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Abstract. Cross-Site Scripting (XSS) is a form of client-side code injec-
tion attack in which an attacker attempts to execute malicious scripts in
the victim’s web browser by embedding dangerous code in a legitimate
web page or application. During such an attack, the attacker imperson-
ates a victim user and performs any behavior that the user is capable
of, as well as accessing any of his data. If the victim user has privi-
leged access to the application, the attacker can take complete control
of the app’s features and data. XSS attacks are most common on mes-
sage boards, forums, and websites that accept comments. According to
a study from CDN and cloud security provider CDNetworks, attacks
on web applications increased by 800% in the first six months of 2020
compared to the same time frame last year. Our approach involves the
application of Machine Learning Algorithms for efficient classification of
XSS attacks. The MMR and SDMR Algorithms aid in the selection of
significant features from a data set without compromising classification
results. The proposed ERDNS framework ensures better Detection Accu-
racy and Precision with least Classification Error values among all the
available models.

Keywords: Cross-site scripting attack classification · Ensemble
learning · Hybrid feature selection · Managing XSS attacks

1 Introduction

As per the recent Research Reports, XSS constitutes close to 40% of the total
cyber attacks. According to a study from CDN and cloud security provider
CDNetworks, attacks on web applications increased by 800% in the first six
months of 2020 compared to the same time frame last year. Cross-site Scripting
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is a form of client-side code injection attack in which an attacker attempts to
execute malicious scripts in the victim’s web browser by embedding malicious
code in a legitimate web page or application (XSS). During such an attack, the
attacker impersonates a victim user and performs any behavior that the user is
capable of, as well as accessing any of his data. If the victim user has privileged
access to the application, the attacker can take complete control of the app’s
features and data. XSS attacks are most common on message boards, forums,
and websites that accept comments. Based on the origin of malicious script that
is responsible for the attack, we have three XSS attack types namely, a) Reflected
XSS, b) Stored XSS, and c) DOM-based XSS.

Effective XSS Attack Classification at an earlier stage only can facilitate the
XSS Detection process. That is, when a sample could be accurately classified as
attack or benign, the XSS Detection Mechanism could stop an XSS attack on
its very onset. The application of Machine Learning techniques has been proven
to be an effective tool for any classification problem. Use of Hybrid models
involving Multi-layered classification schemes is not a new idea in research. The
current study looks at and explores a few hybrid models that use multi-layered
classification to predict XSS samples effectively. We investigate two Ensemble
Schemes, Stacking and Voting, for implementing the Ensemble model, and the
most efficient among them is proposed. Until classifying the data set, we investi-
gate various Feature Selection Algorithms to compute the Rank of each feature
present in it. Mean and Standard Deviation values for the Ranks generated by
various Feature Selection Algorithms are then computed. Finally, a Mean of
Mean of Ranks (MMR) and Standard Deviation of Mean of Ranks (SDMR) are
calculated for each feature. All features with a Mean and Standard Deviation
less than the final MMR and SDMR are removed, leaving behind two Feature
subsets with most significant and meaningful features. In addition, these subsets
of Features are intersected to determine significant features for classification. As
a result, the Time Complexity for classification is greatly reduced. Various built
in classifiers are run on the feature subsets obtained after MMR and SDMR and
their Intersection. Top three classifiers in terms of chosen performance metrics
are identified.

Such classifiers are then subjected to ensemble models such as Stacking and
Voting. The performance metrics are again recorded for the two ensemble mod-
els. The top performing model between the two, involving the top three Clas-
sifiers is finally chosen as our proposed model for efficient classification of XSS
attack samples. When a hybrid model combining Random Forest, Decision Tree,
and Naive Bayes Kernel is ensembled using Stacking, we expect results that
are better in terms of the chosen metrics such as Prediction Accuracy, Clas-
sification Error, and Precision. We name the technique as ERDNS (Ensemble
of Random Forest, Decision Tree, and Naive Bayes Kernel through Stacking).
To demonstrate the efficacy of the proposed ERDNS process, extensive tests
were performed on publicly accessible XSS data sets by Fawaz Mokbal et al. [4],
namely XSSdataset1engineered.csv and XSSdataset2engineered.csv, which con-
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tain 101000 and 140660 instances, respectively. ERDNS outperforms the existing
Models, according to the experimental results obtained on the data sets.

A type of Decision Trees that is based on a randomly selected subset of
attributes is referred to as a Random Tree. A Decision Tree basically is a set of
nodes and branches. A test on an attribute is represented by a node, while the
result of a test is represented by a branch. The external nodes (leaves) reflect
the final decision. The route from the root to the leaf creates a classification
law. A Random Forest is a classifier that is made up of many such individual
Random trees. Each Random Tree in a Random Forest is constructed by using
Bagging and Feature Randomness to ensure that there is no connection between
the trees. Since the Random Forest bases its final prediction on the highest
number of votes received for a particular prediction, it is more accurate than
any Random Tree.

Naive Bayes is a supervised learning algorithm for solving classification prob-
lems that is based on the Bayes theorem. It is a simple and effective classification
algorithm that aids in the development of fast machine learning models capa-
ble of making quick predictions. It’s a probabilistic classifier, which means it
makes predictions based on an object’s likelihood. The Naive Bayes classifier
has the advantage of providing very few training data to estimate the mean and
variances of the variables used for classification. Since independent variables are
assumed, only the variances of the variables for each label, not the entire covari-
ance matrix, must be calculated. The Naive Bayes Kernel operator, unlike the
Naive Bayes operator, can be applied to numerical attributes. In non-parametric
estimation techniques, a kernel is a weighting function. The density functions of
random variables, as well as the conditional expectation of a random variable, are
estimated using kernels. Kernel density estimators belong to the non-parametric
class of estimators. Such estimators have no fixed structure and depend on all
data points to achieve an approximation, unlike parametric estimators, which
have a fixed functional type (structure) and the parameters of this function are
the only information we need to store.

Few of the popularly used Ensemble Techniques are Voting, Stacking, Stack-
ingC, Bagging, Boosting and Grading. Voting entails creating a variety of sub-
models and considering the predictions of each of the submodels to decide what
the final outcome should be. Stacking involves separate and independent train-
ing of heterogeneous learning algorithms on the data, and using their results as
additional inputs to the combiner algorithm for the final training. StackingC,
a variant of Stacking on the other hand, uses Linear Regression as the Meta
Classifier. Linear regression is a method for converting a set of numeric values
(x) into an estimated output value (y). Grading is one of the meta classifica-
tion methods, and it involves finding and correcting any incorrect predictions.
Instead of using the predictions of base classifiers as metalevel attributes as in
Stacking, Grading uses graded predictions (correct or incorrect).
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This article’s contributions can be summarised as follows:

– The evaluation of a novel general-purpose classifier architecture based on the
Hybrid approach on two data sets is presented.

– MMR and SDMR Algorithms are proposed for efficient Feature Selection.
– Performance Metrics considered and the results obtained for the individual

Classifiers and also the Ensemble Models are presented.

The following is how the rest of the article is structured. Section 2 discusses
related work in this area, while Sect. 3 introduces the proposed ERDNS struc-
ture. The investigative approach is detailed in Sect. 4, and the experimental
findings are presented in Sect. 5, along with reviews and discussions. The last
section of this paper is the conclusion.

2 Related Work

The focus of the case study presented in [1] is on current methodologies and
methods for detecting and mitigating XSS attacks and vulnerabilities. It dis-
cusses both client and server-side detection methods, as well as static and
dynamic approaches, that have been proposed to detect the attack thus far.
It also covers the XSS Defense methods and techniques that are used to secure
both the Client and Server. The aim of this paper is to take a close look at how
to mitigate XSS attacks using various detection and defence techniques.

The paper proposed by X Zhang et al. [2] discusses about MCTS-T adversar-
ial example generation algorithm that enables the generation model to provide
a reward value. The value thus obtained reflects the probability of generative
examples bypassing the detector. The authors further optimize their XSS detec-
tion model with GAN(Generative Adversarial Network) to enhance its ability to
defend against adversarial examples. The disadvantage of MCTS-T algorithm is
that it can only generate adversarial examples of XSS traffic at present.

Various Supervised Machine Learning Algorithms such as Support Vector
Machine, Decision Tree, Naive Bayes and Un-Supervised Algorithms such as K-
Means and Association Rule algorithms along with a Deep Learning Technique
called Long Short-Term Memory Algorithms are explored by XiaoLong Chen et
al. [3] who have listed out the advantages and disadvantages of these techniques
in their work.

The authors in their survey [6] explore the background of XSS attacks, classify
the derived types of XSS attacks, the role of cookies and a bunch of tools and
methods that can be used for the detection and mitigation of XSS Attacks in
detail.

To improve the XSS detection in a low-resource data setting, Mokbal FMM
et al. [7] propose a conditional Wasserstein Generative Adversarial Network with
a gradient penalty. Their method creates synthetic minority class samples with
the same distribution as actual XSS attack scenarios. They use augmented data
to train a new boosting model, which is then tested on a real-world data set.
Their model produces consistent and accurate samples.
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In the work discussed in [8] two approaches are proposed. The first approach
employs insecure flow monitoring to filter malicious scripting code inserted into
dynamic web pages while the second creates and validates trusted remark for
detecting any suspicious activity in static web pages. Finally, the user is pre-
sented with the filtered and updated webpage. They evaluate their prototype by
testing with a collection of real-world web applications to see whether it could
detect and mitigate XSS attacks.

The aim of study carried out in the PG thesis by [9] is to see whether an XSS
vulnerability scanner can be rendered more versatile than what is currently avail-
able. The aim is to see how reflected parameters can be identified and whether a
different approach can be used to enhance XSS vulnerability detection. Mantis
methodology basically focuses on the set of characters that could lead to XSS
manipulation.

3 ERDNS: Efficient XSS Attack Classification Framework

The Preprocessing and Classification phases will be the focus of the majority of
Machine Learning applications. It is a proven fact that a classifier doesn’t need
all features to make the final prediction. So picking up of only significant features
from the data set becomes an important step in the preprocessing phase. We sug-
gest MMR and SDMR algorithms for the selection of Features by leveraging the
various advantages of built in Ranking Algorithms that are based on weights.
The classification process entails applying the proposed ERDNS framework to
the resultant Feature subset through tenfold cross validation using Random For-
est, Decision Tree, and Naive Bayes Kernel ensembled via Stacking and various
other techniques. The ERDNS framework is depicted in Fig. 1. The data sets
XSSdatasetengineered1.csv and XSSdatasetengineered2.csv from Fawaz Mok-
bal et al. [4] that contain publicly accessible XSS samples collections are used.
The experimentation is carried out on these files containing 101000 and 140660
instances, respectively.

The proposed MMR (Mean of Mean of Ranks) Feature Selection algorithm
[5] as stated in Algorithm 1 and SDMR (Standard Deviation of Mean of Ranks)
as listed in Algorithm 2 employ many existing Feature Selection Algorithms for
the determination of Ranks of every Feature. The Mean and Standard Devia-
tions are calculated using the rank values provided by various Algorithms for
a Feature. All features with Mean of Ranks less than the Overall Mean value
and less than the final Standard Deviation of Mean of Ranks are discarded,
leaving only valid and important feature subsets for classification. For the deter-
mination of the Ranks Ri, Algorithms such as InfoGain, InfoGainRatio, Rule
method, Deviation method, Correlation method, Chi-squared statistics, Gini-
Index and Principal Component Analysis are employed. The MMR for XSS-
datasetengineered1 is 0.05 and that of XSSdatasetengineered2 is 0.12. The num-
ber of Features selected from XSSdatasetengineered1 using MMR is 15 out of 67
while features selected from XSSdatasetengineered2 is 28 out of 77 features. The
SDMR for XSSdatasetengineered1 is 0.12 and that of XSSdatasetengineered2 is
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0.10. The number of features selected from XSSdatasetengineered1 using SDMR
is 14 out of 67 while features selected from XSSdatasetengineered2 is 30 out of 77
features. To further determine the most significant features selected from both
the subsets of features obtained from MMR and SDMR, it was decided to per-
form an intersection operation on these subsets. After this operation, 14 Features
were picked from XSSdatasetengineered1 and 26 from XSSdatasetengineered2 as
listed in Table 1.

Algorithm 1: MMR (Mean of Mean of Ranks) Feature Selection

1: Input: Data set D having n Features
2: Output: Subset of Most Significant Features (F1) Present in D
3: for every feature fi ∈ D do
4: Calculate Ranks Ri using various Feature Weight Calculation Techniques
5: end for
6: for each feature fi∈ D do
7: Determine Sum (

∑
Ri) and Mean (m Ri) of Ranks

8:
∑

Ri = R1+ R2+ ... + R n and mR i =
∑

Ri / n
9: end for
10: Calculate the Mean of Mean of Ranks M(mRi)
11: Discard all fi ∈ D < M( mRi)
12: return F1

Algorithm 2: SDMR (Standard Deviation of Mean of Ranks) Fea-
ture Selection

1: Input: Data set D having n Features
2: Output:The subset of Most Significant Features (F2) Present in D
3: for each feature fi ∈ D do
4: Calculate Ranks Ri using various Rank Based Feature Selection Techniques
5: end for
6: for each feature fi ∈ D do
7: Determine Mean ( mRi ) of the feature
8: end for
9: Determine Standard Deviation of Mean of Ranks σf ( mRi )
10: Discard all fi ∈ D < σf ( mRi )
11: return F2
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Algorithm 3: Ensemble of Random Forest, Decision Tree, and Naive
Bayes through Voting for Efficient Cross Site Scripting Attack Clas-
sification (ERDNS)
1: Input: Features subsets F1 and F2 obtained from Algorithm 1 and 2 respectively

2: Output: Classification Results

3. Perform the intersection ( ∩ ) of the feature subsets F1 and F2

3: Subject the result to an Ensemble of Random Forest, Decision Tree,

and Naive Bayes through Stacking

4: The model is subjected for a ten-fold cross validation

to estimate the performance metrics of classification

The proposed MMR and SDMR for Feature Selection are presented as Algo-
rithm 1, and Algorithm 2 respectively. Algorithm 3 presents the ERDNS frame-
woek for efficient XSS Attack Classification. Table 1 lists the Final feature subset
obtained after the Intersection of Feature subsets generated by MMR and SDMR.

Figure 1 sketches the System Model of the proposed ERDNS for XSS Attack
Classification.

Fig. 1. XSS Attack Classification Model

4 Investigation Methodology

The data sets from publicly available XSS samples collections by Fawaz Mok-
bal et al. [4] namely XSSdataset1engineered.csv and XSSdataset2engineered.csv
consisting of 101000 and 140660 instances respectively are used for the exper-
imentation purpose. The proposed MMR (Mean of Mean of Ranks) as listed
in Algorithm 1 and SDMR (Standard Deviation of Mean of Ranks) as listed in
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Table 1. Final Feature subset after Intersection operation of MMR and SDMR

Data set-1 Data set-2

url length DestinationPort

url special characters FlowDuration

url tag script TotalLengthofFwdPackets

url tag iframe FwdPacketLengthMax

url attr src FwdPacketLengthMean

url event onload BwdPacketLengthStd

url event onmouseover FlowIATMean

url cookie FlowIATStd

url number domain FlowIATMax

html event onblur FwdIATTotal

js file FwdIATMean

js pseudo protocol FwdIATStd

js method alert FwdIATMax

js method eval BwdIATTotal

MaxPacketLength

PacketLengthMean

FINFlagCount

PSHFlagCount

ACKFlagCount

URGFlagCount

AveragePacketSize

AvgFwdSegmentSize

FwdAvgPackets Bulk

SubflowFwdBytes

Init Win bytes forward

Init Win bytes backward

Algorithm 2 employ several existing Feature Selection Algorithms for computing
the ranks of all the features that are present in the data set. Finally, an overall
Mean and Standard Deviation for the Mean of Ranks for all features are com-
puted. All features with Mean of Ranks less than the Overall Mean value and
less than the final Standard Deviation of Mean of Ranks are discarded, leaving
only valid and important feature subsets for classification. For the determina-
tion of the Ranks Ri Algorithms such as InfoGain, InfoGainRatio, Rule method,
Deviation method, Correlation method, Chi-squared statistics, GiniIndex and
Principal Component Analysis are employed. The MMR for XSSdatasetengi-
neered1 is 0.05 and that of XSSdatasetengineered2 is 0.12. The number of Fea-
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tures selected from XSSdatasetengineered1 using MMR is 15 out of 67 (77.6%
Reduction)while features selected from XSSdatasetengineered2 is 28 out of 77
features(63.63% Reduction). The SDMR for XSSdatasetengineered1 is 0.12 and
that of XSSdatasetengineered2 is 0.10. The number of features selected from
XSSdatasetengineered1 using SDMR is 14 out of 67 (79.1% Reduction)while fea-
tures selected from XSSdatasetengineered2 is 30 out of 77 features(61% Reduc-
tion). To further determine the most significant features selected from both the
subsets of features obtained from MMR and SDMR, it was decided to perform
an intersection operation on these subsets. After this operation, 14 Features
were picked from XSSdatasetengineered1(79.1% Reduction) and 26 from XSS-
datasetengineered2 (66.23% Reduction) as listed in Table 1. The performance
metrics were recorded after a thorough ten-fold cross validation. A ten-fold cross
validation technique typically involves dividing the data set into ten sections,
training the model with the nine parts of the data while using the excluded
section as the test set, and repeating the process for ten iterations, using each
unused test set during each round. Prediction Accuracy, Classification Error,
Recall and Precision values are used as the Performance Metrics for determin-
ing the efficiency of the classifiers. Two Ensemble approaches namely Voting
and Stacking are tried to enhance the Performance of Classification on the top
performing classifiers.

If a classifier has a higher true positive rate and a lower false positive rate, it
is considered efficient. There are seven efficiency criteria in a traditional clas-
sification methodology, which we will discuss below. NBen is the number of
benign samples in the XSS data set, while NXSS is the number of XSS sam-
ples. NBenrightarrowBen is the number of benign samples correctly identified
as benign (TP). True Negative (TN) is the number of XSS samples correctly
defined as XSS. NXSS→XSS is the symbol for it. False Positive (FP) is a metric
for Benign samples that have been mislabeled as XSS. NBen→XSS is the abbre-
viation, and False Negative (FN) is a metric for XSS incidents mis-classified as
Benign. NXSS→Ben is the symbol for it. The Detection Rate (DR) refers to the
percentage of XSS samples that are detected and correctly identified as XSS.

TP =
NBen→Ben

(NBen→Ben + NXSS→Ben)
(1)

The percentage of benign samples wrongly classified as XSS is known as the
False Positive Rate (FPR).

FPR =
NBen→XSS

(NXSS→XSS + NBen→Ben)
(2)

The False Negative Rate (FNR) is the percentage of XSS samples that are
wrongly classified as benign when they are not.

FNR =
NXSS→Ben

(NXSS→XSS + NXSS→Ben)
(3)
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The True Negative Rate (TNR) is the percentage of Benign samples that are
correctly classified as Benign out of all available Benign samples.

TNR =
NBen→Ben

(NBen→Ben + NBen→XSS)
(4)

The total number of XSS and Benign samples correctly identified in com-
parison to the total number of all available instances is referred to as Prediction
Accuracy (PA).

PA =
(NBen→Ben + NXSS→XSS)

(NBen→Ben + NXSS→XSS + NBen→XSS + NXSS→Ben)
(5)

The number of true positives divided by the total number of instances listed
as positive is Precision.

PREC =
NXSS→XSS

(NXSS→XSS + NBen→XSS)
(6)

Recall is defined as the number of true positives divided by the total number
of instances that truly belong to the positive class.

REC =
NXSS→XSS

(NXSS→XSS + NXSS→Ben)
(7)

Figure 5 depicts the performance comparison of various Classifiers in terms
of Precision while the other metrics such as Classification Error, Recall and Pre-
diction Accuracy are depicted in Figs. 2, 3, and 4 respectively. From Fig. 2 we
can make out that the Classification Error rate is the least in case of Random
Forest and Decision Tree while slightly larger in Naive Bayes Kernel. However,
these Classifiers record better Recall (as seen in Fig. 3), Prediction Accuracy

Fig. 2. Classification error comparison of classifiers
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Fig. 3. Recall comparison of classifiers

Fig. 4. Prediction accuracy comparison of classifiers

(Fig. 4), and Precision (Fig. 5). Expecting still better results it was decided to
combine the three Classifiers using two ensemble models namely Stacking and
Voting. Figure 6 indicates the Comparative results of the two Ensemble Mod-
els. It can be observed from Fig. 6 that Stacking records lesser Classification
Error, with slightly better Accuracy and Precision than the Voting Model. The
top performing Ensemble model that is Stacking, involving top three Classifiers
Random Forest, Decision Tree, and Naive Bayes Kernel is therefore chosen as
our proposed model for efficient classification of XSS attack samples.
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Fig. 5. Precision comparison of classifiers

Fig. 6. Comparison of ensemble models

5 Conclusion

The proposed MMR and SDMR Feature Selection Algorithms select 14 Features
from XSSdatasetengineered1 out of a total 67 and 26 from XSSdatasetengi-
neered2 out of 77 after the Intersection operation on the Feature subsets is
performed during the Pre-Processing phase. This amounts to a dimensionality
reduction of 79.1% and 66.23% in the first and second data sets respectively.
The resultant Feature subset is subjected to various Classier algorithms and a
tenfold cross validation is performed before recording the performance metrics.
Two Ensemble approaches namely Voting and Stacking are tried to determine
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the best Classification Model on the top performing classifiers. The ERDNS
model must be checked on real-time data sets and compared with other existing
models to see if it can be improved further. The time it takes to complete the
whole process must be minimized so that XSS samples can be classified as soon
as they are detected.
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