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Abstract. Despite great advances in modeling and cancer therapy using
optimal control theory, tumor heterogeneity and drug resistance are
major obstacles in cancer treatments. Since recent biological studies
demonstrated the evidence of tumor heterogeneity and assessed potential
biological and clinical implications, tumor heterogeneity should be taken
into account in the optimal control problem to improve treatment strate-
gies. Here, first we study the effects of two different treatment strategies
(i.e., symmetric and asymmetric) in a minimal two-population model to
examine the long-term effects of these treatment methods on the sys-
tem. Second, by considering tumor adaptation to treatment as a factor
of the cost function, the optimal treatment strategy is derived. Numer-
ical examples show that optimal treatment decreases tumor burden for
the long-term by decreasing rate of tumor adaptation over time.
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1 Introduction

Optimal control theory has been applied to reduce tumor burden when treatment
is applied to the system [1–3]. In general, these methods proposed mathemati-
cal models and focused on identifying the optimal treatment regime or strategy
that can drive the tumor population to a desired level so as to penalize exces-
sive usage of the drug or minimize drug resistance [4]. For instance, in [1], the
authors considered cancer therapy with application of one drug and determined
the optimal regime that minimized the tumor burden while maintaining the nor-
mal cell population above a prescribed level. In other studies, the optimal drug
adjustment is proposed to minimize the number of cancerous cells by considering
different controlled combinations of administering the chemotherapy agents [2]
or a mathematical model of tumor-immune interactions with chemotherapy is
proposed [3].

Despite recent advances in modeling and cancer therapy using optimal con-
trol theory, tumor heterogeneity continues to be a major barrier for the successful
treatment of cancer [5]. Many biological studies reported experimental evidence
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for the existence of heterogeneity, discussed their impact on management of can-
cer and assessed potential biological and clinical implications [5–7]. Some studies
proposed mathematical models to consider different cell population dynamics
[8–11]. For instance, in [8], the authors proposed a state transition model of
tumor cells and demonstrated different cell transition behavior across treatments
to indicate how a tumor responds to treatments and is responsible for resistance.

To bridge the gap between the optimal control problem for minimizing tumor
burden and understanding of tumor adaptation, tumor heterogeneity has been
taken into account as an optimal control problem; an ordinary differential equa-
tion (ODE) model, which consists of sensitive and resistant cells to a certain
drug, is proposed to determine drug administration schedules in order to avoid
resistant population be dominant [12]. Although the authors considered reduc-
ing both resistant and sensitive sub-populations in their cost function, they did
not explicitly consider drug-imposed selective pressures with respect to tumor
heterogeneity. In [13], cell traits are considered to model how a resistant cell
responds to a certain drug and are taken into account as levels of resistance in
the cost function. The authors also reported that maximum tolerable dosage is
not a good treatment strategy as it may lead to increase resistant cell population.
In recent study [9], the authors modeled long-term effects of two different drug
treatment methods; symmetric treatment method in which sub-population kill
is equal and asymmetric treatment method that sub-population kill is unequal.
Then, they performed simulation studies to analyze the effects of each parameter
on therapeutic efficacy. Although they performed systematic simulation study
with the sensitivity analysis by sweeping parameters to interrogate the effects of
different drug-imposed selective pressures on long-term therapeutic outcome, it
is limited to draw a fundamental understanding of the effect of differential selec-
tive pressure. Selective pressure is the influence exerted by drugs to promote
one group of sub-population over another that may shift tumor heterogeneity
distribution and generate resistance cells to the drug.

In this paper, motivated by [9], we first focus on a fundamental and prin-
cipled understanding of the effect of differential selective treatments since they
result in different tumor reduction rates over time and thus affect therapeutic
outcome. Second, we formulate an optimal control problem to penalize a rate
of tumor adaptation while minimizing tumor burden. Numerical simulations are
introduced to demonstrate how tumor heterogeneity affects long-term effects
with and without considering effects of differential selective treatments.

2 Background: Differential Selective Pressure Affects
Long-Term Therapeutic Outcome

In the previous study [9], a simple two-population model has been studied to
find out long-term effects of two different treatment regimes and demonstrated
simulation result by showing the long-term effect of differential-imposed selective
treatments. Such models are useful to show the general behaviour of biological
systems. Herein, we summarize their work since we extend this study by focusing
more theoretical analyses.
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Fig. 1. A comparison of total tumor population between symmetric and asymmetric
treatment schemes. The top figure shows drug treatment cycle and the bottom figure
shows the overall tumor population dynamics of both symmetric and asymmetric treat-
ment respectively.

A minimal two-population was modeled as (x1, x2) with distinctive growth
rates (k1, k2) and drug killing rates (α1, α2) respectively [9]. The kinetics of the
two sub-populations were modeled using a simple ODE for exponential growth
as follows:

ẋ1 = k1x1 − dα1x1

ẋ2 = k2x2 − dα2x2 (1)

where drug treatment (d) is a Heaviside step function as shown in Fig. 1. In
the problem setting [9], in order to examine long-term effects of two different
treatment regimes, the authors assumed the same initial overall tumor growth
and tumor reduction for the first treatment cycle (i.e., from ton1 and toff1 where
ton1 and toff1 represent the start time point and the end time point of the first
treatment respectively) of both symmetric and asymmetric treatment conditions.
Thus, the boundary and constraint prior to treatment are followed by:

x1(0) exp(k1ton1 ) + x2(0) exp(k2ton1 ) = (x1(0) + x2(0)) exp(kston1 ) (2)

where x1(0) and x2(0) represent the initial sub-population sizes respectively and
ks represents a single overall growth rate. Thus, during the initial untreated
growth phase of the tumor, the total tumor size is equivalent to a single overall
growth rate.

Similarly, the boundary and constraint following first round of drug treatment
satisfy the following condition which confirms that cell population is the same
after the first treatment cycle:
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x1(0) exp(k1ton1 ) exp((k1 − α1)ΔT ) + x2(0) exp(k2ton1 ) exp((k2 − α2)ΔT )
= (x1(0) + x2(0)) exp(kston1 ) exp((ks − αs)ΔT ) (3)

where ΔT � (toff1 − ton1 ) represents treatment time interval and is assumed to
be constant in this paper and αs represents the overall killing rate. Thus, after
the first treatment, the differential killing of the sub-populations of asymmetric
treatment should result in equivalent overall tumor burden reduction of sym-
metric treatment as per overall growth rate (ks) and killing rate (αs). These
constraints make sure that treatment methods have the same effects after first
treatment cycle and then long-term effect can be evaluated after that. A simu-
lation result showed that symmetric treatment (i.e., the same killing effect on
the different tumor cell types) is more effective than asymmetric treatment (i.e.,
different killing effect on the different tumor cell types) as shown in Fig. 1.

3 Differential-Imposed Selective Treatments Result in
Different Tumor Reduction Rates

In this section, motivated by the simulation study [9], we provide a theoretical
analysis to interrogate the effects of different drug-imposed selective pressures
and further consider how to integrate this information into treatment design.
First, we consider a tumor reduction after each round in symmetric treatment.

Definition 1. A tumor reduction (TR) rate after each round can be defined as
follows:

TRk � x(tonk ) − x(toffk )
x(tonk )

(4)

where TRk represents a tumor reduction rate of the kth drug cycle, x(tonk ) and
x(toffk ) represent total tumor population at time step tonk and toffk respectively
as shown in Fig. 1.

Lemma 1. For symmetric treatment (i.e., equal selective treatment), a tumor
reduction after each round will be constant over time.

Proof.

x(toffk ) = x1(t
off
k ) + x2(t

off
k )

= x1(tonk ) exp((k1 − α1)ΔT ) + x2(tonk ) exp((k2 − α2)ΔT )
= (x1(tonk ) + x2(tonk )) exp((ks − αs)ΔT )

where ΔT � toffk − tonk is assumed to be constant over k and for symmetric
treatment we assume that k1 − α1 = k2 − α2 = ks − αs (i.e., tumor reduction is
equal). Therefore, for symmetric treatment, a tumor reduction rate is constant
as follows:

TRsym
k = 1 − x(toffk )

x(tonk )
= 1 − exp((ks − αs)ΔT )
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Next, we consider a tumor reduction rate in asymmetric treatment case.

Lemma 2. For asymmetric treatment (i.e., differential selective treatments), a
tumor reduction rate after each round will decrease over time, i.e., TRasym

k >
TRasym

k+1 .

We need to show TRk−TRk+1 > 0 for asymmetric treatment. Tumor population
can be calculated by solving Eq. (1) and the final inequality we need to prove is
as follows: x(toffk+1) · x(tonk ) − x(toffk ) · x(tonk+1) > 0 and then we simply have the
following to prove:

(exp(k2 − α2) − exp(k1 − α1)) · (exp(2k2 − α2) − exp(2k1 − α1)) > 0

By simplifying this, we need to show whether (k2 − α2 > k1 − α1) · (2k2 − α2 >
2k1 − α1) is true. We will prove this by contradiction.

Proof. (Suppose not) (k2 − α2 > k1 − α1) · (2k2 − α2 > 2k1 − α1) is false. Then
we consider two cases: A) k2 − α2 > k1 − α1 and 2k2 − α2 ≤ 2k1 − α1 or B)
k2−α2 < k1−α1 and 2k2−α2 ≥ 2k1−α1. Note that we do not have the equality
condition (k2 − α2 = k1 − α1) as we consider asymmetric treatment case here.

From the boundary condition and constraint (i.e., the same initial overall
tumor growth and tumor reduction for the first treatment), we have the following
conditions:

x1(ΔT ) + x2(ΔT ) = x1(0) exp(k1ΔT ) + x2(0) exp(k2ΔT )
= (x1(0) + x2(0)) exp(ksΔT )

x1(t
off
1 ) + x2(t

off
1 ) = x1(ΔT ) exp((k1 − α1)ΔT ) + x2(ΔT ) exp((k2 − α2)ΔT )

= (x1(ΔT ) + x2(ΔT )) exp((ks − αs)ΔT )

where the first equation represents the same initial tumor burden and the second
equation represents the same initial efficacy. If we rearrange and use compositions
(i.e., divided by the total population) and divided by exp(ΔT )):

p01 exp(2k1 − α1) + p02 exp(2k2 − α2) = exp(2ks − αs)
= p01 exp(k1 + ks − αs) + p02 exp(k2 + ks − αs)

where p0i = xi(0)
x1(0)+x2(0)

,
∑

i p
0
i = 1 and we have the following:

p01(exp(2k1 − α1)− exp(k1 + ks − αs)) = p02(exp(k2 + ks − αs))− exp(2k2 − α2))

Then, we have two cases: 1) 2k1 −α1 > k1 +ks −αs and k2 +ks −αs > 2k2 −α2

or 2) 2k1 −α1 < k1 +ks −αs and k2 +ks −αs < 2k2 −α2. Note that we consider
asymmetric condition and thus do not consider when the equation is equal to
zero since it results in k1 − α1 = ks − αs = k2 − α2. Then we simply have the
followings:

{
k1 − α1 < ks − αs < k2 − α2 for case A)
k1 − α1 > ks − αs > k2 − α2 for case B)
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Also, we have

exp(2ks − αs) = p01 exp(2ks − αs) + p02 exp(2ks − αs)
= p01 exp(k1 + ks − αs) + p02 exp(k1 + ks − αs)

Since this should hold in general (i.e., for any (p01, p
0
2)), we could consider the

case where k1 = ks = k2. Then, it is simple to show contradiction from the
assumption, for instance, for case A), 2k2 − α2 > 2k1 − α1 (contradiction, ∵
2k2 −α2 ≤ 2k1 −α1). Similarly, for case B), 2k1 −α1 > 2k2 −α2 (contradiction,
∵ 2k2 − α2 ≥ 2k1 − α1).

We consider the rate of change in tumor sensitivity (or rate of tumor adap-
tation) by taking the slope of the percent tumor reduction values for successive
doses. In other words, the greater the decrease in tumor reduction, the more
negative the rate of change in tumor sensitivity. We can define a rate of tumor
adaptation, which refers to how quickly the population of composition changes,
by taking the absolute value of this metric [9].

Definition 2. A rate of tumor adaption (TA) is defined as follows:

TAk � |TRk+1 − TRk|
ΔT

(5)

where TRk and TRk+1 represent tumor reduction at the kth and (k +1)th round
of treatment.

Based on Lemma 1, this value for symmetric treatment is equal to zero. On the
other hand, for asymmetric treatment regime, TRasym

k+1 is smaller than TRasym
k

and thus a rate of tumor adaptation increases; From Lemma 2, since TRasym
k

is always greater than TRasym
k+1 , the greater the difference between TRasym

k and
TRasym

k+1 , the value of tumor adaptation rate increases and thus the effectiveness
of drug killing decreases.

Lemma 3. For symmetric treatment, a rate of tumor adaptation is zero but for
asymmetric treatment, a rate of tumor adaption is positive (i.e., tumor reduction
decreases for successive doses).

Proof. by Definition 2 and Lemma 1 and 2.

Theorem 1. With the same initial overall tumor size at the time of treatment
and the same initial efficacy on the overall tumor, differential-imposed selective
pressures on the individual sub-populations (i.e., asymmetric treatment) results
in higher tumor burden in the long-term compared to symmetric treatment.

Proof. TRsym
1 = TRasym

1 by assumption (i.e., the same initial efficacy on the
overall tumor) and Lemma 3 (i.e., a tumor reduction rate is constant in sym-
metric treatment but decreases over time in asymmetric treatment).
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Thus, in the case where two different regimes (i.e., symmetric and asymmet-
ric treatment) have the same initial efficacy on the overall tumor, differential
selective pressures on the individual sub-populations lead to different drug sen-
sitivities and result in long-term therapeutic outcome. Now the question is how
we could use such results to design treatment strategy for controlling such sys-
tem. To address this, we consider differential selective pressures as a factor of
the cost function in the following section.

4 Differential Selective Pressures as a Factor of the Cost
Function

Motivated by the effects of distinct drug selective pressures on long-term tumor
response, we consider how to use this principled concept in treatment design
that ultimately minimize relapse. In this section, we formulate an optimal con-
trol problem to enable better design of therapeutics by considering differential
selective pressures as a factor of the cost function.

We consider a general form

Ṅi(t) = (ki − αid)Ni(t), i = {1, · · · ,m} (6)

where Ni represents the population of the i-th cell type. Then, we define a
composition rate:

pi(t) =
Ni(t)∑m
j=1 Nj(t)

=
Ni(t)
NT (t)

(7)

where NT (t) =
∑m

j=1 Nj(t). The rate of composition change is as follows:

ṗi(t) =
Ṅi(t)NT (t) − Ni(t)ṄT (t)

NT (t)2
=

Ṅi(t)
NT (t)

− pi(t)
ṄT (t)
NT (t)

= (ki − αid −
m∑

j=1

(kj − αjd) · pj(t)) · pi(t)

Lemma 4. For symmetric treatment, sub-population composition does not
change over time.

Proof. For symmetric treatment, we have ki − αid = kj − αjd where i �= j.

ṗi(t) =
(
ki − αid − (ki − αid) · (

m∑

j=1

pj(t))
)
pi(t)

= (ki − αid − (ki − αid) · 1) · pi(t) = 0

Thus, symmetric treatment condition guarantees ṗi(t) = 0 ∀i (i.e., sufficient
condition). To show that it is a necessary condition for ṗi(t) = 0 ∀i, we consider
the following lemma:
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Lemma 5. If the following holds: ∀i, if ki − αid − ∑m
j=1(kj − αjd) · pj(t) = 0

(i.e., ṗi(t) = 0), then ki − αid = kj − αjd where i �= j).

Proof. (by induction)
Assuming that it is true for m, i.e., ∀i = {1, · · · m}, ki − αid − ∑m

j=1(kj − αjd) ·
pj(t) = 0 implies ki −αid = kj −αjd where i �= j. Then, we prove that it is true
for m + 1:

ki − αid −
m+1∑

j=1

(kj − αjd) · pj(t) = 0

Rearranging this equation:

(ki − αid)(
m+1∑

j=1,j �=i

pj(t)) =
m+1∑

j=1,j �=i

(kj − αjd)pj(t)

Using the assumption that (ki−αid)·(∑m
j=1,j �=i pj(t)) =

∑m
j=1,j �=i(kj−αjd)·pj(t)

implies ki − αid = kj − αjd where i �= j and i = {1, · · · ,m}. Then, we have

(ki − αid) · pm+1(t) = (km+1 − αm+1d) · pm+1(t)

where i �= m + 1 and thus ki − αid = km+1 − αm+1d.

Theorem 2. To avoid increasing rate of tumor adaptation, we need to satisfy
∀i, (ki −αid) = (kj −αjd) where i �= j, i.e., conserve sub-population composition
over time.

Proof. by Lemma 4, 5 and Theorem 1.

Now we define the objective function in the following form:

J(α) = rN(T ) +
∫ T

0

{qN(t) + sα(t)}dt (8)

=
m∑

i=1

riNi(T ) +
∫ T

0

{
n∑

i=1

qiNi(t) +
m∑

j=1

sjαj(t)}dt

In this equation ri, qi and sj denote weighting factors of total population, pop-
ulation during treatment and control effort respectively. Then the optimization
problem can be described with the constraints ki−αid = kj −αjd for all i where
i �= j to avoid increasing rate of tumor adaptation and thus ultimately minimize
tumor burden in the long term:

min J(α, u)
s.t. Ṅi(t) = (ki − αid)Ni(t)

ki − αid = u, ∀i

0 ≤ αi ≤ αmax (9)

where we also consider the maximum drug effect (αmax) as inequality condi-
tions. By solving the optimization problem, we minimize the overall tumor bur-
den while maintaining sub-population composition in order to minimize tumor
adaptation.
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5 Numerical Simulation Results and Discussion

In this section, we consider numerical simulations to demonstrate the effects of
drug selective pressure by solving the optimization problem. To demonstrate
this, we consider the system of equations (1) and solve optimization problem
using Lagrangian method:

J(α, u) = rN(T ) +
∫ T

0

{qN(t) + sα(t)}dt +
m∑

i=1

μi(ki − αi − u)2

+
m∑

i=1

liSi(αi − αmax)2 +
m∑

i=1

biVi(αi)2

where μi, li, bi represent Lagrangian multiplier for equality condition and
inequality condition respectively. Here Si = 1 if αi − αmax > 0 and Si = 0
if αi − αmax ≤ 0. Similarly Vi = 1 if αi < 0 and Vi = 0 if αi ≥ 0. In a simple
two-population model, the objective function is as follows:

J(α, u) = r1x1(T ) + r2x2(T ) +

∫ T

0

{q1x1(t) + q2x2(t) + s1α1(t) + s2α2(t)}dt

+μ1(k1 − α1 − u)2 + μ2(k2 − α2 − u)2

+l1 · S1(α1 − αmax)2 + l2 · S2(α2 − αmax)2 + b1 · V1(α1)
2 + b2 · V2(α2)

2

Herein, we consider optimization variable α1 as constant value for the simplicity.
By increasing Lagrangian multipliers, equality and inequality conditions hold.
In simulation study, we consider optimization problems with and without the
equality constraint to demonstrate how penalizing different selective pressures
affects tumor adaptation, sub-population composition changes and long term
effect of treatment. We consider three different scenarios: 1) the same initial
sub-populations with the same growth rate, 2) different initial sub-populations
with the same growth rate, and 3) the same initial sub-populations with different
growth rates.

Figure 2 (left) shows the first scenario with and without penalizing different
selective pressures. The parameters in this case are as follows: x1(0) = x2(0) =
0.5, ks = k1 = k2 = 0.1, ΔT = 4, αs = 0.22, αmax = 1 and α2 is obtained
using Eq. (3) for no constraint case. Total tumor burden without constraint
is higher than total tumor burden with constraint; In Fig. 2 (left-top), the red
line shows the total population dynamics without considering constraint and we
observe that sub-population composition changes over multiple rounds of drug
treatment as shown in Fig. 2 (left-middle, bottom) and tumor reduction decreases
after each round of treatment as shown in Fig. 2 (right-bottom). On the other
hand, by conserving sub-population composition or rate of tumor adaptation,
total tumor burden decreases more as shown in Fig. 2 (top) and tumor reduction
does not change over time in successive drug treatment as shown in Fig. 2 (right-
top). Note that sub-population ratio is conserved over time as shown in Fig. 2
(bottom) and thus tumor adaptation is zero.
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Fig. 2. Simulation result when the initial condition and growth rates are the same for
both sub-populations. (Left) Top figure shows the overall tumor population dynamics,
middle figure shows sub-population dynamics and bottom figure shows sub-population
ratio (max(s1, s2)/ min(s1, s2)). (Right) Tumor reduction (TR) rate after each round
of treatment where TR is constant over time when tumor adaptation rate is considered
in the objective function (top) and TR decreases over time when the tumor adaptation
rate is not considered in the cost function (bottom).

Two additional simulation studies were performed to see different initial sub-
population condition and the effect of different growth rate. Figure 3 (left) shows
the effect of different initial sub-population conditions. All the parameters are
the same as the previous case except the initial condition x1(0) = 0.65 and
x2(0) = 0.35. Total tumor burden decreases more with constraint as shown in
Fig. 3 (left-top) and sub-population ratio does not change over time as shown in
Fig. 3 (left-bottom).

Figure 3 (right) shows the case with different growth rate (ks = 0.09, k1 =
0.11) where k2 is obtained by using equation (2). Total tumor burden decreases
more by penalizing differential selective pressure as shown in Fig. 3 (right-top).
Note that sub-population composition does not change when drug treatment is
applied to the system but when drug is off, sub-population composition changes
due to the different growth rates as shown in Fig. 3 (right-bottom) due to the
different growth rates.

Throughout numerical simulation studies, we demonstrated that the con-
straint in the optimization problem enables to penalize different selective pres-
sures and thus reduce the tumor burden by reducing long-term drug resistance
or tumor adaptation.
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Fig. 3. Simulation result with different initial sub-population condition (left) and dif-
ferent growth rate (right). In each figure, top figure shows the overall tumor population
dynamics, middle figure shows sub-population dynamics and bottom figure shows sub-
population ratio.

6 Conclusion

In this paper, we consider tumor heterogeneity and selective pressure on sub-
populations in the treatment design. By conserving sub-populations, we mini-
mize tumor adaptation and thus reduce the long-term tumor burden. In future
work, we will consider a more general form instead of using a simple two-
population model to take mutations or cross-talk between each population into
account which might decrease drug efficacy.

Acknowledgement. This work was supported in part by the National Cancer Insti-
tute (U54CA209988).

References

1. Matveev, A.S., Savkin, A.V.: Application of optimal control theory to analysis of
cancer chemotherapy regimens. Syst. Control Lett. 46(5), 311–321 (2002)

2. Oke, S.I., Matadi, M.B., Xulu, S.S.: Optimal control analysis of a mathematical
model for breast cancer. Math. Comput. Appl. 23(2), 21 (2018)

3. de Pillis, L.G., et al.: Chemotherapy for tumors: An analysis of the dynamics and
a study of quadratic and linear optimal controls. Math. Biosci. 209(1), 292–315
(2007)

4. Boldrini, J.L., Costa, M.I.: Therapy burden, drug resistance, and optimal treatment
regimen for cancer chemotherapy. Math. Med. Biol. 17(1), 33–51 (2000)

5. El-Sayes, N., Vito, A., Mossman, K.: Tumor heterogeneity: a great barrier in the
age of cancer immunotherapy. Cancers 13(4), 806 (2021)

6. Martelotto, L.G., Ng, C.K., Piscuoglio, S., Weigelt, B., Reis-Filho, J.S.: Breast
cancer intra-tumor heterogeneity. Breast Cancer Res. 16(3), 1–11 (2014)



60 T. Ghodsi Asnaashari and Y. H. Chang

7. Marusyk, A., Polyak, K.: Tumor heterogeneity: causes and consequences. Biochim.
Biophy. Acta (BBA)-Rev. Cancer 1805(1), 105–117 (2010)

8. Chapman, M.P., Risom, T., Aswani, A.J., Langer, E.M., Sears, R.C., Tomlin, C.J.:
Modeling differentiation-state transitions linked to therapeutic escape in triple-
negative breast cancer. PLoS Comput. Biol. 15(3), e1006840 (2019)

9. Sun, D., Dalin, S., Hemann, M.T., Lauffenburger, D.A., Zhao, B.: Differential selec-
tive pressure alters rate of drug resistance acquisition in heterogeneous tumor pop-
ulations. Sci. Rep. 6(1), 1–13 (2016)

10. Zhao, B., Hemann, M.T., Lauffenburger, D.A.: Intratumor heterogeneity alters
most effective drugs in designed combinations. Proc. Natl. Acad. Sci. 111(29), 10
773–10 778 (2014)

11. Zhao, B., Pritchard, J.R., Lauffenburger, D.A., Hemann, M.T.: Addressing genetic
tumor heterogeneity through computationally predictive combination therapy.
Cancer Discov. 4(2), 166–174 (2014)

12. Carrère, C.: Optimization of an in vitro chemotherapy to avoid resistant tumours.
J. Theoret. Biol. 413, 24–33 (2017)

13. Ledzewicz, U., Wang, S., Schättler, H., André, N., Heng, M.A., Pasquier, E.: On
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