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Abstract. Electronic patient medical records contain vast amounts of
information of potential value to researchers striving to increase under-
standing of diseases, treatments, and outcomes. Effective use of such
data is limited by privacy and technical concerns. Privacy laws require
the removal of Personally Identifiable Information (PII) from the released
data. Technical concerns are that the data must be abstracted for con-
sistency across different providers. To be most useful, data from differ-
ent providers for the same patient must be linked together. This paper
applies cryptographic techniques to the problem of privacy-preserving
linking of medical records.
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1 Introduction

The goal of this work is to design a national system for medical data sharing
that meets several criteria:

1. Understandable to stakeholders
2. Supportable by stakeholders
3. Simple and explainable
4. Actionable with minimal startup investment
5. Sustainable
6. Secure

Our contribution includes a new cryptographic primitive, called a blinding-
completion pair, which addresses the practical problem of linking anonymous
medical records. Blinding-completion pairs provide a method for generating a
multitude of anonymous pseudonyms for an entity, to be used by data sources,
and then consolidating that multitude into a single anonymous pseudonym at
the destination database. We also describe a distributed system and protocol for
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sharing medical data that can preserve privacy when confronted with occasional
data breaches.

This paper is organized as follows: Sect. 2 summarizes related work. Section 3
describes the stakeholders and sketches the existing flow of clinical data from
patient to researcher. Section 4 focuses on the problem of privacy-preserving
linking of patient data. Section 5 suggests possible modifications of the workflow
to shift responsibility for maintaining privacy to specialized “security nodes”.
Section 6 provides a brief threat model and discloses known limitations of the
system. Section 7 summarizes our contribution and directions for future research.

2 Related Work

The problem of connecting records from multiple databases is called record link-
ing. What we aim to achieve is called privacy-preserving record linking (PPRL),
where the goal is to link patient records while protecting the PII of the patient.
The interest in PPRL of health records goes back at least 16 years to the paper
of Demuynck and De Decker [8], who propose a complicated multi-stakeholder
protocol that uses cryptographic techniques to achieve PPRL. The idea of using
pseudonym identifiers to substitute for PII linkage appears in Alhaqbani and
Fidge in 2008 [1].

Many other linkage techniques have subsequently been studied. Vatsalan,
Christen, and Verykios [20] give a taxonomy of PPRL techniques in a 2013
paper containing 143 references to the extensive literature on the subject! They
observe that preserving the privacy of shared data such as medical records is a
difficult problem and that existing approaches have a variety of drawbacks. For
example, some systems have focused on joining records from just two sources,
which would not satisfy our design requirements.

Recent work aims to address one or more of the shortcomings of prior work.
Camenisch and Lehmann [6] add user-auditability to pseudonym systems. The
PRIMAT system [9] handles multiple sources of medical data, but it assumes
the existence of a “trusted linkage unit (LU) [that] performs the actual linkage
of encoded records submitted”.

Our approach is different because we leverage existing universal identifiers
and anonymize them by generating two levels of pseudonyms. This results in a
system with resilience to limited breaches that is easy to understand by stake-
holders. Moreover, our system does not put sensitive medical data in the hands
of any third party. Medical data flows directly from a health care provider to a
research database.

Our proposed system also differs from many others in the location of the
three types of data: identifier is a segment of coded information that is unique
for each person, identifying information enables a specific person to be identified,
and sensitive information is desired to be kept private and not shared publicly
as being attributable to an individual.

An identifier by itself is meaningless and is just a code. For example, any
random combination of nine numbers very well may be a social security number,
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but without identifying information, there is no relevance, utility or vulnerabil-
ity. Identifying information alone is not overly relevant, because it simply notes
the existence of a person, without any detail of that person. For example, names
(and addresses and phone numbers), have historically been distributed in phone
books. Finally, sensitive information that cannot be linked to a specific per-
son poses no risk to privacy and is the principal that allows large databases to
exist for medical research. Any medical textbook could contain what most would
consider sensitive information, such as data related to the treatment of specific
patients. When such information is not attributed to any person, it poses no
vulnerability. An important caveat is that if the anonymized sensitive informa-
tion is sufficiently detailed, it may serve as a fingerprint that can be correlated
with publicly available data and used to identify the subject [15].

3 Medical Information Workflow

Data enters the health care system when a patient contacts a provider, whether
a primary care physician or a hospital. At that point, the provider determines
and records the patients PII and begins or updates the patient’s chart.

To curate data for statistical and research purposes, trained registrars extract
select data elements from the medical record according to specific data field def-
initions, resulting in highly structured data sets. The datasets are then stripped
of PII and exported in a deidentified manner to one or more of several national
databases. Importantly, not every health care entity submits to every database,
and each database only requests certain fragments of the patient’s medical infor-
mation [5]. As a result, each patient’s care is captured by the databases in a
piecemeal fashion. Because the databases do not collect PII, there is no way to
consistently reunite the fragments of the health care data back together to create
a complete picture of a patient’s journey through the diagnosis, treatment, and
outcome of their medical condition.

The analysis of patient outcomes captured within the databases has led to
dramatic improvements in the safety and effectiveness of care for almost every
medical condition [18]. However, the ability of the database research to charac-
terize relationships between variables and outcomes in medical care is critically
dependent on the breadth of information available for analysis (e.g., to control
for bias and confounding effects). Because databases are only capturing frag-
ments of the medical journey, there are limitations to the types of improvements
that currently can be made with database research [16].

For example, the database that best captures cancer stage does not capture
the specific type of chemotherapy that patients received [5]. If there were a way
to reunite all the fragments of data back together, medical research using existing
databases would become far more powerful, and many more improvements would
be possible. (See Daniel Boffa, Comparing Comparisons, in comments to [16]).

A simple but unacceptable “solution” to the linking problem is to give each
patient a universal health identifier to be included with the patient’s record in
each database. This is used in some other countries (e.g., Norway [2]). How-
ever, in the United States, the topic of a national identifier has become highly
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polarizing, making this a less feasible option. Moreover, anyone with access to
the curated databases would be able to join the several databases into one
master health record for the patient with that identifier. This is often suffi-
cient, when combined with other information readily available on the internet,
to deanonymize the health record and reveal the patient’s PII.

4 Privacy-Preserving Linking of Patient Data

We describe a new cryptographic primitive for generating identifiers that allows
a database to link records from different data providers while preserving privacy
in the face of many kinds of breaches.

4.1 Blinding-Completion Pairs

Let x be the identifier used by a data provider h to identify an entity. Let b(x)
be a one-way hash function. A blinding-completion pair for h is a pair of one-way
functions (bh(x), ch(y)) such that b(x) = ch(bh(x)) for all x, and b(x) is also one-
way. Like a cryptosystem (Eh(x),Dh(y)), the composition of the second function
in the pair with the first yields the same function for all keys h. In our case, the
composition is the fixed blinding function b(x), which defines the alias y = b(x)
for x. While neither x nor y can be recovered from yh = bh(x), y can be recovered
from any single value yh if the corresponding completion function ch is available,
since y = ch(yh).

4.2 Implementation

There are several ways to implement blinding-completion pairs. One way is to use
cryptographic accumulators. Let Q = {b1, . . . , bN} be a set of quasi-commutative
cryptographic hash functions [3]. They have the property that the N -way com-
position of these functions in any order yields the same function B. Hence, for
any subset S ⊆ Q, the composition of those functions in S, call it bS , can be used
as the first element of a blinding-completion pair, and the composition of b(Q−S)

becomes the completion function cS . The drawback of this scheme is that N
must be known in advance, and the time complexity of finding bS and cS grows
with N .

We use a different scheme based on discrete logarithms. First we introduce
some standard number theory. For positive integer n, let Z∗

n be the set of positive
integers less than n that are relatively prime to n. The size of Z∗

n is given by
Euler’s totient function φ(n).

In the special case that n is a prime p, Z∗
p = {1, . . . , p − 1}, so φ(p) = p − 1.

Also, p has primitive roots. We say g is a primitive root of p if every number
a ∈ Z∗

p can be expressed as a = gk mod p for some k ∈ Z∗
p. The number k is

called the discrete logarithm of a modulo p. Computing the discrete logarithm is
believed to be computationally difficult when p and g are chosen carefully.
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For our purposes, we choose p = 2q + 1, where q is a Sophie Germain prime
and p is called a safe prime. Such prime pairs are widely used in cryptography,
so a suitable supply exists for our purposes. An estimate of the number of Sophie
Germain primes less than n is Θ(n/(log n)2) [19, pp.123–124].

There are φ(φ(p)) = φ(p − 1) primitive roots in Z∗
p. This makes it possible

to find a primitive root g by a guess-and-check method. Guess a number g ∈ Z∗
p

and check that gq ≡ −1 (mod p). The expected number of guesses required to
find g is (p−1)/φ(p−1) = O(log log p) [14, p. 391]. How big is φ(p−1)? Because
we’ve chosen p − 1 = 2q, then φ(p − 1) = φ(2)φ(q) = q − 1 = (p − 3)/2.

Let r, u be positive integers in Z∗
φ(p) = Z∗

p−1, and let v be a positive integer
less than φ(p) such that r = (u+v) mod φ(p). Define bu(x) = xgu mod p and let
cv(y) = ygv mod p. Then (bu, cv) is a blinding-completion pair for the blinding
function b(x) = xgr mod p. This follows since

cv(bu(x)) ≡ cv(xgu) ≡ (xgu)gv ≡ xgu+v ≡ xgr (mod p).

The last identity follows from Euler’s Theorem, which states that for a ∈ Z∗
p,

aφ(p) ≡ 1 (mod p).
The parameters p, q matter both for convenience and security. To choose r

from Z∗
φ(p), we need to find an r that is relatively prime to (p − 1). But an

arbitrary p − 1 might have many small factors, e.g., p = 71. However, since we
choose p, q so that p − 1 = 2q, we know the only factors of p − 1 are 2 and q.
Choosing a safe prime p makes it easy to find random numbers in Z∗

φ(p). As for
security, the discrete logarithm problem is hard in general, but a solution may
be feasible via the Pohlig–Hellman algorithm when p − 1 has no large prime
factors [17]. A safe prime does not have this weakness.

As explained in Sect. 5 below, we will allow security nodes to independently
choose random values of r, u ∈ Z∗

φ(p) and calculate v = (r − u) mod φ(p).
Because r and u may be chosen independently by different security nodes,

there is a theoretical risk of v = 0, which would produce the undesirable result
yh = y. From the point of view of a cryptographer, such a result is not a prob-
lem, but to satisfy our design requirements we want to provide an unqualified
guarantee that the identifier used by a data provider h does not appear in a
database that links its records.

The value r is secret and may not be shared, therefore the security node
choosing u cannot “peek” at r to make sure it chooses a safe value for u. In
practice, when p is very large, the probability of r = u is vanishingly small.
Should this ever happen, a simple remedy is to choose a new value for r via key
rotation, as explained next.

4.3 Key Rotation

The values of r, u, v should be rotated periodically in case they are ever compro-
mised. We provide a sketch of how such rotation could be implemented.

To rotate the value of r, choose a random 0 < s < φ(p) and calculate r′ =
(r + s) mod φ(p). Check that r′ ∈ Z∗

φ(p), and if not, choose a different random
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s and try again. Then recalculate v′ = (r′ − u) mod φ(p). Finally, to update the
blinded value y = xgr mod p, calculate a new blinded value y′ = ygs mod p.
Note that x is not needed for this calculation. Then y′ is the new blinded value
for the same x, since y′ ≡ xgrgs ≡ xgr′

(mod p).
To rotate the value of u, choose a random 0 < s < φ(p) and calculate

u′ = (u + s) mod φ(p). Check that u′ ∈ Z∗
φ(p), and if not, choose a different

random s and try again. To update the blinded value yh = xgu mod p, calculate
a new blinded value y′

h = yhgs mod p. Then y′
h is the new blinded value for the

same x, since y′
h ≡ xgugs ≡ xgu′

(mod p).

5 Proposed Workflow for Enhanced Security

We propose three additions to the existing workflow to maintain security while
still permitting research data sharing.

1. We envision a system of restricted local patient identifiers (LPIDs) that can
be used to identify the medical records of a given patient within the context
of a single health care provider. Local identifiers are obtained from a patient’s
PII via a one-way cryptographic function. This prevents the local identifier
from being reverse engineered to obtain PII.

2. Using the cryptographic technique of blinding-completion functions, the local
patient identifiers for different health care providers can be used to calcu-
late an anonymized patient identifier (APID). The APID allows a medical
database to link patient records across providers while still providing no clear
path to finding the corresponding PII.

3. To further protect patient anonymity and privacy, we propose to separate the
security services from the servers and databases holding the actual PII (in
the case of hospitals) and medical data (in the case of curated database).

5.1 Trust

Our model of trust has two dimensions: whether the party has good intentions
to keep sensitive information private, and whether the party is competent to do
so. For example, while we may trust health care systems to do their best to keep
sensitive patient information private, they are not always good at cybersecurity,
as evidenced by the large number of cyber-attacks against health care organi-
zations.1 Even when a health care system has a central information technology
department capable of maintaining network security, that competency may be a
scarce resource.

Our model of trust is different from traditional adversarial models that con-
sider the worst possible outcomes from an untrusted party. Our model is informed
by one author’s experience in analyzing dozens of actual lawsuits related to online
1 In a recent survey of health care organizations, 70% of respondents reported that

their organizations had experienced significant security incidents in the prior 12
months [12].
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identity and privacy. While malice is sometimes present, incompetence is much
more likely. In the modern era this idea has been called Hanlon’s razor, which
states, “Never attribute to malice that which is adequately explained by stu-
pidity” [21]. Earlier such attributions go back at least to Goethe [10]: “I have
realized once again that misunderstandings and lethargy can cause more going
wrong in the world than cunning and wickedness do. At least, those two are
certainly less common”.

While health care providers are expected to be competent at medical treat-
ment, there is no reason to expect them to be competent at cryptography (nor
would we trust the average cryptographer to perform surgery). To mitigate the
risk of health care providers performing cryptographic functions insecurely or
leaking secret keys, we restrict access to certain functions and the secret keys
that power them. To keep everyone safe, we introduce additional parties to the
transaction, called “security nodes”, which have demonstrated technical compe-
tence. Each health care provider will choose a security node to work with, and
so will each medical database.

A security node is a network service that can be trusted to implement crypto-
graphic functions correctly and to hold secret keys without leaking them. Secu-
rity nodes could be independently operated, or they might be operated by a
department within a medical organization with the required competence. Impor-
tantly, a security node isolates the secret keys used by cryptographic functions or
for signing messages in a single location. This makes it easier to protect secret
keys by storing them in specialized computing hardware, such as a hardware
security module (HSM). Security nodes also provide authentication services to
health care providers. Each security node has a public-private key pair it can use
to sign and authenticate messages for other security nodes. A special “executive”
security node keeps a list of all security nodes and their public keys. This list
may be periodically updated and distributed, enabling security nodes to reliably
authenticate each other’s messages.

5.2 Parties

A transaction at minimum includes six parties:

1. A patient w who is identified with a user identifier (UID),
2. A health care provider h who treats patients and gathers medical data,
3. The health care provider’s security node that provides LPIDs that can be

attached to medical data in lieu of UIDs,
4. The database’s security node that attaches an APID to medical data in lieu

of LPIDs,
5. A database d that collects anonymous patient profiles, identified only by

APID,
6. Researchers that receive anonymous patient profiles.

5.3 Identifiers

There are three levels of identifiers, each with distinct properties:
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1. UID is an invariant identifier, such as a name-birthday pair or a Social Secu-
rity number. The UID is readily available to the patient and widely used
by health care providers. A patient’s UID must never be shared because it
constitutes PII.

2. LPID identifies patients relative to a health care provider and has no apparent
connection to any PII. A patient’s LPID is different at every provider and is
used for sending anonymized records to a database.

3. APID identifies patients relative to a database and has no apparent connec-
tion to any PII or to any LPID. Anonymized records sent to a database by
different health care providers for the same patient are associated with the
same APID, which enables record linking.

The LPID and APID identifiers are rotated periodically to frustrate any
attacker who manages to breach the system. Rotation can be done if a breach
is detected, or on a regular schedule to limit the damage from an undetected
breach, and to provide other benefits. Key rotation is a widely accepted good
practice in cloud computing [11].

5.4 Initialization

Initially, one or more databases join our proposed system, which provides the
values p, q, and g. Each database d chooses a security node which generates a
random value rd such that rd ∈ Z∗

φ(p). The value rd is used to generate blinding-
completion function pairs and must be kept secret.

Each health care provider h joining the system chooses a security node. The
health care provider obtains a public-private key pair for signing messages (e.g.,
an X.509 security certificate [4]), using a digital signature algorithm such as DSA
or ECDSA, and verifying the health care provider’s identity to its security node.
The public key is registered, or “pinned”, to the security node. Upon registration,
the health care provider’s security node will chose a random value uh such that
uh ∈ Z∗

φ(p). The value uh must be kept secret and is used to generate a blinding
function bh().

To join a database d, a provider h causes its security node to send uh to
the security node of database d. The security node of d then calculates a value
vd = (rd−uh) mod φ(p). The value vd must be kept secret and is used to generate
a completion function ch().

These blinding-completion functions are constructed in such a way that:

1. Each blinding function for each provider h produces a different pseudorandom
identifier LPIDh for each patient.

2. Each completion function for each provider h to each database d maps each
LPIDh to APIDd.

If a health care provider h participates in multiple databases, it uses the same
LPIDh identifiers, but each database d will generate different APIDd identifiers.
Conversely, when multiple providers contribute medical data to a database, each
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provider h has different LPIDh identifiers and the database d has the same
APIDd identifiers. To preserve privacy, no provider knows any of the APIDd

values, and no database knows any of the LPIDh values. The patient identifier
equivalence pairs (LPIDh, APIDd) are only known to, or computed by, security
nodes.

5.5 Contribution of Patient Profiles

Medical providers may contribute patient profiles to a database. A profile con-
tains demographic and medical information of interest to researchers. For exam-
ple, a patient profile might include age, medical diagnosis codes and dates, occu-
pation, ethnicity, treatment history, and other target characteristics. Existing
standards for storing digital medical records can be used.

To contribute a profile to a database d, a health care provider h performs
several steps.

1. The provider hashes the patient’s UID, w, with a standard, widely available
hash function such as SHA256 [7], to generate a value x that it sends to its
security node. The security node then applies the blinding function for that
health care provider to x, resulting in the value LPIDh. The security node
returns LPIDh to the health care provider, and h adds it to the patient’s
medical record.

2. The provider generates a random transaction number t. The relevant profile
data m is then composed into a message (h, t,m, d) and sent to the database d.
The medical data will only be added to the database after it is authenticated
by the database’s security node.

3. The provider creates a token (such as a JSON web token [13]) containing the
quadruple (LPIDh, h, t, d) and signs it using its secret key. The provider sends
the signed token to the provider’s security node, which then authenticates
the signature using the health care provider’s public key and appends its own
signature to the token.

The provider’s security node sends token (LPIDh, h, t, d) to the security node
of database d which does the following steps:

1. Authenticates the signature of the health care provider’s security node.
2. Verifies that the health care provider’s name h in the token matches the name

in the message.
3. Applies the appropriate completion function ch() to LPIDh to generate

APIDd.
4. Creates a new token (APIDd, p, t, d), signs, and sends it to database d.

Database d receives the token (APIDd, h, t, d) and then performs these steps:

1. Authenticates the signature of its own security node.
2. Finds the message (h, t,m, d) with the same transaction number t.
3. Verifies that the health care provider’s name h in the message matches the

health care provider’s name in the token.
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4. Adds the medical data m, the provider h, and APIDd to its data store. If
there is an existing record with APIDd, the new data is linked to the existing
record.

5.6 Accessing Medical Data for Research

A researcher can connect to a database and search for patient profiles that match
desired criteria for the study. Upon approval by an appropriate medical research
ethics board, the researcher can then requisition specific medical data from the
database that is relevant to the research being conducted.

Upon receiving an approved request for medical data related to a patient
profile, the database then retrieves from its database the patient medical data
that meets the researcher’s specific criteria.

When releasing data to a researcher, the identifier for each record, APIDd,
should be removed or hashed with a one way function such as SHA256.
Researchers are not security experts. Therefore, they should not be trusted to
keep the APIDd identifiers private.

6 Threat Analysis

The system we describe, like all such systems, does not confer perfect security. If
a security node were compromised, an attacker might learn the secret values rd,
uh, or vh. These secret values could enable an attacker to recover some or all of
the blinding-completion functions b(), bh(), or ch() and their inverses. Having one
or more of these inverse functions could give an attacker who possesses APIDd

the ability to calculate LPIDh or x, the hash of the patient’s UID. While it is
not practical to invert the hash function used to generate x, an attacker could
test whether a known UID value, when hashed, equals x.

Assume an attacker gathers medical data from researchers. This data would
contain hashes of the APIDd for each record. If the attacker additionally com-
promises health care providers and security nodes, it is conceivable that they
could eventually link a UID to anonymous research data. Given UID and rd, an
attacker can calculate APIDd, hash this value and then compare it to the data
collected from researchers. The difficulty of such an attack is high because it
requires compromising at least one health care provider and at least one secu-
rity node of a database containing data from that health care provider within a
limited time frame (the key rotation period). Moreover, if such an attack were to
succeed, it would likely deanonymize only a limited number of medical records,
especially if there are many independent health care providers, databases, and
security nodes.

The security nodes described in this system only need to communicate with
other security nodes and with the medical providers or databases they serve.
Consequently, a firewall can protect each security node so that it only commu-
nicates with systems on an “allow” list. This type of protection increases the
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difficulty of breaching a security node because even if the system has vulnerabil-
ities, an attacker needs to gain access to a system on a security node’s “allow”
list even to commence a remote attack on the security node.

We believe that the difficulty of attacking our proposed system is sufficiently
high, and the profitability sufficiently low, that attackers would prefer to attack
health care providers directly and aggregate data via UID. Therefore, our pro-
posed system does not materially increase the risk of private medical data being
exposed in a data breach versus the status quo.

7 Conclusion

We have presented a new cryptographic technique called blinding-completion
pairs and demonstrated how they could be used to enable the sharing of private
data without revealing personally identifiable information (PII).

Based upon blinding-completion pairs maintained by security nodes, we have
drawn a sketch of how health care providers could supply medical data to one or
more databases that would aggregate data for each patient and then make those
consolidated records available as anonymous data to researchers. Our system
could release data for medical research in a way that protects patient PII while
still enabling qualified researchers to identify records from different health care
providers that belong to the same patient.

Possible areas for future work include constructing a prototype system, devel-
oping new blinding-completion functions with improved security properties, and
investigating alternative sharing protocols that may offer stronger privacy guar-
antees in the event of data breaches.
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