
Synchronization Modulo k in Dynamic
Networks

Louis Penet de Monterno1(B), Bernadette Charron-Bost2, and Stephan Merz3

1 École polytechnique, IP Paris, 91128 Palaiseau, France
penetdemonterno@lix.polytechnique.fr

2 DI ENS, CNRS, École Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France
3 Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France

Abstract. We define the mod k-synchronization problem as a weak-
ening of the Firing Squad problem, where all nodes fire not at the
same round, but at rounds that are all equal modulo k. We propose
an algorithm that achieves mod k-synchronization in any dynamic net-
work where there exist – possibly several – fixed spanning stars within
each period of Δ consecutive rounds. In other words, we require that
there always exists a temporal path of length at most Δ between some
fixed node γ and every other node. As opposed to the perfect synchro-
nization achieved in the Firing Squad problem, mod k-synchronization
thus does not require any strong connectivity property in the network.
In our algorithm, all the nodes “know” Δ, but they ignore what nodes
are the centers of the spanning stars. We also prove that if the bound
Δ for guaranteeing fixed spanning stars exists but is unknown to the
agents, then mod k-synchronization is impossible.

All nodes in our algorithm fire in less that 6kn + 4k rounds after all
nodes become active, but unfortunately uses unbounded counters. We
then propose a refinement of this algorithm so that it becomes finite
state while maintaining the same time complexity. The correctness of
our first algorithm has been formally established in the proof assistant
Isabelle.

1 Introduction

Distributed algorithms are often designed in a synchronous computing model, in
which computation is divided into communication-closed rounds: any message
sent at some round can be received only at that round. In this model, it is usually
assumed that each run of an algorithm is started by all nodes simultaneously,
i.e., at the same round, or even at round one. For instance, most synchronous
consensus algorithms (e.g., [8,13,14]), as well as many distributed algorithms for
dynamic networks (e.g., [10,11]) require synchronous starts.

This assumption makes the sequential composition of two distributed algo-
rithms A;B – in which each node starts executing B when it has completed the
execution of A – quite problematic. Indeed, nodes start the algorithm B asyn-
chronously when the algorithm A terminates asynchronously, and the properties
of B are no more guaranteed in this context of asynchronous starts.
c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 425–439, 2021.
https://doi.org/10.1007/978-3-030-91081-5_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_28&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_28

426 L. P. de Monterno et al.

This leads to the problem of simulating synchronous starts, classically
referred to as the firing squad problem: Each node is initially passive and then
becomes active at an unpredictable round. The goal is to guarantee that the
nodes, when all active, eventually synchronize by firing – i.e., entering a desig-
nated state for the first time – at the same round.

Unfortunately, the impossibility result in [4] demonstrates that the firing
squad problem is not solvable without a strong connectivity property of the net-
work, namely, there exists some positive integer Δ such that the communication
graph within every period of Δ consecutive rounds is strongly connected and
the bound on the delay Δ is “known”1. In many situations, this connectivity
property is not guaranteed: as an example, in the dynamic graphs correspond-
ing to the Heard-Of models for benign failures, a node that suffers permanent
and complete send omissions is constantly a sink in the communication graph.

However, looking more closely at many distributed algorithms designed in
the round-based model, we see that these algorithms actually do not require
perfectly synchronous starts, and still work under the weaker condition that
all the nodes start executing the algorithms in rounds with numbers that are
equal modulo k, for some positive integer k. The corresponding synchronization
problem, that we call mod k-synchronization, is formally specified as follows:

Termination. If all nodes are eventually active, then every node eventually
fires.

mod k-simultaneity. If two nodes fire at round t and t′, then t′ ≡ t mod k.

Indeed, let A be an algorithm organized into regular phases consisting of
a fixed number k of consecutive rounds: the sending and transition functions
of every node at round t are entirely determined by the value of t modulo k.
Moreover, assume that A has been proved correct (with respect to some given
specification) when all nodes start A synchronously (at round one), but with
any dynamic graph in a family G that is stable under the addition of arbitrary
finite prefixes. For instance, the ThreePhaseCommit algorithm for non-blocking
atomic commitment [1], as well as the consensus algorithms in [9] or the LastVot-
ing algorithm [6] – corresponding to the consensus core of Paxos – fulfill all the
above requirements for phases of length k = 3 and k = 4, respectively, and
the family G of dynamic graphs in which there exists an infinite number of
“good” communication patterns (e.g., a sequence of 2k consecutive communica-
tion graphs in which a majority of nodes is heard by all nodes in each graph).
The use of a mod k-synchronization algorithm prior to the algorithm A yields a
new algorithm that executes exactly like A does, after a finite preliminary period
during which every node becomes active and fires. The above property on the
set of dynamic graphs G then guarantees this variant of A to be correct with
asynchronous starts and dynamic graphs in G.

Another typical example for which perfect synchronization can be weakened
to synchronization modulo k is the development of the basic rotating coordi-
nator strategy in the context of asynchronous starts. Roughly speaking, this

1 in a sense that will be detailed in Sect. 3.5.

Synchronization Modulo k in Dynamic Networks 427

strategy consists in the following: if nodes have unique identifiers in {1, . . . , n},
the coordinator at round t is the node whose identifier is t modulo n. For that,
each node u maintains a local counter cu whose current value is the number of
rounds in which it has been active. At each round, the coordinator of u is the
node with the identifier that is equal to the current value of cu modulo n. Since
there may be only one coordinator per round, such a selection rule requires syn-
chronous starts. Clearly, with the use of a modn-synchronization algorithm in a
preliminary phase and a counter for each node that now counts the number of
rounds elapsed since the node fired, the above scheme implements the rotating
coordinator strategy from the first round where all nodes have fired.

A natural question is then whether synchronization modulo k may be
achieved without strong connectivity. In this paper, we address this issue and
show that this problem is solvable under the sole assumption of a fixed center
γ with a fixed and “known” bound on the delay Δ, that is, every node receives
a message from γ (possibly indirectly) in every period of Δ consecutive rounds.
In fact, we exhibit an algorithm, denoted by SynchModk, that achieves synchro-
nization modulo k in any dynamic graph with a fixed center and a delay at
most equal to k. The case where Δ > k will be covered separately, in Sect. 3.5.
Interestingly, our algorithm requires no node identifiers. In particular, nodes are
not assumed to “know” what node is the center of the graph. Provided that the
communication graph is centered with delay at most Δ, no other assumption is
made on the dynamic graph.

The correctness proof of our algorithm relies on a series of preliminary lemmas
that consider all the possible cases for the respective values of the variables in the
algorithm. In order to increase our confidence in the correctness and remove any
doubts on such combinatorial proofs, we have developed a formal proof of the
correctness of our algorithm in the interactive theorem prover Isabelle/HOL [12].

2 Preliminaries

2.1 The Computational Model

We consider a networked system with a fixed set V of n nodes. We assume a
round-based computational model in the spirit of the Heard-Of model [6], in
which point-to-point communications are organized into synchronized rounds:
each node sends messages to all nodes and receives messages sent by some of
the nodes. Rounds are communication closed in the sense that no node receives
messages in round t that are sent in a round different from t. The collection
of communications (which nodes receive messages from which nodes) at each
round t is modelled by a directed graph (digraph, for short) with a set of nodes
equal to V . The digraph at round t is denoted by G(t) = (V,Et), and is called
the communication graph at round t. The set of u’s incoming neighbors in the
digraph G(t) is denoted by Inu(t).

We assume a self-loop at each node in all these digraphs since every node
can communicate with itself instantaneously. The sequence of such digraphs G =
(G(t))t≥1 is called a dynamic graph [3].

428 L. P. de Monterno et al.

In round t (t = 1, 2, . . .), each node u successively (a) broadcasts messages
determined by its state at the beginning of round t, (b) receives some of the
messages sent to it, and finally (c) performs an internal transition to a successor
state. A local algorithm for a node is given by a sending function that determines
the messages to be sent in step (a) and a transition function for state updates in
step (c). An algorithm for the set of nodes V is a collection of local algorithms,
one per node.

We also introduce the notion of start schedules, represented as collections
S = (su)u∈V , where each su is a positive integer or is equal to ∞.

The execution of an algorithm A with the dynamic graph G and the start
schedule S then proceeds as follows: Each node u is initially passive. If su = ∞,
then the node u remains passive forever. Otherwise, su is a positive integer, and
u becomes active at the beginning of round su, setting up its local variables. In
round t (t = 1, 2 . . .), a passive node sends only heartbeats, corresponding to
null messages, and cannot change its state. An active node applies its sending
function in A to its current state to generate the messages to be sent, then it
receives the messages sent by its incoming neighbors in the directed graph G(t),
and finally applies its transition function Tu in A to its current state and the
list of messages it has just received (including the null messages from passive
nodes), to compute its next state. Since each local algorithm is deterministic,
an execution of the algorithm A is entirely determined by the initial state of the
network, the dynamic graph G, and the start schedule S.

The states “passive” and “active” do not refer to any physical notion, and are
relative to the algorithm under consideration: as an example, if two algorithms
A and B are sequentially executed according to the order “A followed by B”,
then at some round, a node may be active w.r.t. A while it is passive w.r.t. B. In
such a situation, the node is integrally part of the system and can send messages,
but these messages are empty with respect to the semantics of the algorithm B.

2.2 Network Model and Start Model

Let us first recall the notion of product of two digraphs G1 = (V,E1) and G2 =
(V,G2), denoted by G1 ◦ G2 and defined as follows [5]: G1 ◦ G2 has V as its
set of nodes, and (u, v) is an edge if there exists w ∈ V such that (u,w) ∈ G1

and (w, v) ∈ G2. For any dynamic graph G and any integer t′ > t ≥ 1, we let
G(t : t′) = G(t) ◦ G(t + 1) ◦ · · · ◦ G(t′). By extension, we let G(t : t) = G(t).

The set of incoming neighbors of u in G(t : t′) is noted as Inu(t : t′). The set
Inu(t : t) is simply noted Inu(t).

Each edge (u, v) in the digraph G(t : t′) corresponds to a u � v path in the
interval [t, t′], i.e., a finite sequence of nodes u = wt−1, wt, . . . , wt′ = v such that
each pair (wi, wi+1) is an edge of G(t + i). This path is said to be active if each
node wt−1, wt, . . . , wt′ is active in rounds t − 1, t, . . . t′, respectively.

A network model is any non-empty set of dynamic graphs. We will focus on
those network models G∗

Δ of dynamic graphs G where each digraph G(t : t+Δ−1)
contains a fixed star graph, namely,

∃γ ∈ V, ∀t ∈ N, ∀u ∈ V, γ ∈ Inu(t : t + Δ − 1).

Synchronization Modulo k in Dynamic Networks 429

The dynamic graph G is said to be centered at the node γ with delay Δ, and γ
is called a Δ-center of G.

The network model G∗
Δ contains some dynamic graphs which are partitionned

during less than Δ consecutive rounds. If the network model containing dynamic
graphs which are rooted in each round is denoted by Grooted, we can easily check
that, because of self-loops, if a node γ is a root of each digraph G(t), then the
dynamic graph G is centered at γ with delay |V | − 1. Then Grooted ⊆ G∗

|V |−1.
Similarly, if the network model containing dynamic graphs which are strongly
connected in each round is denoted by Gstrong, we get Gstrong ⊆ Grooted ⊆ G∗

|V |−1.
We also define a start model as a non-empty set of start schedules. A start

schedule S = (su)u∈V is complete if every su is finite, i.e., no node is passive
forever. Synchronous starts correspond to complete start schedules where all su

are finite and equal. The point of this paper is to simulate mod k-synchronous
starts defined by su ≡ sv mod k for every pair of nodes u and v, with any
complete start schedule.

The algorithm we introduce in the next section requires the existence of a
Δ-center. By comparison, the firing squad problem is solvable with some strong
connectivity hypothesis. In other words, every node must be a Δ-center.

3 The Algorithm

In this section, we present simultaneously the pseudo-code of our algorithm, and
its formal definition in the Isabelle framework. The correctness of the algorithm
has been formally verified in Isabelle.2 The proof that we present in this article
closely follows our formal proof.

3.1 Pseudo-code and Formal Definition

The state of each node is represented by five variables whose initial value is given
below.
record locState =

x :: nat
synch :: bool
ready :: bool
force :: nat — force ∈ {0, 1, 2}
level :: nat — level ∈ {0, 1, 2}

definition initState where

initState ≡ � x = 0, synch = False, ready = False, force = 0, level = 0 �

We define a datatype for messages sent between two nodes u and v: messages
either carry a value of some type ′msg , or are equal to Null if u is passive, or to
Void if u is not an incoming neighbor of v.

datatype ′msg message = Content ′msg | Null | Void

2 The complete Isabelle development is available at https://github.com/louisdm31/
asynchronous starts HO model/tree/master/proof/sync-mod.

https://github.com/louisdm31/asynchronous_starts_HO_model/tree/master/proof/sync-mod
https://github.com/louisdm31/asynchronous_starts_HO_model/tree/master/proof/sync-mod

430 L. P. de Monterno et al.

Algorithm 1: The SynchModk algorithm
1 Initialization:
2 cu ∈ N, initially 0
3 synchu ← false
4 readyu ← false
5 forceu ∈ {0, 1, 2}, initially 0
6 levelu ∈ {0, 1, 2}, initially 0

7 At each round:
8 send 〈cu, synchu, forceu, readyu〉 to all
9 receive incoming messages: let Ina be the set of nodes from which a non-null

message is received.
10 if all received messages are non-null then
11 synchu ← ∧

v∈Ina
synchv ∧ cv ≡ cu mod k

12 end
13 else
14 synchu ← false
15 end
16 readyu ← ∧

v∈Ina
readyv

17 forceu ← max
v∈Ina

forcev

18 cu ← 1 + min
v∈Ina

forcev=forceu

cv

19 if cu ≡ 0 mod k then
20 if levelu = 0 ∧ synchu then
21 levelu ← 1
22 if forceu < 2 then
23 forceu ← 1
24 cu ← 0

25 end

26 end
27 else if levelu = 1 ∧ readyu ∧ synchu then
28 levelu ← 2 /* the node u fires */

29 forceu ← 2
30 cu ← 0

31 end
32 synchu ← true
33 readyu ← levelu > 0

34 end

3.2 Informal Description of the Algorithm

We fix some k > 2. In this algorithm, the nodes hold a level variable. When
they become active, they move from passive state to level 0. They later move to
level 1, then to level 2. Each time a node moves from some level to the next, this
constitutes a level-up event. From now on, the level reached during this level-up
event will be called the strength of this event. Reaching level 2 means firing. The

Synchronization Modulo k in Dynamic Networks 431

conditional statements at lines 20 and 27 of Algorithm 1 are executed when the
node reaches level 1 and 2 respectively. The intuition of the algorithm can be
summarized by two simple ideas.

Firstly, each node keeps track of the most recent strongest level-up event.
Only the strongest level-up events are considered: if some node “knows” about
a level-up event from level 1 to level 2, it will not record any level-up event from
level 0 to level 1, nor any level-up event from passive state to level 0. Among
the strongest level-up events, the nodes keep track of the age of the most recent
one. For that purpose, they hold two variables cu and forceu. At any round,
node u knows that cu rounds ago, some node reached a level equal to forceu

from the previous level (as proved in Lemma 6), and the node does not know
any node which reached a level equal to forceu (or higher) in any more recent
round (as proved in Lemma 7). With lines 17 and 18, they update their cu

and forceu variables using those of their incoming neighbors. The presence of
self-loops implies that, in these lines, the minima and maxima are well-defined.

Fig. 1. Evolution of the incoming neighbors of u between round t−k and t: case where
every cu is congruent to 0 in round t − k

Secondly, a node may level up in round t only if its counter cu is congruent
to 0 and the counter of γ was also congruent to 0 k rounds ago. Since the nodes
do not “know” a fixed Δ-center, they conservatively level up only if all of their
incoming neighbors v ∈ Inu(t − k + 1 : t) were congruent to 0 k rounds ago.
The assumption Δ ≤ k guarantees that γ is one of these incoming neighbors.
For that purpose, they use a Boolean variable synch. When the counter of some
node v becomes congruent to 0 in some round t−k, it sets its synchv variable to
true in line 32. During the next k − 1 rounds, it will check whether the counters
of its incoming neighbors are all congruent to its own counter (line 11). In case
they are not, the node will set its synchu variable to false. This false value will

432 L. P. de Monterno et al.

Fig. 2. Evolution of the incoming neighbors of u between round t−k and t: case where
some cu are not congruent to 0 in round t − k

disseminate to its outgoing neighbors (also line 11). If, in round t, its synchu

variable is still true, node u knows that no non-congruence was detected between
round t−k and round t. This means that every Δ-center was congruent with 0 in
round t−k (as proved in Lemma 3.c). In that case, a level-up event will take place
(see Fig. 1). In contrast, if some node v ∈ Inu(t−k +1 : t) is not congruent with
0 in round t−k, then the line 11 guarantees that synchu will ultimately be false
at the beginning of round t (see Fig. 2). In addition to synch, the ready variable
makes sure that γ was already in level 1 k rounds ago (as proved in Lemma 4).
Otherwise, the level-up event to level 2 is forbidden. Intuitively, the round tγ
in which γ reaches level 1 is used as a landmark for the mod k-synchronization:
Lemma 9 shows that nodes fire in rounds which are congruent to tγ modulo k.

3.3 Notation and Preliminary Lemmas

In the rest of this section, we fix an execution ρ of the SynchModk algorithm
for a complete activation schedule S and a Δ-centered dynamic graph G ∈ G∗

Δ

with Δ ≤ k. Let smax = maxu∈V s(u) (note that smax < ∞) and let γ denote
any Δ-center of G.

If the node u is active in round t, the value of any u’s variable xu just before u
executes line 19 at round t and at the very end of round t are denoted by xpre

u (t)
and xu(t) respectively. By extension, xu(t) refers to the initial state if t = su −1.
In our formal proof, these values are encapsulated in a rho variable: for any round
t, for any node u, rho t u returns either Passive or Active s, where s :: locState
contains cu(t), synchu(t) We now prove that this execution satisfies both
properties of the mod k-synchronization problem.

definition liveness where — termination
liveness rho ≡ ∀ u. ∃ t s. rho t u = Active s ∧ level s = 2

definition safety where — mod k-simultaneity
safety rho ≡ ∃ c. ∀ u t s ss.

Synchronization Modulo k in Dynamic Networks 433

rho t u = Active s −→ level s < 2 −→
rho (Suc t) u = Active ss −→ level ss = 2 −→ t mod k = c

We proved these propositions under the following assumptions:

assumes ∀ u t. path In gamma u t k — gamma is a k-center
and ∀ u t. u ∈ In t u — the graph contains self-loops
and HORun (HOMachine k) rho In — rho is an execution
and ∀ p. ∃ t. rho t p
= Asleep — the schedule is complete
and k > 2

The HORun term above is defined in [7] and characterizes executions of
an algorithm. Since this definition was first written for synchronous starts, we
adapted it to describe asynchronous starts.

We denote Ina
u(t) the subset of nodes in Inu(t) which are active in round t−1

in this execution. Some simple claims follow immediately from the definition
of the transition function, regardless of the connectivity properties of G. We
consider some node u ∈ V and some round t in which u is active (i.e., t ≥ su).

Lemma 1.

(a) levelu(t + 1) ∈ {levelu(t), levelu(t) + 1}
(b) If cu(t)
= 0, then forceu(t) = forcepre

u (t) and cu(t) = cpre
u (t).

(c) cu(t) ≡ cpre
u (t) mod k.

(d) If synchpre
u (t) = true holds, then each node v ∈ Inu(t) is active at round

t − 1 with: cpre
v (t − 1) + 1 ≡ cpre

u (t) mod k.
(e) If cpre

u (t)
≡ 1 mod k and synchpre
u (t) holds, then each node v ∈ Inu(t) is

active in round t − 1 with synchpre
v (t − 1).

(f) If cpre
u (t)
≡ 1 mod k and synchpre

u (t) = readypre
u (t) = true,

then for every node v ∈ Ina
u(t), it holds that readypre

v (t − 1) = true.
(g) For every v ∈ Ina

u(t), we have:
forcepre

v (t − 1) ≤ forcev(t − 1) ≤ forcepre
u (t) ≤ forceu(t).

(h) ∀v ∈ Ina
u(t), forcepre

v (t − 1) = forcepre
u (t) ⇒

cpre
u (t) ≤ 1 + cv(t − 1) ≤ 1 + cpre

v (t − 1).
(i) levelu(t) ≤ forceu(t).

Lemma 2. No node can perform a level-up event action in round k−1 or earlier.

We now show a few properties on the incoming neighbors of nodes that reach
level 1 or 2. This situation is illustrated in Fig. 1.

Lemma 3. Let i be an integer, 0 ≤ i < k, and let u and v be two nodes such
that u ∈ Inv(t− k + i+1 : t). If v is active in round t, if cpre

v (t) ≡ 0 mod k and
synchpre

v (t) = true hold, then

(a) t ≥ k.
(b) u is active in round t − k + i.
(c) cpre

u (t − k + i) ≡ i mod k.
(d) If readypre

v (t) is true and i > 0, then readypre
u (t − k + i) is true as well.

Lemma 4. If some node u reaches level 2 in round tu, then γ is already in level
1 in round tu.

434 L. P. de Monterno et al.

Lemma 5. If γ reaches level 1 in round tγ , no node can reach level 1 or 2 in
any of the rounds tγ + 1, . . . , tγ + k − 1.

Lemma 6. Let u be some node, and t be some round in which u is active. There
exists some node w which reached a level equal to forcepre

u (t) in round t−cpre
u (t).

Moreover, an active w � u path exists in the interval [t − cpre
u (t) + 1, t].

We consider the set Z = {(f, t),∃u ∈ V, levelu(t) = f ∧ levelu(t − 1)
= f}.
This set is the finite set of level-up events. Using Lemma 6, any node u satisfies
zu(t) = (forcepre

u (t), t − cpre
u (t)) ∈ Z in every round t ≥ su in which u is active.

We order Z lexicographically. The following two lemmas prove that zu(t) is the
most recent strongest level-up event “known” by u in round t.

Lemma 7. For every node u and v, if u leveled up in round t, then for every
i > 0 such that there exists an active u � v path in the interval [t + 1, t + i],

levelu(t) ≤ forcepre
v (t + i)

∧ levelu(t) = forcepre
v (t + i) ⇒ cpre

v (t + i) ≤ i.

Lemma 8. If there exists an active u � v path between two nodes u and v in the
interval [t + 1, t′], then zu(t) ≤ zv(t′).

Lemma 9. If γ reached level 1 in some round tγ , whereas some u reaches level
1 or 2 in some round tu ≥ tγ , then tu ≡ tγ mod k.

Proof. By contradiction, we consider the earliest node u which levels up in some
round tu ≥ tγ with tu
≡ tγ mod k. By Lemma 2, tγ ≥ k. The Lemma 6 implies
the existence of a node v which reached a level equal to forcepre

u (tu) in some
round tv = tu − cpre

u (tu).
In the case forcepre

u (tu) = 2, from Lemma 4, we obtain tv ≥ tγ .
In the case forcepre

u (tu) = 1, Lemma 5 tells us that tu−tγ ≥ k. Using self-loops
and G ∈ G∗

Δ respectively, there exists a γ � γ path in the interval [tγ + 1, tu − k]
and a γ � u path in the interval [tu − k + 1, tu]. By concatenation, we obtain a
γ � u path in the interval [tγ + 1, tu] Using Lemma 3.b, this path is active. From
Lemma 7, cpre

u (tu) ≤ tu − tγ . We also get tv ≥ tγ .
The case forcepre

u (tu) = 0 is impossible: we have forceγ(t) ≥ levelγ(t) ≥ 1 by
Lemma 1.i. Using Lemma 1.g, we get 1 ≤ forceγ(t) ≤ forcepre

wt+1
(t + 1) ≤ · · · ≤

forcepre
u (tu), where wt, wt+1, . . . , wtu

is the γ � u path constructed above.
In both possible cases, we have tv ≥ tγ . By line 19, we have cpre

u (t) ≡ 0
mod k. Recalling tv = tu − cpre

u (tu), we obtain tv ≡ tu
≡ tγ mod k. This
contradicts the fact that u was the earliest such node. ��

We say that the system is monovalent in round t if every node u is active and
the values in the family (cpre

u (t))u∈V are mutually congruent modulo k. Moreover,
we denote c̄pre(t) some integer which is congruent to every value (cpre

u (t))u∈V .

Lemma 10. If the system is monovalent in round t, it is monovalent in any
round t + i. Moreover, c̄pre(t + i) ≡ c̄pre(t) + i mod k.

Lemma 11. If, in some round t, the system is monovalent, then every node u
is in level 1 in round t + 2k and in level 2 in round t + 3k.

Synchronization Modulo k in Dynamic Networks 435

3.4 Correctness Proof

Lemma 12. Under the assumption of a Δ-centered dynamic graph with Δ ≤
k, any execution of the SynchModk algorithm satisfies the mod k-simultaneity
property.

Proof. We fix some node u, and we assume that u reaches level 2 in round tu.
From Lemma 4, we obtain tu ≥ tγ , where tγ is the round in which γ reaches level
1. By Lemma 9, tu ≡ tγ mod k. That proves the mod k-simultaneity property.

��

Lemma 13. Under the assumptions of a complete activation schedule and of a
Δ-centered dynamic graph with Δ ≤ k, any execution of the SynchModk algo-
rithm terminates.

Proof. For every node u, the sequence (zu(t))t≥su
belongs to the finite set Z.

Moreover, by Lemma 8, this sequence is non-decreasing. Then it eventually sta-
bilizes to some value zmax

u . Let zmin be min{zmax
u , u ∈ V }. We consider the

round t0 in which every node is active, and every sequence (zu(t))t≥su
has sta-

bilized to zmax
u . We consider the subset Vmin = {u ∈ V, zmax

u = zmin}. We claim
that ∀t > t0,∀u ∈ Vmin, Inu(t) ⊆ Vmin:

By contradiction, if in some round t > t0, some w /∈ Vmin belongs to Inu(t),
we would obtain zmax

u = zmin < zw(t − 1) ≤ zu(t), using u ∈ Vmin, w /∈ Vmin

and Lemma 8.
We apply Lemma 11 to the subsystem consisting of Vmin. Since for all t > t0

and u ∈ Vmin, Inu(t) ⊆ Vmin, this subsystem behaves like an independent
system. Then, in round t0 + 3k, every node in Vmin is in level 2. By Lemma 1.i,
every node u ∈ Vmin satisfies forcepre

u (t0 + 3k) = 2. By definition of Vmin, every
node u ∈ V has forcepre

u (t0 + 3k) = 2. Now, we prove that in round t0 + 3k, the
entire system is monovalent:

Let us consider two nodes u1 and u2. By Lemma 6, we obtain two nodes w1

and w2 which reached level 2 in round t0 + 3k − cpre
u1

(t0 + 3k) and t0 + 3k −
cpre
u2

(t0 + 3k) respectively. By Lemma 12, we obtain cpre
u1

(t0 + 3k) ≡ cpre
u2

(t0 + 3k)
mod k. That proves monovalence.

The termination property now follows from Lemma 11. ��

The previous two lemmas yield the following correctness theorem:

Theorem 1. Under the assumption of a Δ-centered dynamic graph with Δ ≤ k,
and a complete activation schedule, the SynchModk algorithm solves the mod k-
synchronization problem for any integer k greater than 2.

3.5 Solvability Results

We show that the mod k-synchronization problem is always solvable, regardless
of the value of k, if the bound Δ on the delay is known: for each possible Δ, we
can exhibit an algorithm which solves mod k-synchronization in any Δ-centeed
dynamic graph.

436 L. P. de Monterno et al.

Corollary 1. For any positive integer k, the mod k-synchronization problem is
solvable in each network model G∗

Δ in any complete activation schedule.

Proof. Depending on the relative values of k and Δ, we consider the following
cases:

1. k = 1. The problem is trivially solvable in any network model, in particular
G∗

Δ.
2. Δ ≤ k and k > 2. By Theorem 1, the SynchModk algorithm solves the mod k-

synchronization problem in G∗
Δ if k > 2.

3. Δ ≤ k = 2. Theorem 1 shows that the SynchMod4 algorithm achieves mod 4-
synchronization in G∗

2 , and hence achieves mod 2-synchronization in G∗
2 .

4. Δ > k. We have Δ ≤ �Δ
k � ·k. By Theorem 1, the mod �Δ

k � ·k-synchronization
problem is solvable in G∗

Δ using SynchMod � Δ
k �·k . The mod k-synchronization

problem is also solvable in G∗
Δ, a fortiori. ��

In contrast, we show that the mod k-synchronization problem is not solvable
if the delay Δ is unknown to the nodes.

Theorem 2. If k > 1, then the mod k-synchronization problem is not solvable
in the network model

⋃

i∈N

G∗
i .

Proof. By contradiction, assume that an algorithm A solves the problem in the
above-mentioned network model. We consider any system and we fix two nodes
u and v in this system. We denote I the digraph only containing self-loops. We
denote Cu and Cv the digraphs only containing self-loops and a star centered in
u and v respectively. We construct four executions of A:

1. Every node starts in round 1. The dynamic graph is equal to Cu at each
round. This dynamic graph belongs to G∗

1 . Using the termination of A, u fires
in some round fu.

2. Every node starts in round 1. The dynamic graph is equal to Cv at each
round. This dynamic graph belongs to G∗

1 . Using the termination of A, v fires
in some round fv.

3. Every node starts in round 1. During the first fu + fv rounds, the commu-
nication graph is equal to I. In every subsequent round, the communication
graph is equal to Cu. This dynamic graph belongs to G∗

1+fu+fv
.

4. the node u starts in round 1, whereas every other node starts in round 2.
During the first fu + fv rounds, the communication graph is equal to I.
In every subsequent round, the communication graph is equal to Cu. This
dynamic graph belongs to G∗

1+fu+fv
.

From the point of view of u, the third execution is indistinguishable from the
first execution. Then u fires in round fu in the third execution. From the point
of view of v, the third execution is indistinguishable from the second execution
during the first fv rounds. Then v fires in round fv in the third execution. Using
the mod k-simultaneity of A in the third execution, we obtain:

fu ≡ fv mod k.

Synchronization Modulo k in Dynamic Networks 437

Similarly, u fires in round fu and v fires in round 1+fv in the forth execution.
Using the mod k-simultaneity of A in the forth execution, we obtain:

fu ≡ fv + 1 mod k.

We obtain a contradiction if k > 1. ��

4 Complexity Analysis

4.1 Time Complexity Analysis

Theorem 3. There are at most 6kn + 4k rounds between the activation of all
nodes and the firing of all nodes.

Proof. We now bound the number of rounds between the activation of all nodes
(noted smax) and the firing of all nodes. Let tγ be the round in which γ reaches
level 1. First, we try to bound tγ − smax. We consider the non-decreasing series
(zγ(t))t≥sγ

. By Lemma 4, no node can reach level 2 before round tγ . Then, for
any t ∈ {sγ , . . . , tγ}, we have zγ(t) ∈ Z− = {(f, t) ∈ Z, f < 2}. This set Z− ⊆ Z
is the set of level-up events of strength 0 or 1. Since nodes can reach level 0 and
1 only once, the cardinality of Z− is bounded by 2n, where n is the total number
of nodes. We can show that γ is in level 1 in round t if (zγ(t))t∈N remains stable
between rounds t − 3k and t. Then the worst case scenario happens if zγ(sγ)
starts with the lowest value of Z−, and every 3k rounds, zγ(t) moves to the
closest greater element of Z−. Then tγ − smax is bounded by 2n × 3k = 6kn.

Second, if γ is in level 1 in round tγ , then every node u satisfies zu(tγ + k) ≥
zγ(tγ). By Lemma 9, the system is monovalent in round tγ + k. By Lemma 11,
every node is in level 2 in round tγ + 4k. We finally obtain that there is at most
6kn + 4k rounds between the activation of all nodes and the firing of all nodes.

��

4.2 Reducing Memory Usage

For all nodes u, for all rounds t, we have (forcepre
u (t), t− cpre

u (t)) ∈ Z by Lemma
6. Since Z is finite, cpre

u (t) tends to infinity as t tends to infinity. We present
below a idea (inspired by [2]) which can alleviate this issue: in each execution
of Algorithm 1, total memory usage increases forever, whereas in each execution
of Algorithm 2, total memory usage grows during some arbitraryly-long initial
period, and then drops and remains bounded forever. The idea is as follows:

As soon as forceu(t) = 2, the node u “knows” that some node v fired in round
t − cu(t) (see Lemma 6). Then u may fire in any round t′ ≡ t − cu(t) mod k. At
this point, the transition function can thus be simplified as in Algorithm 2. This
simplified version uses a constant amount of memory.

438 L. P. de Monterno et al.

Algorithm 2: The OptSynchModk algorithm
1 Initialization:
2 initialize with SynchModk’s initial state

3 At each round:
4 if forceu = 2 then
5 send 〈cu, true, 2, true〉 to all
6 cu ← 1 + cu mod k
7 if levelu < 2 ∧ cu = 0 then
8 levelu ← 2
9 end

10 end
11 else
12 apply SynchModk’s transition function
13 end

Theorem 4. Under the assumption of a Δ-centered dynamic graph with Δ ≤ k
and a complete activation schedule the Algorithm 2 solves the mod k-synchro-
nization problem. Moreover, in each execution of Algorithm 2, the memory usage
of each node is finite.

5 Conclusion and Future Work

In this paper, we presented the mod k-synchronization problem, and we intro-
duced an algorithm solving this problem. We provided an optimized version of
this algorithm to tackle large memory usage. We also provided an upper-bound
on the number of rounds between the start of all nodes and the firing of all nodes.
This bound is linear in both k and n, which is not bad. However, this bound
is deteriorated by a few nasty worst-case scenarios. We believe that some addi-
tional assumptions could provide a much tighter bound, which would not depend
on n. That would be especially useful in very large systems. This consitutes a
possible topic for a future work.

References

1. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley, Boston (1987)

2. Boldi, P., Vigna, S.: Universal dynamic synchronous self-stabilization. Distrib.
Comput. 15(3), 137–153 (2002)

3. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) ADHOC-NOW
2011. LNCS, vol. 6811, pp. 346–359. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22450-8 27

4. Charron-Bost, B., Moran, S.: The firing squad problem revisited. In: 35th Sympo-
sium on Theoretical Aspects of Computer Science (STACS 2018). Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 96, pp. 20:1–20:14 (2018)

https://doi.org/10.1007/978-3-642-22450-8_27
https://doi.org/10.1007/978-3-642-22450-8_27

Synchronization Modulo k in Dynamic Networks 439

5. Charron-Bost, B., Moran, S.: Minmax algorithms for stabilizing consensus. CoRR
abs/1906.09073 (2019). http://arxiv.org/abs/1906.09073

6. Charron-Bost, B., Schiper, A.: The heard-of model: computing in distributed sys-
tems with benign faults. Distrib. Comput. 22(1), 49–71 (2009)

7. Debrat, H., Merz, S.: Verifying fault-tolerant distributed algorithms in the heard-
of model. Archive of Formal Proofs (2012). http://isa-afp.org/entries/Heard Of.
html. Formal proof development

8. Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM
J. Comput. 12(4), 656–666 (1983)

9. Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the presence of partial
synchrony. J. ACM 35(2), 288–323 (1988)

10. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: Proceedings of 42nd ACM Symposium on Theory of Computing (STOC 2010),
pp. 513–522. ACM, New York (2010). https://doi.org/10.1145/1806689.1806760

11. Kuhn, F., Moses, Y., Oshman, R.: Coordinated consensus in dynamic networks.
In: Proceedings of 30th ACM Symposium on Principles of Distributed Computing
(PODC). ACM (2011)

12. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL. A Proof Assistant for Higher-
Order Logic. Lecture Notes in Computer Science, vol. 2283. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45949-9

13. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228–234 (1980)

14. Srikanth, T.K., Toueg, S.: Simulating authenticated broadcasts to derive simple
fault-tolerant algorithms. Distrib. Comput. 2(2), 80–94 (1987)

http://arxiv.org/abs/1906.09073
http://isa-afp.org/entries/Heard_Of.html
http://isa-afp.org/entries/Heard_Of.html
https://doi.org/10.1145/1806689.1806760
https://doi.org/10.1007/3-540-45949-9

	Synchronization Modulo k in Dynamic Networks
	1 Introduction
	2 Preliminaries
	2.1 The Computational Model
	2.2 Network Model and Start Model

	3 The Algorithm
	3.1 Pseudo-code and Formal Definition
	3.2 Informal Description of the Algorithm
	3.3 Notation and Preliminary Lemmas
	3.4 Correctness Proof
	3.5 Solvability Results

	4 Complexity Analysis
	4.1 Time Complexity Analysis
	4.2 Reducing Memory Usage

	5 Conclusion and Future Work
	References

