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Abstract. Motivated by cloud storage (à la Dropbox, Google Drive,
etc.), we investigate distributed computing in message passing networks
that contain a passive node that can only store and share data, and does
not carry out any computations. Using basic primitives of collaborative
transmission of a file from and to the cloud, we implement more complex
tasks where the goal is to combine input values: e.g., each node holds a
vector (or a matrix) as input and the sum (or product) of all the inputs
should be stored in the cloud. We present near-optimal algorithms for
these tasks. Finally we consider applications such as federated learning
and file deduplication in this new model. Our results show that utilizing
both node-cloud and node-node communication links can substantially
speed up computation with respect to systems where processors commu-
nicate either only through the cloud or only through the network links.

1 Introduction

In 2018 Google announced that the number of users of Google Drive is surpassing
one billion [25]. Earlier that year, Dropbox stated that in total, more than an
exabyte (1018 bytes) of data has been uploaded by its users [14]. Other cloud-
storage services, such as Microsoft’s OneDrive, Amazon’s S3, or Box, are thriving
too. The driving force of this paper is our wish to let other distributed systems
to take advantage of the enormous infrastructure that makes up the complexes
called “clouds.” Let us explain how.

The computational and storage capacities of servers in cloud services are rel-
atively well advertised. A lesser known fact is that a cloud system also entails a
massive component of communication, that makes it appear close almost every-
where on the Internet. (This feature is particularly essential for cloud-based video
conferencing applications, such as Zoom, Cisco’s Webex and others.) In view of
the existing cloud services, our fundamental idea is to abstract a complete cloud
system as a single, passive storage node.

To see the benefit of this approach, consider a network of the “wheel” topol-
ogy: a single cloud node is connected to n processing nodes arranged in a cycle
(see Fig. 1). Suppose each processing node has a wide link of bandwidth n to its
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Fig. 1. Wheel topology with n = 8. The vi nodes are processing nodes connected by a
ring of high-bandwidth links. The cloud node vc is connected to the processing nodes
by lower-bandwidth links. All links are bidirectional and symmetric.

cycle neighbors, and a narrower link of bandwidth
√

n to the cloud node. Fur-
ther suppose that each processing node has an n-bit vector, and that the goal is
to calculate the sum of all vectors. Without the cloud (Fig. 1, left), such a task
requires at least Ω(n) rounds – to cover the distance; on the other hand, with-
out using the cycle links (Fig. 1, middle), transmitting a single vector from any
processing node (and hence computing the sum) requires Ω(n/

√
n) = Ω(

√
n)

rounds – due to the limited bandwidth to the cloud. But using both cloud links
and local links (Fig. 1, right), the sum can be computed in Θ̃( 4

√
n) rounds, as we

show in this paper.
More generally, in this paper we initiate the study of the question of how

to use an omnipresent cloud storage to speed up computations, if possible. We
stress that the idea here is to develop a framework and tools that facilitate
computing with the cloud, as opposed to computing in the cloud.

Specifically, in this paper we introduce the computing with the cloud model
(CWC), and present algorithms that efficiently combine distributed inputs to
compute various functions, such as vector addition and matrix multiplication. To
this end, we first implement (using dynamic flow techniques) primitive operations
that allow for the exchange of large messages between processing nodes and
cloud nodes. Given the combining algorithms, we show how to implement some
applications such as federated learning and file de-duplication (dedup).

1.1 Model Specification

The “Computing with the Cloud” (CWC) model is a synchronous network whose
underlying topology is described by a weighted directed graph G = (V,E,w).
The node set consists of two disjoint subsets: V = Vp ∪ Vc, where Vp is the set
of processing nodes, and Vc is the set of cloud nodes. Cloud nodes are passive
nodes that function as shared storage: they support read and write requests,
and do not perform any other computation. We use n to denote the number of
processing nodes (the number of cloud nodes is typically constant).

We denote the set of links that connect two processing nodes by EL (“local
links”), and by EC (“cloud links”) the set of links that connect processing nodes
to cloud nodes. Each link e ∈ E = EL ∪ EC has a prescribed bandwidth w(e)
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(there are no links between different cloud nodes). We denote by Gp
def= (Vp, EL)

the graph G − Vc, i.e., the graph spanned by the processing nodes.
Our execution model is the standard synchronous network model, where each

round consists of processing nodes receiving messages sent in the previous round,
doing an arbitrary local computation, and then sending messages. The size of a
message sent over a link e in a round is at most w(e) bits.

Cloud nodes do not perform any computations: they can only receive requests
we denote by FR and FW (file read and write, respectively), to which they respond
in the following round. More precisely, each cloud node has unbounded storage;
to write, a processing node vi invokes FW with arguments that describe the target
cloud node, a filename f , a bit string S, and the location (index) within f that S
needs to be written in. It is assumed that |S| ≤ w(vi, vc) bits (longer writes can
be broken to a series of FW operations). To read, a processing node vi invokes
FR with arguments that describe the cloud node, a filename f and the range of
indices to fetch from f . Again, we assume that the size of the range in any single
FR invocation by node vi is at most w(vi, vc).1

FW operations are exclusive, i.e., no other operation (read or write) to the
same file location is allowed to take place simultaneously. Concurrent FR opera-
tions from the same location are allowed.

Discussion. We believe that our model is fairly widely applicable. A processing
node in our model may represent anything from a computer cluster with a single
gateway to the Internet, to cellphones or even smaller devices—anything with
a non-shared Internet connection. The local links can range from high-speed
fiber to Bluetooth or infrared links. Typically in this setting the local links
have bandwidth much larger than the cloud links (and cloud downlinks in many
cases have larger bandwidth than cloud uplinks). Another possible interpretation
of the model is a private network (say, in a corporation), where a cloud node
represents a storage or a file server. In this case the cloud link bandwidth may
be as large as the local link bandwidth.

1.2 Problems Considered and Main Results

Our main results in this paper are efficient algorithms in the CWC model to
combine values stored at nodes. These algorithms use building blocks that facili-
tate efficient transmission of large messages between processing nodes and cloud
nodes. These building blocks, in turn, are implemented in a straightforward way
using dynamic flow techniques. Finally, we show how to use the combining algo-
rithms to derive new algorithms for federated learning and file de-duplication
(dedup) in the CWC model.

More specifically, we provide implementations of the following tasks.

1 For both the FW and FR operations we ignore the metadata (i.e., vc’s descriptor, the
filename f and the indices) and assume that the total size of metadata in a single
round is negligible and can fit within w(vi, vc). Otherwise, processing nodes may
use the metadata parameters to exchange information that exceeds the bandwidth
limitations (for example, naming a file with the string representation of a message
whose length is larger than the bandwidth).
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Basic Cloud Operations: Let vc denote a cloud node below.

cWi (cloud write): write an s-bits file f stored at node i ∈ Vp to node vc.
cRi (cloud read): fetch an s-bits file f from node vc to node i ∈ Vp.
cAW (cloud all write): for each i ∈ Vp, write an s-bits file fi stored at node i to

node vc.
cAR (cloud all read): for each i ∈ Vp, fetch an s-bits file fi from node vc to node

i.

Combining and Dissemination Operations
cComb: (cloud combine): Each node i ∈ Vp has an s-bits input string Si, and
there is a binary associative operator ⊗ : {0, 1}s × {0, 1}s → {0, 1}s (the result
is as long as each operand). The requirement is to write to a cloud node vc

the s-bits string S1 ⊗ S2 ⊗ · · · ⊗ Sn. Borrowing from Group Theory, we call the
operation ⊗ multiplication, and S1 ⊗S2 is the product of S1 by S2. In general, ⊗
is not necessarily commutative. We assume the existence of a unit element for ⊗,
denoted 1̃, such that 1̃⊗S = S⊗1̃ = S for any s-bits strings S. The unit element
is represented by a string of O(1) bits. Examples for commutative operators
include vector (or matrix) addition over a finite field, logical bitwise operations,
leader election, and the top-k problem. Examples for non-commutative operators
may be matrix multiplication (over a finite field) and function composition.

cCast (cloudcast): All the nodes i ∈ Vp simultaneously fetch a copy of an s-bits
file f from node vc (Similar to network broadcast).

Applications. cComb and cCast can be used directly to provide matrix multipli-
cation, matrix addition, and vector addition. We also outline the implementation
of the following.

Federated Learning (FL) [31]: In FL, a collection of agents collaborate in training
a neural network to construct a model of some concept, but the agents want
to keep their data private. Unlike [31], in our model the central server is a
passive storage device that does not carry out computations. We show how
elementary secure computation techniques, along with our combining algorithm,
can efficiently help training an ML model in the federated scheme implemented
in CWC, while maintaining privacy.

File Deduplication: Deduplication (or dedup) is a task in file stores, where redun-
dant identical copies of data are identified (and possibly unified)—see, e.g., [32].
Using cComb and cCast, we implement file dedup in the CWC model on col-
lections of files stored at the different processing nodes. The algorithm keeps a
single copy of each file and pointers instead of the other replicas.

Special Topologies. The complexity of the general algorithms we present
depends on the given network topology. We study a few cases of interest.

First, we consider s-fat-links network, defined to be, for a given parameter
s ∈ N, as the CWC model with the following additional assumptions:

– All links are symmetric, i.e., w(u, v) = w(v, u) for every link (u, v) ∈ E.
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– Local links have bandwidth at least s.
– There is only one cloud node vc.

The fat links model seems suitable in many real-life cases where local links are
much wider than cloud links (uplinks to the Internet), as is the intuition behind
the HYBRID model [4].

Another topology we consider is the wheel network, depicted schematically
in Fig. 1 (right). In a wheel system there are n processing nodes arranged in a
ring, and a cloud node connected to all processing nodes. In the uniform wheel,
all cloud links have the same bandwidth bc and all local links have the same
bandwidth bl. In the uniform wheel model, we typically assume that bc � b�.

The wheel network is motivated by non-commutative combining operations,
where the order of the operands induces a linear order on the processing nodes,
i.e., we view the nodes as a line, where the first node holds the first input, the
second node holds the second input etc. For symmetry, we connect the first and
the last node, and with a cloud node connected to all—we’ve obtained the wheel.

Overview of Techniques. As mentioned above, the basic file operations (cW,
cR, cAW and cAR) are solved optimally using dynamic flow techniques, or more
specifically, quickest flow (Sect. 2). In the full version, we present closed-form
bounds on cW and cR for the wheel topology.

We present tight bounds for cW and cR in the s-fat-links network, where s
is the input size at all nodes. We then continue to consider the tasks cComb
with commutative operators and cCast, and prove nearly-tight bounds on their
time complexity in the s-fat-links network (Theorem 11, Theorem 13, Theorem
15). The idea is to first find, for every processing node i, a cluster of processing
nodes that allows it to perform cW in an optimal number of rounds. We then
perform cComb by combining the values within every cluster using convergecast
[33], and then combining the results in a computation-tree fashion. Using sparse
covers [5], we perform the described procedure in near-optimal time.

Non-commutative operators are explored in the natural wheel topology. We
present algorithms for wheel networks with arbitrary bandwidth (both cloud and
local links). We prove an upper bound for cComb (Theorem 18).

Finally, in Sect. 5, we demonstrate how the considered tasks can be applied
for the purposes of Federated Learning and File Deduplication.

Paper Organization. Due to space constraints, many details and proofs are
omitted from this version. They can be found in the full version [2].

1.3 Related Work

Our model is based on, and inspired by, a long history of theoretical models in
distributed computing. To gain some perspective, we offer here a brief review.

Historically, distributed computing is split along the dichotomy of message
passing vs shared memory [16]. While message passing is deemed the “right”
model for network algorithms, the shared memory model is the abstraction of
choice for programming multi-core machines.



6 Y. Afek et al.

The prominent message-passing models are LOCAL [28], and its derived
CONGEST [33]. In these models, a system is represented by a connected (typ-
ically undirected) graph, in which nodes represent processors and edges rep-
resent communication links. In LOCAL, message size is unbounded, while in
CONGEST, message size is restricted, typically to O(log n) bits. Thus, CON-
GEST accounts not only for the distance information has to traverse, but also
for information volume and the bandwidth available for its transportation.

While most algorithms in the LOCAL and CONGEST models assume fault-
free (and hence synchronous) executions, in the distributed shared memory
model, asynchrony and faults are the primary source of difficulty. Usually, in
the shared memory model one assumes that there is a collection of “registers,”
accessible by multiple threads of computation that run at different speeds and
may suffer crash or even Byzantine faults (see, e.g., [3]). The main issues in this
model are coordination and fault-tolerance. Typically, the only quantitative hint
to communication cost is the number and size of the shared registers.

Quite a few papers consider the combination of message passing and shared
memory, e.g., [1,12,18,19,30,35]. The uniqueness of the CWC model with respect
to past work is that it combines passive storage nodes with a message passing
network with restrictions on the links bandwidth.

The CONGESTED CLIQUE (CC) model [29] is a special case of CON-
GEST, where the underlying communication graph is assumed to be fully con-
nected. The CC model is appropriate for computing in the cloud, as it has been
shown that under some relatively mild conditions, algorithms designed for the
CC model can be implemented in the MapReduce model, i.e., run in datacen-
ters [20]. Another model for computing in the cloud is the MPC model [22].
Very recently, the HYBRID model [4] was proposed as a combination of CC
with classical graph-based communication. More specifically, the HYBRID model
assumes the existence of two communication networks: one for local communica-
tion between neighbors, where links are typically of infinite bandwidth (exactly
like LOCAL); the other network is a node-congested clique, i.e., a node can
communicate with every other node directly via “global links,” but there is a
small upper bound (typically O(log n)) on the total number of messages a node
can send or receive via these global links in a round. Even though the model
was presented only recently, there is already a line of algorithmic work in it, in
particular for computing shortest paths [4,10,23].

Discussion. Intuitively, our CWC model can be viewed as the classical CON-
GEST model over the processors, augmented by special cloud nodes (object
stores) connected to some (typically, many) compute nodes. To reflect modern
demands and availability of resources, we relax the very stringent bandwidth
allowance of CONGEST, and usually envision networks with much larger link
bandwidth (e.g., nε for some ε > 0).

Considering previous network models, it appears that HYBRID is the clos-
est to CWC, even though HYBRID was not expressly designed to model the
cloud. In our view, CWC is indeed more appropriate for computation with the
cloud. First, in most cases, global communication (modeled by clique edges
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in HYBRID) is limited by link bandwidth, unlike HYBRID’s node capacity
constraint, which seems somewhat artificial. Second, HYBRID is not readily
amenable to model multiple clouds, while this is a natural property of CWC.

Regarding shared memory models, we are unaware of topology-based band-
width restriction on shared memory access in distributed models. In some
general-purpose parallel computation models (based on BSP [35]), communi-
cation capabilities are specified using a few global parameters such as latency
and throughput, but these models deliberately abstract topology away. In dis-
tributed (asynchronous) shared memory, the number of bits that need to be
transferred to and from the shared memory is seldom explicitly analyzed.

2 Communication Primitives in CWC

In this short section we state the complexity results for the basic operations,
derived by straightforward application of dynamic flow techniques [34].

Intuitively, the concept of dynamic flow is a variant of maximum flow, where
time is finite, links introduce delay, and the goal is to maximize the amount of
flow shipped in the given time limit (the dual problem, where the amount of
flow to ship is given and the goal is to minimize the time required to ship it,
is called quickest flow [6,9,15,21]). By reduction to min-cost max-flow, strongly
polynomial algorithms to these problems are known. Using these results, we can
prove the following statements. Details can be found in [2].

Theorem 1. Given any instance of the CWC model, an optimal schedule real-
izing cWi or cRi can be computed in polynomial time.

Theorem 2. Given any instance of the CWC model, an optimal schedule real-
izing cAW or cAR for one cloud node can be computed in polynomial time.

Theorem 3. Given any instance of the CWC model and ε > 0, a schedule
realizing cAW or cAR of length at most (1+ε) times the optimal can be computed
in time polynomial in the instance size and ε−1.

3 Computing and Writing Combined Values

Flow-based techniques are not applicable in the case of writing a combined value,
because the very essence of combining violates conservation constraints (i.e., the
number of bits entering a node may be different than the number of bits leaving
it). However, in Sect. 3.1 we explain how to implement cComb in the general
case using cAW and cAR. While simple and generic, these implementations can
have time complexity much larger than optimal. We offer partial remedy in
Sect. 3.2, where we present our main result: an algorithm for cComb when ⊗
is commutative and the local network has “fat links,” i.e., all local links have
capacity at least s. For this important case, we show how to complete the task
in time larger than the optimum by an O(log2 n) factor.
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Algorithm 1. High-level algorithm for cComb using cAW and cAR
1: m := n, j := 0
2: for all i < n set X0

i = Si, and for all i > n, X0
i = 1̃

3: while m > 1 do
4: run cAW with inputs Si = Xj

i

5: run cAR with inputs Si = Xj
2i

6: run cAR with inputs Si = Xj
2i+1

7: m := �m/2�
8: for all i < m set Xj+1

i = Xj
2i ⊗ Xj

2i+1, and for all i > m, Xj+1
i = 1̃

9: for all i < m, in parallel, node i calculates Xj+1
i locally

10: j := j + 1
11: end while
12: run cW from node 0 to write Xj

0 to the cloud

3.1 Combining in General Graphs

We now present algorithms for cComb and for cCast on general graphs, using
the primitives treated in Sect. 2. Note that with a non-commutative operator,
the operands must be ordered; using renaming if necessary, we assume w.l.o.g.
that in such cases the nodes are indexed by the same order of their operands.

Theorem 4. Let Ts be the running time of cAW (and cAR) when all files have
size s. Then Algorithm1 solves cComb in O(Ts log n) rounds.

In a way, cCast is the “reverse” problem of cComb, since it starts with s bits
in the cloud and ends with s bits of output in every node. However, cCast is
easier than cComb because our model allows for concurrent reads and disallows
concurrent writes. We have the following result.

Theorem 5. Let Ts be the time required to solve cAR when all files have size s.
Then cCast can be solved in Ts rounds as well.

3.2 Combining Commutative Operators in Fat Links Network

In the case of s-fat-links network (i.e., all local links are have bandwidth at least
s, and all links are symmetric) we can construct a near-optimal algorithm for
cComb. The idea is to use multiple cW and cR operations instead of cAW and
cAR. The challenge is to minimize the number of concurrent operations per node;
to this end we use sparse covers [5].

We note that if the network is s-fat-links but the operand size is s′ > s, the
algorithms still apply, with an additional factor of 	s′/s
 to the running time.
The lower bounds in this section, however, may change by more than that factor.

We start with a tight analysis of cW and cR in this setting and then generalize
to cComb and cCast.

Implementation of cW and cR. Consider cWi, where i wishes to write s bits
to a given cloud node. The basic tension in finding an optimal schedule for cWi



Distributed Computing with the Cloud 9

l . . .

vc

∞ ∞ ∞ ∞

x xx x

Fig. 2. A simple path example. The optimal distance to travel in order to write an
s-bits file to the cloud would be

√
s/x.

is that in order to use more cloud bandwidth, more nodes need to be enlisted.
But while more bandwidth reduces the transmission time, reaching remote nodes
(that provide the extra bandwidth) increases the traversal time. Our algorithm
looks for the sweet spot where the conflicting effects are more-or-less balanced.

For example, consider a simple path of n nodes with infinite local bandwidth,
where each node is connected to the cloud with bandwidth x (Fig. 2). Suppose
that the leftmost node l needs to write a message of s bits to the cloud. By itself,
writing requires s/x rounds. Using all n nodes, uploading would take O(s/nx)
rounds, but n − 1 rounds are needed to ship the messages to the fellow-nodes.
The optimal solution in this case is to use only

√
s/x nodes: the time to ship the

file to all these nodes is
√

s/x, and the upload time is s/
√

s/x

x =
√

s/x, because
each node needs to upload only s/

√
s/x bits.

In general, we define “cloud clusters” to be node sets that optimize the ratio
between their diameter and their total bandwidth to the cloud. Our algorithms
for cW and cR use nodes of cloud clusters. We prove that the running-time of
our implementation is asymptotically optimal. Formally, we have the following.

Definition 1. Let G = (V,E,w) be a CWC system with processor nodes Vp and
cloud nodes Vc. The cloud bandwidth of a processing node i ∈ Vp w.r.t. a given

cloud node vc ∈ Vc is bc(i)
def= w(i, vc). A cluster B ⊆ Vp in G is a connected set

of processing nodes. The cloud (up or down) bandwidth of cluster B w.r.t a
given cloud node, denoted bc(B), is the sum of the cloud bandwidth to vc over all
nodes in B: bc(B) def=

∑
i∈B bc(i). The (strong) diameter of cluster B, denoted

diam(B), is the maximum distance between any two nodes of B in the induced
graph G[B]: diam(B) = maxu,v∈B distG[B](u, v).

We use the following definition for the network without the cloud.

Definition 2. Let G = (V,E,w) be a CWC system with processing nodes Vp

and cloud nodes Vc. The ball of radius r around node i ∈ Vp, denoted Br(i)
is the set of nodes at most r hops away from i in Gp.

(Note that the metric here is hop-based—w indicates link bandwidths.) Finally,
we define the concept of cloud cluster of a node.
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Algorithm 2. cWi

1: Construct a BFS spanning tree of Bi rooted at node i and assign for each index
1 ≤ x ≤ |Bi| a unique node v(x) ∈ Bi according to their BFS order (v(1) = i)

2: Broadcast S from node i to all nodes in Bi using the tree
3: for all x := 1 to |Bi|, in parallel do

4: Node v(x) writes to the cloud the part of S starting at s ·
∑x−1

y=1 bc(v(y))

bc(Bi)
and

extending for s · bc(v(x))
bc(Bi)

bits, writing bc(v(x)) bits in every round.

5: Node v(x) �= i sends an acknowledgment to i when done, and halts
6: end for
7: Node i halts when all acknowledgments are received. // for cR reversal

Definition 3. Let G = (V,E,w) be a CWC system with processing nodes Vp and
cloud node vc, and let i ∈ Vp. Given s ∈ N, the s-cloud radius of node i, denoted

ks(i), is defined to be ks(i)
def= min({diam(Gp)} ∪ {k | (k+1) · bc(Bk(i)) ≥ s}) .

The ball Bi
def= Bks(i)(i) is the s-cloud cluster of node i. The timespan of the

s-cloud cluster of i is denoted Zi
def= ks(i) + s

bc(Bi)
. We sometimes omit the s

qualifier when it is clear from the context.

In words, Bi is a cluster of radius k(i) around node i, where k(i) is the smallest
radius that allows writing s bits to vc by using all cloud bandwidth emanating
from Bi for k(i) + 1 rounds. Zi is the time required (1) to send s bits from node
i to all nodes in Bi, and (2) to upload s bits to vc collectively by all nodes of
Bi. Note that Bi is easy to compute. We can now state our upper bound.

Theorem 6. Given a fat-links CWC system, Algorithm2 solves the s-bits cWi

problem in O(Zi) rounds on Bi.

Next, we show that our solution for cWi is optimal, up to a constant factor.
We consider the case of an incompressible input string: such a string exists for
any size s ∈ N (see, e.g., [27]). As a consequence, in any execution of a correct
algorithm, s bits must cross any cut that separates i from the cloud node, giving
rise to the following lower bound.

Theorem 7. cWi in a fat-links CWC requires Ω(Zi) rounds.

By reversing time (and hence information flow) in a schedule of cW, one gets
a schedule for cR. Hence we have the following immediate corollaries.

Theorem 8. cRi can be executed in O(Zi) rounds in a fat-links CWC.

Theorem 9. cRi in a fat-links CWC requires Ω(Zi) rounds.

� Remark: The lower bound (Theorem 7) and the definition of cloud clusters
(Definition 3) show an interplay between the message size s, cloud bandwidth,
and the network diameter; For large enough s, the cloud cluster of a node includes
all processing nodes (because the time spent crossing the local network is neg-
ligible relative to the upload time), and for small enough s, the cloud cluster
includes only the invoking node, rendering the local network redundant.



Distributed Computing with the Cloud 11

Implementation of cComb. Below, we first show how to implement cComb
using any given cover. In fact, we shall use sparse covers [5], which allow us to
get near-optimal performance.

Intuitively, every node i has a cloud cluster Bi which allows it to perform
cWi, and calculating the combined value within every cloud cluster Bi is straight-
forward (cf. Algorithm4 and Lemma 1). Therefore, given a partition of the graph
that consists of pairwise disjoint cloud clusters, cComb can be solved by combin-
ing the inputs in every cloud cluster, followed by combining the partial results
in a computation-tree fashion using cW and cR. However, such a partition may
not always exist, and we resort to a cover of the nodes. Given a cover C in
which every node is a member of at most load(C) clusters, we can use the same
technique, while increasing the running-time by a factor of load(C) by time mul-
tiplexing. Using Awerbuch and Peleg’s sparse covers (see Theorem 12), we can
use an initial cover C that consists of all cloud clusters in the graph to construct
another cover, C′, in which load(C′) is O(log n), paying an O(log n) factor in
cluster diameters, and use C′ to get near-optimal results.

Definition 4. Let G be a CWC system, and let B be a cluster in G (see Def-
inition 1). The timespan of node i in B, denoted ZB(i), is the minimum
number of rounds required to perform cWi (or cRi), using only nodes in B. The
timespan of cluster B, denoted Z(B), is given by Z(B) = mini∈B ZB(i). The
leader of cluster B, denoted r(B), is a node with minimal timespan in B, i.e.,
r(B) = argmaxi∈B ZB(i).

In words, the timespan of cluster B is the minimum time required for any node
in B to write an s-bit string to the cloud using only nodes of B.

Definition 5. Let G be a CWC system with processing node set Vp. A cover
of G is a set of clusters C = {B1, . . . , Bm} such that ∪B∈CB = Vp. The load of
node i in a cover C is the number of clusters in C that contain i, i.e., loadC(i) =
|{B ∈ C | i ∈ B}|. The load of cover C is the maximum load of any node in
the cover, i.e.. load(C) = maxi∈Vp

loadC(i). The timespan of cover C, denoted
Z(C), is the maximum timespan of any cluster in C, Z(C) = maxB∈C Z(B). The
diameter of cover C, denoted diammax(C), is the maximum diameter of any
cluster in C, diammax(C) = maxB∈C diam(B).

We now give an upper bound in terms of any given cover.

Theorem 10. Given a cover C, Algorithm3 solves cComb in a fat-links CWC
in O (diammax(C) · load(C) + Z(C) · load(C) · log |C|) rounds.

The basic strategy is to first compute the combined value in each cluster using
only the local links, and then combine the cluster values using a computation
tree. However, unlike Algorithm 1, we use cW and cR instead of cAW and cAR.

A high-level description is given in Algorithm3. The algorithm consists of
a preprocessing part (lines 1–2), and the execution part, which consists of the
“low-level” computation using only local links (lines 3–5), and the “high-level”
computation among clusters (line 6). We elaborate on each below.
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Algorithm 3. High-level algorithm for cComb given a cover C
1: For a node i ∈ Vp, let Ci[1], Ci[2], . . . be the clusters containing i.
2: For the rest of the algorithm, multiplex each round as load(C) rounds, such that

each node i operates in the context of cluster Ci[j] in the j-th round .
3: for all B ∈ C, in parallel do
4: Compute PB =

⊗
j∈B Sj using Alg. 4 // convergecast using local links only

5: end for
6: Apply Alg. 5 // the result is stored in the cloud

� Preprocessing. A major component of the preprocessing stage is computing
the cover C, which we specify later (see Theorem 11). In Algorithm 3 we describe
the algorithm as if it operates in each cluster independently of other clusters,
but clusters may overlap. To facilitate this mode of operation, we use time mul-
tiplexing: nodes execute work on behalf of the clusters they are member of in a
round-robin fashion, as specified in lines 1–2 of Algorithm3. This allows us to
invoke operations limited to clusters in all clusters “simultaneously” by increas-
ing the time complexity by a load(C) factor.
� Low levels: Combining within a single cluster. To implement line 4 of Algo-
rithm3, we build, in each cluster B ∈ C, a spanning tree rooted at r(B), and
apply Convergecast [33] using ⊗. Ignoring the multiplexing of Algorithm3, we
have:

Lemma 1. Algorithm4 computes PB =
⊗

i∈B Si at node r(B) in O(diam(B))
rounds.

To get the right overall result, each input Si is associated with a single cluster
in C. To this end, we require each node to select a single cluster in which it
is a member as its home cluster. When applying Algorithm4, we use the rule
that the input of node i in a cluster B 
 i is Si if B is i’s home cluster, and 1̃
otherwise.

Considering the scheduling obtained by Step 2, we get the following lemma.

Lemma 2. Steps 3–5 of Algorithm3 terminate in O(diammax(C) · load(C))
rounds, with PB stored at the leader node of B for each cluster B ∈ C.
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Fig. 3. Computation tree example. Xj
i denotes the result stored in i after iteration j.
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Algorithm 4. Computing the combined result of cluster B at leader r(B)
1: Construct a BFS tree of B rooted at node r(B). Let h be the height of the tree.
2: for d := h to 2 do
3: for all i ∈ B at layer d of the tree, in parallel do
4: if i is not a leaf then
5: i computes S′

i := Si ⊗ ⊗
j∈child(i) S

′
j

6: else
7: S′

i := Si

8: end if
9: i sends S′

i to its parent node in the tree
10: end for
11: end for
12: Node r(B) computes PB := Sr(B) ⊗ ⊗

j∈child(r(B)) S
′
j

Algorithm 5. Computing the high level tree-nodes values
1: for l := �log |C1|� to 1 do
2: for all tree-nodes y in layer l of the computation tree, in parallel do
3: Let B := cl(y)
4: if y is not a leaf then
5: Let y� and yr be the left and the right children of y, respectively.
6: r(B) invokes cR for vl(y�)
7: r(B) invokes cR for vl(yr)
8: r(B) computes vl(y) := vl(y�) ⊗ vl(yr)
9: else

10: vl(y) := PB // if y is a leaf its value is already stored at r(B)
11: end if
12: r(B) invokes cW for vl(y)
13: end for
14: end for

� High levels: Combining using the cloud. When Algorithm 3 reaches Step 6, the
combined result of every cluster is stored in the leader of the cluster. The idea
is now to fill in a computation tree whose leaves are these values (see Fig. 3).

We combine the partial results by filling in the values of a computation tree
defined over the clusters. The leaves of the tree are the combined values of the
clusters of C, as computed by Algorithm 4. To fill in the values of other nodes in
the computation tree, we use the clusters of C: Each node in the tree is assigned
a cluster which computes its value using the cR and cW primitives.

Specifically, in Algorithm5 we consider a binary tree with |C| leaves, where
each non-leaf node has exactly two children. The tree is constructed from a
complete binary tree with 2�log |C|� leaves, after deleting the rightmost 2�log |C|� −
|C| leaves. (If by the end the rightmost leaf is the only child of its parent, we
delete the rightmost leaf repeatedly until this is not the case).

We associate each node y in the computation tree with a cluster cl(y) ∈ C and
a value vl(y), computed by the processors in cl(y) are responsible to compute
vl(y). Clusters are assigned to leaves by index: The i-th leaf from the left is
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associated with the i-th cluster of C. For internal nodes, we assign the clusters
arbitrarily except that we ensure that no cluster is assigned to more than one
internal node. (This is possible because in a tree where every node has two or
no children, the number of internal nodes is smaller than the number of leaves).

The clusters assigned to tree nodes compute the values as follows (see Algo-
rithm5). The value associated with a leaf yB corresponding to cluster B is
vl(yB) = PB . This way, every leaf x has vl(x), stored in the leader of cl(x),
which can write it to the cloud using cW. For an internal node y with children
yl and yr, the leader of cl(y) obtains vl(yl) and vl(yr) using cR, computes their
product vl(y) = vl(yl) ⊗ vl(yr) and invokes cW to write it to the cloud. The
executions of cW and cR in a cluster B are done by the processing nodes of B.

Computation tree values are filled layer by layer, bottom up.
� Remark. We note that in Algorithm 5, Lines 6, 7 and 12 essentially compute
cAR and cAW in which only the relevant cluster leaders have inputs. There-
fore, these calls can be replaced with a collective call for appropriate cAR and
cAW, making the multiplexing of Line 2 of Algorithm3 unnecessary (similarly
to Algorithm 1). By using optimal schedules for cAW and cAR, the running-time
can only improve beyond the upper bound of Theorem 10.

Sparse Covers. We now arrive at our main result, derived from Theorem 10
using a particular flavor of covers. The result is stated in terms of the maximal
timespan of a graph, according to the following definition.

Definition 6. Let G = (V,E,w) be a CWC system with fat links. Zmax
def=

maxi∈Vp
Zi is the maximal timespan in G.

In words, Zmax is the maximal amount of rounds that is required for any node
in G to write an s-bit message to the cloud, up to a constant factor (cf. Theorem
7).

Theorem 11. Let G = (V,E,w) be a CWC system with fat links. Then cComb
with a commutative combining operator can be solved in O(Zmax log2 n) rounds.

To prove Theorem 11 we use sparse covers. We state the result from [5].

Theorem 12 ([5]). Given any cover C and an integer κ ≥ 1, a cover C′ that
satisfies the following properties can be constructed in polynomial time.

(i) For every cluster B ∈ C there exists a cluster B′ ∈ C′ such that B ⊆ B′.
(ii) maxB′∈C′ diam(B′) ≤ 4κ maxB∈C diam(B)
(iii) load(C′) ≤ 2κ|C|1/κ.

Proof of Theorem 11: Let C be the cover defined as the set of all cloud clusters
in the system. By applying Theorem 12 to C with κ = 	log n
, we obtain a cover
C′ with load(C′) ≤ 4 	log n
 because |C| ≤ n. By ii, diammax(C′) ≤ 4 	log n
 ·
diammax(C). Now, let B′ ∈ C′. We can assume w.l.o.g. that there is a cluster
B ∈ C such that B ⊆ B′ (otherwise B′ can be removed from C′). B is a cloud
cluster of some node i ∈ B′, and therefore by Theorem 6 and by Definition 4,
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we get that Z(B′) ≤ Z(B) = O(Zi) = O(Zmax). Since this bound holds for all
clusters of C′, Z(C′) = O(Zmax).

An O
(
diammax(C) · log2 n + Zmax · log2 n

)
time bound for cComb is derived

by applying Theorem 10 to cover C′. Finally, let Bj ∈ C be a cloud cluster of
diameter diammax(C). Recall that by Definition 3, diam(Bj) ≤ 2k(j) ≤ 2Zj ≤
2Zmax. We therefore obtain an upper bound of O(Zmax log2 n) rounds.

We close with a lower bound.

Theorem 13. Let G = (V,E,w) be a CWC system with fat links. Then cComb
requires Ω(Zmax) rounds.

cCast. To implement cCast, one can reverse the schedule of cComb. However, a
slightly better implementation is possible, because there is no need to ever write
to the cloud node. More specifically, let C be a cover of Vp. In the algorithm
for cCast, each cluster leader invokes cR, and then the leader disseminates the
result to all cluster members. The time complexity for a single cluster B is
O(Z(B)) for the cR operation, and O(diam(B)) rounds for the dissemination of
S throughout B (similarly to Lemma 1). Using the multiplexing to load(C) as
in Step 2 of Algorithm 3, we obtain the following result.

Theorem 14. Let G = (V,E,w) be a CWC system with fat links. Then cCast
can be performed in O(Zmax · log2 n) rounds.

Finally, we note that since any algorithm for cCast also solves cRi problem
for every node i, we get from Theorem 9 the following result.

Theorem 15. Let G = (V,E,w) be a CWC system with fat links. Any algorithm
solving cCast requires Ω(Zmax) rounds.

4 Non-commutative Operators and the Wheel Settings

In this section we consider cComb for non-commutative operators in the wheel
topology (Fig. 1). Our description here omits many details that can be found in
the full version [2].

Consider an instance with a non-commutative operator. Trivially, Algo-
rithm3 can be used (and Theorem 10 can be applied) if the ordering of the
inputs happens to match ordering induced by the algorithm. While such a coin-
cidence is unlikely in general, it seems reasonable to assume that processing
nodes are physically connected according to their combining order. Neglecting
other possible connections, assuming that the last node is also connected to the
first node for symmetry, and connecting a cloud node to all processors, we arrive
at the wheel topology, which we study in this section. We assume that all links
are bidirectional and bandwidth-symmetric.

We start with the concept of intervals that refines the concept of clusters
(Definition 1) to the case of the wheel topology.
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Definition 7. The cloud bandwidth of a processing node i ∈ Vp in a given

wheel graph is bc(i)
def= w(i, vc). An interval [i, i+k] def= {i, i+1, . . . , i+k} ⊆ V

is a path of processing nodes in the ring. Given an interval I = [i, i+k], |I| = k+1
is its size, and k is its length. The cloud bandwidth of I, denoted bc(I), is the
sum of the cloud bandwidth of all nodes in I: bc(I) =

∑
i∈I bc(i). The bottleneck

bandwidth of I, denoted φ(I), is the smallest bandwidth of a link in the interval:
φ(I) = min {w(i, i+1) | i, i+1 ∈ I}. If |I| = 1, define φ(I) = ∞.

(Note that bottleneck bandwidth was not defined for general clusters).
Given these interval-related definitions, we adapt the notion of “cloud clus-

ter” (Definition 3), for problems with inputs s, this time also accounting for the
bottleneck of the interval. We define Ii to be the cloud interval of node i, and
Zi = |Ii| +

s

φ(Ii)
+

s

bc(Ii)
to be the timespan of Ii.

Similarly to fat-links, we obtain the following results for cWi and cRi.

Theorem 16. In the wheel settings, cWi can be solved in O(Zi) rounds for every
node i.

Theorem 17. In the wheel settings, Any algorithm for cWi requires at least
Ω(Zi) rounds for every node i.

Our main result in this section is an algorithm for cComb for the wheel topol-
ogy with arbitrary bandwidths, that works in time bounded by O(log n) times
the optimal. We note that by using standard methods [24], the presented algo-
rithm can be extended to compute, with the same asymptotic time complexity,
all prefix sums, i.e., compute

⊗j
i=0 Si for each 0 ≤ j < n.

Extending the notion of Zmax to the wheel case, and adapting Algorithm 3,
we obtain the following theorem.

Theorem 18. In the wheel settings, cComb can be solved in O(Zmax log n)
rounds by Algorithm3.

This is a log factor improvement over the fat-links case. The main ideas are as
follows:

– In the wheel case, for any minimal cover C ′ of the graph, loadC′(i) ≤ 2 for
every node i. Furthermore, a minimal cover is easy to find without resorting
to Theorem 12 (see, e.g., [26]).

– Due to the limited local bandwidth, Algorithm4 can’t be used with the same
time analysis as in the fat-links case in Steps 3–5 of Algorithm3. Instead, we
use pipelining to compute the inner product of every interval in the cover.

Pipelining. We distinguish between holistic and modular combining operators,
defined as follows (see [2] for details). In modular combining, one can apply
the combining operator to aligned, equal-length parts of operands to get the
output corresponding to that part. For example, this is the case with vector
(or matrix) addition: to compute any entry in the sum, all that is needed is
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the corresponding entries in the summands. If the operand is not modular, it
is called holistic (e.g., matrix multiplication). We call the aligned parts of the
operands grains, and their maximal size g is the grain size. We show that in
the modular case, using pipelining, a logarithmic factor can be shaved off the
running time (more precisely, converted into an additive term), as can be seen
in the following theorem:

Theorem 19. Suppose ⊗ is modular with grain size g, and that w(e) ≥ g for
every link e ∈ E. Then cComb can be solved in O (Zmax + log n) rounds, where
Zmax = max {Zi | i ∈ Vp}.

5 CWC Applications

In this section we briefly explore some of the possible applications of the results
shown in this paper to two slightly more involved applications, namely Federated
Learning (Sect. 5.1) and File Deduplication (Sect. 5.2).

5.1 Federated Learning in CWC

Federated Learning (FL) [11,31] is a distributed Machine Learning training algo-
rithm, by which an ML model for some concept is acquired. The idea is to train
over a huge data set that is distributed across many devices such as mobile
phones and user PCs, without requiring the edge devices to explicitly exchange
their data. Thus it gives the end devices some sense of privacy and data protec-
tion. Examples of such data is personal pictures, medical data, hand-writing or
speech recognition, etc.

In [8], a cryptographic protocol for FL is presented, under the assumption
that any two users can communicate directly. The protocol of [8] is engineered
to be robust against malicious users, and uses cryptographic machinery such as
Diffie-Hellman key agreement and threshold secret sharing. We propose a way
to do FL using only cloud storage, without requiring an active trusted central
server. Here, we describe a simple scheme that is tailored to the fat-links scenario,
assuming that users are “honest but curious.”

The idea is as follows. Each of the users has a vector of m weights. Weights
are represented by non-negative integers from {0, 1, . . . ,M − 1}, so that user
input is simply a vector in (ZM )m. Let xi be the vector of user i. The goal of
the computation is to compute

∑n−1
i=0 xi (using addition over ZM ) and store the

result in the cloud. We assume that M is large enough so that no coordinate in
the vector-sum exceeds M , i.e., that

∑n−1
i=0 xi =

(∑n−1
i=0 xi mod M

)
.

To compute this sum securely, we use basic multi-party computation in the
CWC model. Specifically, each user i chooses a private random vector zi,j ∈
(ZM )m uniformly, for each of her neighbors j, and sends zi,j to user j. Then
each user i computes yi = xi − ∑

(i,j)∈E zi,j +
∑

(j,i)∈E zj,i, where addition is
modulo M . Clearly, yi is uniformly distributed even if xi is known. Also note
that

∑
i yi =

∑
i xi. Therefore all that remains to do is to compute

∑
i yi, which
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can be done by invoking cComb, where the combining operator is vector addition
over (ZM )m. We obtain the following theorem from Theorem 11.

Theorem 20. In a fat-links network, an FL iteration with vectors in (ZM )m

can be computed in O(Zmax log2 n) rounds.

Since the grain size of this operation is O(log M) bits, we can apply the
pipelined version of cComb in case that the underlying topology is a cycle, to
obtain the following.

Theorem 21. In the uniform n-node wheel, an FL iteration with vectors in
(ZM )m can be computed in O(

√
(m log M)/bc + log n) rounds, assuming that

bcm log M ≤ b2� and bc ≥ log M .

5.2 File Deduplication with the Cloud

Deduplication, or Single-Instance-Storage (SIS), is a central problem for storage
systems (see, e.g., [7,17,32]). Grossly simplifying, the motivation is the follow-
ing: Many of the files (or file parts) in a storage system may be unknowingly
replicated. The general goal of deduplication (usually dubbed dedup) is to iden-
tify such replications and possibly discard redundant copies. Many cloud storage
systems use a dedup mechanism internally to save space. Here we show how the
processing nodes can cooperate to carry out dedup without active help from the
cloud, when the files are stored locally at the nodes (cf. serverless SIS [13]). We
ignore privacy and security concerns here.

We consider the following setting. Each node i has a set of local files Fi with
their hash values, and the goal is to identify, for each unique file f ∈ ⋃

i Fi, a
single owner user u(f). (Once the operation is done, users may delete any file
they do not own).

This is easily done with the help of cComb as follows. Let h be a hash function.
For file f and processing node i, call the pair (h(f), i) a tagged hash. The set
Si = {(h(f), i) | f ∈ Fi} of tagged hashes of Fi is the input of node i. Define
the operator ∪̃ that takes two sets Si and Sj of tagged hashes, and returns a
set of tagged hashes without duplicate hash values, i.e., if (x, i) and (x, j) are
both in the union Si ∪ Sj , then only (x,min(i, j)) will be in Si ∪̃ Sj . Clearly ∪̃
is associative and commutative, has a unit element (∅), and therefore can be
used in the cComb algorithm. Note that if the total number of unique files in
the system is m, then s = m · (H + log n). Applying cComb with operation ∪̃ to
inputs Si, we obtain a set of tagged hashes S for all files in the system, where
(h(f), i) ∈ S means that user i is the owner of file f . Then we invoke cCast to
disseminate the ownership information to all nodes. Thus dedup can be done in
CWC in O(Zmax log2 n) rounds.

6 Conclusion and Open Problems

In this paper we have introduced a new model that incorporates cloud stor-
age with a bandwidth-constrained communication network. We have developed
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a few building blocks in this model, and used these primitives to obtain effec-
tive solutions to some real-life distributed applications. There are many possible
directions for future work; below, we mention a few.

One interesting direction is to validate the model with simulations and/or
implementations of the algorithms, e.g., implementing the federated learning
algorithm suggested here.

A few algorithmic question are left open by this paper. For example, can we
get good approximation ratio for the problem of combining in a general (directed,
capacitated) network? Our results apply to fat links and the wheel topologies.

Another interesting issue is the case of multiple cloud nodes: How can nodes
use them effectively, e.g., in combining? Possibly in this case one should also be
concerned with privacy considerations.

Finally, fault tolerance: Practically, clouds are considered highly reliable. How
should we exploit this fact to build more robust systems? and on the other hand,
how can we build systems that can cope with varying cloud latency?
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21. Hoppe, B., Tardos, É.: Polynomial time algorithms for some evacuation problems.
In: SODA 1994 (1994)

22. Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce. In:
Proceedings of the 21st SODA. Society for Industrial and Applied Mathematics
(2010)

23. Kuhn, F., Schneider, P.: Computing shortest paths and diameter in the hybrid
network model. In: Proceedings of the 39th PODC, pp. 109–118. ACM (2020)

24. Ladner, R.E., Fischer, M.J.: Parallel prefix computation. J. ACM 27(4), 831–838
(1980)

25. Lardinois, F.: Google Drive Will Hit a Billion Users This Week. TechCrunch, July
2018

26. Lee, C.C., Lee, D.T.: On a circle-cover minimization problem. Inf. Process. Lett.
18(2), 109–115 (1984)
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