
Sotiris Moschoyiannis · Rafael Peñaloza ·
Jan Vanthienen · Ahmet Soylu ·
Dumitru Roman (Eds.)

LN
CS

 1
28

51

Rules and Reasoning
5th International Joint Conference, RuleML+RR 2021
Leuven, Belgium, September 13–15, 2021
Proceedings

Lecture Notes in Computer Science 12851

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Sotiris Moschoyiannis • Rafael Peñaloza •

Jan Vanthienen • Ahmet Soylu •

Dumitru Roman (Eds.)

Rules and Reasoning
5th International Joint Conference, RuleML+RR 2021
Leuven, Belgium, September 13–15, 2021
Proceedings

123

Editors
Sotiris Moschoyiannis
University of Surrey
Guildford, UK

Rafael Peñaloza
University of Milano-Bicocca
Milano, Italy

Jan Vanthienen
KU Leuven
Leuven, Belgium

Ahmet Soylu
OsloMet – Oslo Metropolitan University
Oslo, Norway

Dumitru Roman
SINTEF/University of Oslo
Oslo, Norway

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-91166-9 ISBN 978-3-030-91167-6 (eBook)
https://doi.org/10.1007/978-3-030-91167-6

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-0164-8322
https://orcid.org/0000-0002-3867-7055
https://doi.org/10.1007/978-3-030-91167-6

Preface

These are the proceedings of the 5th International Joint Conference on Rules and
Reasoning (RuleML+RR 2021). RuleML+RR merged the efforts of two
well-established conference series: the International Web Rule (RuleML) symposia and
the Web Reasoning and Rule Systems (RR) conferences.

The RuleML symposia have been held since 2002 and the RR conferences since
2007. The RR conferences have been a forum for discussion and dissemination of new
results on web reasoning and rule systems, with an emphasis on rule-based approaches
and languages. The RuleML symposia were devoted to disseminating research,
applications, languages, and standards for rule technologies, with attention to both
theoretical and practical developments, to challenging new ideas, and to industrial
applications. Building on the tradition of both RuleML and RR, the joint conference
series RuleML+RR aims at bridging academia and industry in the field of rules, and at
fostering the cross-fertilization between the different communities focused on the
research, development, and applications of rule-based systems. RuleML+RR aims at
being the leading conference series for all subjects concerning theoretical advances,
novel technologies, and innovative applications about knowledge representation and
reasoning with rules.

To leverage these ambitions, RuleML+RR 2021 was organized as part of the event
Declarative AI 2021: Rules, Reasoning, Decisions, and Explanations, that was held
during September 13–15, 2021. This event was hosted by KU Leuven, Belgium. With
its general topic “Declarative Artificial Intelligence” a core objective of the event was
to present the latest advancements in AI and rules, rule-based machine learning, rea-
soning, decisions, and explanations and their adoption in IT systems. To this end,
Declarative AI 2021 brought together co-located events with related interests. In
addition to RuleML+RR this included DecisionCAMP 2021 and the Reasoning Web
Summer School (RW 2021).

The RuleML+RR conference included three subevents:

1. Doctoral Consortium – an initiative to attract and promote student research in rules
and reasoning, with the opportunity for students to present and discuss their ideas,
and benefit from close contact with leading experts in the field.

2. International Rule Challenge – an initiative to provide competition among work in
progress and new visionary ideas concerning innovative rule-oriented applications,
aimed at both research and industry.

3. Industry Track – a forum for all sectors of industry and business (as well as the
public sector) to present, discuss, and propose existing or potential rule-based
applications.

The program of the main track of RuleML+RR 2021 included the presentation of 17
full research papers and two short papers. These contributions were carefully selected
by the Program Committee (PC) from 39 high-quality submissions to the event. Each

paper was carefully reviewed and discussed by at least three members of the PC. The
technical program was then enriched with the additional contributions from its sube-
vents as well as from DecisionCAMP 2021, a co-located event aimed at practitioners.

At RuleML+RR 2021 and DecisionCAMP 2021, two invited keynotes were pre-
sented by experts in the field:

• Ryan Urbanowicz (University of Pennsylvania, USA): Interpretable Machine
Learning with Rule-based Modeling

• Alon Halevy (Facebook AI, USA): Symbolic AI in a Machine Learning World

The chairs sincerely thank the keynote speakers for their contribution to the success
of the event. The chairs also thank the Program Committee members and the additional
reviewers for their hard work in the careful assessment of the submitted papers. Further
thanks go to all authors of contributed papers for their efforts in the preparation of their
submissions and the camera-ready versions within the established schedule. Sincere
thanks to the chairs of the Doctoral Consortium, the Rule Challenge, and the Industry
Track, and to the chairs of all co-located Declarative AI 2021 events. The chairs finally
thank the entire organization team including the Publicity, Proceedings, and Spon-
sorship Chairs, who actively contributed to the organization and the success of the
event.

A special thanks goes to all the sponsors of RuleML+RR 2021 and Declarative AI
2021: Artificial Intelligence Journal, Springer, Leuven.AI, DMCommunity, KU Leu-
ven, University of Surrey, University of Milano-Bicocca, RuleML Inc, RR Associa-
tion. A special thanks also goes to the publisher, Springer, for their cooperation in
editing this volume and publication of the proceedings. We are grateful to the sponsors
of the RuleML+RR 2021 as they also contributed towards the awards: the best paper
award, the best presentation award, the best student paper award, the Rule Challenge
award, and the Harold Boley award for the most promising paper.

September 2021 Sotiris Moschoyiannis
Rafael Peñaloza
Jan Vanthienen
Ahmet Soylu

Dumitru Roman

vi Preface

Organization

General Chair

Jan Vanthienen KU Leuven, Belgium

Program Chairs

Sotiris Moschoyiannis University of Surrey, UK
Rafael Peñaloza University of Milano-Bicocca, Italy

Doctoral Consortium Chairs

Anna Fensel University of Innsbruck, Austria
Joost Vennekens KU Leuven, Belgium

Rule Challenge Chairs

Alireza Tamaddoni Nezhad University of Surrey, UK
Ahmet Soylu Oslo Metropolitan University, Norway

Industry Track Chairs

Nicolay Nikolov SINTEF AS, Norway
Ioan Toma Onlim, Austria

Proceedings Chairs

Dumitru Roman SINTEF AS/University of Oslo, Norway
Ahmet Soylu Oslo Metropolitan University, Norway

Program Committee

Leopoldo Bertossi Carleton University, Canada
Mehul Bhatt Örebro University, Sweden
Meghyn Bienvenu French National Center for Scientific Research, France
Andrea Billig Fraunhofer FOKUS, Germany
Juliana Bowles University of St Andrews, UK
Francesca Buffa University of Oxford, UK
Pedro Cabalar Fernández University of A Coruña, Spain
Iliano Cervesato Carnegie Mellon University, Quatar
Robert Ching-Hsien Hsu Asia University, Taiwan
Horatiu Cirstea Inria, France

Stefania Costantini University of Aquila, Italy
Giovanni De Gasperis Università degli Studi dell’Aquila, Italy
Marc Denecker KU Leuven, Belgium
Juergen Dix Clausthal University of Technology, Germany
Wolfgang Faber Alpen-Adria-Universität Klagenfurt, Austria
Mohamad Amine Ferrag Guelma University, Algeria
Thom Fruehwirth University of Ulm, Germany
Tiantian Gao Stony Brook University, USA
Giancarlo Guizzardi Free University of Bozen-Bolzano, Italy
Ryszard Janicki McMaster University, Canada
Matthew Karlsen University of Surrey, UK
Tomáš Kliegr Prague University of Economics and Business,

Czech Republic
Matthias Klusch German Research Center for Artificial Intelligence,

Germany
Anna Kobusinska Poznan University of Technology, Poland
Michael Kohlhase FAU Erlangen-Nürnberg, Germany
Roman Kontchakov Birkbeck, University of London, UK
Manolis Koubarakis University of Athens, Greece
Paul Krause University of Surrey, UK
Markus Krötzsch TU Dresden, Germany
Domenico Lembo Sapienza University of Rome, Italy
Maurizio Lenzerini Sapienza University of Rome, Italy
Francesca Lisi University of Bari, Italy
Thomas Lukasiewicz University of Oxford, UK
Leandros Maglaras De Montfort University, UK
Nurulhuda A. Manaf National Defence University of Malaysia, Malaysia
Marco Manna University of Calabria, Italy
Marco Maratea University of Genoa, Italy
Angelo Montanari University of Udine, Italy
Sotiris Moschoyiannis University of Surrey, UK
Grzegorz J. Nalepa AGH University of Science and Technology, Poland
Alireza Tamaddoni Nezhad University of Surrey, UK
Magdalena Ortiz TU Vienna, Austria
Jeff Pan University of Aberdeen, UK
Monica Palmirani University of Bologna, Italy
Adrian Paschke Free University of Berlin, Germany
Rafael Penaloza Free University of Bozen-Bolzano, Italy
Andreas Pieris University of Edinburgh, UK
Luca Pulina University of Sassari, Italy
Jan Rauch Prague University of Economics and Business,

Czech Republic
Sebastian Rudolph TU Dresden, Germany
Emanuel Sallinger University of Oxford, UK
Konstantin Schekotihin Alpen Adria-Universität Klagenfurt, Austria
Stefan Schlobach Vrije Universiteit Amsterdam, The Netherlands

viii Organization

Umberto Straccia ISTI - CNR, Italy
Rolf Schwitter Macquarie University, Australia
Theresa Swift Coherent Knowledge, USA
Giorgos Stamou National Technical University of Athens, Greece
Giorgos Stoilos Athens University of Economics and Business, Greece
Ahmet Soylu Oslo Metropolitan University, Norway
Sergio Tessaris Free University of Bolzen-Bolzano, Italy
Kia Teymourian Boston University, USA
Nikos Triantafyllou National Technical University of Athens, Greece
Anni-Yasmin Turhan TU Dresden, Germany
Ryan Urbanowicz Pennsylvania State University, USA
Riccardo Zese University of Ferrara, Italy

Additional Reviewers

Loan Ho
Sascha Rechenberger
Mantas Simkus
Falco Nogatz
Laura Pandolfo

Sponsors

Organization ix

x Organization

Abstracts of Kenote Speakers

Interpretable Machine Learning
with Rule-Based Modeling

Ryan J. Urbanowicz

University of Pennsylvania, Philadelphia, PA 19104, USA
ryanurb@upenn.edu

Abstract. Explainability has become achievable for most machine learning
methodologies, but interpretability remains the gold standard for model trans-
parency [1]. Unlike explainability, interpretability is a property that is unique to
specific machine learning methods based on how models are represented and
constrained. Unfortunately, methods regarded as interpretable, e.g. decision
trees, may not achieve the same level of predictive performance, particularly
when applied to problems with complex underlying patterns of association.
Rule-based machine learning with algorithms such as ‘Learning Classifier
Systems’ (LCS) offer an attractive alternative to other popular ML modeling
techniques [2,3]. They have been demonstrated to be able to model extremely
complex associations as well as provide opportunities to do so in an inherently
interpretable manner [4]. This makes their application particularly promising in
fields such as medicine, where achieving high predictive performance must be
paired with model transparency to foster trust, promote knowledge discovery,
identify/avoid sources of bias, and maintain accountability [5]. Learning clas-
sifier systems utilize an evolutionary algorithm search to discover a set of
human-readable IF:THEN rules that collectively comprise the trained model.
This allows them to capture simple as well as complex associations with out-
come including epistatic feature interactions and heterogeneous associations, i.e.
subgroups of instances within which a distinct feature or set of features are
predictive of outcome [2]. This talk examines the unique properties of learning
classifier system algorithms, as well as a variety of strategies that have been
proposed to improve and facilitate their interpretability with respect to under-
standing individual predictions, model feature importance, and characterizing
underlying patterns of associations.

Keywords: Machine learning � Interpretable � Explainable � Learning classifier
systems

References

1. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

2. Urbanowicz, R.J., Browne, W.N.: Introduction to learning classifier systems. Springer (2017)
3. Urbanowicz, R.J., Moore, J.H.: Learning classifier systems: a complete introduction, review,

and roadmap. J. Artif. Evol. Appl. (2009)

4. Urbanowicz, R.J., Moore, J.H.: ExSTraCS 2.0: description and evaluation of a scalable
learning classifier system. Evol. Intell. 8(2), 89–116 (2015)

5. Urbanowicz, R.J., Andrew, A.S., Karagas, M.R., Moore, J.H.: Role of genetic heterogeneity
and epistasis in bladder cancer susceptibility and outcome: a learning classifier system
approach. J. Am. Med. Inf. Assoc. 20(4) 603–612 (2013)

xiv R. J. Urbanowicz

Symbolic AI in a Machine Learning World

Alon Halevy

Facebook, USA
ayh@fb.com

Abstract. The key technical problems that online social networks focus on
today are detecting policy violating content (e.g., hate speech, misinformation)
and ranking content to satisfy their users’ needs. By nature, these problems are
somewhat vague and need to handle multi-modal content in many languages,
and therefore do not naturally lend themselves to AI techniques based on
declarative representations and reasoning. However, the machine learning
techniques that are employed also have some drawbacks, such as the fact that it
is hard to update their knowledge efficiently or to explain their results. In this
talk I will outline a few opportunities where methods from symbolic AI, com-
bined appropriately into the machine learning paradigm, can ultimately have an
impact on our goals. As one example, I will describe Neural Databases, a new
kind of database system that leverages the strength of NLP transformers to
answer database queries over text, thereby freeing us from designing and relying
on a database schema.

Contents

Full Papers

Policy-Based Automated Compliance Checking . 3
Anas Al Bassit, Katsiaryna Krasnashchok, Sabri Skhiri,
and Majd Mustapha

Correctness of Automatically Generated Choreography Specifications 18
Nurulhuda A. Manaf, Nor Najihah Zainal Abidin,
and Nur Amalina Jamaludin

Conflict-Free Access Rules for Sharing Smart Patient Health Records 33
Matthew Banton, Juliana Bowles, Agastya Silvina, and Thais Webber

Structuring Rule Sets Using Binary Decision Diagrams 48
Florian Beck, Johannes Fürnkranz, and Van Quoc Phuong Huynh

Link Traversal with Distributed Subweb Specifications 62
Bart Bogaerts, Bas Ketsman, Younes Zeboudj, Heba Aamer,
Ruben Taelman, and Ruben Verborgh

Event-Based Microcontroller Programming in Datalog 80
Stefan Brass

Combining Deep Learning and ASP-Based Models for the Semantic
Segmentation of Medical Images. 95

Pierangela Bruno, Francesco Calimeri, Cinzia Marte,
and Marco Manna

A Two-Phase ASP Encoding for Solving Rehabilitation Scheduling 111
Matteo Cardellini, Paolo De Nardi, Carmine Dodaro, Giuseppe Galatà,
Anna Giardini, Marco Maratea, and Ivan Porro

An Answer Set Programming Based Framework for High-Utility Pattern
Mining Extended with Facets and Advanced Utility Functions 126

Francesco Cauteruccio and Giorgio Terracina

Automatic Generation of Intelligent Chatbots from DMN
Decision Models . 142

Vedavyas Etikala, Alexandre Goossens, Ziboud Van Veldhoven,
and Jan Vanthienen

Deep Learning for the Identification of Decision Modelling Components
from Text. 158

Alexandre Goossens, Michelle Claessens, Charlotte Parthoens,
and Jan Vanthienen

Combining Sub-symbolic and Symbolic Methods for Explainability 172
Anna Himmelhuber, Stephan Grimm, Sonja Zillner, Mitchell Joblin,
Martin Ringsquandl, and Thomas Runkler

Practical Rule-Based Qualitative Temporal Reasoning for the
Semantic Web . 188

Guilherme Lima, Marcelo Machado, Rosario Uceda-Sosa,
and Marcio Moreno

Logic Rules Meet Deep Learning: A Novel Approach for Ship Type
Classification . 203

Manolis Pitsikalis, Thanh-Toan Do, Alexei Lisitsa, and Shan Luo

An Evaluation of Meta-reasoning over OWL 2 QL 218
Haya Majid Qureshi and Wolfgang Faber

cl-psoatransrun: An Efficiently Executable Specification of PSOA RuleML
in Common Lisp. 234

Mark Thom, Harold Boley, and Theodoros Mitsikas

Leveraging the Power of IDP with the Flexibility of DMN:
A Multifunctional API . 250

Simon Vandevelde, Vedavyas Etikala, Jan Vanthienen,
and Joost Vennekens

Technical Communication Papers

Eliminating Harmful Joins in Warded Datalog+/− . 267
Teodoro Baldazzi, Luigi Bellomarini, Emanuel Sallinger,
and Paolo Atzeni

Learning Decision Rules or Learning Decision Models?. 276
Christian de Sainte Marie

Author Index . 285

xviii Contents

Full Papers

Policy-Based Automated Compliance
Checking

Anas Al Bassit , Katsiaryna Krasnashchok(B) , Sabri Skhiri ,
and Majd Mustapha

EURA NOVA, 1435 Mont-Saint-Guibert, Belgium
{anas.albassit,katherine.krasnoschok,sabri.skhiri,

majd.mustapha}@euranova.eu

Abstract. Under the GDPR requirements and privacy-by-design guide-
lines, access control for personal data should not be limited to a simple role-
based scenario. For the processing to be compliant, additional attributes,
such as the purpose of processing or legal basis, should be verified against
an established data processing agreement or policy. In this paper, we pro-
pose an automated policy-based compliance checking model and imple-
ment it using SHACL. We provide the preliminary performance evalua-
tion results and offer optimizations. We also define the procedure for han-
dling conflicts in policies, resulting from the natural language description
of the compliance rules. Our method combines a data model with compli-
ance checking within the Semantic Web framework, generating what we
call an operational model and promoting interoperability.

Keywords: Privacy · Compliance · SHACL · Reasoning · GDPR

1 Introduction

The requirement for compliance with data protection regulations, such as the
General Data Protection Regulation (GDPR), can lead to difficulties in the
implementation of business applications, making privacy-by-design solutions
increasingly more appealing. A Controller can obtain personal data from Data
Subjects, supported by different documents, such as privacy policies or data pro-
cessing agreements, describing the rules of processing. To be compliant, business
processes need to conform to these rules, given that the rules themselves do not
violate the GDPR. And for automating the compliance, the rules and the busi-
ness requests need to be encoded in a machine-readable way. In this paper, we
introduce an automated compliance checking model, based on natural language
privacy policies and other related documents. This work is developed within the
ASGARD research project, in particular, its RUNE track, focusing on privacy
by design. According to the GDPR compliance framework proposed by [9], our

Supported and funded by the Walloon region, Belgium. ASGARD project, convention
number 8175.

c© Springer Nature Switzerland AG 2021
S. Moschoyiannis et al. (Eds.): RuleML+RR 2021, LNCS 12851, pp. 3–17, 2021.
https://doi.org/10.1007/978-3-030-91167-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91167-6_1&domain=pdf
http://orcid.org/0000-0003-2458-3987
http://orcid.org/0000-0002-8152-2569
http://orcid.org/0000-0002-0664-5788
http://orcid.org/0000-0002-8754-841X
https://doi.org/10.1007/978-3-030-91167-6_1

4 A. Al Bassit et al.

model aims to solve the Operational Compliance task – the last of the three
key tasks in the data supply chain. We employ Semantic dAta priVacy modEl
(SAVE) [12] – our recently proposed conceptual model, for the machine-readable
representation of policies and rules in written documents. The contributions
of this work are the following: (i) we formalize an implementation-independent
compliance checking model for SAVE policies; (ii) we implement the model using
Shapes Constraint Language and its Advanced Features (SHACL-AF)1 and pro-
vide preliminary evaluation; (iii) we support interoperability by operating within
the Semantic Web framework with declarative compliance rules; (iv) we ensure
explainability by providing exhaustive answers to compliance requests; (v) com-
paring to related works that mainly deal with permissions, our model can handle
prohibitions, since both concepts occur in privacy policies and related contracts.
Even though data protection regulation implies general prohibition (whatever
is not permitted is prohibited), we use prohibitions to indicate when a personal
data request is explicitly prohibited by the policy, as opposed to implicitly pro-
hibited, i.e., not permitted. This makes the model transparent and close to the
source (written policies), but also introduces conflicts into the policies. There-
fore, we also present an algorithm for conflict detection and resolution.

The paper is structured as follows: in Sect. 2 we discuss recent solutions for
automated compliance. Our compliance checking method is formalized in Sect. 3.
The SHACL-based model and its preliminary evaluation are presented in Sect. 4.
Finally, Sect. 5 concludes our work and outlines future plans.

2 Related Work

Regulatory compliance became popular in industry and academia in recent
years. Remarkable works have emerged in modeling legal and privacy rules and
automating compliance. In this section, we present an overview of the latest
approaches with a special focus on the ones using Semantic Web technologies.

The SPECIAL2 project covers an umbrella of use-cases regarding compliance
of processing activities, and features extensive use of Semantic Web. Compliance
algorithms, formalized within the project [5,6,11], use OWL reasoning, in addi-
tion to incorporating the SANSA stack [14] for distributed reasoning [20]. In
[7] another approach to compliance reasoning was developed using ODRL and
Answer Set Programming. SPECIAL’s focus differs from RUNE and mainly
lies in policies created by users (consent) or stakeholders (usage policies), as
opposed to written policies, and thus it does not need to handle prohibitions
or conflicts that occur in such documents. SERAMIS3 is another project where
ODRL is extended to describe the legislative model [1], however, its compliance
assessment is partly manual and performed through questionnaires. The MIREL4

project developed a GDPR-based ontology – PrOnto [17]. In this project, deontic
1 https://www.w3.org/TR/shacl-af/.
2 https://www.specialprivacy.eu/publications/scientific-publications.
3 https://cordis.europa.eu/project/id/612052.
4 https://www.mirelproject.eu/.

https://www.w3.org/TR/shacl-af/
https://www.specialprivacy.eu/publications/scientific-publications
https://cordis.europa.eu/project/id/612052
https://www.mirelproject.eu/

Policy-Based Automated Compliance Checking 5

rules are represented in LegalRuleML [2], and then transformed into Defeasible
Logic theory where legal reasoning takes place [13]. The DAPRECO5 project
uses PrOnto to express legal rules from the GDPR and applies RIO logic to
extend business processes and encode data protection rules [3,4]. DPMF [19] is
the recent privacy framework that provides a comprehensive description of busi-
ness processes and semi-automated compliance assessment, with plans to involve
Semantic Web in the future. The core of MIREL, DAPRECO and DPMF is
legal reasoning and GDPR compliance, which is different from our policy-based
compliance. Yet, it is worth noting that in their latest work [18], authors of
DAPRECO experiment with SHACL to express RIO logic for compliance, which
indicates interest in SHACL in privacy and legal domains. The BPR4GDPR6

project uses a compliance ontology to evaluate business processes, defines pre-
vention rules for incompatible purposes, and performs process mining to find
misuses regarding the defined policies [15]. BPR4GDPR deals with workflows,
while RUNE considers processing actions to be independent, thus simplifying the
problem and the compliance reasoning. Similarly to most of the aforementioned
works, we operate within the Semantic Web framework. Implementation-wise,
our approach is close to SHACLARE [8], where SHACL is used for checking
compliance of business process logs against automatically mined constraints. In
addition to constraints, our model uses SHACL-AF inference rules, which allow
us to generate detailed answers to data processing requests, including partial
compliance.

3 Policy-Based Compliance Checking

Since we work with machine-readable privacy policies, we refer to our compliance
as policy-based, distinguishing it from GDPR compliance, where the rules encode
the GDPR norms. At this stage, we assume that our input policies are GDPR-
compliant, and we verify the compliance of incoming requests to these policies.
Hence, we define compliance checking as follows: given a request for personal
data processing, verify if it is permitted, according to a policy. This definition is
the basic compliance checking operation in our model. On the other hand, our
conceptual model captures both permissions and prohibitions7. Therefore, we
can provide more detailed answers to compliance requests, such as: processing
is permitted, explicitly prohibited (by the policy), implicitly prohibited (neither
permitted, nor prohibited), and even partially permitted/prohibited, when certain
parts of the request are compliant, but not the whole request.

3.1 The Conceptual Model for Privacy Policies

In our approach, we build upon SAVE [12] – a semantic conceptual model
developed for the RUNE project, that merges two latest privacy ontologies and
5 https://www.fnr.lu/projects/data-protection-regulation-compliance/.
6 http://www.bpr4gdpr.eu/.
7 Obligations and related technical/organisational measures are also captured in

SAVE, but, at this phase, not considered for compliance checking.

https://www.fnr.lu/projects/data-protection-regulation-compliance/
http://www.bpr4gdpr.eu/

6 A. Al Bassit et al.

provides a fine-grained representation of privacy policies and data processing
agreements, which can be leveraged for automated compliance checking. In this
section, we explain the elements of SAVE that are essential for our model.

Fig. 1. A fragment of the SAVE model relevant for compliance checking. Each solid-
border block is a SAVE taxonomy. For illustration, part of the PersonalDataCategory

taxonomy is shown. The last level represents leaves.

Figure 1 shows the structure of a SAVE policy, consisting of rules8: a rule
is defined by its deontic type (permission or prohibition), and by a set of
attributes with their values. The currently supported attributes are: action, data,
purpose, legalBasis, controller , processor , recipient and dataSubject . The values
are assigned from the respective SAVE taxonomy – partially ordered set (poset
[10]) of concepts. SAVE allows nested rules (the rule and its exception), however,
our conflict resolution method effectively flattens the rules (see Sect. 3.3).

Fig. 2. IMDB SAVE policy excerpt (prefixes omitted due to space limitations)

To illustrate an example of a SAVE policy, we take two rules from the pol-
icy9 in [12], extracted from the IMDB Privacy Notice10. The policy on Fig. 2
consists of Permission1 and Prohibition8 (edited for this example). The
permission states that IMDB (controller), may Collect and Use IMDBUser ’s
Name, Gender and Age, for CusomerCare and PersonalisedAdvertising pur-
poses. Prohibition8 forbids the Use of data subject’s Identifying data for
8 The full SAVE model: http://rune.research.euranova.eu#resulting-model.
9 http://rune.research.euranova.eu/demo/Policy.html.

10 Archived version of the IMDB policy can be found here.

http://rune.research.euranova.eu#resulting-model
http://rune.research.euranova.eu/demo/Policy.html
https://web.archive.org/web/20200526092253if_/https://www.imdb.com/privacy

Policy-Based Automated Compliance Checking 7

PersonalisedAdvertising . An attribute can be assigned a subset of concepts from
the respective taxonomy. Such structure is compact and close to the rule descrip-
tion in the text: one sentence or paragraph can combine multiple actions, data
types, purposes, etc., meaning all of them are allowed/prohibited. Moreover, in a
rule attributes may be missing, i.e., not mentioned in the text. In such cases, the
root of the corresponding taxonomy (greatest element of its poset) is assumed.
The structure of a Request is identical to Rule, hence, our model also allows
requests with multiple values for an attribute, i.e., all of them are requested.

3.2 Formalization

In this section, we formalize our compliance checking method. By providing clear
definitions of terms, operators and algorithms we aim to ensure implementation-
independent coherence of our model.

Any SAVE concept that can be assigned as a value of an attribute is called
a Data Processing Term (DPT). There are two kinds of DPTs:

– Hierarchical DPTs belong to the following posets: Processing Actions (A),
Purposes (P), Personal Data Categories (D), Legal Bases (B). These terms
are pre-defined by the corresponding taxonomies in SAVE (see footnote 8).

– Constant DPTs are the following: Controllers (C), Processors (R), Third
Parties (T), Data Subjects (S). Their values depend on the concrete policy.

The set of all DPTs of every attribute type is denoted by Ω = {A ∪ P ∪ D ∪
B ∪C ∪R∪T ∪S} = {⋃

Ωi| i ∈ {1, . . . , 8}}. Hierarchical DPT sets are partially
ordered (posets), according to subClassOf relationship, and thus support com-
parison operators {�=,=, <,>,≤,≥}. For example, if we consider a part of the
D taxonomy from Fig. 1, we can extract many predicates: Name ≤ Identifying ,
PhysicalCharacteristics > Age, etc. Constant DPTs are seen as hierarchies of
two levels: the root covering the DPT type (greatest element of the poset) and
the leaves – individual values, defined by the policy. Thus, the same compari-
son operators are applicable. For instance, IMDB ∈ C in our example policy is
defined as an instance of DataController , i.e., IMDB < DataController . From
here on, in our definitions we do not distinguish between the two kinds. We
do, however, distinguish between attribute types: the DPT operators are only
defined for the subsets of the same poset, i.e. X1,X2 ⊆ Ωi | i ∈ {1, . . . , 8}.
Further on, the notation Ωi indicates elements or subsets of the same type.

The union(+) operator is defined between DPTs and sets of DPTs, as a rule
can contain one or more DPT as the attribute value.

+ (X1, X2) read the union of X1 and X2 − commutative, associative, idempotent

∀x1, x2 ∈ Ωi (x1 + x2 = x1) ↔ (x2 ≤ x1) (1)

The (+) operator follows the standard properties of set union. In addition, (1)
states that the union of two comparable elements is equal to the bigger element
of the pair, thus merging the two elements. In the definitions that follow, we take

8 A. Al Bassit et al.

advantage of this property: all operations are defined for sets of DPTs in their
compact form, i.e., there are no two elements in the set that can be merged.

The leaf(x) operator tells us if the DPT (in a set of one) represents the last
level in the hierarchy of the poset, i.e., one of its minimal elements:

∀X1 ⊆ Ωi leaf(X1) → ∀X2 ⊆ Ωi (|X1| = 1 ∧ |X2| = 1 ∧ (X1 + X2 = X1) ↔ (X2 = X1)) (2)

The part-of (�) operator between DPT sets follows the subsumption relation:

 (X1, X2) read X1 is part-of X2 − reflexive, transitive and antisymmetric

∀x1, x2 ∈ Ωi (x1
 x2 ↔ x1 ≤ x2) (3.1)
∀X, Y ⊆ Ωi (X
 Y ↔ ∀x ∈ X ∃ y ∈ Y (x ≤ y)) (3.2)
∀X1 ⊆ Ωi(leaf(X1) ↔ ∀X2 ⊆ Ωi(X2
 X1 → X2 = X1)) (3.3)

Let us call a Data Processing Sentence (DPS) a tuple (a, p, d, b, c, r, t, s) where
each element is a subset of DPTs of the corresponding type that forms the value
of the respective attribute: a ⊆ A, p ⊆ P , d ⊆ D, b ⊆ B, c ⊆ C, r ⊆ R,
t ⊆ T , s ⊆ S. The set of all possible DPS is denoted by Θ. ε(Y, x) expresses the
relation between DPTs and a DPS and is defined as the maximal subset Y ⊆ Ωi,
belonging to the DPS x, i.e., the full value of an attribute. simple(x) defines if
a DPS x contains at most one DPT of each type – at most one action, data,
etc. And finally, at(x) defines an atomic DPS x, containing at most one DPT of
each type that is also a leaf .

Similar to DPTs, a union operator can be defined for DPSs. To merge two
DPSs, their attribute values must be equal except for at most one attribute:

+ (x1, x2) read the union of x1 and x2 − idempotent, commutative

x1, x2, x3 ∈ Θ Y1, Y2 ⊆ Ωi Z1, Z2 ⊆ Ωj V1, V2 ⊆ Ωk j �= k

∀x1, x2 ∃ x3 (x1 + x2 = x2 + x1 = x3) ↔
∀Y1, Y2(Y1 ε x1 ∧ Y2 ε x2 → Y1 + Y2 ε x3) ∧ ¬∃Z1, Z2, V1, V2

(Z1 ε x1 ∧ V1 ε x1 ∧ Z2 ε x2 ∧ V2 ε x2 ∧ Z1 �= Z2 ∧ V1 �= V2)

(4.1)

∀x1, x2(x1 + x2 = x1 ↔ x1 + x2 = x2 ↔ x1 = x2) (4.2)

Union of DPSs, unlike union of DPTs, is non-associative. To demonstrate
that, let us take four DPSs, each consisting of three attributes, for simplicity –
action (a), data (d) and purpose (p) – and evaluate some expressions:

x1 (a : Store, d : Age, p : Security) x3 (a : {Store,Use}, d : Name, p : Security)

x2 (a : Store, d : UID, p : Security) x4 (a : Use, d : {Age,UID}, p : Security)

x1 + x2 = x2 + x1 = (a : Store, d : {Age,UID}, p : Security)
x1 + x3 : not valid – action and data are not equal between x1 and x3
(x1 + x2) + x4 = (a : {Store,Use}, d : {Age,UID}, p : Security)
x1 + (x2 + x4) : not valid – action and data are not equal for x2 and x4

Policy-Based Automated Compliance Checking 9

Finally, the part-of operator is also defined between two DPSs:

 (x1, x2) read x1 is part-of x2 − reflexive, transitive and antisymmetric

∀x1, x2 ∈ Θ(x1
 x2 ↔ ∀i ∈ {1, . . . , 8} ∀Y1Y2 ∈ Ωi(Y1 ε x1 ∧ Y2 ε x2 → Y1
 Y2)) (5)

DPS covers the structure of SAVE permissions, prohibitions and requests.
M ⊆ Θ denotes the set of permissions in a given policy, H ⊆ Θ – the set
of prohibitions, and Q ⊆ Θ – the set of possible requests. To be compliant, a
request q has to conform to at least one permission in M and to not fall under
any prohibition in H:

check(q, M, H) def = ∀x ∈ Q(at(x) ∧ x
 q → ∃m ∈ M(x
 m) ∧ ¬∃h ∈ H(x
 h)) (6)

Request Example 1. Let us return to our running example from Fig. 2. For sim-
plicity, we will use action, data and purpose attributes to encode the policy
{M = m1,H = h8}, and introduce a request q1:

q1 (a : {Collect,Analyse}, d : Gender , p : PersonalisedAdvertising)

m1 (a : {Collect,Use}, d : {Name,Age,Gender}, p : {CustomerCare,PersonalisedAdvertising})
h8 (a : Use, d : Identifying, p : PersonalisedAdvertising)

For q1 to be permitted, it should be checked against the policy following
(6). The first step is to normalize the request, i.e., break it down into atomic
subrequests q1i, where at(q1i) ∧ q1i � q1, following the SAVE hierarchies. Then,
the check function is applied. As a result, q1 is compliant with the policy:

q1 (a : {Collect,Analyse}, d : Gender , p : PersonalisedAdvertising) =

{q11 (a : Collect, d : Gender , p : PersonalisedAdvertising),

q12 (a : Analyse, d : Gender , p : PersonalisedAdvertising)}
check(q1 ,M ,H) : q11
 m1 ∧ q12
 m1 (Analyse < Use)

3.3 Conflict Detection and Resolution

A conflict occurs when a permission and a prohibition “intersect”, i.e., there is
at least one atomic DPS part-of one rule that is also part-of the other:

∀m ∈ M, ∀h ∈ H conflict(m, h)def = ∃x ∈ Θ(at(x) ∧ x
 m ∧ x
 h) (7)

Request Example 2. Let us run the check for the new q2 asking for Name:

q2 (a : {Collect,Analyse}, d : Name, p : PersonalisedAdvertising) =

{q21 (a : Collect, d : Name, p : PersonalisedAdvertising),

q22 (a : Analyse, d : Name, p : PersonalisedAdvertising)}
check(q2 ,M ,H) : q21
 m1 ∧ q22
 m1 ∧ q22
 h8 (Analyse < Use ∧ Name < Identifying)

As seen from the check, q2 is not compliant. We also see that m1 and h8 contain
a common DPS q22 and thus are in a conflict. In a SAVE policy conflicts can
occur between separate rules (due to ambiguity of terms in the text), or as a

10 A. Al Bassit et al.

result of nesting rules. In both cases, we treat it as a conflict. We use strict
partial order operators {<,>} to state which rule is stronger. With nested rules
we can assume that the exception > main rule, but in other situations we expect
a legal expert (a Data Protection Officer) to make final decisions.

Algorithm 1 defines our conflict detection and resolution method. First, we
normalize rules of one type, either permissions or prohibitions. The normalize
function breaks down a rule’s attribute values into leaves and creates atomic
DPSs by generating their combinations. Next, for each permission/prohibition
pair we check if there is an atomic DPS that is part-of both rules (conflict (7)).
If it is the case, the other conflicting rule is normalized. The resolution process,
as mentioned earlier, is based on a strict partial order over the rules. Following
this order, the weaker DPSs are identified and removed from the normalized
rules (lines 5−10, where conflict applied to atomic DPSs actually checks for
their equality). Finally, the DPSs are transformed back into their compact form
by applying union (+) until there is no merge possible (denormalize, lines 11
– 12). The resulting conflict-free policy is then used in our compliance checking
procedure, able to indicate the exact parts of the request that are permitted,
explicitly prohibited, and implicitly prohibited (not explicitly permitted).

Algorithm 1: Conflict detection/resolution
Input : Policy {M, H}; conflict(m, h) defined; partial order {<, >} defined.
Output: Final conflict-free policy {M, H}.

1 Mnorm = normalize(M) ; � normalize only M (or only H)
2 forall the mnorm ∈ Mnorm, h ∈ H do
3 if conflict(mnorm, h) then
4 hnorm = normalize(h) ; � normalize the conflicting DPS
5 forall the mat ∈ mnorm, hat ∈ hnorm do
6 if conflict(mat, hat) then
7 if mat > hat then hnorm = hnorm\hat;
8 else mnorm = mnorm\mat;

9 end

10 end
11 M = M\m ∪ denormalize(mnorm); � remove original DPS
12 H = H\h ∪ denormalize(hnorm); � and add conflict-free ones

13 end

14 end
15 return M, H

In Request Example 2 we established that q22 indicates the presence of a con-
flict between m1 and h8. Upon analyzing the rules, we see that the full conflict
is expressed by the DPS (a : Use, d : Name, p : PersonalisedAdvertising), com-
prising four atomic DPSs (after normalizing Use). If we assume that h8 > m1,
then, following Algorithm 1, the conflict-free permission looks as follows:

m11 (a : Collect, d : {Name,Age,Gender}, p : {CustomerCare,PersonalisedAdvertising})
m12 (a : Use, d : {Age,Gender}, p : {CustomerCare,PersonalisedAdvertising})
m13 (a : Use, d : Name, p : CustomerCare)

3.4 Compliance Checking of a Request

The compliance checking procedure (Algorithm 2) follows the definition (6). It
can detect partial compliance and provide a detailed compliance report. This

Policy-Based Automated Compliance Checking 11

improves explainability of our approach, which would not be possible without
the normalization of requests. However, normalization of a DPS can cause com-
binatorial explosion in number of resulting atomic DPSs, making it a potential
performance bottleneck. For example, the “worst case” request containing the
roots of SAVE taxonomies is normalized into about 107 atomic DPSs – com-
binations of every leaf of each taxonomy. This problem can be handled with
application-dependent solutions: for instance, we can impose restrictions on the
structure of the policies and/or requests, as in [5], or find a way to check multiple
subrequests at once. In our implementation, we adopt the latter suggestion.

Algorithm 2: Compliance checking
Input : Conflict-free policy {M, H}; Request q
Output: answer ∈ {”granted”, ”prohibited”, ”part-granted”, ”not granted”} ;

qprm – permitted subrequests; qnprm – non-permitted; qprh – prohibited;
1 qprm = ∅; qnprm = ∅; qprh = ∅; qnorm = normalize(q) ;
2 forall the qi ∈ qnorm do
3 forall the x ∈ M ∪ H ; � each DPS in the policy
4 do
5 if qi
 x; � subrequest is part-of the DPS
6 then
7 if x ∈ M then qprm = qprm ∪ {qi};
8 else qprh = qprh ∪ {qi};
9 end

10 end
11 if not (qi ∈ qprm or qi ∈ qprh) then qnprm = qnprm ∪ {qi};
12 end
13 if qnprm = ∅ and qprh = ∅ then return ”granted”, qprm, qnprm, qprh ;
14 else if qprm = ∅ and qprh �= ∅ then return ”prohibited”, qprm, qnprm, qprh ;
15 else if qprm �= ∅ then return ”part-granted”, qprm, qnprm, qprh ;
16 else return ”not granted”, qprm, qnprm, qprh;

4 SHACL-Based Compliance Model

A compliance check can be seen as semantic validation of a request against
defined rules – constraints, which motivated us to use SHACL-AF as the “engine”
of our model. Notably, SHACL has recently been gaining interest in privacy and
compliance research [8,18], but has not yet been used as the inference tool for
policy-based compliance. Figure 3 shows our compliance checking system. The
Preprocessing module is invoked upon policy creation and includes automated
conflict detection, expert-assisted resolution, automated denormalization and
generation of SHACL compliance rules. The combination of SAVE and SHACL
gives us an operational model, where compliance is encoded in a structured and
unambiguous way. The Compliance Checking module is invoked upon request
and consists of request preprocessing and compliance checking components. The
first step is necessary for handling various kinds of requests, created by a user, or
generated by an application. These “raw” requests may mention metadata and
data sources (tables, columns), and need to be transformed into SAVE requests.
We leave out of the scope of this work the mapping of data sources to SAVE
concepts and assume that such mapping (Business Catalog) is available. We also
plan to use external access control tools to handle user/role privileges.

12 A. Al Bassit et al.

Fig. 3. SAVE/SHACL policy-based compliance checking model

4.1 SAVE-to-SHACL Translation

Coming back to our example in Fig. 2, we show the translation of Permission1
into SHACL on Fig. 4, that can act as a template for any rule. The template
was developed by mapping the semantics of our operators, in particular, part-of
(3,5), to SHACL constraints, and Algorithm 2 to inference rules. Each SAVE
attribute is converted into sh:property condition, and each DPT in it becomes
either sh:class (hierarchical DPT) or sh:hasValue (constant DPT). By defi-
nition, sh:class (see footnote 1) checks if subject is an instance of the object
class, following rdf:type/rdfs:subClassOf* property path, which corresponds
to checking if the subject DPT is part-of (3) object DPT (sh:hasValue is a spe-
cial case of (3) applied to constant DPTs, as they are checked by value). Multiple
values are combined with sh:or. Each rule in the policy is encoded and added to
the policy shapes graph. The graph assumes an input of the initial request and
its atomic subrequests generated by normalization. The check is performed in
two steps (controlled by sh:order): (i) each subrequest is checked against each
rule: if it satisfies every sh:condition (part-of (5) returns true), new triples are
inferred; (ii) the answer for the parent request is inferred in a separate SHACL
rule, by counting how many subrequests were permitted/prohibited.

4.2 Implementation and Evaluation

In order to evaluate our approach, we implemented the first version of our
model11, using TopBraid SHACL API and Apache Jena12. This version works
with valid SAVE requests, so the only preprocessing performed on a request
is normalization. To address the combinatorial explosion problem (see Sect. 3),
we developed two compliance checking procedures. The SHACL-Core procedure

11 The source code: https://github.com/euranova/shacl-compliance. A light demo:
https://rune-278710.ew.r.appspot.com/save/compliance.

12 https://github.com/TopQuadrant/shacl; https://jena.apache.org/.

https://github.com/euranova/shacl-compliance
https://rune-278710.ew.r.appspot.com/save/compliance
https://github.com/TopQuadrant/shacl
https://jena.apache.org/

Policy-Based Automated Compliance Checking 13

Fig. 4. Translation of IMDB Permission1 into the SHACL rule. Prefixes: save – for
SAVE terms, sh – for SHACL terms, ex – for policy-specific values.

translates each SAVE rule into a SHACL SPARQLRule using core constraints (fol-
lowing example on Fig. 4). It normalizes the request, creates the atomic subre-
quests, sends the subrequests and the parent request in a batch to SHACL engine
and receives the result. Alternatively, the SHACL-SPARQL procedure does not
“materialize” each subrequest. Instead, it combines all atomic subrequests into
one using RDFList structures, and performs the check on all of them at once, by
inferring “intersections” – common DPSs between the request and the rules –
using custom SPARQL constraints (also based on rdf:type/rdfs:subClassOf*
property path). Request Example 3 depicted on Fig. 5 shows the difference in
expressing and validating normalized requests between the two procedures.

Fig. 5. Request normalization and answers for the two procedures

The two compliance checking procedures have their benefits and drawbacks.
While both implementations use SPARQL to construct inferred triples, SHACL-
Core expresses constraints declaratively, making them relatively easy to inter-

14 A. Al Bassit et al.

pret (see Fig. 4). The SHACL-SPARQL procedure relies on SPARQL constraints,
which allow custom reasoning but hider the interpretability. Custom SPARQL
queries are necessary due to inability to express “intersections” between DPSs
with SHACL core constraints (sh:class requires each value node to be an
instance of a given class, not some of the nodes). Performance differences between
the two procedures are demonstrated through the following experiments.

of atomic requests in the bacth

A
ve

ra
ge

 ti
m

e
er

 b
at

ch
 (m

s)

10

100

1000

10000

100000

1 5 10 50 100 500 1000 5000

SHACL-Core SHACL-SPARQL

(a) batches of random atomic requests

of subrequests

A
ve

ra
ge

 ti
m

e
er

 re
qu

es
t (

m
s)

10

100

1000

10000

100000

1 5 10 50 100 500 1000 5000

SHACL-Core SHACL-SPARQL

(b) random simple requests

of simple rules in the policy

A
ve

ra
ge

 ti
m

e
pe

r r
eq

ue
st

 (m
s)

1

10

100

1000

1 5 10 50 100 500 1000 5000

SHACL-Core SHACL-SPARQL

(c) random atomic requests

Fig. 6. Inference time evaluation on IMDB policy (a, b) and random policies (c)

Evaluation on IMDB Policy. To evaluate our model on a real policy, we trans-
lated the SAVE IMDB policy from [12] into SHACL, using SHACL-Core and
SHACL-SPARQL procedures. To create a request, for each attribute, one DPT
was assigned randomly from the corresponding taxonomy (or from the pre-
defined individuals, for constant DPTs, such as controllers, processors, etc.). In
the first test (Fig. 6a), we compare the performance of the two procedures on the
batches of atomic requests. It is clear from the experiment that (i) the execution
time grows linearly with the number of requests (the SHACL engine processes
shapes consecutively); and (ii) the SHACL-SPARQL procedure performs signif-
icantly worse than the SHACL-Core on atomic requests. Due to heavy usage of
custom SPARQL constraints in the SHACL-SPARQL method, the inference on
a single request is slow, compared to core constraints. And since all requests in
the batch are separate (and not subrequests of one request), we cannot com-
bine them and check simultaneously, thus we lose the advantage of the SHACL-

Policy-Based Automated Compliance Checking 15

SPARQL version. In a production system, SHACL-Core procedure is suitable
for fine-grained requests, using lower levels of SAVE taxonomies.

On the other hand, Fig. 6b shows the benefits of the SHACL-SPARQL pro-
cedure. In this test a batch of simple, not necessarily atomic, requests, was gen-
erated and the performance of both implementations was measured depending
on the number of subrequests. As expected, with few subrequests (less than 10),
SHACL-Core performs better. However, very soon the amount of subrequests
processed consecutively makes it slower than the SHACL-SPARQL alternative.
For comparison, the “worst case” request (about 107 subrequests) is processed by
the SHACL-SPARQL procedure in about 5 min, while SHACL-Core would take
roughly 16 h (estimated, with the average subquery execution time of 4ms). The
SHACL-SPARQL procedure does not check each subrequest separately, thus, its
performance is less affected by the number of subrequests than by the number of
SPARQL queries triggered by the SHACL engine, which, in its turn, depends on
whether the request “intersects” with the policy rules or not. This explains the
uneven performance of SHACL-SPARQL: when the request does not “intersect”
with any rule, the response is obtained faster.

Evaluation on Random Policies. The IMDB policy used in the previous exper-
iments contains 23 compact rules, or 222 simple rules. To evaluate our system
on policies of different sizes, we randomly generated simple rules (similarly to
requests), combined them into policies, and ran batches of 100 random atomic
requests against them. Figure 6c shows that, due to SHACL engine validating
the shapes consecutively, the execution time increases with the size of the pol-
icy, albeit slower than with the number of requests. It can serve as evidence in
favor of using compact rule representation to potentially speed up the inference.
To test this hypothesis, we plan additional experiments evaluating simple vs.
compact policy representations.

5 Conclusion and Future Work

In this paper, we introduced an automated compliance checking model based on
the SAVE conceptual model for privacy policies. We formalized the model in an
application-independent manner and provided implementation with SHACL-AF.
To the best of our knowledge, it is the first application of SHACL-AF inference
rules for automating compliance based on policies. Encoding the compliance
rules declaratively provides us with a self-contained interoperable model, where
conceptual rules are enriched with compliance logic in SHACL. Our compliance
model keeps the policies compact and close to their textual representation, and
our conflict resolution method provides conflict-free co-existence of permissions
and prohibitions. Finally, the proposed SHACL-SPARQL procedure aims to mit-
igate the combinatorial explosion of subrequests introduced by the model.

One of the goals of our model is facilitating the adoption of SAVE in the
Semantic Web community. Currently, we are building upon the first version to

16 A. Al Bassit et al.

continue implementation of components, such as conflict resolution, and evalu-
ation of the model, as well as testing various optimization techniques, in par-
ticular, optimizations of SPARQL constraints. The next steps include adding
obligations and technical/organisational measures from SAVE, as well as incor-
porating selected model constraints from the DPMF [19] into our model, in order
to enrich its validation capabilities. Additionally, we consider employing ODIN
[16] for linking data sources to SAVE concepts, as well as integration with meta-
data and access control tools. And finally, within the scope of the RUNE project,
work on the SAVE model continues, specifically, the development of methods of
automated rule extraction from written policies and data processing agreements.

References

1. Agarwal, S., Steyskal, S., Antunovic, F., Kirrane, S.: Legislative compliance assess-
ment: framework, model and GDPR instantiation. In: Medina, M., Mitrakas, A.,
Rannenberg, K., Schweighofer, E., Tsouroulas, N. (eds.) APF 2018. LNCS, vol.
11079, pp. 131–149. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
02547-2 8

2. Athan, T., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.: LegalRuleML:
design principles and foundations. In: Faber, W., Paschke, A. (eds.) Reasoning
Web 2015. LNCS, vol. 9203, pp. 151–188. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-21768-0 6

3. Bartolini, C., Calabró, A., Marchetti, E.: Enhancing business process modelling
with data protection compliance: an ontology-based proposal. In: ICISSP, pp. 421–
428 (2019). https://doi.org/10.5220/0007392304210428

4. Bartolini, C., Lenzini, G., Santos, C.: An agile approach to validate a formal rep-
resentation of the GDPR. In: Kojima, K., Sakamoto, M., Mineshima, K., Satoh,
K. (eds.) JSAI-isAI 2018. LNCS (LNAI), vol. 11717, pp. 160–176. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-31605-1 13

5. Bonatti, P.A., Ioffredo, L., Petrova, I.M., Sauro, L., Siahaan, I.R.: Real-time rea-
soning in OWL2 for GDPR compliance. Artif. Intell. 103389 (2020). https://doi.
org/10.1016/j.artint.2020.103389

6. Bonatti, P.A., Petrova, I.M., Sauro, L.: A richer policy language for GDPR compli-
ance. In: Simkus, M., Weddell, G.E. (eds.) Proceedings of the 32nd International
Workshop on Description Logics, Oslo, Norway, 18–21 June 2019. CEUR Work-
shop Proceedings, vol. 2373. CEUR-WS.org (2019). http://ceur-ws.org/Vol-2373/
paper-5.pdf

7. De Vos, M., Kirrane, S., Padget, J., Satoh, K.: ODRL policy modelling and com-
pliance checking. In: Fodor, P., Montali, M., Calvanese, D., Roman, D. (eds.)
RuleML+RR 2019. LNCS, vol. 11784, pp. 36–51. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-31095-0 3

8. Di Ciccio, C., Ekaputra, F.J., Cecconi, A., Ekelhart, A., Kiesling, E.: Finding non-
compliances with declarative process constraints through semantic technologies. In:
Information Systems Engineering in Responsible Information Systems, pp. 60–74
(2019). https://doi.org/10.1007/978-3-030-21297-1 6

9. Hamdani, R.E., Mustapha, M., Amariles, D.R., Troussel, A., Meeùs, S., Krasnash-
chok, K.: A combined rule-based and machine learning approach for automated
GDPR compliance checking. In: Proceedings of the Eighteenth International Con-
ference on Artificial Intelligence and Law, pp. 40–49. ICAIL 2021, Association

https://doi.org/10.1007/978-3-030-02547-2_8
https://doi.org/10.1007/978-3-030-02547-2_8
https://doi.org/10.1007/978-3-319-21768-0_6
https://doi.org/10.1007/978-3-319-21768-0_6
https://doi.org/10.5220/0007392304210428
https://doi.org/10.1007/978-3-030-31605-1_13
https://doi.org/10.1016/j.artint.2020.103389
https://doi.org/10.1016/j.artint.2020.103389
http://ceur-ws.org/Vol-2373/paper-5.pdf
http://ceur-ws.org/Vol-2373/paper-5.pdf
https://doi.org/10.1007/978-3-030-31095-0_3
https://doi.org/10.1007/978-3-030-31095-0_3
https://doi.org/10.1007/978-3-030-21297-1_6

Policy-Based Automated Compliance Checking 17

for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/
3462757.3466081

10. Joslyn, C.: Poset ontologies and concept lattices as semantic hierarchies. In:
Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS-ConceptStruct 2004. LNCS
(LNAI), vol. 3127, pp. 287–302. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27769-9 19

11. Kirrane, S., et al.: A scalable consent, transparency and compliance architecture.
In: Gangemi, A. (ed.) ESWC 2018. LNCS, vol. 11155, pp. 131–136. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98192-5 25

12. Krasnashchok, K., Mustapha, M., Al Bassit, A., Skhiri, S.: Towards privacy policy
conceptual modeling. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr,
H.C. (eds.) ER 2020. LNCS, vol. 12400, pp. 429–438. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-62522-1 32

13. Lam, H.P., Hashmi, M.: Enabling reasoning with LegalRuleML. Theory Pract.
Log. Program. 19(1), 1–26 (2019). https://doi.org/10.1017/S1471068418000339

14. Lehmann, J., et al.: Distributed semantic analytics using the SANSA stack. In:
d’Amato, C. (ed.) ISWC 2017. LNCS, vol. 10588, pp. 147–155. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68204-4 15

15. Lioudakis, G.V., et al.: Facilitating GDPR compliance: the H2020 BPR4GDPR
approach. In: Pappas, I.O., Mikalef, P., Dwivedi, Y.K., Jaccheri, L., Krogstie, J.,
Mäntymäki, M. (eds.) I3E 2019. IAICT, vol. 573, pp. 72–78. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-39634-3 7

16. Nadal, S., Rabbani, K., Romero, O., Tadesse, S.: ODIN: a dataspace manage-
ment system. In: Suárez-Figueroa, M.C., Cheng, G., Gentile, A.L., Guéret, C.,
Keet, C.M., Bernstein, A. (eds.) Proceedings of the ISWC 2019 Satellite Tracks
(Posters & Demonstrations, Industry, and Outrageous Ideas) co-located with 18th
International Semantic Web Conference (ISWC 2019), Auckland, New Zealand,
26–30 October 2019. CEUR Workshop Proceedings, vol. 2456, pp. 185–188. CEUR-
WS.org (2019). http://ceur-ws.org/Vol-2456/paper48.pdf

17. Palmirani, M., Martoni, M., Rossi, A., Bartolini, C., Robaldo, L.: Pronto: Privacy
ontology for legal reasoning. In: Ko, A., Francesconi, E. (eds.) Electronic Gov-
ernment and the Information Systems Perspective - 7th International Conference,
EGOVIS 2018, Regensburg, Germany, September 3–5, 2018, Proceedings. Lecture
Notes in Computer Science, vol. 11032, pp. 139–152. Springer (2018). https://doi.
org/10.1007/978-3-319-98349-3 11

18. Robaldo, L.: Towards compliance checking in reified I/O logic via SHACL. In:
Proceedings of the Eighteenth International Conference on Artificial Intelligence
and Law, pp. 215–219. ICAIL 2021, Association for Computing Machinery, New
York, NY, USA (2021). https://doi.org/10.1145/3462757.3466065

19. Sion, L., Dewitte, P., Van Landuyt, D., Wuyts, K., Valcke, P., Joosen, W.: DPMF:
a modeling framework for data protection by design. Enterp. Modell. Inf. Syst.
Archit. (EMISAJ) 15, 10–1 (2020). https://doi.org/10.18417/emisa.15.10

20. Westphal, P., Fernández, J.D., Kirrane, S., Lehmann, J.: SPIRIT: a semantic trans-
parency and compliance stack. In: Khalili, A., Koutraki, M. (eds.) Proceedings of
the Posters and Demos Track of the 14th International Conference on Seman-
tic Systems co-located with the 14th International Conference on Semantic Sys-
tems (SEMANTiCS 2018), Vienna, Austria, 10–13 September 2018. CEUR Work-
shop Proceedings, vol. 2198. CEUR-WS.org (2018). http://ceur-ws.org/Vol-2198/
paper 119.pdf

https://doi.org/10.1145/3462757.3466081
https://doi.org/10.1145/3462757.3466081
https://doi.org/10.1007/978-3-540-27769-9_19
https://doi.org/10.1007/978-3-540-27769-9_19
https://doi.org/10.1007/978-3-319-98192-5_25
https://doi.org/10.1007/978-3-030-62522-1_32
https://doi.org/10.1017/S1471068418000339
https://doi.org/10.1007/978-3-319-68204-4_15
https://doi.org/10.1007/978-3-030-39634-3_7
http://ceur-ws.org/Vol-2456/paper48.pdf
https://doi.org/10.1007/978-3-319-98349-3_11
https://doi.org/10.1007/978-3-319-98349-3_11
https://doi.org/10.1145/3462757.3466065
https://doi.org/10.18417/emisa.15.10
http://ceur-ws.org/Vol-2198/paper_119.pdf
http://ceur-ws.org/Vol-2198/paper_119.pdf

Correctness of Automatically Generated
Choreography Specifications

Nurulhuda A. Manaf(B) , Nor Najihah Zainal Abidin(B) ,
and Nur Amalina Jamaludin(B)

National Defence University of Malaysia (NDUM), 53000 Kuala Lumpur, Malaysia
{nurulhuda,amalinajamaludin}@upnm.edu.my, 3201334@alfateh.upnm.edu.my

Abstract. The service choreography approach has been proposed for
the declarative specification of multi-party conversations between par-
ticipant services, in service-oriented applications and web transactions.
Constraint solvers such as Alloy Analyzer can be used for the automated
generation and verification of declarative choreography specifications.
This presumes a mapping between the declarative specification of busi-
ness rules in Semantics of Business Vocabulary and Rules (SBVR), an
OMG standard for specifying business models in structured English, and
the Alloy Analyzer which is a SAT based constraint solver. This paper
is concerned with the correctness of such mapping between the gener-
ated instance (choreography) in Alloy and the global graph obtained as
a direct visual representation of the SBVR model specification.

Keywords: Declarative specification · Service choreography · SBVR ·
Constraints · Model transformation · Mapping correctness

1 Introduction

The service choreography approach [37] coordinates the collaboration of dis-
tributed systems across autonomous participant services [33]. Choreography
focuses mainly on prescribing the ordering of the message exchange between ser-
vices, according to agreed global constraints. It is key to realising value added
service chains in ecosystem oriented architectures [19].

The OMG standard Semantics of Business Vocabulary and Rules (SBVR)
[30] intends to express complex business requirements declaratively. Recent
works [1,5,15,17] advocate SBVR for specifying business models. They tend
to capitalise on the fact SBVR specifies rules in natural language, which the
end-user to validate the specification directly, and at the same time describes
them in formal logic, which is beneficial for verification.

In previous work, we have applied SBVR and its supplement, the Date-
Time Vocabulary (DTV) [32], for specifying service choreographies [1,17]. An

This research is funded by Malaysian Ministry of Higher Education under the Funda-
mental Research Grant Scheme (FRGS) /1/2018/ICT01/UPNM/03/1.

c© Springer Nature Switzerland AG 2021
S. Moschoyiannis et al. (Eds.): RuleML+RR 2021, LNCS 12851, pp. 18–32, 2021.
https://doi.org/10.1007/978-3-030-91167-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91167-6_2&domain=pdf
http://orcid.org/0000-0002-5392-4923
http://orcid.org/0000-0003-0608-6741
https://doi.org/10.1007/978-3-030-91167-6_2

Correctness of Automatically Generated Choreography Specifications 19

application to commuter journeys was given in [14]. Further, the SBVR2Alloy
compilation tool [16] has been built that can automatically generate the ser-
vice choreography, corresponding to the input SBVR model. An Alloy model [1]
describes a set of constraints in terms of structure. It generates an analysis auto-
matically and produces an instance structure of model that satisfies the ordering
of constraints in a service choreography.

In addition to verifying conformance to message ordering constraints, the
Alloy Analyzer constraint solver [13] can be used to perform realisability checks
and assert static constraints on the generated choreography.

In this paper, the focus is on the correctness of the mapping between the
input SBVR model capturing the business rules and the Alloy model [13] used
to generate the corresponding choreography, and verify for realisability.

The main contribution of this paper is a method for checking the correctness
of the mapping between (a) the model transformation from SBVR into Alloy
[16], and (b) the generated global view [4,9,36] which is a visual representa-
tion translating from the corresponding SBVR model. Both models describe the
global behaviours and the complex interactions in the choreography specifica-
tion.

This paper is laid out as follows. Section 2 introduces basic handling of con-
straints in SBVR as well as the mapping of the SBVR model onto the Alloy
model. Section 3 describes the semantics of the global view represented in the
visual representation, and shows how the mechanism applies for transforming
the SBVR model into the global view, and the correctness of the conformance
mapping. Section 4 discusses related work and Sect. 5 contains some conclusions
and future work.

2 Mapping an SBVR Model onto an Alloy Model

In this section, a brief introduction to the OMG standard SBVR is provided
and the development of an SBVR model is outlined. We then describe how the
SBVR model is mapped onto the Alloy Model, using Alloy Analyzer.

2.1 An OMG Standard SBVR

The OMG standard SBVR [30] provides a means to express business concepts
and rules in natural language for different types of business activities. SBVR
rules are expressed in Structured English (SBVR - SE) [30] which is formed
by means of semantic formulations. The SBVR rules describe the meaning of
business rules by composing the logical formulation which is in the form of the
combination of atomic formulation (e.g., Fact Types), modality (i.e., obligation,
prohibition, etc.), logical operation (i.e., OR, XOR, AND, etc.), and the quan-
tification (e.g., exactly one, at least one, etc.). This combination produces a
constructive rule, e.g., It is obligatory that each rental car is owned by at least
one branch. The deontic modality, i.e., ‘obligatory’ on the constraint defined by
the rule. The quantification, ‘each’ and ‘at least one’ effect restriction of the

20 N. A. Manaf et al.

rental car belonging. Furthermore, ‘is owned by’ is the designation for the Fact
Type which makes an assertion on the corresponding Terms (rental car and
branch).

2.2 SBVR Model for Service Choreography

The SBVR model prescribes a set of global constraints from informal require-
ments, namely an agreed contract of common rules that govern the allowed
interactions and the ordering of services interaction. The structure of the rules
is based on the semantic formulations that are used in the SBVR standard [30]
and supplemented by the DTV [32].

Figure 1 represents the overall picture of how an SBVR model is built for
service choreography. A set of terms and a set of fact types in SBVR is essen-
tial for constructing the rules. Then two main components, participants and
events, play an important role in modelling choreography. Each designated par-
ticipant involved in the multi-party conversation (i.e. participant), each desig-
nated event characterises the occurrence of event (messages exchange) performed
by the participant(s) (i.e. event), and static constraints specify the domain spe-
cific constraints for each participant and event, are defined as Term, e.g. Term:
participant 1, Term: participant 2, Term: event 1, Term: static 1 as shown in
the figure.

Fig. 1. Coordinating SBVR model for service choreography

The Fact Types (FT) of the SBVR model for specifying the participant
set (e.g. FT: participant2 includes participant) and the event set (e.g. FT:
event1 includes event) applied Set Definition in SBVR standard. On the other
hand, “term verb term” has been used to specify the static constraints and the

Correctness of Automatically Generated Choreography Specifications 21

messages exchange including the export and the import messages. It is important
to represent the local behaviour of each participant.

These SBVR rules capture the specification of the ordering of services inter-
action where the time notion of precedence, ‘immediately precedes’, by DTV
[32], is advocated. Differently, the SBVR rules for specifying the complex interac-
tions: concurrent and alternatives interactions apply the logical operators (AND,
XOR, and OR) in the SBVR standard. The interested reader might refer [1,16]
for further explanation.

2.3 Mapping the SBVR Model into the Alloy Model

Alloy analyzer is based on a logic which provides the structures representing
relations. Alloy model consists of a module containing a number of signatures
and abstract signatures. Signatures represent terms, while abstract signatures
describe the participant set and the event set in the SBVR model. Table 1 shows
participant1 is a member of the participant. Furthermore, Rule 1 illustrates a
nesting of event1. Each signature and abstract signature introduce fields which
are captured by relations. These fields denote verb interconnecting with Terms
in each FT. It is used to specify the import and the export messages by/from
the participant(s) (see Table 1).

The multiplicities in Alloy are applied to illustrating the accurate meaning
of the complex interactions as well as the ordering of messages exchanged in
the choreography. The combination of signature, multiplicities, and field are the
basis of the development of SBVR rule in Alloy. In addition, facts and predicates
in Alloy are deployed to constrain a certain case.

Rule 1 represents the general form of rule capturing the alternative interac-
tion concerns on the sending (receiving) of the choices of events which is empha-
sised by specifying the logical operation or ... but not all. In Alloy, fact is
exploited to ensure the explicit choices is defined (only one of the events will be
true). Lone multiplicity (it can be true or false) is declared for each subsignature
of event 1. Fact is applied for translating Rule 2 too. Rule 2 constrains at least
one of the events is selected by the participant1. Rule specifies the alternative
interaction encapsulates inclusive choices (OR) of the events. Hence, lone multi-
plicities instead of one multiplicity associated on event 1 and event 2 are mapped
from each corresponding verbs 1 and verbs 2 that connect with the signature
participant1.

Rules 3–4 specify the allowed orderings of the messages exchange when the
multi-party conversation takes place. Rule 3 demonstrates there is no occurrence
of an event after event 1 and before event 2. A notion of immediately precedes
definition is advocated from DTV [32]. Rule is translated into Alloy by defining a
signature of the initial event which is mapped to the field ‘immediatelyprecedes’
associating with the event occurs immediate after.

22 N. A. Manaf et al.

Table 1. Mapping of SBVR2Alloy model

SBVR model Alloy model

Terms signature
Term:participant1; sig participant1{};
Term:event1; sig event1{};
Term:static1; sig static1{};
Term:T1; sig T1{};
FT : participant and event set abstract signature
Fact Type: participant includes participant1; abstract sig participant{}

one sig participant1 extends participant{}
Fact Type: event includes event1; abstract sig event{}

one sig event1 extends event{}
FT : messages exchange and static constraint field (relation)
Fact Type: participant1 verbs event1 one sig participant1 extends participant{verbs1: one event1,

Fact Type: participant1 verbs1 static1 verbs: one static1}
Rules : complex interaction field (relation), fact, and multiplicities
Rule 1: It is obligatory that the participant1 verbs one sig participant1 extends participant{verbs: one event1}
exactly one event1 that includes exactly one eventa abstract sig event1 extends event {at: one t1 event1}
or exactly one eventb but not both {(event1 = eventa and no eventb)
at exactly one T or (event1 = eventb and no eventa)}

lone sig eventa extends event1{}
lone sig eventb extends {}

Rule 2: It is obligatory that the participant1 verbs one sig participant1 extends participant{verbs1: lone event1,

exactly one event1 or exactly one event2, verbs2: lone event2}
at exactly one T { #verbs1 = 1 or #verbs2 = 1}

lone sig event1 extends event {at: one t1 event1}
lone sig event2 extends event {at: one t1 event2}

Rules : the ordering of messages exchange field (relation), fact, and multiplicities
(events)
Rule 4: : It is obligatory that exactly one event1 one sig event1 extends event {immediatelyprecedes:
immediately precedes exactly one event2 one event2
Rule 6: It is obligatory that exactly one T1 one sig T1 extends Time {immediatelyprecedes:
immediately precedes exactly one T2 one T2}

In modelling services interaction, there is the case when no indication to
inform which interaction is performed initially as in the FTs specification:
participant1 sends event1; participant2 receives event1. As the solution, the prin-
cipal concept in the DTV, a notion of time understood as in the construct occur-
rence at time interval is applied. Hence the following time declarations as well
as Rule 4 are used. 1. participant1 sends event1 at T1; 2. participant2 receives
event1 at T2. The same mechanism for translating Rule 4 and Rule 5 is applied
for transforming Rule 6 into Alloy.

3 Correctness of SBVR2Alloy Model

In this section, we outline the main aspects for ensuring the correctness of the
mapping, which draws upon the semantics of global view.

Correctness of Automatically Generated Choreography Specifications 23

3.1 Global View of Choreography

The semantics of global view of choreography [36], which is given as a visual
representation (graph), is proposed for checking the correctness of the mapping
between the SBVR model and Alloy model, built in Alloy Analyzer. Our inter-
est in this approach is on its visual representation and its compatibility with
our choreography model, characterising the behaviour from the specifications to
capture the complex interactions in the business model.

The coordination of services interaction between participants in global view
is modelled with representing the interactions between the participant 1 and
the participant 2 who is sending and receiving message, m, respectively. This
interaction denoted by P1 → P2 : m.

A global choreography (g-choreography) denoted by G is derived by the seman-
tics: i. G ::= 0 (no interaction); ii. p1 → p2 : m (a simple interaction between
two participants p1 and p2); iii. G;G′ (sequential of two g-choreographies) iv.
G|G′ (parallel between two Gs) v. G+G′ (choices of Gs). This can be illustrated
respectively in the following figure. Each graph in Fig. 2, represents the initial
state, represents the final state, while depicts the alternative interaction in
the branching graph and represents the concurrent interaction in the parallel
graph.

Fig. 2. Global view graph as a visual representation

As discussed previously, an SBVR model consists of several rules specifying
the complex interactions involved in the choreography. To build a global view,
the following SBVR rules are considered as an illustrative example of the spec-
ification to show a single interaction between participant 1 and participant 2
(Rule 1 and Rule 2), subsequently participant 2 and participant 3 (Rule 3 and
Rule 4), and the ordering of both interactions (Rule 5). Verbs associated with
the event and particularly with T1 in the rule, illustrate the intended participant
will be sending the event, conversely, verbs associated with the event which is
mapped with T2, specify the intended participant will be receiving the event.
In real, verb can be any vocabularies representing the same meaning of sending
and receiving.

24 N. A. Manaf et al.

Rule 1: It is obligatory that the participant 1 verb1 exactly one event 1 at
exactly one T1
Rule 2: It is obligatory that the participant 2 verb2 exactly one event 1 at
exactly one T2
Rule 3: It is obligatory that the participant 2 verb3 exactly one event 2 at
exactly one T1
Rule 4: It is obligatory that the participant 3 verb4 exactly one event 2 at
exactly one T2
Rule 5: It is obligatory that exactly one event 1 immediately precedes exactly
one event 2
Rule 6: It is obligatory that exactly one T1 of event 1 immediately precedes
exactly one T2 of event 1
Rule 7: It is obligatory that the T1 of event 2 immediately precedes exactly
one T2 of event 2

The declarations of time as depicted in Rule 6 and Rule 7 are a solution
to indicate and to inform which interaction is performed initially. For instance,
Rule 6 relates with Rule 1 emphasising the participant 1 initiates the interaction
by sending the event 1 which is followed by participant 2 who will be receiving
the event 1 immediate after (the interrelated between Rule 2 and Rule 7).

The following figure illustrates the possible visual representation from the
above specification of SBVR model.

Fig. 3. Visual representation of global view and pomset for SBVR model (Rule 1–
Rule 5)

p1 → p2 : e1 and p2 → p3 : e2 in Fig. 3 illustrates the specification of SBVR
model for Rule 1–2 and Rule 3–4, respectively. The down arrow in between those
interactions showing the sequential reflects the specification of Rule 5.

Pomset of Choreography [36] is an injection of g-choreographies to capture
the causal dependencies of the services interactions in choreographies. It illus-
trates the transition of one interaction - by sending and receiving of the message,

Correctness of Automatically Generated Choreography Specifications 25

to another interaction - by sending and receiving of the other message. In pom-
set, semantic is labelled by actions: ! represents sending, i.e. p1p2!e1 specifies
the sending of message e1 from p1 to p2; ? represents receiving, i.e. p1p2?e1
describes the receiving of message e1 by p2.

The use of pomset enables to visualise the notion of time in SBVR model to
specify the ordering of sending (receiving) the same event as declared in Rule
6–7 (see Fig. 3). Simple arrows in Fig. 3 illustrates the aforementioned ordering,
on the other hand the dotted arrow shows the dependency between those two
interactions capturing the sequential composition.

The following rules are the specification for illustrating the complex interac-
tions in SBVR model : the alternative interaction by defining OR over the event
terms. This means, by referring to Rule 8, the participant 1 has the possibilities
to select at least one of the events (OR) to perform the interaction. The receiver,
participant 2 will perform the correspond events as sent by the sender (Rule 9).
Rule 8–9 and Rule 10–11 describe two interactions that must be happened in
order as defined in Rule 12.

Rule 8: It is obligatory that the participant 1 verb1 exactly one event 1 or
exactly one event 2, at exactly one T1
Rule 9: It is obligatory that the participant 2 verb2 exactly one event 1 or
exactly one event 2, at exactly one T2
Rule 10: It is obligatory that the participant 2 verb3 exactly one event 3 at
exactly one T1
Rule 11: It is obligatory that the participant 3 verb4 exactly one event 3 at
exactly one T2
Rule 12: It is obligatory that exactly one event 1 or exactly one event 2 imme-
diately precedes exactly one event 3

Fig. 4. Visual representation of global view for SBVR model (Rule 8–Rule 12)

Figure 4 describes the specified SBVR rules (Rule 8–12) applying the visual
representation of global view. Rule 8 and Rule 9 has depicted with the fork

26 N. A. Manaf et al.

(as branches). The first fork shows only the event 1 is chosen, the second fork
represents only the event 2 is sent and is received by the participant 1 and
participant 2, respectively, the last fork illustrates whenever both of the events
are selected to be executed by the participants concurrently. Here, the parallel
graph is applied. Rule 10–11 are specified as a single interaction, p2 → p3 : e3
occurs immediately after the previous interaction. This shows the sequential as
declared in Rule 12.

Fig. 5. Pomsets showing Rule 8–12

Figure 5 contains three pomsets defines three choices of interactions showing
causal dependencies. Pomset 3 describes the occurrence of the event 1 and the
event 2 at the same time which are sent by the participant 1 and received by
the participant 2.

3.2 Correctness of Mapping

The visual representation as well as pomset enlighten the interactions among
the autonomous participants and the sequential composition which corresponds
to the Alloy Model generated from the SBVR model of the choreography.

Correctness of the mapping concerns the correctness of the model transfor-
mation between the generated instance (choreography) in Alloy and the global
view obtained as the visual representation, from the SBVR model specification.

The transformation here follows what was described in Sect. 2.3. Figure 6 rep-
resents the global behaviour of the choreography by the aforementioned specifi-
cations (in the previous section) for Rule 1 till Rule 7. The visualisation in Alloy
making them easier to understand translating directly and explicitly from the
specified SBVR rules. As shown in figure, the yellow box stated participant1 is
pointed (arrow: verb1) to the event1 which is mapped to T1 E1 with the arrow
stated: at. This reflected the specified Rule 1. A similar mechanism is used to
specify Rule 2–4. The ordering of the interactions between the message exchange
of event 1 by participant 1 and participant 2, and the message exchange of the

Correctness of Automatically Generated Choreography Specifications 27

event 2 by the participant 2 and the participant 3, is depicted using a simple
arrow states immediately precedes. It is pointed from the event1 to the event2.
This described the specified Rule 5.

Fig. 6. The generated Alloy model for choreography from SBVR model (Rule 1–
Rule 7)

Rule 6 and Rule 7 are depicted in Alloy as in Fig. 7. From the visualisation,
it can be seen who takes the action initially and perform the next action in each
interaction afterwards.

Fig. 7. The illustration of Alloy for Rule 6–7

The following figure illustrates the generated choreography in Alloy model
via transforming from the specification of SBVR model (Rule 8–12). Alloy does
generate all possible executions it does not output them all in one graph, instead
it includes a “Next” feature on its interface that allows the user to go through
the possible executions one at a time. Therefore, it is not possible to show them
all in one figure. Hence, there are three possibilities to present the alternative

28 N. A. Manaf et al.

interaction encapsulates OR over two events, event 1 and event 2. The first
graph indicates the participant 1 and the participant 2 execute the interaction
by choosing the event 1 only, the second graph shows only the event 2 is selected,
while the last graph represents both events are chosen concurrently. The similar
illustration has been visualised by using the global view as depicted in Fig. 4.
Even both approaches has been specified with different semantics, the output
represents the correctness of characterising the global constraints from the spec-
ification.

Fig. 8. The illustration of Alloy for the complex interaction OR over the event terms

Figure 8 also illustrates the visualisation of pomset in Fig. 5. Both present the
ordering of the message exchange of the same event by different participants.

All the visualisation of instance of Alloy model and the visualisation of global
view including pomset, which both are mapped from the specified SBVR model,
checking the correctness of both model transformation. Both approaches describe
global behaviours capturing the key aspect in choreography: complex interaction
and sequential.

4 Related Work

The coordination of distributed service interactions is the primary concern of
service choreography [2,4,6,26]. The majority of service interaction approaches
have been provided for graphically defining service choreographies. Business
Process Model and Notation (BPMN) [8,26,28] is user friendly choreographic
models, represented graphically using notation but combine different semantics.
The characteristics of BPMN is similar to Unified Modeling Language (UML).
UML is a widely-known standard specification language for constructing ser-
vice interactions [31]. Another language for choreography specification is Web
Services Choreography Description Language (WS-CDL) [18]. WS-CDL pro-
poses a metamodel-driven transformation technique consisting of a collection of

Correctness of Automatically Generated Choreography Specifications 29

Atlas Transformation Language (ATL) rules which refines WS-CDL choreogra-
phies towards executable Business Process Execution Language for Web Services
(WS-BPEL) orchestrations. However, WS-CDL is unable to acknowledge and
establish a way for verifying conformance to choreography specifications [21].

Moreover, the work on a declarative approach to service interaction coordi-
nation is sparse. e.g., [3,12,22]. The focus seems to be more on reasoning about
the consistency of the rule set, which of course is an important aspect of ver-
ification, and less on explicitly capturing the orderings in terms of observable
message exchanges. The work on DecSerFlow [8] includes a graphical interface
for user interaction but this is proprietary notation. In contrast, our approach
uses SBVR for this purpose, which was developed with the business user in mind
and is a standard maintained by OMG.

The OMG defined Decision Model and Notation (DMN) [29] is a design
language and basic notation for describing decision rules. It is another well-
known standard specification language for modelling service interactions and
providing graphical notations that are easy to understand [7,10]. In the same
way that BPMN does for business processes, it provides an integrated notation
for decision management. However, for each intermediate step, DMN proposes a
long technical noun phrase, whereas SBVR stays much closer to what business
people actually say. It can be argued that when compared to DMN, SBVR uses
more natural business language.

Global graph represents as the global view of the choreography where mul-
tiple participants interact with each other [11]. Examples of similar approaches
that applied global graph as the global view can be found in [9]. The counterex-
amples were visualised by global graph and identifies the possible misbehaviours
from the message-passing systems. Moreover, [20] formalise the global view of
the choreography for reversible computations approach. Additional work by [27]
deals with synthesising the global graph which illustrates the universal structure
of communications from CFSM. Although our approach are similar, our main
concern of applying global graph are different as we applied visual representation
as the global graph to perform the conformance mapping correctness of SBVR
model into Alloy model.

5 Conclusion and Future Work

SBVR and Date-Time Vocabulary is used to specify business models in a declar-
ative manner. Alloy Analyzer, a SAT constraint solver, provides an automated
means to generate and verify the realisability of the choreography generated
from the SBVR model. Hence, a transformation from the SBVR model to the
Alloy model has been developed.

The correctness of the conformance mapping has been described in this paper.
The correctness is conformed between the generated choreography in Alloy model
transforming from the specification of SBVR model and the visual representa-
tion of the global view translating from the corresponding SBVR model. The
correctness is concerned when the generated choreography models capture all

30 N. A. Manaf et al.

global behaviours particularly in terms of the global ordering constraints and
the complex interactions describing alternative (choice) and parallel (concur-
rent) interactions.

In order to enable end-users to participate in the development of the SBVR
model on their own and then transform the SBVR model into the Alloy model
automatically, the �SBVR2Alloy tool [16] has been developed. It can be used to
express complex rules, with a focus on capturing constraints on the orderings
of service interactions, including concurrent interactions [23]. The tool can be
extended to include less common features of SBVR and indeed this is part of the
future work planned. It could be used to impress the distinction between obli-
gation and prohibition on a message being received. This also brings in faulty
channels or erroneous communication which in turn points to the need for trans-
actional guarantees [24,34] in choreographies of ecosystem composed services
[25,35]. The ultimate goal is an automated tool for modelling business rules but
also executing the corresponding SBVR model and offering a preview of all pos-
sible executions to both modellers and end-users so that the business model can
be adapted or extended to better match the business need.

References

1. Manaf, N.A., Moschoyiannis, S.: Generating choreographies from SBVR models.
In: AIP Conference Proceedings, vol. 2184, p. 060062. AIP Publishing LLC (2019)

2. Ataee, S.M., Bayram, Z.: An improved abstract state machine based choreography
specification and execution algorithm for semantic web services. Sci. Program.
2018, 4094951:1–4094951:20 (2018)

3. Autili, M., Tivoli, M.: Distributed enforcement of service choreographies. In: Int’l
Workshop on Foundations of Coordination Languages and Self-Adaptive Systems
(FOCLASA), pp. 18–35 (2014)

4. Autili, M., Inverardi, P., Tivoli, M.: Choreography realizability enforcement
through the automatic synthesis of distributed coordination delegates. Sci. Com-
put. Program. 160, 3–29 (2018)

5. Bajwa, I.S., Lee, M.G., Bordbar, B.: SBVR business rules generation from natural
language specification. In: AAAI: AI for Business Agility, pp. 2–8 (2011)

6. Bhattacharyya, A., Chittimalli, P.K., Naik, R.: Relation identification in business
rules for domain-specific documents. In: Proceedings of the 11th Innovations in
Software Engineering Conference, pp. 14:1–14:5. ACM (2018)

7. Calvanese, D., Dumas, M., Laurson, Ü., Maggi, F.M., Montali, M., Teinemaa, I.:
Semantics, analysis and simplification of DMN decision tables. Inf. Syst. 78, 112–
125 (2018)

8. Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F.: A formal approach to
modeling and verification of business process collaborations. Sci. Comput. Pro-
gram. 166, 35–70 (2018)

9. Guanciale, R., Tuosto, E.: Pomcho: a tool chain for choreographic design. Sci.
Comput. Program. 202, 102535 (2021)

10. Hasic, F., Vanthienen, J.: Complexity metrics for DMN decision models. Comput.
Stand. Interfaces 65, 15–37 (2019)

11. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016)

Correctness of Automatically Generated Choreography Specifications 31

12. Jacquet, J.-M., Linden, I., Staicu, M.-O.: On the introduction of time in distributed
blackboard rules. In: Canal, C., Villari, M. (eds.) ESOCC 2013. CCIS, vol. 393, pp.
144–158. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45364-
9 13

13. Jackson, D.: Software Abstractions - Logic, Language, and Analysis. Revised Edi-
tion, The MIT Press, Cambridge (2012)

14. Karlsen, M.R., Moschoyiannis, S.: Learning condition–action rules for personalised
journey recommendations. In: Benzmüller, C., Ricca, F., Parent, X., Roman, D.
(eds.) RuleML+RR 2018. LNCS, vol. 11092, pp. 293–301. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99906-7 21

15. Levy, F., NazarenkoF, A.: Formalization of natural language regulations through
SBVR structured English - (tutorial). In: Theory, Practice, and Applications of
Rules on the Web - 7th International Symposium, RuleML, pp. 19–33 (2013)

16. Manaf, N.A., Antoniades, A., Moschoyiannis, S.: SBVR2Alloy: an SBVR to alloy
compiler. In: 10th IEEE Conference on Service-Oriented Computing and Applica-
tions, SOCA 2017, pp. 73–80. IEEE Computer Society (2017)

17. Manaf, N.A., Moschoyiannis, S., Krause, P.J.: Service choreography, sbvr, and
time. In: Proceedings of the 14th International Workshop on Foundations of Coor-
dination Languages and Self-Adaptive Systems, FOCLASA. EPTCS, vol. 201, pp.
63–77 (2015)

18. Mansour, K.S., Hammal, Y.: ATL based refinement of WS-CDL choreography
into BPEL processes. In: Chikhi, S., Amine, A., Chaoui, A., Saidouni, D.E. (eds.)
MISC 2018. LNNS, vol. 64, pp. 329–343. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-05481-6 25

19. Marinos, A., Moschoyiannis, S., Krause, P.: Towards a RESTful infrastructure for
digital ecosystems. Int. J. Electron. Bus. 9 (2011)

20. Mezzina, C.A., Tuosto, E.: Choreographies for automatic recovery. CoRR
abs/1705.09525 (2017)

21. Montali, M.: Specification and Verification of Declarative Open Interaction Models:
A Logic-Based Approach, vol. 56. Springer Science & Business Media, Heidelberg
(2010)

22. Montali, M., Pesic, M., Aalst, W.M.V.D., Chesani, F., Mello, P., Storari, S.: Declar-
ative specification and verification of service choreographiess. ACM Trans. Web
(TWEB) 4(1), 1–62 (2010)

23. Moschoyiannis, S., Krause, P., Shields, M.W.: A true-concurrent interpretation of
behavioural scenarios. ENTCS 203(7), 3–22 (2009). eTAPS - FESCA

24. Moschoyiannis, S., Razavi, A., Krause, P.: Transaction scripts: making implicit
scenarios explicit. ENTCS 238(6), 63–79 (2010). eTAPS - FESCA

25. Moschoyiannis, S., Shields, M.W.: A set-theoretic framework for component com-
position. Fund. Inform. 59, 373–396 (2004)

26. Muram, F.U., Javed, M.A., Tran, H., Zdun, U.: Towards a framework for detecting
containment violations in service choreography. In: IEEE International Conference
on Services Computing, SCC, pp. 172–179. IEEE Computer Society (2017)

27. Ng, N., Yoshida, N.: Static deadlock detection for concurrent go by global session
graph synthesis. In: Zaks, A., Hermenegildo, M.V. (eds.) Proceedings of the 25th
International Conference on Compiler Construction, CC 2016, Barcelona, Spain,
12–18 March 2016, pp. 174–184. ACM (2016)

28. OMG: Business Process Model and Notation (BPMN), vol. Version 2.0. OMG
document formal/2011-01-03. http://www.omg.org/spec/BPMN/2.0/

29. OMG: Decision Model and Notation (DMN), vol. Version 1.3. OMG document
formal/2021-01-01. https://www.omg.org/spec/DMN

https://doi.org/10.1007/978-3-642-45364-9_13
https://doi.org/10.1007/978-3-642-45364-9_13
https://doi.org/10.1007/978-3-319-99906-7_21
https://doi.org/10.1007/978-3-030-05481-6_25
https://doi.org/10.1007/978-3-030-05481-6_25
http://www.omg.org/spec/BPMN/2.0/
https://www.omg.org/spec/DMN

32 N. A. Manaf et al.

30. OMG: Semantics of Business Vocabulary and Business Rules (SBVR), vol. Version
1.5. OMG document formal/dtc/2019-10-02. https://www.omg.org/spec/SBVR/
1.5/PDF

31. OMG: Unified Modeling Language (UML), vol. Version 2.5.1. OMG document
formal/2017-12-05. https://www.omg.org/spec/UML/

32. OMG: Date-Time Vocabulary (DTV), Version 1.3. OMG document
formal/dtc/2016-02-20. http://www.omg.org/spec/DTV/1.3/Beta2 (2017)

33. Papazoglou, M.P., Georgakopoulos, D.: Introduction: service-oriented computing.
Commun. ACM 46(10), 24–28 (2003)

34. Razavi, A., Moschoyiannis, S., Krause, P.: Concurrency control and recovery man-
agement for open e-business transactions. In: Communicating Process Architec-
tures 2007, vol. 65, pp. 267–285 (2007)

35. Razavi, A.R., Moschoyiannis, S., Krause, P.: A scale-free business network for digi-
tal ecosystems. In: IEEE Int’l Conference on Digital Ecosystems and Technologies,
pp. 241–246 (2008)

36. Tuosto, E., Guanciale, R.: Semantics of global view of choreographies. J. Log.
Algebraic Methods Program. 95, 17–40 (2018)

37. W3C: Web Services Choreography Description Language (WS-CDL). W3C Work-
ing Group (2006). http://www.w3.org/TR/ws-cdl-10-primer/

https://www.omg.org/spec/SBVR/1.5/PDF
https://www.omg.org/spec/SBVR/1.5/PDF
https://www.omg.org/spec/UML/
http://www.omg.org/spec/DTV/1.3/Beta2
http://www.w3.org/TR/ws-cdl-10-primer/

Conflict-Free Access Rules for Sharing
Smart Patient Health Records

Matthew Banton(B) , Juliana Bowles(B) , Agastya Silvina(B) ,
and Thais Webber(B)

School of Computer Science, University of St Andrews, St Andrews KY16 9SX,
Scotland, UK

{mb471,jkfb,as362,tcwds}@st-andrews.ac.uk

Abstract. With an increasing trend in personalised healthcare provi-
sion across Europe, we need solutions to enable the secure transnational
sharing of medical records, establishing granular access rights to personal
patient data. Access rules can establish what should be accessible by
whom for how long, and comply with collective regulatory frameworks,
such as the European General Data Protection Regulation (GDPR). The
challenge is to design and implement such systems integrating novel tech-
nologies like Blockchain and Data Lake to enhance security and access
control. The blockchain module must deal with adequate policies and
algorithms to guarantee that no data leaks occur when authorising data
retrieval requests. The data lake module tackles the need for an effi-
cient way to retrieve potential granular data from heterogeneous data
sources. In this paper, we define a patient-centric authorisation app-
roach, incorporating a structured format for composing access rules that
enable secure data retrieval and automatic rules conflict checking.

Keywords: Healthcare systems · Patient health records · Blockchain ·
Data lake · Access rules

1 Introduction

Healthcare data systems have evolved from just systems for managing and organ-
ising health records to become trustworthy and secure platforms that deal with
multiple sources data integration, transformation, and analytics [13]. Their ulti-
mate purpose is to both support organisational decision making as well as med-
ical professionals in clinical decisions, personalised treatments, overall services
quality, and efficiency improvement [3].

Patient Health Records (PHR) contain crucial information to enable better
clinical decisions such as the patient’s medical history, past and ongoing treat-
ments, prescribed medications, exams, and more recently, even data coming from
home environment and health tracking technologies. PHR is an essential part

This research is funded by the EU H2020 project Serums (Securing Medical Data in
Smart Patient-Centric Healthcare Systems), grant code 826278.

c© Springer Nature Switzerland AG 2021
S. Moschoyiannis et al. (Eds.): RuleML+RR 2021, LNCS 12851, pp. 33–47, 2021.
https://doi.org/10.1007/978-3-030-91167-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91167-6_3&domain=pdf
http://orcid.org/0000-0001-8170-3899
http://orcid.org/0000-0002-5918-9114
http://orcid.org/0000-0002-0012-9256
http://orcid.org/0000-0002-8091-6021
https://doi.org/10.1007/978-3-030-91167-6_3

34 M. Banton et al.

in any healthcare data system, however adhering to different storage and access
control policies for different jurisdictions and organisations, as well as the EU
General Data Protection Regulation1 (GDPR), makes creating a single health-
care platform difficult [21]. Data Lakes are an emergent technology that can
aid with these challenges. It can manage the retrieval of diverse medical data,
and place it in different repositories, enabling a myriad of strategies for data
aggregation, through specialised database queries and processes [17]. However,
Data Lakes do not support another crucial requirement of such platform, that
being how one can securely provide access to legitimate healthcare providers,
with decreased likelihood of data leaks or breaches [24].

This drives the proposal of fine-grained access control strategies within such
systems to increase patients control over their own medical data while still estab-
lishing the same level of access control practised in healthcare organisations [24].
Recently, blockchain technology has emerged in the healthcare domain as a way
to ensure data integrity and increase security and trust in verifiable data shar-
ing transactions, preventing tampering as well as increasing the transparency in
communications between patients and healthcare professionals [2,19,24].

The EU project Serums2 [5,8,20,26] proposes the design of a rule-based
authorisation mechanism, blending blockchain and data lake technologies, in
a secure patient-centric data sharing platform. The project deals with mod-
ern challenges such as the size, complexity and variety of data format present
in patient health records, which demand solutions that efficiently unifies these
formats into an extensible and flexible standard, and ensures interoperability
between data systems placed in different locations.

The Serums Smart Patient Health Record (SPHR) is the unified format pro-
posed to integrate distributed sources of patient information registered in Europe
[8,20]. The SPHR contains metadata, linking the patient medical history in a
structured way in the data lake, built across authorised healthcare providers
and approved health data sources. Based on the metadata, Serums provides
an interface for users to create access rules. Thus, users can easily define who
(professional or organisation) is allowed to access what (granular medical meta-
data), from whom (which patient), and when (rule expiration date) through the
creation of collective and individual access rules. Conflicting rules may occur
checking grantee, expiration date of the rules, overlapping metadata, and the
action established by the rules (i.e., grant or deny access). A conflict-free state
of the rules set for an individual can be reached using a strategy for conflict
detection as well as assumptions to minimise and resolve these conflicts.

This paper presents the pathways in Serums that enable the integration of
the scalable Serums data lake tied to a blockchain network to securely retrieve
medical data, in a unified manner, and following established access rules for
its users. We describe the access rules schema highlighting a structured way to
define and validate them within the healthcare system.

1 Information on GDPR can be found at https://gdpr-info.eu/.
2 For more information on Serums project please refer to www.serums-h2020.org.

https://gdpr-info.eu/
www.serums-h2020.org

Conflict-Free Access Rules for Sharing Smart Patient Health Records 35

The paper is structured as follows. Section 2 brings related work on blockchain
for access control in healthcare data sharing systems. Section 3 describes the
Serums platform with focus on the data sharing principles, authorisation mech-
anism and the pathway to secure SPHR retrieval in the system. Section 4 focus
specifically on the access rules design, its structured format, and the subsequent
logic-based formalisation. We demonstrate the access rules application through a
patient journey, and the expected conflicts that may arise on real-time rules ver-
ification. Section 5 concludes this paper highlighting the paper contribution and
future work towards enabling a rule-based multinational data sharing platform
for healthcare provision in Europe.

2 Related Work

Blockchain allows the creation of transparent and secure user authorisation
mechanisms since it can improve access control whilst recording a trail for
auditing, especially in case of data breach investigations [19]. A recent survey
[24] categorises the strategies to securely share confidential medical records and
describes the characteristics of blockchain-based mechanisms employed in several
healthcare platforms, so these records can be shared within and across multiple
authorised healthcare providers.

We compare Serums to earlier contributions in the literature that specifically
exploited the Hyperledger Fabric technology [1] to develop different authorisa-
tion mechanisms [2,14,16,18,25] and focus on the design of efficient permissioned
blockchains for secure medical data sharing. They are similar to Serums since
they also exploit the inherent secure-by-design feature of blockchain to provide
tamper-proof logs for transactions over medical records. Moreover, they all con-
struct a particular data retrieval infrastructure with underlying authorisation
mechanisms to enable different functions to different user roles.

Serums highlights two essential aspects on access control strategy and
patient-centric approach: (i) level of patient control over data and (ii) secu-
rity measures applied to the access of confidential medical data. We selected two
recent contributions in the literature [18,25] to trace a brief comparison with
Serums design and their rule-based approach to define users access privileges.

Tanwar, Parekh and Evans (2020) [25] propose an architecture to authen-
ticate and authorise users in a PHR sharing system. Patients register on a
blockchain and control their own node, as well as who may access that node
(using an algorithm), allowing them to grant and revoke access over the medical
data to professionals. Similar to Serums, the architecture follows a patient-centric
approach that allows patients to decide about access privileges. For instance,
Serums also allows professionals to trigger requests to access the medical records
of patients, and patients are responsible to agree or deny them. In both plat-
forms, these requests are controlled and logged by their blockchain.

However, Serums prioritises that medical data is not stored on-chain. While
the advantages of storing data on-chain are stated by the authors [25], there
are also disadvantages, first being that data cannot be deleted from the chain

36 M. Banton et al.

(which may run into issues with legislation, especially the so called “Right to be
forgotten” on GDPR). Secondly, blockchain blocks are typically not large enough
to store the variety of data needed (images such as X-Rays and video files such as
Ultrasounds) [18]. Serums stores access rules on-chain, which determine who may
access the patient data. This brings many benefits such as providing assurance
of who, where and when data is accessed, but also allows users to request their
data is deleted in line with their rights in the legislation.

Guo et al. [18] maintain the data off-chain, focusing on blockchain to ver-
ify the integrity of the data. Additionally, this solution uses customised Access
Control Lists (ACLs) which define what users are allowed to do. When receiv-
ing a request for a patients PHR, the blockchain accesses the relevant ACL to
determine if the user has the relevant permissions. Upon confirmation, the chain
releases a single use URL directing the user to the data, as well as a hash of that
data. The hash ensures that the data the blockchain is directing to is the same
as the data that is eventually retrieved, ensuring integrity.

Serums allows creation of highly granular access rules to medical records by
patients and organisations since it introduces the concept of flexible data tags.
Similar to [18], Serums data lake component efficiently process data requests
based on these tags securely linked to the original data sources. One of the
challenges imposed by this feature is that conflicts between rules can arise such
as defining different actions over same tags for a pair patient/grantee, when
inserting a new rule; and after conflict detection, an action must be taken by the
rule creator to resolve it.

Recently, Cui et al. [11] developed an example of conflict resolution for Soft-
ware Defined Networking forwarding rules. They use a three-step process, finding
related rules (i.e., any rule with the same source and destination addresses), find-
ing any conflicts (i.e., when the action of two matching rules would be different),
and then resolving the conflict. In this related work, conflicts are resolved based
upon priority, which is based upon the network function that has generated the
rule (security functions having higher priority), as well as the priority of function
that generated it. For Serums, the key point is to provide an easy way to patients
access their own medical data and update the access privileges given to profes-
sionals, especially when they are abroad and seeking to share medical records.
Users can create customised access rules to allow professionals to access the
medical information. Only that these conflicts may arise when different actions
(allow/deny) are defined to the same grantee and set of tags. In this sense,
Serums does not use priorities to process rules as [11], but instead requires that
users themselves choose the valid rule to be stored in case of detected conflict.

3 Serums Data Sharing Platform Design

Serums platform allow patients to: (i) retrieve their own confidential medical
records (i.e., SPHR) containing data from the diverse healthcare providers, as
well as (ii) define data access rules to professionals and organisations. Serums
should as well enable organisations enrolled in the platform to create and update

Conflict-Free Access Rules for Sharing Smart Patient Health Records 37

the patients access rules for their own professionals, in such a way they comply
with the GDPR as well as with their policies and current legislation on medical
data sharing for lawful data processing [21].

Serums architecture (Fig. 1) presents the Smart Health Centre System (SHCS)
which comprises of a web-based front-end [5] to allow users to retrieve health
records (SPHR) [9,10]; as well as a backend with integrated APIs to communicate
with each internal module and with external data sources (e.g. hospitals, health-
care organisations, data systems). SPHR metadata (tags) are labels to medical
data sources provided by each organisation in the process of their registering to
Serums. An SPHR retrieval request triggers a Serums API call to the data lake,
which checks the private and permissioned blockchain state [6,20,26] for access
privileges (i.e., access rules in place) for the authenticated user.

Fig. 1. Serums platform enables custom access rules creation and SPHR retrieval.

A user-friendly interface enables authorised users to easily create and update
a set of access rules related to the patient’s SPHR, which are secured through
the blockchain [5]. Thus, the blockchain contribution to Serums backend is
two-fold: first, related to data confidentiality and privacy, blockchain efficiently
stores access rules defined by users allowing only authorised individuals to access
patients records information; second, the ability to effectively track and audit
users interactions within the system.

The customisation of access rules by an individual (patient or admin) assigns
permissions to authorised users referring to selected SPHR entries (named data
tags), within a specified timeframe. Every time a user attempts to access a
patient record (SPHR) in the Serums data lake, the access privileges are checked
by the blockchain, and the users can only access the granular SPHR data tags
referred to in their own set of access rules. Rules defined by users operate with
an underlying logic-based approach that enable the automatic update of their
access permissions over data tags and further conflict detection.

38 M. Banton et al.

A conflict can be defined as whenever a new access rule, checked against the
existent set of rules, would state privileges to the same user but in overlapping
time frames, or when it contradicts another access rule in place to a user (i.e.,
denies it). In Serums, the verification of access rules conflicts follows an algo-
rithmic solution (refer to Sect. 4) that ensures the storage of a conflict-free set
of rules on the blockchain after any request of rule update by authorised users.

Blockchain always stores an initial set of rules for the users; for example, a
user patient, as the data owner, has access to all tags available for them in the
data lake to retrieve. Medical professionals will also have rules in place giving
them access to patient data, according to local organisational policies.

Fig. 2. Steps required for a user to gain access to patients records through Serums.

Figure 2 outlines a diagram with the steps required for a professional to gain
access to patient data. The flow in the diagram can be separated into the organ-
isation pathway and the patient pathway to be enabled in the system. Setting
up the system follows five basic sequential steps: from the point Serums must
be offered within the European country the healthcare organisation operates,
to the point organisation staff are registered on the blockchain. Then, standard
access rules are defined in line with local legislation and organisational policies.

These initial steps (on Fig. 2) only allow a medical professional to login into
the system, but do not define any authorisation to access medical data, or even
have the medical data available to upload. Many systems based on permissioned
blockchains include a step that imports data from patients into the system [17,25]
as part of the organisational setup, assuming the organisation is only going to be
using its system for all data management. However, the focus of Serums platform
is to allow professionals to access patient data from other European healthcare
organisations, and not to replace their data management system entirely.

The data importation is a part of the patient pathway (see Fig. 2). First,
when patients join Serums they automatically receive a unique Serums ID. This is

Conflict-Free Access Rules for Sharing Smart Patient Health Records 39

separate to the username the patient decides as login detail when joining Serums.
Second, the patients Serums ID is then linked to the organisation’s Serums ID,
the one the patient is joining at (setting up system pathway required). Then, the
organisational access rules based on policies and legislation can be applied to the
patient, and then patient data uploaded to Serums. This allows professionals (of
that organisation) to access the patient data using Serums, as well as allowing
the patient to access their own medical data available through the SPHR.

From this step forward, the patient can create new access rules as they see
fit. For example, they may allow other organisation staff to access their data
even if the default rules would not normally allow it, or they can prevent certain
staff from accessing any medical records, should that be something they wish.

Assuming that a medical professional has been given permission to access
the records (either from default organisational rules, or from a patient’s custom
rule) and the patient has not denied them access, then that medical professional
can access the patient’s data. From this point, it is straightforward to allow
another organisation (or particular medical professional) to access their medical
data, through the creation of a new custom rule using the professional or the
organisation Serums ID.

4 Serums Access Rules Design

Serums users must first login successfully to the system to have access to specific
functionalities (i.e., create or update an access rules to a professional, retrieve
SPHR data, visualise data analytics, and other functionalities [20]), according
to their roles in the system (e.g., patient, administrator, doctor, nurse, etc.).

A Serums user with the appropriate operational privilege (i.e., admin) can
manipulate (create/read/update/delete) rules for users within the Serums front-
end. Organisational rules created by administrators affect all patient records
that pertain to an organisation, considering current legislation to specify the
grantees, since patient registration on Serums. Also, patients can directly create
access rules to authorised organisations and professionals in the Serums front-
end. Access rules are defined with a given validity for its persistence in the
system. The temporal duration of rules must be explicitly defined, i.e., each rule
must specify a time limit from rule creation to an expiration date.

Access rules are defined over tags that categorise the medical data provided
by authorised organisations to the Serums data lake. Serums itself, in this plat-
form version, does not check the medical data provided for appropriate tagging,
beyond the basic check performed to ensure data is in the correct format. Serums
data lake retrieves all authorised pieces of information according to the rules
defined over these data tags. Organisations can always add new tags, whenever
they include new systems or applications in their healthcare settings.

The rules are stored in the blockchain right after their creation (or update)
takes place, provided no conflict is detected with existent rules, i.e., new access
rules are checked against existing ones. A conflict exists where similar rules (from
the same grantee and set of tags) establish contrasting privileges (like granting

40 M. Banton et al.

or denying access, overlapping time frames, etc.). If a conflict is detected then
the user will be notified and asked to take an action to choose which rule should
be stored, or accept an amended rule to ensure there is no conflict. In a proof-of-
concept platform version, we propose this format for access rules representation
and for automatic conflict detection when creating (or updating) rules, thus
users can take action to store only conflict-free rules in the blockchain.

4.1 Serums Access Rules Format

Let Act be a set of actions, IdS denote a set of identifiers indexed by a sort in
S where sorts correspond to granters and grantees, that is, S is a disjoint union
where S = SG � SR. Let T be a set of tags. Following we show examples of
considered actions, sorts SG and SR, data tags, and rule creators.

Actions : allow,deny
Granters : patient, organisation
Grantees : nurse,doctor, consultant, organisation,department

Tags : consultation, treatment, test,device,
medication,personal, chemotherapy,

comorbodities,hospitalisation, symptoms
Rule creators : organisation administrator,patient

In particular, we assume that a granter sort can be patient or organisation,
SG = {p, o}. Similarly, sorts for grantees are SR = {n, d, c, o}. We also note that
in this context an organisation can be a hospital, general practice, clinic, etc.
The organisation administrators can create the access rules commonly applied
to staff in their local systems with patient consent.

Definition 1. An access rule r is a tuple r = (g, α,R,D, Γ) where

– g ∈ IdG is a grantee,
– α ∈ Act is an action,
– R ⊆ IdR is a subset of granters where necessarily g �∈ R,
– D = (d1, d2) ⊆ N × N is the time interval indicating when the rule is valid

where necessarily d1 ≤ d2, and
– Γ ⊆ T is a subset of tags.

We note that even though our implementation uses epoch times to represent
dates, it suffices to think about these as natural numbers in this context. The
time interval (d1, d1) or (d1, inf) can be used to indicate that a rule is valid
forever. In addition, implicit in a rule is the user creating it, so if g ∈ Idp
then this is a rule created by a patient, and if g ∈ Ido then we have a rule
created by the organisation for all patients. One example of a possible rule
is r1 = (p1, allow, {d1, d2}, (t1, t2), {treatment,medication}) where patient p1 ∈

Conflict-Free Access Rules for Sharing Smart Patient Health Records 41

Idp allows doctors d1, d2 ∈ Idd to have access to all ‘treatment’ and ‘medication’
records that p1 received in the time interval (t1, t2).

When rules are defined for the same grantee, their combined effect represent
the complete access allowed (or denied) over the selected subset of tags.

Assume the complete set of rules to be given by R. A set of rules R for
grantee g is correct if and only if there are no rules in R that conflict with each
other, that is, ∀r1, r2 ∈ R,¬(r1⊥r2). Conflict can arise when different actions are
placed, for instance simultaneously allowing and denying access over the same
data tags and grantee for intersecting time periods. When rules are in conflict,
the conflict is highlighted to the user on time of creation, with a request issued by
the system for the user to choose which rule should be stored in the blockchain.
Whenever possible, system can suggest a conflict-free amended rule.

To check rule consistency automatically and find the set of rules that should
be used we can adopt a similar approach to others that have used Satisfiability
Modulo Theories (SMT) solvers such as Z3 [22], as well as recommendations
to resolve those conflicts [4]. Thus, to help move towards a more user-centric
approach, we use a straightforward Z3 coding to identify potential conflicts in
rules using our proposed format. We allow the user to select which rule should
be applied in case of conflict, defining the next current conflict-free set of rules
to be stored in the blockchain.

4.2 Access Rules Application Example

This section explores the access rules creation process within a use case descrip-
tion originated from a patient journey in real-world hospitals in Edinburgh (HE),
Barcelona (HB) and Maastrich (HM). A patient journey example includes col-
lection of personal information in several cross-country organisations such as
their appointments in GP practices, interactions with professionals, scheduled
treatments in hospitals, home care visits, prescribed medications, and the use of
a smart device for toxicity data collection [23], just to name a few.

We divide the patient journey description into several points (Pi), and exem-
plify the creation of access rules and conflicts that can arise from their creation
and update in a period of time.

P1. A hypothetical breast cancer patient will start chemotherapy at HE,
in Scotland. A treatment plan and regimen has been established (this will
be over several months with treatment in hospital every three weeks). The
patient also has a comorbidity. As any cancer patient on chemotherapy, she
might have a higher toxicity level as a result [15,23], but it is important to
guarantee that the level does not go above 3. Toxicity levels range from 0
(no toxicity) to 5 (so high it causes death).

From P1 we can generate a set of rules at organisation (hospital) level, which
follows Scottish local regulation, where professionals and staff from the hospital
(HE) will be granted permission to access all data tags concerning the patient,

42 M. Banton et al.

for example. During her first visit to the HE, the patient is registered in the
system and a Serums identity is created (refer to the patient pathway in Fig. 2).
After the patient enrolment, with patient consent, the organisation can create
access rules linked to the patient and to the respective professionals.

In the UK, the principle of implied consent is one that operates in the process
of patient referrals, for instance, from a General Practitioner (GP) to a Specialist
within a hospital. This assumes the patient consent to the sharing of personal
information, within the National Healthcare System (NHS), at the time the
referral is made and for any subsequent treatment relating to the referral. Thus,
the organisation can create the following access rule r1 for the patient based on
the local legislation and hospital policies once the patient is registered in Serums.

r1 = (p1, allow, {d1, d2, n1}, (t1, t2), T)

In this rule example, p1 is the Serums ID to refer to the patient, and d1, d2 ∈
Idd and n1 ∈ Idn are doctors and a nurse working at HE; t1 is the referral
date and T denotes all tags. The creator of the rule (in this case, the admin)
is explicitly stored on the blockchain component for auditing purposes, however
this is not shown in the tuple to simplify the presentation.

The tags provided by the organisation (HE) to be shared as SPHR, for
example, are in the set T ={consultation, treatment, test, medication, personal,
chemotherapy, comorbidities, hospitalisation, symptoms, device}. As mentioned
before, the organisation can also create a set of access rules based on Scottish
legislation and compliant with GDPR at time of patient enrolment in Serums.
Moreover, we can assume that the patient creates an additional rule r2 that
enables a further doctor d3 ∈ Idd from a different healthcare organisation (her
GP) to access the information about her chemotherapy treatment. Her GP is reg-
istered as a Serums user by that different organisation, also enrolled in Serums.

r2 = (p1, allow, {d3}, (t1, t2), {chemotherapy})

It is worth mentioning that Serums allows the creation of rules standing
by the same grantee, tags, and grant action but with different (or extended)
validity when checked against an existent rule. Once validity expires, the rule is
not included in the information retrieval process since blockchain only returns
authorised tags of valid rules.

P2. Patient p1 aims to give consent to sharing data in between treatment
visits via the Cancer Data Gateway and the patient portal. Through a new
access rule, she determines who in the medical team sees this information.
The oncologist/nurse and her GP.

In between treatments the patient is sharing symptoms information to both
the doctors and nurse at HE and her GP.

r3 = (p1, allow, {d1, d2, n1, d3}, (t1, t2), {symptoms})

Conflict-Free Access Rules for Sharing Smart Patient Health Records 43

P3. Via a user-friendly web application with questionnaires provided by
the hospital, e.g., the patient can provide information on symptoms daily
during her treatment. Serious reported symptoms can be picked up by the
clinical team and acted upon immediately.

P4. Combined health data can help clinicians adapt treatments better to
the patient as an individual which results in controlled toxicity levels and
improved health outcomes [23]. It uses data from several patients treated
over the years with comparable characteristics.

From P3, we exemplify that organisations can always provide new data tags
to be linked in Serums, e.g., symptoms, to include data from this specific system,
and from several other in-house applications. In addition, further rules have to
be defined to guarantee that oncologists (d1, d2), nurse (n1) and patient’s GP
(d3), all have access to any additional important information, as mentioned in
P4, where R = {d1, d2, n1, d3}.

r4 = (p1, allow,R, (t1, t2), {personal, comorbidities, hospitalisation})

P5. During the recovery at home between treatments there are signs that
toxicity levels are high or that the condition of the patient is deteriorating.

P6. One of the members of the clinical team (oncologist, nurse or GP)
notices in the system that there are irregularities in the patient’s data [23]
and phones the patient to intervene.

P7. During the phone call a decision is made for the GP/nurse to visit the
patient at home and provide some additional medication to alleviate symp-
toms. Admission to hospital is not necessary. The patient improves. After
a few weeks, patient comes to the HE to receive the next chemotherapy
treatment.

None of the points from P5 to P7 require the creation of new access rules.
However, these can be steps of vital importance for the patient’s improve-
ment, considering the professionals clinical opinion, thus avoiding an unnecessary
admission to the hospital. This would be difficult without the right people having
access to the right information in a timely manner.

P8. Patient p1 has decided to visit her daughter that lives in Barcelona.
As she is undergoing chemotherapy and to prevent potential problems, she
gets in touch with an oncologist at a hospital in Barcelona (HB) so that
he can evaluate her case. In order to do so, the oncologist needs access to
the information on her treatment. Consequently, p1 creates a new access
rule to allow the oncologist to access her information for two days, so he
can evaluate the situation.

44 M. Banton et al.

Thus, from P8, the patient would be creating the following rule with time
validity (t3, t4) regarding the HB oncologist:

r5 = (p1, allow, {o1}, (t3, t4), Γ)

with Γ = {personal, comorbidities, hospitalisation, chemotherapy,medication}
and o1 ∈ Idd the oncologist working at HB.

P9. For unrelated reasons, the patient decides to cancel the trip and creates
a new rule to deny the access to the doctor.

The next rule r6 is an example of a rule to comply with point P9 revoking
access rights to the oncologist from HB. It should be noted that the patient
could also update rule r5 to deny access again, either approach will work, and
would have the same end result.

r6 = (p1, deny, {o1}, (t3, inf), Γ)

P10. Let us now imagine that later the patient decides to move to Maas-
trich, in the Netherlands, and registers at the local hospital (HM).

The hospital (HM) follows Dutch regulations that establish that only the
doctor and nurse responsible for her case can have access to her Dutch records.
Thus, this organisation creates rules concerning the local tags they have. In that
case, the patient herself can decide if she wishes to share her previous Scottish
medical history with additional staff and/or other EU organisations. Through
Serums she can create these new rules and allow new clinical staff (not only the
ones assigned to her case at HM) to access to her present and previous records.

From P10, we also emphasise how Serums treats new rules that operate in a
similar manner to previous rules, i.e., having established the same action but over
a different set of tags for a particular pair granter-grantee. For example, consider
a patient (p2) initially allowing a particular doctor (d1) to access personal detail,
chemotherapy, treatment, and tests information. A couple of months after, the
patient gives access to the same doctor to personal details, chemotherapy, device
information, and tests. It could just be a result of the patient acquiring a health
tracking device, or doctor requesting further access, or it could only be the
patient forgetting they already have given the doctor access to data, and then
giving more (or less) than it is needed. The access rules (r7, r8) are as follows:

r7 = (p2, allow, d1, (t1, t2), {personal, chemotherapy, treatment, test})

r8 = (p2, allow, d1, (t1, t2), {personal, chemotherapy, device, test})

In this case, the system detects a potential conflict, and return an amended
possible rule, with no conflict to be stored. The result indicates that the patient
is only giving extra permissions to a doctor.

r′
8 = (p2, allow, d1, (t1, t2), {device})

Conflict-Free Access Rules for Sharing Smart Patient Health Records 45

However, the patient will be notified on the current allowances to be sure that
the rules contain the tags set she is willing to allow access to at that moment.
Using Boolean algebra, we can see that this effectively mean the particular doctor
has the following rule in place:

r′′
8 = (p2, allow, d1, (t1, t2), {personal, chemotherapy, treatment, device, test})

Serums can inform the patient that the doctor have access to the treatment
information contained in the conflicting rule (r7), which was not included in the
patients new rule (r8), and ask for additional confirmation that the amend (r′′

8)
is what the patient actually desires to share.

This use case illustrated the application of a straightforward format of access
rules in different situations that can occur in a patient journey. The logic app-
roach eases the integration of a user-friendly interface for users to define sets of
conflict-free access rules to medical records.

5 Conclusion

The core of this work is to explore the requirements for access rules and to
experiment on a structured format for representing and checking these rules.
The advantage of having this format is to facilitate formal verification of the
Serums blockchain-based authorisation mechanism. It enables us to tackle con-
flict resolution using SMT solvers and constraint solvers, as done in [4,7], for
finding, respectively, the optimal treatment plan (in case of conflicts in medi-
cal recommendations for patients with multiple chronic conditions) and optimal
medication combinations.

We have built a high-level model of data access authorisation. The proposed
rules format can support individual (and collective) access rules definition in such
a way users can easily define who is allowed to access what (through data tags),
from whom (which patient), and when (time boundaries). Further definitions of
conflict resolution will be done to take into consideration not only the overlapping
tags, but also other important aspects of legislation by country and extended
versions of the parameters in the rules. We proposed an initial concept of tags
that can be formally expanded as we evaluate further use cases. The rule format
also enables us to tackle and conform to important security issues such as access
rights to medical data and governing policies.

In future work, we aim the integration of a user-friendly interface in natural
language for defining rules, the validation and formal verification [12] of the
structures built in the blockchain and data lake modules, as well as coding further
real-world use cases.

References

1. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, pp.
1–15 (2018). https://doi.org/10.1145/3190508

https://doi.org/10.1145/3190508

46 M. Banton et al.

2. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: Medrec: using blockchain for
medical data access and permission management. In: 2016 2nd International Con-
ference on Open and Big Data (OBD), pp. 25–30. No. 16337137 in OBD, IEEE,
New York, NY, USA (2016). https://doi.org/10.1109/OBD.2016.11

3. Bardhan, I.R., Thouin, M.F.: Health information technology and its impact on the
quality and cost of healthcare delivery. Decis. Support Syst. 55(2), 438–449 (2013).
https://doi.org/10.1016/j.dss.2012.10.003

4. Bowles, J., Caminati, M., Cha, S., Mendoza, J.: A framework for automated conflict
detection and resolution in medical guidelines. Sci. Comput. Program. 182, 42–63
(2019). https://doi.org/10.1016/j.scico.2019.07.002

5. Bowles, J., Mendoza-Santana, J., Webber, T.: Interacting with next-generation
smart patient-centric healthcare systems. In: UMAP 2020 Adjunct: Adjunct Pub-
lication of the 28th ACM Conference on User Modeling, Adaptation and Person-
alization, pp. 192–193. ACM, New York, NY, USA (July 2020). https://doi.org/
10.1145/3386392.3399561

6. Bowles, J., Webber, T., Blackledge, E., Vermeulen, A.: A blockchain-based health-
care platform for secure personalised data sharing. Stud. Health Technol. Inform.
Public Health Inform. 281, 208–212 (2021). https://doi.org/10.3233/SHTI210150

7. Bowles, J.K.F., Caminati, M.B.: Balancing prescriptions with constraint solvers.
In: Liò, P., Zuliani, P. (eds.) Automated Reasoning for Systems Biology and
Medicine. CB, vol. 30, pp. 243–267. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17297-8 9

8. Bowles, J.K.F., Mendoza-Santana, J., Vermeulen, A.F., Webber, T., Blackledge,
E.: Integrating healthcare data for enhanced citizen-centred care and analytics.
Stud. Health Tech. Inf. 275, 17–21 (2020). https://doi.org/10.3233/SHTI200686

9. Constantinides, A., Belk, M., Fidas, C., Pitsillides, A.: Design and development of
the Serums patient-centric user authentication system. In: UMAP 2020 Adjunct:
Adjunct Publication of the 28th ACM Conference on User Modeling, Adaptation
and Personalization, pp. 201–203. ACM, New York, NY, USA (July 2020). https://
doi.org/10.1145/3386392.3399564

10. Constantinides, A., Fidas, C., Belk, M., Pietron, A.M., Han, T., Pitsillides, A.:
From hot-spots towards experience-spots: leveraging on users’ sociocultural expe-
riences to enhance security in cued-recall graphical authentication. Int. J. Hum.
Comput. Stud. 149, 102602 (2021). https://doi.org/10.1016/j.ijhcs.2021.102602

11. Cui, J., Zhou, S., Zhong, H., Xu, Y., Sha, K.: Transaction-based flow rule conflict
detection and resolution in SDN. In: 2018 27th International Conference on Com-
puter Communication and Networks (ICCCN), pp. 1–9 (2018). https://doi.org/10.
1109/ICCCN.2018.8487415

12. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: UPPAAL SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015). https://doi.
org/10.1007/s10009-014-0361-y

13. Dhayne, H., Haque, R., Kilany, R., Taher, Y.: In search of big medical data inte-
gration solutions - a comprehensive survey. IEEE Access 7, 91265–91290 (2019).
https://doi.org/10.1109/ACCESS.2019.2927491

14. Dubovitskaya, A., Xu, Z., Ryu, S., Schumacher, M., Wang, F.: Secure and trustable
electronic medical records sharing using blockchain. In: AMIA Annual Symposium
Proceedings, vol. 2017, p. 650. American Medical Informatics Association (2017).
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977675/

15. Extermann, M., et al.: Predicting the risk of chemotherapy toxicity in older
patients: the chemotherapy risk assessment scale for high-age patients (crash) score.
Cancer 118(13), 3377–3386 (2012). https://doi.org/10.1002/cncr.26646

https://doi.org/10.1109/OBD.2016.11
https://doi.org/10.1016/j.dss.2012.10.003
https://doi.org/10.1016/j.scico.2019.07.002
https://doi.org/10.1145/3386392.3399561
https://doi.org/10.1145/3386392.3399561
https://doi.org/10.3233/SHTI210150
https://doi.org/10.1007/978-3-030-17297-8_9
https://doi.org/10.1007/978-3-030-17297-8_9
https://doi.org/10.3233/SHTI200686
https://doi.org/10.1145/3386392.3399564
https://doi.org/10.1145/3386392.3399564
https://doi.org/10.1016/j.ijhcs.2021.102602
https://doi.org/10.1109/ICCCN.2018.8487415
https://doi.org/10.1109/ICCCN.2018.8487415
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1109/ACCESS.2019.2927491
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977675/
https://doi.org/10.1002/cncr.26646

Conflict-Free Access Rules for Sharing Smart Patient Health Records 47

16. Fan, K., Wang, S., Ren, Y., Li, H., Yang, Y.: Medblock: efficient and secure medical
data sharing via blockchain. J. Med. Syst. 42(8), 1–11 (2018). https://doi.org/10.
1007/s10916-018-0993-7

17. Gavrilov, G., Vlahu-Gjorgievska, E., Trajkovik, V.: Healthcare data warehouse
system supporting cross-border interoperability. Health Inform. J. 26(2), 1321–
1332 (2020). https://doi.org/10.1177/1460458219876793

18. Guo, H., Li, W., Nejad, M., Shen, C.C.: Access control for electronic health records
with hybrid blockchain-edge architecture. In: 2019 IEEE International Conference
on Blockchain (Blockchain), pp. 44–51. IEEE (2019). https://doi.org/10.1109/
Blockchain.2019.00015

19. Hölbl, M., Kompara, M., Kamǐsalić, A., Nemec Zlatolas, L.: A systematic review
of the use of blockchain in healthcare. Symmetry 10(10), 470 (2018). https://doi.
org/10.3390/sym10100470

20. Janjic, V., Bowles, J.K.F., Vermeulen, A.F., et al.: The serums tool-chain: ensur-
ing security and privacy of medical data in smart patient-centric healthcare sys-
tems. In: 2019 IEEE International Conference on Big Data, pp. 2726–2735. IEEE,
New York, NY, USA (December 2019). https://doi.org/10.1109/BigData47090.
2019.9005600

21. Larrucea, X., Moffie, M., Asaf, S., Santamaria, I.: Towards a gdpr compliant way
to secure european cross border healthcare industry 4.0. Comput. Stand. Interfaces
69, 103408 (2020). https://doi.org/10.1016/j.csi.2019.103408

22. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

23. Silvina, A., Bowles, J., Hall, P.: On predicting the outcomes of chemotherapy
treatments in breast cancer. In: Riaño, D., Wilk, S., ten Teije, A. (eds.) AIME
2019. LNCS (LNAI), vol. 11526, pp. 180–190. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-21642-9 24

24. Sookhak, M., Jabbarpour, M.R., Safa, N.S., Yu, F.R.: Blockchain and smart con-
tract for access control in healthcare: a survey, issues and challenges, and open
issues. J. Netw. Comput. Appl. 178, 102950 (2021). https://doi.org/10.1016/j.
jnca.2020.102950

25. Tanwar, S., Parekh, K., Evans, R.: Blockchain-based electronic healthcare record
system for healthcare 4.0 applications. J. Inf. Secur. Appl. 50, 102407 (2020).
https://doi.org/10.1016/j.jisa.2019.102407

26. Webber, T., Santana, J.M., Vermeulen, A.F., Bowles, J.K.F., et al.: Designing a
patient-centric system for secure exchanges of medical data. In: Gervasi, O. (ed.)
ICCSA 2020. LNCS, vol. 12254, pp. 598–614. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58817-5 44

https://doi.org/10.1007/s10916-018-0993-7
https://doi.org/10.1007/s10916-018-0993-7
https://doi.org/10.1177/1460458219876793
https://doi.org/10.1109/Blockchain.2019.00015
https://doi.org/10.1109/Blockchain.2019.00015
https://doi.org/10.3390/sym10100470
https://doi.org/10.3390/sym10100470
https://doi.org/10.1109/BigData47090.2019.9005600
https://doi.org/10.1109/BigData47090.2019.9005600
https://doi.org/10.1016/j.csi.2019.103408
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-21642-9_24
https://doi.org/10.1007/978-3-030-21642-9_24
https://doi.org/10.1016/j.jnca.2020.102950
https://doi.org/10.1016/j.jnca.2020.102950
https://doi.org/10.1016/j.jisa.2019.102407
https://doi.org/10.1007/978-3-030-58817-5_44
https://doi.org/10.1007/978-3-030-58817-5_44

Structuring Rule Sets Using Binary
Decision Diagrams

Florian Beck(B), Johannes Fürnkranz, and Van Quoc Phuong Huynh

Institute for Application-oriented Knowledge Processing (FAW),
Johannes Kepler University, Linz, Austria
{fbeck,juffi,vqphuynh}@faw.jku.at

Abstract. Over the years we have seen considerable progress in learning
rule-based theories. However, all state-of-the-art rule learners still learn
descriptions that directly relate the input features to the target concept
and are not able to discover intermediate concepts which might result
in a more compact and interpretable theory. An analogous observation
can also be made in electronic design automation where the task is to
find the minimal representation of a Boolean function: if the represen-
tation is not limited to two levels, even smaller circuits can be found.
In this paper, we consider binary classification tasks as multi-level logic
optimization problems. We take DNF descriptions of the positive class,
as obtained by state-of-the-art rule learners, and generate binary deci-
sion diagrams with the equivalent expression as the rule set. Finally, a
new rule-based theory is extracted from the BDD, which includes new
intermediate concepts and is therefore better structured than the origi-
nal DNF rule set. First experiments on small artificial datasets indicate
that intermediate concepts can be reliably detected, and the size of the
resulting representations can be compressed, but a first study on a sim-
ple real-world dataset showed that the found structures are too complex
to be interpretable.

Keywords: Inductive rule learning · Learning in logic · Binary
decision diagrams · Multi-level logic optimization

1 Introduction

One of the big unsolved problems in inductive rule learning is the invention of
new intermediate concepts. This line of work has been known as constructive
induction [15] or predicate invention [30], but surprisingly, it has not received
much attention since the classical works in inductive logic programming in the
1980s and 1990s. Most of the approaches are tailored towards learning from small
datasets, often single examples, making use of additional knowledge, e.g., in the
form of rule templates [21]. Kramer [14] provides an excellent recent summary
of work in this area, also pointing out essentially the above-mentioned research
gap.

c© Springer Nature Switzerland AG 2021
S. Moschoyiannis et al. (Eds.): RuleML+RR 2021, LNCS 12851, pp. 48–61, 2021.
https://doi.org/10.1007/978-3-030-91167-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91167-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-91167-6_4

Structuring Rule Sets 49

A straight-forward way for inventing new concepts is the use of a wrapper
that scans for regularly co-occurring patterns in rules, and use them to define
new intermediate concepts which allow to compress the original theory [25,33].
For rules that have been obtained from decision trees [27], each path from the
root vertex to the leaf can be interpreted as a rule. If two paths have common
arcs, their corresponding rules share part of their conditions as well. From these,
we can create a new concept that is used in two or more rules. However, by
creating concepts in this way, we will only obtain conjunctive expressions as
intermediate concepts. This is a severe limitation, as it can only re-inforce the
learning of rules that have been found in previous iterations, so that they can
be more quickly found with the learned conjunctive short-cuts.

In general, conjunctions can be described efficiently by decision trees, while
disjunctive concepts may suffer from the well-known replication problem [24],
i.e., the problem that the same subtree would have to be learned in multiple
parts of the tree. This problem can be handled efficiently by decision graphs,
a generalization of decision trees [23]. They additionally contain joins, where
two (or more) vertices have a common child. This specifies that two subsets
have some common properties, and hence can be considered as a disjunctive
intermediate concept. Much more rewarding would therefore be a method that
allows to extract disjunctive descriptions of possible subconcepts from learned
rule sets. In this short paper, we will thus present a new approach how to extract
rule-based theories with both conjunctive and disjunctive intermediate concepts.
We focus on binary decision diagrams (BDDs) as a subgroup of decision graphs,
which are well-known in the field of electronic design automation, and show they
can be used for extracting meaningful disjunctive subconcepts from learned rule
sets.

The paper is structured as follows: Sect. 2 gives a brief introduction into
BDDs and presents related work. Subsequently, Sect. 3 explains our rule set
structuring algorithm based on an illustrative example. In Sect 4, we apply
the approach both on artificial and on some real-world datasets. We conclude
in Sect. 5 and discuss possible improvements to make the presented approach
applicable to a wider variety of datasets.

2 Preliminaries and Related Work

A binary decision diagram (BDD) is a rooted, directed acyclic graph. Each non-
terminal vertex v is labeled by a variable var(v) and has arcs directed toward
two children: lo(v) corresponding to the case where the variable is assigned 0 and
hi(v) corresponding to the case where the variable is assigned 1. Each terminal
vertex is labeled 0 or 1 [7]. Two example BDDs describing the parity concept
are shown in Fig. 1. The resulting truth table of both diagrams is equivalent,
however, the specific case of a binary decision tree in Fig. 1a needs more non-
terminal and terminal vertices than the BDD in Fig. 1b. In fact, Fig. 1b shows
a reduced ordered BDD (ROBDD), which merges duplicate non-terminal and
non-terminal vertices and eliminates redundant vertices v with hi(v) = lo(v).

50 F. Beck et al.

Fig. 1. Binary decision tree and BDD for the parity problem. Each non-terminal vertex
is labeled with the variable to check and has two outgoing arcs: the green one if the
value is 1 and the red one if it is 0. The terminal vertices labeled with 0 (1) correspond
to an even (odd) parity. (Color figure online)

Furthermore, each path through the diagram traverses the variables in the same
order, which makes ROBDDs to a canonical representation of Boolean formulas
for a given variable order. In the following, when speaking of BDDs, we will
assume them to be reduced and ordered (i.e., ROBDDs).

BDDs are mainly used in the field of electronic design automation during the
process of logic synthesis. The task is to find a minimal digital circuit with the
desired behavior defined by e.g. a Boolean formula, which is known as logic min-
imization. First approaches in the 1980s, such as the ESPRESSO algorithm [5],
delivered efficient solutions for the minimization on two levels, while a few years
later algorithms and systems for multi-level logic optimization were designed,
e.g. MIS [6]. More recently, with and-inverter-graphs (AIG) a new scalable rep-
resentation is used in synthesis and verification tasks [2].

In the 1990s, decision diagrams were also applied to machine learning under
the name of decision graphs. Reduced ordered decision graphs (RODG) were
combined with the minimum description length principle to trade off between
accuracy in the training set and complexity of the description [22]. Oblivious,
read-once decision graphs (OODG) [13] extend RODGs by not being limited to
binary tests, which is crucial for many real-world datasets. The combination of
logic synthesis and machine learning, in particular the trade-off between exact-
ness and generalization, is currently still being researched [28].

Roughly parallel to this, on the side of symbolic machine learning, first
approaches to restructure rule sets developed. For example, Duce was a machine
learning system which is able to restructure a knowledge base by suggesting
and interactively refining high-level domain features [19]. Surprisingly, this topic
known as constructive induction or predicate invention has not received much
attention since then. Recent research approaches the problem from deep learning,

Structuring Rule Sets 51

Fig. 2. Concepts in the car-evaluation dataset, cf. [3]

with formalisms like sum-product-networks (SPN) [26] or binary neural networks
(BNN) [8], which also have a declarative interpretation, but, however, are not
constructed to be minimal and interpretable like traditional rule sets.

3 Rule Set Structuring

Like decision trees, BDDs can be used to generate sets of rules. Each path
in a decision tree or diagram can be converted to a rule with attribute-value
pairs (derived by vertex resp. arc) as conditions, whereas the head of the rule is
given by the leaf. If two paths overlap, then the corresponding rules will share
conditions as well, though, this is not necessarily the case the other way around.
While this holds for both decision trees and diagrams, the number of arcs only
used in a single path can be significantly higher in decision trees than in BDDs,
like, e.g., in Fig. 1. The main difference between the two data structures is that
BDDs allow vertices to have an indegree deg−(v) of more than 1. In such ‘join’
vertices, two or more different incoming paths can share their remaining arcs
until the leaf is reached. Therefore, we can define a new disjunctive concept
for all incoming paths ending there and starting either from the root vertex
or another ‘join’ vertex. If some of the incoming paths have at least two arcs
in common, we can additionally define a conjunctive concept. In Fig. 1b, both
vertices labeled with c have deg−(v) = 2. The left one combines the paths
a = 0 ∧ b = 1 and a = 1 ∧ b = 0 to a new disjunctive concept for parity
odd ← (a = 0 ∧ b = 1) ∨ (a = 1 ∧ b = 0), the right one analogously for even.
These concepts can be reused in the rules for the terminal vertex labeled with
1: parity ← (even ∧ c = 0) ∨ (odd ∧ c = 1).

To demonstrate the functionality of the proposed method, we will apply it
on a sample dataset dealing with the evaluation of cars. Our car-evaluation
dataset is inspired by the dataset presented in [3], where it was used as an

52 F. Beck et al.

Fig. 3. Unstructured and structured rule sets for the car-evaluation problem.

example dataset for tree-structured criteria in the field of multi-attribute decision
making. The structure of the criteria is adopted unchanged and shown in Fig. 2.
According to this tree, the quality of cars is measured by two main groups of
criteria: price and technical characteristics. The price is determined by buying
and maintenance price. Technical characteristics are decomposed into safety and
comfort, which further depends on number of doors, number of persons that fit
in the car and size of the luggage boot.

While the number and structure of the attributes remain unchanged, we
restrict the domain of each attribute to the values acceptable (acc) and unac-
ceptable (unacc). In particular, the target attribute will be limited to these two
values as well, so that the dataset can be transformed easily into a binary clas-
sification problem. For convenience, we abbreviate the condition x=acc as x and
x=unacc as \+ x for every attribute x.

Figure 3b shows the structured rule set that defines the resulting domain.
However, the resulting minimal DNF, shown in Fig. 3a already consists of 22
literals, while the rule set with intermediate concepts only consists of 12. There-
fore, classical rule learners would have to learn longer rules for a perfect theory
than they would be if we learn intermediate concepts. In general, the number of
terms in both a CNF and DNF can grow exponentially (see [18]).

Our goal is now to find a rule representation close to the one defined in
Fig. 3b using a BDD. We could start off with a DNF expression that describes
all acceptable combinations of the 26 = 64 possible samples and transform this
Boolean formula to a BDD. To this end, we use the Python library PBDD1,
which can not only build BDDs in an efficient way (cf. [4]), but also provides
the option to find the best variable ordering (see [29]).

With this, the DNF of Fig. 3a, which is also the output of all rule learners
that we tried, can be converted to the BDD shown in Fig. 4a. The concepts
detected with the identification of all ‘join’ vertices are listed in the rule set in

1 https://github.com/tyler-utah/PBDD.

https://github.com/tyler-utah/PBDD

Structuring Rule Sets 53

Fig. 4. BDD and a derived rule set for the car-evaluation dataset. Concept c1 corre-
sponds to the vertex labeled with safety, c2 to the vertex labeled with lug boot and
car to the terminal vertex labeled with 1.

Fig. 4b. Instead of originally three intermediate concepts with eight rules, we
now found only two intermediate concepts with seven rules in total. However,
the detected concepts are similar to the original ones: c1 is identical to price
when simplifying the second rule and c2 is close to comfort. The tech concept
is merged into the final car concept and is thus not listed explicitly. To conclude,
by the invention of concepts, the presented approach was able to find a DNF-
equivalent rule set which is better structured and uses less rules.

In general, it will not be feasible to use a DNF expression that represents
a disjunction of all positive samples as the input for computing the BDD. This
approach presumes that the data is noise-free and complete, since all test samples
that are not identical to a known positive sample are considered as negative,
i.e., it does not generalize at all. Traditional approaches in logic synthesis like
Karnaugh maps [12] and the Quine-McCluskey algorithm [16] can cope with the
non-completeness by explicitely considering feature combinations that do not
appear in the training set as “don’t cares” and treating them arbitrarily either
as positive or negative samples. However, in machine learning the training set is
usually only a tiny fraction of the whole feature space, which makes it impossible
to explicitly evaluate all “don’t cares”.

However, in order to overcome this problem of overfitting, we can shift the
task of generalization to a rule learner, which is able to learn a small and general
rule set from the input data, thereby also dealing with possible noise in the
data. The learned rule set can the be used as input for the BDD creation. These
experiments will be described in the next section.

54 F. Beck et al.

4 Experiments

For a first experimental evaluation of our approach, we experimented with both,
artificial datasets, which were generated to contain structured subconcepts, and
also with a simple real-world datasets.

4.1 Artificial Datasets

First, we used 20 artificial datasets with ten Boolean inputs and a single Boolean
output. The datasets are designed to contain intermediate concepts like the
car-evaluation dataset presented in Sect. 3. The detailed generation process is
explained in [1]. Naturally, these concepts can be transformed into DNF expres-
sions of various lengths, and conventional rule learning algorithms would learn
these. Our goal is to find these or similar intermediate concepts using a BDD.

Furthermore, we want to apply the presented method on learned rule sets. For
obtaining a seed DNF, we use Lord, a rule learner currently under development
in our group, which applies a state-of-the-art data structure for frequent itemset
mining, n-list [9], and the m-estimate heuristic [11] to find the best rule for each
training example via a greedy method. These local best rules are collected and
then filtered to form a rule-based classifier. As it learns the best rule for each
training example, the produced rule sets are typically larger (but often also more
accurate) than the sparse rule sets learned by conventional learners, and often
contain several variants of similar rules. For this reason, it seemed like a perfect
choice for our exploration of the use of BDDs for structuring rule sets.

For both settings, we compare the number of rules |R| and concepts |C| in
the DNF resp. flat rule set with the corresponding numbers |R′| and |C ′| in
the rule set extracted from the generated (RO)BDD. Obviously, for the DNF
representations |C| = 0 for all datasets by definition. Furthermore, we compare
the number of (non-terminal) vertices |V ′| in the BDD with the number of literals
|V | in the DNF, since we can define every rule as a separate path in a BDD.

The results are shown in Table 1. Both the ground truth and the learned
rule set have a higher number of rules and concepts in the deep rule set and a
higher number of vertices in the flat rule set. Thus, by converting the DNF into
a deep rule set, we can compact the structure by finding intermediate concepts
and merge vertices at the cost of more rules for defining these intermediate
concepts. Thereby, we can also see that the average number of rules, concepts
and vertices is almost identical for the ground truth and the learned rule set,
even if individual values deviate from each other.

4.2 Mushroom Dataset

We also tried our approach on the mushroom dataset2 from the UCI repository
[10]. This dataset is known to be solvable with very simple rules, and, in fact,

2 For all rule sets, the attributes have been one-hot-encoded to meet the requirements
for BDD processing.

Structuring Rule Sets 55

Table 1. Number of rules |R|, concepts |C|, and vertices |V | in artificial datasets for
both the ground truth and the rule set from our learner. The columns without prime
denote the values for the rule set in DNF, the values with prime those for the rule set
extracted from the BDD.

Seed Ground truth Lord

|R| |R′| |C| |C′| |V | |V ′| |R| |R′| |C| |C′| |V | |V ′|
5 8 20 0 7 29 18 13 20 0 6 52 19

16 17 27 0 4 49 25 18 26 0 4 51 26

19 4 8 0 1 9 10 5 6 0 1 11 7

24 15 46 0 12 59 45 18 39 0 11 72 36

36 21 62 0 16 85 53 25 61 0 12 99 62

44 16 28 0 5 48 28 25 31 0 5 75 28

53 30 37 0 7 104 31 13 12 0 3 36 11

57 6 10 0 2 19 13 8 22 0 5 27 17

60 18 26 0 5 57 27 20 28 0 5 63 29

65 7 14 0 3 23 15 8 15 0 4 27 13

68 17 31 0 8 68 34 23 46 0 10 92 43

69 14 24 0 6 60 30 16 36 0 6 70 30

70 18 41 0 7 78 46 26 56 0 13 113 51

81 20 43 0 11 84 39 28 34 0 10 121 33

82 4 5 0 1 8 6 4 8 0 2 8 6

85 3 3 0 0 8 6 3 3 0 0 8 6

89 12 48 0 11 47 41 19 41 0 11 72 36

107 17 47 0 10 70 41 32 32 0 7 132 33

112 18 37 0 8 67 33 33 41 0 10 126 36

118 14 32 0 8 51 27 16 32 0 6 59 30

∅ 14.0 29.5 0 6.6 51.2 28.4 17.7 29.5 0 6.6 65.7 27.6

even Lord, which aims for finding the best explanation for each individual
example, produces a very small rules set consisting of only 8 rules with a total
of 10 conditions. For these reason, we also tried two rule sets generated with a
conventional separate-and-conquer rule learning algorithm using a regular and
an inverted Laplace heuristic. Whereas the first heuristic prefers short rules, the
second results in longer rules and literals with multiple occurrences in the rule
set [31]. The goal of this experiment was to see whether BDDs can be used to
successfully structure the complex rule sets learned by such inverted heuristics.

In Table 2 we can see that our approach cannot find interesting subconcepts in
the two rule sets with short rules, because the learned rules often only consist of
single conditions. The few found concepts typically only capture that a previous
rule does not fire. Only for the more complex rule set of the inverted Laplace
heuristic, our approach delivers new subconcepts. However, these increase the

56 F. Beck et al.

Table 2. Number of rules, concepts and vertices for the mushroom dataset for three
different rule learners. See Table 1 for the meaning of the variables.

Rule learner |R| |R′| |C| |C′| |V | |V ′|
hLap learner 7 57 0 12 35 46

hLap learner 11 13 0 1 13 13

Lord 8 12 0 2 10 10

Fig. 5. Part of the BDD for the mushroom dataset

size of the found concept descriptions, not only in the number of rules but also
in the number of vertices.

Figure 5 shows a part of the BDD resulting from the DNF learned from
inverted Laplace heuristics. The whole BDD is too big and too complex to be
shown in a figure and to be considered interpretable. We cannot reproduce all

Structuring Rule Sets 57

|R′| = 57 rules and |C ′| = 12 concepts that are formed from this BDD by our
method, but we can take a closer look at the pink colored vertex, which joins
two different green incoming paths. These correspond to the following two rules,
defining an intermediate concept c1.

c1 :- veil_color_white, bruises_no, ring_number_one,
stalk_surface_above_ring_silk, gill_size_narrow.

c1 :- veil_color_white, bruises_no, ring_number_one,
\+ stalk_surface_above_ring_silky, gill_size_narrow,
population_several, stalk_shape_tapering.

Obviously, these rules could be further simplified by extracting common rules
conditions. We have not implemented this step yet, but it essentially corresponds
to the intra-construction operator first proposed for propositional inverse reso-
lution in the Duce system [19,20]. An application of this rule results in the
following, even more structured rule set:

c1 :- veil_color_white, bruises_no, ring_number_one,
gill_size_narrow, c1a.

c1a :- stalk_surface_above_ring_silky.
c1a :- population_several, stalk_shape_tapering.

While this looks like a straight-forward step, which we could have easily
implemented, it is actually more complex than it appears. This may be seen when
we, based on the above definition, try to define the pink colored ‘join’ vertex with
three incoming edges (two red and one green), which would, straight-forwardly,
result in the following definition for a concept c2:

c2 :- veil_color_white, bruises_no, \+ ring_number_one,
gill_size_narrow, population_several, stalk_shape_tapering.

c2 :- c1, stalk_color_below_ring_white, \+ stalk_root_bulbous.
c2 :- c1, \+ stalk_color_below_ring_white.

As can be seen, the concept c1 defined above is used in two of the above-
mentioned rules. However, also the first rule, has a strong similarity to the parts
of the definitions of c1, in that it only differs in whether ring number one is true
or not. Based on this, one could further restructure these rules in the following
way:

c1 :- c12, ring_number_one, c1a.

c1a :- stalk_surface_above_ring_silky.
c1a :- population_several, stalk_shape_tapering.

c12 :- veil_color_white, bruises_no, gill_size_narrow.

58 F. Beck et al.

c2 :- c12, \+ ring_number_one, c1a.
c2 :- c1, \+ stalk_root_bulbous.
c2 :- c1, \+ stalk_color_below_ring_white.

Note that we additionally performed an algebraic optimization in the second
rule of c2, which made use of the \+ stalk color below ring white-term in
the third rule. The definition of c1 could even be removed altogether, and c2
could be defined on the basis of c12, c1a and c2a, emphasizing the similarity
of the three rules defining c2 and extracting their differences to a subconcept
c2a. After performing algebraic optimizations in the rules of c2, this leads to
the following rule set:

c1a :- stalk_surface_above_ring_silky.
c1a :- population_several, stalk_shape_tapering.

c12 :- veil_color_white, bruises_no, gill_size_narrow.

c2a :- \+ ring_number_one.
c2a :- \+ stalk_root_bulbous.
c2a :- \+ stalk_color_below_ring_white.

c2 :- c12, c1a, c2a.

Obviously, finding a compressive and interpretable structured theory is a very
hard problem, which requires a deeper investigation.

5 Conclusion and Future Work

Motivated by the unsolved problem of the invention of new intermediate con-
cepts, we present a novel method which uses BDDs to extract hidden concepts
in existing rule sets. We show in our experiments that this approach detects
concepts reliably in artificial datasets and one real-world dataset. While for the
artificial datasets the rule set structure could be compacted by the concepts
found, the effectiveness of the method on one-hot-encoded nominal data is lim-
ited so far, which we plan to address in future work.

The proposed method has some substantial limitations so far. One main
drawback is that BDDs are binary by definition and therefore both the input
attributes and the class attribute are limited to two values. While we can easily
convert nominal, numeric and multi-class datasets to fit this format by using
discretization, one-hot-encoding and one-vs.-one or one-vs.-rest classification,
the size of the corresponding BDD grows quickly which makes it both inefficient
to compute and hard to interpret. A suitable extension could be the use of multi-
valued decision diagrams (MDD) instead of BDDs [17], which can reduce the size
of the diagram and the corresponding rule set drastically.

The practical utility of BDD-based compression is also limited by its lack of
efficiency. The main problem is that the size of a BDD depends on the order

Structuring Rule Sets 59

in which the variables are processed. A good compression can only be obtained
with a good variable reordering. The approach that we use essentially tries many
different orderings in order to identify the one that results in the minimal graph
[29]. However, if we are only looking for a restructuring and not a compression
of the rule set, we are not necessarily interested in the minimal representation
given by the best variable ordering. Whereas the default ordering can still be
inappropriate for finding a compact structure, a good heuristic for finding not
the best, but a good ordering might be a good compromise.

As already indicated in Sect. 4.2, we also intend to bring in ideas from
compression-based systems such as Duce [19,20], with its systematic refine-
ment operators based on inverse resolution, or Krimp [32], from which we hope
to be able to adapt ideas from database compression to the problem of com-
pressing predictive theories. We also intend to apply algebraic optimizations like
shown in Sect. 4.2 more systematically to remove irrelevant conditions and rules
for further compressing.

Finally, we noticed that ‘join’ vertices in the BDD are often just caused by
rules that do not apply, which would only be relevant for rule lists, but not for rule
sets. We think that an appropriate structure for rule sets would therefore need
to process all rules at the same time in a non-deterministic way, very much in
the same way as non-deterministic finite automata can have multiple transitions
simultaneously as opposed to deterministic automata. This also comes closer
to the representation in neural networks, where we can use activations of the
previous layer in 0, 1 or multiple vertices just like we can follow 0, 1 or multiple
paths in the decision graph. We plan to explore all these options in subsequent
work.

References

1. Beck, F., Fürnkranz, J.: An empirical investigation into deep and shallow rule learn-
ing. Front. Artifi. Intell. 4, 145 (2021). https://doi.org/10.3389/frai.2021.689398

2. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Technical report
11/2, Institute for Formal Models and Verification, Johannes Kepler University,
Linz, Austria (2011)

3. Bohanec, M., Rajkovic, V.: Knowledge acquisition and explanation for multi-
attribute decision making. In: 8th International Workshop on Expert Systems and
Their Applications, pp. 59–78 (1988)

4. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD pack-
age. In: 27th ACM/IEEE Design Automation Conference, pp. 40–45. IEEE (1990)

5. Brayton, R.K., Hachtel, G.D., McMullen, C.T., Sangiovanni-Vincentelli, A.L.:
Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers
(1984)

6. Brayton, R.K., Rudell, R., Sangiovanni-Vincentelli, A., Wang, A.R.: MIS: a
multiple-level logic optimization system. IEEE Trans. Comput. Aided Des. Integr.
Circ. Syst. 6(6), 1062–1081 (1987)

7. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. 24(3), 293–318 (1992)

https://doi.org/10.3389/frai.2021.689398

60 F. Beck et al.

8. Courbariaux, M., Bengio, Y., David, J.: BinaryConnect: training deep neural net-
works with binary weights during propagations. In: Cortes, C., Lawrence, N.D.,
Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Pro-
cessing Systems (NeurIPS), vol. 28, Montreal, Quebec, Canada, pp. 3123–3131
(2015)

9. Deng, Z.H., Lv, S.L.: PrePost+: an efficient N-lists-based algorithm for mining fre-
quent itemsets via children-parent equivalence pruning. Expert Syst. Appl. 42(13),
5424–5432 (2015)

10. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

11. Džeroski, S., Cestnik, B., Petrovski, I.: Using the m-estimate in rule induction. J.
Comput. Inf. Technol. 1, 37–46 (1993)

12. Karnaugh, M.: The map method for synthesis of combinational logic circuits. Trans.
Am. Inst. Electr. Eng. Part I: Commun. Electron. 72(5), 593–599 (1953)

13. Kohavi, R.: Bottom-up induction of oblivious read-once decision graphs. In:
Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 154–169.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57868-4 56

14. Kramer, S.: A brief history of learning symbolic higher-level representations from
data (and a curious look forward). In: Proceedings of the 29th International Joint
Conference on Artificial Intelligence (IJCAI), Survey Track, pp. 4868–4876 (2020)

15. Matheus, C.J.: A constructive induction framework. In: Proceedings of the 6th
International Workshop on Machine Learning, pp. 474–475 (1989)

16. McCluskey, E.J.: Minimization of Boolean functions. Bell Syst. Tech. J. 35(6),
1417–1444 (1956). https://doi.org/10.1002/j.1538-7305.1956.tb03835.x

17. Miller, D.M.: Multiple-valued logic design tools. In: Proceedings of the 23rd Inter-
national Symposium on Multiple-Valued Logic, pp. 2–11. IEEE (1993)

18. Miltersen, P.B., Radhakrishnan, J., Wegener, I.: On converting CNF to DNF. The-
oret. Comput. Sci. 347(1–2), 325–335 (2005)

19. Muggleton, S.H.: Structuring knowledge by asking questions. In: Bratko, I., Lavrač,
N. (eds.) Progress in Machine Learning, pp. 218–229. Sigma Press, Wilmslow
(1987)

20. Muggleton, S.H.: Inverting the resolution principle. In: Hayes, J.E., Michie, D.,
Tyugu, E. (eds.) Machine Intelligence, vol. 12, chap. 7, pp. 93–103. Clarendon
Press, Oxford (1991)

21. Muggleton, S.H., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of
higher-order dyadic datalog: predicate invention revisited. Mach. Learn. 100(1),
49–73 (2015)

22. Oliveira, A.L., Sangiovanni-Vincentelli, A.: Using the minimum description length
principle to infer reduced ordered decision graphs. Mach. Learn. 25(1), 23–50
(1996)

23. Oliver, J.J.: Decision graphs – an extension of decision trees. In: Proceedings of the
4th International Workshop on Artificial Intelligence and Statistics, pp. 343–350
(1993)

24. Pagallo, G., Haussler, D.: Boolean feature discovery in empirical learning. Mach.
Learn. 5, 71–99 (1990)

25. Pfahringer, B.: Controlling constructive induction in CIPF: an MDL approach. In:
Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 242–256.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57868-4 62

26. Poon, H., Domingos, P.: Sum-product networks: a new deep architecture. In: 2011
IEEE International Conference on Computer Vision Workshops (ICCV Work-
shops), pp. 689–690. IEEE (2011)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/3-540-57868-4_56
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1007/3-540-57868-4_62

Structuring Rule Sets 61

27. Quinlan, J.R.: Generating production rules from decision trees. In: Proceedings of
the 10th International Joint Conference on Artificial Intelligence (IJCAI-87), pp.
304–307. Morgan Kaufmann (1987)

28. Rai, S., et al.: Logic synthesis meets machine learning: trading exactness for gen-
eralization. arXiV Preprint arXiV:2012.02530 (2020)

29. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams.
In: Proceedings of 1993 International Conference on Computer Aided Design
(ICCAD), pp. 42–47. IEEE (1993)

30. Stahl, I.: Predicate invention in inductive logic programming. In: De Raedt, L.
(ed.) Advances in Inductive Logic Programming, Frontiers in Artificial Intelligence
and Applications, vol. 32, pp. 34–47. IOS Press (1996)

31. Stecher, J., Janssen, F., Fürnkranz, J.: Separating rule refinement and rule selection
heuristics in inductive rule learning. In: Calders, T., Esposito, F., Hüllermeier, E.,
Meo, R. (eds.) ECML PKDD 2014, Part III. LNCS (LNAI), vol. 8726, pp. 114–129.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44845-8 8

32. Vreeken, J., van Leeuwen, M., Siebes, A.: KRIMP: mining itemsets that compress.
Data Min. Knowl. Discov. 23(1), 169–214 (2011). https://doi.org/10.1007/s10618-
010-0202-x. http://dx.doi.org/10.1007/ s10618-010-0202-x

33. Wnek, J., Michalski, R.S.: Hypothesis-driven constructive induction in AQ17-HCI:
a method and experiments. Mach. Learn. 14(2), 139–168 (1994). Special Issue on
Evaluating and Changing Representation

http://arxiv.org/abs/2012.02530
https://doi.org/10.1007/978-3-662-44845-8_8
https://doi.org/10.1007/s10618-010-0202-x
https://doi.org/10.1007/s10618-010-0202-x
http://dx.doi.org/10.1007/ s10618-010-0202-x

Link Traversal with Distributed Subweb
Specifications

Bart Bogaerts1(B), Bas Ketsman1, Younes Zeboudj1, Heba Aamer2,
Ruben Taelman3, and Ruben Verborgh3

1 Vrije Universiteit Brussel, Brussels, Belgium
{bart.bogaerts,bas.ketsman,younes.zeboudj}@vub.be

2 Universiteit Hasselt, Hasselt, Belgium
heba.mohamed@uhasselt.be

3 Ghent University – imec – IDLab, Ghent, Belgium
{ruben.taelman,ruben.verborgh}@ugent.be

Abstract. Link Traversal–based Query Processing (ltqp), in which
a sparql query is evaluated over a web of documents rather than a sin-
gle dataset, is often seen as a theoretically interesting yet impractical
technique. However, in a time where the hypercentralization of data
has increasingly come under scrutiny, a decentralized Web of Data with
a simple document-based interface is appealing, as it enables data pub-
lishers to control their data and access rights. While ltqp allows evalu-
ating complex queries over such webs, it suffers from performance issues
(due to the high number of documents containing data) as well as infor-
mation quality concerns (due to the many sources providing such doc-
uments). In existing ltqp approaches, the burden of finding sources to
query is entirely in the hands of the data consumer. In this paper, we
argue that to solve these issues, data publishers should also be able to
suggest sources of interest and guide the data consumer towards rele-
vant and trustworthy data. We introduce a theoretical framework that
enables such guided link traversal and study its properties. We illustrate
with a theoretic example that this can improve query results and reduce
the number of network requests.

Keywords: sparql · Link traversal–based query processing · Web of
linked data

1 Introduction

The World-Wide Web provides a permissionless information space organized as
interlinked documents. The Semantic Web builds on top of it by representing
data in a machine-interpretable format, fueled by the Linked Data principles.
In contrast to more complex data-driven apis, the simplicity of document-based
interfaces comes with multiple advantages. They scale easily, and can be hosted
on many different kinds of hardware and software; we can realize the “anyone
can say anything about anything” principle because every publisher has their
c© Springer Nature Switzerland AG 2021
S. Moschoyiannis et al. (Eds.): RuleML+RR 2021, LNCS 12851, pp. 62–79, 2021.
https://doi.org/10.1007/978-3-030-91167-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91167-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-91167-6_5

Link Traversal with Distributed Subweb Specifications 63

own domain in the Web, within which they can freely refer to concepts from
other domains; and complex features such as access control or versioning are
technically easy to achieve on a per-document basis.

However, decentralized interfaces are notoriously more difficult to query. As
such, the past decade has instead been characterized by Big Data and hyper-
centralization, in which data from multiple sources becomes aggregated in an
increasingly smaller number of sources. While extremely powerful from a query
and analytics perspective, such aggregation levels lead to a loss of control and
freedom for individuals and small- to medium-scale data providers. This in turn
has provoked some fundamental legal, societal, and economical questions regard-
ing the desiredness of such hypercentral platforms. As such, there is again an
increasing demand for more decentralized systems, where data is stored closer
to its authentic source, in line with the original intentions of the Web [14].

As with Big Data, query processing on the Semantic Web has traditionally
focused on single databases. The sparql query language allows querying such
a single rdf store through the sparql protocol, which places significantly more
constraints on the server than a document-based interface [15]. While federated
query processing enables incorporating data from multiple sparql endpoints,
federated queries have very limited link traversal capabilities and sparql end-
points easily experience performance degradation [2].

Fortunately, a technique was introduced to query webs of data: Link
Traversal–based Query Processing (ltqp) [5,8], in which an agent evaluates
a sparql query over a set of documents that is continuously expanded by selec-
tively following hyperlinks inside of them. While ltqp demonstrates the inde-
pendence of queries and selection of sources (on which these queries need to
be executed), it has mostly remained a theoretical exercise, as its slow perfor-
mance makes it unsuitable for practical purposes. The fact that ltqp can yield
more results than single-source query evaluation, gave rise to different notions
of query semantics and completeness [9]. While more data can be considered
advantageous, it can also lead to doubts regarding data quality, trustworthiness,
or license compatibility. Together with performance, these concerns seem to have
pushed ltqp to the background.

In this article, we identify two limitations of existing ltqp approaches. Essen-
tially, all existing ltqp approaches identify a subweb of the web of linked data
on which a query needs to be executed. The first limitation is that the respon-
sibility for defining how to construct this subweb is entirely in the hands of the
data consumer, from now on referred to as the querying agent (which can be
an end-user or machine client). In other words, existing approaches make the
assumption that the querying agent can determine perfectly which links should
be traversed. However, since every data publisher can freely choose how to orga-
nize their data, we cannot expect a single agent to possess complete knowledge
of how such traversals should proceed. A second restriction is that current ltqp
formalisms provide an all-or-nothing approach: a document is either included in
the subweb of interest in its entirety, or not at all, while for data-quality reasons,
it would be useful to only take parts of documents into account. For instance, an

64 B. Bogaerts et al.

<https://uma.ex/#me> foaf:knows
<https://ann.ex/#me>, <https://bob.ex/#me>.

<https://bob.ex/#me> foaf:img <bob.jpg>.

Document 1: Contents of
https://uma.ex/

<https://ann.ex/#me> foaf:isPrimaryTopicOf <https://corp.ex/ann/>.
<https://ann.ex/#me> foaf:weblog <https://ann.ex/blog/>.
<https://ann.ex/#me> foaf:maker <https://photos.ex/ann/>.

Document 2: Contents of
https://ann.ex/

<https://bob.ex/#me> foaf:name "Bob";
foaf:mbox <mailto:me@bob.ex>;
foaf:img <funny-fish.jpg>.

<https://uma.ex/#me> foaf:knows
<http://dbpedia.org/resource/Mickey_Mouse>.

<https://ann.ex/#me> foaf:name "Felix".

Document 3: Contents of https://bob.ex/

<https://ann.ex/#me> foaf:name "Ann";
foaf:mbox <mailto:ann@corp.ex>;
foaf:img <me.jpg>.

Document 4: Contents of
https://corp.ex/ann/

SELECT ?friend ?name ?email ?picture WHERE {
<https://uma.ex/#me> foaf:knows ?friend.
?friend foaf:name ?name.
OPTIONAL { ?friend foaf:mbox ?email.

?friend foaf:img ?picture. }
}

Query 1: Application query in sparql

?friend ?name ?email ?picture

1 <https://ann.ex/#me> "Ann" <mailto:ann@corp.ex> <https://corp.ex/ann/me.jpg>
2 <https://bob.ex/#me> "Bob" <mailto:me@bob.ex> <https://uma.ex/bob.jpg>
3 <https://bob.ex/#me> "Bob" <mailto:me@bob.ex> <https://bob.ex/funny-fish.jpg>
4 <https://ann.ex/#me> "Felix" <mailto:ann@corp.ex> <https://corp.ex/ann/me.jpg>
5 dbr:Mickey_Mouse "Mickey Mouse"@en NULL NULL

Results 1: Possible results of ltqp of the query in Query 1 with https://uma.ex/
as seed

academic who has moved institutions might specify that the data provided by
institution A is trustworthy up to a certain date and that for later information
about them, institution B should be consulted. More radically, a certain end
user might wish to specify that Facebook’s data about who her friends are is
correct, without thereby implying that any triple published by Facebook should
be taken into account when performing a query.

In this paper, building on the use case of the next section, we propose an
approach for guided link traversal that overcomes these two limitations. In our
proposal, each data publisher has their own subweb of interest, and publishes
a specification of how it can be constructed. They can use this for instance to
describe the organization of their data, or to describe parties they trust (as well as
for which data they trust them). The data consumer can then construct a subweb
of interest building on the subwebs of the publishers, e.g., deciding to include
parts of a subweb, or to omit it. As such, the data publishers guide the data
consumer towards relevant data sources. We focus on the theoretical foundations
and highlight opportunities for result quality and performance improvements.

2 Use Case

As a guiding example throughout this article, we introduce example data and
queries for a use case that stems from the Solid ecosystem [14], where every
person has their own personal data vault. Let us consider 3 people’s profile doc-
uments, stored in their respective data vaults. Uma’s profile (Document 1) lists

Link Traversal with Distributed Subweb Specifications 65

her two friends Ann and Bob. Ann’s profile (Document 2) contains links to her
corporate page and various other pages. Bob, a self-professed jokester, lists his
real name and email address in his profile (Document 3), in addition to a funny
profile picture and a couple of factually incorrect statements (which he is able to
publish given the open nature of the Web). Note how Ann provides additional
facts about herself into the external document she links to (Document 4), and
Uma’s profile suggests a better profile picture for Bob (Document 1).

Next, we consider an address book application that displays the details of
a user’s contacts. At design-time, this application is unaware of the context
and data distribution of the user and their friends. If we assume Uma to be
the user, then the application’s data need can be expressed as Query 1, which
is a generic sparql template in which only the url corresponding to Uma’s
identity (https://uma.ex/#me) has been filled out.

With traditional ltqp (under cAll semantics [9]), results include those in
Results 1. However, the actually desired results are Rows 1 and 2, which contain
Uma’s two friends with relevant details. Rows 3–5 are formed using triples that
occur in Bob’s profile document but are not considered trustworthy by Uma
(even though other triples in the same document are). To obtain these results,
a query engine would need to fetch at least 7 documents: the profile documents
of the 3 people (Uma, Ann, Bob), the 3 documents referred to by Ann’s profile
(Document 2), and the dbpedia page for Mickey Mouse.

3 Preliminaries

As a basis for our data model of a Web of Linked Data, we use the rdf data
model [3]. That is, we assume three pairwise disjoint, infinite sets: U (for uris),
B (for blank nodes), L (for literals). An rdf triple is a tuple (s, p, o) ∈ T ,
with T the set of all triples defined as T = (U ∪ B) × U × (U ∪ B ∪ L); if
t = (s, p, o) ∈ T , then uris(t) = {s, p, o} ∩ U. A set of triples is called a triple
graph or rdf graph. An rdf dataset is a set of tuples {〈ni, gi〉} where ni ∈ U
and gi an rdf graph, where g0 is referred to as the default graph.

We assume another set D, disjoint from the aforementioned sets U, B and L,
whose elements are referred to as documents. The rdf graph contained in each
document is modeled by a function data : D → 2T that maps each document to
a finite set of triples.

Definition 1. A Web of Linked Data (wold) W is a tuple 〈D, data, adoc〉 where
D is a set of documents D ⊆ D, data a function from D to 2T such that data(d)
is finite for each d ∈ D, and adoc a partial function from U to D. If W is a
wold, we use DW , dataW , and adocW for its respective components. The set of
all wolds is denoted W.

We aim to define parts of a web as subwebs. While existing definitions only
consider the inclusion of documents in their entirety [9], we allow for partial
documents to enable fine-grained control about which data is to be used for
answering certain queries.

66 B. Bogaerts et al.

Definition 2. Consider two wolds W = 〈D, data, adoc〉 and W ′ =
〈D′, data ′, adoc′〉. We say that W ′ is a subweb of W if i) D′ ⊆ D ii) ∀d ∈
D′ : data ′(d) ⊆ data(d) iii) adoc′(u) = adoc(u) if adoc(u) ∈ D′ and adoc′(u) is
undefined otherwise
We write subwebs(W) for the set of subwebs of W .

The simplest type of subwebs are those only consisting of a single document.

Definition 3. Let W be a wold and d ∈ D. We use singleton(d,W) to denote
the (unique) subweb 〈{d}, data ′, adoc′〉 of W with data ′(d) = data(d).

Additionally, if two subwebs of a given wold are given, we can naturally define
operators such as union and intersection on them; in this paper, we will only
need the union.

Definition 4. If W1 and W2 are subwebs of W , we define W1 ∪ W2 to be the
unique subweb 〈D′, data ′, adoc′〉 of W with

– D′ = DW1 ∪ DW2 , and
– data ′(d) = dataW1(d) ∪ dataW2(d) for each d ∈ D′, where, slightly abusing

notation, we use dataWi
(d) = ∅ if d �∈ DWi

.

4 Requirements

From the use case, we extracted four requirements that motivate our definitions.

A Declarative Language for Selecting Data Sources. Similar to existing ltqp
approaches, we need a language to describe which data sources to select (possibly
starting from a given seed). We want such a language to be declarative, i.e., focus
on which sources to use, rather than how to obtain them. Formally, we expect
a source selection expression to evaluate in a given WOLD to a set of uris
representing the documents to be included.

Independence of Query and Subweb Specification. Motivated by principles of
reusability and separation of concerns, we want the query to be formulated
independently from the subweb over which the query is to be evaluated. While it
might—to a certain extent—be possible to encode traversal directions in (fed-
erated) sparql queries, what do I want to know and where do I want to get
my information are two orthogonal concerns that we believe should be clearly
separated, in order to improve readability, maintainability, and reusability. E.g.,
in the use case, the phone book application defines the query, while Uma defines
her own subweb of interest (consisting of her own document, as well as parts
of the documents of her friends). The application should be able to run with
different subwebs (e.g., coming from other users), and Uma’s subweb of interest
should be reusable in other applications.

Link Traversal with Distributed Subweb Specifications 67

Scope Restriction of Sources. One phenomenon that showed up in the use case
is that we want to trust a certain source, but only for specific data. We might
for instance want to use all our friends’ data sources, but only to provide infor-
mation about themselves. This would avoid “faulty” data providers such as Bob
to publish data that pollute up the entire application, and it would give a finer
level of control over which data is to be used to answer queries. On the formal
level, this requirement already manifests itself in the definition of subweb we
chose: contrary to existing definitions [9], we allowed a document in a subweb to
have only a subset of the data of the original document.

Distributed Subweb Specifications. Finally, we arrive at the notion of distribu-
tion. This is the feature in which our approach most strongly deviates from the
state-of-the-art in link traversal. While the semantic web heavily builds on the
assumption that data is decentralized and different agents have different pieces of
data to contribute, existing link traversal–based approaches still assume that the
knowledge of where this data can be found is completely in the hands of the query-
ing agent at query time, or at least that the principles by which the web has to be
traversed can be described by the querying agent. However, as our use case illus-
trates, this is not always the case: Ann decided to distribute her information over
different pages; the agent developing the phone book application cannot possi-
bly know that the triple <https://ann.ex/#me> foaf:isPrimaryTopicOf <https://corp.ex/ann/>.

indicates that information from <https://corp.ex/ann/> is “equally good” as informa-
tion from Ann’s main document. Stated differently, only Ann knows how her
own information is organized and hence if we want to get personal information
from Ann, we would want her to be able to describe herself how or where to find
this data. To summarize, we aim to allow document publishers to publish specifi-
cations of subwebs in the same declarative language as used by query agents and
query agents to decide whether or not to include the data from such subwebs.

5 Related Work

Link Traversal-Based Query Processing. Over a decade ago, the paradigm of
Link Traversal-based Query Processing was introduced [8], enabling queries
over document-oriented interfaces. The main advantage of this approach is that
queries can always be executed over live data, as opposed to querying over
indexed data that may be stale. The main disadvantages of this approach are
that query termination and result completeness are not guaranteed, and that
query execution is typically significantly slower than database-centric approaches
such as sparql endpoints. Several improvements have been suggested to cope
with these problems [5]. For example, the processing order of documents can
be changed so that certain documents are prioritized [10], which allows relevant
results to be emitted earlier in an iterative manner [6], but does not reduce
total execution time. In this work, we propose to tackle this problem by allowing
publishers to specify their subweb of interest. These specifications are then used
to guide the query engine towards relevant (according to the data publishers at
hand) documents.

68 B. Bogaerts et al.

Reachability Semantics. The sparql query language was originally introduced
for query processing over rdf databases. Since ltqp involves a substantially
different kind of sources, a family of new semantics was introduced [9], involv-
ing the concept of a reachable subweb. When executing a query over a set of
seed documents, the reachable Web is the set of documents that can be reached
from these seeds using one of different reachability criteria. These criteria are
functions that test each data triple within retrieved documents, indicating which
(if any) of the uris in the triple components should be dereferenced by inter-
preting them as the uri of a document that is subsequently retrieved over http.
The cAll reachability criterion involves following all encountered uris, which is
the strategy in the example of Results 1. A more elaborate criterion is cMatch,
which involves following uris from data triples that match at least one triple
pattern from the query. cMatch can significantly reduce the number of traversals
compared to cAll. However, evaluating Query 1 with cMatch semantics would not
yield results for Ann (rows 1 and 4). Her details are only reachable via a triple
with predicate foaf:isPrimaryTopicOf, which does not match any of the query’s
triple patterns; hence, the relevant document is never visited. So while cMatch
can lead to better performance, it comes at the cost of fewer results, showing
that none of these approaches are optimal.

Delegation. The concept of subwebs is somewhat related to the presence of active
rules in rule-based languages for distributed data management. A particularly
relevant project in this context is Webdamlog [1], a Datalog-based declarative
language for managing knowledge on the web with support for rule-delegation.
Here, delegation is achieved by allowing rules to get partially materialized by
different peers.

6 A Formalism for Subweb Specifications

Inspired by the desired properties from Sect. 4, we now define a formalism to
describe subwebs of interest. In our formalism, different agents will be able to
provide a description of a subweb of interest ; they will be able to specify declar-
atively in (which parts of) which documents they are interested. We do not
make any assumption here about what the reason for this “interest” is; depend-
ing on the context at hand, different criteria such as relevance, trustworthiness,
or license-compatibility can be used. Such a description of a subweb of interest
can be given by the querying agent (an end-user or machine client) which
provides it at runtime to the query processor. Additionally, every data pub-
lisher can use the same mechanism to make assertions about her beliefs, such
that other data publishers or querying agents can reuse those instead of requiring
explicit knowledge. For instance, a data publisher can express which sources they
consider relevant or trustworthy for what kinds of data: a researcher might indi-
cate that a certain source represents her publication record correctly, whereas
another source captures her affiliation history. A certain agent might or might
not choose to take the subweb of interest of a data publisher into consideration.

Link Traversal with Distributed Subweb Specifications 69

In the use case of Sect. 2, the application generates a query P as Query 1, and
end-user Uma expresses she trusts her own profile for her list of contacts, and to
trust those contacts for their own details. Furthermore, each of these friends can
indicate which other documents they trust for which information. For instance,
Ann could express that she trusts corp.ex for her personal details. Essentially,
in this case Uma partially delegates responsibility of traversing the web to Ann,
but only retains information about Ann from Ann’s subweb of interest. This
leads to the following definitions.

Definition 5. A source selector is a function σ : W → 2U. A filter is a function
f : 2T ×U → 2T such that f(S, u) ⊆ S for every S ⊆ T and u ∈ U. For a wold
W = 〈D, data, adoc〉 and uri u; we extend the notation and also write f(W,u)
to denote the subweb 〈D, data ′, adoc〉 of W with data ′(d) := f(data(d), u) for
each d ∈ D.

In our running example, if Uma wants for each of her friends to only include state-
ments they make about themselves, she can use a source selector σ that extracts
her friends, e.g., with σ(W) = {o | 〈s, foaf:knows, o〉 ∈ data(adoc(s)) with s =
<https://uma.ex/#me>} and with a filter that maps (S, u) to {〈s, p, o〉 ∈ S | s = u}. If
we assume that W is a wold in which only a particular friend u of Uma provides
triples, then f(W,u) is the subweb of W in which friend u has only the triples
making statements about him or herself.

Definition 6. A subweb specification, often denoted Θ, is a set of tuples of the
form (σ, b, f), where σ is a source selector; b is a Boolean; and f is a filter.

Intuitively, the Boolean b in (σ, b, f) indicates whether to include for each uri
u ∈ σ(W) (the filtered version of) the subweb of adoc(u) or only u’s docu-
ment. Finally, this brings us to the definition of a specification-annotated wold
(sa-wold in short): a wold extended with the construction rules of all data pub-
lishers.

Definition 7. A specification-annotated wold is a tuple W = 〈W,Θ〉 consist-
ing of a wold W = 〈D, data, adoc〉 and an associated family Θ = (Θd)d∈D of
subweb specifications.

In a sa-wold, each data publisher declares her subweb specification that can be
used to construct her subweb of interest. The value of a subweb specification in
a sa-wold is defined as follows:

Definition 8. Let W = 〈W,Θ〉 be a sa-wold with W = 〈D, data, adoc〉, and Θ
a subweb specification. Then, �Θ�W denotes the subweb specified by Θ for W,

�Θ�W :=
⋃

(σ,b,f)∈Θ∧u∈σ(W)

f
(
singleton(adoc(u),W) ∪ (

�(Θadoc(u))�W if b
)
, u

)
,

where (S if b) equals S if b is true and the empty wold (the unique wold
without documents) otherwise. The subweb of interest of a document d ∈ D in
W is defined as soi(d,W) := singleton(d,W) ∪ �Θd�

W .

70 B. Bogaerts et al.

Since not just the data publishers, but also the querying agents should be
able to specify a subweb of interest, we naturally obtain the following definition.

Definition 9. A specification-annotated query is a tuple P = 〈P,Θ〉 with P a
sparql query and Θ a subweb specification. The evaluation of P in W, denoted
[[P]]W , is defined by [[P]]W := [[P]]�Θ�W

Here, we use [[P]]W
′
to denote the evaluation of the sparql query in the dataset

that is the union of all the documents in W ′ (to be precise, this is the RDF
dataset with as default graph the union of all the data in all documents of the
subweb, and for each uri u with adoc(u) = d a named graph with name u
and as triples the data of d). Of course, we need a mechanism to find all those
documents, which is what Θ will provide.

In the next section, we propose a concrete sparql-based instantiation of the
theoretical framework presented here and illustrate our use case in that setting.
Afterwards, we will formally compare our proposal to existing ltqp approaches.

7 Expressing Subweb Specifications

In this section, we propose a syntax for subweb specifications (as formalized
in Sect. 6), named the Subweb Specification Language (swsl), inspired by ldql
and sparql. In order to lower the entry barrier of this syntax to existing sparql
engine implementations, we deliberately base this syntax upon the sparql gram-
mar. This enables implementations to reuse (parts of) existing sparql query
parsers and evaluators.

The grammar below represents the swsl syntax in Extended Backus–Naur
form (EBNF) with start symbol 〈start〉. The specifications begin with the FOLLOW

keyword, followed by a 〈sources〉 clause, an optional WITH SUBWEBS keyword, and
an optional 〈filter〉 clause.

〈start〉 |= FOLLOW 〈sources〉 [WITH SUBWEBS] [〈filter〉]
〈sources〉 |= 〈variables〉 { 〈GroupGraphPattern〉 } [〈recurse〉]

〈variables〉 |= ?〈V ARNAME〉 | ?〈V ARNAME〉 〈variables〉
〈recurse〉 |= RECURSE [〈INTEGER〉]

〈filter〉 |= INCLUDE 〈ConstructTemplate〉 [WHERE { 〈GroupGraphPattern〉 }]

Intuitively, a full swsl expression corresponds to a single subweb specifica-
tion tuple (σ, b, f) where the 〈sources〉 clause correspond to the source selection
function σ, the keyword WITH SUBWEBS corresponds to the Boolean b, and the
〈filter〉 clause corresponds to the filter function f . We explain each of these
parts in more detail hereafter.

Link Traversal with Distributed Subweb Specifications 71

Selection of Sources. The 〈sources〉 will be evaluated in the context of a set S of
seed documents. For subweb specifications provided to the query processor, this
set of seeds will be given explicitly, whereas for subweb specifications found in a
document, the set S is the uri of that document . A 〈sources〉 clause begins with
a list of sparql variables, followed by a source extraction expression defined
as sparql’s 〈GroupGraphPattern〉 clause. The output is a set of bindings of
the given variables, indicating uris whose documents are to be included. For
instance, when evaluating the expression ?v1 . . . ?vn { G } in a wold W with
seed set S, the resulting source selection is

σ(W) =
⋃

u∈S

{μ(vi) ∈ U | 1 ≤ i ≤ n ∧ μ ∈ �G�data(adoc(u))},

where �G�DS is the evaluation of the GroupGraphPattern G on a dataset DS.

Recurring Source Selection. A 〈sources〉 clause may have at the end an optional
〈recurse〉 clause. If RECURSE is not used in a specification, then this latter will
only apply to the document in which it is defined; else, the specification will
apply to that document, and all output uris, taken as seed (recursively). In
other words, the 〈sources〉 clause will be applied to all documents that are
obtained when following a chain of one or more links using the specification. The
〈recurse〉 clause has an optional nonnegative integer parameter, which indicates
the maximum recursion depth. A depth of 0 is equivalent to not defining the
〈recurse〉 clause. A depth of m means that all documents that are obtained
when following a link path of length m from the seeds are considered. This
recursion capability calls for the need to express the current document’s uri.
To achieve this, swsl syntax reuses sparql’s relative iri capability. Concretely,
every time an swsl specification is applied on a document, the document’s uri
will be set as base iri to the swsl specification, so that relative iris can be
resolved upon this iri.

Inclusion of Subwebs of Selected Sources. This is determined by the optional key-
word WITH SUBWEBS. Thus, if an swsl specification has the WITH SUBWEBS option,
this is equivalent to a subweb specification tuple with b is true. Otherwise, b is
false.

Document Filtering. The 〈filter〉 clause is an optional clause indicating that only
certain parts of the document are considered. Without this clause, the entire doc-
ument is included. The 〈filter〉 clause is similar to sparql’s 〈ContructQuery〉
clause. It exists in compact or extended forms; in the latter, filtering constraints
can be added via WHERE keyword.

Concretely, the extended form is defined by the sparql’s 〈Construct
Template〉 and 〈GroupGraphPattern〉 productions. The 〈ConstructTemplate〉
acts as a template of triples to accept, while the 〈GroupGraphPattern〉
imposes conditions to do so. It is also possible that in the bodies of
the 〈GroupGraphPattern〉 and 〈ConstructTemplate〉 there are variables

72 B. Bogaerts et al.

<https://uma.ex/#me> ex:hasSpecification <#spec1>.
<#spec1> ex:appliesTo <https://uma.ex/>;

ex:scope """
FOLLOW ?friend WITH SUBWEBS {

<https://uma.ex/#me> foaf:knows ?friend.
} INCLUDE { ?friend ?p ?o. }

"""^^ex:SWSL.

Listing 1. Subweb Specification of
https://uma.ex/

<https://ann.ex/#me> ex:hasSpecification <#spec2>.
<#spec2> ex:appliesTo <https://ann.ex/>;

ex:scope """
FOLLOW ?page {

?topic foaf:isPrimaryTopicOf ?page.
} INCLUDE { ?topic ?p ?o. }

"""^^ex:SWSL.

Listing 2. Subweb Specification of
https://ann.ex/

that are mentioned in the 〈GroupGraphPattern〉 of 〈sources〉 clause. This
implies that they should be instantiated according to the result of the first
〈GroupGraphPattern〉.

The compact form is defined by 〈ConstructTemplate〉, which acts as syn-
tactical sugar to the extended with an empty 〈GroupGraphPattern〉. Thus, to
define 〈filter〉 clause’s semantics, we only need the extended form. To illustrate
this, consider an expression

FOLLOW ?v1 { G1 } INCLUDE C WHERE { G2 }

We already saw that when evaluated in context u, this induces a source selector
selecting those v such that μ1(?v1) = v, for some μ1 ∈ �G1�

data(adoc(u)). The
associated filter is

f(S, v) =
⋃

µ1∈�G1�data(adoc(u))|µ1(?v1)=v

{t ∈ S | t ∈ �µ2(µ1(C))�
S for some µ2 ∈ �µ1(G2)�

S}

Expressing Document Subwebs. In this work, we assume that each published
document can link to its own context where they indicate the documents they
consider relevant using an swsl subweb specification. For illustration, we con-
sider the predicate ex:hasSpecification that is attached to the current document.
An ex:Specification is a resource that contains at least a value for ex:scope, point-
ing to one or more swsl strings. This resource can also contain metadata about
the subweb specification.

Application to the Use Case. Listing 1 shows a part of Uma’s profile where she
exposes an swsl subweb specification to indicate that her friends can express
information about themselves. This specification states that all foaf:knows links
from Uma should be followed, and that from those followed documents, only
information about that friend should be included. By WITH SUBWEBS, she indi-
cates that her friends’ subwebs must be included in her subweb. Then, Ann can
express in her subweb specification (Listing 2) that she trusts documents pointed
to by foaf:isPrimaryTopicOf links about triples about the topic she indicates.
With these subweb specifications, Query 1 produces only Rows 1–3 of Results 1.
However, we still include the non-desired profile picture from Bob in our results
(Row 3). Extending the notion of filter to also allow this is left for future work.

8 Power and Limitations of Existing ltqp Approaches

Since ldql is a powerful link traversal formalism that has been shown to sub-
sume other approaches such as reachability-based querying [4], this raises the

Link Traversal with Distributed Subweb Specifications 73

Table 1. Value of link path expressions

lpe �lpe�uW

ε {u}
lp {u′ | lp matches with t) with result u′ in context u for some t ∈

data(adoc(u))}
lpe1/lpe2 {v | v ∈ �lpe2�

u′
W and u′ ∈ �lpe1�

u
W }

lpe1|lpe2 �lpe1�
u
W ∪ �lpe2�

u
W

lpe∗ {u} ∪ �lpe�uW ∪ �lpe/lpe�uW ∪ �lpe/lpe/lpe�uW ∪ ...

[lpe] {u | �lpe�uW �= ∅}

question: to which extent can ldql in itself achieve the requirements set out
in Sect. 4? In the current section we formally investigate this, after introducing
some preliminaries on ldql.

8.1 Preliminaries: ldql

ldql is a querying language for linked data. Its most powerful aspect is the
navigational language it uses for identifying a subweb of the given wold. The
most basic block that constitutes ldql’s navigational language is a link pattern
that is a tuple in (U ∪{_,+})× (U ∪{_,+})× (U ∪L∪{_,+}). Intuitively, a
link pattern requires a context uri uctx , then evaluates to a set of uris (the links
to follow) by matching the link pattern against the triples in the document that
uctx is authoritative for. Formally, we say that a link pattern lp = 〈�1, �2, �3〉
matches a triple 〈x1, x2, x3〉 with result u in the context of a uri uctx if the
following two points hold: i) there exists i ∈ {1, 2, 3} such that �i = _ and
xi = u, and ii) for every i ∈ {1, 2, 3} either �i = xi, or �i = + and xi = uctx , or
�i = _

Link patterns are used to build link path expressions (lpes) with the following
syntax:

lpe := ε | lp | lpe/lpe | lpe|lpe | lpe∗ | [lpe]

where lp is a link pattern. In a given wold W , the value of a link path expression
lpe in context uri u (denoted �lpe�u

W) is a set of uris as given in Table 1.
An ldql query is a tuple q = 〈lpe, P 〉 with lpe a link path expression and P

a sparql query. The value of such a query q in a wold W with a set of seed
uris S is

�q�S
W := �P �W ′

where W ′ =
⋃

s∈S,u∈�lpe�sW

singleton(adoc(u),W),

i.e., the query P is evaluated over the (RDF dataset constructed from the) data
sources obtained by evaluating the link path expression starting in one of the
seeds.

74 B. Bogaerts et al.

Remark 1. [11] allows one other form of link path expression, where an entire
ldql query is nested in in an lpe; for the purpose of this paper, we opt to use a
strict separation between query and source selection and omit this last option1.
Additionally, they consider (Boolean) combinations of queries, thereby allowing
to use different lpes for different parts of the expression; we briefly come back
to this when discussing scope restriction.

8.2 ldql and the Requirements

A Declarative Language for Selecting Data Sources. In ldql, the link path
expressions provide a rich and flexible declarative language for describing
source selection. Here, paths through the linked web are described using
a syntax similar to regular expressions. For instance, the ldql expression
〈+, foaf:knows,_〉/〈+, foaf:knows,_〉 when evaluated in a given uri u (the context)
traverses to u’s friends f (as explicated by triples of the form <u,foaf:knows,f>

in adoc(u)) and subsequently to their friends f2 (as indicated by triples
<f,foaf:knows,f2> in adoc(f)). In other words, this example expression identifies
the documents of friends of friends of a given person.

Independence of Query and Subweb Specification. The design philosophy behind
ldql does not start from an independence principle similar to the one proposed
here. That is, in its most general form, ldql allows intertwining the source
selection and the query. For instance, the ldql query 〈lpe1, P1〉AND〈lpe2, P2〉
expresses the sparql query P1ANDP2, and on top of that specifies that different
parts of the query should be evaluated with respect to different sources, and
hence violating our principle of independence. However, independence can easily
be achieved in ldql by only considering ldql queries of the form 〈lpe, P 〉 with
lpe a link path expression and P a sparql query.

Scope Restriction of Sources. The semantics of an ldql query 〈lpe, P 〉 is
obtained by first evaluating lpe starting from a seed document s, resulting
in a set of uris �lpe�s

W ; the sparql query P is then evaluated over the
union of the associated documents. That is, to compute the result of 〈lpe, P 〉,
for each document adoc(u) with u ∈ �lpe�s

W , its entire content is used. As
such, ldql provides no mechanism for partial inclusion of documents. How-
ever, while ldql cannot select parts of documents, it can be used, as dis-
cussed above, to apply source selection strategies only to parts of queries and
thereby to a certain extent achieve the desired behaviour. E.g., the query
〈lpe1, (?x, foaf:knows, ?y)〉AND〈lpe2, (?y, foaf:mbox, ?m〉 will only use triples with
predicate foaf:knows from documents produced by lpe1. However, this sacrifices
the independence property, and for complex queries and filters, this is not easy
to achieve.

1 Notably, this option was also not present in the original work [7].

Link Traversal with Distributed Subweb Specifications 75

Distributed Subweb Specifications. This now brings us to the main topic of this
section: studying to which extent it is possible in ldql to distribute the knowl-
edge of how to construct the subweb of interest and as such to guide the data
consumer towards interesting/relevant documents. To answer this question, we
will consider a slightly simplified setting, without filters (all filters equal the
identity function id on their first argument) and where the Boolean b in (σ, b, f)
is always true. I.e., each agent states that they wish to include the complete
subweb of interest of all uris identified by σ. In this setting, we wonder if data
publishers can, instead of publishing their subweb specification in addition to
their regular data, encode their subweb specification as triples in the document
(as meta-information), and use a single “meta” link path expression that inter-
prets these triples for the traversal. This is formalized as follows.

Definition 10. Let S be a set of source selectors, enc : S → 2T a function map-
ping source selectors σ onto a set of triples enc(σ), and W = 〈〈D, data, adoc〉,Θ〉
a sa-wold in which each subweb specification is of the form (σ, true, id) with
σ ∈ S. The encoding of W by enc is the wold enc(W) = 〈D, data ′, adoc〉 with
for each d ∈ D:

data ′(d) = data(d) ∪
⋃

{σ|(σ,true,id)∈Θd}
enc(σ).

Definition 11. Let S be a set of source selectors, enc a function S → 2T , and
emeta an lpe. We say that (enc, emeta) captures S if for each sa-wold in which
subweb specifications only use triples of the form (σ, true, id) with σ ∈ S and for
each uri u,

�emeta�u
enc(W) = soi(adoc(u),W).

We will say that ldql can capture distribution of functions in S if there exist
some enc and emeta that capture S.

To define the encodings, we will make use of some “fresh” uris we assume
not to occur in any wold. In our theorems, we will make use of some specific
sets of source selectors. A source selector σ is constant if it maps all wolds onto
the same set of uris, i.e., if σ(W) = σ(W ′) for all wolds W,W ′; the set of all
constant source selectors is defined as Sconst . If p and u are uris, we define the
source selector allp∗,u as follows:

allp∗,u : W �→ �(+, p,_)∗�u
W .

Intuitively, the function allp∗,u identifies the set of all ps of ps of of u. For
instance, by taking p = friend , we include all direct or indirect friends of u. For
a fixed p, we write Sp∗ for the set of source selectors allp∗,u. We write S∗ for
the set of all source selectors of the form allp∗,u for any p. The set S∗ allows
each data publisher to choose her own strategy for constructing the subweb, e.g.,
one data publisher might include all her friend∗s, another her colleague∗s and a
third one only uris explicitly trusted (i.e., their trust∗s). Our main expressivity
results are then summarized as follows:

76 B. Bogaerts et al.

Fig. 1. Example wold used in ldql inexpressivity proof.

Theorem 1. ldql captures distribution of Sconst and Sp∗ , but not of S∗.

Proof (Sketch of the proof). For the positive results, we can provide an explicit
encoding and meta-expression. For instance for showing that it captures Sp∗ for a
given p, we can take enc(allp∗,u) = {(a, a, u)} and emeta = ((a, a,_)/(+, p,_)∗)∗

with a a fresh uri. In this expression emeta , the link pattern (a, a,_) is used to
navigate the u whose ps of ps of... we wish to include; the part (+, p,_)∗ then
navigates to all such p∗s. The outermost star ensures that for each u that is
found, also their subweb of interest is included.

The proof of the negative result relies heavily on the fact that an lpe not men-
tioning p nor q, cannot distinguish the triples (x, p, z) and (x, q, z). If (emeta , enc)
were to capture S∗, we can construct a wold (see Fig. 1) using only uris not
occurring in emeta in which only one document has a non-empty subweb specifi-
cation. We then use the aforementioned fact to conclude that d3 ∈ �emeta�u1

enc(W)

if and only if d4 ∈ �emeta�u1
enc(W).

9 Discussion

So far, we have studied ltqp from the perspective of data quality; namely, we
allow querying agents and/or data publishers to capture a subweb of data that
satisfies certain quality properties for them. In real-world applications, such qual-
ity properties could for example indicate different notions of trust, or something
use-case-specific such as data sensitivity levels. While our formal framework only
associates a single subweb specification to each agent, it is not hard to extend
it to associate multiple subweb constructions with each agent and allow the
querying agent to pick a suitable one.

The same mechanism can be used to improve efficiency in two ways: the data
publishers can opt to not include certain documents in their subweb, and for the
ones included, they can use a filter which indicates which data will be used from
said document.

Most prominently, every publisher of Linked Data typically has their own
way of organizing data across documents, and they could capture this structure
in their subweb of interest. For example, in contrast to Bob (Document 3), Ann
stores her profile information in multiple documents (Documents 2 and 4). If
she were to declare this as a subweb specification, she can use filters to indi-
cate which data can be found in which documents. A query processor can then

Link Traversal with Distributed Subweb Specifications 77

exploit this information to only follow links to relevant documents (documents
of Ann’s subweb for which the filter could keep triples that contribute to the
query result). For example, Uma’s querying agent can use Ann’s subweb con-
struction of Listing 2 to prune the set of links to follow, and as such perform
a guided navigation while maintaining completeness guarantees. Without even
inspecting https://photos.ex/ann/, it knows Ann (and thus Uma) does not trust
triples in this document for data about her, so fetching it will not change the
final query result. Whereas ltqp under cAll semantics would require at least
7 http requests, the filters allow us to derive which 4 requests are needed to
return all 3 trusted results of the specification-annotated query. Analogous per-
formance gains were observed in work on provenance-enabled queries [16]. In
contrast, traditional ltqp cannot make any assumptions of what to encounter
behind a link. The work on describing document structures using shapes [12]
can be leveraged here.

As such, filters in subweb specifications serve two purposes: they define
semantics by selecting only part of a data source, and give query processors
guidance for saving bandwidth and thus processing time.

10 Conclusion

ltqp is generally not considered suitable for real-world applications because of
its performance and data quality implications. However, if the current decentral-
ization trend continues, we need to prepare for a future with multi-source query
processing, since some data cannot be centralized for legal or other reasons.

Federated querying over expressive interfaces such as sparql endpoints only
addresses part of the problem: empirical evidence suggests that, counterintu-
itively, less expressive interfaces can lead to faster processing times for several
queries [15], while being less expensive to host. A document-based interface is
about the simplest interface imaginable, and is thereby partly responsible for
the Web’s scalability. Hence the need to investigate how far we can push ltqp
for internal and external integration of private and public data.

Our formalization for specification-annotated queries creates the theoretical
foundations for a next generation of traversal-based (and perhaps hybrid) query
processing, in which data quality can be controlled tightly, and network requests
can be reduced significantly. Moreover, the efforts to realize these necessary
improvements are distributed across the network, because every data publisher
can describe their own subwebs. Importantly, the availability of such descriptions
is also driven by other needs. For instance, initiatives such as Solid [14] store
people’s personal data as Linked Data, requiring every personal data space to
describe their document organization such that applications can read and write
data at the correct locations [12].

This article opens multiple avenues for future work. A crucial direction is
the algorithmic handling of the theoretical framework, and its software imple-
mentation, for which we have ongoing work in the Comunica query engine [13];
an important open question here is how the expressed filters can be exploited

78 B. Bogaerts et al.

for query optimization. Also on the implementation level, the creation and man-
agement of subweb specifications should be facilitated. Empirical evaluations
will shed light on cases where subweb annotated wolds and queries result in
a viable strategy.

Acknowledgements. This research received funding from the Flemish Govern-
ment under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” pro-
gramme. Ruben Taelman and Ruben Verborgh are postdoctoral fellows of the Research
Foundation – Flanders (FWO) (1274521N). Heba Aamer is supported by the Special
Research Fund (BOF) (BOF19OWB16).

References

1. Abiteboul, S., Bienvenu, M., Galland, A., Antoine, É.: A rule-based language for
web data management. In: Proceedings of the 30th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2011, pp. 293–304.
ACM (2011)

2. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.-Y., et al.: SPARQL
web-querying infrastructure: ready for action? In: Alani, H. (ed.) ISWC 2013.
LNCS, vol. 8219, pp. 277–293. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-41338-4_18

3. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1: concepts and abstract syntax.
Recommendation, W3C, February 2014. https://www.w3.org/TR/2014/REC-
rdf11-concepts-20140225/

4. Hartig, O.: SPARQL for a web of linked data: semantics and computability. In:
Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012.
LNCS, vol. 7295, pp. 8–23. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-30284-8_8

5. Hartig, O.: An overview on execution strategies for linked data queries. Datenbank-
Spektrum 13(2), 89–99 (2013)

6. Hartig, O.: SQUIN: a traversal based query execution system for the web of linked
data. In: Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data (2013)

7. Hartig, O.: LDQL: a language for linked data queries. In: Proceedings of the
9th Alberto Mendelzon International Workshop on Foundations of Data Man-
agement, Lima, Peru, 6–8 May 2015. CEUR Workshop Proceedings, vol. 1378.
CEUR-WS.org (2015). http://ceur-ws.org/Vol-1378/AMW_2015_paper_34.pdf

8. Hartig, O., Bizer, C., Freytag, J.-C., et al.: Executing SPARQL queries over the
web of linked data. In: Bernstein, A. (ed.) ISWC 2009. LNCS, vol. 5823, pp. 293–
309. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04930-9_19

9. Hartig, O., Freytag, J.C.: Foundations of traversal based query execution over
linked data. In: Proceedings of the 23rd ACM Conference on Hypertext and Social
Media (2012)

10. Hartig, O., Özsu, M.T., et al.: Walking without a map: ranking-based traversal for
querying linked data. In: Groth, P. (ed.) ISWC 2016, Part I. LNCS, vol. 9981, pp.
305–324. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_19

11. Hartig, O., Pérez, J.: LDQL: a query language for the web of linked data. J. Web
Semant. 41, 9–29 (2016)

https://doi.org/10.1007/978-3-642-41338-4_18
https://doi.org/10.1007/978-3-642-41338-4_18
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://doi.org/10.1007/978-3-642-30284-8_8
https://doi.org/10.1007/978-3-642-30284-8_8
http://ceur-ws.org/Vol-1378/AMW_2015_paper_34.pdf
https://doi.org/10.1007/978-3-642-04930-9_19
https://doi.org/10.1007/978-3-319-46523-4_19

Link Traversal with Distributed Subweb Specifications 79

12. Prud’hommeaux, E., Bingham, J.: ShapeTrees specification. Editor’s draft, May
2020. https://shapetrees.github.io/specification/spec

13. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: a
modular SPARQL query engine for the web. In: Proceedings of the 17th Inter-
national Semantic Web Conference, October 2018. https://comunica.github.io/
Article-ISWC2018-Resource/

14. Verborgh, R.: Re-decentralizing the web, for good this time. In: Linking the World’s
Information. ACM (to appear)

15. Verborgh, R., et al.: Triple pattern fragments: a low-cost knowledge graph interface
for the Web. J. Web Semant. 37–38, 184–206 (2016)

16. Wylot, M., Cudré-Mauroux, P., Groth, P.: Executing provenance-enabled queries
over web data. In: Proceedings of the 24th International Conference on World Wide
Web (2015)

https://shapetrees.github.io/specification/spec
https://comunica.github.io/Article-ISWC2018-Resource/
https://comunica.github.io/Article-ISWC2018-Resource/

Event-Based Microcontroller
Programming in Datalog

Stefan Brass(B)

Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik,
Von-Seckendorff-Platz 1, 06099 Halle (Saale), Germany

brass@informatik.uni-halle.de

Abstract. We propose a declarative language for event-based microcon-
troller programming. The language uses rules and can be seen as a more
convenient notation for a pure Datalog program (with a small external
controller). In this way, it has a clear semantics and the large body of
previous work on declarative programming in Datalog can be used.

We defined and implemented a Datalog-based language for micro-
controller programming before [12,13]. It was based on ideas from
Dedalus [1] and Statelog [6]. However, programming in that language
needed polling, e.g., repeatedly querying system time until a certain time
interval was over. For more complex programs, event-based program-
ming is generally recommended. The language proposed in this paper
is event-based and also contains a module concept in order to manage
more complex tasks.

1 Introduction

A microcontroller is a small computer on a single chip. For instance, the Amtel
ATmega328P contains an 8-bit CPU, 32 KByte flash memory for the program,
2 KByte static RAM, 1 KByte EEPROM for persistent data, 23 general purpose
I/O pins, 3 timers (with pulse-width modulators), an analog/digital-converter
with 6 inputs, and serial interfaces (UART, I2C, SPI). It costs about 2 dollars
and consumes little energy. Microcontrollers are used in many electronic devices.

For hobbyists, schools, and the simple development of prototypes, the
Arduino platform is quite often used. It basically consists of a few variants
of boards with a microcontroller (e.g., the ATmega328P), a preinstalled boot
loader that permits programming via a USB interface, an IDE with a program-
ming language based on C, and fitting hardware extension boards (“shields”).

The software for microcontrollers is often developed in Assembler or C. How-
ever, declarative programming has advantages also for such small devices:

– Declarative programs are usually shorter than an equivalent program in a
procedural language. This enhances the productivity of the programmers.

– There can be no problems with uninitialized variables or dangling pointers.
While programs in general should be bug-free, the correctness requirements
for embedded programs are usually higher than, e.g., for an office application:

c© Springer Nature Switzerland AG 2021
S. Moschoyiannis et al. (Eds.): RuleML+RR 2021, LNCS 12851, pp. 80–94, 2021.
https://doi.org/10.1007/978-3-030-91167-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91167-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-91167-6_6

Event-Driven Microcontroller Programming in Datalog 81

Microcontrollers often directly control hardware devices, whereas for normal
programs, there is a human user, who might detect and handle obvious errors.

– The language has a mathematically precise semantics based on logic, which
makes programs easier to verify. For instance, in [2] we presented a method
for proving integrity constraints (invariants).

– The simple semantics also permits powerful optimization, e.g. in [13], we
translate a subclass of programs to a finite automaton extended with a fixed
set of variables (i.e. we use “parameterized states”).

– Many programs become easier to understand and more flexible by a data-
driven architecture. E.g., the configuration data for a home-automation sys-
tem used as an example in [13] is basically a small database.

– The language is relatively simple, therefore it can be used also by non-experts
(e.g., Arduino boards are a nice device to be used in school).

One reason for the current revival of Datalog is that it is used also for applications
that are not typical database applications, such as static analysis of program
code [9], cloud computing [10], and semantic web applications [3].

In [12,13], we proposed a language “Microlog” for programming microcon-
trollers like on the Arduino. The language is based on Datalog (simple logi-
cal rules). More specifically, we were inspired by the language Dedalus [1]. We
described the computation as a sequence of states, where interface functions (for
input and output) are called during the state transition.

However, the language basically required polling, e.g., querying system time
until a certain time interval was over. It is also not nice for simulation and debug-
ging that there are long sequences of states where basically nothing happens.

The approach presented in this paper is event-based, and new states are
created only when events occur. This allows to concentrate on the important
state changes. It is also very natural to handle interrupts as special events. Our
previous language had no specific support for interrupts.

Our new language permits to specify the system as a set of interconnected
modules, whereas previously, we had a single set of rules. Modules are important,
because they permit to concentrate on a subsequence of states for a component
of the program.

Of course, there is a large body of previous work on microcontroller pro-
gramming for embedded systems. Statecharts [4] were developed to specify such
reactive systems, the textbook [8] uses them for event-driven programming of
embedded systems. In the database area, there are several approaches to extend
Datalog by updates and states, or to unify deductive and active rules, see,
e.g., [1,6]. In logic programming and artificial intelligence, the specification of
planning tasks or agents acting in some domain all require a formalization of a
state that is changed by actions. A recent paper in this area is [5].

In Sect. 2, we review standard Datalog and approaches to handle time in
Datalog. In Sect. 3, we define the proposed language for microcontroller pro-
gramming. The semantics of the language is defined by a translation to stan-
dard Datalog (the translation of the event queue is a bit lengthy and postponed
to Sect. 5). A few examples are presented in Sect. 4. In Sect. 6, we propose a

82 S. Brass

simple module system. This is important because it allows to concentrate on a
subsequence of the states. Conclusions are contained in Sect. 7.

2 Datalog and Time

Our proposed language uses logical rules similar to Datalog. Its semantics is
defined by a translation to “standard” Datalog. In this section, we briefly review
the Datalog version we are using, as well as some previous approaches to handle
time in Datalog.

2.1 Standard Datalog

Let us first quickly repeat the definition of standard Datalog. A Datalog program
is a finite set of rules of the form A ← B1 ∧ · · · ∧ Bn ∧ ¬C1 ∧ · · · ∧ ¬Cm,
where the head literal A and the positive body literals Bi are atomic formulas
of the form p(t1, . . . , tk) with a predicate p and terms t1, . . . , tk. The negative
body literals ¬Cj are negations of such atomic formulas. Terms are constants or
variables.

Rules must be range-restricted, i.e. all variables appearing in the head A
or a negative body literal ¬Cj must also appear in at least one positive body
literal Bi. This ensures that all variables are bound to a value when the rule
is applied. In addition, when built-in predicates (such as <) are used, variables
appearing in input arguments (e.g., both arguments of <) must occur already
in a body literal to the left of the literal with the built-in predicate (so that at
least a left-to-right evaluation of the rule body is possible). Of course, built-in
predicates cannot be used in rule heads because they have a fixed semantics built
into the system.

A fact is a rule with an empty body, i.e. it has the form p(c1, . . . , ck) with
constants ci. A “rule about p” is a rule with predicate p in the head literal.
The anonymous variable “ ” can be used to mean a different variable for each
occurrence (distinct from all other variables).

The semantics of a Datalog program is given by the well-founded model [7,
11]. As [1], we require a time-stratification (see below) which ensures that the
well-founded model is actually two-valued.

2.2 Time

The program on a microcontroller must act in time. It basically runs forever
(until the power is switched off), but the time-dependent inputs lead to some
state change, and outputs depend on the state and also change over time. So
it is quite clear that a programming language for microcontrollers must be able
to define a sequence of states. We use natural numbers from lN0 to identify
time points (states). Note that this is logical time, the numbers have no specific
meaning except being a linear order. We need the built-in predicate succ(T,S)
(with input argument T). This returns the next point in time (state number) S

Event-Driven Microcontroller Programming in Datalog 83

for a given time point T, i.e. succ is interpreted as {(T,S) ∈ lN0×lN0 | S = T+1}.
We also need two distinguished variables T and S that are not otherwise used in
the program.

In our previous language Microlog [12,13], we borrowed from Dedalus [1] the
idea to add a time (or state number) argument to every predicate. The current
proposal permits both: Time-dependent predicates (with the extra argument)
and time-independent predicates (without time argument). The time argument
is added as “zeroth” argument in front of the other arguments.

As in Dedalus [1], we do not use arbitrary Datalog rules, but restrict the use
of the time argument. There are the following types of rules:

1. Rules and facts with only time-independent predicates.
2. Rules for deriving facts within a state, i.e. rules where all time arguments are

filled with the same variable T. The body might contain also time-independent
literals, but there must be at least one positive literal with time-dependent
predicate (so that the variable T is bound and does not violate the range-
restriction condition).

3. Rules for deriving facts for the next state, i.e. rules where all time arguments
in the body are filled with T, the body contains the literal succ(T,S), and the
head literal has the time argument S. Again, time-independent literals are
allowed in the body (with the same requirement to ensure that T is bound).

4. Facts filled with the constant 0 for the time argument (to define the initial
state).

As in Dedalus [1], we require that the Datalog program without rules defining
the next state (Type 3 above) are stratified, i.e. there is no recursion through
negation. This avoids that a fact might depend on itself negatively, which might
lead to the third “undefined” truth value in the well-founded model. Rules deriv-
ing facts for the next state can never lead to such negative cycles. Basically, the
stratification order of facts is first by time, and then by the standard stratifica-
tion order for the predicates derived from the state-local and time-independent
rules.

3 A Datalog-Variant for Microcontroller Systems

In this section, we present a language “Microloge” for microcontroller program-
ming (modules are deferred to Sect. 6). Its semantics is defined by a translation
to an internal, “pure Datalog” version (plus a small interface to the environment,
i.e. the actual hardware). It is important to distinguish these two levels:

– The language that is used by the programmer (Microloge), and
– the “pure Datalog” translation result.

The presentation of the language is structured by the different kinds of predicates
that can be used.

In the following, we write B̄ for mapping a literal B from Microloge to Dat-
alog. The exact mapping depends on the type of predicate of B, but usually
p(t1, . . . , tn) is mapped to p(T, t1, . . . , tn) with the special variable T for the
current point in time.

84 S. Brass

3.1 Static Predicates (Time-Independent)

There are time-independent (static) predicates, used for configuration data and
fixed data tables (e.g., for mapping digits to the inputs of a 7-segment display).
Often static predicates are defined by a set of facts. But there can be also derived
static predicates that are defined by rules. Of course, such rules can contain only
static predicates in the body. Obviously, static predicates do not need the addi-
tional time argument. For them, the mapping from the user notation (Microloge)
to the internal Datalog version is the identity, i.e. B̄ is simply B. Since the entire
approach is based on Datalog, it is good that one can have a part of the program
that is just pure Datalog.

3.2 State Predicates (Updateable)

State predicates store persistent time-dependent information. Their extension
can be changed by means of updates. For each state predicate p, there is an
insertion predicate +p and a deletion predicate -p with the same arity.

All these predicates are time-dependent, so the internal Datalog version has
the additional time argument at the beginning. For each state predicate p of
arity n, the following rules are automatically added to the pure Datalog version:

– Facts persist over time unless they are deleted:
p(S,X1, . . . , Xn) ← p(T,X1, . . . , Xn) ∧ ¬ -p(T,X1, . . . , Xn) ∧ succ(T,S).

– Inserted facts are true in the next state:
p(S,X1, . . . , Xn) ← +p(T,X1, . . . , Xn) ∧ succ(T,S).

Updates become effective in the next state. If a fact is simultaneously inserted
and deleted, the insertion “wins”. One might consider this situation as an error
and put the following integrity constraint (invariant) on the list of verification
goals:

← +p(T,X1, . . . , Xn) ∧ -p(T,X1, . . . , Xn).

(The empty rule head is considered as “false”, i.e. this rule must never be appli-
cable.) However, it simplifies programming in certain situations if one allows
“deleting everything” and inserting the single fact that one wants in the next
state.

For instance, in our previous proposal for Microlog [12], we used the syntax
of Dedalus [1] for specifying predicate extensions in the next state:

p(t1, . . . , tn)@next ← B1 ∧ · · · ∧ Bm.

One must explicitly write rules to persist a predicate (Dedalus has a macro
for this). In our current approach, the intention is that the programmer can
concentrate on changes. Persistence is the default. However, if one wants to
translate a program from Microlog or Dedalus to Microloge, this is possible by
changing the above rule to an insertion and deleting everything by default:

Event-Driven Microcontroller Programming in Datalog 85

+p(t1, . . . , tn) ← B1 ∧ · · · ∧ Bm.
-p(X1, . . . , Xn) ← p(X1, . . . , Xn).

In Microloge, a predicate p is classified as “state predicate” if +p or -p appears
in the program. In that case, there can be no rules about p, i.e. p itself cannot
appear in rule heads. The semantics of p is defined exclusively by updates. There
is a “setup” event (see below) that is sent at the very beginning of program
execution. It can be used in order to initialize p. It would have been an option
to permit facts about p to define the initial extension of p. However, this looks
quite similar to facts about a static predicate, which hold in all states. Therefore,
it seemed better to clearly separate this.

The following abbreviation for updates is sometimes useful. We allow to write

^p(t1, . . . , tk -> tk+1, . . . , tn) ← B1 ∧ · · · ∧ Bm.

This means that for given key values t1, . . . , tk, the remaining arguments are set
to tk+1, . . . , tn. This is treated as the following two rules:

-p(t1, . . . , tk,Xk+1, . . . , Xn) ← p(t1, . . . , tk,Xk+1, . . . , Xn) ∧ B1 ∧ · · · ∧ Bm.
+p(t1, . . . , tk, tk+1, . . . , tn) ← B1 ∧ · · · ∧ Bm.

If the arrow “ -> ” is missing, k = 0 is assumed, i.e. the extension of the predicate
is overwritten with the result of the rule application. This can be used to set a
kind of “global variable”.

3.3 Interface Predicates

A Datalog program for a Microcontroller must interface with the libraries
for querying input devices and performing actions on output devices. A
few examples of interface functions (from the Arduino.h header file) are:

#define HIGH 0x1 void pinMode(uint8_t pin, uint8_t mode);
#define LOW 0x0 void digitalWrite(uint8_t pin, uint8_t val);
#define INPUT 0x00 int digitalRead(uint8_t pin);
#define OUTPUT 0x01 unsigned long millis(void);

For each function f that can be called, there is a special predicate !f with
the same arguments as the function to be called (on the Microloge level) and in
addition the standard time argument (on the internal Datalog level). E.g. derived
facts about the predicate !digitalWrite(T,Pin,Val) lead to the corresponding calls
of the interface faction digitalWrite at time point T. The implementation
ensures that duplicate calls are eliminated, i.e. even if there are different ways
to deduce the fact, only one call is done.

The sequence of calls in the same state (time point) is undefined. If a specific
sequence is required, one must use multiple states. Conflicts between functions
(where a different order of calls has different effects) can be specified by means
of constraints/invariants.

If an interface function f returns a value, there is a second predicate ?f that
contains all parameters of the call and a parameter for the return value. For
instance, for the function digitalRead, there are two predicates:

86 S. Brass

– !digitalRead(T,Pin), and
– ?digitalRead(T,Pin,Val).

When a !digitalRead-fact is derived, the call is done, and the corresponding result
fact with the predicate ?digitalRead is added to the same state, i.e. can be used
for further derivations. Of course, the result predicates ?f cannot be used in rule
heads. Basically, ?f can be seen as defined by an (internal) system rule like

?digitalRead(T,Pin,Val) ← !digitalRead(T,Pin) ∧ Val = digitalRead(Pin).

The body of this special rule is evaluated from left to right, i.e. the call is only
done when the !digitalRead is derived. In contrast, the evaluation sequence of
literals in a normal rule body can be chosen by the optimizer. In our previous
language, the results of interface function calls were available only in the next
state. The present solution helps to reduce the number of states.

In Microloge, actions (such as calling a function) are defined by the rule
heads. If actions were done in the body (as, e.g., in Prolog), the language would
be less declarative, because we would need a prescribed evaluation order. The
return predicates can appear in the rule body, but there can be facts about
them only when a call was previously derived. That the calls are done during
the derivation in a state also explains why we cannot guarantee a specific order.

Finally, we need also constants from the interface definition. If our Datalog
program contains e.g. $HIGH, this corresponds to the constant HIGH in the gener-
ated C-code. We assume that different symbolic constants denote different values
(unification will fail for them). Thus, the programmer may not use synonyms.

3.4 Event Predicates and the Event Queue

Programs for microcontrollers can often be viewed as reactive systems which are
driven by events. An event can be an interrupt caused by a change on an input
pin, or a timer that has reached its goal value. The program specifies the reaction
on the event. This is dependent on the current state of the system and can cause
a state-change (update of a predicate), as well as the execution of actions, such as
calling an interface function. Events can also cause other internal events. Usually
part of the program would abstract from the pure hardware-oriented event to a
higher level application-oriented event. When modules are introduced in Sect. 6,
events will be heavily used for communication between the modules.

A fact that describes an event exists only in one state, i.e. it is transient in
contrast to facts with static or state predicates. However, events are queued, so
that in each state, there is only one active event. It simplifies programming if
one does not have to handle simultaneous events, and microcontrollers like the
one in the Arduino have only a single core. Thus, we anyway have to handle
one event after the other. Furthermore, our goal is that each single event can be
processed quickly, so that the processing of interrupts is not delayed.

In Microloge, event predicates are marked as @p. They are time-dependent,
i.e. they have the additional argument for the time point (state number) in the

Event-Driven Microcontroller Programming in Datalog 87

pure Datalog version. It is guaranteed that the special event @setup occurs in
the very first state 0, i.e. the internal Datalog program contains @setup(0).

All actions that are caused by an event @p (such as updates of state pred-
icates or calls to interface functions) appear in heads of rules that contain @p
in the body, or another (transient) predicate that depends on @p. In this way,
“something happens” only when an event occurs.

There is an event queue (the details are given in Sect. 5). All derived events
are put into the queue, and at each time point (i.e., in each state), one event is
taken out of the queue. For instance, if one needs to call interface functions at
setup in a certain order, one could create another event:

@setup2[] ← @setup.

Rules with an event in the head will put this event into the queue in the next
time point. If there is no other event, it will leave the queue immediately in that
time point (i.e., @setup2 will occur immediately after @setup). In general, it is at
least guaranteed that @setup2 will occur sometime after @setup. The meaning of
the [] will become clearer when we look at real time delays in Subsect. 3.6 (one
can specify a time in [...]).

A rule to define an event that immediately repeats itself (so that one gets an
infinite sequence of events) is written as

@e[] ← @e.

Without the marker [], this rule would look like a tautology: @e ← @e. How-
ever, since there can be only one event in each state, rules that derive different
events in the same state are anyway impossible. One can derive events only for
a future state (via the queue). Transient predicates (see Subsect. 3.5) are a kind
of “auxiliary synchronous events”: They are derived within a state and can be
used like an event in rules that specify actions in their head literal.

If one needs to perform polling, an event like @e can be used to ensure that
the processor keeps working at maximal speed. Otherwise, when the event queue
is empty, it might wait for an interrupt or a timed event (see Subsect. 3.6).

We permit that the user defines a priority of events from 0 (lowest) to 9
(highest). If no priority is specified, we use 5 as a default. Hardware interrupts
are treated as having priority 10. In the Microloge syntax, priorities can be
specified by attaching #0 to #9 to the derived event predicate (it is illegal to
use different priorities with the same event predicate). In the internal Datalog
version, priorities are given by a predicate prio with the event predicate name and
the priority as arguments. For simplicity we assume that this contains priorities
for all event predicates, including the default priority.

Besides the @setup event at time 0, the queue contains also the event @start
of priority 1 from the beginning. The @start event has a very low priority so that
the setup can finish, even if it requires several states. When @start is processed,
the system should begin with its normal function.

There are further special events for different kinds of hardware interrupts.
If the interrupts need to be configured, this can be done by calling interface
functions.

88 S. Brass

It would have been also possible to treat interface function calls as events.
However, our definition guarantees that function calls to handle an event are
finished before the next event is processed. This seems to simplify programming.
Our solution also corresponds to updates of state predicates that will certainly
be done in the next state. Furthermore, interface function calls can be seen as
the output of the reactive system, whereas events are the input.

3.5 Transient Predicates (Synchronous Events)

If the computation of the actions for an event becomes more complicated, one
of course wants to use derived predicates. We call such predicates transient,
because all facts about such a predicate exist only in a single state when the
event is handled. They do not carry over to the next state.

One can also view these predicates as a kind of synchronous derived events.
Normally, when an event is derived, it is entered into the queue and is executed
in the next state or a later state. It does not influence the current state. But
normal predicates can be derived from events, and they are available in the same
state. These predicates can then be used for deriving actions, i.e. calls of interface
functions or the generation of events.

A predicate p is called transient if each rule about p contains at least one body
literal with an event predicate or a transient predicate. (The definition is slightly
cyclic: We use the maximal set of predicates that satisfies this condition, i.e. we
start with all predicates and successively eliminate predicates not satisfying the
condition. The reason for this is that if we worked “bottom-up”, recursive rules
about transient predicates would block the classification as transient, because all
rules about a transient predicate must contain an event or a transient predicate
in the body.)

In order to clearly separate the persistent state and the definition of reactions
on events, we expect that a rule containing an action predicate in its head (i.e., an
event predicate @p, a function call predicate !f or an update predicate +p or -p),
has at least one body literal with an event predicate or transient predicate.
(Actually, everything would still defined if this style rule were violated: The
events define a state sequence, and the corresponding action would be done in
every state in which the body is true. But it seems better to explicitly define a
transient predicate that is implied by each event, if one really should want such
a behaviour.)

3.6 Real Time

In many programs for microcontrollers, something has to be done periodically,
but only every n milliseconds (not at maximal speed). In other cases, something
has to be done once after a certain time. For instance, to de-bounce an input
key, one can check its value several times over a period of 20–50 ms (e.g. five
times every 10 ms).

For this, we need the additional construct that one can derive an event
delayed by a certain time:

Event-Driven Microcontroller Programming in Datalog 89

@p(t1, . . . , tn)[n ms] ← B1 ∧ · · · ∧ Bm.

After n milliseconds, the event is entered into the standard event queue. If the
queue is then otherwise empty (or the event has high priority), it is immediately
taken out of the queue and processed. In this construct, the time unit ms (mil-
liseconds) is the default and can be left out. We now also see that the previous
case [] simply means “delayed by 0 ms”: The event is entered immediately into
the standard queue.

Of course, events can reproduce themselves. In this way, a periodic event is
created:

@tick[10 ms] ← @tick.

In order to avoid that any additional delays in the event queue or the time for
processing the event add up over many executions of such periodic events, the
implementation can remember the originally scheduled time of the event, and
use that time instead of the current time if it derives another timed event.

Internally, when a delayed event @p is derived, the current system time is
queried (on the Arduino with the function millis()), the scheduled time is com-
puted, and the event is inserted into a queue prioritized by time. In each state,
the scheduled time t of the first event in the queue is compared with the system
time s, and if t ≤ s, the event is moved to the standard event queue. Of course,
this works only as long as the standard event queue is not empty, so that the
processor is busy generating new states. When there are no more events to be
processed immediately, we must compute the remaining waiting time for the
first event in the time queue and delay execution for that time. Microcontrollers
(including the one on the Arduino) have various sleep modes in order to save
energy while they are more or less idle. One can set a timer interrupt and enter
a sleep mode where the CPU wakes up again when the timer reaches its goal.

4 Examples

Example 1. Most Arduino boards have an LED already connected to Pin 13.
With the following program we can let this LED blink with 1000 ms on, then
1000 ms off, and so on. The similar program BlinkWithoutDelay from the
Arduino tutorial has 16 lines of code.

!pinMode(13, $OUTPUT) ← @setup.
@turn on[] ← @start.

@turn off[1000 ms] ← @turn on.
@turn on[1000 ms] ← @turn off.

!digitalWrite(13, $HIGH) ← @turn on.
!digitalWrite(13, $LOW) ← @turn off.

This program has the same number of rules as in our previous proposal,
but now there is a state change only when something happens. The single state

https://www.arduino.cc/en/Tutorial/BlinkWithoutDelay

90 S. Brass

change from @start to @turn on in the beginning could be avoided if we derive
@turn on immediately from @setup. ��
Example 2. If one does not like the repeated constants for the LED port and
the on and off time, one can use static predicates with the configuration data:

led pin(13).
on time(1000).
off time(1000).
!pinMode(P, $OUTPUT) ← @setup ∧ led pin(P).
@turn on[] ← @start.

@turn off[D ms] ← @turn on ∧ on time(D).
@turn on[D ms] ← @turn off ∧ off time(D).
!digitalWrite(P, $HIGH) ← @turn on ∧ led pin(P).
!digitalWrite(P, $LOW) ← @turn off ∧ led pin(P).

��

5 A Queue-Implementation in Datalog

In this section, we show how the event queue can be implemented in Datalog.
Of course, the real implementation is in C. So this could be seen as only an
academic exercise. However, since the semantics of Microloge is defined by its
translation to Datalog, this is needed. It also gives the yardstick to measure the
correctness of the C implementation. For space reasons, we handle only the case
without real time delays.

For every event predicate @p, there is a queue predicate queue p with one
additional argument for the logical time (state number) when the event was
queued. By including the time when the event was generated, it is also clearly
defined that events are not lost even if they are generated later again before the
first event was processed. The queue predicate is used only in the internal Datalog
version, it cannot appear in Microloge programs. If the Microloge programmer
puts an event in the head, e.g.,

@p(t1, . . . , tn)[] ← B1 ∧ · · · ∧ Bm

this really means (in the internal Datalog version) that the corresponding event
is put into the queue in the next state:

queue p(S,S, t1, . . . , tn) ← B̄1 ∧ · · · ∧ B̄m ∧ succ(T,S).

The second argument is the time when the event entered the queue. Queued
events persist until they are selected for execution. Therefore, the internal Dat-
alog program contains these rules for each event predicate of arity n:

queue p(S,Q,X1, . . . , Xn) ← queue p(T,Q,X1, . . . , Xn) ∧
¬selected p(T,Q,X1, . . . , Xn) ∧ succ(T,S).

@p(T,X1, . . . , Xn) ← selected p(T,Q,X1, . . . , Xn).

Event-Driven Microcontroller Programming in Datalog 91

The indirection via selected p is necessary so that one selected @p event does not
delete other @p-events that were later queued. To define the queue, we need for
each queue predicate queue p a predicate wait p formalizing that the event has to
wait because there is another event in front. The predicate wait p has the same
arguments as queue p. Then an event is selected if it does not have to wait:

selected p(T,Q,X1, . . . , Xn) ← queue p(T,Q,X1, . . . , Xn) ∧
¬ wait p(T,Q,X1, . . . , Xn).

Now formalizing the wait predicate is a bit technical work. Because all events
have predicates of their own, we define a single predicate queued that states
which type of event with which priority waits since what time. For every queue
predicate queue p, the following rule is added to the Datalog program:

queued(T,P,Q, p) ← queue p(T,Q,X1, . . . , Xn) ∧ prio(p,P).

Here the predicate name is used as a data value in the head and in the lookup
of the priority. If different events of the same priority wait for the same time, we
use the alphabetic order to select one. However, the order of events of the same
priority that entered the queue at the same time is “implementation defined”.
The first rule about wait p states that an event has to wait when there is another
event of higher priority:

wait p(T,Q,X1, . . . , Xn) ← queue p(T,Q,X1, . . . , Xn) ∧ prio(p,P) ∧
queued(T,P′,Q′, p′) ∧ P′ > P.

The second rule states that an event has to wait if there is an event of the same
priority that already waits already longer:

wait p(T,Q,X1, . . . , Xn) ← queue p(T,Q,X1, . . . , Xn) ∧ prio(p,P) ∧
queued(T,P,Q′, p′) ∧ Q′ < Q.

The third selection criterion is the event name:

wait p(T,Q,X1, . . . , Xn) ← queue p(T,Q,X1, . . . , Xn) ∧ prio(p,P) ∧
queued(T,P,Q, p′) ∧ p′ < p.

Now we only have to define the sequence for the same type of event waiting for
the same time. This is done by the argument values. The first rule of this type
is:

wait p(T,Q,X1, . . . , Xn) ← queue p(T,Q,X1, . . . , Xn) ∧
queue p(T,Q, Y1, . . . , Yn) ∧ Y1 < X1.

This continues until the last argument defines the order if all previous arguments
are the same.

Please note that all these rules to specify the event queue are contained only
in the internal Datalog version. The Microloge programmer does not have to
write them, and the implementor is free to use any prioritized queue implemen-
tation that conforms to this specification.

92 S. Brass

6 Modular Specifications

Larger programs should be separated into components that can be understood
independently and help to avoid name clashes. When specifying a system based
on a sequence of states, it is also helpful if one can consider only a subsequence
of the states for each component.

We use a simple module system: Modules have the form

〈module-name〉 { 〈rules〉 }

Similar to the module systems of Prolog, the module name µ becomes a prefix
of the predicate name, i.e. all predicate names internally have the form µ : p. If
a predicate p is used in module µ without prefix, this implicitly means µ :p.

Now there should of course be restrictions in the rules so that modules can be
understood separately as far as possible. With exception of events, the predicate
in the head of a rule in module µ must have prefix µ (explicitly or implicitly).
I.e., all predicates of a module are defined by the rules within that module.
Only events of a module can come from the outside—they are the means of
communication between the modules.

In order to give the module control over the events and their priority that can
be expected from the outside, we optionally permit to specify this information:

〈module-name〉 [〈event〉#〈priority〉, . . .] {
〈rules〉

}

If this is specified, only the given events of this module can be generated
in other modules. This permits to have also internal events, presumably with
higher priority, so that a sequence of states can be finished before the next event
is handled.

Example 3. In the following example, there is a separate module for controlling
the LED:

led {
led pin(13).
!pinMode(P, $OUTPUT) ← @setup ∧ led pin(P).
!digitalWrite(P, $HIGH) ← @turn on ∧ led pin(P).
!digitalWrite(P, $LOW) ← @turn off ∧ led pin(P).

}

blink {
on off time(1000).
@tick[] ← @start.
@tick[D ms] ← @tick ∧ on off time(D).
led : @turn on ← @tick ∧ ¬is on.
+is on ← @tick ∧ ¬is on.
led : @turn off ← @tick ∧ is on.
-is on ← @tick ∧ is on.

}

��

Event-Driven Microcontroller Programming in Datalog 93

In rule bodies, events and transient predicates from other modules are for-
bidden. The main motivation is that something changes in a module only if an
event of that module occurs.

It is possible that one wants to access other predicates from a different mod-
ule. E.g., in Example 3, it would make sense that the led module does the book-
keeping of the status of the LED. As explained above, only static predicates and
state predicates can be accessed from the outside. Furthermore, we require in
this case that they are explicitly listed in the export list (while events can be
expected to come from the outside, the default for other predicates is that they
are local).

It is important to understand that although used state predicates from other
modules might change, own predicates change only at the next event. This is
no problem when state predicates from other modules are used in action rules
that contain an event or transient predicate in the body. This would cover,
e.g., accessing the current LED state maintained by the led module in the blink
module. Other usages of foreign state predicates are forbidden.

There is no restriction to use exported static predicates from other modules.

7 Conclusions

In this paper, we presented a rule-based language for programming microcon-
trollers. In our personal view, after experimenting with different language pro-
posals, the language looks quite nice and useable. The language can be translated
to Datalog with a state argument and with calls to external functions. This gives
it a clearly defined semantics and makes the large body of work about Datalog
applicable.

Of course, program verification is important for embedded systems, and such
logic based languages should have an advantage in this aspect. In [2], we defined
a class of integrity constraints called “generalized exclusion constraints” and
presented a method for proving that they are always satisfied. In particular, this
kind constraints can be used to ensure that each state does not contain “too
many” facts, e.g. more than what fits in the restricted memory of a microcon-
troller. But they also can express conflicts between different interface functions
that cannot be called in the same state. For the event queue, we certainly have
to prove that it is always quite small. In the general case, this would need also
time bounds for processing events.

We are working on a prototype implementation of the language. The current
state of the project is described at:

https://users.informatik.uni-halle.de/˜brass/micrologE/.

Acknowledgement. I would like to thank Mario Wenzel for the inspiration, helpful
questions and important suggestions.

https://users.informatik.uni-halle.de/{~}brass/micrologE/

94 S. Brass

References

1. Alvaro, P., Marczak, W.R., Conway, N., Hellerstein, J.M., Maier, D., Sears, R.:
Dedalus: Datalog in time and space. In: de Moor, O., Gottlob, G., Furche,
T., Sellers, A. (eds.) Datalog 2.0 2010. LNCS, vol. 6702, pp. 262–281. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24206-9 16. http://www.
neilconway.org/docs/dedalus dl2.pdf

2. Brass, S., Wenzel, M.: Integrity constraints for microcontroller programming in
Datalog. In: Bellatreche, L., Dumas, M., Karras, P., Matulevičius, R. (eds.) ADBIS
2021. LNCS, vol. 12843, pp. 152–166. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-82472-3 12

3. Chabin, J., Halfeld-Ferrari, M., Markhoff, B., Nguyen, T.B.: Validating data from
semantic web providers. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J.,
Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 682–695. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-73117-9 48

4. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8, 231–274 (1987)

5. Kowalski, R., Sadri, F.: Reactive computing as model generation. New Gener.
Comput. 33, 33–67 (2015). https://doi.org/10.1007/s00354-015-0103-z

6. Lausen, G., Ludäscher, B., May, W.: On active deductive databases: the statelog
approach. In: Freitag, B., Decker, H., Kifer, M., Voronkov, A. (eds.) DYNAMICS
1997. LNCS, vol. 1472, pp. 69–106. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0055496

7. Przymusinski, T.C.: Every logic program has a natural stratification and an
iterated least fixed point model. In: Proceedings of the Eighth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, (PODS 1989),
pp. 11–21. ACM (1989)

8. Samek, M.: Practical UML Statecharts in C/C++: Event-Driven Programming for
Embedded Systems, 2nd edn. CRC Press, Boca Raton (2009)

9. Scholz, B., Jordan, H., Subotić, P., Westmann, T.: On fast large-scale program
analysis in Datalog. In: Proceedings of the 25th International Conference on Com-
piler Construction (CC 2016), pp. 196–206. ACM (2016)

10. Shkapsky, A., Yang, M., Interlandi, M., Chiu, H., Condie, T., Zaniolo, C.: Big data
analytics with Datalog queries on Spark. In: Proceedings of the 2016 International
Conference on Management of Data (SIGMOD 2016), pp. 1135–1149. ACM (2016).
http://yellowstone.cs.ucla.edu/∼yang/paper/sigmod2016-p958.pdf

11. Van Gelder, A., Ross, K., Schlipf, J.S.: Unfounded sets and well-founded seman-
tics for general logic programs. In: Proceedings of the Seventh ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 1988),
pp. 221–230 (1988)

12. Wenzel, M., Brass, S.: Declarative programming for microcontrollers - Datalog
on Arduino. In: Hofstedt, P., Abreu, S., John, U., Kuchen, H., Seipel, D. (eds.)
INAP/WLP/WFLP 2019. LNCS (LNAI), vol. 12057, pp. 119–138. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-46714-2 9. https://arxiv.org/abs/1909.
00043

13. Wenzel, M., Brass, S.: Translation of interactive Datalog programs for microcon-
trollers to finite state machines. In: Fernández, M. (ed.) LOPSTR 2020. LNCS,
vol. 12561, pp. 210–227. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-68446-4 11

https://doi.org/10.1007/978-3-642-24206-9_16
http://www.neilconway.org/docs/dedalus_dl2.pdf
http://www.neilconway.org/docs/dedalus_dl2.pdf
https://doi.org/10.1007/978-3-030-82472-3_12
https://doi.org/10.1007/978-3-030-82472-3_12
https://doi.org/10.1007/978-3-319-73117-9_48
https://doi.org/10.1007/s00354-015-0103-z
https://doi.org/10.1007/BFb0055496
https://doi.org/10.1007/BFb0055496
http://yellowstone.cs.ucla.edu/~yang/paper/sigmod2016-p958.pdf
https://doi.org/10.1007/978-3-030-46714-2_9
https://arxiv.org/abs/1909.00043
https://arxiv.org/abs/1909.00043
https://doi.org/10.1007/978-3-030-68446-4_11
https://doi.org/10.1007/978-3-030-68446-4_11

Combining Deep Learning
and ASP-Based Models for the Semantic

Segmentation of Medical Images

Pierangela Bruno(B) , Francesco Calimeri(B) , Cinzia Marte(B) ,
and Marco Manna(B)

Department of Mathematics and Computer Science, University of Calabria,
Rende, Italy

{bruno,calimeri,marte,manna}@mat.unical.it

Abstract. Automatic segmentation represents a huge breakthrough in
computer-aided diagnosis and medicine, as it allows to provide clini-
cians important with information for interventional and diagnostic tasks.
Recent advancements in Deep Learning (DL), such as Convolutional Neu-
ral Networks (CNNs), have proved to be greatly promising in identifying
anatomical and pathological structures, and in extracting meaningful
patterns from huge amounts of data. However, such approaches suffer
from the lack of proper means for interpreting the choices made by the
models, and it is not easy to drive the decisions according to prior knowl-
edge. In this context, deductive rule-based approaches, such as Answer
Set Programming (ASP), can allow to effectively encode problems or
specific features via logic programs in a declarative fashion, while possi-
bly also helping at improving performance.

In this seminal work, we propose the use of ASP to drive DL
approaches in performing semantic segmentation of medical images.
Specifically, we encoded prior medical knowledge via ASP, thus defining
a rule-based model for deducting all admitted combinations of classes
and right locations in medical images. The results of an experimental
analysis are reported with the aim to assess the viability of the proposed
approach.

Keywords: Answer set programming · Knowledge representation and
reasoning · Deep learning · Semantic segmentation ·
Inductive-deductive coupling

1 Introduction

Semantic image segmentation, also defined as pixel-level classification, refers to
the task of segmenting an image into regions corresponding to meaningful objects
and then assigning them an object category label [22,30]. Notably, in medical
contexts, semantic segmentation of images can be extremely useful to support
clinicians in providing proper diagnosis, identifying pathological conditions, and
c© Springer Nature Switzerland AG 2021
S. Moschoyiannis et al. (Eds.): RuleML+RR 2021, LNCS 12851, pp. 95–110, 2021.
https://doi.org/10.1007/978-3-030-91167-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91167-6_7&domain=pdf
http://orcid.org/0000-0002-0832-0151
http://orcid.org/0000-0002-0866-0834
http://orcid.org/0000-0003-3920-8186
http://orcid.org/0000-0003-3323-9328
https://doi.org/10.1007/978-3-030-91167-6_7

96 P. Bruno et al.

highlighting image regions related to a specific disease. In the last decades, Deep
Learning (DL)-based approaches have shown a great deal of potential in extract-
ing meaningful information from different types of images (e.g., computed tomog-
raphy (CT), magnetic resonance imaging (MRI), endoscopic imaging), being
particularly suitable for semantic segmentation and, in general, for support-
ing automated diagnosis, surgical scene understanding and computer-assisted
interventions [32]. For instance, thanks to DL-based approaches, clinicians can
confirm the size of tumors, identify lesion sites and quantitatively evaluate the
effect before and after treatment [23].

However, DL-based approaches suffer from some limitations, for instance in
(i) providing clear interpretations and explanations of the decisions made by the
network, or (ii) driving the decisions according to prior knowledge, thus affecting
successful deployment in real-life experiments.

To overcome such limitations, we propose the use of Answer Set Program-
ming (ASP) to steer neural networks decisions and refine the predicted output.
Specifically, we create a rule-based model by encoding prior medical knowledge
to compute all the admitted combinations of classes and, for each class, identify
the wrong pixel location in medical images.

We make use of this ASP-based model to: (i) define a novel loss function
which includes a penalty for each misclassified element detected by the network,
and (ii) perform post-processing to discard small islands of noise and predicted
classes which do not comply with prior medical knowledge. We also re-assign mis-
classified elements to the more frequent class in the neighborhood. We tested our
approach using different artificial neural networks (i.e., DeepLab-v3, SegNet, U-
Net) for performing semantic segmentation of Laryngeal Endoscopic Images [21].

The remainder of the paper is structured as follows. We first briefly report
on related work in Sect. 2; in Sect. 3 we present preliminaries on ASP and deep
learning; in Sect. 4 we provide a detailed description of our approach, that has
been assessed via a careful experimental activity, which is in turn discussed in
Sect. 5; we analyze and discuss results in Sect. 6, eventually drawing our conclu-
sions in Sect. 7.

2 Related Work

In this section we report some related works regarding ASP, DL and their com-
bination.

Deep Learning in Image Analysis. In the literature, several works have
been proposed to perform the segmentation of medical images [7,14,31]. In the
context of semantic segmentation, Laves et al. [21] used different CNN-based
methods (i.e., SegNet, U-Net, ENet and ErfNet) to perform semantic segmen-
tation of Laryngeal Endoscopic Images. Rezaie et al. [28] proposed a recurrent
generative adversarial architecture to perform semantic segmentation on small
lesions and anatomical regions. This approach aims to mitigate imbalanced data
problems in medical images (i.e., the number of pixels belongs the background
are significantly higher than those belonging to the desired object). Similarly,

Combining Deep Learning and ASP-Based Models 97

Kim et al. [20] used a cascaded 3D U-Net, trained with active learning, to both
reduce labeling efforts through CNN-corrected segmentation and increase train-
ing efficiency with limited data. The approach was tested in performing semantic
segmentation of renal cell carcinoma and fine substructures of the kidney, show-
ing promising results. Finally, Ni et al. [26] proposed a Residual Attention U-Net
to perform semantic segmentation of cataract surgical instruments. Specifically,
this approach was designed to learn discriminative features and address the spec-
ular reflection issue, outperforming the state-of-the-art methods.

Answer Set Programming. To the best of our knowledge, there are no works
for employing Answer set programming (ASP) in segmenting medical images;
however, it has been applied in several areas of AI, like planning, probabilistic
reasoning, data integration, query answering, computational biology, bioinfor-
matics, etc. (see, e.g., [11,17]). Among the huge literature, Adrian et al. [1] relied
on ASP to provide a declarative characterization of the basic geometric prop-
erties of PDF documents, by combining geometrical, structural, and semantic
analysis, to obtain a more precise representation of complex documents; Costa-
bile et al. [16] defined a novel decision support system via ASP to perform a
diagnosis of headache disorders (HEAD-ASP); Alviano et al. [4] present an ASP
encoding to solve a variant of the Nurse Scheduling problem (NSP), which is
a combinatorial problem that consists of assigning nurses to shifts according to
given practical constraints.

Combination of Deep Learning with ASP. Very recently, ways for com-
bining deductive and inductive approaches have raised a lot of interest in the
scientific community. Maratea et al. [24] proposed machine learning techniques
to ASP solving, aiming at developing a fast and robust multi-engine ASP solver.
Similarly, Young et al. [34] presented an extension of ASP by embracing neu-
ral networks (NeurASP). This approach showed promising results in improving
the training of a neural network, by exploiting ASP rules. Mastria et al. [25]
presented a combined approach based on Machine Learning and ASP to auto-
matically decide whether to rewrite an input encoding for producing alternative
ASP programs that are semantically equivalent to the input ones, yet more effi-
ciently processed by actual ASP systems. Calimeri et al. [8] combine the use
of ML and ASP to propose a framework for supporting the analysis and the
understanding of the evolution of neurological disorders.

It is worth noting that methodologies for connecting automated reasoning
with existing deep learning architectures have already been proposed in the
literature (e.g., [33]); however, they rely on propositional logic and, to the best
of our knowledge, our approach is one of the first attempts to combine DL and
ASP through the use of both rule-based loss function and post-processing phase.

3 Methodology: Preliminaries and Background

In this section, we briefly introduce the basic notations, terminologies, and pre-
liminaries on ASP and DL which will be used throughout this paper.

98 P. Bruno et al.

3.1 Answer Set Programming

We report next some basics on Answer Set Programming; for further details and
advanced ASP features we refer the reader to [6,10,13] and the huge literature.
A term is either a simple term or a functional term. A simple term is either a
constant or a variable. If t1, . . . , tn are terms and f is a function symbol of arity n,
then f(t1, . . . , tn) is a functional term. If t1, . . . , tk are terms and p is a predicate
symbol of arity k, then p(t1, . . . , tk) is an atom. A literal l is of the form a or not a,
where a is an atom; in the former case l is positive, otherwise negative. A rule r is
of the form α1| · · · |αk : −β1, . . . , βn, not βn+1, . . . , not βm. where m ≥ 0, k ≥ 0;
α1| · · · |αk and β1, . . . , βm are atoms. We define H(r) = {α1| · |αk} (the head of
r) and B(r) = B+(r) ∪ B−(r) (the body of r), where B+(r) = {β1, . . . , βn}
(the positive body) and B−(r) = {not βn+1, . . . , not βm} (the negative body). If
H(r) = ∅, then r is a (strong) constraint ; if B(r) = ∅ and |H(r)| = 1, then r is a
fact. A rule r is safe if each variable of r has an occurrence in B+(r). For a rule
r, we denote as headvar(r), bodyvar(r) and var(r) the set of variables occurring
in H(r), B(r) and r, respectively. An ASP program is a finite set P of safe rules.
A program (a rule, a literal) is ground if it contains no variables. A predicate is
defined by a rule r if it occurs in H(r). A predicate defined only by facts is an
EDB predicate, the remaining are IDB predicates. The set of all facts in P is
denoted by Facts(P); the set of instances of all EDB predicates in P is denoted
by EDB(P). Given a program P , the Herbrand universe of P , denoted by UP ,
consists of all ground terms that can be built combining constants and function
symbols appearing in P . The Herbrand base of P , denoted by BP , is the set of
all ground atoms obtainable from the atoms of P by replacing variables with
elements from UP . A substitution for a rule r ∈ P is a mapping from the set of
variables of r to the set UP of ground terms. A ground instance of a rule r is
obtained applying a substitution to r. The full instantiation Ground(P) of P is
defined as the set of all ground instances of its rules over UP . An interpretation I
for P is a subset of BP . A positive literal a (resp., a negative literal nota) is true
with respect to I if a ∈ I (resp., a /∈ I); it is false otherwise. Given a ground rule
r, we say that r is satisfied with respect to I if some atom appearing in H(r) is
true with respect to I or some literal appearing in B(r) is false with respect to
I. Given a program P , we say that I is a model of P , iff all rules in Ground(P)
are satisfied with respect to I. A model M is minimal if there is no model N
for P such that N ⊂ M . The Gelfond-Lifschitz reduct (Gelfond and Lifschitz
1991) of P , with respect to an interpretation I, is the positive ground program
P I obtained from Ground(P) by: (i) deleting all rules having a negative literal
false with respect to I; (ii) deleting all negative literals from the remaining rules.
I ⊆ BP is an answer set for a program P iff I is a minimal model for P I . The
set of all answer sets for P is denoted by AS (P).

During the years, the language of ASP has been enriched to several extents
with different constructs, even beyond the language standard [10]. In this
work, we make use of the aggregate atoms, that are expression of the form
#aggr{t1, . . . , tm : l1, . . . , ln} � u where aggr ∈ {count , sum,max ,min},
� ∈ {<,≤,=, 	=, >,≥}, t1, . . . , tm are terms, l1, . . . , ln are literals and u
is a variable or a number.

Combining Deep Learning and ASP-Based Models 99

3.2 Deep Learning

Loss Function is an important component of Neural Networks able to ensure
that the model is working properly. It is used to evaluate how well the algorithm
manages to fit the training data [18] by comparing predicted images to ground
truth segmentation. The aim of the training is to minimize the loss function,
which computes a dissimilarity measure between a prediction p obtained by the
model on an input image x, and a corresponding ground truth segmentation
y. To this aim, we choose the pixel-wise cross-entropy loss function, defined as
LCE = −∑

yi log(pi), where yi is the ground truth segmentation and pi is the
prediction value for a given pixel i.

DeepLab-V3 is a semantic segmentation architecture that uses Atrous Spatial
Pyramid Pooling (ASPP) with the aim of extracting dense features [15]. The
authors proposed the use of several parallel atrus convolution with different
rates, with the image-level features [27]. To do this, they applied a global average
pooling on the last feature map and, then, they upsample the feature to the
desired spatial dimension [15].

SegNet has an encoder network and a corresponding decoder network. The first
one consists of 13 convolutional layers, corresponding to the first 13 convolutional
layers in the VGG16 network [5]. Each layer is followed by batch-normalization,
ReLu, and maxpooling with a 2 × 2 window and stride 2.

Similarly, each decoder contains 13 layers. The decoder upsamples input fea-
ture maps through the max-pooling indices previously memorized in the corre-
sponding encoder feature maps [5]. The final decoder output uses soft-max to
produce class probabilities for each pixel independently.

U-Net is a symmetric encoder/decoder structure composed of a contracting and
an upsampling path [29]. The contracting path is composed of the repeated 3×3
convolutions and a 2 × 2 maxpooling operation with stride 2 for downsampling.
In the expansive path feature and spatial information are combined through
a sequence of 3 × 3 up-convolutions and concatenations with high-resolution
features from the contracting path [29].

In the final layer, a 1×1 convolution is used to map all 64 component feature
vectors to the 7 classes. All layers use ReLU, except for the last layer which uses
soft-max.

4 ASP-Enhanced Semantic Segmentation

The herein proposed approach relies on the use of ASP for facilitating the task
of semantic segmentation. Such an approach requires to face three main chal-
lenges: (i) the design of a model based on knowledge representation for describing
domain medical knowledge, (ii) the design of a standard methodology to convert

100 P. Bruno et al.

Fig. 1. Workflow of the proposed framework. Laryngeal endoscopic images are used to
train three different neural networks. The training phase is supported by ASP-based
model through loss function and the predicted output is refined by rule-based post
processing.

network prediction into logical rules over the data model mentioned above, (iii)
a proper interpretation of the output of ASP computation and its conversion
into values understandable by the network, to determine the loss function in
real-time. To date, there’s no well-established methodology for combining DL
and ASP-based models in performing semantic segmentation; hence, the contri-
bution of this paper is two-fold (see Fig. 1):

– To drive the network’s learning and penalize the misclassification, we quan-
tify a penalty value using an ASP-based model that compares the network’s
prediction to medical knowledge and ground truth segmentation; this value,
which expresses “how wrong” the classification is, takes part in defining the
loss function. Specifically, we introduce the penalty value in the last 250
epochs of the training to refine the network decisions.

– To improve the quality of the results, we define an ASP-based post-processing
to remove noise (i.e., small “islands” of misclassified pixels) and wrong pre-
dicted classes (i.e., classes which do not respect medical requirements). Specif-
ically, we first translate the network’s prediction into logical rules, and then
define an ASP-based model to identify pixels that need to be removed; even-
tually, we rely on such model to re-assign misclassified pixels/elements to the
more frequent class in the neighborhood.

In the following we illustrate the proposed approach in detail: we first describe
rule-based loss function and then the post-processing phase.

ASP-Based Loss Function. We encode an ASP program PL that defines a
declarative loss function for driving the neural network’s decisions, discarding
the non-eligible ones according to prior medical knowledge. The idea is to apply
a penalty to the network, combining the LCE function and our parameter Λ,
which depends on the number of wrong objects identified by the network. To this
aim, we compare the ground truth segmentation with respect to the predicted
one and, to compute Λ, we discern three main scenarios in which the network can
recognize wrong objects. Specifically, the schema of PL consists of 18 predicates.

Combining Deep Learning and ASP-Based Models 101

We use four extensional predicates to model the information about the ground
truth segmentation (for simplicity of exposition, we will refer to it as “original
image”) and the predicted image. In particular, with

original(I ,Class,Seq), predicted(I ,Class,Seq),

we represent the classes contained in the original (resp., predicted) image I, for
each possible sequence. Since we are interested in understanding how wrong the
network’s prediction is, in our analysis, we consider the identified objects, and
especially the positions in which they appear.

In particular, we use facts of the form

position original(I ,Class,Seq ,Pos1 ,Pos2),

position predicted(I ,Class,Seq ,Pos1 ,Pos2),

where variables Pos1 and Pos2 can be mapped to the sets of constants
{up, center , bottom} and {left , center , right}, respectively.

On the basis of this definition of the input information, we define the three
main scenarios in which the network makes mistakes more often.

1. Incorrect number of object occurrences in the image. The first scenario refers
to all cases in which the network recognizes non-existent objects or misses
something else according to the original image. We use the following rules to
count the number of objects both in the original and in the predicted image.

totalOriginal(I ,N ,S) : − original(I , ,S),
N = #count{I ,C ,S : original(ID ,C ,S)}.

totalPredicted(I ,N ,S) : − predicted(I , ,S),
N = #count{I ,C ,S : predicted(ID ,C ,S)}.

After that, we are able to deduce if the network recognizes something more
(resp., less) via instances of the predicate penality occ more(I ,Seq) (resp.,
penality occ less(I ,Seq)) obtained by comparing the second term of predi-
cates totalOriginal and totalPredicted . Please note that to each atom of the
form penality occ less(I ,Seq) we assign a penalty which is directly propor-
tional to the number of undetected object.

2. Wrong object detection, according to medical knowledge. In this scenario we
consider all cases in which the network recognizes an object which do not
comply to the prior medical knowledge. The dataset that we used is composed
of different sequences from two patients, each featuring constraints like “in
Sequence 1 the tumor is clearly visible”, or “in Sequence 1 there are not
instruments visible” (see Sect. 5.1 for more details). We use the following
rules to count the number of images in which this problem shows:

penality scen(I , sequence1) : −predicted(I , intubation, sequence1).

penality scen(I ,Seq) : −predicted(I , pathology ,Seq).

where Seq ∈ {sequence3, . . . , sequence8}.

102 P. Bruno et al.

3. Wrong positions of objects detection. In the last scenario, we collect all the
cases in which the network predicts objects in wrong positions. In particular,
we count how many images are such that the predicted position of a given
class C for an image I and a sequence S is different from the original position,
and vice-versa, via the following rules:

penality pos less(I ,C ,S) : − position original(I ,C ,S ,Pos1 ,Pos2),
not position predicted(I ,C ,S ,Pos1 ,Pos2).

penality pos more(I ,C ,S) : − position predicted(I ,C ,S ,Pos1 ,Pos2),
not position original(I ,C ,S ,Pos1 ,Pos2).

For each scenario described above, we obtain the number λi of images that
are affected by these possible wrong detections. Exploiting the result of PL, we
associate to it a penalty in the range (0, 1), and a weighting factor, obtaining the
following parameter Λ, that we will combine with the loss function LCE (see
Sect. 5.4), Λ =

∑3
i=1 λ̃i · pi, where each pi is a weighting factor that depends

on the severity of the mistake, and λ̃i is obtained by the product of λi and the
penalty associated to it. In particular, we set the weighting factors as follow: p1 =
0.30, p2 = 0.15, p3 = 0.55. These values have been chosen empirically. Finally,
we need to scale the value of Λ to ensure comparability with the LCE value; to
this aim, after an empirical analysis, we have chosen to compute log100(Λ).

ASP-Based Post Processing. The second program PP is aimed at improving
the quality of the prediction via a post processing phase. The purpose is to clean
the image from noise (i.e. small island of pixels), which under a certain size, can
be considered as wrongly detected areas. These islands are afterwards colored by
selecting the most frequent color (i.e., classes) in the neighborhood. Specifically,
the program takes in input two types of predicates: cell island used to represent
the island, and cell neighbor used to represent adjacent island’s cells (i.e., its
neighborhood). Exploiting the latter, fixed the island, denoted by its identifier
ID, we count the number of its adjacent cells and its relative color, via the rule

adj group(N ,Col , ID) : − cell island(, , , ID), cell neighbor(, ,Col , ID),
N = #count{X ,Y ,Col : cell neighbor(X ,Y ,Col , ID)}.

After that, we compute the biggest group of adjacent cells, in order to identify
the color C to re-assign to the island. We observe that, in the selection of C, we
exclude all the assignments that would not comply the prior medical knowledge
(see Sect. 5.1). Whit the following rule, we show an example of how we encode
the fact that we don’t want to assign color 4 (representing the pathology) to the
island in the sequence 6.

max adj group(M , ID) : − sequence(6), cell neighbor(, , ID),
M = #max{N : adj group(N ,C , ID),C 	= 4}.

Finally, we assign the color to the island as follows:

color island(ID ,C) : − max adj group(M , ID), adj group(N ,C , ID).

Combining Deep Learning and ASP-Based Models 103

We remark that we also remove all the areas that, according to the prior med-
ical knowledge, are wrongly detected (for example, the network cannot detect
pathology class in images referring to sequence i, with i > 2). To re-assign the
color to these wrong detected areas, we argue as above.

5 Experimental Activity

We illustrate next the experimental settings, then discuss the results.

5.1 Dataset Description

For the experimental analysis, we used the Laryngeal Endoscopic Images
dataset [21]. It consists of 536 manually segmented in vivo color images (512
× 512 pixels) of the larynx captured during two different resection surgeries.
The images are categorized in 7 classes: void, vocal folds, other tissue, glottal
space, pathology, surgical tool and intubation, corresponding to index 0, 1, 2, 3,
4, 5, 6, respectively.

The dataset features 8 sequences from two patients, collected in 5 different
groups. The sequences have the following characteristics, as described in [21]:

1. Sequence 1: pre-operative with clearly visible tumor on vocal fold, changes in
scale, translation, rotation, without intubation, no instruments visible;

2. Sequence 2: pre-operative with clearly visible tumor, changes in scale and
translation, visible instruments, with intubation;

3. Sequence 3–4: post-operative with removed tumor, changes in scale and trans-
lation, damaged tissue, with intubation;

4. Sequence 5–7: pre-operative with instruments manipulating and grasping the
vocal folds, changes in scale and translation, with intubation;

5. Sequence 8: post-operative with blood on vocal folds, instruments and surgical
dressing, with intubation.

5.2 Training Phase

The dataset was split into training (80%) and testing (20%) sets; specifically,
the 10% of the training set is used as validation set.

Each networks was implemented in Pytorch and trained for 1000 epochs,
using the SGD [19] optimizer, cross-entropy (CE) as loss function for the first 750
epochs and a combination of CE and ASP-based loss function (see Sect. 4) for the
remaining 250, learning rate 0.01 and batch size 32. All experiments have been
performed on a GNU/Linux machine equipped with a NVIDIA Quadro P6000
GPU. All the networks have been trained using a pre-trained weight and with
the same set of hyperparameters, in order to maintain comparability between
different experiments. As already mentioned, we implemented our deductive app-
roach into ASP; for the sake of experiments, we used one of the most widespread
ASP system, namely DLV2 [2], that combines the fully-compliant ASP-Core-2
grounder I-DLV [9,12] with the solver WASP [3].

104 P. Bruno et al.

Fig. 2. Workflow of the architecture, which takes in input raw images and correspond-
ing ground truth segmentations and returns the predicted semantic segmentantions.

5.3 Performance Metrics

We assessed the effectiveness of our approach by measuring the Intersection-
over-Union (IoU) evaluation metric, given by IoU = TP

TP+FP+FN , where TP
is the number of true positive, FP false positive and FN false negative pixels,
respectively. The IoU metric was computed independently for each class.

The proposed architecture for semantic segmentation is illustrated in Fig. 2.
Specifically, each tested network (i.e., DeepLab-v3, SegNet and U-Net) takes in
input raw images and corresponding ground truth segmentations and outputs
semantic segmentantions. In the following, we first discuss the consequence of
including ASP-based model in the training phase, and then the effect of per-
forming a post-processing phase via ASP.

5.4 Effects of Including ASP in Loss Function

Table 1 reports the performance of the 3 tested neural networks in terms of IoU.
Specifically, for each network we compare the results achieved using (i) LCE

and (ii) a combination of LCE and Λ (i.e., ASP-based) as loss function defined
as Υ = LCE + Λ (see Sect. 3.2 and 4). The results of the two experiments are
obtained according to the number of epochs described in Sect. 5.2. We report
per-class IoU value but we have excluded the class “void” (i.e., 0) from accu-
racy assessment due to lower occurrence in the whole dataset (see, e.g., [21]).
Results show that the most efficient architectures were the DeepLab-v3 and
SegNet. The first network obtained the highest mean value in experiment (i)
(IoU mean value of 0.744) and the second one achieved the best IoU value in
experiment (ii) (IoU mean value of 0.738). Generally, the penalty computed
by ASP and included in the loss function involves an improvement in the IoU
mean value. The herein proposed approach achieves promisingly results also
on class pathology (i.e., 4), which is considered as the most difficult since the
lower occurrence in the dataset [21], achieving an IoU value of 0.701 and 0.659
using, respectively, DeepLab-v3 and SegNet. On the contrary, U-Net achieved
the worst results on class pathology, not reaching a value higher than 0.28 in
both experiments. Even with a promising performance, we outline that in some

Combining Deep Learning and ASP-Based Models 105

Fig. 3. Example results obtained using 2 different patients. From left to right: raw
image (a), ground truth segmentation (b), semantic segmentation obtained using only
LCE as loss function (c), semantic segmentation obtained using Υ as loss function (d),
post-processing applied on the results obtained using Υ (e).

classes our approach achieved better improvement; for instance, DeepLab-v3
and SegNet trained with our approach reached relevant results for classes vocal
folds (i.e., LCE 0.788 vs. Υ 0.803, LCE 0.848 vs. Υ 0.851). Also, SegNet trained
with our approach outperformed the other networks on the glottal space classes
(i.e., LCE 0.740 vs. Υ 0.764). In general, U-Net achieves the worst performance
in both experiments which probably depends on the hyperparameters setting
(i.e., learning rate, optimizer) that were the same for all the networks, even if
IoU showed an improvement using ASP-based loss function. Figures 3 (c) and
(d) present an example of the results that we obtained using LCE and Υ as
loss function. The results, which is graphically compared with raw images and
ground truth segmentation, show the capability of our approach in removing
misclassification errors.

5.5 Effect of Using ASP as Post Processing

Table 2 reports performance of the 3 tested neural networks in terms of IoU.
Specifically, for each network, we compare the results achieved before (i)
and after post-processing (ii) applied on images obtained using Υ . The post-
processing, which is able to remove small island of noise and re-assign class
label according to the more frequent class in the neighborhood and medical
knowledge, shows promising results. Indeed, the mean IoU value is higher after
post-processing phase for all networks (i.e., DeepLab-v3 (ii) 0.755 vs (ii) 0.768,
SegNet (ii) 0.738 vs (ii) 0.794, U-Net (i) 0.629 vs (ii) 0.702). Figures 3 (e) present
an example of the results obtained using post processing applied on Figures (d).

6 Results and Discussion

The experiments in our setting showed that the use of ASP requires a relevant
effort in terms of computational time; however, they also showed that it leads

106 P. Bruno et al.

Fig. 4. Example of results obtained by U-Net on a patient selected from sequence 8.
From left to right, we show: raw image (a), ground truth segmentation (b), results
achieved using Υ as loss function (c) and the results of post-processing (d).

Table 1. Per-class and mean IoU for the 3 tested neural networks. The first column
reports the results obtained using LCE and the second using Υ . Most significant results
are highlighted.

DeepLab-v3 SegNet U-Net

CLASS LCE Υ CLASS LCE Υ CLASS LCE Υ

1 0.788 0.803 1 0.848 0.851 1 0.774 0.776

2 0.706 0.715 2 0.761 0.765 2 0.672 0.684

3 0.714 0.716 3 0.740 0.764 3 0.641 0.667

4 0.658 0.701 4 0.623 0.659 4 0.267 0.275

5 0.787 0.782 5 0.710 0.685 5 0.554 0.579

6 0.808 0.811 6 0.816 0.819 6 0.728 0.791

Mean 0.744 0.755 Mean 0.730 0.738 Mean 0.606 0.629

Table 2. Per-class and mean IoU for the 3 tested neural networks. The first column
reports the results obtained using Υ without post-processing (no p.p.) and the second
using ASP-based post processing (p.p.). Most significant results are highlighted.

DeepLab-v3 SegNet U-Net

CLASS IoU CLASS IoU CLASS IoU

no p.p. p.p. no p.p. p.p. no p.p. p.p.

1 0.803 0.805 1 0.851 0.853 1 0.776 0.779

2 0.715 0.717 2 0.765 0.776 2 0.684 0.687

3 0.716 0.720 3 0.764 0.769 3 0.667 0.675

4 0.701 0.701 4 0.659 0.761 4 0.275 0.638

5 0.782 0.851 5 0.685 0.817 5 0.579 0.604

6 0.811 0.813 6 0.819 0.856 6 0.791 0.830

Mean 0.755 0.768 Mean 0.738 0.794 Mean 0.629 0.702

to better performance: even if the improvements do not look too dramatic, yet
they are systematic, proving that the approach is viable and encouraging at
further exploring the field. Furthermore, the additional computational time can
be reduced by optimizing the rule-based model.

Combining Deep Learning and ASP-Based Models 107

In particular, U-Net achieved a relevant improvement on class pathology (i.e.,
(i) 0.275 vs (ii) 0.638) which is considered one of the most difficult class to be
recognized [21], due to its low occurrence in the dataset and the small size of the
corresponding object. This is not surprising, given the limited ability of U-Net in
properly identifying this class, and, in particular in respecting medical knowledge
(i.e., it is not possible that pathology class is detected in some Sequence i, with
i > 2). A visual example is shown in Fig. 4 which represents a result achieved by
U-Net on a specific image selected from sequence 8. A more thorough analysis
reveals that, without post-processing, our approach based only on the function
Υ identifies a pathology class (i.e., the violet island) on the lower right (see
Fig. 4(c)), which does not comply with medical requirements. However, the post-
processing phase proved to be able to solve this problem, removing the wrongly
detected classes, resulting in a relevant improvement (see Fig. 4(d)).

Results suggest that there is room for improving performance; in addition, it
is worth noting that including a deductive, rule-based approach in our workflow
not only can improve the quality of the results, but, more interestingly, enhances
the interpretability of the resulting AI model.

7 Conclusion

In this work we explored a way for combining inductive and deductive approaches
to Artificial Intelligence; in particular, we used Answer Set Programming to
drive approaches based on Deep Learning in performing semantic segmentation
of Laryngeal Endoscopic Images. We defined a novel loss function Υ as a com-
bination of the cross-entropy loss function LCE with the parameter Λ that is
derived from a ASP-based model and indicates the number of objects wrongly
identified by the network. Moreover, we took advantage of the potential com-
ing from the declarative nature of ASP to improve the quality of results via a
proper post-processing phase. Hence, we defined an ASP-based model to iden-
tify (i) small islands of noise, which, under a certain size, can be considered as
wrongly detected areas, and (ii) classes which do not comply with requirements
defined by the medical knowledge; then, we re-assigned misclassified elements to
the more frequent class in the neighborhood. We performed a thorough experi-
mental analysis; our proposal achieved promising results, proving to be able to
improve the quality of semantic segmentation according to IoU metric. Further-
more, it is worth noting that, besides performance, the presented approach is
very flexible, easing the “incorporation” of explicit additional domain knowledge
into the model by extending and refining declarative ASP programs. As future
work is concerned, we aim to investigate misclassification errors and improve the
generalization capability of the model, as well as the overall performance. With
this respect, we plan to investigate the best bound for island size to distinguish
between noise and small object and, consequently, to maximize the number of
wrongly detected elements removed. Our efforts will also focus on better “tailor-
ing” program PL in order to improve the function Υ ; at the same time, another
purpose is to evaluate our approach including Υ at the beginning of the training
and analyze the effects of working with Λ only as loss function.

108 P. Bruno et al.

Acknowledgements. The authors gratefully acknowledge the following projects:
– PRIN PE6, Title: “Declarative Reasoning over Streams”, funded by the

Italian Ministero dell’Università, dell’Istruzione e della Ricerca (MIUR), CUP:
H24I17000080001;

– PON-MISE MAP4ID, Title: “Multipurpose Analytics Platform 4 Industrial
Data”, funded by the Italian Ministero dello Sviluppo Economico (MISE), CUP:
B21B19000650008;

– PON-MISE S2BDW, Title: “Smarter Solution in the Big Data World”, funded
by the Italian Ministero dello Sviluppo Economico (MISE), CUP: B28I17000250008.

References

1. Adrian, W.T., Leone, N., Manna, M., Marte, C.: Document layout analysis for
semantic information extraction. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F.
(eds.) AI*IA 2017. LNCS, vol. 10640, pp. 269–281. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-70169-1 20

2. Alviano, M., et al.: The ASP system DLV2. In: Balduccini, M., Janhunen, T. (eds.)
LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 215–221. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61660-5 19

3. Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: Calimeri,
F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp.
40–54. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23264-5 5

4. Alviano, M., Dodaro, C., Maratea, M.: Nurse (re) scheduling via answer set pro-
gramming. Intelligenza Artificiale 12(2), 109–124 (2018)

5. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional
encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 39(12), 2481–2495 (2017)

6. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

7. Bruno, P., et al.: Using CNNs for designing and implementing an automatic vas-
cular segmentation method of biomedical images. In: Ghidini, C., Magnini, B.,
Passerini, A., Traverso, P. (eds.) AI*IA 2018. LNCS (LNAI), vol. 11298, pp. 60–
70. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03840-3 5

8. Calimeri, F., et al.: A logic-based framework leveraging neural networks for study-
ing the evolution of neurological disorders. Theory Pract. Logic Program. 21(1),
80–124 (2021)

9. Calimeri, F., Dodaro, C., Fuscà, D., Perri, S., Zangari, J.: Efficiently coupling the
I-DLV grounder with ASP solvers. Theory Pract. Log. Program. 20(2), 205–224
(2020)

10. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T.,
Leone, N., Maratea, M., Ricca, F., Schaub, T.: Asp-core-2 input language format.
Theory Pract. Log. Program. 20(2), 294–309 (2020)

11. Calimeri, F., Fuscà, D., Germano, S., Perri, S., Zangari, J.: Fostering the use of
declarative formalisms for real-world applications: the embasp framework. New
Gener. Comput. 37(1), 29–65 (2019). https://doi.org/10.1007/s00354-018-0046-2

12. Calimeri, F., Fuscà, D., Perri, S., Zangari, J.: I-dlv: the new intelligent grounder
of dlv. Intelligenza Artificiale 11(1), 5–20 (2017)

13. Calimeri, F., Perri, S., Zangari, J.: Optimizing answer set computation via
heuristic-based decomposition. Theory Pract. Logic Program. 19(4), 603–628
(2019)

https://doi.org/10.1007/978-3-319-70169-1_20
https://doi.org/10.1007/978-3-319-61660-5_19
https://doi.org/10.1007/978-3-319-23264-5_5
https://doi.org/10.1007/978-3-030-03840-3_5
https://doi.org/10.1007/s00354-018-0046-2

Combining Deep Learning and ASP-Based Models 109

14. Casella, A., Moccia, S., Paladini, D., Frontoni, E., De Momi, E., Mattos, L.S.: A
shape-constraint adversarial framework with instance-normalized spatio-temporal
features for inter-fetal membrane segmentation. Med. Image Anal. 70, 102008
(2021)

15. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution
for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

16. Costabile, R., Catalano, G., Cuteri, B., Morelli, M.C., Leone, N., Manna, M.: A
logic-based decision support system for the diagnosis of headache disorders accord-
ing to the ICHD-3 international classification. Theory Pract. Logic Program. 20(6),
864–879 (2020)

17. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI
Mag. 37(3), 53–68 (2016)

18. Janocha, K., Czarnecki, W.M.: On loss functions for deep neural networks in clas-
sification. arXiv preprint arXiv:1702.05659 (2017)

19. Kiefer, J., Wolfowitz, J., et al.: Stochastic estimation of the maximum of a regres-
sion function. Ann. Math. Stat. 23(3), 462–466 (1952)

20. Kim, T., et al.: Active learning for accuracy enhancement of semantic segmen-
tation with CNN-corrected label curations: evaluation on kidney segmentation in
abdominal CT. Sci. Rep. 10(1), 1–7 (2020)

21. Laves, M.-H., Bicker, J., Kahrs, L.A., Ortmaier, T.: A dataset of laryngeal endo-
scopic images with comparative study on convolution neural network-based seman-
tic segmentation. Int. J. Comput. Assist. Radiol. Surg. 14(3), 483–492 (2019).
https://doi.org/10.1007/s11548-018-01910-0

22. Li, H., Cai, J., Nguyen, T.N.A., Zheng, J.: A benchmark for semantic image
segmentation. In: 2013 IEEE International Conference on Multimedia and Expo
(ICME), pp. 1–6. IEEE (2013)

23. Liu, X., Song, L., Liu, S., Zhang, Y.: A review of deep-learning-based medical
image segmentation methods. Sustainability 13(3), 1224 (2021)

24. Maratea, M., Pulina, L., Ricca, F.: A multi-engine approach to answer-set pro-
gramming. Theory Pract. Logic Program. 14(6), 841–868 (2014)

25. Mastria, E., Zangari, J., Perri, S., Calimeri, F.: A machine learning guided rewriting
approach for asp logic programs. arXiv preprint arXiv:2009.10252 (2020)

26. Ni, Z.-L., et al.: RAUNet: residual attention U-Net for semantic segmentation of
cataract surgical instruments. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP
2019. LNCS, vol. 11954, pp. 139–149. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-36711-4 13

27. Pashaei, M., Kamangir, H., Starek, M.J., Tissot, P.: Review and evaluation of
deep learning architectures for efficient land cover mapping with UAS hyper-spatial
imagery: a case study over a wetland. Remote Sens. 12(6), 959 (2020)

28. Rezaei, M., Yang, H., Meinel, C.: Recurrent generative adversarial network for
learning imbalanced medical image semantic segmentation. Multimed. Tools Appl.
79(21), 15329–15348 (2020). https://doi.org/10.1007/s11042-019-7305-1

29. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

30. Shotton, J., Kohli, P., Ikeuchi, K.: Semantic image segmentation (2014)
31. Spadea, M.F., et al.: Contrast-enhanced proton radiography for patient set-up by

using x-ray CT prior knowledge. Int. J. Radiat. Oncol.* Biol.* Phys. 90(3), 628–
636 (2014)

http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1702.05659
https://doi.org/10.1007/s11548-018-01910-0
http://arxiv.org/abs/2009.10252
https://doi.org/10.1007/978-3-030-36711-4_13
https://doi.org/10.1007/978-3-030-36711-4_13
https://doi.org/10.1007/s11042-019-7305-1
https://doi.org/10.1007/978-3-319-24574-4_28

110 P. Bruno et al.

32. Asgari Taghanaki, S., Abhishek, K., Cohen, J.P., Cohen-Adad, J., Hamarneh, G.:
Deep semantic segmentation of natural and medical images: a review. Artif. Intell.
Rev. 54(1), 137–178 (2020). https://doi.org/10.1007/s10462-020-09854-1

33. Xu, J., Zhang, Z., Friedman, T., Liang, Y., Broeck, G.: A semantic loss function for
deep learning with symbolic knowledge. In: International Conference on Machine
Learning, pp. 5502–5511. PMLR (2018)

34. Yang, Z., Ishay, A., Lee, J.: NeurASP: embracing neural networks into answer set
programming. In: Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI, pp. 1755–1762 (2020)

https://doi.org/10.1007/s10462-020-09854-1

A Two-Phase ASP Encoding for Solving
Rehabilitation Scheduling

Matteo Cardellini1,4 , Paolo De Nardi2, Carmine Dodaro3 ,
Giuseppe Galatà1 , Anna Giardini2, Marco Maratea4(B) , and Ivan Porro1

1 SurgiQ srl, Genova, Italy
{matteo.cardellini,giuseppe.galata,ivan.porro}@surgiq.com

2 ICS Maugeri, Pavia, Italy
{paolo.nardi,anna.giardini}@icsmaugeri.it
3 DeMaCS, University of Calabria, Rende, Italy

dodaro@mat.unical.it
4 DIBRIS, University of Genova, Genova, Italy

marco.maratea@unige.it

Abstract. The rehabilitation scheduling process consists of planning
rehabilitation physiotherapy sessions for patients, by assigning proper
operators to them in a certain time slot of a given day, taking into account
several requirements and optimizations, e.g., patient’s preferences and
operator’s work balancing. Being able to efficiently solve such problem is
of upmost importance, in particular after the COVID-19 pandemic that
significantly increased rehabilitation’s needs.

In this paper, we present a solution to rehabilitation scheduling based
on Answer Set Programming (ASP), which proved to be an effective
tool for solving practical scheduling problems. Results of experiments
performed on both synthetic and real benchmarks, the latter provided
by ICS Maugeri, show the effectiveness of our solution.

1 Introduction

The rehabilitation scheduling process [17–19,24] (RSP) consists of planning
patients’ physiotherapy sessions inside a rehabilitation institute. Hospitals that
may profitably make a practical use of such scheduling, including those managed
by ICS Maugeri1 that will provide benchmarks in this paper, deal with up to
hundreds of patients with a team of just few tens of physiotherapists; so, it is of
paramount importance to be able to assign patients to operators efficiently. A
recent article [9] found that 2.41 billion people could benefit from rehabilitation
services. This finding means that almost one third of the people in the world
needs rehabilitation at some point during the course of their disease or injury;
further, this number is predicted to trend upward given the current demographic
and health shifts. In addition, there is emerging evidence that many of the peo-
ple affected by the COVID-19 pandemic have long-term consequences regardless

1 https://www.icsmaugeri.it/.

c© Springer Nature Switzerland AG 2021
S. Moschoyiannis et al. (Eds.): RuleML+RR 2021, LNCS 12851, pp. 111–125, 2021.
https://doi.org/10.1007/978-3-030-91167-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91167-6_8&domain=pdf
http://orcid.org/0000-0003-3788-9475
http://orcid.org/0000-0002-5617-5286
http://orcid.org/0000-0002-1948-4469
http://orcid.org/0000-0002-9034-2527
http://orcid.org/0000-0002-0601-8071
https://www.icsmaugeri.it/
https://doi.org/10.1007/978-3-030-91167-6_8

112 M. Cardellini et al.

of the disease severity or length of hospitalisation, thus further increasing the
demand for rehabilitation services globally.

The RSP is subject to several constraints, i.e., legal, medical and ethical, that
need to be taken into consideration in order to find a viable schedule. For exam-
ple, the main constraints that have to be dealt with are the maximum capacity
of rehabilitation gyms, the legal working time and rest periods for operators, and
the minimum durations of physiotherapy sessions. Moreover, several preferences
shall be considered, e.g., due to clinical and organizational reasons it is often
best for the patient to be treated as often as possible by the same operator and
defined slots for the rehabilitation sessions are to be preferred; also rehabilitation
professionals’ work balancing needs to be taken into proper account.

In this paper, we present a solution to the RSP based on Answer Set Pro-
gramming (ASP) [6,7,16,20], which proved to be an effective tool for solving
practical scheduling problems [4,10,15,22], thanks to efficient solvers (such as
clingo [13] and wasp [1]; see, e.g., [14] for an overview). The solution is designed
as a two-phase encoding (Sect. 3): The first phase, called board, deals with the
problem of assigning a physiotherapist to every patient considering the total
working time of the physiotherapist and the minimum mandatory time of reha-
bilitation sessions. In the second phase, called agenda, a start and end time
of every rehabilitation session is defined given the assignments between patients
and physiotherapists found in the first phase. Our two-phase solution is not guar-
anteed to find the best possible overall solution, but has been designed in this
way because: (i) it simplifies the overall encoding and its practical use, and (ii)
it mimics how schedules have been computed so far (in a non-automatic way) in
ICS Maugeri and gives freedom to physiotherapists’ coordinators to perform any
desired manual change to the board, before planning the agenda. We first tested
our encoding (Sect. 4) on real benchmarks from ICS Maugeri related to the daily
scheduling of neurological patients from two of their rehabilitation institutes in
the North of Italy, namely Genova Nervi and Castel Goffredo: Results using the
ASP solver clingo [13], focused on understanding the percentage of the real
benchmarks in which no solution can be found in very short time, i.e., much
shorter than in production, show that this happens approximately for only less
than one third of the instances. Then, given that ICS Maugeri is planning to
instrument with automated techniques other, possibly larger, institutes in addi-
tion to Genova Nervi and Castel Goffredo, we generated a wide set of synthetic
benchmarks, whose parameters are inspired by the real data. We made a wide
experimental evaluation, and statistically confronted these results with those
with real data using classification decision tree methods [21], with the aim of
predicting the behavior of our solution on such larger institutes. Results show
that the accuracy is high, so our synthetic benchmarks look significant to indi-
cate a possible behavior on real data coming from other institutes with other
parameters. Moreover, our analysis also outlined what are the features of the
problems that affect the results mostly. The paper is then completed by problem
description in Sect. 2, and related work discussion and conclusions in Sect. 5.

A Two-Phase ASP Encoding for Solving Rehabilitation Scheduling 113

2 Problem Description

The delivery of rehabilitation services is a complex task that involves many
healthcare professions such as physicians, physiotherapists, speech therapists,
psychologists and so on. In particular, physiotherapists spend most of their time
with the patients and their sessions constitute the core of the daily agenda of
the patient, around which all other commitments revolve. For this reason, this
article is focused on scheduling the physiotherapy sessions in the most efficient
way, optimising the overall time spent with the patient.

The agenda for the physiotherapy sessions is computed by the coordinator
of the physiotherapists. This process is repeated on a daily basis in order to
take into account any change in the number and type of patients to be treated,
the number of operators available, and, until recently, it has been performed
manually, without any automation. In the following, the main elements and
constraints of the problems are described.

The usual scheduling practice, entails two subsequent phases resulting in the
computation of a board and an agenda, that we herewith describe. In short, the
first phase, called board, deals with the problem of assigning a physiotherapist
to every patient, keeping track of the total working time of the operator and the
minimum mandatory time of rehabilitation sessions. In the second, consequential
phase, called agenda, a start and end time of every rehabilitation session is
searched given the assignments between patients and operators found in the
first phase.

Going more in details, in the board phase, the working hours of operators
are simplified by counting their total working time, in minutes, and assigning
patients to each operator in order to keep the cumulative time of all the ses-
sions in which the operators are involved underneath their total working time.
In this phase, patient-operator assignment preferences, expressed by the coordi-
nator before the start of the scheduling procedure, are taken into account and
respected as far as possible. In the agenda phase, given an assignment found
by the board, every patient-operator session is assigned a starting and ending
time, respecting the more granular working hours of the operators and the times
in which the patients are unavailable. At this stage, the location in which the
rehabilitation session is performed, is also considered: a gym is assigned to every
session, keeping into consideration the maximum number of simultaneous ses-
sions allowed inside the gym. The choice of the gym has also to be made between
a subset of gyms that are located at the same floor of the room of the patient in
order to avoid elevators and stairs that can result in discomfort to patients and
can quickly congest the hospital. In this phase, time preferences for each patient
are also considered: in fact, plans in which the sessions are performed nearer the
desired time of the patients are preferred to the others.

In the next paragraphs, we describe more in details the main elements of our
encoding, namely patients, operators and sessions, as well as the constraints and
preferences entailed by the board and agenda phases.

Patients. Patients are characterized by their:

114 M. Cardellini et al.

– type (Neurological, Orthopaedic, Alcoholic, COVID-19 Positive, COVID-19
Negative, Outpatient),

– aid needs, i.e., if they need specific care or not,
– payment status (full payer or in charge of the National Healthcare Service),
– forbidden times, i.e., the time intervals when the patient cannot be scheduled,
– ideal time, i.e., the preferred scheduled time expressed by the coordinator,
– preferred operators, i.e., the list of physiotherapists, ordered by priority, the

patient can be assigned to,
– overall minimum length, i.e., the minimum amount of care time that the

patient is guaranteed to be scheduled,
– sessions, i.e., the list of sessions to be scheduled.

Operators. Physiotherapists, that will be called operator from now on, are char-
acterized by their:

– qualifications, i.e., patient’s types which the operator can treat,
– operating times, i.e., the part of the operator’s working times dedicated to the

direct care of the patients. The operating times are usually split in morning
and afternoon shifts.

Sessions. The coordinator, in accordance with the rehabilitation program set by
the physician, determines the daily activities of the patient. These activities can
be performed in one or two therapy sessions, in the latter case one session will
be scheduled in the morning and the other in the afternoon shift.

Each session can be delivered to patients either by individualized (“one-on-
one” sessions) or supervised (one therapist supervising more patients at the
same time, each patient carrying out their personal activity independently).
It must be noted that, while operators are delivering one-on-one therapy to
patients, they can supervise other patients but cannot deliver one-to-one therapy
to another patient. When the operators are particularly overbooked, their one-to-
one sessions can be partially converted to supervised ones. These mixed sessions
can either start with a supervised part and then continue with the one-on-one
part, or vice-versa, or even start and end with a supervised part with a middle
one-on-one session. Obviously, an operator can supervise different patients only
if their sessions are located at the same place. The characteristics are:

– delivery mode (one-on-one, supervised),
– minimum one-on-one length, i.e., the minimum length of the session guaran-

teed to be delivered one-on-one,
– ideal overall length, i.e., the overall length of the session including the one-

on-one and supervised parts,
– optional status, i.e., if the session can be left out of the schedule in case of

overbooked operators,
– forced time, i.e., the time when the session must be scheduled; if empty, the

session is placed as close as possible to the patient’s preferred time,
– location, i.e. the place where the session must be delivered.

A Two-Phase ASP Encoding for Solving Rehabilitation Scheduling 115

Board. In the board phase all patients are assigned to an available operator,
according to the following criteria:

– compatibility between patient and operator, depending on the patient’s type
and operator qualifications, the patient’s forced time, if any, and the operator
working times, by also checking if the operator has enough time to provide
the guaranteed overall minimum length and minimum one-to-one length to
each patient and session,

– forced assignments of a patient to an operator: In special cases, the coordina-
tor can override the preferred operators list and force an assignment regardless
of all other considerations,

– the patients should be fairly distributed among all available operators, taking
into account their type, aid needs and payment status,

– the patients should be assigned to the operators respecting as much as possible
their preferred operators list, which considers primarily the choices of the
coordinator and secondarily the history of the past assignments.

Agenda. The results of the board phase can be revised and, if necessary, manually
modified by the coordinator. Once the coordinator is satisfied with the board,
it is possible to proceed to the agenda scheduling, using the approved board as
input data. The criteria for the agenda phase are:

– compliance with the forced time of the session, if specified,
– two sessions of the same patient must be assigned in different shifts,
– compliance with the minimum one-on-one length of the session,
– no overlap between two one-on-one sessions (or their one-on-one sections if

the sessions are mixed) assigned to the same operator,
– observance of the maximum capacity of the locations (1 for each room, varying

for the gyms),
– respect of the overall minimum length of the patient,
– respect of the one-on-one minimum session length,
– compliance with the forbidden times of the patient,
– sessions can only be scheduled within the working times of the operator,
– the start time of each session should be as close as possible to the preferred

time, either specified by the coordinator or inferred from previous schedules,
– for mixed sessions, the one-on-one part should be maximized,
– the largest possible number of optional sessions should be included,
– the overall length, including the one-on-one and supervised parts in case of

mixed sessions, should be as close as possible to the ideal overall length spec-
ified by the coordinator.

3 A Two-Phase ASP Encoding

In the following, we assume the reader is familiar with syntax and semantics of
ASP. Starting from the specifications in the previous section, here we present the
ASP encoding, based on the input language of clingo [11]. For details about
syntax and semantics of ASP programs, we refer the reader to [8].

116 M. Cardellini et al.

3.1 Board Encoding

Data Model. The input data is specified by means of the following atoms:

– Instances of patient(P), operators(O), and type(T) represent the identi-
fiers of patients, operators, and the different types of patients that can be
visited, respectively, where P and O are numbers, whereas T can be: neuro-
logic, neurologic-lifter, orthopaedic, orthopaedic-lifter, covid-19-positive, covid-
19-negative, or outpatient. Moreover, a fictitious operator with ID equals to
−1 is included in the list of all the operators, and it is needed to intercept all
patients that cannot be assigned to other operators.

– Instances of operator contract(ID,TIME,MAX) represent the contract of the
operator with the identifier ID, and include the quantity of time (in time units)
the operator works in a day (TIME), and the maximum number of patients
the operator can visit during the day (MAX).

– Instances of operator limit(ID,T,VALUE) represent the maximum number
of patients (VALUE) of type T the operator with identifier ID can visit. The
operator with ID equals to −1 has no patients limits.

– Instances of patient data(ID,T,MIN) represent the data associated to the
patient with the identifier ID, and include the type of the patient (T), and the
minimum cumulative time of all sessions of the patient during the day (MIN).

– Instances of patient session(ID,MIN,LOC) represent a rehabilitation ses-
sion that the patient with identifier ID needs to perform during the day. The
session is characterized by a minimum length for the session in time units
(MIN), and the location of the session (LOC).

– Instances of patient preference(ID,OP,W) represent the preference of the
patient with identifier ID to be treated by the operator with identifier OP,
where W specifies the weight of the preference.

– Similarly, instances of history preference(ID,OP,W) represent the prefer-
ence of the patient based on the history of previous sessions.

The output is an assignment represented by atoms of the form assignment(OP,
PAT) stating that the patient PAT will be treated by the operator OP.

Encoding. The related encoding is shown in Fig. 1, and is described in the follow-
ing. To simplify the description, the rule appearing at line i in Fig. 1 is denoted
with ri. Rule r1 ensures that each patient is assigned to exactly one operator.
Rules r2 and r3 are used to define if the session between a patient and an operator
will be performed individually in a single location (r2), or it will be executed in
the same location of another session (r3). Rule r4 ensures that the time required
by the patients assigned to an operator does not exceed the maximum time of
her/his contract. Rule r5 ensures that each operator does not exceed the maxi-
mum number of patients to visit during the day. Rule r6 is similar to the previous
one, but in this case the limits are imposed according to the type of the patient.

Weak constraints from r7 to r9 are then used to provide preferences among
different assignments. In particular, r7 is used to maximize the assignments that
fulfil the preferences of each patient. Then, r8 is used to minimize the number

A Two-Phase ASP Encoding for Solving Rehabilitation Scheduling 117

Fig. 1. ASP Encoding for the allocation problem.

of patients that are assigned to the fictitious operator. Finally, r9 is used to
maximize the solutions that preserve assignments dictated by the history of
previous sessions.

3.2 Agenda Encoding

Data Model. The following atoms constitute the input data:

– Instances of patient(ID,MIN) represent a patient identified by ID, and a
minimum rehabilitation session of MIN length in time units that the patient
has to undertake during the day.

– Instances of period(PER,OP,STA,END) define the start (STA) and end (END)
time in the period PER (which can be morning or afternoon), which corre-
sponds to the shift, of the operator with identifier OP.

– Instances of time(PER,OP,T) define the time slots (T) during the period PER
where the operator OP works. In particular, T ranges from STA to END defined
for instances of period(PER,OP,STA,END).

– Instances of location(ID,CAP,PER,STA,END) represent a location, with an
identifier ID, a maximum capacity of CAP, and during the period PER is open
from the time unit STA until END.

– Instances of macro location(MLOC,LOC) define that the location LOC is inside
the macro-location MLOC.

– Instances of session(ID,PAT,OP) represent a session between the patient
PAT and the operator OP, coming from the assignment(OP,PAT) output of
the board phase to which a unique ID is added (to discriminate between
morning and afternoon shifts).

– Instances of session type(ID,OP,TYPE) represent that the session with
identifier ID assigned to operator OP is of type TYPE (which can be individual
or supervised).

– Instances of session macro location(ID,MLOC) represent that the session
with identifier ID has to be held in the macro-location MLOC.

– Instances of session length(ID,MIN,IDEAL) represent that the session ID
has a minimum length (MIN) that has to be performed in individual, and an

118 M. Cardellini et al.

ideal length (IDEAL) that would be beneficial to the patient, but it is not
mandatory to perform.

– Instances of mandatory session(ID) and optional session(ID) identify
sessions that are mandatory and optional, respectively.

– Instances of forbidden(PAT,PER,STA,END) represent an unavailability of the
patient PAT in the period PER from the time unit STA to END.

– Instances of session preference(ID,PER,START,TYPE) represent the pref-
erence of the patient, stating that session should be held during the period
PER and it must start at the time unit START, where TYPE indicates if the
preference is high or low.

The output is represented by atoms start(ID,PER,T), length(ID,PER,L),
and session location(SES,LOC), which indicate the start, length and location
of each session, respectively.

Encoding. In Fig. 2 the encoding for the agenda is presented.
Rules r1 and r2 assign a start time to every session; for the optional session,

the start atom can be unassigned. Rule r3 defines a length for all the sessions: the
session length cannot be lower than the minimum time of the session and cannot
be greater than the ideal time the session should take. Rule r4 assigns a location
for each session. Rules r5 and r6 reserve to each session slots of time before
it starts and after it ends, in which the session can be performed in a super-
vised fashion. These extensions cannot be longer than the difference between
the maximum and the minimum length of the session.

Then, rules r7 and r8 define auxiliary atoms ext start and ext length using
the slots of times reserved for the extensions. Rule r9 defines an auxiliary atom
of the form individual session location(ID,LOC,OP,MIN,IDEAL) which rep-
resents that an individual session ID is in the location LOC, is assigned to the
operator OP, and its minimum and ideal lengths are equal to MIN and IDEAL,
respectively. Rule r10 defines session time(ID,OP,PL,PER,T) which states that
during time T of period PER the session ID is being performed by operator OP.

Rule r11 states that two individual assignments shall not overlap. Rule r12
imposes that each patient is assigned to at most one session per period. Rules r13
trough r15 impose that the optional individual time (i.e., the difference between
the minimum length of the session and the planned length) is added fairly to
all individual sessions, starting with shorter ones. Rule r16 imposes that for
each time slot, the operator is not in two different places. Rule r17 states that
patients must have their minimum time reserved. Rule r18 imposes a limit on the
concurrent use of locations with limited capacity. Rules r19 trough r21 impose
that a session cannot happen during a forbidden time. Rule r22 avoids that,
during a time slot, the distribution of sessions between each pair of locations
inside the same macro location is unfair (i.e., a location is at its full capacity
while another is empty).

The weak constraint r23 states that each session duration should be as close as
possible to the ideal duration. Rules r24 and r25 minimize the distance between
the actual and the preferred starting time for the high session priority pref-
erences. Rule r26 maximizes the number of optional sessions included in the

A Two-Phase ASP Encoding for Solving Rehabilitation Scheduling 119

Fig. 2. ASP Encoding for the timetable problem.

scheduling. Rules r27 and r28 are similar to r24 and r25, respectively, but for the
low session priority preferences.

4 Experimental Analysis

In this section, analyses performed on the two encodings are presented. The first
part of our analysis is performed on real data (that of course can encapsulate
also forced assignments and timings, and revisions between phases, if any) com-
ing from the institutes of Genova Nervi and Castel Goffredo; then, in order to

120 M. Cardellini et al.

Table 1. Dimensions of the ICS Maugeri’s institutes.

Institute # Operators # Patients Density # Floors # Gyms

Genova Nervi [9,18] [37,67] [2.4,5.2] 1 1

Castel Goffredo [11,17] [51,78] [3.5, 6.4] 2 3

Table 2. Results on ICS Maugeri institutes.

Branch & Bound + RoM Unsatisfiable Core

Genova Nervi Castel Goffredo Genova Nervi Castel Goffredo

Board Agenda Board Agenda Board Agenda Board Agenda

% Optimum 35% 0% 0% 0% 22% 45% 0% 0%

% Satisfiable 65% 100% 100% 67% 78% 55% 100% 70%

% Unknown 0% 0% 0% 33% 0% 0% 0% 30%

Avg Time for opt 1.1 s – – – 10 s 0.01 s – –

Avg Time Last SM 1.3 s 30 s 5.2 s 30 s 12.1 s 21.3 s 10.4 s 30 s

evaluate the scalability of the approach and to analyse how our solution would
behave in larger institutes, an analysis is performed on synthetic instances with
increasing dimensions, but considering real parameters. A comparison between
the real and synthetic instances validates the approach and demonstrates that
synthetic instances can reasonably model the problem at hand. Encodings and
benchmarks used in the experiments can be found at: http://www.star.dist.
unige.it/∼marco/RuleMLRR2021/material.zip.

Real Data. ICS Maugeri utilizes, in its daily activity of scheduling the rehabilita-
tion session of its patients, a web-based software called QRehab [23], developed
by SurgiQ, which is built on top of the specified encoding; thus, analysis can
be performed on real data coming from the institutes of Genova Nervi and Cas-
tel Goffredo which tested and used this software since mid 2020 for Genova
Nervi and the beginning of 2021 for Castel Goffredo. This allowed us to access
290 instances for Genova Nervi and 100 for Castel Goffredo. Table 1 provides
an overview of the dimension of the instances in the two institutes in terms of
number of physiotherapists, number of daily patients, density of patients per
operator, number of floors (i.e., macro-locations) and number of total gyms (i.e.,
locations). In Table 2, the results obtained by the two encodings are presented
in terms of percentage of instances for which an optimal/satisfiable/no solution
is computed. Last two rows report the mean time of instances solved optimally
and of the last computed solution for all satisfiable instances, respectively. The
scheduling was performed using the ASP solver clingo [13] with a cut-off of 30 s
using two different optimization methods: the first is the default Branch&Bound
(BB) optimization method [12] with the option --restart-on-model enabled;
the second instead leverages the Unsatisfiable Core (USC) algorithm [3,5] with
the clingo options --opt-strategy=usc,k,0,4 and --opt-usc-shrink=bin

http://www.star.dist.unige.it/~marco/RuleMLRR2021/material.zip
http://www.star.dist.unige.it/~marco/RuleMLRR2021/material.zip

A Two-Phase ASP Encoding for Solving Rehabilitation Scheduling 121

Fig. 3. Results of clingo using the BB optimization algorithm (left) and the USC
optimization algorithm (right) on synthetic benchmarks of the board.

Nervi
Castel Go redo

Optimum Found
Satis able
Unsatis able
Unknown

10
20
30
40
50
60
70
80

O

pe
ra

to
rs

50 100 150 200 250 300 350 400

Branch & Bound + Restart On Model

Nervi
Castel Go redo

Optimum Found
Satis able
Unsatis able
Unknown

10
20
30
40
50
60
70
80

O

pe
ra

to
rs

50 100 150 200 250 300 350 400

Unsatis able Core

#Patients #Patients

Fig. 4. Results of the synthetic benchmarks of the agenda produced by clingo with
the BB optimization algorithm and the option --restart-on-model enabled (left) and
the USC optimization algorithm (right).

enabled. As it can be seen in Table 2, results are mixed: the USC algorithm
performs better in the agenda encoding while BB algorithm is better on the
board scheduling: moreover, 100% of the board instances are solved, while for
approximately one third of the agenda instances a solution can not be found.
Considering these are hard real instances, results are positive and highly appre-
ciated by ICS Maugeri members.

Synthetic Data. In order to understand how the system scales to larger insti-
tutes, that ICS Maugeri plans to instrument soon with such solution, a simu-
lated approach is needed. For this reason, a generator able to produce random
instances with features as close as possible to the ones of real hospitals was devel-
oped. Some examples of real data utilized are: the percentage of individual and
supervised sessions, the medium length of operator’s shifts, the occurrence of
forbidden time slots for patients, and the ideal length of sessions. For every new
instance created, each feature was extracted from a random distribution which
was modelled from the real data coming from the hospitals or from the knowl-
edge of institute administrators and managers. In Fig. 3 results of the scheduling
of the board encoding, computed from the synthetic data, are presented. The
x-axis defines the number of patients and the y-axis the number of operators;
white lines represent points in which the density is an integer. Every pixel of the

122 M. Cardellini et al.

image depicts the mode of the results of 5 simulations executed with the corre-
sponding number of patients and operators with a cut-off of 30s using the BB
optimization algorithm and with the --restart-on-model option enabled (left)
and the USC optimization algorithm (right). The colour of a pixel thus signals if
the majority of instances with that particular number of operators and patients
resulted in: (i) Optimum Found, signalling that the optimal stable model was
found, (ii) Satisfiable, when at least one sub-optimal stable model was found, but
the solution is not guaranteed to be optimal, (iii) Unknown, if no stable model
could be found before the cut-off, (iv) Unsatisfiable, when no stable model exists
which can satisfy all the constraints. As it can be seen from the figure, the results
of the scheduling are directly proportional to the density (i.e., the average num-
ber of patients for every operator), changing from Optimum Found to Satisfiable
when reaching a density of approximatively 2.9 patients per operator. Notably,
despite the use of random instances, no instance results Unsatisfiable since the
fictitious operator can always catch the patients which cannot be assigned to any
operator (due to all the operators reaching full capacity). The position of the
hospitals of Genova Nervi and Castel Goffredo are highlighted with a circle. In
this figure it can be noted how the BB gives better results than USC, by being
able to find, before the cut-off, at least a sub-optimal stable model for instances
of higher densities, while, instead, the USC algorithm returns Unknown.

In Fig. 4 the results of the agenda encoding, scheduled with the BB opti-
mization algorithm (left) and USC algorithm (right), are presented in the same
format as the previous experiment. The instances for this experiment are the
same as the previous one, but are augmented with the assignments between
patients and operators found by clingo with the board encoding and other
needed parameters. As previously stated, each pixel represent 5 instances and its
color represents the mode of the clingo results. Here two things can be noted:
(i) unlike the board results, which showed a proportionality with the density,
these results show a correlation only with the number of patients, and (ii) some
red dots scattered in the image indicate that some instances result Unsatisfi-
able; this can happen since the random data could create some instances with
features that cause an impossibility to plan. With the BB optimization algo-
rithm, the transition between the Optimum Found results and Satisfiability is
located near 40 patients and near 120 patients for the transition between Satis-
fiability and Unknown. As it can be seen in Fig. 4 (right), the USC algorithm,
instead, performs better and moves the transition between the Optimum found
results and Satisfiable from 40 to 60 patients but, on the other hand, the tran-
sition between Satisfiable and Unknown slightly decreases from 120 patients to
110. The improvements on the transition between the Optimum found results
and Satisfiable is very important in our setting, since Genova Nervi and Castel
Goffredo fall into this area, confirming the improvements obtained in Table 2.
The loss with USC could be resolved by launching the two algorithms in two
different threads, so the USC algorithm will perform better on instances with
fewer patients while the BB algorithm will at least return a sub-optimal stable
model for instances with more patients.

A Two-Phase ASP Encoding for Solving Rehabilitation Scheduling 123

Validation of Synthetic Instances. In order to understand if the simulated
instances correctly represent the real data and can be therefore used to predict
the behavior of the system in larger institutes, a validation is needed to compare
the results on real and synthetic instances. Intuitively, we have considered the
data presented in Table 2 and compared it to the result of the instances within
the circles around Genova Nervi and Castel Goffredo in Figs. 3 and 4, to check
if they “coincide”. For doing so, a decision tree was trained, taking as dataset
all the features of the simulated instances, some of them listed in the previous
paragraph. Then, a test dataset with features extracted from the real instances
was produced and given as an input to the decision tree, and the predicted result
was then compared to the result given by clingo on the real instances. This
test showed that for the board encoding, all the results on real instances were
equal to the predicted ones for both institutes; the agenda encoding produced
the same results in 93% of the cases for Genova Nervi and in 67% of the cases for
Castel Goffredo, thus showing that overall the synthetic data behaves similarly
as the real one and can be used for predicting the behavior of instances in larger
institutes. Finally, the computed decision trees also confirm what are the most
relevant features outlined above by inspecting the graphs in the figures.

5 Related Work and Conclusions

There have been few attempts to solve rehabilitation scheduling, since most hos-
pitals are still doing it in a manual way. Among the automated solutions, often
they are applied to real world data. However, their results are not directly com-
parable to ours, since their constraints and objective functions are different from
the ones that emerged from our meetings with the physiotherapists and manage-
ment at ICS Maugeri. In particular, to our knowledge, no other solution takes
into account several aspects like the preferred time for the session scheduling and
the preferences in the assignment of the patient to the operator. Huang, Zheng
and Chien [17] developed a system, equipped with a Graphical User Interface,
which can generate the optimal schedules for rehabilitation patients to minimize
waiting time and thus enhance service quality and overall resource effectiveness
of rehabilitation facilities. More recently, Huyinh, Huang and Chien [18] further
refined the algorithm in order to develop a hybrid genetic algorithm (GASA)
that integrates genetic algorithm (GA) and simulated annealing (SA). Recently,
Li and Chen [19] designed a genetic algorithm based on Waiting Time Priority
Algorithm (WTPA) which was tested on a rehabilitation department. Schim-
melpfeng, Helber and Kasper [24] developed a decision support system for the
scheduling process based on mixed-integer linear programs (MILPs) to deter-
mine appointments for patients of rehabilitation hospitals, subject to numerous
constraints that are often found in practice. We already mentioned in the intro-
duction that ASP has been already successfully used for solving application
problems in several research areas (see, e.g., [11,22]), including the Healthcare
domain (see, e.g., [2] for an overview). Differently from this set of papers in
the same domain, the current work designs a two-phase encoding rather than a
direct encoding, and evaluates the solution on real benchmarks.

124 M. Cardellini et al.

In this paper, we have presented a two-phase ASP encoding for solving reha-
bilitation scheduling. Our solution has been tested with clingo and both real
and synthetic benchmarks, the former provided by ICS Maugeri while the latter
created with real parameters and employed to understand a possible behavior
of the solution on upcoming institutes where the solution will be employed.
Results are positive for the institutes employed at the moment and give some
indications on the upcoming, e.g., there are few institutes that may fall close
to the transition between satisfiable and unknown instances. Thus, despite the
current positive results, a possible topic for future research is to improve the cur-
rent encoding, as well as combining the strengths of the optimizations algorithms
employed. Another interesting direction is to design also rescheduling solutions,
to be applied in case of unavailability of operators and/or patients.

References

1. Alviano, M., Amendola, G., Dodaro, C., Leone, N., Maratea, M., Ricca, F.: Evalu-
ation of disjunctive programs in WASP. In: Balduccini, M., Lierler, Y., Woltran, S.
(eds.) LPNMR 2019. LNCS, vol. 11481, pp. 241–255. Springer, Heidelberg (2019).
https://doi.org/10.1007/978-3-030-20528-7 18

2. Alviano, M., et al.: Answer set programming in healthcare: Extended overview. In:
Joint Proceedings of the 8th IPS Workshop and the 27th RCRA Workshop Co-
located with AIxIA 2020. CEUR Workshop Proceedings, vol. 2745. CEUR-WS.org
(2020)

3. Alviano, M., Dodaro, C.: Unsatisfiable core analysis and aggregates for optimum
stable model search. Fund. Inform. 176(3–4), 271–297 (2020)

4. Alviano, M., Dodaro, C., Maratea, M.: An advanced answer set programming
encoding for nurse scheduling. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F.A.
(eds.) AI*IA 2017. LNCS, vol. 10640, pp. 468–482. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-70169-1 35

5. Alviano, M., Dodaro, C., Marques-Silva, J., Ricca, F.: Optimum stable model
search: algorithms and implementation. J. Log. Comput. 30(4), 863–897 (2020)

6. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solv-
ing. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/
CBO9780511543357

7. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

8. Calimeri, F., et al.: ASP-Core-2 input language format. Theory Pract. Logic Pro-
gram. 20(2), 294–309 (2020)

9. Cieza, A., Causey, K., Kamenov, K., Hanson, S.W., Chatterji, S., Vos, T.: Global
estimates of the need for rehabilitation based on the global burden of disease study
2019: a systematic analysis for the global burden of disease study 2019. Lancet
396(10267), 2006–2017 (2020)

10. Dodaro, C., Maratea, M.: Nurse scheduling via answer set programming. In: Bal-
duccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp.
301–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61660-5 27

11. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with clingo 5. In: Carro, M., King, A., Saeedloei, N.,
Vos, M.D. (eds.) Proceedings of ICLP (Technical Communications). OASICS, vol.
52, pp. 2:1–2:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

https://doi.org/10.1007/978-3-030-20528-7_18
https://doi.org/10.1007/978-3-319-70169-1_35
https://doi.org/10.1017/CBO9780511543357
https://doi.org/10.1017/CBO9780511543357
https://doi.org/10.1007/978-3-319-61660-5_27

A Two-Phase ASP Encoding for Solving Rehabilitation Scheduling 125

12. Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., Schaub, T.: Progress in clasp
Series 3. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS
(LNAI), vol. 9345, pp. 368–383. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23264-5 31

13. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from
theory to practice. Artif. Intell. 187, 52–89 (2012)

14. Gebser, M., Maratea, M., Ricca, F.: The design of the seventh answer set program-
ming competition. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS
(LNAI), vol. 10377, pp. 3–9. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-61660-5 1

15. Gebser, M., Obermeier, P., Schaub, T., Ratsch-Heitmann, M., Runge, M.: Routing
driverless transport vehicles in car assembly with answer set programming. Theory
Pract. Logic Program. 18(3–4), 520–534 (2018)

16. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New. Gener. Comput. 9(3/4), 365–386 (1991). https://doi.org/10.1007/
BF03037169

17. Huang, Y.C., Zheng, J.N., Chien, C.F.: Decision support system for rehabilitation
scheduling to enhance the service quality and the effectiveness of hospital resource
management. J. Chin. Inst. Ind. Eng. 29, 348–363 (2012)

18. Huynh, N.T., Huang, Y.C., Chien, C.F.: A hybrid genetic algorithm with 2D encod-
ing for the scheduling of rehabilitation patients. Comput. Ind. Eng. 125, 221–231
(2018)

19. Li, X., Chen, H.: Physical therapy scheduling of inpatients based on improved
genetic algorithm. J. Phys.: Conf. Ser. 1848(1), 012009 (2021)

20. Niemelä, I.: Logic programs with stable model semantics as a constraint pro-
gramming paradigm. AMAI 25(3–4), 241–273 (1999). https://doi.org/10.1023/A:
1018930122475

21. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986).
https://doi.org/10.1007/BF00116251

22. Ricca, F., et al.: Team-building with answer set programming in the Gioia-Tauro
seaport. Theory Pract. Logic Program. 12(3), 361–381 (2012)

23. Saverino, A., Baiardi, P., Galata, G., Pedemonte, G., Vassallo, C., Pistarini, C.: The
challenge of reorganizing rehabilitation services at the time of Covid-19 pandemic:
a new digital and artificial intelligence platform to support team work in planning
and delivering safe and high quality care. Front. Neurol. 12, 501 (2021)

24. Schimmelpfeng, K., Helber, S., Kasper, S.: Decision support for rehabilitation
hospital scheduling. OR Spectr. 34(2), 461–489 (2012). https://doi.org/10.1007/
s00291-011-0273-0

https://doi.org/10.1007/978-3-319-23264-5_31
https://doi.org/10.1007/978-3-319-23264-5_31
https://doi.org/10.1007/978-3-319-61660-5_1
https://doi.org/10.1007/978-3-319-61660-5_1
https://doi.org/10.1007/BF03037169
https://doi.org/10.1007/BF03037169
https://doi.org/10.1023/A:1018930122475
https://doi.org/10.1023/A:1018930122475
https://doi.org/10.1007/BF00116251
https://doi.org/10.1007/s00291-011-0273-0
https://doi.org/10.1007/s00291-011-0273-0

An Answer Set Programming Based
Framework for High-Utility Pattern

Mining Extended with Facets
and Advanced Utility Functions

Francesco Cauteruccio(B) and Giorgio Terracina

DEMACS, University of Calabria, Rende, Italy
{cauteruccio,terracina}@mat.unical.it

Abstract. In the context of pattern mining, the utility of a pattern can
be described as a preference ordering over a choice set; it can be actu-
ally assessed from very different perspectives and at different abstraction
levels. However, while the topic of High-Utility Pattern Mining (HUPM)
has been widely studied, the basic assumption is that each item in a
knowledge base is associated with one, static utility. In this paper we
introduce, among others, the notion of facets for items, which allows
to cope with this limitation and, moreover, we show how a more struc-
tured representation of available information, coupled with facets defined
also for higher abstraction levels, paves the way to new opportunities
for HUPM. In particular, the proposed framework allows to introduce
some new advanced classes of utility functions in the detection process,
whose relevance is also experimentally evaluated. A real use case on
paper reviews is exploited to analyze the potentiality of the proposed
framework in knowledge creation and discovery. Given the wide variety
of analytical scenarios that can be envisioned in this new setting, we
take full advantage of the capabilities of Answer Set Programming and
its extensions for a fast encoding and testing of the framework.

Keywords: High-utility pattern mining · Answer set programming ·
Facets · Advanced utility functions

1 Introduction

Pattern mining is one of the data mining branches that attracted vast attention
in the literature. Pattern mining algorithms extract knowledge from databases
that can be understood by humans and several types of patterns have been
studied, all of them having different and peculiar properties. These approaches
are basically designed to derive interesting and/or unexpected information from
databases of transactions, and their derivation rely on the concept of pattern
frequency.

Frequent patterns are useful in many domains; however, the fundamental
assumption that pattern frequency is the most interesting factor may not hold in
c© Springer Nature Switzerland AG 2021
S. Moschoyiannis et al. (Eds.): RuleML+RR 2021, LNCS 12851, pp. 126–141, 2021.
https://doi.org/10.1007/978-3-030-91167-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91167-6_9&domain=pdf
http://orcid.org/0000-0001-8400-1083
http://orcid.org/0000-0002-3090-7223
https://doi.org/10.1007/978-3-030-91167-6_9

ASP Based Framework for High-Utility Pattern Mining 127

several contexts. As an example, consider a purchase transaction database; here,
the pattern {flour, yeast} might be frequent but uninteresting, since it is fairly
obvious that those who buy flour also buy yeast. In light of such consideration,
the academic community started pointing out that a wide variety of patterns may
be characterized by a low frequency but a high utility, where the utility of a pat-
tern is given by a utility function. For example, in a sales database, a pattern may
have a low co-occurrence frequency but may provide a higher profit than more
frequent patterns (think, for instance, of the pattern {car, car alarm} against
the pattern {windshield washer fluid,new windshield wipers}). The introduction
of the notion of pattern utility, besides the one of pattern frequency, shifts the
focus from frequent pattern mining to high-utility pattern mining (hereafter,
HUPM) [5,6].

Academic research have been very active in this context, focusing, e.g. on
efficiency issues, extensions of the basic HUPM setting to different kind of pat-
terns [6], and representation of concise/correlated patterns [5,7]. The mostly cor-
related area to the present paper regards the introduction of variants for utility
functions, such as average utility [12], expected/potential utility [15], affinitive
utility [14], and utility occupancy [8].

However, the basic assumption of all these approaches is that each item is
associated with one, static, external utility. As a matter of fact, in the economics
domain a utility function “represents a consumer’s preference ordering over a
choice set” and, consequently, it is a subjective measure . Then, it is fair to
assume that the utility of an item can be defined from very different points of
view (we refer to them as facets in the following) depending on the preference
ordering. In current approaches, switching the facet actually means to completely
change the computation scenario or, at least, the dataset; moreover, different
facets of item utilities cannot be combined to detect the utility of a pattern,
unless a new definition of item utility is introduced as a derived measure. This
also implies that the notion of utility is intended as local and computed for each
pattern occurrence; having more facets at disposal, it is possible to compute
transverse utilities across pattern occurrences, such as the correlation degree
among (groups of) facets across pattern occurrences.

Another basic assumption of current approaches is based on a flat notion of
transactions, whereas different levels of abstraction, coupled with utility facets
defined also for these levels, can boost the semantics of derived patterns. As an
example, consider the classical sales context; transactions can be grouped by
customer and customers can be grouped by store. Both customers and stores
can be associated with some utility facets and contribute to the computation of
the overall pattern utility, such as the correlation between a purchase, customer
properties and store type, given that pattern occurrences can be associated with
different customers and stores.

The present paper aims at providing a contribution in this setting, with the
definition of a more general framework for HUPM which extends basic notions
along the following directions:

– Transaction set representation. In particular, for each transaction, an Object,
a Container and a Database level of aggregation can be defined.

128 F. Cauteruccio and G. Terracina

– Facets. We introduce the notion of facet, which can be associated with an
item, a transaction, an object or a container; each of these elements may be
characterized by more than one facet.

– Utility functions. In order to make the most of facets and database structure,
we introduce a taxonomy of utility functions classes; moreover, we show how
functions in different classes can be combined in several ways in order to fit
different notions of utility over the same data set.

Extensions above pave the way to brand new opportunities for HUPM where
new methods for pattern analysis can be envisioned; patterns extracted by the
proposed framework can be exploited to identify and manage information that
characterize the way people engage in knowledge centered activities. The focus of
the present paper is to show the versatility of these extensions and, consequently,
we do not currently deal with computational issues. In particular, we take full
advantage of the expressiveness of declarative programming, focusing on Answer
Set Programming (ASP) and its recent extensions, and we show how a simple
ASP encoding of the problem can be set up in a modular way such that, given a
pool of alternative encodings for each module, even non ASP practitioners can
set up their own variant for the analysis, and the same dataset can be analyzed
from different points of view by just switching the modules. The application of
our framework to a real use case scenario is also presented. Experimental results
on this use case show both the applicability and versatility of the approach.

It is worth pointing out that some approaches based on ASP for pattern
mining have been proposed in the past [9,11,13,18]. The general aim of such
approaches is to blend together the expressiveness and readiness to use of a
declarative system within the problem of pattern mining. However, to the best
of our knowledge, none of them considered HUPM and, consequently, the exten-
sions we introduce in the present work.

The remainder of the paper is organized as follows. In Sect. 2 the general
framework is proposed, along with all of its components and the problem defi-
nition. Section 3 is devoted to the design of the ASP solution. The experimental
evaluation, along with the use case scenario, is presented in Sect. 4. Finally, in
Sect. 5 we draw our conclusions and highlight future directions.

2 A General Framework for Extended High-Utility
Pattern Mining (e-HUPM)

In this section we present our framework in detail. First, we briefly recall the
classical background definitions related to the HUPM problem. Then, we show
how we extend the classical problem in several ways.

Given a quantitative transaction database D composed of a set of trans-
actions, the objective of classical HUPM is the identification of sets of items
(also called patterns) that present a high utility, i.e. a utility higher than a cer-
tain threshold thu. The utility of an item i in a transaction Tp is obtained as
eu(i) × iu(i, Tp), where eu(i) represents the external utility of i and iu(i, Tp) its

ASP Based Framework for High-Utility Pattern Mining 129

internal utility which generally represents the quantity of i in Tp. Given a pattern
P appearing in a transaction Tp, the utility of P in Tp is denoted as tu(P, Tp)
and is computed as

∑
i∈P eu(i)× iu(i, Tp). Now, given the set TP of transactions

containing occurrences of the pattern P , the utility of P in the database D is
denoted by u(P) and computed as u(P) =

∑
Tp∈TP

tu(P, Tp).
Having stated the classical HUPM background, we are now able to intro-

duce the proposed framework. The first presented extension is needed to define
advanced utility functions and is about the database representation. In particu-
lar, instead of a flat set of transactions, we assume that the knowledge base is
organized with the following general hierarchy:

Database → Container → Object → Transaction

In particular, given a database D and a set of transactions {T1, T2, . . . , Tn}, D
is organized as a set of containers C = {C1, C2, . . . , Cr} where each container Cs

can be associated with a set of objects O = {O1, O2, . . . , Ot} and each object Ou

contains a set of transactions {T1, T2, . . . , Tv}. Clearly each transaction is com-
posed of a (possibly ordered) set of items. Each transaction belongs to precisely
one object and each object is associated with precisely one container. Observe
that this representation allows to cover several interesting application scenarios.
As it will be clear in the following, being able to group transactions at different
abstraction levels allows for a more advanced evaluation of pattern utilities.

The second main generalization deals with utility representation. As a matter
of fact, a great limit of the classical definition of HUPM, and its variants, is that
each item is associated with a unique, external, and fixed value of utility. We
next extend the notion of utility with the concept of facets. In fact, in several
contexts, the utility of an item may be defined from different perspectives, which
we call facets. Then, each item can be associated with a list of values defining
its utility from different perspectives. Moreover, given the new organization of
the database, facets can be defined also for transactions, objects, and containers.
Formally:

Item Utility Vector : Given an item i, the utility of i is defined by an item utility
vector IUi = [iu1, iu2, . . . , iul], where each iuk describes a certain facet of i.

Transaction Utility Vector : Given a transaction Tp, the utility of Tp is defined by
a transaction utility vector TUTp

= [tu1, tu2, . . . , tum], where each tuk describes
a facet of Tp. Observe that these facets for the transaction describe properties
of the transaction as a whole and represent a different information than the
standard internal utility of an item i in the transaction Tp. In order to keep the
compatibility with the classical problem, we assume that the internal utility of
i in Tp is available and represented as q(i, Tp).

Object Utility Vector : Given an object Ou, the utility of Ou is defined by an object
utility vector OUOu

= [ou1, ou2, . . . , oun], where each ouk describes a facet of Ou.

Container Utility Vector : Given a container Cs, the utility of Cs is defined by a
vector CUCs

= [cu1, cu2, . . . , cuo], where each cuk describes a facet of Cs.

130 F. Cauteruccio and G. Terracina

It is worth observing that the length of any of the utility vectors above
might be 0 if no interesting facet can be defined for it. The list of facets is fixed
at problem modelling stage; however, we assume that all utility vectors of a
certain type have the same number of facets. All utilities introduced above are
not constrained to be numeric values. The interpretation and combination of
utilities is left to the pattern utility computation function.

Now, recall that a pattern is a (possibly ordered) set of items and it may
occur in a certain number of transactions. We next introduce the novel and
advanced ways in which utility functions can be defined, based on the extensions
introduced above.

Intra-pattern Utility : First of all, given a pattern P , composed of a set of r
items and occurring in a transaction Tp, all the item utility vectors of items
i ∈ P must be merged into a unique item utility vector IU . In this process,
internal utilities of items for Tp can be taken into account. Formally, given the set
IUS = {IU1, . . . IUr} of item utility vectors associated with each item i ∈ P , let
define the intra-pattern utility function ip which takes as input the pattern P , the
transaction Tp and the associated set of item utility vectors IUS, and generates
a unique item utility vector for the pattern occurrence: IUTp

= ip(P, Tp, IUS).
An example of intra-pattern utility function is the following:

IUTp
= ip(P, Tp, {IU1, . . . IUr}) =

[
∑

i∈[1..r]

(IUi[1] × q(i, Tp)),
∑

i∈[1..r]

(IUi[2] × q(i, Tp)), . . . ,
∑

i∈[1..r]

(IUi[l] × q(i, Tp))]

Depending on the context of interest, the combination of the utilities across
the single facets can be carried out with functions different from the SUM. As
an example, MAX, MIN, or AVG operators can be applied across the same facet
of the different items in the pattern.
Pattern Utility Functions: Now, given a pattern P occurring in a transaction Tp,
the corresponding occurrence utility vector OccUTp

is obtained by juxtaposing
the item, transaction, object and container utility vectors:

OccUTp = [IUTp , TUTp , OUTp , CUTp] = [iu1, .., iul, tu1, .., tum, ou1, .., oun, cu1, .., cuo]

Here, for the sake of simplicity, we refer to OUTp
(resp., CUTp

) as the object
(resp., container) utility vector of the object (resp., container) containing trans-
action Tp.

Given the set TP of transactions containing occurrences of the pattern P ,
the pattern utility vector UP is obtained as the collection of all the occurrence
utility vectors of P :

UP =
⋃

Tp∈TP

OccUTp

Now, from UP we can virtually build a matrix where each row represents a
utility vector associated with an occurrence of P and each column represents a

ASP Based Framework for High-Utility Pattern Mining 131

facet of P . The utility u of P can be then obtained as an arbitrary combination
of the values in UP , using a function u(P).

In order to formalize u(P) we distinguish between formulas that operate by
row (we call them horizontal first and we refer them as fh), formulas that operate
by column (we call them vertical first and we refer them as fv), and formulas
that operate on the whole data at once (we call them mixed and we refer them
as f) . Formally, utility of P can be classified in:

– Horizontal first ; it first combines utilities of the various facets in each occur-
rence (by row) and then combines the values across all occurrences (by col-
umn): u(P) = fv(fh(UP))

– Vertical first ; it first evaluates utilities on a facet basis across the occurrences
(by column) and then combines the obtained values across the facets (by
row): u(P) = fh(fv(UP))

– Mixed ; it combines the values in UP at once: u(P) = f(UP)

Observe that u(P) is a single number, whereas intermediate computations may
provide sets of values.

Both Horizontal first, Vertical first, and Mixed utility functions may be fur-
ther classified in:

– inter-transaction utility: these are functions that combine item and transac-
tion utilities;

– pattern-vs-object utility: these are functions that compute the utility of the
pattern by correlating one or more item or transaction utility facets with one
or more object utility facets;

– pattern-vs-container utility: these are functions that compute the utility of
the pattern by correlating one or more item or transaction utility facets with
one or more container utility facets.

It is worth pointing out that, beside classical utility functions, the setting
defined above can be exploited to define advanced utility measures such as: (i)
coherence degree, i.e. the percentage of pattern occurrences in which values of
two or more facets agree/disagree; (ii) Pearson correlation between one of the
item/transaction facets and one of the object/container facets; (iii) Multiple cor-
relation among sets of facets. The interested reader can find in online Appendix1

a complete example showing the application of some of these utility functions.
We are now ready to formally introduce the definition of the problem

addressed in this paper.

Problem Definition. Given a pattern P containing a set of items, P is an extended
high-utility pattern if its utility u(P) is greater than a utility threshold thu, and it
occurs in at least thf transactions. The problem of extended high-utility pattern
mining is to discover all extended high-utility patterns in a database D.

1 The online Appendix is available at https://www.mat.unical.it/∼cauteruccio/
rulemlrr21.

https://www.mat.unical.it/~cauteruccio/rulemlrr21
https://www.mat.unical.it/~cauteruccio/rulemlrr21

132 F. Cauteruccio and G. Terracina

Listing 1.1. A general ASP encoding for the e-HUPM problem

1 %%% Input schema:

2 %container(ContainerId)

3 %object(ObjectId,ContainerId)

4 %transaction(Tid, ObjectId)

5 %item(Item, Tid, Position, Q)

6 %itemUtilityVector(Item, I1, ..., Il)

7 %transactionUtilityVector(Tid, T1, ..., Tm)

8 %objectUtilityVector(ObjectId, O1, ..., On)

9 %containerUtilityVector(ContainerId, C1, ..., Co)

10
11 %%% Parameters

12 occurrencesThreshold(...). utilityTreshold(...).

13
14 %%% Item pre-filtering

15 usefulItem(I):- item(I,_,_,_),....any condition on the items.

16
17 %%% Candidate pattern generation

18 {inCandidatePattern(I)}:- usefulItem(I).

19
20 %%% Occurrences computation and check

21 inTransaction(Tid):- transaction(Tid,_), not incomplete(Tid).

22 incomplete(TiD):- transaction(Tid,_), inCandidatePattern(I), not contains(I,Tid).

23 contains(I,Tid):- item(I,Tid,_,_).

24 :- #count{ Tid : inTransaction(Tid)}=N, N < Tho, occurrencesThreshold(Tho).

25
26 %%% Utility computation

27 patternItemUtilityVectors(Tid,Item,I1,...,Il,Q):- inCandidatePattern(Item), itemUtilityVector(Item,

I1, ..., Il), inTransaction(Tid), item(Item, Tid, Position, Q).

28 intraPatternUtilityVector(Tid,I1,...,Il):- &computeIntraPatternUtility[patternItemUtilityVectors](Tid

,I1,...,Il).

29 occurrenceUtilityVector(Tid,I1,...,Il,T1,...Tm,O1,...On,C1,...,Co):- inTransaction(Tid),

intraPatternUtilityVector(Tid,I1,...,Il), transactionUtilityVector(Tid, T1, ..., Tm),

transaction(Tid, ObjectId), objectUtilityVector(ObjectId, O1, ..., On), object(ObjectId,

ContainerId), containerUtilityVector(ContainerId, C1, ..., Co).

30 :- &computeUtility[occurrenceUtilityVector](U), U < Thu, utilityTreshold(Thu).

3 Design of the ASP Approach

As previously pointed out, one of the main objectives of this work is to provide
as much flexibility as possible in the definition of what is a useful pattern. In
what follows, we provide a general encoding for the problem at hand. In the
online appendix we provide some specializations of the encoding on the use case
exploited for the experiments, in order to show how different code portions can
be composed in order to cope with different scenarios of interest.

It is important to point out that the implementation of complex formulas
for pattern utility, outlined in Sect. 2, can be in general not easy (and even
inefficient) to be carried out using only rules in an ASP program. However, we
may resort to recent extensions of ASP systems, such as DLVHEX [3], WASP
[2], clingo [10], etc., which allow the integration of external computation sources,
usually written in Python, within the ASP program. In particular, the problem at
hand requires to send a set of utility vectors to an external source of computation,
functionality which is not straightforward even in some of these systems. The
ASP standardization group has not released standard language directives yet

ASP Based Framework for High-Utility Pattern Mining 133

for such features; in order to present our ASP formalization, we make use of
syntax and semantics of DLVHEX [3], while slightly different formulations and
mechanisms must be used to exploit clingo [10] or WASP [2].

The general encoding is presented in Listing 1.1; it is structured in separate
parts, in such a way that the various aspects of the problem can be modelled,
and changed, with localized choices.

The first part defines the expected schema for input facts (lines 1–9). This
models the general setting introduced in Sect. 2. Moreover, since the approach
is based on some thresholds for pattern frequency and utility, these must be
provided as input as well (line 12). In order to keep the formalization as general
as possible, there can be contexts in which some items should be pre-filtered;
these are items that we want to discard from any pattern (e.g., items with a
price lower than a certain threshold). Filters can be set up with rules like the
one in line 15.

In order to generate all valid patterns, we generate one answer set for each
pattern; this simplifies both pattern representation and the computation of util-
ities (see line 18). After the candidate pattern is built, its number of occurrences
is computed by rules in lines 21–23. A first pattern validity criterion is applied
here, in order to check whether the frequency of the pattern is higher than the
given threshold or not (line 24).

Finally, in order to compute pattern utility, the occurrence utility vectors
must be derived first (see lines 28 and 29). Here, a generic external function com-
puteIntraPatternUtility builds the intra-pattern utility vector first. The generic
external function computeUtility takes as input all occurrence utility vectors and
derives the utility of the pattern; only patterns with a utility greater than the
given threshold are kept (lines 29 and 30).

4 Experimental Evaluation

In this section we show and discuss the results of some experiments we carried out
in order to assess the appropriateness of the proposed approach. In particular,
we first provide some details on the use case adopted for the experiments and
the corresponding dataset; then, we consider two kind of analyses: a quantitative
analysis aiming to characterize the applicability of our approach in terms of
performances, and a qualitative analysis aiming to assess the effectiveness of the
proposed approach, in terms of potential and quality of results.

4.1 Use Case and Dataset Details

The use case of interest is built upon the work presented in [1], in which aspect-
based sentiment analysis of scientific reviews is exploited to correlate reviews
with the accept/reject decision. It is well known that reviews largely follow
a well-defined structure, identifying the pros and cons of a paper. We exploit
an important feature from the results in [1], that is the automatic annota-
tion of review sentences around eight different aspects: appropriateness, clarity,

134 F. Cauteruccio and G. Terracina

Table 1. Terminology and facets for the paper reviews use case

e-HUPM Use Case Facets Domain of the facet

Database Set of reviews –

Container Paper (Decision) ({0 (Reject), 1 (Accept)})
Object Review (Rating, Confidence) ({1-10}, {1-5})
Transaction Sentence (Appropriateness, Clarity,

Originality,

Soundness, Comparison,
Substance,

{–1 (Negative), 1 (Positive),

Impact, Recommendation) 0 (Neutral or Absent) }
Item Word –

originality, empirical/theoretical soundness, meaningful comparison, substance,
impact of dataset/software/ideas and recommendation. For each of these aspects
one out of four possible sentiments is assigned: positive, negative, neutral, absent.
The Authors of [1] show that a correlation exists between sentiments associated
with review sentences and accept/reject decisions.

In this paper, we move a step forward showing that sentiment polarities
may be exploited to find high utility patterns in reviews. In this context, the
database D is composed of a set of reviews. Each review is relative to a paper
and provides a rating and a confidence for it; the paper is associated with a
final Accept/Reject decision. Each review contains a set of sentences; each sen-
tence can be associate with sentiment annotations on appropriateness, clarity,
originality, empirical/theoretical soundness, meaningful comparison, substance,
impact of dataset/software/ideas and recommendation. Finally, each sentence is
composed of a set of words. Table 1 illustrates the correspondence between the
terms adopted in our framework and the use case, along with the facets available
for each aspect.

The dataset provided by [1] contains ICLR open reviews from 2017, 2018 and
2019, from which different sentences have been extrapolated and annotated by
means of eight different facets. For each facet, a sentiment label is provided in
the form of an integer number in [−1, 0, 1], corresponding to negative, absent or
neutral, and positive sentiment respectively. Furthermore, each review consists
of a list of sentences and is annotated with the confidence of the reviewer (an
integer number in [1, 5]) and the rating (an integer number in [1, 10]). The dataset
features 814 papers with a total of 1148 reviews. There are 2230 annotated lines,
and the number of distinct words in these lines is 15214.

4.2 Quantitative Analysis

All of the experiments have been performed on a 2.3GHz MacBook computer
(Intel Core i9) with 16 GB of memory. The data preprocessing pipeline was
implemented in Python 3.8 and exploited the spaCy2 library. The experiments
2 https://spacy.io/.

https://spacy.io/

ASP Based Framework for High-Utility Pattern Mining 135

Fig. 1. Average running time for utility functions SUM (a) and disagreement degree (b)

employing the HUPM classic systems, namely Two-Phase [17], UPGrowth [19],
HUI-Miner [16] and EFIM [20], were performed using their implementation pro-
vided in the SPMF data mining library [4].

In a first series of experiments, we computed the average running times for
two different settings. The first one is a sort of a stress test: it involves all the
facets provided by the use case and computes their sum via an external func-
tion call; thus, all input items and values are relevant for the computation and,
consequently, a large number of patterns are expected. The second one is more
realistic and computes the disagreement degree between one of the annotated
sentiments and the decision about the corresponding paper, namely the per-
centage of pattern occurrences showing a positive sentiment on originality and
a reject decision; in this case the utility function is directly encoded with ASP
rules. Results are shown in Fig. 1 for increasing number of papers in the data
set and different pattern lengths; each data point represents the average run-
ning time computed for occurrence thresholds equal to [4, 6, 8, 10] and utility
thresholds equal to [1, 5, 10, 15, 20, 25, 30] for the sum and [15, 50, 75, 100] for the
disagreement degree.

Fig. 2. Comparison of our ASP-based solution (a) and state-of-the-art HUPM systems
(b)

136 F. Cauteruccio and G. Terracina

From the analysis of this figure, it is possible to observe that the choice of
the utility function, and more generally of the analysis setting, can significantly
impact performances. This is due to several factors, ranging from the amount
of input data relevant for the computation, to the number of patterns satis-
fying the thresholds and the use of external function calls. It is interesting to
observe that, in Fig. 1(a), average running times significantly decrease for pat-
tern lengths increasing between 4 and 5. This can be justified by the fact that
increasing the pattern length makes it harder to satisfy occurrence thresholds;
this possibly determines a significantly lower number of answer sets involving
the external function computation, thanks to internal optimizations of the ASP
solver. This behavior is not observed in Fig. 1(b) where, however, running times
are significantly lower in general.

In order to assess how our ASP-based approach relates to dedicated systems
for the classical version of the HUPM problem, we compared the performance
of our ASP-based solution with four famous and well known HUPM systems,
namely Two-Phase, UPGrowth, HUI-Miner and EFIM. To provide an overall
comparison that takes into account different aspects, we selected these systems
according to three axes: different search strategies, number of phases and under-
lying basic algorithms. It is worth pointing out that the objective of this analysis
is not to “find a winner”, since our ASP-based approach could never compete, in
terms of performances, with dedicated tools. The goal of this analysis is twofold:
(i) we want to show that the analytical context must be significantly downsized
in order to be able to apply classical tools on the paper reviews use case, and (ii)
we want to show that our ASP-based solution provides its results in a reasonable
amount of time for a well-studied context.

Before showing the details of this experiment, we specify the adopted setting;
recall that classical HUPM systems allow for one single (positive) external utility
for each item and one internal utility for each transaction. In order to fit our use
case with these requirements, we set the external utility of each word to 1 and
we exploit the sentiment provided for each sentence on the first facet as internal
utility; specifically, we set the internal utility of an item as the absolute value of
Appropriateness in the sentence it appears in. Observe that no analysis involving
more than one facet, or relating items/transactions with objects/containers can
be devised in the classical setting. Moreover, since only the transaction layer can
be considered, we had to flatten the representation of the sentences by removing
all references to the reviews and to the papers they belong to. Obtained results
are illustrated in Fig. 2 for increasing numbers of transactions. From the analysis
of this figure it is possible to draw the following observations: (i) As expected,
classical systems are faster than the ASP-based solution which, however, shows
reasonable behavior for the application case. The slightly higher execution times
of Two-Phase are due the fact that this approach generates candidate patterns
without looking at the database; as a consequence, it may generate candidate
patterns not occurring in any transaction. Moreover, in order to calculate the
utilities of patterns and the transaction-weighted utilization, Two-Phase repeat-
edly scans the database, thus representing a significant cost [5]. (ii) With the only

ASP Based Framework for High-Utility Pattern Mining 137

exception of Two-Phase, classical systems are marginally affected by the num-
ber of transactions, whereas our ASP-based solution presents increasing running
times. (iii) Classical systems are able to mine patterns of any length, whereas, in
order to make our approach applicable, we need to fix a range for pattern lengths.
This last is the main limitation of our approach; in fact, without a threshold on
pattern length, the ASP generation process would consider all possible combi-
nations of items. However, in many application contexts, fixing a range for the
length of patterns of interest is reasonable.

4.3 Qualitative Analysis

In this section we describe the results of some experiments carried out to show if,
and how much, facets and utility functions introduced in Sect. 2 can help users
in analyzing input data from different points of view. Due to space constraints
only a small subset of interesting analyses is presented.

Before going into the details of the analysis, in order to better show the prop-
erties of our approach, consider that the paper review dataset contains 686 words
with contrasting values between a “sentiment” (on one of the aspects reported
in Sect. 4.1) and the decision. Among them, 481 different words are in sentences
with an “Originality” sentiment; this situation leads to 929 patterns of length
between 2 and 4 with at least 4 occurrences just related to “Originality”. As a
consequence, any classical approach would be overwhelmed by a huge amount
of patterns.

In our series of experiments, we computed patterns where the utility function
is the Pearson correlation between the sentiment on a sentence aspect X and the
final decision on the corresponding paper. In particular, given a certain aspect,
let say X = Clarity, a pattern P showing a high utility should be read as follows:
the set of review sentences containing P are characterized by a direct correlation
between the sentiment on Clarity and the final decision on the corresponding
paper; consequently, a positive sentiment on Clarity in sentences containing P
(approximately) implies an Accept decision, whereas a negative sentiment on
Clarity in sentences containing P (approximately) implies a Reject decision. In
order to provide a more comprehensive analysis, we extracted both patterns
showing a very high (≥0.7) Pearson correlation and patterns showing a very low
(≤–0.7) Pearson correlation. In both cases the minimum frequency has been set
to 4. Results are shown in Table 2 for Clarity, Empirical/Theoretical Soundness
(Soundness for short), and Impact of Dataset/Software/Ideas (Impact for short).
In a similar way, we computed also patterns where the utility function is the
Multiple correlation.

From the analysis of Table 2 we can draw the following observations: (i) The
number of valid patterns is very low, thus simplifying a manual inspection of
obtained results. (ii) An overlap between patterns found in different settings
is not necessarily a negative point; indeed, it could strengthen the quality of
obtained results. As an example, we found that the pattern [paper, technical,
contribution] appears both with a Pearson correlation equal to 1 between
Soundness and Decision and a Multiple correlation equal to 1 between (Clarity,

138 F. Cauteruccio and G. Terracina

Table 2. Qualitative analysis on Pearson and Multiple Correlations

Pearson Correlation

Setting # positive/
negative

Sample patterns Correlation

Clarity → Decision 27/32 think paper overall current 1

paper iclr current 1

think paper ready 0.80

think paper iclr interesting –1

paper iclr relevant –1

think paper overall relevant –1

Soundness → Decision 25/14 paper technical contribution 1

interesting approach pros 1

results convincing 0.81

interesting results 0.72

think claim –0.73

understand difficult –1

paper problems –1

paper clearly presented –1

Impact → Decision 50/16 paper clear contribution 1

good state art 1

work significant 0.77

paper like short –0.77

interesting problem –0.81

experimental evaluation –1

Multiple Correlation

Setting # tot Sample patterns Correlation

(Clarity, Soundness) → Decision 74 paper technical contribution 1

paper nice idea 1

good approach results 1

paper interesting idea 0.79

paper related convinced kind 0.71

(Clarity, Impact) → Decision 132 think paper overall relevant 1

paper iclr interesting overall 1

good state art 1

think paper ready 0.83

paper technical contribution 0.81

datasets 0.76

(Originality, Impact) → Decision 106 paper iclr novel 1

paper clear contribution 1

works cited 1

idea contribution 0.94

main contribution 0.88

paper work related novelty 0.70

ASP Based Framework for High-Utility Pattern Mining 139

Soundness) and Decision; this can be interpreted as a strong characterization of
sentences containing the words [paper, technical, contribution]. (iii) In
few cases, a small variation in the pattern may reverse the correlation; as an
example consider the pattern [think, paper, overall, current], showing a
Pearson correlation equal to 1 between Clarity and Decision and the pattern
[think, paper, overall, relevant] showing a Pearson correlation equal to
–1 between Clarity and Decision; this and similar situations should be carefully
analyzed looking at the underlying data.

Note that, in the analysis conducted in [1] on the entire set of sentences
studying the correlation between sentiments and the final recommendation,
the Authors found the following values for Pearson correlation: Clarity =
0.212, Empirical/Theoretical Soundness = 0.267, and Impact of Dataset/Soft-
ware/Ideas = 0.273. These were the aspects showing the higher correlation val-
ues. Our approach allows to go deeper in the analysis and to single out subsets
of sentences, characterized by common patterns, showing very high correlations.

It is finally interesting to observe that the derivation of a knowledge base
of such kind of patterns in historical data may help chairs in identifying and
characterizing some portions of new reviews to focus on, in order to help them
decide whether they have to intervene or not during the decision process, and in
order to improve fairness of reviews.

5 Conclusion

In this paper we introduced a general framework for HUPM with several exten-
sions allowing to significantly widen the applicability of HUPM even in non clas-
sical contexts. We provided an ASP based computation method, which exploits
the most recent extensions of ASP, and we have shown that this solution allows
for a reasonable and versatile implementation, which provides a fast way to
analyze the data from different perspectives and different abstraction levels.

A real use case on paper reviews has been employed to analyze the different
aspects of the proposed framework. We have shown that the introduction of
facets and suitable advanced utility functions can both reduce the amount of
relevant patterns and provide deep insights on the data, thus advancing the
state-of-the-art on the interesting topic of HUPM.

The presented work is just a first step in this new direction of utility-based
analyses and several future research directions are now open. First of all, it
will be interesting to apply the framework to new contexts, such as biomedical
data analysis and IoT data analysis. A classification of computational properties
for the extended utility functions is necessary to devise ad-hoc algorithms. In
particular, we plan to develop dedicated and efficient algorithms for computing
high-utility patterns using the Pearson or the Multiple correlation.

140 F. Cauteruccio and G. Terracina

References

1. Chakraborty, S., Goyal, P., Mukherjee, A.: Aspect-based sentiment analysis of
scientific reviews. In: JCDL 2020: Proceedings of the ACM/IEEE Joint Conference
on Digital Libraries in 2020, Virtual Event, China, 1–5 August 2020, pp. 207–216.
ACM (2020)

2. Dodaro, C., Ricca, F.: The external interface for extending wasp. Theor. Pract.
Log. Program. 20(2), 225–248 (2020)

3. Eiter, T., et al.: The DLVHEX system. KI - Künstliche Intelligenz 32(2–3), 187–189
(2018)

4. Fournier-Viger, P., et al.: The SPMF open-source data mining library version 2.
In: Berendt, B. (ed.) ECML PKDD 2016. LNCS (LNAI), vol. 9853, pp. 36–40.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46131-1 8

5. Fournier-Viger, P., Lin, J.W., Nkambou, R., Vo, B., Tseng, V.: High-Utility Pattern
Mining. Springer, Heidelberg (2019)

6. Gan, W., Lin, C., Fournier-Viger, P., Chao, H., Tseng, V., Yu, P.: A survey of
utility-oriented pattern mining. IEEE Trans. Knowl. Data Eng. 33(4), 1306–1327
(2021)

7. Gan, W., Lin, J.C.W., Chao, H.C., Fujita, H., Yu, P.: Correlated utility-based
pattern mining. Inf. Sci. 504, 470–486 (2019)

8. Gan, W., Lin, J.C., Fournier-Viger, P., Chao, H., Yu, P.S.: HUOPM: high-utility
occupancy pattern mining. IEEE Trans. Cybern. 50(3), 1195–1208 (2020)

9. Gebser, M., Guyet, T., Quiniou, R., Romero, J., Schaub, T.: Knowledge-based
sequence mining with ASP. In: Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July
2016, pp. 1497–1504. IJCAI/AAAI Press (2016)

10. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. Theor. Pract. Log. Program. 19(1), 27–82 (2019)

11. Guyet, T., Moinard, Y., Quiniou, R., Schaub, T.: Efficiency analysis of ASP encod-
ings for sequential pattern mining tasks. In: Pinaud, B., Guillet, F., Cremilleux,
B., de Runz, C. (eds.) Advances in Knowledge Discovery and Management. SCI,
vol. 732, pp. 41–81. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
65406-5 3

12. Hong, T.P., Lee, C.H., Wang, S.L.: Effective utility mining with the measure of
average utility. Expert Syst. Appl. 38(7), 8259–8265 (2011)

13. Järvisalo, M.: Itemset mining as a challenge application for answer set enumeration.
In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp.
304–310. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-
9 35

14. Lin, J.C., Gan, W., Fournier-Viger, P., Hong, T., Chao, H.: FDHUP: fast algorithm
for mining discriminative high utility patterns. Knowl. Inf. Syst. 51(3), 873–909
(2017)

15. Lin, J.C.W., Gan, W., Fournier-Viger, P., Hong, T.P., Tseng, V.S.: Efficient algo-
rithms for mining high-utility itemsets in uncertain databases. Knowl. Based Syst.
96, 171–187 (2016)

16. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In:
21st ACM International Conference on Information and Knowledge Management,
CIKM 2012, Maui, HI, USA, 29 October–02 November 2012, pp. 55–64. ACM
(2012)

https://doi.org/10.1007/978-3-319-46131-1_8
https://doi.org/10.1007/978-3-319-65406-5_3
https://doi.org/10.1007/978-3-319-65406-5_3
https://doi.org/10.1007/978-3-642-20895-9_35
https://doi.org/10.1007/978-3-642-20895-9_35

ASP Based Framework for High-Utility Pattern Mining 141

17. Liu, Y., Liao, W., Choudhary, A.: A two-phase algorithm for fast discovery of high
utility itemsets. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS
(LNAI), vol. 3518, pp. 689–695. Springer, Heidelberg (2005). https://doi.org/10.
1007/11430919 79

18. Paramonov, S., Stepanova, D., Miettinen, P.: Hybrid asp-based approach to pattern
mining. Theor. Pract. Log. Program. 19(4), 505–535 (2019)

19. Tseng, V.S., Shie, B., Wu, C., Yu, P.S.: Efficient algorithms for mining high utility
itemsets from transactional databases. IEEE Trans. Knowl. Data Eng. 25(8), 1772–
1786 (2013)

20. Zida, S., Fournier-Viger, P., Lin, J.C.-W., Wu, C.-W., Tseng, V.S.: EFIM: a highly
efficient algorithm for high-utility itemset mining. In: Sidorov, G., Galicia-Haro,
S.N. (eds.) MICAI 2015. LNCS (LNAI), vol. 9413, pp. 530–546. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-27060-9 44

https://doi.org/10.1007/11430919_79
https://doi.org/10.1007/11430919_79
https://doi.org/10.1007/978-3-319-27060-9_44

Automatic Generation of Intelligent
Chatbots from DMN Decision Models

Vedavyas Etikala(B) , Alexandre Goossens , Ziboud Van Veldhoven ,
and Jan Vanthienen

Department of Decision Sciences and Information Management (LIRIS),
KU Leuven, Leuven, Belgium

vedavyas.etikala@kuleuven.be

Abstract. Decision models are the consolidated knowledge representa-
tion of the requirements and the logic of operational decisions in business
organizations. Decision models defined in the Decision Model and Nota-
tion (DMN) standard can contribute significantly to the automation of
business decision management. However, the current scope of decision
support is quite limited in presenting the decision-making process to an
end-user in a reliable, user-friendly way. This paper provides a frame-
work for automatically generating chatbots from DMN models that can
handle numerous user scenarios for effective and explainable decision-
making during customer support inquiries. The method can improve the
digitalization of customer services and give customers more transparency
and trust in the decision-making through user-friendly chatbots.

Keywords: Decision model and notation (DMN) · Chatbots ·
Knowledge reasoning

1 Introduction

With the increased digital transformation of our society [15], customers have
become increasingly more demanding as they expect immediate and personal-
ized assistance when interacting with companies [13]. More than 80% of busi-
nesses are investigating chatbots to deal with the increasing expectations and
customer inquiries [4]. This increased attention for chatbots is evident from both
an academic perspective [3] and commercial perspectives such as the customer
help chatbot you can find on almost all commercial websites nowadays.

There are, however, several issues with chatbots. First, chatbots typically
give general answers or refer to FAQs while customers increasingly demand per-
sonalized and instant answers [13]. Secondly, the construction and maintenance
of chatbots are both time and resource-intensive. This is more prevalent for
knowledge-intensive domains where both domain experts and IT experts have
to work together. Third, current chatbots cannot deal well with more advanced
reasoning such as explaining the user why certain outputs were achieved. They
lack processable knowledge and reasoning mechanisms to answer more specific
c© Springer Nature Switzerland AG 2021
S. Moschoyiannis et al. (Eds.): RuleML+RR 2021, LNCS 12851, pp. 142–157, 2021.
https://doi.org/10.1007/978-3-030-91167-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91167-6_10&domain=pdf
http://orcid.org/0000-0002-5184-3812
http://orcid.org/0000-0001-8907-330X
http://orcid.org/0000-0001-6013-7437
http://orcid.org/0000-0002-3867-7055
https://doi.org/10.1007/978-3-030-91167-6_10

Automatic Generation of Intelligent Chatbots from DMN Models 143

questions about the business decisions and logic [3]. This is especially important
for handling operational decisions that are characterized by their high frequency,
repetitiveness, and need for knowledge such as loan calculators [16]. This knowl-
edge deals with the day-to-day procedures and is often stored in manuals or
ideally in decision model and notation (DMN) models.

In this paper, a novel approach to generate chatbots from DMN models is
proposed. As explained in Sect. 2, declarative decision models hold both the
structure and logic of operational decisions, which can be automatically con-
verted into fully functioning chatbots with the framework in Sect. 3. In addition,
the decision knowledge from the models supports numerous user scenarios, such
as answering why the user received a particular outcome, detailed in Sect. 4.
In Sect. 5, the user interaction methods are elaborated on and in Sect. 6 we
showcase our prototype interface. The technical implementation is explained in
Sect. 7. The discussion and conclusion are found in Sect. 8 and 9.

2 Background

Decision Modeling: Operational decisions have a strong impact on businesses
due to their high volume and importance. To manage these decisions and rep-
resent their knowledge, decision models such as DMN introduced by the Object
Management Group (OMG)1 can be used. DMN is useful for companies as it
serves as a bridge between business decision design and decision implementation.

A DMN model consists of two parts. The decisions and decision dependencies
are visualized in the Decision Requirements Diagrams (DRD). For each decision,
DMN also provides a specification of the decision logic usually in the form of
decision tables. Decision tables easily enforce completeness and consistency, are
evaluated in a straightforward manner, and are easy to automate thanks to
their tabular input-output format [9,18]. For more complex cases, DMN also
provides an expression language called Friendly-Enough Expression Language
(FEEL) that supports complex expressions or in [1] an extension was developed
for reasoning with constraints. The two levels, DRD and decision logic, together
form a DMN model that is intuitive enough for the communication between
stakeholders and powerful enough for automated reasoning [7,17].

Chatbots: Chatbots are computer-human dialog systems that mimic natu-
ral conversations [11]. This way users can interact with the underlying soft-
ware through conversational questions and answers via text or voice. With
the increased processing power, data availability and novel artificial intelligence
methods, chatbots have seen a surge in research in recent years [19].

Many types of chatbots exist that differ in both the area of application,
such as aftersales chatbots or lead generation chatbots [10], and in the technical
implementations. Typical chatbots are based on one or a combination of the
following techniques: parsing, pattern matching, AIML, chatscript, ontologies,
markov chain models, and artificial neural networks [8]. In this paper, we focus

1 https://www.omg.org/spec/DMN/1.0.

https://www.omg.org/spec/DMN/1.0

144 V. Etikala et al.

on customer support chatbots using ontology-based techniques meaning the use
of knowledge graphs to store facts about a domain and reason with them [2].

3 Overview of the Chatbot Framework

Intelligent conversational agents have the potential to offer personalized decision-
making support to the user. We propose a framework for chatbots generated from
DMN to facilitate the communication between knowledge (in DMN models) and
users with interactive input gathering, friendly output presentation, and decision
making and explanation. This permits companies to move away from building
problem specific chatbots towards using a generic chatbot that is automatically
complemented with knowledge from DMN models.

3.1 Solution Components

The proposed approach is visualized in Fig. 1 and consists of three main com-
ponents: the user interface (UI), Dialog Engine and Knowledge Reasoner. This
framework follows the general structure for chatbots as described in [14].

Fig. 1. Framework for automatic chatbot generation from DMN decision models

First, the UI collects the user scenarios (explained in Sect. 4) and inputs
via menu buttons, text, or voice. Second, these inputs are sent to the dialog
engine that consists of speech and natural language processing modules and
are then used to build context for the DMN reasoner. This context is sent to
the reasoner and the DMN model is executed with the corresponding reasoning
mechanism. Finally, the derived outcome or additional information requirement
is communicated to the user through the response generator and UI.

Automatic Generation of Intelligent Chatbots from DMN Models 145

3.2 Running Example

A Corona vaccination example based on the Belgian situation in spring 2021
will be used as running example. A DRD is shown in Fig. 2 describing that the
type of Corona vaccine depends on age and on the month of vaccination. It
is possible to get either Pfizer, Moderna, Johnson & Johnson or AstraZeneca
depending on the month of vaccination, phase, age, employment, and place of
stay. The corresponding decision tables for each decision are shown in Fig. 3.

Fig. 2. DRD vaccine strategy

Fig. 3. Decision tables vaccine strategy

146 V. Etikala et al.

4 Decision and Explanation Scenarios

A first challenge for a good chatbot is to find out what the user wants to do
or know, certainly when using natural language (and a limited screen surface).
Because decision models and tables can be executed in multiple ways, various
use cases of interaction with the chatbot and the underlying decision models
are possible, such as making a decision or explaining outcomes. We define these
user interaction options as user scenarios. It was opted to suggest the user the
scenarios via the UI to help the user find the different scenarios (more advanced
intent detection is present in the NLP interface). In this way, a complete DMN
model with decision tables and a straightforward reasoning engine already offers
an advanced chatbot solution.

4.1 Execution Scenarios

A conventional use is to determine the outcome of the top decision given the
values of the input information items. But multiple types of queries can be
answered with a simple and efficient reasoning procedure since decision tables
can be examined in many ways.

Scenario 1: Decision-Making from Known Input Information. In this
classic decision-making scenario, the chatbot asks the user the required inputs
and then returns the final decision output. Two forms are possible:

1a: Decision-Making with All Input Items Provided. Once all the input
items are provided, the matching rule in the top decision table is searched based
on the given value of the required information items for unique hit tables. In the
running example, A 27-year-old healthcare worker living at home, the reasoner
will derive “Phase 1” as the value for Phase, and “February” as the Month of
Vaccination, so the result will be 2 doses of the Moderna vaccine.

1b: Decision-Making with Only Relevant Input Items Provided. To
make a decision, only relevant information items are necessary. When irrelevant
(‘-’) entries in the chosen rules are identified, the reasoner ignores these input
questions. In the running example, giving the input Age is 17, is sufficient to
derive the corresponding decision outcome for the age group between 16 and 18,
the result is always 2 doses of Pfizer. ‘Employment status’ and ‘Place of Stay’
are irrelevant and thus not asked from the user.

Scenario 2: Decision Support With Unknown Information. This scenario
is similar to the previous one in terms of reasoning. It allows the chatbot to work
with ‘unknown’ inputs from the user (who is either not willing or not able to
answer the question). The reasoner takes (‘?’) as an extra input for unknown
values and applies the reasoning procedure and returns a list of conditional
expressions for each possible outcome where some inputs values are now assumed.
In the running example, consider a 65-year-old healthcare worker, living at home.
Normally the age of retirement in Belgium is 65 but due to the high demand
for healthcare workers, the user is unsure of their retirement. When the user
mentions ‘unknown’ for Employment, the response is in this case:

Automatic Generation of Intelligent Chatbots from DMN Models 147

Q: What is my vaccine decision?(unknown values)

- scenario: make decision
- inputs : [age = 65, employment = ‘?’, place = ‘at home’]

-[Doses = 2, Vaccine = ‘Pfizer’] IF [Employment = ‘Healthcare’]
-[Doses = 2, Vaccine = ‘Moderna’] IF [Employment = ‘Retired’]

Scenario 3: Partial Decision Making with Incomplete Information. The
user can stop the question-answering dialogue early after which the reasoning
system returns a list of all rules that match based on the current inputs and their
corresponding outcomes. When the following input is provided in the running
example: Age is 27 and Place is At home, the intermediate result can be either
of Phase 1, 2 or 3, in February, April or July, respectively. From the top decision
table, it is evident that the Vaccine will be 2 doses of Moderna (for February),
AstraZeneca (for April), or Moderna (for July). In many existing decision sup-
port applications, the decision process stops when the user fails to provide an
input. If that input is not crucial, however, our chatbot can return the possible
outcomes to give the user an idea of the available possibilities.

Scenario 4a: Reasoning Towards a Known Outcome. A decision model
with decision tables can be traversed easily in both directions: from inputs to
an outcome or outcome to inputs. The latter can be used to answer questions
such as “What do I need as input values to get this desired outcome?”. Of
course, there are inputs that can (or should) not be manipulated (e.g., Age) but
there might be a degree of freedom in other information items. In the running
example, a person might ask How to obtain Moderna?. The result will be a list
of valid input combinations from the knowledge in requirements and logic levels
to reach the desired goal. Notice that Age is identified as a common precondition
but with varied conditional values. The intersection of values of these common
preconditions is done to have logical consistency. In the example, the updated
Age requirement would be [18..49[to get the vaccine in the month of February.

Q: How to obtain Moderna?

Context
- scenario: seek goal
- goal : [vaccine = moderna]
Output
-[place, employment, (phase), age, (month)]

-[hospital, - , 1, [18..49[, ‘february’]
-[hospital, healthcare, - , [18..49[, ‘february’]
-[at home, police , 2, [49..100] , ‘april’]
-[at home, retired or other, 2, [65..100] , ‘april’]
-[at home, retired or other, 3, [18..49[, ‘july’]]

148 V. Etikala et al.

Scenario 4b: Optimization. Sometimes a user is disappointed with the out-
come and wants to know which inputs could be altered to reach the desired
outcome. To facilitate this scenario, the reasoner needs additional domain knowl-
edge to differentiate between fixed inputs, such as age and height, and inputs
that can be changed. With these additional constraints, the reasoner could turn
this case into a constraint satisfaction problem to determine the best possible
conditions to achieve the desired goal. In the running example: A 28-year-old,
after receiving Moderna as a suggested vaccine, wants to know What do I have
to change to switch from Moderna to Johnsen&Johnsen?, The result will be a
list of conditions that considers same age and checks the feasible conditions for
employment and place of stay.

4.2 Explanation Scenarios for the User

The explanation scenarios allow users to seek clarification or an explanation
after the outcome was obtained. Better explainability capabilities enhance the
chatbot’s transparency and improve the user’s trust and satisfaction.

Scenario 5: Why Did I Receive This Output. If the users want to know
why they received their particular output, the reasoning mechanism will return
the (set of) rule(s) used in the reasoning of that output.

Scenario 6: What-If Scenario. Users can ask what outcome they would
receive if they changed one input value or want to update a wrong input. To
answer such questions, the reasoner saves the context with inputs of the previous
inquiry and allows for modifying the desired input alone and rerun the decision
process. Notice that previous unchanged inputs in the context are used once
again. In some situations, previously irrelevant inputs could become relevant in
the follow-up decisions.

Q: What if age is 49 instead of 27?

- scenario: what if
- old inputs: [age = 27, employment = healthcare, place = at home]
- outcome: [vaccine = moderna]
- inputs: [age = 49]

- [vaccine = ’pfizer’]

Scenario 7: Most Important Information Items. A user might also be
interested in knowing what inputs are the most important to determine a par-
ticular outcome, e.g. “Which factors mainly influence the type of vaccine?”. In
this case, the output would be: “Employment has the most determining impact
on the type of vaccine”. The processing of the models is done in a top-down
manner. The reasoning engine searches through all the input columns in the
selected rows that lead to the required output and calculates the proportion of
unique values to the number of rows, giving the variability rate of input values.
It returns the ordered list of input values and removes the values with the least

Automatic Generation of Intelligent Chatbots from DMN Models 149

variability (usually those with the same values in all the rows). If the input con-
dition is the output from an intermediate decision, the same steps are recursively
applied on the sub-decision table.

Scenario 8: Sensitivity. After knowing the outcome of a decision, a user might
be interested in knowing which inputs can be changed without changing the
output. In running example, a 65 year old healthcare worker might be favoring
Pfizer and wants to know if they can retire and still get the Pfizer vaccine. The
decision tables hold the required information for the reasoner to determine the
factors that are more sensitive or least sensitive to the desired goal.

4.3 Information Scenarios for the Designer

Scenario 9: Decision Model Information. Modelers and practitioners of the
DMN models can ask the chatbot about the specifics of the models found in the
DMN files. Possible questions are, among others:

1. What is the size of the model?
2. How many execution paths are there?
3. How many outputs/inputs are there in total?
4. Which values can output X or input X have?
5. What is the shortest/longest path to a decision?
6. Is the model semantically and syntactically correct? (Debugging)

These answers can be useful for validation and optimization. It is also beneficial
for quality checking of the DMN model and the applications developed using
that model.

5 Scenario Selection and User Interaction Methods

To guide the user through the different scenarios, the UI suggests the scenarios
to the user via buttons, or dynamic menu options. These can be tapped, or the
user can type (or say) the name of the scenario. In this way, the knowledge
reasoner knows exactly which scenario to execute and the user is aware of the
different options. The available options depend on the status of the conversation.

5.1 Scenario Selection

The chatbot follows the structure summarized in Table 1 when suggesting sce-
narios. The different options are presented to the user in a logical order (e.g. no
explaining scenarios before reaching a decision).

When the user starts a conversation with the chatbot, the chatbot introduces
itself and suggests the basic decision making (scenario 1a or 1b) and goal seeking
(scenario 4a) with menu options. For internal use, such as testing and developing,
the chatbot also suggests scenario 9. The suggestions are button-based but can
also be responded to in text or voice as explained in more detail in the next
section.

150 V. Etikala et al.

Table 1. User interactions

Menu option\When Scenario (s) At start During decision After decision

Make decision 1a, 1b, 2, 3 X X (restart)

Seek goal 4a, 4b X X (restart)

Ask info (internal) 9 X X (restart)

Inputs dialogue All X

Stop input All X

Explain why 5 X

What if 6 X

Major items 7 X

Sensitivity 8 X

When menu option make decision is chosen, the chatbot will ask the user for
the needed inputs (both scenarios 1a and 1b are supported). During this process,
the user can prematurely stop the question-answering by giving ‘stop’ as input
(activating scenario 3) to receive the output based on the current inputs. In this
process, the chatbot can also handle ‘unknown’ inputs from the user (scenario 2).
In case mistakes are made, an error message is returned and the input question
is repeated to the user. When all the questions are answered, the chatbot gives
the final decision and suggests several options to the user: Why did I receive
this output? (scenario 5), what if I change some of the inputs (scenario 6), what
are the most important information items (scenario 7), which inputs can change
while keeping the same output (scenario 8), and repeat scenario 1.

When explain why is chosen, the chatbot returns the fired rules to explain
the end result to the user (scenario 5). When what if is chosen, the user is
asked which input should to change together with a list of the inputs. The user
can then select the wanted input and give the new value. The new outcome is
returned together with the previous outcome to showcase the difference. Similar
processes are carried out for major items and sensitivity. After each scenario,
the chatbot suggests the other scenarios the user can choose or repeat from the
start. If the user first chose seek goal, the chatbot lists the possible outcomes
of the top decision (scenario 4a) and asks the user which output they would like
to obtain. A list of the valid input combinations for that output is returned and
the chatbot suggests the other scenarios to the user in a similar vein as above.

5.2 Three Interaction Levels

The menu options and scenarios discussed in Sect. 5.1 can be made available to
the user in three manners. Each level is built on top of the previous level adding
additional ways of interacting with the chatbot.

Menu: The basic level of communication is to use buttons and formatted text
(numbers, dates, formats, strings). When the chatbot proposes which scenarios
to run, the user can tap the corresponding button to start that scenario. Here,

Automatic Generation of Intelligent Chatbots from DMN Models 151

Fig. 4. Chatbot concept interface with menus and text

the chatbot can give an example so the user knows the correct format, e.g.
“please insert date as DDMMYY”. For categorical variables, a list is provided
of possible values and the user can tap or type the right value.

Text: The second level allows for the user to interact with the chatbot using
written natural language. The user can initiate the desired scenarios with sen-
tences such as ‘I would like to run scenario X’ or give inputs such as ‘my age
is 28’. This requires that the chatbot understands the intent of the user. Intent
detection solutions are available, e.g. LUIS2, or Facebook AI. This is discussed
in more detail in Sect. 7. After the user gives a textual input, the chatbot returns
what intent or input it understood and reasons further with it to the next step. A
button is added to repeat the previous input in case the chatbot misunderstood
the intent or textual input.

Voice: A final way for the user to interact with the chatbot is through voice
by connecting the chatbot to a voice-to-text and text-to-speech service such as
IBM Watson3. This way the user can communicate in spoken natural language
with the chatbot and receives an answer with voice. This method is useful for
integrating the chatbot with smart home devices such as Google Home. Here as
well a repeat option is added in case the chatbot misunderstood the user.

2 https://www.luis.ai/.
3 https://www.ibm.com/cloud/watson-assistant.

https://www.luis.ai/
https://www.ibm.com/cloud/watson-assistant

152 V. Etikala et al.

6 User Interface

Level 1: In Fig. 4, a sample conversation is shown. All the scenarios provided
in Sect. 4 are enabled with dynamic menu options and/or textual inputs. The
conversation is initiated by offering two possible execution scenarios: execute a
decision or determine how a certain vaccine is obtained. The user states they
want to execute a scenario and all relevant inputs are asked until an output
can be derived. After the outcome, the other five scenarios are proposed to the
user. The user ask why they received the outcome and chatbot replies with the
answer and again proposes the other unchosen options. The third part showcases
scenario 6. Level 1 extended with level 2 and 3: Fig. 5 shows an early prototype
with the third and second interaction levels, intent detection and voice messages.
The intent detection implementation is explained in detail in Sect. 7.

Fig. 5. Chatbot interface showcasing intent detection and voice. Corresponding Intents
detected by LUIS

7 Technical Implementation

The implementation of the prototype chatbot consists of three main components:
UI, Dialog Engine, and Knowledge reasoner.

UI: A custom chat app API is used to create the look-and-feel of the chatbot.
Once a DMN model is loaded, the initial menu items are generated by our

Automatic Generation of Intelligent Chatbots from DMN Models 153

framework and rendered by the chat API. Additionally, buttons for voice or text
are enabled. Our approach can be easily integrated with messaging apps that
offer the required capabilities.

Dialog Engine: It is used to understand and process inputs, to pass the right
context onto the reasoning mechanism, and to generate the right response that
the chat app API must render to the user. It exists of several components:

Input Processor: Once the scenario has been decided explicitly by the user
through the menu or inferred from the intent interpreter, the corresponding enti-
ties are mapped to the inputs of the user. The scenario, relevant input values,
and chat history (old inputs and previous outcomes) are compiled as context
and then sent to the knowledge reasoner. After a preliminary check for miss-
ing inputs, the user is prompted to give the required inputs via the response
generator.

Response Generator: This component converts the input requirements or deci-
sion outcomes into user friendly responses. For each decision making scenario,
the input requirements are gathered from the user in the form of a question-
answer. The order of questions is based on the order of inputs mentioned in the
decision tables and the DRD, but that could be sub-optimal if a user has to
answer irrelevant questions. Hence, the order of inputs is dynamically optimized
after each input based on the significance of the input to reach a conclusion.
When an input is required, the response generator automatically creates the rel-
evant question in the ‘what is your *input*?’ format. The menu items or natural
language statements are generated depending on the user input format (menu,
speech, or text) and the reasoner’s output.

Speech2text : The IBM Watson API is used to transform audio data into text
data. Because voice recognition is prone to errors, the chatbot returns to the
user what it ‘heard’ and the user is prompted with a ‘repeat previous input’
button in case there was a mistake. The text2speech component from the API
is also used in the prototype bot to convert texts into voice responses. This
component can be replaced with a different speech2text API.

Intent Interpreter: A possible extension to our framework is the use of an intent
interpreter to allow natural language interaction instead of buttons or exact
words. For example, “Will I get Moderna or Pfizer?”, “I want to know my
vaccine”, and “which vaccine will I receive?” are possible user inquiries to start
the first scenario. Here, the AI-based LUIS4 model was used and trained to
recognize the intents and detect the entities. First, a dictionary of keywords
and matching intents is defined following the DMN standards. For instance,
“make decision” intent is set to (“what is”, “decide”, “decision”, “calculate”,
“determine”, “to know”). Then, using this dictionary, a set of phrases is created
to use as the base-training set. For example, a phrase such as “what is my
eligibility decision?” with the keyword “decision” is added to the training set
of the “make decision” intent. This LUIS model is trained to detect the nine
4 www.luis.ai/home.

http://www.luis.ai/home

154 V. Etikala et al.

scenario intents and four other static intents give input, end, go back, and reset.
For each subsequent DMN model, the entity extraction training is improved
with a phrase list of noun concepts that are automatically extracted from the
example DMN models such as “eligibility”, “loan”, and “credit score”. Hence,
this method avoids manual retraining for each DMN model and is sufficient for
the intent detection of basic questions. The LUIS model returns the probabilities
for detected intents and entities for each given input (text or voice). These
probabilities are used with a threshold (75%) to infer the appropriate scenario
or input. A sample intent response can be seen in Fig. 5.

Knowledge Reasoner: A knowledge reasoner was built that can automatically
handle the scenarios explained in Sect. 4. This reasoner is simple yet powerful,
assuming that the logic in the DMN models is in a complete and consistent deci-
sion table format. For each scenario, an appropriate reasoning mechanism was
constructed to query the decision tables. The context from the input processor
is passed to the reasoner, and a list of rules is fired to execute the decision.
When there is any missing information identified by the reasoner, it is passed
to the dialog engine, which converts that into queries for the user to acquire
that information to continue decision making. The resulting output is returned
to the dialog engine with the fired rules and decision path for the explanation
scenarios. Our reasoner can be extended with third-party reasoning mechanisms
through RESTFul services API providers such as Camunda5 and Signavio6, but
they currently do not facilitate all the user scenarios. Future extensions could
use declarative knowledge-based AI reasoners such as IDP [5].

8 Discussion

8.1 Evaluation

We evaluated our approach of automatic generation of fully functioning chat-
bots from decision models with the following five dimensions and found several
advantages. These dimensions reflect more of the framework capabilities than
the generated chatbot alone.

– Comprehension: of the chatbots usually depends on the efficiency of the
speech recognizer and language understanding components. By including
menu-based interaction, the comprehension is more efficient, and the errors
of misunderstanding of user intents are reduced.

– User engagement: is built over various user-centric scenarios. This way, DMN
chatbots are able to provide advice, explanations and handle incomplete and
unknown values.

– Maintenance and Speed : One major advantage is the automatic chatbot gen-
eration from DMN models. By updating the decision models, the behavior of
the chatbot can be changed instantly. This approach does not demand special

5 https://camunda.com/products/camunda-platform/dmn-engine/.
6 https://www.signavio.com/.

https://camunda.com/products/camunda-platform/dmn-engine/
https://www.signavio.com/

Automatic Generation of Intelligent Chatbots from DMN Models 155

IT skills as domain experts can build the chatbot through modeling itself. In
addition to the flexible usage of APIs, the maintenance and flexibility are
much improved.

– Functionality: Another major advantage is that DMN-based chatbots have
advanced reasoning and explainability capabilities as explained in Sect. 4.

– Scalability and Interoperability: We kept the chatbot creation generic, scal-
able, and domain-independent. Moreover, the chatbot API is platform-
independent and can be adapted to work on platforms such as Telegram
or Messenger.

8.2 Limitations and Future Work

The approach discussed in this paper has some limitations. First, it is dependent
on the quality of the decision model itself. Secondly, the reasoning mechanism
currently only supports decision tables as decision logic representation in the
DMN models. However, as is elaborated extensively in this paper, decision tables
are powerful tools for capturing knowledge and reasoning with logic. Another
limitation is related to errors in the NLP for intent detection and translation
into natural language, which is a known problem widely studied [12]. Lastly, the
chatbot only deals with the domain knowledge that is integrated into the DMN
models. It could benefit from linking to specific external domain vocabularies.

In future work, further integration between the different components and the
NLP for intent detection of the framework is planned. While the level 1 interface
is entirely functional, levels 2 and 3 are not fully integrated yet for all scenarios.
Another point of improvement is the inclusion of external domain knowledge
together with NLP or extracting entities from textual domain knowledge [6].
This would imply a separate module within the chatbot so that the domain
modeler can provide more background knowledge. Next, a thorough quantita-
tive and qualitative evaluation on dimensions will be conducted to see how the
chatbot can be improved. Lastly, more research must be conducted to investi-
gate and compare the usage of different declarative knowledge formats (FEEL
or boxed expressions) for automatic chatbot construction. Supporting other for-
mats might offer different features than discussed here and could improve the
overall feasibility of automatic chatbot generation.

9 Conclusion

In this paper, a novel approach to automatically generate chatbots from DMN
models is proposed. This method allows for rapid development and maintain-
ability of decision support chatbots, e.g., for online businesses. A general chatbot
framework is built over user-centric reasoning scenarios that facilitate decision
and explainability features to the end-user. This work contributes both to the
DMN and chatbot research areas. In addition, we believe generating chatbots
from knowledge representations merits more academic attention.

156 V. Etikala et al.

References

1. Aerts, B., Vandevelde, S., Vennekens, J.: Tackling the DMN challenges with cDMN:
a tight integration of DMN and constraint reasoning. In: Gutiérrez-Basulto, V.,
Kliegr, T., Soylu, A., Giese, M., Roman, D. (eds.) RuleML+RR 2020. LNCS,
vol. 12173, pp. 23–38. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
57977-7 2

2. Al-Zubaide, H., Issa, A.A.: OntBot: ontology based ChatBot. In: 2011 4th Interna-
tional Symposium on Innovation in Information and Communication Technology,
ISIICT 2011, pp. 7–12 (2011). https://doi.org/10.1109/ISIICT.2011.6149594

3. Androutsopoulou, A., Karacapilidis, N., Loukis, E., Charalabidis, Y.: Transforming
the communication between citizens and government through AI-guided chatbots.
Gov. Inf. Q. 36(2), 358–367 (2019)

4. Dale, R.: The return of the chatbots. Nat. Lang. Eng. 22(5), 811–817 (2016).
https://doi.org/10.1017/S1351324916000243

5. Dasseville, I., Janssens, L., Janssens, G., Vanthienen, J., Denecker, M.: Combin-
ing DMN and the knowledge base paradigm for flexible decision enactment. In:
Supplementary Proceedings of the RuleML 2016 Challenge, vol. 1620 (2016)

6. Etikala, V., Van Veldhoven, Z., Vanthienen, J.: Text2Dec: extracting decision
dependencies from natural language text for automated DMN decision modelling.
In: Del Ŕıo Ortega, A., Leopold, H., Santoro, F.M. (eds.) BPM 2020. LNBIP,
vol. 397, pp. 367–379. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
66498-5 27

7. Figl, K., Mendling, J., Tokdemir, G., Vanthienen, J.: What we know and what we
do not know about DMN. Enterp. Model. Inf. Syst. Archit. Int. J. Concept. Model.
13(2), 1–16 (2018)

8. Hussain, S., Ameri Sianaki, O., Ababneh, N.: A survey on conversational
agents/chatbots classification and design techniques. In: Barolli, L., Takizawa, M.,
Xhafa, F., Enokido, T. (eds.) WAINA 2019. AISC, vol. 927, pp. 946–956. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-15035-8 93

9. Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., Baesens, B.: An empirical
evaluation of the comprehensibility of decision table, tree and rule based predictive
models. Decis. Support Syst. 51(1), 141–154 (2011)

10. Janssen, A., Rodŕıguez Cardona, D., Breitner, M.H., et al.: More than FAQ! Chat-
bot taxonomy for business-to-business customer services. In: Følstad, A. (ed.)
CONVERSATIONS 2020. LNCS, vol. 12604, pp. 175–189. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-68288-0 12

11. Jia, J.: The study of the application of a keywords-based chatbot system on the
teaching of foreign languages, pp. 1–11 (2003)

12. Kang, Y., Cai, Z., Tan, C.W., Huang, Q., Liu, H.: Natural language processing
(NLP) in management research: a literature review. J. Manag. Anal. 7(2), 139–
172 (2020)

13. von Leipzig, T., et al.: Initialising customer-orientated digital transformation in
enterprises. Proc. Manuf. 8, 517–524 (2017). https://doi.org/10.1016/j.promfg.
2017.02.066

14. López, A., Sànchez-Ferreres, J., Carmona, J., Padró, L.: From process models to
chatbots. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp.
383–398. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2 24

15. Van Veldhoven, Z., Vanthienen, J.: Digital transformation as an interaction-driven
perspective between business, society, and technology. Electron. Mark. 16 (2021).
https://doi.org/10.1007/s12525-021-00464-5

https://doi.org/10.1007/978-3-030-57977-7_2
https://doi.org/10.1007/978-3-030-57977-7_2
https://doi.org/10.1109/ISIICT.2011.6149594
https://doi.org/10.1017/S1351324916000243
https://doi.org/10.1007/978-3-030-66498-5_27
https://doi.org/10.1007/978-3-030-66498-5_27
https://doi.org/10.1007/978-3-030-15035-8_93
https://doi.org/10.1007/978-3-030-68288-0_12
https://doi.org/10.1016/j.promfg.2017.02.066
https://doi.org/10.1016/j.promfg.2017.02.066
https://doi.org/10.1007/978-3-030-21290-2_24
https://doi.org/10.1007/s12525-021-00464-5

Automatic Generation of Intelligent Chatbots from DMN Models 157

16. Vanthienen, J.: On smart data, decisions and processes. In: 2015 7th International
Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge
Management (IC3K), vol. 1, p. 5. IEEE (2015)

17. Vanthienen, J.: Decisions, advice and explanation: an overview and research
agenda. In: A Research Agenda for Knowledge Management and Analytics (2021)

18. Vanthienen, J., Mues, C., Aerts, A.: An illustration of verification and validation
in the modelling phase of KBS development. Data Knowl. Eng. 27(3), 337–352
(1998)

19. Zierau, N., Elshan, E., Visini, C., Janson, A.: A review of the empirical literature on
conversational agents and future research directions. In: International Conference
on Information Systems (ICIS) (2020)

Deep Learning for the Identification
of Decision Modelling Components

from Text

Alexandre Goossens(B) , Michelle Claessens, Charlotte Parthoens,
and Jan Vanthienen

Leuven Institute for Research on Information Systems (LIRIS), KU Leuven,
Leuven, Belgium

alexandre.goossens@kuleuven.be

Abstract. Decision and process descriptions often find themselves
encapsulated in long descriptions such as regulations or guidelines. Deci-
sion modelling aims at modelling the structure and logic of a decision.
For decision modellers, analysing textual documents in search for rele-
vant sentences is a time consuming activity. A promising research topic is
to build decision models from text. In this paper, an automatic decision
modelling component classifier using deep learning is proposed. Using a
large dataset consisting of labeled sentences, the usability of deep learn-
ing techniques is investigated. In total three deep learning techniques
are evaluated and compared to non-deep learning techniques using both
Bag of Words and Term Frequency-Inverse Document Frequency. We
conclude that classifying decision modelling components is possible and
report that BERT for sequence classification is the best performing tech-
nique.

Keywords: Deep learning · Decision Model and Notation (DMN) ·
Decision model extraction

1 Introduction

Most organizations take repetitive decisions in high volumes every day, with
the logic of these operational decisions originating from text formats such as
guidelines or manuals [33]. Moreover, these textual descriptions often combine
both decision and process descriptions. Decision and process modelling aims
at modelling a decision and a process and building these models manually is
a time consuming task. To alleviate this task, research has been conducted to
extract decision models from logs [2,5] or from process models [6]. Another
promising research topic is to build decision models directly from text. Some
research already exists in extracting dependencies [12] or logic [4].

This paper tries to bring the latter two research directions together by clas-
sifying parts of texts into the right decision modelling components and currently
c© Springer Nature Switzerland AG 2021
S. Moschoyiannis et al. (Eds.): RuleML+RR 2021, LNCS 12851, pp. 158–171, 2021.
https://doi.org/10.1007/978-3-030-91167-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91167-6_11&domain=pdf
http://orcid.org/0000-0001-8907-330X
http://orcid.org/0000-0002-3867-7055
https://doi.org/10.1007/978-3-030-91167-6_11

Deep Learning for the Identification of Decision Modelling Components 159

only deals with the identification of decision modelling components (dependency
rules, logic rules). The scope can be broadened to also identify process modelling
components. More precisely, this paper will investigate if deep learning tech-
niques can be used for classifying sentences into irrelevant for decision modelling,
decision logic or decision dependency. Deep learning is able to abstract from the
need of predetermined patterns, meaning that it does not need a predefined pat-
tern to understand the meaning of a sentence. Several deep learning techniques
will be compared, such as Bidirectional Encoder Representations from Trans-
formers (BERT) [9], GloVe [24] with Convolutional Neural Networks (CNN) or
with Multilayer Perceptron (MLP). A comparison with non-deep learning tech-
niques will also be provided. A labeled dataset consisting of approximately 550
sentences will be used for the construction of the classifiers. To the best of our
knowledge, no research has been conducted yet in this regard.

The paper is structured as follows: Sect. 2 will introduce the problem with
an example; Sect. 3 will look into related work and Sect. 4 will describe the
methodology; Sect. 5 will discuss the experiments and the results; Sect. 6 deals
with discussion, limitations and future work and finally Sect. 8 will conclude this
paper.

2 Problem Statement

Decision and process descriptions are often intertwined, long and unstructured,
and not all sentences are relevant for a decision or process model. These relevant
sentences are manually discovered by modelling experts, but currently there is
no automatic way of identifying them. Hence the requirement of first separating
sentences into: irrelevant for the decision model; dependency when the
sentence is relevant to build the DRD (the decision structure); logic when the
sentence contains decision logic for the construction of a decision table (contain-
ing the decision logic rules). Note that currently all sentences irrelevant for deci-
sion modeling are labelled as such, but it would be perfectly possible to identify
sentences relevant for process modelling. This paper investigates whether deep
learning techniques can be used for the classification of sentences into irrele-
vant, dependency and logic. The textual description below is based on the
corona vaccination strategy of Belgium. On this example, the classification has
been performed with the labels put between brackets.

Example. In order to expand the immunity of the population and protect the
most vulnerable people against the Covid-19 virus, the vaccination must take
place over different periods (irrelevant). The period in which a person will get
vaccinated depends on the number of available doses and the person’s assigned
group (dependency). The person’s assigned group is divided into three groups
depending on their vulnerability, exposure, medical risks and age (dependency).
If you are a resident or employee in a residential care centre or if you work in
a first line care occupation then you belong to the most vulnerable and exposed
people and you will be vaccinated first (logic). Moving on to the second group,
if you are older than 65, or if you are between 45 and 65 with an increased

160 A. Goossens et al.

medical risk due to healthcare issues, you will get vaccinated next (logic). Lastly,
the third group consists of the broader population of people above the age of 18
(logic). Invitations will be sent via text message, letter or email (irrelevant).
After receiving a personal vaccine invitation, you need to register in order to
confirm or move the appointment (irrelevant).

From this text, a decision model can be used to represent the decision. The
Decision Model and Notation (DMN) is a recent decision modelling standard
introduced by the Object Management Group (OMG) in 2015 [23] and can be
used next to the Business Process Model and Notation (BPMN [22]) to model the
decisions of a process [33]. In Fig. 1, a DMN model has been created based on the
previous example. A DMN model consists of two parts. A first part, called the
decision requirements level, will visualize the structure of the decision in so called
Decision Requirements Diagrams (DRD). These DRDs capture the dependencies
and requirements between decisions. A rectangle represents a decision. In this
case vaccination priority is the final decision but it also needs the output of
decision Person’s assigned group and the input Available dosis. A rectangle with
round borders represents the input necessary for a decision. All required inputs
for a decision are linked to the decision with solid arrows called information
requirements. The second part of a DMN model is called the decision logic level.
In this part, the exact logic of a decision is often written down in a decision
table format. The decision table for Person’s assigned group is visualized in
Fig. 1. Note that in this case, the First hit policy is applied. This means that the
first rule applicable is the rule that will be fired.

Fig. 1. DMN model of the example

3 Related Work

Decision model extraction has been studied in the past from process models
[6] and from process execution logs [8]. The extraction of business rules and
Semantics Of Business Vocabulary And Business Rules (SBVR) vocabularies

Deep Learning for the Identification of Decision Modelling Components 161

from Unified Modeling Language (UML) use case diagrams was studied in [7].
Extracting decision models from text however has not been widely studied yet. In
[4], decision rules and a decision table are automatically generated from a single
sentence following the principles of DMN and in [10] extraction of rules from
legal documents is investigated. Automatically extracting decision dependencies
from paragraphs using pattern recognition is discussed in [12].

The field of process modelling is somewhat related to decision modelling and
extracting process models from text has been studied more widely. In [14] a
method to extract small parts of a BPMN model is proposed and in [3] BPMN
models are generated from group stories. In [34] a method is proposed to extract
a BPMN model given that it follows their definition of a business policy which
requires the identification of several BPMN elements. Given that the text is in
a sequential format and no irrelevant sentences or questions are present, the
authors of [13] can extract a BPMN model from a text and in [1] the extraction
of declarative process models from text was studied. By making use of textual
annotations, the authors of [27] are able to structure an unstructured text and
thereby propose a method to reason formally with text. Some other works inves-
tigating the extraction of process models from texts are [11,17,31].

Although text classification has been widely studied in the past and still is
today, this has not been done yet in the context of DMN. Several text classifi-
cation techniques exist, in [21,32] an overview of these techniques is provided.
Classifying texts has also seen a wide array of application such as in the finance
industry [18] or oil industry [28]. Text classification can also be used to perform
sentiment analysis [20] or to detect spam and fake news [16].

4 Methodology

The construction of a decision model from text requires a sequence of steps,
each with their own challenges, regardless of whether a human or a machine is
performing it (Fig. 2): coreference resolution (where all expressions that refer to
the same entity are resolved); preprocessing (preparing the data for analysis);
text classification (identifying the relevant sentences for a modelling problem)
and decision dependency and logic extraction (identifying the relevant elements
needed for the construction of the model). This paper will mainly focus on
the text classification part and the use of deep learning techniques within that
context.

4.1 Specific Steps of the Methodology

Step 1: Coreference Resolution. It is common within text to use different
words to refer to the same concept. Coreference resolution deals with identifying
these words and making these words unambiguous, e.g.: “If your employee
experiences symptoms of COVID-19, she should not go to the office.” becomes
“If your employee experiences symptoms of COVID-19, your employee

162 A. Goossens et al.

Fig. 2. From text to decision model

should not go to the office.”. The open-source NeuralCoref4 package1 was used
for the coreference resolution.

Step 2: Preprocessing. First all the words are lowercased and lemmatized,
meaning that a word is replaced by a simpler common form e.g. eligibility
becomes eligible. Next, stopwords and punctuation are removed. The text is
also split into distinct ‘words’ or tokens (a word, a part of a word or a punctua-
tion symbol). Finally the tokens are converted into a number and together create
a feature vector. Each number in the vector corresponds with the tokenID of the
glossary used for the pre-trained deep learning model. Therefore, it is impor-
tant to use the tokenizer function of each pre-trained deep learning model. For
non-deep learning models, feature vectors are created by using BoW or TF-IDF.

Step 3: Text Classification. Once preprocessed, a classifier will classify the
sentences into their respective classes. As this paper deals with the construction
of such a classifier, more information about the classifiers considered for this
problem is provided in Sect. 4.2. In total 9 experiments were performed and the
best performing classifier is used for the text classification task. In order to not
only rely on a labeled dataset, the deep learning models will make use of transfer
learning. This will allow the model to re-use the insights obtained from larger
pre-trained models and it reduces the need of having a large dataset [9]. The
sentences that have been labeled as dependency or logic are kept for step 4. If
a sentence is classified as irrelevant for the decision model, that sentence might
still contain other useful information (e.g. process descriptions).

Step 4: Decision Model Creation. After step 3, the modeller can proceed
with the (semi-automatic) creation of the decision model. When constructing
a decision model, expert modellers often identify decision dependencies in con-
junction with decision logic. This is why step 4a and 4b can also be seen as
parallel steps. On an analogical manner, we are currently investigating whether
this step can be done with deep learning [15].
1 https://github.com/huggingface/neuralcoref.

https://github.com/huggingface/neuralcoref

Deep Learning for the Identification of Decision Modelling Components 163

a: Decision Dependency Extraction: At the end of this step, the modeller
identifies a list of concepts and dependencies relevant for the DRD.
b: Decision Logic Extraction: Once the dependencies have been (partially)
identified, the logic rules behind each decision can be formalized resulting in
decision tables.
The final goal is the creation of a DMN model by using the decision logic

and dependencies extracted in step 4.

4.2 Techniques Considered for Text Classification

In order to perform text classification, it is possible to use deep learning or
traditional machine learning techniques.

Deep Learning Classifiers. It has been decided to compare the performance
of feature-based transfer learning with GloVe and model-based transfer learning
with BERT. The feature-based transfer learning will provide us with the features
(the dictionary) whilst the model-based transfer learning will also provide us with
a pretrained model which will be further finetuned.

1. BERT for Sequence Classification: With [35], it is possible to perform
sequence classification with BERT. For that, a pre-trained BERT model is
fine-tuned using DistilBERT [29] which consists out of 6 layers and 12 atten-
tion heads to perform sequence classification. As BERT is not a multinomial
classifier but a binary classifier, the approach for classifying the sentences
was adapted. Firstly, a BERT model will classify sentences into irrelevant for
decision models or relevant for decision models. A second BERT classifier will
classify the relevant sentences further into decision logic and decision depen-
dency. To dive into the specifics, when instantiating a BERT model, it comes
with pretrained encoder weights and a single linear layer is added that will
be used as a sequence classifier. Afterwards, the transformed dataset is fed
to the BERT model and to the classification layer, updating the pre-trained
weights by backpropagating the error.

2. Neural Network with GloVe as an Embedding Layer: It has been
decided to work with GloVe [24] as GloVe is able to capture global statistics
on top of local statistics of a corpus. As MLPs tend to include too many
parameters due to its connectivity, it has been decided to also use CNNs
which allow for more finetuning.
(a) For the MLP model the simplest form consisting of three layers is used.

The first layer consists of the pretrained GloVe embedding, followed by a
feedforward neural network of one hidden layer with 150 nodes. The final
layer is the classification layer where a softmax function will predict the
three class probabilities.

(b) Regarding the CNN layer, the first layer also consists of the pre-trained
GloVe embeddings, followed by a 1D-convolutional layer (as the vector is
1D) with 200 output filters and convolution window of 4. To reduce the
dimension, a max pooling layer is applied. To finally classify the sentences,
a MLP of 100 nodes with a softmax layer is applied.

164 A. Goossens et al.

Non-Deep Learning Models: As deep learning models require more comput-
ing power and are more complex, the performance of non-deep learning models
is also analyzed on our classification problem. Regarding the feature vectors it
is possible to use:

1. Bag of Words (BoW): BoW will count the number of unique words present
in a document without taking into account the context meaning that BoW
will give a higher weight to more common words. For this research, BoW with
2-grams was used.

2. Term Frequence-Inverse Document Frequency (TF-IDF): TF-IDF
also takes into account the rarity of a word and not only looks at word
frequence within the dataset. This means that TF-IDF will give more weight
to rare but relevant words.

Three non deep learning models have been implemented: multinomial logistic
regression, naive bayes and support vector machines. In total, this amounts to 6
combinations between the feature vectors and the non deep learning models.

5 Experiments

In total 9 classifiers have been trained and tested on a labeled dataset for the
text classification step of the methodology (step 3).

5.1 Collected Data

A hybrid dataset consisting of sentences has been constructed from various
sources originating from the academic world, business world or medical world.
All sentences describing decisions or logic were included in the dataset regard-
less of their grammatical structure. Furthermore, irrelevant sentences containing
process descriptions were also added to further diversify the dataset as decision
and process descriptions are often mixed together in the same descriptions. To
further increase the robustness of our classifiers, variants of the sentences were
constructed using synonyms or by changing the structure of a sentence. All these
different sentences in the dataset cover most of the average description sentence
structures of an operational decision description. Hence, we estimate this dataset
to be varied enough to test a proof of concept.

The training set consists of 398 sentences and the test set contains 148 sen-
tences. For the creation of the test set, the model did not get a variant of a
sentence on which the classifier was trained on. Each individual sentence was
manually labeled into irrelevant, dependency or logic.

Based on the data source, this dataset has 3 broad categories.

– Web Search: By entering search terms such as ‘eligibility criteria internship’,
“selection procedure MBA” or “diagnostic criteria for diabetes”, 16 real-life
textual examples were gathered. A fragment of the search terms and their
corresponding data sources can be found in Table 1.

Deep Learning for the Identification of Decision Modelling Components 165

– GitHub Sources: More textual decision descriptions were gathered from
[12] and process descriptions were gathered from the github page2.

– DMN Descriptions: More textual descriptions of decision models were col-
lected from course material. Moreover if only a DMN model was available
then a textual description was derived from the DMN model.

Table 1. Fragment of data sources of the web search.

Domain Search term Source

Medical Assessing health status https://www.healthknowledge.org.uk/public-

health-textbook

Obesity risk assessment https://www.nhlbi.nih.gov/files/docs/

guidelines/prctgdc.pdf

Diagnostic criteria for autism https://www.cdc.gov/ncbddd/autism/hcp-dsm.

htm

Diagnostic criteria for

diabetes

https://www.diabetes.org/a1c/diagnosis

Eligibility criteria Selection procedure HEC

MBA

https://www.hec.edu/en/mba-programs/mba/

admissions

Trainee eligibility european

commission

https://ec.europa.eu/stages/information/

applicationen

Winter fuel payment

eligibility

https://www.gov.uk/winter-fuel-payment/

eligibility

Bank credit analysis https://corporatefinanceinstitute.com/

resources/knowledge/credit/bank-credit-

analysis/

Requirements & Criteria Requirements for passing a

course

https://www.kuleuven.be/english/education/

student/examinations/grading-system

Amazon shipping policy https://www.amazon.com/gp/help/customer/

display.html

Other DRD examples https://camunda.com/dmn/

How is your car insurance

premium determined

https://www.iii.org/article/what-determines-

price-my-auto-insurance-policy

Processes & Procedures Claims tribunal process of

callovers

https://www.justice.govt.nz/about/lawyers-

and-service-providers/criminal-procedure-act/

Billing process model exercise https://www.chegg.com/homework-help/

questions-and-answers/

BPMN examples https://camunda.com/bpmn/examples/

Election process for chairman https://democracy.kent.gov.uk/documents/

s77889/Item%201%20-%20Election%20of

%20Chairman.pdf

5.2 Results

In Table 2, an overview of the results is provided for both the deep learning
and non deep learning models. For each label, precision, recall and F1-score
are reported and also the overall accuracy for each model is reported. The F1-
score is considered as it is an indicator of how well a classifier performs on
both precision and recall. From the results, it can be concluded that BERT for
sequence classification outperforms the other deep learning models in terms of
2 https://github.com/NielsRogge/Description2Process.

https://www.healthknowledge.org.uk/public-health-textbook
https://www.healthknowledge.org.uk/public-health-textbook
https://www.nhlbi.nih.gov/files/docs/guidelines/prctgdc.pdf
https://www.nhlbi.nih.gov/files/docs/guidelines/prctgdc.pdf
https://www.cdc.gov/ncbddd/autism/hcp-dsm.htm
https://www.cdc.gov/ncbddd/autism/hcp-dsm.htm
https://www.diabetes.org/a1c/diagnosis
https://www.hec.edu/en/mba-programs/mba/admissions
https://www.hec.edu/en/mba-programs/mba/admissions
https://ec.europa.eu/stages/information/applicationen
https://ec.europa.eu/stages/information/applicationen
https://www.gov.uk/winter-fuel-payment/eligibility
https://www.gov.uk/winter-fuel-payment/eligibility
https://corporatefinanceinstitute.com/resources/knowledge/credit/bank-credit-analysis/
https://corporatefinanceinstitute.com/resources/knowledge/credit/bank-credit-analysis/
https://corporatefinanceinstitute.com/resources/knowledge/credit/bank-credit-analysis/
https://www.kuleuven.be/english/education/student/examinations/grading-system
https://www.kuleuven.be/english/education/student/examinations/grading-system
https://www.amazon.com/gp/help/customer/display.html
https://www.amazon.com/gp/help/customer/display.html
https://camunda.com/dmn/
https://www.iii.org/article/what-determines-price-my-auto-insurance-policy
https://www.iii.org/article/what-determines-price-my-auto-insurance-policy
https://www.justice.govt.nz/about/lawyers-and-service-providers/criminal-procedure-act/
https://www.justice.govt.nz/about/lawyers-and-service-providers/criminal-procedure-act/
https://www.chegg.com/homework-help/questions-and-answers/
https://www.chegg.com/homework-help/questions-and-answers/
https://camunda.com/bpmn/examples/
https://democracy.kent.gov.uk/documents/s77889/Item%201%20-%20Election%20of%20Chairman.pdf
https://democracy.kent.gov.uk/documents/s77889/Item%201%20-%20Election%20of%20Chairman.pdf
https://democracy.kent.gov.uk/documents/s77889/Item%201%20-%20Election%20of%20Chairman.pdf
https://github.com/NielsRogge/Description2Process

166 A. Goossens et al.

Table 2. Overview of results

Deep learning models

Model Label Precision Recall F1-score Accuracy

GloVe+MLP Dependency 0.61 0.59 0.60 0.58

Logic 0.56 0.63 0.59

Irrelevant 0.60 0.54 0.57

GloVe + CNN Dependency 0.74 0.50 0.60 0.65

Logic 0.71 0.57 0.63

Irrelevant 0.60 0.82 0.70

BERT for sequence classification Dependency 0.72 1.00 0.84 0.83

Logic 0.86 0.86 0.86

Irrelevant 0.91 0.70 0.79

Non-deep learning models

BoW + Logistic Regression Dependency 0.70 0.62 0.66 0.69

Logic 0.81 0.57 0.67

Irrelevant 0.63 0.84 0.72

BoW + Näıve Bayes Dependency 0.66 0.85 0.74 0.72

Logic 0.80 0.63 0.70

Irrelevant 0.71 0.72 0.71

BoW + SVM Dependency 0.67 0.59 0.62 0.66

Logic 0.81 0.51 0.63

Irrelevant 0.60 0.84 0.70

TF-IDF + Logistic Regression Dependency 0.68 0.74 0.70 0.70

Logic 0.93 0.53 0.67

Irrelevant 0.62 0.82 0.71

TF-IDF + Näıve Bayes Dependency 0.75 0.62 0.68 0.64

Logic 0.70 0.45 0.55

Irrelevant 0.58 0.82 0.68

TF-IDF + SVM Dependency 0.65 0.82 0.73 0.71

Logic 0.86 0.63 0.73

Irrelevant 0.66 0.72 0.69

accuracy (0.83) and F1-score (above 0.8 for labels Dependency and Logic, 0.79 for
label Irrelevant). More importantly, BERT is able to retrieve all sentences labeled
as dependency (Recall = 1.00), is good at identifying sentences labeled as logic
(Recall = 0.86) and precise in labelling sentences as Irrelevant (Precision = 0.91).

6 Discussion

In the following section, the insights of Table 2 are discussed and compared
in Sect. 6.1. Next in Sect. 6.2, a human intuition is provided to when BERT
classifies a sentence into irrelevant, dependency or logic, also the relevant words
for classification are identified. Finally in Sect. 6.3, the results are applied to a
full decision model.

6.1 Comparison of the Results

It is good to see that BERT achieves a higher recall for relevant sentences than
for irrelevant sentences as this means that most relevant sentences are identified

Deep Learning for the Identification of Decision Modelling Components 167

but also that irrelevant sentences are sooner classified as relevant. This is not
a big issue as this implies removing a few irrelevant sentences from relevant
sentences instead of the contrary.

Interestingly GloVe does not perform better compared to traditional machine
learning models. The poor performance of GloVe-based classifiers compared to
bag-of-word classifiers may be due to the capability of the latter to “see” and
specifically handle specific terms (e.g. “determining”, “depend”, “if”, “from”,...)
that may not be easily identifiable through their GloVe embeddings. GloVe +
MLP performs less well than GloVe + CNN, as was expected. When comparing
the other deep learning models with traditional machine learning models, no
performance improvement can be noticed. Also interesting to notice is that using
BoW or TF-IDF yields comparable results.

6.2 Understanding How BERT Classifies

Since deep learning models are functioning as black boxes, the following section
will dive into which words determine the classification of a sentence into a cat-
egory. This analysis will be performed on the BERT model as it is the best
performing model in this case.

Using the Local Interpretable Model Agnostic Explanations or LIME [26], it
is possible to determine how much each word contributes to the classification of a
sentence. In Fig. 3 and Fig. 4, two sentences of the running example are analysed.
From this it can be concluded that words describing actions contribute to being
classified as Irrelevant for the first sentence. For the second sentence it seems
that words describing dependencies such as “divided” or “depending” contribute
to being classified as Dependency.

Fig. 3. Explaining irrelevant vs relevant

Fig. 4. Explaining dependency vs logic

168 A. Goossens et al.

With the knowledge acquired from the whole dataset, BERT uses a human-
like intuition for the classification of sentences. Words such as ‘determining’,
‘depend’, ‘assess’ make BERT label a sentence as dependency whilst words such
as ‘if’, ‘from’, ‘when’, ‘account’ make BERT label a sentence as logic. Finally,
action verbs and sequence indicators make BERT label a sentence as irrelevant
(for decision modeling) as these are often used in process descriptions. These
results are similar to how sentences containing logic are identified in [12] which
uses a pattern-based approach.

6.3 Applying the Results to the Full Decision Model

With this classifier a decision description can now be split into three parts:
decision dependency, decision logic and irrelevant. These sentences (containing
dependency rules and logic rules) can be used for the construction of DRDs and
decision logic. This in itself is a valuable contribution for automated decision
modelling from text as now the text classification step of decision modelling
from text can be done (semi-)automatically.

Since the classifier works well on individual sentences, experiments on com-
plete decision descriptions will probably yield similar results. Nevertheless, a
more thorough evaluation is ongoing. In Fig. 5, the running example is applied
to the classifier. In the left part, the sentences are automatically classified into
the three labels (red = irrelevant, blue = dependency, green = logic). In the right
part of the screen, preliminary results show that by only providing the relevant
sentences to a prototype it is possible to automatically construct a DRD and
extract certain logic clauses using the deep learning classifiers described in [15].
The latter however is still preliminary and beyond the scope of this paper.

Fig. 5. Automatic decision model generation on the example (Color figure online)

Deep Learning for the Identification of Decision Modelling Components 169

7 Limitations and Future Work

Some limitations have to be pointed out. This classification problem was tackled
with 2 distinct BERT classifiers and BERT was confirmed to be best performing
classifier. Further research will investigate whether the other deep learning mod-
els could also benefit from this approach of using two separate classifiers. Next,
some very ambiguous sentences mixing dependencies and logic are more difficult
to label and thus more difficult to teach BERT to identify. For these cases, a
more finetuned BERT model or manual intervention can be considered. We also
believe the dataset is diverse enough to show a proof of a concept, even though
it does not contain all the subtleties of the English language. More interestingly,
this approach is also language independent. If another dataset in another lan-
guage is provided, pretrained BERT models are available such as CamemBERT
[19] for French, GottBERT for German [30] or AlBERTo for Italian [25].

Currently, coreference resolution is currently not able deal with vocabulary,
concepts or synonyms. An interesting research direction therefore would be to
deal with these issues for coreference resolution. Other future work will be to
increase the robustness of the sentence classifier by extending the dataset with
more real-life textual descriptions with the idea of also making the dataset pub-
licly available later on. Another step is to identify process sentences from texts
and classify these accordingly. A formal evaluation on different texts is also
planned.

8 Conclusion

In this paper, a proof of concept for the extraction of decision modelling compo-
nents using deep learning is developed. A black-box deep learning BERT classi-
fier has been developed and compared to other statistical methods. We conclude
that the classification of sentences is performing well with BERT for sequence
classification being the best performing classifier. Moreover, when investigating
how BERT classifies sentences it can be concluded that BERT uses a human-like
intuition to classify sentences into a certain class. With this classifier, it is possi-
ble for decision modellers to (semi)-automatically extract relevant pieces of text
for decision modelling hence providing the first step for the automatic decision
model construction from text. The extracted relevant pieces can then be pro-
vided as input to automatically construct decision models using deep learning
[15] or using patterns [12].

References

1. van der Aa, H., Di Ciccio, C., Leopold, H., Reijers, H.A.: Extracting declarative
process models from natural language. In: Giorgini, P., Weber, B. (eds.) CAiSE
2019. LNCS, vol. 11483, pp. 365–382. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-21290-2 23

2. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process
models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

https://doi.org/10.1007/978-3-030-21290-2_23
https://doi.org/10.1007/978-3-030-21290-2_23

170 A. Goossens et al.

3. de AR Goncalves, J.C., Santoro, F.M., Baiao, F.A.: Business process mining from
group stories. In: 2009 13th International Conference on Computer Supported
Cooperative Work in Design, pp. 161–166. IEEE (2009)

4. Arco, L., Nápoles, G., Vanhoenshoven, F., Lara, A.L., Casas, G., Vanhoof, K.:
Natural language techniques supporting decision modelers. Data Min. Knowl. Disc.
35(1), 290–320 (2020). https://doi.org/10.1007/s10618-020-00718-4

5. Bazhenova, E., Buelow, S., Weske, M.: Discovering decision models from event logs.
In: Abramowicz, W., Alt, R., Franczyk, B. (eds.) BIS 2016. LNBIP, vol. 255, pp.
237–251. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39426-8 19

6. Bazhenova, E., Weske, M.: Deriving decision models from process models by
enhanced decision mining. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP,
vol. 256, pp. 444–457. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
42887-1 36

7. Danenas, P., Skersys, T., Butleris, R.: Natural language processing-enhanced
extraction of SBVR business vocabularies and business rules from UML use case
diagrams. Data Knowl. Eng. 128, 101822 (2020)

8. De Smedt, J., Hasić, F., vanden Broucke, S.K., Vanthienen, J.: Holistic discovery
of decision models from process execution data. Knowl.-Based Syst. 183, 104866
(2019)

9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

10. Dragoni, M., Villata, S., Rizzi, W., Governatori, G.: Combining NLP approaches
for rule extraction from legal documents. In: 1st Workshop on MIning and REa-
soning with Legal texts (MIREL 2016) (2016)

11. Epure, E.V., Mart́ın-Rodilla, P., Hug, C., Deneckère, R., Salinesi, C.: Automatic
process model discovery from textual methodologies. In: 2015 IEEE 9th Inter-
national Conference on Research Challenges in Information Science (RCIS), pp.
19–30. IEEE (2015)

12. Etikala, V., Van Veldhoven, Z., Vanthienen, J.: Text2Dec: extracting decision
dependencies from natural language text for automated DMN decision modelling.
In: Del Ŕıo Ortega, A., Leopold, H., Santoro, F.M. (eds.) BPM 2020. LNBIP,
vol. 397, pp. 367–379. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
66498-5 27

13. Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural
language text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol.
6741, pp. 482–496. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21640-4 36

14. Ghose, A., Koliadis, G., Chueng, A.: Process discovery from model and text arte-
facts. In: 2007 IEEE Congress on Services (Services 2007), pp. 167–174. IEEE
(2007)

15. Goossens, A., Claessens, M., Parthoens, C., Vanthienen, J.: Extracting decision
dependencies and decision logic using deep learning techniques, BPM 2021 DEC2H
Workshop (2021)

16. Hadeer, A., Issa, T., Sherif, S.: Detecting opinion spams and fake news using text
classification. Secur. Priv. 1(1), e9 (2018)

17. Honkisz, K., Kluza, K., Wísniewski, P.: A concept for generating business process
models from natural language description. In: Liu, W., Giunchiglia, F., Yang, B.
(eds.) KSEM 2018. LNCS (LNAI), vol. 11061, pp. 91–103. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99365-2 8

https://doi.org/10.1007/s10618-020-00718-4
https://doi.org/10.1007/978-3-319-39426-8_19
https://doi.org/10.1007/978-3-319-42887-1_36
https://doi.org/10.1007/978-3-319-42887-1_36
http://arxiv.org/abs/1810.04805
https://doi.org/10.1007/978-3-030-66498-5_27
https://doi.org/10.1007/978-3-030-66498-5_27
https://doi.org/10.1007/978-3-642-21640-4_36
https://doi.org/10.1007/978-3-642-21640-4_36
https://doi.org/10.1007/978-3-319-99365-2_8

Deep Learning for the Identification of Decision Modelling Components 171

18. Luss, R., d’Aspremont, A.: Predicting abnormal returns from news using text clas-
sification. Quantit. Finan. 15(6), 999–1012 (2015)

19. Martin, L., et al.: CamemBERT: a tasty French language model. arXiv preprint
arXiv:1911.03894 (2019)

20. Melville, P., Gryc, W., Lawrence, R.D.: Sentiment analysis of blogs by combin-
ing lexical knowledge with text classification. In: Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1275–1284 (2009)

21. Mirończuk, M.M., Protasiewicz, J.: A recent overview of the state-of-the-art ele-
ments of text classification. Expert Syst. Appl. 106, 36–54 (2018)

22. OMG: Business process model and notation 1.0 (2010). https://www.omg.org/
spec/BPMN/1.0

23. OMG: Decision model and notation 1.0 (2015). https://www.omg.org/spec/DMN/
1.0/

24. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

25. Polignano, M., Basile, P., de Gemmis, M., Semeraro, G., Basile, V.: AlBERTo:
Italian BERT language understanding model for NLP challenging tasks
based on Tweets. In: Proceedings of the Sixth Italian Conference on Com-
putational Linguistics (CLiC-it 2019), vol. 2481. CEUR (2019). https://
www.scopus.com/inward/record.uri?eid=2-s2.0-85074851349&partnerID=40&
md5=7abed946e06f76b3825ae5e294ffac14

26. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

27. Sànchez-Ferreres, J., Burattin, A., Carmona, J., Montali, M., Padró, L.: Formal
reasoning on natural language descriptions of processes. In: Hildebrandt, T., van
Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675,
pp. 86–101. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6 8

28. Sanchez-Pi, N., Mart́ı, L., Garcia, A.C.B., et al.: Text classification techniques
in oil industry applications. In: Herrero, Á. (ed.) International Joint Conference
SOCO’13-CISIS’13-ICEUTE’13. AISC, pp. 211–220. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-319-01854-6 22

29. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)

30. Scheible, R., Thomczyk, F., Tippmann, P., Jaravine, V., Boeker, M.: GottBERT:
a pure German language model. arXiv preprint arXiv:2012.02110 (2020)

31. Sinha, A., Paradkar, A.: Use cases to process specifications in business process
modeling notation. In: 2010 IEEE International Conference on Web Services, pp.
473–480. IEEE (2010)

32. Thangaraj, M., Sivakami, M.: Text classification techniques: a literature review.
Interdisc. J. Inf. Knowl. Manag. 13 (2018)

33. Vanthienen, J.: Decisions, advice and explanation: an overview and research
agenda. A Research Agenda for Knowledge Management and Analytics (2021)

34. Wang, H.J., Zhao, J.L., Zhang, L.J.: Policy-driven process mapping (PDPM): dis-
covering process models from business policies. Decis. Support Syst. 48(1), 267–281
(2009)

35. Wolf, T., et al.: HuggingFace’s transformers: state-of-the-art natural language pro-
cessing. arXiv preprint arXiv:1910.03771 (2019)

http://arxiv.org/abs/1911.03894
https://www.omg.org/spec/BPMN/1.0
https://www.omg.org/spec/BPMN/1.0
https://www.omg.org/spec/DMN/1.0/
https://www.omg.org/spec/DMN/1.0/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074851349&partnerID=40&md5=7abed946e06f76b3825ae5e294ffac14
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074851349&partnerID=40&md5=7abed946e06f76b3825ae5e294ffac14
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074851349&partnerID=40&md5=7abed946e06f76b3825ae5e294ffac14
https://doi.org/10.1007/978-3-030-26619-6_8
https://doi.org/10.1007/978-3-319-01854-6_22
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/2012.02110
http://arxiv.org/abs/1910.03771

Combining Sub-symbolic and Symbolic
Methods for Explainability

Anna Himmelhuber1,2(B), Stephan Grimm1, Sonja Zillner1, Mitchell Joblin1,
Martin Ringsquandl1, and Thomas Runkler1,2

1 Siemens AG, Munich, Germany
{anna.himmelhuber,stephan.grimm,sonja.zillner,mitchell.joblin,

martin.ringsquandl,thomas.runkler}@siemens.com
2 Technical University of Munich, Munich, Germany

Abstract. Similarly to other connectionist models, Graph Neural Net-
works (GNNs) lack transparency in their decision-making. A number
of sub-symbolic approaches have been developed to provide insights into
the GNN decision making process. These are first important steps on the
way to explainability, but the generated explanations are often hard to
understand for users that are not AI experts. To overcome this problem,
we introduce a conceptual approach combining sub-symbolic and sym-
bolic methods for human-centric explanations, that incorporate domain
knowledge and causality. We furthermore introduce the notion of fidelity
as a metric for evaluating how close the explanation is to the GNN’s inter-
nal decision making process. The evaluation with a chemical dataset and
ontology shows the explanatory value and reliability of our method.

Keywords: Graph neural networks · XAI · Symbolic methods ·
Inductive logic learning

1 Introduction

Many important real-world data sets come in the form of graphs or networks,
including social networks, knowledge graphs, protein-interaction networks, the
World Wide Web and many more. Graph neural networks are connectionist mod-
els that capture the dependence structure induced by links via message passing
between the nodes of graphs. Unlike standard neural networks, GNNs retain a
state that can represent information from its neighborhood with arbitrary depth
as well as incorporate node feature information [10]. Similarly to other con-
nectionist models, GNNs lack transparency in their decision-making. Since the
unprecedented levels of performance of such AI methods lead to increasing use
in the daily life of humans, there is an emerging need to understand the decision-
making process of such systems [1]. While symbolic methods such as inductive
logic learning come with explainability, they perform best when dealing with
relatively small and precise data. Sub-symbolic methods such as graph neural
networks are able to handle large datasets, have a higher tolerance to noise in
c© Springer Nature Switzerland AG 2021
S. Moschoyiannis et al. (Eds.): RuleML+RR 2021, LNCS 12851, pp. 172–187, 2021.
https://doi.org/10.1007/978-3-030-91167-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91167-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-91167-6_12

Combining Sub-symbolic and Symbolic Methods for Explainability 173

real world data, generally have high computing performance and are easier to
scale up [4].

Through the increasing popularity and need for explainability in AI, a variety
of explainable models for neural networks are being developed [18]. These include
surrogate models which are interpretable models that are trained to approximate
the predictions of a black box model [8]. Other approaches include the identifica-
tion of the most relevant features [11,18]. The explainer methods named above,
allow the user to relate properties of the inputs to their output. However, the
user is responsible for compiling and comprehending the explanations, relying on
their own implicit form of knowledge and reasoning about them. Since humans
are depending on their background knowledge and therefore also their biases
about the data and its domain, different explanations about why a model makes
a decision may be deduced. Since such sub-symbolic models are often built for
AI researchers, it can make them hard to understand for non-experts. We strive
to go beyond that by justifying predictions with background or common sense
knowledge in a human understandable way [3]. This is of increased importance,
as explainable AI and with it the widespread application of AI models are more
likely to succeed if the evaluation of these explainer models is focused more on
the user’s needs [17].

We aim to develop a hybrid method by combining GNNs, sub-symbolic
explainer methods and inductive logic learning. This enables human-centric and
causal explanations through extracting symbolic explanations from identified
decision drivers and enriching them with available background knowledge. These
are generated for individual predictions, and are therefore instance-level expla-
nations. With this method, high-accuracy sub-symbolic predictions come with
symbolic-level explanations, and provide an effective solution for the performance
vs. explainability trade-off.

As far as we know, this is the first work to study integrating a sub-symbolic
explainer with symbolic methods for more human-centric instance-level expla-
nations. Our fidelity metric indicates how close an explanation is to the GNN’s
internal decision making process. Additionally, the employment of justifications
in our method provides causality that makes use of the background knowledge.

2 Background and Problem Definition

For incorporating explicit domain knowledge into our explanation method on
the side of symbolic representation, we use ontologies expressed in the W3C
OWL 2 standard1 [6] based on the description logic formalism. In this section
we first introduce semantic web ontology, then revisit the notions of entailment,
inductive logic learning and justifications, followed by graph neural networks and
a sub-symbolic explainer method. Eventually, we define the problem of learning
explainer classes by combining a GNN’s output with inductive logic learning2.
1 https://www.w3.org/TR/owl2-overview/.
2 For better readability we will denominate variables represented in ontology form in

greek letters and sub-symbolic graph representations in latin letters.

https://www.w3.org/TR/owl2-overview/

174 A. Himmelhuber et al.

Semantic Web Ontology. The basic constituents for representing knowledge
in OWL are individuals, classes and properties. They are used to form axioms,
i.e. statements within the target domain, and an ontology O is a set of axioms
to describe what holds true in this domain. The most relevant axioms for our
work are class assertions τ(σ) assigning an individual σ to a class τ , property
assertions ρ(σ1, σ2) connecting two individuals σ1, σ2 by property ρ, and subclass
axioms τ1 Ď τ2 expressing that class τ1 is a subclass of class τ2. Classes can
be either atomic class names, such as ‘Compound’ or ‘Bond’, or they can be
composed by means of complex class expressions. An example for a complex
class expression noted in Manchester syntax is ‘Compound and hasStructure
some Nitrogen_Dioxide’, which refers to all molecule compounds having some
nitrogen dioxide compound in their structure. For details about all types of
axioms and the way complex concepts are constructed we refer to [6].

Table 1. Example excerpt of δMutag.

(1) Carbon Ď Atom carbons are atoms
(2) Hetero_aromatic_5_ring Ď

Ring_Size_5 Ď RingStructure
hetero-aromatic rings of size 5 are rings
of size 5, which are ring structures

(3) Nitrogen(feature_100_5) feature_100_5 is a nitrogen
(4) Compound(graph_100) graph_100 is a compound
(5) hasAtom(graph_100, fea-

ture_100_5)
graph_100 has atom feature_100_5

Example 1 (Mutagenesis Ontology)
As we are combining GNNs and ontologies, graph data has to be available as
triples as well as background knowledge. We chose a chemical domain to test our
method, as it comes with structured background knowledge. The domain knowl-
edge used in our approach is given by the Mutagenesis ontology δMutag3, which
is exemplified in Table 1.

Definition 1 (Entailment)
Given ontology O, if axiom α logically follows from O, as can be derived by a
standard OWL reasoner, then we call α an entailment of O and write O |“ α4.

Definition 2 (Inductive Logic Learning (ILL)): Given an ontology O,
a set of positive instances E` and a set of negative instances E´, a resulting
target predicate class expression ε is constructed such that O |“ ε(σ) holds for
all individuals σ P E` and does not hold for individuals σ P E´5.

In the context of OWL ontologies, ILL attempts to construct class expressions
from an ontology O and two sets E`, E´ of individuals that act as positive and
3 https://github.com/SmartDataAnalytics/DL-Learner/tree/develop/examples/

mutagenesis.
4 As defined in [13].
5 As defined in [16].

https://github.com/SmartDataAnalytics/DL-Learner/tree/develop/examples/mutagenesis
https://github.com/SmartDataAnalytics/DL-Learner/tree/develop/examples/mutagenesis

Combining Sub-symbolic and Symbolic Methods for Explainability 175

negative examples for being instances of the target class, respectively. Concretely,
we use DL-Learner [16] as the key tool to derive OWL class expressions to be
used for our explanations.

Definition 3 (Justification)
Given an ontology O and an entailment α, the justification J (O, α) for α in O
is a set J Ď O, such that J |“ α and for all proper subsets J ′ Ă J (See
footnote 4).

Graph Neural Network (GNN)
For a GNN, the goal is to learn a function of features on a graph G “ (V,E)
with edges E and nodes V . The input is comprised of a feature vector xi for
every node i, summarized in a feature matrix X P R

nˆdin and a representative
description of the link structure in the form of an adjacency matrix A. The
output of one layer is a node-level latent representation matrix Z P R

nˆdout ,
where dout is the number of output latent dimensions per node. Therefore, every
layer can be written as a non-linear function: H(l`1) “ f(H(l), A), with H(0) “ X
and H(L) “ Z, L being the number of stacked layers. The vanilla GNN model
employed in our framework, uses the propagation rule [9]:

f(H(l), A) “ ŝ(D̂´ 1
2 ÂD̂´ 1

2 H(l)W (l)),

with Â “ A`I, I being the identity matrix. D̂ is the diagonal node degree matrix
of Â, W (l) is a weight matrix for the l ´ th neural network layer and ŝ is a non-
linear activation function. Taking the latent node representations Z of the last
layer we define the logits of node vi for classification task as ŷi “ softmax(ziW

�
c),

where Wc P R
doutˆk projects the node representations into the k dimensional

classification space.

Example 2 (GNN Classifications for Mutag Dataset)
For GNN predictions, the dataset Mutag is utilized, which is from a differ-
ent source and therefore independent of the Mutagenesis ontology. It contains
molecule graphs and is classified through a 3-layer vanilla Graph Convolutional
Network with 85% accuracy [11]. The molecule graphs Gi = (Ai, Xi), which are
compounds existing out of atoms and bonds, with certain structures such as car-
bon rings, can be classified as mutagenic (m) or nonmutagenic (n) depending on
their mutagenic effect on the Gram-negative bacterium S. typhimurium [12].

Sub-symbolic Explainer Method
The sub-symbolic explainer method takes a trained GNN and its prediction(s),
and it returns an explanation in the form of a small subgraph of the input
graph together with a small subset of node features that are most influential
for the prediction. For their selection, the mutual information between the GNN
prediction and the distribution of possible subgraph structures is maximized
through optimizing the conditional entropy. The explainer method output is
comprised of edge masks MEi P {0, 1}nˆn Ă Ai and node feature masks MXi P
{0, 1}nˆd Ă Xi, which is used as input to our framework.

176 A. Himmelhuber et al.

Since it is the state-of-the-art method, which outperforms alternative baseline
approaches by 43.0% in explanation accuracy [11], we chose the GNNExplainer
for our framework, but our approach will work with any other explainer subgraph
generation method.

Example 3 (GNNExplainer Output for Mutag Dataset Classifica-
tions)
The GNNExplainer is applied to identify the most influential parts of the respec-
tive graph for the classification decision. Figure 1 shows the original graph, its
edge mask ME as identified by the GNNExplainer and the ground truth for a
mutagenic (left) and nonmutagenic (middle) molecule as well as the identified
node feature mask MX (right). It can be seen that the identified important graph
motifs and node features align with some of ground truth mutagenic properties,
as given by [12]. These include ring structures and the node features C, O, N
and H. However, the fact that these results represent a carbon ring as well as the
chemical group NO2 (Nitrogen dioxide) is left up to the user for interpretation.

Fig. 1. GNNExplainer results for Mutag dataset classifications. Figure adapted from
Fig. 4 and Fig. 5 in [11].

Definition 4 (Explainer Class Learning)
Given ontology O and a set of graph individuals {ηi} P O6 with their respective
classifications {y1, y2, ...yi} provided by a GNN for a certain category, we define
explainer class learning as inductive logic learning such that ηj |yj “ category P
E` and .

O provides the background knowledge for inductive logic learning, and the
classification decision by the GNN provides the positive and negative examples
in order to learn explainer classes. We also define a metric called fidelity metric
(to be specified in Sect. 3) for quantitative measurement. The higher the fidelity
metric, the higher the reliability of the entailed explainer class.

3 Combining Sub-symbolic and Symbolic Methods

3.1 Explainer Class Learning

We are proposing a hybrid method, within which the coupling of the sub-
symbolic explainer method GNNExplainer with the symbolic DL-Learner is used
6 Mapping sub-symbolic graph representations (Xi, Ai) �→ O, resulting in individuals

ηi is specified in Sect. 3.1.

Combining Sub-symbolic and Symbolic Methods for Explainability 177

Fig. 2. Learning explainer classes process flow.

to explain GNN instance-level predictions. Our approach is shown for a graph
classification task, but would equally apply to node classification or link predic-
tion. The process flow of learning explainer classes can be seen in Fig. 2. Firstly,
a GNN is trained on and applied to training and testing data and subsequently
the sub-symbolic explainer method GNNExplainer is applied to all generated
predictions, as can be seen in Fig. 2 (Step 1 and Step 2). Secondly, to create
explainer classes for the GNN decision making process, DL-Learner is applied
for a specific predicted category, with positive and negative examples labelled
accordingly through yi (Step 4). The background knowledge used by the DL-
Learner to learn explainer classes is comprised of the adjacency matrices Ai

and node feature matrices Xi, edge masks MEi and node feature masks MXi

and domain knowledge δ. As the DL-Learner can only process ontologies, the
matrices are mapped to an ontology (Step 3) through λ as detailed below:

Extraction and Mapping Step
A set of graphs detailed in their associated matrices Ai and Xi

7 are modelled
as set of individuals {ηi}. Their edges and node features are extracted from A′

is
and X ′

is edge and feature lists and modelled as set of individuals {υj} and {χk}.
If there are graph-specific structures common in the respective domain, such as
certain motifs, e.g. a ring structure, the set of possible structures {structurez}
along with their extraction functions {γz(Ai,Xi)} is defined and mapped through
mapping function S : {structurez} �→ {γz(Ai,Xi)}.

If structure1 is contained in (Ai,Xi), extraction function γ1(Ai,Xi) returns
all individuals contained in the structure. The found structures are modelled
as a set of individuals {ψg}. To assign all individuals their type declarations
and roles, a set of roles {ρv} and type declarations {τw} as well as further
mapping functions based on domain knowledge δ are needed. Defining these sets
and mapping functions has been done as a one-time manual step, with their
complexity depending on the domain.

P : {ηi} ˆ ({υj} Y {χk} Y {ψg}) �→ {ρv}, maps a pair of individuals to their
role. T : ({ηi} Y {υj} Y {χk} Y {ψg} �→ {τw} maps individuals to their types.
7 Their size is dependent on the number of layers used by the GNN, to keep the

consistency in coupling the sub-symbolic with the symbolic method.

178 A. Himmelhuber et al.

All extracted individuals, roles and type declarations are added as axioms to
ontology O through function AddAxiom(O, axiom) as is shown in Algorithm
1. Therefore, λ is defined as λ(Ai,Xi, T, P, S) �→ O. Equivalently, λ is carried
out for all corresponding sub-symbolic explainer subgraphs with their associated
edge masks MEi and node feature masks MXi, with the set of explainer graphs
modelled as individuals η_subi.

Additionally, mapping function μ is defined as bijective function, as is shown
in Algorithm 1. This function is needed for the fidelity calculation. Function μ
is defined in such a way, that if the input, e.g. σ1, doesn’t map to anything, σ1

will be returned as output.

Example 4 (Mapping Mutag Dataset with Mutagenesis Ontology)
The mapping functions SMutag “ {Azanide : γAzanide,Methyl : γMethyl, ...},
RMutag “ {(ηi, υj) : hasBond, (ηi, χk) : hasAtom, ...} and TMutag “ {ηi :
Compound, υj : Bond, χk : Carbon, ...} are defined based on domain terminology
δMutag. For example, from molecule graph G1 with associated matrices X1 and
A1, the edge individuals edge_1_2, edge_1_3, etc., are modelled. For extract-
ing structure Methyl (CH3), which is defined as containing one carbon atom
bonded to three hydrogen atom, function γMethyl(A1,X1) is employed. All accru-
ing axioms are added to the ontology OMutag. Through μ, the set of edges forming
the identified structure, e.g. {edge_1_2, edge_1_3, edge_1_4} is mapped to the
individual structure_1_1_1.

Combining Sub-symbolic and Symbolic Methods for Explainability 179

According to the GNN’s classifications positive and negative examples of
graphs are distinguished and explainer classes are learned. The background
knowledge is the ontology O = δ Y λ(Ai,Xi, T, P, S) Y λ(MEi,MXi, T, P, S).
We differentiate between two types of explainer classes:

Input-Output Explainer Classes
Given Definition 4, background knowledge δ Y λ(Ai,Xi, T, P, S), ηi|yi “ category
P E` and , a set of Input-Output Explainer Classes
{φcategory

n } are learned. Input-output explainer classes are candidate explana-
tions, that capture the global behavior of a GNN through investigating what
input patterns can lead to a specific class prediction, comparable to the input-
output mapping approach in [15].

Importance Explainer Classes
Given Definition 4, background knowledge δ Y λ(MEi,MXi, T, P, S), η_subi|
yi “ category P E` and , a set of Importance
Explainer Classes {ϕcategory

m } are learned. Importance Explainer classes show
which edges, nodes, features and motifs are important for the GNN to predict
a certain class. These class expressions represent the inner workings of a GNN,
by incorporating the output of the sub-symbolic explainer.

3.2 Explainer Class Application for Instance-Level Explanations

The pool of possible explainer classes for all categories as learned in Sect. 3.1, con-
sisting of {φn} and {ϕn}, are used in the application step to generate instance-
level explanations through explainer class entailment and justification steps.

Explainer Class Entailment
Given Definition 1, a set of explainer classes {φcategory

n } and {ϕcategory}, ontology
O and individual ηj classified as category, entailments for ηj are generated. By
doing so, we check if the learned overall decision-making pattern of the GNN
applies to a specific instance. For all available explainer classes, entailments for
a specific individual ηj are generated. It is possible, that several entailments
hold, just as it is possible that a classification decision of Gj is based on several
different factors. The set of entailments for ηj is given by CExp(ηj) “ {φ | O |“
φcategory(ηj)} Y {ϕ | O |“ ϕcategory(ηj)}.

Definition 5 (Entailment Frequency)
Given an ontology O, explainer class φcategory

i and a set of indivdiuals {ηi}, we
define the entailment frequency as the number of entailments for |{η P {ηi} :
O |“ φcategory

i (η)}| over the number of instances |{ηi}|.
The entailment frequency gives insight over the generality or specificity of

explainer classes and representing the average frequency with which a certain
explainer class is entailed.

Explainer Class Entailment Justification
Given O and entailment O |“ φcategory

i (ηj), justification J (O, φcategory
i (ηj)) is

generated. The number of generated axioms gives some insight about the level of

180 A. Himmelhuber et al.

domain knowledge employed. As there can be several justifications for an entail-
ment, we limit them to only one. It is not in the scope of this paper to determine
which justification would provide the best explanation, but since a shorter jus-
tification tends to be more efficient, the justification with the minimum number
of axioms is chosen.

Example 5 (Justification for Mutag Explainer Class)
Table 2 shows an example justification for the entailment OMutag |“ φm

8 (η1),
which contributes to a meaningful explanation, as it carries causal information
present in expert knowledge about the conclusion.

Table 2. Example justification J (OMutag, φm
8 (η1)).

(1) η1 hasStructure structure_1_1_1

(2) structure_1_1_1 Type Hetero_aromatic_5_ring

(3) Hetero_aromatic_5_ring SubClassOf Ring_size_5

(4) φm
8 EquivalentTo hasStructure some Ring_size_5

Fidelity Calculation
Fidelity is defined as the measure of the accuracy of the student model (DL-
Learner) with respect to the teacher model (GNN). High fidelity is therefore
fundamental, whenever a student model is to be claimed to offer a good expla-
nation for a teacher model. Without high fidelity, an apparently perfectly good
explanation produced by an explainable system is likely not to be an explanation
of the underlying sub-symbolic system which it is expected to explain [21]. We
calculate Fidelity as follows:

Fidelity(φi, ηj) “ |μ´1(ind(J (O, φi(ηj)))) ∩ η_subj |
|μ´1(ind(J (O, φi(ηj))))| ,

where ind() is a function that collects all individuals that are provable instances
of a set of axioms. The denominator equals the count of the set of edges or node
features that have to be part of ηi, for the entailment of explainer class φi to
hold. The fidelity metric is defined as the overlap of the sub-symbolic explainer
output with the entailed explainer classes, as can be seen in Fig. 3, which means
that the effectiveness of the sub-symbolic explainer method in representing the
GNN decision making is therefore assumed.

Example 6 (Fidelity for Explainer Class hasStructure some Methyl)
As the explainer classes are represented through axioms, e.g.

, we apply the justification mechanism to
arrive at the axioms containing the corresponding individual(s) for the specific
example η1, such as . Since there
might be a multiplicity of individuals, function ind(J (O, φ2(η1)) is applied, which

Combining Sub-symbolic and Symbolic Methods for Explainability 181

collects all individuals that are provable instances of the justification. These indi-
viduals are then inversely mapped (μ´1) to their corresponding set of individuals,
in this example {edge_1_2, edge_1_3, edge_1_4}. In case there is no corre-
sponding set of individuals, the inverse mapping simply returns the given individ-
ual. For the numerator, we count the overlap of the identified set of individuals
with the individuals in η_subi, the subgraph identified by the GNNExplainer.

Definition 6 (Final Explanation)
Given the set of entailments, that hold for ηj, we define the final explanation
E(ηj) as the set of the respective justifications E(ηj) “ {J (O, C(ηj))} | C P
CExp(ηj).

Example 7 (Molecule Graph G1)
In Fig. 3, the final explanation for the classification of molecule graph G1 as
mutagenic can be seen, complete with justifications and fidelity score.

Fig. 3. Final explanation for molecule graph G1, which has been classified as mutagenic.

4 Evaluation

Experiment Setting. We used a subset of 530 molecule graphs as training
data to learn explainer classes, and 800 molecule graphs as testing data. The
graphs have been classified by a 3-layer vanilla Graph Convolutional Network.
All molecule graphs come with adjacency matrices AMutag

i , and feature matrices
XMutag

i and their corresponding GNNExplainer importance masks (MEi
Mutag

and XEi
Mutag), equally split between mutagenic and nonmutagenic classifica-

tions. The DL-Learner can create arbitrarily many class expressions, functioning
as explainer classes, which are ordered by predictive accuracy (number of cor-
rectly classified examples divided by the number of all examples). We are taking
a cut-off point of ą 50% predictive accuracy, as an explainer class with less than
50% predictive accuracy, wouldn’t represent a pattern for mutagenic classifica-
tion decisions but rather the opposite, and v.v. for nonmutagenic classification
decisions8.
8 All experimental data, code and results are available from https://github.com/XAI-

sub-symbolic/Combining-Sub-Symbolic-Explainer-Methods-with-SWT.

https://github.com/XAI-sub-symbolic/Combining-Sub-Symbolic-Explainer-Methods-with-SWT
https://github.com/XAI-sub-symbolic/Combining-Sub-Symbolic-Explainer-Methods-with-SWT

182 A. Himmelhuber et al.

Explainer Classes
The generated pool of explainer classes provides a total of 14 explainer classes
for mutagenic and 12 explainer classes for nonmutagenic classifications. All the
comprehensible explanation for mutagenic classification decisions that can be
identified and interpreted from the GNNExplainer output (see Sect. 2), have
been learnt by the DL-Learner. These include φm

2 = hasStructure some Car-
bon_6_ring, φm

7 = hasStructure some Nitrogen_dioxide, ϕm
1 = hasAtom

some Carbon, ϕm
2 = hasAtom some Hydrogen, ϕm

3 = hasAtom some Nitro-
gen, and ϕm

4 = hasAtom some Oxygen, along with several others, which have
not been identified by the GNNExplainer. The explainer class φm

6 = hasStruc-
ture some Phenanthrene is a compelling example for the effectiveness of our
hybrid approach, as Phenanthrene is a strong indicator for mutagenic potency
[12], but isn’t identifiable in the GNNExplainer output. This shows that our
hybrid method can identify and verbalize decision-making processes of the GNN,
which a comprehensible sub-symbolic explainer system, whose output might not
be easily understood and interpreted by a user, is missing.

Table 3. Input-output and importance explainer classes with avg. pred. accuracy (DL-
Learner), entailment rate and fidelity with their respective standard deviations (SD).

Explainer
class type

Number Avg. Pred.
Acc. (SD)

Avg. entailment
rate (SD)

Avg. fidelity (SD)

φm
n 1, ..., 10 0.56 (0.04) 0.64 (0.3) 0.88 (0.12)

φn
n 1, ..., 5 0.59 (0.03) 0.09 (0.04) 0.82 (0.12)

ϕm
n 1, ..., 4 0.77 (0.06) 0.86 (0.15) 0.99 (0.01)

ϕn
n 1, ..., 7 0.56 (0.01) 0.41 (0.25) 0.81 (0.05)

Entailment Frequency
The entailment frequency gives us insight over the generality or specificity of
explainer classes. As can be seen in Table 3 (Avg. Entailment Rate), there is
a wide range of entailment rates. Some explainer classes, e.g. φm

4 = hasAtom
some Carbon always apply, while others are quite rare, such as φn

4 = hasAtom
some Phosphorus, that comes with only a 4% entailment rate. As expected,
we have an overall lower entailment rate for nonmutagenic explainer classes,
as the there are also less distinct factors indicating nonmutagenicity [12]. Most
nonmutagenic classifications come with about 3 entailments, while mutagenic
classifications come with more than 5 entailments on average. This is due to a
lower generality of the explainer classes, which implies that such an explainer
class only applies to specific instances. This notion is also confirmed by the lower
average predictive accuracy of the DL-Learner results for nonmutagenic (57%)
as opposed to mutagenic (63%) explainer classes, as can be seen in Table 3 (Avg.
Pred. Acc). The predictive accuracy of the DL-Learner is defined as the number
of correctly classified examples divided by the number of all examples [14].

Combining Sub-symbolic and Symbolic Methods for Explainability 183

Explanation Fidelity
Fidelity gives the user a measure of reliability of the explanation, with the aver-
age fidelity ranging from 64% for φn

5 = hasStructure some Carbon_5_ring
to 100% for e.g. ϕm

2 = hasAtom some Hydrogen. While an explainer class with
an average fidelity of 64% might still give the user some insight, its explanatory
value cannot be considered as reliable as for an explainer class with a higher
fidelity. An explainer class, that has a low generality, meaning it is rarely applied
to explain a classification, can nonetheless come with a high fidelity such as φn

4

(100%). This suggests that also low generality explainer classes can be valuable
for specific instances.

We can observe a positive correlation of 88% between the average fidelity and
predictive accuracy for {ϕn} and of 50% between the average fidelity and {ϕn}
Y {φn}, signalising the effectiveness of representing the sub-symbolic decision-
making process with the DL-Learner. As the predictive accuracy of the output
given by the DL-Learner is the metric on which we base our choice of explainer
classes included in the pool, the correlation with the fidelity indicates that this
approach leads to reliable explanations.

Explainability of sub-symbolic methods is desirable not only to justify actions
taken based on the predictions made by the system, but also to identify false
predictions. Therefore, it is also important to evaluate our method based on its
ability to not generate explanation for wrong predictions and therefore validating
them. Table 4 shows the difference in entailments for the correctly classified (true
positives TP) and incorrectly classified graphs (false positives FP). We can see,
that the average fidelity for entailments is 30% points lower for mutagenic FP
than mutagenic TP, and 38% points for nonmutagenic FP. While this might not
be sufficient to clearly identify a wrong classification, it indicates the validity
of the fidelity metric, as it is significantly lower for explainer classes applied to
incorrect classification.

Table 4. Average fidelity for true positives and false positives.

TPm FPm TPn FPn

Number of instances 371 29 374 26
Average fidelity 0.96 0.66 0.82 0.44

Justification Axioms
Through justifications we provide causality for explanations, based on domain
knowledge. The ontology δMutag utilized has little structural depth as can be seen
in the example excerpt in Table 1. Nonetheless, there is a minimum of 3 axioms
for all entailments. For 20% of explainer classes, 4 axiom justifications and for
8% of explainer classes, 5 axiom justifications are generated. This means, that
for all explanations generated, the explanations carry some causal information
about the conclusion, supported by expert knowledge.

184 A. Himmelhuber et al.

4.1 Comparison of Our Hybrid Method with DL-Learner
Explanations and Input-Output Explanations

DL-Learner: Classifications along with corresponding explanations can be gen-
erated by only using a symbolic classifier such as the DL-Learner. When com-
paring this purely symbolic approach with our hybrid method, we find that
using only the DL-Learner comes with significantly lower prediction accuracy
and also explanatory value. The predictive accuracy of the GNN using the same
subset of training data is 78%, so considerably above the DL-Learner result, as
shown below. When applying the DL-Learner to carry out classifications, we are
restricted to only one classifier. This means, even if we allow more complex class
expressions, we only have one explanation for the target predicate mutagenic:

GNN with Input-Output Explanations: We want to look at the bene-
fits of integrating a sub-symbolic explainer into our framework, as opposed to
explaining GNN predictions with only the input-output matching method as
done in e.g. [15]. We can see, that for some explainer classes such as φm

3 “ ϕm
3 =

hasAtom some Nitrogen, we have overlap of the importance explainer classes
with the input-output explainer classes. However, the importance explainer
classes come with a significantly higher predictive accuracy of 77% as can be seen
in Table 3, indicating their significance for the classification decision. For the
nonmutagenic classifications, explainer class ϕn

2 = hasStructure some Car-
bon_6_ring, which is equivalent with the ground truth as shown in Fig. 1,
wouldn’t have been included in φn

n. Here, we can clearly see the added bene-
fit of generating explainer classes from the GNNExplainer as opposed to only
observing the input-output behaviour of a GNN. The main benefit of including
such a sub-symbolic explainer, however, is the provision of the fidelity metric.
Without such a metric there is no means to quantify the reliability of the expla-
nation. These results justify the strategy of using a hybrid method.

4.2 Deeper Integration of GNNs with Domain Knowledge

We carried out an initial integration of sub-symbolic and symbolic methods, by
mapping and integrating the GNN input and GNNExplainer output to and with
the available domain knowledge. A deeper integration could be reached through
integrating available domain knowledge δ into the GNN before training. As the
domain knowledge δ and the input graphs Gi are from different sources, they are
independent. It was therefore not known if their integration could significantly
worsen the GNN classification results. Initial results, where we included common
molecule structure from domain knowledge δMutag as a simple binary vector into
the feature matrices XMutag

i , show that the overall prediction accuracy of the
GNN only decreases insignificantly by 2% points, which is a promising first result.
It indicates that the domain knowledge, and the explanations generated with it,
don’t contradict the decision making process of the GNN.

Combining Sub-symbolic and Symbolic Methods for Explainability 185

5 Related Work

Explainable AI including model-level interpretation and instance-level explana-
tions have been the focus of research for years [3]. In this section we first give
an overview for explainable AI for Graph Neural Networks and then for using
symbolic methods to explain sub-symbolic models.

Sub-symbolic Explainer Methods. Current work towards explainable GNNs
attempts to convert approaches initially designed for Convolutional Neural Net-
works (CNNs) into graph domain [18]. The drawback of reusing explanation
methods previously applied to CNNs are their inability to incorporate graph-
specific data such as the edge structure. Another method, a graph attention
model, augments interpretability via an attention mechanism by indicating influ-
ential graph structures through learned edge attention weights [7]. It cannot,
however, take node feature information into account and is limited to a specific
GNN architecture. To overcome these problems, [11] created the model-agnostic
approach GNNExplainer, that finds a subgraph of input data which influence
GNNs predictions in the most significant way by maximizing the subgraph’s
mutual information with the model’s prediction.

Explanations with Symbolic Methods. A different type of explainability
method tries to integrate ML with symbolic methods. The symbolic methods
utilized alongside Neural Networks are quite agnostic of the underlying algo-
rithms and mainly harness ontologies and knowledge graphs [19]. One approach
is to map network inputs or neurons to classes of an ontology or entities of a
knowledge graph. For example, [15] map scene objects within images to classes
of an ontology. Based on the image classification outputted by the Neural Net-
work, the authors run ILP on the ontology to create class expressions that act as
model-level explanations. Furthermore, [20] learn a mapping between individual
neurons and domain knowledge. This enables the linking of a neuron’s weight
to semantically grounded domain knowledge. A ontology-based approach for
human-centric explanation of transfer learning is proposed by [2]. While there is
some explanatory value to these input-output methods, they fail to give insights
into the inner workings of a graph neural network and cannot identify which type
of information was influential in making a prediction. This work bridges this gap
by combining the advantages of both approaches is among the first to study the
coupling of a sub-symbolic explanation method with symbolic methods.

6 Conclusion

In this paper, we addressed the problem of grounding explanations in domain
knowledge while keeping them close to the decision making process of a GNN.
We showed that combining sub-symbolic with symbolic methods can generate
reliable instance-level explanations, that don’t rely on the user for correct inter-
pretation. We tested our hybrid framework on the Mutag dataset mapped to
the Mutagenesis ontology, to evaluate its explanatory value, its practicability

186 A. Himmelhuber et al.

and the validity of the idea. We used data from a chemical domain, as it comes
with complex domain knowledge that is universally accepted and can therefore
be considered as ground truth when evaluating explanations. Our results show,
that there are significant advantages of our hybrid framework over only using
the sub-symbolic explainer, where the output is susceptible to biased or faulty
interpretations by the user. Equally, there are advantages of our hybrid method
over a purely symbolic method such as ILL, as it comes with significantly higher
accuracy, while for an input-output method, the decision-making process of the
neural network isn’t considered and there are no means to validate the reliabil-
ity of the explanations. In future, we will evaluate how our hybrid framework
compares for different datasets. Furthermore, we will analyze the effect on expla-
nations when the coupling of available domain knowledge with GNNs is deepened
before training.

References

1. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies,
opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

2. Chen, J., et al.: Knowledge-based transfer learning explanation. In: Sixteenth Inter-
national Conference on Principles of Knowledge Representation and Reasoning
(2018)

3. Biran, O., Cotton, C.: Explanation and justification in machine learning: a survey.
In: IJCAI-17 Workshop on Explainable AI (XAI), vol. 8, no. 1 (2017)

4. Ilkou, E., Koutraki, M.: Symbolic vs sub-symbolic ai methods: friends or enemies?
In: CIKM (Workshops) (2020)

5. Tiddi, I.: Foundations of explainable knowledge-enabled systems. Knowl. Graph.
eXplainable Artif. Intell.: Found. Appl. Challenges 47, 23 (2020)

6. McGuinness, D.L., Van Harmelen, F.: OWL web ontology language overview. W3C
Recommendation 10(10), 2004 (2004)

7. Veličković, P., et al.: Graph attention networks. In: ICLR (2018)
8. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you? Explaining the pre-

dictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2016)

9. Kipf, T.N., Welling, M: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

10. Zhou, J., et al.: Graph neural networks: a review of methods and applications. AI
Open 1, 57–81 (2020)

11. Ying, R., et al.: GNNExplainer: generating explanations for graph neural networks.
In: Advances in Neural Information Processing Systems, vol. 32, p. 9240 (2019)

12. Debnath, A.K., et al.: Structure-activity relationship of mutagenic aromatic and
heteroaromatic nitro compounds. Correlation with molecular orbital energies and
hydrophobicity. J. Med. Chem. 34(2), 786–797 (1991)

13. Horridge, M., et al.: Understanding entailments in OWL. In: OWLED (2008)
14. Lehmann, J., et al.: Class expression learning for ontology engineering. J. Web

Semant. 9(1), 71–81 (2011)
15. Sarker, M.K., et al.: Explaining trained neural networks with semantic web tech-

nologies: first steps. arXiv preprint arXiv:1710.04324 (2017)

http://arxiv.org/abs/1710.04324

Combining Sub-symbolic and Symbolic Methods for Explainability 187

16. Lehmann, J.: DL-learner: learning concepts in description logics. J. Mach. Learn.
Res. 10, 2639–2642 (2009)

17. Miller, T., Howe, P., Sonenberg, L.: Explainable AI: beware of inmates running
the asylum or: how I learnt to stop worrying and love the social and behavioural
sciences. In: IJCAI Workshop on Explainable Artificial Intelligence (XAI) (2017)

18. Pope, P.E., et al.: Explainability methods for graph convolutional neural networks.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2019)

19. Seeliger, A., Pfaff, M., Krcmar, H.: Semantic web technologies for explainable
machine learning models: a literature review. In: PROFILES/SEMEX@ ISWC,
vol. 2465, pp. 1–16 (2019)

20. Selvaraju, R.R., et al.: Choose your neuron: incorporating domain knowledge
through neuron-importance. In: Proceedings of the European Conference on Com-
puter Vision (ECCV) (2018)

21. Garcez, A.A., Lamb, L.C.: Neurosymbolic AI: the 3rd wave. arXiv preprint
arXiv:2012.05876 (2020)

http://arxiv.org/abs/2012.05876

Practical Rule-Based Qualitative
Temporal Reasoning for the Semantic

Web

Guilherme Lima1(B), Marcelo Machado1, Rosario Uceda-Sosa2,
and Marcio Moreno1

1 IBM Research Brazil, Rio de Janeiro, Brazil
{guilherme.lima,marcelo.machado}@ibm.com, mmoreno@br.ibm.com
2 IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

rosariou@us.ibm.com

Abstract. We present an approach for practical rule-based temporal
reasoning over RDF/OWL using Allen’s Interval Algebra (IA). Reason-
ing in Allen’s IA is only tractable for certain subalgebras and is done
through path-consistency, a constraint propagation algorithm whose rule-
based implementation requires O(n2) rules for a subalgebra with n rela-
tions. Our approach uses custom built-ins to implement path-consistency
using a constant number of rules (just 6) and in a way that is subalgebra-
agnostic. In the paper, we present the approach, its implementation in
Apache Jena, and an experimental evaluation against traditional rule-
based implementations. The evaluation shows a considerable speed-up
when backward-chaining is used. A further contribution of the paper is
the problem set used in the evaluations.

Keywords: Temporal reasoning · Allen’s interval algebra · Rule-based
reasoning · Apache Jena · SWRL · HermiT · Pellet

1 Introduction

Many applications require reasoning about time using qualitative rather than
quantitative descriptions. Temporal question-answering over text is a typical
example [22]. Its goal is to extract events and temporal relations from text data
and then answer queries about implicit temporal relations. For instance, if event
A occurred before B and B occurred before C then, under the usual meaning
of “before”, we can conclude that A occurred before C. This type of reasoning
is called qualitative because it only considers temporal relations such as before,
after, during, etc., as opposed to quantitative notions, such as dates and dura-
tions, which occur less frequently in text data.1

The paradigmatic calculus for reasoning with qualitative temporal relations
was introduced by James F. Allen in 1983 [2]. Allen’s calculus, the Interval
1 When dates and durations do occur they can be used to infer further qualitative

relations: If A occurred in 2020 and B in 2021, then A occurred before B.

c© Springer Nature Switzerland AG 2021
S. Moschoyiannis et al. (Eds.): RuleML+RR 2021, LNCS 12851, pp. 188–202, 2021.
https://doi.org/10.1007/978-3-030-91167-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91167-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-91167-6_13

Practical Rule-Based Qualitative Temporal Reasoning 189

Algebra (IA), defines a notion of time interval and 13 basic, but exhaustive,
interval relations. More importantly, by considering sets of basic relations, Allen’s
IA can deal with uncertainty. For instance, using Allen’s IA we can say that A
occurred either before B or during B, that is, we can state “A {before, during}
B”, and draw consequences from such a statement.

The advantages of combining a qualitative temporal reasoning calculus, like
Allen’s IA, with Semantic Web technologies, such as RDF or OWL, are evident.
On the one hand, the type of ontological inference supported by RDFS or OWL
can be used to further enrich or restrict the facts derived from the temporal
relations. On the other hand, large databases of publicly available linked data,
such as WikiData and DBpedia, can be used to bring previously missing facts
and temporal relations into the system.

To combine Allen’s IA with RDF/OWL a few challenges must be overcome.
First, one needs a vocabulary for representing time and the 13 basic interval
relations. One popular alternative for this is W3C’s OWL-Time [8]; another
alternative is tOWL [24]. The second difficulty is the definition of general interval
relations, that is, sets of basic interval relations which are used to represent
uncertainty; neither OWL-Time nor tOWL support these. The third and more
significant difficulty lies in reasoning itself. Reasoning in Allen’s IA requires
constraint propagation algorithms which cannot be implemented in OWL alone;
but can be implemented (though not necessarily efficiently) using rules.

This third difficulty, the efficient implementation of Allen’s IA reasoning
algorithms using Semantic Web-compatible technologies (specifically, rules), is
the focus of this paper. The fundamental reasoning problem of Allen’s IA is
known to be intractable for the full algebra [31]. But there are subalgebras
with fewer relations which are tractable [9,18]. Reasoning with the tractable
subalgebras is usually done through a constraint propagation algorithm called
path-consistency [20,21]. This algorithm can be naturally formulated using Horn
clauses, which are directly translatable to a rule language such as SWRL [17].
However, using this approach, it takes O(n2) rules to implement path-consistency
for a subalgebra with n relations, which is not feasible for subalgebras with more
than a couple hundred of relations.2

In this paper, we present an alternative implementation of the Horn-clause
formulation of path-consistency for temporal reasoning over RDF/OWL data.
Our implementation uses Apache Jena [30] rules. It circumvents the O(n2) rule-
set growth problem by moving the Allen’s IA composition table, which is at the
heart of the path-consistency algorithm, from the rules to custom built-ins. Our
experimental evaluation shows that, when combined with backward-chaining,
our approach not only scales better than traditional implementations but also
provides a significant speed-up in the question-answering task. A further advan-
tage of our approach is that it’s completely agnostic to the subalgebra used.

To the best of our knowledge, there are no datasets to adequately evalu-
ate a proposal such as ours. So, as an additional contribution of this paper,

2 The direct translation of the Horn-clause formulation of path-consistency to SWRL
was proposed by Batsakis et al. in [4,5]. To make the translation practical they
adopted a subalgebra with just 29 relations.

190 G. Lima et al.

we generated a problem set with about 12K problems together with questions
and expected answers for two tractable subalgebras of Allen’s IA: the Bat-
sakis et al.’s [4,5] 29-relation subalgebra and the pointisable [7,19] subalgebra
with 187 relations. The dataset is available under an open-source license.3 We
used this dataset in the evaluation and compared our approach against a vanilla
implementation of path-consistency using Jena rules and against Batsakis et al.’s
SWRL rules.

The rest of the paper is organized as follows. Section 2 describes Allen’s
IA, the path-consistency algorithm, and its Horn-clause formulation. Section 3
details our proposal and its implementation. Section 4 presents our experimental
setup and results. Section 5 discusses some related work. Section 6 summarizes
our contribution and discusses next steps.

2 Background

2.1 Allen’s Interval Algebra

The Interval Algebra (IA) is a formalism for representing and reasoning quali-
tatively about time [2]. The basic entity of Allen’s IA is the time interval. An
interval is an ordered pair of points (x−, x+) such that x− < x+. Given two
intervals x and y, their relative position can be described by one of the 13 basic
interval relations listed in Table 1. It follows from the definition of the 13 basic
relations that they are JEPD (jointly exhaustive, pairwise disjoint); that is, given
any two intervals, exactly one of the basic relations must hold.

In Allen’s IA, uncertainty is represented by sets of basic relations. For
instance, the statement x{eq , d}y means that interval x coincides (is equal to) or
occurs during y; that is, x{eq , d}y iff xeqy or xdy. Each such set of basic relations,
denotes a (general) interval relation. The set A of all possible interval relations
contains 213 = 8192 members, including the empty relation ∅, which holds for no
two intervals, and the full relation A = {eq , b, bi ,m,mi , o, oi , d , di , s, si , f ,fi},
which holds for any two intervals.

The following operations are defined on A:

x (R−) y iff y R x (converse)
x (R ∩ S) y iff x R y and x S y (intersection)
x (R ◦ S) y iff ∃z : x R z and z S y (composition)

for all interval relations R,S ∈ A and intervals x, y, and z. The set A is closed
under the three operations and together with them it constitutes an algebra
(hence the name “Interval Algebra”).

A few remarks about the operations are in order:

1. The converse of R is the relation denoted by the union of the converses of the
basic relations in R. E.g., {b,mi , o}− = {bi ,m, oi}.

3 https://github.com/ibm-hyperknowledge/IAPL.

https://github.com/ibm-hyperknowledge/IAPL

Practical Rule-Based Qualitative Temporal Reasoning 191

Table 1. The 13 basic interval relations of Allen’s IA. (Adapted from [25].)

Basic relation Symbol Example Endpoint relations

x before y b xxx x− < y−, x− < y+,

y after x bi yyy x+ < y−, x+ < y+

x meets y m xxxx x− < y−, x− < y+,

y met-by x mi yyyy x+ = y−, x+ < y+

x overlaps y o xxxx x− < y−, x− < y+,

y overlapped by x oi yyyy x+ > y−, x+ < y+

x during y d xxx x− > y−, x− < y+,

y includes x di yyyyyyy x+ > y−, x+ < y+

x starts y s xxx x− = y−, x− < y+,

y started by x si yyyyyyy x+ > y−, x+ < y+

x finishes y f xxx x− > y−, x− < y+,

y finished by x fi yyyyyyy x+ > y−, x+ = y+

x equals y eq xxxx x− = y−, x− < y+,

yyyy x+ > y−, x+ = y+

2. The intersection of R and S is the relation denoted by the intersection of the
corresponding sets. E.g., {b,m, o} ∩ {o, f } = {o}.

3. The composition of R and S is the relation denoted by the union of the
compositions of the pairs of basic relations in the corresponding sets. So, if
R = {r1, . . . , rn} and S = {s1, . . . , sm} then R ◦ S is the relation denoted
by the union of all ri ◦ sj for ri ∈ R and rj ∈ S. The composition of basic
relations is computed from the definitions in Table 1 and the result is usually
arranged in a 13 × 13 basic composition table [2].

i0

i1

i2

i3

{o,
di
,fi
}

{b,m, o, d , s}

{eq , f ,fi}

{b,
m
, o
}

Fig. 1. An interval graph.

A problem in Allen’s IA can be given
as an interval graph where nodes stand for
intervals and edges stand for the known
relations between intervals. Given an inter-
val graph such as the one in Fig. 1, the fun-
damental reasoning task of Allen’s IA is to
determine whether the graph is consistent
(or satisfiable). That is, whether it is pos-
sible to assign pairs of points to the nodes
such that the restrictions given by the edges are fulfilled.4 This is the satisfiability
problem, ISAT, which is NP-complete [14,31] for the full algebra.

4 Inconsistent graphs are those that contain contradictory statements, such as “x{b}y
and y {b} x” (x and y cannot be both, at the same time, “before” each other).

192 G. Lima et al.

But there is a shortcut. The relations that occur in the above graph are all
members of the 29-relation subalgebra defined by Batsakis et al. in [4,5]. This
subalgebra is known to be tractable, which means that there are polynomial
algorithms to decide ISAT in it—in particular, path-consistency.

2.2 Path-Consistency

Given three edges xR1y, yR2z, and xSz in an interval graph, a triangle operation
consists in replacing S by the relation S ∩ (R1 ◦R2). A triangle operation is said
to stabilize if S = S∩ (R1 ◦R2). So, after each triangle operation the label of the
updated edge is either the same S or a smaller relation. The path-consistency
algorithm consists in repeating triangle operations until every such operation
stabilizes. At this point, two outcomes are possible:

1. If some edge is labeled by the empty relation ∅, then the original graph is
inconsistent.

2. Otherwise, the original graph is said to be path-consistent and the resulting
graph is equivalent and possibly less redundant than original one.5

Also, in case (2), if the set of relations occurring in the resulting graph is
contained in some tractable subalgebra [9,18], then the original graph is consis-
tent and, depending on the particular subalgebra, the resulting graph is mini-
mal [6,10] (or the strongest implied graph [26]) in the sense that its edges contain
no redundant basic relations. (Even if path-consistency does not guarantee min-
imality for a given subalgebra, it does provide a good approximation, and if the
graph is consistent, it is usually this approximation that matters to users.)

The path-consistency algorithm can be formulated axiomatically as follows:

⊥ ← x ∅ y (1)
xA y ← � (2)

y R− x ← x R y (3)
x (R ∩ S) y ← x R y, x S y (4)
x (R ◦ S) z ← x R y, y S z (5)

The triangle operations are computed by rules (4) and (5), while rules (2) and (3)
ensure that every triangle is visited. Rule (1) is the inconsistency check.

If we apply these rules exhaustively to the graph of Fig. 1, we eventually get
the three minimally-labeled edges i0{o}i1, i0{b,m, o, d , s}i3, and i1{di , si , oi}i2,
together with their converses. Note the reduction in uncertainty from {o, di ,fi}
to {o} in the edge between i0 and i1, and from A to {b,m, o, d , s} and {di , si , oi}
in the edges between i0 and i3 and i1 and i2.

In practice, rules (3)–(5) can be seen as schemas. Their implementation in a
rule language like SWRL or Jena’s requires a rule instance for each choice of R
5 Strictly speaking this is the algorithm for 3-consistency, a notion which is equivalent

to the more general notion of path-consistency. It has become standard practice to
conflate the two notions [20].

Practical Rule-Based Qualitative Temporal Reasoning 193

and S in the given subalgebra. So, using this approach, it takes O(n2) rules to
implement path-consistency in a subalgebra with n relations.

3 Proposal and Implementation

Our goal is to eliminate the quadratic growth in the number of rules required to
implement path-consistency in rule languages like SWRL and Jena’s. We do so
by moving the converse, intersection, and composition operations from rules to
custom built-ins which operate on a binary representation of the general interval
relations. More specifically, we encode each general relation as a 13-bit number
which stands for a set of basic relations. For example,

0 0 0 1 0 1 0 1 0 1 0 1 0 stands for {b,m, o, d , s},
fi f si s di d oi o mi m bi b eq

0 stands for the empty relation ∅, and 8191 stands for the full relation A.
Using this encoding, the intersection operation can be computed by a simple
bitwise “and”, and converse and composition can be computed using lookup
tables with about 8K and 67M entries each. In our case, we pre-computed these
tables using our (still unpublished) qualitative temporal reasoning framework
and checked them independently using GQR [12].

To expose the three operations to the rules, we extended Jena’s rule system
with the five built-ins listed in Table 2.6 The first two, allenId and allenURI,
convert to and from the 13-bit relation ids and their corresponding URIs. The
URIs have the prefix http://www.ibm.com/timex# followed by the name of the
relation, which is empty for ∅ and full for A. The remaining relations are
named according to the bits set in their numeric ids. For instance, {b} is b,
{eq , f ,fi} is eq f fi, and so on. Back in Table 2, the last three built-ins take one
or two URIs, apply the corresponding operation, and store the resulting URI on
the last variable received as argument.

Table 2. Built-ins for reasoning with Allen’s IA.

allenId(r,i) Binds i to the numeric id of the relation with URI r

allenURI(i,r) Binds r to the URI of the relation with numeric id i

allenConv(r,s) Binds s to the converse of r

allenCap(r,s,t) Binds t to the intersection of r and s

allenComp(r,s,t) Binds t to the composition of r and s

With these custom built-ins, path-consistency can be implemented using six
Jena rules, as shown in Fig. 2. The first rule (line 2) tells Jena’s backward-
chaining engine to table all goals. This is necessary to avoid infinite loops.
(Most of the rules in Fig. 2 are written in backward style; we will discuss the
6 Before deciding to extend Jena with custom built-ins, we tried to use its math and

string manipulation built-ins to implement these operations. But that was really
cumbersome, especially due to the lack of built-ins for integer division and modulus.

194 G. Lima et al.

implications of this in Sect. 4.) The second and third rules (line 4; each -> or <-
introduces one rule) comprise the inconsistency check. They trigger a validation
error whenever an edge with the empty relation is derived. The fourth, fifth,
and sixth rules (lines 6–7, 9–13, and 15–19) derive, respectively, the converse of
an edge, the intersection of two edges, and the composition of two edges. The
reason for requiring that intervals ?x, ?y, and ?z be distinct in these rules is to
avoid self-loops. Also, we require that ?r and ?s be different from A and ∅ to
prevent vacuous inferences (e.g., for any r, A∩r = r∩A = r, A◦r = r ◦A = A,
∅ ∩ r = r ∩ ∅ = ∅, and ∅ ◦ r = r ◦ ∅ = ∅).

Fig. 2. Jena ruleset using the custom built-ins. (For the sake of brevity, the rules listed
here are a simplified version of the rules we actually use in the experiments. The latter
have extra checks to prevent redundant inferences. For example, since intersection is
commutative, to avoid triggering the intersection rule twice, for r∩ s and s∩ r, we add
a premise that restricts the comparison to the cases where the id of r is less than the
id of s.)

The ruleset of Fig. 2 is minimalist by design. It does not try to provide an
ontology of time intervals or interval relations. It concerns itself only with the
8192 relations in the “timex” namespace and it assumes nothing about the sub-
jects and objects of these relations. Because of this, it is relatively straight-
forward to combine this ruleset with different time ontologies, such as OWL-
Time [8] or tOWL [24]. Also, the ruleset is subalgebra-agnostic. It will work for
any subalgebra—the built-ins can operate any of the 8192 relations in A.

To illustrate how these rules are used in practice, consider the RDF document
(in Turtle syntax) of Fig. 3a. This document corresponds to the interval graph of
Fig. 1. With the rules loaded, if we ask Jena to list all relations from i0 to i1, we
get the list depicted in Fig. 3b. This list contains the initial relation, :o di fi,
but also other relations which were inferred by the rules. The strongest among
these is equal to the intersection of them all, which in this case is :o (overlaps).
So, the strongest thing we can say about the relation between i0 and i1 is that
i0 overlaps i1.

Practical Rule-Based Qualitative Temporal Reasoning 195

Fig. 3. (a) RDF document corresponding to the graph of Fig. 1. (b) Sample SPARQL
query and its result.

4 Evaluation

We compared two variations of the ruleset presented of Sect. 3 against (i) cor-
responding vanilla implementations of path-consistency using Jena rules and
(ii) the SWRL ruleset used by Batsakis et al. in [4,5] (available here7). We con-
sidered two tractable subalgebras: the minimal 29-relation subalgebra introduced
by Batsakis et al. and the pointisable subalgebra [7,19] containing 187 relations.
To execute the Jena rulesets we used the latest version of Jena extended with
our five custom built-ins. The SWRL ruleset was executed on HermiT [13] and
Openllet [27] using OWL API [16], and also on Openllet using Jena. (See Sect. 4.4
for the precise versions.)

4.1 Rulesets

Table 3 summarizes the rulesets we used. The Jena rulesets with builtin in the
name are the ones that use our built-ins. Those with fw and bw in the name adopt,
respectively, forward and backward rule styles. The difference between these two
styles is significant, as Jena evaluates them using different rule engines.

Forward rules are evaluated by Jena’s RETE-based [11] forward engine, which
computes the complete deductive closure at once, as soon as the graph is loaded.
This means that, when using forward rules, every consequence is computed even
before the first query. So, no reasoning happens during the queries.

When using backward rules, in contrast, reasoning only happens during
queries. The backward rules are evaluated by a logic programming (LP) tabled
Datalog engine. Given a query, the LP engine translates it into a goal and
attempts to solve it using a resolution-style algorithm. The LP engine stops
as soon as the goal is solved. So, only the consequences required to solve the
goal are computed.

Jena also supports hybrid rules mixing the forward and backward styles. In
the rulesets of Table 3, the only place where mixed rules are used is in the rule
for validation (e.g., Fig. 2, line 4).
7 https://github.com/sbatsakis/TemporalRepresentations/blob/master/intervals/

qualitative-Allen.owl (commit 3656fa5 on Jun 13, 2015).

https://github.com/sbatsakis/TemporalRepresentations/blob/master/intervals/qualitative-Allen.owl
https://github.com/sbatsakis/TemporalRepresentations/blob/master/intervals/qualitative-Allen.owl

196 G. Lima et al.

Table 3. The rulesets used in the experiments.

Ruleset name Subalgebra Executor Style Num. rules

jena-bw-builtin any Jena backward w. built-ins 6

jena-fw-builtin any Jena forward w. built-ins 4

jena-bw-29 Batsakis et al.’s Jena backward 982

jena-fw-29 Batsakis et al.’s Jena forward 980

hermit-swrl-29 Batsakis et al.’s HermiT (via OWL API) SWRL 982

jena+openllet-swrl-29 Batsakis et al.’s Openllet (via Jena) SWRL 982

openllet-swrl-29 Batsakis et al.’s Openllet (via OWL API) SWRL 982

jena-bw-187 pointisable Jena backward 32511

jena-fw-187 pointisable Jena forward 32509

4.2 Problems

To evaluate the rulesets, we generated a set of problems (interval graphs) using
our qualitative reasoning framework, which implements the H-model method for
generating random interval graphs [25].8 Since our main interest was in evalu-
ating query performance in Batsakis et al.’s 29-relation subalgebra and in the
pointisable subalgebra, we generated only consistent graphs in these two sub-
algebras. The full problem set (available here9) contains about 12K problems,
each in three different formats (GQR’s format [12], RDF using Batsakis et al.’s
vocabulary, and RDF using our “timex” vocabulary).

Most works that present performance evaluations of Allen’s IA reasoners use
randomly generated interval graphs [3–5,12,23,25]. To the best of our knowledge,
there is no comprehensive dataset of real-world problems for the Allen’s IA; let
alone datasets targeting particular tractable subalgebras of the IA.

In our case, for each subalgebra, we generated consistent problems with sizes
ranging from 10 to 200 intervals. Besides the size (number of intervals), in the H-
model two other important parameters of a problem are its average degree and
its average relation size. The average degree is a measure of the average number
of non-full edges leaving a node of the graph. The average relation size is the
average number of basic relations occurring in an edge of the graph. Together
with the size, degree and relation size can greatly influence the performance of
the reasoner. This is especially true for the degree, which is directly related to
the number of non-full edges in the graph.

8 Our qualitative reasoning framework, called QReason, is a generic framework writ-
ten in Python which adopts an architecture similar to that of GQR [12]. The user
specifies a calculus by giving its basic relations and the framework derives the general
relations and the calculus properties. Currently, QReason implements two problem
generation algorithms. The first, adapted from [25], is a brute-force algorithm. Start-
ing with an empty graph, we add one random edge at a time and check whether the
graph is consistent at each step. If the graph becomes inconsistent, we backtrack the
last edge choice and try again. The second algorithm, adapted from [20], consists in
first generating a random initial solution (set of intervals) and then adding redun-
dant edges until the required parameters of the H-model are met. We used both
algorithms to generate the problem set of this paper.

9 https://github.com/ibm-hyperknowledge/IAPL.

https://github.com/ibm-hyperknowledge/IAPL

Practical Rule-Based Qualitative Temporal Reasoning 197

Table 4. Average, minimum, and maximum values of average degree in the different
problem groups. (Values rounded to the nearest integer.)

Batsakis et al.’s subalgebra (29 relations)

Degree Size 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Avg 6 8 13 25 26 31 37 28 61 36 66 62 58 75 82 78 65 78 98 66

Min 2 1 1 7 9 10 10 4 13 1 14 17 3 2 10 26 5 8 48 4

Max 9 16 28 37 47 58 68 58 89 85 104 106 123 134 144 145 134 160 189 154

Pointisable subalgebra (187 relations)

Degree Size 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Avg 6 12 20 16 27 34 34 35 44 49 50 57 62 83 68 73 76 79 139 112

Min 3 5 2 5 3 10 2 5 3 8 21 12 19 14 4 4 10 18 41 8

Max 8 18 28 27 42 59 68 74 82 96 92 117 121 137 148 156 142 129 187 195

For each subalgebra, we selected groups of 10 problems of the same size,
with sizes starting at 10 and ending at 200 intervals with increments of 10. This
gives a total of 200 problems per subalgebra. To ensure variety in degree and
relation size, in each of the groups, the 10 problems were selected with uniform
distribution among the available problems. Table 4 lists the average degree of the
selected problems. (For instance, the 10 problems of size 20 of the pointisable
subalgebra have, on average, an average degree of 12.) The average relation size
for these problems fluctuates around 6 basic relations per general relation.

4.3 Queries

Each problem in our problem set is accompanied by a TSV file containing a list
of queries which test the edges of the corresponding path-consistent graph. These
queries were generated as follows. Immediately after generating each problem,
we used our qualitative reasoning framework to compute the corresponding path-
consistent graph and then generated a query for each of the edges in this graph
(which was also checked using GQR). For instance, here is a line (query) in one
of the TSV files:

http://ex.org/variable#0 http://www.ibm.com/timex#o http://ex.org/variable#1 1

This line states that the reasoner should be able to infer from the associated
problem graph that interval 0 overlaps interval 1. (The 1 on the right-hand side
means that the query is expected to succeed.)

For each problem, we selected 100 queries from the associated TSV with
uniform distribution. This gives a total of 1000 queries for each of the sizes
shown in Table 4, or 20K queries in total.

4.4 Environment

The experiments were run on an IBM Cloud’s IaaS virtual-machine with 8 CPUs
(Intel Xeon Gold 6140 2.30 GHz), 32G RAM, and 25G persistent storage running
RedHat Enterprise Linux 8.0 64bit. We used the OpenJDK 11.0.11 with a stack
size of 1G, initial heap size of 1G, and maximum heap size of 8G. We used the

198 G. Lima et al.

latest snapshots of Apache Jena 3.18.010 (February 8, 2021) and Openllet 2.6.611

(May 5, 2021), and the releases 1.4.5.519 of HermiT and 5.1.17 of OWL API.

4.5 Experiments and Results

We run two experiments, one for each subalgebra. Each experiment consisted
of 10 runs of 100 queries over the 10 problems in each of the 10–200 groups
shown in Table 4. This gives a total of 100 runs per group. Within a same group
(e.g., problems of size 10) exactly the same problems and queries were fed to the
various rulesets. Figure 4 depicts the average times of the 10 runs. (Note that
we adopted a threshold of 900 s, or 15 min, for the runs. That is, if the average
time of all runs for a given ruleset gets above 900s, we stop considering it in
subsequent size increments.)

Fig. 4. Average time of 10 runs of 100 queries. (a) Batsakis et al.’s subalgebra (29
relations). (b) Pointisable subalgebra (187 relations).

We also measured the overall accuracy (percentage of correct answers) of
each of the rulesets. The results are the following: openllet-swrl-29 got 96.8%;
hermit-swrl-29 got 97.9%; jena+openllet-swrl-29 got 98.1%; jena-bw-29
got 99.6%. The remaining rulesets obtained an accuracy of 100%. We are cur-
rently investigating the causes of the incorrect answers given by the jena-bw-29

10 https://github.com/apache/jena/tree/jena3.
11 https://github.com/Galigator/openllet.

https://github.com/apache/jena/tree/jena3
https://github.com/Galigator/openllet

Practical Rule-Based Qualitative Temporal Reasoning 199

ruleset and the SWRL rulesets (which give incomplete answers even for small
graphs).

4.6 Discussion

29-relation Subalgebra. In the experiment with the 29-relation subalgebra
(Fig. 4a), Openllet and HermiT had the worst performance. Openllet hit the
900s threshold after 50 intervals, while it took 100 intervals to make HermiT hit
the same threshold. This is consistent with the results reported in [4].12

Overall the Jena rules performed better than the SWRL rules. The SWRL
rules running on Openllet via Jena had a similar performance to the forward rules
using the custom built-ins (jena-fw-builtin). The latter ruleset performed
slightly worse than its counterpart without the built-ins (jena-fw-29). The
explanation for this is in the way forward rules are implemented by the RETE
engine, which is similar to the way the lookup tables of the built-ins work, but
without the extra overhead of built-in calls and id to URI translations.

The clear winner in Fig. 4a was the backward ruleset using the custom built-
ins (jena-bw-builtin). Recall that backward rules are evaluated by the logic
programming (LP) engine. The LP engine is query-driven and it only infers
what is necessary to answer the query. Since the number of queries (100) is
small compared to the of number of edges in the problems, the LP engine has to
do less work than the forward engine (which always computes everything). This
explains the difference between the backward and forward rules, but does not
explain the difference between the two versions of the backward rules. It seems
that the huge difference in the number of rules really made the difference—6
versus 982 and 32,511 for the 29- and 187-relation subalgebras (see Table 3).

Finally, the point not shown in Fig. 4a for jena-bw-29 at 140 intervals
corresponds to1314 s. Also in the same figure, the bump at 190 intervals for
jena-bw-builtin is explained by the average degree of that problem group, 98
(see Table 4), which is higher than the average degree of the surrounding groups.
This also explains the bump at 140 in Fig. 4b.

187-relation Subalgebra. In Fig. 4b, the larger number of relations in the subal-
gebra contributed to amplify the differences between the rulesets. The two for-
ward rulesets had almost the same performance and hit the 900s threshold with
graphs of size 50. The points are not shown in Fig. 4b but both, jena-fw-187
and jena-fw-builtin, took on average about 5000 s to answer the 100 ques-
tions over 50 intervals. The results of the backward ruleset without the built-ins,
jena-bw-187, were even worse. It hit the 900 s threshold with just 40 intervals.
Actually, 89 of the 100 runs of jena-bw-187 over 40 intervals failed with a stack
overflow error, which usually means that recursion was too deep.

12 In [4], the authors also report being able to reason over 500 intervals under 150s
using HermiT, but the exact type of reasoning they consider is not clear and their
problem set, which was derived from a dataset of dates of marriages, seems to be
easier than the one we are using here.

200 G. Lima et al.

The clear winner was again the backward ruleset with the custom builtins,
jena-bw-builtin, which was able to keep the average time below 900s for graphs
with up to 160 intervals. This result together with that of Fig. 4a, demonstrate
not only the generality of our approach but also its greater scalability when
combined with backward-chaining. At the same time, both results also make
evident the limits of rule-based reasoning for this type of application (we will
have more to say about this in Sect. 6).

5 Related Work

The two papers [4,5] of Batsakis et al. are our principal references. In both
papers, the authors present SWRL-based implementations of path-consistency
for a tractable fragment of Allen’s IA (the 29-relation subalgebra). They also deal
with the Point Algebra and RCC (other qualitative calculi for time and space),
related quantitative extensions, and the representation of temporal knowledge,
which are not our focus here. Two other works by some of the same authors
are [28] and [3]. The former extends SOWL, an ontology for spatiotemporal
information, with SPARQL primitives for qualitative reasoning, including sup-
port for the basic interval relations. Reasoning itself is handled by CHRONOS,
introduced in [3], which combines an OWL reasoner with an external Allen’s IA
reasoner which implements path-consistency. In a sense, the external reasoner of
CHRONOS plays the role of our rules plus custom built-ins.

At least two other works use rules for reasoning in Allen’s IA. In [29], the
authors define ALLEN+, an ontology for representing and reasoning about time.
ALLEN+ uses SWRL for reasoning over sets of basic Allen relations, but it
adopts an approach which does not coincide with usual definitions and algo-
rithms of Allen’s IA—for instance, the authors do not consider tractable sub-
algebras or the path-consistency algorithm. The second work, [1], is similar. It
presents an ontology of time and uses SWRL for reasoning over (extended) basic
Allen relations. It also adopts a nonstandard reasoning algorithm. Neither [29]
nor [1] present performance evaluations of the proposed rulesets.

The ideas of using sets of JEPD relations to represent uncertainty and of oper-
ating these sets using converse, intersection, and composition, which are central
to Allen’s IA, are also adopted by many other qualitative calculi, including spa-
tial calculi such as RCC. The methods of reasoning in these calculi are thus quite
similar to those of Allen’s AI. This means that the approach we describe here
can be adapted to rule-based qualitative spatial reasoning of the type described
in works such as [5] and [15].

6 Conclusion

We presented an approach for practical rule-based qualitative temporal reasoning
using Allen’s IA. Reasoning in tractable subalgebras of the IA is usually done
through path-consistency, a constraint propagation algorithm whose formulation
using rules requires O(n2) rules for a subalgebra with n relations. The approach

Practical Rule-Based Qualitative Temporal Reasoning 201

we propose here avoids this quadratic growth in number of rules by moving the
IA composition table from rules to custom built-ins. With this idea, we were able
to outperform other rule-based reasoners and more traditional implementations
of path-consistency. An additional contribution of the paper is the dataset used
in the evaluations, which is publicly available under an open-source license.

As we mentioned at the end of Sect. 4, despite the speed-up enabled by our
approach, the results of Fig. 4 highlight the limits of rule-based reasoning for
this type of application. The same graphs that caused the rulesets of Fig. 4
to exceed the 15 min threshold are easily handled by specialized solvers, such
as GQR [12], which can solve them using path-consistency in no more than
a couple of seconds. The main reasons for such a difference in performance
are twofold. First, specialized solvers use a matrix representation which allows
them to manipulate interval graphs much more efficiently. Second, the triangle
operations implemented by such tools actually replace an edge in the graph
(instead of adding a new one). Adding a new edge, as it’s done in the Horn-clause
formulation of path-consistency, has the immediate drawback of increasing the
number triangles that need to be considered in subsequent iterations.

We are currently investigating how nonmonotonic reasoning can be used to
circumvent this last problem. Also, in the spirit of CHRONOS [3], we are inves-
tigating how to combine matrix-based reasoners, such as GQR, and distributed
reasoners, such as [23], with the rule-based approach, so that multiple solutions
can be combined to reason over RDF/OWL data.

Acknowledgments. This work was partially supported by the DARPA KAIROS
program.

References

1. Achich, N., Ghorbel, F., Hamdi, F., Métais, E., Gargouri, F.: Approach to reasoning
about uncertain temporal data in OWL 2. Procedia Comput. Sci. 176 (2020)

2. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM
26(11) (1983)

3. Anagnostopoulos, E., Batsakis, S., Petrakis, E.G.M.: CHRONOS: a reasoning
engine for qualitative temporal information in OWL. Procedia Comput. Sci. 22
(2013)

4. Batsakis, S., Petrakis, E., Tachmazidis, I., Antoniou, G.: Temporal representation
and reasoning in OWL 2. Semant. Web 8(6) (2016)

5. Batsakis, S., Tachmazidis, I., Antoniou, G.: Representing time and space for the
semantic web. Int. J. Artif. Intell. Tools 26(3) (2017)

6. van Beek, P.: Reasoning about qualitative temporal information. Artif. Intell. 58
(1992)

7. Beek, P.V., Cohen, R.: Exact and approximate reasoning about temporal relations.
Comput. Intell. 6(3) (1990)

8. Cox, S.J.D., Little, C.: Time ontology in OWL. Candidate Recommendation, W3C,
March 2020

9. Drakengren, T., Jonsson, P.: Towards a complete classification of tractability in
Allen’s algebra. In: Proceedings of the 15th IJCAI (1997)

202 G. Lima et al.

10. Dylla, F., et al.: A survey of qualitative spatial and temporal calculi: algebraic and
computational properties. ACM Comput. Surv. 50(1) (2017)

11. Forgy, C.L.: Rete: a fast algorithm for the many pattern/many object pattern
match problem. Artif. Intell. 19, 17–37 (1982)

12. Gantner, Z., Westphal, M., Wölfl, S.: GQR: a fast reasoner for binary qualita-
tive constraint calculi. In: Proceedings of the AAAI WS on Spatial and Temporal
Reasoning (2008)

13. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: an OWL 2
reasoner. J. Automat. Reason. 53(3) (2014)

14. Golumbic, M.C., Shamir, R.: Complexity and algorithms for reasoning about time:
a graph-theoretic approach. J. ACM 40(5), 1108–1133 (1993)

15. Holzmann, C.: Rule-based reasoning about qualitative spatiotemporal relations. In:
Proceedings of 5th International Workshop on Middleware for Pervasive and Ad-
Hoc Computing: Held at the ACM/IFIP/USENIX 8th International Middleware
Conference. ACM (2007)

16. Horridge, M., Bechhofer, S.: The OWL API: a Java API for working with OWL 2
ontologies. In: Proceedings of the 6th International Conference OWL: Experiences
and Directions. CEUR-WS.org (2009)

17. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: a semantic web rule language combining OWL and RuleML. W3C member
submission, W3C, May 2004

18. Krokhin, A., Jeavons, P., Jonsson, P.: Reasoning about temporal relations: the
tractable subalgebras of Allen’s interval algebra. J. ACM 50(5), September 2003

19. Ladkin, P.B., Maddux, R.D.: On binary constraint networks. Technical report.
KES.U.88.8, Kestrel Institute (1988)

20. Ladkin, P.B., Reinefeld, A.: Effective solution of qualitative interval constraint
problems. Artif. Intell. 57(1) (1992)

21. Ligozat, G.: Qualitative Spatial and Temporal Reasoning. Wiley, Hoboken (2012)
22. Llorens, H., Chambers, N., UzZaman, N., Mostafazadeh, N., Allen, J., Pustejovsky,

J.: SemEval-2015 task 5: QA TempEval: evaluating temporal information under-
standing with question answering. In: Proceedings of the 9th International Work-
shop on Semantic Evaluation. ACL, June 2015

23. Mantle, M., Batsakis, S., Antoniou, G.: Large scale distributed spatio-temporal
reasoning using real-world knowledge graphs. Knowledge-Based Syst. 163 (2019)

24. Milea, V., Frasincar, F., Kaymak, U.: tOWL: a temporal web ontology language.
IEEE Trans. Syst. Man Cybern. 42(1) (2012)

25. Nebel, B.: Solving hard qualitative temporal reasoning problems: evaluating the
efficiency of using the ORD-Horn class. Constraints 1 (1997)

26. Nebel, B., Bürckert, H.J.: Reasoning about temporal relations: a maximal tractable
subclass of Allen’s interval algebra. J. ACM 42(1) (1995)

27. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-
DL reasoner. J. Web Semant. 5(2) (2007)

28. Stravoskoufos, K., Petrakis, E.G.M., Mainas, N., Batsakis, S., Samoladas, V.:
SOWL QL: Querying spatio-temporal ontologies in OWL. J. Data Semant. 5 (2016)

29. Terziyan, V., Kaikova, O.: Ontology for temporal reasoning based on extended
Allen’s interval algebra. Int. J. Metadata Semant. Ontol. (2016)

30. The Apache Software Foundation: Apache Jena (2021). https://jena.apache.org/.
Accessed 03 Nov 2021

31. Villain, M., Kautz, H.: Constraint propagation algorithms for temporal reasoning.
In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI 1986).
AAAI Press (1986)

https://jena.apache.org/

Logic Rules Meet Deep Learning: A Novel
Approach for Ship Type Classification

Manolis Pitsikalis1(B) , Thanh-Toan Do2 , Alexei Lisitsa1 ,
and Shan Luo1

1 Department of Computer Science, University of Liverpool, Liverpool, UK
{e.pitsikalis,a.lisitsa,shan.luo}@liverpool.ac.uk

2 Department of Data Science and AI, Monash University, Clayton, Australia
toan.do@monash.edu

Abstract. The shipping industry is an important component of the
global trade and economy, however in order to ensure law compliance and
safety it needs to be monitored. In this paper, we present a novel Ship
Type classification model that combines vessel transmitted data from the
Automatic Identification System, with vessel imagery. The main compo-
nents of our approach are the Faster R-CNN Deep Neural Network and a
Neuro-Fuzzy system with IF-THEN rules. We evaluate our model using
real world data and showcase the advantages of this combination while
also compare it with other methods. Results show that our model can
increase prediction scores by up to 15.4% when compared with the next
best model we considered, while also maintaining a level of explainability
as opposed to common black box approaches.

Keywords: Object detection · Classification rules · Fuzzy rules

1 Introduction

Nowadays, the combination of deep learning with logic has been attracting a
lot of attention for numerous reasons. On the one hand, deep learning has been
used extensively in different applications, such as object detection [18,19] and
language analytics tasks [3,13] with a lot of success. On the other hand, logic
approaches have been used widely in tasks where explainability is required, such
is the case in certain medical tasks [11], or where expert knowledge is available
and needs to be encoded into a model [5]. However, logic approaches typically
provide crisp predictions over symbolic data, and it is often the case that human
experts are required to express the knowledge into some form of logic. On the
other hand, although deep learning approaches can handle unstructured data
such as text and images, their black box nature makes them inadequate for
tasks where explainability is a key requirement. For these reasons, there is a
need for a model that combines the advantages of deep learning with those of
logic based approaches. In this paper we propose a model that combines deep
learning with logic rules, applied in the shipping domain, for the task of ship
type classification.
c© Springer Nature Switzerland AG 2021
S. Moschoyiannis et al. (Eds.): RuleML+RR 2021, LNCS 12851, pp. 203–217, 2021.
https://doi.org/10.1007/978-3-030-91167-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91167-6_14&domain=pdf
http://orcid.org/0000-0003-2959-2022
http://orcid.org/0000-0002-6249-0848
http://orcid.org/0000-0002-3820-643X
http://orcid.org/0000-0003-4760-0372
https://doi.org/10.1007/978-3-030-91167-6_14

204 M. Pitsikalis et al.

Shipping, since the ancient years, has been a very important component of
global trade and economy. However, there are many cases where ships are found
to be involved in illegal activities that are possibly dangerous or harmful to the
environment. In order to ensure law compliance and safety, shipping needs to
be monitored. Today, there is abundance of Maritime data. Systems such as the
Automatic Identification System (AIS1), a system that allows the transmission of
both dynamic spatio-temporal data and static identity data from vessels, CCTV
imagery from stationary cameras placed in ports or from cameras in Drones,
Satellite Aperture Radar (SAR) images, data from RADAR systems and so
on, provide valuable information for the maritime monitoring task. Ships or in
general maritime vessels are divided into ship types based on their characteristics
and purpose, for example there are fishing vessels, search and rescue vessels,
cargo vessels and so on, consequently different regulations apply to each ship
type. In order to promote security and abidance to regulations the process of
classifying and validating a vessel’s type needs to be automated using the data
available.

In the context of this paper, we aim to combine two data sources in order
to perform ship type classification as illustrated in Fig. 1. We use static vessel
transmitted AIS data and a collection of images pre-linked with the AIS records.
The main components of our approach are the Faster-RCNN deep neural network
and a Neuro-Fuzzy model leveraging convolutional deep features of the former
along with AIS information. We evaluate the presented model using real world
data and compare it with other algorithms available. The contributions of this
paper are:

AIS static data
MMSI, width, length, ..., draught

Ship Type
Classification

Faster-RCNN

Fuzzy Rules

Vessel Image

Classified Vessel

Fig. 1. Pipeline of the Ship Type Classification system.

– a novel classification model that combines images with structured contextual
data, in our case vessel images and AIS data for ship type classification,

– a Neuro-Fuzzy approach that can be used to improve classification accuracy
in object detection and maintain a level of explainability when additional
data is available.

1 http://www.imo.org/en/OurWork/Safety/Navigation/Pages/AIS.aspx.

http://www.imo.org/en/OurWork/Safety/Navigation/Pages/AIS.aspx

Logic Rules Meet Deep Learning 205

The paper is organised as follows. In Sect. 2 we present work related to our
approach. In Sect. 3 we present material needed for the presentation of our work.
Next, in Sect. 4 we describe our methodology, while in Sect. 5 we present our
experimental setting and analyse the experiments we performed in our evalua-
tion. Finally, in Sect. 6 we focus on future work and discuss our findings.

2 Related Work

In this section we present works related to the ship type classification task, the
combination of logic rules and neural networks and finally the fuzzification of
logic rules.

In the recent years, Ship Type classification has attracted a lot of interest. D.
Nguyen et al. in [14] present an architecture capable of performing ship type clas-
sification and anomaly detection using AIS trajectories. They use an embedding
block based on Variational Recurrent Neural Networks (VRNNs) [2] to trans-
form the irregularly shaped AIS data into 10-min sampled structured regimes.
Then using the regimes of the embedding block, they perform specific tasks such
as trajectory reconstruction, ship type classification, anomaly detection etc. In
our approach, instead of using complete trajectories, we choose to use only the
information transmitted over the static AIS messages, since complete trajecto-
ries are not always available and require a bigger amount of transmitted AIS
messages over a period of time. U. Kanjir et al., in another work [9] provide
an overview of the available methodologies for vessel detection and classification
using SAR imagery along with the most important factors affecting the accuracy
of the aforementioned task. According to their overview, the ship detection task
comprises of three steps. The first step is to detect whether a vessel exists in an
image; the second step is to identify its type, while the third step is the unique
identification of the vessel, i.e., finding a unique identifier such as the Maritime
Mobile Service Identity (MMSI) number or the International Maritime Organ-
isation (IMO) number. Their analysis focuses on the optical sensors used, the
different detection workflows used for detecting vessels in images, the classifi-
cation methods used, the metrics for evaluation and finally on the importance
of combining different types of data sources for better results. We focus on the
two first steps of U. Kanjir’s et al. ship detection methodology, which are the
‘detection of a ship in an image’ and ‘the identification of its type’.

When it comes to Logic in Neural Networks, Z. Hu et al. in [8], present a
way of harnessing knowledge from logic rules in a teacher-student model setting.
The goal of their approach is to transfer the human knowledge provided by the
rules into the network parameters. They evaluate their rule-knowledge distilla-
tion approach in certain Natural Language Analytics tasks and their results show
that their approach manages to improve the accuracy compared to other meth-
ods. However this approach does not allow any learning in the aspect of the logic
rules, since they remain constant during training. In another work, G. Marra et
al. [12], integrate first order logic rules with deep learning in both training and
evaluation settings. The approach of G. Marra et al. allows the learning of the

206 M. Pitsikalis et al.

weights of the neural network and the parameters of the integrated logic rules
that are used for reasoning. In order to render the rules suitable for integration
they replace conjunction and disjunction with the t-norm and s-norm equiva-
lents. In our approach, we fuzzify the logic rules, with the use of the sigmoidal
membership function and use weighted exponential means for the approximation
of conjunction and disjunction. The fuzzified rules are then integrated into the
neural network architecture, whereby the weights of the disjunction operation
are learned.

M. Tsipouras et al. in [20] present a fuzzy model created using rules extracted
from a C4.5 Decision Tree that they later fuzzify in a similar way as we do in
this paper. They evaluate their optimised fuzzy model on medical data and their
results show that they achieve comparable accuracy with an ANN approach.
Compared to our approach, instead of using one Decision Tree to extract the
logic rules, we use a set of one-vs-all CART classifiers since this method produces
specialized rules for each class [6] in our problem. Moreover, we treat our fuzzy
model as a way of integrating two sources of information, in the training step
the initial fuzzy model is created using one source of information while the
parameters of the fuzzy model are computed using both sources, then in the
evaluation step both sources of information are required to make a prediction.

3 Preliminaries

The main components of our approach are a Fuzzy model created by extract-
ing rules from a set of Decision Trees, and the Faster R-CNN deep neural net-
work [19]. In what follows, we present the necessary background for our approach.

Decision Tree classifiers are probably the most widely known classifiers in
Machine Learning. In their simplest form, they use a binary tree structure, that
when traversed in accordance to a part of an input set they produce a conclusion.
In our approach we use the Classification and Regression Trees (CART) [1]. The
tree growing process of CART tree starts from the root node, containing all the
data instances, and recursively continues to its child nodes by choosing at each
node the split among all possible univariate splits that makes the instances of its
child nodes the purest. Common splitting criteria include the Gini criterion and
the Twoing criterion. A node stops splitting when one of the following conditions
is satisfied. The node is pure, i.e., all its instances have the same label; the values
of the instances in the node are the same; the depth has reached a user specified
depth; the number of the instances in the node are less than a user specified
threshold or if its splits results in a child node containing a number of instances
less than a user defined threshold. Thus, the tree growing process is completed
when no further splits can be performed.

Fuzzy Logic as opposed to Boolean Logic produces values ranging from 0 to
1 instead of crisp 0 and 1. However, crisp values can be converted to fuzzy values
with the use of fuzzy membership functions. For example, a fuzzy membership
function for the comparison of two numbers such as a > b that transforms the
True (1) or False (0) result to a value ∈ (0, 1) can be the sigmoidal membership

Logic Rules Meet Deep Learning 207

function f (a; b, s) with a center at b, a slope parameter s and the value of a. More-
over, the logical connectives of conjuction and disjunction in a Logic Formula
can be replaced with their fuzzy equivalents such as min and max respectively.

Faster R-CNN [19] is a deep neural network that is used for object detection,
that is, the process of identifying and locating objects in images or videos. The
architecture of Faster R-CNN consists of a Convolutional Network for feature
extraction–usually a pre-trained version of well known image classification net-
work such as ResNet50 [7], a Regional Proposal Network (RPN) that is used
for the generation of Regions of Interest (RoIs), and finally a Classification and
Regression Network that takes input convolutional features from a RoI pooling
layer applied on the features from the Convolutional Network and the ROIs. In
our approach we extract convolutional features from the output of the RoI pool-
ing layer of a pretrained Faster R-CNN network corresponding to the detected
objects in the input images.

4 Methodology

Here, we present our methodology of combining the information of two data
sources of different format—the first source contains images while the second
one contains numerical structured data describing attributes of vessels—in order
to achieve higher prediction scores and add explainability to the final model.

4.1 Rule Extraction and Fuzzification

As mentioned before the first stage of our method is the extraction of logic
rules in Disjunctional Normal Form (DNF). For each class label y, we train a
Decision Tree model using the CART algorithm for binary classification where
the positive class is y and the remaining are negative. Then, for each class y we
parse the corresponding tree and recursively create a rule, by adding conditions
expressing the path from the root to leaf nodes where the label is y. Therefore,
a condition Ci included in the body of the rule concerning label y is expressed
as:

Ci = (x1 op v1) ∧ · · · ∧ (xk op vk) (1)

where vi are the values obtained during the splitting process of the tree training;
xi are the values of the attributes on which the constraints are applied and op
is either ‘>’ or ‘≤’. A rule Ri for a specific class yi has the following form:

IF C1 ∨ · · · ∨ Cn THEN yi (2)

For the Fuzzification of the rules, we apply the sigmoidal membership func-
tion (3) in the comparisons cij ∈ Ci so that each comparison c′

ij yields a value
in [0, 1].

208 M. Pitsikalis et al.

f>(x; s, v) =
1

1 + e−s(x−v)
for x > v and, (3)

f≤(x; s, v) =
1

1 + e−s(v−x)
for x ≤ v

The s parameter defines the slope of the sigmoid curve while the v parameter
defines the ‘center’ of the curve (see Fig. 2). Moreover, as seen in Eq. (4), for each
class rule Ri we add a weight wi in each of the conditions Ci where wi ∈ [0, 1]

and
n∑

i=0

wi = 1.

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

c′ i,
{>

,<
}

s = {1, 3}, v = 0

Fig. 2. Plots of c′
i,> (blue) and c′

i,< (red) with s set to 1 and 3 (continuous and dashed
lines respectively) for x ∈ [−5, 5]. (Color figure online)

IF w1C1 ∨ · · · ∨ wnCn THEN yi (4)

Finally, we replace the logical connectives of conjunction and disjunction with
their Weighted Exponential Mean approximation [4] as depicted in Table 1, min′

and max′ respectively. For the experimental results presented in Sect. 5 we have
set the level of andness and orness to ‘medium high’ r = −5.4 for conjunctions
and r = 5.4 for disjunction by taking into consideration the results of the ablation
study presented in the same section. Consequently, the truth value of a rule Ri

is produced by computing the max′ of all the conditions Ci as follows:

Ri(x;W,S) = max′
{

w1min′{c′
11, · · · , c′

1k}, . . . , wnmin′{c′
n1, · · · , c′

1z}
}

(5)

where W is a vector containing the weights of the conditions and S is a vector
containing the slope parameters of the sigmoid membership functions included
in each Ci. Finally, to make a class prediction, we produce the Ri values for each
class yi and produce the simplex vector by applying L1 normalisation on the
vector Fc = {R1, . . . Rm} where m is the number of classes.

Logic Rules Meet Deep Learning 209

Table 1. Approximation of conjunction and disjunction using Weighted Exponential
Means. An analysis of the effects of r for WEM can be found in [4].

Notation WEM

c1 ∧ · · · ∧ cn
1
r

ln

(
1
n

n∑
i=0

erci
)
, r ∈ {−14.0,−5.4,−2.14}

w1C1 · · · ∨ wnCn
1
r

ln

(
n∑

i=0

wie
rCi

)
, r ∈ {2.14, 5.4, 14.0}

4.2 Neuro-Fuzzy Combination

In the previous Section, we mentioned that each class rule Ri accepts as param-
eters a set of weights W for the weighted max approximation and a set of slopes
S for the sigmoid membership functions included in the conditions of the rule.
Here, we present how we combine the Fuzzy Model described in Sect. 4.1 with a
Neural Network into a single model. The architecture of our combined model is
illustrated in Fig. 3.

conv
256x7x7

conv
256x7x7

a1 512

a2 512
o1 |S|

R1 conds

w11C11

C1n

w1k
C1k

max'

w1n

R1

Rm conds

wm1C11

C1q

wmk
C1k

max'

wmq

Rm

Deep features
(256x7x7)

Structured input
(7)

Fig. 3. Architecture of the Neuro-Fuzzy network. The upper branch receives deep fea-
tures extracted from the RoI pooling layer of a Faster R-CNN model when given a
vessel image, while the lower branch receives AIS data (Structured data) that is then
given to the different fuzzified rules Ri conds .

In our approach we aim to perform ship type classification by combining the
information included in the images of the vessel with the information included
in the characteristics of the vessel transmitted over AIS. For this reason, the
architecture of our model has two inputs. The first one is the deep convolutional
features extracted from the RoI pooling layer of a pre-trained Faster R-CNN
model, while the second input includes the values of the AIS fields. In the upper
branch of Fig. 3 we use two convolutional layers, where the output of the second
layer is flattened and given as input to a fully connected layer a1 with 512 neurons
followed by the fully connected layer a2, with batch normalization, dropout and
ReLu activation, and finally the o1 layer which has Leaky ReLu as an activation

210 M. Pitsikalis et al.

function and yields an output equal to the size of S, i.e., the vector containing
the slope parameters of the rules.

Then, using the output of the o1 layer, along with the rules input (AIS
fields) we can now compute the values Cij included in each Ri, i ∈ [1,m]
(see the Ri conds blocks in Fig. 3). Next, for each Ri conds we create the vector
{erCi1 , . . . , erCin} and feed it into a log activated layer, with bias set to 0 and
normalised weights, that computes the approximation of weighted disjunction
as follows:

Ri =
1
r

ln

⎛

⎝
n∑

j=0

wije
rCij

⎞

⎠ (6)

where wij are the weights of the input and r is the orness level. Finally, all Ri

are fed through a softmax layer that outputs a probabilistic vector F .
We train the complete neuro-fuzzy model using the cross entropy loss L

(Eq. (7)) over F and the one-hot ground truth label y = {yc}m1 .

L = −
m∑

c=1

yc log(fc), F = {f1, . . . fm} (7)

4.3 Deep Feature Extraction

For each vessel image we extract a deep convolutional feature from a pre-trained
Faster R-CNN network in prediction mode. In detail we keep the 256 × 7 × 7
feature vector from the output of the RoI pooling layer, corresponding to the
bounding box that yields the highest confidence score after the non-maximum
suppression stage. Using the collected deep convolutional features and the AIS
data we proceed into training our neuro-fuzzy model.

5 Evaluation

In this section, we present the characteristics of the datasets we use for our
experimental evaluation, the experimental settings for the training of our models
and finally the prediction scores of the evaluated models.

5.1 Dataset

We construct our dataset using the AIS records from the maritime dataset
presented in [17]. In the context of the presented experiments, we use only
the ‘MMSI’, ‘to bow’, ‘to stern’, ‘to starboard’, ‘to port’, ‘width’, ‘length’ and
‘draught’ fields of the static AIS messages (see Table 2 for a description of those
fields). Moreover, using the ‘MMSI’ value we collect up to 5 images for each
vessel from the IHS Markit World Register of Ships (v12) and the ShipScape
photographic library. The collected images contain one vessel per image and have
been annotated using the ship type field of the AIS messages and the manual

Logic Rules Meet Deep Learning 211

Table 2. Description of the retained AIS fields.

AIS Field Description

MMSI The Maritime Mobile Service Identity number

To {bow, stern,
starboard, port}

Distance from the AIS transceiver to the {bow, stern, right
side, left side} of the vessel

Draught The vertical distance between the waterline and the
bottom of the hull

Width The width of the vessel (to bow + to stern)

Length The length of the vessel (to starboard + to port)

Table 3. Number of instances per class.

Shiptype Vessels Images

Cargo 2412 11185

Tanker 864 3950

Other 53 229

Passenger 42 199

Tug 32 139

Total 3403 15702

selection of the bounding box of each ship. Note that there are more images than
distinct vessels, since each vessel may have up to 5 images. Using the retained
AIS fields and the collected images we create an Image classification centred
dataset IC by computing the following natural join:

I ��
I.MMSI=A.MMSI

A (8)

where I is the image table with the fields ‘Image ID’, ‘MMSI’ and ‘df’ corre-
sponding to the deep feature of the image while A is the table with the mentioned
AIS fields. However, there is also another way of looking at the classification
problem. While in the previous case the problem is image centralised, in the
current case we focus on the vessels, therefore we create a vessel centred dataset
VC by grouping and averaging the deep features per vessel MMSI as follows:

A ��
A.MMSI=I.MMSI

γMMSI, avg(df)(I) (9)

The number of different vessels and images per vessel type are presented in
Table 3. Note that the numbers presented in Table 3 correspond to records that
have images available; records that are incomplete are not used in the experi-
ments. Additionally, we remove all instances of ship types that do not have more
than 20 different vessels.

212 M. Pitsikalis et al.

conv
256x7x7

conv
256x7x7

a1 512

bl 512
b1 256 b2 256

b3 512

Number of
Classes

Deep
Features

(256x7x7)

Structured Input
(7)

Fig. 4. Architecture of the baseline model. Here, in contrast with the model of Fig. 3,
AIS data is given as input to the b1 layer of the lower branch, while the combination
of the different data sources is achieved using the bilinear layer bl.

5.2 Baseline Model

In addition to the Neuro-Fuzzy model presented in this paper, we create the
baseline model of Fig. 4 which retains the convolutional branch of the neuro-
fuzzy model up to layer a1 and adds a second branch that accepts as input the
AIS fields. The additional branch has one input layer with 7 input neurons and
256 output neurons, followed by two fully connected layers (b2, b3) with batch
normalization, dropout and ReLu activation. The output of layers a1 and b3 is
then given as input to the bilinear layer (bl), which has batch normalization,
dropout and ReLu activation. Finally, the output of layer bl is fed into a fully
connected output layer with softmax activation that yields the class prediction.

5.3 Experimental Setup

We extract the IF-THEN rules of the Neuro-Fuzzy model with the methodology
of Sect. 4.3 using 75% of table A (minus the ‘MMSI’ field) and train a Faster R-
CNN model, with ‘ResNet-50’ [7] network as backbone using the corresponding
images. Then, we extract the deep feature corresponding to each image using the
methodology presented in Sect. 4.3 and create the datasets IC and VC . Finally,
we train both the Neuro-Fuzzy model presented in Sect. 4 and the baseline model
on the created datasets IC and VC and evaluate them separately.

All models were implemented using PyTorch [16] and were trained for 100
epochs using the Adam optimiser [10] and with learning rate set to 1e−4. The
weight decay for Faster R-CNN was set to 5e−4, while for the remaining models
weight decay was not applied. The batch size was set to 4 and 32 when training
the Faster R-CNN model and the Neuro-Fuzzy/Baseline models respectively.
Plots of the losses per model are illustrated in Fig. 5.

Logic Rules Meet Deep Learning 213

0 20 40 60 80 100
0.06

0.08

0.1

0.12

Epoch

Lo
ss

(a) Faster R-CNN

0 20 40 60 80 100
1.1

1.2

1.3

1.4

1.5

Epoch

Lo
ss

Image centred
Vessel centred

(b) Neuro-Fuzzy model

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

Epoch

Lo
ss

Image centred
Vessel centred

(c) Baseline

Fig. 5. Plots of the Faster R-CNN (a), the Neuro-Fuzzy model (b) and the baseline (c)
losses per epoch number on the Image and Vessel centred (when applicable) training
datasets.

5.4 Experimental Results

We evaluate our model on both Image and Vessel centred datasets. In the first
case we use the mean Average Precision Metric presented in [15], with interpo-
lation over all recall levels while in the second case we use the macro F1-Score.
Some example detections of the Neuro-Fuzzy model are illustrated in Fig. 6. The
results of our evaluation are presented in Table 4 and show that the combination
of vessel transmitted AIS information along with Imagery using the Neuro-Fuzzy
model of this paper yields better results than using each data source separately
and using both sources in the baseline model in both Image and Vessel centred
datasets. However, although data fusion proves to improve prediction scores, we
attribute the low prediction scores to the class imbalance of the dataset, since
the lowest mAP and F1 scores where produced by the ‘Other’ ship type which

(a) Cargo. (b) Tanker. (c) Tug.

(d) Passenger. (e) Other.

Fig. 6. Example detections. The bounding boxes are produced by the Faster R-CNN
network while the detected labels are produced from the Neuro-Fuzzy model of this
paper.

214 M. Pitsikalis et al.

Table 4. mAP scores of the evaluated models. OM, FRCNN, B, DT, kNN, NB, LR,
LDA and SVM stand for ‘Our Model’, ‘Faster R-CNN’, ‘Baseline’, ‘Decision Tree’, ‘k
Nearest Neighbours’, ‘Logistic Regression’, ‘Linear Discriminant Analysis’ and ‘Sup-
port Vector Machines’. Bold values indicate the highest score per ship and dataset type.
The confidence threshold of retaining a bounding box, during the prediction phase of
Faster R-CNN, has been set has been set to 0.7. Models with an ‘*’ used only one source
of information i.e., either Images (Image centred) or AIS records (Vessel centred).

Image Centred (mAP) Vessel Centred (Macro F1-Score)

OM B FRCNN* OM B DT* kNN* NB* LR* LDA* SVM*

Cargo 91 92 94 97 97 88 91 74 86 84 82
Tanker 87 84 93 94 95 72 71 46 46 38 10
Other 9 9 9 37 23 27 30 0 22 0 0
Passenger 94 97 84 88 94 37 22 46 0 28 0
Tug 67 59 60 88 18 80 89 82 40 22 88

All 69.6 68.2 68.0 80.8 65.4 60.8 60.6 49.6 38.8 34.4 36.0

expresses a diverse spectrum of vessels but has very few examples in the present
case. Moreover, in the image centred dataset, although the score difference is
not that significant, our model compared to the other two offers to some degree
explainability since a classification decision can be tracked through the rules
included in the Neuro-Fuzzy system. An example of an extracted rule and its
corresponding fuzzified version used for the classification of the ‘Tug’ shiptype is
presented in Table 5. Table 5 shows that the fuzzified version of condition (e) has
the highest weight in the disjunction approximation, while also having the high-
est accuracy in its crisp form on the full dataset, the same behaviour is observed
for condition (d) which has the second biggest weight and similarly the second
highest accuracy in the full dataset. The remaining weights although they don’t
match in order their accuracy on the full dataset, they still manage to generalise
and reflect a more accurate view of the whole dataset rather than the training
dataset.

5.5 Ablation Study

In this section we present our ablation study on the Neuro-Fuzzy model. Our
ablation study evolves around the importance of the max depth (D) parameter
of the CART models used for the rule extraction, and the different values of
r used in the weighted exponential means approximation for conjunction and
disjunction. We set the D parameter for all trees to 10 and we gradually decrease
it in order to limit and in most case decrease the length of the rules. Moreover,
for each D setting we train the Neuro-Fuzzy model using different levels for
andness and orness (r). The results, presented in Table 6, show that small rules

Logic Rules Meet Deep Learning 215

Table 5. Example of an extracted logic rule for the ‘tug’ shiptype and its fuzzified
version included in the trained Neuro-Fuzzy system. ‘l’, ‘w’, ‘d’, ‘te’, ‘to’ and ‘tb’ stand
for the ‘length’, ‘width’, ‘draught’, ‘to stern’, ‘to port’ and ‘to bow’ fields of the AIS
messages. The first two columns of the upper part of the table correspond to the rule
accuracy, i.e., true positive instances over total instances covered by the rule on the
training and full versions of the vessel centred dataset.

Extracted rule
lobmySsnoitidnoClluFniarT

IF
1 0.26 (l ≤ 27.5 ∧ te ≤ 16.0 ∧ d > 3.75 ∧ to > 3.5) ∨ (a)
0.9 0.54 (l ≤ 57.5 ∧ w ≤ 24.0 ∧ d > 3.75 ∧ l > 27.5) ∨ (b)
1 0.5 (l ≤ 72.5 ∧ l > 57.5 ∧ te > 52.0 ∧ d > 5.0) ∨ (c)
1 0.57 (l ≤ 76.5 ∧ l > 72.5 ∧ te > 52.0) ∨ (d)
1 1 (tb ≤ 32.5 ∧ te ≤ 106.5 ∧ l > 76.5 ∧ tb > 31.5) (e)

THEN Tug

Fuzzified rule
lobmySalumroF

RTug = max′

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.1799 min′{f≤(l ; s11, 27.5), f≤(te; s12, 16.0),
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(a)
f>(d ; s13, 3.75), f>(to; s14, 3.5)},

0.1035 min′{f≤(l ; s21, 57.5), f≤(w ; s22, 24.0), (b)
f>(d ; s23, 3.75), f>(l ; s24, 27.5)},

0.1089 min′{f≤(l; s31, 72.5), f>(l; s32, 57.5), (c)
f>(te; s33, 52.0), f>(d; s34, 5.0)},

0.2242 min′{fleq(l; s41, 76.5), f>(l; s42, 72.5), (d)
f>(te; s43, 52.0)},

0.3835 min′{f≤(tb; s51; 32.5), f≤(te; s52, 106.5), (e)
f>(l; s53, 76.5), f>(tb; s54, 31.5)}

produced by D = 4 setting tend to give lower scores. On the other side, over
fitted rules (max height set to 10) produce high scores but sacrifice performance
due to the increase of parameters. The best score was produced using a depth
set to 6. The study shows that ‘medium high’ levels of andness and orness, i.e.,
r = −2.14,+2.14 produce worse results than the ‘high’ and ‘very high’ settings.
This is because in the ‘medium high’ setting the model tends to over fit on the
training data thus yielding the best training accuracy but loses generalisation.
In the ‘very high’ setting the model produces better results however the best
score is produced using the ‘high’ setting.

216 M. Pitsikalis et al.

Table 6. F1-Macro scores of the Neuro Fuzzy model produced on the validation set of
the Vessel Centred dataset using different parameters for r and D. The lower part of
the table contains the number of comparisons and conditions included in the extracted
rules of each model.

D = 4 D = 6 D = 8 D = 10

Very high r = 14 72 74 73 76

High r = 5.4 74 81 78 77

Medium high r = 2.14 69 71 72 76

comparisons 60 264 607 1126

conditions 18 58 110 178

6 Conclusions and Future Work

We presented a methodology that can be used to combine AIS data with vessel
Imagery along with the advantages of our Neuro-Fuzzy model over the baseline
model and using each data source separately as show cased by the experimen-
tal evaluation. We believe that the logic rules extracted by the decision trees
add information over the dependencies between the AIS fields, and thus pro-
viding additional information in the combined Neuro-Fuzzy model. Although
our methodology has been applied in the maritime domain, we believe that it
can be also applied in other domains where multiple sources of information are
available.

For future work, we aim to evaluate our Neuro-Fuzzy approach when there
is uncertainty or missing fields in the input data, while also investigating further
the explainability of our model. Moreover, we want to extend our methodology,
so that it handles multiple vessels in an image by automatically linking the AIS
transmitted information with the corresponding vessel in the image.

Acknowledgements. This work has been funded by the Engineering and Physical
Sciences Research Council (EPSRC) Centre for Doctoral Training in Distributed Algo-
rithms at the University of Liverpool, and Denbridge Marine Limited (https://www.
denbridgemarine.com), United Kingdom.

References

1. Breiman, L., Friedman, J., Olshen, R., Stone, C.J.: Classification and Regression
Trees. Wadsworth and Brooks, Monterey (1984)

2. Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A., Bengio, Y.: A recurrent
latent variable model for sequential data. In: NIPS, pp. 2980–2988. MIT Press,
Cambridge (2015)

3. Collobert, R., Weston, J.: A unified architecture for natural language processing:
deep neural networks with multitask learning. In: ICML, pp. 160–167. Association
for Computing Machinery, New York (2008). https://doi.org/10.1145/1390156.
1390177

https://www.denbridgemarine.com
https://www.denbridgemarine.com
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177

Logic Rules Meet Deep Learning 217

4. Dujmović, J.J., Larsen, H.L.: Generalized conjunction/disjunction. Int. J. Approx.
Reason. 423–446 (2007). https://doi.org/10.1016/j.ijar.2006.12.011

5. Grosan, C., Abraham, A.: Rule-based expert systems. In: Grosan, C., Abraham, A.
(eds.) Intelligent Systems. ISRL, vol. 17, pp. 149–189. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21004-4 7

6. Hashemi, S., Yang, Y., Mirzamomen, Z., Kangavari, M.: Adapted one-versus-all
decision trees for data stream classification. IEEE Trans. Knowl. Data Eng. 21,
624–637 (2009). https://doi.org/10.1109/TKDE.2008.181

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition
(2016). https://doi.org/10.1109/CVPR.2016.90

8. Hu, Z., Ma, X., Liu, Z., Hovy, E., Xing, E.: Harnessing deep neural networks with
logic rules. In: ACL, Berlin, Germany, pp. 2410–2420. Association for Computa-
tional Linguistics (2016). https://doi.org/10.18653/v1/P16-1228

9. Kanjir, U., Greidanus, H., Oštir, K.: Vessel detection and classification from space-
borne optical images: a literature survey. Remote Sens. Environ. 1–26 (2018).
https://doi.org/10.1016/j.rse.2017.12.033

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)
11. London, A.J.: Artificial intelligence and black-box medical decisions: accuracy ver-

sus explainability. Hastings Cent. Rep. 49(1), 15–21 (2019). https://doi.org/10.
1002/hast.973

12. Marra, G., Giannini, F., Diligenti, M., Gori, M.: Integrating learning and rea-
soning with deep logic models. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe,
A., Maathuis, M., Robardet, C. (eds.) ECML PKDD 2019. LNCS (LNAI), vol.
11907, pp. 517–532. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
46147-8 31

13. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119.
Curran Associates Inc., Red Hook (2013)

14. Nguyen, D., Vadaine, R., Hajduch, G., Garello, R., Fablet, R.: A multi-task deep
learning architecture for maritime surveillance using AIS data streams. In: IEEE
DSAA, pp. 331–340 (2018). https://doi.org/10.1109/DSAA.2018.00044

15. Padilla, R., Netto, S.L., da Silva, E.A.B.: A survey on performance metrics
for object-detection algorithms, pp. 237–242 (2020). https://doi.org/10.1109/
IWSSIP48289.2020.9145130

16. Paszke, A., et al.: Automatic differentiation in pytorch (2017)
17. Ray, C., Dréo, R., Camossi, E., Jousselme, A.L., Iphar, C.: Heterogeneous inte-

grated dataset for maritime intelligence, surveillance, and reconnaissance. Data in
Brief, p. 104141 (2019). https://doi.org/10.1016/j.dib.2019.104141

18. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection (2016). https://doi.org/10.1109/CVPR.2016.91

19. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks, vol. 28 (2015)

20. Tsipouras, M., et al.: Automated diagnosis of coronary artery disease based on
data mining and fuzzy modeling. IEEE Trans. Inf. Technol. Biomed. 12(4), 447–
458 (2008). https://doi.org/10.1109/TITB.2007.907985

https://doi.org/10.1016/j.ijar.2006.12.011
https://doi.org/10.1007/978-3-642-21004-4_7
https://doi.org/10.1109/TKDE.2008.181
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.18653/v1/P16-1228
https://doi.org/10.1016/j.rse.2017.12.033
https://doi.org/10.1002/hast.973
https://doi.org/10.1002/hast.973
https://doi.org/10.1007/978-3-030-46147-8_31
https://doi.org/10.1007/978-3-030-46147-8_31
https://doi.org/10.1109/DSAA.2018.00044
https://doi.org/10.1109/IWSSIP48289.2020.9145130
https://doi.org/10.1109/IWSSIP48289.2020.9145130
https://doi.org/10.1016/j.dib.2019.104141
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/TITB.2007.907985

An Evaluation of Meta-reasoning over
OWL 2 QL

Haya Majid Qureshi(B) and Wolfgang Faber

University of Klagenfurt, Klagenfurt, Austria
{haya.qureshi,wolfgang.faber}@aau.at

Abstract. There has been increasing interest in enriching ontologies
with meta-modeling and meta-querying for the past few years. Unfor-
tunately, the Direct Semantics for OWL2 and SPARQL does not sup-
port meta-constructs in a satisfactory way: While meta-axioms (involv-
ing identifiers used both as a class and an individual) can be syntacti-
cally expressed using punning, different occurrences of the same iden-
tifier will be treated as different entities. For example, GoldenEagle
used as an instance of EndangeredSpecies and also as a class containing
individuals, will be treated as two separate, unrelated entities. Meta-
queries (for example, asking for classes that also occur as individuals)
are not allowed at all in SPARQL under the Direct Semantics Entail-
ment Regime. To overcome this, a new semantic flavour for SPARQL,
called Meta-modeling Semantics Entailment Regime (MSER), has been
introduced. In previous work, Cima et al. have proposed a reduction
from OWL 2 QL (a light-weight profile of OWL 2) and associated meta-
queries in SPARQL to query answering over Datalog rules. In this paper,
we experiment with various logic programming tools that support Data-
log querying to determine their suitability as back-ends to MSER query
answering. These tools stem from different logic programming paradigms
(Prolog, pure Datalog, Answer Set Programming). Our work shows that
the Datalog approach to MSER querying is practical also for sizeable
ontologies.

Keywords: Meta-reasoning · SPARQL · Datalog

1 Introduction

For the past few years there has been an urge for enriching ontologies with
meta-modelling and meta-querying. Meta-modelling allows for expressing meta-
concepts (classes are instances of other classes) and meta-properties (relation
between meta-concepts), and therefore makes conceptual modelling more flexi-
ble, as argued for instance in [1,17]. Meta-querying ports this idea to queries as
well, allowing the use of the same variable in positions of different types.

The de-facto standard language for ontologies, OWL 2, syntactically allows
for meta-modelling by means of Punning1, using the same name for ontology
1 http://www.w3.org/2007/OWL/wiki/Punning.

c© Springer Nature Switzerland AG 2021
S. Moschoyiannis et al. (Eds.): RuleML+RR 2021, LNCS 12851, pp. 218–233, 2021.
https://doi.org/10.1007/978-3-030-91167-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91167-6_15&domain=pdf
http://orcid.org/0000-0002-6622-4950
http://orcid.org/0000-0002-0330-5868
http://www.w3.org/2007/OWL/wiki/Punning
https://doi.org/10.1007/978-3-030-91167-6_15

An Evaluation of Meta-reasoning over OWL 2 QL 219

elements of different type (most notably, class and individual). However, the
prevalent Direct Semantics (DS) does not interpret punning in the way intended
by meta-modelling, as it will interpret the different occurrences of the same name
as different entities.

To remedy these limitations, Higher-Order Semantics (HOS) was introduced
in [13] for DL-LiteR, which is a low-complexity family of Description Logics.
DL-LiteR forms the basis for the OWL 2 profile OWL 2 QL, which is geared
towards Ontology-Based Data Access (OBDA) that focuses on querying ontolo-
gies with less complicated axioms, but in combination with larger amounts of
data. Query answering tasks in DL-LiteR and OWL 2 QL require logarithmic
space with respect to data complexity [18]. The interpretation structure of HOS
follows Hilog-style semantics, which allows the elements in the domain to have
polymorphic characteristics. Data complexity of HOS stays in AC0 for answer-
ing unions of conjunctive queries. In subsequent work [14,15] HOS is referred to
as Meta-modelling Semantics (MS), we will adopt this terminology in this paper
as well.

Similar considerations apply to meta-querying as well. SPARQL is the de-
facto standard ontology query language. The logical underpinning for SPARQL
queries over OWL 2 QL ontologies is defined by the Direct Semantics Entailment
Regime (DSER) [7]. As the name implies, DSER relies on the Direct Semantics
for ontologies and therefore imposes typing constraints on both the ontologies
and queries that make meta-querying impossible. To remedy this, the Meta-
modelling Semantics Entailment Regime (MSER) was proposed in [3], which
does allow meta-modelling and meta-querying using SPARQL over OWL 2 QL.

In [3] a reduction from query-answering over OWL 2 QL to Datalog queries
is provided, and experimental results using two Datalog engines, Logicblox and
Rdfox, are reported. Datalog is an attractive target, as it has received increased
academic interest with renewed tool support over the last few decades, see for
instance [4,10]. In this work, we continue the line of [3] and explore several
other tools that are capable of answering Datalog queries, relying on diverse
foundations and techniques. Indeed, [3] have used Logicblox and Rdfox (which
we also include in our analysis for reference), but it turns out that other tools
perform very well, too, especially in meta-modelling scenarios, which were not
considered in the performance analysis reported in [3]. In [16], meta-modelling
and meta-querying in OWL 2 QL under MSER is discussed and evaluated as well,
however the tested implementations do not rely on the Datalog characterization
of [3].

The main contributions of this work can be summarised as follows:

– We implemented the rewriting/reductions of [3] and adapted it to support
several languages of tools that extend Datalog (Prolog, Answer Set Program-
ming).

– We evaluated the performance of the Datalog-based MSER approach using
various tools as backends that support Datalog.

– In the evaluation, we considered both meta-modelling ontologies and meta-
queries.

220 H. M. Qureshi and W. Faber

– The evaluation showed that the Datalog-based MSER approach is effective
also for sizeable ontologies.

Concerning the structure of the remainder of this paper, Sect. 2 introduces the
background notions like OWL 2 QL, SPARQL, MSER, and Datalog. Section 3
recalls the rewriting technique presented in [3]. Section 4 illustrates the series
of experiments we have carried out using the LUBM and MODEUS ontologies
and present a detailed discussion about the experiments. Section 5 concludes the
paper with a brief discussion and pointing out the future work.

2 Background

In this section we recall the preliminary notions that are needed for the rest of
the paper, in particular OWL 2 QL under the Meta-modelling Semantics (MS),
SPARQL, and Datalog.

2.1 OWL 2 QL Under the Meta-modelling Semantics

We start by recalling some basic elements that are used to represent knowledge
in an ontology: Concepts, a set of individuals with common properties, Individu-
als, objects of a domain of discourse, and Roles, a set of relations that relate the
individuals. Based on these elements, the OWL 2 QL vocabulary V constituted
by the tuple: V = (VN , VC , VOP , VDP , VI , VDT , LQL). In V , VN is a set of Inter-
nationalised Resource Identifiers (IRIs), the set of names of all entities in the
ontology plus the keywords of OWL 2 QL; VC , VOP , VDP , VI and VDT are subsets
of VN used to denote the entities of type concept names, object property names,
data property names, individuals, and datatypes; and LQL denotes the set of
literals in OWL 2 QL. An OWL 2 QL Knowledge Base O is a pair 〈T ,A〉, where
T is the TBox (non-assertional axioms) and A is a ABox (assertion axioms).
Sometimes O is also considered as the union of T and A, and it is assumed to be
finite. The axioms allowed in an OWL 2 QL ontology are listed in the α columns
of Table 1 (in Description Logic syntax).

The Meta-modelling Semantics (MS) [13] is based on the idea that every
entity in VN may simultaneously have more than one type, so it can either be a
class, or an individual, or data property, or an object property or a data type. To
formalise this idea, the Meta-modelling Semantics had been defined for OWL 2
QL as follows. The meta-modelling semantics for O over V is based on the notion
of interpretation structure, constituted by a tuple I = 〈Δ, ·I , ·C , ·P , ·D, ·T , ·I〉,
where Δ is the disjoint union of the two non-empty sets: Δ = Δo ∪ Δv, and
Δo is the object domain, and Δv the value domain; ·I : Δo → True, False
is a total function for each object d ∈ Δo, which indicates whether d is an
individual; if ·C , ·P , ·D, ·T are undefined for some d, then we require dI = True;
.I is a function that maps every expression into Δo and every literal into Δo; all
functions ·C : Δo → P(Δo), ·P : Δo → P(Δo × Δo), ·D : Δo → P(Δo × Δv),
and ·T : Δo → P(Δv) are partial.

An Evaluation of Meta-reasoning over OWL 2 QL 221

The semantics of logically implied axioms are defined in accordance with the
notion of axiom satisfaction with the interpretation I. Moreover, I is said to be
a model of O if it satisfies all axioms of O. Finally, an axiom α is said to be
logically implied by O, denoted as O |= α, if it holds for every model of O.

2.2 SPARQL

As query language, for simplicity we consider conjunctive SPARQL queries,
restricted to SELECT queries. It is sufficient for our purposes to describe result
forms by set of variables.

A conjunctive SPARQL query q is of the form

SELECT ?v1 · · · ?vn WHERE { t1 tm }

where ?v1 · · ·?vn is a space-separated sequence of query variables and t1.tm
is a sequence of triples separated by dots, where triples are either elements of
VN or SPARQL variables. All ?vi must occur in t1.tm.

Given an ontology O and a conjunctive SPARQL query q as above, then the
answers to q are the tuples 〈?v1σ, . . . , ?vnσ〉, where σ is a substitution that maps
all query variables in q to elements of VN such that O |= tiσ for all 1 ≤ i ≤ m
under the Meta-modelling Semantics.

This is the standard behaviour of SPARQL queries, but here we explicitly
use MS as the underlying semantics and we also allow meta-queries.

For instance,

SELECT ?y WHERE { ?x rdf:type ?y . ?y rdf:type ?z }

will return all classes that are themselves members of another class.

2.3 Datalog

Datalog is a declarative query language rooted in logic programming. A Datalog
program is a finite set of rules, where a rule r has the form

h ← b1, . . . , bn.

In r, h is the rule head and b1, . . . , bn is the rule body. Each of bi and h are
atoms of the form p(t1, . . . , tn), where p is a predicate symbol and ti are terms
that can be constants or variables; n is the arity of p. We say that r is a fact
if it has an empty body and omit the symbol ← in that case. The body can
be thought of a conjunction. Rules need to satisfy safety in order to be domain
independent, so each variable occurring in the rule head must also occur in the
rule body.

For a Datalog program P , the Herbrand Base HB(P) consists of all atoms
that can be formed using predicates and constants in P . An interpretation I ⊆
HB(P) consists of those atoms that are true in I. A rule r is satisfied if h ∈ I
whenever {b1, . . . , bn} ⊆ I, and an interpretation I is a model of a program P

222 H. M. Qureshi and W. Faber

if all of its rules are satisfied. the semantics of P is given by the subset-minimal
model of P .

A conjunctive query q1, . . . , qn? consists of atoms as in Datalog rules, and
the answers with respect to a program P are those substitutions σ (mapping
variables in the query to constants) such that {q1σ, . . . , qnσ} ⊆ M for the subset-
minimal model M of P .

3 Query Answering Under MSER to Datalog Evaluation

In this section, we recall query answering under the Meta-modelling Semantics
Entailment Regime (MSER) from [3]. This technique reduces SPARQL query
answering over OWL 2 QL ontologies to the Datalog query answering. Note
that here we do not consider ontologies containing data properties for the sake
of simplicity. The main idea of this approach is to define (i) a translation function
τ mapping OWL 2 QL axioms to Datalog facts and (ii) a fixed rule base Rql

that captures inferences in OWL 2 QL reasoning.
The reduction employs a number of predicates, which are used to encode

the basic axioms available in OWL 2 QL. This includes both axioms that are
explicitly represented in the ontology (these will be added to the Datalog pro-
gram as facts resulting from the mapping τ) and axioms that logically follow
(these will be derivable by the fixed rules Rql). In a sense, this representation
is closer to a meta-programming representation than other Datalog embeddings
that translate each axiom to a rule.

Table 1. τ Function

α τ(α) α τ(α)

Pql,T
O c1 � c2 isacCC(c1, c2) r1 � ¬ r2 disjrRR(r1,r2)

c1 � ∃r2−.c2 isacCI(c1, r2, c2) c1 � ¬ c2 disjcCC(c1,c2)

∃r1 � ∃r2.c2 isacRR(r1,r2,c2 c1 � ¬∃r2− disjcCI(c1,r2)

∃r1− � c2 isacIC(r1,c2) ∃r1� ¬ c2 disjcRC(r1,c2)

∃r1− � ∃r2.c2 isacIR(r1,r2,c2) ∃r1 � ¬∃r2 disjcRR(r1,r2)

∃r1− � ∃r2−.c2 isacII(r1,r2,c2) ∃r1 � ¬∃r2− disjcRI(r1,r2)

r1 � r2 isarRR(r1,r2) ∃r1− � ¬c2 disjcIC(r1,c2)

r1 � r2− isarRI(r1,r2) ∃r1− � ¬∃r2 disjcIR(r1,r2)

c1 � ∃r2.c2 isacCR(c1,r2,c2) ∃r1− � ¬∃r2− disjcII(r1,r2)

∃r1� c2 isacRC(r1,c2) r1 � ¬ r2− disjrRI(r1,r2)

∃r1 � ∃r2−.c2 isacRI(r1,r2,c2) irref(r) irrefl(r)

refl(r) refl(r)

Pql,A
O c(x) instc(c,x) x �= y diff(x,y)

r(x, y) instr(r,x,y)

An Evaluation of Meta-reasoning over OWL 2 QL 223

The function τ used to encode the OWL 2 QL assertions α as facts is sum-
marised in Table 1. For a given ontology O, we will denote the set of facts
obtained by applying τ to all of its axiom as Pql

O ; it will be composed of two
portions Pql,T

O and Pql,A
O , as indicated in Table 1.

The fixed Datalog program Rql can be viewed as an encoding of axiom satu-
ration in OWL 2 QL. The full set of rules provided by authors of [3] are reported
in online repository mentioned in Sect. 4. We will consider one rule to illustrate
the underlying ideas:

isacCR(c1,r2,c2) :- isacCC(c1,c3), isacCR(c3,r2,c2)

The above rule encodes the following inference rule:

O |= c1
 c3, O |= c3
 ∃r2.c2 ⇒ O |= c1
 ∃r2.c2

In other words, if c1 is a subclass of c3 and c3 is a subclass of everything
that has an r2-successor in c2, then also c1 is a subclass of everything that has
an r2-successor in c2.

Finally, the translation can be extended in order to transform conjunctive
SPARQL queries under MS over OWL 2 QL ontologies into a Datalog query. For
example, consider the following query that retrieves all triples 〈a, b, c〉, where a
is a member of class b that is a subclass of c:

SELECT ?x ?y ?z WHERE {
?x rdf : type ?y.
?y rdfs :SubClassOf ?z

}

then it can be translated to a Datalog query

instc(X,Y), isacCC(Y,Z)?

In general, these queries will be translated into a rule plus an atomic query
to account for projections. The previous example will be translated to

q(X,Y,Z) ← instc(X,Y), isacCC(Y,Z).
q(X,Y,Z)?

The slightly modified query
SELECT ?y WHERE {

?x rdf : type ?y.
?y rdfs :SubClassOf ?z

}
will accordingly be translated to

q(Y) ← instc(X,Y), isacCC(Y,Z).
q(Y)?

224 H. M. Qureshi and W. Faber

4 Experiments

In this section we describe the experiments that we have conducted, including
the tools we used, the ontologies and queries we considered, and report on the
outcomes. All material is available at https://git-ainf.aau.at/Haya.Qureshi/mhf-
algo-testing.

4.1 Tools

We have implemented the translation of ontology axioms summarised in Table 1
in Java. We should point out that this implementation is not optimised and
serves as a proof of concept. For the Datalog back-end, we have used six tools
in our experiments. These tools stem from different logic paradigms like Prolog,
pure Datalog, Answer Set Programming and Hybrid-Knowledge Bases. In the
following, we briefly describe each of these tools.

RDFox2 is an in-memory, scalable, centralised data engine for Resource
Description Framework (RDF) data models. The tool supports the current stan-
dard querying language SPARQL 1.1. It also allows for reasoning and repre-
senting knowledge in rules, supporting materialisation-based parallel Datalog
reasoning. RDFox uses parallel reasoning algorithms to support Datalog rea-
soning over RDF data. It had already been used in the performance analysis
reported in [3].

LogicBlox3 is another state-of-the-art Datalog engine to unify the models
of the program and allow applications to automate and enhance their decision
making via a single expressive declarative language. For this purpose, the authors
have introduced an extended form of Datalog called LogiQL, which is expres-
sive enough to allow coding of entire applications. LogicBlox implements many
deductive database techniques, among them a magic set technique. Also this
tool had been used in [3].

XSB4 is a logic programming engine and language rooted in Prolog. It sup-
ports Prolog’s standard functionality, and features a powerful technique called
tabling, which significantly increases its applicability. In large classes of pro-
grams, also covering Datalog, tabling avoids infinite loops and meets known
optimal complexity for query answering. Since it relies on a top-down technique,
its internals are significantly different from RDFox and LogicBlox.

Clingo5 is an ASP system used to ground and solve logic programs. Answer
Set Programming (ASP) [2] is a declarative programming paradigm that applies
non-monotonic reasoning and relies on the stable model semantics [6]. Over
the past decades, it has attracted considerable interest thanks to its accessible
syntax, expressiveness and efficient systems implementations. Clingo exhibits
exceptional performance in numerous domains, including industrial, robotics and
biomedical applications [5].
2 https://www.oxfordsemantic.tech/product.
3 https://developer.logicblox.com/.
4 https://xsb.com/.
5 https://potassco.org/.

https://git-ainf.aau.at/Haya.Qureshi/mhf-algo-testing
https://git-ainf.aau.at/Haya.Qureshi/mhf-algo-testing
https://www.oxfordsemantic.tech/product
https://developer.logicblox.com/
https://xsb.com/
https://potassco.org/

An Evaluation of Meta-reasoning over OWL 2 QL 225

DLV6 is another ASP system with particular emphasis on Disjunctive Logic
Programming. It offers several front-ends with high expressivity intending to
capture the practical problems in the presence of incomplete knowledge. It is
a general-purpose system that can deal with extensive input data, hard search,
and problems of relatively high complexity. Contrary to Clingo, DLV implements
a magic set technique for query answering.

NoHR7, the Nova Hybrid Reasoner allows to query a combination of DL
ontologies and non-monotonic rules in a top down fashion. It is a variant of
[11] based on the well-founded semantics for logic programming and stays in
polynomial time complexity (when used with polynomial-complexity ontologies).
NoHR combines the capabilities of many DL reasoners like ELK 8, Hermit9,
Konclude10 with XSB. We have included NoHR because we wanted to assess
the overhead it produces with respect to XSB, as the agenda for our future
work includes leveraging hybrid tools like NoHR for meta-modelling and meta-
querying.

4.2 Tool-Specific Settings

In this section we provide a brief overview of the experimental setup of the tools
considered in this work. We have used the set of inference rules Rql reported
online and the translation of ontology axioms as specified in Table 1, produced
by our implementation. One observation is that the tools slightly differ in the
Datalog syntax they require and thus needed minor adjustments. For instance,
LogicBlox uses <- instead of :-, and also variables are denoted in different ways
in the various input languages.

RDFox needed some major adjustments. We have first used tuple tables,
which RDFox provides for importing external data from relational databases
and making it compatible with RDF. In particular, we have written atoms
with binary predicates as triples and other predicates as tuple tables. Queries
in RDFox are already in SPARQL, but we needed to use TT for the non-binary
predicates. However, this setup turned out to be very slow, orders of magnitudes
slower than the results reported in [3].

We then contacted the authors of [3] who sent us the code they used in
their experiments. Indeed, they only used triples and used Skolem functions
for representing atoms with non-binary predicates as triples. The way to write
Skolem functions had also changed in RDFox in the meantime, which meant that
we also needed to make some slight updates there with the help of the RDFox
team.

The encoding is as follows: An atom R(x,y,z) is re-written as BIND(rdfox:
SKOLEM("f",x,y,z) AS ?T3) ⇒ T1(t3,x), T2(t3,y), and T1(t3,z), where

6 https://dlv.demacs.unical.it/.
7 https://nohr.di.fct.unl.pt/documentation.html.
8 http://www.cs.ox.ac.uk/isg/tools/ELK/.
9 http://www.hermit-reasoner.com/.

10 https://www.derivo.de/en/products/konclude/.

https://dlv.demacs.unical.it/
https://nohr.di.fct.unl.pt/documentation.html
http://www.cs.ox.ac.uk/isg/tools/ELK/
http://www.hermit-reasoner.com/
https://www.derivo.de/en/products/konclude/

226 H. M. Qureshi and W. Faber

rdfox:SKOLEM creates a Skolem term with functor "f" and parameters x,y,z
and then bound the Skolem term to a variable ?T3 via the built-in predicate
BIND. The following rule shows the translation of one of the property axioms of
Department0 from the LUBM ontology.

:instr1[?T,"takesCourse"],
:instr2[?T,"UndergraduateStudent385"],

:instr3[?T,"Course41"] :-
rdfox:SKOLEM("f","takesCourse","UndergraduateStudent385","Course41"

,?T).

For querying, we of course need to incorporate the :inst* in the query as
well, for example:

SELECT ?y WHERE {
?T : instr1 ”takesCourse”.
?T : instr2 ”UndergraduateStudent385”.
?T : instr3 ?y

}
Concerning XSB, at first we used regular tabling and declared all predicates

like this:
:- table p/n.

The query execution was quite slow, so we contacted the XSB development team,
and got the suggestion to use subsumptive tabling instead. This allows for better
reuse of previously computed answers, and is declared as:

:- table p/n as subsumptive.

We noticed that the execution for subsumptive tabling was much faster than for
standard tabling.

XSB and RDFox are the only tools for which we applied any manual opti-
misations, all other tools received the same input, except for variations due to
language syntax.

4.3 Experiment Datasets

This section describes the ontologies used in the experiments. We often refer to
the ontologies as datasets.

Datasets: Our experiments are based on the widely used Lehigh University
Benchmark (LUBM) dataset [9] and Making Open Data Effectively USable
(MODEUS) Ontologies11. Instead of creating a new benchmark from scratch,
we decided to build our experiments on top of the LUBM and MODEUS
datasets and queries.

The LUBM datasets describe a university domain with information like
departments, courses, students, and faculty. This dataset comes with 14 queries

11 http://www.modeus.uniroma1.it/modeus/node/6.

http://www.modeus.uniroma1.it/modeus/node/6

An Evaluation of Meta-reasoning over OWL 2 QL 227

with different characteristics (low selectivity vs high selectivity, implicit relation-
ships vs explicit relationships, small input vs large input, etc.).

The MODEUS ontologies describe the Italian Public Debt domain with
information like financial liability or financial assets to any given contracts [16].
It comes with 8 queries. These queries are pure meta-queries as they span over
several levels of the knowledge base. MODEUS ontologies are meta-modelling
ontologies with meta-classes and meta-properties.

Problem Sizes: Although LUBM is a fairly simple ontology, it captures exis-
tentially quantified knowledge. It comes with a predefined data generator to
generate random sizes of A, which can be used to test the system ability of
handling data of varying sizes. We have used LUBM(1) consisting of 43 classes,
32 properties and 10334 axioms and LUBM(9) consisting of 43 classes, 32 prop-
erties and 79501 axioms. In MODEUS, there are four ontologies: The first
ontology MEF 00 contains 93 classes, 11 properties, 26298 individuals, 163884
axioms. The second ontology MEF 01 contains 93 classes, 11 properties, 33301
individuals, 205902 axioms. The third ontology MEF 02 contains 98 classes,
11 properties, 26302 individuals, 163991 axioms. The fourth ontology MEF 03
contains 98 classes, 11 properties, 30304 individuals, 188003 axioms.

4.4 Results

We ran all experiments on Ubuntu 20.04.2 LTS x86 64 with an Intel Xeon E5645
processor with 32 GB of RAM. For simplicity, we have not included queries that
contain the data properties in our experiments.

We have not explicitly mentioned the translation time of the ontology axioms.
It takes up to several seconds for the MODEUS ontologies because the trans-
lation implemented in this work is a prototype and not optimised. We believe
that a more streamlined implementation should have negligible runtime for the
ontologies considered here.

We next report the results on different datasets, first LUBM with stan-
dard queries, followed by meta-queries over LUBM, then moving towards meta-
modelling.

LUBM with Standard Queries. In Table 2 we have reported the results for
two different A sizes of the LUBM ontology. All times reported in these tables
are in seconds and include loading the Datalog program including facts and rules
and answering the query. The best performance for each query is highlighted in
boldface.

We can observe that performance is generally good. We can see, however, that
NoHR generally introduces significant overhead, which we did not really expect
on this scale. It is not fully clear to us yet what causes this; the ontology part is
empty and therefore we would have expected performance to be similar to XSB.
It might be that the tabling strategy is to blame, but this is just a conjecture.
There is one instance in which XSB is slower than NoHR (q9 on LUBM(9)),

228 H. M. Qureshi and W. Faber

Table 2. LUBM with standard queries under MSER (execution times in seconds)

q1 q2 q3 q5 q6 q7 q9 q10 q11 q12 q13 q14

LUBM(1)

RDFox 3.10 3.06 3.07 3.07 3.10 3.10 3.11 3.07 3.09 3.10 3.09 3.08

LogicBlox 0.46 0.50 0.46 0.43 0.42 0.41 0.41 0.41 0.42 0.42 0.41 0.41

XSB 0.46 2.36 0.33 0.13 0.11 0.71 28.22 0.46 0.10 0.10 0.45 0.11

Clingo 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27

DLV 0.21 0.22 0.21 0.21 0.21 0.22 0.22 0.21 0.21 0.22 0.21 0.21

NoHR 48.53 51.35 47.73 49.44 49.22 48.56 63.14 47.29 48.80 48.64 50.74 49.00

LUBM(9)

RDFox 55.73 55.33 57.12 55.55 57.33 56.30 56.46 55.99 58.10 56.86 55.78 57.18

LogicBlox 0.42 0.42 0.42 0.43 0.51 0.42 0.43 0.43 0.41 0.41 0.41 0.49

XSB 20.03 420.1 14.782 18.1 1.13 32.38 15143 20.03 9.62 1.48 19.87 1.12

Clingo 2.13 2.14 2.15 2.13 2.15 2.13 2.16 2.13 2.14 2.15 2.15 2.15

DLV 1.43 1.48 1.43 1.43 1.41 1.46 1.49 1.43 1.42 1.45 1.43 1.41

NoHR 2742 3013 2658 2876 2717 2688 10714 2788 2785 2767 2705 2635

but performance on this query is generally bad and a different indexing strategy
might be the cause for this artefact.

Across all queries and ontology sizes, LogicBlox exhibits the most regular
performance with roughly the same execution time for all queries, independent
on the ontology size, which is quite remarkable. Also DLV and Clingo have
very regular performance, but the time is affected slightly by the size of the
dataset. RDFox is also regular across different queries, but is quite a bit affected
by the size of the dataset. XSB shows varying performance also with different
queries over the same ontology. While it is the fastest system on some queries
over LUBM(1), it is among the slowest on other queries. This becomes more
pronounced for LUBM(9), where XSB is still quick for a few queries, but really
slow on others.

LUBM with Meta-queries. We have also considered the meta-queries mq1,
mq4, mq5, and mq10 from [12] as they contain variables in-property positions and
are long conjunctive queries. We have also considered two special-case queries sq1
and sq2 from [3] to exercise the MSER features and identify the new challenges
introduced by the additional expressivity over the ABox queries. Basically, in
special-case queries, we check the impact of DISJOINTWITH and meta-classes in
a query. For this, like in [3], we have introduced a new class named TypeOfPro-
fessor and make FullProfessor, AssociateProfessor and AssistantProfessor an
instance of this new class and also we define FullProfessor, AssociateProfessor
and AssistantProfessor to be disjoint from each other. Then, in sq1 we are ask-
ing for all those y and z, where y is a professor, z is a type of professor and y is
an instance of z. In sq2, we have asked for different pairs of professors.

It can be seen in Table 3 that the overall performance of meta-query eval-
uation is similar to the one in Table 2. LogicBlox has again the most regular
performance (with only one outlier). Clingo and DLV have regular performance
over varying queries over the same ontology, but are slightly affected by the

An Evaluation of Meta-reasoning over OWL 2 QL 229

Table 3. LUBM with meta-queries (execution times in seconds)

mq1 mq4 mq5 mq10 sq1 sq2

LUBM(1)

RDFox 3.10 3.07 3.07 3.07 3.24 3.12

LogicBlox 1.20 0.48 0.66 0.48 0.49 0.51

XSB 4.06 0.08 0.30 0.37 0.26 0.23

Clingo 0.29 0.27 0.27 0.27 0.30 0.27

DLV 0.22 0.21 0.24 0.21 0.21 0.21

NoHR 42.65 36.06 39.83 37.54 34.30 36.85

LUBM(9)

RDFox 56.90 57.15 56.83 57.32 56.48 55.28

LogicBlox 0.59 0.49 1.32 0.55 0.50 0.48

XSB 11.55 11.57 11.57 10.39 29.03 29.42

Clingo 2.38 2.14 2.20 2.14 2.21 2.22

DLV 1.59 1.48 1.63 1.46 1.43 1.38

NoHR 2585.64 2508.12 2478.39 2497.81 2449.69 2494.37

ontology size. Similar comments apply to RDFox, but it is overall slower and
performance deteriorates more. XSB and NoHR show somewhat more regular
performance here, but it still varies over queries and deteriorates with the ontol-
ogy size.

MODEUS Queries. Table 4 shows the second part of the experiments, where
we used the four MODEUS ontologies. Both LogicBlox and Clingo were not able
to compute answers with the given resources.

LogicBlox took more than 3 h and was still increasing memory and disk space
consumption. The tool created huge amounts of “workbooks”. We conjecture
that the ontology causes many rules to be applicable and that, different from
the LUBM scenario, the magic set technique is not effective for some reason here,
which would have the potential to curb these inferences. It might be connected
to the meta-modelling axioms in the MODEUS ontologies and the meta-queries
posed.

Clingo, on the other hand, produces an error while grounding which indicates
that the system ran out of identifiers for ground atoms. Apparently the problem
gives rise to a ground program that is too large for Clingo. It is interesting,
though, that there was no out-of-memory error before this happened. Unfortu-
nately there seems to be no way of circumventing this. Clingo does not employ
any magic set technique, which could have helped in this case.

It is clear that DLV is the best overall performer in Table 4. Its performance
is very regular and consistently quick. We assume that the magic set technique
implemented in DLV as a huge impact here; but it is not clear to us why Log-

230 H. M. Qureshi and W. Faber

Table 4. MODEUS with meta-queries (execution times in seconds)

mq0 mq1 mq2 mq3 mq4 mq5 mq6 mq8

MEF-0

RDFox 1616.38 1621.34 1614.11 1589.49 1560.19 1581.07 1578.59 1579.52

XSB 23.70 22.71 27.53 23.37 19.64 29.54 38.57 19.32

NoHR 315.42 391.33 1166.03 339.13 130.07 604.46 174.88 122.51

DLV 7.29 7.91 10.13 7.36 6.39 8.12 6.52 6.33

MEF-1

RDFox 2665.04 2675.29 2664.07 2578.67 2620.52 2574.85 2621.15 2617.17

XSB 142.84 137.12 137.26 138.19 135.47 139.08 150.74 136.09

NoHR 451.52 645.25 1806.51 501.93 262.71 982.62 298.18 253.02

DLV 9.08 9.99 12.8 9.23 7.90 10.18 7.97 7.88

MEF-2

RDFox 1621.40 1598.74 1576.13 1602.90 1606.77 1598.88 1576.26 1576.96

XSB 23.93 22.83 28.30 23.75 19.56 29.80 41.00 19.77

NoHR 317.89 489.96 1220.96 350.82 131.16 628.47 176.83 123.22

DLV 7.34 8.08 10.68 7.48 6.33 8.17 6.49 6.32

MEF-3

RDFox 2387.96 2417.88 2436.00 2381.75 2422.03 2386.42 2427.03 2414.71

XSB 42.39 40.10 47.30 41.21 35.99 49.55 60.11 36.96

NoHR 373.41 566.01 1772.28 422.93 170.77 904.71 219.16 167.49

DLV 8.94 9.71 12.89 9.12 7.75 10.30 8.13 7.87

icBlox (which is also supposed to implement one) cannot profit from it. A pos-
sibility is that different sideways information passing strategies (SIPS) are used.

XSB also shows comparatively regular performance, but less so than DLV.
It is interesting to see that XSB cannot profit more from its top-down strategy;
it is possible that tabling is actually slowing it down in these examples. As in
the LUBM experiments, NoHR suffers from quite severe overhead compared to
XSB, but it is actually less pronounced here than for the LUBM queries.

Finally, RDFox is actually the worst performer in this benchmark (not con-
sidering Clingo and LogicBlox). Already for LUBM it was not performing as
well as we oped, even though we used a specifically optimised program. Still, it
appears that the “triples with Skolem term solution” performs better than the
native Datalog encoding, but still creates a lot of overhead in the system. We
suppose that the system is optimised towards traditional triple stores and not
this kind of triples.

There are also some considerations concerning the nature of the MODEUS
ontologies. (1) As mentioned earlier, the MODEUS dataset consists of meta-
layers, which appear to cause many tools to do more inferencing, (2) the meta-

An Evaluation of Meta-reasoning over OWL 2 QL 231

queries consist of different layers of classes, instances and properties, which span
over several layers of the dataset, and (3) lastly, we think the presence of many
disjoint axioms causes especially many inferences.

We have also tried the only other OWL 2 QL reasoner that supports the
Meta-Modelling Semantics that we are aware of, MQ-Mastro12. It allows meta-
querying over ontologies that contain meta-modelling. MQ-Mastro offers two
query evaluation algorithms, NAIVE and Lazy Meta-Grounding (LMG) [16]. We
have used LMG as it is a generalisation of NAIVE based on lazy grounding. The
system comes with a Graphical User Interface (GUI) and unfortunately we did
not succeed to run it in batch mode, so we were not able to accurately measure
its execution times. The results are somewhat mixed: loading and preprocessing
took several minutes, but once this was done, answering queries is practically
instantaneous.

So for scenarios in which a lot of queries are to be answered over the same
ontology, or in which the ontology can stay loaded, MQ-Mastro might be a better
choice, but in most other scenarios the Datalog approach can work better.

5 Discussion and Conclusion

In this paper we provided both a brief theoretical background and an evalu-
ation of a method for answering SPARQL queries over OWL 2 QL ontologies
under Meta-Modelling Semantics via a reduction to evaluating Datalog queries.
Related to this work are [8,12,19], which consider OWL 2 QL ontologies under
DSER and show that it is decidable and can be reduced to Datalog evalua-
tion. However, those works do not consider meta-modelling and meta-querying.
In [13,14], the authors overcome the limitations of querying over OWL 2 QL
ontologies via introducing the Meta-modelling Semantics and show that their
proposed algorithm tackles the untyped querying problem in PTime w.r.t. data
and ontology complexity.

Our work is based on [3], which presented the reduction to Datalog, argued
its correctness, and analysed complexity. The main contribution of our paper is
that it expands the performance analysis in [3] considerably. On the one hand,
we do consider the MODEUS ontologies that involve meta-axioms, and on the
other and we evaluate more tools that support Datalog query answering.

Indeed, our experiments show that especially DLV, but also XSB appear to be
promising back-ends for meta-querying over OWL 2 QL ontologies. Surprisingly,
neither RDFox nor LogicBlox coped very well with the MODEUS ontologies that
involve meta-modelling, while LogicBlox performed very well on LUBM queries.
Also, RDFox does not seem to be a particularly good fit for this particular kind
of application. Also Clingo seems to be not particularly well-suited for query
answering of this particular kind. Lastly, the overhead created by NoHR appears
quite prohibitive in this scenario. While we did not expect it to perform better
than XSB, we hoped to be using it for future work.

12 http://www.modeus.uniroma1.it/modeus/node/6.

http://www.modeus.uniroma1.it/modeus/node/6

232 H. M. Qureshi and W. Faber

This future work is to use hybrid reasoning for answering meta-queries. The
idea would be to translate only parts of the ontology to Datalog and do some
of the reasoning with ontology tools. Having originally targeted NoHR for this,
the results of the experiments show us that the reasons for NoHR’s performance
need to be explored carefully before continuing in this direction. Also, we intend
to test lazy grounding systems such as Alpha [20] in the future.

References

1. Brasileiro, F., Almeida, J.P.A., Carvalho, V.A., Guizzardi, G., et al.: Expressive
multi-level modeling for the semantic web. In: Groth, P. (ed.) ISWC 2016. LNCS,
vol. 9981, pp. 53–69. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46523-4 4

2. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

3. Cima, G., De Giacomo, G., Lenzerini, M., Poggi, A.: On the SPARQL metamodel-
ing semantics entailment regime for OWL 2 QL ontologies. In: Proceedings of the
7th International Conference on Web Intelligence, Mining and Semantics, pp. 1–6
(2017)

4. De Moor, O., Gottlob, G., Furche, T., Sellers, A. (eds.): Datalog 2.0 2010. LNCS,
vol. 6702. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24206-9

5. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
and Claypool Publishers (2012)

6. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Proceedings of the Fifth International Conference
and Symposium of Logic Programming (ICLP 1988), pp. 1070–1080. MIT Press
(1988)

7. Glimm, B., et al.: Using SPARQL with RDFS and OWL entailment. In: Polleres,
A. (ed.) Reasoning Web 2011. LNCS, vol. 6848, pp. 137–201. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23032-5 3

8. Gottlob, G., Pieris, A.: Beyond SPARQL under OWL 2 QL entailment regime:
rules to the rescue. In: Twenty-Fourth International Joint Conference on Artificial
Intelligence (2015)

9. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for owl knowledge base systems.
J. Web Semant. 3(2–3), 158–182 (2005)

10. Huang, S.S., Green, T.J., Loo, B.T.: Datalog and emerging applications: an interac-
tive tutorial. In: Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data, pp. 1213–1216 (2011)

11. Knorr, M., Alferes, J.J., Hitzler, P.: Local closed world reasoning with description
logics under the well-founded semantics. Artif. Intell. 175(9–10), 1528–1554 (2011)

12. Kontchakov, R., Rezk, M., Rodŕıguez-Muro, M., Xiao, G., Zakharyaschev, M.,
et al.: Answering SPARQL queries over databases under OWL 2 QL entailment
regime. In: Mika, P. (ed.) ISWC 2014. LNCS, vol. 8796, pp. 552–567. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11964-9 35

13. Lenzerini, M., Lepore, L., Poggi, A.: A higher-order semantics for OWL 2 QL
ontologies. In: Description Logics (2015)

14. Lenzerini, M., Lepore, L., Poggi, A.: Answering metaqueries over HI (OWL 2 QL)
ontologies. In: IJCAI, pp. 1174–1180 (2016)

https://doi.org/10.1007/978-3-319-46523-4_4
https://doi.org/10.1007/978-3-319-46523-4_4
https://doi.org/10.1007/978-3-642-24206-9
https://doi.org/10.1007/978-3-642-23032-5_3
https://doi.org/10.1007/978-3-319-11964-9_35

An Evaluation of Meta-reasoning over OWL 2 QL 233

15. Lenzerini, M., Lepore, L., Poggi, A.: A higher-order semantics for metaquerying in
OWL 2 QL. In: Fifteenth International Conference on the Principles of Knowledge
Representation and Reasoning (2016)

16. Lenzerini, M., Lepore, L., Poggi, A.: Metaquerying made practical for OWL 2 QL
ontologies. Inf. Syst. 88, 101294 (2020)

17. Motik, B.: On the properties of metamodeling in OWL. J. Log. Comput. 17(4),
617–637 (2007). https://doi.org/10.1093/logcom/exm027

18. Motik, B., et al.: OWL 2 web ontology language profiles. W3C Recommendation
27, 61 (2009)

19. Poggi, A.: On the SPARQL direct semantics entailment regime for OWL 2 QL. In:
Description Logics (2016)

20. Weinzierl, A.: Blending lazy-grounding and CDNL search for answer-set solving. In:
Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp.
191–204. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61660-5 17

https://doi.org/10.1093/logcom/exm027
https://doi.org/10.1007/978-3-319-61660-5_17

cl-psoatransrun: An Efficiently
Executable Specification of PSOA

RuleML in Common Lisp

Mark Thom1(B) , Harold Boley2 , and Theodoros Mitsikas3

1 RuleML, Fredericton, Canada
2 University of New Brunswick, Fredericton, Canada

3 National Technical University of Athens, Athens, Greece
mitsikas@central.ntua.gr

Abstract. The open-source cl-psoatransrun system, a realization for
reasoning in PSOA RuleML is discussed. cl-psoatransrun, written in
Common Lisp follows the paradigm of functional programming for the
central transformation steps, necessary for translating the object- and
graph-oriented PSOA syntax to relational Prolog clauses. We describe
the parsing of the PSOA RuleML presentation syntax, and we provide
a detailed analysis of the transformation steps. cl-psoatransrun can
serve as an alternative of the reference implementation PSOATransRun,
providing both fast translation times and feature parity. Additionally, the
flexibility of the transformation functions provides an ideal environment
for developing the PSOA RuleML specification.

1 Introduction

The active development of a rule language poses a series of challenges. The
specification of the language drives the development of the systems implementing
it. Technical limitations of the programming languages and the tools used for
these implementations often hinder the development of the specification. During
the development of PSOATransRun [13], a reasoner for the multi-paradigm –
particularly, graph-relational – data and rule language Positional-Slotted Object-
Applicative RuleML (PSOA RuleML) [4,5], we were limited by the rigidity of
its toolchain of Java and ANTLR. This prompted us to search for an alternative
toolchain to assist us in the concurrent development of the specification and
the implementation of PSOA RuleML language. Consequently, we developed
cl-psoatransrun, a realization of the PSOA RuleML rule and data language
written in Common Lisp (CL). cl-psoatransrun currently targets XSB Prolog
and Scryer Prolog as client logic engines. Serving as a second realization of PSOA
RuleML, it is a parallel implementation effort to the PSOATransRun system, the
latter being implemented primarily in the Java programming language.

In Memoriam Harold Boley, who passed away before the composition of this
manuscript. All faults and inaccuracies belong to his co-authors.

c© Springer Nature Switzerland AG 2021
S. Moschoyiannis et al. (Eds.): RuleML+RR 2021, LNCS 12851, pp. 234–249, 2021.
https://doi.org/10.1007/978-3-030-91167-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91167-6_16&domain=pdf
http://orcid.org/0000-0003-4421-7052
http://orcid.org/0000-0002-8940-7469
http://orcid.org/0000-0002-7570-3603
https://doi.org/10.1007/978-3-030-91167-6_16

cl-psoatransrun: An Efficiently Executable Speci Cation of PSOA RuleML 235

CL is well-known for its productivity, performance, and expressive power [8].
Its powerful meta-programming capabilities have enabled the CL community to
keep the decades-old CL programming language at pace with the latest innova-
tions from the object-oriented, reflective and functional programming commu-
nities, each of whose paradigms is natively supported by CL. There is a rich
history of implementing other languages in CL, an attraction again owed to its
nearly unrivaled support for meta-programming.

cl-psoatransrun was created to harness these strengths to allow for the fast
implementation of, and experimentation with, the syntax and semantics of PSOA
RuleML, a language with many planned but as-yet fluid or incomplete features.
CL has long had efficient native support for many present and planned features
of PSOA RuleML, most prominently in its support for symbolic computation
and functional programming. This confluence of features greatly reduces the
effort required to implement PSOA RuleML in CL as compared to that required
in languages lacking those features.

CL’s functional programming sub-language is especially applicable to the
transformation stages used to compile PSOA programs into Prolog programs, so
that they may be loaded into a client Prolog system and queried against. These
stages were originally defined in the formal language of recursive functions and
their semantics-preserving properties proved in [12]. As such, one can closely
transcribe these transformations into a suitably equipped (functional) program-
ming language such as CL where they can be realized as plain parameterized
functions.

For these reasons, we consider cl-psoatransrun to be a declarative, exe-
cutable and efficient specification of PSOA RuleML. “Efficiency” refers here to
both machine execution time and the number of source lines of code (SLOC)
composing cl-psoatransrun. Our (primarily) functional style of implementa-
tion is not only tersely expressive but also compiles down to highly performant
native code produced by the free open source CL compiler Steel Bank Com-
mon Lisp (SBCL) [2]. The KB and query translation and execution times of
cl-psoatransrun often considerably undercut those of the primarily Java-based
PSOATransRun; we give benchmarks comparing the performance of PSOATran-
sRun and cl-psoatransrun on a few publicly available PSOA RuleML KBs in
a later section of this paper.

The rest of the paper is organized as follows: Sects. 2 and 3 provide an
overview of the PSOA RuleML presentation syntax and the cl-psoatransrun
system, respectively. The parsing of the PSOA Presentation Syntax (PS) is dis-
cussed in Sect. 4. Section 5 describes the functional implementation of Abstract
Syntax Tree (AST) transformations while Sect. 6 discusses how the result-
ing transformed ASTs are translated to Prolog queries, whose (Prolog) solu-
tions are pretty-printed back to PSOA PS. Section 7 presents an overview of
cl-psoatransrun performance. Finally, Sect. 8 concludes the paper and pro-
poses future research directions.

236 M. Thom et al.

2 PSOA RuleML Presentation Syntax Overview

PSOA RuleML allows for an atom to be with or without an Object IDentifier
(OID)—typed by the predicate—while the predicate arguments (descriptors) can
be tupled, slotted, or tupled and slotted. Moreover, a descriptor can be either
dependent on the predicate and attached to the OID, or independent, attached
only to the OID [5].

A fact concerning a purchase involving three parties can be represented e.g.,
as a relationship (i.e., a single-tupled atom without OID):

purchase(John Mary Fido)

where the tuple John Mary Fido serves as an abridged form of the predicate-
dependent tuple +[John Mary Fido]. The general form of a dependent-tupled-
only atom is as follows:

Oidless : f(+ [t1 . . . tn])
Oidful : o#f(+ [t1 . . . tn])

The purchase predicate can be alternatively represented using dependent slots:

purchase(buyer+>John seller+>Mary item+>Fido)

In this case, the three slots (or alternatively, unordered key-value pairs) are
dependent on the predicate, coupled to a system-generated Skolem constant
OID.

A variant of the above with an OID could be as follows:

transaction200#purchase(buyer+>John seller+>Mary item+>Fido)

The general form of this multi-slotted atom is

Oidless : f(p1+>v1 . . . pk+>vk)

Oidful : o#f(p1+>v1 . . . pk+>vk)

The general psoa atom form can homogeneously integrate relationships and
frames, dependent and independent descriptors, and being multi-tupled. This
form is shown in the following example, where he superscripts indicate subterms
that are part of dependent (“+”) vs. independent (“-”) descriptors [5]:

o#f(+ [t+1,1 ... t
+
1,n+1] ...

+[t+
m+,1 ... t

+
m+,n+

m+
]

-[t-1,1 . . . t-1,n-1] . . . -[t-m-,1 . . . t-m-,n-
m-
]

p+1 +>v
+
1 . . . p+

k+
+>v+

k+

p-1->v
-
1 . . . p-k-->v

-
k-)

A PSOA Knowledge Base (KB) consists of clauses, mostly as ground facts
and non-ground rules: While facts are psoa atoms, rules are defined – within
Forall wrappers – using a Prolog-like conclusion :- condition syntax, where
conclusion can be a psoa atom and condition can be a psoa atom or a prefixed
conjunction of psoa atoms [14].

cl-psoatransrun: An Efficiently Executable Speci Cation of PSOA RuleML 237

3 Architecture of cl-psoatransrun

A cl-psoatransrun session begins with the user submission of a PSOA RuleML
KB to the evaluation loop beginning in the top left-hand column of Fig. 1. The
KB must be specified in PSOA Presentation Syntax (PSOA PS). In the remain-
ing sections of the paper, we will walk the figure in counter-clockwise order,
starting with the parsing stage and ending with the pretty printing stage.

The read-eval-print-loop (REPL) reads queries against the PSOA RuleML
KB loaded into the Prolog engine subprocess at startup. The first column of
Fig. 1 describes the steps of the transformation and Prolog translation procedure
for PSOA RuleML KBs and queries alike.

Queries are evaluated via communication with the Prolog client running a
Prolog program that listens for query strings from the front end. After evaluating
them, it returns solution strings in Prolog syntax. These are pretty-printed back
to PSOA PS where they are printed to the screen by the REPL or compared
against expected solution strings by the test suite mode.

The test suite mode programmatically loads test KBs to the Prolog engine
and evaluates test queries present in an expected test directory structure. The
testing process prints to standard output any discrepancies between the expected
and evaluated query solutions.

PSOA PS KB

Esrap-generated
PS Parser

PSOA-AST-to-PSOA-AST
transformers

Prolog renderer

Prolog engine

Query solutions (in Prolog)

PSOA PS query

REPL / Test Suite

Esrap-generated Prolog
parser-to-PSOA RuleML

Pretty Printer

Fig. 1. The cl-psoatransrun system.

238 M. Thom et al.

4 Declarative Parsing of PSOA RuleML KBs and Queries

Abstract syntax trees are initially produced from PSOA RuleML KBs by a parser
declaratively specified in the domain-specific language (DSL) of the esrap parser
generator library. The grammar of the esrap DSL resembles that of the familiar
EBNF formalism for language grammars. As with all non-native CL libraries
cl-psoatransrun uses, esrap is available via the Quicklisp library manager [1].

esrap form EBNF rule Rule description
(and E1 E2 . . . EN) E1, E2, . . ., EN Concatenation of rules E1, E2, . . ., EN

(or E1 E2 . . . EN) E1 | E2 | . . . | EN Disjunction of rules E1, E2, . . ., EN

(* E) {E} Greedy repetition of rule E
(? E) [E] Optional matching of rule E
(not E) -E Negation of rule E
"string" "string" Literal matching of "string"

esrap rules are defined as in the example:

(defrule implies

(and head

(* (or whitespace comment))

":-"

(* (or whitespace comment))

formula)

(: destructure (head ws1 implies ws2 formula)

(declare (ignore ws1 implies ws2))

(make-ruleml-implies :conclusion head

:condition formula)))

An esrap rule usually consists of three components: its name (implies),
matching form (the (and head ...) form) and an optional action (the final
destructure form).

In the example, implies parses text of the form <head >: - < formula >
by naming the other esrap rules head and formula as subexpressions. The
subexpression (* (or whitespace comment)) greedily matches zero or more
copies of the whitespace and comment rules/subexpressions.

destructure actions are used to decompose the results of and productions
and then (most often in cl-psoatransrun) to place them into appropriately
typed CL structures. In the destructure action of the example, the implies
symbol is bound to the ":-" string while ws1 and ws2 are bound to NIL val-
ues representing (possibly non-existent) whitespace and comments. These values
play no role in the formation of the ruleml-implies structure and are conse-
quently ignored. The head and formula values are placed in the :conclusion
and :condition slots of the returned ruleml-implies structure.

Most of cl-psoatransrun’s esrap rules are declarative and purely functional
as in the example but there are a few exceptions. For instance, side effects are
used in the prefix-list production to populate the *prefix-ht* hash table. In

cl-psoatransrun: An Efficiently Executable Speci Cation of PSOA RuleML 239

PSOA RuleML, some built-in predicates can only be accessed via a prefixed IRI
(for example, built-in mathematical functions are available under the https://
www.iso.org/standard/21413.html# IRI referring to the ISO Prolog standard).
We found it most convenient to expand abbreviated predicates in RuleML KBs
at parse time.

In the prefix-list production, the *prefix-ht* variable is declared special,
making it a dynamically scoped variable whose value is automatically reset to NIL
when the thread of execution leaves its defining scope. The ruleml production
parses entire PSOA RuleML KBs, and the *prefix-list* is declared over it so
that its value is dynamically accessible to the actions of all the PSOA grammar’s
other productions, which are run as functions further down the CL stack.

(defrule prefix-list

(* (or prefix whitespace comment))

(: around ()

(declare (special *prefix-ht *))

(let ((prefixes (esrap:call-transform)))

(setf *prefix-ht* (prefix-list- >prefix-ht prefixes))

prefixes))

(: lambda (prefixes)

(remove nil prefixes)))

esrap’s around actions allow code to be executed before and after subsequent
transforms belonging to the production are called. The sequence of transforms
following the around action are executed via the (esrap:call-transform)
form. In prefix-list, the lambda action removing NIL from the list of parsed
nodes prefixes is run and its return value is naturally that of (remove
nil prefixes). The around action transforms the list of prefixes to a hash
table with prefix keys and IRI values using the cl-psoatransrun function
prefix-list->prefix-ht, which is then bound to *prefix-ht*.

By decoupling parsing and transformation-functions into separate modules,
cl-psoatransrun has several developments advantages over PSOATransRun,
which uses the ANTLR parsing library both for parsing KBs and queries and
implementing transformation-functions on them. Each transformation-function
is realized in PSOATransRun as an ANTLR tree grammar containing each of the
productions of the PSOA RuleML grammar. The transformations are specified
as actions following the productions of the tree grammar to which they apply. It
is too often the case that productions are untouched by a given transformation
but must be specified for the tree grammar-transformations to work. This results
in a great deal of redundant code that is duplicated each time a new transfor-
mation is added and whenever the PSOA grammar is expanded to include new
productions. Additionally, the transformations themselves are implemented in
a verbose and highly stateful style that is often difficult for even experienced
PSOATransRun developers to understand, extend, and debug.

In cl-psoatransrun, esrap is used exclusively for parsing text to ASTs for
later consumption by the transformation-functions. Its decoupling of parsing pro-
ductions and transformation-functions is highly composable and allows a much

https://www.iso.org/standard/21413.html#
https://www.iso.org/standard/21413.html#

240 M. Thom et al.

narrower locality of focus in the transformations, eliminating the redundancy of
PSOATransRun’s ANTLR tree grammars.

5 Abstract Syntax Tree Transformations

The core of cl-psoatransrun is in its functionally defined transformations, the
first series of which transform PSOA KBs to semantically equivalent PSOA KBs
ready for direct translation to Prolog. These stages are described and motivated
in Gen Zou’s doctoral thesis and derived papers where the semantics preservation
property of each transformation step is also proved mathematically [5,12].

PSOA-to-PSOA transformation stages are realized in cl-psoatransrun as
plain CL functions. Each is applied to a PSOA RuleML KB before being trans-
lated to Prolog. After being returned as the output of an esrap parse (which
is executed as a call to a function of the esrap library), a PSOA RuleML KB
abstract syntax tree (AST) is subject in the listed order to the following sequence
of transformation-functions.

1. rename-anonymous-constants
2. subclass-rewrite
3. embedded-objectify
4. unnest
5. objectify
6. skolemize
7. flatten-externals
8. separate-existential-variables
9. describute

10. split-conjunctive-conclusion

Of these ten transformations, only separate-existential-variables is
undocumented in the previously cited literature, as it was newly introduced
to PSOATransRun and cl-psoatransrun by the authors of this paper in the
summer of 2020 [3].

Describing its purpose naturally leads to a more germane discussion of
how cl-psoatransrun’s transformation-functions are implemented in gen-
eral. PSOA’s Exists formula was introduced to offer lexically scoped logi-
cal variables. Often no counterpart concept exists in the target logic engine
– for instance, in Prolog, all variables are dynamically scoped. Therefore,
separate-existential-variables substitutes for every existentially qualified
variable (that is, its declaration as a variable of the Exists clause and its occur-
rences in the Exists subformula) a uniquely named universally quantified vari-
able on the condition side of a PSOA Implies formula or within a query (it is
recognized in the theory of logic programming/theorem-proving method of res-
olution that query terms are in a “negative” context similarly to terms in facts
and in implication conditions [6]). Since the logical proposition P → Q is equiv-
alent to ¬P ∨ Q, separate-existential-variables is a semantics-preserving
transformation.

cl-psoatransrun: An Efficiently Executable Speci Cation of PSOA RuleML 241

As with all of the other transformation-functions, it takes as input a node
in the abstract syntax tree of the PSOA RuleML KB or query and returns an
appropriately transformed node when finished. The input node represents either
a conjunctive query term or a KB rule or fact. In either case, the node is always a
meaningful PSOA AST. Variables and symbols are the most common leaf types
of PSOA ASTs. Composite nodes are typically specified as appropriately named
CL structures. The specification of the node type for PSOA Exists formulas in
cl-psoatransrun is

(defstruct (ruleml-exists (: include ruleml-ast-node))

(vars nil :type list)

formula)

An Exists clause consists of a list of variables and a subformula, which is
reflected by the specification of its cl-psoatransrun type. We should also note
that all AST node types inherit from the ruleml-ast-node supertype via the
:include directive.

The strong dynamic typing of CL allows us to arrange AST nodes of different
types freely while at the same time encoding enough information in the node
types to drive the case analyses of the transformation-functions and to perform
automated run-time type checks. This approach models the representation of
composite types as algebraic data types as pioneered in statically-typed func-
tional languages like Standard ML while greatly reducing the verbosity typically
required by statically typed languages [10].

The standard functional programming approach to transforming a tree is to
use recursion to walk the tree. As each node is encountered, a function given
as an argument of the tree walker is applied to it. The results of the walk are
assembled one output node at a time into a new tree by the tree walker. There
are several well-known ways of abstracting this process to allow the caller to
express a wide variety of tree transformations. Our tree walker, transform-ast,
takes three arguments: the root of the tree, the key function κ and the propagator
function ρ.

κ and ρ interact to define the action of the tree walker on the root argument.
ρ is the most fundamental of the two in determining how the tree is traversed
because it defines the recursion step. κ defines the transformation on the node
built up from the results of ρ on the root node’s children. We can look to how
ruleml-exists nodes are handled in transform-ast to get a sense of how these
steps are implemented at once:

(defun transform-ast (root κ ρ)
(match root

...

((ruleml-exists :vars vars :formula formula)

(funcall κ (make-ruleml-exists

:vars (mapcar ρ vars)

:formula (funcall ρ formula))))

...))

242 M. Thom et al.

match is a pattern-matching macro provided by the (non-CL-native) trivia
library. It dispatches execution to a patch of code cued by the type of root as
identified by the first symbol of the matching s-expression pattern in each ()-
enclosed patch; in the example, this symbol is ruleml-exists. match allows us
to destructure root by its type, in this case assigning the variable names vars
and formula to the ruleml-exists structure’s slots of those (keyword) names.

The Lisp form following the matching s-expression defines what
transform-ast does upon successfully binding the type of root and its con-
tents to the pattern form. Here, ρ is called on the child nodes of root, the
variable members of the vars list and the PSOA RuleML formula formula, and
the results are packaged into a fresh ruleml-exists value, which is passed to
κ. It is κ’s job to change the type of root in the output tree if so desired. We
emphasize that transform-ast is purely functional, meaning that it does not
mutate its arguments.

It is sufficient to use transform-ast by specifying only the root and κ
arguments, because ρ has the default value

ρ := (lambda (term) (transform-ast κρ))

This fixed-point definition of ρ (the value of which is the same on either side of its
own defining equation) propagates both κ and itself to the direct children of its
tree argument term. If κ preserves the types of its argument, then it when used
with the default value of ρ produces a tree walker that preserves the structure
of its input tree if not its contents.

In Fig. 2, we convey the operation of transform-ast pictorially by illustrat-
ing the action of a simple key function κ step-by-step on a PSOA RuleML AST.
We will use the default (self-propagating) value of ρ.

For κ, we use the CL anonymous function

(lambda (term)

(match term

((ruleml-const :contents "_")

(funcall name-generator))

(_ term)))))

It replaces anonymous constants (denoted with the identifier) with the con-
stants produced by the externally instantiated name-generator generator func-
tion, the sequence 1, 2, . . . while leaving all other nodes unchanged. Nodes of all
other types (non-constant nodes and non-anonymous constants) are captured by
the match macro’s wildcard pattern . Each step is fully shown in the root node
of each graph and decomposed recursively into (downward) child nodes. The
final graph shows the outcome of the tree transformation in a tree structurally
identical to the original.

Starting from the top-left diagram, the root node is decomposed into the
constituent parts of the PSOA RuleML atom structure represented in PSOA PS
as p(c). These are the root constant p and the dependent tuple of constants
+[c], whose children are its constant node contents. The top-left diagram
is thus a visual representation of the atom prior to κ and ρ being applied.

cl-psoatransrun: An Efficiently Executable Speci Cation of PSOA RuleML 243

Fig. 2. Stepwise transformation of the Exists syntax graph by transform-ast

In the following diagram (to its right), ρ is applied to the internal parts of
the atom after which κ is applied to the penultimate atom built from the two
applications of ρ. Unlike in call-by-name functional programming languages such
as Haskell, CL has call-by-value semantics, so that the two applications of ρ will
be applied before κ is finally applied, since they determine the value passed to
κ.

Next, ρ is applied to the constant nodes of the dependent tuple. ρ(p) becomes
κ(p) since p is a constant with no child nodes for ρ to propagate itself to. This
also describes what happens in the first diagram of the second row, where all
ρ’s have been replaced by κ’s. Since CL’s mapcar function applies its argument
ρ (which in this example is κ) from left-to-right, name-generator is applied to
the leftmost constant first, so that it is replaced by 1 in the final diagram,
leaving 2 to substitute for the second constant.

244 M. Thom et al.

6 Prolog Client Interaction and Pretty Printing

cl-psoatransrun supports XSB Prolog and Scryer Prolog as logic engine back-
ends. Each is launched with its own customized version of the same server pro-
gram, which listens on a blocking input stream for queries.

The loop for the XSB Prolog version of the server program is listed here.

eval_loop :-

read_term(user_input , Term , [variable_names(VNNames)]),

(Term == end_of_file ->

true

;

read_term(user_input , _, [variable_names(UVNNames)]),

split_vars(VNNames , UVNNames , RVNNames),

catch(call(Term), _, false),

compile_solution_string (RVNNames , VarString),

((var(VarString) ; VarString == "") ->

write_string("Yes")

;

write_string(VarString)

),

false

;

write_string("No"),

eval_loop

).

eval loop listens for a query submitted to user input (the standard input
stream) using the ISO Prolog predicate read term [7]. The variable VNNames
is bound to a list of pairs equating (Prolog atom) variable names as parsed by
read term to their Prolog variable counterparts in Term.

cl-psoatransrun stops the server by submitting end of file to the Pro-
log engine, which causes eval loop to terminate. Otherwise, a second string
is read from standard input identifying the variable names in the translated
PSOA RuleML query that were generated by the transformation steps and not
present in the original user-submitted query. cl-psoatransrun formats the vari-
able names equated to their bindings in VarString using the server predicate
compile solution string.

eval loop uses several helper predicates to filter these variables out from
the string of variable bindings it generates to submit back to cl-psoatransrun
as a solution to the original query. The ISO standard predicate call is used to
invoke Term as a query against the Prolog KB that was translated from PSOA
RuleML and loaded into the Prolog engine by cl-psoatransrun. If the query has
multiple solutions, Prolog will naturally backtrack to call(Term) and undergo
the subsequent solution generation and submission process for every solution set.

The PSOATransRun implementation uses the InterProlog third party library
to communicate with its Prolog subprocesses. cl-psoatransrun’s approach
neatly sidesteps the need for any intermediaries by leveraging the built-in fea-

cl-psoatransrun: An Efficiently Executable Speci Cation of PSOA RuleML 245

tures of (ISO) Prolog in a way that is agnostic to the PSOA RuleML implemen-
tation with which it communicates. All that is required of the PSOA RuleML
implementation is the ability to parse the simplified Prolog notation the Prolog
server program uses to convey solution sets back to it. At the time of this writ-
ing, PSOATransRun and cl-psoatransrun both do this, allowing for a future
experiment with direct communication between PSOATransRun and the Prolog
engines. Stripping the server functionality down to its strict necessities con-
tributes to the fast query execution performance of cl-psoatransrun relative
to PSOATransRun, as seen in the next section.

Once cl-psoatransrun parses the Prolog-notated solution sets to its PSOA
AST representation, it pretty prints the AST back to PSOA PS, which it prints
to standard output (in the REPL case). The pretty printer is written using CL’s
highly expressive native DSL for pretty printing, the Common Lisp Pretty Print-
ing System [11], and produces readable machine-generated PSOA PS syntax.

7 Benchmarks

The benchmarks given in this section were gathered over the PSOATransRun test
suite available at https://github.com/RuleML/PSOATransRunComponents/
tree/master/PSOATransRun/test.

The test suite was administered on a desktop PC with an Intel i5-7500 pro-
cessor running at 3.40 GHz with 8 GBs RAM on Arch Linux 5.12.12; PSOATran-
sRun was run on OpenJDK 16.0.1 and cl-psoatransrun on SBCL 2.1.1.

The KB columns list the time it took for the test suite KB (of the row) to be
translated from PSOA RuleML and loaded into XSB Prolog by the benchmarked
PSOA RuleML realization (of the column). Similarly, the Queries columns list
the time it took for the test case queries to be translated to Prolog from PSOA
RuleML, run on the Prolog engine, and translated back to answer bindings in
PSOA RuleML. All running time measurements are given in milliseconds.

Test case cl-psoatransrun PSOATransRun

KB Queries KB Queries

betweenObjRel-groundfact 0.502 13.432 0.793 687.283
betweenObjRel-nongroundfact 0.505 5.12 1.231 274.516
betweenObjRel-rule-v1 1.566 6.34 2.780 322.384
betweenObjRel-rule-v2 1.839 3.044 9.786 198.966
class membership 0.915 0.402 1.200 3.321
constant variation 1.447 21.681 1.549 216.845
discount 1.599 1.258 1.339 44.822
empty-tuples 6.885 5.375 21.863 152.738

(continued)

https://github.com/RuleML/PSOATransRunComponents/tree/master/PSOATransRun/test
https://github.com/RuleML/PSOATransRunComponents/tree/master/PSOATransRun/test

246 M. Thom et al.

(continued)

Test case cl-psoatransrun PSOATransRun

KB Queries KB Queries

external-function1 0.199 3.035 0.305 159.140
external-function2 2.002 1.391 5.626 54.271
external-isopl-function 0.761 11.93 1.052 242.649
external-isopl-predicate 0.764 5.544 1.085 155.387
external-predicate1 0.234 1.667 0.273 56.597
external-predicate2 2.08 1.128 6.128 42.955
factorial1 2.059 2.023 1.627 70.937
factorial2 2.525 14.472 2.942 62.978
factorial3 1.169 1.032 4.525 97.57
family1 1.142 1.068 2.256 55.276
family2 1.802 5.603 2.942 62.978
function application as slot filler 0.732 2.817 1.747 104.911
ground-rule 1.643 1.958 3.089 61.300
mixed-use-of-oids-in-psoa-terms 1.572 1.456 4.579 14.629
multi-slot psoa fact 0.379 1.738 0.654 52.637
multi-valued slot 0.967 6.7 1.478 68.882
multiple entailment 0.499 0.84 0.870 6.316
music album 2.203 14.072 2.007 117.490
nested atoms1 1.198 5.463 6.646 213.525
nested atoms2 14.309 0.851 1.912 50.980
objectification 0.558 0.963 0.802 47.328
own 1.237 1.88 1.656 99.052
passive function 0.354 1.246 1.016 47.062
physics-comparison 37.216 51.196 173.415 706.027
physics-datetime 74.518 6.181 292.849 181.261
psoa-abridged-constants1 0.663 0.725 0.990 14.170
psoa-abridged-constants2 1.031 3.173 1.648 49.809
psoa-atom-dependency1 0.867 4.983 1.122 274.935
psoa-atom-dependency2 1.136 1.54 215.178 19.890
psoa-atom-dependency3 1.454 6.576 1.958 194.364
psoa-atom-dependency4 1.175 3.582 1.767 152.952
psoa-atom-dependency5 1.489 6.234 3.696 148.594
psoa facts with slots and tuples 1.316 36.168 2.633 103.996
psoa terms test 1.846 5.696 2.242 158.221

(continued)

cl-psoatransrun: An Efficiently Executable Speci Cation of PSOA RuleML 247

(continued)

Test case cl-psoatransrun PSOATransRun

KB Queries KB Queries

recursive frame rule 1.90 9.955 13.742 66.730
recursive rule 1.902 1.605 2.884 4.946
slotribution1 1.252 1.357 1.187 48.143
slotribution2 1.637 1.393 1.871 94.311
startup 1.954 1.582 2.337 54.679
subclass-axiomization 1.34 1.333 1.479 54.682
subclass-bird 1.444 4.222 3.128 149.682
subclass-test1 0.608 1.96 2.336 104.820
subclass-test2 1.201 3.4 1.604 122.025
transfer 1.422 6.692 8.071 320.426

As seen above, cl-psoatransrun is on average about 2.16 times faster when
translating a KB (after removing the outlier test psoa-atom-dependency2), and
on average 33 times faster when executing a query.

8 Conclusions

The CL programming language offers a number of compelling advantages. In
cl-psoatransrun, the most impactful of these have been incremental compila-
tion, interactive development, and its (native and library-based) DSLs for gener-
ating high-level feedback in the form of ASTs pretty-printed to PSOA RuleML
PS and programmatically drawn syntax graphs for AST nodes.

CL’s strong support for meta-programming has allowed the historically stable
core language, ANSI-standardized in 1994 [9], to keep pace with later innova-
tions not present in the original language through library extensions. The highly
expressive and computationally efficient pattern matching of the trivia library
is one such extension that has contributed greatly to the declarativity of the
cl-psoatransrun codebase. In addition to all this, cl-psoatransrun compiles
down to very fast executable native code generated by the Steel Bank Common
Lisp compiler.

Since so much of cl-psoatransrun is written in mostly functional style,
its parts are inherently highly modular and composable. We expect these fea-
tures to assist us greatly in proceeding through the items of the PSOATransRun
Development Agenda at a heightened but still rigorous pace.

The Scryer and XSB Prolog servers can be used by any front-end capable
of initializing them atop their compatible Prolog engine as a subprocess. The
servers assume nothing about the front-end, requiring only that the front-end
follows the simple text-based protocol outlined in Sect. 6 of this paper. The
servers are compact Prolog programs, whose lengths measure at approximately

248 M. Thom et al.

120 SLOC each. They obviate the need for third-party libraries to intermediate
communication between a PSOA RuleML realization and its Prolog engine.

As advantageous as the approach of cl-psoatransrun has been to PSOA
RuleML implementation overall, it presents several drawbacks that will take
work to address. Like logic programming, functional programming remains a
difficult subject for many and is often inadequately taught to computer sci-
ence students. We have tried to amelioriate this by extensively document-
ing cl-psoatransrun here, in the RuleML wiki report of [3], and in the
cl-psoatransrun source code. Once the source code of cl-psoatransrun has
been studied and adequately understood by a human reader, they should ide-
ally be left with the impression that realizing a PSOA RuleML system is fairly
straightforward if the mathematical character of its core transformation and
client logic engine translation processes in particular is properly appreciated.
All that is required of the front-end’s implementation language is that it can
express that character directly and unobtrusively.

References

1. Quicklisp Common Lisp Library Manager. http://www.quicklisp.org/
2. Steel Bank Common Lisp. http://www.sbcl.org/
3. The cl-psoatransrun System: An Efficiently Executable Specification of PSOA

RuleML in Common Lisp. http://wiki.ruleml.org/index.php/The cl-psoatransrun
System: An Efficiently Executable Specification of PSOA RuleML in Common
Lisp

4. Boley, H.: PSOA RuleML: integrated object-relational data and rules. In: Faber,
W., Paschke, A. (eds.) Reasoning Web 2015. LNCS, vol. 9203, pp. 114–150.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21768-0 5

5. Boley, H., Zou, G.: Perspectival Knowledge in PSOA RuleML: Representation,
Model Theory, and Translation. CoRR abs/1712.02869, v3 (2019). http://arxiv.
org/abs/1712.02869

6. Fitting, M.: First-Order Logic and Automated Theorem Proving. Graduate Texts
in Computer Science, 2nd edn. Springer, Heidelberg (1996). https://doi.org/10.
1007/978-1-4612-2360-3

7. ISO/IEC 13211–1: Prolog - Part 1: General core (1995)
8. Khomtchouk, B.B., Weitz, E., Karp, P.D., Wahlestedt, C.: How the strengths of

Lisp-family languages facilitate building complex and flexible bioinformatics appli-
cations. Briefings Bioinform. 19(3), 537–543 (2016). https://doi.org/10.1093/bib/
bbw130

9. Miller, F.P., Vandome, A.F., McBrewster, J.: Common Lisp: Lisp (Programming
Language), Programming Language, American National Standards Institute, Spec-
ification (Technical Standard), Free and Open Source Software, Programming
Paradigm. Alpha Press (2010)

10. Milner, R., Tofte, M., Macqueen, D.: The Definition of Standard ML. MIT Press,
Cambridge (1997)

11. Waters, R.C.: A common lisp pretty printing system. Technical report, Mas-
sachusetts Inst of Tech Cambridge Artificial Intelligence Lab (1989)

12. Zou, G.: Translators for interoperating and porting object-relational knowledge.
Ph.D. thesis, University of New Brunswick. (2018)

http://www.quicklisp.org/
http://www.sbcl.org/
http://wiki.ruleml.org/index.php/The_cl-psoatransrun_System:_An_Efficiently_Executable_Specification_of_PSOA_RuleML_in_Common_Lisp
http://wiki.ruleml.org/index.php/The_cl-psoatransrun_System:_An_Efficiently_Executable_Specification_of_PSOA_RuleML_in_Common_Lisp
http://wiki.ruleml.org/index.php/The_cl-psoatransrun_System:_An_Efficiently_Executable_Specification_of_PSOA_RuleML_in_Common_Lisp
https://doi.org/10.1007/978-3-319-21768-0_5
http://arxiv.org/abs/1712.02869
http://arxiv.org/abs/1712.02869
https://doi.org/10.1007/978-1-4612-2360-3
https://doi.org/10.1007/978-1-4612-2360-3
https://doi.org/10.1093/bib/bbw130
https://doi.org/10.1093/bib/bbw130

cl-psoatransrun: An Efficiently Executable Speci Cation of PSOA RuleML 249

13. Zou, G., Boley, H.: PSOA2Prolog: object-relational rule interoperation and imple-
mentation by translation from PSOA RuleML to ISO prolog. In: Bassiliades,
N., Gottlob, G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS,
vol. 9202, pp. 176–192. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21542-6 12

14. Zou, G., Boley, H., Wood, D., Lea, K.: Port clearance rules in PSOA RuleML:
from controlled-English regulation to object-relational logic. In: Proceedings of
the RuleML+RR 2017 Challenge, vol. 1875. CEUR, July 2017

https://doi.org/10.1007/978-3-319-21542-6_12
https://doi.org/10.1007/978-3-319-21542-6_12

Leveraging the Power of IDP
with the Flexibility of DMN:

A Multifunctional API

Simon Vandevelde1,3(B), Vedavyas Etikala2,3, Jan Vanthienen2,3,
and Joost Vennekens1,3

1 Department of Computer Science, KU Leuven, De Nayer Campus,
J.-P- De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium

{s.vandevelde,joost.vennekens}@kuleuven.be
2 Leuven Institute for Research on Information Systems (LIRIS), KU Leuven,

Leuven, Belgium
{vedavyas.etikala,jan.vanthienen}@kuleuven.be

3 Leuven.AI - KU Leuven Institute for AI, 3000 Leuven, Belgium

Abstract. Decision Model and Notation (DMN) models are user-
friendly representations of decision logic. While the knowledge in the
model could be used for multiple purposes, current DMN tools typically
only support a single form of inference. We present DMN-IDPy, a novel
Python API that links DMN as a notation to the IDP system, a pow-
erful reasoning tool, allowing the knowledge in DMN models to be used
to its fullest potential. The flexibility of this approach allows us to build
intelligent tools based on DMN unlike any other execution engine.

Keywords: Decision model and notation · Knowledge base paradigm ·
IDP · API · Python

1 Introduction

The Decision Model and Notation standard [10], designed by the Object Mod-
eling Group (OMG), is a user-friendly, table-based notation for modeling deci-
sion logic. Its main goals are to make decision knowledge readable by everyone
involved in the decision process (business people, IT experts), and to be exe-
cutable. Since its start in 2015, DMN has quickly gained popularity in both
industry [4,9,13] and academia [1,5].

Typically, DMN is used to automate day-to-day business decisions. Most
DMN tools therefore focus on supporting the required functionalities for this
specific use.

However, we believe that more ambitious uses of DMN are also possible. In
particular, the knowledge that is contained in a DMN model could be used to

This research received funding from the Flemish Government under the “Onderzoek-
sprogramma Artificiële Intelligentie (AI) Vlaanderen” programme.

c© Springer Nature Switzerland AG 2021
S. Moschoyiannis et al. (Eds.): RuleML+RR 2021, LNCS 12851, pp. 250–263, 2021.
https://doi.org/10.1007/978-3-030-91167-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91167-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-91167-6_17

PyDMN-API: Multifunctional API Combining DMN and IDP 251

build knowledge-based AI systems, that can implement various sorts of intelligent
behaviour. Consider, for instance, a cobot tasked with assisting an operator in
product assembly. It seems likely that the domain knowledge that such a cobot
would need can be expressed in DMN, and, moreover, doing so would allow
the domain knowledge to be written and maintained directly by the operators
themselves, instead of requiring programmers or knowledge engineers as middle
men.

To actually implement such a system, the functionality of typical DMN tools
does not suffice. For instance, the cobot would need to figure out which sensor
input is necessary for specific operations, and such functionality is typically not
available. In an effort to allow DMN models to be used in a more flexible way,
a translation from DMN to the FO(·) language was presented in [5]. FO(·) is
an extension of classical first-order logic, which serves as the input language for
the IDP Knowledge Base System [6]. Following the approach of [7], IDP allows
the same knowledge base to be (re-)used for different forms of logical inference,
facilitating the development of flexible knowledge-based tools. The work of [5]
allows the powerful logical inference algorithms of IDP to be applied to DMN
models as well. However, to build truly useful intelligent systems, this alone
does not suffice: it is also necessary to combine these different inference tasks in
a suitable way. Moreover, this should be done using the concepts and terminology
from the original DMN model (instead of those from the FO(·) theory that the
DMN model is translated to behind the scenes).

To make this possible, we present the DMN-IDPy API: a versatile Python
API that combines DMN as a notation with the IDP system as a reasoning
engine. It aims to deliver the building blocks required to unlock more powerful
and flexible uses for DMN models. In this way, the API facilitates the creation
of systems that exhibit intelligent behavior, based on the user-friendly structure
and format of DMN models.

This work is similar in spirit to previous work on the PyIDP API [16], which
exposes the functionality of IDP to Python programmers, allowing also the
knowledge base itself to be represented in a pythonic syntax, rather than the
usual syntax of FO(·). The difference to our work is that we now bring DMN
into the mix to allow the knowledge to be maintained by domain experts, rather
than Python programmers.

This paper is structured as follows. First, we elaborate on some background
in Sect. 2. Next, we go over all functionalities of our DMN execution API in
Sect. 3. Afterwards, Sect. 4 showcases a possible application of the API, in the
form of a naive chat bot. We also briefly touch on the concrete implementation
of the API itself in Sect. 5. Lastly, we compare our implementation to the current
state-of-the-art in Sect. 6, and we conclude in Sect. 7.

2 Background

This section elaborates on the DMN standard, the current execution methods
supported by the state-of-the-art DMN tools and the IDP system.

252 S. Vandevelde et al.

2.1 DMN

The Decision Model and Notation (DMN) standard provides a user-friendly
notation for (business) decision knowledge. It consists of two main components:
the Decision Requirements Diagram (DRD), and decision tables. The DRD is
a graph representing the decision flow throughout the DMN model. It shows a
graphical overview of which decision tables are present, how they connect, which
input variables are used, which data sources are needed, and more. Figure 1a
shows an example of a DRD with three decision tables, as represented by the
rectangles, and four input variables, as represented by the ovals. The arrows
between them represent the flow of information, e.g., the value of BMI is defined
by the value of the inputs Weight and Length.

Fig. 1. Decision tables and DRD for the BMI running example.

The second main component consists of decision tables, as shown in Fig. 1b.
Every decision table contains one or more input variables and one or more output
variables, each corresponding to a column. A decision table defines the value of
the output variables in term of the value of the input variables. Each row of

PyDMN-API: Multifunctional API Combining DMN and IDP 253

the table corresponds to a decision rule. We say that a rule fires whenever the
actual value of the input variables match the values listed in its cells. The way in
which the inputs define the output depends on the hit policy of the table. This
hit policy can either be single hit (such as U(nique), F(irst), A(ny)) or multiple
hit (such as C(ollect), C+ and C<). If multiple rows fire at the same time, the
hit policy specifies how these rows are combined to determine the value of the
output variable.

The example DMN model shown in Fig. 1 consists of three tables in total,
defining BMI, BMI Level and Risk Level. For these decisions, it uses four different
input parameters: the weight, length, sex and waist size of a person. In this
example, all tables have the U hit policy, meaning that only a single row can fire
per table. E.g., if the value of BMI = 23, the second row in the BMI Level table
fires, thus assigning Normal to the decision variable BMILevel. A cell containing
“—” signifies that the value of this variable does not matter. For instance, if the
BMI Level is underweight, the Risk Level is always high, regardless of sex and
waist size.

2.2 Execution Methods

Since the introduction of DMN by OMG, software companies such as Camunda
[3], OpenRules [11] and Signavio [12] offer decision modeling software based on
this standard. Besides assisting the user in modeling and verifying decisions,
some of them also provide execution mechanisms for the models.

Such execution goes back to Decision Table Solvers [15]. Practically, most of
these tools all support the same execution method: the bottom-to-top approach.
This execution method requires the user to input a value for every input variable
present in the model, after which the execution engine decides the value of all
other variables. For example, supplying a value for Weight, Length, Waist and
Sex to find the value of Risk Level. While this is considered the standard usage
of a DMN model, some tools also support additional execution methods.

One such method is reasoning on sub-decisions: instead of evaluating every
decision table in a model, it is sometimes preferable to evaluate only a specific
subset of decisions. If we are only interested in the BMI Level, for example, we
do not need to evaluate the Risk Level table. The advantage of reasoning on
sub-decisions is that not all input variables must be known (i.e. Waist and Sex
are irrelevant as long as we do not need to know the RiskLevel). Examples of
tools capable of this execution method are Camunda and OpenRules, both of
which can evaluate a decision table in isolation. By reasoning on a single table
at a time, they allow only evaluating the tables necessary for a sub-decision.

Another alternative execution method is the “wildcard” mode, such as the
one provided by Camunda and Signavio, in which users can evaluate a decision
model with partial input values. For example, if the value of Sex is unknown, a
wildcard value can be used instead, in which case the engine returns a set of all
possible output values.

254 S. Vandevelde et al.

2.3 IDP

The IDP (Imperative Declarative Programming) system [6] is a powerful and
flexible reasoning engine. As an implementation of the Knowledge Base Paradigm
[7], it creates a clear distinction between knowledge and its use. Concretely,
knowledge is stored in a so-called knowledge base (KB), written in an extended
version of First-Order Logic (FO), called FO(·). As an example, (1) shows a
possible FO(·) representation of the BMI Level table shown in Fig. 1b in the
form of a conjunction of implications, as defined by the semantics of Calvanese
et al. [2].

(BMI < 18.5 ⇒BMILevel = Underweight)
∧(18.5 ≤ BMI ≤ 25 ⇒BMILevel = Normal)
∧(25 < BMI ≤ 30 ⇒BMILevel = Overweight)
∧(30 < BMI ⇒BMILevel = Obese)

(1)

In FO(·), we represent each DMN variable by a constant c, with for every
such constant a list of possible values poss(c). A total assignment assigns to
every constant precisely one value cI ∈ poss(c). A partial assignment assigns to
every constant a non-empty subset cI ⊆ poss(c) of its possible values poss(c).

To reason on the knowledge in a KB, the IDP engine supports various infer-
ence tasks; three of these are used in this paper. To start, there is the model
expansion task: given an assignment of values to some of the variables, compute
an assignment to the other variables such that the knowledge base is satisfied.
If the given variables are precisely the “input” variables of the model, this boils
down to the standard “bottom-to-top” execution. However, we can also assign
a value to a decision variable and then compute corresponding values for the
input variables. Propagation is the second inference task implemented in our
API. Here, after assigning values to some variables, the IDP system generates
(in-)equalities of the form cθv with c a variable, v a value from poss(c), and θ a
comparison operator, that are now implied by the KB. E.g., if we add BMI < 30
to (1), propagation will automatically derive that BMILevel �= Obese. The final
inference task used in this work is optimization, which allows us to find a solution
with the lowest/highest value for any given term.

Note that by using these inference tasks, we can do more than just bottom-
to-top calculation. Indeed, the IDP system has no sense of direction: any variable
can be used as “input” by assigning it a value. In this way, we can also use DMN
tables “backwards”, by going from the output variable to the input variables.

The motivation behind using the IDP system is twofold: firstly, the semantics
as defined by Calvanese et al. [2] can be unambiguously translated to FO(·), and
secondly, there is already a strong basis of papers describing the connection
between DMN and IDP [5,8,14].

PyDMN-API: Multifunctional API Combining DMN and IDP 255

3 API Features

This section aims at showcasing the features of the DMN-IDPy API. For every
feature, we briefly mention what it is, why it is important and we show a short
code snippet to show it in action.

3.1 Bottom-Up Decision Calculation

Our API can be used to provide the same “bottom-to-top” functionality as
standard DMN tools. In the example shown in Fig. 1, this corresponds to setting
the values for Weight, Length, Sex and Waist in order to then calculate the
decisions in the following order: BMI → BMILevel → RiskLevel.

spec = DMN(’bmi.dmn’)
spec.set value(’weight’, 74)
spec.set value(’length’, 1.79)
spec.set value(’sex’, ’Male’)
spec.set value(’waist’, 90)

→

>>> spec.model expand(1)
Model 1
==========
riskLevel:={−>Low}
waist:={−>104}
BMILevel:={−>Normal}
bmi:={−>23.09540900720951}
sex:={−>Male}
weight:={−>74}
length:={−>1.79}

3.2 Reasoning with Incomplete Information

Instead of requiring all input variables to have values assigned to them in order
to run the execution, we also allow reasoning on DMN models with incomplete
information. This functionality can e.g. be used to calculate the value of one or
more sub-decisions without requiring the values of all input variables, thereby
reducing the number of necessary operations. For example, if we are merely
interested in the value of BMILevel, we should be able to perform this decision
using only Weight and Length as inputs.

spec.set value(’Weight’, 74)
spec.set value(’Length’, 1.79)
spec.propagate()

→ >>> spec.value of(’BMI’)
23.09540900720951

By supporting reasoning with incomplete information, every DMN model
that consists of more than one table can directly and efficiently be used for
multiple purposes by reasoning on sub-decision trees.

256 S. Vandevelde et al.

3.3 Relevance

One of the goals of our API is to allow generic tools to be built, by avoiding the
need to hard-code which variables must be assigned a value and in which order
this should happen. To this end, it allows to query on the fly which variables are
relevant for making a certain decision. For example, because BMI is defined by
Length and Weight, these latter two variables should both be known in order to
decide the value of BMI. By implementing this functionality in the API, tools
can be built with a more generic nature.

Note that by “inputs” we do not only mean the inputs of a decision table,
but rather all upstream variables needed for a decision to be made. For example,
while the BMI Level table only has one input variable, that variable in turn has
two input variables. So, in reality, there are three dependencies for BMI Level,
but at two different levels of the DRD. In the API, we show the number of
node hops necessary to reach the variable to clearly denote this difference. This
information is generated from the DMN file, without making use of the IDP
system.

>>> spec.dependencies of(’BMILevel’)
{’BMI’: 0, ’Weight’: 1, ’Length’: 1}

>>> spec.dependencies of(’BMILevel’)
{’BMILevel’: 0, ’BMI’: 1, ’Weight’: 2, ’Length’: 2,
’Sex’: 0, ’Waist’: 0}

As mentioned in Sect. 3.2, this can help optimize the required operations
needed to decide a variable’s value.

3.4 Multidirectional Reasoning

In our goal to get as much use out of a single DMN model as possible, the
ability to reason on decisions in any direction is the functionality that results in
the most mileage. Instead of only calculating in the direction of the arrows in
the DRD (bottom-to-top), we can reason in the other direction as well. Among
other things, it then becomes possible to calculate the input variables of the
model based on the top-level decision.

To do this, the API supports directly assigning values to the decision vari-
ables. For example, if the value for BMI is already known beforehand, we can
directly assign that value to the decision variable and use it to derive the value
of BMI Level.

spec.set value(’BMI’, 31)
spec.propagate()

→ >>> spec.value of(’BMILevel’)
Obese

For an example of multidirectional reasoning, consider a person who just
used the model to calculate that they are overweight, and now wants to query

PyDMN-API: Multifunctional API Combining DMN and IDP 257

what their weight should be in order to reach a BMI of 25. By entering their
length and their desired BMI value, the tool can calculate the weight required
to reach their goal.

spec.set value(’BMI’, ’25’)
spec.set value(’Length’, 1.79)
spec.propagate()

→ >>> spec.value of(’Weight’)
80.1025

Here, only a single value for Weight remains, because we set both BMI and
Length. However, if we only set BMI, multiple values for Weight (and Length)
are still possible, and no equality Weight = x can be propagated. Indeed, instead
of a single solution, we now have a solution space.

There are multiple ways to traverse this solution space in order to find a
single solution. Assigning values to more variables will decrease the size of the
space, possibly up until the point where there is only one solution left. If there are
no variables left and there are still multiple solutions possible, we can generate
solutions via IDP’s model expansion inference (as demonstrated in the example
in Sect. 3.1). Alternatively, we can search for the solution with the maximal/min-
imal value for a specific variable, as further explained in the Sect. 3.7.

3.5 Known Variables

Because of the API’s interactive approach, where any variable can be assigned a
value at any time, it is important to be able to keep track of which variables are
known, i.e., have been assigned a value either by the user or by the reasoning
engine via propagation. Consider for instance a case where a user has calculated
their BMI level as demonstrated in Sect. 3.2, by entering their length and weight.
If they want to calculate their risk level afterwards, they should only have to
enter their sex and waist, as that is the only information that is still missing for
this decision.

spec.set value(’Length’, 1.79)
spec.set value(’Weight’, 79)
spec.propagate()

→
>>> spec.is certain(’BMI’)
True
>>> spec.is certain(’Sex’)
False

3.6 Variable Type and Values

Every variable in a DMN model has a data type, such as Int, Float, String or
other. Intuitively, these denote the type of data that a variable represents. To
avoid errors such as assigning a numerical value to a variable of data type String,
the API allows querying a variable’s type via type of.

String is a special case of data type: where Int, Float, etc. are considered
to have infinite ranges, String is often limited to a predefined list of possible
values. Indeed, it makes sense that only those values that appear in a table can
be assigned to a variable. E.g., in the BMI example the variable Sex can only
be assigned values Male or Female. To prevent assigning impossible values to a

258 S. Vandevelde et al.

string variable, the API can give a list of all possible values by either returning
the variable’s predefined list, or, if no list was predefined, by returning a list of
all string values which appear at least once for that variable.

>>> spec.type of(’Sex’)
String
>>> spec.possible values of(’Sex’)
[’Male’, ’Female’]

3.7 Optimization

Optimization allows us to find the solution with the highest, or the lowest value
for any given numerical variable. Consider a patient that has just entered their
weight and length to find out that they have an Overweight BMI Level. A logical
next question would be: “What should my target weight be if I want to have
a normal BMI Level?”. To answer this, they can enter their length and set the
value of BMI Level to Normal. If they then maximize the value of Weight, the
system will calculate the maximum weight that still results in a normal BMI
Level.

>>> spec.set value(’Length’, 1.79)
>>> spec.set value(’BMILevel’, ’Normal’)
>>> spec.maximize(’Weight’)
Model 1
==========
RiskLevel:={−>Low}
Waist:={−>104}
BMILevel:={−>Normal}
BMI:={−>25}
Sex:={−>Male}
Weight:={−>80.1025}
Length:={−>1.79}

4 Application Example

To truly showcase the power of combining DMN as a modelling tool and IDP as
a reasoning engine, this section sketches a possible implementation for a naive
chat bot, implemented in less than 25 lines of Python. Its main goal is to allow
users to calculate any of the intermediary or top-level variables of a DMN model.
In order to achieve this, the bot goes through a few steps. First, it fetches the
list of variables and asks the user which variable should be calculated.

spec = DMN(sys.argv[1], auto propagate=True)
vars = spec.get outputs() + spec.get intermediary()
req var = input(’Which variable to calculate? {}\n>’.format(variables))

PyDMN-API: Multifunctional API Combining DMN and IDP 259

Next, the program finds out which input variables should be known in order
to make this calculation. Input variables without any effect on the value of the
requested variable are not included.

deps = spec.dependencies of(req var)
missing vars = [x for x in deps if x in spec.get inputs()]
print(”\nThe following variables are still unknown:”)
print(missing vars)

Finally, it loops over every unknown variable and queries the user for its value.
Important here is that we ask a different question, based on the data type of the
variable. Indeed, the user should be aware of the data type of the variable that
is being queried. If the program requests the value of a String-based variable, it
should also supply the user the list of possible values. Similarly for numerical vari-
ables, the user should be notified if the variable is an integer or a float.

for var in missing vars:
Ask for the variable’s value. Based on var type, ask different question.
var type = spec.type of(var)
if var type in [’Real’, ’Int’]:

msg = ”Value for {} ({}) unknown.\n>”.format(var, var type)
else:

pos vals = spec.possible values of(var)
msg = ”Value for {} unknown.\n”\

”Possible values: [{}]\n>”.format(var, pos vals)
value = input(msg)
spec.set value(var, value)

if spec.is known(req var):
break

req var val = spec.value of(req var)
print(’Calculated value for {}:\n{}’.format(req var, req var val))

Note that at the end of every loop cycle, the program checks whether the
variable is known yet. While this might not make much sense at first, because
the program specifically fetched the list of necessary inputs for the decision,
there are cases where not all inputs might be necessary. Consider for example
the decision table for RiskLevel. Here, if the values for Weight and Length are
queried first and they lead to a BMI Level that is neither overweight nor obese,
then the values of Sex and Waist will have no impact on this decision.

>>> python bot.py bmi.dmn
Which variable to calculate? [’RiskLevel’, ’BMILevel’, ’BMI’]
> Risk Level
The following variables are still unknown:
[’Weight’, ’Length’, ’Sex’, ’Waist’]
Value for Weight (Real) unknown.
> 79

260 S. Vandevelde et al.

Value for Length (Real) unknown.
> 1.79
Calculated value for Risk Level:
Low

While this implementation uses the BMI example, it is not limited to it.
Indeed, by supplying a different DMN model when invoking the program, the
chat bot can be used for different purposes. For example, after inserting a DMN
model designed to calculate personal taxes, the chat bot is capable of reasoning
in that problem field without having to change any code.

5 Implementation

This section briefly elaborates on the implementation of the DMN-IDPy API.
To transform DMN models to input for the IDP system, it uses a tool developed
in [1,14]. This tool accepts DMN models that are either in XML format (as
specified by the DMN standard), or in the form of an Excel spreadsheet.

When using the API, a few internal steps are performed. To begin, as soon as a
specification is entered, it is translated internally into the FO(·) format of the IDP
system. This translation is done based on the decision table semantics as defined
by Calvanese et al. [2], i.e., every table is represented by a conjunction of material
implications. To run the IDP system, we use the idp-engine1 Python package.

Whenever a variable is assigned a value, the underlying IDP specification is
updated to represent this change. If the user invokes the propagation method,
the API immediately runs IDP’s propagation inference and updates the values
of the other variables accordingly. Similarly, if they invoke the model expansion
function, the API triggers IDP’s model expansion inference.

The PyDMN-API library is available to download via the Python Package
Index2. Furthermore, there is also a practical usage guide for the API available
online3. Note that the API does not (yet) support the full DMN standard. Cur-
rently, it is capable of reasoning on tables with the following hit policies: U, F,
A, C+, C< and C>. It supports the Int, Float, Boolean and String data types,
but not e.g. the Date type. There is also no support for boxed expressions.

6 Comparison

To the best of our knowledge, there is no other approach that offers such a flexible
yet powerful use of DMN models. While there exist tools that support more than
exclusively the bottom-to-top calculation, none are capable of performing all
features discussed in this work. Table 1 shows a comparison of the functionalities
of DMN-IDPy, the OpenRules API and the Camunda API.

1 https://pypi.org/project/idp-engine/.
2 https://pypi.org/project/cdmn/.
3 https://cdmn.readthedocs.io/en/latest/DMN guide.html.

https://pypi.org/project/idp-engine/
https://pypi.org/project/cdmn/
https://cdmn.readthedocs.io/en/latest/DMN_guide.html

PyDMN-API: Multifunctional API Combining DMN and IDP 261

As expected, all compared APIs support the bottom-to-top execution. Addi-
tionally, they all also support reasoning on incomplete information, but only
up to a varying degree. Both OpenRules and Camunda are capable of using
incomplete information by reasoning on sub-decisions, as they allow the evalua-
tion of a single decision table isolated from the rest of the DMN model. Thus,
it is possible to e.g. use the Risk Level model to only calculate a patient’s BMI,
as discussed in the example in Sect. 3.2. However, as the API’s only allow rea-
soning on either the entire model or a single specific table, attempting to reason
on a sub-decision consisting of multiple tables (e.g. BMI followed by BMILevel)
requires quite a bit of extra overhead: for each table, we would need to (a) manu-
ally supply the inputs, (b) evaluate, and (c) extract the outputs to use as inputs
for the next table. In our API, no such workarounds are needed, as it suffices to
enter all input values followed by calling the propagation inference. As such, the
process of using sub-decisions with DMN-IDPy is much more streamlined.

The wildcard mode, as featured in e.g. Camunda, is possible in DMN-IDPy
by leveraging its ability to reason on incomplete information. After entering a
partial set of input values, we can generate all remaining solutions using the
model expansion inference.

Neither OpenRules nor Camunda support multidirectional reasoning or opti-
mization.

Table 1. Comparison between functionalities of DMN-IDPy, and state-of-the-art DMN
execution engines. (X = full support, o = partial support)

DMN-IDPy OpenRules Camunda

Bottom-to-top X X X

Incomplete Information X o o

Wildcard mode X X

Multidirectional Reasoning X

Optimization X

The main downside of our approach is the efficiency of the reasoning engine
itself. Where other engines have specific optimized algorithms to perform the
bottom-to-top calculation, we use a general purpose reasoning engine. As such,
our calculation times will often be a magnitude higher compared to the other
state-of-the-art engines. However, we feel that we make up for it with the
increased flexibility that the API offers.

7 Conclusion and Future Work

While DMN models are most often used for bottom-to-top calculations, they can
be used in many more scenarios. For this to be possible however, DMN needs
to be supported by a flexible reasoning tool. In this paper, we present a Python

262 S. Vandevelde et al.

API that enables the IDP reasoning system as an execution engine for DMN.
This way, it provides the building blocks necessary to construct intelligent tools
based on user-friendly DMN models. The main additions of the API are:

– Support for reasoning in any direction (e.g. going in the other direction of
the DRD);

– Support for reasoning on incomplete data (allowing for sub-decision calcula-
tions);

– Addition of the optimization of variable values.

In order to showcase DMN-IDPy in action, we created a naive implementation
of a chat bot in under 20 lines of Python code. The implementation is generic in
the sense that it can be used with any DMN model, without having to change a
line of code.

In future work, we will look into extending the API to support more of
IDP’s inference tasks. Moreover, we will also develop a more extensive, real-life
application based on our API to further research its usefulness in a more realistic
setting.

References

1. Aerts, B., Vandevelde, S., Vennekens, J.: Tackling the DMN challenges with cDMN:
a tight integration of DMN and constraint reasoning. In: Gutiérrez-Basulto, V.,
Kliegr, T., Soylu, A., Giese, M., Roman, D. (eds.) RuleML+RR 2020. LNCS,
vol. 12173, pp. 23–38. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
57977-7 2

2. Calvanese, D., Dumas, M., Laurson, U., Maggi, F.M., Montali, M., Teinemaa, I.:
Semantics, analysis and simplification of DMN decision tables. Inf. Syst. (Oxford)
78, 112–125 (2018)

3. Camunda Services GmbH: Camunda DMN Decision Engine (2013–2021). https://
camunda.com/

4. Car, N.J.: Using decision models to enable better irrigation decision support sys-
tems. Comput. Electron. Agric. 152, 290–301 (2018)

5. Dasseville, I., Janssens, L., Janssens, G., Vanthienen, J., Denecker, M.: Combining
DMN and the knowledge base paradigm for flexible decision enactment. In: Sup-
plementary Proceedings of the RuleML 2016 Challenge, vol. 1620. CEUR-WS.org
(2016)

6. De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G., Denecker, M.: Predicate
logic as a modeling language: the IDP system. In: Declarative Logic Programming:
Theory, Systems, and Applications, pp. 279–329. ACM Books (2018). https://doi.
org/10.1145/3191315

7. Denecker, M., Vennekens, J.: Building a knowledge base system for an integration
of logic programming and classical logic. In: Garcia de la Banda, M., Pontelli,
E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 71–76. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89982-2 12

8. Deryck, M., Hasić, F., Vanthienen, J., Vennekens, J.: A case-based inquiry into
the decision model and notation (DMN) and the knowledge base (KB) paradigm.
In: Benzmüller, C., Ricca, F., Parent, X., Roman, D. (eds.) RuleML+RR 2018.
LNCS, vol. 11092, pp. 248–263. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99906-7 17

https://doi.org/10.1007/978-3-030-57977-7_2
https://doi.org/10.1007/978-3-030-57977-7_2
https://camunda.com/
https://camunda.com/
https://doi.org/10.1145/3191315
https://doi.org/10.1145/3191315
https://doi.org/10.1007/978-3-540-89982-2_12
https://doi.org/10.1007/978-3-319-99906-7_17
https://doi.org/10.1007/978-3-319-99906-7_17

PyDMN-API: Multifunctional API Combining DMN and IDP 263

9. Hasic, F., Vanthienen, J.: From decision knowledge to e-government expert sys-
tems: the case of income taxation for foreign artists in Belgium. Knowl. Inf. Syst.
62(5), 2011–2028 (2020). https://doi.org/10.1007/s10115-019-01416-4

10. Object Modelling Group: Decision model and notation (2021). http://www.omg.
org/spec/DMN/

11. OpenRules Inc.: OpenRules Decision Manager (2003–2021). https://openrules.com
12. Signavio GmbH: Signavio Process Manager (2009–2021). https://www.signavio.

com/
13. Sooter, L.J., Hasley, S., Lario, R., Rubin, K.S., Hasić, F.: Modeling a clinical

pathway for contraception. Appl. Clin. Inform. 10(5), 935–943 (2019). https://
doi.org/10.1055/s-0039-3400749

14. Vandevelde, S., Vennekens, J.: A multifunctional, interactive DMN decision mod-
elling tool. In: Proceedings of BNAIC/BeneLearn 2020, pp. 399–400 (2020)

15. Vanthienen, J., Dries, E.: Illustration of a decision table tool for specifying and
implementing knowledge based systems. Int. J. Artif. Intell. Tools 3, 267–288
(1994)

16. Vennekens, J.: Lowering the learning curve for declarative programming: a python
API for the IDP system. In: Lierler, Y., Taha, W. (eds.) PADL 2017. LNCS,
vol. 10137, pp. 86–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
51676-9 6

https://doi.org/10.1007/s10115-019-01416-4
http://www.omg.org/spec/DMN/
http://www.omg.org/spec/DMN/
https://openrules.com
https://www.signavio.com/
https://www.signavio.com/
https://doi.org/10.1055/s-0039-3400749
https://doi.org/10.1055/s-0039-3400749
https://doi.org/10.1007/978-3-319-51676-9_6
https://doi.org/10.1007/978-3-319-51676-9_6

Technical Communication Papers

Eliminating Harmful Joins in Warded
Datalog+/−

Teodoro Baldazzi1(B), Luigi Bellomarini2, Emanuel Sallinger3,4,
and Paolo Atzeni1

1 Università Roma Tre, Rome, Italy
2 Banca d’Italia, Rome, Italy
3 TU Wien, Vienna, Austria

4 University of Oxford, Oxford, UK

Abstract. We provide a rewriting technique of Warded Datalog+/−
settings to sustain decidability and data tractability of reasoning tasks
in the presence of existential quantification and recursion. To achieve
this behaviour in practice, reasoners implement specialized strategies
which exploit the theoretical bases of the language to control the effects
of recursion, ensuring reasoning termination with small memory foot-
print. However, as a necessary condition for such exploitation, the set-
ting is required to be in a “normalized form”, essentially without joins
on variables affected by existential quantification. We present the Harm-
ful Join Elimination, a normalization algorithm of Warded Datalog+/−
that removes such “harmful” joins, supporting the tractability of the
reasoning task as well as the full expressive power of the language. The
algorithm is integrated in the Vadalog system, a Warded Datalog+/−
-based reasoner that performs ontological reasoning in complex scenarios.

1 Introduction

Among the requirements for a Knowledge Representation and Reasoning (KRR)
language, full support for recursion and joins as well as existential quantifica-
tion are essential to guarantee the expressive power needed for knowledge graph
traversal and ontological reasoning [4]. Warded Datalog± [12], a member (tech-
nically, a fragment) of the Datalog± family [8], covers these requirements offer-
ing a good tradeoff between expressive power and computational complexity,
with conjunctive query answering being PTIME-complete in data complexity. It
is implemented in the Vadalog system, a state-of-the-art reasoner. While the
favourable computational characteristics of the fragment bode well for efficient
implementations, a workable algorithm handling the interplay between existen-
tials and recursion is highly needed. Consider the following example.

Example 1. Let Σ be a set of warded rules, based on a real reasoning setting [5]:

Company(x) → ∃p PSC(x, p). (α)
PSC(x, p),Controls(x, y) → PSC(y, p). (β)

c© Springer Nature Switzerland AG 2021
S. Moschoyiannis et al. (Eds.): RuleML+RR 2021, LNCS 12851, pp. 267–275, 2021.
https://doi.org/10.1007/978-3-030-91167-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91167-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-91167-6_18

268 T. Baldazzi et al.

StrongLink(x, y) → ∃p PSC(x, p). (γ)
PSC(x, p),PSC(y, p) → StrongLink(x, y). (ρ)

For each company x there exists a “person of significant control” (psc) p (rule α);
for each company y controlled by x, p is a psc (rule β); if x and y have a common
psc, they share a “strong link” (rule ρ) and vice versa (rule γ). Consider, as onto-
logical reasoning task, the query Q: “what are all the entailed StrongLinks?” and
the database D={Company(HSBC),Company(HSB),Controls(HSBC,HSB)}. �
The semantics of Σ over D is defined via the chase [16], which adds new atoms
to D, possibly involving freshly generated symbols (technically, labelled nulls) [8]
to satisfy the existentially quantified variables, until all the existential rules are
satisfied. In Example 1, we generate PSC(HSBC, ν0) and PSC(HSB, ν1) from D
by applying α, PSC(HSB, ν0) via β, StrongLink(HSBC,HSB) via the join on ν0

performed by ρ, and so on. Due to the recursion involving ρ, γ, and β, an infinite
set

⋃
i=2,...{PSC(HSBC, νi),PSC(HSB, νi)} would be generated, giving rise to a

non-terminating chase(D,Σ). However, the set of strong links is finite (only the
pairs with constants) and a small portion of chase(D,Σ) is needed to answer Q.

To practically ensure reasoning completion, reasoners resort to termination
strategies. Specifically, the Vadalog system adopts the isomorphism termination
strategy [4]: isomorphic copies of the facts (i.e., same constants and bijection
between the labelled nulls) are suppressed, hence the chase steps starting from
them are not performed and the descending facts are not generated. The proper-
ties of the warded fragment ensure that such facts would be in turn isomorphic
copies of others already in the chase—being their origins isomorphic—, thus
uninformative for query answering, upholding the correctness of the approach.

Yet, it has been proved [5] that, to apply the strategy and enable a reasoning
algorithm, a set of warded rules must be expressed in a “harmless” form (namely,
in Harmless Warded Datalog±), without joins between variables affected by exis-
tential quantification. The propagation of labelled nulls in the chase execution,
up to the join arguments, would otherwise hamper the application of the termina-
tion strategy: it is the case of PSC(HSB, ν0) in our example, which is isomorphic
to PSC(HSB, ν1) and yet cannot be suppressed without blocking the activation
of ρ with PSC(HSBC, ν0), essential to generate StrongLink(HSBC,HSB).

In this short paper, we investigate the theoretical foundations of the normal-
ization techniques aiming at eliminating such “harmful” joins, and show that a
set of warded rules can be equivalently expressed in Harmless Warded Datalog±.
An extended version of this work with full proofs and experimental evaluations
can be found online as part of the iWarded project [3].

Contribution. In particular, we provide the following contributions.

– We present novel theoretical bases for Warded Datalog± and discuss the nor-
malization problem of rewriting a set of warded rules into a harmless version
that is equivalent with respect to the reasoning task.

– We enable the practical application of the isomorphism termination strategy
by proposing the Harmful Join Elimination (HJE) algorithm, the first
normalization technique for Warded Datalog±.

Eliminating Harmful Joins in Warded Datalog+/− 269

Overview. Section 2 provides preliminary concepts relevant for our work.
Section 3 introduces the normalization problem. Section 4 presents the HJE algo-
rithm. Section 5 analyzes related work. Section 6 concludes the paper.

2 Vadalog and Datalog±

The Vadalog system adopts vadalog, a language that is essentially an imple-
mentation of Warded Datalog±. To guide our discussion, we briefly recall nota-
tion and terminology. A vadalog program is a set of facts and rules. An existen-
tial rule is a first-order sentence ∀x̄∀ȳ(ϕ(x̄, ȳ)→∃z̄ ψ(x̄, z̄)), where ϕ (the body)
and ψ (the head) are conjunctions of atoms over the respective predicates. In
this context, we omit universal quantifiers and denote conjunction by comma.

Given a set Σ of rules, a position π[i] (i.e., the i-th term of a predicate π,
with i = 1, . . .) is affected if (i) π appears in a rule ρ of Σ with the i-th term
that contains an existentially quantified variable or, (ii) there is a rule ρ of Σ
such that a frontier variable (i.e., universally quantified and appearing in the
head) is only in affected body positions and in π[i] in the head of ρ. A variable
x is harmful, with respect to a rule, if x appears only in affected positions,
otherwise it is harmless. A rule that contains a harmful variable is a harmful
rule. In Example 1, α and γ are existential rules, while β propagates the affected
position PSC[2] and ρ has a join between the harmful variables p (harmful join).

Given a database D and a pair Q = (Σ,Ans), where Σ is a set of rules
and Ans an n-ary predicate, we define the evaluation of Q over D as the set of
tuples Q(D,Σ) = {t̄ ∈ dom(D)n |Ans(t̄) ∈ chase(D,Σ)}, where t̄ is a tuple of
constants. We denote reasoning task as the task of finding a database instance
J such that: (i) t̄ ∈ J if and only if Ans(t̄) ∈ Q(D,Σ) and (ii) for every other
instance J ′ such that t̄ ∈ J ′ if and only if t̄ ∈ Q(D,Σ), there is a homomorphism
from J to J ′ [4]. We define chase graph G(D,Σ) as the directed graph having
as nodes the facts from chase(D,Σ) and an edge from a node n to a node m if
m is obtained from n (and possibly other facts) by applying a chase step, i.e., a
rule in Σ [7].

3 Normalizing Warded Datalog±

vadalog’s termination strategy is based on Warded Datalog± syntactic restric-
tions (namely, wardedness [11]), which ensure that, given two isomorphic facts n
and n′, it is sufficient to explore n, pruning the descending portions of the chase
graph rooted in n′. Yet, recent work [5] shows that harmful joins are required to
be removed first, as pruning a chase graph on the basis of isomorphism between
facts with labelled nulls could hamper the activation of the join on such nulls.

Normalization Problem. To apply the isomorphism termination strategy,
without restricting vadalog expressiveness to joins between harmless variables,
we propose a technique to rewrite sets of warded rules into an equivalent form
without harmful joins. Two sets of rules are considered equivalent if they have
the same meaning [1]. Given the many notions of semantics proposed in the

270 T. Baldazzi et al.

literature [9], we follow a practical approach and define the meaning of a set Σ
of rules in an operational way via the chase, so that Σ and Σ′ are equivalent if
chase(D,Σ) = chase(D,Σ′) modulo fact isomorphism, for every database D.

We define the normalization problem for the set Σ of Warded Datalog± rules
as the task of finding an equivalent set Σ′ of Harmless Warded Datalog± rules.

Causes of Affectedness. Let ρ ∈ Σ be a harmful join rule, of the form (without
loss of generality [4]): A(x1, y1, h), B(x2, y2, h)→∃z C(x, z), where A, B and C
are atoms. By definition of harmful variables, we state that Σ includes i ≥ 1
sets of rules ΓAi = {σ1, . . . , σs} (s < |Σ|) for A, each containing: (i) one direct
cause of affectedness, that is, an existential rule which causes a position to be
affected, of the form σ1: A1(x, y), R1→∃h A2(x, y, h) (α and γ in Example 1);
(ii) s − 1 indirect causes of affectedness, that is, rules propagating such affected
position from σ1 to ρ. They are of the form σk: Ak(x, y, h), Rk→Ak+1(x, y, h),
1 < k ≤ s, As+1 = A (β in Example 1). A1, . . . , As are atoms, R1, . . . , Rs are
(conjunctions of) atoms not containing h (by definition of warded fragment [11]).
Σ also contains j ≥ 1 sets ΓBj for B. In Example 1, we observe that the atoms in
the harmful join in ρ belong to the same predicate PSC. To distinguish them, we
adopt the notation PSC1, PSC2 (in order of appearance in ρ). The sets of causes
for PSC1 are: ΓPSC11 = {α}, ΓPSC12 = {α, β}, ΓPSC13 = {γ}, ΓPSC14 = {γ, β}.
Indeed, PSC2 features the same sets of causes. Let Xij = ΓAi ∪ ΓBj be a set
which contains the causes from ΓAi and ΓBj , labelled after the set they belong to.
For instance, in our example X22 = {αΓP SC12 , βΓP SC12 , αΓP SC22 , βΓP SC22} from
ΓPSC12 and ΓPSC22.

Harmful Unfolding Tree. To remove ρ from Σ and solve the normalization
problem, we first determine how labelled nulls activating the harmful join are
propagated along Xij and their impact in terms of meaning on the chase. For
this purpose, we introduce the structure harmful unfolding tree (hu-tree).

It is based on the unfolding and folding operations [1]. Let ρ be a rule
A,B→C, where A and C are atoms and B is an atom or a conjunction of
atoms, and let σ be a rule R→A′, where A′ is an atom and R an atom or a
conjunction of atoms. Let A′ be unifiable with A by substitution θ. The result of
unfolding ρ at A with σ (unfold(ρ,A, σ)) is the rule τ : (B,R→C)θ. If the head
of σ contains an existentially quantified variable h, we replace h with a Skolem
atom fhσ in τ . The symbol f denotes an injective, deterministic and range dis-
joint function that calculates the values for existentially quantified variables, to
control the identity of labelled nulls [5]. Let ρ be a rule A,B→C, where C is
an atom and A and B are (conjunctions of) atoms, and let σ be a rule A′→R,
where R is an atom and A′ is an atom or a conjunction of atoms. Let A′ be
unifiable with A by substitution θ. The result of folding ρ into σ (fold(ρ, σ)) is
the rule τ : (B,R→C)θ.

The hu-tree T for the harmful join rule ρ in Σ is a structure that composes
ρ along all the possible sequences of causes propagating the affected position to
it. Intuitively, a u-node is a node in T resulting from unfolding its parent with
a cause from the set Xij , whereas a f-node is a node in T resulting from folding

Eliminating Harmful Joins in Warded Datalog+/− 271

a u-node with its ancestors to handle recursive causes. We declaratively define
the hu-tree T for

〈
Σ,ρ

〉
as a rule-labelled tree, where:

1. the root of T is labelled by ρ;
2. Φ is a (partial) function from rules × causes to atoms, whose value for a rule

μ and a set Xij of causes is an atom I in the body of μ;
3. N , labelled by a rule ν, is a u-node in T iff:

(a) there exists a u-node M , labelled by μ, and a cause σΓHk
∈ Xij (H ∈

{A,B}, k ∈ {i,j}) such that ν = unfold(μ,Φ(μ,Xij), σΓHk
) and

(b) there does not already exist a u-node in T labelled by ν and
(c) the cause σΓHk

∈ Xij has not already been unfolded in T ;
4. O, labelled by a rule o, is a f-node in T iff:

(a) there exists a u-node N , labelled by a rule ν, and a recursive cause σΓHk

∈ Xij , such that ν = unfold(μ,Φ(μ,Xij), σΓHk
) and

(b) o = fold(unfold(ν,Φ(ν,Xij), σΓHk
), μ).

The hu-tree does not contain cycles and each node only has one parent, as all the
nodes have distinct labels (3b). T is finite, as each cause σΓHk

is removed from the
set Xij it belongs once unfolded (3c) and the recursive causes in Xij are handled
via folding (4). A deterministic order of the unfolded causes is applied. By design,
Φ prioritizes the first atom in the harmful join, in order of appearance in ρ:
unfoldings with causes from ΓAi are applied before those from ΓBj in Xij . Causes
are unfolded from indirect to direct ones in Xij , as the affectedness propagation
is walked backwards from ρ up to the direct cause: if two or more causes in the
same ΓHk feature the same predicate as head, their order of unfolding depends on
the distance from its direct cause (in terms of chase steps) and other parameters.

Harmful Unfolding Path. We define the distance from harmlessness (dhij)
as the cardinality of Xij . Intuitively, dhij is equal to the number of edges of the
hu-path (i.e., a root-to-leaf path) Tij in T for

〈
Σ,ρ

〉
. Let the maximum distance

from harmlessness (mdh) of ρ be the max of dhij for ρ (i.e., the height of T).

Fig. 1. Hu-path T22 for Example 1.

Figure 1 shows the hu-path T22 of
T for Example 1, derived from unfolding
ρ at PSC1 and PSC2 with the causes
in ΓPSC12 = {α, β} and ΓPSC22 = {α, β}.
Atoms are renamed for space reasons.
The dh22 = 4 of T22 is the cardinality
of the above set X22. Moreover, note,
for instance, the recursive βΓP SC12 of
X22. By definition of hu-tree, the recur-
sion is covered in T as follows. First,
the u-node N is unfolded again with
βΓP SC12 . Then, the result is folded into N
itself and a f-node is generated, labelled
by the rule Strong(v1, y), Cont(v1, v2)
→Strong(v2, y) and linked to N via a new

272 T. Baldazzi et al.

branch: apart from the technical side, this is intuitively justified as such rule cov-
ers the activation of the harmful join in ρ on nulls propagated from the recursion
of βΓP SC12 in the chase.

4 Harmful Join Elimination Algorithm

Harmful Join Elimination is a rewriting algorithm designed to solve the normal-
ization problem. Let Σ be a warded set with one or more harmful join rules ρ.
The algorithm produces a new set Σ′, replacing ρ with harmless rules that cover
the generation of all the facts derived in chase(D,Σ) from the activation of ρ,
thus ensuring equivalence of Σ′ with Σ while Σ′ ∈ Harmless Warded Datalog±.
Algorithm 1 provides the pseudo-code for HJE(Σ), divided into three phases.

Back-Composition. First, a back-composition phase is applied to cover the
activation of ρ on labelled nulls, propagated along its causes of affectedness. For
each ρ, its hu-tree T is built from all the sets Xij (line 5), by performing mdh
iterations. At each iteration, every hu-path Tij that has not already reached
its leaf (i.e., some causes in Xij can still be unfolded) is extended with a new
u-node, labelled by the result of unfolding its parent with the next σ ∈ Xij ,
according to the priority discussed in Sect. 3 (line 13). If one or more causes in
Xij are recursive, folding occurs (line 17). The resulting leaves are added to Σ′.

Grounding. Then, a grounding phase is applied (line 19) to cover the activation
of ρ on ground values, propagated from rules π ∈ Σ that are not causes of
affectedness. It employs the Dom(h) [5] atom to ensure that the harmful variables
in ρ bind only to ground values in the domain. It proceeds as follows.

1. For A in ρ, add to Σ′ the following rules (and the corresponding ones for B):
Dom(h), A(x1, y1, h) → A′(x1, y1, h).
A′(x1, y1, h) → A(x1, y1, h).
A′(x1, y1, h), B(x2, y2, h) → ∃z C(x, z).

2. For each π whose head unifies with the atom H ∈ {A,B} in the body of ρ,
add to Σ′ the rule π′, resulting from renaming H in π with H ′.

3. For each π whose head unifies with the atom I ∈ body of a cause σ of ρ, add
to Σ′ the rule π′ = unfold(μ, I, π), where μ ∈ T results from unfolding σ.

Specifically, step 1 makes use of Dom(h) to prevent the propagation of labelled
nulls up to the harmful variable h in A,B. Step 2 covers the direct propagation
of ground values from the rules π to ρ. Step 3 covers the indirect propagation
of ground values from π to ρ along the causes of affectedness: by definition of
hu-tree, the results of unfolding ρ up to σ are already present in T , thus it is
sufficient to apply an additional unfolding of such u-nodes with π itself to cover
the propagation from π to ρ. Now, ρ is removed from Σ′.

Cleanup. Finally, a cleanup phase is applied (line 20). Possible duplicate rules
are eliminated from Σ′, as well as rules that never activate. If the functions of
the Skolem atoms in a rule (derived from unfolding a direct cause in T) respect

Eliminating Harmful Joins in Warded Datalog+/− 273

injectivity and range disjointness, they are unified and removed, otherwise the
rule is dropped from Σ′. The latter occurs, for instance, if the direct causes in the
same Xij differ, as the Skolem atoms (fpα, fpγ in Example 1) cannot be unified
due to range disjointness.

Fig. 2. HJE output for Example 1.

With reference to Example 1,
Fig. 2 shows the results of apply-
ing HJE to Σ. Specifically, we pro-
vide the new rules added to Σ′ at
the end of HJE, some of which are
merged for space reasons: δs are
added by grounding, whereas τs
and ηs are T leaves derived from
unfoldings and foldings (respec-
tively), after Skolem cleanup. For
instance, τ4 derives from the leaf
of the hu-path T22 illustrated in Fig. 1.

Algorithm 1. Harmful Join Elimination.
1: function harmful-join-elimination(Σ)
2: P ← all harmful join rules in Σ; Σ′ = Σ
3: for ρ in P do
4: T ← empty hu-tree with ρ as root � back-composition phase
5: Γρ ← all Xij from ΓAi, ΓBj for ρ in Σ � all sets of causes of affectedness for ρ
6: Q ← queue with ρ enqueued
7: mdh = max(|Xij |) with Xij in Γρ

8: for dh ← 1 to mdh do � build hu-tree T for ρ
9: μ = Q.dequeue()

10: for Xij in Γρ do
11: if dh ≤ |Xij | then
12: σ = Xij .next() � next cause, from indirect to direct
13: ν = unfold(μ, Φ(μ, Xij), σ)
14: Q.enqueue(ν)
15: Tij ← Tij ∪ {ν} � update hu-path Tij at depth dh with u-node ν
16: if inRecursion(σ, Xij) then
17: T ← T ∪ {fold(unfold(ν, Φ(ν, Xij), σ), μ)} � f-node for recursive causes

18: Σ′.add(T.leaves())
19: add grounding rules for ρ to Σ′; Σ′.remove(ρ) � grounding phase

20: simplify Skolem atoms and deduplicate rules in Σ′ � cleanup phase
return Σ′

Correctness and Complexity. By definition of unfolding and folding, it can
be proved that Σ′ is a harmless warded set of rules; equivalence to Σ is easily
derived as a generalization of proofs in the Datalog context [17]. The normaliza-
tion problem is solved by HJE, as it can be constructively shown that for every
Σ there exists a Σ′ [3]. We close Example 1 by listing the output facts of the rea-
soning task, via isomorphism termination strategy: StrongLink(HSBC,HSBC),
StrongLink(HSBC,HSB), StrongLink(HSB,HSBC), StrongLink(HSB,HSB).

The algorithm shows an exponential behaviour with respect to the number
of causes of affectedness. Intuitively, this is due to the worst-case generation
of a distinct hu-path in the hu-tree for each subset of the causes. Yet, such
exponential blowup is data independent and it does not affect the performance

274 T. Baldazzi et al.

of reasoning tasks. We consider a more in-depth discussion regarding complexity
outside the scope of this paper and it can be found in the extended version [3].

5 Related Work

The growing interest towards Datalog±-based languages, to be adopted as logical
core of reasoning systems, determined the research and the development of novel
approaches to sustain termination of reasoning tasks [6,7], particularly relevant
in the presence of recursion and existential quantification [8].

Specifically, the Harmful Join Elimination algorithm can be compared, by
interpreting the rules as queries, to the class of methodologies for query rewriting.
Regarding Datalog, the current literature encompasses both rewriting from dis-
tinct formalisms, such as Regular Path Queries [10] and Description Logics [2],
and Datalog translation into specific fragments, such as Plain from Disjunc-
tive [14], Guarded [13] and Linear [1], which partially inspired this work.

In particular, several methods have been devised for rewriting Datalog±

members with existential rules [15,18]. Yet, the HJE algorithm is, to the best
of our knowledge, the first technique developed for the translation of sets of
Warded Datalog± rules into an equivalent Harmless Warded Datalog± version.

6 Conclusion

To ensure termination of vadalog reasoning settings with harmful joins in
practice, it is required to first normalize them into an equivalent harmless version.
Motivated by this condition and by the fact that such a rewriting technique
for the underlying Warded Datalog± is not covered in the existing literature,
we discussed the normalization problem and we contributed the Harmful Join
Elimination, a normalization algorithm integrated in the Vadalog system.

Acknowledgements. This work was supported by the EPSRC programme grant
EP/M025268/1 VADA and the Vienna Science and Technology Fund (WWTF) grant
VRG18-013.

References

1. Afrati, F., Gergatsoulis, M., Toni, F.: Linearisability on datalog programs. Theoret.
Comput. Sci. 308(1–3), 199–226 (2003)

2. Ahmetaj, S., Ortiz, M., Simkus, M.: Polynomial datalog rewritings for expressive
description logics with closed predicates. In: IJCAI, pp. 878–885 (2016)

3. Baldazzi, T., Bellomarini, L., Sallinger, E., Atzeni, P.: iWarded: a system for bench-
marking datalog+/-reasoning (tr). arXiv preprint arXiv:2103.08588 (2021)

4. Bellomarini, L., Benedetto, D., Gottlob, G., Sallinger, E.: Vadalog: a modern archi-
tecture for automated reasoning with large knowledge graphs. IS (2020)

5. Bellomarini, L., Sallinger, E., Gottlob, G.: The vadalog system: datalog-based rea-
soning for knowledge graphs. VLDB, 11(9) (2018)

http://arxiv.org/abs/2103.08588

Eliminating Harmful Joins in Warded Datalog+/− 275

6. Berger, G., Gottlob, G., Pieris, A., Sallinger, E.: The space-efficient core of Vadalog.
In: PODS, pp. 270–284 (2019)

7. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for
tractable query answering over ontologies. In: PODS, pp. 77–86 (2009)

8. Cal̀ı, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: a fam-
ily of logical knowledge representation and query languages for new applications.
In: 2010 25th Annual IEEE LICS, pp. 228–242. IEEE (2010)

9. van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a program-
ming language. J. ACM 23(4), 733–742 (1976)

10. Francis, N., Segoufin, L., Sirangelo, C.: Datalog rewritings of regular path queries
using views. arXiv preprint arXiv:1511.00938 (2015)

11. Gottlob, G., Pieris, A.: Beyond SPARQL under OWL 2 QL entailment regime:
rules to the rescue. In: IJCAI (2015)

12. Gottlob, G., Pieris, A., Sallinger, E.: Vadalog: recent advances and applications. In:
Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS (LNAI), vol. 11468,
pp. 21–37. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19570-0 2

13. Gottlob, G., Rudolph, S., Simkus, M.: Expressiveness of guarded existential rule
languages. In: PODS, pp. 27–38 (2014)

14. Kaminski, M., Nenov, Y., Grau, B.C.: Datalog rewritability of disjunctive datalog
programs and non-Horn ontologies. Artif. Intell. 236, 90–118 (2016)

15. Kónig, M., Leclere, M., Mugnier, M.L.: Query rewriting for existential rules with
compiled preorder. In: IJCAI, pp. 3006–3112 (2015)

16. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies.
ACM Trans. Database Syst. 4(4), 455–469 (1979)

17. Tamaki, H., Sato, T.: Unfold/fold transformation of logic programs. In: ICLP, pp.
127–138. Uppsala University (1984)

18. Wang, Z., Xiao, P., Wang, K., Zhuang, Z., Wan, H.: Query answering for existential
rules via efficient datalog rewriting. In: IJCAI, pp. 1933–1939 (2020)

http://arxiv.org/abs/1511.00938
https://doi.org/10.1007/978-3-030-19570-0_2

Learning Decision Rules or Learning Decision
Models?

Christian de Sainte Marie(B)

IBM France Lab, Bâtiment Lisp 2 rue d’Arsonval, 91400 Orsay, France
csma@fr.ibm.com

Abstract. In this position paper, we discuss the reasons for the lack of success
of rule learning, as witnessed by the quasi-absence of commercial applications,
and what can be done to revive the domain and possibly to kick-start the kind
of explosive development that statistical Machine Learning and Neural Networks
have experienced over the past 15 years. The root cause of the problem is well-
known, and it is not the rule learning algorithms themselves: if the representation
language to which a rule learning algorithm has access – often only the repre-
sentation model of the input data – is not appropriate to represent the decision
rules, the algorithm has no way to generate a decision ruleset that generalizes
well. Feature generation and other methods that have been proposed to augment
the data representation language are useful, but we argue that the focus should be
on discovering the conceptual model that underly the decision. We claim that this
amounts to discovering the structure of decisions, that is, to learn decision mod-
els. We outline some potentially fruitful research directions, and how this topic is
central to neuro-symbolic learning.

Keywords: Rule learning · Concept discovery · Decision modeling ·
Neuro-symbolic learning

1 Introduction

Learning rules from precedents has been a subject since Artificial Intelligence emerged
as a research domain in the 50’s. Rule-based systems have been mainstream in com-
mercial decision assistance and automation at least since the 90’s, e.g. as business rules
management systems. Still, rule learning from data is nowhere close to be as successful
as other Machine Learning techniques such as Neural Networks (NN), be it in terms of
scientific, technical, social or commercial impact: none of the main commercial business
rules management systems offers even the simplest rule learning capability, for instance.

In this paper, we examine what, we believe, are the reasons why learning rules from
precedents has not been more successful, and what these reasons tell us about potentially
fruitful research directions.

Let us start with a look at another machine learning technology, namely Neural
Networks. The bases formost ofmodernmachine learning technology existed essentially
already in the early 90’ (see e.g. [1]). Of course, progresses weremade after that, but why

© Springer Nature Switzerland AG 2021
S. Moschoyiannis et al. (Eds.): RuleML+RR 2021, LNCS 12851, pp. 276–283, 2021.
https://doi.org/10.1007/978-3-030-91167-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91167-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-91167-6_19

Learning Decision Rules or Learning Decision Models? 277

is it thatwehad towait until the secondhalf of the 2000’s towitness the rebirth ofArtificial
Intelligence in the guise of (NN-based) Machine Learning and that explosive growth of
scientific results, technology and applications? One usual answer to that question is that
what unlocked the domain was the new availability (and affordability) of both data and
computing power. But there was something else, otherwise (i) the onset of modern AI
would have started earlier, and (ii) the affordable access to data and computing power
should have benefited to symbolicML asmuch as it did to statisticalML. That something
else, which is to be found, at least for an important part, in Hinton’s et al. paper [2], was
a way to train arbitrarily deep neural networks by training each layer independently.

The situation of rule learning– and more generally of symbolic learning – is compa-
rable to that of neural networks in the early 2000’s: the technology and the algorithmic
basis for learning rules from precedents, essentially existed already in the early 90’s,
e.g. CN2, FOIL, RIPPER [3], or decision trees, e.g. C4.5 [4], and improvements since
then focused on performance and handling noisy data, but no breakthrough like Deep
Learning has happened yet in symbolic learning to unlock the field.

In Sect. 2, we explain with an experiment what we believe is the main lock that
holds rule learning from progressing at the same speed as neural networks and other
kinds of statistical machine learning, and why decision rule learning should now focus
on generating the best hypotheses space rather than on generating the best hypotheses in
the given representation space. In Sect. 3, we outline some consequences of this change
of focus on research directions and priorities. In Sect. 4, we point to relevant related
work. Finally, in the conclusion, we propose a new interpretation of decision model, in
view of our previous analysis, that justifies the title of this paper.

2 What is the Problem?

Rule learning algorithms can only learn rules that are accessible in their hypotheses
space [5]. As obvious as this statement may seem, we believe that this is the root cause
of the lack of success of rule learning technology.

Indeed, in the absence of additional knowledge, the representation language that is
accessible to the rule learning algorithm to generate the conditions of candidate rules
is made of straightforward tests on the input data attributes: rule learning algorithms
typically generate hyper-rectangles in the input data space as Boolean combinations of
tests that compare the value of an attribute of the tested instance in the input data space
with a constant value in the domain of that attribute.

For instance, consider the simple example of learning rules to automate the decision
to accept or reject loan applications from customers, based on customer details collected
on their application forms. In the “miniloan” use case from the IBM ODM tutorial [6].
the data that is required for the sample ruleset to make the decision is the applicant and
loan identifiers, the requested amount, interest rate and duration of the loan, and the
revenue and credit score of the applicant1.

1 Typically, additional data such as the applicant home address, household etc. will be available,
some of it completely unrelated to the decision at hand and making the learning problem more
difficult. However, this simple example will be enough for our purpose.

278 C. de Sainte Marie

A simple experiment will help make our point clear. We generated instances in the
“miniloan” input space described above, with a uniform distribution, and we labelled
them using the “miniloan” ruleset. Then we trained a decision tree with the instances2.
Here is a typical example of a rule extracted from the decision tree3:

if CreditScore > 199 and ApplicantIncome <= 17020 and
LoanAmount <= 118303

then “Reject” loan request

The performance on the test set is acceptable (score >97% with 4,000 training
instances), but the rules learnt do not generalize well, in the sense that adding new data
points to the training set will generate additional rules: indeed, the size of the decision
tree grows linearly with the number of training instances (see Fig. 1a, below).

Fig. 1. Number of rules learnt as a function of the number of training instances, when the decision
tree is trained on: (a) the initial representation of the instances; (b) blue: the representation learnt
from a trained 5-5-5-3 multi-layer perceptron4; red: the initial representation augmented with
repayment amount and debt to revenue ratio. (Color figure online)

One way to explain this is because, in the general case, the conceptual model that is
required to make the decision is not the same as the conceptual model that is relevant
to represent the data: in our credit approval example, it may make sense for a bank to
describe loan requests with the attributes listed above, but when it comes to approve or
reject them, one will probably rather think in terms of the reimbursement capacity of
the applicant, of the sustainability of that capacity over the duration of the loan etc. A
simplified meaningful rule of thumb for approving a loan could be:

If the Applicant is Reliable and Capable of Paying the Terms, Then Approve the Loan
We can see the traces of such a rule in our example, above: the test on ‘Cred-
itScore’ checks the applicant reliability, the pair of tests on ‘ApplicantIncome’
and ‘LoanAmount’ checks the repayment capacity. But except for the credit score
attribute, which is readily available in the input data, the hypotheses space does not
contain a compact and robust representation for the concepts related to reimbursement
capacity, for instance, such as that of periodic repayment amount and debt to revenue

2 We used Scikit Learn DecisionTreeClassifier, which is an optimised version of the CART
algorithm [7] and Scikit Learn MLPClassifier for the further experiment, reported below. In
both cases, the performance is computed using the classifier “score” method on a test set.

3 Each leave in a decision tree defines a rule, where the condition is the conjunction of the tests
along the path and the leave specifies the corresponding decision.

4 Other configurations produce similar results. See: https://github.com/cfmrsma/RuleML21.

https://github.com/cfmrsma/RuleML21

Learning Decision Rules or Learning Decision Models? 279

ratio.When the decision tree is trained, instead, on instances that include these additional
features, the number of rules remains constant as soon as the number of training instances
has been sufficient for the algorithm to learn the initial “miniloan” rules (Fig. 1b, red
line).

The well-known tendency of rule learning algorithms to overfit the training data with
large number of rules, especially in the presence of noise, and the brittleness of the learnt
rulesets are consequences of trying to approximate the decision rules in an inappropriate
representation space. In addition, in the absence of an explicit representation of the
relevant concepts, the rules cannot be easily interpreted fromadecisionmaker or business
point of view.

These problems are not specific to our decision tree algorithm: any rule learning
algorithm will exhibit them in one form or another, including ones using completely
different approaches to candidate rule generation, such as column generation [8].

Another simple experiment will help clarify our point that an appropriate change of
representation can be learnt that decorrelates the number of rules from the number of
training instances (thus relieving our primary symptom that the problem is the repre-
sentation space rather than the learning algorithm). We trained a multi-layer perceptron
with the same training instances as our initial decision tree, then we retrieved and dis-
cretized, for each training instance, the values of the nodes in the last hidden layer of the
neural network, and we trained a decision tree in that transformed representation space.
Figure 1b clearly shows that, with the learnt representation, the number of rules does
not depend on the number of training instances (with similar performance).

We have stated earlier that the root cause of the lack of success of rule learning was
that rule learning algorithms can only learn rules that are accessible in their hypotheses
space. More precisely, the problem is that rule learning algorithms focus on generating
the best candidate rules in their hypotheses space, which is of course required. But to be
useful – and thus to be more widely used – they will have to focus also on generating
the best hypotheses space for the decision problem at hand.

3 Research Directions and Approaches

We claim that the focus of rule learning, and more generally symbolic learning, should
move to discovering the best hypotheses space, which requires discovering concepts
and learning representations. The capability to learn representations is what made the
success of Deep Learning and other statistical learning approaches, and it is what is
missing for rule learning to succeed; with the difference that, here, we need to learn
symbolic representations.

By learning symbolic representations, we imply (i) discovering the concepts that are
useful or required to learn good decision rules and (ii) grounding these concepts in the
input data space. This, in turn, requires a definition of what are good decision rules as
well as research on how it can be measured; the same holds for what makes a concept
useful or required to learn good rules. The next question is: how to learn those symbolic
concepts? And, finally, how to ground them in the input space, that is, how to define
them in terms of the observed features.

280 C. de Sainte Marie

Understanding What Makes a Good Rule Good and a Useful Concept Useful
Ideally, we want to learn rules that are both correct and necessary. A rule is (i) correct
if it proposes the correct decision in all instances that satisfy its condition, regardless of
their other features: such rules will explain past decisions, propose the correct decision in
future cases and permit counterfactual reasoning and what-if analyses; (ii) necessary if
it cannot be replaced by a more general rule, covering, in the input space, more instances
of interest with respect to the decision: such rules are more likely to rely on features
that are essential to the decision. We want to learn a ruleset that covers the whole input
space5, but we also want to learn rules that generalize as much as possible, in the sense
that they cover as many instances of interest as possible.

In addition, we want to learn rules that make sense to the user: indeed, ease of
modification by the decision authority is, beside auditability and traceability, one of the
most important motivations for rule-based decision automation or assistance.

In short, we want rules and rulesets that are compact, robust, necessary, general and
understandable, all of which characterize explanations with a high explanatory power
[9]: indeed, what makes a rule good is its capacity to explain a decision.

Therefore, we propose that the measure of the quality of a rule or ruleset (its good-
ness), and the objective that we want a learning algorithm to maximize for the learnt
ruleset, should be its explanatory power. Let us stress, here, that we are not seeking
high explanatory power because we want to use rules as a mean to provide explainable
decisions, but that explanatory power seems to be an adequate measure of the good
properties that we want from our decision rules, whatever the reasons why we want to
use a rule-based approach: from the point of view of rule learning, the capacity of good
rules to provide good explanations is a (much appreciated!) side benefit.

Our proposal does not offer ready-made solutions, but it may indicate fruitful new
research directions. A good test for explanatory power could be, for instance, the capacity
of a rule to explain noisy data away: a rulewith a high explanatory power is robust to noise
because it is “truer than the data”, in the same sense that, in physics, theory is stronger
than measurements6: if your instrument measures a force between two macroscopic
masses that disagrees with Newton’s attraction law, you will suspect your instrument,
not Newton. In the same way, if the rule says that loans to reliable applicant with the
capacity to reimburse are to be approved, if there is data about an applicant who satisfied
the condition and was rejected, one should be able to conclude that either the data about
the applicant is wrong, or the rejection was a mistake.

Learning a Useful Conceptual Model
The possibility to learn good rules depends critically on the rule representation space, as
shown also by our simple experiment above: per the proposed criterion for rule goodness,
rule learning requires the identification or discovery of the features or concepts that
contribute most to the explanatory power of a rule, e.g. the features that are inherent to
(or constitutive of) the different decisions in the problem at hand.

In the absence of further knowledge, the conceptual model that is most useful to
learn or discover would be the, possibly latent, variable model that best explains the

5 More precisely: the part of the input space that is relevant with respect to the decision at hand.
6 That is, until measurements break the theory, and the theory must be changed, of course….

Learning Decision Rules or Learning Decision Models? 281

relations between input data and observed decisions. We will not review here the abun-
dant literature on identifying latent variables and on learning representations (but see
[10]). Let us only stress that learning causal representations [11] might prove especially
important, since our proposed definition of a useful concept may well boil down to that
of a causal variable in a decision… It might also be useful to revisit earlier work on
induced generalization structures such as formal concept analysis [15].

Grounding Symbolic Concepts
The reader will have noticed that there is no restriction to learning symbolic represen-
tations in the text above. Indeed, once a useful latent feature has been identified, it can
be assigned a symbol, and that symbol used to learn rules – symbolic rules – as any
other symbol in the representation language used by the learning algorithm, as we did
in the experiment described above. If identified as a node in the hidden layer of a neural
network, that feature is specified implicitly by its grounding in the input data.

If an explicit definition of the symbols is required, approaches such as symbolic
regression [ref] can be applied. Symbolic representations and their explicit definitions
can also be learnt bottom up from the data: constructive induction, predicate invention,
pattern mining (see review in [12]), and automated feature construction (see e.g. [13])
are important research topics in the proposed change of focus in rule learning.

Let us, however, notice that an explicit definition is not always required: the explicit
semantics of symbols that have only a sub-symbolic grounding (e.g. in a neural network)
would be defined by their use in a knowledge base. Garnelo et al. describe interesting
preliminary work in that direction [14]. That approach to the combination of symbolic
and sub-symbolic AI seems like a worthy research direction to us.

Once symbols have been identified, the concept discovery process can be iterated
to identify another layer of concepts (lower or higher level, depending whether a top-
down or bottom-up approach is used), each layer being defined in terms of lower layers,
until the most basic concepts can be meaningfully defined in terms of the input features.
Indeed, in most cases, we expect that the conceptual model that is useful to explain a
decision will be a graph structure where higher level concepts are defined in terms of
lower-level ones.

4 Related Works

The subject matter of this paper is, obviously, closely related to the research on feature
generation, representation learning, representation change, neuro-symbolic learning, as
well as to approaches to combine logic and neural networks, and probably machine
learning in general, and we have tried to make that relation clear by referencing relevant
work and surveys in the previous sections.

But we are aware of only few articles that analyze the missing link between symbolic
learning and success, aswedo in this paper. Two recent papers put the same stress aswedo
on learning higher-level representations and how it could unlock the progress of symbolic
learning. Kramer [12] reviews techniques to learn symbolic higher-level representations
and concludes, as we do, that they are useful both to improve symbolic learning and as
a first step towards converging symbolic and sub-symbolic learning, because they are
able to learn structures of symbolic representations with different levels of abstraction.

282 C. de Sainte Marie

Fürnkranz et al. [16] focus on learning structured rule sets as a way to avoid artificial
rule ordering mechanisms such as weights and claim that learning auxiliary concepts is
useful for that purpose.

Kramer’s and Fürnkranz et al. conclusions are close to ours, and so is probably
their initial thinking as well. However, neither goes as far as claiming, as we do, that
learning the appropriate structured conceptualmodels is a general requisite for successful
symbolic learning and should therefore become the focus of this community.

Let us also stress that Bengio et al. reviewon representation learning [10] is extremely
relevant to (and congruent with) the analysis presented here, although it is concerned
with sub-symbolic representations: discovering the useful representations is a necessary
step and, as we have claimed above, the grounding step may be separated from the
discovery step, when symbolic grounding is required – and it is not necessarily required.

Finally, recent works on differentiable logics (e.g. [17]) may open different doors to
make symbolic learning benefit from the advances in neural networks.

5 Revisiting Decision Modeling as a Conclusion

We are referring here to decision modeling as a method used by business analysts for
identifying, specifying, analyzing and communicating decision, separately from (and
possibly in conjunction with) the specification of business processes [18]. The method
and a notation for decision models are the subject of the Decision Model and Notation
standard [19]. An important characteristic ofDecisionModels is that they enforce a clean
separation between the structure of a decision and the decision logic; that is, between
the data requirements for a decision, and the decision rules.

Fig. 2. A DMN decision model for the “miniloan” example [6]. Input data is represented as
rounded forms, decisions as rectangles, decision logic as rectangles with two cut angles; plain
arrows represent data flows, dashed arrows represent knowledge flow.

Figure 2 shows a DMN decision model for our loan approval example. Not surpris-
ingly, the structure of the sub-decisions matches exactly the conceptual model that is
required to explain the decision and to make it in a reasoned way (as opposed to making
it on a purely statistical basis). We claim that this is an essential property of decision
models: each sub-decision represents a required concept, and the associated decision
logic specifies how that concept is grounded in other concepts, down to the input data.

Learning Decision Rules or Learning Decision Models? 283

A decision model does not only specify the conceptual model that is required to make a
decision: it specifies also the chain of representation changes that ground that decision
into the input data.

The introduction of decision modeling is a major paradigm shift in the decision
automation industry, as it shifts the focus from the decision rules to the complete decision
structure. We claim that the same shift is necessary to the success of symbolic (decision
logic) learning, and that the symbolic learning research community should move its
focus from rule learning to learning decision models.

References

1. Haohan, W., Bhiksha R.: On the origin of deep learning. arXiv:1702.07800 (2017)
2. Hinton, G.E., et al.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–

1554 (2006)
3. Furnkranz, J.: Separate-and-conquer rule learning. Artif. Intell. Rev. 13(1), 3–54 (1999)
4. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers (1993)
5. Mitchell, T.: Generalization as Search. Artif. Intell. 18, 203–226 (1982)
6. https://github.com/ODMDev/odm-for-dev-getting-started
7. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees.

1st edn. Routledge (1984). https://doi.org/10.1201/9781315139470
8. Dash, S., Günlük, O., Wei, D.: Boolean decision rules via column generation. In: 32nd

Conference on Neural Information Processing Systems (NeurIPS 2018) (2018)
9. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell.

267, 1–38 (2019)
10. Bengio, Y., et al.: Representation learning: a review and new perspectives. IEEETrans. Pattern

Anal. Mach. Intell. 35, 1798–1828 (2013)
11. Scholkopf, B., et al.: Toward causal representation learning. Proc. IEEE 109, 612–634 (2021)
12. Kramer, S.: A brief history of learning symbolic higher-level representations from data (and

a curious look forward). In: IJCAI (2020)
13. Sondhi, P.: Feature construction methods: a survey (2009)
14. Garnelo, M., et al.: Towards deep symbolic reinforcement learning. ArXiv abs/1609.05518

(2016)
15. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin

(1999). https://doi.org/10.1007/978-3-642-59830-2
16. Fürnkranz, J., et al.: Learning structured declarative rule sets - a challenge for deep discrete

learning. ArXiv abs/2012.04377 (2020)
17. Shindo, H., et al.: Differentiable inductive logic programming for structured examples. In:

AAAI (2021)
18. Fish, A.:Melding processmodels and decisionmodels.Modeling decision-making processes.

https://dmcommunity.files.wordpress.com/2016/06/decisioncamp2016-alanfish.pdf
19. OMG, Decision Model and Notation. https://www.omg.org/spec/DMN

http://arxiv.org/abs/1702.07800
https://github.com/ODMDev/odm-for-dev-getting-started
https://doi.org/10.1201/9781315139470
https://doi.org/10.1007/978-3-642-59830-2
https://dmcommunity.files.wordpress.com/2016/06/decisioncamp2016-alanfish.pdf
https://www.omg.org/spec/DMN

Author Index

Aamer, Heba 62
Abidin, Nor Najihah Zainal 18
Al Bassit, Anas 3
Atzeni, Paolo 267

Baldazzi, Teodoro 267
Banton, Matthew 33
Beck, Florian 48
Bellomarini, Luigi 267
Bogaerts, Bart 62
Boley, Harold 234
Bowles, Juliana 33
Brass, Stefan 80
Bruno, Pierangela 95

Calimeri, Francesco 95
Cardellini, Matteo 111
Cauteruccio, Francesco 126
Claessens, Michelle 158

De Nardi, Paolo 111
de Sainte Marie, Christian 276
Do, Thanh-Toan 203
Dodaro, Carmine 111

Etikala, Vedavyas 142, 250

Faber, Wolfgang 218
Fürnkranz, Johannes 48

Galatà, Giuseppe 111
Giardini, Anna 111
Goossens, Alexandre 142, 158
Grimm, Stephan 172

Himmelhuber, Anna 172
Huynh, Van Quoc Phuong 48

Jamaludin, Nur Amalina 18
Joblin, Mitchell 172

Ketsman, Bas 62
Krasnashchok, Katsiaryna 3

Lima, Guilherme 188
Lisitsa, Alexei 203
Luo, Shan 203

Machado, Marcelo 188
Manaf, Nurulhuda A. 18
Manna, Marco 95
Maratea, Marco 111
Marte, Cinzia 95
Mitsikas, Theodoros 234
Moreno, Marcio 188
Mustapha, Majd 3

Parthoens, Charlotte 158
Pitsikalis, Manolis 203
Porro, Ivan 111

Qureshi, Haya Majid 218

Ringsquandl, Martin 172
Runkler, Thomas 172

Sallinger, Emanuel 267
Silvina, Agastya 33
Skhiri, Sabri 3

Taelman, Ruben 62
Terracina, Giorgio 126
Thom, Mark 234

Uceda-Sosa, Rosario 188

Van Veldhoven, Ziboud 142
Vandevelde, Simon 250
Vanthienen, Jan 142, 158, 250
Vennekens, Joost 250
Verborgh, Ruben 62

Webber, Thais 33

Zeboudj, Younes 62
Zillner, Sonja 172

	Preface
	Organization
	Abstracts of Kenote Speakers
	Interpretable Machine Learning with Rule-Based Modeling
	Symbolic AI in a Machine Learning World
	Contents
	Full Papers
	Policy-Based Automated Compliance Checking
	1 Introduction
	2 Related Work
	3 Policy-Based Compliance Checking
	3.1 The Conceptual Model for Privacy Policies
	3.2 Formalization
	3.3 Conflict Detection and Resolution
	3.4 Compliance Checking of a Request

	4 SHACL-Based Compliance Model
	4.1 SAVE-to-SHACL Translation
	4.2 Implementation and Evaluation

	5 Conclusion and Future Work
	References

	Correctness of Automatically Generated Choreography Specifications
	1 Introduction
	2 Mapping an SBVR Model onto an Alloy Model
	2.1 An OMG Standard SBVR
	2.2 SBVR Model for Service Choreography
	2.3 Mapping the SBVR Model into the Alloy Model

	3 Correctness of SBVR2Alloy Model
	3.1 Global View of Choreography
	3.2 Correctness of Mapping

	4 Related Work
	5 Conclusion and Future Work
	References

	Conflict-Free Access Rules for Sharing Smart Patient Health Records
	1 Introduction
	2 Related Work
	3 Serums Data Sharing Platform Design
	4 Serums Access Rules Design
	4.1 Serums Access Rules Format
	4.2 Access Rules Application Example

	5 Conclusion
	References

	Structuring Rule Sets Using Binary Decision Diagrams
	1 Introduction
	2 Preliminaries and Related Work
	3 Rule Set Structuring
	4 Experiments
	4.1 Artificial Datasets
	4.2 Mushroom Dataset

	5 Conclusion and Future Work
	References

	Link Traversal with Distributed Subweb Specifications
	1 Introduction
	2 Use Case
	3 Preliminaries
	4 Requirements
	5 Related Work
	6 A Formalism for Subweb Specifications
	7 Expressing Subweb Specifications
	8 Power and Limitations of Existing ltqp Approaches
	8.1 Preliminaries: ldql
	8.2 ldql and the Requirements

	9 Discussion
	10 Conclusion
	References

	Event-Based Microcontroller Programming in Datalog
	1 Introduction
	2 Datalog and Time
	2.1 Standard Datalog
	2.2 Time

	3 A Datalog-Variant for Microcontroller Systems
	3.1 Static Predicates (Time-Independent)
	3.2 State Predicates (Updateable)
	3.3 Interface Predicates
	3.4 Event Predicates and the Event Queue
	3.5 Transient Predicates (Synchronous Events)
	3.6 Real Time

	4 Examples
	5 A Queue-Implementation in Datalog
	6 Modular Specifications
	7 Conclusions
	References

	Combining Deep Learning and ASP-Based Models for the Semantic Segmentation of Medical Images
	1 Introduction
	2 Related Work
	3 Methodology: Preliminaries and Background
	3.1 Answer Set Programming
	3.2 Deep Learning

	4 ASP-Enhanced Semantic Segmentation
	5 Experimental Activity
	5.1 Dataset Description
	5.2 Training Phase
	5.3 Performance Metrics
	5.4 Effects of Including ASP in Loss Function
	5.5 Effect of Using ASP as Post Processing

	6 Results and Discussion
	7 Conclusion
	References

	A Two-Phase ASP Encoding for Solving Rehabilitation Scheduling
	1 Introduction
	2 Problem Description
	3 A Two-Phase ASP Encoding
	3.1 Board Encoding
	3.2 Agenda Encoding

	4 Experimental Analysis
	5 Related Work and Conclusions
	References

	An Answer Set Programming Based Framework for High-Utility Pattern Mining Extended with Facets and Advanced Utility Functions
	1 Introduction
	2 A General Framework for Extended High-Utility Pattern Mining (e-HUPM)
	3 Design of the ASP Approach
	4 Experimental Evaluation
	4.1 Use Case and Dataset Details
	4.2 Quantitative Analysis
	4.3 Qualitative Analysis

	5 Conclusion
	References

	Automatic Generation of Intelligent Chatbots from DMN Decision Models
	1 Introduction
	2 Background
	3 Overview of the Chatbot Framework
	3.1 Solution Components
	3.2 Running Example

	4 Decision and Explanation Scenarios
	4.1 Execution Scenarios
	4.2 Explanation Scenarios for the User
	4.3 Information Scenarios for the Designer

	5 Scenario Selection and User Interaction Methods
	5.1 Scenario Selection
	5.2 Three Interaction Levels

	6 User Interface
	7 Technical Implementation
	8 Discussion
	8.1 Evaluation
	8.2 Limitations and Future Work

	9 Conclusion
	References

	Deep Learning for the Identification of Decision Modelling Components from Text
	1 Introduction
	2 Problem Statement
	3 Related Work
	4 Methodology
	4.1 Specific Steps of the Methodology
	4.2 Techniques Considered for Text Classification

	5 Experiments
	5.1 Collected Data
	5.2 Results

	6 Discussion
	6.1 Comparison of the Results
	6.2 Understanding How BERT Classifies
	6.3 Applying the Results to the Full Decision Model

	7 Limitations and Future Work
	8 Conclusion
	References

	Combining Sub-symbolic and Symbolic Methods for Explainability
	1 Introduction
	2 Background and Problem Definition
	3 Combining Sub-symbolic and Symbolic Methods
	3.1 Explainer Class Learning
	3.2 Explainer Class Application for Instance-Level Explanations

	4 Evaluation
	4.1 Comparison of Our Hybrid Method with DL-Learner Explanations and Input-Output Explanations
	4.2 Deeper Integration of GNNs with Domain Knowledge

	5 Related Work
	6 Conclusion
	References

	Practical Rule-Based Qualitative Temporal Reasoning for the Semantic Web
	1 Introduction
	2 Background
	2.1 Allen's Interval Algebra
	2.2 Path-Consistency

	3 Proposal and Implementation
	4 Evaluation
	4.1 Rulesets
	4.2 Problems
	4.3 Queries
	4.4 Environment
	4.5 Experiments and Results
	4.6 Discussion

	5 Related Work
	6 Conclusion
	References

	Logic Rules Meet Deep Learning: A Novel Approach for Ship Type Classification
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Methodology
	4.1 Rule Extraction and Fuzzification
	4.2 Neuro-Fuzzy Combination
	4.3 Deep Feature Extraction

	5 Evaluation
	5.1 Dataset
	5.2 Baseline Model
	5.3 Experimental Setup
	5.4 Experimental Results
	5.5 Ablation Study

	6 Conclusions and Future Work
	References

	An Evaluation of Meta-reasoning over OWL 2 QL
	1 Introduction
	2 Background
	2.1 OWL 2 QL Under the Meta-modelling Semantics
	2.2 SPARQL
	2.3 Datalog

	3 Query Answering Under MSER to Datalog Evaluation
	4 Experiments
	4.1 Tools
	4.2 Tool-Specific Settings
	4.3 Experiment Datasets
	4.4 Results

	5 Discussion and Conclusion
	References

	cl-psoatransrun: An Efficiently Executable Specification of PSOA RuleML in Common Lisp
	1 Introduction
	2 PSOA RuleML Presentation Syntax Overview
	3 Architecture of cl-psoatransrun
	4 Declarative Parsing of PSOA RuleML KBs and Queries
	5 Abstract Syntax Tree Transformations
	6 Prolog Client Interaction and Pretty Printing
	7 Benchmarks
	8 Conclusions
	References

	Leveraging the Power of IDP with the Flexibility of DMN: A Multifunctional API
	1 Introduction
	2 Background
	2.1 DMN
	2.2 Execution Methods
	2.3 IDP

	3 API Features
	3.1 Bottom-Up Decision Calculation
	3.2 Reasoning with Incomplete Information
	3.3 Relevance
	3.4 Multidirectional Reasoning
	3.5 Known Variables
	3.6 Variable Type and Values
	3.7 Optimization

	4 Application Example
	5 Implementation
	6 Comparison
	7 Conclusion and Future Work
	References

	Technical Communication Papers
	Eliminating Harmful Joins in Warded Datalog+/-
	1 Introduction
	2 Vadalog and Datalog
	3 Normalizing Warded Datalog
	4 Harmful Join Elimination Algorithm
	5 Related Work
	6 Conclusion
	References

	Learning Decision Rules or Learning Decision Models?
	1 Introduction
	2 What is the Problem?
	3 Research Directions and Approaches
	4 Related Works
	5 Revisiting Decision Modeling as a Conclusion
	References

	Author Index

