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Preface

It is with great pleasure that we welcome you to the proceedings of the 3rd International
Symposium on Mathematical and Computational Oncology (ISMCO 2021), which was
held virtually (October 11–13, 2021).

Despite significant advances in the understanding of the principal mechanisms
leading to various cancer types, less progress has been made toward developing
patient-specific treatments. Advanced mathematical and computational models could
play a significant role in examining the most effective patient-specific therapies. The
purpose of ISMCO is to provide a common interdisciplinary forum for mathematicians,
scientists, engineers and clinical oncologists throughout the world to present and dis-
cuss their latest research findings, ideas, developments and applications in mathe-
matical and computational oncology. In particular, ISMCO aspires to forge stronger
relationships among researchers in a variety of disciplines, including mathematics,
physical sciences, computer science, data science, engineering and oncology, with the
goal of developing new insights into the pathogenesis and treatment of malignancies.

The program includes 6 keynote presentations, 6 oral sessions, 1 panel discussion,
and 2 tutorials. ISMCO 2021 received 20 submissions, from which we accepted 16
submissions for oral presentation. This LNBI volume includes only the full and short
papers accepted for presentation. All abstracts that were accepted for presentation
appear in an online volume, which was published by Frontiers (a link is provided on the
ISMCO website).

All submissions were reviewed with an emphasis on the potential to contribute to
the state of the art in the field. Selection criteria included accuracy and originality of
ideas, clarity and significance of results, and presentation quality. The review process
was quite rigorous, involving at least three independent double-blind reviews, followed
by several days of discussion. During the discussion period, we tried to correct
anomalies and errors that might have existed in the initial reviews. Despite our efforts,
we recognize that some papers worthy of inclusion may not be in the program. We offer
our sincere apologies to authors whose contributions may have been overlooked.

Many contributed to the success of ISMCO 2021. First and foremost, we are grateful
to the Steering, Organizing, and Program Committees; they strongly welcomed, sup-
ported, and promoted the organization of this new meeting. Second, we are deeply
indebted to the keynote speakers who warmly accepted our invitation to talk at ISMCO
2021; their reputation in mathematical and computational oncology added significant
value and excitement to the meeting. Next, we wish to thank the authors who submitted
their work to ISMCO 2021 and the reviewers who helped us to evaluate the quality
of the submissions. It was because of their contributions that we succeeded in putting
together a high-quality technical program. Finally, we would like to express our
appreciation to Springer, Frontiers and the International Society for Computational
Biology (ISCB) for supporting ISMCO 2021.



We sincerely hope that despite the difficulties due to the pandemic, ISMCO 2021
offered participants opportunities for professional growth. We look forward to many
more successful meetings in mathematical and computational oncology.

October 2021 George Bebis
Terry Gaasterland

Mamoru Kato
Mohammad Kohandel

Kathleen Wilkie
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Precision Oncology via the Tumor
Transcriptome

Eytan Ruppin

CDSL, NCI, NIH, USA

Abstract. Precision oncology has made significant advances, mainly by tar-
geting actionable mutations and fusion events involving cancer driver genes.
Aiming to expand treatment opportunities, recent studies have begun to explore
the utility of tumor transcriptome to guide patient treatment. I will introduce a
new approach, termed SELECT, which harnesses genetic interactions to suc-
cessfully predict patient response to cancer therapy from the tumor transcrip-
tome. SELECT is tested on a broad collection of 35 published targeted and
immunotherapy clinical trials from 10 different cancer types. It is predictive of
patients’ response in 80% of these clinical trials and in the recent multi-arm
WINTHER trial. In summary, we report the first systematic,
transcriptomics-based approach that is predictive across many targeted and
immune therapies. The predictive signatures and the code are made publicly
available for academic use, laying a basis for future prospective clinical studies.
As time permits, I will provide a brief overview of MadHitter, a new approach
for guiding precision cancer therapy based on single cell tumor transcriptomics.



Population Genomic Approaches
for Molecular Biomarker Discovery in Clinical

Oncology

Elli Papaemmanuil

Memorial Sloan Kettering Cancer Center, USA

Abstract. Recent characterization of the genes recurrently mutated in cancer
have led to the routine implementation of tumor profiling at diagnosis with the
expectation to diagnose and treat patients according to their unique molecular
profile - the vision of precision medicine. However, development of molecularly
guided clinical decision support tools warrants the delivery of evidence based,
data driven, comprehensive models that extend beyond single markers. In my
talk I will discuss critical considerations for biomarker characterization, statis-
tical model development, and clinical decision support tool development for
clinical adoption.

Speaker Bio-Sketch: Dr. Papaemmanuil got her BSc and MSci in Human Molecular
Genetics with Honors at the University of Glasgow and her PhD in Human population
genetics at the Institute of Cancer Research in London. She performed her postdoctoral
studies at the Wellcome Trust Sanger Center and joined the University of Cambridge as
faculty, prior to moving to the Memorial Sloan Kettering Cancer Center. Dr.
Papaemmanuil has employed genome profiling methodologies to study the role of
acquired mutations in cancer development and how these determine clinical phenotype
and response to therapy. More recently she has established high-throughput laboratory
profiling approaches and developed statistical modelling methodologies that integrate
clinical and molecular parameters to inform patient tailored disease classification and
clinical decision support (prognosis and treatment decisions). Her main research
motivation is to develop research that helps translate recent cancer genome discoveries
into clinical practice. Her current research spans, bioinformatic and algorithmic plat-
form development, biomarker discovery and validation and experimental models of
disease biology. Additionally, Dr. Papaemmanuil has a strong interest to understand the
effects of treatment in disease progression and genetic drivers of treatment response.
Dr. Papaemmanuil leads the Pediatrics Precision medicine initiative for MSK Kids,
which sets out to evaluate, validate and deliver a clinical prototype for integrative
whole genome and whole transcriptome sequencing analyses to understand mecha-
nisms of disease biology and guide treatment strategies in pediatric cancers.



Three Problems in Mathematical Oncology

Paul K. Newton

Viterbi School of Engineering and Ellison Institute for Transformative Medicine,
University of Southern California, USA

Abstract. I will introduce three problems in mathematical oncology all of which
involve nonlinear dynamics and control theory. First, I will describe our work
using Markov chain models to forecast metastatic progression. The models treat
progression as a (weighted) random walk on a directed graph whose nodes are
tumor locations, with transition probabilities obtained through historical autopsy
date (untreated progression) and longitudinal data (treated) from Memorial
Sloan Kettering and MD Anderson Cancer Centers. Then, I will describe our
models (both deterministic and stochastic) that use evolutionary game theory
(replicator dynamics/Moran processes with prisoner’s dilemma payoff matrix) to
design multi-drug adaptive chemotherapy schedules to mitigate
chemo-resistance by suppressing ‘competitive release’ of resistant cell popula-
tions. The models highlight the advantages of antagonistic drug interactions
(over synergistic ones) in shaping the fitness landscape of co-evolving popu-
lations. Finally, I will describe our work on developing optimal control
schedules (based on Pontryagin’s maximum principle) that maximize coopera-
tion for prisoner’s dilemma replicator dynamical systems.



Towards Optimizing Therapy on a Patient
Specific Basis via Imaging-Based Mathematical

Modeling

Tom Yankeelov

Oden Institute for Computational Engineering and Sciences, Livestrong Cancer
Institutes, Departments of Biomedical Engineering, Diagnostic Medicine,

Oncology, The University of Texas at Austin, USA

Abstract. The ability to accurately predict the response of tumors to therapy,
and then use this information to optimize treatment on an individual patient
basis, would dramatically transform oncology. In an attempt to move in this
direction, we have developed a clinical-mathematical framework that integrates
quantitative magnetic resonance imaging (MRI) data into mechanism-based
mathematical models to predict the response of locally advanced breast cancer to
neoadjuvant therapy. We will present our recent efforts on this topic and then
discuss how these methods can be extended to enable patient-specific simula-
tions of treatment response to a range of therapeutic regimens, thereby providing
a pathway for optimizing therapy on a patient-specific basis.



Barrett’s Esophagus: Efficient Design
of Multiscale Simulations for Surveillance

And Treatment

Georg Luebeck

Fred Hutchinson Cancer Research Center, USA

Abstract. Barrett’s Esophagus (BE), a metaplastic tissue alteration associated
with gastroesophageal reflux, predisposes to esophageal adenocarcinoma
(EAC). Endoscopic screening of patients with persistent symptomatic reflux
aims to identify patients with BE at risk of progressing to cancer. Such patients
are recommended to undergo follow-up examinations for dysplasia or small
cancers in the earliest stages. This is useful because the prognosis for EAC
detected at an early stage is dramatically better than for advanced stages that are
mostly lethal. Thus, endoscopic surveillance of BE, in which multiple biopsies
are routinely examined for preneoplastic changes and/or early neoplastic lesions,
will increase patient survival compared with patients diagnosed with EAC
without prior BE surveillance. However, over-diagnosis is a major concern
because the annual rate of progression from BE to EAC is less than 1% overall
but depends on age, gender, race/ethnicity, BE segment length, history of gas-
troesophageal reflux and other life-style factors. Multiscale models that include
these factors have been developed but suffer computational bottlenecks and are
technically demanding. In this talk I will discuss how mathematical insights and
multitype branching process theory can be used to significantly speed up sim-
ulations to assess and evaluate various screening modalities in a large number of
individuals.



Integrative Methods for Deciphering Cancer
Networks

Mona Singh

Princeton University, USA

Abstract. Networks of molecular interactions underlie virtually all functions
executed within a cell. Networks thus provide a powerful foundation within
which to interpret a wide range of rapidly accumulating biological data. In this
talk, I will present formulations and algorithms that leverage the structure and
function of biological networks in order to analyze cancer genomes and discover
cancer-relevant genes. This is a difficult task, as numerous somatic mutations are
typically observed in each cancer genome, only a subset of which are
cancer-relevant, and very few genes are found to be somatically mutated across
large numbers of individuals. I will introduce a framework that can rapidly
integrate multiple sources of information about molecular functionality in order
to discover key interactions within a network that tend to be disrupted in can-
cers. Crucially, our approach is based on analytical calculations that obviate the
need to perform time-prohibitive permutation-based significance tests. Next, I
will describe algorithms that consider both prior and newly collected data within
a network context in order to uncover cancer-relevant subnetworks. Overall, our
work showcases the versatility and power of a network viewpoint in advancing
biomedical discovery.
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Image Classification of Skin Cancer: Using Deep
Learning as a Tool for Skin Self-examinations

Kristen Anderson1,2 and Sharon S. Hori1,3,4(B)

1 Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
shori@stanford.edu

2 Canary Cancer Research Education Summer Training (CREST) Program, Stanford University
School of Medicine, Stanford, CA, USA

3 Canary Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
4 Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford,

CA, USA

Abstract. Skin cancer is the most common cancer in the United States, and stud-
ies indicate that its incidence is rapidly increasing. Regular skin self-examinations
enable early cancer detection and intervention and are recommended in addition
to clinician-based examinations. However, some patients struggle to identify high-
risk skin lesions due to the presence of an overwhelming number of lesions, as
well as the subtlety of changes to their skin over time. Artificial intelligence
(AI) offers an at-home solution to filter low-risk lesions from a patient’s self-
examination, thereby reducing the number of lesions requiring routine monitor-
ing. This allows patients to triage lesions during their self-examinations, focus
primarily on monitoring high-risk lesions between clinical visits, and become
aware when clinical inspection or follow-up is needed. We used the HAM10000
skin cancer dataset from Harvard Dataverse to develop deep-learning algorithms
that aid in skin self-examination. ResNet-50, DenseNet-121, and VGG-16 mod-
els were used to distinguish low-risk lesions (melanocytic nevi, dermatofibroma,
and benign keratosis-like lesions) from high-risk lesions (melanoma, basal cell
carcinoma, actinic keratoses, and vascular lesions). Each model generated a pre-
diction score ranging from 0 to 1, where 1 was classified as high-risk and 0 was
classified as low-risk. To minimize the number of high-risk lesions classified as
low-risk, a threshold of 0.01 was selected for differentiating classes, ensuring
only predictions with high-confidence remained in the low-risk bracket. Once the
classification threshold between low-risk and high-risk was adjusted, the VGG-
16 algorithm removed 50.7% of images from self-examination workload with a
precision value in the low-risk category of 0.98 and a recall value of 0.96 for
high-risk lesions. The VGG-16 neural net outperformed alternative ResNet-50
and DenseNet-121 models. This work has the potential to make the task of skin
self-examination more manageable for patients by identifying which suspicious
lesions require follow-up consultation with a clinician.

Keywords: Skin cancer ·Melanoma · Deep learning · Convolutional neural
network · Dermatology

© Springer Nature Switzerland AG 2021
G. Bebis et al. (Eds.): ISMCO 2021, LNBI 13060, pp. 3–8, 2021.
https://doi.org/10.1007/978-3-030-91241-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91241-3_1&domain=pdf
http://orcid.org/0000-0002-1876-4872
http://orcid.org/0000-0002-4188-4952
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1 Introduction

Skin cancer is the most common cancer in the United States, and studies indicate that
its incidence is rapidly increasing [1–3]. Melanoma constitutes only 2% of skin cancers
but results in the most malignancies and skin cancer mortalities [2, 4]. A diagnosis of
melanoma increases a patient’s risk for secondary melanomas and recurrence of the
primary melanoma [5]. Regular skin self-examinations enable early cancer detection
and intervention; they are recommended in addition to clinician-based examinations [6].
However, some patients struggle to identify high-risk skin lesions due to the presence
of an overwhelming number of lesions, as well as the subtlety of changes to their skin
over time [6].

Research using artificial intelligence (AI) to diagnose skin lesions has progressed
with a focus on stand-alone AI diagnostics [7, 8]. Yet, the utility of AI in self-
examinations relies on patient receptiveness. A study conducted on the patient perspec-
tive of AI in skin cancer found that 59% of 298 surveyed respondents were unamenable
to usingAI as a stand-alone system, while 94% of participants favored the use of AI as an
assistant [9]. To balance these concerns, patients should have access to an accurate skin
self-examination strategy that prioritizes patient autonomy, AI efficiency, and clinician
feedback.

We propose that AI offers an at-home solution to filter low-risk lesions from a
patient’s self-examination, reducing the number of lesions requiring routine monitoring.
Patientsmay triage lesions during their self-examinations, focus primarily onmonitoring
high-risk lesions between clinical visits, and become aware when clinical inspection
or follow-up is needed. In this study, we aimed to make skin self-examinations more
efficient in between regular clinical visits, by identifying and filtering out low-risk skin
lesions.

2 Methods

2.1 Patient Data

We used the HAM10000 skin cancer dataset from Harvard Dataverse (https://dataverse.
harvard.edu),which consisted of 10,015multi-source, dermatoscopic images of common
pigmented skin lesions [10]. This dataset also included descriptions of patient sex (54.0%
male, 45.5% female, 0.5% unreported), age (mean of 51.9 years), the examination type
(histopathology, follow-up appointment, expert consensus, in vivo confocal microscopy)
and the location of the lesion on the body (back, lower extremity, trunk, etc.). Eighty
percent of data was assigned to training and 20% of data was assigned to testing and
validation subsets. Seven categories of skin lesionswere separated into two classes (high-
risk and low-risk), as shown in Table 1. These categories were used as model outputs
for the classification task. Example images are shown in Fig. 1.

2.2 Data Augmentation and Balancing Classes

Data augmentation was used to balance the classification categories, which were orig-
inally distributed as shown in Fig. 2. To preserve the shape and margin of each image,
rotation and flipping were applied.

https://dataverse.harvard.edu
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Table 1. Skin lesion categories.

Class Diagnostic category Action

High-risk Melanoma (mel), basal cell carcinoma
(bcc), actinic keratoses (akiec), vascular
lesions (vasc)

Inspection by patient and clinician

Low-risk Melanocytic nevi (nv), dermatofibroma
(df), benign keratosis-like lesions (bkl)

Filtered out of patient skin
self-examination; diagnosis to be
confirmed by clinician

Fig. 1. Examples of melanocytic nevi (left) and melanoma (right) from the HAM10000 dataset.

Fig. 2. Distribution of original data categories, includingmelanocytic nevi (nv), melanoma (mel),
benign keratosis-like lesions (bkl), basal cell carcinoma (bcc), actinic keratoses (akiec), vascular
lesions (vasc), and dermatofibroma (df).

2.3 Description of Models

Three convolutional neural network (CNN) architectures (ResNet-50, DenseNet-121,
and VGG-16) were trained using the HAM10000 dataset to classify high-risk and low-
risk skin lesions. ResNet-50 consisted of 48 convolutional layers, 1 maxpool, and 1
average pool layer. Imagenet weights and max pooling were used as parameters. A final
softmax layerwas added for the purpose of normalizing theCNN’s output.DenseNet-121
was combined with batch normalization, dropout, a dense layer with a relu activation,
and a dense layer with softmax activation. The VGG-16 is effective for applying trans-
fer learning to computer vision image classification. To balance class distribution, the
following class weights were added to the VGG-16: low-risk (1.0167) and potentially
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cancerous (0.794). Dropout was used as a form of regularization. Global average pooling
was used to minimize overfitting through reducing model parameters. Early Stopping
and Reduce Learning Rate on Plateau were selected as callbacks. Mini batches were
used during training.

Each model was used to generate a prediction score ranging from 0 to 1, where 1
was classified as high-risk and 0 was classified as low-risk. Our classification objective
was to help patients self-evaluate their lesions by accurately classifying low-risk images
and minimizing the total number of lesions requiring patient examination.

3 Results

3.1 Accuracy of Lesion Risk Classification

Precision, recall, F1-score, and accuracy were evaluated for each model using argmax to
distinguish between classes. As shown in Table 2, VGG-16 achieved the highest overall
accuracy (80%), followed by ResNet-50 (78%) and DenseNet-121 (74%). From this
initial accuracy assessment, VGG-16 was selected as the preferred model.

Table 2. Overall image prediction results.

Model Precision Recall F1-score Accuracy

ResNet-50 0.71 0.78 0.72 78%

DenseNet-121 0.65 0.69 0.66 74%

VGG-16 0.74 0.83 0.75 80%

3.2 Fine-Tuning for Protecting Patients Against Filtering Out High-Risk Lesions

Our next goal was to ensure that all high-risk lesions would remain within the pool of
images assessed by a patient. To minimize the number of high-risk lesions incorrectly
classified as low-risk, a threshold of 0.01 was selected for differentiating classes, shifting
predictions that were greater than 0.01 into the high-risk bracket. In other words, lesions
would only be placed in the low-risk category if they were high-confidence predictions.
As shown in Table 3, shifting the threshold between classifications resulted in filtering
50.7% of images. We observed that 98.4% of these filtered images were known to be
low-risk lesions. Furthermore, 96.2% of all potentially cancerous images were correctly
classified as high-risk lesions, while the remaining 3.8% of high-risk images (8/213)
were incorrectly classified as low-risk lesions.
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Table 3. Evaluation of classification effectiveness (threshold of 0.01).

Model Percentage of
workload
removed for
patient

Precision of
low-risk category

Recall of
high-risk lesions

Fraction of
high-risk lesions
incorrectly
classified

ResNet-50 27.1% 0.967 0.958 9/213

DenseNet-121 33.5% 0.976 0.962 8/213

VGG-16 50.7% 0.984 0.962 8/213

4 Discussion

This work demonstrated promising potential to reduce the number of lesions a patient
must routinely monitor, while ensuring 98.4% of these filtered lesions are low-risk. By
simplifying the process of skin self-examination, this approach minimizes the likelihood
of a cancerous lesion being missed in the interval between clinical examinations. For
patients whowish to be thorough, timely, and involved with their skin self-examinations,
this work provides a tool for monitoring lesions at any frequency of the user’s choosing
and prompts clinical care when needed. This approach empowers patients to manage
their own skin health in a timely and organized manner.

There are a few measures that would improve effective implementation of this app-
roach in the future. Access to a larger variety of data across a spectrum of patient
demographics would improve model training and utility in a clinical setting. Any algo-
rithm should be tested on a wider demographic before being integrated into a clinical
setting to consider factors such as potential skin-tone bias. With these adjustments, this
tool can be applied to ease stress and improve efficiency during skin self-examinations,
prompting patients to seek clinical help when needed.

5 Conclusion

To improve skin self-examination efficiency and reduce stress for patients, low-risk
lesions were filtered from patient workflow. A skin cancer classifier was created that
removed 50.70% of images with a precision value of 0.98 in the low-risk category
and a recall value of 0.96 for high-risk lesions. This was achieved with a classification
threshold of 0.01, using an image classification VGG-16 neural network that outper-
formed alternative ResNet-50 and DenseNet-121 models. Identifying low-risk lesions
can potentially reduce the psychological stress associated with skin self-examinations,
while encouraging patients to seek clinical help for high-risk lesions. This computa-
tion tool is complementary to clinician-based examinations, supporting patients in the
intervals between their regular clinical visits.
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Abstract. Lung cancer is the most prevalent cancer worldwide. About 80% to
85% of lung cancers are non-small cell lung cancer (NSCLC). One of the major
types of NSCLC is lung adenocarcinoma (LUAD), which solely accounts for
approximately 40% of all cases. Although there has been a dramatic therapeutic
improvement, the prognostic trajectory has relied on primarily clinical features
such as tumor-nodal-metastasis (TNM) stage, age upon diagnosis, and smoking
history for decades. It does not reflect molecular alterations on its pathway or het-
erogeneity of tumorigenesis. Here we propose an integrative multi-omics random
forest model to predict survival time for LUAD patients. We identified multi-
omics signatures with higher importance to better predict survival time than clini-
cal annotations that physicians traditionally use. We confirmed that the integrative
prediction model outperforms any single-omic-based model. We discovered that
a methylation-based model performed best among any single-omic-based model
for LUAD since it provides the most abundant signature candidates. Although
methylation assay is costly in general, paradoxically, methylation offers the most
economical pool as prognosis markers due to more abundant assay points.

Keywords: Survival time prediction · Integrative multi-omics model · Machine
learning

1 Introduction

Lung cancer is the most prevalent cancer in many countries worldwide and has two
subtypes: small cell lung cancer and non-small cell lung cancer, the latter of which
comprises about 80–85% of lung cancers [1, 2]. Lung adenocarcinoma (LUAD) is one
of themajor subtypes of non-small cell lung cancer, the only subtype in never smokers [3],
along with lung squamous cell carcinoma (LUSC). LUAD accounts for approximately
40% of all lung cancer cases.

Prediction of its prognostic trajectory is important, especially to each patient. Tradi-
tionally prognostic trajectory has been estimated by clinical data, such as ages upon diag-
nosis, stage, and smoke history. This method is inaccurate because it does not consider

© Springer Nature Switzerland AG 2021
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molecular characteristics in its pathway. Kaplan-Meier estimates provide the simplest
and predictable way given the selected factor but cannot associate with related other
factors and cannot be expressed as a functional form [4]. The Cox proportional hazards
model can handle multiple variables and is realistic in that the hazard ratio changes over
time, but it is not predictable to estimate survival time [5]. Recently there has been a
dramatic improvement in treatment by molecule-targeting therapies. However, its pre-
diction is not accurate enough because it still relies solely on clinical annotation and
does not take molecular responses into account. Some data integration effort was made
by incorporating gene expression data [6, 7]. Epigenetics data also have been exploited
[8, 9]. There has been an effort to have even more omics data involved but most ended
up with algorithmic integration rather than omics-level data integration [10].

Thus, we propose an ensemble learning method on high-dimensional omics data
with clinical annotation to predict survival time. We learned a random forest regression
(RFR) model [11, 12] exploiting the Cancer Genome Atlas (TCGA) LUADmulti-omics
data and clinical annotations [13, 14]. To build a survival time prediction model, ‘Days
to death’ was selected as the prediction target. Random forest regression, an ensem-
ble of multiple decision trees, was selected to learn a model across heterogeneous data
types since it does not require normalizing features, while other machine learning algo-
rithms usually do. Random forest regression also can deal with nonlinear solution space
and a nonparametric model, which does not require any assumptions about the data
distribution. Thus, it is ideal for our integrative nonlinear prediction model learning.

Long term vs. short term survival classification has been studied more preferably
since two group classification is comparatively easier than multi-group classification or
regression [15–17]. Yu et al. performed classification of long-termvs. short-term survival
of non-small cell lung cancer patients but exploitedmainly hematoxylin and eosin (H&E)
histological image data with a few omicsmarkers of interest [18]. Li et al. identified eight
genes relating to survival in LUADusing only gene expression data [19]. Yu et al. learned
a prediction model to classify short-term (<3yr) and long-term (>3yr) survival from
LUAD using only somatic mutational features [20]. An integrative prediction model
suggested RNA-seq should be more predictable on prognostics of survival time than
other genomic data types but still failed to include the methylation data that eventually
causes gene expression change. We extended omics data integration from conventional
clinical history to methylation, gene expression, and protein abundance from TCGA
LUAD patients.

2 Inherent Characteristics of Multi-omics Data

TCGA has generated a variety of omics data along with clinical annotations. TCGA
detailedmolecular levels on various cancer types and collectedmethylation, gene expres-
sion, protein abundance along with genomic data such as copy number variation (CNV),
somatic mutation, and microRNA expression. The previous studies show that gene
expression was the most predictable omics data type among clinical, gene expression,
CNV, somatic mutation, microRNA expression, and protein abundance, but it failed to
include methylation data [20]. Thus we integrated methylation, gene expression, and
protein data along with clinical annotation to see if methylation data is more predictable
than gene expression data.
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TCGA LUAD collected six types of omics data from ~500 patients. About 20%
of them have survival time annotations. Methylation data is already normalized by its
assay design. We performed log normalization for gene expression data, and proteome
data were also Z-score normalized. To further reducemodel learning time, we performed
feature engineeringusingPearson correlation coefficients (PCC) [21, 22]. Thepreprocess
reduced the original data matrix to 1/1000–1/2 (Fig. 1).

Fig. 1. Methylation, gene expression, and protein distribution from TCGA LUAD naturally vary.
It presents that each omics data has its unique distribution signature. Accordingly, normalization
should be adopted for prediction model learning. (A) For LUAD, TCGA collected data from ~500
patients and provided ~500K CpG methylation, ~20K gene expression, ~200 protein, and 100
clinical annotations, including ‘Days to death’, the target phenotype. (B) The distribution of the
methylome (C) The distribution of transcriptome (D) The distribution of proteins.

3 Single-Omics Prediction Model

3.1 Conventional Clinical History Based Model as a Baseline

Clinical annotation data were retrieved from TCGA. We selected patients who had the
‘Days to death’ annotation and then selected other clinical history features that were
recorded for all those patients such as ‘number_pack_years_smoked’. Roughly ~50
clinical annotations were available for model learning. Since 50 features do not hurt
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the learning efficiency, we trained a model with all 50 clinical features without further
feature selection.

Feature importance in random forest is formulated in (1) and (2); that is each feature
x can change prediction accuracy compared to random permutation of the feature x,
tested in out-of-bag (OOB) data points. Feature importance of clinical annotation was
displayed in Fig. 2, and overall performance was represented in Fig. 7. As expected, the
most important feature is the smoking intensity which is represented in packs/years. The
second most important feature was ‘age upon diagnosis’, then tumor stage information;
primary tumor (T) was the most significant factor, followed by regional lymph node (N)
and distant metastasis (M). The revealed importance by RFR were realistic and well-
aligned with what has been known by the traditional method to estimate survival time
by doctors.

Importancex = 1

|all Tree|
∑

allTree
�AccuracyOOBTree,x (1)

�AccuracyOOBTree,x = 1

|OOBT |
∑

i∈OOBT
Accuracy with permx − Accuracy w/o permx

(2)

Fig. 2. Traditionally, survival time was estimated by doctors using well-known clinical history
such as smoking intensity and time, age, and stage. Since PCC of clinical data is lower than other
omics data, PCC thresholds were not applied. The RFRmodel learned from all clinical annotations
and found that smoking intensity was the most important, followed by age, necrosis percentage,
and tumor stage.

Clinical annotation-based RFR is selected as our baseline for the entire study. It
is a strong baseline given that non-linear ensemble learning methods can address such
complex heterogeneous data.

3.2 Methylome-Based Survival Time Prediction Model

For methylation, TCGA adopted Illumina Infinium HumanMethylation450K BeadChip
(HM450) [23], where half a million CpGs were assayed to compute beta values, i.e.,
methylation ratio (which is the number of reads with methylated cytosine divided by the
total number of reads). We extracted LUAD methylation data of the patients with ‘Days
to death’. the barcodes in the clinical annotation and the barcodes of the methylation file
were compared to select only patients who have a ‘Days to death’ clinical annotation.
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~100 patients were used for model training. The total number of assayed CpGs was
~485K. The beta value is already normalized as a ratio of 0 to 1. CpG loci that started
with ‘cg’ were selected and the features with any missing data across the ~100 patients
were excluded for model learning. The shape of the distribution of methylation data is
bimodal (Fig. 1A), where CpGs are either highly methylated or unmethylated, which is
very authentic compared to bell curve shares of transcriptome and proteome data.

Fig. 3. Methylome-base RFR model prediction performance was grid-explored along with the
number of estimators and PCC threshold (top). Since RFR includes a randomization process, we
ran RFR >100 times. Thus the importance was averaged across 100 runs (bottom).

We employed mean absolute error (MAE) as our cost function [24]. We utilized 5-
fold cross-validation tomeasure predictionmodel performance. Tomakemodel learning
efficient and effective, we performed feature engineering by PCC. We computed PCC
and set various thresholds from 0.3 to 0.5 to select features. PCC allowed us to reduce
the number of features down to tens of thousands from half a million. Along with PCC,
we also experimented with a varied number of estimators from 50 to 7500, and intervals
set exponentially. We defined a parameter grid and ran random forest regression for each
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cell to search the parameter combination space for the best-performed model. Since the
algorithm relies on randomization, we ran random forest regression 100 times per cell
to obtain more robust performance results (Fig. 3). The best performance was shown
with a PCC threshold of 0.4, and the number of estimators does not seem to affect the
performance significantly. Note that selecting features with only high correlation does
not always guarantee better prediction, as it may cause an overfitting issue where the
learned model fitted too much with the current data set, thus becoming unreliable for
the future unknown data. The prediction performance is presented as an MAE heatmap.
After running the random forest regression 100 times on each setting, a near-optimal
setting was found at a PCC threshold of 0.38 with 1500 estimators.

We further studied the CpGs that notably contributed to better prediction perfor-
mance. The top 20 CpGs were selected by frequency (Fig. 3). The genes related to the
CpG and the actual frequency are shown with a CpG ID. The average importance value
is on the Y-axis.

3.3 Transcriptome-Based Ensemble-Learning Model

The gene expression data were also retrieved from TCGA. The data quantified over 20K
genes for ~500 LUAD patients. The quantified gene expression levels were computed
throughRSEM[25, 26],which candealwithmultiple isoforms fast by parallel computing
the EM algorithm. The raw data was originally skewed with a long tail in the right. After
log normalization, it appears more symmetric, with a mean of ~10 (Fig. 1C). Note that
we added one before taking logs because some genes are not expressed at all (log 0 is
not defined).

We compared patient barcodes, unique across the TCGA project, of the clinical
annotation file with raw gene expression files. Then we selected patients who had ‘Days
to death’ annotated along with gene expression. The log-normalized gene expression
data were further engineered. We also adopted PCC to narrow down the number of
gene features for efficient model learning. A variety of PCC thresholds from 0.2 to
0.45 resulted in hundreds to thousands of gene features since gene features with higher
PCC than the thresholds were selected. Along with PCC, the number of estimators
was used for prediction performance grid search. MAE was used as our cost function.
We ran random forest regression 100 times per combination to learn robust prediction
performance settings and to repress randomization side effects.

Ultimately, we found that features with a PCC threshold of ~0.34 running with 1000
estimators gave the lowest MAE. Overfitting degraded prediction performance when a
few gene expression features with too high PCC were selected (Fig. 4). The average
importance of the top 10 frequent genes is shown in Fig. 4 (bottom). KLHDC8B and
DENND1A were shown in all 100 training and tests [27, 28].

3.4 Proteome-Based Model

Processed Reverse Phase Protein Array (RPPA) data were retrieved from TCGA [29].
The data described the quantified protein abundance of 364 patients for 225 proteins.
The data was already normalized, as displayed in Fig. 1D. The normalized data file
had to be further engineered. We compared patient barcodes, unique across the TCGA



Predictive Signatures for Lung Adenocarcinoma Prognostic Trajectory 15

Fig. 4. The transcriptome-based RFR model prediction performance was grid-searched along
with the number of estimators and PCC threshold (top). The top 10 genes by frequency are
represented, and the mean importance was computed across 100 runs (bottom).

project, of the clinical annotation file with the normalized protein abundance file. Then
we selected patients who had annotated along with protein abundance levels.

We also adopted PCC to narrow down the number of gene features for efficient model
learning. PCC between ‘Days to death’ and normalized protein abundance levels was
computed. A variety of PCC thresholds from 0.1 to 0.3 resulted in tens of protein abun-
dance features since protein features with higher PCC than the thresholds were selected.
Along with PCC, the number of estimators was used for prediction performance grid
search. MAE was used as our cost function. We ran 5-fold cross-validation to measure
prediction performance. We ran random forest regression 100 times per combination to
learn robust prediction performance settings and to suppress randomization side effects.
The top 3 proteins (BID, CCT5, EEF2K) by frequency were represented [30–32].
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The results of the parameter tuning were demonstrated in Fig. 5. Ultimately, we
found that features with a PCC threshold of ~0.28 running with 4000 estimators gave
the lowest MAE. Overfitting degenerated prediction performance when too few protein
features due to extremely high PCC threshold were selected. Furthermore, too high a
threshold may lose some of the informative features. The average importance values of
the three most frequent proteins are shown in Fig. 5 (bottom).

Fig. 5. Proteome-baseRFRmodel prediction performancewas grid-explored alongwith the num-
ber of estimators and PCC threshold (top). The top 3 proteins (BID, CCT5, EEF2K) by frequency
were represented. The mean importance was computed across 100 runs (bottom).
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4 Integrative Multi-omics Prediction Model

4.1 Integrative Modeling

We tried to find the intersection among methylation, gene expression, and protein abun-
dance (Fig. 6). DKK1 and GFOD2 are confirmed by both methylation and gene expres-
sion data. Since there was a low amount of protein data available, none of the genes in
methylation or gene expression data could be cross-confirmed by protein data.

Fig. 6. We further investigated if there are any genes that two or more single omics-based mod-
els double confirmed. DKK1 and GFOD2 displayed significance in both methylation and gene
expression data. Since TCGA generated only a handful of proteome data (~200), it was unlikely
to confirm genes by proteomic data.

This inspired us to further develop an integrative model with all the heterogeneous
omics data and the clinical annotations.We again chose random forest regression because
it can handle non-linear solution space and does not require intense normalization. We
selected features across the three omics data and the clinical annotations by PCC thresh-
olds.We learned amodel,measured prediction performance after 5-fold cross-validation,
and plotted the prediction performance as MAE.
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Firstly, the integrative model outperformed any single omics-based prediction model
across all PCC thresholds (Fig. 7). For single-omics-based models, the methylation-
based model performed best, followed by the gene expression-based model. These two
single-omic-based models predict better than traditional survival time estimates based
on smoke history, tumor stage, and age upon diagnosis. It is partly because having more
features gives a higher chance to come across better predictor features. Note that the
clinical annotation-based model was more robust than the protein-based model, even
though protein provides more features than clinical annotations in general.

Prediction performancewasmeasured in Table 1 and Fig. 7 (top). The best prediction
performance, i.e., the lowestMAE,was recorded alongwith PCC threshold and a various
number of estimators, meaning that decision trees. Each MAE data point was averaged
after 5-fold cross-validation. Although the significance is hard to be proven, it is clear
that the MAE of the integrative model is lower than any other single-omics-based model
across all feature combinations. The improvement is more prominent when the MAE of
single-omics-based models is higher in the far left and far right. It also can be interpreted
that more noisy features when a lower PCC threshold is applied. At the same time, we
lose more informative and predictable features when a higher PCC threshold is applied.

Running time was measured on a MacBook Pro with Intel(R) Core TM core i5
processor and 8 GB of RAM. The number of features significantly affected learning
time. For example, methylation had the most marker candidate features and thus took
the most extended runtime (Table 2).

4.2 Omics-Marker Cost Analysis

We further investigated to find which omics data provide the most cost-effective markers
(Table 3). Though the methylation and protein cost more than RNA-seq, the methylation
platform is themost economical becausemethylation generatesmillions ofCpGmarkers,
resulting in the lowest total cost/marker and highest predictive power per dollar [33].
The predictive power is formulated as a reverse or error rate, i.e., MAE and computed
(3). Comparatively, only ~200 proteins are generated, thus offer the most costly marker.

Predictive power = 1

MAE
(3)
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Fig. 7. RFR prediction performance from 5-fold cross-validation shows that the clinical data-
based prediction model, our baseline, performs better than the protein-based model. However,
it also reveals that the gene expression or methylation-based model can outperform traditional
survival time estimates. The integrated multi-omics data prediction model outperforms any other
models that rely solely on one type of omics data or clinical data (top). The mean importance
values of the top 40 features by frequency are shown after 100 runs and 5-fold cross-validation.
Interestingly, the top two features are from gene expression, followed by methylation features.
We identified ~20 omics features more significantly predictable than traditional clinical features
(bottom).
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Table 1. Prediction performance

Clinical annotation Omics data Integrative model

Methylation RNA Protein

Best performance (the
lowest MAE)

547.0829 456.8844 480.5176 563.304 436.8226

# of features before feature
engineering

~3K ~500K ~30K ~2K ~100

PCC threshold NA 0.38 0.34 0.28 0.375

# features used for training
models (at optimal Pearson
threshold)

~50 <100 <100 <10 Methylome: ~20
Transcriptome ~10
Proteome <10
Clinical annotation ~10

# features with high
importance

<10 ~30 ~10 <10 ~10

# estimators 4000 7500 1000 4000 2000

Table 2. Running time analysis of RFR by PCC threshold

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Protein <1 h <1 h <1 h <1 h <1 h <1 h NA NA NA

Clinical <1 h <1 h <1 h <1 h <1 h NA NA NA NA

RNA >48 h ~20 h ~6 h ~2 h <1 h <1 h <0.5
h

<0.5
h

NA

Methylation >2 weeks >2 weeks >36
h

>24
h

~15
h

~5 h ~1.5 h <1 h <1 h

Integrative
model

<1 h <1 h <1 h <1 h <1 h <1 h <1 h <.5 h <0.5
h

Table 3. Omics marker unit cost analysis

Methylome Transcriptome Proteome

Total number of markers ~4.5M ~30K ~200

Library cost [34] >$300 ~$80 ~$320

Sequencing cost ~$1,000 ~$1,000 0

Total cost/marker ~$0.0029 ~$0.036 ~$1.60

Best MAE 456.8844 480.5176 563.304

Predictive power/USD($) 2.87 2.25 0.57
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5 Discussion and Future Works

In this study, we used a random forest regression, non-parametric ensemble learning
method, to predict the survival time of lung adenocarcinoma (LUAD) patients from het-
erogeneous omics data and clinical annotations. We specifically chose LUAD because
it is widely accepted that smoking history is one of the most important factors to esti-
mate survival time, along with other clinical factors such as age and tumor stage. Our
goal was to identify omics markers that outperform such clinical markers, which have
previously been the most reasonable factors in predicting survival time, and we suc-
cessfully found such better-predicting omics markers, such as DENND1A, ICAM4,
cg02038216 (MCTP1), cg03075966 (GRK5), cg06697267 (FOXA2), etc. [35] It is
observed thatDENND1A is overexpressed inLUADpatients [36]. ICAM4was identified
as methylation markers by Wang et al. [37].

In the future, it would be interesting to apply RFR to other types of cancer data
from TCGA to see (1) if methylation markers consistently outperform gene expression
markers and (2) if there are any commonmethylation/gene expressionmarkers to predict
survival time and (3) if the prediction power can be improved by adding image data,
which is available to LUAD patients.
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Abstract. Major Histocompability Complex (MHC) Class I molecules
provide a pathway for cells to present endogenous peptides to the immune
system, allowing it to distinguish healthy cells from those infected by
pathogens. Software tools based on neural networks such as NetMHC
and NetMHCpan predict whether peptides will bind to variants of MHC
molecules. These tools are trained with experimental data, consisting of
the amino acid sequence of peptides and their observed binding strength.
Such tools generally do not explicitly consider hydrophobicity, a signif-
icant biochemical factor relevant to peptide binding. It was observed
that these tools predict that some highly hydrophobic peptides will be
strong binders, which biochemical factors suggest is incorrect. This paper
investigates the correlation of the hydrophobicity of 9-mer peptides with
their predicted binding strength to the MHC variant HLA-A*0201 for
these software tools. Two studies were performed, one using the data
that the neural networks were trained on and the other using a sample
of the human proteome. A significant bias within NetMHC-4.0 towards
predicting highly hydrophobic peptides as strong binders was observed
in both studies. This suggests that hydrophobicity should be included in
the training data of the neural networks. Retraining the neural networks
with such biochemical annotations of hydrophobicity could increase the
accuracy of their predictions, increasing their impact in applications such
as vaccine design and neoantigen identification.
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1 Introduction

The Human Leukocyte Antigen (HLA) gene system encodes cell-surface proteins
that play a key role in the immune system. HLA proteins of Major Histocom-
patibility Complex (MHC) Class I allow nucleated cells to present peptides from
within the cell. In these cells, endogenous proteins are eventually broken down
into small peptides, 8–15 amino acids long, by the proteasome. These antigens
are then trafficked to and loaded onto MHC Class I molecules. If sufficient bind-
ing affinity is achieved then a stable peptide-MHC (pMHC) complex is formed
and transported to the cell surface. Self-peptides, antigens encoded in the human
proteome, and foreign peptides, derived from pathogenic proteins, can thus be
presented. By surveilling these extracellular pMHCs, CD8+ T-cells can distin-
guish normal cells from pathogen-infected cells, and kill the latter.

The mechanics of peptide binding are specific to a given MHC variant. The
HLA genes are among the most diverse in the human population [9]. Thus the
set of all antigens presented by a person’s MHCs, labelled as their immunopep-
tidome, is unique and determines the capacity of their immune system. Since
the immune response of a person to, for instance, a viral infection like COVID-
19 is dependent on whether the foreign antigens presented by their MHCs are
distinguishable from self-peptides, understanding and predicting pMHC binding
is an important topic. In this paper, we have focused on NetMHC-4.0 [2] and
NetMHCpan-4.1 [25], two state-of-the-art neural network based methods that
predict pMHC binding. Both software tools have been applied in predicting can-
cer immune escape mechanisms [17], checkpoint blockade immunotherapy for
tumors [16], and identifying COVID-19 T-cell response targets [10].

While these tools provide valuable pMHC predictions, they do not model
pMHC binding at the molecular level or capture the entire antigen presentation
pathway’s effects. Hydrophobicity is a measure of how repulsive a molecule is to
water, often a consequence of nonpolarity. It plays a vital role in protein bind-
ing – for example, the MHC molecule HLA-A*0201 (A2) contains hydrophobic
binding pockets that bind to correspondingly hydrophobic amino acids. His-
torically, immunopeptidomes have been predicted by modelling the interaction
of the MHC binding pocket and peptide, particularly focusing on biochemical
attributes such as sidechain conformations, solvation energies, electrostatic inter-
actions, and hydrophobicity [30,32]. However with improved computing power,
larger datasets, and the need for interpolation due to the high polymorphism in
MHC Class I alleles [21], artificial intelligence based methods have become popu-
lar over such mechanistic means of prediction. As NetMHC-4.0 and NetMHCpan-
4.1 are trained with sequence data and binding scores only, they lack the means
of modelling these biochemical attributes. Other software tools such as ANN-
Hydro [6] have utilized hydrophobicity in their immunogenic predictions, but do
not predict binding affinity and are outperformed by NetMHCpan [18]. In our
use of NetMHC-4.0 we observed a prevalence of highly hydrophobic peptides in
the predicted A2 immunopeptidome. We found this unintuitive, since peptides
in which all amino acids are hydrophobes would not dissolve in the aqueous
cytosol within the cell and would thus likely not be available for binding with
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the MHC. We therefore sought to investigate the possibility that these tools were
over-estimating binding scores for such hydrophobic peptides. We conducted two
analyses on both NetMHC-4.0 and NetMHCpan-4.1, one using training data and
the other using a sample of the human proteome, to investigate the correlation
of predicted strong binders and hydrophobicity. We present our results and high-
light the unintended bias within NetMHC-4.0 for predicting highly hydrophobic
peptides as strong binders.

2 Methods

NetMHC and NetMHCpan allow users to input a list of peptides or whole pro-
teins, and test the binding of all peptides within a chosen MHC molecule. Both
tools return an adjusted score between 0 (for non binders) and 1 (for strong
binders) for all peptides. A notable distinction between the two is that NetMHC
is limited to predicting binding for MHC variants it is trained on, i.e. curated
MHCs. In contrast, NetMHCpan is capable of interpolating predictions for uncu-
rated MHCs if users provide the MHC amino acid sequence. This is achieved
through the integration of MHC sequence as a data feature in training, and
by a larger training dataset generated using a sophisticated machine learning
method called NNAlign MA [1]. NetMHCpan-4.1 consists of an ensemble of 50
neural networks, each with hidden layers containing 55 and 66 neurons, that
were trained using 5-fold cross validation. NetMHC-4.0 consists of 20 neural
networks, each with a single hidden layer of 5 neurons, that were trained using
a nested 5-fold cross validation approach [2].

2.1 Data Mining

NetMHC-4.0 was trained on CD8+ epitope binding affinity (BA) data from the
Immune Epitope Database. This data provides binding scores for peptides to
single allele MHCs, with a score that is scaled between 0 and 1 that measures
how strongly the peptide binds. NetMHCpan-4.1 was trained on BA data and
additional eluted ligand (EL) data from mass spectrometry experiments from
multiple sources [25]. The EL data includes multi-allele information that was
deconvoluted into single allele datapoints using NNAlign MA. EL score is binary
(either 0 or 1) since it checks if a peptide is present in a MHC’s immunopep-
tidome. The training data for NetMHCPan-4.1 is provided here.

This cumulative dataset contained more than 13 million pMHC data points,
that we filtered down to the 52569 9-mers interacting with HLA-A02:01 (A2) and
labelled as set TRN. 9-mers were the most frequent length of antigens in human
immunopeptidomes, and A2 was the most frequent MHC in the training dataset.
The distribution of all binding scores in TRN is shown in Fig. 1. Please note that
Fig. 1 contains two distinct graphs, the second being independently sorted to
visualize the cumulative distribution, as discussed in the caption. All peptides
from TRN were fed into NetMHC-4.0 to obtain their predicted BA scores, and

http://www.cbs.dtu.dk/suppl/immunology/NAR_NetMHCpan_NetMHCIIpan/
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then filtered for strong binders predicted by the tool’s default 0.5% rank thresh-
old. This set of predicted strong binding peptides by NetMHC-4.0 was labelled
as NSB (NetMHC Strong Binders). Similarly, the strong binders predicted by
NetMHCpan-4.1 from TRN based on their EL scores were compiled into the set
PSB (NetMHCPan Strong Binders).

Fig. 1. Binding scores for all A2 9-mers in the NetMHCpan-4.1 training set TRN in blue,
NetMHC-4.0 Binding Affinity predicted scores in red, and NetMHCpan-4.1 Eluted
Ligand predicted scores in yellow. The top graph has been sorted on the training data,
and for each peptide index the NetMHC, NetMHCpan, and training scores are plotted
at that x coordinate. The Pearson correlation coefficient between the training scores
and NetMHC-4.0 was 0.8492, and between the training scores and NetMHCpan-4.1 was
0.863. In the bottom graph, each plot of scores was independently sorted to demonstrate
their cumulative distributions. Note that here the order of peptides is not conserved
across the 3 plots in the bottom graph. (Color figure online)

From the scores shown in the second graph of Fig. 1, it was clear that the
pMHC binding data for A2 9-mers fitted a mostly binary data classification
problem, since only 15% peptides had a training score not equal to 0 or to 1.
This was mostly due to the addition of EL data which provided a binary “yes” or
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“no” answer to whether a given peptide was found attached to A2 through mass
spectroscopy. NetMHC-4.0 predicted scores, shown in red, were mostly located
in between the extremes of 0 and 1 due to the smaller training data consisting of
only BA assay data. It seemed that NetMHCpan-4.1, shown in yellow, was much
better at estimating non-binders (scores of 0), and fitted the S-curve transition
more tightly than NetMHC-4.0. This was reflected by the correlation coefficients
calculated in Fig. 1. However, neither neural network gave a definitive score of 1
to strong binders; they both use a rank based percentile threshold to determine
which peptides can be classified as strong binders.

We measured the lowest binding score in NSB and PSB as 0.659 and 0.419
respectively – i.e. all strong binders predicted by NetMHC-4.0 and NetMHCpan-
4.1 had binding scores greater than or equal to these thresholds, respectively.
We then filtered for all peptides in TRN that had experimental binding scores
greater than or equal to 0.659 into set NTF (NetMHC Threshold Filtering) and
those greater than or equal to 0.419 into set PTF (NetMHCpan Threshold Filter-
ing). Here, NTF contained all training peptides whose experimentally determined
binding scores would classify them as strong binders according to NetMHC-4.0,
and likewise for PTF and NetMHCpan-4.1.

Lastly, we gathered the protein sequences for all reviewed human proteins
from Uniprot [7], and randomly sampled 100 of them to create a set of 50804 9-
mers that we labelled as SHP (Sampled Human Proteome). These peptides were
also passed through NetMHC-4.0 and NetMHCpan-4.1, and the resulting list of
strong binders were filtered into sets NHB (NetMHC Human Binders) and PHB
(NetMHCPan Human Binders). Refer to Fig. 2 to see the distributions of these
predicted scores; note that there are no training data readily available for SHP.

The datasets TRN, NSB, PSB, NTF, and PTF were used for analyzing the per-
formance of both neural networks on training data, while the sets SHP, NHB, and
PHB were used for investigating the performance upon the human proteome.

2.2 Hydrophobicity

Hydrophobicity scales assign hydrophobicity values to single amino acids. They
are designed so the hydrophobicity of long peptides or protein chains can be esti-
mated by simply linearly adding up the scores of their constituent amino acids.
While scales such as Kyte-Doolittle [14], Cornette [8], and Hopp-Woods [11] are
commonly used, we settled on the Moon scale [20] for calculating hydrophobicity
in our analyses. This newer scale differs from the scales listed above in that it
specifically focuses on the sidechain hydrophobicity and polarity of single amino
acids. Unlike the other scales, which are well suited for protein folding problems
that do not correlate with sidechain hydrophobicity [19], the Moon scale is more
representative of how small peptides would behave in an aqueous solution. The
scale ranks the 20 amino acids in decreasing order of hydrophobicity as follows:
F (1.43), L (1.26), I (1.15), P (1.13), Y (0.94), V (0.80), M (0.79), W (0.63), A
(0.46), C (0.24), E (–0.27), G (–0.30), T (–0.33), S (–0.35), D (–0.85), Q (–0.88),
N (–1.08), R (–1.19), H (–1.65), K (–1.93). For any given 9-mer, we calculated
its total hydrophobicity by adding up the values for each of its 9 amino acids as
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Fig. 2. Predicted binding scores for all 9-mers in the 100 sampled human proteins in
SHP, according to NetMHC-4.0 in blue, and NetMHCpan-4.1 in red. In the top graph,
the sequence of peptides is conserved for both sequences and sorted by NetMHC scores.
In the bottom graph, both sequences are independently sorted and the sequence of
peptides is not conserved across both sequences. (Color figure online)

reported by the scale. For a given set of peptides, we measured the mean and
standard deviation of the hydrophobicity scores of all peptides in it. Refer to
Tables 1 and 2 for these measurements.

2.3 Hydrophobicity Filtering

An additional filter we applied was for peptides that were entirely hydrophobic.
For this, we only accepted peptides from TRN and SHP that had all 9 amino acids
with a Moon hydrophobicity score greater than 0.46 (i.e. that of Alanine). This
meant that the resulting sets of peptides were made entirely of Phenylalanine,
Leucine, Isoleucine, Proline, Tyrosine, Valine, Methionine, and Tryptophan –
highly hydrophobic and nonpolar amino acids. For TRN, only 55 such peptides
were found. The training scores and predicted scores for these are shown in Fig. 3.
While the training data in blue showed non-binders, strong binders, and some
in between, NetMHC predicted no decisive non-binders and instead seemed to
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Table 1. Hydrophobicity values for the training data analysis

Set of peptides Size of set Mean hydrophobicity Standard deviation

TRN 52659 0.902 3.063

NTF 9268 2.794 2.502

PTF 10763 2.857 2.527

NSB 6498 3.458 2.364

PSB 8863 2.756 2.426

Table 2. Hydrophobicity values for the human proteome analysis

Set of peptides Size of set Mean hydrophobicity Standard deviation

SHP 50804 0.052 3.212

NHB 486 4.519 2.515

PHB 940 2.789 2.645

model a uniform distribution. In contrast, NetMHCpan clearly identified non-
binders and was notably more conservative in assigning scores greater than 0.419
– it identified fewer strong binders than NetMHC did with its threshold of 0.659
and matched the training scores better with that threshold.

Fig. 3. Binding scores for all highly hydrophobic 9-mers in TRN in blue, and the pre-
dicted scores by NetMHC-4.0 in red and NetMHCpan-4.1 in yellow. All of the 3 plots
were independently sorted to demonstrate their distributions. Peptides were considered
hydrophobic if all their amino acids were more hydrophobic than Alanine. (Color figure
online)

For SHP, 33 hydrophopbic 9-mers were found. Their predicted binding scores
by both neural networks are shown in Fig. 4. Once again, the NetMHC scores
in blue appeared almost linear and seemed to be uniformly distributed, while
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Fig. 4. Predicted Binding scores for all highly hydrophobic 9-mers in SHP, with
NetMHC-4.0 in blue, and NetMHCpan-4.1 in red. Both plots were independently sorted
to demonstrate their distributions. Peptides were considered hydrophobic if all their
amino acids were more hydrophobic than Alanine. (Color figure online)

NetMHCpan in red clearly identified lots of non-binders, and fewer strong binders
(about 3).

2.4 2 Sample t-Test

For any 2 given sets of sampled numbers, the 2 Sample t-Test allows for com-
paring their means. Given an arbitrary set Si with mean μi, standard deviation
σi, and sample size ni, the t-statistic for two sets Si and Sj can be computed as

ti,j =
(μi − μj)√

(σ2
i /ni) + (σ2

j /nj)
.

For all our named sets, we conducted a cross-set 2 sample t-Test using
Python’s scipy.stats package to determine how likely shifts in the means of
hydrophobicity scores for sets could be due to random sampling. This com-
puter package also calculated p-values, enumerating the probability of the two
compared sets having unequal means purely by chance, from the t-statistic.

3 Results

Consider the histograms of the hydrophobicity scores of all peptides in the
datasets TRN, PTF, and PSB shown in Fig. 5. The 52,659 peptides in TRN model a
gaussian distribution centered at mean hydrophobicity of 0.9. The other two sets
containing high binders according to NetMHCpan, PTF and PSB, shift to the right
with new means at 2.8 and 2.7 respectively. The shift towards more hydrophobic
9-mers is not unexpected – as the authors of NetMHC [2,22] depict in the A2
logos here, locations 2 and 9 in the A2 immunopeptidome 9-mers strongly favor

https://docs.scipy.org/doc/scipy/reference/stats.html
http://www.cbs.dtu.dk/services/NetMHC/logos.php
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Fig. 5. Histogram of the Hydrophobicity scores (on the x-axis) for sets TRN (in blue),
PTF (in red), and PSB (in yellow). Note how PTF and PSB are similar distributions. Refer
to Sect. 2.2 for details. (Color figure online)

amino acids such as Leucine, Methionine, Valine, and Isoleucine. The reservation
of these 2 locations with these hydrophobic amino acids corresponds roughly to
2.0 shift in Moon hydrophobicity. The two sets possess comparable means and
standard deviations, visually and quantitatively as shown in Table 1.

In contrast, let us now focus on how NetMHC performed in a similar analysis.
In Fig. 6, the histograms for TRN, NTF, and NSB are shown. The set NTF in red,
consisting of peptides with experimentally measured binding scores greater than
0.659, is centered at a mean of 2.8. However set NSB in yellow, containing peptides
that NetMHC predicted as strong binders, is offset to the right with a mean of
3.4. This shift in the distribution of NSB points out an increase in hydrophobicity
of 9-mers that bind to A2. That is, NetMHC predicts the A2 immunopeptidome
to be more hydrophobic than the experimental data, or even NetMHCpan’s
predictions, suggest.

Looking at the histograms of the SHP, NHB, and PHB – i.e. the human pro-
teome sampled 9-mers and the strong binders predicted by the neural networks
from them – this shift in hydrophobicity increases. In Fig. 7, the SHP distribu-
tion is centered at about 0 (SHP and TRN do not share the same mean, which
we suspect is due to the Moon hydrophobicity scale being normalized on human
proteins). As in Fig. 5, the strong binders predicted by NetMHCpan are slightly
hydrophobic, resulting in a shift in the mean to 2.8 (similar to PTF and PSB).
However, the strong binders predicted by NetMHC in the human proteome are
much more hydrophobic, with a shifted mean at 4.5. The gain in hydrophobicity
from SHP to NHB implied by this shift is even larger than the shift observed in
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Fig. 6. Histogram of the Hydrophobicity scores (on the x-axis) for sets TRN (in blue),
NTF (in red), and NSB (in yellow). Clearly, NTF and NSB do not align, with NSB shifted
towards being more hydrophobic. (Color figure online)

Fig. 6. Once again NetMHC overestimates how hydrophobic the A2 immunopep-
tidome is, and performs worse in the human proteome evaluation compared to
the training data.

The cross set T-test tested the equivalence of two given sets with p-values.
The smaller the p-value, the more likely the two sets have unequal means. We
clustered the sets based on the p-values from the cross set t-test. The clustering
criteria were: 1) two sets chosen from separate clusters should have a p-value
lower than 0.001; and 2) a set should have a p-value greater than 0.001 with at
least one set in its cluster. We obtained the following 5 clusters of sets: (TRN),
(SHP), (NTF, PTF, PSB, PHB), (NSB), and (NHB). The first two clusters cover the
sets that were put in to the neural networks, TRN and SHP. The third cluster
includes NetMHCpan’s predicted immunopeptidomes and the experimentally
observed immunopeptidome. The largest observed p-value in this cluster was
0.961 between NTF and PHB. The fourth and fifth clusters cover the set of pre-
dicted strong binders according to NetMHC for the training data analysis and
the human proteome analysis respectively. The clusters signify how similar sets
within them are, and how different they are to sets outside that cluster. As
the NSB and NHB sets occupying their own clusters, the t-test highlights that
NetMHC’s predictions do not match up with the experimental immunopep-
tidomes and with NetMHCpan’s predictions. These different analyses confirm
the increased hydrophobicity of strong binding 9-mers from NetMHC’s predic-
tion, and expose an unintended bias in the neural network’s performance com-
pared to NetMHCpan.



34 A. Solanki et al.

Fig. 7. Histogram of the Hydrophobicity scores (on the x-axis) for sets SHP (in blue),
NHB (in red), and PHB (in yellow). Clearly, NHB and PHB do not align, with NHB shifted
towards being more hydrophobic. (Color figure online)

4 Conclusion

Imagine a toy example of a hydrophilic box filled with water, containing a single
HLA-A*0201 protein and a completely hydrophobic 9-mer of LMIPFFILL. The
peptide would be repelled by the aqueous medium and latch itself to the A2 pro-
tein. Now consider the cell interior, where the highly hydrophobic 9-mer would be
repelled by the cytosol and stick to whatever mildly hydrophobic surface it finds
nearby. This 9-mer would no longer be trafficked to any MHC for binding, and
would not be presented as an antigen on the cell surface despite the 2nd and 9th
amino acids highly favoring A2 binding. This cherry-picked peptide was a non-
binding peptide (EL score of 0) in the NetMHCpan-4.1 training dataset but was
predicted as a strong binder by NetMHC-4.0 for A2 (BA score of 0.792). In gen-
eral, we do not expect completely hydrophobic antigens to populate any MHC’s
immunopeptidome. This example illustrates how the MHC antigen presentation
pathway do not support NetMHC’s prediction. Coupled with our observations
in Sect. 3 we conclude that NetMHC has a statistically significant bias towards
predicting hydrophobic peptides as strong binders to A2. NetMHC may provide
accurate binding affinity predictions, but does not correctly reflect the compo-
sition of the A2 immunopeptidome with regards to hydrophobicity. This bias
suggests a false positive prediction problem, and limits the utility of NetMHC
in applications such as vaccine design [28] and neoantigen identification [15].

In contrast, NetMHCpan-4.1 does not show a similar bias, potentially due to
its larger training data set and the use of MHC amino acid sequence as a data
feature of the neural network. The MHC sequence could be allowing the neural
network to infer and model the binding mechanics of the A2 binding pockets.
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Furthermore, eluted ligand data might allow NetMHCpan to capture aspects of
the entire antigen presentation pathway instead of estimating pMHC binding
strength alone. Lastly, the generated negative data in the training data [1] could
be lowering the predicted scores for hydrophobic non binders.

Changes could be implemented in future iterations of NetMHC to address
this bias, such as:

– Augmenting training data to include information on hydrophobicity of con-
stituent amino acids. This would entail adding an extra dimension or feature
to the training data that stores hydrophobicity scores. We recommend the
Moon Hydrophobicity scale for this purpose.

– Incorporating better negative data in training, and properly populating the
training dataset with more peptides from the human proteome. Note the off-
set mean hydrophobicity of TRN compared to SHP in Tables 1 and 2, suggesting
that the current training data does not accurately represent the human pro-
teome.

– Designing a post-processing filter that can separate out false positives based
on hydrophobicity calculations.

Our emphasis is not on reverse engineering a neural network or trying to divine
molecular information from predicted values. Instead, we are highlighting the
importance of biochemical attributes pertinent to pMHC binding and cellular
machinery. A more insightful neural network, like NetMHCpan-4.1, will avoid
false positives and will potentially allow for better performance and greater
impact in applications. In future work, we will focus on identifying more sig-
nificant structural and mechanistic attributes that pose hurdles for AI-based
methods. We are developing a structural prediction tool capable of predicting
peptide binding with uncurated MHC molecules.
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Abstract. Through an Agent-based model (ABM) it is possible to com-
pute simple and basic behaviours at the cellular scale, while observing the
emergence of complex conducts or patterns at the population scale. Thus,
in this modeling paradigm, macroscopic phenomena can be explained by
a set of behaviors of the agents. However, due to the high computational
cost, the exploration of the parameters of these models for the optimiza-
tion or calibration of protocols is still an open challenge. In this paper,
we propose a surrogate model based on an Long-Short Term Memory
(LSTM) neural network to replicate the predictions of an ABM much
faster. The ABM used in this paper models the interactions between
cytotoxic T-lymphocytes (CTL) and cancer cells [8]. The initial results
shows that the neural network is capable of reproducing the emergent
behavior of the ABM with a reduced computational cost.

Keywords: Surrogate modelling · LSTM · T-lymphocyte · Cancer

1 Introduction

The study of CTL is crucial in the development of therapeutic cancer strate-
gies [4]. Unfortunately research on this matter requires many time-lapse
microscopy acquisitions to gather enough key information. To expand on the
understanding of CTL, we have proposed in a previous work [8] an ABM of
their interactions with cancer cells. In this model, target cancer cells (melanoma
cells) are attacked by CTL which are scooting in the environment in order to
kill all target cells. To develop this initial model interactively with biologists, we
used a state-transition diagram and high-quality visualisation to assess the qual-
itative quality of the model (see Fig. 1). Furthermore, our model is calibrated
and validated with in vitro biological data: it reproduces overnight kinetics of
the CTL fight against target cells at different CTL/Target cells ratios.
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Fig. 1. Distribution of the amount of CTL from the dataset generation. A. Total
amount of CTL injected. B. Amount of CTL for an injection.

In the study aforementioned, it was shown that a same amount of CTL
injected over time shows greater lytic ability than a single injection at the
beginning of a cell culture (usual protocol). To study the impact of more complex
injection kinetics, a large number of simulations is required. However, despite
a relatively short computation time compared to biological experiments (1 min
per simulation of 18 h with 1000 initial cancer cells), the exploration of such a
search space remains computationally costly.

Hence, in order to replicate the model’s behaviour while reducing its com-
putational cost, we propose in this paper to use a surrogate models, more com-
monly used in physics and engineering [5,13]. Due to the sequential nature of the
injections, we propose to use an LSTM-based approach to reproduce the ABM
outputs in shorter computational times.

2 Method

The ABM presented in [8] allowed to generate 200,000 simulations to train and
test our model on. Each simulation has 18 inputs, representing the amount of
CTL injected each hour, and 18 × 2 outputs corresponding to the number of
dead and alive D10 cancer cells (isolated from metastatic melanoma patients [7]).

2.1 Dataset Generation

The simulations were constrained to not exceed a 1:1 effector/target (E/T) ratio.
Figure 2 shows that using such a ratio, uniformly distributed in time, kills all
cancer cells. It is therefore not necessary to explore kinetics with a higher ratio.

To avoid biases in the model while exploring as widely as possible the 18
dimensions injection kinetics’ space, we used a Latin Hypercube Sampling (LHS)
method [11]. It allows to generate a near-random sample of parameters value and
to better cover the multidimensional domain considered. To take into account the
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Fig. 2. Result of 10 simulations using ABM
showing the percentage of tumor cells killed by
CTL with an injection of 55 CTL each hour.

Fig. 3. Architecture of the
surrogate model.

1:1 E/T limit ratio constraint while using the LHS, an additional dimension was
introduced, containing the total amount of CTL injected over the span of a sim-
ulation. To obtain a convenient sequence, the first 18 values are normalized and
multiplied by the value contained in the last dimension. Such a method allows to
produce a dataset with a uniform distribution of the total CTL quantities and
a distribution of the number of CTL per hour. Running the 200,000 simulations
required 2 days and 19 h with an Intel R© Xeon R© E5-2660 v3 CPU (40 cores).

2.2 LSTM-Based Surrogate Model Architecture

LSTM networks are a particular type of recurrent neural networks [6], capable of
learning dependencies in time-series data structures to perform forecasting [10].
Hence, due to the sequential and temporal nature of the data considered, LSTM
networks are appropriate in order to develop the desired surrogate model.

The model considers the amount of CTL added at a time step and predicts
the amount of dead and alive cancer cells at the next time step. The architecture
of the model (Fig. 3) is made of an LSTM layer (input size 1, output size 50)
and a dense layer (input 50 size, output 2 size). An Adam optimizer and a Mean
Square Error (MSE) as the loss were used. The dataset was split with 80% of
training data and 20% test data. 100 epochs were necessary to reach an MSE
of 0.00029 both on the training and the testing dataset. The training required
5 min using a NVIDIA R© Quadro R© P620 GPU.

3 Results

3.1 The Model Can Reproduce the Predictions of the ABM

The surrogate model is able to predict the amount cancer cells over time. To
observe the quality of the predictions made, three simulations with different
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Fig. 4. Prediction on simulations from the test dataset with different CTL injection
kinetics (dashed green) (Color figure online).

injection kinetics were selected (Fig. 4). We can observe that the trend of the
predictions corresponds to the one proposed by the ABM and thus that the
surrogate model is a good approximation of the ABM.

The predictions made are based on the new number of CTL injected as well
as on model’s memory of previous steps. Figure 5 shows the relative error at
each time step. If the prediction made by the LSTM is diverging over time, the
relative error remains reasonable as it only represent 2.25% of the global cancer
cell population (dead and alive) in average of deviation from the ABM.

3.2 The Model Can Predict Kinetics Unseen During the Training

To validate the consistency of the model, it was confronted 10 times to a longer
injection kinetic (40 h) with an 100 CTL injected every 4 h. Figure 6 shows that
it indeed remains stable. The higher deviation beyond 30 h is due to the fact
that the data do not contain simulations reaching such a number of dead cells.

Fig. 5. Evolution of the relative errors
over the 200,000 simulations

Fig. 6. Prediction of the model on a
kinetic not represented in the dataset
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Fig. 7. Scores (A: Mean Absolute Errors, B: R2) obtained by the models with different
ratios of the dataset included in the training split. For each rate, the dataset was
shuffled and randomly separated into training and testing sets. Models are trained for
100 epochs. This was repeated 30 times for each training/testing ratios.

3.3 A Reduced Dataset Size Can Be Sufficient

To study of the performance according to the amount of data used, we proceeded
10 times as it follows. For each split ratio, a model is initialized and trained over
a fraction of the dataset according to the ratio considered. The Fig. 7 shows
that the data required was overestimated. Note that the model does not overfit,
regardless of the size of the training dataset.

4 Discussion and Conclusion

We developed an LSTM-based surrogate model able to reproduce the kynetics of
the ABM in various cases, seen and unseen during the training. A major benefit
of such an approach is its very low computational cost in comparaison to ABM:
whereas the generation of the dataset (200,000 simulations) required 2 days and
19 h, the LSTM-based neural network only required 5 min of training and less
than two seconds to calculate the prediction of these 200k simulations.

Despite the attention paid to the dataset generation method, it is not free
of bias. It would be relevant to explore other strategies such as Sobol’s method,
which seems to offer better results than LHS [2] to generate the dataset. Fur-
thermore, although LSTM is a standard for time series modelling, other types
of models from machine learning strategies can be considered, such as support
vector regression (SVR) [3], random forest (RF) [1] or more conventional meth-
ods for building surrogate models like Kriging [12] and Gaussian Processes [14].
An open question is also how such a LSTM-based surrogate model can capture
the stochasticity of the ABM model.

The proposed model could be extended to take into account additional param-
eters such as certain cellular characteristics and thus propose a generic surrogate
not depending on a cell line. The use of surrogate models interfaced with an ABM
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is still quite rare in a biological systems modeling context. However, their ability
to provide quick approximations allows to efficiently explore very large parameter
spaces, thus facilitating protocol optimization or calibration [9].
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Abstract. Despite great advances in modeling and cancer therapy using
optimal control theory, tumor heterogeneity and drug resistance are
major obstacles in cancer treatments. Since recent biological studies
demonstrated the evidence of tumor heterogeneity and assessed potential
biological and clinical implications, tumor heterogeneity should be taken
into account in the optimal control problem to improve treatment strate-
gies. Here, first we study the effects of two different treatment strategies
(i.e., symmetric and asymmetric) in a minimal two-population model to
examine the long-term effects of these treatment methods on the sys-
tem. Second, by considering tumor adaptation to treatment as a factor
of the cost function, the optimal treatment strategy is derived. Numer-
ical examples show that optimal treatment decreases tumor burden for
the long-term by decreasing rate of tumor adaptation over time.

Keywords: Tumor heterogeneity · Optimal control · Cancer treatment

1 Introduction

Optimal control theory has been applied to reduce tumor burden when treatment
is applied to the system [1–3]. In general, these methods proposed mathemati-
cal models and focused on identifying the optimal treatment regime or strategy
that can drive the tumor population to a desired level so as to penalize exces-
sive usage of the drug or minimize drug resistance [4]. For instance, in [1], the
authors considered cancer therapy with application of one drug and determined
the optimal regime that minimized the tumor burden while maintaining the nor-
mal cell population above a prescribed level. In other studies, the optimal drug
adjustment is proposed to minimize the number of cancerous cells by considering
different controlled combinations of administering the chemotherapy agents [2]
or a mathematical model of tumor-immune interactions with chemotherapy is
proposed [3].

Despite recent advances in modeling and cancer therapy using optimal con-
trol theory, tumor heterogeneity continues to be a major barrier for the successful
treatment of cancer [5]. Many biological studies reported experimental evidence
c© Springer Nature Switzerland AG 2021
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for the existence of heterogeneity, discussed their impact on management of can-
cer and assessed potential biological and clinical implications [5–7]. Some studies
proposed mathematical models to consider different cell population dynamics
[8–11]. For instance, in [8], the authors proposed a state transition model of
tumor cells and demonstrated different cell transition behavior across treatments
to indicate how a tumor responds to treatments and is responsible for resistance.

To bridge the gap between the optimal control problem for minimizing tumor
burden and understanding of tumor adaptation, tumor heterogeneity has been
taken into account as an optimal control problem; an ordinary differential equa-
tion (ODE) model, which consists of sensitive and resistant cells to a certain
drug, is proposed to determine drug administration schedules in order to avoid
resistant population be dominant [12]. Although the authors considered reduc-
ing both resistant and sensitive sub-populations in their cost function, they did
not explicitly consider drug-imposed selective pressures with respect to tumor
heterogeneity. In [13], cell traits are considered to model how a resistant cell
responds to a certain drug and are taken into account as levels of resistance in
the cost function. The authors also reported that maximum tolerable dosage is
not a good treatment strategy as it may lead to increase resistant cell population.
In recent study [9], the authors modeled long-term effects of two different drug
treatment methods; symmetric treatment method in which sub-population kill
is equal and asymmetric treatment method that sub-population kill is unequal.
Then, they performed simulation studies to analyze the effects of each parameter
on therapeutic efficacy. Although they performed systematic simulation study
with the sensitivity analysis by sweeping parameters to interrogate the effects of
different drug-imposed selective pressures on long-term therapeutic outcome, it
is limited to draw a fundamental understanding of the effect of differential selec-
tive pressure. Selective pressure is the influence exerted by drugs to promote
one group of sub-population over another that may shift tumor heterogeneity
distribution and generate resistance cells to the drug.

In this paper, motivated by [9], we first focus on a fundamental and prin-
cipled understanding of the effect of differential selective treatments since they
result in different tumor reduction rates over time and thus affect therapeutic
outcome. Second, we formulate an optimal control problem to penalize a rate
of tumor adaptation while minimizing tumor burden. Numerical simulations are
introduced to demonstrate how tumor heterogeneity affects long-term effects
with and without considering effects of differential selective treatments.

2 Background: Differential Selective Pressure Affects
Long-Term Therapeutic Outcome

In the previous study [9], a simple two-population model has been studied to
find out long-term effects of two different treatment regimes and demonstrated
simulation result by showing the long-term effect of differential-imposed selective
treatments. Such models are useful to show the general behaviour of biological
systems. Herein, we summarize their work since we extend this study by focusing
more theoretical analyses.
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Fig. 1. A comparison of total tumor population between symmetric and asymmetric
treatment schemes. The top figure shows drug treatment cycle and the bottom figure
shows the overall tumor population dynamics of both symmetric and asymmetric treat-
ment respectively.

A minimal two-population was modeled as (x1, x2) with distinctive growth
rates (k1, k2) and drug killing rates (α1, α2) respectively [9]. The kinetics of the
two sub-populations were modeled using a simple ODE for exponential growth
as follows:

ẋ1 = k1x1 − dα1x1

ẋ2 = k2x2 − dα2x2 (1)

where drug treatment (d) is a Heaviside step function as shown in Fig. 1. In
the problem setting [9], in order to examine long-term effects of two different
treatment regimes, the authors assumed the same initial overall tumor growth
and tumor reduction for the first treatment cycle (i.e., from ton1 and toff1 where
ton1 and toff1 represent the start time point and the end time point of the first
treatment respectively) of both symmetric and asymmetric treatment conditions.
Thus, the boundary and constraint prior to treatment are followed by:

x1(0) exp(k1ton1 ) + x2(0) exp(k2ton1 ) = (x1(0) + x2(0)) exp(kston1 ) (2)

where x1(0) and x2(0) represent the initial sub-population sizes respectively and
ks represents a single overall growth rate. Thus, during the initial untreated
growth phase of the tumor, the total tumor size is equivalent to a single overall
growth rate.

Similarly, the boundary and constraint following first round of drug treatment
satisfy the following condition which confirms that cell population is the same
after the first treatment cycle:
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x1(0) exp(k1ton1 ) exp((k1 − α1)ΔT ) + x2(0) exp(k2ton1 ) exp((k2 − α2)ΔT )
= (x1(0) + x2(0)) exp(kston1 ) exp((ks − αs)ΔT ) (3)

where ΔT � (toff1 − ton1 ) represents treatment time interval and is assumed to
be constant in this paper and αs represents the overall killing rate. Thus, after
the first treatment, the differential killing of the sub-populations of asymmetric
treatment should result in equivalent overall tumor burden reduction of sym-
metric treatment as per overall growth rate (ks) and killing rate (αs). These
constraints make sure that treatment methods have the same effects after first
treatment cycle and then long-term effect can be evaluated after that. A simu-
lation result showed that symmetric treatment (i.e., the same killing effect on
the different tumor cell types) is more effective than asymmetric treatment (i.e.,
different killing effect on the different tumor cell types) as shown in Fig. 1.

3 Differential-Imposed Selective Treatments Result in
Different Tumor Reduction Rates

In this section, motivated by the simulation study [9], we provide a theoretical
analysis to interrogate the effects of different drug-imposed selective pressures
and further consider how to integrate this information into treatment design.
First, we consider a tumor reduction after each round in symmetric treatment.

Definition 1. A tumor reduction (TR) rate after each round can be defined as
follows:

TRk � x(tonk ) − x(toffk )
x(tonk )

(4)

where TRk represents a tumor reduction rate of the kth drug cycle, x(tonk ) and
x(toffk ) represent total tumor population at time step tonk and toffk respectively
as shown in Fig. 1.

Lemma 1. For symmetric treatment (i.e., equal selective treatment), a tumor
reduction after each round will be constant over time.

Proof.

x(toffk ) = x1(t
off
k ) + x2(t

off
k )

= x1(tonk ) exp((k1 − α1)ΔT ) + x2(tonk ) exp((k2 − α2)ΔT )
= (x1(tonk ) + x2(tonk )) exp((ks − αs)ΔT )

where ΔT � toffk − tonk is assumed to be constant over k and for symmetric
treatment we assume that k1 − α1 = k2 − α2 = ks − αs (i.e., tumor reduction is
equal). Therefore, for symmetric treatment, a tumor reduction rate is constant
as follows:

TRsym
k = 1 − x(toffk )

x(tonk )
= 1 − exp((ks − αs)ΔT )
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Next, we consider a tumor reduction rate in asymmetric treatment case.

Lemma 2. For asymmetric treatment (i.e., differential selective treatments), a
tumor reduction rate after each round will decrease over time, i.e., TRasym

k >
TRasym

k+1 .

We need to show TRk−TRk+1 > 0 for asymmetric treatment. Tumor population
can be calculated by solving Eq. (1) and the final inequality we need to prove is
as follows: x(toffk+1) · x(tonk ) − x(toffk ) · x(tonk+1) > 0 and then we simply have the
following to prove:

(exp(k2 − α2) − exp(k1 − α1)) · (exp(2k2 − α2) − exp(2k1 − α1)) > 0

By simplifying this, we need to show whether (k2 − α2 > k1 − α1) · (2k2 − α2 >
2k1 − α1) is true. We will prove this by contradiction.

Proof. (Suppose not) (k2 − α2 > k1 − α1) · (2k2 − α2 > 2k1 − α1) is false. Then
we consider two cases: A) k2 − α2 > k1 − α1 and 2k2 − α2 ≤ 2k1 − α1 or B)
k2−α2 < k1−α1 and 2k2−α2 ≥ 2k1−α1. Note that we do not have the equality
condition (k2 − α2 = k1 − α1) as we consider asymmetric treatment case here.

From the boundary condition and constraint (i.e., the same initial overall
tumor growth and tumor reduction for the first treatment), we have the following
conditions:

x1(ΔT ) + x2(ΔT ) = x1(0) exp(k1ΔT ) + x2(0) exp(k2ΔT )
= (x1(0) + x2(0)) exp(ksΔT )

x1(t
off
1 ) + x2(t

off
1 ) = x1(ΔT ) exp((k1 − α1)ΔT ) + x2(ΔT ) exp((k2 − α2)ΔT )

= (x1(ΔT ) + x2(ΔT )) exp((ks − αs)ΔT )

where the first equation represents the same initial tumor burden and the second
equation represents the same initial efficacy. If we rearrange and use compositions
(i.e., divided by the total population) and divided by exp(ΔT )):

p01 exp(2k1 − α1) + p02 exp(2k2 − α2) = exp(2ks − αs)
= p01 exp(k1 + ks − αs) + p02 exp(k2 + ks − αs)

where p0i = xi(0)
x1(0)+x2(0)

,
∑

i p
0
i = 1 and we have the following:

p01(exp(2k1 − α1)− exp(k1 + ks − αs)) = p02(exp(k2 + ks − αs))− exp(2k2 − α2))

Then, we have two cases: 1) 2k1 −α1 > k1 +ks −αs and k2 +ks −αs > 2k2 −α2

or 2) 2k1 −α1 < k1 +ks −αs and k2 +ks −αs < 2k2 −α2. Note that we consider
asymmetric condition and thus do not consider when the equation is equal to
zero since it results in k1 − α1 = ks − αs = k2 − α2. Then we simply have the
followings:

{
k1 − α1 < ks − αs < k2 − α2 for case A)
k1 − α1 > ks − αs > k2 − α2 for case B)
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Also, we have

exp(2ks − αs) = p01 exp(2ks − αs) + p02 exp(2ks − αs)
= p01 exp(k1 + ks − αs) + p02 exp(k1 + ks − αs)

Since this should hold in general (i.e., for any (p01, p
0
2)), we could consider the

case where k1 = ks = k2. Then, it is simple to show contradiction from the
assumption, for instance, for case A), 2k2 − α2 > 2k1 − α1 (contradiction, ∵
2k2 −α2 ≤ 2k1 −α1). Similarly, for case B), 2k1 −α1 > 2k2 −α2 (contradiction,
∵ 2k2 − α2 ≥ 2k1 − α1).

We consider the rate of change in tumor sensitivity (or rate of tumor adap-
tation) by taking the slope of the percent tumor reduction values for successive
doses. In other words, the greater the decrease in tumor reduction, the more
negative the rate of change in tumor sensitivity. We can define a rate of tumor
adaptation, which refers to how quickly the population of composition changes,
by taking the absolute value of this metric [9].

Definition 2. A rate of tumor adaption (TA) is defined as follows:

TAk � |TRk+1 − TRk|
ΔT

(5)

where TRk and TRk+1 represent tumor reduction at the kth and (k +1)th round
of treatment.

Based on Lemma 1, this value for symmetric treatment is equal to zero. On the
other hand, for asymmetric treatment regime, TRasym

k+1 is smaller than TRasym
k

and thus a rate of tumor adaptation increases; From Lemma 2, since TRasym
k

is always greater than TRasym
k+1 , the greater the difference between TRasym

k and
TRasym

k+1 , the value of tumor adaptation rate increases and thus the effectiveness
of drug killing decreases.

Lemma 3. For symmetric treatment, a rate of tumor adaptation is zero but for
asymmetric treatment, a rate of tumor adaption is positive (i.e., tumor reduction
decreases for successive doses).

Proof. by Definition 2 and Lemma 1 and 2.

Theorem 1. With the same initial overall tumor size at the time of treatment
and the same initial efficacy on the overall tumor, differential-imposed selective
pressures on the individual sub-populations (i.e., asymmetric treatment) results
in higher tumor burden in the long-term compared to symmetric treatment.

Proof. TRsym
1 = TRasym

1 by assumption (i.e., the same initial efficacy on the
overall tumor) and Lemma 3 (i.e., a tumor reduction rate is constant in sym-
metric treatment but decreases over time in asymmetric treatment).
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Thus, in the case where two different regimes (i.e., symmetric and asymmet-
ric treatment) have the same initial efficacy on the overall tumor, differential
selective pressures on the individual sub-populations lead to different drug sen-
sitivities and result in long-term therapeutic outcome. Now the question is how
we could use such results to design treatment strategy for controlling such sys-
tem. To address this, we consider differential selective pressures as a factor of
the cost function in the following section.

4 Differential Selective Pressures as a Factor of the Cost
Function

Motivated by the effects of distinct drug selective pressures on long-term tumor
response, we consider how to use this principled concept in treatment design
that ultimately minimize relapse. In this section, we formulate an optimal con-
trol problem to enable better design of therapeutics by considering differential
selective pressures as a factor of the cost function.

We consider a general form

Ṅi(t) = (ki − αid)Ni(t), i = {1, · · · ,m} (6)

where Ni represents the population of the i-th cell type. Then, we define a
composition rate:

pi(t) =
Ni(t)∑m
j=1 Nj(t)

=
Ni(t)
NT (t)

(7)

where NT (t) =
∑m

j=1 Nj(t). The rate of composition change is as follows:

ṗi(t) =
Ṅi(t)NT (t) − Ni(t)ṄT (t)

NT (t)2
=

Ṅi(t)
NT (t)

− pi(t)
ṄT (t)
NT (t)

= (ki − αid −
m∑

j=1

(kj − αjd) · pj(t)) · pi(t)

Lemma 4. For symmetric treatment, sub-population composition does not
change over time.

Proof. For symmetric treatment, we have ki − αid = kj − αjd where i �= j.

ṗi(t) =
(
ki − αid − (ki − αid) · (

m∑

j=1

pj(t))
)
pi(t)

= (ki − αid − (ki − αid) · 1) · pi(t) = 0

Thus, symmetric treatment condition guarantees ṗi(t) = 0 ∀i (i.e., sufficient
condition). To show that it is a necessary condition for ṗi(t) = 0 ∀i, we consider
the following lemma:
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Lemma 5. If the following holds: ∀i, if ki − αid − ∑m
j=1(kj − αjd) · pj(t) = 0

(i.e., ṗi(t) = 0), then ki − αid = kj − αjd where i �= j).

Proof. (by induction)
Assuming that it is true for m, i.e., ∀i = {1, · · · m}, ki − αid − ∑m

j=1(kj − αjd) ·
pj(t) = 0 implies ki −αid = kj −αjd where i �= j. Then, we prove that it is true
for m + 1:

ki − αid −
m+1∑

j=1

(kj − αjd) · pj(t) = 0

Rearranging this equation:

(ki − αid)(
m+1∑

j=1,j �=i

pj(t)) =
m+1∑

j=1,j �=i

(kj − αjd)pj(t)

Using the assumption that (ki−αid)·(∑m
j=1,j �=i pj(t)) =

∑m
j=1,j �=i(kj−αjd)·pj(t)

implies ki − αid = kj − αjd where i �= j and i = {1, · · · ,m}. Then, we have

(ki − αid) · pm+1(t) = (km+1 − αm+1d) · pm+1(t)

where i �= m + 1 and thus ki − αid = km+1 − αm+1d.

Theorem 2. To avoid increasing rate of tumor adaptation, we need to satisfy
∀i, (ki −αid) = (kj −αjd) where i �= j, i.e., conserve sub-population composition
over time.

Proof. by Lemma 4, 5 and Theorem 1.

Now we define the objective function in the following form:

J(α) = rN(T ) +
∫ T

0

{qN(t) + sα(t)}dt (8)

=
m∑

i=1

riNi(T ) +
∫ T

0

{
n∑

i=1

qiNi(t) +
m∑

j=1

sjαj(t)}dt

In this equation ri, qi and sj denote weighting factors of total population, pop-
ulation during treatment and control effort respectively. Then the optimization
problem can be described with the constraints ki−αid = kj −αjd for all i where
i �= j to avoid increasing rate of tumor adaptation and thus ultimately minimize
tumor burden in the long term:

min J(α, u)
s.t. Ṅi(t) = (ki − αid)Ni(t)

ki − αid = u, ∀i

0 ≤ αi ≤ αmax (9)

where we also consider the maximum drug effect (αmax) as inequality condi-
tions. By solving the optimization problem, we minimize the overall tumor bur-
den while maintaining sub-population composition in order to minimize tumor
adaptation.
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5 Numerical Simulation Results and Discussion

In this section, we consider numerical simulations to demonstrate the effects of
drug selective pressure by solving the optimization problem. To demonstrate
this, we consider the system of equations (1) and solve optimization problem
using Lagrangian method:

J(α, u) = rN(T ) +
∫ T

0

{qN(t) + sα(t)}dt +
m∑

i=1

μi(ki − αi − u)2

+
m∑

i=1

liSi(αi − αmax)2 +
m∑

i=1

biVi(αi)2

where μi, li, bi represent Lagrangian multiplier for equality condition and
inequality condition respectively. Here Si = 1 if αi − αmax > 0 and Si = 0
if αi − αmax ≤ 0. Similarly Vi = 1 if αi < 0 and Vi = 0 if αi ≥ 0. In a simple
two-population model, the objective function is as follows:

J(α, u) = r1x1(T ) + r2x2(T ) +

∫ T

0

{q1x1(t) + q2x2(t) + s1α1(t) + s2α2(t)}dt

+μ1(k1 − α1 − u)2 + μ2(k2 − α2 − u)2

+l1 · S1(α1 − αmax)2 + l2 · S2(α2 − αmax)2 + b1 · V1(α1)
2 + b2 · V2(α2)

2

Herein, we consider optimization variable α1 as constant value for the simplicity.
By increasing Lagrangian multipliers, equality and inequality conditions hold.
In simulation study, we consider optimization problems with and without the
equality constraint to demonstrate how penalizing different selective pressures
affects tumor adaptation, sub-population composition changes and long term
effect of treatment. We consider three different scenarios: 1) the same initial
sub-populations with the same growth rate, 2) different initial sub-populations
with the same growth rate, and 3) the same initial sub-populations with different
growth rates.

Figure 2 (left) shows the first scenario with and without penalizing different
selective pressures. The parameters in this case are as follows: x1(0) = x2(0) =
0.5, ks = k1 = k2 = 0.1, ΔT = 4, αs = 0.22, αmax = 1 and α2 is obtained
using Eq. (3) for no constraint case. Total tumor burden without constraint
is higher than total tumor burden with constraint; In Fig. 2 (left-top), the red
line shows the total population dynamics without considering constraint and we
observe that sub-population composition changes over multiple rounds of drug
treatment as shown in Fig. 2 (left-middle, bottom) and tumor reduction decreases
after each round of treatment as shown in Fig. 2 (right-bottom). On the other
hand, by conserving sub-population composition or rate of tumor adaptation,
total tumor burden decreases more as shown in Fig. 2 (top) and tumor reduction
does not change over time in successive drug treatment as shown in Fig. 2 (right-
top). Note that sub-population ratio is conserved over time as shown in Fig. 2
(bottom) and thus tumor adaptation is zero.
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Fig. 2. Simulation result when the initial condition and growth rates are the same for
both sub-populations. (Left) Top figure shows the overall tumor population dynamics,
middle figure shows sub-population dynamics and bottom figure shows sub-population
ratio (max(s1, s2)/ min(s1, s2)). (Right) Tumor reduction (TR) rate after each round
of treatment where TR is constant over time when tumor adaptation rate is considered
in the objective function (top) and TR decreases over time when the tumor adaptation
rate is not considered in the cost function (bottom).

Two additional simulation studies were performed to see different initial sub-
population condition and the effect of different growth rate. Figure 3 (left) shows
the effect of different initial sub-population conditions. All the parameters are
the same as the previous case except the initial condition x1(0) = 0.65 and
x2(0) = 0.35. Total tumor burden decreases more with constraint as shown in
Fig. 3 (left-top) and sub-population ratio does not change over time as shown in
Fig. 3 (left-bottom).

Figure 3 (right) shows the case with different growth rate (ks = 0.09, k1 =
0.11) where k2 is obtained by using equation (2). Total tumor burden decreases
more by penalizing differential selective pressure as shown in Fig. 3 (right-top).
Note that sub-population composition does not change when drug treatment is
applied to the system but when drug is off, sub-population composition changes
due to the different growth rates as shown in Fig. 3 (right-bottom) due to the
different growth rates.

Throughout numerical simulation studies, we demonstrated that the con-
straint in the optimization problem enables to penalize different selective pres-
sures and thus reduce the tumor burden by reducing long-term drug resistance
or tumor adaptation.
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Fig. 3. Simulation result with different initial sub-population condition (left) and dif-
ferent growth rate (right). In each figure, top figure shows the overall tumor population
dynamics, middle figure shows sub-population dynamics and bottom figure shows sub-
population ratio.

6 Conclusion

In this paper, we consider tumor heterogeneity and selective pressure on sub-
populations in the treatment design. By conserving sub-populations, we mini-
mize tumor adaptation and thus reduce the long-term tumor burden. In future
work, we will consider a more general form instead of using a simple two-
population model to take mutations or cross-talk between each population into
account which might decrease drug efficacy.
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Abstract. Bacillus Calmette–Guérin (BCG) immunotherapy has shown
significant success for bladder cancer treatment, but due to the lack
of personalization, it does not fulfill its full promise as the interaction
between immunity and cancer varies significantly between patients and
results in extremely different clinical outcomes. As personalized treat-
ment developed, it is important to take into consideration the geomet-
rical configuration of the bladder in order to get realistic results using
spatio-temporal treatment models.

We present an extension to the model proposed by Lazebnik et al. [9]
by improving the approximation of the bladder’s geometry from sphere-
ring to ellipsoid-ring [8]. We show the differences between the models on
the clinical results and their influence on the optimal treatment protocol.

Keywords: Nonlinear systems · PDE cancer treatment model ·
Geometrical pde systems dynamics

1 Introduction and Related Work

Bladder cancer (BC) is a major clinical problem with an estimated 549,000 new
cases and 200,000 deaths each year which makes it the 10th most common form of
cancer worldwide [2]. Most of the incidents occur in developed and industrialized
areas, such as Australia, North America, and Europe [2]. The high rates of
recurrence, invasive surveillance strategies, and high treatment costs combine
to make BC the single most expensive cancer in both the United States and
England [3].

Treatment of non-invasive BC has not advanced significantly over the past
five decades following the treatment protocol suggested by Morales et al. (1976)
that involves weekly instillations of Bacillus Calmette–Guérin (BCG) [11]. The
most common protocol is based upon treatment suggested by Morales et al.
(1976) and involves weekly instillations of BCG over a 6-week period. It is called
induction treatment protocol. BCG is a type of immunotherapy used to treat
non-invasive BC [7]. The BCG treatment protocol has yet to be specifically
optimized for those patients who do not achieve remission from the treatment
that follows the current standard protocol.
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Mathematical modeling is shown to be a useful tool in clinical settings in
general and oncology in particular, allowing to investigate both the disease and
possible treatments [1]. Several attempts were made to describe the cell dynamics
taking into account biological interactions in the physical space based on partial
differential equations (PDE) [4,9,10]. Specifically, the authors of [9] combined
and extended the models proposed by [6,10] and shows how to evaluate the
patient’s spatial data - distribution of cancer polyps, to obtain a personalized
treatment. However, [9] approximate the bladder’s geometry using sphere-ring
which may result in large errors due to the poor approximation of the bladder’s
geometry [8].

Based on the model by [9], we approximate the bladder’s geometry using
ellipsoid-ring configuration to obtain a more clinically accurate treatment pro-
tocol. The manuscript is organized as follows. First, we describe the model with
the new geometrical configuration and the numerical methods used to solve it.
Second, we obtain the treatment protocols based on the proposed model. Third,
we compare the results of both models with clinical data. Finally, we discuss the
improvements and limitations of the proposed model.

2 Mathematical Modeling Extension

2.1 Model Definition

We assume the bladder’s geometry satisfies Eq. (1) as an approximation to the
bladder’s geometrical configuration:

r0 ≤ x2

g1
+

y2

g2
+

z2

g3
≤ R. (1)

In Eq. (1), the variables x, y, z are the Cartesian coordinate system, r0 =
r10+r20 and R = R1+R2 are the radius of the internal and external ellipsoids of the
geometrical configuration, respectively. The bladder’s geometry is approximated
using a perfect (e.g., the parameters g1, g2, and g3 are equal for the inner and
outer ellipsoid) ellipsoid-ring while the real human bladder has additional three
tunnels [6]. The geometry of the system and the transformation from the original
(sphere-ring) approximation are visualized in Fig. 1.

2.2 Numerical Solution

All the numerical calculations have been performed with C# programming lan-
guage (version 8.0) using an agent-based approach [5]. First, we sampled the
space (Eq. (1)) using a polar coordinate system (φ, θ, r) such that the volume
between each eight neighbor points is approximately the same. Second, each such
segment is considered a “cell” and allocated to a state according to the initial
and boundary condition of the system. At each point at time t, Eqs. (1–9) in [9]
solved using the finite difference method where the state at time t − 1 is stored
in the simulation memory while the spatial (diffusion) dynamics simulated using
the particle-particle potentials method [13].
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Fig. 1. Schematic view of the transformation between the model’s geometry from [9]
to the proposed one as shown in Eq. (1).

2.3 Treatment Protocol Based on Initial Tumor Distribution

Using the new geometrical configuration (see Sect. 2.1) and numerical analy-
sis method (see Sect. 2.2) we take advantage of the treatment personalization
method proposed by [9].

To carry out the numerical simulations of the tumor-immune model (Eqs.
(1–10) in [9] and Eq. (1)), we used the parameter values from Table 3 in [9].
The results are shown in Table 1, where RP (Range of successful Protocols) is
defined as the difference between the amount of BCG-uninfected cancer cell the
most aggressive (largest b) and most non-aggressive treatment (lowest b) such
that the treatment successed. In addition, AP (Average successful Protocol) is
defined as the average BCG-uninfected cancer population size for all the possible
combinations of different treatment protocols that differ in the distribution of
the BCG-uninfected cancer cells in the layers of the urothelium such that the
treatment will be successful. Namely, RP defines the range of successful treat-
ments while AP defines the average of this set in the terms of BCG injection b
as a function of the initial tumor cell distribution in the bladder’s geometry. The
treatment duration tmax is set to 42 days. In addition, parameters g1, g2, and
g3 (in Eq. (1)) set to 1.2, 1.35, and 1, respectively [8]. Furthermore, the optimal
treatment protocol in the manner of BCG injection b as a function of the layer of
the urothelium the BCG-uninfected cancer cells are allocated at the beginning
of the treatment, divided by the geometrical configuration used to approximate
the bladder’s geometry, is shown in Table 2.

Table 1. The sensitivity of the model to the initial distribution of cancer cells in
different layers of the bladder at the beginning of treatment (t0). The values were
calculated over the first four weeks of the treatment [9].

Metric Model 1 layer 2 layers 3 layers 4 layers 5 layers 6 layers

RP [m3t · 107] Sphere-ring [9] 1.90 1.63 1.36 0.88 0.70 0.54

RP [m3t · 107] Ellipsoid-ring 1.846 1.651 1.421 1.009 0.776 0.522

AP [m3t · 109] Sphere-ring [9] 1.157 1.155 1.159 1.158 1.159 1.157

AP [m3t · 109] Ellipsoid-ring 2.09 2.085 2.089 2.083 2.077 2.065
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Table 2. The amount of BCG needed to be injected in the first week as a function
of the layer where the BCG-uninfected cancer cell population is located at, during
the beginning of the treatment, in order to obtain the optimal treatment protocol
extendting the induction treatment protocol proposed by [12]. The initial condition are
Tu(0) = 1 · 106 and b = 106.

Layer 1st layer 2nd 3rd 4th 5th 6th 7th 8th

BCG (b · 106) - Sphere-ring model [9] 1.07 1.16 1.48 1.91 2.49 3.12 3.88 5.04

BCG (b · 106) - Ellipsoid-ring model 1.91 1.98 2.23 2.65 3.21 3.76 4.38 5.36

3 Discussion

In this research, we have proposed a better approximation of the human bladder
in an ellipsoidal-ring to improve individualized BCG immunotherapy treatment.
By comparing the results that based on the sphere-ring, the novel results show
that in order to optimally use the induction treatment protocol after the first
week, one would require almost twice the amount of BCG compared to the
amount predicted by [9] in the case the cancer cells are located at the most
shallow layer of the urothelium and the difference decreases as the initial layer the
cells are located at is deeper, as shown in Table 2. This means, that the models
highly differ for stages I and II in cancer where it is still in the shallow layers
while converge where the diseases approach to stage III where the treatment is
shown to be ineffective anyway [12].

In addition, one can notice that both models agree on the difference between
the worst and the best treatment, as shown in Table 1 - the RP parameter. In
addition, from the AP parameter in Table 1, it is shown that the average treat-
ment successful protocol that differs in the distribution of the BCG-uninfected
cancer cells in the layers of the urothelium are 80% higher in the case of the
ellipsoid-ring compared to the sphere-ring which indicates that while the range
of the treatment protocols is more or less equal, the average treatment in the
ellipsoid-ring configuration should be much more aggressive to obtain a similar
clinical outcome.

These results are evaluated for a mean case (patient) in the population and
can be highly altered between patients according, but not limited, to their age,
gender, and weight. One can overcome this challenge by introducing these param-
eters to the proposed model in one of two ways. One way is by setting person-
alized r0 and R values in Eq. (1) according to a measurement of a single patent
and recomputing the simulations results. A more generic way is to use machine
learning methods to learn a regression model between these parameters and the
r0 and R parameters using a dataset of samples from a heterogeneous popula-
tion of individuals (not necessarily patients). Once such a model is obtained, it
can be used to extend the proposed model into a family of models, each one
approximating a possible single patents’ parameters.

The lack of recorded and publicly available clinical data regarding the course
of bladder cancer BCG treatment, especially in the context of the BCG and
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cancer cells distribution in the bladder’s geometry, results in the incapability
of evaluating the presented outcomes in realistic settings. As more such data
will become available, better parameter estimation and evaluation of the models
are recommended. In addition, another possible future to further improve the
accuracy of the model is to take into consideration the change over time of the
geometrical configuration as the bladder fill and empty during the day.
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Abstract. The purpose of this paper is to introduce a novel in silico platform
for simulating early stage solid tumor growth and anti-tumor immune response.
We present the model, test the sensitivity and robustness of its parameters, and
calibrate it with clinical data from exercise oncology experiments which offer a
natural biological backdrop for modulation of anti-tumor immune response. We
then perform a virtual experimentwith themodel that demonstrate its usefulness in
guiding pre-clinical and clinical studies of immunotherapy. The virtual experiment
shows how dosage and/or frequency of immunotherapy drugs can be optimized
based on the aerobic fitness of the patient, so that possible adverse side effects of
the treatment can be minimized.

Keywords: Cancer modeling · Immunotherapy · CompuCell3D

1 Introduction

Computational modeling is playing increasingly important roles in advancing a system-
level mechanistic understanding of complex interrelated biological processes. Here we
present a computational platform that can interrogate potential mechanisms underlying
the effect of aerobic fitness on anti-tumor immune response. These effects, documented
in pre-clinical [1] and clinical studies [2] support the inclusion of aerobic fitness as a bio-
logical variable in clinical contexts. This platform can contribute to the personalization
of immunotherapy by optimizing dosage and frequency of treatment and by reducing
the risk other adverse side effects [3].

Our basics assumption is that aerobic fitness acts as a tumor suppressor through a
systemic enhancement of anti-tumor immune response. This systemic effect is a result
of metabolic and endocrinal modifications, which can be modulated with exercise train-
ing. While the exact mechanisms behind this effect are currently under investigation,
documented pre-clinical experiments point at two potential candidates: (1) increased
trafficking of NK cells into the TME [4] and (2) hypoxia-tolerant suppression of the
recruitment of immune inhibitory cells (CD4+FOXP3+ Tregs) [5]. The model presented
here focuses on the latter mechanism.
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2 Methods

2.1 Model Description

The model is a spatiotemporal representation of a TME of a solid tumor in its early
stages (T0 to T1). Tumor cells adopt four different phenotypes: “oxphos” (relying on
oxidative phosphorylation), “glycolytic” (elevated glycolysis when the surrounding tis-
sue becomes hypoxic), “necrotic” and “apoptotic”. Tumor cells grow, divide and invade
their environment. The growth rate of tumor cells is limited by the availability of oxygen
(modeled as a field) which cells consume from the environment. The fitness parameter
controls the oxygen level at which cell transition metabolic phenotype: as oxygen gets
depleted, tumor cells change from “oxphos” to “glycolytic”. When oxygen is severely
depleted, glycolytic cells become necrotic and die. Glycolytic cells secrete lactate (mod-
eled also as a field) to the TME. Lactate serves as a recruiting signal for the tumor
promoter cells.

Our model includes two types of immune cells: CD8+ Lymphocytes tumor sup-
pressors (“CTLs”) and CD4+FOXP3+ tumor promoters (“Tregs”). CTLs are constantly
recruited to the tumor site and induce apoptosis in the tumor cells they come into contact
with. Upon contact with tumor cells, tumor suppressors also release a IFNγ cytokine
signal (modeled as a field) attracting other CTLs. The acidification of the TME by
the glycolytic cells results in recruitment of Tregs to the tumor site. Recruited Tregs
move through the tissue to areas of higher concentration of lactate. “Tregs” inhibit the
“CTLs” they come in close proximity to. This inhibition prevents “CTLs” from inducing
apoptosis in cancer cells.

We implemented the model in CompuCell3D (CC3D), an open-source modeling
environment that allows specification and simulation of multicellular models, diffusing
fields and biochemical networks [6]. Diffusion solvers integrate partial differential equa-
tions describing the diffusion of oxygen, lactate and IFNγ across the whole simulation
domain. Outcomes of the simulation are dependent on the parameter values associated
with aerobic fitness and with the emergent patterns of TME invasion associated with
availability of resources and immune response (Fig. 1).

2.2 Parameter Estimation and Calibration

Simulation parameters corresponding to the spatial properties of human solid tumor
cells, transport of chemicals and rates of immune response were estimated from the
literature. Our model is simulated over 10−6 lattice sites representing up to 5 × 104

individual cells. Each lattice site corresponds to 16 um such that the simulation domain
represents a 16 mm2 tissue cross section. We assumed that cancer cells occupy an area
of 256 μm2. When sufficient resources are available, tumor cells grow and divide every
24 h. Conversely, when resources are depleted cells die within 12 h, and when “CTLs”
induce apoptosis, cells die within 8 h. We estimated the infiltration rates of “CTLs” (1
cell every 1.5 h) and “Tregs” (1 cell every 1 h) using intramural density data, showing that
the “CTL”/“Treg” ratio is 5:1 [7]. The intrinsic random motility and the contact energy
were fixed so that tumor cells can detach from each other and invade the surrounding
tissue [4]. We assumed that the homeostatic concentration of oxygen in tissue is 4.3 ×
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Fig. 1. The model simulates the early stage of solid tumor progression from which a growth
rate can be calculated. Tumor cells grow in the TME and become more glycolytic, in a rate that
depends on the host’s aerobic fitness and tolerance to hypoxia. Tumor cells die through apoptosis
or necrosis (lack of oxygen or death by CTLs). CTLs and Tregs react to cytokine and lactate fields
secreted by tumor cells. Tumor cells grow until they saturate the grid.

10−4 Mol/L [8]. Transport parameters were estimated from the literature. Aerobic fitness
was defined as the oxygen concentration threshold at which tumor cells changed from
“oxphos” to “glycolytic”.We simulated virtual cohort of 200 virtual subjects divided into
10 aerobic fitness levels. Sensitivity analysis on the aerobic fitness parameter show upper
and lower bounds below and above which the effects on tumor growth remain constant.
To calibrate remaining parameters of the model we matched it to clinical results from
breast cancer patients where an aerobic score metric was used [11].

3 Results

3.1 Model Reproduces Key Mechanisms of Immunoregulation by the TME

Immune Suppresors and Immune Promoters Dynamics
Clinical studies have shown that intratumoral CTLs/Treg ratio is a significant prognostic
marker for cancer patients and pre-clinical studies have tied this marker to hypoxic
conditions in the TME [8]. In our model we introduced two scales of immune cells
trafficking (Fig. 2). The first is the seeding rate to the TME; the second is the movement
within the TME, implemented with a chemotaxis mechanism. The seeding rates and
densities were calibrated using data on respective densities from hot vs. cold tumors in
humans [6]. “CTLs”migrate towards the “IFNγ” cytokine field, “Tregs”migrate towards
the lactate field.
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Fig. 2. The more aerobically fit is the host, the less glycolytic its tumor cells are relative to a
sedentary host. Consequently, recruitment of Trges that can block CTLs is down regulated relative
to a sedentary host, and tumor growth will be relatively suppressed. CTLs move towards the tumor
along a cytokine gradient (“INFγ”). Tregs move towards the tumor along the lactate gradient that
glycolytic tumor cells secrete. Once infiltrated into the TME, they can block the ability of nearby
CTLs to kill tumor cells.

Effect of Aerobic Fitness on Tumor Progression Rate
We simulated a virtual cohort of 200 virtual subjects divided into 10 aerobic fitness
levels. Themodel connects variations in fitness levels to variations in anti-tumor immune
response and consequently to variations in tumor growth rates each of which yields a
distinct tumor growth curve (Fig. 3A). A similar effect of suppression of tumor growth
when inoculation followed endurance exercise was qualitatively demonstrated in pre-
clinical studies [7]. The model behaves qualitatively in accordance with a similar plot
of tumor doubling times vs. fitness levels from a pilot study in recently diagnosed T1
invasive ductal carcinoma patients (Fig. 3B, C).
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Fig. 3. The model was run on 200 virtual subjects, divided into equal size distinct aerobic fitness
levels. Each fitness level generated an average growth rate (3A). These average growth rates where
then plotted against the fitness levels on a logarithmic scale (3B). The model behaves qualitatively
in accordance with a similar plot of tumor doubling times vs. fitness levels from a pilot study in
recently diagnosed T1 invasive ductal carcinoma patients (3C) [14].

3.2 Incorporating Aerobic Fitness into the Personalization of Immunotherapy

While showing remarkable success in patients, immunotherapy treatments can lead to
autoimmune adverse effects such as myocarditis, pericardial diseases, and vasculitis
[5]. Personalized dosing could mitigate adverse effects. Preclinical studies have shown
that aerobically fit patients may require lower dosage of immune check inhibitors
(ICI) than sedentary patients [10]. To test this hypothesis, we implemented ICI in our
model as an increased efficacy of “CTLs” killing. Cytotoxicity was quantified as addi-
tional “IFNγ” cytokine [11]. Performing a virtual experiment on aerobically fit and
sedentary virtual subjects treated with ICI, simulations show that without a mitigated
dosage, aerobically fit subjects are more prone to adverse effects than their sedentary
counterparts (Fig. 4A,B). Lowering the ICI dosage for aerobically fit patients can achieve
the same reduction of tumor growth relative to their sedentary counterparts butwith lower
probability for adverse effects (Fig. 4C, D). In order to translate this result to a clinical
setting (Fig. 4E, F). future studies should identify potential markers for aerobic fitness
with which such personalization can be accomplished.
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Fig. 4. Arobically fit patients may require smaller dosage of ICI than sedentary patients, which
may lead to personalization of treatment and reduction of adverse effects. Without a mitigated
dosage, aerobically fit subjects are more prone to adverse effects than their sedentary counterparts
(4A, C). Lowering the dosage of ICI for aerobically fit patients can achieve the same reduction
of tumor growth relative to their sedentary counterparts but with a lower probability for adverse
effects (4B, D)

4 Discussion

We have shown how to generate a time series of TME snapshots during anti-tumor
immune response, and how to personalize dosing of ICI for aerobically fit patients in
order to lower the risk of adverse effects. In collaboration with cancer biologists and
clinicians this platform can be used for improving in vivo experimental design and
personalization of clinical outcomes.

The hypothesis that underlies the model presented here, connects exercise-induced
increased hypoxia-tolerance to more efficient anti-tumor immune response, and requires
chronic endurance training (CET) which can be achieved in pre-clinical exercise oncol-
ogywith forced runningwheels [12]. The idea here is thatCET induces hypoxia tolerance
in the skeletal muscles and in other tissues, and as a result, TMEs are more susceptible
to the degradation of HIF1α [13]. This degradation is an upstream factor in a signaling
cascade leading to increased anti-tumor immune efficiency, as HIF1α is known to recruit,
via cytokine signaling, Trges into the tumor micro-environment, which suppress CTLs
[7]. A pre-clinical study detected a twofold decrease in intratumoral Tregs/CTLs ratio
in exercised mice relative to their sedentary counterparts [9].

Our platform can perform virtual experiments with no wet-lab or clinical costs, and
is proposed here as tool for pre-clinical and clinical researchers. The tool is limited in
several ways. First, to obtain simulation results in a reasonable time we must limit the
computational cost. Consequently, our grid size is currently bounded by 5× 10−4 cells.
This size allows the simulation to be sensitive to spatiotemporal and stochastic features
of the dynamics. Second, specific circumstances may require scaling up to 3D but for
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most clinical endpoints, a cross section of the TME may be a good approximation.
Third, we introduced only two types of immune cells and three types of fields. From our
experience, however, a direct dialogue between model developers and clinicians may
help optimize the platform for each specific usage.

Our in silico platform is a safe playground for experimentation in dosage scheduling
and frequency, as it can easily allowmodulation of duration and timing of activation sig-
naling to achieve themost effective treatment. Finally, our platformcan easily incorporate
and test combination of different types of immunotherapies with other standard-of-care
therapies and probe potential synergistic effects. For example, since aerobic exercise
promotes oxygenation, it can mimic the effects of antiangiogenic therapy, where dif-
ferent aerobic fitness levels can be calibrated to represent different dosage of such a
therapy.
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