
Solving Maximal Covering Location
Problem Using Chemical Reaction

Optimization

Md. Shymon Islam(B), Md. Rafiqul Islam, and Humaira Islam

Computer Science and Engineering Discipline, Khulna University,
Khulna 9208, Bangladesh
shymum1702@cseku.ac.bd

Abstract. The Maximal covering location problem (MCLP) works with
a given number of nodes in a network, each node has a demand value and
is provided with a fixed number of facilities. Here the target is to maxi-
mize the total demands within some constraints. In this article, we have
proposed a metaheuristic algorithm based on chemical reaction optimiza-
tion to solve this problem. We have used two data sets to measure the
performance of our proposed method. The proposed method gives better
results in almost all the test cases in terms of percentage of coverage as
well as computational time.
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1 Introduction

The covering location problem (CLP) is a well-known type of location prob-
lem discussed in location science [1]. The maximal covering location problem
(MCLP) is a specific type of CLP that aims at finding an optimal placement
of a given number of facilities to each customer or node on a network in such
a way that the total demands covered by the served population is maximized.
MCLP maintains the constraint that a customer is covered by a facility if it falls
within the given constant service area or coverage area [2]. MCLP is a resource
constraints problem. The objective of the problem is to serve the demands of
customers as much as possible with the limited resources or budget [3]. Maximal
covering location problem is also a constraint satisfaction problem that is very
useful in locating objective areas to be served in different context. The MCLP
has importance not only in private sectors but also in public sectors. Placement
of plant, warehouse, telecommunication antennas etc. are the examples of pri-
vate sectors where MCLP can be applied to find an optimal placement structure.
Locating schools, bus-stops, ambulances, parks etc. examples of some public sec-
tors where MCLP is applicable. MCLP is greatly applicable in designing network
with constraints. The applications areas of MCLP have motivated us to solve
the problem efficiently.
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There are several techniques for solving the maximal covering location prob-
lem. Many algorithms were proposed to solve the MCLP by researchers such
as simulated annealing ([1] and [3]), lagrangean/surrogate heuristic [4], genetic
algorithm [5], greedy heuristic ([6] and [7]), tabu search heuristic [8]. Although
many algorithms were proposed and applied to solve MCLP, there is no gen-
eral algorithm that can give always optimal results. This is the scope to work
with MCLP. We have solved the MCLP by using chemical reaction optimization
(CRO) algorithm. CRO is a nature based meta-heuristic approach. In recent
years, CRO has successfully solved so many optimization problems such as
shortest common super-sequence problem [9], RNA structure prediction [10],
transportation scheduling in supply chain management with TPL [11], RNA
secondary structure prediction with pseudoknots [12], optimization of protein
folding [13], flexible job-shop scheduling problems with maintenance activity
[14], the distributed permutation flow-shop scheduling problem with makespan
criterion [15], the cloud job scheduling [16] etc. with better results than the other
existing meta-heuristics algorithms. Due to the performance of CRO, we have
chosen this algorithm. We are optimistic that CRO can find the optimal solution
in less computational time. The contributions of the proposed work: redesigned
the four reaction operators and obtained best results in both the datasets in
less computational time compared to the state of the art algorithm (Atta GA
[2]). In this article, we have demonstrated the basic ideas of MCLP in Sect. 1.
Section 2 describes the problem statement, Sect. 3 is for related work, Sect. 4
demonstrates our proposed method for solving MCLP using chemical reaction
optimization and Sect. 5 concludes the work.

2 Problem Statement

The MCLP does the business with the problem of searching an optimal place-
ment of a given number of facilities on a network in such a way that the total
demands of the attended population is maximized [5]. MCLP works with a given
number of customers (nodes) in a network. Each customer (node) has three basic
properties: demand value, x and y coordinate values. The two coordinate values
(x, y) define the position of a customer (node) in the network. Each customer
(node) is provided with a fixed number of facilities. Each facility has a service
area called the coverage area which is circular in shape and it remains constant
throughout the whole process. A facility can be provided to a customer (node) if
the Euclidean distance between the concerned node and the facility node is less
than the constant service area. The MCLP is NP-hard [17]. The solution is non
deterministic in polynomial time as it has to maintain a huge graph or matrix
for a small size of customers (nodes) and the total subsets of the customers are
also huge in number and the problem is restricted with several conditions. That’s
why meta-heuristic approaches are applicable to determine efficient solution for
this problem.
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The mathematical representation of the objective function of MCLP is given
by the equation as follows:

f(D) = MAX
∑

x∈D

dxsx (1)

Expression (1) is taken from [2]. Here x and dx denotes the index of demand
nodes and the demand value at node (customer) x respectively. And sx is a binary
decision variable which becomes 1 when node x is selected and 0 otherwise. The
target of the objective function (1) is to maximize the total demands covered by
the selected customers. The objective function have two constraints. The first
constraint is that each customer is provided with exactly a given fixed number
of facilities. And the second one is that a customer (node) is covered or selected
when there exists at least one facility within the coverage area of the node.

A sample MCLP example is given in Fig. 1. There are five nodes labeled as
C1, C2, C3, C4 and C5. The corresponding demand and coordinate values of
each node are presented in the upper and lower portion of each node respectively.
The service distance for this network is 100, and the number of facilities to be
installed is 2. This is a fully connected graph. For solving this MCLP graph,
firstly a distance matrix needs to be created by using the Euclidian distance
formula. Then All the possible solutions for five customers having 2 facilities
needs to be generated. The total number of sequences is 5p2

2! that is 10. Each
sequence needs to be traversed in the whole distance matrix and finds the result.
So, ten sequences must have ten results, among them the highest value will be
the output. In the sample example, the highest value is 83 that is generated
for sequence 10100. The final percentage of coverage is calculated by the ratio
between sum of all demand values of the customers and the generated result.
In Fig. 1, node C1 and C3 are selected because it maximizes the demand values
of attended nodes. So, C1 and C3 are colored. Therefore, the estimated result
for the graph in Fig. 1 is 83. So, the percentage of coverage is 83

103 × 100 that is
80.58%.

3 Related Work

Some of the existing algorithms of MCLP are described here.
In 2018, Atta S. et al. proposed an algorithm for solving the maximal cov-

ering location problem (MCLP) using genetic algorithm with local refinement
[2]. A binary array representation is used as the encoding scheme. The authors
designed the selection, crossover and mutation operators respectively along with
a local refinement procedure and elitism. Each chromosome goes through to
these operators and tries to find out better solutions. They compared their pro-
posed algorithm with other approaches with respect to percentage of coverage
and computational time. Most of the cases, their proposed algorithm gives a fair
better results in both percentage of coverage and computational time.

Maximo V.R. et al. proposed an intelligent guided adaptive search method
for solving the maximum covering location problem (MCLP) in 2016 [8].
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Fig. 1. An example of MCLP

The proposed method by this paper is named as Intelligent-Guided Adaptive
Search (IGAS) and it actually follows the Greedy randomized search proce-
dure (GRASP). Artificial neural network is used to build the construction phase
of IGAS. This method is specialized for large-sized instances (more than 3000
nodes). An unsupervised machine learning algorithm, GNG (Neural Gas) is used
to keep track of the best solutions found in the current iteration. So, the algo-
rithm tries to take decision in such a way that, it can traverse through a promis-
ing branch.
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In 2013, Zarandi M.H.F. et al. proposed an approach for solving the large-
scale dynamic maximal covering location problem [1]. This paper proposed a
multi period version of MCLP called the dynamic MCLP (DMCLP). They used
simulated annealing (SA) algorithm to solve the problem. Neighborhood search
structure (NSS) is used to search for better solutions.

Davari S. et al. proposed a method for solving the maximal covering location
problem (MCLP) with fuzzy travel times in 2011 [3]. They solved the prob-
lem by using a hybrid intelligent algorithm where they incorporated both fuzzy
simulation (FS) and simulated annealing (SA) techniques. At the beginning,
SA generates the initial population with several solutions and each solution is
generated either randomly or by applying some predefined assumptions. The
iteration process starts with the initial population, and in each iteration the
proposed algorithm tries to find further better solutions than the existing ones.

In 2011, Zarandi M.H.F. et al. proposed a method for solving the large-scale
maximal covering location problem [5]. Their proposed method is applicable for
upto 2500 nodes. This method applied a binary vector representation to com-
plete the chromosome encoding. In each generation the selection, crossover and
mutation operators are carried out to search for better solutions than the existing
ones. The roulette wheel selection (RWS) is used to design the selection opera-
tor. Crossover is carried out between two chromosomes selected by the selection
operator. Finally, the mutation is carried out to perform the diversification of
the solution space.

4 Proposed Method for Solving MCLP Using Chemical
Reaction Optimization

Lam A.Y.S. et al. proposed an algorithm for optimization problem named Chem-
ical Reaction Optimization (CRO) [18]. The working principle of CRO actually
follows the two laws of thermodynamics. The first law (law of conservation)
states that energy can not be created or destroyed. Energy can only be trans-
formed from one form to another. Hence, the total amount of energy remains
constant. This can be represented by the equation as follows:

Popsize(t)∑

x=1

(PEx(t) + KEx(t) + buffer(t) = C (2)

In Eq. (2), PEx(t) and PEx(t) represents the potential energy (PE) and kinetic
energy (KE) of molecule x respectively at any time t. Popsize(t) is the total
number of molecules, and buffer(t) is the energy in the central buffer at time t.
And the total constant energy is denoted by C. The value of C proves that the
conservation of energy is maintained in CRO. The second law of thermodynamics
ensures transformation of energy among the molecules (PE is converted to KE
during iteration stage). CRO follows these two rules to come up with a better
solution for optimization problems.



Maximal Covering Location 429

CRO is a population-based metaheuristic. Basically, CRO performs three
basic stages. These are the initialization stage, iterations stage and the final
stage. In the initialization stage, CRO initializes several attributes (initial param-
eters) and creates the initial population. Each molecule have several attributes
or parameters. Some of these attributes are molecular structure (α), potential
energy (PE), kinetic energy (KE), number of hits (NumHit) etc. After initial-
izing the initial parameters CRO generates the initial population with popsize
(total number of molecules). The second stage is the iterations stage. CRO has
four elementary reaction operators. These are the on-wall ineffective collision,
intermolecular ineffective collision, synthesis and decomposition. The on-wall
ineffective collision and the intermolecular ineffective collision ensures intensifi-
cation (local search). One the contrary, the synthesis and decomposition operator
ensures diversification (global search). These four reaction operators make CRO
a better approach for optimization problems compared to other metaheuristics
because of its capability of searching. CRO increases or decreases the total num-
ber of molecules in each iteration according to the type of operator activated.
The third stage is the final stage of CRO. If any of the stopping criteria is met
during iterations or the limit of iteration exceeds then CRO will go to the final
stage and show necessary outputs.

4.1 Basic Structure of Proposed Algorithm

MCLP CRO is our proposed method. The initial parameters of CRO is initial-
ized with proper values, then create the initial population randomly. By passing
these initial parameters and initial population to the function MCLP CRO, per-
form the iterations step. After the termination of MCLP CRO, measure the
outputs. The outputs are saved into two variables named result and time. The
result represents the percentage of coverage value and time represents the com-
putational time of the proposed method.

4.2 Solution Generation and Initialization

CRO is a population-based metaheuristic. A single unit from the whole popula-
tion is called a molecule. In the iterations stage, one of the operators is manipu-
lated to come up with new molecules with better objective function value. Here
the interesting thing is that, the total number of molecules in each iteration
does not remain constant, rather it varries from iteration to iteration. All the
molecules with the popsize creates the whole population. Each molecule have
several parameters. Some of the initial parameters of CRO are given in Table 1.

Population Generation. The initial population is generated on the basis of
random selection. Let there are m customers where f facilities to be located. Each
molecule of the initial population is generated by selecting f random indices from
the set of customers or nodes {1, 2, 3, .....,m}. Here the value of f is less than
m. And each f is generated randomly (random function mod popsize). And by
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Table 1. Initial parameters

Symbol Algorithmic definition

PopSize Population zize (solution space)

KELossRate Kinetic energy (KE) loss rate

Molecoll Decision parameter (unimolecular or bimolecular) of CRO

Buffer Initial energy in the surroundings

InitialKE Initial kinetic energy

α and β Threshold values of CRO

NumHit Total number of hits a molecule has taken

Minstruct Structure with minimum potential energy

MinPE The potential energy when a molecule has minstruct

MinHit The number of hits when a molecule has minstruct

looping through 0 to popsize, all the molecules are generated accordingly. Thus
the initial population is created.

Solution Representation. A solution for MCLP is a set of f potential locations
those needs to be chosen from the set of m customers. Let m = 10 and f = 3.
Here, m and f are both are represented by one dimensional array. And initially
all the values are 0. Let the randomly selected indices for the potential facility
sites are [3, 5, 9]. Table 2 represents the indexed f array.

Table 2. Indexed f array

Index 1 2 3

Value 3 5 9

Table 3. Solution representation

Index 1 2 3 4 5 6 7 8 9 10

Value 0 0 1 0 1 0 0 0 1 0

A binary vector representation method is used for solution representation
(see Table 3). In the solution, the selected indices of f array are represented by
1 and rest of indices are represented by 0.

4.3 Operator Design

CRO has four reaction operators. These are the on-wall ineffective collision,
intermolecular ineffective collision, decomposition and synthesis. These operators
are preformed selectively in iterations stage of CRO.

On Wall Ineffective Collision. When one molecule collides with the wall of
a container, then the internal structure of the molecule changes. Here molecule
m produces a new molecule m′
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m → m′

Let m = 10 and f = 3. So, each customer is provided with 3 facilities. The
mechanism for on wall ineffective collision is very simple. Randomly select one
or more indices from molecule m and change it to create a new molecule m′. In
Fig. 2 we can see the 7th and 9th indices of molecule m are changed to form new
molecule m′.

Fig. 2. On wall ineffective collision

Decomposition. In this elementary reaction, two new molecules are generated
from a molecule. Two newly generated molecules bring diversity in their struc-
ture from the old molecule. Let, molecule m produces two new molecules m1

and m2.

m → m1 + m2

According to our example, we have 10 customers and each customer needs
to be provided with 3 facilities. The mechanism is quite simple. Firstly, divide
the molecule m into two portions (see Fig. 3) using a random divider function.
Then, the first and second portions of molecule m are copied to the beginning
of molecule m1 and m2 respectively. The rest of the indices of molecule m1 and
m2 are selected randomly using a random function generator.

Inter-molecular Ineffective Collision. In an inter-molecular ineffective colli-
sion, two molecules collide with each other. Let two molecules m1 and m2 collide
with each other and produce two new molecules m1

′ and m2
′.

m1 + m2 → m1
′ + m2

′

This is much similar to On-wall ineffective collision except that the number of
molecules is twice here. Molecule m1

′ is produced from molecule m1 and molecule
m2

′ is produced from m2. The mechanism is same as on wall ineffective collision
and it is shown in Fig. 4. Several indices are changed to form a new molecule.
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Fig. 3. Decomposition

Fig. 4. Inter-molecular ineffective collision

Synthesis. Synthesis operator consolidates two molecules to form a new
molecule. It is a reverse procedure of decomposition. Let m1 and m2 be two
molecules. After the collision, molecule m is created.

m1 + m2 → m

Synthesis operator performs diversification to traverse the global solution
space and tries to find the optimal solution. One point crossover mechanism (see
Fig. 5) is used for synthesis. The first few indices of molecule m are copied from
molecule m1 and rest of the indices are copied from molecule m2.

Fig. 5. Synthesis
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4.4 Flowchart of Proposed Algorithm

In Fig. 6 we have shown the flowchart of the proposed method. Firstly generate
the initial population with a random function generator. Then check whether the
reaction is unimolecular or intermolecular. If intermolecular reaction occurs, then
either do inter-molecular ineffective collision or synthesis by checking which one
is appropriate. Otherwise perform on-wall ineffective collision or decomposition
in same manner. Then check if a max point is found or not. If any max point
is found then check for the stopping criteria, if it matched then obtain the best
max point and terminates. Otherwise, again check from the beginning, that is
whether the reaction is unimolecular or inter-molecular. Do the same again until
get a max point or reach the iteration limit.

Fig. 6. Flowchart of proposed algorithm (MCLP CRO)

4.5 Experimental Results and Comparisons

We have taken two real world datasets to measure the performance of our algo-
rithm. These datasets are named as SJC 324 and SJC 402 where 324 and 402
are the total number of nodes in the datasets respectively. The datasets were
collected from L.A.N.Lorena-instancias - INPE whose link is available in the



434 Md. S. Islam et al.

Table 4. Comparison of SJC 324 dataset between MCLP CRO and Atta GA [2]

n p s Known best Atta GA MCLP CRO

% of Cov [4] % of
Cov

Time
(s)

% of
Cov

Time
(s)

324 1 800 44.94 44.94 2.42 44.94 1.45

324 2 800 72.33 72.33 3.79 72.33 1.41

324 3 800 95.49 95.49 5.49 95.49 1.73

324 4 800 99.62 99.62 5.07 99.62 1.65

324 5 800 100 100 6.45 99.80 1.16

324 1 1200 81.73 81.73 2.95 81.73 1.47

324 2 1200 95.08 95.08 4.25 95.08 1.08

324 3 1200 100 100 5.34 100 1.16

324 1 1600 99.76 99.76 3.51 99.76 1.46

324 2 1600 100 100 3.94 100 1.27

Table 5. Comparison of SJC 402 dataset between MCLP CRO and Atta GA [2]

n p s Known best Atta GA MCLP CRO

% of Cov [4] % of
Cov

Time
(s)

% of
Cov

Time
(s)

402 1 800 41.01 41.01 4.03 41.01 1.47

402 2 800 70.94 70.94 6.40 70.94 1.34

402 3 800 91.90 91.90 8.79 91.90 1.33

402 4 800 97.85 97.85 8.34 97.96 1.38

402 5 800 99.91 99.91 10.52 99.28 1.55

402 6 800 100 100 13.36 100 1.73

402 1 1200 66.36 66.36 5.18 66.36 1.48

402 2 1200 92.79 92.79 8.86 92.79 1.39

402 3 1200 100 100 8.75 100 1.64

402 1 1600 99.58 99.58 5.93 99.58 1.51

402 2 1600 100 100 6.92 100 1.66

website (http://www.lac.inpe.br/∼lorena/instancias.html). These datasets were
used for evaluating recent algorithms for solving maximal covering location prob-
lem ([2] and [4]).

We have implemented our proposed algorithm (MCLP CRO) by using C++
language with device specifications: Processor- Intel(R) Core(TM) i5-7200U
CPU @ 2.50 GHz 2.71 GHz, RAM - 8.00 GB (7.90 GB usable), System type -
64-bit operating system, x64-based processor, OS - Windows 10 Pro edition. We
have initialized the CRO parameters as iteration = 150, PopSize = 10, KELoss-

http://www.lac.inpe.br/~lorena/instancias.html
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Rate = 0.2, MoleColl = 0.4, InitialKE = 1000, α = 5 and β = 15, 000. We have
recorded the input parameters as n, p and S, where n denotes the total number of
customers or nodes in the network, p represents the total number of facilities to
be installed and S is the constant service distance or service radius inside where
the facilities can be provided to a node or customer. The % of Cov and Time(s)
denotes the percentage of coverage and the computational time respectively. The
best known % of Cov values for both the datasets have been collected from [4].
For a fair comparison, we have implemented Atta GA [2] also using C++ in the
same machine with the same device specification as for MCLP CRO. The com-
parison for SJC 324 dataset between MCLP CRO and Atta GA [2] is shown is
Table 4. Both datasets are tested with 3 different values of S (service distance).
These values are 800, 1200 and 1600. There are 10 instances in SJC 324 dataset.
By increasing the value of facility by one unit every time, we have measured the
percentage of coverage and the computational time. The good results of our pro-
posed method is highlighted by bold sign. For 9 instances out of 10, the proposed
method gives better result than Atta GA [2]. For test input (n = 324, p = 5 and
S = 800), our method gave worse result than Atta GA [2] with respect to per-
centage of coverage. The comparison for SJC 402 dataset between MCLP CRO
and Atta GA [2] is shown is Table 5. There are 11 instances in SJC 324 dataset.
For 10 instances out of 11, we have got good result compared to Atta GA [2].
For test input (n = 402, p = 5 and S = 800), our method gave worse result than
Atta GA [2] with respect to percentage of coverage. To observe the efficiency of
our proposed method, we have shown two graphs (Fig. 7 and Fig. 8) with service
distance 800. Both graphs show that that Atta GA [2] method takes more time
than the proposed method in both datasets.

Fig. 7. Time comparison of SJC 324 dataset with S = 800
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Fig. 8. Time Comparison Of Sjc 402 dataset with S = 800

5 Conclusion

In this article, we have proposed a CRO based method for solving the maximal
covering location problem. Design the four reaction operators of CRO was a
tough task. The proposed algorithm gives best results in almost all cases. We
have obtained best results in less running time compared to the state-of-art algo-
rithm (Atta GA). The proposed algorithm was tested in small scale of MCLP.
In the future, we will improve our algorithm further so that it can perform well
on both small and large scales of MCLP.
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