. IEEE (2018)

19. Mehmood, U., et al.: Declarative vs rule-based control for flocking dynamics. In:
Proceedings of 33rd Annual ACM Symposium on Applied Computing (2018)

20. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. SIG-
GRAPH Comput. Graph. 21(4), 25–34 (1987)

21. Pogaku, N., Prodanovic, M., Green, T.C.: Modeling, analysis and testing of
autonomous operation of an inverter-based microgrid. IEEE Trans. Power Elec-
tron. 22(2), 613–625 (2007)

22. Schiffer, J., Ortega, R., Astolfi, A., Raisch, J., Sezi, T.: Conditions for stability of
droop-controlled inverter-based microgrids. Automatica 50(10), 2457–2469 (2014)

23. Coelho, E.A.A., Cortizo, P.C., Garcia, P.F.D.: Small-signal stability for parallel-
connected inverters in stand-alone AC supply systems. IEEE Trans. Ind. Appl.
38(2), 533–542 (2002)

24. Kundu, S., Geng, S., Nandanoori, S.P., Hiskens, I.A., Kalsi, K.: Distributed bar-
rier certificates for safe operation of inverter-based microgrids. In: 2019 American
Control Conference (ACC), pp. 1042–1047 (2019)

25. Kundur, P., Balu, N., Lauby, M.: Power System Stability and Control. EPRI Power
System Engineering Series. McGraw-Hill Education (1994)

26. Seto, D., Krogh, B., Sha, L., Chutinan, A.: The simplex architecture for safe online
control system upgrades. In: Proceedings of the 1998 American Control Conference,
vol. 6, pp. 3504–3508 (1998)

27. Aiello, M., Berryman, J., Grohs, J., Schierman, J.: Run-time assurance for
advanced flight-critical control systems (2010)

28. Schierman, J., et al.: Run-time verification and validation for safety-critical flight
control systems (2012)

https://doi.org/10.1007/978-3-540-24743-2_32

A Distributed Simplex Architecture for Multi-agent Systems 257

29. Lim, Y.J., Hong, G., Shin, D., Jee, E., Bae, D.-H.: A runtime verification framework
for dynamically adaptive multi-agent systems. In: 2016 International Conference
on Big Data and Smart Computing (BigComp), pp. 509–512 (2016)

30. Alotaibi, H., Zedan, H.: Runtime verification of safety properties in multi-agents
systems. In: 2010 10th International Conference on Intelligent Systems Design and
Applications, pp. 356–362 (2010)

31. Ames, A.D., Xu, X., Grizzle, J.W., Tabuada, P.: Control barrier function based
quadratic programs for safety critical systems. IEEE Trans. Autom. Control 62(8),
3861–3876 (2017)

32. Raju, D., Bharadwaj, S., Topcu, U.: Online synthesis for runtime enforcement of
safety in multi-agent systems. Preprint ArXiv:1910.10380 (2019)

http://arxiv.org/abs/1910.10380

Satisfiability, Reachability and Model
Checking

OURS: Over- and Under-Approximating
Reachable Sets for Analytic

Time-Invariant Differential Equations

Ruiqi Hu, Meilun Li, and Zhikun She(B)

SKLSDE, LMIB and School of Mathematical Sciences, Beihang University,
Beijing 100191, China

{by1809102,zhikun.she}@buaa.edu.cn, hyniac.li@cloudwise.com

Abstract. We present OURS, a precision-oriented MATLAB tool
for computing Over- and Under- approximations of Reachable Sets
for analytic time-invariant differential equations. The main theoretical
framework behind OURS is introduced, including the concept of evo-
lution function, whose zero sub-level sets are used to describe reachable
sets, and a series representation of evolution function. Using the par-
tial sums of this series, OURS finds over- and under-approximations
of evolution function at time-instants: it consecutively estimates each
remainder of the corresponding partial sum of the series with interval
arithmetics until one remainder satisfies the designated precision, and
then builds over- and under-approximations with this remainder. The
structure of OURS is also presented, such as the forms of inputs and
outputs, and technical implementations of the crucial steps inside. We
also compare OURS with two other existing methods.

1 Overview of OURS

Safety verification and system falsification [1] are two crucial issues in various
realistic problems. However, it is impossible to obtain the exact reachable set
in general, especially for non-linear systems. In most cases, it is practical and
convenient to find over- or under-approximations of the reachable set instead.
Over-approximations of the reachable set can be used to prove that the system
avoids the unsafe set, on the other hand, under-approximations of the reachable
set can be used to prove that the system reaches the target set [2].

In this paper we present OURS, a MATLAB tool for computing both
Over- and Under-approximations of Reachable Sets for analytic time-invariant
differential equations (ATDEs). Following the theoretical analysis in [3,4], we
start with the concept of evolution function (EF) of an ATDE and find a series
representation of EF w.r.t. time t, named t-expansion. Therefore we can get
the EF without analytic solutions to the ATDE. OURS consecutively conducts
remainder estimations (RE) for the partial sums of t-expansion with interval

This work was supported by the Beijing Natural Science Foundation (Z180005).

c© Springer Nature Switzerland AG 2021
S. Qin et al. (Eds.): SETTA 2021, LNCS 13071, pp. 261–278, 2021.
https://doi.org/10.1007/978-3-030-91265-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91265-9_14&domain=pdf
https://doi.org/10.1007/978-3-030-91265-9_14

262 R. Hu et al.

arithmetics until one remainder satisfies the designated precision, and then builds
over-/under-approximations of EF, leading to the over-/under-approximations
of the reachable set. The main features of OURS are the following:

1. Equipped with sub-level sets, OURS can directly handle non-convex and
even non-connected sets (see Fig. 2c). Moreover, it can obtain over- and under-
approximations of reachable set at any desired instant in the time interval
from obtained explicit expressions without repeated computations.

2. Due to the use of interval arithmetics, the current version of OURS allows
rational functions, and even trigonometric (see Examples 4 and 7) and expo-
nential functions with arbitrary nestings in the input.

3. Different from [3], OURS uses the information not only from forward reach-
able sets but also form backward reachable sets (see Theorem 1 and Algo-
rithm 1), guaranteeing the output over- and under-approximations to be
bounded by designated precision (see Theorem 3). Moreover, we particularly
illustrate many of the details on implementation in this paper.

Related Work. In recent years, various methods have been discussed in the
literature for computing over- and under- approximations of reachable sets, such
as the abstraction method [5,6], the Lagrangian method [7,8], the Taylor expan-
sion method [9,10], the support function method [11,12], the constraint solv-
ing method [13], the level set method [14,15], etc. Their corresponding tools
have also been developed. CORA [16], a typical abstraction based tool pro-
posed by M. Althoff, is designed for various kinds of systems with purely con-
tinuous dynamics (linear systems, nonlinear systems, differential-algebraic sys-
tems, parameter-varying systems, etc.) and supports over-approximative com-
putation of reachable sets. Moreover, CORA [17] is also able to extract under-
approximations of reachable sets. Lagrangian method [18] studies the continual
reachability set and its connection to other backward reachability constructs,
further it can be generalized to characterize robust reachable sets or viability ker-
nels [19]. Flow* [20], a Taylor expansion based tool used to generate flowpipes for
non-linear hybrid systems, can handle discrete transitions on Taylor model flow-
pipe construction based on domain contraction and range over-approximation,
allowing Flow* to represent non-convex sets [21]. SpaceEx [12], a support func-
tion based tool focuses on the verification of safety properties of hybrid systems
with piecewise constant bounds on the derivatives, and solves the scalability
issues by making use of a wrapping-free algorithm for linear continuous systems.
The recent method in [22], a tool based on constraint solving, reduces the com-
putation of approximations to a semi-definite programming problem and then
solves this convex optimization by sum-of-squares decomposition tools. A tool-
box of level set was given in [14]. It describes reachable sets as the sub-level sets
of the viscosity solutions of the time-dependent Hamilton-Jacobi partial differ-
ential equations, and then uses an efficient toolbox of level set method [15] to
numerically solve them by gridding the state space so that one can tune the
accuracy of the results by varying the number of grid points.

OURS: Over- and Under-Approximating Reachable Sets 263

2 Main Theoretical Features

OURS deals with analytic time-invariant differential equations (ATDEs) of form

ẋ = f(x), x ∈ D, (1)

where x is an n-dimensional vector, D ⊆ R
n is a domain and f(x) : D → R

n

is an analytic real function. We define φ(x0, t) as the solution to (1), where x0

is the initial state. Moreover, we use (T−
x0

, T+
x0

) to represent the maximal time
interval of φ(x0, t), and define R− ≡ {(x, t) | x ∈ D ∧ t ∈ (T−

x , T+
x)}.

2.1 EF Based Description of Reachable Set

We define reachable set starting from the initial set of states as follows.

Definition 1. For given initial set of states X0 and time instant t, the reachable
set Reacht

f ,X0
of the ATDE (1) from X0 at instant t is defined as Reacht

f ,X0
=

{φ(x0, t) ∈ R
n | x0 ∈ X0}. And the reachable set within the time interval [T1, T2]

is defined as Reach
[T1,T2]
f ,X0

=
⋃

t∈[T1,T2]
Reacht

f ,X0
. For simplicity, we additionally

denote Reach
[0,T]
f ,X0

as ReachT
f ,X0

.

Throughout this paper, if the initial set X0 can be described by the zero sub-
level set μ(g) of a function g(x), i.e., X0 = μ(g) := {x ∈ R

n | g(x) ≤ 0}, we use
Reacht

f ,g (ReachT
f ,g) as an alias of Reacht

f ,X0
(ReachT

f ,X0
). Then, we will define

evolution function as follows, which will be used for representing the reachable
set Reacht

f ,X0
in Proposition 1.

Definition 2. For an analytic function g(x) : Rn → R, the evolution function
of the ATDE (1) with g(x) is defined as Evof ,gv (x, t) = g(φ(x,−t)),∀(x, t) ∈
R−.

The relationship between Reacht
f ,g and Evof ,gv (x, t) can be illustrated as

follows.

Proposition 1. For ATDE (1) and analytic g(x) : Rn → R, Reacht
f ,g = {x ∈

R
n | Evof ,gv (·, t) ≤ 0}.

Proposition 1 shows that, we can compute evolution function to represent
the reachable set. However, evolution function depends on the solution of (1)
which is generally unaccessible. Alternatively, we consider the Taylor expansion
of EF w.r.t. time t, named t-expansion:

Evof ,gv (x, t) =
+∞∑

i=0

Mi
f ,g(x)
i!

(−t)i, (2)

where Mi
f ,g(x) is defined inductively as M0

f ,g(x) = g(x) and Mi+1
f ,g (x) =

∂Mi
f,g(x)

∂x · f(x) for all x ∈ D. Moreover, we denote EvoN
f ,g(x, t) as the Nth partial

sum of t-expansion, i.e. EvoN
f ,g(x, t) ≡ ∑N

i=0

(−t)iMi
f,g(x)

i! .

264 R. Hu et al.

2.2 RE Based Approximation of Reachable Sets

We denote the remainder of the Nth partial sum of Evof ,gv (x, t) as
RemN

f ,g(x, t) = Evof ,gv (x, t)−EvoN
f ,g(x, t). It is proved in [3] that RemN

f ,g(x, t) can

be represented as RemN
f ,g(x, t) = − ∫ t

0
(r−t)N

N ! MN+1
f ,g (φ(x,−r))dr. Thus, if we can

find upper and lower bounds of MN+1
f ,g (φ(x,−r)), we can estimate RemN

f ,g(x, t),
arriving at over- and under-approximations of evolution function1 as shown in
Theorem 1.

Theorem 1. For given ATDE, g : Rn → R, degree N and time bound T , assume
that S and S

′
are compact sets of states such that D ⊇ S ⊇ ReachT

f ,g and
S

′ ⊇ ReachT
−f ,S. If we can find constants LN+1 and UN+1, satisfied that LN+1 ≤

MN+1
f ,g (y) ≤ UN+1, ∀y ∈ S

′
, then for all t ∈ [0, T],

1. if N is odd, EvoN
f ,g(x, t) + LN+1

tN+1

(N+1)! and EvoN
f ,g(x, t) + UN+1

tN+1

(N+1)! are the
over- and under-approximations of Evof ,gv (x, t) respectively over S;

2. if N is even, EvoN
f ,g(x, t)−UN+1

tN+1

(N+1)! and EvoN
f ,g(x, t)−LN+1

tN+1

(N+1)! are the
over- and under-approximations of Evof ,gv (x, t) respectively over S;

3. all precisions for above approximations are bounded by (UN+1 −LN+1) tN+1

(N+1)! .

To find over- and under-approximations of EF, we need to estimate upper and
lower bounds of MN+1

f ,g (φ(x,−r)). Since x ∈ S and −r ∈ (−t, 0), we have y =
φ(x,−r) ∈ ReachT

−f ,S . Considering that it is inconvenient to use ReachT
−f ,S

directly as the bound of y to estimate MN+1
f ,g (y), so we use a box S′ containing

the reachable set as the bound. Then we can iteratively compute upper bound
UN+1 and lower bound LN+1 of each MN+1

f ,g (y) for increasing N until UN+1 −
LN+1 ≤ ε·(N+1)!

TN+1 , such that the precision for over- and under-approximations of
EF are bounded by ε, and then generate over- and under-approximations of EF
as described in Theorem 1.

Remark 1. There is another method based on quantifier elimination in [3] to
estimate over- and under-approximations of EF, that is, with the same precon-
dition as Theorem 1, for given ε > 0, if a function P(x, t) satisfies P(x, 0) = g(x)
and −ε ≤ (0 ≤)∂P(x,t)

∂x · f(x) + ∂P(x,t)
∂t ≤ 0(≤ ε) for all (x, t) ∈ S

′ × [0, T], then
P(x, t) is an over- (under-) approximation of EF over S, i.e., for all t ∈ [0, T] and
x ∈ S, 0 ≤ (−εt ≤)Evof ,gv (x, t) − P(x, t) ≤ εt(≤ 0). Since this method is based
on quantifier elimination [23], it is not suitable for precision-oriented requirement
and thus we here only use the method based on RE to design OURS.

3 Main Implementation Features

The structure of OURS is shown in Fig. 1. First, OURS reads the inputs
including the description of ATDE, initial set, time bound, etc., and splits the
1 For two n-dimensional scale functions f1 (x) and f2 (x), f1 (x) is an over- (or under-)
approximation of f2 (x) over S if f1 (x) ≤ (or ≥)f2 (x), ∀x ∈ S.

OURS: Over- and Under-Approximating Reachable Sets 265

Fig. 1. Structure of OURS

time bound into segments with equal length. Then, before operating in each
time segment, OURS computes a series of rough enclosures for reachable sets
(Preprocessing). For each segment, OURS first iteratively computes upper and
lower bounds of each remainder of the partial sums for increasing degree until
one remainder satisfies the designated precision, and then constructs over- and
under-approximations according to Theorem 1 (EF based RE); further, OURS
simplifies the results for output (Simplification). OURS repeats this procedure
for all time-segments and returns piecewise over- and under-approximations of
EF, with a list of bounds for reachable sets for the corresponding segments.

3.1 Inputs and Outputs

We use the following example as the running example
{

ẋ1 = x2
ẋ2 = −0.2x1 + x2

,

with the initial set {(x1, x2) ∈ R
2 | (x 2

1 − 1)2 + (x 2
2 − 1)2 ≤ 1} (drawn in Fig. 2a)

and the time bound T = 1, to illustrate the input and output of OURS.
The input of OURS contains: varList, f, g, S, epsilon, T, K, r.

– varList is the symbolic list of names for all dimensions in the dynamical
system. Therefore the length of varList is the dimension of the input system
variables. In the running example, varList := [x1,x2].

– f is the vector field and g determines the initial set X0 = μ(g). In the running
example, f := [x2, -x1/5+x2], g := (x1^2-1)^2+(x2^2-1)^2-1. Notice
that if f or g is non-polynomial, so is the output of OURS. Current version
of OURS allows rational functions, and even trigonometric and exponential
functions with arbitrary nestings in f and g.

– S is a box containing X0. In the running example, S := [-2,2,-2,2] is a
proper choice of S, indicating that −2 ≤ x1 ≤ 2 and −2 ≤ x2 ≤ 2.

– epsilon is the precision requirement for the results. Since OURS is a
precision-oriented method, we need to designate epsilon for over- and under-
approximations of EF. In the running example we set epsilon:=1e-2.

– T is the time bound. In the running example we set T := 1, indicating that
we estimate the EF Evof ,gv (x, t) for t ∈ [0, 1].

266 R. Hu et al.

x1

x 2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) The Initial Set
x
1

x 2

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(b) Results at t = 1

x1

x 2

−4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

(c) Under-approximation at t = 0.8

Fig. 2. Running Example for OURS.

– K is a natural number to split time bound. Since OURS uses time-splitting
technique, K is required to separate the given time interval. In the running
example, we set K := 10, so that each time-segment is [0, 0.1].

– r is a number within (0, 1]. It represents the negotiation rate of precision allo-
cation: OURS will allocate a part of precision, r∗epsilon, to EF based RE
and the rest, (1−r)∗epsilon, to Simplification. In the running example and
examples in Sect. 4, we set r := 0.2.

The output of OURS contains: Over, Under, Bound.

– Over and Under are two lists of functions representing over- and under-
approximations of EF over Bound respectively. They can be treated as
piecewise functions Over(x, t) and Under(x, t) such that for the ith seg-
ment, Over i(x, t) and Under i(x, t) are stored in Over(i) and Under(i) (i.e.
Over i(x, t) = Over(i) and Under i(x, t) = Under(i)) for x ∈ Bound(i). Thus,
Over(x, t) = Over j (x, t − j−1

K
T), Under(x, t) = Under j (x, t − j−1

K
T) for all

x ∈ Bound(i) and t ∈ [j−1
K

T, j
K
T], 1 ≤ j ≤ K.

– Bound is the list of enclosures for reachable sets in each time-segment.

Results of the running example at t = 1 are depicted in Fig. 2b using ezplot
in MATLAB. The red/blue lines represent the boundaries of the over-/under-
approximation of reachable set at t = 1 respectively. It is worthy to note that
OURS can deal with non-convex even disconnected sets. For example, in the
running example, the under-approximation of EF at t = 0.8 is 0.81682*x1^4-
1.8506*x1^3*x2+1.5878*x1^2*x2^2-1.8307*x1^2-0.56579*x1*x2^3 +1.872
5*x1* x2+0.11316*x2^4-0.91999*x2^2+1.0039. The corresponding zero sub-
level set in Bound(8) is non-connected, as shown in Fig. 2c.

3.2 Technical Implementation

Based on the structure of OURS in the previous subsection, we here present
the pseudo-code of OURS in Algorithm 1. OURS first defines time length
ΔT := T/K and precision requirement Δε := epsilon/K for time-segment, and
consecutively calls procedures Preprocessing and EF based RE for computing
over- and under-approximations of EF. Therein, for each iteration, we denote

OURS: Over- and Under-Approximating Reachable Sets 267

Algorithm 1. Tool OURS
Input: varList, f, g, S, epsilon, T, K, r;
Output: Over, Under, Bound.
1: ΔT := T/K, Δε := epsilon/K;
2: Initialize Init(x) ⇐ g, Tailo ⇐ 0, Tailu ⇐ 0, i ⇐ 1;
3: Call Preprocessing (i.e, Algorithm 2) for Bound and Interval;
4: while i ≤ K do
5: S′ ⇐ Interval(i − 1), S ⇐ Interval(i);

6: Call EF based RE (i.e., Algorithm 3) for Tr(x, t), Tail
′
o(t), Tail

′
u(t);

7: Call Simplification (i.e., Algorithm 4) for Tr(x, t);

8: Overi ⇐ Tr(x, t) + Tailo − (1−r)Δε
2

+ Tail
′
o(t);

9: Underi ⇐ Tr(x, t) + Tailu + (1−r)Δε
2

+ Tail
′
u(t);

10: Tailo ⇐ Tailo − (1−r)Δε
2

+ Tail
′
o(ΔT),Tailu ⇐ Tailu + (1−r)Δε

2
+ Tail

′
u(ΔT);

11: Init(x) ⇐ Tr(x, ΔT) and i ⇐ i + 1;
12: Over := Overj (x, t − j−1

K
T), ∀t ∈ [j−1

K
T, j

K
T], 1 ≤ j ≤ K;

13: Under := Underj (x, t − j−1
K

T), ∀t ∈ [j−1
K

T, j
K
T], 1 ≤ j ≤ K;

the initial function as Init(x) and EvoN
f ,g(x, t) as Tr(x, t). Further, OURS calls

procedures Simplification to simplify Tr(x, t) and then obtain both over- and
under-approximations of evolution function with less terms, as shown in Line 8–
9 in Algorithm 1. Therefore, their performances are crucial to the efficacy of
OURS. In this subsection we explain how Preprocessing , EF based RE and
Simplification work when calling OURS.

Preprocessing. In Preprocessing , OURS computes a rough enclosure of the
reachable set for each segment as follows, which is necessary for using Theo-
rem 1. First, starting from the input S, OURS successively calls CORA2 to
get an enclosure Bound for the reachable set in each time segment based on the
previous enclosure. CORA can compute the over-approximation of reachable
set within given time-interval and return the resulting boxes, which is really
suitable for our purpose. Then, OURS uses CORA for each time segment to
calculate the over-approximation of the backward reachable set of previous over-
approximation, denoted as Interval. Here Bound and Interval satisfy that:
Reach[(i−1)ΔT,iΔT]

f ,g ⊆ Bound(i) for all 1 ≤ i ≤ K, Bound(K) = Interval(K), and

Reach[(K−i)ΔT,K−i+1ΔT]
−f ,Interval(K) ⊆ Interval(i − 1) for all 1 ≤ i ≤ K. Note that for the

ith segment, the initial set is Xi−1 = Reach(i−1)ΔT
f ,g , ReachΔT

f ,Xi−1
⊆ Bound(i)

and ReachΔT
−f ,Bound(i) ⊆ Interval(i − 1); moreover, Bound(i)/Interval(i − 1)

will be the enclosure S/S
′
used for Theorem 1 respectively.

2 The version we use is CORA− 2020. We can also replace CORA with some other
tools that can calculate a rough enclosure of the reachable set, such as VNODE-
LP [25] and RealPaver [26] etc.

268 R. Hu et al.

Algorithm 2. Preprocessing in OURS
Input: f, S, ΔT , K;
Output: Bound, Interval.
1: i ⇐ 1, S ⇐ S;
2: while i ≤ K do
3: Call CORA(f, S, ΔT) to update S, and Bound(i) ⇐ S;
4: i ⇐ i + 1;
5: i ⇐ K, Interval(K) ⇐ Bound(K);
6: while i ≥ 1 do
7: i ⇐ i − 1;
8: Call CORA(-f, S, ΔT) to update S, and Interval(i) ⇐ S;

Algorithm 3. EF based RE in OURS

Input: f, Init(x), S
′
, ΔT , rΔε;

Output: Tr(x, t),Tail
′
o(t),Tail

′
u(t).

1: Initialize Tr(x, t) ⇐ Init(x), f(x) ⇐ f, M (x) ⇐ ∂g(x)
∂x

· f(x), and N ⇐ 0;

2: Call CORA for L and U of M (x) in S
′
;

3: while not U − L ≤ rΔε·(N+1)!

TN+1 do

4: Tr(x, t) ⇐ Tr(x, t) + (−t)N+1

(N+1)!
M (x);

5: M (x) ⇐ ∂M (x)
∂x

· f(x), N ⇐ N + 1;

6: Call CORA for L and U of M (x) in S
′
;

7: Compute the remainder Tail
′
o(t) and Tail

′
u(t) according to Theorem 1;

EF Based RE. In EF based RE , OURS computes the over- and under-approx-
imations of evolution function satisfying the designated precision in S, according
to Theorem 1. Specifically, for given f, Init(x), S

′
, ΔT and designated precision

rΔε, OURS iteratively increases the degree N and estimate the lower bound L
and upper bound U of MN+1

f ,g (x) over S
′

with interval arithmetics in CORA

until U − L ≤ rΔε·(N+1)!
TN+1 . Then OURS returns the current partial sum of t-

expansion Tr(x, t) = EvoN
f ,Init(x, t), and the remainders of over- and under-

approximations (Tail
′
o(t), Tail

′
u(t)) of EF in S, obtained based on Theorem 1:

– Tail
′
o(t) = L tN+1

(N+1)! , Tail
′
u(t) = U tN+1

(N+1)! , if N is odd.

– Tail
′
o(t) = −U tN+1

(N+1)! , Tail
′
u(t) = −L tN+1

(N+1)! , if N is even.

Theorem 1 further shows us that |Tail
′
o(t) − Tail

′
u(t)|, the error of the current

step, is not greater than rΔε.
Moreover, for each time-segment, the corresponding initial functions g(x)

for the over-approximation and the under-approximation are Init(x) + Tailo
and Init(x) + Tailu , respectively. Observing that Tailo and Tailu are constants,
it is easy to see that even though these two initial functions Init(x) + Tailo
and Init(x) + Tailu are different, for all i ≥ 0, Mi+1

f ,g (x) = ∂Mi
f,g(x)

∂x · f(x) =
∂Mi

f,Init (x)

∂x · f(x) = Mi+1
f ,Init(x) holds for these two different initial functions,

OURS: Over- and Under-Approximating Reachable Sets 269

Algorithm 4. Simplification in OURS

Input: Tr(x, t), S, ΔT, (1−r)Δε
2

Output: Updated Tr(x, t).
1: List all terms in Tr(x, t), denoted as P ;
2: Compute an upper bound L of absolute value of each element in P in S by CORA;

3: P̄ := sortrow([P, L], 2), M ⇐ 1;

4: while not sum (P̄ (1 : M, 2)) ≥ (1−r)Δε
2

do
5: M ⇐ M + 1;
6: Tr(x, t) ⇐ sum(P̄ (M : end, 1));

indicating that Tailo and Tailu do not influence the satisfaction of U − L ≤
rΔε·(N+1)!

TN+1 in EF based RE and only the Init(x) that appears in both Init(x) +
Tailo and Init(x)+Tailu matters. Consequently, in each iteration, we can always
generate both over- and under-approximations of EF in a single sweep.

Simplification. We noticed that during time-splitting, if we directly use Tr(x, t)
obtained from EF based RE to initialize the successive iteration, as shown
in Line 11 in Algorithm 1, the scale of Init(x) will grow rapidly when i
increases. So as a remedy, we introduce procedure Simplification into OURS.
In Simplification, OURS lists all terms in the result Tr(x, t) of EF based RE
as a list P , and then calls CORA to compute an upper bound of absolute value
of each element in P in S. After sorting P by the upper bound in ascending
order, denoted as P̄ , OURS gathers the terms in P̄ until the sum of the cor-
responding upper bound of the collected terms exceeds (1−r)Δε

2 and removes
the previously collected terms. Then OURS update Tr(x, t) with the remaining
terms, and adds − (1−r)Δε

2 / (1−r)Δε
2 to the over/under approximation respectively

in the output.

3.3 Correctness Analysis of OURS

Now we prove that Over(x, t) and Under(x, t) satisfy the set inclusion relation
and designated precision requirement. Specifically, we prove that, the errors of
over- and under-approximations of EF are bounded in each segment (see Theo-
rem 2), and correctness is maintained after iteration (see Theorem 3).

Theorem 2. In the ith segment, Overi and Underi satisfy that: for all (x, t) ∈
Interval(i) × [0,ΔT], 0 ≤ Underi(x, t) − Overi(x, t) ≤ iΔε.

Proof. Based on Algorithm 3, with the terminating condition of the while loop
and Theorem 1, the output of EF based RE satisfies |Tail

′
o(t)−Tail

′
u(t)| < rΔε,

∀(x, t) ∈ Interval(i) × [0,ΔT]. Moreover, according to the configuration of
Tailo and Tailu, shown in Line 10 in Algorithm 1, |Tailo − Tailu| increases no
greater than Δε for each segment. Thus, according to the configuration of Overi

and Underi, shown in Lines 8–9 in Algorithm 1, we complete the proof. �

270 R. Hu et al.

Remark 2. According to Theorem 1 and Lines 8–9 in Algorithm 1, we can derive
that −Δε ≤ Overi(x, t) − Evof,Overi−1 (x,ΔT)v (x, t) ≤ 0 and 0 ≤ Underi(x, t) −
Evof,Underi−1 (x,ΔT)v (x, t) ≤ Δε for all (x, t) ∈ Interval(i) × [0,ΔT], where
Overi−1/Underi−1 (x,ΔT) = Init(x) + Tailo/Tailu.

Theorem 3. The piecewise functions Over(x, t) and Under(x, t) returned by
OURS satisfy that: for all (x, t) ∈ Bound(K) × [0, T], −ε ≤ Over(x, t) −
Evof ,gv (x, t) ≤ 0 and 0 ≤ Under(x, t) − Evof ,gv (x, t) ≤ ε.

Proof. We inductively prove this theorem for Interval(i) since Bound(K) ⊆
Interval(i). For simplicity, denote Interval(i)× [(i− 1)ΔT, iΔT] as Range(i).

In the first segment, due to Remark 2, −Δε ≤ Over1 (x, t)−Evof ,gv (x, t) ≤ 0
and 0 ≤ Under1 (x, t) − Evof ,gv (x, t) ≤ Δε, ∀(x, t) ∈ Range(1).

Assume that in the ith segment, we have −iΔε ≤ Overi(x, t − (i − 1)ΔT) −
Evof ,gv (x, t) ≤ 0 and 0 ≤ Underi(x, t−(i−1)ΔT)−Evof ,gv (x, t) ≤ iΔε, ∀(x, t) ∈
Range(i). From Algorithm 2, Interval(i) is an enclosure of the backward reach-
able set and thus Interval(i + 1) ⊆ Interval(i) ⊆ ReachΔT

f ,Interval(i). Hence,
due to the assumption, Evof,Overi (x,ΔT)v (x, t − iΔT) − Evof,gv (x, t) ≤ 0 and
0 ≤ Evof,Underi (x,ΔT)v (x, t − iΔT) − Evof,gv (x, t),∀(x, t) ∈ Range(i + 1).

Let us consider the (i + 1)th segment. Due to Remark 2, for all (x, t) ∈
Range(i + 1), Overi+1 (x, t − iΔT) − Evof,Overi (x,ΔT)v (x, t − iΔT) ≤ 0 and 0 ≤
Underi+1 (x, t− iΔT)−Evof,Underi (x,ΔT)v (x, t− iΔT). Thus, combining with the
result obtained in the above paragraph, we have that Overi+1 (x, t − iΔT) ≤
Evof ,gv (x, t) ≤ Underi+1 (x, t − iΔT), ∀(x, t) ∈ Range(i + 1). Further, from
Theorem 2, we have that −(i + 1)Δε ≤ Overi+1 (x, t) − Underi+1 (x, t) ≤ 0,
∀(x, t) ∈ Range(i + 1). Thus, we can infer that for all (x, t) ∈ Range(i + 1),
−(i + 1)Δε ≤ Overi+1 (x, t − iΔT) − Evof ,gv (x, t) ≤ 0 and 0 ≤ Underi+1 (x, t −
iΔT) − Evof ,gv (x, t) ≤ (i + 1)Δε, which completes the proof.

�

4 Comparisons with Examples

We show the performance of OURS by comparing it with the method in [22] and
the ToolboxLS from [27] with seven examples. Especially, Example 1 deals with
a disconnected set, Example 4 deals with a 2-dimensional non-polynomial sys-
tem, and Example 7 deals with a 8-dimensional non-polynomial systems. Some
data of the results of these seven examples are listed in Table 1, where we use ’-’
to represent all unavailable data, for example, we cannot determine the highest
degree of variables in Examples 4 and 7 since the outputs contain trigonometric
functions. Moreover, we also changed the time interval and designated precision
for OURS and more data are listed in Table 2 with discussions. Note that we
have been authorized by the authors of [22] to run their source code in the same
machine used in the paper. The data are all given on a Laptop 1.8GHz Intel
Core i7 (4 cores) and 8 Gb of RAM.

OURS: Over- and Under-Approximating Reachable Sets 271

(a) OURS (b) Method in [22] (c) ToolboxLS

Fig. 3. Results of Example 1 at t = 1.

(a) OURS (b) Method in [22] (c) ToolboxLS

Fig. 4. Results of Example 2 at t = 1.

Example 1. We consider the running example with ε = 10−8. Additionally, we
set degree=14 for the method in [22] which makes the precision be 1.05 × 10−8,
and g.dx = 2/100 and accuracy = ‘medium’ for ToolboxLS. The results at
t = 1 are shown in Fig. 3. Note that the dashed curve in Fig. 3b is the boundary
of an appropriate compact set Y ⊂ R

n (see Definition 3 in [22] for details).

Example 2. We consider the non-linear system from [3,22]
{

ẋ1 = x1 − 2x2
ẋ2 = x1x2 + 0.5x 2

2

,

with the initial set {x | x 2
1 +x 2

2 ≤ 0.01}. We want to compute the approximations
of Reacht

f ,g with t ∈ [0, 1]. We set ε = 10−4 for OURS, degree=20 for the method
in [22] which makes the precision be 1.31×10−4, and g.dx = 1/100 and accuracy
= ‘medium’ for ToolboxLS. The results at t = 1 are shown in Fig. 4.

Example 3. Consider the classical Van der Pol circuit system:
⎧
⎪⎨

⎪⎩

ẋ1 =
1
C

x2

ẋ2 =
1
L

· (−x1 + μx2 − x 3
2)

.

272 R. Hu et al.

(a) OURS (b) Method in [22] (c) ToolboxLS

Fig. 5. Results of Example 3 at t = 1.

(a) OURS. (b) ToolboxLS.

Fig. 6. Results of Example 4 at t = 1.

We assume that C = μ = L = 1, the initial set is {x | (x1 − 0.1)2 + (x2 − 0.1)2 ≤
0.01}. We want to compute the approximations of Reacht

f ,g with t ∈ [0, 1]. We set
ε = 10−4 for OURS, degree=10 for the method in [22] which makes the precision
be 2.03 × 10−4, and g.dx=1/100 and accuracy=’medium’ for ToolboxLS. The
results at t = 1 are shown in Fig. 5.

Example 4. Consider the non-polynomial system from [3]:
{

ẋ1 = 0.1 sin(x2)

ẋ2 = 0.1x2 − 0.02 sin(x1)2
,

with the initial set {x | x 2
1 +x 2

2 ≤ 0.01}. We want to compute the approximations
of Reacht

f ,g with t ∈ [0, 1]. We set ε = 10−4 for OURS, and g.dx=1/100 and
accuracy=’medium’ for ToolboxLS. The results at t = 1 are shown in Fig. 6.
Note that the method in [22] cannot handle this example directly since it is a
non-polynomial system.

Example 5. We consider the 3-dimensional Lotka-Volterra system from [22]:
⎧
⎪⎨

⎪⎩

ẋ1 = −x1x2 + x1x3
ẋ2 = −x2x3 + x2x1
ẋ3 = −x3x1 + x3x2

,

OURS: Over- and Under-Approximating Reachable Sets 273

(a) OURS on the plane with x2 = 0. (b) Method in [22].

Fig. 7. Results of Examples 5 at t = 1.

x3

x 4

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

(a) OURS.

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
x3

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

x 4

(b) Method in [22].

Fig. 8. Results of Example 6 at t = 1 on the plane with x1 = x2 = 0.

with the initial set {x | x 2
1 + x 2

2 + x 2
3 ≤ 0.01}. We want to compute the approx-

imations of Reacht
f ,g with t ∈ [0, 1]. We set ε = 10−4 for OURS and g.dx =

1/100 and accuracy = ‘medium’ for ToolboxLS. The result of OURS at t = 1
on the plane with x2 = 0 is shown in Fig. 7a and the result of ToolboxLS at
t = 1 is shown in Fig. 7b. But the method in [22] cannot achieve the precision
ε = 10−4.

Example 6. We consider a 4-dimensional system from [3,24] which is the dynam-
ics of an enzymatic reaction:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1 = −kfx1x2 + (kb + km)x3
ẋ2 = −kfx1x2 + kbx3
ẋ3 = kfx1x2 − (kb + km)x3
ẋ4 = kmx3

.

We assume that km = kf = 0.5, kb = 0.1, the initial set is {x | x 2
1 +x 2

2 +x 2
3 +x 2

4 ≤
0.01}. We want to compute the approximations of Reacht

f ,g with t ∈ [0, 1]. We set
ε = 10−2 for OURS, degree=6 for the method in [22] which makes the precision
be 2.2 × 10−2, and g.dx=1/100 and accuracy=’medium’ for ToolboxLS. The
results of OURS and the method in [22] at t = 1 on the plane with x1 = x2 = 0
are shown in Fig. 8. Note that it is difficult to obtain the result of ToolboxLS
at t = 1 on the same plane since the corresponding result has only discrete data.

274 R. Hu et al.

Example 7. We consider an 8-dimensional non-polynomial system which is mod-
ified from [28] with certain inputs T1 and T2:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗx = vx

ṗy = vy

v̇x = − 1
m

Cv
Dvx − T1

m
sin φ − T2

m
sin φ

v̇y = − 1
m

(mg + Cv
Dvy) +

T1

m
cos φ +

T2

m
cos φ

φ̇ = ω

ω̇ = − 1
Iyy

Cφ
Dω +

l

Iyy
T1 +

l

Iyy
T2

Ṫ1 = αT2

Ṫ2 = −αT1

,

where px, py, φ represent the horizontal, vertical, rotational positions of the
quadrotor, vx, vy, ω represent the corresponding velocities, respectively, and T1,
T2 are input thrusts exerted on either end of the quadrotor. For the coefficients
in the system, we choose Cv

D = 0.1,m = 5, g = 9.8, Cφ
D = 0.1, l = 0.5, Iyy =

10 and α = 1. The initial set μ(g) is represented by an 8-dimensional ball
with radius 0.2, centering at (0, 0, 2, 1, π

6 , 0.1, 10,−10). We compute the over-
and under-approximations of Reacht

f ,g with t ∈ [0, 1]. Note that the method
in [22] cannot operate directly; and because of the high dimension and large
computation interval, ToolboxLS is not easy to deal with this example either.

Figure 9a shows the projected results at time instants t = 0.1, 0.2, ..., 1
onto the corresponding px − py planes defined by letting (vx, vy, φ, ω, T1, T2) =
(Φ2(t), Φ4(t), Φ5(t), Φ6(t), Φ7(t), Φ8(t)), where Φ(t) is the simulated trajectory
starting from the center x0 = (0, 0, 2, 1, π

6 , 0.1, 10,−10)T . Similarly, Fig. 9b,
Fig. 9c and Fig. 9d show the projected results at time instants t = 0.1, 0.2, ..., 1
onto the corresponding vx − vy, φ − ω and T1 − T2 planes, respectively.

In Table 1, we list certain data of the obtained results for OURS/the
method in [22]/ToolboxLS, i.e. the running times(RT), the maximal number of
terms(NT) in outputs, the highest degree of all variables degx,t and the degree of
time variable degt. Moreover, after assigning t = T for the outputs, we also list
the highest degree of variables degx and the number of terms in the correspond-
ing results. Considering that the results obtained by ToolboxLS are numerical
data, it is meaningless to list them except the running times of ToolboxLS.
Additionally, Examples 4 and 7 are non-polynomial and thus the method in [22]
cannot directly handle them; and for Example 5, the method in [22] cannot
achieve the given precision ε = 10−4.

Different from ToolboxLS, the outputs obtained by OURS and the method
in [22] are forms of algebraic inequalities, which can be directly used to obtain
the results at any time instant within the time interval and are more convenient
for the next call. Moreover, for higher-dimensional systems (see Example 6), the

OURS: Over- and Under-Approximating Reachable Sets 275

(a) Results on px − py (b) Results on vx − vy

(c) Results on φ − ω (d) Results on T1 − T2

Fig. 9. Results of Example 7 at time instants t = 0.1, 0.2, ..., 1.

Table 1. Data of results for examples.

Ex. RT(s) degx,t degt NT at t = 1

degx NT

Example 1 18/29/58 11/14/– 8/14/– 56/680/– 4/14/– 9/120/–

Example 2 53/456/3 15/20/– 6/20/– 410/1771/– 10/20/– 95/231/–

Example 3 74/7/5 20/10/– 5/10/– 370/286/– 18/10/– 121/33/–

Example 4 6/–/2 –/–/– 2/–/– 5/–/– –/–/– 4/–/–

Example 5 41/–/2 9/–/– 4/–/– 174/–/– 7/–/– 70/–/–

Example 6 26/267/43 7/6/– 4/6/– 111/462/– 6/6/– 42/210/–

Example 7 821/–/– –/–/– 8/–/– 4198/–/– –/–/– 915/–/–

results of OURS and the method in [22] can be more easily used to obtain
the results at any cross section by directly operating on the obtained algebraic
inequalities with variable assignments (see Fig. 8), while ToolboxLS has only
discrete data. Additionally, according to Table 1, ToolboxLS requires more time
for higher-dimensional systems (see Examples 6 and 7); and OURS has better
time performance than the method in [22] except Example 3 since Example 3
is very sensitive to the size of the initial set and the length of the time horizon;
moreover, compared with the method in [22], OURS can directly handle non-
polynomial systems (see Examples 4 and 7).

276 R. Hu et al.

Table 2. Data of Results for Different Parameters.

Ex. T/ε RT(s) degx,t degt NT at t = T

degx NT

Example 1 10/10−32 72 51 49 352 4 9

Example 2 1/10−8 286 30 9 1710 27 248

Example 2 1/10−16 998 53 16 8731 46 725

Example 3 1/10−8 490 65 12 4276 54 671

Example 4 5/10−8 1156 – 7 1690 – 355

Example 4 10/10−4 660 – 5 1310 – 387

Example 5 2/10−4 846 17 5 1625 15 505

Example 5 2/10−8 5692 27 8 10211 23 1975

Example 6 1/10−8 313 14 7 1171 11 242

Example 6 3/10−4 2215 30 9 8277 25 1240

Example 7 2/10−2 124327 – 10 93485 – 13792

Example 7 1/10−4 4179 – 10 18127 – 2714

We have also increased the time interval or changed the designated precision
for these examples, and listed the corresponding data of results in Table 2. Since
OURS need to increase time segmentation to deal with longer time intervals and
increase the degree of t-expansion to achieve the higher precision requirement,
these will definitely lead to an increase of running time and number of terms
in the output of OURS. Note that the current version of CORA has an error
of ‘reachable set explosion’ when handling high-order systems with long time
interval, which affects the scalability of OURS. We have reported this problem
to the authors and it may be addressed in the future version.

In general, for the low degree and trigonometric system, OURS shows good
performance. The output of OURS has low degree and few terms, such that
OURS can carry out more expansion to deal with higher dimensional systems,
achieve higher precision requirements and extend to a longer time. Moreover, in
future version, we will consider to realize automatic segmentation of input time
bound, and to design a better simplification program to further deal with the
problem of excessive exponential growth caused by Taylor expansion.

5 Conclusion

In this paper, we have presented the MATLAB tool OURS to construct over-
and under-approximations of evolution functions, leading to over- and under-
approximations of reachable sets, via estimating the corresponding remainder of
the partial sum of t-expansion with interval arithmetics. We have confirmed the
efficacy and promise of OURS by comparing to other methods with examples. In
the future, we will investigate systems with disturbances described by uncertain
parameters and even time-varying inputs.

OURS: Over- and Under-Approximating Reachable Sets 277

References

1. Plaku, E., Kavraki, L., Vardi, M.: Hybrid systems: from verification to falsification
by combining motion planning and discrete search. Formal Methods Syst. Design
34, 157–182 (2009)

2. Goubault, E., Putot, S.: Inner and outer reachability for the verification of control
systems. In: HSCC 2019, pp. 11–22 (2019)

3. Li, M., She, Z.: Over- and under-approximations of reachable sets with series repre-
sentations of evolution functions. IEEE Trans. Automat. Contr. 66(3), 1414–1421
(2021)

4. Li, M., Mosaad, P.N., Fränzle, M., She, Z., Xue, B.: Safe over- and under-
approximation of reachable sets for autonomous dynamical systems. In: Jansen,
D.N., Prabhakar, P. (eds.) FORMATS 2018. LNCS, vol. 11022, pp. 252–270.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00151-3 15

5. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint
propagation-based abstraction refinement. ACM Trans. Embed. Comput. Syst.
6(1), 1–23 (2007). Article No. 8

6. Kurzhanskiy, A.A., Varaiya, P.: Ellipsoidal toolbox (ET). In: Proceedings of the
45th IEEE Conference on Decision and Control, pp. 1498–1503 (2006)

7. Girard, A., Le Guernic, C., Maler, O.: Efficient computation of reachable sets
of linear time-invariant systems with inputs. In: HSCC 2006, pp. 257–271. ACM
(2006)

8. Dang, T., Maler, O., Testylier, R.: Accurate hybridization of nonlinear systems.
In: HSCC 2010, pp. 11–20. ACM (2010)

9. Althoff, M.: Reachability analysis of nonlinear systems using conservative polyno-
mialization and non-convex sets. In: HSCC 2013, pp. 173–182. ACM (2013)

10. Goubault, E., Putot, S.: Robust under-approximations and application to reach-
ability of non-linear control systems with disturbances. IEEE Control Syst. Lett.
4(4), 928–933 (2020)

11. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. Int.
J. Softw. Tools Technol. Transf. 10, 263–279 (2008)

12. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

13. Wang, T.C., Lall, S., West, M.: Polynomial level-set method for polynomial system
reachable set estimation. IEEE Trans. Automat. Contr. 58(10), 2508–2521 (2013)

14. Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent Hamilton-Jacobi for-
mulation of reachable sets for continuous dynamic games. IEEE Trans. Automat.
Contr. 50(7), 947–957 (2005)

15. Mitchell, I.M.: The flexible, extensible and efficient toolbox of level set methods.
J. Sci. Comput. 35(2), 300–329 (2008)

16. Althoff, M.: An introduction to CORA 2015. In: Proceedings of the Workshop on
Applied Verification for Continuous and Hybrid Systems, pp. 120–151 (2015)

17. Kochdumper, N., Althoff, M.: Computing non-convex inner-approximations of
reachable sets for nonlinear continuous systems. In 59th IEEE Conference on Deci-
sion and Control (CDC), pp. 2130–2137 (2020)

18. Kaynama, S., Oishi, M., Mitchell, I.M., Dumont, G.A.: The continual reachability
set and its computation using maximal reachability techniques. In: 50th IEEE
Conference on Decision and Control (CDC), pp. 6110–6115 (2011)

https://doi.org/10.1007/978-3-030-00151-3_15
https://doi.org/10.1007/978-3-642-22110-1_30

278 R. Hu et al.

19. Kaynama, S., Maidens, J., Oishi, M., Mitchell, I.M., Dumont, G.A.: Computing
the viability kernel using maximal reachable sets. In: HSCC 2012, pp. 55–64. ACM
(2012)

20. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

21. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construction
for non-linear hybrid systems. In: RTSS 2012, pp. 183–192. IEEE Computer Society
(2012)

22. Xue, B., Fränzle, M., Zhan, N.: Under-approximating reach sets for polynomial
continuous systems. In: HSCC 2018, pp. 51–60 (2018)

23. Ratschan, S., She, Z.: Providing a basin of attraction to a target region of polyno-
mial systems by computation of Lyapunov-like functions. SIAM J. Control Optim.
48(7), 4377–4394 (2010)

24. Julius, A.A., Pappas, G.J.: Trajectory based verification using local finite-time
invariance. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp.
223–236. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00602-
9 16

25. Nedialkov, N.S.: Implementing a rigorous ode solver through literate programming.
In: Rauh, A., Auer, E. (eds.) Modeling, Design, and Simulation of Systems with
Uncertainties. Mathematical Engineering, vol. 3, pp. 3–19. Springer, Berlin (2011).
https://doi.org/10.1007/978-3-642-15956-5 1

26. Granvilliers, L., Benhamou, F.: RealPaver: an interval solver using constraint sat-
isfaction techniques. ACM Trans. Math. Softw. 32(1), 138–156 (2006)

27. http://www.cs.ubc.ca/∼mitchell/ToolboxLS
28. Chen, M., Herbert, S.L., Vashishtha, M.S., Bansal, S., Tomlin, C.J.: Decomposition

of reachable sets and tubes for a class of nonlinear systems. IEEE Trans. Automat.
Contr. 63(11), 3675–3688 (2018)

https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-00602-9_16
https://doi.org/10.1007/978-3-642-00602-9_16
https://doi.org/10.1007/978-3-642-15956-5_1
http://www.cs.ubc.ca/~mitchell/ToolboxLS

ESampler: Efficient Sampling
of Satisfying Assignments for Boolean

Formulas

Yongjie Xu1, Fu Song1(B), and Taolue Chen2

1 ShanghaiTech University, Shanghai, China
songfu@shanghaitech.edu.cn

2 Birkbeck, University of London, London, UK

Abstract. Boolean satisfiability (SAT) has played a key role in diverse
areas spanning planning, inferencing, data mining, testing and optimiza-
tion. Apart from the classical problem of checking Boolean satisfiability,
generating random satisfying assignments has attracted significant the-
oretical and practical interests over the years. For practical applications,
a large number of satisfying assignments for a given Boolean formula are
needed, the generation of which turns out to be a hard problem in both
theory and practice. In this work, we propose a novel approach to derive
a large set of satisfying assignments from a given one in an efficient way.
Our approach is orthogonal to the previous techniques for generating sat-
isfying assignments and could be integrated into the existing SAT sam-
plers. We implement our approach as an open-source tool ESampler and
conduct extensive experiments on real-world benchmarks. Experimental
results show that ESampler performs better than three state-of-the-art
samplers on a large portion of the benchmarks, and is at least comparable
on the others, showcasing the efficacy of our approach.

Keywords: Boolean satisfiability · Constraint-based sampling · SAT
solving

1 Introduction

Boolean satisfiability, also known as SAT, concerns determining whether a given
Boolean formula is satisfiable. There have been strong theoretical and practical
interests in the SAT problem, which has played a key role in diverse areas span-
ning planning, inferencing, data mining, testing and optimization [1,6]. Apart
from the classical problem of checking Boolean satisfiability, generating random
satisfying assignments has attracted significant theoretical and practical interests

This work is supported by the National Natural Science Foundation of China (NSFC)
under Grants No. 62072309 and No. 61872340, an oversea grant from the State Key
Laboratory of Novel Software Technology, Nanjing University (KFKT2018A16), and
Birkbeck BEI School Project (ARTEFACT).

c© Springer Nature Switzerland AG 2021
S. Qin et al. (Eds.): SETTA 2021, LNCS 13071, pp. 279–298, 2021.
https://doi.org/10.1007/978-3-030-91265-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91265-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-91265-9_15

280 Y. Xu et al.

over the years [3,4,18,29–32,39,40,43,45–47]. In several practical applications, a
large number of satisfying assignments for a given Boolean formula are needed.
For instance, simulation-based verification is a commonly adopted technique
to test hardware design. In this scenario, the simulated behavior is compared
with the expected behavior where any mismatch is flagged as an indication of a
bug [29,47]. It is a common practice to generate a large number of stimuli satisfy-
ing a given set of constraints in the form of Boolean formulas. These constraints
typically arise from various sources such as application-specific knowledge and
environmental requirements. Another application scenario is the generation of
adversarial examples for adversarial training [11,48]. Adversarial training is a
widely adopted technique to improve the robustness of neural networks against
adversarial attacks where a large number of adversarial inputs (e.g., images)
would be generated explicitly or implicitly. For instance, to adversarially train
a binarized neural network [19,44], adversarial images were generated by encod-
ing a binarized neural network as a Boolean formula based on which satisfying
assignments were sampled [24,28].

Sampling satisfying assignments for a given Boolean formula is, however,
challenging. It is well-known that the SAT problem is NP-complete [12]. In
recent years, we have seen a tremendous progress in SAT solving, supported by
techniques such as conflict-driven clause learning (CDCL [21,33,34]), yielding
powerful solvers such as CryptoMiniSAT [37].

However, generating a large number of satisfying assignments is still com-
putationally prohibitive and often infeasible in practical settings [14,23]. In this
work, we develop ESampler, aiming for generating a large number of satisfying
assignments efficiently for a given Boolean formula. The general strategy is to use
an existing sampler to produce a seed sample as a satisfying assignment, from
which we derive more satisfying assignments by flipping some variables of the
given Boolean formula. Clearly, naively flipping variables may yield unsatisfying
assignments. To tackle this problem, we propose a novel derivation procedure
which explores the semantics of the Boolean formula under the seed sample, so
that the resulting assignments can be guaranteed to satisfy the Boolean formula.
The advantage of our approach lies in that it can be integrated with the existing
SAT samplers, so would enjoy considerably wider applicability.

To demonstrate our approach, we implement a sampler ESampler based on
the recent sampler QuickSampler [14]. We carry out extensive experiments
on the publicly available benchmarks from UniGen [10] which include Boolean
formulas from real-world testing and verification applications. Our experimental
results show that ESampler performs considerably better than the three state-
of-the-art samplers QuickSampler, SearchTreeSampler (STS in short) [16]
and UniGen3 [36], indicating the effectiveness of our approach.

Our main contributions can be summarized as follows.

– We introduce a novel approach for deriving a large set of satisfying assign-
ments from a given seed. It is generic and could be integrated with the exist-
ing samplers. To the best of our knowledge, it is the first work to generate
satisfying assignments from a given seed.

ESampler: Effcient SAT Sampling 281

– We implement an integrated sampler ESampler. Our tool is available at
https://github.com/ESampler/Esampler.

– We conduct extensive experiments on hundreds of Boolean formulas from
real-world applications and ESampler performs considerably better than
the three state-of-the-art samplers QuickSampler, STS and UniGen3.

Related Work. Various techniques have been proposed to tackle the prob-
lem of the satisfying assignment generation for Boolean formulas [26]. Binary
decision diagrams (BDD) and Markov Chain Monte Carlo (MCMC) algorithms
such as simulated annealing and Metropolis-Hastings are widely used for gen-
erating satisfying assignments [22,42,43]. These techniques usually provide the-
oretical guarantees of uniformity but are limited in scalability and efficiency.
Therefore, heuristics are proposed to speed up at the cost of theoretical guaran-
tees of uniformity [22,25,41]. Another class of satisfying assignment generation
techniques with theoretical guarantees of uniformity is based on hashing [5,8–
10,15,17,35,36]. Hashing-based techniques add hash functions (e.g., XOR of a
random subset of variables) to the Boolean formula in order to partition the
search space uniformly and then randomly pick a satisfying assignment from a
randomly chosen cell. These algorithms are also limited in scalability and effi-
ciency. In comparison, our approach primarily aims for efficiency, using fewer
solver calls to generate a large number of solutions. We also provide a parameter
to balance the uniformity of the generated samples and the efficiency of the pro-
cedure. Although we do not provide a theoretical guarantee of uniformity, the
experimental results demonstrate that our approach is able to produce solutions
nearly uniformly when the maximal number of solutions per seed is set in a
reasonable range.

Recently, SAT samplers aiming to quickly generate a large number of assign-
ments have been proposed. Both QuickSampler [14] and STS [16] share the
same goal as our work, namely, fast generation of a larger number of assign-
ments. QuickSampler uses the MaxSAT solver [7] to generate random sat-
isfying assignments, and then find more assignments that are close to satisfy-
ing assignments using the diffs of discovered satisfying assignments. However,
the assignments generated by QuickSampler may not satisfy the Boolean for-
mula, hence a follow-up checking is often needed. In contrast, our approach only
mutates proper variables by which the formula is guaranteed to be satisfied. STS

explores the tree of variable assignments in a breadth-first way with the MiniSat
SAT solver [38] as an oracle. During this procedure, it generates pseudosolutions,
which are partial assignments to the variables that can be completed to full sat-
isfying assignments. However, it has to invoke the SAT solver multiple times
during the breadth-first exploration. In contrast, ESampler does not require
SAT solving when generating satisfying assignments from a seed.

Technically, our derivation procedure aims to generate a large set of satisfying
assignments from a given seed, and is orthogonal to the existing SAT samplers.
It can be integrated into the existing samplers to improve their efficiency as we
demonstrated using QuickSampler.

Sampling of satisfying assignments is also closely related to the model-
counting problem which counts the number of satisfying assignments for a

https://github.com/ESampler/Esampler

282 Y. Xu et al.

Boolean formula. Model-counting techniques have been used for sampling satisfy-
ing assignments (e.g., SPUR [2]) while satisfying assignment sampling techniques
can also be used for model-counting (e.g., STS [16] and ApproxCount [42]).

Outline. The remainder of this paper is organized as follows. In Sect. 2, we
briefly revisit related concepts of Boolean formulas. We present our derivation
procedure in Sect. 3, and show how to integrate it into existing SAT samplers in
Sect. 4. We report evaluation results in Sect. 5 and conclude this work in Sect. 6.

2 Preliminaries

We first recap some basic notions and notations which are used in this work.

Boolean Formulas. Let us fix a set of Boolean variables V. A literal l is either
a Boolean variable x ∈ V or its negation ¬x. We denote by var(l) the variable
x used in the literal l, namely, var(x) = var(¬x) = x.

A Boolean formula Φ is a Boolean combination of literals using logical-AND
(∧) and logical-OR (∨) operators. As a convention, we assume that Boolean
formulas are given in the conjunctive normal form (CNF)

∧m
j=1

∨nj

i=1 lji , where
for each 1 ≤ j ≤ m and 1 ≤ i ≤ nj , lji is a literal, and

∨nj

i=1 lji is referred to a
clause for each 1 ≤ j ≤ m. Given a Boolean formula Φ and a literal l, let Φl

denote the set of clauses that contain the literal l. For each clause φ =
∨nj

i=1 lji ,
we assume that all literals in φ are distinct, and denote by |φ| the number nj of
literals in the clause φ.

Assignments. An assignment is a function v : V → {0, 1} which assigns a
Boolean value to each Boolean variable x ∈ V. Given a Boolean formula Φ and an
assignment v, v is a satisfying assignment of Φ, denoted by v |= Φ, if the Boolean
formula Φ evaluates to 1 under the assignment v. For each assignment v, variable
x ∈ V and value i ∈ {0, 1}, we denote by v[x �→ i] the assignment that agrees
with v except for the variable x, i.e., for each variable y ∈ V, v[x �→ i](y) = v(y)
if y �= x, v[x �→ i](y) = i otherwise.

Satisfiability and Maximum Satisfiability. Given a Boolean formula Φ, the
satisfiability problem (SAT) is to determine whether a satisfying assignment of
Φ exists or not. If Φ is satisfied, then a solution is produced as a witness. It is
well-known that the SAT problem is NP-complete [12].

Given a pair of Boolean formulas (Φ, Ψ), the maximum satisfiability problem
(MaxSAT) is to find a satisfying assignment that satisfies the Boolean formula
Φ and meanwhile maximizes the number of satisfied clauses in Ψ . The clauses
in Φ are usually called hard constraints, while the clauses in Ψ are called soft
constraints. It is easy to see that the MaxSAT problem is at least NP-hard and
can be solved by the state-of-the-art solvers such as Z3 [7].

In this work, by solvers we mean tools that are able to produce one satisfying
assignment of the (Max)SAT problem whilst by samplers we mean those that
are able to generate more than one satisfying assignments.

ESampler: Effcient SAT Sampling 283

Independent Support. Given a Boolean formula Φ, an independent support
Supp of Φ [10], is a set of variables such that for each pair of satisfying assign-
ments (v, v′) of Φ, if v(x) = v′(x) holds for all variables x ∈ Supp, then
v(y) = v′(y) holds for all variables y ∈ V\Supp. Intuitively, the truth values of
the independent support SuppΦ uniquely determine the truth values of the other
variables. In other words, flipping the truth value of any variable y ∈ V\Supp in
the satisfying assignment v only will make the resulting assignment v[y �→ ¬v(y)]
fail to satisfy Φ.

It is easy to see that any superset of an independent support of Φ is also an
independent support. There are tools, such as MIS and SMIS [20], that are able
to compute minimal and minimum independent supports for Boolean formulas,
where minimal means removing any variable from the independent support X
will lead to a non-independent support, and minimum means there does not
exist any independent support whose size is smaller. Remark that the problem
of deciding whether a set of variables is a minimal independent support of a
Boolean formula Φ is DP-complete, where DP := {A − B | A,B ∈ NP}.

3 Derivation Procedure

In this section, we first present a motivating example which exemplifies the
key insight behind our approach for efficiently generating a large number of
satisfying assignments. We then provide a derivation procedure which is able
to derive more satisfying assignments from a seed by flipping the truth values
of properly chosen variables without invoking computationally expensive SAT
solving. The derivation procedure is the basis for efficiently generating a large
number of satisfying assignments, and can be integrated into other samplers.

3.1 Motivating Example

To exemplify the key insight behind our approach, let us consider the following
Boolean formula

Φe ≡ (¬a ∨ b ∨ c) ∧ (a ∨ ¬c ∨ ¬d) ∧ (¬b ∨ c) ∧ (b ∨ d).

Suppose we have already obtained one satisfying assignment v (called seed) of
Φe with v(a) = v(b) = v(c) = v(d) = 1. We can observe that the clause ¬a∨ b∨c
(resp. b ∨ d) contains two literals b and c (resp. b and d) whose values are 1
under the assignment v. Moreover, the common literal b does not appear in
other clauses, namely, a ∨ ¬c ∨ ¬d and ¬b ∨ c. By flipping the value v(b) of the
variable b in the assignment v, we can obtain a new assignment v[b �→ ¬v(b)],
which is also a satisfying assignment of Φe.

However, by flipping the value v(c) of the variable c in the assignment v,
the new assignment v[c �→ ¬v(c)] is not a satisfying assignment of Φe. This is
because the clause ¬b ∨ c contains only one literal c whose value is 1 under the
assignment v. After flipping the value v(c) of the variable c in the assignment v,
the clause (¬b ∨ c) is no more satisfied.

284 Y. Xu et al.

Algorithm 1. Deriving satisfying assignments from a seed
1: procedure Derivation(Φ, v, MaxNum, Supp)
2: Derived = {v};
3: Queue = [v];
4: while Queue �= ∅ ∧ |Derived| ≤ MaxNum do
5: v = Queue.Dequeue();
6: L = {x ∈ Supp | v(x) = 1} ∪ {¬x | v(x) = 0 ∧ x ∈ Supp};
7: for all l ∈ L do
8: if for each

∨m
i=1 li ∈ Φl, there exists 1 ≤ i ≤ m. (l �= li ∧ li ∈ L) then

9: x = var(l);
10: v′ = v[x �→ ¬v(x)];
11: if v′ �∈ Derived then
12: Derived = Derived ∪ {v′};
13: Queue.Enqueue(v′);
14: end if
15: end if
16: end for
17: end while
18: return Derived;
19: end procedure

This simple observation suggests that, for a seed v, we may identify proper
variables (such as b but not c in the above example) so that when the value of one
such variable is flipped it is still a satisfying assignment. Furthermore, the new
satisfying assignments can be used as seeds to derive more satisfying assignments.
This often allows generation of a larger number of satisfying assignments without
invoking computationally expensive SAT solving.

3.2 Derivation Algorithm

In this subsection, we present a derivation procedure for deriving new satisfying
assignments from a given seed. Given a Boolean formula Φ, a seed v and an inde-
pendent support Supp of Φ, and the maximal number MaxNum of expected satis-
fying assignments, the procedure Derivation in Algorithm 1 iteratively derives
new satisfying assignments from the seed v until no new satisfying assignment
can be found or the number of generated satisfying assignments hits the thresh-
old MaxNum. It returns the set of generated satisfying assignments including the
original seed v.

To start, Algorithm 1 initializes the set Derived for recording all the gen-
erated satisfying assignments (Line 2) and the queue Queue for storing the
seeds (Line 3). It then repeats the following procedure until no new satisfying
assignments can be found or the number of the generated satisfying assignments
exceeds the threshold MaxNum (While-loop).

For each seed v in Queue (Line 5), it first identifies all the literals l whose
value is 1 under the assignment v(Line 6). After that, for each literal l ∈ L
whose variable var(l) ∈ Supp (Line 7), it checks, for each clause

∨m
i=j lj that

ESampler: Effcient SAT Sampling 285

contains the literal l (i.e.,
∨m

i=j lj ∈ Φl), whether
∨m

i=j lj contains a distinct
literal li whose value is also 1, i.e., li ∈ L (Line 8). If this is the case, we can
deduce that the assignment v[x �→ ¬v(x)] obtained from the assignment v by
flipping the variable x = var(l) is also a satisfying assignement of Φ. Therefore,
we extract the variable x from the literal l (Line 9) and construct the assignment
v′ = v[x �→ ¬v(x)] (Line 10). If the assignment v′ has not been generated before,
it is inserted to Derived and Queue (Lines 12 and 13).

One may notice that only variables in Supp are considered for flipping
(Line 7). In general, we can take all the variables into account for flipping.
However, as mentioned before (cf. Sect. 2), flipping variables outside of Supp will
definitely lead to unsatisfying assignments. Therefore, it suffices to consider vari-
ables from Supp for flipping. Due to this, the values of each variable outside of
Supp are the same in all the generated satisfying assignments from a given seed.

We remark that the derivation procedure Derivation could alternatively
be presented as a recursive procedure which invokes itself when a new satisfying
assignment is generated, or equivalently, use a stack rather than a queue to store
the generated seeds. Intuitively, using the queue Queue to store the seeds, our
algorithm works in a breadth-first fashion, while the other two ways would follow
a depth-first fashion. We adopt the current way because it is more efficient than
the other two.

Theorem 1. Given a Boolean formula Φ, a seed v and an independent support
Supp of Φ, the set Derived returned by Algorithm 1 contains only satisfying
assignments of Φ. Moreover, these assignments agree on the variables outside of
Supp.

Proof. We show that the set Derived returned by Algorithm 1 contains only
satisfying assignments of Φ by applying induction on the sequence v0v1 · · · of
the assignments added into Derived. The base case is trivial as the seed v0
satisfies the Boolean formula Φ. We prove the inductive step below.

Suppose v0, v1 · · · vk−1 have been added into the set Derived and the induc-
tive step adds the assignment vk into the set Derived. Then, vk must be added
due to one v of the previously added satisfying assignments v0, v1 · · · vk−1. There
necessarily exists a literal l such that x = var(l) and vk = v[x �→ ¬v(x)].

To show that vk satisfies Φ, it is sufficient to prove that vk satisfies all the
clauses of Φ. Let us consider a clause

∨m
i=j lj of Φ,

– If
∨m

i=j lj does not contain the literal l, then by applying induction hypothesis,
v satisfies the Boolean formula Φ and hence v satisfies the clause

∨m
i=j lj .

Since vk = v[x �→ ¬v(x)] and x = var(l), the truth of the clause
∨m

i=j lj does
not change when the value of x in v is flipped. Therefore, we get that the
assignment vk satisfies the clause

∨m
i=j lj .

– If
∨m

i=1 li contains the literal l, then there exists another literal li ∈
{l1, · · · , lm} such that li �= l and li ∈ L = {x | v(x) = 1} ∪ {¬x | v(x) = 0}.
From li ∈ L = {x | v(x) = 1} ∪ {¬x | v(x) = 0}, we deduce that the literal li,
hence the clause

∨m
i=1 li, holds under the assignment vk.

286 Y. Xu et al.

Φe : (¬a ∨ b ∨ c) ∧ (a ∨ ¬c ∨ ¬d) ∧ (¬b ∨ c) ∧ (b ∨ d)

v1 : (0 ∨ 1 ∨ 1) ∧ (1 ∨ 0 ∨ 0) ∧ (0 ∨ 1) ∧ (1 ∨ 1)
flip b and d respectively ⇓

v2 : (0 ∨ 0 ∨ 1) ∧ (1 ∨ 0 ∨ 0) ∧ (1 ∨ 1) ∧ (0 ∨ 1)
v3 : (0 ∨ 1 ∨ 1) ∧ (1 ∨ 0 ∨ 1) ∧ (0 ∨ 1) ∧ (1 ∨ 0)

flip a ⇓
v4 : (1 ∨ 1 ∨ 1) ∧ (0 ∨ 0 ∨ 1) ∧ (0 ∨ 1) ∧ (1 ∨ 0)

Fig. 1. Derivation steps of the motivating example

Example 1. Recall the motivating example Φe. Suppose the input seed is v1 with
v1(a) = v1(b) = v1(c) = v1(d) = 1 and the independent support Supp = {a, b, d}.
The derivation steps are shown in Fig. 1. At the beginning of the first iteration
of the while-loop, v = v1 and L = {a, b, c, d}.

1. Suppose the variable a is chosen for flipping (Line 7), the clause a ∨ ¬c ∨ ¬d
does not have any literals other than a that occur in L, then Algorithm 1 will
not flip the variable a.

2. Next, the variable b is chosen for flipping (Line 7), both clauses ¬a∨ b∨ c and
b ∨ d contain literals c and d that occur in L, then Algorithm 1 will flip the
variable b (Line 9) and produce a new satisfying assignment v2 = v1[b �→ 0]
(Line 10).

3. Finally, the variable d is chosen for flipping (Line 7), the clause b∨d contains
literal b that occurs in L, then Algorithm 1 will flip the variable d (Line 9)
and produce a new satisfying assignment v3 = v1[d �→ 0] (Line 10).

At the end of the first iteration of the while-loop, Derived = {v1, v2, v3} and
Queue = [v2, v3]. After entering the second iteration of the while-loop, v = v2,
Queue (resp. L) becomes [v3] (resp. {a,¬b, c, d}). By applying similar steps as
above, the satisfying assignment v2 is regenerated but will not be inserted to
Derived or Queue.

At the end of the second iteration of the while-loop, Derived = {v1, v2, v3}
and Queue = [v3]. After entering the third iteration of the while-loop, v =
v3, Queue (resp. L) becomes ∅ (resp. {a, b, c,¬d}). By applying similar steps
as above, Algorithm 1 will flip the variable a and produce a new satisfying
assignment v4 = v3[a �→ 0]. In the end, no more new satisfying assignments can
be generated and Algorithm 1 returns the set {v1, v2, v3, v4}. �

4 ESampler

In this section, we show that our derivation procedure is of generic nature in
the sense that it can be integrated with other samplers. The basic idea is to
generate seeds by invoking an existing sampler as an iterator, which returns a
unique satisfying assignment each time. For each seed, we derive more satisfying

ESampler: Effcient SAT Sampling 287

Algorithm 2. Integrated our derivation procedure into an existing sampler
1: procedure IntegratedSampler(Sampler, Φ, T, MaxPerSeed, Supp, RT, DT)
2: Solutions = ∅;
3: Derivable = false;
4: Round = 0;
5: Iterator = Sampler(Φ, Supp);
6: repeat
7: v = Iterator.next();
8: if v == Null ∨ v ∈ Solutions then
9: break;

10: end if
11: if Derivable == true ∨ Round<RT then
12: Derived = Derivation(Φ, MaxPerSeed, v, Supp);
13: Solutions = Solutions ∪ Derived;
14: if |Derived| ≥ DT then
15: Derivable = true;
16: else
17: Round = Round + 1;
18: end if
19: else
20: Solutions = Solutions ∪ {v};
21: end if
22: until T is satisfied
23: return Solutions;
24: end procedure

assignments by invoking our derivation procedure. However, our derivation pro-
cedure may not be effective on some Boolean formulas. Therefore, we propose
a heuristic to determine whether our derivation procedure is able to derive a
large number of satisfying assignments or not. If it can derive a large number
of satisfying assignments, we apply the derivation procedure for each satisfying
assignment generated by the sampler, otherwise we disable it.

Our idea is formalized as the procedure IntegratedSampler in Algo-
rithm 2, which takes, as input, an off-the-shelf sampler Sampler, a Boolean
formula Φ, a threshold T as the termination condition, the maximum number
MaxPerSeed of satisfying assignments per seed, an independent support Supp
of the Boolean formula Φ, two thresholds RT and DT to determine whether our
derivation procedure is able to derive a large number of satisfying assignments,
and returns a set Solutions of satisfying assignments of the formula Φ.

The procedure IntegratedSampler first initializes the set Solutions, the
Boolean flag Derivable, the counter Round and the iterator Iterator of the
sampler using the independent support Supp and Boolean formula Φ (Lines 2–5),
where the Boolean flag Derivable and counter Round are used to determine if our
derivation procedure is able to derive a large number of satisfying assignments.
Then, it repeats the following procedure until the threshold T is hit.

288 Y. Xu et al.

During each iteration, IntegratedSampler first invokes the iterator to get
a satisfying assignment v, where v is Null if Φ is unsatisfiable or the iterator can-
not find new satisfying assignments. If v is Null or already exists in Solutions,
it breaks the loop (Line 9). Otherwise it checks if the Boolean flag Derivable is
true or the number Round of iterations is less than the threshold RT.

– If neither holds, the derivation procedure is considered to be not able to derive
a large number of satisfying assignments and will be skipped;

– Otherwise, the derivation procedure is invoked to generate more satisfying
assignments which are added to the set Solutions (Lines 12–13). If the num-
ber of satisfying assignments generated by the derivation procedure exceeds
the threshold DT, we consider that the derivation procedure is able to derive a
large number of satisfying assignments and set the Boolean flag Derivable to
true (Line 15). Otherwise, we increase the counter Round by one. In general,
we probe the effectiveness of the derivation procedure by checking the number
of satisfying assignments generated by the derivation procedure in the first
RT iterations. In our experiments, we found few rounds are sufficient to detect
for each benchmark whether a large number of satisfying assignments can be
derived from a seed. Therefore, we set RT = 3 and DT = 16.

By Theorem 1, we obtain that

Theorem 2. The set Solutions returned by Algorithm 2 contains only satisfy-
ing assignments of Φ.

5 Implementation and Evaluation

We implement Algorithms 1 and 2 as an open-source tool ESampler in C++,
with QuickSampler as the underlying seed generator. QuickSampler takes
a Boolean formula and its independent support as inputs, and outputs a set
of assignments. However, as mentioned above, assignments produced by Quick-

Sampler may be duplicated or not satisfy the formula. As we focus on satisfying
assignments of each Boolean formula in this work, we modify it so that dupli-
cated and unsatisfying assignments are omitted.

ESampler takes a Boolean formula in the DIMACS [13] format and other
required options as inputs, and outputs a set of satisfying assignments for the
given Boolean formula. To reduce the memory usage of storing the satisfying
assignments, we only store and output the satisfying assignments for the vari-
ables in the given independent support. Indeed, the truth values of the inde-
pendent support determine those of the other variables, thereby the satisfying
assignments can be easily completed.

We compare ESampler with three state-of-the-art tools QuickSampler,
STS and UniGen3 [36]. As done by [14], for a fair comparison, we modify STS

so that the additional independent support information can be used by STS.

Benchmarks. To evaluate the performance, we conducted extensive experi-
ments. Industrial testing and verification instances are typically proprietary and

ESampler: Effcient SAT Sampling 289

Fig. 2. ESampler vs. QuickSampler

unavailable for published research. Therefore, we conducted experiments on the
publicly available benchmarks from UniGen [10], which consist of 370 Boolean
formulas in the DIMACS format and the independent supports thereof. Indeed,
the independent supports of most Boolean formulas could be computed using
MIS [20] in few seconds. These benchmarks come from four classes of problem
instances:

1. ISCAS89: constraints arising from ISCAS89 circuits with parity conditions
on randomly chosen subsets of outputs and next-state variables;

2. SMTLib: bit-blasted versions of SMTLib benchmarks;
3. ProgSyn: constraints arising from automated program synthesis; and
4. BMC: constraints arising in bounded model checking of circuits.

Note that the accompanied independent supports of these benchmarks may con-
tain variables that are not involved in the corresponding Boolean formulas; such
variables are removed from the independent supports in our experiments. We
remark that our approach also works without the given independent supports,
in which case the independent support of a Boolean formula contains all the
involved variables. Since it does not make any sense to compute solutions for
unsatisfiable Boolean formulas or the satisfiability cannot be solved, we checked
the satisfiability of all these Boolean formulas with a timeout of one hour per
Boolean formula using Z3 [27]. There are two unsatisfiable formulas (79.sk 4 40
and 36.sk 3 77), and four unsolvable formulas (logcount.sk 16 86, log2.sk 72 391,
xpose.sk 6 134, and listReverse.sk 11 43). These formulas are not considered
here, leaving 364 Boolean formulas.

290 Y. Xu et al.

Table 1. Comparison of QuickSampler and ESampler

Benchmark #Vars #Cls Qt(ks) Qn Qpt(ms) Et(ks) En Edn Ept(ms)
Qpt
Ept

s27 new 15 7 17 43 0.00 48 1.39 0.00 48 42 0.54 2.56

blasted case.54 203 725 0.20 691,127 0.30 0.20 664,548 0 0.30 0.99

20.sk 1 51 15, 475 60,994 3.94 491,074 8.02 1.67 1, 520, 152 ∼1,520k 1.10 7.31

s35932 7 4 17,849 44,425 4.22 245,506 17.17 0.63 1,270,247 ∼1,270k 0.50 34

blasted case.126 302 1,129 0.34 1,007,411 0.34 0.34 1,022,991 0 0.33 1.03

blasted case.40 245 650 0.41 1,149,017 0.35 0.41 1,149,017 0 0.36 0.99

s349 3 2 198 469 0.24 1,008,386 0.24 0.07 1,142,757 ∼1,088k 0.06 3.81

56.sk 6 38 4,842 17,828 1.97 1,004,037 1.96 1.18 1,093,080 ∼1,092k 1.08 1.81

blasted case.107 618 1,661 0.82 1,149,017 0.72 0.84 1,149,017 0 0.73 0.98

s832a 15 7 693 2,017 0.53 1,001,732 0.53 0.52 1,000,093 4 0.52 1.01

s420 new 7 4 312 770 0.35 1,117,085 0.31 0.08 1,048,576 ∼1,043k 0.07 4.18

blasted case.124 133 386 0.23 1,039,563 0.22 0.22 1,008,715 0 0.22 1.02

s35932 15 7 17,918 44,709 4.29 145,499 29.46 1.34 1,270,247 ∼1,270k 1.06 27

blasted case.207 824 2,128 1.02 1,149,017 0.89 0.98 1,149,017 0 0.86 1.04

blasted case.120 284 851 0.41 1,113,780 0.37 0.40 1,044,731 0 0.38 0.97

63.sk 3 64 7,242 24,379 4.04 917,681 4.41 0.30 1,200,120 ∼1,200k 0.25 17

s420 7 4 312 770 0.32 1,058,100 0.31 0.10 1,366,784 ∼1,363k 0.07 4.14

Experiment Setup. In our experiments, the maximal number MaxPerSeed
of satisfying assignments per seed is 10,000 and the maximal number T of
satisfying assignments to compute is 1,000,000, unless the recent 10 assign-
ments/pseudosolutions already exist. As aforementioned, we set RT = 3 and
DT = 16 for ESampler. For STS and QuickSampler, we use their default
parameter settings. All the experiments were conducted on Intel Xeon E5-2620
v4 2.10 GHz CPU with 256 RAM GB and the one-hour timeout.

5.1 Comparison with QuickSampler

Figure 2 shows the scatter plot comparing the average execution time per satis-
fying assignment between ESampler and QuickSampler on all the 364 formu-
las. Timeout occurred along the top or right border; the red color indicates that
Derivable is set true by Algorithm 2, namely, it determines that our deriva-
tion procedure is able to derive a large number of satisfying assignments. Points
below (resp. above) the diagonal line indicate that ESampler performs better
(resp. worse) than QuickSampler.

Table 1 reports the performance of QuickSampler and ESampler for a
representative subset of the benchmarks. Columns benchmark, #Vars and #Cls
respectively show the name, numbers of variables and clauses in each Boolean
formula. Columns Qt and Et (resp. Qpt and Ept) give the total execution time in
thousand seconds (ks) (resp. execution time per satisfying assignment in millisec-
onds (ms)) of QuickSampler and ESampler, respectively. Columns Qn and
En show the total numbers of satisfying assignments generated by QuickSam-

pler and ESampler, respectively. Column Edn gives the numbers of satisfying
assignments generated by our derivation procedure. The last column provides

ESampler: Effcient SAT Sampling 291

Fig. 3. ESampler vs. STS

the ratio of execution time per satisfying assignment between QuickSampler

and ESampler, depicting the speedup of ESampler. We can observe when our
derivation procedure works, it can produce more satisfying assignments (e.g.,
20.sk 1 51 and s35932 7 4) than QuickSampler in the same time budget, while
when it does not work well, it often does not produce any satisfying assignments
(e.g., blasted case.54 and blasted case.40). Note that, since QuickSampler is
a randomized approach, QuickSampler and ESampler may produce different
satisfying assignments when our derivation procedure does not work, although
ESampler is built on QuickSampler.

Summary. ESampler and QuickSampler respectively failed on 11 and 7
benchmarks due to the failure of MaxSAT solving. The difference between the
numbers of the failed benchmarks indicates that the soft constraints generated
randomly slightly affect MaxSAT solving. When ESampler determined that
the derivation procedure can generate a large number of satisfying assignments,
ESampler performed better than QuickSampler on almost all the bench-
marks. While ESampler determined that our derivation procedure was not able
to generate a large number of satisfying assignments, ESampler was compara-
ble to QuickSampler. Specifically, ESampler was faster than QuickSampler

on 227 benchmarks. It was 1.66× faster on average and more than 5× faster on
41 benchmarks, while is 1.2 times slower on 16 benchmarks.

292 Y. Xu et al.

Table 2. Comparison of STS and ESampler

Benchmark #Vars #Cls St(ks) Sn Spt(ms) Et(ks) En Edn Ept(ms)
Spt
Ept

s27 new 15 7 17 43 0.00 48 0.85 0.00 48 42 0.54 1.57

blasted case.54 203 725 1.45 961,782 1.51 0.20 664,548 0 0.30 5.06

20.sk 1 51 15, 475 60,994 3.60 151,948 23.69 1.67 1, 520, 152 ∼1,520k 1.10 21

s35932 7 4 17,849 44,425 3.49 800 4,361 0.63 1,270,247 ∼1,270k 0.50 8,757

blasted case.126 302 1,129 0.92 1,000,006 0.92 0.34 1,022,991 0 0.33 2.78

blasted case.40 245 650 1.53 1,000,000 1.53 0.41 1,149,017 0 0.36 4.30

s349 3 2 198 469 0.31 1,000,028 0.31 0.07 1,142,757 ∼1,088k 0.06 4.94

56.sk 6 38 4,842 17,828 1.99 1,000,048 1.99 1.18 1,093,080 ∼1,092k 1.08 1.84

blasted case.107 618 1,661 3.60 558,950 6.44 0.84 1,149,017 0 0.73 8.82

s832a 15 7 693 2,017 1.55 1,000,018 1.55 0.52 1,000,093 4 0.52 2.97

s420 new 7 4 312 770 0.72 1,000,001 0.72 0.08 1,048,576 ∼1,043k 0.07 9.68

blasted case.124 133 386 0.32 1,000,013 0.32 0.22 1,008,715 0 0.22 1.47

s35932 15 7 17,918 44,709 3.50 800 4,380 1.34 1,270,247 ∼1,270k 1.06 4,140

blasted case.207 824 2,128 3.60 276,250 13.03 0.98 1,149,017 0 0.86 15

blasted case.120 284 851 1.59 1,000,000 1.59 0.40 1,044,731 0 0.38 4.13

63.sk 3 64 7,242 24,379 3.60 148,050 24.31 0.30 1,200,120 ∼1,200k 0.25 97

s420 7 4 312 770 0.74 1,000,038 0.74 0.10 1,366,784 ∼1,363k 0.07 9.93

5.2 Comparison with STS

Figure 3 shows the scatter plot comparing the average execution time per satis-
fying assignment between ESampler and STS on all the 364 formulas. Recall
that timeout occurred along the top or right border, the red color indicates that
Derivable is set true by Algorithm 2, and points below the diagonal line indicate
that ESampler performs better than QuickSampler, and vice versa.

Table 2 reports the performance of STS and ESampler for the same rep-
resentative subset of the benchmarks. Column St (resp. Spt) gives the total
execution time in thousand seconds (ks) (resp. execution time per satisfying
assignment in milliseconds (ms)) of STS. Column Sn shows the total number
of satisfying assignments generated by STS for each Boolean formula. The last
column provides the ratio of execution time per satisfying assignment between
STS and ESampler, depicting the speedup of ESampler.

Summary. STS failed on 1 benchmark because the underlying SAT solver Min-
isat failed to solve the Boolean formula, while ESampler failed on 11 bench-
marks. In general, ESampler performed better than STS on most benchmarks.
It was faster on 316 benchmarks (5.47× faster on average and more than 10×
faster on 93 benchmarks), while was 1.2 times slower on only 45 benchmarks.

ESampler: Effcient SAT Sampling 293

Fig. 4. ESampler vs. UniGen3

5.3 Comparison with UniGen3

Figure 4 shows the scatter plot comparing the average execution time per sat-
isfying assignment between ESampler and UniGen3 on all the 364 formulas.
Almost all the points are below the diagonal line, indicating ESampler signifi-
cantly outperforms UniGen3.

Table 3 reports the performance of UniGen3 and ESampler on the same
representative subset of benchmarks. Column Ut (resp. Upt) gives the total exe-
cution time in thousand seconds (ks) (resp. execution time per satisfying assign-
ment in milliseconds (ms)) of UniGen3. Column Un shows the total number of
satisfying assignments generated by UniGen3 for each Boolean formula. The last
column provides the ratio of execution time per satisfying assignment between
UniGen3 and ESampler, depicting the speedup of ESampler.

Summary. UniGen3 failed on 40 benchmarks. Recall that ESampler failed
on 11 benchmarks. No matter whether or not ESampler determined that the
derivation procedure was able to generate a large number of satisfying assign-
ments, ESampler performed significantly better than UniGen3 on almost all
the benchmarks. Specifically, ESampler was faster than STS on 348 bench-
marks. It was 69.8× faster on average and more than 100× faster on 194 bench-
marks, while was 1.2 times slower on only 7 benchmarks.

294 Y. Xu et al.

Table 3. Comparison of UniGen3 and ESampler

Benchmark #Vars #Cls Ut(ks) Un Upt(ms) Et(ks) En Edn Ept(ms)
Upt
Ept

s27 new 15 7 17 43 0.00 48 20.83 0.00 48 42 0.54 19.83

blasted case.54 203 725 3.60 158,168 22.76 0.20 664,548 0 0.30 3.33

20.sk 1 51 15, 475 60,994 3.60 70,312 51.21 1.67 1, 520, 152 ∼1,520k 1.10 57.83

s35932 7 4 17,849 44,425 3.60 0 – 0.63 1,270,247 ∼1,270k 0.50 –

blasted case.126 302 1,129 3.60 77,185 46.67 0.34 1,022,991 0 0.33 9.33

blasted case.40 245 650 3.60 50,380 71.46 0.41 1,149,017 0 0.36 5.78

s349 3 2 198 469 3.60 144,279 24.95 0.07 1,142,757 ∼1,088k 0.06 1,643

56.sk 6 38 4,842 17,828 3.60 104,149 34.57 1.18 1,093,080 ∼1,092k 1.08 30.63

blasted case.107 618 1,661 3.60 0 – 0.84 1,149,017 0 0.73 –

s832a 15 7 693 2,017 3.60 132,705 27.13 0.52 1,000,093 4 0.52 2.02

s420 new 7 4 312 770 3.60 98,934 36.39 0.08 1,048,576 ∼1,043k 0.07 3,966

blasted case.124 133 386 3.60 89,376 40.28 0.22 1,008,715 0 0.22 14.92

s35932 15 7 17,918 44,709 3.60 0 – 1.34 1,270,247 ∼1,270k 1.06 –

blasted case.207 824 2,128 3.60 15,026 239.92 0.98 1,149,017 0 0.86 16.89

blasted case.120 284 851 3.60 51,799 69.5 0.40 1,044,731 0 0.38 3.12

63.sk 3 64 7,242 24,379 3.60 48,004 75.01 0.30 1,200,120 ∼1,200k 0.25 1,133

s420 7 4 312 770 3.60 95,260 37.79 0.10 1,366,784 ∼1,363k 0.07 3,990

5.4 Execution Time vs Number of Satisfying Assignments

To see the relation between the execution time and the number of satisfying
assignments, we evaluate ESampler on four randomly chosen benchmarks by
varying the execution time and counting the number of satisfying assignments.
Figure 5 shows the plot for the four randomly chosen benchmarks, where the
x-axis is the execution time (in seconds) and the y-axis is number of satisfy-
ing assignments (#assignments). We can observe that the number of satisfying
assignments for each benchmark is almost linear in the execution time. These
results demonstrate the effectiveness of our derivation procedure.

5.5 Testing Uniformity

Since QuickSampler does not provide a guarantee of uniformity, neither does
ESampler. We empirically show that the uniformity of the solutions can be con-
trolled by adjusting the maximal number of solutions per seed, i.e., the parame-
ter MaxNumPerSeed. We run ESampler on a randomly selected benchmark (i.e.,
27.sk 3 32) on which our derivation procedure works, where duplicated solutions
are recorded to measure uniformity and the mutation phase of QuickSampler

is disabled to be more precise.
Figure 6 depicts the distributions of solutions when MaxNumPerSeed is 0, 10

and 100, where (x, y) denotes that there are y unique solutions each of which
occurs x times. We can observe that the smaller the parameter MaxNumPerSeed
is, the closer the distribution is to the normal distribution, meaning that the
solutions generated by our tool are actually close to uniform.

ESampler: Effcient SAT Sampling 295

A
ss
ig
nm

en
ts

Fig. 5. Time vs. #assignments

Fig. 6. Distribution of solutions

6 Conclusion

We have proposed a novel approach to generate a large set of satisfying assign-
ments from a seed assignment without invoking computationally expensive SAT
solving. Our approach is orthogonal to the previous techniques and could be
integrated into the existing SAT samplers. We have also developed a new tool
ESampler, based on the recent sampler QuickSampler as the seed genera-
tor. We have carried out extensive experiments on real-world benchmarks. The
experimental results confirmed the effectiveness and efficiency of our approach.

In future, we plan to further improve the performance of our tool ESampler,
which will be applied in emerging practical scenarios such as adversarial training
of binaried neural networks and constrained hardware design fuzz testing.

References

1. Abed, S., Abdelaal, A.A., Alshayeji, M.H., Ahmad, I.: Sat-based and CP-based
declarative approaches for top-rank-k closed frequent itemset mining. Int. J. Intell.
Syst. 36(1), 112–151 (2021)

296 Y. Xu et al.

2. Achlioptas, D., Hammoudeh, Z.S., Theodoropoulos, P.: Fast sampling of perfectly
uniform satisfying assignments. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT
2018. LNCS, vol. 10929, pp. 135–147. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94144-8 9

3. Angluin, D.: On counting problems and the polynomial-time hierarchy. Theoret.
Comput. Sci. 12, 161–173 (1980)

4. Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for #SAT
and Bayesian inference. In: Proceedings of the 44th Symposium on Foundations of
Computer Science, 11–14 October 2003, Cambridge, MA, USA, pp. 340–351 (2003)

5. Bellare, M., Goldreich, O., Petrank, E.: Uniform generation of np-witnesses using
an NP-oracle. Inf. Comput. 163(2), 510–526 (2000)

6. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

7. Bjørner, N., Phan, A.: νz - maximal satisfaction with Z3. In: Proceedings of the
6th International Symposium on Symbolic Computation in Software Science, pp.
1–9 (2014)

8. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: On parallel
scalable uniform SAT witness generation. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 304–319. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0 25

9. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable and nearly uniform gen-
erator of SAT witnesses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 608–623. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39799-8 40

10. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Balancing scalability and uniformity in
SAT witness generator. In: Proceedings of the 51st Annual Design Automation
Conference (DAC), pp. 60:1–60:6 (2014)

11. Chen, G., Zhao, Z., Song, F., Chen, S., Fan, L., Liu, Y.: SEC4SR: a security analysis
platform for speaker recognition. CoRR abs/2109.01766 (2021)

12. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, pp. 151–158 (1971)

13. DIMACS: Clique and coloring problems graph format (1993). http://archive.
dimacs.rutgers.edu/pub/challenge/graph/doc/ccformat.tex. Accessed 16 Sept
2021

14. Dutra, R., Laeufer, K., Bachrach, J., Sen, K.: Efficient sampling of SAT solutions
for testing. In: Proceedings of the 40th International Conference on Software Engi-
neering, pp. 549–559 (2018)

15. Ermon, S., Gomes, C.P., Sabharwal, A., Selman, B.: Embed and project: discrete
sampling with universal hashing. In: Proceedings of the 27th Annual Conference
on Neural Information Processing Systems, pp. 2085–2093 (2013)

16. Ermon, S., Gomes, C.P., Selman, B.: Uniform solution sampling using a constraint
solver as an oracle. In: Proceedings of the Twenty-Eighth Conference on Uncer-
tainty in Artificial Intelligence, pp. 255–264 (2012)

17. Gomes, C.P., Sabharwal, A., Selman, B.: Near-uniform sampling of combinatorial
spaces using XOR constraints. In: Proceedings of the 2th Annual Conference on
Neural Information Processing Systems, pp. 481–488 (2006)

18. Guralnik, E., Aharoni, M., Birnbaum, A.J., Koyfman, A.: Simulation-based verifi-
cation of floating-point division. IEEE Trans. Comput. 60(2), 176–188 (2011)

19. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neu-
ral networks. In: Proceedings of the Annual Conference on Neural Information
Processing Systems, pp. 4107–4115 (2016)

https://doi.org/10.1007/978-3-319-94144-8_9
https://doi.org/10.1007/978-3-319-94144-8_9
https://doi.org/10.1007/978-3-662-46681-0_25
https://doi.org/10.1007/978-3-662-46681-0_25
https://doi.org/10.1007/978-3-642-39799-8_40
https://doi.org/10.1007/978-3-642-39799-8_40
http://archive.dimacs.rutgers.edu/pub/challenge/graph/doc/ccformat.tex
http://archive.dimacs.rutgers.edu/pub/challenge/graph/doc/ccformat.tex

ESampler: Effcient SAT Sampling 297

20. Ivrii, A., Malik, S., Meel, K.S., Vardi, M.Y.: On computing minimal independent
support and its applications to sampling and counting. Constraints 21(1), 41–58
(2015). https://doi.org/10.1007/s10601-015-9204-z

21. Bayardo Jr., R.J., Schrag, R.: Using CSP look-back techniques to solve real-world
SAT instances. In: Proceedings of the Fourteenth National Conference on Artificial
Intelligence and Ninth Innovative Applications of Artificial Intelligence Conference,
27–31 July 1997, Providence, Rhode Island, USA, pp. 203–208 (1997)

22. Kitchen, N.: Markov chain Monte Carlo stimulus generation for constrained ran-
dom simulation. Ph.D. thesis, University of California, Berkeley, USA (2010)

23. Kitchen, N., Kuehlmann, A.: Stimulus generation for constrained random simu-
lation. In: Proceedings of the 2007 International Conference on Computer-Aided
Design, pp. 258–265 (2007)

24. Korneev, S., Narodytska, N., Pulina, L., Tacchella, A., Bjorner, N., Sagiv, M.:
Constrained image generation using binarized neural networks with decision pro-
cedures. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol.
10929, pp. 438–449. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94144-8 27

25. Kukula, J.H., Shiple, T.R.: Building circuits from relations. In: Emerson, E.A.,
Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 113–123. Springer, Heidelberg
(2000). https://doi.org/10.1007/10722167 12

26. Meel, K.S.: Constrained counting and sampling: bridging the gap between theory
and practice. CoRR abs/1806.02239 (2018)

27. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

28. Narodytska, N.: Formal analysis of deep binarized neural networks. In: Proceedings
of the 27th International Joint Conference on Artificial Intelligence, pp. 5692–5696
(2018)

29. Naveh, R., Metodi, A.: Beyond feasibility: CP usage in constrained-random func-
tional hardware verification. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp.
823–831. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-
0 60

30. Naveh, Y., et al.: Constraint-based random stimuli generation for hardware verifica-
tion. In: Proceedings of the 21st National Conference on Artificial Intelligence and
the 18th Innovative Applications of Artificial Intelligence Conference, pp. 1720–
1727 (2006)

31. Naveh, Y., et al.: Constraint-based random stimuli generation for hardware verifi-
cation. AI Mag. 28(3), 13 (2007)

32. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1–2), 273–302
(1996)

33. Silva, J.P.M., Sakallah, K.A.: GRASP: a search algorithm for propositional satis-
fiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

34. Silva, J.P.M., Sakallah, K.A.: Grasp–a new search algorithm for satisfiability. In:
Kuehlmann, A. (ed.) The Best of ICCAD, pp. 73–89. Springer, Boston (2003).
https://doi.org/10.1007/978-1-4615-0292-0 7

35. Sipser, M.: A complexity theoretic approach to randomness. In: Proceedings of the
15th Annual ACM Symposium on Theory of Computing, pp. 330–335 (1983)

36. Soos, M., Gocht, S., Meel, K.S.: Tinted, detached, and lazy CNF-XOR solving and
its applications to counting and sampling. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12224, pp. 463–484. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53288-8 22

https://doi.org/10.1007/s10601-015-9204-z
https://doi.org/10.1007/978-3-319-94144-8_27
https://doi.org/10.1007/978-3-319-94144-8_27
https://doi.org/10.1007/10722167_12
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-40627-0_60
https://doi.org/10.1007/978-3-642-40627-0_60
https://doi.org/10.1007/978-1-4615-0292-0_7
https://doi.org/10.1007/978-3-030-53288-8_22
https://doi.org/10.1007/978-3-030-53288-8_22

298 Y. Xu et al.

37. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 24

38. Sörensson, N., Eén, N.: MiniSat: a SAT solver with conflict-clause minimization.
Solver Description (2005)

39. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. 8(3), 410–421 (1979)

40. Vorobyov, K., Krishnan, P.: Combining static analysis and constraint solving for
automatic test case generation. In: Proceedings of the 5th IEEE International
Conference on Software Testing, Verification and Validation, pp. 915–920 (2012)

41. Wei, W., Erenrich, J., Selman, B.: Towards efficient sampling: exploiting random
walk strategies. In: Proceedings of the 19th National Conference on Artificial Intel-
ligence, 16th Conference on Innovative Applications of Artificial Intelligence, pp.
670–676 (2004)

42. Wei, W., Selman, B.: A new approach to model counting. In: Bacchus, F., Walsh,
T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 324–339. Springer, Heidelberg (2005).
https://doi.org/10.1007/11499107 24

43. Yuan, J., Aziz, A., Pixley, C., Albin, K.: Simplifying boolean constraint solving for
random simulation-vector generation. IEEE Trans. Comput. Aided Des. Integr.
Circ. Syst. 23(3), 412–420 (2004)

44. Zhang, Y., Zhao, Z., Chen, G., Song, F., Chen, T.: BDD4BNN: a BDD-based
quantitative analysis framework for binarized neural networks. In: Proceedings of
the 33rd International Conference on Computer Aided Verification, pp. 175–200
(2021)

45. Zhang, Y., Li, J., Zhang, M., Pu, G., Song, F.: Optimizing backbone filtering.
In: Proceedings of the 11th International Symposium on Theoretical Aspects of
Software Engineering, pp. 1–8 (2017)

46. Zhang, Y., Zhang, M., Pu, G., Song, F., Li, J.: Towards backbone computing: a
greedy-whitening based approach. AI Commun. 31(3), 267–280 (2018)

47. Zhao, Y., Bian, J., Deng, S., Kong, Z.: Random stimulus generation with self-
tuning. In: Proceedings of the 13th International Conference on Computers Sup-
ported Cooperative Work in Design, pp. 62–65. IEEE (2009)

48. Zhao, Z., Chen, G., Wang, J., Yang, Y., Song, F., Sun, J.: Attack as defense:
characterizing adversarial examples using robustness. In: Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis, pp.
42–55 (2021)

https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/11499107_24

API Usage Pattern Search Based on Model
Checking

Xue-er Ding1(B), Jun Niu1,2(B), and Jia Wang1(B)

1 Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211,
China

dingxuer@yeah.net, niujun@nbu.edu.cn
2 Key Laboratory of Embedded System and Service Computing Ministry of Education, Tongji

University, Shanghai 201804, China

Abstract. Reusing existing class libraries can improve the productivity of soft-
ware development. API usage patterns are useful resources for programmers in
reusing class libraries. Existing approaches often exploit API graphs to model
semantic relations between API elements of class libraries, and traversal graphs to
capture API usage patterns. However, those approaches cannot describe the num-
ber of parameters and the number of overload methods, and may not search for
various API usage patterns. In this paper, we propose an automatic and complete
approach to searching for API usage patterns by model checking technique. We
introduce a novel kind of API transition system model to completely describe the
relations between all API elements of existing class libraries.We obtain API usage
constraints fromqueries, namely the numbers and types of input and output objects
and class types transformed based on APIs replacement model, and give the logi-
cal characterizations of the constraints by suitable CTL* (computation tree logic)
formulas. Then, we can obtain suitable API usage patterns by model checking the
logical formulas in related API transition system models based on model checker
NuSMV. The experiments indicate that, in contrast to existing approaches, our
approach can automatically and effectively search for various API usage patterns.

Keywords: Code reusage · API usage pattern · Model checking · API transition
system · Computation tree logic CTL*

1 Introduction

With thewidespread employments of computers, increasing large-scale software systems
appear in reality. Their development and maintenance costs increase with their sizes
and complexities [1]. Reusing existing class libraries can improve software qualities
and development efficiencies [2]. In recent years, developing software by reusing class
libraries has received considerable attention from both academia and industry [3].

In general, class libraries refer to reusable classes consisting of the definitions of
their member variables and methods. When working with class libraries, programmers
often choose suitable methods provided by libraries (called API methods) and organize

© Springer Nature Switzerland AG 2021
S. Qin et al. (Eds.): SETTA 2021, LNCS 13071, pp. 299–319, 2021.
https://doi.org/10.1007/978-3-030-91265-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91265-9_16&domain=pdf
https://doi.org/10.1007/978-3-030-91265-9_16

300 X. Ding et al.

those API methods to implement a certain functionality [4]. A suitable calling sequences
of API methods are called an API usage pattern. Earlier studies show that API usage
patterns are useful resources for programmers in reusing existing class libraries [5].

However, the existing manual search approaches to obtaining API usage patterns
are inefficient and error-prone [6]. For instance, as a graphical interactive class library
commonly used in Eclipse, the GEF has 350,000 lines of codes and more than 60,000
API methods. When programmers search for their desired API usage patterns from this
library, they have to read and understand a large number of reference documents. It has
been reported that programmers usually spend more than 40% of their programming
time searching and understanding the usages of existing APIs [7]. If API usage patterns
can be automatically identified, the workload of searching, understanding, combining,
and debugging will be greatly reduced, and thus it will reduce the error probability [8, 9].
Hence, automatic API usage pattern search has attracted more attention, and has become
one of the research hotspots in code reusage.

Currently, there are two kinds of search approaches of API usage patterns. The
first is based on frequent-sequence mining [10, 11]. They transform code snippets in
the source code repository into API calling sequences and divide the sequences into
different clusters. Each cluster has similar sequences, representing a common API usage
pattern. Then, they search for relevant API usage patterns by comparing the similarities
between queries provided by users and clusters. Thus, these approaches can reduce the
redundancy of patterns and improve the efficiency of pattern discovery. However, there
are still several major issues. For instance, an imbalanced usage occurs when an API
usage pattern appears more frequently than other usage patterns. So, it will increase the
possibility that other API usage patterns are ignored and reduce the completeness of
patterns. As noted by Mendez et al., that imbalanced usage is common in Java and other
source code ecosystems [12]. Thus, existing approaches based on frequent-sequence
mining might not be suitable for API usage patterns search.

The second kind of search approach of API usage patterns is based on API graph
models [13–17]. These approaches model semantic relations between all API elements
(classes andmethods) in class libraries as graphs, to extract complete API usage patterns.
Given the queries represented as pairs of input and output types, they obtain reachable
subgraphs from input type to output type in graph models. Each subgraph corresponds
to a method calling sequence that constitutes a target pattern. These approaches can
avoid the imbalance that may appear in the first kind of approaches, and has higher
applicability and search efficiency. However, there also exist three key shortcomings.
First, these approaches only support a single input type in queries and cannot cope with
multiple input objects. Second, when analyzing and constructing graph models, they
lack quantitative analysis between API elements such as the number of parameters of
methods, and cannot treat overloaded methods. Also, existing traversal algorithms can
only handle methods with a single parameter in the target pattern [13].

In the last three decades, as a remarkable formal method, model checking technique
has been widely applied in various areas, such as software, hardware, protocol verifi-
cation and abnormal data detection [18, 19]. Model checking is usually used for the
verification of temporal properties of complex systems. The input of a model checking
algorithm consists of a formal model and a property to be verified, usually expressed as

API Usage Pattern Search Based on Model Checking 301

a logic formula. The model checking procedure automatically traverses all states of the
model, to check whether the model satisfies the property [20, 21]. In API usage patterns
search, API graph models represent the semantic relations between all API elements of
source codes, and the constraints represented as pairs of input and output types can also
be organized as properties of interest, thus model checking technique can be applied
to the searches of API usage patterns. In this case, one can construct formal models to
model the semantic relationships between API elements in class libraries, and further
mine semantic information of API elements to improve the effect of API usage pattern
search.

In this paper, we propose an API usage pattern search approach based on model
checking technique. We exploit model checking to effectively handle various API usage
patterns, especially those that contain API methods with multiple parameters. Further-
more, to comprehensively describe the relations between API elements in class libraries,
we propose a novel kind of API transition system model corresponding to the semantic
representations of class libraries. Figure 1 shows the complete process of our approach.
First, we exploit program analysis technique to extract API elements of class libraries
and build transition system models that describe semantic relations between API ele-
ments. Second, we transform query statements each consisting of a desired pair of input
and output types and natural language descriptions into matching rules, and formalize
these rules by computation tree logic CTL* formulae. Thenwe take the transition system
models and CTL* formulae as the inputs of the model checker NuSMV to obtain desired
API usage patterns that satisfy the CTL* formulae.

APIs replacement
model

API class
names

matching
rule

API dependency
modeling

transition
system model

NuSMV
model

checking

API usage pattern

CTL* represent rule

program static
analysis

description

Input/output
type

design rule class library
code corpus

Fig. 1. The process of the approach.

302 X. Ding et al.

The contributions of this paper are as follows.

• It introduces a novel kind of transition system model to describe the semantic depen-
dencies of API elements in class libraries. Different from existing works, this paper
further analyzes the numerical features between API elements, uses the labeling func-
tion to representmultiple parameters ofAPImethods, and exploits the concept of clone
to distinguish overloaded methods.

• It proposes an approach to searching for API usage patterns based on model checking
technique. This approach formulates formalizedmatching rules to express queries and
replaces the traditional graph traversal algorithm with model checking technique, to
automatically and effectively search for various API usage patterns.

2 Related Work

In recent years, many researchers have studied the API usage pattern search approaches
based on graph models. These studies are divided into two categories. One integrates
source code snippets to build a global graph model, while the other exploits a series of
single code snippets such as a function or a class to build local graph models.

To describe the various graph models of existing approaches intuitively, we take a
code snippet as an example in Fig. 2. The left side in Fig. 2 is the source code that
connects the database and queries table data, and the right side represents the involved
object types. Prospector developed by Mandelin et al. [13] uses API method signatures
and source code snippets to build a global graph that represents the relations between
all included API elements. As Fig. 3(a) shows, nodes are object types and edges are API
methods. Prospector traversals paths (API method call sequences) from input type to
output type to obtain desired API usage pattern by the shortest path search algorithm.

String dburl,usename,password,query;
Connection cn=DriverManager.getConnection
 (dburl,usename,password);
Statement st=cn.CreatStatement();
ResultSet rs=st.executeQuery(query);

Str a1,a2,a3,a4;
Conn c=DM.m1 (a1,a2,a3);
Stmt d=c.m2();
RS e=d.m3(a4);

Fig. 2. Code example and type representation.

Several approaches [14–16] construct local graph models that describe relations
between API elements in a function or a class. Different from Prospector [13], ParseWeb
developed by Thummalapenta and Xie [14] adds edges for connecting methods and
parameters, as shown in Fig. 3 (b). GraPacc developed by Nguyen et al. [15] divides
nodes into data nodes and action nodes. Data nodes are object types and action nodes are
API methods. GraPacc sets data dependent edges for describing the relations between
object types and sets control dependent edges for describing called methods sequences,
as shown in Fig. 3 (c). In APISynth developed by Lv Chen et al. [16], the nodes consist
of methods, input and output types of methods and usage frequencies of methods (QoS).
The edges connect adjacent nodes, indicating that the output type of method in a node is

API Usage Pattern Search Based on Model Checking 303

m1
DM.m1

DM.m1

Parametric
method

DM

ConnStr Stmt

RSStmt.m3 Stmt.m3

DM

ConnStr Stmt

RS m3

(a) (b)

date
control

Stmt.m3

Str

Stmt

RS

DM DM.m1

Conn

Str
Conn

Conn.m2

DM

m1

6.5

Stmt
m2

4.8

RS
m3

5.1

Conn

Stmt

Str

(c) (d)

Fig. 3. Examples of existing graph models.

the input type of method in the next node, as shown in Fig. 3 (d). Similar to Prospector
[13], ParseWeb andAPISynth exploit the graph traversal algorithm to extract the shortest
method sequence from input type to output type. APISynth uses the tool Grouminer to
mine common API usage patterns and matches patterns related to queries.

In general, API usage pattern search approaches based on graph models are help-
ful for programmers to obtain suitable method sequences, whereas they have two key
shortcomings. Firstly, existing graph models lack numerical relations between API ele-
ments such as the number of parameters. Secondly, the path search algorithm commonly
used in existing approaches cannot automatically match the pattern containing methods
with multiple parameters. Thus, these approaches require manual operations. Manual
operations easily cause errors, thereby reducing the search accuracy.

In addition, there are some related researches focusing on searching for API usage
patterns. Saied et al. extract method sequences from source code snippets by program
analysis technique, and exploit mining frequent items algorithm to mine API usage
patterns [10]. Niu et al., represent source code snippets as a network of object usages
and their co-existence relations, and identify representative object usages by clustering
similar object usages in the network [8]. These approaches rely on clustering technique
and easily ignore uncommonAPI usage patterns. Raghothaman et al. extract API classes
and methods related to queries based on clickthrough data from the Bing search engine,
and exploit structured call sequences to capture usage patterns of extracted APIs [22].
Gu et al. build a neural language model named RNN Encoder-Decoder to generate API
usage sequences for a given API-related natural language query. Whereas the approach
based on deep learning has low interpretability [23].

304 X. Ding et al.

3 API Transition System Model

3.1 Class Library API Dependency

In general, class libraries in oriented-object context indicate the sets of reusable codes
that possess the definitions of classes, interfaces, and their member variables or methods
(functions). In this section, we explore the dependency relations between class types
and methods in a class library, called Class library API dependency (CLAD). These
dependency relations can be classified into three categories, namely call relations (call),
parameter relations (par) and return (ret) relations. Further, we also consider some
numerical relations between types and methods, such as the number of parameters or
overloaded methods.

Definition 1. The API dependency relations of a classes library can be represented as
a tuple CLAD = (C,M, Rel, Ln), where C is a set of class types,M is a set of methods,
Rel: C × M → {call, par, ret} is the dependency relation function, Ln is the numerical
relation function between types and methods: for cC andm∈M, if Rel(c,m) ∈{call, ret},
then Ln(c,m)→ (1)T; if Rel(c,m) ∈ {par}, then Ln(c,m)→ (n1 n2 · · · ni)T with n ∈N

+,
where ni represents the number of the parameter with class type c in the i-th overloaded
method.

For example, the class library java. sql in JAVA2exists dependency relations between
the classes Connection, Statement and the method createStatement, as shown in Table
1. For simplicity, Connection, Statement and createStatement are abbreviated as Conn,
Stmt, creS, respectively. We use (C, M, Rel, Ln) to represent the dependency between
these elements. Here, we have C = {Conn, Stmt, int} and M = {creS}. In addition,
we have Rel (Conn, creS) = call and Ln (Conn, creS) = (1)T, representing that calling
method creS needs only one caller type Conn. We have Rel (Stmt, creS) = ret and Ln
(Stmt, creS)= (1)T, representing that only one type Stmt is returned after calling method
creS. We have Rel (int, creS) = par and Ln (int, creS) = (0 2 3)T, representing that
creS are overloaded methods and the numbers of parameters with type int in overloaded
methods are 0, 2, 3, respectively.

Table 1. Relations between partial API elements in the class Connection.

Caller type Returnee type Method

Connection Statement createStatement ()

createStatement (int resultSetType, int resultSetConcurrency)

createStatement (int resultSetType, int resultSetConcurrency, int
resultSetHoldability)

API Usage Pattern Search Based on Model Checking 305

3.2 API Transition System

To search for API usage patterns bymodel checking, we propose a formal API Transition
System (ATS) model to describe API dependencies of class libraries. In this section, we
explain in detail how an ATS model can represent class library API dependency.

In program statements, an API method calling sequence indicates a conversion pro-
cess of class types or some basic data types such as int, float and double, reflecting
class libraries API dependency. For example, given a method calling statement, to some
extent, we can say that the returnee type might be determined by its caller type and
parameter types. We observe that this conversion process of class types is similar to the
intuitive behavior of a transition system [18]. Thus, we can exploit a transition system
model to represent the conversion process of types in class libraries. Specifically, a tran-
sition system involves three elements: states, propositions and transitions. Each state
of a transition system describes a specific stage of the behavior process of the system.
Propositions indicate the main features of states. Transitions correspond to actions that
change states [24]. As described above, we can treat API methods as transitions, and
the current configuration of class types as states. In addition, we label caller types and
parameter types with specified propositions.

To further express the numerical relations between theAPI elements of class libraries,
we need to add some variables and labeling functions to a basic transition systemmodel.
A model ATS describes a CLAD as follows: (1) The transition relations indicate that the
dependency relations between class types and methods are call or return; (2) Variables
appearing in propositions indicate that class types are the parameters of methods; (3)
The labeling function is used to indicate the number of parameters.

Definition 2. An ATS is a 8-tuple ATS = (S,S0,T, →, K,AP,[.],L), where S is a set of
states, S0 ∈ S is the set of initial states, T is a set of transition actions, → ⊆ S × T × S
is the transition relation, K is a set of variables used to label states, AP is a set of atomic
propositions used to represent the constraints of states, [.]: AP → (K → [b,∞]) is a
number labeling function that, for ap ∈ AP, assigns to each variable appearing in ap a
non-negative integer interval [ap](k) in [b, ∞] with b ∈ N

+, L: S → 2AP is used to label
the constraints of states.

Let (C, M, Rel, Ln) be the API dependency of a class library, and (S, S0, T, →, K,
AP, [.], L) be its ATS model. The set S0 is used to denote the possible class types that
are just the callers of some methods in class libraries. Here, S0 corresponds to the input
types provided by users, thus S0 is initialized to ∅. The set T donates the methods in class
libraries. And the set S denotes the callers and returnees of methods. For any m ∈ M, if

c1,c2 ∈C, Rel(c1,m)= call and Rel(c2,m)= ret, then tm∈ T, sc1, sc2 ∈ S, sc1
tm→ sc2 , kc1 ∈

K, apc1 ∈ AP, [apc1]m(kc1) ∈ [1,∞), where sc1, sc2 represent the state whose class type
label is c1 and c2, respectively, kc1 denotes the variable related to c1, apc1 represents the
proposition related to c1, and [apc1]m(kc1) represents the value range of kc1 in apc1 (the
range is [1,∞), because the number of the caller of a method is 1).

If c3 ∈ C and Rel(c3,m) = par, kc3 ∈ K, apc3 ∈ AP, [apc3]m(kc3) ∈ [Ln(c3)m,∞),
where kc3 and apc3 represent variables and propositions related to c3 respectively, and
the lowest value of kc3 in proposition apc3 is Ln(c3)m which represents the number of
parameter c3 in the method m. Let Cc be the set of callers, if c ∈ Cc and Rel(c, m) =

306 X. Ding et al.

call, then L(sc) ∈ 2AP, where L(sc) represents a mapping from state sc to propositions
in AP at sc and proposition ap ∈ AP is composed of variable k and [ap]m(k).

However, AST models may not accurately describe API dependencies at a high
semantic level. For instance, the proposition apc cannot express all numbers of parameter

c ofmethodmwhich are overloadmethods. Only one transition relation sc1
tm→ sc2 cannot

describe different API methods converting type c1 to type c2. To solve these problems,
here we discuss them by a special concept of “clone”.

Overloaded Method. Java, generally speaking, method overloading refers to the sit-
uation that some methods with the same method name but different parameter lists.
Specifically, it can be divided into the following situations. The types of parameters
are different; the number of parameters is different (a different number must constitute
an overload); there are multiple and different types of parameters, and their order is
different to constitute an overload. For simplicity, we do not consider the last situation
above in this paper. Given there exist n overloaded methods for a method m, and the
i-th overloaded method has di return types. Let om be the number of all possible over-
loading situations. For the overloaded method m, we clone it into multiple method m1,
m2, · · · , mn, and there exist corresponding cloned transitions t1, t2, · · · , tom related to
these cloned methods. For all overloading situations, we also need to clone the states
of the caller to distinguish the constraints of the parameters of the methods. If Rel (c,
m) = call and Rel (c’, m) = par, we clone the state s related to the class type c to the
states sc1, sc2 , · · · , scom . The propositions of the cloned states and the labeling function
are obvious, and we omit them here.

Different Methods for Type Conversion. If there exist nmethods that can convert the
class type c to c’, we also need to clone the state related to c into n cloned states. The
definitions of the other elements are similar to the situation of overloaded method.

Overall, this paper formulates the mapping of elements in class libraries to elements
in ATS, as shown in Table 2.

3.3 Constructing API Transition System

The construction process of an API Transition System contains two phases. The first
phase analyzes the source codes of class libraries to extract dependency relations between
API elements. The second phase transforms the dependency relations into API graph
model ATS.

Here we take Java class libraries as examples. For Java code snippets, the corre-
sponding abstract syntax tree contains all code elements (class types, methods, etc.) and
their relations (call, ret, par, etc.). Thus, to extract dependency relations between API
elements, we generate the abstract syntax trees corresponding to Java source codes by
program static analysis tool Spoon1 and Javassit2, and then exploit theDepth First Search
algorithm to traverse the branches and nodes. According to the mapping rules from the

1 http://spoon.gforge.inria.fr/.
2 https://sourceforge.net/projects/jboss/files/Javassist/.

http://spoon.gforge.inria.fr/
https://sourceforge.net/projects/jboss/files/Javassist/

API Usage Pattern Search Based on Model Checking 307

Table 2. The mapping of library elements to ATS elements.

Library elements ATS elements Semantic description

Method M Transition action set T T represents a set of API
methods

Class type C Variable set K Variables records the numbers of
the callers and parameters of
methods

State set S States specify the callers and
returnees of methods and
constraints

Proposition set AP Propositions represent the
constraints of the numbers of
callers and parameters of
methods

Type c1-method m-type c2
Condtion: Rel(c1,m) = call ∪
Rel(c2,m) = ret

Transition relation

sc1
tm→ sc2

The class type c1 is the caller of
method tm and c2 is its returnee
type

Type c1-method m
Condition: Rel (c1, m) = call

Labeling
function[apc1]m(kc1)

[apc1]m(kc1) represents the
number of caller types c1 to call
method tm, and [apc1]m(kc1) ≥
1

Type c3-method m
Condition: Rel (c3, m) = par

Labeling
function[apc3]m(kc3)

[apc3]m(kc3) represents the
number of parameter c3 to
execute method tm, and
[apc3]m(kc3) ≥ o, where o is the
number of parameter c3

Type Cc condition:
Cc is a set of caller types

Function L L represents the propositions in
states corresponding to type Cc

Special case:
Method m is an overloaded
method

Cloned transition action
set tm

tm = {
tm1 , tm2 , · · · tmn×d

}

represents cloned actions of
method m, n is the number of
overloaded methods, and d is the
number of returnees

Cloned state set sc sc = {
sc1 , sc2 , · · · , scn

}

represents cloned states of
method m, where c is the caller

Cloned proposition set
ac

ac = {
ac1 , ac2 , · · · , acn

}

represents cloned propositions
of method m, where c is the
parameter

(continued)

308 X. Ding et al.

Table 2. (continued)

Library elements ATS elements Semantic description

Token function[ac]m(kc) [ac]m(kc)represents the different
number of parameter c in
overloaded methods m

Special case: different methods
can convert type c to cr

Cloned state set sc sc = {
sc1 , sc2 , · · · , scn

}

represents cloned states of
different methods
m1,m2, · · ·mn, n is the number
of methods

Transition action set T tm1 , tm2 , · · · , tmn×d ∈ T , d
represents the number of
returned type states

elements in class libraries to the elements in API Transition System (in Sect. 3.2), we
develop the following algorithm that can transform CLAD into ATS.

Algorithm1 BuildingAPITransitionSystem
Input Class library API dependencies CLAD

Example 1. A partial of the transition model ATS of the library java. sql is shown in
Fig. 4. Intuitively, we label states with class types and parameters, and their quantitative

API Usage Pattern Search Based on Model Checking 309

constraints in the form of propositions. The directed edges are labeled with the names of
the methods from the callers of the methods to their returnees. For a state that indicates
a caller of a certain method, its propositions represent the caller and the number of
parameters in this method. Furthermore, to distinguish between two special situations in
Sect. 3.2, we mark cloned overloaded methods and the cloned callers of these methods
in blue, and mark different methods that can convert a specific type to another type and
cloned callers of these methods in yellow. We use blue and yellow concentric circles to
indicate cloned states which are callers of overloaded methods and callers of methods
converting a specific type to another type. For example, since the caller and returnee
of the method creatStatement are state Connection and Statement respectively, there
exist transitions from the state indicating the class Connection to the state indicating the
state Statement. The method creatStatement is overloaded by 3 times and its returnee
class Statement is cloned by 2 times, thus this method is cloned by 6 times, and the
caller Connection is cloned by 3 times, not including the state with label Conn4. Since
the numbers of the int parameter in overloading methods creatStatement are 0, 2 and
3, the propositions in cloned states related to the class Connection are Conn ≥1, Conn
≥1&int ≥2 and Conn ≥1&int ≥3, respectively. For simplicity, we abbreviate the class
type names in Fig. 4.

DM≥ 1
Str≥1

DM1

DM≥1
Str≥1

Props≥1

DM2

DM3

DM≥1
Str≥3

Conn1 Conn2 Conn3

Conn≥1
int≥2

Conn≥1
int≥3

Stmt≥1
Str≥1 Stmt≥1

Stmt1

Stmt2

executeQuery getResultSet

RS≥1RS1

close

void

PS

PS≥1

void≥1

creatStatement

getConnection

SQLW
getWarnings

SQLW≥1

writeSQL
Conn≥1

Conn4

Conn≥1

close

clearWarnings

getLogStream

close

getConnection

RS2

RS≥1
Str≥1

IS≥1
...

IS

getAsciiStream

SQLD≥1
SQLO≥1

SQLD2

Conn≥1
Str≥1

Conn4

CStmt

CStmt≥1
...

prepareCall

PStmt≥1

prepareStatement

PStmt

Fig. 4. Partial ATS model of API dependency in the java.sql library.

4 Formalization of the Matching Rules of Queries

In this section, we establish the matching rules to denote the search requirements and
then to obtain suitable API usage patterns based on ATS. The construction process of the

310 X. Ding et al.

matching rules contains the semantics description and the formalization of rules. Specif-
ically, given a query that consists of the description of the input and output types, we
construct an APIs replacement model to locate the API classes related to the description,
and combine these API classes with input/output types to build the final matching rules.
Then, we formalize the rules by the computation tree logic CTL* [18].

4.1 Semantic Descriptions of Rules

We hope to understand the query requirements provided by users in natural language
descriptions. The transitionmodelATS just describes the process of type conversion, and
it cannot understand the natural language descriptions semantically. Hence, we build an
APIs replacement model to convert natural language descriptions into the constraints on
input and output types related to the elements in ATS model.

4.1.1 APIs Replacement Model

We follow the method proposed by Raghothaman et al., using clickthrough data to
find relevant API names [22]. As Fig. 5 shows, it consists of preprocessing text and
constructing the replacement model.

Query
description

model train

API alignment
model

APIs class
name

clickthrough
data

APIs replacement
model

word probability
model

EM algorithm

text preprocess

Eclipse JDT

Fig. 5. Flowchart of APIs replacement.

Preprocessing Text. Firstly, we collect the set of pairs (Q, URL) from search engines,
indicating theURL links that users click in response to the queryQ. Secondly, we extract
code snippets on web pages through HTML tags such as< pre> and< code>. Thirdly,
we exploit the tool Eclipse JDT to extract class types from code snippets. Finally, we
split a single pair (Q, URL) into the set of pairs (Q, R), where R represents the set of
class types.

API Usage Pattern Search Based on Model Checking 311

Constructing Model. Let r be a class type related to the query Q, the probability of r
being the replacement term, is given by:

Pr(r|Q) = Pr(r|q1, q2, · · · , qn) =
n∑

i=1

Pr(r|qi) · Pr(qi|Q)

The API replacement model Pr(r|Q) is composed of API alignment model Pr(r|qi)
and word probability model Pr(qi |Q), where Q = [q1, q2,…, qn] represents the query
containing the words q1, q2, · · · , qn. Pr(r|qi) quantifies the connection between a word
and an API, and indicates the probability of class type i given a query word qi. Pr(qi |Q)
quantifies the probability of a word appearing in the query, and indicates the unsmoothed
unigram probability of the query word qi in the query Q.

Since a data pair (Q, R) cannot establish a direct connection between a word q ∈ Q
and a class type r ∈ R, we use a standard procedure for training alignment model by
applying an expectationmaximization (EM) algorithm.TheEMalgorithmfirst initializes
Pr(r|qi) to random values for each r and q, and then iteratively updates the probabilities
to maximize the likelihood of generating the training data. This probability quantifies
how likely the word q is to appear in the query Q and is calculated as follows:

Pr(q|Q) = αq

�q′∈Qαq′

αq=# of times q occurs in query log

Total word count in query log

4.1.2 Description of Rules

After converting the descriptions to class types, we need to combine class types with
query types to generate matching rules.

Definition 3. A query type is a 2-tuple (Type_in, Type_out), where Type_in represents
the set of input types, and Type_out represents the output type.

An API usage pattern is a sequence of API methods where participant methods
belong to different API classes.

Definition 4. AnAPI usage pattern is a sequence ofAPImethods<ma,1,mb,2,· · · ,mn,i>,
i ∈ N

+, i ≥ 2, where the second subscript of a method mn,i denotes the order number of
the method, and the first subscript represents the API class the method belongs to.

In general, the returnee of a method in a pattern is the caller of its successor
method. For instance, the returnee of method ma,1 is b. For an API usage pattern p
= <ma,1,mb,2,· · · ,mn,i> and a query q = (Type_in, Type_out), satisfies queried type, if
a belongs to Type_in and the returnee of mn,i is Type_out, we can say that the pattern p
satisfies q.

As described above, users desire to find a method sequence from input type to output
type, thus we aim to match a transition path tp that can convert the types in Type_in to
the type Type_out from ATS model (The initial state set S0 in ATS are the caller types

312 X. Ding et al.

in Type_in, and the final state in ATS is Type_out). Since a description from a user
and a query (Type_in, Type_out) indicate the same API usage pattern, some class types
corresponding to the description are likely to be included in the transition path from
input types to output type. They may be the middle states MS (state Type_in reaches
state Type_out through state APIs) or the middle proposition MP (some parameters of
methods in transition path Tp are APIs). For a middle state, we need to further determine
whether it passes transition path tp. For a middle proposition, we regarded it as Type_in.
In conclusion,we formulate the following rules: (1)GraphmodelATS has stateType_out,
state or proposition Type_in; (2) ATS satisfies proposition Type_in, and can convert state
Type_in to Type_out through the transition path Tp; (3) The transition path Tp passes
MS.

4.2 Characterization of Query Rules by CTL*

CTL* is a powerful temporal logic used to describe temporal properties of transition sys-
tem models [25, 26]. This logic consists of path quantifiers and temporal operators [27].
The path quantifiers A (for all paths) and E (there exists a path) can specify the branch
structures features, and the temporal operators X(next), F(eventually), G(globally) and
U(until) are used to specify some temporal properties on paths.

In this paper, we use CTL* formulae to characterize matching rules, and then detect
whether there exist transferablemethod sequences that satisfy the formulae inATS. Table
3 shows some examples of CTL* formulas corresponding to matching rules. The left
side in Table 3 are input types, output types and class types converted by description. The
right side represents the CTL* formulas related to types. For the first query consisting of
input typesDriverManager, String, output type Boolean and converted type Properties,
we aim to find an existing sequence converting DriverManager, String and Properties
to Boolean from ATS model (because Properties is the middle proposition, it can be
regarded as input type). Thus, we construct the CTL* formula containing types, the
number of types and relations of types to describe this existing sequence.

This paper exploits the model checker NuSMV3 to search for API usage patterns.
NuSMV developed by McMillan et.al is a tool that can effectively analyze and verify
logical properties of concurrent systems.

To automatically detect whether matching rules are satisfied in ATS models, we
convertATS andCTL* formulae about the reversals ofmatching rules intoSMVlanguage
as the input of NuSMV. If the given rule is satisfied in ATS, the output of NuSMV is
“True”. Otherwise, NuSMV will provide a counterexample path that does not satisfy.

5 Evaluation

To evaluate our approach, we design two experiments. In the first experiment, we verify
whether our approach can search for the desired API usage patterns, and measure the
search accuracy of our approach and other approaches. In the second, we demonstrate
whether our approach can effectively solve the problems that cannot be solved by the
other methods, and discuss the influence of technical points involved in our approach.

3 http://nusmv.fbk.eu/.

http://nusmv.fbk.eu/

API Usage Pattern Search Based on Model Checking 313

Table 3. CTL* representation examples of matching rules.

Type_in/Type_out
APIs (MS, MP)

CTL* formula

DriverManager, String/
boolean
Properties (MP)

a. (DriverManager = 1 ∨ String = 1∨Properties
= 1)

∧
E(trueU(boolean = 1))

b. (DriverManager = 1&String = 1&Properties
= 1) → EF (boolean = 1)

DriverManager, String/
Statement
Connection (MS)

a. (DriverManager = 1 ∨ String = 1)
∧

E(trueU(Connection = 1
∧

E(trueU (Statement
= 1))))

b. (DriverManager = 1 ∨ String = 1) →
EF(Connection = 1 → EF(Statement = 1))

DriverManager, String, String/ResultSet
Connection, Statement (MS)

a. (DriverManager = 1 ∨ String = 2)
∧

E(trueU((Connection = 1
∧

E(trueU(Statement
= 1

∧
E(trueU(ResultSet = 1))))) ∨ (Statement

= 1
∧

E(trueU(Connection = 1
∧

E(trueU
(ResultSet = 1)))))))

b. (DriverManager = 1&String = 1) →
EF(Connection = 1 → EF(Statement = 1 →
EF(ResultSet = 1)))|(Statement = 1 →
EF(Connection = 1 → EF(ResultSet = 1))))

5.1 Setup

We compare our approachwith frequent-pattern-mining based the approachMLUP [10],
global-graph-model based the approachProspector [13], and local-graph-modelGraPacc
[15].

To ensure fairness, we build graph models based on the same Java packages and
class libraries used in the compared approaches. Specifically, in the first experiment, we
compare the class library GEF with Prospector and MLUP, and the Java SDK Utility
(java. util, java. io) with GraPacc. In the second experiment, we use the library java.sql
and java. nio. file.

In the first experiment, we use 30 query pairs in the form of (Type_in, Type_out),
including 20 queries in [13] and 10 queries about complex programming tasks. In the
second, we extract 10 popular questions from Stack Overflow4 and the pairs of the
input/output types in answered code examples as queries (in Table 4). If there exist some
types of arrays as the class types in some query pairs (e.g. line 6, 8 in Table 4), it implies
that there exist multiple classes with the same types, and this can be achieved by adding
some numerical constraints, which is discussed in Sect. 3.

In order to uniformlymeasure the relevance of the search results,weuse twoprecision
metrics commonlyused in information retrieval: top-1 precision(P@1) [28, 29] andmean
average precision (MAP) [30]. Descriptions and definitions of the metrics are as follows:

4 https://stackoverflow.com/.

https://stackoverflow.com/

314 X. Ding et al.

Table 4. Benchmark queries.

No Description Type_in/Type_out

1 Create and write to a(text) file String, String, Path/void

2 Connect Java to a MySQL database DriverManager, String,
String/ResultSet

3 Iterate through a HashMap Map/void

4 How to append text to an existing file in Java? String/PrintWriter

5 convert a stack trace to a string StringWriter/String

6 How can I generate an MD5 hash? String/byte []

7 Calculating the difference between two Java date
instances

date, date/long

8 determine whether an array contains a particular
value

String [], String/boolean

9 Parse JSON in Java String/JSONArray

10 How to upload files to server using JSP Servlet HttpServletRequest,
HttpServletResponse/void

P@1: This metric represents the relevance of the first result. Relevance in our study
is either 1 for relevant or 0 for irrelevant.

MAP: The mean average precision is for a set of queries and is computed as follows:

MAP =
∑Q

i=1 AveP(i)

Q

AveP =
∑n

k=1(P(k) × relk)

the number of relevant documents

where n is the number of results and relk is the relevance of the kth result. P(k) is the
weight of rank k in the list of related results. For instance, if a list has two relevant results
that appear at ranks 1 and 3, then P (1) = 1.00 and P (3) = 0.67.

5.2 Results

5.2.1 Relevance Assessment

Based on the queries in the literature [13], we compare the search results of our approach,
Prospector andMLUP, as shown in Table 5. In addition, we compare the search results of
our approach and GraPacc, as shown in Table 6. In Tables 5 and 6, the columns marked
“P@1” and rows marked “MAP” show the precision of our approach is the significantly
highest amongMLUP, Prospector andGraPacc.We explain as follows: (1)MLUP largely
depends on the usage frequencies of patterns in the corpus. For example, we find that
a pattern satisfying query (TableViewer, Table) is only used once. The pattern cannot
be recognized because of its low usage frequency. (2) When suitable patterns contain

API Usage Pattern Search Based on Model Checking 315

methods with parameters, Prospector requires additional manual operations, resulting
in many irrelevant results. (3) In addition, the graph models of Prospector and CraPacc
do not consider quantitative relations between API elements, thus describe semantic
information of class libraries insufficiently. In this paper, the ATS models completely
consider the quantitative dependence between API elements in class libraries. Moreover,
by combining model checking technique, our approach automatically identifies various
patterns in any formof queries, to avoidmanual intervention that often appears in existing
approaches based on the graph traversal search algorithm.

Table 5. Evaluation results of the queries from [13].

Query P@1

Type_in Type_out Prospector MLUP Our approach

InputStream BufferedReader 1 1 1

String MappedByteBuffer 1 1 1

TableViewer Table 1 0 1

IWorkbench IEditorPart 1 1 1

ScrollingGraphicalViewer FigureCanvas 1 0 1

KeyEvent Shell 1 1 1

Enumeration Iterator 1 0 1

SelectionChangedEvent ISelection 1 0 1

ImageRegistry ImageDescriptor 1 0 1

Map Iterator 1 1 1

IViewPart MenuManager 1 1 1

TableViewer TableColumn 0 1 1

IEditorSite ISelectionService 0 0 1

String BufferedReader 0 0 1

IWorkbenchPage IStructuredSelection 0 0 0

IWorkbenchPage IDocumentProvider 0 1 1

IFile String 0 1 1

IWorkbenchWindow IViewPart 0 0 1

AbstractGraphicalEditPart ConnectionLayer 0 0 1

IWorkspace IFile 0 0 0

MAP 0.55 0.45 0.9

316 X. Ding et al.

Table 6. Evaluation results of the queries from Java SDK Utility.

Query P@1

Type_in Type_out GraPacc Our approach

FileReader BufferedReader 1 1

InputStream BufferedReader 0 1

LinkedHashMap Iterator 0 1

ArrayList Iterator 1 1

FileWriter PrintWriter 0 1

File Scanner 0 0

FileInputStream DataInputStream 1 1

Pattern Matcher 1 1

GregorianCalendar ZonedDateTime 0 0

Console PrintWriter 1 1

MAP 0.5 0.8

5.2.2 Usability and Technique Assessment

To verify whether our approach can solve multiple-input-type queries that are not
involved in other approaches, we conduct retrieval experiments on the graph models
ATS by the queries in Table 4. Experimental results are shown in Table 7.

Table 7. Evaluation results of queries from Table 4.

No API classes corresponding to descriptions P@1

Before replacement After replacement

1 Files 1 1

2 Connection, Statement 0 1

3 Iterator 1 1

4 FileWriter, BufferedWriter 0 1

5 PrintWriter 1 1

6 MessageDigest 0 0

7 TimeUnit 1 1

8 Arrays 1 1

9 JSONobject 0 0

10 InputStream 0 1

MAP 0.5 0.8

API Usage Pattern Search Based on Model Checking 317

We explain our approach intuitively based on the query 2 in Table 4. The search
process about this query are as follows: Firstly, we convert the description of the
query 2 to {Connection, Statement} through APIs replacement model. Secondly, we
combine {Connection, Statement} with input/output types {DriverManager, String,
String/ResultSet}to make matching rules, and exploit CTL* formula representing
inverted rules. Finally, we use model checker NuSMV to check CTL* formula in ATS
model. The result of NuSMV is shown in Fig. 6 (the omitted part is the variables with
value 0).

-- specification !((DM=1&Str=1) EF(Conn=1 EF(Stmt=1
EF(RS=1)))|(Stmt=1 EF(Conn=1 EF(RS=1))))) is false

-- as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample

State: 1.1
DM = 1
str = 2
method = empty
...

State: 1.2
DM = 0
str = 1
conn = 1
method = getConnection

State: 1.3
str =1
conn=0
stmt = 1
method = creatStatement

State: 1.4
stmt = 0
RS=1
method = executeQuery

Fig. 6. Search result for the query “Connect Java to a MySQL database”.

Figure 6 shows that the CTL* formula is not satisfied in model ATS, thus NuSMV
provides a counterexample trace. According to the transition process (marked by the
dashed box), we can identify the method sequence (namely an API usage pattern),
where solid red boxes indicate specificmethods and arrows indicate their order. After the
empirical analysis, the API usage pattern satisfies the query 2. Furthermore, as shown
in Table 7, our approach can effectively handle multiple forms of queries, including
multiple-input-types. As a result, our approach has higher applicability than existing
approaches. Table 7 also illustrates the necessity of the APIs replacement model. The
columns “Before replacement” and “After replacement” show that the conversion from
the descriptions of queries to API class types will make search results more accurate.

6 Conclusion

The API usage patterns of class libraries can help users to understand or learn the usage
of some new class libraries, or provide programmers with helpful suggestions to improve
the productivity when coding. In this paper, we propose a new approach to searching
for API usage patterns. We develop a novel kind of API transition system model ATS to

318 X. Ding et al.

model the semantic dependency relations between API elements of class libraries. We
use the logic CTL* to formalize the matching rules of API usage patterns abstracted
from the queries provided by programmers, and exploit model checking technique to
automatically obtain desiredAPI usage patterns. Experiments shows that our approach is
effective. Compared with the existing approaches, our approach has higher applicability.

In the future, we will strengthen our approach from two aspects: 1) To achieve some
specific business logics when coding, the desired API methods may be span multiple
class libraries. This also implies that the dependency relations of API methods will no
longer be limited in a single class library. In that case, we need to search for patterns from
multiple class libraries, and then from multiple API transition system models, possibly
by computing their synchronous products. 2) The resulting API method sequences may
be redundant, so we will identify some undesired API usage patterns by strengthening
some constraints.

Acknowledgements. We are very grateful to the editors and reviewers for their comments on this
manuscript. This work was supported by the National Natural Science Foundation of China under
Grant 61672384, the Ningbo Natural Science Foundation of China (Grant No. 2019A610088), the
Open Subject of Key Laboratory of Embedded and Service Computing of Ministry of Education
of China (Grant No. ESSCKF 2019–07).

References

1. Osvaldo, S.S., Lopes, D., Silva, A.C., et al.: Developing software systems to big data platform
based on mapreduce model: an approach based on model driven engineering. Inf. Soft. Tech.
7(6), 30–48 (2017)

2. Mkitalo, N., Taivalsaari, A., Kiviluoto, A., et al.: On opportunistic software reuse. Computing
10(2), 2385–2408 (2020)

3. Desouza, K.C., Awazu, Y., Tiwana, A.: Four dynamics for bringing use back into software
reuse. Commun. ACM 49(1), 96–100 (2015)

4. Shen, Q., Wu, S., Zou, Y., et al.: From API to NLI: a new interface for library reuse. J. Syst.
Softw. 169(110), 7–28 (2020)

5. Kula, R.G., German, D.M., Ouni, A., et al.: Do developers update their library dependencies.
Empir. Softw. Eng. 4(23), 384–417 (2018)

6. Zhong, H., Mei, H.: An empirical study on API usages. IEEE Trans. Softw. Eng. 45(4),
319–334 (2019)

7. Saied, M.A., Sahraoui, H., Dufour, B.: An observational study on API usage constraints and
their documentation. In: 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER). IEEE, pp. 33–42 (2015)

8. Niu, H., Keivanloo, I., Zou, Y., et al.: API usage pattern recommendation for software
development. J. Syst. Softw. 12(9), 127–139 (2017)

9. Dit, B., Revelle, M., Gethers, M., et al.: Feature location in source code: a taxonomy and
survey. J. Softw. Maint. Evol. Res. Pract. 25(1), 53–95 (2013)

10. Saied,M.A., Benomar, O., Abdeen, H., et al.: Miningmulti-level API usage patterns. In: 2015
IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering
(SANER). IEEE, pp. 23–32 (2015)

11. Zhong, H., Xie, T., Zhang, L., et al.: MAPO: mining and recommending API usage patterns.
Proc Ecoop 56(53), 318–343 (2009)

API Usage Pattern Search Based on Model Checking 319

12. Mendez, D., Baudry, B., Monperrus, M.: Empirical evidence of large-scale diversity in API
usage of objected-oriented software. In: Proceedings of 13th IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM), pp. 43–52 (2013)

13. Mandelin, D., Xu, L., Bodik, R., et al.: Jungloid mining: helping to navigate the API jungle.
Program. Lang. Des. Implementation, ACM Sigplan Not. 40(6), 48–61, (2005)

14. Thummalapenta, S., Xie, T.: Parseweb: a programmer assistant for reusing open source code
on the web. In: Proceeding soft the twenty-second IEEE/ACM international conference on
Automated software engineering. ACM, New York, pp. 204–213 (2007)

15. Nguyen, A.T., Nguyen, H.A., Nguyen, T.T., et al.: GraPacc: a graph-based pattern-oriented,
context-sensitive code completion tool. In: InternationalConference onSoftwareEngineering.
IEEE, NJ, 1407–1410 (2012)

16. Chen, L., Jiang, W., Songlin, H.: An API recommendation system based on a new graph
model. Chin. J. Comput. 395(11), 2172–2187 (2015)

17. Reps, T.W., et al.: Component-based synthesis for complex APIs. In: POPL 2017. ACM,
pp. 15–21 (2017)

18. Kaile, S., Abdul, S., Xiangyu, L.:Model checking temporal logics of knowledge viaOBDDs1.
Comput. J. (4), 403–420

19. Agha, G., Palmskog, K.: A survey of statistical model checking. ACMTrans.Model. Comput.
Simul. 28(1), 1–39 (2018)

20. Gol, E.A., Bartocci, E., Belta, C.: A formal methods approach to pattern synthesis in reaction
diffusion systems. Eprint Arxiv 20(15), 108–113 (2014)

21. Cappart, Q., Limbree, C., Schaus, P., et al.: Dependability analysis of control systems using
systemC and statistical model checking. Comput. Sci. 20(18), 61–68 (2016)

22. Raghothaman, M., Wei, Y., Hamadi, Y.: SWIM: Synthesizing what I mean. In: Proceedings
of the 38th International Conference on Software Engineering (ICSE), IEEE, pp. 357–367
(2016)

23. Gu, X., Zhang, H., Zhang, D., et al.: Deep API learning. In: Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
pp. 13–18 (2016)

24. Beek, M.H., Fantechi, A., Gnesi, S., et al.: Modelling and analysing variability in product
families: Model checking of modal transition systems with variability constraints. J. Logic
Algebraic Program. 85(2), 287–315 (2016)

25. Khamespanah, E., Khosravi, R., Sirjani, M.: An efficient TCTL model checking algorithm
and a reduction technique for verification of timed actor models. Sci. Comput. Program.
153(15), 1–29 (2018)

26. Camilli, M., Bellettini, C., Capra, L., Monga, M.: CTL model checking in the cloud using
MapReduce. In: 16th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, IEEE, pp. 333–340 (2014)

27. Bozzano, M., Cimatti, A., Lisagor, O., et al.: Safety assessment of AltaR9ica models via
symbolic model checking. Ence Comput. Program. 98(4), 464–483 (2015)

28. Nie, L., Jiang, H., Ren, Z., et al.: Query expansion based on crowd knowledge for code search.
IEEE Trans. Serv. Comput. 9(5), 771–783 (2017)

29. Stolee, K.T., Elbaum, S., Dobos, D.: Solving the search for source code. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 23(3), 26–67 (2014)

30. Stolee, K.T., Elbaum, S., Dwyer, M.B.: Code search with input/output queries: generalizing,
ranking, and assessment. J. Syst. Softw. 116(4), 35–48 (2016)

Author Index

Ahishakiye, Faustin 178
Aït-Ameur, Yamine 40

Cai, Saihua 161
Chen, Jinfu 161
Chen, Taolue 279

Damare, Amol 239
Ding, Xue-er 299

Grosu, Radu 239
Guan, Yong 61
Guo, Panhua 3

Hu, Ruiqi 261
Huang, Ying 219

Jiang, Shujuan 219

Kristensen, Lars Michael 178

Li, Jinghui 102
Li, Meilun 261
Li, Ximeng 61
Li, Zengyang 201
Liu, Bo 161
Long, Teng 122
Lu, Yuteng 22, 143

Mao, Bifei 102
Mehmood, Usama 239
Mendil, Ismail 40
Méry, Dominique 40
Mo, Ran 201

Niu, Jun 299

Palanque, Philippe 40

Ren, Xingtao 122
Requeno Jarabo, José Ignacio 178
Roy, Shouvik 239

She, Zhikun 261
Shi, Zhiping 61
Singh, Neeraj Kumar 40
Smolka, Scott A. 239
Song, Fu 279
Stoller, Scott D. 239
Stolz, Volker 178
Sun, Meng 22, 143
Sun, Weidi 22, 143
Sun, Wenhui 3

Wang, Chao 122
Wang, Guohui 61
Wang, Jia 299
Wang, Qing 122
Wang, Shengran 161
Wang, Shuling 3, 102
Wang, Weijia 161
Wei, Shaozhi 201

Xiang, Shuangqing 102
Xiang, Zhan 102
Xiao, Lili 81
Xiong, Pu 201
Xu, Xiong 3
Xu, Yongjie 279

Yan, Yue 219
Yang, Tengshun 102

Zhan, Bohua 3, 102
Zhan, Naijun 102
Zhang, Qianying 61
Zhang, Shenggang 219
Zhang, Siyuan 201
Zhang, Xiyue 22
Zhao, Yang 201
Zhu, Huibiao 81

	Preface
	Organization
	Abstracts of Keynote Speeches
	Mechanically Finding the Right Probabilities in Markov Models
	A New Approach for Active Automata Learning Based on Apartness
	Enterprise-Scale Static Analysis: A Pinpoint Experience
	Contents
	Systems Development
	Translating a Large Subset of Stateflow to Hybrid CSP with Code Optimization
	1 Introduction
	2 Hybrid CSP
	3 A Brief Tour of Stateflow Semantics
	3.1 States
	3.2 Transitions
	3.3 Junctions
	3.4 State Lifecycle
	3.5 Events and Temporal Events
	3.6 Early Return
	3.7 Data and Messages
	3.8 Functions and Graphical Functions
	3.9 Continuous Evolution

	4 Translation from Stateflow
	4.1 Variables
	4.2 States
	4.3 Transitions and Junctions
	4.4 Events
	4.5 Order of Execution of Charts
	4.6 Translation of Continuous Evolution

	5 Code Optimization
	5.1 Inlining of Procedures
	5.2 Peephole Optimization
	5.3 Constant Propagation
	5.4 Dead Code Elimination

	6 Evaluation
	6.1 Benchmarks
	6.2 Case Studies

	7 Related Work
	8 Conclusion and Future Works
	References

	DeepGlobal: A Global Robustness Verifiable FNN Framework
	1 Introduction
	2 Background
	2.1 Feed Forward Neural Networks
	2.2 Adversarial Dangerous Regions

	3 Naive Rule-Generation
	4 Sliding Door Network for Feasible Rule-Generation
	4.1 Sliding Door Network
	4.2 Rule-Generation for SDN

	5 Selection Approach for Generated Rules
	5.1 Pre-processing of Generated Rules
	5.2 Real Boundaries Selection Approach

	6 Experiments
	6.1 Effectiveness of Reducing Rule-Generation Cost
	6.2 Feasibility of Global Verification

	7 Conclusion
	References

	Leveraging Event-B Theories for Handling Domain Knowledge in Design Models
	1 Introduction
	2 Event-B: A Refinement and Proof-Based Formal Method
	2.1 Core Event-B
	2.2 Event-B Extensions with Theories

	3 Related Works
	4 Domain Knowledge in State-Based Formal Methods: The Case of Event-B
	5 Ontologies as Event-B Theories
	6 Application to the Design of Critical Interactive Systems
	6.1 The TCAS Case Study
	6.2 A Domain Ontology for the Critical Interactive Systems
	6.3 Ontology-Based Annotation of TCAS Design Model

	7 Assessment
	8 Conclusion and Future Work
	References

	Program Analysis and Verifiation
	Reasoning About Iteration and Recursion Uniformly Based on Big-Step Semantics
	1 Introduction
	2 The Technique
	2.1 Specifications
	2.2 Semantic Derivation and Correctness
	2.3 Specification-Aware Inference and Verification
	2.4 Soundness

	3 Illustrative Example
	3.1 Big-Step Semantics of the While Language
	3.2 Factorial Program and Its Specification
	3.3 Proof of the Factorial Program
	3.4 Comparison with Hoare-Style Program Verification

	4 Verification of Iterative and Recursive Programs
	4.1 Extended While Language and Array-Merging Program
	4.2 Eager Functional Language and List-Merging Program

	5 On Completeness of the Technique
	6 Related Work
	7 Future Directions
	8 Conclusion
	References

	Trace Semantics and Algebraic Laws for MCA ARMv8 Architecture Based on UTP
	1 Introduction
	2 Trace Semantics
	2.1 The Syntax of ARMv8
	2.2 The Semantic Model
	2.3 Trace Semantics

	3 Algebraic Properties
	3.1 Guarded Choice
	3.2 Head Normal Form
	3.3 Algebraic Laws

	4 Conclusion and Future Work
	A Read Function
	References

	Formal Analysis of 5G AKMA
	1 Introduction
	2 AKMA in 5G System
	2.1 General Architecture
	2.2 5G AKMA Protocol

	3 Tamarin Prover
	3.1 Modeling
	3.2 Property Specification

	4 Modeling and Specifying Properties of AKMA
	4.1 Threat Model
	4.2 Modeling the AKMA Service in Tamarin
	4.3 Specifying Properties

	5 Results and Analysis
	5.1 Verification Results and Analysis
	5.2 Suggestions

	6 Conclusion
	References

	Verifying the Correctness of Distributed Systems via Mergeable Parallelism
	1 Introduction
	2 Overview
	3 Asynchronous Message Passing Programs
	4 Mergeable Message Passing Programs
	5 Simplified Reasoning
	5.1 Analysis by Inference Rules
	5.2 The Soundness of Using Inference Rules

	6 Algorithm
	6.1 Algorithm_Merging
	6.2 Validity of the Algorithm

	7 Experimental Evaluation
	7.1 Examples
	7.2 Experimental Results

	8 Related Work
	9 Conclusion
	References

	Testing and Fault Detection
	Mutation Testing of Reinforcement Learning Systems
	1 Introduction
	2 Background
	2.1 Reinforcement Learning
	2.2 Mutation Testing

	3 Mutation Testing Specific to RL Systems
	3.1 Element-Level Mutation Operators
	3.2 Agent-Level Mutation Operators
	3.3 Mutation Testing Framework for RL Systems

	4 Mutation Scores Specific to RL Systems
	5 Design of Test Environments
	6 Evaluation
	7 Related Work
	7.1 Mutation Testing
	7.2 Reinforcement Learning
	7.3 AI Safety

	8 Conclusion and Future Work
	References

	AIdetectorX: A Vulnerability Detector Based on TCN and Self-attention Mechanism
	1 Introduction
	2 Design of AIdetectorX
	2.1 Program Representation
	2.2 TCN Layer
	2.3 Self-attention Layer
	2.4 Overview of AIdetectorX

	3 Experimental Design
	3.1 Evaluation Metrics
	3.2 Comparative Vulnerability Detector
	3.3 Evaluation Datasets
	3.4 Experimental Produce

	4 Results and Discussions
	4.1 Experiments for Answering RQ1
	4.2 Experiments for Answering RQ2

	5 Threats to Validity
	6 Conclusions
	References

	MC/DC Test Cases Generation Based on BDDs
	1 Introduction
	2 Background
	2.1 Modified Condition Decision Coverage (MC/DC) Criterion
	2.2 Overview on Binary Decision Diagrams (BDDs)

	3 Approaches and Algorithm for Test Cases Generation
	3.1 Theorems and Definitions for MC/DC in Terms of BDDs
	3.2 Algorithm and Heuristics for Test Cases Generation

	4 Implementation of MC/DC Test Cases Selection
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Related Work
	6 Conclusion and Future Works
	References

	Software Quality
	Predicting and Monitoring Bug-Proneness at the Feature Level
	1 Introduction
	2 Background and Related Work
	2.1 Bug Prediction at Class or File Level
	2.2 Bug Prediction at Method Level
	2.3 Bug Prediction at Coarse-Grained Level
	2.4 Bug Prediction at Other Granularity Levels

	3 Study Design
	3.1 Feature Identification
	3.2 Attributes: Code Metrics
	3.3 Labeled Classes: Bug-Prone and Not Bug-Prone Feature
	3.4 Machine Learning Algorithms
	3.5 Researched Projects

	4 Evaluation
	4.1 Research Questions
	4.2 Prediction Model Development
	4.3 Evaluation Method
	4.4 Results

	5 Threats to Validity
	6 Conclusion
	References

	CSFL: Fault Localization on Real Software Bugs Based on the Combination of Context and Spectrum
	1 Introduction
	2 Background
	2.1 Spectrum-Based Fault Localization
	2.2 Context-Based Fault Localization

	3 Approach
	3.1 Basic Framework
	3.2 The Algorithm of Context Analysis
	3.3 The Case Study of CSFL
	3.4 Time Cost Reduction

	4 Evaluation
	4.1 Research Questions
	4.2 Experimental Subjects
	4.3 Implementation Details
	4.4 Measurements

	5 Results Analysis
	5.1 RQ1: How Does CSFL Perform in Locating Real Faults?
	5.2 RQ2: How Much Efficiency Has CSFL Improved?
	5.3 RQ3: How About the Time Cost of CSFL?
	5.4 Threats to Validity

	6 Related Work
	6.1 Spectrum-Based Fault Localization
	6.2 Combination of Context and Spectrum-Based for Fault Localization

	7 Conclusion
	References

	A Distributed Simplex Architecture for Multi-agent Systems
	1 Introduction
	2 Background
	2.1 Simplex Architecture
	2.2 Control Barrier Functions

	3 Distributed Simplex Architecture
	3.1 Baseline Controller
	3.2 Decision Module
	3.3 Safety Theorem

	4 Flocking Case Study
	4.1 Synthesis of Control Barrier Function
	4.2 Advanced Controller
	4.3 Experimental Results

	5 Way-Point Case Study
	5.1 Experimental Results

	6 Microgrid Case Study
	6.1 Synthesis of Control Barrier Function
	6.2 Advanced Controller
	6.3 Experimental Results

	7 Related Work
	8 Conclusion
	References

	Satisfiability, Reachability and Model Checking
	OURS: Over- and Under-Approximating Reachable Sets for Analytic Time-Invariant Differential Equations
	1 Overview of OURS
	2 Main Theoretical Features
	2.1 EF Based Description of Reachable Set
	2.2 RE Based Approximation of Reachable Sets

	3 Main Implementation Features
	3.1 Inputs and Outputs
	3.2 Technical Implementation
	3.3 Correctness Analysis of OURS

	4 Comparisons with Examples
	5 Conclusion
	References

	ESampler: Efficient Sampling of Satisfying Assignments for Boolean Formulas
	1 Introduction
	2 Preliminaries
	3 Derivation Procedure
	3.1 Motivating Example
	3.2 Derivation Algorithm

	4 ESampler
	5 Implementation and Evaluation
	5.1 Comparison with QuickSampler
	5.2 Comparison with STS
	5.3 Comparison with UniGen3
	5.4 Execution Time vs Number of Satisfying Assignments
	5.5 Testing Uniformity

	6 Conclusion
	References

	API Usage Pattern Search Based on Model Checking
	1 Introduction
	2 Related Work
	3 API Transition System Model
	3.1 Class Library API Dependency
	3.2 API Transition System
	3.3 Constructing API Transition System

	4 Formalization of the Matching Rules of Queries
	4.1 Semantic Descriptions of Rules
	4.2 Characterization of Query Rules by CTL*

	5 Evaluation
	5.1 Setup
	5.2 Results

	6 Conclusion
	References

	Author Index

