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Abstract. The problem of high utility pattern (HUP) mining is an interesting task
and comes with various applications. It has been argued in various past studies that
the patterns with strong mutual correlation are more useful for decision making. A
more powerful tool that takes the inherent correlation into account is more desir-
able. This paper presents an Efficient Correlated High Utility Miner (ECHUM)
that considers the positive correlation among the items to find correlated high
utility itemsets. The ECHUM uses a list structure is to avoid multiple scanning of
the dataset. The search space is significantly reduced by using two upper-bounds
named sub-tree utility and the local utility. Also, several database projectionmeth-
ods and transaction merging methods are used to reduce the complexity. Several
pruning strategies are adopted to make the algorithm fast and memory efficient.
A variety of experiments conducted shows that ECHUM is 2–3 times faster, and
the memory usage is also 3–4 times lesser than the existing algorithm.

Keywords: High utility pattern mining · Correlation · Pruning strategy ·
Database projection

1 Introduction

High Utility Itemset Mining (HUIM) appears to be one of the most effective methods for
pattern detection, which considers the quantity and profit of an itemset to discover the
set of high utility itemsets (HUIs). Several Algorithms, like Two-Phase [1], tree-based
[2–4], and one-phase [5–8] were introduced to find HUIs. The two-phase algorithms
search potential candidate itemsets in the first phase and HUIs in the second phase. All
two-phase algorithms suffer from scalability issues. The tree-based algorithms use a tree
structure to produce the candidate itemsets and HUIs. The one-phase algorithms utilize
a vertical list structure to search candidates and HUIs in a single phase. Several other
one-phase algorithms like FHM [6], HUPminer [7], and EFIM [8] were introduced with
several efficient pruning strategies. The EFIM algorithm introduces various novel ideas
to improve time efficiency and memory optimization compared to the HUI miner [5]. It
presents database projection and transaction merging to reduces the merging complexity
and size of the database. EFIM also uses two upper-bounds sub-tree utility and local

© Springer Nature Switzerland AG 2021
K. R. Venugopal et al. (Eds.): ICInPro 2021, CCIS 1483, pp. 273–286, 2021.
https://doi.org/10.1007/978-3-030-91244-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91244-4_22&domain=pdf
http://orcid.org/0000-0003-3338-6520
http://orcid.org/0000-0001-9199-1345
https://doi.org/10.1007/978-3-030-91244-4_22


274 D. Ramesh et al.

utility for efficient pruning. A fast utility counting method was introduced to calculate
the utilities. This new counting method uses an array to store the utilities.

The main focus of the existing HUI mining algorithms [9, 10] is to search for the
set of high utility items in a transactional dataset. However, they do not consider the
mutual relationship among items of the discovered patterns. For example, a high-profit
item like gold may appear with some low-profit items like cotton resulting in a high
utility itemset. Still, cotton and gold are unrelated and could have occurred by chance.
Hence, it is important to develop a framework that considers the correlation factor and
produces high utility itemsets with inherent correlation.Many correlationmeasures have
been commonly used for pattern mining, e.g., support [11], confidence [12], frequency
affinity [13], all-confidence [14], and coherence [14]. HUIPM [13] and FDHUP [15]
algorithms were introduced in utility-based pattern mining to discover HUIs using fre-
quency affinity. Both algorithms use co-occurrence to calculate the correlation measure,
which makes them ineffective. A projection-based algorithm called CoHUIM [16] was
introduced, which considers the inherent correlation instead of the co-occurrence fre-
quency. It discovers a set of high utility itemsets correlated using the correlation factor
called Kulc [17]. The Kulc factor follows null transaction unvarying property to ensure
that the correlation measure should not be affected by the number of null transactions
in the database. However, the projection-based CoHUIM was found inefficient as it
produces a huge number of candidate itemsets resulting in an extra memory consump-
tion and efficiency decline. Correlated high-Utility Pattern Miner (CoUPM) [18] is a
one-phase algorithm that uses the utility-list structure to store important details of the
itemsets. This algorithm also uses the correlation factor Kulc to discover correlated
patterns efficiently.

We observed that CoUPM [18] is an extension of the HUI-miner [5], which is com-
putationally expensive for the small value of minimum utility. We propose an algorithm
ECHUM, which exploits efficient EFIM [8]. Our choice is based on the fact that EFIM
takes three times lesser time and takes eight times lesser memory than the HUI-miner.
We have used the Kulc measure to find the inherent correlation in the discovered pat-
terns. We adopted three major techniques to search the Correlated High Utility Itemsets
(CoHUI). Firstly, database projection and transactionmerging are used to reduce the size
of the dataset and merging complexity. Secondly, sub-tree utility and local utility upper-
bounds are used to prune the unpromising candidate itemsets. Thirdly, a fast counting
method is adopted that uses an array to store the utilities to lower the upper bounds. We
performed comprehensive experiments to compare ECHUM with the existing CoUPM
algorithm. It has been observed that the ECHUM is faster than CoUPM.

The remaining paper is structured as follows. Section 2 discusses various prelimi-
naries. The proposed algorithm is described in Sect. 3. The performance evaluation of
the proposed algorithm has been carried out in Sect. 4. We conclude the paper in Sect. 5.

2 Preliminaries

LetD be a dataset consists of a collection of items I. An itemset X with k different items
is called k-itemset. If X is a subset of transaction Tq then X is said to be contained in
that transaction. An example of transaction and profit tables are shown in Tables 1 and
2.
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Table 1. Transaction table

TID Transactions Count TU

T1 A2 A3 B2 <1,1,2> 11

T2 A1 A2 B1 <3,1,2> 21

T3 C1 <1> 1

T4 B1 B2 <2,4> 26

T5 A2 B1 <3,1> 11

T6 A1 A3 B2 C1 <1,2,1,3> 12

T7 B1 B2 C1 <3,3,4> 31

T8 A2 B1 C1 <2,2,2> 16

T9 A1 B1 B2 <2,2,1> 20

T10 A1 C1 <4,5> 17

Table 2. Profit table

Stocks A1 A2 A3 B1 B2 C1

Utility 3 2 1 5 4 1

Definition 1. Utility of item i in a transaction T, i.e., U(i, T) is the multiplication of its
profit p(i) and quantity in that transaction q(i, T).

U (i,T ) = p(i) × q(i,T ) (1)

The utility value for an itemset X in a transaction T and dataset D is calculated as
follows.

U (X ,T ) =
∑

i∈X∧X⊆T
U (i,T ) (2)

U (X ) =
∑

X∈T∧T⊆D
U (X ,T ) (3)

E.g., U(B2, T4) = 4 × 4 = 16; U(A1B2,T6) = 1 × 3 + 1 × 4 = 7; U(A1B2) = (1
× 3 + 1 × 4) + (2 × 3 + 1 × 4) = 17.

Definition 2. Transactional utility associated with any transaction T is represented by
tu(T) and calculated as follows.

TU (T ) =
∑

i∈T u(i,T ) (4)

E.g., tu(T4) is (2 × 5 + 4 × 4) = 26.
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Definition 3. The transaction weighted utility of an itemset X is represented by
TWU(X) and calculated as follows.

TWU (X ) =
∑

X∈T TU (T ) (5)

E.g., TWU(C1)= 1+ 12+ 31+ 16+ 17= 77. The TWU values for running dataset
are depicted in Table 3.

Table 3. Transactional weighted utility

Times A1 B2 A3 B1 B2 C1

TWU 70 59 23 125 100 77

Definition 4 (High Utility Itemset). If the utility of an itemsetX is greater than or equal
to the minimum utility threshold minutil, it is said to be a high utility itemset.

HUI = {X |u(X ) ≥ minutil} (6)

Definition 5 (Remaining Utility). Let T/X be the items appearing after X in a transac-
tion T. The remaining utility is denoted as ru(X) and calculated as follows.

ru(X ,T ) =
∑

i∈T/X
u(i,T ) (7)

E.g., ru(B1) = (4 × 4) + (3 × 4 + 4 × 1) = 32.

Property 1. If the value of Transactional Weighed Utility of X, i.e., TWU(X) is smaller
than minutil then X and all its supersets are pruned.

Definition 6. The upper limit of remaining utility for itemset X, i.e., reu(X), is
calculated as follows.

reu(X ) = u(X ) + re(X ) (8)

E.g., reu(B1) = u(B1) + ru(B1) = 60 + 32 = 92.

Property 2. If the remaining utility upper bound for X is smaller than the minutil then
X and all its supersets are pruned.

Definition 7. The correlation value among the items of an itemset determines the
strength of the inherent correlation. We use Kulc measure to find the correlation for
an itemset X in ECHUM.

Kulc(X ) = 1/k
∑

i∈X SUP(X )/SUP(i) (9)

The value of Kulc lies between 0 and 1 and helps determine the positive correlation
among the items.
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2.1 Pruning Strategies

2.1.1 Exploring the Search Space

ECHUM explores the search space recursively in a depth-first search manner. In the
search space, items are arranged in increasing order of their TWU. This order is selected
because it reduces the number of candidates generated.

Definition 8. Extensions of itemset α is denoted byE(α) and defined asE(α)= {y | y ∈
Iˆ∧y > x∀x ∈ a. Let extension of itemset α be Z where Z = α ∪ W ifW ∈ 2E(α) andW
�= Ø. Also, Z is a single itemset extension if Z = α ∪ x.

E.g., The single extensions of itemset {A3} are {A3, B2}, {A3, A1}, {A3, C1} etc. The
other extensions are {A3, B2, B1}, {A3, A1, C1} etc.

2.1.2 2.1.2. Cost reduction Using Projections

Definition 9. For calculating the utility value for an itemset α, the itemsets that are not
the extensions of α, i.e., E(α), are disregarded. The database consisting of such itemsets
is called a projected database. The projection of a transaction T is denoted by α − T,
which is equal to {I | i ∈ T ˆi ∈ E(α)}. The projection of the database is denoted as α −
D, which is equivalent to {α – T | T ∈ D ˆ α − T �= Ø}.

E.g., if α = {B2} then the projected database will consist of 3 transactions i.e.
T1{A2, A2, B2}, T4{B1, B2} and T7{B1, B2, C1}.

Database projections are used in ECHUM to reduce the database size. Database
projection is carried out efficiently using pseudo-projection by sorting the database in
total order. The method of pseudo projection is explained in EFIM [8].

2.1.3 Cost Reduction by Transaction Merging

Identical transactions aremerged to form a single transaction. A transaction is a duplicate
of another transaction if the same items are present in both the transactions, but each
item’s quantity can be different.

Definition 10. Transaction merging is applied to each of the projected transaction
databases α − T, and all the duplicate transactions are combined to form a single trans-
action in the projected database. Consider a transactional database D; if the transactions
are sorted in lexicographical order and are read from end to start, then the order is known
as total order and is denoted by >.T.

Transaction merging is used to merge a set of transactions efficiently, and after
applying this method to the projected database, the number of transactions is drastically
reduced. The smaller the transaction length, the greater the probability ofmatching trans-
actions. The database is sorted according to the>.T order to merge identical transactions
efficiently. The transactions are combined efficiently using the property introduced in
EFIM [8] by first sorting the transactions lexicographically and then introducing various
measures to compare the transactions.
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Property 3. In a transactional database sorted according to the >.T property, the dupli-
cate transactionswill appear consecutively.All the duplicate transactions can be removed
directly from the database by comparing the current transaction with its next transaction.

2.1.4 Pruning Using Upper Bounds

Definition 11. Consider an itemset α associated with a single extended itemset y. The
sub-tree utility of the element y is denoted as su(α,y).

su(α, y) =
∑

T∈g(α∪{y}) [u(α,T ) + u(y,T ) +
∑

i∈T∧i∈E(α∪{y}) u(i,T )] (10)

E.g., if α = {A3} and z = {B2} then su(α,z) = (1 + 8) + (2 + 4 + 3) = 18.

Property 4. Consider an itemset α, the utility value of the single extensions of α is
smaller than or equal to the sub-tree utility. Mathematically, su(α, y) ≥ u(Y), where Y is
known to be only the single extended itemset of α.

Pruning Method 1. If the sub-tree utility of α is smaller than minutil then the single
itemset extensions of α cannot be a HUI, and therefore the extensions are pruned.

Definition 12. Consider an itemset α, the extension of α denoted by y ∈ E(α), the local
utility of y concerning α is indicated by lu(α, y).

lu(α, y) =
∑

T∈g(α∪{y}) [u(α,T ) + ru(α,T )] (11)

Property 5. For an itemset α, the local utility value of α is always greater than or equal
to the utility of the extensions of α. Mathematically, lu(α, y) ≥ u(Y), where Y is any
extension of α.

Pruning Method 2. For itemset α, if the local utility value of α is less than the minutil
then the single itemset extensions of α cannot be a high-utility itemset. Therefore, the
extensions are pruned.

Property 6. For any itemset αwith an extension Y, the following property always holds.

TWU (α) ≥ lu(α, y) ≥ su(α, y) (12)

Definition 13. The primary items of an itemset α are the collection of all items, which
are the extensions of α whose sub-tree utility is greater than minutil. The secondary
items of α are the collection of those items: the extensions of α, and local utility is
greater than minutil. Mathematically, Primary(α) = {y|y ∈ E(α) ˆ su(α,y) > minutil}
and Secondary(α) = {y|y ∈ E(α) ˆ lu(α,y) > minutil}. By Property 6, it can be said that
Primary items are the subset of Secondary items.
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2.1.5 Pruning Using Correlation Properties

Property 7. In a transactional database where are the items in a transaction are arranged
according to their support values, the Kulcmeasure uses the following sorted downward
closure property.

Kulc(i1, i2 . . . . . . . . . ., ik) ≤ Kulc(i1, i2 . . . . . . . . . ., ik , ik−1) (13)

Pruning Method 3. Consider an itemset X for which the value of Kulc(X) is smaller
than any of the Kulc values of its subsets, then the collection of every superset of X are
not CoHUI’s. Let Xk be an itemset and subset Xk−1 be its subset; Mathematically, if
Kulc(Xk) ≤ Kulc(Xk-1), then all supersets of Xk are not in CoHUI’s.

2.2 Improving Efficiency Using Fast Utility Counting

In the previous section, two utility-based pruning methods are used to eliminate ineffec-
tive itemsets. To compute the utility upper bounds, EFIM introduced a technique that
uses an array data structure to store utilities known as Fast Utility Counting (FUC). The
novel array structure is called utility-bin [19]. Let a dataset D containing |I| items, and
U[y] denotes the utility bin, where y is any item in itemset I. The array is initialized with
0. Following is the process for the calculation of upper limits by using the utility bin
array.

TWU Upper-Bound. The TWU upper bound is calculated using the utility bin array.
Initially, values in the array are set to 0. Then by proceeding transaction-wise in the
database, the values of each item of array U[z] are modified by the total utility TU(T) of
that transaction. i.e., U[y] = U[y] + TU(T), where y is the item contained in transaction
T. Finally, all the values of the utility array will be equal to the TWU value.

Sub-tree Utility upper-bound associated with any itemset α is calculated using the
utility bin in the following manner. We proceed with the dataset transaction-wise, such
that the sub-tree utility value modifies each item’s utility in U[p] for that transaction.

U
[
p
] = U

[
p
] + u(p,Ti) + u(α,Ti) +

∑
i∈T∧i>.z

u(i,T ) (14)

Where p is the extension itemset in transaction Ti. Finally, all the utility array values
will be equal to the subtree utility value, i.e., su(p, α).

Local-Utility upper-bound associated with any itemset α, the dataset is processed
transaction-wise. Utility values of each item of array U[p] are modified by the
“local-utility” of that transaction.

U
[
p
] = U

[
p
] +

∑
i∈T∧i>.z

u(i,T ) + reu(α,T ) + u(α,T ) (15)

Where p is the extension itemset in transaction T. Finally, all the utility array values
will be equal to the local utility value, i.e., lu(y, α).
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2.3 Problem Statement

An itemset X is called a CoHUI if the value of u(X) is more than minutil, and Kulc(X) is
also greater than the minimum correlation measure minCor.

CoHUI = u(X ) ≥ minutil AND Kulc(X ) ≥ minCor (16)

3 ECHUM Algorithm Design

The ECHUM algorithm is the combination of the two algorithms EFIM and CoHUM.
The updated utility-list is used in this method, which considers the utility-list formation
of EFIM and the support value of each item used in CoHUM. The algorithm takes
input as the transactional database, utility table, minimum utility minutil, and minimum
correlation minCor. Initially, an itemset X and the support values are initialized to Ø.
The local-utility associated with every item is calculated using the utility-bin array by
examining the database. The secondary itemsets are then generated with the help of
the local-utility associated with every item. Now, the secondary itemsets are arranged
based on the increasing order of their TWU values. The scanning of the database is then
done again to withdraw the collection of items that are not present on the secondary
itemsets, and the empty transactions are deleted. Finally, the sorting of D takes place
once again according to their >.T order. The sub-tree utility is denoted by su(X, i) for
every item present in the secondary itemset andcalculated using the utility bin array.
The primary itemset list is generated using these values of the sub-tree utility array. The
primary itemset, secondary itemset, minutil, minCor, and database D are then passed to
the Explore function. Algorithm 1 depicts the pseudo-code of ECHUM.



Positive Correlation Based Efficient HUP Mining Approach 281

The Explore Method takes input as itemset X, projected database X − D, the items
that primary items to α: Primary(X), and secondary items to X: Secondary(X), user-
defined minutil and minCor threshold. For every item i in Primary(X), an itemset Y is
created, which is the extension of X. The support values are updated in the utility list
of Y by incrementing its count. The projected database X − D is then examined to find
the utility of Y, and the projection of the database Y − D is created. If the utility of Y is
larger than the minutil and the Kulc value is greater than the minCor then the itemset Y
is considered as CoHUI. Then the sub-tree utility su(Y, y) and the local utility lu(Y, y) are
calculated for every item y present in Secondary(X) by scanning the projected database Y
− D. Finally, the itemsets Primary(Y) and Secondary(Y) are generated from the itemset
Secondary(X) by applying Properties 4, 5, and 6. The explore method is recursively
called again to search the extensions of X. The final output is accumulated in the set of
CoHUIs.

4 Experimental Analysis

The ECHUM algorithm is compared with the CoUPM. We performed the analysis of
execution time and memory usage by varying the minutil and minCor. The experiments
were carried out on an Ubuntu machine with a 2.7 GHz Intel i5 6th generation processor.
The RAM allotted to the system was 8 GB, and the program code was written in Java
Language. A total of 4 datasets were used to test the algorithms. The datasets were
collected from SPMF library [20]. The dataset properties are given in Table 4.

4.1 Runtime Comparison

The runtime comparisons are shown in Figs. 1 and 2. In Fig. 1, theminutil for foodmart,
chess, mushroom, and retail are kept fixed at 0.007%, 20%, 8%, and 0.12%, respectively.
The minCor value is varied from 0.01 to 0.06 in foodmart dataset, from 0.74 to 0.79
in chess dataset, from 0.4 to 0.5 in mushroom dataset, and from 0.1 to 0.2 in retail
dataset. For almost all the values, the running time for ECHUM is faster than the existing
CoUPM algorithm. As the minCor value is increased, the run time required for each of
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Table 4. Dataset properties

Dataset Transactions No. of distinct items Average transaction length

Chess 3196 75 36

Mushroom 8124 120 23

Retail 88162 16470 10.3

Food mart 4141 1559 4.42

the algorithms is persistent. In Fig. 2, the minCor for foodmart, chess, mushroom, and
retail are kept fixed at 0.03, 0.76, 0.42, and 0.1, respectively. The minutil value is varied
from 0.006% to 0.011% in the food mart dataset, from 17 to 22 in the chess dataset, from
8 to 13 in themushroomdataset, and from0.01 to 0.015 in the retail dataset. For almost all
the values, the running time for ECHUM is faster than the existing algorithm CoUPM.
As the minutil value is increased, the run time required for each of the algorithms is
persistent.

When theminCor is set fixed and theminutil is increased, the time taken by both the
CoUPM and the ECHUM Algorithm decreases non-linearly. For the dataset, foodmart
the time taken by both the algorithms is almost similar but is less for the ECHUM
algorithm. For the datasets, chess and mushroom, we have a drastic time difference in
both algorithms with ECHUM the faster. For retail dataset, the time difference is the
most. The reason is that CoUPM generates more unpromising candidates due to a huge
number of transactions and many distinct items. More candidates require extra memory
for CoUPM. It can be seen that the ECHUM algorithm outperforms in all the cases as
the number of candidates generated is very low because of efficient pruning.

4.2 Memory Comparison

The Memory Consumptions by the two algorithms ECHUM and CoUPM are shown in
Figs. 3 and 4. In the first graph, the minutil for foodmart, chess, mushroom, and retail
are kept fixed at 0.007%, 20%, 8%, and 0.12%, respectively. TheminCor value is varied
from 0.01 to 0.06 in foodmart dataset, from 0.74 to 0.79 in chess dataset, from 0.4 to 0.5
inmushroom dataset, and from 0.1 to 0.2 in retail dataset. For some datasets, thememory
consumed by ECHUM is more, while for some datasets, the memory consumed is less.
The overall memory consumed is lesser for the ECHUM algorithm than the CoUPM
Algorithm.

For the first graph in Fig. 3, the ECHUM algorithm’s memory is a little more than
the CoUPM algorithm. The average memory consumed is around 100MB for ECHUM,
while it is around 90 MB for CoUPM. In the chess dataset, the ECHUM algorithm
took less than half the memory consumed by the CoUPM algorithm for all cases. The
average memory consumed by the CoUPM algorithm for the chess dataset is 230 MB,
while for the ECHUM algorithm, it is 120 MB. The ECHUM algorithm performs best
in the mushroom dataset in terms of memory consumption. It is almost 5 times efficient
than the CoUPM algorithm. For the retail dataset, the memory taken is similar for both
the algorithms, but it is less for ECHUM.
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In Fig. 4, theminCor for foodmart, chess,mushroom, and retail are kept fixed at 0.03,
0.76, 0.42, and 0.1, respectively. The minutil value is varied from 0.006% to 0.011% in
food mart dataset, from 17 to 22 in chess dataset, from 8 to 13 in mushroom dataset,
and from 0.01 to 0.015 in retail dataset. The first graph in Fig. 4 represents the food
mart dataset in which for all the minutil values, the memory consumed by ECHUM
is more than the CoUPM algorithm. The average memory consumed by the CoUPM
algorithm for the food mart dataset is 90 MB, while for ECHUM, it is 115 MB. For the
chess dataset, the ECHUM algorithm is faster than CoUPM in all cases. The ECHUM
algorithm works best for the mushroom dataset as the average memory consumed is
almost 5 times less than the CoUPM algorithm. For the retail dataset, the memory
consumed by both algorithms is high, which is because of the large transactions, but the
memory consumed by ECHUM is less than the CoUPM algorithm. Overall the memory
consumed by the ECHUM algorithm is less than the CoUPM algorithm.

It is evident from the runtime and memory consumption graphs that ECHUM is
almost 200–300% faster than CoUPM and takes nearly 50% less memory than CoUPM.
The pruning methods help to reduce the search space, and also, the use of a better
utility-list structure minimizes the memory usage.

5 Conclusion and Future Scope

This paper presents an efficient algorithmECHUM to reduce the time and space required
to search the CoHUIs. The idea involved in this paper is to combine the two algorithms
EFIM and CoHUM, such that the overall complexity is reduced. The ECHUM uses two
upper utility bounds named sub-tree utility and the local utility and a fast utility counting
measure, which improves efficiency. The ECHUM also uses transaction and projection
merging, which reduces the dataset size and enhances efficiency. More optimizations
will be done for future work in this algorithm by developing a much tighter upper bound
to reduce the search space.

References

1. Liu, Y., Liao, W., Choudhary, A.: A two-phase algorithm for fast discovery of high utility
itemsets. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518,
pp. 689–695. Springer, Heidelberg (2005). https://doi.org/10.1007/11430919_79

2. Ahmed, C.F., Tanbeer, S.K., Jeong, B.S., Lee, Y.K.: Efficient tree structures for high utility
pattern mining in incremental databases. IEEE Trans. Knowl. Data Eng. 21(12), 1708–1721
(2009)

3. Tseng, V.S., Wu, C.W., Shie, B.E., Yu, P.S.: UP-growth: an efficient algorithm for high utility
itemset mining. In: Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 253–262 (2010)

4. Tseng, V.S., Shie, B.E., Wu, C.W., Philip, S.Y.: Efficient algorithms for mining high utility
itemsets from transactional databases. IEEE Trans. Knowl. Data Eng. 25(8), 1772–1786
(2012)

5. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: Proceedings
of the 21st ACM International Conference on Information and Knowledge Management,
pp. 55–64 (2012)

https://doi.org/10.1007/11430919_79


286 D. Ramesh et al.

6. Fournier-Viger, P., Wu, C..-W.., Zida, S., Tseng, V.S.: FHM: faster high-utility itemset mining
using estimated utility co-occurrence pruning. In: Andreasen, T., Christiansen, H., Cubero,
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