
Colette Johnen
Elad Michael Schiller
Stefan Schmid (Eds.)

LN
CS

 1
30

46 Stabilization, Safety,
and Security
of Distributed Systems
23rd International Symposium, SSS 2021
Virtual Event, November 17–20, 2021
Proceedings

Lecture Notes in Computer Science 13046

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Colette Johnen • Elad Michael Schiller •

Stefan Schmid (Eds.)

Stabilization, Safety,
and Security
of Distributed Systems
23rd International Symposium, SSS 2021
Virtual Event, November 17–20, 2021
Proceedings

123

Editors
Colette Johnen
University of Bordeaux
Bordeaux, France

Elad Michael Schiller
Chalmers University of Technology
Gothenburg, Sweden

Stefan Schmid
University of Vienna
Vienna, Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-91080-8 ISBN 978-3-030-91081-5 (eBook)
https://doi.org/10.1007/978-3-030-91081-5

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021, corrected publication 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-7170-4521
https://orcid.org/0000-0003-3258-3696
https://orcid.org/0000-0002-7798-1711
https://doi.org/10.1007/978-3-030-91081-5

Preface

This volume contains the papers presented at the 23rd International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS 2021), held virtually
during November 17–20, 2021.

SSS is an international forum for researchers and practitioners in the design and
development of distributed systems with a focus on systems that are able to provide
guarantees on their structure, performance, and/or security in the face of an adverse
operational environment.

SSS started as the Workshop on Self-Stabilizing Systems (WSS), the first two of
which were held in Austin, USA, in 1989 and in Las Vegas, USA, in 1995. After 1995,
the workshop was held biennially until 2005 when it became an annual event. Starting
from then, it broadened its scope and attracted researchers from other communities. In
2006, the name of the conference was changed to the International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS).

Due to the COVID-19 pandemic, SSS 2021 was a virtual event.
The authors were asked to align their submission with one of the four tracks:

– Track A. Self-stabilizing Systems: Theory and Practice (chaired by Lelia Blin and
Fukuhito Ooshita)

– Track B. Foundations of Concurrent and Distributed Computing (chaired by Jukka
Suomela and Philipp Woelfel)

– Track C. Mobile and Robot Computing (chaired by Maria Potop-Butucaru and
Xavier Defago)

– Track D. Fault-tolerance, Security, and Privacy (chaired by Christian Scheideler and
Moti Yung)

The conference received 48 regular submissions and 8 brief announcement sub-
missions. From these we selected a total of 16 papers for presentation at the conference,
leading to an acceptance rate of 33%. In addition, 10 submissions were accepted as
brief announcements. The proceedings also include 14 invited papers.

The best paper was awarded to Louis Penet de Monterno, Bernadette Charron-Bost,
and Stephan Merz for their paper “Synchronization modulo k in Dynamic Networks’’.

The best student paper was awarded to Archak Das, Kaustav Bose, and Buddhadeb
Sau for their paper “Exploring a Dynamic Ring without Landmark’’.

We are also grateful to our keynote speakers who enriched the program:

– Idit Keidar, Technion - Israel Institute of Technology, Israel
– Michael Luby, University of California, Berkeley, USA
– Nancy Lynch, Massachusetts Institute of Technology, USA
– Ronitt Rubinfeld, Massachusetts Institute of Technology, USA

– Paul Spirakis, University of Liverpool, UK
– Jeffrey Ullman, Stanford University, USA

We hope that you will enjoy reading these excellent and very selective papers.

October 2021 Colette Johnen
Elad Michael Schiller

Stefan Schmid

vi Preface

Organization

Steering Committee

Anish Arora Ohio State University, USA
Shlomi Dolev Ben-Gurion University of the Negev, Israel
Sandeep Kulkarni Michigan State University, USA
Toshimitsu Masuzawa

(Chair)
Osaka University, Japan

Franck Petit Sorbonne Université, France
Sébastien Tixeuil Sorbonne Université, France
Elad Michael Schiller Chalmers University of Technology, Sweden

Organization Committee

Romaric Duvignau Chalmers University of Technology, Sweden
Carlo Brunetta Chalmers University of Technology, Sweden

General Chair

Elad Michael Schiller Chalmers University of Technology, Sweden

Program Co-chairs

Colette Johnen LaBRI, Université de Bordeaux, France
Elad Michael Schiller Chalmers University of Technology, Sweden
Stefan Schmid University of Vienna, Austria

Publicity Co-chairs

Doina Bein California State University, Fullerton, USA
Yuichi Sudo Hosei University, Japan
Volker Turau Hamburg University of Technology, Germany

Publication Co-chairs

Iosif Salem University of Vienna, Austria
Ioannis Marcoullis University of Cyprus, Cyprus

Program Committee

Hagit Attiya Technion - Israel Institute of Technology, Israel
Alkida Balliu University of Freiburg, Germany

Leonid Barenboim Open University of Israel, Israel
Lélia Blin Sorbonne Université, France
Borzoo Bonakdarpour Michigan State University, USA
Silvia Bonomi Sapienza University of Rome, Italy
Quentin Bramas ICube, Université de Strasbourg, France
Sebastian Brandt ETH Zurich, Switzerland
Jérémie Chalopin LIS, CNRS, Aix-Marseille Université,

and Université de Toulon, France
Gregory Chockler University of Surrey, UK
Ashish Choudhury International Institute of Information Technology,

Bangalore, India
Gianlorenzo d’Angelo Gran Sasso Science Institute, Italy
Xavier Defago Tokyo Institute of Technology, Japan
Giuseppe Antonio Di Luna Sapienza University of Rome, Italy
Shlomi Dolev Ben-Gurion University of the Negev, Israel
Faith Ellen University of Toronto, Canada
Laurent Feuilloley Université de Lyon, France
Dianne Foreback Kent State University, USA
Pierre Fraigniaud Université de Paris and CNRS, France
Sukumar Ghosh University of Iowa, USA
Wojciech Golab University of Waterloo, Canada
Michiko Inoue Nara Institute of Science and Technology, Japan
Colette Johnen LaBRI, Université de Bordeaux, France
Sayaka Kamei Hiroshima University, Japan
Yoshiaki Katayama Nagoya Institute of Technology, Japan
Valerie King University of Victoria, Canada
Fabian Kuhn University of Freiburg, Germany
Anissa Lamani Université de Strasbourg, France
Christoph Lenzen Max Planck Institute for Informatics, Germany
Daniel Xiapu Luo Hong Kong Polytechnic University, Hong Kong
Friedhelm Meyer auf der

Heide
Heinz Nixdorf Institute and University of Paderborn,

Germany
Antonis Michalas Tampere University, Finland
Katerina Mitrokotsa Chalmers University of Technology, Sweden
Krishnendu

Mukhopadhyaya
Indian Statistical Institute, India

Mikhail Nesterenko Kent State University, USA
Fukuhito Ooshita Nara Institute of Science and Technology, Japan
Rotem Oshman Tel Aviv University, Israel
Seth Pettie University of Michigan, USA
Benny Pinkas University of Haifa, Israel
Maria Potop-Butucaru LIP6, Sorbonne Université, France
Giuseppe Prencipe Universita’ di Pisa, Italy
Stéphane Rovedakis Laboratoire CEDRIC, France
Jared Saia University of New Mexico, USA

viii Organization

Christian Scheideler University of Paderborn, Germany
Elad Schiller Chalmers University of Technology, Sweden
Stefan Schmid University of Vienna, Austria
Gokarna Sharma Kent State University, USA
Alexander Spiegelman Technion - Israel Institute of Technology, Israel
Thorsten Strufe Karlsruhe Institute of Technology and CeTI, TU

Dresden, Germany
Yuichi Sudo Hosei University, Japan
Jukka Suomela Aalto University, Finland
Lewis Tseng Boston College, USA
Xavier Urbain Université Claude Bernard Lyon 1, France
Giovanni Viglietta JAIST, Japan
Koichi Wada Hosei University, Japan
Philipp Woelfel University of Calgary, Canada
Moti Yung Google Research, USA

Additional Reviewers

Abegg, Jean-Philippe
Aggarwal, Abhinav
Bund, Johannes
Castenow, Jannik
Chandramauli, Anirudh
Coijanovic, Christoph
D’Emidio, Mattia
Das, Shantanu
Devismes, Stéphane
Di Stefano, Gabriele
Durand, Anaïs
Faghih, Fathiyeh
Garg, Vijay
Gelashvili, Rati
Godard, Emmanuel
Gouleakis, Themistoklis
Götte, Thorsten
Habig, Jonas
Hector, Rory
Ilcinkas, David
Jayanti, Siddhartha
Kim, Yonghwan
Kinali, Attila
Kumar, Manish

Labourel, Arnaud
Liedtke, David
Manabe, Yoshifumi
Melnyk, Darya
Mostéfaoui, Achour
Nakai, Rikuo
Navarra, Alfredo
Pattanayak, Debasish
Poudel, Pavan
Rabie, Mikaël
Sangnier, Arnaud
Shahkarami, Golnoosh
Shibata, Masahiro
Srinivas, Vivek
Streit, Robert
Trahan, Jerry
van Ditmarsch, Hans
Wang, Ziyu
Wellnitz, Philip
Werthmann, Julian
Wiederhake, Ben
Xiang, Zhuolun
Young, Maxwell

Organization ix

Contents

Distributed Computing with the Cloud. 1
Yehuda Afek, Gal Giladi, and Boaz Patt-Shamir

Byzantine-Tolerant Reliable Broadcast in the Presence of Silent Churn 21
Timothé Albouy, Davide Frey, Michel Raynal, and François Taïani

Building Systems of Systems with Escher . 34
Burcu Canakci, Lorenzo Alvisi, and Robbert van Renesse

Deadlock and Noise in Self-Organized Aggregation Without Computation . . . 51
Joshua J. Daymude, Noble C. Harasha, Andréa W. Richa, and Ryan Yiu

Failure is (literally) an Option: Atomic Commitment vs Optionality
in Decentralized Finance . 66

Daniel Engel, Maurice Herlihy, and Yingjie Xue

Privacy-Preserving Data Sharing for Medical Research 78
Michael J. Fischer, Jonathan E. Hochman, and Daniel Boffa

How Do Mobile Agents Benefit from Randomness? 90
Pierre Fraigniaud

A Lattice Linear Predicate Parallel Algorithm for the Housing
Market Problem . 108

Vijay K. Garg

Security in Asynchronous Interactive Systems . 123
Ivan Geffner and Joseph Y. Halpern

A New Problem Setting for Mobile Robots Based on Backscatter-Based
Communication and Sensing. 141

Teruo Higashino, Akira Uchiyama, Hirozumi Yamaguchi,
Shunsuke Saruwatari, Takashi Watanabe, and Toshimitsu Masuzawa

Round-Oblivious Stabilizing Consensus in Dynamic Networks 154
Manfred Schwarz and Ulrich Schmid

Towards a Robust Distributed Framework for Election-Day
Voter Check-In . 173

Alexander A. Schwarzmann

Asynchronous Proof-of-Stake . 194
Jakub Sliwinski and Roger Wattenhofer

Lack of Quorum Sensing Leads to Failure of Consensus in Temnothorax
Ant Emigration . 209

Jiajia Zhao, Lili Su, and Nancy Lynch

Location Functions for Self-stabilizing Byzantine Tolerant Swarms 229
Yotam Ashkenazi, Shlomi Dolev, Sayaka Kamei, Yoshiaki Katayama,
Fukuhito Ooshita, and Koichi Wada

Applications and Implications of a General Framework for Self-Stabilizing
Overlay Networks . 243

Andrew Berns

Network Scaffolding for Efficient Stabilization of the CHORD

Overlay Network. 258
Andrew Berns

The Agreement Power of Disagreement . 273
Quentin Bramas, Anissa Lamani, and Sébastien Tixeuil

The Max-Line-Formation Problem: And New Insights for Gathering and
Chain-Formation . 289

Jannik Castenow, Thorsten Götte, Till Knollmann,
and Friedhelm Meyer auf der Heide

Message Delivery in the Plane by Robots with Different Speeds 305
Jared Coleman, Evangelos Kranakis, Danny Krizanc,
and Oscar Morales Ponce

Exploring a Dynamic Ring Without Landmark . 320
Archak Das, Kaustav Bose, and Buddhadeb Sau

Loosely-Stabilizing Maximal Independent Set Algorithms
with Unreliable Communications. 335

Rongcheng Dong, Yuichi Sudo, Taisuke Izumi,
and Toshimitsu Masuzawa

On Regenerating Codes and Proactive Secret Sharing: Relationships
and Implications . 350

Karim Eldefrawy, Nicholas Genise, Rutuja Kshirsagar, and Moti Yung

Extending Lattice Linearity for Self-stabilizing Algorithms 365
Arya Tanmay Gupta and Sandeep S. Kulkarni

Information Exchange in the Russian Cards Problem 380
Zoe Leyva-Acosta, Eduardo Pascual-Aseff, and Sergio Rajsbaum

xii Contents

Compact Distributed Interactive Proofs for the Recognition of Cographs
and Distance-Hereditary Graphs . 395

Pedro Montealegre, Diego Ramírez-Romero, and Ivan Rapaport

Asynchronous Gathering Algorithms for Autonomous Mobile Robots
with Lights. 410

Rikuo Nakai, Yuichi Sudo, and Koichi Wada

Synchronization Modulo k in Dynamic Networks . 425
Louis Penet de Monterno, Bernadette Charron-Bost, and Stephan Merz

Partial Gathering of Mobile Agents in Dynamic Rings. 440
Masahiro Shibata, Yuichi Sudo, Junya Nakamura, and Yonghwan Kim

Optimal Protocols for 2-Party Contention Resolution 456
Dingyu Wang

Computer Aided Formal Design of Swarm Robotics Algorithms 469
Thibaut Balabonski, Pierre Courtieu, Robin Pelle, Lionel Rieg,
Sébastien Tixeuil, and Xavier Urbain

Delta-State JSON CRDT: Putting Collaboration on Solid Ground 474
Amos Brocco

Self-stabilization and Byzantine Tolerance for Maximal Independent Set 479
Johanne Cohen, Laurence Pilard, and Jonas Sénizergues

Coordinating Amoebots via Reconfigurable Circuits 484
Michael Feldmann, Andreas Padalkin, Christian Scheideler,
and Shlomi Dolev

On Optimal Doorway Egress by Autonomous Robots 489
Rory Hector, Ramachandran Vaidyanathan, Gokarna Sharma,
and Jerry Trahan

Byz-GentleRain: An Efficient Byzantine-Tolerant Causal
Consistency Protocol . 495

Kaile Huang, Hengfeng Wei, Yu Huang, Haixiang Li, and Anqun Pan

Mitigating Internal, Stealthy DoS Attacks in Microservice Networks 500
Amr Osman, Jeannine Born, and Thorsten Strufe

Flat-Combining-Based Persistent Data Structures
for Non-volatile Memory . 505

Matan Rusanovsky, Hagit Attiya, Ohad Ben-Baruch, Tom Gerby,
Danny Hendler, and Pedro Ramalhete

Contents xiii

SodsBC/SodsBC++ & SodsMPC: Post-quantum Asynchronous Blockchain
Suite for Consensus and Smart Contracts . 510

Shlomi Dolev and Ziyu Wang

Distributed Reconfiguration of Spanning Trees . 516
Yukiko Yamauchi, Naoyuki Kamiyama, and Yota Otachi

Correction to: Distributed Computing with the Cloud C1
Yehuda Afek, Gal Giladi, and Boaz Patt-Shamir

Author Index . 521

xiv Contents

Distributed Computing with the Cloud

Yehuda Afek1, Gal Giladi2, and Boaz Patt-Shamir3(B)

1 School of CS, Tel Aviv University, 6997801 Tel Aviv, Israel
afek@tauex.tau.ac.il

2 School of CS, Tel Aviv University, 6997801 Tel Aviv, Israel
3 School of EE, Tel Aviv University, 6997801 Tel Aviv, Israel

boaz@tau.ac.il

Abstract. Motivated by cloud storage (à la Dropbox, Google Drive,
etc.), we investigate distributed computing in message passing networks
that contain a passive node that can only store and share data, and does
not carry out any computations. Using basic primitives of collaborative
transmission of a file from and to the cloud, we implement more complex
tasks where the goal is to combine input values: e.g., each node holds a
vector (or a matrix) as input and the sum (or product) of all the inputs
should be stored in the cloud. We present near-optimal algorithms for
these tasks. Finally we consider applications such as federated learning
and file deduplication in this new model. Our results show that utilizing
both node-cloud and node-node communication links can substantially
speed up computation with respect to systems where processors commu-
nicate either only through the cloud or only through the network links.

1 Introduction

In 2018 Google announced that the number of users of Google Drive is surpassing
one billion [25]. Earlier that year, Dropbox stated that in total, more than an
exabyte (1018 bytes) of data has been uploaded by its users [14]. Other cloud-
storage services, such as Microsoft’s OneDrive, Amazon’s S3, or Box, are thriving
too. The driving force of this paper is our wish to let other distributed systems
to take advantage of the enormous infrastructure that makes up the complexes
called “clouds.” Let us explain how.

The computational and storage capacities of servers in cloud services are rel-
atively well advertised. A lesser known fact is that a cloud system also entails a
massive component of communication, that makes it appear close almost every-
where on the Internet. (This feature is particularly essential for cloud-based video
conferencing applications, such as Zoom, Cisco’s Webex and others.) In view of
the existing cloud services, our fundamental idea is to abstract a complete cloud
system as a single, passive storage node.

To see the benefit of this approach, consider a network of the “wheel” topol-
ogy: a single cloud node is connected to n processing nodes arranged in a cycle
(see Fig. 1). Suppose each processing node has a wide link of bandwidth n to its

The original version of this chapter was revised: An error in the presentation of
Gal Giladi’s affiliation was corrected. The correction to this chapter is available at
https://doi.org/10.1007/978-3-030-91081-5 41

c© Springer Nature Switzerland AG 2021, corrected publication 2022
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 1–20, 2021.
https://doi.org/10.1007/978-3-030-91081-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_1

2 Y. Afek et al.

v0
v1

v2

v3
v4

v5

v6

v7

Local edges only

vc

v0
v1

v2

v3
v4

v5

v6

v7

Cloud edges only

vc

v0
v1

v2

v3
v4

v5

v6

v7

Computing with the cloud

Fig. 1. Wheel topology with n = 8. The vi nodes are processing nodes connected by a
ring of high-bandwidth links. The cloud node vc is connected to the processing nodes
by lower-bandwidth links. All links are bidirectional and symmetric.

cycle neighbors, and a narrower link of bandwidth
√

n to the cloud node. Fur-
ther suppose that each processing node has an n-bit vector, and that the goal is
to calculate the sum of all vectors. Without the cloud (Fig. 1, left), such a task
requires at least Ω(n) rounds – to cover the distance; on the other hand, with-
out using the cycle links (Fig. 1, middle), transmitting a single vector from any
processing node (and hence computing the sum) requires Ω(n/

√
n) = Ω(

√
n)

rounds – due to the limited bandwidth to the cloud. But using both cloud links
and local links (Fig. 1, right), the sum can be computed in Θ̃(4

√
n) rounds, as we

show in this paper.
More generally, in this paper we initiate the study of the question of how

to use an omnipresent cloud storage to speed up computations, if possible. We
stress that the idea here is to develop a framework and tools that facilitate
computing with the cloud, as opposed to computing in the cloud.

Specifically, in this paper we introduce the computing with the cloud model
(CWC), and present algorithms that efficiently combine distributed inputs to
compute various functions, such as vector addition and matrix multiplication. To
this end, we first implement (using dynamic flow techniques) primitive operations
that allow for the exchange of large messages between processing nodes and
cloud nodes. Given the combining algorithms, we show how to implement some
applications such as federated learning and file de-duplication (dedup).

1.1 Model Specification

The “Computing with the Cloud” (CWC) model is a synchronous network whose
underlying topology is described by a weighted directed graph G = (V,E,w).
The node set consists of two disjoint subsets: V = Vp ∪ Vc, where Vp is the set
of processing nodes, and Vc is the set of cloud nodes. Cloud nodes are passive
nodes that function as shared storage: they support read and write requests,
and do not perform any other computation. We use n to denote the number of
processing nodes (the number of cloud nodes is typically constant).

We denote the set of links that connect two processing nodes by EL (“local
links”), and by EC (“cloud links”) the set of links that connect processing nodes
to cloud nodes. Each link e ∈ E = EL ∪ EC has a prescribed bandwidth w(e)

Distributed Computing with the Cloud 3

(there are no links between different cloud nodes). We denote by Gp
def= (Vp, EL)

the graph G − Vc, i.e., the graph spanned by the processing nodes.
Our execution model is the standard synchronous network model, where each

round consists of processing nodes receiving messages sent in the previous round,
doing an arbitrary local computation, and then sending messages. The size of a
message sent over a link e in a round is at most w(e) bits.

Cloud nodes do not perform any computations: they can only receive requests
we denote by FR and FW (file read and write, respectively), to which they respond
in the following round. More precisely, each cloud node has unbounded storage;
to write, a processing node vi invokes FW with arguments that describe the target
cloud node, a filename f , a bit string S, and the location (index) within f that S
needs to be written in. It is assumed that |S| ≤ w(vi, vc) bits (longer writes can
be broken to a series of FW operations). To read, a processing node vi invokes
FR with arguments that describe the cloud node, a filename f and the range of
indices to fetch from f . Again, we assume that the size of the range in any single
FR invocation by node vi is at most w(vi, vc).1

FW operations are exclusive, i.e., no other operation (read or write) to the
same file location is allowed to take place simultaneously. Concurrent FR opera-
tions from the same location are allowed.

Discussion. We believe that our model is fairly widely applicable. A processing
node in our model may represent anything from a computer cluster with a single
gateway to the Internet, to cellphones or even smaller devices—anything with
a non-shared Internet connection. The local links can range from high-speed
fiber to Bluetooth or infrared links. Typically in this setting the local links
have bandwidth much larger than the cloud links (and cloud downlinks in many
cases have larger bandwidth than cloud uplinks). Another possible interpretation
of the model is a private network (say, in a corporation), where a cloud node
represents a storage or a file server. In this case the cloud link bandwidth may
be as large as the local link bandwidth.

1.2 Problems Considered and Main Results

Our main results in this paper are efficient algorithms in the CWC model to
combine values stored at nodes. These algorithms use building blocks that facili-
tate efficient transmission of large messages between processing nodes and cloud
nodes. These building blocks, in turn, are implemented in a straightforward way
using dynamic flow techniques. Finally, we show how to use the combining algo-
rithms to derive new algorithms for federated learning and file de-duplication
(dedup) in the CWC model.

More specifically, we provide implementations of the following tasks.

1 For both the FW and FR operations we ignore the metadata (i.e., vc’s descriptor, the
filename f and the indices) and assume that the total size of metadata in a single
round is negligible and can fit within w(vi, vc). Otherwise, processing nodes may
use the metadata parameters to exchange information that exceeds the bandwidth
limitations (for example, naming a file with the string representation of a message
whose length is larger than the bandwidth).

4 Y. Afek et al.

Basic Cloud Operations: Let vc denote a cloud node below.

cWi (cloud write): write an s-bits file f stored at node i ∈ Vp to node vc.
cRi (cloud read): fetch an s-bits file f from node vc to node i ∈ Vp.
cAW (cloud all write): for each i ∈ Vp, write an s-bits file fi stored at node i to

node vc.
cAR (cloud all read): for each i ∈ Vp, fetch an s-bits file fi from node vc to node

i.

Combining and Dissemination Operations
cComb: (cloud combine): Each node i ∈ Vp has an s-bits input string Si, and
there is a binary associative operator ⊗ : {0, 1}s × {0, 1}s → {0, 1}s (the result
is as long as each operand). The requirement is to write to a cloud node vc

the s-bits string S1 ⊗ S2 ⊗ · · · ⊗ Sn. Borrowing from Group Theory, we call the
operation ⊗ multiplication, and S1 ⊗S2 is the product of S1 by S2. In general, ⊗
is not necessarily commutative. We assume the existence of a unit element for ⊗,
denoted 1̃, such that 1̃⊗S = S⊗1̃ = S for any s-bits strings S. The unit element
is represented by a string of O(1) bits. Examples for commutative operators
include vector (or matrix) addition over a finite field, logical bitwise operations,
leader election, and the top-k problem. Examples for non-commutative operators
may be matrix multiplication (over a finite field) and function composition.

cCast (cloudcast): All the nodes i ∈ Vp simultaneously fetch a copy of an s-bits
file f from node vc (Similar to network broadcast).

Applications. cComb and cCast can be used directly to provide matrix multipli-
cation, matrix addition, and vector addition. We also outline the implementation
of the following.

Federated Learning (FL) [31]: In FL, a collection of agents collaborate in training
a neural network to construct a model of some concept, but the agents want
to keep their data private. Unlike [31], in our model the central server is a
passive storage device that does not carry out computations. We show how
elementary secure computation techniques, along with our combining algorithm,
can efficiently help training an ML model in the federated scheme implemented
in CWC, while maintaining privacy.

File Deduplication: Deduplication (or dedup) is a task in file stores, where redun-
dant identical copies of data are identified (and possibly unified)—see, e.g., [32].
Using cComb and cCast, we implement file dedup in the CWC model on col-
lections of files stored at the different processing nodes. The algorithm keeps a
single copy of each file and pointers instead of the other replicas.

Special Topologies. The complexity of the general algorithms we present
depends on the given network topology. We study a few cases of interest.

First, we consider s-fat-links network, defined to be, for a given parameter
s ∈ N, as the CWC model with the following additional assumptions:

– All links are symmetric, i.e., w(u, v) = w(v, u) for every link (u, v) ∈ E.

Distributed Computing with the Cloud 5

– Local links have bandwidth at least s.
– There is only one cloud node vc.

The fat links model seems suitable in many real-life cases where local links are
much wider than cloud links (uplinks to the Internet), as is the intuition behind
the HYBRID model [4].

Another topology we consider is the wheel network, depicted schematically
in Fig. 1 (right). In a wheel system there are n processing nodes arranged in a
ring, and a cloud node connected to all processing nodes. In the uniform wheel,
all cloud links have the same bandwidth bc and all local links have the same
bandwidth bl. In the uniform wheel model, we typically assume that bc � b�.

The wheel network is motivated by non-commutative combining operations,
where the order of the operands induces a linear order on the processing nodes,
i.e., we view the nodes as a line, where the first node holds the first input, the
second node holds the second input etc. For symmetry, we connect the first and
the last node, and with a cloud node connected to all—we’ve obtained the wheel.

Overview of Techniques. As mentioned above, the basic file operations (cW,
cR, cAW and cAR) are solved optimally using dynamic flow techniques, or more
specifically, quickest flow (Sect. 2). In the full version, we present closed-form
bounds on cW and cR for the wheel topology.

We present tight bounds for cW and cR in the s-fat-links network, where s
is the input size at all nodes. We then continue to consider the tasks cComb
with commutative operators and cCast, and prove nearly-tight bounds on their
time complexity in the s-fat-links network (Theorem 11, Theorem 13, Theorem
15). The idea is to first find, for every processing node i, a cluster of processing
nodes that allows it to perform cW in an optimal number of rounds. We then
perform cComb by combining the values within every cluster using convergecast
[33], and then combining the results in a computation-tree fashion. Using sparse
covers [5], we perform the described procedure in near-optimal time.

Non-commutative operators are explored in the natural wheel topology. We
present algorithms for wheel networks with arbitrary bandwidth (both cloud and
local links). We prove an upper bound for cComb (Theorem 18).

Finally, in Sect. 5, we demonstrate how the considered tasks can be applied
for the purposes of Federated Learning and File Deduplication.

Paper Organization. Due to space constraints, many details and proofs are
omitted from this version. They can be found in the full version [2].

1.3 Related Work

Our model is based on, and inspired by, a long history of theoretical models in
distributed computing. To gain some perspective, we offer here a brief review.

Historically, distributed computing is split along the dichotomy of message
passing vs shared memory [16]. While message passing is deemed the “right”
model for network algorithms, the shared memory model is the abstraction of
choice for programming multi-core machines.

6 Y. Afek et al.

The prominent message-passing models are LOCAL [28], and its derived
CONGEST [33]. In these models, a system is represented by a connected (typ-
ically undirected) graph, in which nodes represent processors and edges rep-
resent communication links. In LOCAL, message size is unbounded, while in
CONGEST, message size is restricted, typically to O(log n) bits. Thus, CON-
GEST accounts not only for the distance information has to traverse, but also
for information volume and the bandwidth available for its transportation.

While most algorithms in the LOCAL and CONGEST models assume fault-
free (and hence synchronous) executions, in the distributed shared memory
model, asynchrony and faults are the primary source of difficulty. Usually, in
the shared memory model one assumes that there is a collection of “registers,”
accessible by multiple threads of computation that run at different speeds and
may suffer crash or even Byzantine faults (see, e.g., [3]). The main issues in this
model are coordination and fault-tolerance. Typically, the only quantitative hint
to communication cost is the number and size of the shared registers.

Quite a few papers consider the combination of message passing and shared
memory, e.g., [1,12,18,19,30,35]. The uniqueness of the CWC model with respect
to past work is that it combines passive storage nodes with a message passing
network with restrictions on the links bandwidth.

The CONGESTED CLIQUE (CC) model [29] is a special case of CON-
GEST, where the underlying communication graph is assumed to be fully con-
nected. The CC model is appropriate for computing in the cloud, as it has been
shown that under some relatively mild conditions, algorithms designed for the
CC model can be implemented in the MapReduce model, i.e., run in datacen-
ters [20]. Another model for computing in the cloud is the MPC model [22].
Very recently, the HYBRID model [4] was proposed as a combination of CC
with classical graph-based communication. More specifically, the HYBRID model
assumes the existence of two communication networks: one for local communica-
tion between neighbors, where links are typically of infinite bandwidth (exactly
like LOCAL); the other network is a node-congested clique, i.e., a node can
communicate with every other node directly via “global links,” but there is a
small upper bound (typically O(log n)) on the total number of messages a node
can send or receive via these global links in a round. Even though the model
was presented only recently, there is already a line of algorithmic work in it, in
particular for computing shortest paths [4,10,23].

Discussion. Intuitively, our CWC model can be viewed as the classical CON-
GEST model over the processors, augmented by special cloud nodes (object
stores) connected to some (typically, many) compute nodes. To reflect modern
demands and availability of resources, we relax the very stringent bandwidth
allowance of CONGEST, and usually envision networks with much larger link
bandwidth (e.g., nε for some ε > 0).

Considering previous network models, it appears that HYBRID is the clos-
est to CWC, even though HYBRID was not expressly designed to model the
cloud. In our view, CWC is indeed more appropriate for computation with the
cloud. First, in most cases, global communication (modeled by clique edges

Distributed Computing with the Cloud 7

in HYBRID) is limited by link bandwidth, unlike HYBRID’s node capacity
constraint, which seems somewhat artificial. Second, HYBRID is not readily
amenable to model multiple clouds, while this is a natural property of CWC.

Regarding shared memory models, we are unaware of topology-based band-
width restriction on shared memory access in distributed models. In some
general-purpose parallel computation models (based on BSP [35]), communi-
cation capabilities are specified using a few global parameters such as latency
and throughput, but these models deliberately abstract topology away. In dis-
tributed (asynchronous) shared memory, the number of bits that need to be
transferred to and from the shared memory is seldom explicitly analyzed.

2 Communication Primitives in CWC

In this short section we state the complexity results for the basic operations,
derived by straightforward application of dynamic flow techniques [34].

Intuitively, the concept of dynamic flow is a variant of maximum flow, where
time is finite, links introduce delay, and the goal is to maximize the amount of
flow shipped in the given time limit (the dual problem, where the amount of
flow to ship is given and the goal is to minimize the time required to ship it,
is called quickest flow [6,9,15,21]). By reduction to min-cost max-flow, strongly
polynomial algorithms to these problems are known. Using these results, we can
prove the following statements. Details can be found in [2].

Theorem 1. Given any instance of the CWC model, an optimal schedule real-
izing cWi or cRi can be computed in polynomial time.

Theorem 2. Given any instance of the CWC model, an optimal schedule real-
izing cAW or cAR for one cloud node can be computed in polynomial time.

Theorem 3. Given any instance of the CWC model and ε > 0, a schedule
realizing cAW or cAR of length at most (1+ε) times the optimal can be computed
in time polynomial in the instance size and ε−1.

3 Computing and Writing Combined Values

Flow-based techniques are not applicable in the case of writing a combined value,
because the very essence of combining violates conservation constraints (i.e., the
number of bits entering a node may be different than the number of bits leaving
it). However, in Sect. 3.1 we explain how to implement cComb in the general
case using cAW and cAR. While simple and generic, these implementations can
have time complexity much larger than optimal. We offer partial remedy in
Sect. 3.2, where we present our main result: an algorithm for cComb when ⊗
is commutative and the local network has “fat links,” i.e., all local links have
capacity at least s. For this important case, we show how to complete the task
in time larger than the optimum by an O(log2 n) factor.

8 Y. Afek et al.

Algorithm 1. High-level algorithm for cComb using cAW and cAR
1: m := n, j := 0
2: for all i < n set X0

i = Si, and for all i > n, X0
i = 1̃

3: while m > 1 do
4: run cAW with inputs Si = Xj

i

5: run cAR with inputs Si = Xj
2i

6: run cAR with inputs Si = Xj
2i+1

7: m := �m/2�
8: for all i < m set Xj+1

i = Xj
2i ⊗ Xj

2i+1, and for all i > m, Xj+1
i = 1̃

9: for all i < m, in parallel, node i calculates Xj+1
i locally

10: j := j + 1
11: end while
12: run cW from node 0 to write Xj

0 to the cloud

3.1 Combining in General Graphs

We now present algorithms for cComb and for cCast on general graphs, using
the primitives treated in Sect. 2. Note that with a non-commutative operator,
the operands must be ordered; using renaming if necessary, we assume w.l.o.g.
that in such cases the nodes are indexed by the same order of their operands.

Theorem 4. Let Ts be the running time of cAW (and cAR) when all files have
size s. Then Algorithm1 solves cComb in O(Ts log n) rounds.

In a way, cCast is the “reverse” problem of cComb, since it starts with s bits
in the cloud and ends with s bits of output in every node. However, cCast is
easier than cComb because our model allows for concurrent reads and disallows
concurrent writes. We have the following result.

Theorem 5. Let Ts be the time required to solve cAR when all files have size s.
Then cCast can be solved in Ts rounds as well.

3.2 Combining Commutative Operators in Fat Links Network

In the case of s-fat-links network (i.e., all local links are have bandwidth at least
s, and all links are symmetric) we can construct a near-optimal algorithm for
cComb. The idea is to use multiple cW and cR operations instead of cAW and
cAR. The challenge is to minimize the number of concurrent operations per node;
to this end we use sparse covers [5].

We note that if the network is s-fat-links but the operand size is s′ > s, the
algorithms still apply, with an additional factor of 	s′/s
 to the running time.
The lower bounds in this section, however, may change by more than that factor.

We start with a tight analysis of cW and cR in this setting and then generalize
to cComb and cCast.

Implementation of cW and cR. Consider cWi, where i wishes to write s bits
to a given cloud node. The basic tension in finding an optimal schedule for cWi

Distributed Computing with the Cloud 9

l . . .

vc

∞ ∞ ∞ ∞

x xx x

Fig. 2. A simple path example. The optimal distance to travel in order to write an
s-bits file to the cloud would be

√
s/x.

is that in order to use more cloud bandwidth, more nodes need to be enlisted.
But while more bandwidth reduces the transmission time, reaching remote nodes
(that provide the extra bandwidth) increases the traversal time. Our algorithm
looks for the sweet spot where the conflicting effects are more-or-less balanced.

For example, consider a simple path of n nodes with infinite local bandwidth,
where each node is connected to the cloud with bandwidth x (Fig. 2). Suppose
that the leftmost node l needs to write a message of s bits to the cloud. By itself,
writing requires s/x rounds. Using all n nodes, uploading would take O(s/nx)
rounds, but n − 1 rounds are needed to ship the messages to the fellow-nodes.
The optimal solution in this case is to use only

√
s/x nodes: the time to ship the

file to all these nodes is
√

s/x, and the upload time is s/
√

s/x

x =
√

s/x, because
each node needs to upload only s/

√
s/x bits.

In general, we define “cloud clusters” to be node sets that optimize the ratio
between their diameter and their total bandwidth to the cloud. Our algorithms
for cW and cR use nodes of cloud clusters. We prove that the running-time of
our implementation is asymptotically optimal. Formally, we have the following.

Definition 1. Let G = (V,E,w) be a CWC system with processor nodes Vp and
cloud nodes Vc. The cloud bandwidth of a processing node i ∈ Vp w.r.t. a given

cloud node vc ∈ Vc is bc(i)
def= w(i, vc). A cluster B ⊆ Vp in G is a connected set

of processing nodes. The cloud (up or down) bandwidth of cluster B w.r.t a
given cloud node, denoted bc(B), is the sum of the cloud bandwidth to vc over all
nodes in B: bc(B) def=

∑
i∈B bc(i). The (strong) diameter of cluster B, denoted

diam(B), is the maximum distance between any two nodes of B in the induced
graph G[B]: diam(B) = maxu,v∈B distG[B](u, v).

We use the following definition for the network without the cloud.

Definition 2. Let G = (V,E,w) be a CWC system with processing nodes Vp

and cloud nodes Vc. The ball of radius r around node i ∈ Vp, denoted Br(i)
is the set of nodes at most r hops away from i in Gp.

(Note that the metric here is hop-based—w indicates link bandwidths.) Finally,
we define the concept of cloud cluster of a node.

10 Y. Afek et al.

Algorithm 2. cWi

1: Construct a BFS spanning tree of Bi rooted at node i and assign for each index
1 ≤ x ≤ |Bi| a unique node v(x) ∈ Bi according to their BFS order (v(1) = i)

2: Broadcast S from node i to all nodes in Bi using the tree
3: for all x := 1 to |Bi|, in parallel do

4: Node v(x) writes to the cloud the part of S starting at s ·
∑x−1

y=1 bc(v(y))

bc(Bi)
and

extending for s · bc(v(x))
bc(Bi)

bits, writing bc(v(x)) bits in every round.

5: Node v(x) �= i sends an acknowledgment to i when done, and halts
6: end for
7: Node i halts when all acknowledgments are received. // for cR reversal

Definition 3. Let G = (V,E,w) be a CWC system with processing nodes Vp and
cloud node vc, and let i ∈ Vp. Given s ∈ N, the s-cloud radius of node i, denoted

ks(i), is defined to be ks(i)
def= min({diam(Gp)} ∪ {k | (k+1) · bc(Bk(i)) ≥ s}) .

The ball Bi
def= Bks(i)(i) is the s-cloud cluster of node i. The timespan of the

s-cloud cluster of i is denoted Zi
def= ks(i) + s

bc(Bi)
. We sometimes omit the s

qualifier when it is clear from the context.

In words, Bi is a cluster of radius k(i) around node i, where k(i) is the smallest
radius that allows writing s bits to vc by using all cloud bandwidth emanating
from Bi for k(i) + 1 rounds. Zi is the time required (1) to send s bits from node
i to all nodes in Bi, and (2) to upload s bits to vc collectively by all nodes of
Bi. Note that Bi is easy to compute. We can now state our upper bound.

Theorem 6. Given a fat-links CWC system, Algorithm2 solves the s-bits cWi

problem in O(Zi) rounds on Bi.

Next, we show that our solution for cWi is optimal, up to a constant factor.
We consider the case of an incompressible input string: such a string exists for
any size s ∈ N (see, e.g., [27]). As a consequence, in any execution of a correct
algorithm, s bits must cross any cut that separates i from the cloud node, giving
rise to the following lower bound.

Theorem 7. cWi in a fat-links CWC requires Ω(Zi) rounds.

By reversing time (and hence information flow) in a schedule of cW, one gets
a schedule for cR. Hence we have the following immediate corollaries.

Theorem 8. cRi can be executed in O(Zi) rounds in a fat-links CWC.

Theorem 9. cRi in a fat-links CWC requires Ω(Zi) rounds.

� Remark: The lower bound (Theorem 7) and the definition of cloud clusters
(Definition 3) show an interplay between the message size s, cloud bandwidth,
and the network diameter; For large enough s, the cloud cluster of a node includes
all processing nodes (because the time spent crossing the local network is neg-
ligible relative to the upload time), and for small enough s, the cloud cluster
includes only the invoking node, rendering the local network redundant.

Distributed Computing with the Cloud 11

Implementation of cComb. Below, we first show how to implement cComb
using any given cover. In fact, we shall use sparse covers [5], which allow us to
get near-optimal performance.

Intuitively, every node i has a cloud cluster Bi which allows it to perform
cWi, and calculating the combined value within every cloud cluster Bi is straight-
forward (cf. Algorithm4 and Lemma 1). Therefore, given a partition of the graph
that consists of pairwise disjoint cloud clusters, cComb can be solved by combin-
ing the inputs in every cloud cluster, followed by combining the partial results
in a computation-tree fashion using cW and cR. However, such a partition may
not always exist, and we resort to a cover of the nodes. Given a cover C in
which every node is a member of at most load(C) clusters, we can use the same
technique, while increasing the running-time by a factor of load(C) by time mul-
tiplexing. Using Awerbuch and Peleg’s sparse covers (see Theorem 12), we can
use an initial cover C that consists of all cloud clusters in the graph to construct
another cover, C′, in which load(C′) is O(log n), paying an O(log n) factor in
cluster diameters, and use C′ to get near-optimal results.

Definition 4. Let G be a CWC system, and let B be a cluster in G (see Def-
inition 1). The timespan of node i in B, denoted ZB(i), is the minimum
number of rounds required to perform cWi (or cRi), using only nodes in B. The
timespan of cluster B, denoted Z(B), is given by Z(B) = mini∈B ZB(i). The
leader of cluster B, denoted r(B), is a node with minimal timespan in B, i.e.,
r(B) = argmaxi∈B ZB(i).

In words, the timespan of cluster B is the minimum time required for any node
in B to write an s-bit string to the cloud using only nodes of B.

Definition 5. Let G be a CWC system with processing node set Vp. A cover
of G is a set of clusters C = {B1, . . . , Bm} such that ∪B∈CB = Vp. The load of
node i in a cover C is the number of clusters in C that contain i, i.e., loadC(i) =
|{B ∈ C | i ∈ B}|. The load of cover C is the maximum load of any node in
the cover, i.e.. load(C) = maxi∈Vp

loadC(i). The timespan of cover C, denoted
Z(C), is the maximum timespan of any cluster in C, Z(C) = maxB∈C Z(B). The
diameter of cover C, denoted diammax(C), is the maximum diameter of any
cluster in C, diammax(C) = maxB∈C diam(B).

We now give an upper bound in terms of any given cover.

Theorem 10. Given a cover C, Algorithm3 solves cComb in a fat-links CWC
in O (diammax(C) · load(C) + Z(C) · load(C) · log |C|) rounds.

The basic strategy is to first compute the combined value in each cluster using
only the local links, and then combine the cluster values using a computation
tree. However, unlike Algorithm1, we use cW and cR instead of cAW and cAR.

A high-level description is given in Algorithm3. The algorithm consists of
a preprocessing part (lines 1–2), and the execution part, which consists of the
“low-level” computation using only local links (lines 3–5), and the “high-level”
computation among clusters (line 6). We elaborate on each below.

12 Y. Afek et al.

Algorithm 3. High-level algorithm for cComb given a cover C
1: For a node i ∈ Vp, let Ci[1], Ci[2], . . . be the clusters containing i.
2: For the rest of the algorithm, multiplex each round as load(C) rounds, such that

each node i operates in the context of cluster Ci[j] in the j-th round .
3: for all B ∈ C, in parallel do
4: Compute PB =

⊗
j∈B Sj using Alg. 4 // convergecast using local links only

5: end for
6: Apply Alg. 5 // the result is stored in the cloud

� Preprocessing. A major component of the preprocessing stage is computing
the cover C, which we specify later (see Theorem 11). In Algorithm 3 we describe
the algorithm as if it operates in each cluster independently of other clusters,
but clusters may overlap. To facilitate this mode of operation, we use time mul-
tiplexing: nodes execute work on behalf of the clusters they are member of in a
round-robin fashion, as specified in lines 1–2 of Algorithm3. This allows us to
invoke operations limited to clusters in all clusters “simultaneously” by increas-
ing the time complexity by a load(C) factor.
� Low levels: Combining within a single cluster. To implement line 4 of Algo-
rithm 3, we build, in each cluster B ∈ C, a spanning tree rooted at r(B), and
apply Convergecast [33] using ⊗. Ignoring the multiplexing of Algorithm3, we
have:

Lemma 1. Algorithm4 computes PB =
⊗

i∈B Si at node r(B) in O(diam(B))
rounds.

To get the right overall result, each input Si is associated with a single cluster
in C. To this end, we require each node to select a single cluster in which it
is a member as its home cluster. When applying Algorithm 4, we use the rule
that the input of node i in a cluster B i is Si if B is i’s home cluster, and 1̃
otherwise.

Considering the scheduling obtained by Step 2, we get the following lemma.

Lemma 2. Steps 3–5 of Algorithm3 terminate in O(diammax(C) · load(C))
rounds, with PB stored at the leader node of B for each cluster B ∈ C.

X3
0

X2
0

X1
0

X0
0 X0

1

X1
2

X0
2 X0

3

X2
4

X1
4

X0
4 X0

5

X1
6

X0
6 X0

7

Fig. 3. Computation tree example. Xj
i denotes the result stored in i after iteration j.

Distributed Computing with the Cloud 13

Algorithm 4. Computing the combined result of cluster B at leader r(B)
1: Construct a BFS tree of B rooted at node r(B). Let h be the height of the tree.
2: for d := h to 2 do
3: for all i ∈ B at layer d of the tree, in parallel do
4: if i is not a leaf then
5: i computes S′

i := Si ⊗ ⊗
j∈child(i) S

′
j

6: else
7: S′

i := Si

8: end if
9: i sends S′

i to its parent node in the tree
10: end for
11: end for
12: Node r(B) computes PB := Sr(B) ⊗ ⊗

j∈child(r(B)) S
′
j

Algorithm 5. Computing the high level tree-nodes values
1: for l := �log |C1|� to 1 do
2: for all tree-nodes y in layer l of the computation tree, in parallel do
3: Let B := cl(y)
4: if y is not a leaf then
5: Let y� and yr be the left and the right children of y, respectively.
6: r(B) invokes cR for vl(y�)
7: r(B) invokes cR for vl(yr)
8: r(B) computes vl(y) := vl(y�) ⊗ vl(yr)
9: else

10: vl(y) := PB // if y is a leaf its value is already stored at r(B)
11: end if
12: r(B) invokes cW for vl(y)
13: end for
14: end for

� High levels: Combining using the cloud. When Algorithm 3 reaches Step 6, the
combined result of every cluster is stored in the leader of the cluster. The idea
is now to fill in a computation tree whose leaves are these values (see Fig. 3).

We combine the partial results by filling in the values of a computation tree
defined over the clusters. The leaves of the tree are the combined values of the
clusters of C, as computed by Algorithm 4. To fill in the values of other nodes in
the computation tree, we use the clusters of C: Each node in the tree is assigned
a cluster which computes its value using the cR and cW primitives.

Specifically, in Algorithm 5 we consider a binary tree with |C| leaves, where
each non-leaf node has exactly two children. The tree is constructed from a
complete binary tree with 2�log |C|� leaves, after deleting the rightmost 2�log |C|� −
|C| leaves. (If by the end the rightmost leaf is the only child of its parent, we
delete the rightmost leaf repeatedly until this is not the case).

We associate each node y in the computation tree with a cluster cl(y) ∈ C and
a value vl(y), computed by the processors in cl(y) are responsible to compute
vl(y). Clusters are assigned to leaves by index: The i-th leaf from the left is

14 Y. Afek et al.

associated with the i-th cluster of C. For internal nodes, we assign the clusters
arbitrarily except that we ensure that no cluster is assigned to more than one
internal node. (This is possible because in a tree where every node has two or
no children, the number of internal nodes is smaller than the number of leaves).

The clusters assigned to tree nodes compute the values as follows (see Algo-
rithm 5). The value associated with a leaf yB corresponding to cluster B is
vl(yB) = PB . This way, every leaf x has vl(x), stored in the leader of cl(x),
which can write it to the cloud using cW. For an internal node y with children
yl and yr, the leader of cl(y) obtains vl(yl) and vl(yr) using cR, computes their
product vl(y) = vl(yl) ⊗ vl(yr) and invokes cW to write it to the cloud. The
executions of cW and cR in a cluster B are done by the processing nodes of B.

Computation tree values are filled layer by layer, bottom up.
� Remark. We note that in Algorithm 5, Lines 6, 7 and 12 essentially compute
cAR and cAW in which only the relevant cluster leaders have inputs. There-
fore, these calls can be replaced with a collective call for appropriate cAR and
cAW, making the multiplexing of Line 2 of Algorithm3 unnecessary (similarly
to Algorithm 1). By using optimal schedules for cAW and cAR, the running-time
can only improve beyond the upper bound of Theorem 10.

Sparse Covers. We now arrive at our main result, derived from Theorem 10
using a particular flavor of covers. The result is stated in terms of the maximal
timespan of a graph, according to the following definition.

Definition 6. Let G = (V,E,w) be a CWC system with fat links. Zmax
def=

maxi∈Vp
Zi is the maximal timespan in G.

In words, Zmax is the maximal amount of rounds that is required for any node
in G to write an s-bit message to the cloud, up to a constant factor (cf. Theorem
7).

Theorem 11. Let G = (V,E,w) be a CWC system with fat links. Then cComb
with a commutative combining operator can be solved in O(Zmax log2 n) rounds.

To prove Theorem 11 we use sparse covers. We state the result from [5].

Theorem 12 ([5]). Given any cover C and an integer κ ≥ 1, a cover C′ that
satisfies the following properties can be constructed in polynomial time.

(i) For every cluster B ∈ C there exists a cluster B′ ∈ C′ such that B ⊆ B′.
(ii) maxB′∈C′ diam(B′) ≤ 4κmaxB∈C diam(B)
(iii) load(C′) ≤ 2κ|C|1/κ.

Proof of Theorem 11: Let C be the cover defined as the set of all cloud clusters
in the system. By applying Theorem 12 to C with κ = 	log n
, we obtain a cover
C′ with load(C′) ≤ 4 	log n
 because |C| ≤ n. By ii, diammax(C′) ≤ 4 	log n
 ·
diammax(C). Now, let B′ ∈ C′. We can assume w.l.o.g. that there is a cluster
B ∈ C such that B ⊆ B′ (otherwise B′ can be removed from C′). B is a cloud
cluster of some node i ∈ B′, and therefore by Theorem 6 and by Definition 4,

Distributed Computing with the Cloud 15

we get that Z(B′) ≤ Z(B) = O(Zi) = O(Zmax). Since this bound holds for all
clusters of C′, Z(C′) = O(Zmax).

An O
(
diammax(C) · log2 n + Zmax · log2 n

)
time bound for cComb is derived

by applying Theorem 10 to cover C′. Finally, let Bj ∈ C be a cloud cluster of
diameter diammax(C). Recall that by Definition 3, diam(Bj) ≤ 2k(j) ≤ 2Zj ≤
2Zmax. We therefore obtain an upper bound of O(Zmax log2 n) rounds.

We close with a lower bound.

Theorem 13. Let G = (V,E,w) be a CWC system with fat links. Then cComb
requires Ω(Zmax) rounds.

cCast. To implement cCast, one can reverse the schedule of cComb. However, a
slightly better implementation is possible, because there is no need to ever write
to the cloud node. More specifically, let C be a cover of Vp. In the algorithm
for cCast, each cluster leader invokes cR, and then the leader disseminates the
result to all cluster members. The time complexity for a single cluster B is
O(Z(B)) for the cR operation, and O(diam(B)) rounds for the dissemination of
S throughout B (similarly to Lemma 1). Using the multiplexing to load(C) as
in Step 2 of Algorithm 3, we obtain the following result.

Theorem 14. Let G = (V,E,w) be a CWC system with fat links. Then cCast
can be performed in O(Zmax · log2 n) rounds.

Finally, we note that since any algorithm for cCast also solves cRi problem
for every node i, we get from Theorem 9 the following result.

Theorem 15. Let G = (V,E,w) be a CWC system with fat links. Any algorithm
solving cCast requires Ω(Zmax) rounds.

4 Non-commutative Operators and the Wheel Settings

In this section we consider cComb for non-commutative operators in the wheel
topology (Fig. 1). Our description here omits many details that can be found in
the full version [2].

Consider an instance with a non-commutative operator. Trivially, Algo-
rithm 3 can be used (and Theorem 10 can be applied) if the ordering of the
inputs happens to match ordering induced by the algorithm. While such a coin-
cidence is unlikely in general, it seems reasonable to assume that processing
nodes are physically connected according to their combining order. Neglecting
other possible connections, assuming that the last node is also connected to the
first node for symmetry, and connecting a cloud node to all processors, we arrive
at the wheel topology, which we study in this section. We assume that all links
are bidirectional and bandwidth-symmetric.

We start with the concept of intervals that refines the concept of clusters
(Definition 1) to the case of the wheel topology.

16 Y. Afek et al.

Definition 7. The cloud bandwidth of a processing node i ∈ Vp in a given

wheel graph is bc(i)
def= w(i, vc). An interval [i, i+k] def= {i, i+1, . . . , i+k} ⊆ V

is a path of processing nodes in the ring. Given an interval I = [i, i+k], |I| = k+1
is its size, and k is its length. The cloud bandwidth of I, denoted bc(I), is the
sum of the cloud bandwidth of all nodes in I: bc(I) =

∑
i∈I bc(i). The bottleneck

bandwidth of I, denoted φ(I), is the smallest bandwidth of a link in the interval:
φ(I) = min {w(i, i+1) | i, i+1 ∈ I}. If |I| = 1, define φ(I) = ∞.

(Note that bottleneck bandwidth was not defined for general clusters).
Given these interval-related definitions, we adapt the notion of “cloud clus-

ter” (Definition 3), for problems with inputs s, this time also accounting for the
bottleneck of the interval. We define Ii to be the cloud interval of node i, and
Zi = |Ii| +

s

φ(Ii)
+

s

bc(Ii)
to be the timespan of Ii.

Similarly to fat-links, we obtain the following results for cWi and cRi.

Theorem 16. In the wheel settings, cWi can be solved in O(Zi) rounds for every
node i.

Theorem 17. In the wheel settings, Any algorithm for cWi requires at least
Ω(Zi) rounds for every node i.

Our main result in this section is an algorithm for cComb for the wheel topol-
ogy with arbitrary bandwidths, that works in time bounded by O(log n) times
the optimal. We note that by using standard methods [24], the presented algo-
rithm can be extended to compute, with the same asymptotic time complexity,
all prefix sums, i.e., compute

⊗j
i=0 Si for each 0 ≤ j < n.

Extending the notion of Zmax to the wheel case, and adapting Algorithm3,
we obtain the following theorem.

Theorem 18. In the wheel settings, cComb can be solved in O(Zmax log n)
rounds by Algorithm3.

This is a log factor improvement over the fat-links case. The main ideas are as
follows:

– In the wheel case, for any minimal cover C ′ of the graph, loadC′(i) ≤ 2 for
every node i. Furthermore, a minimal cover is easy to find without resorting
to Theorem 12 (see, e.g., [26]).

– Due to the limited local bandwidth, Algorithm4 can’t be used with the same
time analysis as in the fat-links case in Steps 3–5 of Algorithm3. Instead, we
use pipelining to compute the inner product of every interval in the cover.

Pipelining. We distinguish between holistic and modular combining operators,
defined as follows (see [2] for details). In modular combining, one can apply
the combining operator to aligned, equal-length parts of operands to get the
output corresponding to that part. For example, this is the case with vector
(or matrix) addition: to compute any entry in the sum, all that is needed is

Distributed Computing with the Cloud 17

the corresponding entries in the summands. If the operand is not modular, it
is called holistic (e.g., matrix multiplication). We call the aligned parts of the
operands grains, and their maximal size g is the grain size. We show that in
the modular case, using pipelining, a logarithmic factor can be shaved off the
running time (more precisely, converted into an additive term), as can be seen
in the following theorem:

Theorem 19. Suppose ⊗ is modular with grain size g, and that w(e) ≥ g for
every link e ∈ E. Then cComb can be solved in O (Zmax + log n) rounds, where
Zmax = max {Zi | i ∈ Vp}.

5 CWC Applications

In this section we briefly explore some of the possible applications of the results
shown in this paper to two slightly more involved applications, namely Federated
Learning (Sect. 5.1) and File Deduplication (Sect. 5.2).

5.1 Federated Learning in CWC

Federated Learning (FL) [11,31] is a distributed Machine Learning training algo-
rithm, by which an ML model for some concept is acquired. The idea is to train
over a huge data set that is distributed across many devices such as mobile
phones and user PCs, without requiring the edge devices to explicitly exchange
their data. Thus it gives the end devices some sense of privacy and data protec-
tion. Examples of such data is personal pictures, medical data, hand-writing or
speech recognition, etc.

In [8], a cryptographic protocol for FL is presented, under the assumption
that any two users can communicate directly. The protocol of [8] is engineered
to be robust against malicious users, and uses cryptographic machinery such as
Diffie-Hellman key agreement and threshold secret sharing. We propose a way
to do FL using only cloud storage, without requiring an active trusted central
server. Here, we describe a simple scheme that is tailored to the fat-links scenario,
assuming that users are “honest but curious.”

The idea is as follows. Each of the users has a vector of m weights. Weights
are represented by non-negative integers from {0, 1, . . . ,M − 1}, so that user
input is simply a vector in (ZM)m. Let xi be the vector of user i. The goal of
the computation is to compute

∑n−1
i=0 xi (using addition over ZM) and store the

result in the cloud. We assume that M is large enough so that no coordinate in
the vector-sum exceeds M , i.e., that

∑n−1
i=0 xi =

(∑n−1
i=0 xi mod M

)
.

To compute this sum securely, we use basic multi-party computation in the
CWC model. Specifically, each user i chooses a private random vector zi,j ∈
(ZM)m uniformly, for each of her neighbors j, and sends zi,j to user j. Then
each user i computes yi = xi − ∑

(i,j)∈E zi,j +
∑

(j,i)∈E zj,i, where addition is
modulo M . Clearly, yi is uniformly distributed even if xi is known. Also note
that

∑
i yi =

∑
i xi. Therefore all that remains to do is to compute

∑
i yi, which

18 Y. Afek et al.

can be done by invoking cComb, where the combining operator is vector addition
over (ZM)m. We obtain the following theorem from Theorem 11.

Theorem 20. In a fat-links network, an FL iteration with vectors in (ZM)m

can be computed in O(Zmax log2 n) rounds.

Since the grain size of this operation is O(log M) bits, we can apply the
pipelined version of cComb in case that the underlying topology is a cycle, to
obtain the following.

Theorem 21. In the uniform n-node wheel, an FL iteration with vectors in
(ZM)m can be computed in O(

√
(m log M)/bc + log n) rounds, assuming that

bcm log M ≤ b2� and bc ≥ log M .

5.2 File Deduplication with the Cloud

Deduplication, or Single-Instance-Storage (SIS), is a central problem for storage
systems (see, e.g., [7,17,32]). Grossly simplifying, the motivation is the follow-
ing: Many of the files (or file parts) in a storage system may be unknowingly
replicated. The general goal of deduplication (usually dubbed dedup) is to iden-
tify such replications and possibly discard redundant copies. Many cloud storage
systems use a dedup mechanism internally to save space. Here we show how the
processing nodes can cooperate to carry out dedup without active help from the
cloud, when the files are stored locally at the nodes (cf. serverless SIS [13]). We
ignore privacy and security concerns here.

We consider the following setting. Each node i has a set of local files Fi with
their hash values, and the goal is to identify, for each unique file f ∈ ⋃

i Fi, a
single owner user u(f). (Once the operation is done, users may delete any file
they do not own).

This is easily done with the help of cComb as follows. Let h be a hash function.
For file f and processing node i, call the pair (h(f), i) a tagged hash. The set
Si = {(h(f), i) | f ∈ Fi} of tagged hashes of Fi is the input of node i. Define
the operator ∪̃ that takes two sets Si and Sj of tagged hashes, and returns a
set of tagged hashes without duplicate hash values, i.e., if (x, i) and (x, j) are
both in the union Si ∪ Sj , then only (x,min(i, j)) will be in Si ∪̃ Sj . Clearly ∪̃
is associative and commutative, has a unit element (∅), and therefore can be
used in the cComb algorithm. Note that if the total number of unique files in
the system is m, then s = m · (H + log n). Applying cComb with operation ∪̃ to
inputs Si, we obtain a set of tagged hashes S for all files in the system, where
(h(f), i) ∈ S means that user i is the owner of file f . Then we invoke cCast to
disseminate the ownership information to all nodes. Thus dedup can be done in
CWC in O(Zmax log2 n) rounds.

6 Conclusion and Open Problems

In this paper we have introduced a new model that incorporates cloud stor-
age with a bandwidth-constrained communication network. We have developed

Distributed Computing with the Cloud 19

a few building blocks in this model, and used these primitives to obtain effec-
tive solutions to some real-life distributed applications. There are many possible
directions for future work; below, we mention a few.

One interesting direction is to validate the model with simulations and/or
implementations of the algorithms, e.g., implementing the federated learning
algorithm suggested here.

A few algorithmic question are left open by this paper. For example, can we
get good approximation ratio for the problem of combining in a general (directed,
capacitated) network? Our results apply to fat links and the wheel topologies.

Another interesting issue is the case of multiple cloud nodes: How can nodes
use them effectively, e.g., in combining? Possibly in this case one should also be
concerned with privacy considerations.

Finally, fault tolerance: Practically, clouds are considered highly reliable. How
should we exploit this fact to build more robust systems? and on the other hand,
how can we build systems that can cope with varying cloud latency?

References

1. Adler, M., Gibbons, P., Matias, Y., Ramachandran, V.: Modeling parallel band-
width: local versus global restrictions. Algorithmica 24, 381–404 (1999)

2. Afek, Y., Giladi, G., Patt-Shamir, B.: Distributed computing with the cloud. arXiv
e-prints, arXiv:2109.12930, September 2021

3. Attiya, H., Welch, J.: Distributed Algorithms. McGraw-Hill, New York (1998)
4. Augustine, J., Hinnenthal, K., Kuhn, F., Scheideler, C., Schneider, P.: Shortest

paths in a hybrid network model. In: Proceedings of the SODA 2020, pp. 1280–
1299 (2020)

5. Awerbuch, B., Peleg, D.: Sparse partitions (extended abstract). In: 31st FOCS, pp.
503–513. IEEE Computer Society (1990)

6. Baumann, N., Skutella, M.: Solving evacuation problems efficiently-earliest arrival
flows with multiple sources. In: Proceedings of the 47th FOCS, pp. 399–410 (2006)

7. Bolosky, B., Corbin, S., Goebel, D., Douceur, J.: Single instance storage in windows
2000. In: Proceedings of the 4th USENIX Windows Systems Symposium USENIX
(2000)

8. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine
learning. In: Proceedings of the CCS 2017, pp. 1175–1191. ACM (2017)

9. Burkard, R.E., Dlaska, K., Klinz, B.: The quickest flow problem. ZOR - Methods
Models Oper. Res. 37, 31–58 (1993)

10. Censor-Hillel, K., Leitersdorf, D., Polosukhin, V.: Distance computations in the
hybrid network model via oracle simulations. In: Proceedings of the 38th STACS
(2021)

11. Cheng, Y., Liu, Y., Chen, T., Yang, Q.: Federated learning for privacy-preserving
AI. Commun. ACM 63(12), 33–36 (2020)

12. Culler, D., et al.: LogP: towards a realistic model of parallel computation. SIG-
PLAN Not. 28(7), 1–12 (1993)

13. Douceur, J.R., Adya, A., Bolosky, W.J., Simon, P., Theimer, M.: Reclaiming space
from duplicate files in a serverless distributed file system. In: Proceedings of the
22nd International Conference on Distributed Computing Systems, pp. 617–624
(2002)

http://arxiv.org/abs/2109.12930

20 Y. Afek et al.

14. Dropbox. Prospectus. Filing to US Securities and Exchange Commission (2018).
https://www.sec.gov/Archives/edgar/data/1467623/000119312518055809/
d451946ds1.htm

15. Fleischer, L., Skutella, M.: Quickest flows over time. SIAM J. Comput. 36(6),
1600–1630 (2007)

16. Fraigniaud, P.: Distributed computational complexities: are you Volvo-addicted or
NASCAR-obsessed? In: Proceedings of the 30th PODC, pp. 171–172. ACM (2010)

17. Freeman, L.: Looking beyond the hype: Evaluating data deduplication solu-
tions. Network Appliance Inc., September 2007. http://www-download.netapp.
com/edm/TT/docs/Looking beyond hype Dedupe.pdf

18. Friedman, R., Kliot, G., Kogan, A.: Hybrid distributed consensus. In: Baldoni,
R., Nisse, N., van Steen, M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp. 145–159.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03850-6 11

19. Gibbons, P., Matias, Y., Ramachandran, V.: Can shared-memory model serve as
a bridging model for parallel computation? In: Proceedings of the 9th SPAA, pp.
72–83. ACM (1997)

20. Hegeman, J.W., Pemmaraju, S.V.: Lessons from the congested clique applied to
MapReduce. Theor. Comput. Sci. 608(P3), 268–281 (2015)

21. Hoppe, B., Tardos, É.: Polynomial time algorithms for some evacuation problems.
In: SODA 1994 (1994)

22. Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce. In:
Proceedings of the 21st SODA. Society for Industrial and Applied Mathematics
(2010)

23. Kuhn, F., Schneider, P.: Computing shortest paths and diameter in the hybrid
network model. In: Proceedings of the 39th PODC, pp. 109–118. ACM (2020)

24. Ladner, R.E., Fischer, M.J.: Parallel prefix computation. J. ACM 27(4), 831–838
(1980)

25. Lardinois, F.: Google Drive Will Hit a Billion Users This Week. TechCrunch, July
2018

26. Lee, C.C., Lee, D.T.: On a circle-cover minimization problem. Inf. Process. Lett.
18(2), 109–115 (1984)

27. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and its Applica-
tions, 4th edn. Springer, Heidelberg (2019)

28. Linial, N.: Locality in distributed graph algorithms. SICOMP 21, 193–201 (1992)
29. Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: Minimum-weight spanning tree

construction in O(log log(n)) communication rounds. SICOMP 35(1), 120–131
(2005)

30. Mansour, Y., Nisan, N., Vishkin, U.: Trade-offs between communication through-
put and parallel time. J. Complex. 15(1), 148–166 (1999)

31. McMahan, B., Moore, E., Ramage, D., Hampson, S., Agüera y Arcas, B.:
Communication-efficient learning of deep networks from decentralized data. In:
PMLR, vol. 54, pp. 1273–1282 (2017)

32. Meyer, D.T., Bolosky, W.J.: A study of practical deduplication. ACM Trans. Stor-
age 7(4) (2012)

33. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society for
Industrial and Applied Mathematics, Philadelphia (2000)

34. Skutella, M.: An introduction to network flows over time. In: Cook, W.J., Lovász,
L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 451–482.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-76796-1 21

35. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

https://www.sec.gov/Archives/edgar/data/1467623/000119312518055809/d451946ds1.htm
https://www.sec.gov/Archives/edgar/data/1467623/000119312518055809/d451946ds1.htm
http://www-download.netapp.com/edm/TT/docs/Looking_beyond_hype_Dedupe.pdf
http://www-download.netapp.com/edm/TT/docs/Looking_beyond_hype_Dedupe.pdf
https://doi.org/10.1007/978-3-319-03850-6_11
https://doi.org/10.1007/978-3-540-76796-1_21

Byzantine-Tolerant Reliable Broadcast
in the Presence of Silent Churn

Timothé Albouy, Davide Frey, Michel Raynal(B), and François Täıani(B)

Univ Rennes, IRISA, CNRS, Inria, 35042 Rennes, France
raynal@irisa.fr

Abstract. This paper introduces a new reliable broadcast communica-
tion abstraction suited to n-process asynchronous message-passing sys-
tems in which up to t processes may behave arbitrarily (Byzantine pro-
cesses) and where (due to transient disconnections or message losses)
up to d correct processes may not receive a message broadcast by a cor-
rect (i.e., not Byzantine) process. Then the paper presents and proves
correct an algorithm implementing such a communication abstraction
where the system parameters n, t, and d are such that n > 3t + 2d.

Keywords: Asynchronous system · Byzantine processes · Churn ·
Message adversary · Message losses · Message-passing · Reliable
broadcast · Transient disconnection

1 Introduction

Reliable Broadcast. Introduced in the mid of eighties, Reliable Broadcast is a
fundamental communication abstraction that lies at the center of fault-tolerant
asynchronous distributed systems. Formally defined in [2,3], it allows each pro-
cess to broadcast messages in the presence of process failures, with well-defined
delivery1 properties, which allow the design of provably correct software for an
upper layer based on such a broadcast abstraction.

More precisely, reliable broadcast guarantees that the non-faulty processes
deliver the same set of messages, which includes at least all the messages they
broadcast. This set may also contain messages broadcast by faulty processes. The
fundamental property of reliable broadcast lies in the fact that no two non-faulty
processes deliver different sets of messages [4,14].

In the context where some processes can commit Byzantine failures [10],
the design of a reliable broadcast communication abstraction is far from being
trivial. Such an algorithm is called Byzantine-tolerant reliable broadcast (BRB)
and we say that a process brb-broadcasts and brb-delivers messages. The most
famous BRB algorithm is due to Bracha [2] (1987). For an application message,
this algorithm gives rise to 3 sequential communication steps and (n−1)(2n+1)

1 The term delivery refers here to the application layer where a process receives and
can access the content of an application message. See Sect. 3.

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 21–33, 2021.
https://doi.org/10.1007/978-3-030-91081-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_2

22 T. Albouy et al.

implementation messages. This algorithm requires n > 3t, which is optimal from
the fault-tolerance point of view.

Recent Works Related to Reliable Broadcast. It is natural that, as it is a funda-
mental communication abstraction, BRB has been addressed by many authors.
Here are a few recent results. Like Bracha’s algorithm, all these algorithms
assume an underlying fully connected reliable network.

– The versatility dimension of Bracha’s algorithm has been analyzed in [8,15].
– Addressing efficiency issues, the BRB algorithm presented in [9], implements

the reliable broadcast of an application message with only two communication
steps and n2−1 protocol messages. The price to pay for this gain in efficiency
is a weaker t-resilience, namely t < n/5. Hence, this algorithm and Bracha’s
algorithm differ in the trade-off t-resilience versus message/time efficiency.

– Scalable BRB is addressed in [7]. The issue is here not to pay the O(n2)
message complexity price. To this end, the authors use a non-trivial message-
gossiping approach which allows them to design a sophisticated BRB algo-
rithm satisfying fixed probability-dependent properties.

– BRB in dynamic systems is addressed in [6]. Dynamic means that a process
can enter and leave the system at any time. In their article the authors present
an efficient BRB algorithm for such a context. This algorithm assumes that,
at any time, the number of Byzantine processes present in the system is less
than one third of the total number of processes present in the system.

– An efficient algorithm for BRB with long inputs of � bits using lower costs
than � single-bit instances is presented in [11]. This algorithm, which assumes
t < n/3, achieves the best possible communication complexity of Θ(n�) input
sizes. This article also presents an authenticated extension of the previous
algorithm.

This article is an exploratory work on asynchronous systems in which some
processes are Byzantine and, at the network level, an adversary suppresses mes-
sages (which creates a form of churn which we call Silent Churn). Section 2
defines the underlying computing model and the message adversary. Section 3
presents the new BRB broadcast abstraction (denoted SCB-broadcast) suited
to the model. Section 4 presents an algorithm implementing SCB-broadcast.
Section 5 proves it is correct. Section 6 evaluates its cost. Finally, Sect. 7 con-
cludes the article.

Motivation. This article originated in our research on the reconciliation of pro-
cess local states in distributed Byzantine money transfer systems, in which pro-
cesses can disconnect for long periods of time.

2 Computing Model

Process Model. The system is composed of n asynchronous sequential processes
denoted p1, ..., pn. Each process pi has an identity, and all the identities are

Byzantine-Tolerant Reliable Broadcast in the Presence of Silent Churn 23

different and known by all processes. To simplify, we assume that i is the identity
of pi.

On the failure side, up to t processes can be Byzantine, where a Byzantine
process is a process whose behavior does not follow the code specified by its
algorithm [10,12]. Let us notice that Byzantine processes can collude to fool the
non-Byzantine processes (also called correct processes). Let us also notice that,
in this model, the premature stop (crash) of a process is a Byzantine failure.

Communication Model. The processes communicate through a fully connected
asynchronous point-to-point communication network. Although it is assumed to
be reliable in the sense it neither corrupts, duplicates, nor creates messages, as
far as messages losses are concerned, the network is under the control of an
adversary (defined below) that can suppress messages.

Let msg be a message type and v the associated value. A process can invoke
the unreliable operation broadcast msg(v), which is a shorthand for “for all
i ∈ {1, · · · , n} do send msg(v) to pj end for”.

It is assumed that all the correct processes invoke broadcast() to send mes-
sages. As we can see, the operation broadcast msg(v) is not reliable. As an
example, if the invoking process crashes during its invocation, an arbitrary sub-
set of processes receive the message implementation message msg(v). Moreover,
due to its very nature, a Byzantine process can send messages without using the
macro-operation broadcast().

Terminology. From a terminology point of view, at the system/network level,
we say that messages are broadcast and received.

Moreover, a message generated by the algorithm is said to be a base or
implementation message, while a message generated by the application layer is
said to be an application message.

Message Adversary. The notion of a message adversary has been implicitly intro-
duced in [17], and then used (sometimes implicitly) in [1,5,16,18]. A short tuto-
rial is presented in [13].

Let d be an integer constant such that 0 ≤ d < n. The communication
network is under the control of a message adversary which eliminates messages
sent by the processes, so these messages are lost. More precisely, when a correct
process invokes broadcast msg(v), the message adversary is allowed to arbitrarily
suppress up to d copies of the message msg(v). This means that, despite the fact
the sender is correct, up to d correct processes can miss the message msg(v).

As an example, let us consider a set D of correct processes, where 1 ≤ |D| ≤ d,
such that during some period of time, the adversary suppresses all the messages
sent to them. It follows that, during this period of time, this set of processes
appears as a set of correct processes input-disconnected from the other correct
processes. According to the message adversary, the set D can vary with time.
Let us notice that d = 0 corresponds to the weakest possible message adversary:
it corresponds to a classical static system where some processes are Byzantine
but no message is lost (the network is reliable).

24 T. Albouy et al.

Let us remark that this type of message adversary is stronger, and there-
fore covers, the more specific case of silent churn, in which processes (nodes)
may decide to disconnect from the network. While disconnected, such a process
silently pauses its algorithm (a legal behavior in our asynchronous model), and
is implicitly moved (by the adversary) to the D adversary-defined set. Upon
coming back, the node resumes its execution, and is removed by the adversary
from D.

Informally, in a silent churn environment, a correct process may miss mes-
sages sent by other processes during the time it is disconnected from the network.
The adjective “silent” in silent churn expresses the fact that no notification is
sent on the network by processes whenever they leave or join the system: there
is no explicit “attendance list” of connected processes, and processes are given
no information on the status (connected/disconnected) of their peers. In this
regard, the silent churn model strays away from the classical approach to design
dynamic distributed systems, where processes send messages on the network
notifying their connection or disconnection [6]. The silent churn model is a good
representation of real-life large-scale peer-to-peer systems, where peers leaving
the network typically do so in a completely silent manner (i.e., without warning
other peers).

Let us also observe that silent churn allows us to model input-disconnections
due to process mobility. When a process moves from a location to another loca-
tion it is possible that the range used by the sender to broadcast messages is
not large enough to ensure that the moving process remains input-connected.
An even more prosaic example would be one where a user simply turns off their
device, or disable its Internet connection, which entails that it would not be
able to receive or send messages anymore. In this context, we consider that the
message adversary removes all the incoming and outgoing messages from the
corresponding process, until the device reconnects.

Computability Bound. As the algorithm presented in Sect. 4 uses signatures, it
is assumed that (in that algorithm) the computability power of the adversary is
bounded.

3 Silent Churn Byzantine-Tolerant Broadcast: Definition

The SCB-broadcast communication abstraction is composed of two matching
operations denoted scb broadcast() and scb deliver(). It considers that an identity
〈i, sn〉 (sender identity, sequence number) is associated with each application
message, and assumes that any two application messages scb-broadcast by the
same correct process have different sequence numbers. Sequence numbers are one
of the most natural ways to design “multi-shot” reliable broadcast algorithms,
that is, algorithms where the broadcast operation can be invoked multiple times.

When, at the application level, a process pi invokes scb broadcast(m, i, sn),
where m is the application message, we say it “scb-broadcasts (m, i, sn)”. Simi-
larly when the invocation of scb deliver returns (m, j, sn), we say it “scb-delivers
(m, i, sn)”.

Byzantine-Tolerant Reliable Broadcast in the Presence of Silent Churn 25

We say that the application messages are scb-broadcast and scb-delivered
(while, as said previously, the messages generated by an implementation algo-
rithm are broadcast and received). The SCB-broadcast abstraction is defined by
the following properties:

– Safety:
• SCB-Validity (no spurious message). If a correct process pi scb-delivers a

message m from a correct process pj with sequence number sn, then pj

scb-broadcast m with sequence number sn.
• SCB-No-duplication. A correct process pi scb-delivers at most one mes-

sage m from a process pj with sequence number sn.
• SCB-No-duplicity. If a correct process pi scb-delivers a message m from a

process pj with sequence number sn, then no correct process scb-delivers
another message m′ �= m from pj with sequence number sn.

– Liveness:
• SCB-Local-delivery. If a correct process pi scb-broadcasts a message m

with sequence number sn, then at least one correct process pj eventually
scb-delivers m from pi with sequence number sn.

• SCB-Global-delivery. If a correct process pi scb-delivers a message m from
a process pj with sequence number sn, then at most d correct processes
do not scb-deliver m from pj with sequence number sn.2

If d = 0, the previous specification boils down to Bracha’s specification [2].
Let us notice that the constraint n > 2d prevents the message adversary from
partitioning the system.

4 An Algorithm Implementing the SCB-Broadcast
Abstraction

This section presents Algorithm 1, that implements the SCB-broadcast commu-
nication abstraction under the constraint n > 3t + 2d > 0.

4.1 Signatures, Local Data Structures and Message Types

The Operations sign() and verify() The algorithm uses an asymmetric cryptosys-
tem to sign messages and verify their authenticity. Every node in the network
has a public/private key pair. We suppose that the public keys are known by
everyone, and that the private keys are kept secret by their owner. Everyone
also knows the mapping between any node’s index i and its public key. This
signature scheme provides two operations, sign and verify:

2 Let us observe that, as at the implementation level the message adversary can always
suppress all the implementation messages send to a fixed set D of d processes, these
SCB-delivery properties are the best that can be done.

26 T. Albouy et al.

– sign(msg) creates a digest of the message msg, signs it using the calling
process’ private key and returns the resulting signature. The base message
msg is made up of a triplet or a five-uplet containing an application message
m, a sequence number sn, and the identity i of the sender process pi.

– verify(msg, sig, i) returns � (true) if the signature sig of message msg is valid
using the public key of pi, otherwise it returns ⊥ (false). As the system is
static, the verify() operation can also check under the hood that the public key
given in the parameter is not in the process blacklist. If it is, it also returns
⊥.

The signatures are used to cope with the net effect of the Byzantine pro-
cesses and the fact that implementation messages broadcast (sent) by correct
processes can be eliminated by the message adversary. A noteworthy advantage
of signatures is that, in spite of the unauthenticated nature of the point-to-point
communication channels, signatures allow correct processes to verify the authen-
ticity of messages that have not been directly received from their initial sender,
but rather relayed through intermediary processes. Signatures provide us with a
network-wide non-repudiation mechanism: if a Byzantine process issues two con-
flicting messages to two different subsets of correct processes, then the correct
processes can detect the malicious behavior by disclosing between themselves
the Byzantine signed messages.

The fact that the algorithm uses signed implementation messages does not
mean that SCB-broadcast requires signatures to be implemented. The design of
a signature-free SCB-broadcast algorithm (or the proof of its impossibility) is
an open problem for which the techniques introduced in [19] could prove to be
useful.

Message Types. The algorithm uses two message types.

– The type echo is associated with the base messages that allow an applica-
tion message to be disseminated to all the correct processes. It implements
controlled flooding.

– The type quorum is associated with the base messages that contain the proof
testifying that a quorum of processes witnessed a given application message.
This proof consists of all signatures of the quorum. The fact that this proof
can be exchanged in the network as soon as one correct process witnesses a
quorum incidentally guarantees the SCB-Global-delivery property.

Local Data Structures. Each (correct) process uses the following local variables.

– sni: integer, initialized to 0, used to generate sequence numbers.
– sigi and sig′

i: correspond respectively to the signatures (i.e. the signed fixed-
size digest of a certain data) for a triplet message and a five-uplet base mes-
sage. A triplet base message contains an application message, its sequence
number and its sender identity, signed and sent by the sender. The five-uplet
base message is sent by a process to show that it witnessed a base triplet
message.

Byzantine-Tolerant Reliable Broadcast in the Presence of Silent Churn 27

– echoesi: set, initially empty, of five-uplets representing the echoed messages
that have been received by pi.

– quorumi: set containing pairs of signature/signing process identity, that con-
stitutes proof that enough processes witnessed a given application message
for it to be delivered.

– validi: set containing pairs of signature/signing process identity that are valid,
i.e., signatures for which the verify() operation returned true with respect to
the corresponding sender identity.

– deliveredi: set initially empty, that contains the identifiers (proc. id, seq.
number) of the application messages scb-delivered by pi.

4.2 Algorithm

At a high level, Algorithm 1 works by producing, forwarding, and accumulat-
ing witnesses of an initial broadcast operation, until a large-enough quorum is
observed by at least one correct process, at which point this quorum is prop-
agated in one final unreliable broadcast operation. Witnesses take the form of
doubly signed echo() messages, including the process that initially invoked the
scb broadcast operation. Because the underlying broadcast is unreliable, individ-
ual echo() messages do not necessarily reach enough correct processes in one
broadcast step to build a quorum. To overcome this weakness, correct processes
greedily resend echo() messages they have seen for the first time.

Signatures serve to ascertain the provenance and authenticity of these propa-
gated echo messages, thus providing a key ingredient to tolerate the limited reli-
ability of the underlying network. They also authenticate the invoker of an initial
scb broadcast operation, and finally, in the last phase of our algorithm, they allow
us to propagate a cryptographic proof that a quorum has been reached, ensuring
that enough correct processes eventually scb deliver the initial scb broadcast.

In more detail, when a (correct) process pi invokes scb broadcast(m), it com-
putes the next sequence number (line 1), builds the triplet 〈m, sni, i〉, and signs
it to guarantee its non-repudiation (line 2). Then, pi signs a second time to
authenticate the wrapping base message (line 3) that will be broadcast as an
echo() message. Next, it adds its own echo message to the echoesi set (line
4) so that it will not rebroadcast it later. Finally, pi broadcasts the message
(line 5).

When a correct process pi receives an echo(m, sn, j, sig, k, sig′) base mes-
sage, it first checks if this message was not already received and if the inner
signature is valid (line 6). If this condition is satisfied, pi then checks if the
outer signature is also valid (line 7). If it the case, then the echo is added to the
echoesi set (line 8). After that, the process pi checks if it issued an echo for the
given base message (line 10). If it did not, it signs a new echo message (line 11),
adds it to the echoesi set (line 12) and broadcasts it (line 13). Finally, if pi has
witnessed a quorum of strictly more than n+t

2 echoes for the same base message
〈m, sn, j〉 (line 15), it constructs a quorum message containing all the signatures
of the echoes it has received so far for the base message (line 16) and broadcasts
it (line 17).

28 T. Albouy et al.

operation scb broadcast(m) is
(1) sni ← sni + 1;
(2) sigi ← sign(〈m, sni, i〉);
(3) sig′

i ← sign(〈m, sni, i, sigi, i〉);
(4) echoesi ← echoesi ∪ {〈m, sni, i, sigi, i, sig

′
i〉};

(5) broadcast echo(m, sni, i, sigi, i, sig
′
i).

when echo(m, sni, j, sig, k, sig′) is received do
(6) if (〈m, sn, j, sig, k, sig′〉 /∈ echoesi ∧ verify(〈m, sn, j〉, sig, j)) then
(7) if (verify(〈m, sn, j, sig, k〉, sig′, k)) then
(8) echoesi ← {echoesi ∪ 〈m, sn, j, sig, k, sig′〉}
(9) end if;
(10) if (〈m, sn, j, sig, i, −〉 /∈ echoesi) then
(11) sig′

i ← sign(〈m, sn, j, sig, i〉);
(12) echoesi ← echoesi ∪ {〈m, sn, j, sig, i, sig′

i〉};
(13) broadcast echo(m, sn, j, sig, i, sig′

i)
(14) end if;
(15) if (|{〈m, sn, j, sig, −, −〉 ∈ echoesi}| > n+t

2
) then

(16) quorumi ← {〈�, sig′′〉 | 〈m, sn, j, sig, �, sig′′〉 ∈ echoesi};
(17) broadcast quorum(m, sn, j, sig, quorumi)
(18) end if
(19) end if.

when quorum(m, sn, j, sig, quorum) is received do
(20) validi ← {〈k, sig′〉 ∈ quorum | verify(〈m, sn, j, sig, k〉, sig′, k)};
(21) if (|validi| > n+t

2
∧ 〈sn, j〉 /∈ deliveredi) then

(22) broadcast quorum(m, sn, j, sig, validi);
(23) deliveredi ← deliveredi ∪ {〈sn, j〉};
(24) scb delivery of m from pj with the sequence number sn
(25) end if.

Algorithm 1: Silent churn Byzantine reliable broadcast (code for pi)

When a correct process pi receives a quorum(m, sn, j, sig, quorum) message,
it first selects only the echoes for the base message that have a valid signature
(line 20). Then, pi checks if there are enough valid echoes to constitute a quorum
and if it has not yet scb-delivered anything for the given message identifier (line
21). If this condition is satisfied, then pi rebroadcasts the quorum message (line
22) (this is to cope with the case where the sender is Byzantine and has broadcast
the message to only a subset of correct processes). Finally, pi adds the identifier
of the concerned application message m to the deliveredi set (line 23) and locally
scb-delivers m (line 24).

Remark. The reader can notice that the system parameters n and t appear in
the algorithms, whereas the system parameter d does not. Naturally, they all
explicitly appear in the proof.

Byzantine-Tolerant Reliable Broadcast in the Presence of Silent Churn 29

5 Proof of the Algorithm

Assuming, n > 3t + 2d > 0, this section shows that Algorithm 1 implements
SCB-broadcast. To this end it shows that it satisfies the five properties defining
this communication abstraction.

Theorem 1 (SCB-Validity). If a correct process pi scb-delivers m from pj,
where pj is a correct process, then pj has previously invoked scb broadcast (m).

Proof. A correct process pi scb-delivers an application m from a process pj at line
24 when it has received a quorum of strictly more than n+t

2 echoes (due to the
condition at line 21) for this message identified 〈j, sn〉. Out of these n+t

2 echoes,
at most t are sent by Byzantine processes. Consequently, there remains strictly
more than n−t

2 echoes from correct processes. Due to the algorithm hypothesis,
we have n > 3t + 2d ⇐⇒ n − t > 2t + 2d ⇐⇒ n−t

2 > t + d ≥ 0, from which it
follows that at least one echo is from a correct process p�.

We conclude that p� has checked the validity of the signature sig for m when
it received the message echo(m, sn, j, sig,−,−) at line 6. It follows from the
sign/verify operations that the only way to create sig is for pj to invoke the
sign() operation at line 2, during the scb broadcast (m) invocation. �
Theorem 2 (SCB-No-duplication). Given a pair 〈j, sn〉, a correct process pi

scb-delivers at most one message identified 〈j, sn〉.
Proof. Before scb-delivering m from pj with sequence number sn at line 24, pi

adds the message identity 〈j, sn〉 to the deliveredi set at line 23. However, as
pi checks if a message has not been already scb-delivered for the given message
identifier at line 21, it follows that pi can deliver a message m identified 〈j, sn〉
at most once. �
Theorem 3 (SCB-No-duplicity). If a correct process pi scb-delivers an appli-
cation message m identified 〈sn, k〉, no correct process scb-delivers m′ �= m with
the identity 〈sn, k〉.
Proof. Seeking a contradiction, let us consider two correct processes pi and pj

which respectively scb-deliver (m, sn, k) and (m′, sn, k) such that m �= m′. It
means that these two correct processes respectively received two quorum mes-
sages containing �n+t

2 �+1 distinct valid echoes for the (m, sn, k) and (m′, sn, k)
base messages (due to the condition at line 21) from two distinct sets of processes,
that we respectively denote A and B. We have |A| = |B| = �n+t

2 � + 1.
On another side we have |A ∩ B| = |A| + |B| − |A ∪ B| ≥ |A| + |B| − n ≥

2(�n+t
2 �+1)−n = 2�n+t

2 �+2−n > 2
(

n+t
2

)−n = t. Hence, A and B have at least
one correct process in common which signed and broadcast both echo messages.
However, a correct process signs and broadcasts an echo only once for a given
message identifier: whether it be at line 5 or line 13, a correct process always
checks that it had not broadcast a conflicting echo before. For the broadcast
operation at line 5, we assume that the invoking process is correct and does not

30 T. Albouy et al.

invoke the scb broadcast operation twice for the same sequence number. Before
broadcasting the echo message broadcast at line 13, pi checks at line 10 that it
has not already echoed it. So, the same message with the same sequence number
cannot be broadcast again at line 13. Contradiction. �
Theorem 4 (SCB-Local-delivery). If a correct process pi invokes scb
broadcast(m) with sequence number sn, at least one correct process pj scb-delivers
m from pj with sequence number sn.

Proof. If a correct process pi invokes scb broadcast(m) with sequence number
sn, it broadcasts echo(m, sn, i, sigi, i, sig

′
i) at line 5. As pi is correct it does

not invoke the scb broadcast() operation twice with the same sequence number.
It follows that every correct process that receives the echo(m, sn, i, sigi,−,−)
message for the first time passes the conditions at lines 6 and 10, and thus
broadcasts an echo message for the same base message at line 13.

Let K denote the set of correct processes pj that broadcast the message
echo(m, sn, i, sigi, j, sigj), whether it is done at line 5 (if pj is the sender pi) or
at line 13 (if pj received a message that it did not echo yet). Let us note k ≡ |K|
the size of this set.

We show that we have n − t − d ≤ k ≤ n − t. To this end, let us first
observe that the echo message that is broadcast by each correct process of K is
eventually received by at least (n − t − d) correct processes, due to the property
of the message adversary. Thereby, the minimum number of echo messages that
are eventually received by correct processes is k(n−t−d). Let us note K ′ the set
of correct processes that receive at least one of these k(n − t − d) messages. By
construction of the algorithm, K ′ ⊆ K, and therefore |K ′| ≤ k. It follows that,
the (correct) processes of K ′ receive on average at least k(n−t−d)/k = n−t−d
echo messages. As the adversary does not duplicate messages, and as correct
processes broadcast a given echo message at most once, each of the messages
received by a given process of K ′ is further signed by a distinct correct process.

From the algorithm assumption, we have 3t + 2d < n ⇐⇒ n + 3t + 2d <
2n ⇐⇒ n + t < 2n − 2t − 2d ⇐⇒ n+t

2 < n − t − d. Therefore, the average
number of distinct echoes received by the processes of K ′ (of at least n − t − d
correct processes) is strictly superior to the quorum size (of n+t

2). It implies that
at least one correct process passes the condition at line 15 and broadcasts a
quorum message at line 17. This quorum message is then received by at least
(n−t−d) correct processes, which all finally scb-deliver m from pi with sequence
number sn at line 24. �
Theorem 5 (SCB-Global-delivery). If a correct process pi scb-delivers m
from pj with sequence number sn, then at most d correct processes do not scb-
deliver it.

Proof. If a correct process scb-delivers (m, sn, j) at line 24, then it has previously
received a quorum message that it forwarded at line 21. From the definition of
the message adversary, a quorum message can be missed by at most d correct
processes. Consequently, at least (n − t − d) correct processes scb-deliver the
message. �

Byzantine-Tolerant Reliable Broadcast in the Presence of Silent Churn 31

An Additional Property. The reader can check, from the previous proof, that
the algorithm satisfies the following scb-delivery property. If there is a set K of
k correct processes, 1 ≤ k ≤ d, such that there is a finite time τ after which
the message adversary never eliminates the implementation messages sent to
them, then, after τ , each process of K scb-delivers all the applications messages
scb-broadcast by the correct processes.

6 Cost of the Algorithm

This section assumes that the duration of local computations is negligible com-
pared to message transfer delays. So it is assumed local computations have zero
duration. Differently, for computing the time complexity of the algorithm it is
assumed that the transfer of an implementation message takes one time unit.

Theorem 6 (Time-Cost). Let t > 0. For the values of d such that d < n− t−√
n2−t2

2 , the scb-broadcast operation terminates in exactly three message rounds.

Proof. The invocation of scb broadcast by a correct process pi results in the
unreliable broadcast of a first echo message signed by pi at line 5. This initial
echo message is received by at least (n − t − d − 1) correct processes that are
different from pi, due to our assumption on the message adversary. This counts
for a first message round.

In the second message round, each of these (n − t − d − 1) correct processes
signs its own echo message, and broadcasts it using an unreliable broadcast
(lines 11–13). At the end of the second round, in total at least (n− t−d) distinct
echo messages (counting that of pi) have been signed and unreliably broadcast,
resulting in at least (n − t − d)2 receptions of said echo messages by correct
processes. As there are at least n−t correct processes, this means that on average
each correct process has received μ = (n−t−d)2

n−t echo messages by the end of the
second round, and that at least one correct process, p�, receives at least this
number of echo messages.

Using simple algebraic transformations, the assumption d < n− t−
√

n2−t2

2 ,
leads to μ > n+t

2 . Since the adversary does not duplicate messages, each of these
μ messages corresponds to distinct unreliable broadcast invocations (lines 5 or
13), signed by distinct correct processes (due to the test at line 10, and the use
the set echoesi). Consequently, at the start of the third round, the condition
of line 15 has become true for p�, at which point p� has unreliably broadcast a
quorum message, leading at least n − t − d correct processes to have delivered
the initial scb broadcast message to the application by the end of the third round.
The initial scb broadcast therefore terminates in at most three rounds.

As t ≥ 1 and n > 3t + 2d, it follows that n ≥ 4 and n+t
2 > 2. As a result,

the condition of line 15 cannot become true earlier than the end of the second
communication round. With the earlier result, it follows that the scb broadcast()
broadcast operation terminates in exactly three rounds. �

32 T. Albouy et al.

Theorem 7 (Message-Cost). The scb-broadcast of an application message by
a correct process entails the sending of O(n2) implementation messages.

Proof. The proof is easy. The broadcast of an echo message at line 5 entails its
forwarding by each other correct process, and the same occurs for the quorum
implementation messages. Hence the O(n2) messages complexity. �

7 Conclusion

This article has presented a new communication abstraction that extends Byzan-
tine reliable broadcast (as defined by Bracha and Toueg [2,3]) to systems where
an adversary may suppress some subset of application messages that have been
broadcast. This kind of messages loss captures what we call the silent churn
phenomenon. An algorithm implementing the corresponding Byzantine-tolerant
reliable broadcast in the presence of silent churn has been presented and proven
correct. This algorithm assumes n > 3t+2d, where n is the number of processes,
t is the maximum number of Byzantine processes, and d is an upper bound on
the silent churn.

Acknowledgments. This work was partially supported by the French ANR project
ByBLoS (ANR-20-CE25-0002-01) devoted to the modular design of building blocks
for large-scale Byzantine-tolerant multi-users applications. The authors want to thank
Colette Johnen, Elad Schiller, and Stefan Schmid for their kind invitation to participate
in the conference.

References

1. Afek, Y., Gafni, E.: Asynchrony from synchrony. In: Frey, D., Raynal, M., Sarkar,
S., Shyamasundar, R.K., Sinha, P. (eds.) ICDCN 2013. LNCS, vol. 7730, pp. 225–
239. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35668-1 16

2. Bracha, G.: Asynchronous Byzantine agreement protocols. Inf. Comput. 75(2),
130–143 (1987)

3. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM
32(4), 824–840 (1985)

4. Cachin, Ch., Guerraoui, R., Rodrigues, L.: Reliable and Secure Distributed Pro-
gramming, p. 367. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-15260-3. ISBN 978-3-642-15259-7

5. Charron-Bost, B., Schiper, A.: The heard-of model: computing in distributed sys-
tems with benign faults. Distrib. Comput. 22(1), 49–71 (2009). https://doi.org/
10.1007/s00446-009-0084-6

6. Guerraoui, G., Komatovic, J., Kuznetsov, P., Pignolet, P.A., Seredinschi, D.-A.,
Tonkikh A.: Dynamic Byzantine reliable broadcast. In: Proceedings of 24th Inter-
national Conference on Principles of Distributed Systems (OPODIS’20), LIPIcs,
vol. 184, Article 23, 18 p. (2020)

7. Guerraoui, G., Kuznetsov, P., Monti, M., Pavlovic, M., Seredinschi, D.-A.: Scalable
Byzantine reliable broadcast. In: Proceedings of 33rd International Symposium on
Distributed Computing (DISC’19), LIPIcs, vol. 146, Article 22, 16 p. (2019)

https://doi.org/10.1007/978-3-642-35668-1_16
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/s00446-009-0084-6

Byzantine-Tolerant Reliable Broadcast in the Presence of Silent Churn 33

8. Hirt, M., Kastrato, A., Liu-Zhang, C.-D.: Multi-threshold asynchronous reliable
broadcast and consensus. In: Proceedings of 24th International Conference on
Principles of Distributed Systems (OPODIS’20), LIPICs, vol. 184, Article 6, 16
p. (2020)

9. Imbs, D., Raynal, M.: Trading t-resilience for efficiency in asynchronous Byzantine
reliable broadcast. Parallel Process. Lett. 26(4), 8 (2016)

10. Lamport, L., Shostack, R., Pease, M.: The Byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

11. Nayak, K., Ren, L., Shi, E., Vaidya, N.H., Xiang, Z.: Improved extension protocols
for Byzantine broadcast and agreement. In: Proceedings of 34rd Int’l Symposium
on Distributed Computing (DISC’20), LIPIcs, vol. 179, Article 28, 16 p. (2020)

12. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27, 228–234 (1980)

13. Raynal, M.: Message adversaries. In: Kao, M.-Y. (ed.) Encyclopedia of Algorithms,
pp. 1272–1276. Springer, Heidelberg (2015). https://doi.org/10.1007/978-1-4939-
2864-4

14. Raynal, M.: Fault-Tolerant Message-passing Distributed Systems: An Algorithmic
Approach, p. 480. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-
94141-7. ISBN 978-3-319-94140-0

15. Raynal, M.: On the versatility of Bracha’s Byzantine reliable broadcast algorithm.
Parallel Process. Lett. 31(3), 2150006 (2021)

16. Raynal, M., Stainer, J.: Synchrony weakened by message adversaries vs asynchrony
restricted by failure detectors. In: Proceedings of 32nd ACM Symposium on Prin-
ciples of Distributed Computing (PODC ’13), pp. 166–175. ACM Press (2013)

17. Santoro, N., Widmayer, P.: Time is not a healer. In: Monien, B., Cori, R. (eds.)
STACS 1989. LNCS, vol. 349, pp. 304–313. Springer, Heidelberg (1989). https://
doi.org/10.1007/BFb0028994

18. Santoro, N., Widmayer, P.: Agreement in synchronous networks with ubiquitous
faults. Theoret. Comput. Sci. 384(2–3), 232–249 (2007)

19. Srikanth, T.K., Toueg, S.: Simulating authenticated broadcasts to derive simple
fault-tolerant algorithms. Distrib. Comput. 2, 80–94 (1987). https://doi.org/10.
1007/BF01667080

https://doi.org/10.1007/978-1-4939-2864-4
https://doi.org/10.1007/978-1-4939-2864-4
https://doi.org/10.1007/978-3-319-94141-7
https://doi.org/10.1007/978-3-319-94141-7
https://doi.org/10.1007/BFb0028994
https://doi.org/10.1007/BFb0028994
https://doi.org/10.1007/BF01667080
https://doi.org/10.1007/BF01667080

Building Systems of Systems with Escher

Burcu Canakci(B) , Lorenzo Alvisi , and Robbert van Renesse

Cornell University, Ithaca, USA
{burcu,lorenzo,rvr}@cs.cornell.edu

Abstract. This paper presents Escher, an approach to build and deploy
multi-tiered cloud-based applications, and outlines the framework that
supports it. Escher is designed to allow systems of systems to be derived
methodically and to evolve over time, in a modular way. To this end,
Escher includes (i) a novel authenticated message bus that hides from
one another the low-level implementation details of different tiers of a
distributed system; and (ii) general purpose wrappers that take an imple-
mentation of an application and deploy, for example, a sharded or repli-
cated version of an application automatically.

Keywords: Middleware · Distributed systems · Refinement · Fault
tolerance · Maintainability

1 Introduction

Large-scale distributed systems deployed today within and across datacenters
are hierarchically structured. At the highest level they are decomposed into
tiers, such as, for example, the load balancing tier, the web frontend tier, the
data store tier, the caching tier, the data analysis tier, the recommendation tier,
and various application logic tiers. Each tier in turn is further subdivided into
smaller components, down to the executable services that run on the datacen-
ter servers. Such a refinement hierarchy allows for modular development and
simplifies management. Furthermore, at the lowest level applications are often
containerized to simplify software distribution and deployment. Various read-
ily available management services maintain configurations, dependencies, and
deployments of such systems [7,10,22].

While this approach has produced distributed systems of unprecedented scale
and sophistication, these systems of systems have introduced a new challenge:
managing the interaction between tiers in this refinement hierarchy. Standards
for data representation and remote invocation have made it straightforward to
glue together services written in different programming languages or deployed
on different operating systems [12]. However, such ease of integration stops at
the implementation level in the refinement hierarchy; still lacking is a way to
describe abstractly the interaction between higher-level tiers of the system.

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 34–50, 2021.
https://doi.org/10.1007/978-3-030-91081-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_3&domain=pdf
http://orcid.org/0000-0002-8406-7768
http://orcid.org/0000-0002-9857-5528
http://orcid.org/0000-0003-3598-0283
https://doi.org/10.1007/978-3-030-91081-5_3

Building Systems of Systems with Escher 35

Consider the architecture of a search engine. A client’s query first goes
through a query processor which is responsible for parsing and formatting the
query. The request is then relayed to an online ranking tier, which computes the
results. That tier interacts with an indexing tier which is responsible for crawl-
ing and indexing offline. The indexing tier itself can include different storage
systems, such as an in-memory caching system for popular queries and a disk
storage database system for historical indexes. Many modern applications are
similarly composed of numerous interacting tiers and components [2,6,24,28].
Different components have different non-functional objectives, and so require dif-
ferent refinements. Additionally, these objectives may change over time, so their
refinements are not static [24]. Therefore, what is needed is a clean abstraction
for the interaction between any two refined components, one that allows them
to independently evolve, or even be replaced, without affecting the rest of the
system.

This paper presents Escher, a principled methodology to (i) systematically
derive such systems of systems and (ii) continue supporting their organic evolu-
tion.

Escher specifies communication between tiers at the highest levels of their
refinement hierarchy. Instead of exposing a plethora of ways for components to
interact with one another, Escher offers just one: a novel message bus that is
refinement-aware, in that it hides the low-level, refinement-specific details of how
components interface with one another. For example, it transparently manages
the interaction between a replicated data store and a sharded caching service, and
it automatically handles how one replicated component interacts with another
in a fault-tolerant fashion.

Escher’s bus exposes only the external behavior of a system’s components.
Enforcing this form of isolation is critical to supporting the organic growth of
the system: it allows the implementation of each component to be refined (and
its correctness to be verified) modularly, and thus for it to evolve, or even be
replaced, without requiring other components that are in communication with
it to also be reconfigured, or recompiled with new communication libraries.

To further facilitate organic growth, Escher transparently supports modular
transformations with wrappers, which can automatically provide components
with desirable properties such as fault tolerance, load balancing, or privacy.

Escher goes well beyond conventional message streaming platforms [16,23],
middleware services [14,20,22], or service-oriented-architecture solutions, such as
enterprise service buses [12]. While these solutions enable interactions between
objects or services implemented using different languages, data models, or com-
munication APIs, they provide isolation only at the implementation level. Fur-
ther, their ability to support a system’s organic growth is limited. For example,
CORBA [14] can refine a service to add fault-tolerance through replication, but
does not support the same capability for clients. In Escher, all tiers can be
fully and independently refined. For example, a replicated client can transpar-
ently communicate with a replicated server, regardless of the replication protocol

36 B. Canakci et al.

used on either side. To our knowledge, Escher is the first system to support such
two-sided transparency and generality for any refinement.

This paper covers in detail the system model underlying Escher’s refinement
hierarchy in Sect. 2 and presents different implementation options in Sect. 3. We
discuss related work in Sect. 4.

2 Escher Design

Escher models components as agents; whether implemented by a single process
or a collection of processes, they consist of a state machine combined with a
message inbox and outbox. The Escher message bus moves messages from out-
boxes to inboxes. An agent can be refined by replacing it with a non-empty set
of new agents, each with their own state machines, inboxes, and outboxes. A
refinement mapping [1] specifies how inboxes and outboxes of the new agents
map to the inbox and outbox of the original agent. Escher uses this mapping to
hide refinement from other, unrelated agents.

Agents form a refinement hierarchy : a parent agent is refined into a set of
child agents. For example, in a replicated service, the parent is a virtual, logically
centralized service, while the children are the replicas that together provide that
abstraction. Other refinements can be similarly modeled and applied recursively
to render the refinement hierarchy.

Each agent in the refinement hierarchy has a separate management interface.
In particular, each agent has its own public/private key pair. An agent that is
being refined uses its private key to create public key certificates for its child
agents, so they can prove that they are part of a specific refined agent. The root
of the refinement hierarchy forms a Certification Authority (CA) for the entire
system. The leaves in the hierarchy are physical agents: the Escher framework
uses their private keys to sign and verify their messages.

The Escher refinement hierarchy thus forms a uniform management inter-
face for all agents, whether virtual (refined) or physical (running code). Escher
therefore solves not only the interfacing between agents, but also provides the
management necessary to successfully deploy and run a system of distributed
services.

Escher provides the following design properties (partially borrowed
from [11]):

Transparency: The refinement of an agent is transparent to other agents.
An agent only requires the high-level API (through a set of message types)
and the identifier of a destination agent to communicate with it, even if the
destination is refined.
Generality: Agents can be refined arbitrarily, as long as the refinement is
correct.
Flexibility: Agent refinements can evolve over time.
Manageability: Agents, whether refined or not, can be deployed, executed,
and monitored uniformly.

Building Systems of Systems with Escher 37

2.1 System Model: Agents and Message Bus

An Escher system is a collection of agents communicating over a message bus.
Each agent a is identified by a unique identifier, denoted a.id. Each agent a
includes a (possibly nondeterministic) state machine and three unordered col-
lections of messages: a.inbox, a.outbox, and a.donebox. The inbox and done
box of an agent are initially empty. The operation of a correct agent a proceeds
as follows:

1. Wait until there exists a message m ∈ a.inbox − a.donebox;
2. Apply m to the state machine to produce a new state and a set of output

messages;
3. Add the output messages to a.outbox;
4. Add m to a.donebox;
5. Repeat.

A message is a four-tuple: 〈message identifier, source agent identifier, desti-
nation agent identifier, payload〉. No two messages from the same correct source
agent for and the same destination agent can have the same message identifier.

The operation of the message bus is as follows:

1. Wait until there exists a message m = 〈 , s.id, d.id, 〉 such that m ∈
s.outbox − d.inbox (denotes a wildcard);

2. Add m to d.inbox;
3. Repeat.

Logically, the contents of the three boxes of a correct agent grow monoton-
ically. Later, we show how messages that have been handled can be garbage
collected.

The system is asynchronous but fair: if a correct agent—or the message bus—
can continually take a step, it eventually will. Unless refined to be fault-tolerant,
agents can exhibit both crash failures and arbitrary (Byzantine) failures:

– An agent a that experiences a crash failure no longer processes messages in
a.inbox − a.donebox;

– An agent a that experiences a Byzantine failure ignores its state machine and
places any messages in a.outbox. It may also remove messages from a.outbox.

The message bus is reliable and guarantees authenticity : if agents s and d
are correct and message m = 〈i, s.id, d.id, p〉 ∈ d.inbox, then m ∈ s.outbox.

2.2 Refining Agents

An agent a can be refined, that is, replaced with one or more new agents a1, ..., an
such that a1, ..., an collectively have the same external behavior as a. We call a
the parent agent of a1, ..., an and a1, ..., an the child agents of agent a. We denote
Ca to be the set of child agents of agent a. Child agents can be refined as well,
leading to a hierarchy of agents; at the root of the refinement hierarchy is a

38 B. Canakci et al.

single system agent, which models the entire system. Agents are then identified
by pathnames of the form {/id}∗. For example, /x/y identifies a child agent of
/x. The system agent is identified by the empty path name “”.

Given a set of input messages M I for agent a, agents a1, ...an must pro-
duce the same set of output messages MO that agent a might have; specifically,
whether or not a correct agent a has been refined must be invisible to other
correct agents that a communicates with. Supporting this notion of indistin-
guishability requires adding important features to the message bus.

First, it introduces restrictions on who can communicate with whom. A cor-
rect agent will only send messages to its siblings or siblings of its ancestors.
For example, a correct agent identified by /x/y/z may send messages to agents
identified by /x/y/z′, /x/y′, or /x′, but not to agents identified by /x/y/z′/w,
/x/y′/z′ or /x′/y′.

Second, it requires the message bus to be refinement-aware. In particular,
if an agent d is refined, the message bus attempts to deliver a message m =
〈i, s.id, d.id, p〉 from the outbox of a correct agent s to the inboxes of all
child agents of agent d. The message bus guarantees that each message in the
inbox of a correct agent d has a destination agent identifier that is a prefix of
the identifier of d. For example, the message bus may deliver a message destined
for x/y to agent x/y/z, but not a message destined for x/y/z/w nor a message
destined for x/y/z’.

In a refinement of agent a, there must exist a function Ra that maps the
state of the child agents to the state of the parent agent a [1]. Because the state
of each agent has four components (inbox; outbox; done box; and state of its
state machine), we split Ra into four corresponding components RI

a, R
O
a , RD

a ,
and RS

a . In particular, to be able to exchange messages between refined agents,
the message bus needs to understand two of these components: RI

a and RO
a .

RI
d is an application-dependent function that, applied to the inboxes of d’s

the child agents, computes d.inbox. For example, in the case of replication,
a message could be considered in d.inbox once it is delivered to the inbox of a
correct child agent of d; In the case of sharding, a message is considered delivered
once it is delivered to the inbox of the child agent that can handle the request
in the message.

Similarly, RO
s is an application-dependent function that, applied to the out-

boxes of s’s child agents, computes s.outbox. Let µs map a set of messages
in the outboxes of child agents of s to a set of messages in the outbox of s.
Formally, µs maps a set of messages M〈i,s,d〉 of the form 〈i, c.id, d.id, pc〉,
c ∈ Cs, to a set of messages of the form 〈i, s.id, d.id, ps〉. Recall that we
require that correct agents do not produce more than one message with the
same message identifier, source agent identifier, and destination agent identifier.
Therefore, the result of µs is either the empty set or a singleton set. Moreover,
if µs(M1

〈i,s,d〉) = {〈i, s.id, d.id, p1s〉} and µs(M2
〈i,s,d〉) = {〈i, s.id, d.id, p2s〉},

then p1s = p2s: messages from different subsets of child agents with the same
message identifier must map to the same payload.

Building Systems of Systems with Escher 39

For example, if the refinement is “replication for crash failures”, then µs is the
identity function: a message from any of s’s child agents (replicas) is a message
from the parent agent s. In crash tolerant replication all replicas generate the
same messages; thus, applying µs to non-empty sets produces singleton sets.
Moreover, µs applied to any non-empty M〈i,s,d〉 is guaranteed to produce the
same singleton set.

However, if the refinement is “replication for Byzantine failures” with some
parameter f , then

µs(M〈i,s,d〉) ={
〈i, s.id, d.id, p〉

∣∣∣ c ∈ Cs ∧
∣∣∣
⋃

{〈i, c.id, d.id, p〉 ∈ M〈i,s,d〉}
∣∣∣ > f

}

That is, a message from s must have more than f matching messages from
its child agents. Again, for Byzantine replication, the result of µs is either the
empty set or some singleton set containing some message m. If |M〈i,s,d〉| ≤ f ,
then the result is guaranteed to be the empty set; if |M〈i,s,d〉| ≥ |Cs| − f , then
the result is guaranteed to be {m}.

Let M〈i,s,d〉 be a set of messages such that µs(M〈i,s,d〉) yields a singleton set
containing a message from s. Then, we call M〈i,s,d〉 a merge group of messages.
Every message in a merge group has an identical message identifier, destination
agent identifier, and parent of the source agent.

Let s.outbox = RO
s ({c.outbox | c ∈ Cs}) be the set of messages in the

outbox of agent s according to the refinement mapping of s. We require that the
µs function satisfies

– Soundness:

∀M〈i,s,d〉 ⊆ {〈i, c.id, d.id, pc〉 ∈ c.outbox | c ∈ Cs} :
µs(M〈i,s,d〉) ⊆ s.outbox

In other words: all messages from s that can be constructed, using µs, from
the outboxes of the child agents of s, are in fact messages produced by s.

– Completeness: If m = 〈i, s.id, d.id, p〉 ∈ s.outbox, then eventually there
exists a set M〈i,s,d〉 from correct agents in Cs such that m = µs(M). In other
words, every message in s.outbox is eventually retrievable from the correct
child agents of s.

As mentioned above, the message bus delivers a message sent to a refined
agent d to the inboxes of all its child agents. This is sufficient, but depending on
the definition of RI

d may be overkill. Escher allows agents to specify a minimum
refinement “depth” to manage delivery more precisely. The minimum depth is
the number of components in the destination path of the message. For example,
an agent with identifier /x/y/z and a minimum depth of 2 would only receive
messages destined to /x/y/z and /x/y, but not to /x. The default minimum
depth is 1.

To summarize, the message bus collects messages from the child agents of
s with the same message identifier and destination agent identifier, and uses

40 B. Canakci et al.

µs to “merge” those messages into messages from s. If the destination of such
a message m is d, then the message bus delivers m to d.inbox. If agent d is
also refined, then the message bus delivers m to the inboxes of d’s child agents,
constrained by the child agents’ minimum depth settings.

2.3 Wrappers

In some common refinements, which include state machine replication and shard-
ing, a child agent’s state machine uses the state machine transition function of its
parent as a subroutine. Escher includes a special type of agent called a wrapper
to handle these types of refinements automatically.

For example, in the case of state machine replication, the wrappers are the
replicas, and they must agree on the order in which they present incoming com-
mands to their copies of their parent’s state machine (which is required to be
deterministic). Similarly, in the case of sharding, each wrapper is responsible for
a range of keys and has a copy of the parent’s state machine transition function.
Each wrapper passes messages for keys within the shard’s range to its copy of
the state machine.

Escher contains a collection of general-purpose wrappers that automatically
provide certain desirable non-functional properties to agents such as being able
to survive certain classes of failures or being able to handle high load.

2.4 Deploying and Managing Agents

We separate agents into physical agents and virtual agents. Physical agents are
not refined and form the leaf agents in the refinement hierarchy. Virtual agents
are refined—they are the internal nodes in the refinement hierarchy. Each agent,
whether physical or virtual, must be managed. If a is a virtual agent, its manager
mgra is a principal that can be a person, a cluster manager, or even another
agent; if a is a physical agent, mgra is a runtime that runs both the code of
the leaf agent and Escher code that implements the functionality of the message
bus.

Escher includes a Public Key Infrastructure (PKI) that it uses to prevent
Byzantine agents from forging messages from correct agents: in particular, it
ensures that if agent s is correct, then messages that claim to come from s are
guaranteed to be in s.outbox. The PKI associates with each agent, whether
physical or virtual, a private key pa and a corresponding public key certificate
Pa. For a correct agent, only mgra holds pa; the private keys and public key
certificates are generally transparent to the agents themselves.

The public key certificate Pa of agent a binds its identifier (a path) to its
public key and is signed using the private key of the parent agent of a. Therefore,
the manager of a virtual agent a is a Certification Authority (CA) to the child
agents of a. The system agent is the root CA of Escher’s PKI. The public key
certificate of the system agent is self-signed.

Public key certificates are chained : they refer to the public key certificates of
their parents. Thus, to refine an agent a, manager mgra uses its private key pa

Building Systems of Systems with Escher 41

to generate a public key certificate for each of the child agents. Afterward, mgra
can be offline, unless the refinement of a is updated. If the identifier of some
agent x is 〈path〉/x, then the next certificate on the certificate chain of x is the
public key certificate of the parent of x, identified by 〈path〉.

If a is a physical agent, the runtime that manages a, among other functions
described in the implementation section below, signs outgoing messages using pa
and attaches to them the certificate chain (although certificates can be cached
for efficiency). The runtime of destination agents can then verify the messages
using the public key contained in Pa.

2.5 Compatibility with Legacy Services

To enable its own gradual deployment, Escher can incorporate legacy services.
Existing centralized microservices simply require a shim, which is associated

with an Escher identifier and implements the inbox, outbox, and done box. The
shim must define a set of message types through which other Escher agents can
communicate with it. Upon receipts of such a message, the shim has to invoke the
corresponding functionality in the microservice. The output of the microservice
has to be similarly transformed before it can be sent on the Escher bus.

Legacy distributed services can be incorporated into Escher in a similar fash-
ion, by defining a virtual agent that models the distributed service. The actual
running components of the service can then be modeled as its child agents, each
paired with its own shim.

3 Implementation

In this section, we describe several implementation options for the Escher mes-
sage bus as well as the choices we favor.

3.1 Message Merging

The Escher runtime of a physical agent a maintains the inbox, outbox, and done
box for a, as well as the state of its state machine. Each runtime also partially
implements the message bus. An important functionality of the message bus
is to collect messages from the child agents of a refined agent, and to merge
them into the corresponding message from the parent agent before delivering
the message to the destination. But which component(s) of an Escher system
should be responsible for merging messages?

To frame the question, let s be a refined agent and ms = 〈i, s.id, d.id, ps〉
a message from s to d. Assume child agents of s are unrefined for now. To merge
messages from the child agents of s into ms, an Escher component needs to: (1)
collect the necessary set M〈i,s,d〉 of messages from the child agents of s, and (2)
apply a merge function µs to M〈i,s,d〉.

42 B. Canakci et al.

Merging at the Sender. One straightforward candidate to perform the merg-
ing would be the runtime of one of the child agents of s. This runtime would be in
charge of merging outgoing messages and of sending merged messages to agents
external to the refinement. After all, the runtime of a child agent of s already
knows µs, and it can collect M〈i,s,d〉 from the runtimes of other child agents.
However, this solution comes with several drawbacks: (i) it is not fault toler-
ant; (ii) it requires additional cryptographic support, such as multisignatures or
threshold signatures, to provide message authenticity efficiently; and finally (iii)
it requires a message from s to d to take two steps of communication: one from
the runtimes of other child agents to the “merging” runtime, and one from the
merging runtime to the runtime(s) of the physical descendants of d.

Merging in the Middle. A second solution would be to have a logically-
centralized trusted Escher service handle all message merging in the system.
This “merging” service, however, would need to be replicated for fault-tolerance,
and may become a bottleneck for the entire system. Further, with this solution,
as with the previous one, a message from s to d would take at least 2 steps of
communication.

Merging at the Receiver. Escher opts for a third solution: it leaves the run-
time of a physical destination agent d′ the responsibility of merging the messages
it receives. To merge messages from child agents of a refined agent s, d′’s runtime
needs to know µs. We considered endowing Escher with a trusted configuration
service, which d′ could query to retrieve µs, but we ultimately rejected this
option: the service would add an extra step of communication before the run-
time of d′ can merge messages, would have to be replicated for fault tolerance,
and may turn into a bottleneck. Further, child agents in dynamic refinements
would need to synchronize their configuration with the service whenever the
refinement is updated. Instead, we opted for an approach that eliminates the
need for a global service and does not induce extra steps of communication: we
piggyback µs onto all message from the child agents of s to agents that are not
part of the refinement of s. When the runtime of a child agent attaches the cor-
responding merge function(s) to an outgoing message, we say that the runtime
tags the message.

This solution has minimal communication overhead, is fault tolerant, and
both modular and general. Its main drawback is that running merging code in
the destination agent is a potential security issue; thus, it should be done with
great care, for example through the use of a safe language.

Implementing Merge Functions. Escher is intended to support any kind of
refinement, and therefore specific merge functions should ideally not be built into
the Escher framework itself. The most general option would be to support arbi-
trary programs for merge functions. However, a Byzantine agent can be refined as
well, and such a Byzantine agent could issue certificates that verify a potentially

Building Systems of Systems with Escher 43

malicious program µF . The runtime of a correct agent that received a message
from a child of the Byzantine agent could be damaged if it attempted to run µF

without any sandboxing mechanism. An obvious alternative would be for Escher
to ask programmers to assemble merge functions using a safe domain-specific
language (DSL), such as SQL (modelling messages as rows in a relational table
and using SQL aggregation functions to merge them), or the extended Berkeley
Packet Filter [27], which, though a verifier, ensures that an eBPF program runs
only for a limited time, accesses only a restricted memory region, and calls only
an allowed set of safe external functions. Message processing abstractions from
specification languages for distributed protocols, such as [19], can also be used
in creating a DSL for merge functions.

We leave exploring such options for future work. Escher’s current merge func-
tionality can support a variety of common quorum-based crash- and Byzantine-
tolerant replication protocols, as well as sharding protocols. The functional-
ity is implemented as a dictionary of keys to values. A key defines a spe-
cific action that a runtime should take in order to merge a message; and the
value customizes this action. We currently support two such pairs. The first is
(wait for matching, k), which informs the receiving runtime to wait until there
are k messages with matching payloads. The second is (from : a1.id, ..., an.id),
which informs the runtime to only consider messages that are from a specified set
of agents. For example, the merge function of a crash-tolerant replicated service
with replicas r1, ..., rn can be implemented with {wait for matching : 1, from :
r1.id, ..., rn.id} whereas the merge function of a Byzantine fault-tolerant repli-
cated service can be implemented with {wait for matching : f + 1, from :
r1.id, ..., rn.id}.

3.2 Message Delivery

The second functionality of the message bus is to deliver a message, addressed to
a destination agent d that is refined, to the inboxes of all interested child agents
of d. This functionality could be implemented using point-to-point communica-
tion between runtimes. The runtime of the sender, however, would need to know
the addresses of d’s child agents, which is difficult because refinements may be
dynamic and addresses may change. Another option would be to have the run-
time of a specific child agent of d receive all incoming traffic, acting as an ingress
proxy. The child agent could then forward each message to their appropriate
destinations. Unfortunately, while simple, this is not a fault-tolerant solution.

In Escher, runtimes discover one another using a publish/subscribe messaging
service. This service has the following properties:

1. Runtimes publish messages to topics. A topic is an agent identifier, either
virtual or physical.

2. The runtime of an agent s can publish a message m = 〈 , s.id, d.id, 〉 in
s.outbox to the topic named d.id.

3. The runtime of an agent s automatically subscribes to the topic named s.id;
it also subscribes to prefixes of s.id according to its minimum depth (see
Sect. 2).

44 B. Canakci et al.

s.inbox

s

s.outbox

ms 1 6

d.inbox

d

d.outbox

ms

runtime of s1

s1.inbox

s1

s1.outbox

ms1 ms1

µs

21

runtime of sn

sn.inbox

sn

sn.outbox

msn msn

µs

21

... 3 4

runtime of d

d.inbox

d

d.outbox

ms

msn

µs

...
ms1

µs

5

6

Fig. 1. Above the dashed line is a virtual representation of communication between
agents s and d. (1) Virtual agent s sends a message ms = 〈i, s.id, d.id, ps〉 to d.
This maps to a set of messages of the form msi = 〈i, si.id, d.id, psi〉 in the outboxes
of the physical child agents of s. (2) The runtimes of the child agents of s tag the
messages msi with µs. (3) The runtimes of child agents of s send tagged messages to
topic d.id. (4) The runtime of d receives tagged messages. (5) The runtime of d merges
these messages into ms. (6) Finally, the runtime of d places ms in d.inbox.

Runtimes may opt to use the publish/subscribe messaging service for all
communication. While attractive in its simplicity, this approach can nega-
tively impact performance, as communication through pub/sub services typi-
cally results in significantly higher latencies than using point-to-point communi-
cation. Thus, the current Escher runtimes use the publish/subscribe service only
to discover other agents; all ensuing communication is point-to-point. Should
refinements change after this initial handshake, the runtimes need to repeat the
process of discovery and connection.

3.3 Implementing Tagging and Merging

We describe now in detail (and illustrate in Fig. 1) the tagging and merging
process that allows two agents s and d to communicate.

Let s be an agent refined into n child agents Cs = {s1, ..., sn}. Let ms =
〈i, s.id, d.id, ps〉 be a message in s.outbox to be delivered to d.inbox. For
example, s could be a replicated server sending a response to a client agent d.
For simplicity, assume that d is physical (the merge functionality is the same for
virtual destinations). Because refinement is transparent in Escher, ms must be
constructed by the message bus from messages that are physically in the outboxes
of the child agents of s. The completeness property of µs implies that there exists
a merge group M〈i,s,d〉 of messages of the form msi = 〈i, si.id, d.id, psi〉 in the
outboxes of correct agents in Cs such that µs(M〈i,s,d〉) = ms. The runtimes of
these child agents tag their messages with µs and send them to the topic d.id.

Building Systems of Systems with Escher 45

Note that messages between sibling agents (say replicas of the same server) do
not need to be tagged.

The runtime of d eventually receives all messages sent by correct agents
to d.id and groups together messages with the same tag. Let M be a set of
messages with message identifier i, destination agent identifier d.id, and source
agent identifier a child of s. The runtime of d updates M whenever a new message
with matching values is received, and applies µs to M after each update. If this
results in the empty set, the runtime waits for additional messages. If, however,
the result is a non-empty set, then it is guaranteed to be a singleton set containing
ms; in this case, the runtime delivers ms in d.inbox and discards M .

Generalizing for Multi-step Refinements. Let a be an agent that has k+1
ancestors with k ≥ 0. Then, a is associated with a list of functions Ma =
[µk, ..., µ0], where µk is the merge function of a’s parent and µ0 is the merge
function of the system agent. (µ0 is not explicitly defined and never invoked.)
We call Ma the µ-list of a.

If a is a correct agent with k + 1 ancestors, its runtime may tag an outgoing
message with a list of 0 to k tags, depending on the destination agent identifier.
Given a message 〈 , a.id, d.id, 〉 in a.outbox, the runtime determines the
longest common prefix of a.id and d.id. Suppose the longest common prefix has
length l, 0 ≤ l ≤ k. The runtime tags the message with the first k − l functions
in the µ-list of a.

As an example, consider an agent /a/1/1. The runtime of /a/1/1 has the
µ-list [µ2, µ1, µ0]. µ2 is used to construct messages from virtual agent /a/1 and
µ1 is used to construct messages from virtual agent /a. Messages from /a/1/1
to /a/1/2 need not be tagged, since these are sibling agents. A message from
/a/1/1 to /a/2 needs to be tagged only with [µ2], since /a/2 and /a/1 are sibling
agents, and the refinement of its sibling is transparent to /a/2. A message from
/a/1/1 to /d is tagged with Ma = [µ2, µ1]; it first needs to be merged using µ2

to obtain a message from /a/1 to /d, which in turn needs to be merged using
µ1 to obtain a message from /a to /d.

Each successful application of a merge function by the runtime removes a tag
from a message. Runtimes can only place in their agent’s inbox messages with
no tags.

Since merge functions are provided by runtimes that may be faulty, the Escher
PKI must account for tag authenticity; that is, runtimes need to verify tags.
Without tag authenticity, the runtime of a faulty agent could tag its outgoing
messages incorrectly. For instance, Byzantine replicas of a replicated service
could collude and tag their messages with a faulty µF such that µF yields a
singleton set containing a bad message. To prevent this, recall that a manager
of a virtual agent s issues a public key certificate to its child agents by signing
their public key and identifier. We require this certificate to also includes a hash
of the merge function µs.

46 B. Canakci et al.

3.4 Garbage Collection of Delivered Messages

An agent’s inbox and outbox are specified as append-only. In practice, however,
once a message is in the done box of the destination agent, it can physically be
removed from the corresponding in- and outboxes. In this section, we discuss
how.

We are explicitly not concerned with garbage collecting messages in an
agent’s done box, as the done box is outside Escher’s purview. Further, while
at the specification level it is another unbounded message box, an application
can often implement its functionality using, say, a sequence number per client
to track which messages it has handled thus far.

However, to implement garbage collection of inboxes and outboxes, a
runtime must be able to find out whether a message with a given identi-
fier is in the done box. To this end, we require each agent to expose a
method contains(i, s.id, d.id) that returns true iff there exists a message
〈i, s.id, d.id, 〉 ∈ a.done.

Garbage Collection in Outboxes. A message m = 〈i, s.id, d.id, 〉 can be
removed from s.outbox once it is in d.inbox. To implement garbage collection
of agent outboxes, Escher uses acknowledgment messages. When the runtime of
an agent d delivers a message m = 〈i, s.id, d.id, 〉 to d.inbox, it sends an ACK
message mACK = 〈ACKi, d.id, s.id, m〉 to agent s. ACK messages must be tagged
the same way as regular messages. The message identifier of an ACK message is
of the form 〈ACK, i〉, where i is the message identifier of the message being
acknowledged. When the acknowledgment message is received (possibly after
merging) by s or one of its descendants, the runtime removes m from its outbox.
ACK messages are exchanged between runtimes only and are ephemeral: they are
not placed in inboxes or outboxes and are not themselves acknowledged.

Garbage Collection in Inboxes. A message m = 〈i, s.id, d.id, 〉 ∈ a.inbox can
be removed once it is in a.done. The runtime of an agent a periodically evaluates
a.done.contains(i, s.id, d.id) for each such message. Also, if an unmerged
fragment of a message arrives, the contains method is invoked to see if the
fragment must be stored for later merging. If the message is already in the done
box, an acknowledgment is sent but the fragment is otherwise dropped to avoid
duplicate delivery.

4 Related Work

Many frameworks have been proposed that simplify the development of dis-
tributed systems. Here we only cover the projects most related to Escher.

Object-Oriented Middlewares. A variety of middlewares propose modeling a dis-
tributed system as a collection of objects and provide uniform interfaces to
manage and access those objects, including CORBA [14], JavaBeans [26], and
DCOM [20]. For example, CORBA defines an Interface Definition Language to

Building Systems of Systems with Escher 47

specify object interfaces and allows applications to be written in a variety of pro-
gramming languages and deployed on a variety of operating systems. An Object
Request Broker allows objects to invoke interfaces of other objects transparently.
To this end, both client and servers have stubs that automatically marshal argu-
ments and results. Herein also lies the problem that Escher solves: these stubs do
not support refinement. While CORBA does provide support for an unrefined
client to securely interact with a refined server, it cannot transparently support
multi-tiered distributed services in which refined clients interact with refined
services. While Escher can support an object-oriented approach to application
development, Escher is more general and supports other popular paradigms for
distributed systems development such as streaming applications.

Reconfigurable Middlewares. Reconfigurable distributed systems support the
replacement of their sub-systems. The aforementioned CORBA supports recon-
figuration, see for example [8]. Ajmani et al. [3] supports multi-version systems
and can gradually upgrade software of distributed systems. Escher supports
agent upgrades at any level of refinement and therefore supports both upgrades
of individual physical agents and upgrades of an entire distributed service.

Refinement-based Middlewares. The Ovid system [5] supports refinements (in
the form of so-called transformations). The Escher refinement hierarchy is sim-
ilar to Ovid’s Logical Agent Transformation Tree, and Escher borrows the con-
cept of using pathnames for refined agents from Ovid. However, Ovid does not
support a uniform and secure way for refined agents to communicate, a key fea-
ture of Escher. The Ovid management system depends on a controller agent,
which needs to be programmed with specific code for each type of agent and
refinement and leaves open the question of who manages the control agent itself.
The Escher management interface is uniform and does not require application-
or refinement-specific code. Verdi [29] is another system that supports trans-
formations. It is focused on formal verification of such transformations using a
Coq-based toolchain. IronFleet [15] supports building and verifying distributed
systems using the Dafny [18] language. Neither Verdi nor Ironfleet provide uni-
form interfaces for refined agents to communicate nor any form of application
management.

The authors of [17] use stepwise refinement, to develop fault tolerant mid-
dleware for mobile agent systems. The middleware allows groups of agents to
work together in isolated scopes and lets individual agents move around, switch-
ing scopes, while supporting interprocess communication via the Linda Tuple
Space [13]. In [25], the authors describe a reflexive approach to updating com-
munication between JavaBeans components in the face of reconfiguration events.
While also based on refinement, neither approach solves communication between
refined services, which is the key problem Escher addresses.

Replicated Remote Procedure Call. Perhaps the earliest work investigating how
refined services can interact is replicated procedure calls [11,30]. The approach
considers only crash-tolerant state machine replication schemes and requires that

48 B. Canakci et al.

both the client and server are aware of each other’s configurations. No attempt
is made at making the approach transparent, and the approach does not support
secure or Byzantine-tolerant replication schemes. Other proposals for specialized
protocols for interacting replicated service include [2,21,28]. Aegean [4] also con-
siders the interaction between replicated services. It considers the blocking RPC
model incompatible with the state machine replication model of Paxos and pro-
poses a solution based on speculative execution. Compared to these approaches,
Escher provides a secure and general-purpose approach to interacting services
that can have undergone various forms of refinement, including any of a variety
of replication protocols. Moreover, Escher supports dynamic updates of a service
without having to reconfigure other services that it interacts with.

Automated Synthesis. Some prior work focuses on generating low-level imple-
mentations of distributed protocols from their high-level specifications. In [9],
Bonakdarpour et al. give a framework for automatedly deriving the implemen-
tation of a distributed application from its component-based “Behavior, Inter-
action, Priority” model. DistAlgo [19] is a high-level specification language for
distributed protocols that can be compiled into Python implementations. While
Escher’s wrappers can be used to deploy a distributed refinement of a specific
agent that has an implementation, Escher is not concerned with automatically
refining a specification. Instead, Escher focuses on providing uniform commu-
nication between refined components, which is key for supporting modular and
dynamic systems.

5 Conclusion

As multi-tiered cloud applications have become commonplace, the time has come
to have first-class support for interacting distributed services. This paper pro-
poses Escher, a middleware that uses service refinement to ease the development
and evolution of such systems of systems. Escher manages refinement hierarchies
and provides a message bus that allows services to communicate irrespective of
their refinement level. Escher also provides isolation between distributed services,
so that each can be developed and evolved independently of others. For certain
classes of services, Escher provides built-in refinements, such as replication for
fault tolerance and sharding for scalability, that can be applied without having
to write or change code.

Acknowledgments. We thank the reviewers for their feedback. This work was sup-
ported in part by a Google Faculty Research Award, and by the NSF grants CSR-
17620155, CNS-CORE 2008667, and CNS-CORE 2106954.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82(2), 253–284 (1991)

Building Systems of Systems with Escher 49

2. Adya, A., et al.: Farsite: federated, available, and reliable storage for an incom-
pletely trusted environment. In: Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI 2002). USENIX, December 2002

3. Ajmani, S., Liskov, B., Shrira, L.: Modular software upgrades for distributed sys-
tems. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 452–476. Springer,
Heidelberg (2006). https://doi.org/10.1007/11785477 26

4. Aksoy, R.C., Kapritsos, M.: Aegean: replication beyond the client-server model. In:
Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP
2019, pp. 385–398, New York, NY, USA. Association for Computing Machinery
(2019)

5. Altinbuken, D., Van Renesse, R.: Ovid: a software-defined distributed systems
framework. In: 8th USENIX Workshop on Hot Topics in Cloud Computing (Hot-
Cloud 2016), June 2016

6. Ananthanarayanan, R., et al.: Photon: fault-tolerant and scalable joining of con-
tinuous data streams. In: Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, SIGMOD 2013, pp. 577–588, New York, NY,
USA. Association for Computing Machinery (2013)

7. Bernstein, D.: Containers and cloud: from LXC to Docker to Kubernetes. IEEE
Cloud Comput. 1(3), 81–84 (2014)

8. Bidan, C., Issarny, V., Saridakis, T., Zarras, A.: A dynamic reconfiguration service
for CORBA. In: Proceedings of the Fourth International Conference on Config-
urable Distributed Systems (Cat. No.98EX159) (1998)

9. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: A framework
for automated distributed implementation of component-based models. Distrib.
Comput. 25, 10 (2012)

10. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg, omega, and
kubernetes. Queue 14(1), 70–93 (2016)

11. Cooper, E.C.: Replicated procedure call. SIGOPS Oper. Syst. Rev. 20(1), 44–56
(1986)

12. IBM Cloud Education. ESB (Enterprise Service Bus). https://www.ibm.com/
cloud/learn/esb

13. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

14. Object Management Group. The Common Object Request Broker: Architecture
and specification, revision 2.4.1, forma1/00-11-07, November 2000

15. Hawblitzel, C., et al.: IronFleet: proving practical distributed systems correct. In:
Proceedings of the 25th Symposium on Operating Systems Principles, SOSP 2015,
pp. 1–17, New York, NY, USA. Association for Computing Machinery (2015)

16. Apache Kafka. https://kafka.apache.org/
17. Laibinis, L., Troubitsyna, E., Iliasov, A., Romanovsky, A.B.: Fault tolerant mid-

dleware for agent systems: a refinement approach. In: 12th European Workshop on
Dependable Computing (EWDC 2009), Toulouse, France, May 2009

18. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

19. Liu, Y.A., Stoller, S.D., Lin, B.: High-level executable specifications of distributed
algorithms. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp.
95–110. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33536-
5 11

https://doi.org/10.1007/11785477_26
https://www.ibm.com/cloud/learn/esb
https://www.ibm.com/cloud/learn/esb
https://kafka.apache.org/
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-33536-5_11
https://doi.org/10.1007/978-3-642-33536-5_11

50 B. Canakci et al.

20. Horstmann, M., Kirtland, M.: DCOM architecture. In: Microsoft Developer Net-
work, July 1997

21. Netto, H.V., Lung, L.C., Correia, M., Luiz, A.F., de Souza, L.M.S.: State machine
replication in containers managed by Kubernetes. J. Syst. Archit. 73 (2017)

22. Envoy Proxy. https://www.envoyproxy.io/
23. TIBCO Enterprise Message Service. https://www.tibco.com/products/tibco-

enterprise-message-service
24. Shoup, R.: Service architectures at scale: Lessons from Google and eBay
25. Truyen, E., Joosen, W., Verbaeten, P., Jorgensen, B.N.: On interaction refinement

in middleware. In: Workshop on Component-Oriented Programming, June 2000
26. Valesky, T.: Enterprise JavaBeans: Developing Component-Based Distributed

Applications. Addison-Wesley Longman Publishing Co., Inc., USA (1999)
27. Vieira, M.A.M., et al.: Fast packet processing with EBPF and XDP: concepts,

code, challenges, and applications. ACM Comput. Surv. 53(1) (2020)
28. Wang, Y., et al.: Robustness in the Salus scalable block store. In: Proceedings of

the 10th USENIX Conference on Networked Systems Design and Implementation,
NSDI 2013, pp. 357–370, USA. USENIX Association (2013)

29. Wilcox, J.R., et al.: Verdi: a framework for implementing and formally verifying
distributed systems. SIGPLAN Not. 50(6), 357–368 (2015)

30. Yap, K.S., Jalote, P., Tripathi, S.: Fault tolerant remote procedure call. In: Pro-
ceedings of the 8th International Conference on Distributed Computing Systems
(1988)

https://www.envoyproxy.io/
https://www.tibco.com/products/tibco-enterprise-message-service
https://www.tibco.com/products/tibco-enterprise-message-service

Deadlock and Noise in Self-Organized
Aggregation Without Computation

Joshua J. Daymude1(B) , Noble C. Harasha2, Andréa W. Richa3 ,
and Ryan Yiu3

1 Biodesign Center for Biocomputing, Security and Society,
Arizona State University, Tempe, AZ 85281, USA

jdaymude@asu.edu
2 Massachusetts Institute of Technology, Cambridge, MA 02139, USA

nharasha@mit.edu
3 School of Computing and Augmented Intelligence, Arizona State University,

Tempe, AZ 85281, USA
aricha@asu.edu

Abstract. Aggregation is a fundamental behavior for swarm robotics
that requires a system to gather together in a compact, connected clus-
ter. In 2014, Gauci et al. proposed a surprising algorithm that reliably
achieves swarm aggregation using only a binary line-of-sight sensor and
no arithmetic computation or persistent memory. It has been rigorously
proven that this algorithm will aggregate one robot to another, but it
remained open whether it would always aggregate a system of n > 2
robots as was observed in experiments and simulations. We prove that
there exist deadlocked configurations from which this algorithm cannot
achieve aggregation for n > 3 robots when the robots’ motion is uniform
and deterministic. In practice, however, the physics of collisions and slip-
ping work to the algorithm’s advantage in avoiding deadlock; moreover,
we show that the algorithm is robust to small amounts of noise in its
sensors and in its motion. Finally, we prove that the algorithm achieves
a linear runtime speedup for the n = 2 case when using a cone-of-sight
sensor instead of a line-of-sight sensor.

Keywords: Swarm robotics · Self-organization · Aggregation

1 Introduction

The fields of swarm robotics [5,14,15,24] and programmable matter [2,18,33]
seek to engineer systems of simple, easily manufactured robot modules that
can cooperate to perform tasks involving collective movement and reconfigu-
ration. Our present focus is on the aggregation problem (also referred to as

The authors gratefully acknowledge support from the U.S. ARO under MURI award
#W911NF-19-1-0233 and from the Arizona State University Biodesign Institute.

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 51–65, 2021.
https://doi.org/10.1007/978-3-030-91081-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_4&domain=pdf
http://orcid.org/0000-0001-7294-5626
http://orcid.org/0000-0003-3592-3756
https://doi.org/10.1007/978-3-030-91081-5_4

52 J. J. Daymude et al.

“gathering” [8,16,19] and “rendezvous” [9,34,35]) in which a robot swarm
must gather together in a compact, connected cluster [3]. Aggregation has a
rich history in swarm robotics as a prerequisite for other collective behaviors
requiring densely connected swarms. Inspired by self-organizing aggregation in
nature [6,12,13,25,27,29], numerous approaches for swarm aggregation have
been proposed, each one seeking to achieve aggregation faster, more robustly,
and with less capable individuals than the last [1,11,17,26,28].

One goal from the theoretical perspective has been to identify minimal capa-
bilities for an individual robot such that a collective can provably accomplish a
given task. Towards this goal, Roderich Groß and others at the Natural Robotics
Laboratory have developed a series of very simple algorithms for swarm behav-
iors like spatially sorting by size [7,23], aggregation [21], consensus [32], and
coverage [31]. These algorithms use at most a few bits of sensory information
and express their entire structure as a single “if-then-else” statement, avoiding
any arithmetic computation or persistent memory. Although these algorithms
have been shown to perform well in both robotic experiments and simulations
with larger swarms, some lack general, rigorous proofs that guarantee the cor-
rectness of the swarm’s behavior.

In this work, we investigate the swarm aggregation algorithm of Gauci et
al. [21] (summarized in Sect. 2) whose provable convergence for systems of n > 2
robots remained an open question. In Sect. 3, we answer this question negatively,
identifying deadlocked configurations from which aggregation is never achieved.
Motivated by the need to break these deadlocks, we corroborate and extend the
simulation results of [20] by showing that the algorithm is robust to two distinct
forms of error (Sect. 4). Finally, we prove that the time required for a single
robot to aggregate to a static robot improves by a linear factor when using a
cone-of-sight sensor instead of a line-of-sight sensor; however, simulations show
this comparative advantage decreases for larger swarms (Sect. 5).

2 The Gauci et al. Swarm Aggregation Algorithm

Given n robots in arbitrary initial positions on the two-dimensional plane, the
goal of the aggregation problem is to define a controller that, when used by each
robot in the swarm, eventually forms a compact, connected cluster. Gauci et
al. [21] introduced an algorithm for aggregation among e-puck robots [30] that
only requires binary information from a robot’s (infinite range) line-of-sight sen-
sor indicating whether it sees another robot (I = 1) or not (I = 0). The controller
x = (v�0, vr0, v�1, vr1) ∈ [−1, 1]4 actuates the left and right wheels according to
velocities (v�0, vr0) if I = 0 and (v�1, vr1) otherwise. Using a grid search over a
sufficiently fine-grained parameter space and evaluating aggregation according
to a dispersion metric, they determined that the best controller was:

x∗ = (−0.7,−1, 1,−1).

Deadlock and Noise in Self-Organized Aggregation Without Computation 53

Thus, when no robot is seen, a robot using x∗ will rotate around a point c
that is 90◦ counter-clockwise from its line-of-sight sensor and R = 14.45 cm away
at a speed of ω0 = −0.75 rad/s; when a robot is seen, it will rotate clockwise in
place at a speed of ω1 = −5.02 rad/s. The following three theorems summarize
the theoretical results for this aggregation algorithm.

Theorem 1 (Gauci et al. [21]). If the line-of-sight sensor has finite range,
then for every controller x there exists an initial configuration in which the robots
form a connected visibility graph but from which aggregation will never occur.

Theorem 2 (Gauci et al. [21]). One robot using controller x∗ will always
aggregate to another static robot or static circular cluster of robots.

Theorem 3 (Gauci et al. [21]). Two robots both using controller x∗ will
always aggregate.

Our main goal, then, is to investigate the following conjecture that is well-
supported by evidence from simulations and experiments.

Conjecture 1. A system of n > 2 robots each using controller x∗ will always
aggregate.

Throughout the remaining sections, we measure the degree of aggregation in
the system using the following metrics:

– Smallest Enclosing Disc (SED) Circumference. The smallest enclosing disc of
a set of points S in the plane is the circular region of the plane containing S
and having the smallest possible radius. Smaller circumferences correspond
to more aggregated configurations.

– Convex Hull Perimeter. The convex hull of a set of points S in the plane
is the smallest convex polygon enclosing S. Smaller perimeters correspond
to more aggregated configurations. Due to the flexibility of convex polygons,
this metric is less sensitive to outliers than the smallest enclosing disc which
is forced to consider a circular region.

– Dispersion (2nd Moment). Adapting Gauci et al. [21] and Graham and
Sloane [22], let pi denote the (x, y)-coordinate of robot i on the continu-
ous plane and p = 1

n

∑n
i=1 pi be the centroid of the system. Dispersion is

defined as:
n∑

i=1

||pi − p||2 =
n∑

i=1

√
(xi − x)2 + (yi − y)2

Smaller values of dispersion correspond to more aggregated configurations.
– Cluster Fraction. A cluster is a set of robots that is connected by means of

(nearly) touching. Following Gauci et al. [21], our final metric for aggregation
is the fraction of robots in the largest cluster. Unlike the previous metrics,
larger cluster fractions correspond to more aggregated configurations.

We use dispersion as our primary metric of aggregation since it is the metric
that is least sensitive to outliers and was used by Gauci et al. [21], enabling a
clear comparison of results.

54 J. J. Daymude et al.

3 Impossibility of Aggregation for n > 3 Robots

In this section, we rigorously establish a negative result indicating that Conjec-
ture 1 does not hold in general. This result identifies a deadlock that, in fact,
occurs for a large class of controllers that x∗ belongs to. We say a controller
x = (v�0, vr0, v�1, vr1) ∈ [−1, 1]4 is clockwise-searching if vr0 < v�0 < 0. In other
words, a clockwise-searching controller maps I = 0 (i.e., the case in which no
robot is detected by the line-of-sight sensor) to a clockwise rotation about the
center of rotation c that is a distance R > 0 away.1

Theorem 4. For all n > 3 and all clockwise-searching controllers x, there exists
an initial configuration of n robots from which the system will not aggregate when
using controller x.

Proof. At a high level, we construct a deadlocked configuration by placing the
n robots in pairs such that no robot sees any other robot with its line-of-sight
sensor—implying that all robots continually try to rotate about their centers
of rotation—and each pair’s robots mutually block each other’s rotation. This
suffices for the case that n is even; when n is odd, we extend the all-pairs con-
figuration to include one mutually blocking triplet. Thus, no robots can move
in this configuration since they are all mutually blocking, and since no robot
sees any other they remain in this disconnected (non-aggregated) configuration
indefinitely.

In detail, first suppose n > 3 is even. As in [21], let r denote the radius
of a robot. For each i ∈ {0, 1, . . . , n

2 − 1}, place robots p2i and p2i+1 at points
(3r ·i, r) and (3r ·i,−r), respectively. Orient all robots p2i with their line-of-sight
sensors in the +y direction, and orient all robots p2i+1 in the −y direction. This
configuration is depicted in Fig. 1a. Due to their orientations, no robot can see
any others; thus, since x is a clockwise-searching controller, all robots p2i are
attempting to move in the −y direction while all robots p2i+1 are attempting
to move in the +y direction. Each pair of robots is mutually blocking, resulting
in no motion. Moreover, since each consecutive pair of robots has a horizontal
gap of distance r between them, this configuration is disconnected and thus
non-aggregated.

It remains to consider when n > 3 is odd. Organize the first n − 3 robots in
pairs according to the description above; since n is odd, we have that n−3 must
be even. Then place robot pn−1 at point (3r(n

2 −1)+
√

3r, 0) with its line-of-sight
sensor oriented at 0◦ (i.e., the +x direction), robot pn−2 at point (3r(n

2 −1),−r)
with orientation 240◦, and robot pn−3 at point (3r(n

2 − 1), r) with orientation
120◦, as depicted in Fig. 1b. By a nearly identical argument to the one above,
this configuration will also remain deadlocked and disconnected.

Therefore, in all cases there exists a configuration of n > 3 robots from which
no clockwise-searching controller can achieve aggregation. ��
1 Note that an analogous version of Theorem 4 would hold for counter-clockwise-

searching controllers if a robot’s center of rotation was 90◦ clockwise rather than
counter-clockwise from its line-of-sight sensor.

Deadlock and Noise in Self-Organized Aggregation Without Computation 55

...
p0

p1

p2

p3

r
R

R3r

cn-2

cn-1
pn-1

pn-2

(a)

...
p0

p1

p2

p3

r R

R
3r

cn-3

cn-2

pn-2

pn-3

cn-1

pn-1

R

(b)

Fig. 1. The deadlocked configurations described in the proof of Theorem 4 for (a) n > 3
even and (b) n > 3 odd that remain non-aggregated indefinitely.

We have shown that no clockwise-searching controller (including x∗) can be
guaranteed to aggregate a system of n > 3 robots starting from a deadlocked
configuration, implying that Conjecture 1 does not hold in general. Moreover,
not all deadlocked configurations are disconnected: Fig. 2 shows a connected
configuration that will never make progress towards a more compact configura-
tion because all robots are mutually blocked by their neighbors. Notably, these
deadlocks are not observed in practice due to inherent noise in the physical e-
puck robots. Real physics work to aggregation’s advantage: if the robots were to
ever get “stuck” in a deadlock configuration, collisions and slipping perturb the
precise balancing of forces to allow the robots to push past one another. This
motivates an explicit inclusion and modeling of noise in the algorithm, which we
will return to in the next section.

Aaron Becker had conjectured at Dagstuhl Seminar 18331 [4] that symmetry
could also lead to livelock, a second type of negative result for the Gauci et al.
algorithm. In particular, Becker conjectured that robots initially organized in a
cycle (e.g., Fig. 3a for n = 3) would traverse a “symmetric dance” in perpetuity
without converging to an aggregated state when using controller x∗. However,

56 J. J. Daymude et al.

Fig. 2. A connected deadlocked configuration that remains non-compact.

simulations disprove this conjecture. Figure 3b shows that while swarms of var-
ious sizes initialized in the symmetric cycle configuration do exhibit an oscilla-
tory behavior, they always reach and remain near the minimum dispersion value
indicating near-optimal aggregation. Interestingly, these unique initial condi-
tions cause small swarms to reach and remain in an oscillatory cycle where they
touch and move apart infinitely often. Larger swarms break symmetry through
collisions once the robots touch.

4 Robustness to Error and Noise

Motivated by the role of collisions and perturbations in freeing swarms from
potential deadlocks, we next investigate the algorithm’s robustness to varying
magnitudes of error and noise. Our simulation platform models robots as circular
rigid bodies in two dimensions, capturing all translation, rotation, and collision
forces acting on the robots. Forces are combined and integrated iteratively over
5 ms time steps to obtain the translation and rotation of each robot. Figure 4
shows each of the four aggregation metrics for a baseline run on a swarm of
n = 100 robots with no explicitly added noise. All four metrics demonstrate
the system’s steady but non-monotonic progress towards aggregation. Smallest
enclosing disc circumference, convex hull perimeter, and dispersion show quali-
tatively similar progressions while the cluster fraction highlights when individual
connected components join together.

We study the effects of two different forms of noise: motion noise and error
probability. For motion noise, each robot at each time step experiences an applied
force of a random magnitude in [0,m∗] in a random direction. The parameter
m∗ defines the maximum noise force (in newtons) that can be applied to a robot

Deadlock and Noise in Self-Organized Aggregation Without Computation 57

R

R

R

r

(a) (b)

Fig. 3. (a) An example symmetric configuration of n = 3 robots that was conjectured
to produce livelock. (b) Dispersion over time for swarms of n = 3 (purple), n = 5
(magenta), and n = 10 (orange) robots with symmetric initial configurations analogous
to that of Fig. 3a. Dashed lines show the theoretical minimum dispersion value for the
given system size. (Color figure online)

in a single time step. For error probability, each robot has the same probability
p ∈ [0, 1] of receiving the incorrect feedback from its sight sensor at each time
step; more formally, a robot will receive the correct feedback I with probability
(1−p) and the opposite, incorrect feedback 1− I with probability p.2 The robot
then proceeds with the algorithm as usual based on the feedback it receives.

In general, as the magnitude of error increases, so does the time required
to achieve aggregation. The algorithm exhibits robustness to low magnitudes of
motion noise with the average time to aggregation remaining relatively steady
for m∗ ≤ 5 N and increasing only minimally for 5 ≤ m∗ ≤ 20 N (Fig. 5a). With
larger magnitudes of motion noise (m∗ > 20 N), average time to aggregation
increases significantly, with many runs reaching the limit for simulation time
before aggregation is reached. A similar trend is evident for error probability
(Fig. 5b). The algorithm exhibits robustness for small error probabilities p ∈
[0, 0.05] with the average time to aggregation rising steadily with increased error
until nearly all runs reach the simulation time limit. Intuitively, while small
amounts of noise can help the algorithm overcome deadlock without degrading
performance, too much noise interferes significantly with the algorithm’s ability
to progress towards aggregation.

2 Our formulation of an “error probability” p is equivalent to “sensory noise” in [21]
when the false positive and false negative probabilities are both equal to p.

58 J. J. Daymude et al.

(a) SED Circumference (b) Convex Hull Perimeter

(c) Dispersion (d) Cluster Fraction

Fig. 4. Time evolutions of the four aggregation metrics for the same execution of x∗

by a system of n = 100 robots for 300 s with no explicitly added noise. Dashed lines
indicate the optimal value for each aggregation metric given the number of robots n.

5 Using a Cone-of-Sight Sensor

We next analyze a generalization of the algorithm where each robot has a cone-
of-sight sensor of angle β instead of a line-of-sight sensor (β = 0). This was
left as future work in [21] and was briefly considered in [20] where, for each
β ∈ {0◦, 30◦, . . . , 180◦}, the best performing controller xβ was found via exhaus-
tive search and compared against the others. Here we take a complementary
approach, studying the performance of the original controller x∗ as β varies.

We begin by proving that, in the case of one static robot and one robot
executing the generalized algorithm, using a cone-of-sight sensor with size β > 0
can improve the time to aggregation by a linear factor (as a function of the
initial distance between the two robots) over the original algorithm. This result
follows from the fact that progress towards aggregation is achieved when the
moving robot is rotating in place, moving its center of rotation closer to the
static robot. With a line-of-sight sensor, the further the two robots are from
each other, the smaller the moving robot’s rotation in place. However, with a

Deadlock and Noise in Self-Organized Aggregation Without Computation 59

(a) Motion Noise (b) Error Probability

Fig. 5. The time required to reach aggregation for different magnitudes of (a) motion
noise and (b) error probability for systems of n = 10 (purple), n = 25 (magenta),
n = 50 (red), and n = 100 (orange) robots. Each experiment for a given system size
and noise strength was repeated 25 times (scatter plot); average runtimes are shown as
solid lines. We consider systems that are within 15% of the minimum dispersion value
as aggregated. The dashed line at 300 seconds indicates the cutoff time at which the
run is determined to be non-aggregating. (Color figure online)

cone-of-sight sensor, the moving robot is guaranteed to rotate in place a fixed
amount each time it sees the static robot, guaranteeing at least constant progress
towards aggregation with each revolution.

Theorem 5. One moving robot using a cone-of-sight sensor of size β ∈ (0, π)
will always aggregate with another static robot in

m <

⌈
(d0 − R − ri − rj)(R + 2ri)

2
√

3Rri sin((1 − 1/
√

3) · β/2)

⌉

rotations around its center of rotation, where d0 is the initial value of ||pj −ci||.
Proof. Consider a robot i executing the generalized algorithm at position pi

with center of rotation ci and a static robot j at position pj . As in the proofs
of Theorems 5.1 and 5.2 in [21], we first consider the scenario shown in Fig. 6
and derive an expression for d′ = ||pj − c′

i|| in terms of d = ||pj − ci||. W.l.o.g.,
let ci = [0, 0]T and let the axis of the cone-of-sight sensor of robot i point
horizontally right at the moment it starts seeing robot j. Then the position of
robot j is given by

pj =

⎡

⎣
rj cos(α/2+γ)

sin(α/2)

−
(
R + rj sin(α/2+γ)

sin(α/2)

)

⎤

⎦ .

60 J. J. Daymude et al.

pi

ci

R

ri

pj

β
α
γ

β

γ
rj

ci'

d

d'

α+2γ

Fig. 6. The setup considered in the proof of Theorem 5. Robot i is moving and has a
cone-of-sight sensor with size β while robot j is static.

Substituting this position into the distance d = ||pj − ci|| yields

d2 =
(

rj cos(α/2 + γ)
sin(α/2)

)2

+
(

R +
rj sin(α/2 + γ)

sin(α/2)

)2

= R2 +
2Rrj sin(α/2 + γ)

sin(α/2)
+

r2j

sin2(α/2)
.

Using a line-of-sight sensor, robot i would only rotate α before it no longer sees
robot j; however, with a cone-of-sight sensor of size β, robot i rotates α + 2γ
before robot j leaves its sight, where γ is the angle from the cone-of-sight axis
to the first line intersecting pi that is tangent to robot j. With this cone-of-sight
sensor, c′

i is given by

c′
i =

[
R sin(α + 2γ)

R(cos(α + 2γ) − 1)

]

.

Deadlock and Noise in Self-Organized Aggregation Without Computation 61

Substituting this new center of rotation into the distance d′ = ||pj − c′
i|| yields

d′ =

√
√
√
√
√
√
√
√

(
rj cos(α/2 + γ)

sin(α/2)
− R sin(α + 2γ)

)2

+

(

−
(

R +
rj sin(α/2 + γ)

sin(α/2)

)

− R(cos(α + 2γ) − 1)

)2

=

√
√
√
√
√
√
√
√

r2j cos2(α/2 + γ)

sin2(α/2)
− 2Rrj cos(α/2 + γ) sin(α + 2γ)

sin(α/2)
+ R2 sin2(α + 2γ)

+
r2j sin2(α/2 + γ)

sin2(α/2)
+

2Rrj sin(α/2 + γ) cos(α + 2γ)

sin(α/2)
+ R2 cos2(α + 2γ)

=

√

R2 +
r2j

sin2(α/2)
+

2Rrj(sin(α/2 + γ) cos(α + 2γ) − cos(α/2 + γ) sin(α + 2γ))

sin(α/2)

=

√

d2 +
2Rrj(sin(α/2 + γ − (α + 2γ)) − sin(α/2 + γ))

sin(α/2)

=

√

d2 − 4Rrj sin (α/2 + γ)

sin(α/2)
.

Note that this relation contains the result proven in Theorem 5.1 of [21] as
a special case by setting β = 0 (and thus γ = 0), which corresponds to a
line-of-sight sensor. To bound the number of d → d′ updates required until
d ≤ R + ri + rj (i.e., until the robots have aggregated), we write the following
recurrence relation, where d̂m = d2m and d̂m > (R + ri + rj)2:

d̂m+1 = d̂m − 4Rrj sin (α/2 + γ)
sin(α/2)

.

Observe that α is the largest when the two robots are touching, and—assuming
ri = rj , i.e., the two robots are the same size—it is easy to see that α ≤ π/3.
Also, γ is at least 0 and at most β/2; thus, by supposition, γ < π/2. Thus, by
the angle sum identity,

d̂m+1 < d̂m − 4Rrj cos(α/2) sin(γ)
sin(α/2)

.

Again, since α ≤ π/3, we have cos(α/2) ≥ √
3/2. By inspection, we also have

sin(α/2) < rj/(dm − R), yielding

d̂m+1 < d̂m − 2
√

3R(dm − R) sin(γ).

Let k1 > 1 be a constant such that ri = rj = R/k1, which must exist since
ri, rj , and R are constants and ri = rj < R. Since the robots have not yet
aggregated, we have dm > R + ri + rj = (1 + 2/k1)R. We use this to show

62 J. J. Daymude et al.

R <
dm

1 + 2/k1
= k2dm,

where k2 = 1/(1 + 2/k1) < 1 is a constant. Returning to our recurrence
relation:

d̂m+1 < d̂m − 2
√

3R(dm − k2dm) sin(γ) = d̂m − 2
√

3Rdm(1 − k2) sin(γ)

Recalling that d̂m = d2m, we have

dm+1 <

√

d̂m − 2
√

3Rdm(1 − k2) sin(γ) < dm −
√

3R(1 − k2) sin(γ),

where the second inequality can be verified by squaring both sides and noting
that R > 0, 1 − k2 > 0, and γ ∈ (0, π/2). As a final upper bound on dm+1, we
lower bound the angle γ as a function of the constant size of the cone-of-sight
sensor β as γ ≥ (1 − 1/

√
3) · β/2 (see [10] for a complete derivation), yielding

dm+1 < dm −
√

3R(1 − k2) sin((1 − 1/
√

3) · β/2).

This yields the solution

dm < d0 − m
√

3R(1 − k2) sin((1 − 1/
√

3) · β/2), dm > R + ri + rj

The number of d → d′ updates required until d ≤ R + ri + rj is now given by
setting dm = R + ri + rj in this solution and solving for m, which yields

m <

⌈
d0 − R − ri − rj√

3R(1 − k2) sin((1 − 1/
√

3) · β/2)

⌉

=
⌈

(d0 − R − ri − rj)(R + 2ri)
2
√

3Rri sin((1 − 1/
√

3) · β/2)

⌉

,

concluding the proof. ��
We note that this bound on the number of required updates m has a lin-

ear dependence on d0 while the original bound proven in Theorem 5.2 of [21]
for line-of-sight sensors depended on d20, demonstrating a linear speedup with
cone-of-sight sensors for n = 2 robots. However, simulation results show that
as the number of robots increases, the speedup from using cone-of-sight sen-
sors diminishes (Fig. 7). All systems benefit from small cone-of-sight sensors—
i.e., β ∈ (0, 0.5)—reaching aggregation in significantly less time. With larger
systems, however, large cone-of-sight sensors can be detrimental as robots see
others more often than not, causing them to primarily rotate in place without
making progress towards aggregation. This highlights a delicate balance between
the algorithm’s two modes (rotating around the center of rotation and rotating
in place) with β indirectly affecting how much time is spent in each.

Deadlock and Noise in Self-Organized Aggregation Without Computation 63

Fig. 7. The effects of cone-of-sight sensor size on the algorithm’s time to aggregation
for systems of n = 10 (purple), n = 25 (magenta), n = 50 (red), and n = 100 (orange)
robots. Each experiment for a given system size and sensor size was repeated 25 times
(scatter plot); average runtimes are shown as solid lines. We consider systems that are
within 15% of the minimum dispersion value as aggregated. The dashed line at 300
seconds indicates the cutoff time at which the run is determined to be non-aggregating.
(Color figure online)

6 Conclusion

In this paper, we investigated the Gauci et al. swarm aggregation algorithm [21]
which provably aggregates two robots and reliably aggregates larger swarms in
experiment using only a binary line-of-sight sensor and no arithmetic computa-
tion or persistent memory. We answered the open question of whether the algo-
rithm guarantees aggregation for systems of n > 2 robots negatively, identifying
how deadlock can halt the system’s progress towards aggregation. In practice,
however, the physics of collisions and slipping work to the algorithm’s advan-
tage in avoiding deadlock; moreover, we showed that the algorithm is robust to
small amounts of noise in its sensors and in its motion. Finally, we considered
a generalization of the algorithm using cone-of-sight sensors, proving that for
the situation of one moving robot and one static robot, the time to aggregation
is improved by a linear factor over the original line-of-sight sensor. Simulation
results showed that small cone-of-sight sensors can also improve runtime for
larger systems, though with diminishing returns.

In the full version of this work [10], we additionally introduced a noisy, dis-
crete adaptation of the Gauci et al. algorithm in an effort to formally prove its
convergence when noise is explicitly modeled as a mechanism to break dead-
lock. However, both the original algorithm and this discrete adaptation progress
towards aggregation non-monotonically, complicating analysis techniques relying
on consistent progress towards the goal state. It is possible that a proof showing
convergence in expectation can be derived, but we leave this for future work.

64 J. J. Daymude et al.

Acknowledgements and Data Availability. We thank Dagstuhl [4] for hosting
the seminar that inspired this research, Roderich Groß for introducing us to this
open problem, and Aaron Becker and Dan Halperin for their contributions to the
investigations of symmetric livelock and cone-of-sight sensors. Source code for all sim-
ulations reported in this work is openly available at https://github.com/SOPSLab/
SwarmAggregation.

References

1. Agrawal, M., Bruss, I.R., Glotzer, S.C.: Tunable emergent structures and traveling
waves in mixtures of passive and contact-triggered-active particles. Soft Matter
13(37), 6332–6339 (2017)

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253
(2006)

3. Bayindir, L.: A review of swarm robotics tasks. Neurocomputing 172, 292–321
(2016)

4. Berman, S., Fekete, S.P., Patitz, M.J., Scheideler, C.: Algorithmic foundations of
programmable matter (Dagstuhl Seminar 18331). Dagstuhl Rep. 8(8), 48–66 (2019)

5. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: A review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

6. Camazine, S., Franks, N.R., Sneyd, J., Bonabeau, E., Deneubourg, J.L., Theraula,
G.: Self-Organization in Biological Systems. Princeton University Press, Princeton,
NJ, USA (2001)

7. Chen, J., Gauci, M., Price, M.J., Groß, R.: Segregation in swarms of e-puck robots
based on the Brazil nut effect. In: Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems, vol. 1, pp. 163–170 (2012)

8. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gath-
ering problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J.
(eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-45061-0 90

9. Cortés, J., Martinez, S., Bullo, F.: Robust rendezvous for mobile autonomous
agents via proximity graphs in arbitrary dimensions. IEEE Trans. Autom. Control
51(8), 1289–1298 (2006)

10. Daymude, J.J., Harasha, N.C., Richa, A.W., Yiu, R.: Deadlock and noise in self-
organizing aggregation without computation (2021). https://arxiv.org/abs/2108.
09403

11. Deblais, A., et al.: Boundaries control collective dynamics of inertial self-propelled
robots. Phys. Rev. Lett. 120(18), 188002 (2018)

12. Deneubourg, J.L., Grégoire, J.C., Le Fort, E.: Kinetics of larval gregarious behavior
in the bark beetle Dendroctonus micans (Coleoptera: Scolytidae). J. Insect Behav.
3, 169–182 (1990)

13. Devreotes, P.: Dictyostelium discoideum: A model system for cell-cell interactions
in development. Science 245(4922), 1054–1058 (1989)

14. Dorigo, M., Theraulaz, G., Trianni, V.: Reflections on the future of swarm robotics.
Sci. Robot. 5(49), eabe4385 (2020)

15. Dorigo, M., Theraulaz, G., Trianni, V.: Swarm robotics: Past, present, and future.
Proc. IEEE 109(7), 1152–1165 (2021)

16. Fatès, N.: Solving the decentralised gathering problem with a reaction-diffusion-
chemotaxis scheme. Swarm Intell. 4(2), 91–115 (2010)

https://github.com/SOPSLab/SwarmAggregation
https://github.com/SOPSLab/SwarmAggregation
https://doi.org/10.1007/3-540-45061-0_90
https://arxiv.org/abs/2108.09403
https://arxiv.org/abs/2108.09403

Deadlock and Noise in Self-Organized Aggregation Without Computation 65

17. Firat, Z., Ferrante, E., Gillet, Y., Tuci, E.: On self-organised aggregation dynamics
in swarms of robots with informed robots. Neural Comput. Appl. 32(17), 13825–
13841 (2020). https://doi.org/10.1007/s00521-020-04791-0

18. Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile
Entities. Springer International Publishing, Switzerland (2019)

19. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theor. Comput. Sci. 337(1–3), 147–168 (2005)

20. Gauci, M.: Swarm Robotic Systems with Minimal Information Processing.
PhD Thesis, University of Sheffield, Sheffield, England (2014). https://etheses.
whiterose.ac.uk/7569/

21. Gauci, M., Chen, J., Li, W., Dodd, T.J., Groß, R.: Self-organized aggregation
without computation. Int. J. Robot. Res. 33(8), 1145–1161 (2014)

22. Graham, R.L., Sloane, N.J.A.: Penny-packing and two-dimensional codes. Discret.
Comput. Geom. 5(1), 1–11 (1990). https://doi.org/10.1007/BF02187775

23. Groß, R., Magnenat, S., Mondada, F.: Segregation in swarms of mobile robots
based on the Brazil nut effect. In: 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 4349–4356. IROS 2009 (2009)

24. Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Heidelberg (2018)
25. Jeanson, R., et al.: Self-organized aggregation in cockroaches. Anim. Behav. 69(1),

169–180 (2005)
26. Li, S., et al.: Programming active cohesive granular matter with mechanically

induced phase changes. Sci. Adv. 7(17), eabe8494 (2021)
27. Magurran, A.E.: The adaptive significance of schooling as an anti-predator defence

in fish. Ann. Zool. Fenn. 27(2), 51–66 (1990)
28. Misir, O., Gökrem, L.: Dynamic interactive self organizing aggregation method in

swarm robots. Biosystems 207, 104451 (2021)
29. Mlot, N.J., Tovey, C.A., Hu, D.L.: Fire ants self-assemble into waterproof rafts to

survive floods. Proc. Natl. Acad. Sci. 108(19), 7669–7673 (2011)
30. Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In:

Proceedings of the 9th Conference on Autonomous Robot Systems and Competi-
tions, pp. 59–65 (2009)

31. Özdemir, A., Gauci, M., Kolling, A., Hall, M.D., Groß, R.: Spatial coverage without
computation. In: International Conference on Robotics and Automation, pp. 9674–
9680 (2019)

32. Özedmir, A., Gauci, M., Bonnet, S., Groß, R.: Finding consensus without compu-
tation. IEEE Robot. Autom. Lett. 3(3), 1346–1353 (2018)

33. Woods, D., Chen, H.L., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active
self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: Pro-
ceedings of the 4th Innovations in Theoretical Computer Science Conference, pp.
353–354 (2013)

34. Yu, J., LaValle, S.M., Liberzon, D.: Rendezvous without coordinates. IEEE Trans.
Autom. Control 57(2), 421–434 (2012)

35. Zebrowski, P., Litus, Y., Vaughan, R.T.: Energy efficient robot rendezvous. In:
Fourth Canadian Conference on Computer and Robot Vision, pp. 139–148 (2007)

https://doi.org/10.1007/s00521-020-04791-0
https://etheses.whiterose.ac.uk/7569/
https://etheses.whiterose.ac.uk/7569/
https://doi.org/10.1007/BF02187775

Failure is (literally) an Option: Atomic
Commitment vs Optionality
in Decentralized Finance

Daniel Engel, Maurice Herlihy(B) , and Yingjie Xue

Computer Science Department, Brown University, Providence, RI 02912, USA
mph@cs.brown.edu

Abstract. Many aspects of blockchain-based decentralized finance can
be understood as an extension of classical distributed computing. In this
paper, we trace the evolution of two interrelated notions: failure and
fault-tolerance. In classical distributed computing, a failure to complete
a multi-party protocol is typically attributed to hardware malfunctions.
A fault-tolerant protocol is one that responds to such failures by rolling
the system back to an earlier consistent state. In the presence of Byzan-
tine failures, a failure may be the result of an attack, and a fault-tolerant
protocol is one that ensures that attackers will be punished and victims
compensated. In modern decentralized finance however, failure to com-
plete a protocol can be considered a legitimate option, not a transgres-
sion. A fault-tolerant protocol is one that ensures that the party offering
the option cannot renege, and the party purchasing the option provides
fair compensation (in the form of a fee) to the offering party. We sketch
the evolution of such protocols, starting with two-phase commit, and
finishing with timed hashlocked smart contracts.

1 Introduction

Decentralized finance (DeFi) is on the rise: between June and October 2020,
the value of assets managed by DeFi protocols increased from $1 billion to $7.7
billion [26]. This paper is an informal tutorial, explaining certain basic problems
in DeFi as if they were problems in fault-tolerant distributed computing. Con-
versely, many core problems in DeFi represent interesting and important exten-
sions of distributed computing problems. The goal of this paper is to encourage
distributed computing researchers to consider the kinds of problems and models
that arise in DeFi, and conversely, to encourage DeFi researchers to benefit from
the rich history of distributed computing techniques and algorithms.

The contribution of this work is simply to illustrate these claims through
an extended example, presented with the hope of provoking others to take up
research in this area. We explore how one core problem of distributed computing
has evolved over time, gradually turning into a superficially distinct core problem

Supported by NSF grant 1917990.

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 66–77, 2021.
https://doi.org/10.1007/978-3-030-91081-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_5&domain=pdf
http://orcid.org/0000-0002-3059-8926
https://doi.org/10.1007/978-3-030-91081-5_5

Failure is an Option 67

of finance. We consider the problem of atomic commitment : how can we install
updates at multiple databases or ledgers in such a way that guarantees that if
all goes well, all updates are installed, but if something goes wrong, all updates
are discarded. The classical challenge is, of course, tolerating failures: databases
can crash or communication can be lost or delayed.

This is one of the oldest problems in distributed computing, and not sur-
prisingly, it is central to key problems in DeFi. We explore two aspects of this
problem. First, we explore the technical solutions, where DeFi has tended to
borrow, whether consciously or not, from prior solutions in distributed comput-
ing. Second, we explore underlying conceptual frameworks, where DeFi extends
the notion of fault-tolerance well beyond the classical models of distributed com-
puting. We hope that our examples illustrate how each field can learn from the
other.

In Sect. 3, we review the well-known two-phase commit protocol [2], a classi-
cal technique for making atomic updates to independently-failing databases in
a distributed system. In Sect. 4, we consider the cross-chain atomic swap prob-
lem, where mutually-suspicious parties exchange assets atomically across distinct
blockchains. The simplest atomic swap protocols are based on hashed timelocked
contracts [11,17] (HTLCs). Technically, HTLC protocols closely resemble classi-
cal two-phase commit. The principal difference between the two protocols is in
their underlying conceptual frameworks. In two-phase commit, a failure is typi-
cally an operational malfunction at a node or a network, while in atomic swap,
a failure could also be a malicious action chosen by an adversarial party.

This distinction becomes more pronounced in Sect. 5. In both two-phase com-
mit and atomic cross-chain swap protocols, fault tolerance means that if one
party falls silent in the middle, the other parties are eventually made whole:
database replicas are eventually restored, and escrowed assets are eventually
refunded. For distributed computing’s two-phase commit, the story ends there,
but for DeFi’s atomic swap protocol, the story has just begun. In finance, the
ability to abandon or to complete an in-progress swap is called an option, and
options themselves have value. Any party who abandons an atomic swap should
compensate the other parties by paying a small fee called a premium. Treating
failures as compensated options is alien to classical distributed computing mod-
els, where all parties implicitly are on the same team, but it opens up a range of
new research challenges for distributed computing. Incorporating premiums into
atomic swaps turns out to be a challenging technical problem [25], effectively
requiring nesting one atomic commitment protocol within another.

Section 6 takes the notion of optionality to the next level. What if one party
could sell such an option to another? Alice, who has paid for the option to
complete or cancel a swap, should be able to transfer that option to Bob for a
fee. Alice would relinquish her power over the swap’s outcome, and Bob would
assume all of Alice’s power, including the power to complete or cancel the swap,
and the right to be compensated if another party cancels the swap. This prob-
lem is also technically challenging, as it requires embedding yet another atomic
commitment mechanism within other nested atomic commitment mechanisms.

68 D. Engel et al.

While we advocate thinking about DeFi mechanisms as if they were dis-
tributed computing problems, we also advocate DeFi as a rich source of new
problems and models for mainstream distributed computing. Originally, aban-
doning an atomic commitment protocol was considered a simple operational
failure, and the meaning of fault-tolerance was simply to restore integrity and
availability. When the parties become autonomous and potentially adversar-
ial, however, failures can become deliberate choices, and the meaning of fault-
tolerance must be extended to provide financial compensation to any victims of
other parties’ choices. Once failures become options (in the financial sense), then
those options themselves become assets to be traded.

The questions raised here are not really about blockchains, as blockchains.
Instead, they are really about the scientific and engineering problems of safely
transferring value among autonomous parties. This problem will remain of endur-
ing importance to society, independently of whether particular blockchain tech-
nologies bloom or fade, whether certain asset bubbles expand or pop, or whether
regulatory agencies do or do not intervene to protect gullible investors. We
believe the fault-tolerant distributed computing community has much to offer on
these fundamental problems, and we encourage the community to get involved.

2 Model

A blockchain is a tamper-proof distributed ledger or database that tracks own-
ership of assets by parties. (Our discussion is mostly independent of which
blockchain technology is used.) A party can be a person, an organization, or even
a contract (see below). An asset can be a cryptocurrency, a token, an electronic
deed to property, and so on. There are multiple blockchains managing different
kinds of assets. We focus here on applications where mutually-untrusting parties
trade assets among themselves, for example by swaps, loans, auctions, markets,
and so on.

A contract is a blockchain-resident program initialized and called by the
parties. A party can publish a new contract on a blockchain, or call a function
exported by an existing contract. Contract code and contract state are public,
so a party calling a contract knows what code will be executed. Contract code
must be deterministic because contracts are typically re-executed multiple times
by mutually-suspicious parties.

Multiple parties agree on a common protocol to execute a series of transfers,
an agreement that can be monitored, but not enforced. Instead of distinguishing
between faulty and non-faulty parties, as in classical distributed computing, we
distinguish only between compliant parties who follow the agreed-upon protocol,
and deviating parties who do not. We make no assumptions about the number
of deviating parties.

We assume a synchronous execution model where there is a known upper
bound Δ on the propagation time for one party’s change to the blockchain state
to be noticed by the other parties. Specifically, blockchains generate new blocks
at a steady rate, and valid transactions sent to the blockchain will be included

Failure is an Option 69

in a block and visible to participants within Δ. Our example protocols use Δ as
the basis for timeouts: it is typically chosen conservatively.

We make standard cryptographic assumptions. Each party has a public key
and a private key, and any party’s public key is known to all. Messages are signed
so they cannot be forged, and they include single-use labels (“nonces”) so they
cannot be replayed.

3 Classical Two-Phase Commit Protocol

Imagine we have a distributed database with a number of replicas. These replicas
might be identical, or they may hold different portions of the database (so-called
shards). For simplicity, assume Alice’s node holds one replica, and Bob’s node
holds another. A node may crash (cease operation), and later recover (resume
operation). Node memory is divided into volatile memory lost on a crash, and
stable memory that survives crashes.

A transaction is a sequence of steps that modifies both replicas. As a trans-
action executes, Alice and Bob accumulate a list of tentative changes. If the
transaction commits, those changes take effect, and if the transaction aborts,
they are discarded.

The two-phase commit protocol [2] is a classical technique for ensuring atom-
icity : if a transaction makes tentative changes at both Alice’s node and Bob’s
node, then the transaction either commits at both nodes or aborts at both.

Here is the simplest form of this protocol. One node, say Carol, is chosen as
the coordinator.

1. Prepare phase
– Carol, the coordinator, instructs Alice and Bob to record their tentative

changes in stable storage, so they will not be lost in a crash.
– If Alice is able to write her changes to stable storage, she sends Carol a
yes vote. At this point, some or all of the database becomes inaccessible
pending the outcome of the transaction. If for any reason, Alice cannot
save her changes, she sends Carol a no vote. Bob does the same.

2. Commit phase
– If Carol receives two yes votes, she instructs Alice and Bob to apply their

tentative changes, committing the transaction. If Carol receives a no vote,
or if either Alice or Bob fails to respond in time, she instructs them to
discard their tentative changes, aborting the transaction. Before Carol
sends her decision to Alice and Bob, she records her decision in stable
memory, in case she herself crashes.

– Alice follows Carol’s instructions. If Alice crashes after preparing but
before Carol decides, Alice must learn the transaction’s outcome from
Bob or Carol before resuming use of her database.

This description is vastly simplified, and omits many practical considerations,
but it serves as a baseline for the more complex DeFi commitment protocols
considered in later sections. The key pattern is that commitment requires that
each party agrees to lock up a set of tentative changes, thereby freezing something
of value (here, the database) until the outcome of the protocol becomes known.

70 D. Engel et al.

4 Cross-Chain Atomicity

Alice has invested in the guilder cryptocurrency, while Bob has invested in the
florin cryptocurrency. Alice and Bob would both like to diversify: Alice wants
to trade some her guilders for florins, and Bob wants the opposite trade. Such
an exchange would be almost trivial if both cryptocurrencies reside on the same
chain, but florins reside on the Florin blockchain, and guilders on the Guilder
blockchain. Naturally, Alice and Bob do not trust one another, so we are pre-
sented with a more difficult version of last section’s atomic commitment problem:
is there a safe way to guarantee that either both transfers happen, or neither
happens, given untrusting participants.

The two-phase commit protocol is a good start, but it assumes that all par-
ties are acting in good faith. Each node reports honestly whether it was able
to prepare, and the coordinator does not lie about the votes it received. Nev-
ertheless, we can build an atomic cross-chain swap by “hardening” the classical
two-phase commit protocol.

We assume each blockchain supports contracts, and each party can inspect
the state of each blockchain. We make use of a technical gadget called a hashlock.
Alice creates a secret value s, called the hashkey. She then applies a cryptographic
hash function H to s, yielding a (public) hashlock h = H(s). It is effectively
impossible to reconstruct s from h, or to find another value s′ such that h =
H(s′).

The notion of escrow plays the role of stable storage: an escrow contract is
given custody of Alice’s coins, along with a hashlock h and a timeout. If s is
presented to the contract before the timeout, then Alice’s coins are transferred
to Bob, and if not, those coins are refunded to Alice. Bob creates a symmetric
escrow contract, only with Alice’s hashlock and a different timeout.

Here is the hardened two-phase commit protocol.

1. Prepare phase
– Alice transfers her guilders to her escrow contract with timeout 2Δ.
– When Bob verifies that Alice’s coins have been escrowed, he transfers his

florins to his escrow contract with timeout Δ.
2. Commit phase

– When Alice verifies that Bob has put his florins in escrow, she sends her
secret to the escrow contract on the Florin blockchain, unlocking and
collecting Bob’s florins. Alice has now recorded her hashkey on the Florin
blockchain.

– As soon as Alice’s hashkey appears on the Florin blockchain, Bob forwards
that hashkey to the escrow contract on the Guilder blockchain, unlocking
and collecting Alice’s guilders.

Placing coins in escrow is the analog of writing updates to stable storage and
then voting to commit: each party gives up the ability to back out. For two-phase
commit, it does not matter which party writes first to stable storage. For the
atomic swap, however, Alice must escrow first, and Bob second, because Alice
controls the hashkey, and she could steal Bob’s coins if he escrowed first. The

Failure is an Option 71

choice of timeouts is critical: if Bob’s timeout were 2Δ instead of Δ, then Alice
could wait until the timeout was about to expire to claim Bob’s florins, leaving
Bob without enough time to claim Alice’s guilders. Atomic swap is less forgiving
than two-phase commit: if Bob falls asleep and fails to claim Alice’s guilders
before 2Δ timeout, then Bob loses the coins on both chains.

A full analysis of this protocol, including failure paths, is beyond the scope
of this paper. This protocol is called a hashed timelock contract protocol. It
was invented by Nolan [17], generalized to multiple parties [11], and used on a
number of blockchains [3,4,6,18,28].

5 Cross-Chain Atomicity with Optionality

In the previous section, we argued that one can solve the atomic cross-chain
swap problem by “hardening” an existing solution to the atomic cross-chain
commitment problem. In this section, we argue that the transition from a system
where agents cooperate with one another despite failures, to a system where
agents are potentially adversarial changes the conceptual framework underlying
common coordination problems.

The HTLC protocol in the last section is safe in the sense that no compliant
party’s coins can be stolen. Each party either completes the swap, or gets its
coins back. Nevertheless, the HTLC protocol introduces a new problem that
could not have been formulated in the classical distributed computing model:
the sore loser attack [25].

Suppose that after Alice escrows her coins, but before Bob escrows his, the
market shifts, and Alice’s florins lose value with respect to Bob’s guilders. Bob
now has the option to walk away from the deal, leaving Alice’s coins locked up
for a long time, while Bob is free to use his coins as he pleases. This problem did
not arise in the classical two-phase commit protocol where all parties’ interests
were assumed to be aligned.

Premiums. The problem of optionality is well-understood in the financial world.
If Bob has the option to walk away, leaving Alice temporarily unable to access
her coins, called her principal, then Bob should compensate Alice by paying her
a small fee, called a premium. There are well-known formulas for computing
fair premiums given asset volatility and escrow duration [9]. In practice, a 2%
premium is often appropriate.

The problem of adding premiums to atomic swaps is tricky, because it involves
nesting one kind of atomic commitment (the premium deposit) inside another
(the swap). If the premium is deposited before the principal, then the principal
is protected from sore loser attacks. But the premium itself is now exposed to a
reverse sore loser attack: what if Alice walks away immediately after Bob escrows
his premium? The way to resolve this “chicken-and-egg” problem is to observe
that the value of the premium is much lower than the value of the principal, and
while Alice might not be willing to risk locking up 100 coins, Bob is probably
willing to risk locking up 1 coin. For very large principals, Alice and Bob can

72 D. Engel et al.

bootstrap their premiums: Bob risks 1 coin, Alice escrows 100 coins protected
by Bob’s 1-coin premium, Bob escrows 1000 coins protected by Alice’s 100-coin
premium, and so on.

Two-Party Swap with Premiums. Here we present a simple two-party swap pro-
tocol with premiums, taken from Xue and Herlihy [25]. Let pa be the compensa-
tion Alice should pay to Bob if Bob is a victim, and let pb be the compensation
from Bob to Alice. A contract on the guilder blockchain accepts Alice’s principal
and Bob’s premium, and a symmetric contract on the florin blockchain accepts
Bob’s escrow and Alice’s premium. The timeout for the first step is Δ from the
start of the protocol, and subsequent timeouts increase by Δ.

A straightforward idea is to let Alice deposit premium pa and Bob pb. How-
ever, if Alice does not redeem Bob’s principal, Bob will not be able to redeem
Alice’s principal, so as a result, Bob pays a premium to Alice, and Alice to Bob.
Therefore, Alice should pay pa + pb to Bob in case she does not redeem Bob’s
principal. Here is the protocol, where each step is labeled with its timeout. See
Fig. 1.

Δ Alice deposits her premium pa+pb on the florin blockchain’s escrow contract
with timelock tB = 5Δ.

2Δ Bob deposits his premium on the guilder blockchain’s escrow contract with
timelock tA = 6Δ.

3Δ Alice escrows her principal on guilder blockchain’s escrow contract. If she
fails to do so, the premium pb is refunded to Bob. Otherwise, the premium
remains in the contract.

4Δ Bob escrows his principal on florin blockchain’s escrow contract. If he fails
to do so, the premium pa + pb is refunded to Alice. Otherwise, the premium
remains in the contract.

5Δ Alice sends a secret x where H(x) = h to redeem Bob’s principal. If she fails
to do so, the premium pa + pb in the contract is paid to Bob. If she redeems
Bob’s principal, the premium is refund to her.

6Δ Bob sends a secret s where H(x) = h to redeem Alice’s principal. If he fails
to do so, the premium pb in the contract is paid to Alice. If he redeems
Alice’s principal, the premium is refund to him.

After Alice escrows her principal, if Bob reneges, Alice can get pb as com-
pensation. If the swap fails after Bob escrows his principal due to Alice, Bob is
compensated pa.

The goal of this chapter is to illustrate the progression from the classical
two-phase commit protocol to atomic cross-chain swap, to atomic cross-chain
swap with premiums. The techniques are recognizably similar: move the item of
value to a safe place, check that everything is ok, and if so, pull the trigger. The
nature of the problem has shifted in interesting ways: protocol failures are no
longer external events beyond the parties’ control, they have become potentially
rational choices requiring nested atomic commitment mechanisms for protection.
In the following section, we take optionality to the next level.

Failure is an Option 73

Fig. 1. Two-party Swap with Premiums

6 Cross-Chain Atomicity with Transferable Optionality

At this point, we have shifted the protocol from one where Alice and Bob agree
to trade guilders for florins to one where Alice buys the option to make that
trade. If she exercises the option, the swap happens, and if she declines to do so,
she pays Bob a premium for his troubles.

While the option is capable of being exercised, it has value. It is standard
in traditional finance to trade option contracts: Alice should be able to sell her
option with Bob to a third party, Carol. If Carol buys the option, she acquires
Alice’s right to exercise the option before it expires, and Alice relinquishes all
her rights. As usual, it should be possible for Alice to sell the option to Carol
without placing any compliant party at risk.

Why might Alice want to transfer her option to Carol? Perhaps Alice has
private information suggesting that the relative value of florins to guilders will
change in the near future. If she does not plan to exercise the option, then selling
it will help pay for her lost premium.

Why might Carol be willing to by an option from Alice? Perhaps Alice and
Carol have asymmetric information: one thinks florins will increase in value and
the other disagrees. In an illiquid options market, Carol might have trouble
finding a way to buy florins, so Alice would be a natural counterparty. In a
highly liquid market, Alice might be willing to offer a discount to dump her
option.

Even if Alice and Carol have symmetric information, they might have differ-
ent risk tolerances. Consider the price of a florin expressed in guilders at time
t = 0. At t = 1, both Alice and Carol believe that with equal probability, the
price will either increase by dx or decrease by dx. If Alice is risk-averse or indif-
ferent, but Carol is risk-seeking, then Carol will want to buy that option from
Alice, and Alice will want to sell.

74 D. Engel et al.

Fig. 2. Partial Protocol for Transferable Option

A full protocol for transferable cross-chain options is beyond the scope of
this paper, and appears elsewhere [8]. Instead, we present a naive protocol that
almost solves the problem, but the ways in which it falls short are instructive.

Here is a näıve Transfer Protocol. For simplicity, we address the easier prob-
lem: how to transfer a position in a 2-party swap (without premiums). The
protocol is shown in Fig. 2. Initially Alice creates a swap with Bob. If Carol
offers to buy the option and Alice agrees, Alice transfers her position to Carol.
If Alice does not agree, Alice proceeds with the protocol as normal. Alice has a
secret A and Carol has a secret C.

For brevity, we use edge XY as shorthand for a tentative (escrowed) transfer
from party X to party Y . The notation X : kΔ means that the asset on that
edge is transferred if triggered by X’s secret before kΔ time after the start of
the protocol. “X : kΔ or Y : �Δ” means the asset is transferred if either X or Y
triggers the transfer by revealing a secret before the respective timeouts. While
this näıve protocol conveys the flavor of a full protocol, there are several reasons
it is unsatisfactory.

First, there is no clear distinction between when Carol buys the swap from
Alice, and when she exercises the swap. Alice just wants to sell her option and
have Carol assume Alice’s role immediately. Here, however, Alice she has to wait
for Carol to make up her mind. Alice should be able to walk away as soon as
decides she wants to buy the option.

Whether Carol does nor does not decide to participate, the ability to sell the
option adds 3Δ extra rounds to the original swap protocol. An ideal protocol
would behave like a typical 2-party swap if Carol never participates, taking the
usual 4Δ rounds at most.

Because Alice is entangled in the protocol until Carol decides to exercise it,
Alice has to escrow more than she would otherwise. That is, she has to escrow
assets on AC in addition to the original assets she escrowed on AB. Alice should
only have to escrow what she had in the original swap protocol.

These observations illustrate the challenges of designing transferable options
for even a simple two-party swap option. In general, we would like to be able to
transfer more complex, linked options. For example, in a cross-chain deal [13],

Failure is an Option 75

parties can set up a complex network of swaps to be executed atomically, and a
mature DeFi system would allow any party to sell their position in that network
to another party. Similar challenges arise with types of cross-chain commerce
such as bonds, stocks, and derivatives.

7 Related Work

The use of HTLCs for two-party cross-chain swaps is generally attributed to
Nolan [17]. HTLCs have adapted to several uses [3,4,6,18]. Herlihy [11] extended
HTLCs to support multi-party swaps on directed graphs.

Herlihy et al. [14] introduce the notion of cross-chain deals. They focus on
how conventional notions of atomicity are inadequate for an adversarial envi-
ronment, and give protocols using both HTLCs and a central coordinating
blockchain. Zakhary et al. [27] propose a cross-chain swap protocol for proof-
of-work blockchains using a witness blockchain as a central coordinator.

The BAR (byzantine, altruistic and rational) model [1,5] supports coopera-
tive services spanning autonomous administrative domains that are resilient to
Byzantine and rational manipulations. BAR-tolerant systems assume a bounded
number of Byzantine faults, and as such do not fit our adversarial model, where
any number of parties may be Byzantine, rationally or not.

In finance, optionality [15] is the notion that there is value in acquiring
the right, but not the obligation, to invest in something later. Atomic swap
based on HTLCs exposes such optionality to both parties. However, multiple
researchers [9,10,16] have observed that both parties are exposed to sore loser
attacks where the counterparty reneges at critical points in the protocol. Robin-
son [21] proposes to reduce vulnerability to sore loser attacks by splitting each
swap into a sequence of very small swaps, an approach that works only for fun-
gible, divisible tokens.

Xue and Herlihy [25] show how to incorporate premiums into multi-party
swaps, auctions, and brokered sales. Prior work was focused exclusively on two-
party swaps, and proposed asymmetric protocols, meaning that only one party
pays a premium to the other, protecting only that side of the swap from a sore
loser attack. These protocols include Han et al. [9], Eizinger et al. [7], Liu [16],
the Komodo platform [19], Eizinger et al. [7], and the Arwen protocols [10].

Xu et al. [24] analyze the success rate of cross-chain swaps using HTLCs.
Liu [16] proposed an atomic swap protocol that protects both parties from sore
loser attacks, structured so that Alice explicitly purchases an option from Bob,
and her premium is never refunded. There is no obvious way to extend this
protocol to applications other than two-party swaps. Tefagh et al. [22] propose
a similar protocol based on an options model.

8 Conclusions

We have argued elsewhere [12] that some early blockchain work recapitulated
ideas and algorithms from distributed computing, sometimes falling prey to

76 D. Engel et al.

familiar pitfalls [20,23]. Here, we argue that blockchain and DeFi open up new
opportunities for distributed computing research. In this paper, we outlined how
atomic commitment, a classical distributed computing problem, lies at the heart
of several DeFi challenges. At the same time, moving from a hardware failure
model to a Byzantine failure model opens up rich new research possibilities.
Dealing with optionality requires nesting one atomic commitment mechanism
inside another (to support premiums), and fully embracing optionality requires
nesting yet another atomic commitment mechanism (to support option sale and
transfer). We hope that this paper will help draw the attention of our community
to these intriguing questions.

References

1. Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.P., Porth, C.: BAR
fault tolerance for cooperative services. In: Proceedings of the Twentieth ACM
Symposium on Operating Systems Principles. SOSP 2005, pp. 45–58. ACM,
New York (2005). https://doi.org/10.1145/1095810.1095816, http://doi.acm.org/
10.1145/1095810.1095816

2. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recov-
ery in Database Systems. Addison-Wesley Longman Publishing Co., Inc., Boston
(1986)

3. bitcoinwiki: Atomic cross-chain trading. https://en.bitcoin.it/wiki/Atomic cross-
chain trading

4. Bowe, S., Hopwood, D.: Hashed time-locked contract transactions. https://github.
com/bitcoin/bips/blob/master/bip-0199.mediawiki

5. Clement, A., Li, H., Napper, J., Martin, J.P.M., Alvisi, L., Dahlin, M.: BAR primer.
In: Proceedings of the international conference on dependable systems and net-
works (DSN), DCC symposium (2008), place: Anchorage, AK

6. DeCred: Decred cross-chain atomic swapping. https://github.com/decred/
atomicswap

7. Eizinger, T., Fournier, L., Hoenisch, P.: The state of atomic swaps (2018). http://
diyhpl.us/wiki/transcripts/scalingbitcoin/tokyo-2018/atomic-swaps/

8. Engel, D., Herlihy, M., Xue, Y.: Transferrable cross-chain options (2021)
9. Han, R., Lin, H., Yu, J.: On the optionality and fairness of Atomic Swaps. In:

Proceedings of the 1st ACM Conference on Advances in Financial Technologies.
pp. 62–75. ACM, Zurich, October 2019. https://doi.org/10.1145/3318041.3355460,
https://dl.acm.org/doi/10.1145/3318041.3355460

10. Heilman, E., Lipmann, S., Goldberg, S.: The Arwen trading protocols, January
2019. https://www.arwen.io/whitepaper.pdf

11. Herlihy, M.: Atomic cross-chain swaps. In: Proceedings of the 2018 ACM Sympo-
sium on Principles of Distributed Computing. PODC 2018, pp. 245–254. ACM,
New York (2018). https://doi.org/10.1145/3212734.3212736, http://doi.acm.org/
10.1145/3212734.3212736, number of pages: 10 Place: Egham, United Kingdom
tex.acmid: 3212736

12. Herlihy, M.: Blockchains from a distributed computing perspective. Commun. ACM
62(2), 78–85 (2019). https://doi.org/10.1145/3209623

13. Herlihy, M.: Cross-chain deals and adversarial commerce. CoRR abs/1905.09743
(2019). http://arxiv.org/abs/1905.09743

https://doi.org/10.1145/1095810.1095816
http://doi.acm.org/10.1145/1095810.1095816
http://doi.acm.org/10.1145/1095810.1095816
https://en.bitcoin.it/wiki/Atomic_cross-chain_trading
https://en.bitcoin.it/wiki/Atomic_cross-chain_trading
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
https://github.com/decred/atomicswap
https://github.com/decred/atomicswap
http://diyhpl.us/wiki/transcripts/scalingbitcoin/tokyo-2018/atomic-swaps/
http://diyhpl.us/wiki/transcripts/scalingbitcoin/tokyo-2018/atomic-swaps/
https://doi.org/10.1145/3318041.3355460
https://dl.acm.org/doi/10.1145/3318041.3355460
https://www.arwen.io/whitepaper.pdf
https://doi.org/10.1145/3212734.3212736
http://doi.acm.org/10.1145/3212734.3212736
http://doi.acm.org/10.1145/3212734.3212736
https://doi.org/10.1145/3209623
http://arxiv.org/abs/1905.09743

Failure is an Option 77

14. Herlihy, M., Liskov, B., Shrira, L.: Cross-chain deals and adversarial commerce.
Proc. VLDB Endow. 13(2), 100–113 (2019). https://doi.org/10.14778/3364324.
3364326, http://arxiv.org/abs/1905.09743

15. Higham, D.J.: An Introduction to Financial Option Valuation: Mathematics,
Stochastics and Computation, 4th edn. Cambridge University Press, Cambridge
(2009)

16. Liu, J.A.: Atomic swaptions: cryptocurrency derivatives. arXiv:1807.08644 [cs, q-
fin], March 2020

17. Nolan, T.: Atomic swaps using cut and choose, February 2016. https://bitcointalk.
org/index.php?topic=1364951

18. Organization, T.K.: The BarterDEX whitepaper: a decentralized, open-source
cryptocurrency exchange, powered by atomic-swap technology. https://supernet.
org/en/technology/whitepapers/BarterDEX-Whitepaper-v0.4.pdf

19. Platform, K.: Advanced blockchain technology, focused on freedom, July
2019. https://docs.komodoplatform.com/basic-docs/start-here/core-technology-
discussions/introduction.html#note-on-changes-since-whitepaper-creation-cr-
2019

20. Popper, N.: A venture fund with plenty of virtual capital, but no capitalist.
New York Times (man 2016). https://www.nytimes.com/2016/05/22/business/
dealbook/crypto-ether-bitcoin-currency.html

21. Robinson, D.: Htlcs considered harmful (2019). http://diyhpl.us/wiki/transcripts/
stanford-blockchain-conference/2019/htlcs-considered-harmful/

22. Tefagh, M., Bagheri, F., Khajehpour, A., Abdi, M.: Capital-free futures arbi-
trage, October 2020. https://doi.org/10.13140/RG.2.2.31609.90729/1, https://
www.researchgate.net/profile/Mojtaba-Tefagh-2/publication/344886866 Capital-
free Futures Arbitrage/links/5fdc88e3a6fdccdcb8d89ee1/Capital-free-Futures-
Arbitrage.pdf

23. Vigna, P.: Chiefless company rakes in more than $100 million. Wall Street Journal,
May 2016. https://www.wsj.com/articles/chiefless-company-rakes-in-more-than-
100-million-1463399393

24. Xu, J., Ackerer, D., Dubovitskaya, A.: A game-theoretic analysis of cross-chain
atomic swaps with HTLCs. arXiv:2011.11325 [cs], April 2021. http://arxiv.org/
abs/2011.11325

25. Xue, Y., Herlihy, M.: Hedging against sore loser attacks in cross-chain transactions.
In: ACM Symposium on Principles of Distributed Computing (2021)

26. Young, J.: Defi explosion: Uniswap surpasses coinbase pro in daily volume (2020)
27. Zakhary, V., Agrawal, D., El Abbadi, A.: Atomic commitment across blockchains.

CoRR abs/1905.02847 (2019). http://arxiv.org/abs/1905.02847 tex.bibsource:
dblp computer science bibliography, https://dblp.org tex.biburl: https://dblp.org/
rec/bib/journals/corr/abs-1905-02847 tex.timestamp: Mon, 27 May 2019 13:15:00
+0200

28. Zyskind, G., Kisagun, C., FromKnecht, C.: Enigma Catalyst: a machine-based
investing platform and infrastructure for crypto-assets. https://www.enigma.co/
enigma catalyst.pdf

https://doi.org/10.14778/3364324.3364326
https://doi.org/10.14778/3364324.3364326
http://arxiv.org/abs/1905.09743
http://arxiv.org/abs/1807.08644
https://bitcointalk.org/index.php?topic=1364951
https://bitcointalk.org/index.php?topic=1364951
https://supernet.org/en/technology/whitepapers/BarterDEX-Whitepaper-v0.4.pdf
https://supernet.org/en/technology/whitepapers/BarterDEX-Whitepaper-v0.4.pdf
https://docs.komodoplatform.com/basic-docs/start-here/core-technology-discussions/introduction.html#note-on-changes-since-whitepaper-creation-cr-2019
https://docs.komodoplatform.com/basic-docs/start-here/core-technology-discussions/introduction.html#note-on-changes-since-whitepaper-creation-cr-2019
https://docs.komodoplatform.com/basic-docs/start-here/core-technology-discussions/introduction.html#note-on-changes-since-whitepaper-creation-cr-2019
https://www.nytimes.com/2016/05/22/business/dealbook/crypto-ether-bitcoin-currency.html
https://www.nytimes.com/2016/05/22/business/dealbook/crypto-ether-bitcoin-currency.html
http://diyhpl.us/wiki/transcripts/stanford-blockchain-conference/2019/htlcs-considered-harmful/
http://diyhpl.us/wiki/transcripts/stanford-blockchain-conference/2019/htlcs-considered-harmful/
https://doi.org/10.13140/RG.2.2.31609.90729/1
https://www.researchgate.net/profile/Mojtaba-Tefagh-2/publication/344886866_Capital-free_Futures_Arbitrage/links/5fdc88e3a6fdccdcb8d89ee1/Capital-free-Futures-Arbitrage.pdf
https://www.researchgate.net/profile/Mojtaba-Tefagh-2/publication/344886866_Capital-free_Futures_Arbitrage/links/5fdc88e3a6fdccdcb8d89ee1/Capital-free-Futures-Arbitrage.pdf
https://www.researchgate.net/profile/Mojtaba-Tefagh-2/publication/344886866_Capital-free_Futures_Arbitrage/links/5fdc88e3a6fdccdcb8d89ee1/Capital-free-Futures-Arbitrage.pdf
https://www.researchgate.net/profile/Mojtaba-Tefagh-2/publication/344886866_Capital-free_Futures_Arbitrage/links/5fdc88e3a6fdccdcb8d89ee1/Capital-free-Futures-Arbitrage.pdf
https://www.wsj.com/articles/chiefless-company-rakes-in-more-than-100-million-1463399393
https://www.wsj.com/articles/chiefless-company-rakes-in-more-than-100-million-1463399393
http://arxiv.org/abs/2011.11325
http://arxiv.org/abs/2011.11325
http://arxiv.org/abs/2011.11325
http://arxiv.org/abs/1905.02847
https://dblp.org
https://dblp.org/rec/bib/journals/corr/abs-1905-02847
https://dblp.org/rec/bib/journals/corr/abs-1905-02847
https://www.enigma.co/enigma_catalyst.pdf
https://www.enigma.co/enigma_catalyst.pdf

Privacy-Preserving Data Sharing for
Medical Research

Michael J. Fischer1(B), Jonathan E. Hochman2, and Daniel Boffa3

1 Computer Science, Yale University, New Haven, USA
michael.fischer@yale.edu

2 UNS Project and Hochman Consultants, Hartford, USA
jonathan@unsproject.com

3 School of Medicine, Yale University, New Haven, USA
daniel.boffa@yale.edu

Abstract. Electronic patient medical records contain vast amounts of
information of potential value to researchers striving to increase under-
standing of diseases, treatments, and outcomes. Effective use of such
data is limited by privacy and technical concerns. Privacy laws require
the removal of Personally Identifiable Information (PII) from the released
data. Technical concerns are that the data must be abstracted for con-
sistency across different providers. To be most useful, data from differ-
ent providers for the same patient must be linked together. This paper
applies cryptographic techniques to the problem of privacy-preserving
linking of medical records.

Keywords: Medical research · Privacy · Cryptographic data linking

1 Introduction

The goal of this work is to design a national system for medical data sharing
that meets several criteria:

1. Understandable to stakeholders
2. Supportable by stakeholders
3. Simple and explainable
4. Actionable with minimal startup investment
5. Sustainable
6. Secure

Our contribution includes a new cryptographic primitive, called a blinding-
completion pair, which addresses the practical problem of linking anonymous
medical records. Blinding-completion pairs provide a method for generating a
multitude of anonymous pseudonyms for an entity, to be used by data sources,
and then consolidating that multitude into a single anonymous pseudonym at
the destination database. We also describe a distributed system and protocol for

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 78–89, 2021.
https://doi.org/10.1007/978-3-030-91081-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_6

Privacy-Preserving Data Sharing for Medical Research 79

sharing medical data that can preserve privacy when confronted with occasional
data breaches.

This paper is organized as follows: Sect. 2 summarizes related work. Section 3
describes the stakeholders and sketches the existing flow of clinical data from
patient to researcher. Section 4 focuses on the problem of privacy-preserving
linking of patient data. Section 5 suggests possible modifications of the workflow
to shift responsibility for maintaining privacy to specialized “security nodes”.
Section 6 provides a brief threat model and discloses known limitations of the
system. Section 7 summarizes our contribution and directions for future research.

2 Related Work

The problem of connecting records from multiple databases is called record link-
ing. What we aim to achieve is called privacy-preserving record linking (PPRL),
where the goal is to link patient records while protecting the PII of the patient.
The interest in PPRL of health records goes back at least 16 years to the paper
of Demuynck and De Decker [8], who propose a complicated multi-stakeholder
protocol that uses cryptographic techniques to achieve PPRL. The idea of using
pseudonym identifiers to substitute for PII linkage appears in Alhaqbani and
Fidge in 2008 [1].

Many other linkage techniques have subsequently been studied. Vatsalan,
Christen, and Verykios [20] give a taxonomy of PPRL techniques in a 2013
paper containing 143 references to the extensive literature on the subject! They
observe that preserving the privacy of shared data such as medical records is a
difficult problem and that existing approaches have a variety of drawbacks. For
example, some systems have focused on joining records from just two sources,
which would not satisfy our design requirements.

Recent work aims to address one or more of the shortcomings of prior work.
Camenisch and Lehmann [6] add user-auditability to pseudonym systems. The
PRIMAT system [9] handles multiple sources of medical data, but it assumes
the existence of a “trusted linkage unit (LU) [that] performs the actual linkage
of encoded records submitted”.

Our approach is different because we leverage existing universal identifiers
and anonymize them by generating two levels of pseudonyms. This results in a
system with resilience to limited breaches that is easy to understand by stake-
holders. Moreover, our system does not put sensitive medical data in the hands
of any third party. Medical data flows directly from a health care provider to a
research database.

Our proposed system also differs from many others in the location of the
three types of data: identifier is a segment of coded information that is unique
for each person, identifying information enables a specific person to be identified,
and sensitive information is desired to be kept private and not shared publicly
as being attributable to an individual.

An identifier by itself is meaningless and is just a code. For example, any
random combination of nine numbers very well may be a social security number,

80 M. J. Fischer et al.

but without identifying information, there is no relevance, utility or vulnerabil-
ity. Identifying information alone is not overly relevant, because it simply notes
the existence of a person, without any detail of that person. For example, names
(and addresses and phone numbers), have historically been distributed in phone
books. Finally, sensitive information that cannot be linked to a specific per-
son poses no risk to privacy and is the principal that allows large databases to
exist for medical research. Any medical textbook could contain what most would
consider sensitive information, such as data related to the treatment of specific
patients. When such information is not attributed to any person, it poses no
vulnerability. An important caveat is that if the anonymized sensitive informa-
tion is sufficiently detailed, it may serve as a fingerprint that can be correlated
with publicly available data and used to identify the subject [15].

3 Medical Information Workflow

Data enters the health care system when a patient contacts a provider, whether
a primary care physician or a hospital. At that point, the provider determines
and records the patients PII and begins or updates the patient’s chart.

To curate data for statistical and research purposes, trained registrars extract
select data elements from the medical record according to specific data field def-
initions, resulting in highly structured data sets. The datasets are then stripped
of PII and exported in a deidentified manner to one or more of several national
databases. Importantly, not every health care entity submits to every database,
and each database only requests certain fragments of the patient’s medical infor-
mation [5]. As a result, each patient’s care is captured by the databases in a
piecemeal fashion. Because the databases do not collect PII, there is no way to
consistently reunite the fragments of the health care data back together to create
a complete picture of a patient’s journey through the diagnosis, treatment, and
outcome of their medical condition.

The analysis of patient outcomes captured within the databases has led to
dramatic improvements in the safety and effectiveness of care for almost every
medical condition [18]. However, the ability of the database research to charac-
terize relationships between variables and outcomes in medical care is critically
dependent on the breadth of information available for analysis (e.g., to control
for bias and confounding effects). Because databases are only capturing frag-
ments of the medical journey, there are limitations to the types of improvements
that currently can be made with database research [16].

For example, the database that best captures cancer stage does not capture
the specific type of chemotherapy that patients received [5]. If there were a way
to reunite all the fragments of data back together, medical research using existing
databases would become far more powerful, and many more improvements would
be possible. (See Daniel Boffa, Comparing Comparisons, in comments to [16]).

A simple but unacceptable “solution” to the linking problem is to give each
patient a universal health identifier to be included with the patient’s record in
each database. This is used in some other countries (e.g., Norway [2]). How-
ever, in the United States, the topic of a national identifier has become highly

Privacy-Preserving Data Sharing for Medical Research 81

polarizing, making this a less feasible option. Moreover, anyone with access to
the curated databases would be able to join the several databases into one
master health record for the patient with that identifier. This is often suffi-
cient, when combined with other information readily available on the internet,
to deanonymize the health record and reveal the patient’s PII.

4 Privacy-Preserving Linking of Patient Data

We describe a new cryptographic primitive for generating identifiers that allows
a database to link records from different data providers while preserving privacy
in the face of many kinds of breaches.

4.1 Blinding-Completion Pairs

Let x be the identifier used by a data provider h to identify an entity. Let b(x)
be a one-way hash function. A blinding-completion pair for h is a pair of one-way
functions (bh(x), ch(y)) such that b(x) = ch(bh(x)) for all x, and b(x) is also one-
way. Like a cryptosystem (Eh(x),Dh(y)), the composition of the second function
in the pair with the first yields the same function for all keys h. In our case, the
composition is the fixed blinding function b(x), which defines the alias y = b(x)
for x. While neither x nor y can be recovered from yh = bh(x), y can be recovered
from any single value yh if the corresponding completion function ch is available,
since y = ch(yh).

4.2 Implementation

There are several ways to implement blinding-completion pairs. One way is to use
cryptographic accumulators. Let Q = {b1, . . . , bN} be a set of quasi-commutative
cryptographic hash functions [3]. They have the property that the N -way com-
position of these functions in any order yields the same function B. Hence, for
any subset S ⊆ Q, the composition of those functions in S, call it bS , can be used
as the first element of a blinding-completion pair, and the composition of b(Q−S)

becomes the completion function cS . The drawback of this scheme is that N
must be known in advance, and the time complexity of finding bS and cS grows
with N .

We use a different scheme based on discrete logarithms. First we introduce
some standard number theory. For positive integer n, let Z∗

n be the set of positive
integers less than n that are relatively prime to n. The size of Z∗

n is given by
Euler’s totient function φ(n).

In the special case that n is a prime p, Z∗
p = {1, . . . , p − 1}, so φ(p) = p − 1.

Also, p has primitive roots. We say g is a primitive root of p if every number
a ∈ Z∗

p can be expressed as a = gk mod p for some k ∈ Z∗
p. The number k is

called the discrete logarithm of a modulo p. Computing the discrete logarithm is
believed to be computationally difficult when p and g are chosen carefully.

82 M. J. Fischer et al.

For our purposes, we choose p = 2q + 1, where q is a Sophie Germain prime
and p is called a safe prime. Such prime pairs are widely used in cryptography,
so a suitable supply exists for our purposes. An estimate of the number of Sophie
Germain primes less than n is Θ(n/(log n)2) [19, pp.123–124].

There are φ(φ(p)) = φ(p − 1) primitive roots in Z∗
p. This makes it possible

to find a primitive root g by a guess-and-check method. Guess a number g ∈ Z∗
p

and check that gq ≡ −1 (mod p). The expected number of guesses required to
find g is (p−1)/φ(p−1) = O(log log p) [14, p. 391]. How big is φ(p−1)? Because
we’ve chosen p − 1 = 2q, then φ(p − 1) = φ(2)φ(q) = q − 1 = (p − 3)/2.

Let r, u be positive integers in Z∗
φ(p) = Z∗

p−1, and let v be a positive integer
less than φ(p) such that r = (u+v) mod φ(p). Define bu(x) = xgu mod p and let
cv(y) = ygv mod p. Then (bu, cv) is a blinding-completion pair for the blinding
function b(x) = xgr mod p. This follows since

cv(bu(x)) ≡ cv(xgu) ≡ (xgu)gv ≡ xgu+v ≡ xgr (mod p).

The last identity follows from Euler’s Theorem, which states that for a ∈ Z∗
p,

aφ(p) ≡ 1 (mod p).
The parameters p, q matter both for convenience and security. To choose r

from Z∗
φ(p), we need to find an r that is relatively prime to (p − 1). But an

arbitrary p − 1 might have many small factors, e.g., p = 71. However, since we
choose p, q so that p − 1 = 2q, we know the only factors of p − 1 are 2 and q.
Choosing a safe prime p makes it easy to find random numbers in Z∗

φ(p). As for
security, the discrete logarithm problem is hard in general, but a solution may
be feasible via the Pohlig–Hellman algorithm when p − 1 has no large prime
factors [17]. A safe prime does not have this weakness.

As explained in Sect. 5 below, we will allow security nodes to independently
choose random values of r, u ∈ Z∗

φ(p) and calculate v = (r − u) mod φ(p).
Because r and u may be chosen independently by different security nodes,

there is a theoretical risk of v = 0, which would produce the undesirable result
yh = y. From the point of view of a cryptographer, such a result is not a prob-
lem, but to satisfy our design requirements we want to provide an unqualified
guarantee that the identifier used by a data provider h does not appear in a
database that links its records.

The value r is secret and may not be shared, therefore the security node
choosing u cannot “peek” at r to make sure it chooses a safe value for u. In
practice, when p is very large, the probability of r = u is vanishingly small.
Should this ever happen, a simple remedy is to choose a new value for r via key
rotation, as explained next.

4.3 Key Rotation

The values of r, u, v should be rotated periodically in case they are ever compro-
mised. We provide a sketch of how such rotation could be implemented.

To rotate the value of r, choose a random 0 < s < φ(p) and calculate r′ =
(r + s) mod φ(p). Check that r′ ∈ Z∗

φ(p), and if not, choose a different random

Privacy-Preserving Data Sharing for Medical Research 83

s and try again. Then recalculate v′ = (r′ − u) mod φ(p). Finally, to update the
blinded value y = xgr mod p, calculate a new blinded value y′ = ygs mod p.
Note that x is not needed for this calculation. Then y′ is the new blinded value
for the same x, since y′ ≡ xgrgs ≡ xgr′

(mod p).
To rotate the value of u, choose a random 0 < s < φ(p) and calculate

u′ = (u + s) mod φ(p). Check that u′ ∈ Z∗
φ(p), and if not, choose a different

random s and try again. To update the blinded value yh = xgu mod p, calculate
a new blinded value y′

h = yhgs mod p. Then y′
h is the new blinded value for the

same x, since y′
h ≡ xgugs ≡ xgu′

(mod p).

5 Proposed Workflow for Enhanced Security

We propose three additions to the existing workflow to maintain security while
still permitting research data sharing.

1. We envision a system of restricted local patient identifiers (LPIDs) that can
be used to identify the medical records of a given patient within the context
of a single health care provider. Local identifiers are obtained from a patient’s
PII via a one-way cryptographic function. This prevents the local identifier
from being reverse engineered to obtain PII.

2. Using the cryptographic technique of blinding-completion functions, the local
patient identifiers for different health care providers can be used to calcu-
late an anonymized patient identifier (APID). The APID allows a medical
database to link patient records across providers while still providing no clear
path to finding the corresponding PII.

3. To further protect patient anonymity and privacy, we propose to separate the
security services from the servers and databases holding the actual PII (in
the case of hospitals) and medical data (in the case of curated database).

5.1 Trust

Our model of trust has two dimensions: whether the party has good intentions
to keep sensitive information private, and whether the party is competent to do
so. For example, while we may trust health care systems to do their best to keep
sensitive patient information private, they are not always good at cybersecurity,
as evidenced by the large number of cyber-attacks against health care organi-
zations.1 Even when a health care system has a central information technology
department capable of maintaining network security, that competency may be a
scarce resource.

Our model of trust is different from traditional adversarial models that con-
sider the worst possible outcomes from an untrusted party. Our model is informed
by one author’s experience in analyzing dozens of actual lawsuits related to online
1 In a recent survey of health care organizations, 70% of respondents reported that

their organizations had experienced significant security incidents in the prior 12
months [12].

84 M. J. Fischer et al.

identity and privacy. While malice is sometimes present, incompetence is much
more likely. In the modern era this idea has been called Hanlon’s razor, which
states, “Never attribute to malice that which is adequately explained by stu-
pidity” [21]. Earlier such attributions go back at least to Goethe [10]: “I have
realized once again that misunderstandings and lethargy can cause more going
wrong in the world than cunning and wickedness do. At least, those two are
certainly less common”.

While health care providers are expected to be competent at medical treat-
ment, there is no reason to expect them to be competent at cryptography (nor
would we trust the average cryptographer to perform surgery). To mitigate the
risk of health care providers performing cryptographic functions insecurely or
leaking secret keys, we restrict access to certain functions and the secret keys
that power them. To keep everyone safe, we introduce additional parties to the
transaction, called “security nodes”, which have demonstrated technical compe-
tence. Each health care provider will choose a security node to work with, and
so will each medical database.

A security node is a network service that can be trusted to implement crypto-
graphic functions correctly and to hold secret keys without leaking them. Secu-
rity nodes could be independently operated, or they might be operated by a
department within a medical organization with the required competence. Impor-
tantly, a security node isolates the secret keys used by cryptographic functions or
for signing messages in a single location. This makes it easier to protect secret
keys by storing them in specialized computing hardware, such as a hardware
security module (HSM). Security nodes also provide authentication services to
health care providers. Each security node has a public-private key pair it can use
to sign and authenticate messages for other security nodes. A special “executive”
security node keeps a list of all security nodes and their public keys. This list
may be periodically updated and distributed, enabling security nodes to reliably
authenticate each other’s messages.

5.2 Parties

A transaction at minimum includes six parties:

1. A patient w who is identified with a user identifier (UID),
2. A health care provider h who treats patients and gathers medical data,
3. The health care provider’s security node that provides LPIDs that can be

attached to medical data in lieu of UIDs,
4. The database’s security node that attaches an APID to medical data in lieu

of LPIDs,
5. A database d that collects anonymous patient profiles, identified only by

APID,
6. Researchers that receive anonymous patient profiles.

5.3 Identifiers

There are three levels of identifiers, each with distinct properties:

Privacy-Preserving Data Sharing for Medical Research 85

1. UID is an invariant identifier, such as a name-birthday pair or a Social Secu-
rity number. The UID is readily available to the patient and widely used
by health care providers. A patient’s UID must never be shared because it
constitutes PII.

2. LPID identifies patients relative to a health care provider and has no apparent
connection to any PII. A patient’s LPID is different at every provider and is
used for sending anonymized records to a database.

3. APID identifies patients relative to a database and has no apparent connec-
tion to any PII or to any LPID. Anonymized records sent to a database by
different health care providers for the same patient are associated with the
same APID, which enables record linking.

The LPID and APID identifiers are rotated periodically to frustrate any
attacker who manages to breach the system. Rotation can be done if a breach
is detected, or on a regular schedule to limit the damage from an undetected
breach, and to provide other benefits. Key rotation is a widely accepted good
practice in cloud computing [11].

5.4 Initialization

Initially, one or more databases join our proposed system, which provides the
values p, q, and g. Each database d chooses a security node which generates a
random value rd such that rd ∈ Z∗

φ(p). The value rd is used to generate blinding-
completion function pairs and must be kept secret.

Each health care provider h joining the system chooses a security node. The
health care provider obtains a public-private key pair for signing messages (e.g.,
an X.509 security certificate [4]), using a digital signature algorithm such as DSA
or ECDSA, and verifying the health care provider’s identity to its security node.
The public key is registered, or “pinned”, to the security node. Upon registration,
the health care provider’s security node will chose a random value uh such that
uh ∈ Z∗

φ(p). The value uh must be kept secret and is used to generate a blinding
function bh().

To join a database d, a provider h causes its security node to send uh to
the security node of database d. The security node of d then calculates a value
vd = (rd−uh) mod φ(p). The value vd must be kept secret and is used to generate
a completion function ch().

These blinding-completion functions are constructed in such a way that:

1. Each blinding function for each provider h produces a different pseudorandom
identifier LPIDh for each patient.

2. Each completion function for each provider h to each database d maps each
LPIDh to APIDd.

If a health care provider h participates in multiple databases, it uses the same
LPIDh identifiers, but each database d will generate different APIDd identifiers.
Conversely, when multiple providers contribute medical data to a database, each

86 M. J. Fischer et al.

provider h has different LPIDh identifiers and the database d has the same
APIDd identifiers. To preserve privacy, no provider knows any of the APIDd

values, and no database knows any of the LPIDh values. The patient identifier
equivalence pairs (LPIDh, APIDd) are only known to, or computed by, security
nodes.

5.5 Contribution of Patient Profiles

Medical providers may contribute patient profiles to a database. A profile con-
tains demographic and medical information of interest to researchers. For exam-
ple, a patient profile might include age, medical diagnosis codes and dates, occu-
pation, ethnicity, treatment history, and other target characteristics. Existing
standards for storing digital medical records can be used.

To contribute a profile to a database d, a health care provider h performs
several steps.

1. The provider hashes the patient’s UID, w, with a standard, widely available
hash function such as SHA256 [7], to generate a value x that it sends to its
security node. The security node then applies the blinding function for that
health care provider to x, resulting in the value LPIDh. The security node
returns LPIDh to the health care provider, and h adds it to the patient’s
medical record.

2. The provider generates a random transaction number t. The relevant profile
data m is then composed into a message (h, t,m, d) and sent to the database d.
The medical data will only be added to the database after it is authenticated
by the database’s security node.

3. The provider creates a token (such as a JSON web token [13]) containing the
quadruple (LPIDh, h, t, d) and signs it using its secret key. The provider sends
the signed token to the provider’s security node, which then authenticates
the signature using the health care provider’s public key and appends its own
signature to the token.

The provider’s security node sends token (LPIDh, h, t, d) to the security node
of database d which does the following steps:

1. Authenticates the signature of the health care provider’s security node.
2. Verifies that the health care provider’s name h in the token matches the name

in the message.
3. Applies the appropriate completion function ch() to LPIDh to generate

APIDd.
4. Creates a new token (APIDd, p, t, d), signs, and sends it to database d.

Database d receives the token (APIDd, h, t, d) and then performs these steps:

1. Authenticates the signature of its own security node.
2. Finds the message (h, t,m, d) with the same transaction number t.
3. Verifies that the health care provider’s name h in the message matches the

health care provider’s name in the token.

Privacy-Preserving Data Sharing for Medical Research 87

4. Adds the medical data m, the provider h, and APIDd to its data store. If
there is an existing record with APIDd, the new data is linked to the existing
record.

5.6 Accessing Medical Data for Research

A researcher can connect to a database and search for patient profiles that match
desired criteria for the study. Upon approval by an appropriate medical research
ethics board, the researcher can then requisition specific medical data from the
database that is relevant to the research being conducted.

Upon receiving an approved request for medical data related to a patient
profile, the database then retrieves from its database the patient medical data
that meets the researcher’s specific criteria.

When releasing data to a researcher, the identifier for each record, APIDd,
should be removed or hashed with a one way function such as SHA256.
Researchers are not security experts. Therefore, they should not be trusted to
keep the APIDd identifiers private.

6 Threat Analysis

The system we describe, like all such systems, does not confer perfect security. If
a security node were compromised, an attacker might learn the secret values rd,
uh, or vh. These secret values could enable an attacker to recover some or all of
the blinding-completion functions b(), bh(), or ch() and their inverses. Having one
or more of these inverse functions could give an attacker who possesses APIDd

the ability to calculate LPIDh or x, the hash of the patient’s UID. While it is
not practical to invert the hash function used to generate x, an attacker could
test whether a known UID value, when hashed, equals x.

Assume an attacker gathers medical data from researchers. This data would
contain hashes of the APIDd for each record. If the attacker additionally com-
promises health care providers and security nodes, it is conceivable that they
could eventually link a UID to anonymous research data. Given UID and rd, an
attacker can calculate APIDd, hash this value and then compare it to the data
collected from researchers. The difficulty of such an attack is high because it
requires compromising at least one health care provider and at least one secu-
rity node of a database containing data from that health care provider within a
limited time frame (the key rotation period). Moreover, if such an attack were to
succeed, it would likely deanonymize only a limited number of medical records,
especially if there are many independent health care providers, databases, and
security nodes.

The security nodes described in this system only need to communicate with
other security nodes and with the medical providers or databases they serve.
Consequently, a firewall can protect each security node so that it only commu-
nicates with systems on an “allow” list. This type of protection increases the

88 M. J. Fischer et al.

difficulty of breaching a security node because even if the system has vulnerabil-
ities, an attacker needs to gain access to a system on a security node’s “allow”
list even to commence a remote attack on the security node.

We believe that the difficulty of attacking our proposed system is sufficiently
high, and the profitability sufficiently low, that attackers would prefer to attack
health care providers directly and aggregate data via UID. Therefore, our pro-
posed system does not materially increase the risk of private medical data being
exposed in a data breach versus the status quo.

7 Conclusion

We have presented a new cryptographic technique called blinding-completion
pairs and demonstrated how they could be used to enable the sharing of private
data without revealing personally identifiable information (PII).

Based upon blinding-completion pairs maintained by security nodes, we have
drawn a sketch of how health care providers could supply medical data to one or
more databases that would aggregate data for each patient and then make those
consolidated records available as anonymous data to researchers. Our system
could release data for medical research in a way that protects patient PII while
still enabling qualified researchers to identify records from different health care
providers that belong to the same patient.

Possible areas for future work include constructing a prototype system, devel-
oping new blinding-completion functions with improved security properties, and
investigating alternative sharing protocols that may offer stronger privacy guar-
antees in the event of data breaches.

Acknowledgments. We are grateful to Ewa Syta of Trinity College (Connecticut)
for a thorough reading of an early draft of this paper and for providing many helpful
comments and pointers to the relevant literature. We thank Bonnie Kaplan of the Yale
School of Medicine for sharing her vast knowledge of the world of electronic health data
with us. Lastly, we are indebted to Alice Fischer from the University of New Haven,
who scrutinized our nearly final draft.

References

1. Alhaqbani, B., Fidge, C.: Privacy-preserving electronic health record linkage using
pseudonym identifiers. In: 10th International Conference on e-health Networking,
Applications and Services, HealthCom 2008, pp. 108–117 (2008). https://doi.org/
10.1109/HEALTH.2008.4600120

2. Bakken, I.J., Ariansen, A.M.S., Knudsen, G.P., Johansen, K.I., Vollset, S.E.: The
Norwegian Patient Registry and the Norwegian Registry for Primary Health Care:
Research potential of two nationwide health-care registries. Scand. J. Public Health
48(1), 49–55 (2020)

3. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7 24

https://doi.org/10.1109/HEALTH.2008.4600120
https://doi.org/10.1109/HEALTH.2008.4600120
https://doi.org/10.1007/3-540-48285-7_24

Privacy-Preserving Data Sharing for Medical Research 89

4. Boeyen, S., Santesson, S., Polk, T., Housley, R., Farrell, S., Cooper, D.: Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280, May 2008. https://doi.org/10.17487/RFC5280

5. Boffa, D.J., et al.: Using the national cancer database for outcomes research: a
review. JAMA Oncol. 3(12), 1722–1728 (2017)

6. Camenisch, J., Lehmann, A.: Privacy-preserving user-auditable pseudonym sys-
tems. In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P),
pp. 269–284 (2017). https://doi.org/10.1109/EuroSP.2017.36

7. Dang, Q.: Secure hash standard, 04 August 2015. https://doi.org/10.6028/NIST.
FIPS.180-4

8. Demuynck, L., De Decker, B.: Privacy-preserving electronic health records. In:
Dittmann, J., Katzenbeisser, S., Uhl, A. (eds.) CMS 2005. LNCS, vol. 3677, pp.
150–159. Springer, Heidelberg (2005). https://doi.org/10.1007/11552055 15

9. Franke, M., Sehili, Z., Rahm, E.: PRIMAT: a toolbox for fast privacy-preserving
matching. Proc. VLDB Endow. 12(12), 1826–1829 (2019). https://doi.org/10.
14778/3352063.3352076

10. von Goethe, J.W.: The Sorrows of Young Werther. Oxford World’s Classics,
Oxford, (tr.) David Constantine, online edn., December 2020. https://doi.org/10.
1093/owc/9780199583027.001.0001, Accessed 25 Sept 2021

11. Google Cloud Key Management Service: Key rotation. https://cloud.google.com/
kms/docs/key-rotation. Accessed 26 Sept 2021

12. HIMSS Cybersecurity Survey (2020). https://www.himss.org/sites/hde/files/
media/file/2020/11/16/2020 himss cybersecurity survey final.pdf

13. Jones, M., Bradley, J., Sakimura, N.: JSON Web Token (JWT). RFC 7519, May
2015. https://doi.org/10.17487/RFC7519

14. Knuth, D.E.: The Art of Computer Programming, vol. 2: Seminumerical Algo-
rithms, 3rd edn. Addison-Wesley Professional (1998)

15. Kolata, G.: Your Data were ‘Anonymized’? These Scientists Can Still Identify
You. The New York Times, 23 July 2019. https://www.nytimes.com/2019/07/23/
health/data-privacy-protection.html

16. Kumar, A., et al.: Evaluation of the use of cancer registry data for comparative
effectiveness research. JAMA Netw. Open 3(7), e2011985 (2020). https://doi.org/
10.1001/jamanetworkopen.2020.11985

17. Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance (Corresp.). IEEE Trans. Inf. Theory
24(1), 106–110 (1978). https://doi.org/10.1109/TIT.1978.1055817

18. Salazar, M.C., et al.: Association of delayed adjuvant chemotherapy with survival
after lung cancer surgery. JAMA Oncol. 3(5), 610–619 (2017). https://doi.org/10.
1001/jamaoncol.2016.5829

19. Shoup, V.: A Computational Introduction to Number Theory and Algebra, chap.
5.5.5 Sophie Germain Primes, 2nd edn., pp. 123–124. Cambridge University Press,
February 2009. ISBN 9780521516440

20. Vatsalan, D., Christen, P., Verykios, V.S.: A taxonomy of privacy-preserving record
linkage techniques. Inf. Syst. 38(6), 946–969 (2013). https://doi.org/10.1016/j.is.
2012.11.005

21. Wikipedia contributors: Hanlon’s razor – Wikipedia, The Free Encyclo-
pedia (2021). https://en.wikipedia.org/w/index.php?title=Hanlon’s razor&
oldid=1045571584. Accessed 24 Sept 2021

https://doi.org/10.17487/RFC5280
https://doi.org/10.1109/EuroSP.2017.36
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.1007/11552055_15
https://doi.org/10.14778/3352063.3352076
https://doi.org/10.14778/3352063.3352076
https://doi.org/10.1093/owc/9780199583027.001.0001
https://doi.org/10.1093/owc/9780199583027.001.0001
https://cloud.google.com/kms/docs/key-rotation
https://cloud.google.com/kms/docs/key-rotation
https://www.himss.org/sites/hde/files/media/file/2020/11/16/2020_himss_cybersecurity_survey_final.pdf
https://www.himss.org/sites/hde/files/media/file/2020/11/16/2020_himss_cybersecurity_survey_final.pdf
https://doi.org/10.17487/RFC7519
https://www.nytimes.com/2019/07/23/health/data-privacy-protection.html
https://www.nytimes.com/2019/07/23/health/data-privacy-protection.html
https://doi.org/10.1001/jamanetworkopen.2020.11985
https://doi.org/10.1001/jamanetworkopen.2020.11985
https://doi.org/10.1109/TIT.1978.1055817
https://doi.org/10.1001/jamaoncol.2016.5829
https://doi.org/10.1001/jamaoncol.2016.5829
https://doi.org/10.1016/j.is.2012.11.005
https://doi.org/10.1016/j.is.2012.11.005
https://en.wikipedia.org/w/index.php?title=Hanlon's_razor&oldid=1045571584
https://en.wikipedia.org/w/index.php?title=Hanlon's_razor&oldid=1045571584

How Do Mobile Agents Benefit
from Randomness?

Pierre Fraigniaud(B)

Institut de Recherche en Informatique Fondamentale,
Université de Paris and CNRS, Paris, France

pierre.fraigniaud@irif.fr

Abstract. This paper focuses on mobile agents modeling biological enti-
ties such as foraging insects. It compares the behavior of randomized
mobile agents with the behavior of deterministic agents subject to prob-
abilistic perturbations of their actions caused by the environment, e.g.,
a gust of wind deviating the trajectory of a flying insect. We show that,
for a large class of scenarios, the two types of settings cannot be distin-
guished on the sole basis of external observations. On the other hand, we
also identify specific scenarios for which particular observable behaviors
can only result from agents benefiting from their own individual sources
of randomness. That is, in these scenarios, probabilistic perturbations of
the environment are not sufficient for allowing deterministic agents to
behave, from an external observer perspective, the same as randomized
agents.

Keywords: Mobile agents · Mobile computing · Random search ·
Graph exploration · ants’ problem · Navigation problems

1 Introduction

In the context of system biology, understanding the behavior of biological enti-
ties (e.g., insects, birds, fishes, etc.) is often addressed by modeling each entity
as an autonomous computing agent, typically a finite state machine. The action
of the agent at each time t is determined by the internal state of the agent at
time t, and by its perception of its local environment at that time. Probabilistic
effects help significantly for solving problems inspired by tasks accomplished by
biological entities (e.g., foraging for food, looking for a new nest, escaping from
a predator, etc.), and some problems may even be impossible to solve without
randomization. For instance, even very powerful machines such as Cook and
Rackoff’s JAGs [4] cannot explore all graphs1. Indeed, biological entities seem
to take benefit from probabilistic effects [8], whether it be thanks to internal
1 A jumping automaton for graphs (JAG) can be viewed as a team of finite automata

that cooperate constantly, and such that any member of the team can jump instantly
to any vertex occupied by another member.

Additional support from ANR projects DUCAT and QuDATA.

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 90–107, 2021.
https://doi.org/10.1007/978-3-030-91081-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_7

How Do Mobile Agents Benefit from Randomness? 91

capabilities of these entities allowing them to generate random values, and/or
thanks to random noise generated by the environment in which the entities nav-
igate (e.g., atmospheric variations, presence of physical micro-structures on the
terrain, encounters with other agents, etc.). This paper is aiming at identifying
which of these two phenomenons predominates. Coming back to the computing
agents modeling the biological entities, the question addressed in this paper is
whether the agents must have the ability to generate random values for solving
navigation problems efficiently, or whether the presence of random noises that
is external to deterministic agents is actually sufficient.

Statement of the Problem. We adopt a very generic and flexible model for a
mobile agent, based on three functions: the action function, the perception func-
tion, and the transition function. The action function returns which action (e.g.,
go straight, turn right, etc.) is to be performed by the agent. The perception
function provides the agents with information about their current location (e.g.,
presence of obstacles, list of available directions, etc.). The transition function
enables the agent to change state after each movement. Similarly, we adopt a
simple and flexible model for the environment in which the agent evolves. It is
essentially characterized by a single function: the movement function. Given a
current position, and an action performed by the agent at that position, the
movement function merely returns the new position where the agent is moved.

Specifically, we consider an agent A modeled by a finite state machine moving
in a discrete environment E , i.e., the set X of agent’s positions is discrete. At
each discrete time step, the agent currently located at a position x ∈ X, gets as
input a local perception ρ(x) of x. Based on this input, and on its current state s,
the agent computes an action a = α(s, ρ(x)) where the function α is specific to
the agent. For instance, an action may be “rotate 90◦ clockwise” or “perform
one step ahead”. The action a results in a movement from position x to position
y = μ(a, x) ∈ X, where the function μ is depending on the environment in which
the agent evolves—see Algorithm 1.

Algorithm 1: Search Protocol
1 s ← s0 ; // initial state

2 x ← x0 ; // initial position

3 repeat forever
4 a ← α(s, ρ(x)) ; // agent selects action

5 y ← μ(a, x) ; // movement is performed

6 s ← δ(s, ρ(y)) ; // agent updates its state

7 x ← y

8 end

For instance, an insect facing north at x, and executing the action “perform
one step ahead” may move one millimeter north, but it may as well move half
a millimeter north-west, or even remain at x, if an obstacle prevents it from

92 P. Fraigniaud

moving straight, or if the atmospheric conditions cause a deviation of the agent’s
trajectory. Once at y, the agent updates its internal state from s to δ(s, ρ(y)),
where δ is a transition function specific to the agent, and ρ(y) is the perception
of position y by the agent. Note that the agent is aware of its actions, but not
of its actual movements. For instance, in our illustrative example, the agent
aiming at moving straight does not necessarily perceive whether this action was
actually executed, depending on its perception ρ(y) of the new position y versus
its perception ρ(x) of the previous position x.

We focus on search tasks modeled as navigation problems in an environ-
ment E , that is, the ability to travel from a source s ∈ X to a target t ∈ X,
governed by the action function α and the transition function δ of the agent, and
by the movement function μ of the environment. We study the ability to solve
search tasks by randomized agents (i.e., agents using randomized action func-
tions) moving in a deterministic environment (i.e., specified by a deterministic
movement function), and we compare it with the ability to solve search tasks by
deterministic agents (i.e., the action function is deterministic) moving in a prob-
abilistic environment (i.e., in which the movement function is randomized, that
is, subject to probabilistic perturbations). We consider two comparison criteria,
one at a small scale, and one other weaker criterium, at a large scale.

– The small scale measure refers to the distribution Π =
(
Pr[y|x]

)
x,y

describing
the probability of moving from position x to position y, for all pairs (x, y) ∈
X × X;

– The large scale measure refers to the performances of the agents, quantified
as the expected number of steps performed by the agents for solving search
problems.

These two measures allow us to address questions such as the following. Given
a randomized agent A = (α, ρ, δ) navigating in a deterministic environment E =
(X,μ), is there a probabilistic perturbation μ′ of the movement function μ, and
a deterministic action function α′ for A such that

Π =
(

Pr
α,μ

[y|x]
)
x,y

and
Π ′ =

(
Pr

α′,μ′
[y|x]

)
x,y

are identical? Note that if the answer to this question is positive, then an exter-
nal observer examining the random movements of the agent in its environment
cannot be certain that these movements are caused by random effects internal
to the agent, and not by probabilistic effects caused by the environment.

Another question addressed in this paper is, given a randomized agent
A = (α, ρ, δ) navigating form position s to position t in expected time T in a
deterministic environment E = (X,μ), is there a probabilistic perturbation μ′ of
the movement function μ, and a deterministic action function α′ for A enabling
the agent to navigate from s to t in expected time T ′ = T? Note that is the

How Do Mobile Agents Benefit from Randomness? 93

answer to this question if negative, and, in particular, if T ′ � T for every deter-
ministic agent and every probabilistic perturbation of the environment, then an
external observer witnessing agents traveling from s to t in expected time T can
unambiguously conclude that the random effects must be caused by a source of
randomness internal to the agents, i.e., by random variables produced by the
agent itself.

1.1 Our Results

First, we show that external randomness, i.e., random effects caused by proba-
bilistic perturbations of the environment, can always be simulated by internal
randomness, i.e., by random values produced by the agent itself. Specifically, we
show that the behavior of any deterministic or randomized agent with action
function α, subject to a probabilistic perturbation μ′ of a deterministic move-
ment function μ, can be simulated by an agent with randomized action function
α′, and moving according to the deterministic movement function μ, in the sense
that the two distributions

(
Prμ′,α[y|x]

)
x,y

and
(
Prμ,α′ [y|x]

)
x,y

are identical. In
other words, an external observer cannot unambiguously measure the impact of
random noise while observing solely the movements of an agent, as this agent
may well be the source of all the probabilistic effects.

Next, we address the main question motivating our work: under which cir-
cumstances the behavior of an agent must unambiguously witness the fact that
the agent uses randomness produced by the agent itself? The answer to this
question is contrasted, and depends on the space complexity of the agent.

We show that if the agent does not possess a sufficiently large memory, i.e.,
a sufficiently large set of internal states, with respect to the number of possible
actions, then internal randomness can systematically be simulated by proba-
bilistic noise. Specifically, we show that, unless the number of states of the agent
is strictly larger than the number of its possible actions, then the behavior of
any randomized agent with action function α, and subject to any deterministic
or probabilistic movement function μ, may also be produced by a deterministic
agent with action function α′ subject to a probabilistic movement function μ′,
in the sense that the two distributions

(
Prα,μ[y|x]

)
x,y

and
(
Prα′,μ′ [y|x]

)
x,y

are
identical. In particular, an external observer cannot be unambiguously certain
that a stateless agent is randomized by observing solely the movements of the
agent, as all probabilistic effects may actually be caused by random noise due
to the environment. We show that this also holds for agents with a small set of
states.

In contrast, we exhibit a setting in which the behavior of the agent is unam-
biguously the result of random effects produced by the agent itself, and cannot
be caused by probabilistic perturbations of the environment. Specifically, we
describe an environment in which a randomized agent can travel from a posi-
tion s to a position t in expected time T while any deterministic agent traveling
from s to t takes expected time T ′ � T for any probabilistic perturbation of the
movement function. An external observer witnessing agents traveling from s to

94 P. Fraigniaud

t in expected time T in our setting can thus unambiguously conclude that the
agents are randomized.

To sum up, it was known that randomization helps for solving navigation
problems with finite state machines. However, we show that external random-
ness (i.e., noise caused by the environment) is not necessarily required, as such
probabilistic effects can be simulated internally by a randomized agent. On the
other hand, we show that while internal randomness is not required from agents
with small memory, as noise can simulate such internal randomness, there are set-
tings involving agents with large memory for which internal randomness helps. In
these settings, randomized agents achieve performances that cannot be obtained
from deterministic agents, even if the environment helps the latter thanks to
random noise.

1.2 Related Work

A recent trend in system biology aims at studying biological entities through
the lens of computer science, by modeling these entities as computing machines
executing an algorithm whose objective is to allow these machines to complete
a specific task (see, e.g., [2,8,14]). This approach offers the advantage of decou-
pling the search strategy performed by the biological entity (i.e., the algorithm)
from the environment in which these entities evolve (i.e., the constraints), and
from the task to be achieved (i.e., the problem). This allows one to separate
the different computational factors impacting the performances of the biologi-
cal entities, including their computing capabilities, their ability to communicate
and to cooperate with other entities, their perception of the environment, their
ability to memorize events, etc.

Studying biological entities through the lens of computer science was popu-
larized within the TCS community by Feinerman and Korman [7] in 2012, who
introduced and investigated the ants nearby treasure search (ants) problem.
This seminal paper inspired several subsequent work, which revisited the ants’
problem, as well as other problems inspired by biological tasks, under different
assumptions—see, e.g., [5,6,9,11–13]. All these papers consider mobile agents
modeled as randomized finite state machines.

A parallel line of research is modeling the behavior of biological entities by
random models, including Lévy walks [15], random walks with heterogeneous
step lengths [10], power laws [3], preferential attachment [1], etc.

The objective of this paper is inspired by the general framework introduced
by Feinerman and Korman [7]. The models considered for approaching the ants’
problem assume randomized agents. In this paper, we are decoupling the ran-
dom effects caused by the agents themselves from the random effects potentially
caused by their environment, and we aim at studying the relative impact of
these two sources of randomness. The long term objective of this study is to
figure out which problems (e.g., the ants’ problem) and which environments
require randomized agents for the problems be solved in these environments,
and for which problems and environments deterministic agents suffice as long as
the environments are probabilistic.

How Do Mobile Agents Benefit from Randomness? 95

2 Model

2.1 Deterministic Systems

A search environment is defined as a 4-tuple E = (X,x0, A, μ) where X and A
are non-empty finite sets, x0 ∈ X, and μ : A × X → X. The elements of X
are called positions, and the elements of A are called actions. The position x0

is called initial position, and the map μ is called a movement function. Given
a search environment E , an agent for E is a 5-tuple A = (Σ, s0, ρ, α, δ) where
Σ is the non-empty finite set of states of the agent, s0 ∈ Σ, and ρ : X → Y =
ρ(X), α : Σ × ρ(X) → A, and δ : Σ × ρ(X) → Σ. The function α is called the
action function of the agent, and δ is the agent’s transition function. The state s0
is the initial state of the agent. The map ρ is called the perception function of
the agent A, and the value ρ(x) of a position x ∈ X is called the perception of x
by the agent. This setting is quite general, and the only requirement imposed
on the agent and its environment is to be consistent in the following sense.

Definition 1 (Consistency). A movement function μ : A × X → X and a
perception function ρ : X → Y are consistent if, for every (x, x′) ∈ X × X with
ρ(x) = ρ(x′), and for every (a, b) ∈ A × A:

μ(a, x) = μ(b, x) ⇐⇒ μ(a, x′) = μ(b, x′).

The consistency condition merely says that if the agent perceives two different
positions x and x′ the same, then the movements resulting from its actions must
also share similarities, in the sense that if two actions a and b performed at x
lead to the same position y, then the same two actions a and b performed at x′

must also lead to the same position y′. For instance, in a 2-dimensional square
mesh modeling a flat terrain, if the two nodes x and x′ are not distinguishable
by an agent provided with a compass, and if the actions “go north” and “move
down” lead the agent to the same node y from x, then these two actions also
lead the agent to the same node y′ from x′. The rationale is that if it was not
the case, then the down direction would not face north, and the agent (provided
with a compass) could detect this fact, and could therefore distinguish x from x′.

Definition 2 (System). An environment E and an agent A for E form a sys-
tem (A, E) if the movement function of E and the perception function of A are
consistent.

An execution of an agent A in the environment E is displayed as Algorithm 1.
Starting from position x0 ∈ X, in the prescribed initial state s0, the agent
evolves in X. At every execution of the loop in the algorithm, the agent selects
an action a ∈ A based on its current state s ∈ Σ, and its perception ρ(x) of
the current position x. Then the agent is moved from its current position x
to a new position, thanks to the movement function μ applied to the action a
performed by the agent at x. Finally, the agent updates its internal state based
on its current state s, and on its perception of the new position reached after its
movement.

96 P. Fraigniaud

2.2 Randomized Systems

The action function α of an agent may be randomized, in which case α : Σ ×
ρ(X) × Ω → A for some discrete probability space (Ω, p) where p : Ω → (0, 1]
denotes the probability mass function. Given a current state s and a current
position x of the agent, the probability that the agents performs action a is∑

r∈E p(r) where E = {r ∈ Ω : α(s, x, r) = a}. For the sake of avoiding confusion
between deterministic and randomized agents, we will systematically denote by
αd the action function of deterministic agents, and by αr the action function
of randomized agents, keeping α solely for generic statements applying to both
types of functions.

The environment may also be subject to probabilistic perturbations, and we
thus consider randomized movement functions μ : A × X × Ω′ → X for some
discrete probability space (Ω′, p′). We adopt the same convention as for the
action functions, that is, deterministic and randomized movement functions are
denoted by μd and μr, respectively. For the sake of simplifying the notations,
the probability spaces (Ω, p) and (Ω′, p′) will be omitted when clear from the
context. A randomized movement function must satisfy two basic properties
for being a probabilistic perturbation of a system. These properties are called
reachability and statistical consistency.

Definition 3 (Reachability). A randomized movement function μr : A×X →
X satisfies reachability with respect to a deterministic movement function μd :
A × X → X if, for every (x, y) ∈ X × X and every a ∈ A:

Pr[μr(a, x) = y] > 0 =⇒ ∃b ∈ A : y = μd(b, x).

The reachability condition specifies that the randomized movement func-
tion μr cannot lead an agent from position x to some position y that is not
reachable from x thanks to the deterministic movement function μd. That is, we
focus on small scale effects, and ignore large scale effects like landslides, floods,
or gales susceptible to move a biological entity far from its current position in
an instant.

Definition 4 (Statistical consistency). A randomized movement function
μr : A × X → X satisfies statistical consistency with respect to a perception
function ρ : X → Y and a deterministic movement function μd : A × X → X if,
for every (x, x′) ∈ X × X with ρ(x) = ρ(x′), and for every (a, b) ∈ A × A:

Pr[μr(a, x) = μd(b, x)] = Pr[μr(a, x′) = μd(b, x′)].

The statistical consistency condition specifies that, at two positions x and
x′ that are perceived the same by the agent, if the agent aims at performing
action a, then it is moved by μr from x to a position y = μd(b, x) with the same
probability as it might be moved from x′ to a position y′ = μd(b, x′). In other
words, the randomized movement function μr acts statistically the same at two
positions that are perceived the same by the agent. For instance, revisiting the
example of an agent in a 2-dimensional square mesh, if the two nodes x and x′

How Do Mobile Agents Benefit from Randomness? 97

are not distinguishable by the agent, the probability that the agent is moved
from x to the node y north of x′ when performing the action “go down” is equal
to the probability that the agent is moved from x′ to the node y′ north of x′

when performing the action “go down”. The rational behind this definition is
that if these two probabilities were different, then the positions x and x′ must be
sufficiently different (e.g., different wind conditions, different slopes, etc.), and
therefore be distinguishable by the agent.

Definition 5 (Perturbation). Given a system (A, E), a randomized move-
ment function μr is a probabilistic perturbation the system if μr satisfies reach-
ability w.r.t. the movement function μd of E, and statistical consistency w.r.t.
the perception function ρ of A.

Note that, for any system (A, E), its own movement function μd : A × X →
X is a probabilistic perturbation of itself. This fact directly follows from the
consistency condition imposed on systems (cf. Definitions 1 and 2).

Notation. Given a (possibly randomized) action function α, and given a (possibly
randomized) movement function μ, we denote

Pr
α,μ

[y|s, x] � Pr[μ(α(s, ρ(x)), x) = y]

for every (x, y) ∈ X × X and s ∈ Σ, where the probabilities are taken oven the
random values drawn in the probability spaces of α and μ. Similarly, for every
action a ∈ A, we denote

Pr
α

[a|s, x] � Pr[α(s, x) = a], and Pr
μ

[y|a, x] � Pr[μ(a, x) = y].

To compare different action functions α and α′ under different movement func-
tions μ and μ′, we study and compare the two collections of probability distri-
butions

(
Prα,μ[y|s, x]

)
s,x,y

and
(
Prα′,μ′ [y|s, x]

)
s,x,y

.

Remark. Given a system (A, E) with E = (X,x0, A, μ), and A = (Σ, s0, ρ, α, δ),
an external observer can observe the trajectory of A, that is, the sequence of
positions in X generated by A and μ. On the other hand, the sets Σ and A, as well
as the functions ρ, α, and δ are a priori not observable. Nevertheless, depending
on the context (e.g., the specimen of a biological entity at hand), an external
observer may have a good estimate of the type of actions that may be produced
by an agent (e.g., thanks to physiological characteristics of the biological entity).
The same holds for the perception function and the set of states, i.e., it may be
possible to characterize those that are plausible, depending on the context. As
a consequence, unless specified otherwise, when simulating a system (A, E) by
another system (A′, E ′) the two systems differ only in their movement and action
functions.

98 P. Fraigniaud

3 Indistinguishability

This section focuses on settings for which an external observer cannot tell
whether the behavior of the agent results from a probabilistic perturbation of
the environment, or from an internal source of randomness. In particular, The-
orem 1 states that any given probabilistic perturbation can be simulated by a
randomized agent, and Theorem2 states that, under some conditions, any given
randomized agent can be simulated by a probabilistic perturbation. In Sect. 4,
we shall show that the conditions in Theorem 2 are actually tight.

Theorem 1. Let (A, E) be a system, with E = (X,x0, A, μd), and where A =
(Σ, s0, ρ, αr, δ) may be randomized. For every probabilistic perturbation μr of the
movement function μd, there exists a randomized agent A′ = (Σ, s0, ρ, α′

r, δ) for
E such that, for all (x, y) ∈ X × X and s ∈ Σ, Prα′

r,μd
[y|s, x] = Prαr,μr

[y|s, x].

Proof. For x ∈ X and s ∈ Σ, we define α′
r(s, ρ(x)) as follows. For every action

a ∈ A, let â = {b ∈ A : μd(b, x) = μd(a, x)}. We set

Pr[α′
r(s, ρ(x)) = a] =

1
|â| ·

∑

b∈A

Pr[αr(s, ρ(x)) = b] · Pr[μr(b, x) = μd(a, x)].

By construction, we have
∑

a∈A Pr[α′
r(s, ρ(x)) = a] = 1. To show that α′

r is well
defined, let x, x′ ∈ X be two positions with ρ(x) = ρ(x′). Obviously, for every
b ∈ A and s ∈ Σ, Pr[αr(s, ρ(x)) = b] = Pr[αr(s, ρ(x′)) = b]. Moreover, by the
statistical consistency property, we also have

Pr[μr(b, x) = μd(a, x)] = Pr[μr(b, x′) = μd(a, x′)].

It follows that, for every a ∈ A and s ∈ Σ, the equality

Pr[α′
r(s, ρ(x)) = a] = Pr[α′

r(s, ρ(x′)) = a]

holds, which guarantees that α′
r depends on the perception of the positions, and

not the positions themselves.
We now show that the pairs (α′

r, μd) and (αr, μr) are indistinguishable from an
external observer perspective. On the one hand, by definition, for every y ∈ X,
we have

Pr
αr,μr

[y|s, x] =
∑

a∈A

Pr
αr

[a|s, x]·Pr
μr

[y|a, x] =
∑

a∈A

Pr[αr(s, ρ(x)) = a]·Pr[μr(a, x) = y].

On the other hand, by construction, for every y ∈ X, we have

Pr
α′

r,μd

[y|s, x] =
∑

a∈A

Pr
α′

r

[a|s, x] · 1(μd(a, x) = y), (1)

where 1(false) = 0, and 1(true) = 1. Let μ−1
d (x, y) = {a ∈ A : μd(a, x) = y}.

Observe that if μ−1
d (x, y) = ∅, i.e., if 1(μd(a, x) = y) = 0 for all a ∈ A, then,

How Do Mobile Agents Benefit from Randomness? 99

by the reachability property, it must be the case that Prμr
[y|a, x] = 0 for all

a ∈ A, and thus Prαr,μr
[y|s, x] = Prα′

r,μd
[y|s, x] holds (they are both equal

to 0). Therefore, we assume now that μ−1
d (x, y) �= ∅. Equation (1) can then be

rewritten as

Pr
α′

r,μd

[y|s, x] =
∑

a∈μ−1
d (x,y)

Pr
α′

r

[a|s, x]

=
∑

a∈μ−1
d (x,y)

1
|â| ·

∑

b∈A

Pr[αr(s, ρ(x)) = b] · Pr[μr(b, x) = μd(a, x)]

=
∑

a∈μ−1
d (x,y)

1
|â| ·

∑

b∈A

Pr[αr(s, ρ(x)) = b] · Pr[μr(b, x) = y].

Since, for every a ∈ μ−1
d (x, y), the equality â = μ−1

d (x, y) holds, we get that

Pr
α′

r,μd

[y|s, x] =
∑

b∈A

Pr[αr(s, ρ(x)) = b] · Pr[μr(b, x) = y] = Pr
αr,μr

[y|s, x],

as desired, which completes the proof. 	

We now focus on determining under which conditions the reciprocal of The-

orem 1 holds. We first show that if the action set A can be altered, then the
behavior of a randomized agent can systematically be simulated by a determin-
istic agent provided with an appropriate perturbation of its movements. Note
that, as mentioned before, altering the action set is not desirable, as such mod-
ification may be detected by an external observer. Nevertheless, as we shall see
later, the following lemma has interesting consequences, even to systems in which
the action sets of the agents involved in the simulation are kept identical.

Lemma 1. Let (A, E) be a system, with E = (X,x0, A, μd), and where A =
(Σ, s0, ρ, αr, δ) is randomized. For every perturbation μr of (A, E), there exists
an environment E ′ = (X,x0, A

′, μd), a deterministic agent A′ = (Σ, s0, ρ, αd, δ)
for E ′, and a perturbation μ′

r of (A′, E ′) such that, for every (x, y) ∈ X ×X, and
for every s ∈ Σ, Prαd,μ′

r
[y|s, x] = Prαr,μr

[y|s, x].

Proof. Let A′ = Σ. Let us define αd : Σ ×ρ(X) → A′ as αd(s, ρ(x)) = s, and μ′
r :

A′×X → X as μ′
r(s, x) = μr(αr(s, ρ(x)), x). The function μ′

r satisfies reachability
because, whenever applied at a position x, μ′

r outputs only positions y that can
be outputted by μr at x. To check statistical consistency, let x and x′ be two
positions perceived the same by the agent, i.e., for which ρ(x) = ρ(x′), let t be
an action in A′ (i.e., a state in Σ), and let y = μd(t, x) and y′ = μd(t, x′). For
every s ∈ A′ = Σ, we have

Pr[μ′
r(s, x) = y] = Pr[μr(αr(s, ρ(x)), x) = y]

=
∑

a∈A Pr[μr(a, x) = y] · Pr[αr(s, ρ(x)) = a]

=
∑

a∈A Pr[μr(a, x′) = y′] · Pr[αr(s, ρ(x′)) = a] (by stat. consistency)

= Pr[μr(αr(s, ρ(x′)), x′) = y′]

= Pr[μ′
r(s, x

′) = y′].

100 P. Fraigniaud

It follows that μ′
r satisfies statistical consistency, and thus it is a perturbation of

the system (E ′,A′), as desired. Now, given the current position x ∈ X, and the
current state s ∈ Σ of the agent at x, the probability for y ∈ X to be the next
position using A′ under perturbation μ′

r is

Prαd,μ′
r
[y|s, x] = Pr[μ′

r(αd(s, ρ(x)), x) = y]
= Pr[μ′

r(s, x) = y]
= Pr[μr(αr(s, ρ(x)), x) = y]
= Prαr,μr

[y|s, x].

The latter equality completes the proof. 	

The proof of Lemma 1 can be used for establishing simulations results involv-

ing systems with identical action sets. In particular, the next result shows that if
the set of actions is large compared to the set of agent’s states, then internal ran-
domness (i.e., produced by the agent) can be simulated by external randomness
(i.e., caused by probabilistic perturbations). Note that |Σ| must not be inter-
preted as, say, the “size of a brain” (even if some micro-animals have no more
than a couple of hundreds of neurons), but merely as the amount of memory
dedicated to navigating in an environment.

Theorem 2. Let (A, E) be a system, with E = (X,x0, A, μd), and where A =
(Σ, s0, ρ, αr, δ) is randomized. If |Σ| ≤ |A| then, for every perturbation μr of
(A, E), there exists a deterministic search agent A′ = (Σ, s0, ρ, αd, δ) for E and
a perturbation μ′

r of (A′, E) such that, for every (x, y) ∈ X × X, and for every
s ∈ Σ, Prαd,μ′

r
[y|s, x] = Prαr,μr

[y|s, x].

Proof. Let f : Σ → A be any one-to-one mapping from the set of agent’s states
to the set of actions. Such a mapping exists, merely because |A| ≥ |Σ|. We then
set αd : Σ × ρ(X) → A as αd(s, ρ(x)) = f(s), and μ′

r : A × X → X as

μ′
r(a, x) =

{
μr(a, x) if a /∈ f(Σ)
μr(αr(s, ρ(x)), x) if a = f(s) for some s ∈ Σ.

We just need to show statistical consistency for actions a /∈ f(Σ). This is
straightforward. Indeed, let x and x′ with ρ(x) = ρ(x′), let b ∈ A be an action,
and let y = μd(b, x) and y′ = μd(b, x′). Let a ∈ A. If a /∈ f(Σ), then

Pr[μ′
r(a, x) = y] = Pr[μr(a, x) = y] = Pr[μr(a, x′) = y′] = Pr[μ′

r(a, x′) = y′].

The rest of the proof is identical to the proof of Lemma1. 	

The following is a direct consequence of Theorem 2 on memoryless agents,

i.e., agents for which |Σ| = 1, and δ = Id, where Id(s, ρ(x)) = s for every
(s, x) ∈ Σ × X.

Corollary 1. Let (A, E) be a system with movement function μd, where A is
memoryless and randomized, with action function αr. For every perturbation μr

How Do Mobile Agents Benefit from Randomness? 101

of (A, E), there exists a deterministic memoryless agent A′ with action func-
tion αd, and a perturbation μ′

r of (A′, E) such that, for every x, y ∈ X,

Pr
αd,μ′

r

[y|x] = Pr
αr,μr

[y|x].

4 Distinguishability

This section aims at exhibiting a system (A, E) for which the behavior of the
agent can solely result from internal randomness, and not from a probabilistic
perturbation of the movement function. By Theorem2, the set Σ of agent states
must be larger than the set of actions A. We show that |Σ| = |A| + 1 suffices.
Specifically, we consider environments E = (X,x0, A, μd) for which

– there exists a unique position y ∈ X such that μd(a, y) = y for every a ∈ A;
– for every x ∈ X, there exists a sequence of positions x1, . . . , xk, k ≥ 1, such

that x1 = x, xk = y and, for every i ∈ {1, . . . , k − 1}, xi+1 = μd(ai, xi) for
some ai ∈ A.

A system (A, E) where E satisfies the above is called a rooted system, E is called
a rooted environment, and y is called the root of the environment. Given a (pos-
sibly randomized) agent A for a rooted environment E , with action function α,
and given a perturbation μ of (A, E), we denote by Tα,μ the random variable
equal to the number of positions (with multiplicity) traversed by the agent from
the initial position x0 until reaching the root y of E . The expectation of Tα,μ is
denoted by ETα,μ. Note that ETα,μ = +∞ may occur, typically when both α and
μ are deterministic. The following result shows that there exists a rooted system
(A, E) in which no deterministic agents can meet the performances of the ran-
domized agent A, for every probabilistic perturbation of the system. Note that,
by Theorem 2, the number of agent’s states k + 1 is minimum as a function of
the size k of the action set for such a result to hold. Note also that the size of
the environment is quasi-linear in k.

Theorem 3. For every ε > 0, and every integer k ≥ 1, there exists a rooted
system (E ,A) where E = (X,x0, A, μd) is an environment with |A| = k and
|X| = O(k(log k + log 1

ε)), and A = (Σ, s0, ρ, αr, δ) is a randomized agent with
|Σ| = k+1, such that, for every perturbation μr of μd, and for every deterministic
search agent A′ = (Σ, s0, ρ, αd, δ) for E, we have ETαr,μd

< ε · ETαd,μr
.

Proof. Let ε > 0, and let k ≥ 1. First, we describe the system (A, E). The set of
actions is let to be A = {1, . . . , k}. The set X of positions, and the movement
function μd : A×X → X are as follows. Intuitively, X can be viewed as a directed
path x0, . . . , xn−1 where, at each position xi, only one action ai ∈ A leads to
xi+1 thanks to the movement function μd, while all other k −1 actions lead back
to x0. Moreover, the action ai belongs to a pair Pi mod (k+1) of actions, where
P0, . . . , Pk are k + 1 distinct pairs of actions, which are fixed. The movement
function μd is such that, for every j ∈ {0, . . . , k}, for half of the positions xi with

102 P. Fraigniaud

i mod (k + 1) = j, one action in Pj leads to xi+1, and, for the other half, the
other actions in Pj leads to xi+1.

A randomized agent with k+1 states can keep track of j = i mod (k+1), and
then pick its action at xi uniformly at random in Pj , i.e., each with probability 1

2 .
Instead, a deterministic agent, even one keeping track of j = i mod (k + 1), will
systematically err at half of the positions xi, in the sense that it does not return
the right action for μd at these positions. We shall show that this cannot be
balanced by a perturbation μr of the movement function.

Roughly, since |A| = k is smaller than the number of pairs of actions
P0, . . . , Pk, there are two distinct pairs Pi and Pj for which the deterministic
action function returns the same action. It follows that the perturbation μr has
to randomly choose which movement to perform among those corresponding to
actions in Pi ∪Pj , which has a cardinality of at least three (instead, the random-
ized agent has the ability to either randomly choose in Pi, or randomly choose
in Pj). As a consequence, the probabilistic perturbation cannot do better than
leading the deterministic agent to err with probability roughly 1

3 (actually, with
probability at least 1/(2

√
2)) at numerous positions where the randomized agent

err with probability at most 1
2 . For sufficiently many positions in which this phe-

nomenon occurs, the ratio between the performances of the randomized agent in
its deterministic environment, and the performances of the deterministic agent
its probabilistic environment can be made as small as desired, and in particular
smaller than ε.

Formally, for defining X and μd, let us fix a set

{P0, . . . , Pk} ⊆ (
A
2

)

of k+1 distinct pairs of distinct actions. Let w = 00 . . . 0 and w = 11 . . . 1 be the
binary words consisting of k+1 consecutive 0s and 1s, respectively. Let m ≥ 1 be
an integer, and let us consider the binary sequence w = wwww . . . ww consisting
of m occurrences of the pair ww. The sequence w thus includes n = 2m(k + 1)
bits, and we denote w = w0 . . .wn−1, with wi ∈ {0, 1} for i = 0, . . . , n − 1.

There are n + k + 1 positions in X (see Fig. 1). Specifically,

X = {y1, . . . , yk, x0, . . . , xn},

where the positions x0, . . . , xn−1 will be placed in direct correspondence with
the n bits in the sequence w. For every i ∈ {1, . . . , k} and every a ∈ A, we set
μd(a, yi) = x0. Given an action a ∈ A and a position xi ∈ X, the movement
function μd is set as

μd(a, xi) =

⎧
⎪⎪⎨

⎪⎪⎩

xi+1 if i < n, a = min{b ∈ Pi mod (k+1)}, and wi = 0
xi+1 if i < n, a = max{b ∈ Pi mod (k+1)}, and wi = 1
xn if i = n
ya otherwise.

We now define an agent A = (Σ, s0, ρ, αr, δ) for E . We set Σ = {0, . . . , k}
and s0 = 0. We assume that the agent perceives all positions xi the same, but

How Do Mobile Agents Benefit from Randomness? 103

w w ww w
k + 1 k + 1

x0 xk+1x1 xn−1 xnxky1
y2

yk 2m (k + 1)
w

Fig. 1. Construction in the proof of Theorem 3

the final position xn, and that the agent perceives all positions yj as the same.
That is, ⎧

⎨

⎩

ρ(xi) = go for all 0 ≤ i ≤ n − 1
ρ(xn) = end
ρ(yj) = back for all 1 ≤ j ≤ k

Note that the consistency condition (cf. Definition 1) is satisfied. The transition
function δ merely increases by 1 the current state, modulo k + 1, except when
the agent is back at a position yj , j = 1, . . . , k, in which case the state is reset.
More specifically,

δ(s, ρ(x)) =
{

k if ρ(x) = back
s + 1 mod (k + 1) otherwise.

This ensures, in particular, that the agent is systematically in state 0 at posi-
tion x0. Finally, the randomized action function is set as follows:

αr(s, ρ(x)) =
{

max{b ∈ Ps} with probability 1/2
min{b ∈ Ps} with probability 1/2

Let us analyze the behavior of agent A in E , and the time Tαr,μd
it takes for the

agent starting at position x0 to reach the final position y = xn. By the setting
of the transition function δ, for every i ∈ {0, . . . , n − 1}, the state s of the agent
at node xi satisfies s = i mod (k + 1). Therefore, the agent chooses uniformly
at random among one of the two actions in Ps that are susceptible to bring
it to xi+1. This will succeed with a probability 1/2. It follows that the agent
traverses the sequence x0, x1, . . . , xn with probability 1/2n. As a consequence,

ETαr,μd
≤ n 2n

since, during each failing attempt to reach xn, the agent traverses at most n
positions.

We now consider a deterministic agent A′ = (Σ, s0, ρ, αd, δ). The action
function αd : Σ × ρ(X) → A boils down to a function αd : Σ → A at posi-
tions x0, . . . , xn−1 since all these positions are perceived the same by the agent.
Let μr be a probabilistic perturbation of μd. Recall that μr must satisfy the
reachability and statistical consistency condition. In particular, the latter condi-
tion specifies that the probabilistic distribution of the movements returned by μr

must be identical at all positions x0, . . . , xn−1 since the perception function ρ of
the agent does not distinguish these positions.

104 P. Fraigniaud

Let us focus on the first k + 1 positions. Since |A| = k, the same action has
been returned by the action function αd at two different positions in x0, . . . , xk.
That is, there exist two positions xu and xv, with 0 ≤ u < v ≤ k, for which
the deterministic action function αd returns the same action c. This common
action c is then returned by αd at all positions xu+i(k+1) and xv+i(k+1) for all
i ≥ 0. We call these positions critical. Note that a critical position may actually
not be visited by the agent during all attempts to go from x0 to xn, but if the
agent was visiting this position, then it would return action c at this position.
We show that the critical positions are slowing down the traversal of x0, . . . , xn

by the deterministic agent A′ compared to the randomized agent A, for any
probabilistic perturbation μr of μd.

For every position xt, 0 ≤ t ≤ k, all positions xt+i(k+1) for i ≥ 0 are called
the twins of xt. At every twin position xi of xt, the agent A′ returns the same
action ct, and only one of the two actions in Pt mod (k+1) enables to make progress
toward xn. For maximizing the probability that the agent does not fail at any of
these positions (i.e., is not moved back to x0 via some yj), the best is that the
probabilistic perturbation guarantees that

Pr[μr(ct, xt) ∈ {μd(a, xt) : a ∈ Pt mod (k+1)}] = 1.

Let Jt = {t + i(k + 1) : 0 ≤ i ≤ 2m − 1}. Our construction of the environment E
satisfies the following.

Fact 1. For every 0 ≤ t ≤ k, |{i ∈ Jt : wi = 0}| = |{i ∈ Jt : wi = 1}|.
Fact 1 implies that the best scenario for xt and its twins is that, for every

a ∈ Pt mod (k+1),

Pr[μr(ct, xt) = μd(a, xt)] =
1
2
.

This is because the maximum of xy under the constraint of non-negative vari-
ables x, y satisfying x+y = 1 is reached for x = y = 1

2 , for an optimum of 1
4 . We

conclude that the probabilistic perturbation of the environment must guarantee
that, for every non-critical position xi, the probability of reaching xi+1 from xi

is equal to 1
2 .

However, this scenario, which enables the deterministic agent A′ to perform
as well as the randomized agent A at non-critical positions, cannot hold at
critical positions. Indeed, the action function αd of A′ returns the same action c
at critical positions xu and xv, where 0 ≤ u < v ≤ k. For maximizing the
probability of reaching xn, the best setting is that that

Pr[μr(c, xt) ∈ {μd(a, xt) : a ∈ Pu mod (k+1) ∪ Pv mod (k+1)}] = 1.

If Pu mod (k+1) ∩ Pv mod (k+1) = ∅, then Fact 1 implies that the best scenario for
xu, xv, and their twins is that, for every a ∈ Pu mod (k+1) ∪ Pv mod (k+1),

Pr[μr(c, xt) = μd(a, xt)] =
1
4
.

How Do Mobile Agents Benefit from Randomness? 105

This is because the maximum of xyzt under the constraint of non-negative vari-
ables x, y, z, t satisfying x + y + z + t = 1 is reached for x = y = z = t = 1

4 , for
an optimum of 1

256 .
It may however be the case that the two pairs of actions intersect, in which

case Pu mod (k+1) ∪ Pv mod (k+1) contains only three actions a1, a2, and a3. By
Fact 1, and by the setting of μd, the action common to the two pairs, say a1,
occurs half of the time at the twins of either xu or xv, while each the other two
actions, a2 and a3, occurs only a quarter of the time. The best option for μr is
then to set

Pr[μr(c, xu) = μd(a1, xu)] =
1
2
,

and
Pr[μr(c, xu) = μd(a2, xu)] = Pr[μr(c, xu) = μd(a2, xu)] =

1
4
.

This is because the maximum of x2yz under the constraint of non-negative vari-
ables x, y, z satisfying x + y + z = 1 is reached for x = 1

2 , and y = z = 1
4 , for an

optimum of 1
64 > 1

256 .
The case of two intersecting pairs Pu mod (k+1) and Pv mod (k+1) is therefore

more favorable, as far as the probability of making progress toward xn is con-
cerned. Note however that (1

64)1/4 = 1
2
√
2
, which is to say that the amortized

probability of making progress at a critical position is to the best 1
2
√
2
, which is

smaller than 1
2 .

The following fact directly follows from our construction.

Fact 2. There are at least 4m critical positions.

By Fact 1, for one-half of these critical positions, the success probability at
each position is to the best 1

2 , while, for the other half, the success probability
at each position is to the best 1

4 . Overall, we get that

ETαd,μr
≥ 2n−4m · 22m · 42m = 2n+2m.

It follows that
ETαr,μd

< εETαd,μr

whenever n < ε 22m. This latter inequality is satisfied by picking m sufficiently
large. In particular, m = Θ(log k + log 1

ε) suffices. 	

Remark. An interesting question is finding the simplest deterministic agent
A′′ = (Σ′, s′

0, ρ, α′
d, δ

′) for which there is a perturbation μr of μd such that
ETα′

d,μr
is at least as good as ETαr,μd

, where ETα′
d,μr

and ETαr,μd
respectively

denote the expected number of steps required by A′′ and the agent A defined in
the proof of Theorem 3 to search the environment E also defined in that proof.
A deterministic agent A′′ with 2(k + 1) states can achieve that with μr = μd, as
such an agent can maintain a pair (s1, s2) of counters with s1 ∈ {0, . . . , k} and
s2 ∈ {0, 1}, which is sufficient for the agent to be perpetually aware of which
action to perform at each step. What about deterministic agents with less than
2(k +1) states? And what about deterministic agents with at most k +1 states?

106 P. Fraigniaud

5 Conclusion

This paper has studied the relative power of (1) deterministic agents subject
to probabilistic perturbations of their movements, and (2) randomized agents
moving in a deterministic environment. We have established a sharp threshold
governing the respective power of these two settings. Specifically, if the set of
states Σ of the agent is not larger than its set of actions A, i.e., if |Σ| ≤ |A|, then
the power provided to the agent by giving it access to its own individual source of
randomness can be simulated by probabilistic perturbations of its movements. In
contrast, there exists a setting where |Σ| = |A|+1 in which a randomized agent
outperforms any deterministic agent, even if the latter is helped by probabilistic
perturbations of the movements.

This work opens several directions for future research. In particular, it would
be interesting to study the case of randomized transition functions, and to figure
out how much such a form of randomization helps compared to agents for which
solely the action function is randomized. Another possible direction is to consider
a group of agents, possibly cooperating thanks to some light form of communica-
tion, and to analyze their ability to coordinate for solving specific search tasks,
as a function of their sources of randomness: internal vs. external.

Acknowledgements. The author is thankful to Amos Korman for exciting and moti-
vating early discussions about the possible causes and effects of macroscopic random
phenomenons in the context of system biology.

References

1. Avin, C., Cohen, A., Fraigniaud, P., Lotker, Z., Peleg, D.: Preferential attachment
as a unique equilibrium. In: 27th ACM Conference on World Wide Web (WWW),
pp. 559–568 (2018)

2. Boczkowski, L., Natale, E., Feinerman, O., Korman, A.: Limits on reliable infor-
mation flows through stochastic populations. PLoS Comput. Biol. 14(6), e1006195
(2018)

3. Chaintreau, A., Fraigniaud, P., Lebhar, E.: Networks become navigable as nodes
move and forget. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 133–144.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70575-8 12

4. Cook, S.A., Rackoff, C.: Space lower bounds for maze threadability on restricted
machines. SIAM J. Comput. 9(3), 636–652 (1980)

5. Emek, Y., Langner, T., Stolz, D., Uitto, J., Wattenhofer, R.: How many ants does
it take to find the food? Theor. Comput. Sci. 608, 255–267 (2015)

6. Emek, Y., Langner, T., Uitto, J., Wattenhofer, R.: Solving the ANTS problem
with asynchronous finite state machines. In: Esparza, J., Fraigniaud, P., Husfeldt,
T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 471–482. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7 40

7. Feinerman, O., Korman, A.: The ANTS problem. Distrib. Comput. 30(3), 149–168
(2016). https://doi.org/10.1007/s00446-016-0285-8

https://doi.org/10.1007/978-3-540-70575-8_12
https://doi.org/10.1007/978-3-662-43951-7_40
https://doi.org/10.1007/s00446-016-0285-8

How Do Mobile Agents Benefit from Randomness? 107

8. Gelblum, A., Fonio, E., Rodeh, Y., Korman, A., Feinerman, O.: Ant collective
cognition allows for efficient navigation through disordered environments. eLife
9(e55195) (2020)

9. Ghaffari, M., Musco, C., Radeva, T., Lynch, N.A.: Distributed house-hunting in
ant colonies. In: 34th ACM Symposium on Principles of Distributed Computing
(PODC), pp. 57–66 (2015)

10. Guinard, B., Korman, A.: Tight bounds for the cover times of random walks
with heterogeneous step lengths. In: 37th International Symposium on Theoret-
ical Aspects of Computer Science (STACS), pp. 28:1–28:14 (2020)

11. Langner, T., Uitto, J., Stolz, D., Wattenhofer, R.: Fault-tolerant ANTS. In: Kuhn,
F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 31–45. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45174-8 3

12. Lenzen, C., Lynch, N., Newport, C., Radeva, T.: Searching without communi-
cating: tradeoffs between performance and selection complexity. Distrib. Comput.
30(3), 169–191 (2016). https://doi.org/10.1007/s00446-016-0283-x

13. Musco, C., Su, H., Lynch, N.A.: Ant-inspired density estimation via random walks.
In: 35th ACM Symposium on Principles of Distributed Computing (PODC), pp.
469–478 (2016)

14. Radeva, T., Dornhaus, A.R., Lynch, N.A., Nagpal, R., Su, H.: Costs of task allo-
cation with local feedback: effects of colony size and extra workers in social insects
and other multi-agent systems. PLoS Comput. Biol. 13(12), e1005904 (2017)

15. Reynolds, A.M.: Current status and future directions of Lévy walk research. Biol.
Open 7(1), bio030106 (2018)

https://doi.org/10.1007/978-3-662-45174-8_3
https://doi.org/10.1007/s00446-016-0283-x

A Lattice Linear Predicate Parallel
Algorithm for the Housing Market

Problem

Vijay K. Garg(B)

Department of Electrical and Computer Engineering, University of Texas at Austin,
Austin, TX 78712, USA
garg@ece.utexas.edu

Abstract. It has been shown that Lattice Linear Predicate (LLP) algo-
rithm solves many combinatorial optimization problems such as the
shortest path problem, the stable marriage problem and the market
clearing price problem. In this paper, we give an LLP algorithm for the
Housing Market problem. The Housing Market problem is a one-sided
matching problem with n agents and n houses. Each agent has an initial
allocation of a house and a totally ordered preference list of houses. The
goal is to find a matching between agents and houses such that no strict
subset of agents can improve their outcome by exchanging houses with
each other rather than going with the matching. Gale’s celebrated Top
Trading Cycle algorithm to find the matching requires O(n2) time. Our
parallel algorithm has expected time complexity O(n log2 n) with and
expected work complexity of O(n2 log n).

1 Introduction

The housing market problem proposed by Shapley and Scarf [1] is a matching
problem with one-sided preferences. There are n agents and n houses. Each agent
ai initially owns a house hi for i ∈ {1, n} and has a completely ranked list of
houses. There are variations of this problem when the agents do not own any
house initially. In this paper, we focus on the version with the initial endowment
of houses for the agents. The list of preferences of the agents is given by pref [i][k]
which specifies the kth preference of the agent i. Thus, pref [i][1] = j means that
ai prefers hj as his top choice. The goal is to come up with an optimal house
allocation such that each agent has a house and no subset of agents can improve
the satisfaction of agents in this subset by exchanging houses within the subset.
It can be shown that there is a unique such matching called the core for any
housing market. The standard algorithm for this problem is Gale’s Top Trading
Cycle Algorithm that takes O(n2) time. This algorithm is optimal in terms of
the time complexity since the input size is O(n2). Our interest in this paper is
to design parallel algorithms for this problem.

Supported by the NSF Grant CCR-1812351 and Cullen Trust Endowed Professorship.

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 108–122, 2021.
https://doi.org/10.1007/978-3-030-91081-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_8&domain=pdf
http://orcid.org/0000-0002-5797-4389
https://doi.org/10.1007/978-3-030-91081-5_8

A Parallel Algorithm for the Housing Market Problem 109

The housing market problem has been studied by many researchers [1–8].
Possible applications of the housing market problem include: assigning virtual
machines to servers in cloud computers, allocating graduates to trainee positions,
professors to offices, and students to roommates. In this paper, we apply the
Lattice Linear Predicate (LLP) method [9] to give a parallel algorithm for the
housing market problem. This problem has also recently been studied by Zheng
and Garg [10] where it is shown that the problem of verifying that a matching
is a core is in NC, but the problem of computing the core is CC-hard1 The
paper [10] also gives a distributed message-passing algorithm to find the core
with O(n2) messages. In this paper, we focus on computing the core and give
a parallel algorithm for finding the core that is nearly linear in the number of
agents. Our algorithm takes expected O(n log2 n) time and expected O(n2 log n)
work.

Another goal of this paper is to show applications of the Lattice Linear
Predicate (LLP) algorithm for the problem. It has been shown that the Lattice
Linear Predicate (LLP) algorithm solves many combinatorial optimization prob-
lems such as the shortest path problem, the stable marriage problem and the
market clearing price problem [9]. In [11], we show that the LLP algorithm also
solves many dynamic programming problems in parallel. These problems include
the longest subsequence problem, the optimal binary search tree problem, and
the knapsack problem.

The lattice-linear predicate detection method to solve a combinatorial opti-
mization problem is as follows. The first step is to define a lattice of vectors
L such that each vector is assigned a point in the search space. For the stable
matching problem, the vector corresponds to the assignment of men to women
(or equivalently, the choice number for each man). For the shortest path prob-
lem, the vector assigns a cost to each node. For the housing problem studied in
this paper, the vector corresponds to the assignment of agents to houses. The
comparison operation (≤) is defined on the set of vectors such that the least
vector, if feasible, is the extremal solution of interest. For example, in the stable
marriage problem if each man orders women according to his preferences and
every man is assigned the first woman in the list, then this solution is the man-
optimal solution whenever the assignment is a matching and has no blocking
pair. Similarly, in the shortest path problem, the zero vector would be optimal
if it were feasible. For the housing problem, each agent orders the list of houses
in order of its preference giving us the comparison operator. For two vectors G
and H in the lattice, G ≤ H if and only if each agent prefers the house assigned
to them in G at least as much as the house assigned to them in H.

The second step in our method is to define a boolean predicate B that models
the feasibility of the vector. For the stable matching problem, an assignment is
feasible iff it is a matching and there is no blocking pair. For the shortest path
problem, the vector G only gives the lower bound on the cost of a path and there
may not be any path to vertex vi with cost G[i]. To capture that an assignment

1 The class CC (Comparator Circuits) is the complexity class containing decision
problems which can be solved by comparator circuits of polynomial size.

110 V. K. Garg

is feasible, we define feasibility which requires the notion of a parent. We say that
vi is a parent of vj in G iff there is a direct edge from vi to vj and G[j] is at least
(G[i]+w[i, j]). For the shortest path problem, an assignment is feasible iff every
reachable node except the source node has a parent. For the housing problem,
we say that a housing assignment is feasible if no subset of agents can improve
the satisfaction of agents in this subset by exchanging houses within the subset.
Figure 1 gives the feasibility predicate for each of these problems.

Problem Feasibility Predicate B

Shortest Path every reachable vertex other than the source has a parent
Stable Marriage the assignment is a matching and there is no blocking pair
Housing market the assignment is a matching and there is no break away coalition

Fig. 1. The feasibility predicate for various problems

The third step is to show that the feasibility predicate is a lattice-linear
predicate [9,12]. Lattice-linearity property allows one to search for a feasible
solution efficiently. If any point in the search space is not feasible, it allows one
to make progress towards the optimal feasible solution without any need for
exploring multiple paths in the lattice. Moreover, multiple processes can make
progress towards a feasible solution in a parallel fashion. In a finite distributive
lattice, it is clear that the maximum number of such advancement steps before
one finds the optimal solution or reaches the top element of the lattice is equal
to the height of the lattice. In this paper, we derive a parallel LLP algorithm
that solves the housing market problem using this approach.

This paper is organized as follows. Section 2 gives background on Gale’s Top
Trading Cycle Algorithm and the LLP method. Section 3 applies LLP method
to the unconstrained Housing market problem and derives a high-level parallel
algorithm. Section 4 gives a parallel Las Vegas algorithm for the Housing market
problem.

2 Background

In this section, we cover the background information on Gale’s Top Trading Cycle
Algorithm and the LLP Algorithm [9]. Consider the housing market instance
shown in Fig. 2. There are four agents a1, a2, a3 and a4. Initially, the agent ai

holds the house hi. The preferences of the agents is shown in Fig. 2.

2.1 Gale’s Top Trading Cycle (TTC) Algorithm for Housing Market

The Top Trading Cycle (TTC) algorithm attributed to Gale by Shapley and
Scarf [1] works in stages. At each stage, it has the following steps:

A Parallel Algorithm for the Housing Market Problem 111

a1 : h2, h3, h1, h4

a2 : h1, h4, h2, h3

a3 : h1, h2, h4, h3

a4 : h2, h1, h3, h4

Agents’ Preferences

a1 : h1

a2 : h2

a3 : h3

a4 : h4

Initial Allocation

a1 : h2

a2 : h1

a3 : h4

a4 : h3

Matching returned by the TTC algorithm

Fig. 2. Housing market and the matching returned by the top trading cycle algorithm

Step 1. We construct the top choice directed graph Gt = (A,E) on the set
of agents A as follows. We add a directed edge from agent ai ∈ A to agent
aj ∈ A if aj holds the current top house of ai. Figure 3 shows the directed
graph at the first stage.
Step 2. Since each node has exactly one outgoing edge in Gt, there is at least
one cycle in the graph (possibly, a self-loop). All cycles are node disjoint. We
find all the cycles in the top trading graph and implement the trade indicated
by the cycles, i.e., each agent which is in any cycle gets its current top house.
Step 3. Remove all agents which get their current top houses and remove all
houses which are assigned to some agent from the preference list of remaining
agents.

The above steps are repeated until each agent is assigned a house. At each
stage, at least one agent is assigned a final house. Thus, this algorithm takes
O(n) stages in the worse case and needs O(n2) computational steps.

a1 a2

a3 a4

Fig. 3. The top choice graph at the first stage.

2.2 LLP Algorithm

Let L be the lattice of all n-dimensional vectors of reals greater than or equal
to zero vector and less than or equal to a given vector T where the order on the
vectors is defined by the component-wise natural ≤. The lattice is used to model
the search space of the combinatorial optimization problem. The combinatorial
optimization problem is modeled as finding the minimum element in L that

112 V. K. Garg

satisfies a boolean predicate B, where B models feasible (or acceptable) solutions.
We are interested in parallel algorithms to solve the combinatorial optimization
problem with n processes. We will assume that the systems maintains as its state,
the current candidate vector G ∈ L in the search lattice, where G[i] is maintained
at process i. We call G, the global state, and G[i], the state of process i.

Figure 4 shows a finite poset corresponding to n processes (n equals two in
the figure), and the corresponding lattice of all eleven global states.

s1 s2 s3s0

t 3t 2t 1t 0

s
2 3

1

2

3

(0,0) 1

t

Fig. 4. A poset and its corresponding distributive lattice L

Finding an element in lattice that satisfies the given predicate B, is called
the predicate detection problem. Finding the minimum element that satisfies B
(whenever it exists) is the combinatorial optimization problem. A key concept
in deriving an efficient predicate detection algorithm is that of a forbidden state.
Given a predicate B, and a vector G ∈ L, a state G[j] is forbidden (or equiva-
lently, the index j is forbidden) if for any vector H ∈ L, where G ≤ H, if H[j]
equals G[j], then B is false for H. Informally, this means that any global state
H ≥ G which satisfies B must be advanced on index j. Formally,

Definition 1 (Forbidden State [12]). Given any distributive lattice L of n-
dimensional vectors of R≥0, and a predicate B, we define forbidden(G, j,B) ≡
∀H ∈ L : G ≤ H : (G[j] = H[j]) ⇒ ¬B(H).

We define a predicate B to be lattice-linear with respect to a lattice L if for
any global state G, B is false in G implies that G contains a forbidden state.
Formally,

Definition 2 (lattice-linear Predicate [12]). A boolean predicate B is lattice-
linear with respect to a lattice L iff ∀G ∈ L : ¬B(G) ⇒ (∃j : forbidden(G, j,B)).

Once we determine j such that forbidden(G, j,B), we also need to determine
how to advance along index j. To that end, we extend the definition of forbidden
as follows.

A Parallel Algorithm for the Housing Market Problem 113

Definition 3 (α-forbidden). Let B be any boolean predicate on the lattice L
of all assignment vectors. For any G, j and positive real α > G[j], we define
forbidden(G, j,B, α) iff

∀H ∈ L : H ≥ G : (H[j] < α) ⇒ ¬B(H).

Given any lattice-linear predicate B, suppose ¬B(G). This means that
G must be advanced on all indices j such that forbidden(G, j,B). We use
a function α(G, j,B) such that forbidden(G, j,B, α(G, j,B)) holds whenever
forbidden(G, j, B) is true. With the notion of α(G, j,B), we have the Algo-
rithm LLP . The algorithm LLP has two inputs—the predicate B and the top
element of the lattice T . It returns the least vector G which is less than or equal
to T and satisfies B (if it exists). Whenever B is not true in the current vector
G, the algorithm advances on all forbidden indices j in parallel. This simple par-
allel algorithm can be used to solve a large variety of combinatorial optimization
problems by instantiating different forbidden(G, j,B) and α(G, j,B).

ALGORITHM LLP. To find the minimum vector at most T that satisfies B

1 vector function getLeastFeasible(T : vector, B: predicate)
2 var G: vector of reals initially ∀i : G[i] = 0;
3 while ∃j : forbidden(G, j, B) do
4 for all j such that forbidden(G, j, B) in parallel:
5 if (α(G, j, B) > T [j]) then return null;
6 else G[j] := α(G, j, B);
7 endwhile;
8 return G; // the optimal solution

The following Lemma is useful in proving lattice-linearity of predicates.

Lemma 1 [9,12]. Let B be any boolean predicate defined on a lattice L of vec-
tors.
(a) Let f : L → R≥0 be any monotone function defined on the lattice L of vectors
of R≥0. Consider the predicate B ≡ G[i] ≥ f(G) for some fixed i. Then, B is
lattice-linear.
(b) If B1 and B2 are lattice-linear then B1 ∧ B2 is also lattice-linear.

We now give an example of lattice-linear predicates for the scheduling of n
jobs. Each job j requires time tj for completion and has a set of prerequisite jobs,
denoted by pre(j), such that it can be started only after all its prerequisite jobs
have been completed. Our goal is to find the minimum completion time for each
job. We let our lattice L be the set of all possible completion times. A completion
vector G ∈ L is feasible iff Bjobs(G) holds where Bjobs(G) ≡ ∀j : (G[j] ≥
tj) ∧ (∀i ∈ pre(j) : G[j] ≥ G[i] + tj). Bjobs is lattice-linear because if it is false,
then there exists j such that either G[j] < tj or ∃i ∈ pre(j) : G[j] < G[i]+tj . We
claim that forbidden(G, j,Bjobs). Indeed, any vector H ≥ G cannot be feasible

114 V. K. Garg

with G[j] equal to H[j]. The minimum of all vectors that satisfy feasibility
corresponds to the minimum completion time.

As an example of a predicate that is not lattice-linear, consider the predicate
B ≡ ∑

j G[j] ≥ 1 defined on the space of two dimensional vectors. Consider the
vector G equal to (0, 0). The vector G does not satisfy B. For B to be lattice-
linear either the first index or the second index should be forbidden. However,
none of the indices are forbidden in (0, 0). The index 0 is not forbidden because
the vector H = (0, 1) is greater than G, has H[0] equal to G[0] but it still satisfies
B. The index 1 is also not forbidden because H = (1, 0) is greater than G, has
H[1] equal to G[1] but it satisfies B.

2.3 Notation

We now go over the notation used in the description of our parallel algorithms.
Figure 5 shows a parallel algorithm for the job-scheduling problems.

The var section gives the variables of the problem. We have a single variable
G in the example shown in Fig. 5. G is an array of objects such that G[j] is the
state of thread j for a parallel program.

The input section gives all the inputs to the problem. These inputs are
constant in the program and do not change during execution.

The init section is used to initialize the state of the program. All the parts
of the program apply to all values of j. For example, the init section of the job
scheduling program in Fig. 5 specifies that G[j] is initially t[j]. Every thread j
would initialize G[j].

The always section defines additional variables which are derived from G.
The actual implementation of these variables are left to the system. They can
be viewed as macros. We will show its use later.

The LLP algorithm gives the desirable predicate either by using the forbid-
den predicate or ensure predicate. The forbidden predicate has an associated
advance clause that specifies how G[j] must be advanced whenever the forbid-
den predicate is true. For many problems, it is more convenient to use the com-
plement of the forbidden predicate. The ensure section specifies the desirable
predicates of the form (G[j] ≥ expr) or (G[j] ≤ expr). The statement ensure
G[j] ≥ expr simply means that whenever thread j finds G[j] to be less than
expr; it can advance G[j] to expr. Since expr may refer to G, just by setting
G[j] equal to expr, there is no guarantee that G[j] continues to be equal to
expr—the value of expr may change because of changes in other components.
We use ensure statement whenever expr is a monotonic function of G and there-
fore the predicate is lattice-linear.

3 Applying LLP Algorithm to the Housing Market
Problem

We model the housing market problem as that of predicate detection in a com-
putation. There are n agents and n houses. Each agent proposes to houses in the

A Parallel Algorithm for the Housing Market Problem 115

Pj : Code for thread j
// common declaration for all the programs below
var G: array[1..n] of 0..maxint;// shared among all threads
input: t[j] : int, pre(j): list of 1..n;
init: G[j] := t[j];

job-scheduling:
forbidden: G[j] < max{G[i] + t[j] | i ∈ pre(j)};

advance: G[j] := max{G[i] + t[j] | i ∈ pre(j)};

job-scheduling:
ensure: G[j] ≥ max{G[i] + t[j] | i ∈ pre(j)};

Fig. 5. LLP Parallel Program for (a) job scheduling problem using forbidden predicate
(b) job scheduling problem using ensure clause

decreasing order of preferences. These proposals are considered as events exe-
cuted by n processes representing the agents. Thus, we have n events per process.
Each event is labeled as (i, h, k), which corresponds to the agent i proposing to
the house h as his choice number k.

The global state corresponds to the number of proposals made by each of
the agents. Let G[i] be the number of proposals made by the agent i. We will
assume that in the initial state every agent has made his first proposal. Thus,
the initial global state G = [1, 1, .., 1]. We extend the notation of indexing to
subsets J ⊆ [n] such that G[J] corresponds to the subvector given by indices in
J .

We now model the possibility of reallocation of houses based on any global
state. Recall that pref [i][k] specifies the kth preference of the agent ai. Let
wish(G, i) denote the house that is proposed by ai in the global state G, i.e.,

wish(G, i) = pref [i][G[i]]

A global state G satisfies matching if every agent proposes a different house,
i.e.,

matching(G) ≡ ∀i, j : i �= j : wish(G, i) �= wish(G, j).

We generalize matching to refer to a subset of agents rather than the entire
set.

Definition 4 (submatching). Let J ⊆ [n]. Then, submatching(G, J) iff
wish(G, J) is a permutation of indices in J .

Intuitively, if submatching(G, J) holds, then all agents in J can exchange
houses within the subset J .

For any G, it is easy to show that

116 V. K. Garg

Lemma 2. For all G, there always exists a nonempty J such that
submatching(G, J).

Proof: Given any G, we can create a directed graph as follows. The set of
vertices is agents and there is an edge from i to j if wish(G, i) = j. There is
exactly one outgoing edge from any vertex in [n] to [n] in this graph. This implies
that there is at least one cycle in this graph (possibly, a self-loop). The indices
of agents in the cycle gives us such a subset J . �

We now show that

Lemma 3. submatching(G, J1) and submatching(G, J2) implies that
submatching(G, J1 ∪ J2).

Proof: Any index i ∈ J1 ∪ J2 is mapped to J1 if i ∈ J1 and J2, otherwise. �

Hence, there exists the biggest submatching in G. Note that matching(G) is
equivalent to submatching(G, [n]).

Definition 5 (Feasible Global State). A global state G is feasible for the
housing market problem iff it is a matching and for all global states F < G,
there does not exist any submatching which is better in F than in G. Note that
if there exists a submatching J which is better in F than G, then the agents in
J can improve their allocation by just exchanging houses within the subset J .
Formally, let

Bhousing(G) ≡ matching(G) ∧ (∀F < G : ∀J ⊆ [n] : submatching(F, J) ⇒ F [J] = G[J]).

We show that Bhousing(G) is a lattice-linear predicate. This result will let
us use the lattice-linear predicate detection algorithm for the housing market
problem.

Theorem 1. The predicate Bhousing(G) is lattice-linear.

Proof: Suppose that ¬Bhousing(G). This implies that either G is not a match-
ing or it is a matching but there exists a smaller global state F that has a
submatching better than G.

First, consider the case when G is not a matching. Let J be the largest set
such that submatching(G, J). Consider any index i �∈ J such that wish(G, i) ∈
J . We claim that forbidden(G, i,Bhousing). Let H be any global state greater
than G such that G[i] = H[i]. We consider two cases.

Case 1: H[J] > G[J].
Then, from the second conjunct of Bhousing, we know that ¬Bhousing(H)
because submatching(G, J) and H[J] �= G[J].
Case 2: H[J] = G[J].
Since wish(H, i) = wish(G, i), wish(G, i) ∈ J , and G[J] = H[J], we get that
H is not a matching because the house given by wish(G, i) is also in the wish
list of some agent in J .

A Parallel Algorithm for the Housing Market Problem 117

Now consider the case when G is a matching but ¬Bhousing(G). This implies

∃F < G : ∃J ⊆ [n] : submatching(F, J) ∧ F [J] < G[J]).

However, the same F will also result in guaranteeing ¬Bhousing(H) for any
H ≥ G. �

It is also easy to see from the proof that if an index is part of a submatching,
then it will never become forbidden.

This theorem gives us the algorithm shown in Fig. 6. Let G be the initial
global state. Let S(G) be the biggest submatching in G. All agents such that
they are not in S(G) and wish a house which are part of S(G) are forbidden
and can move to their next proposal. The algorithm terminates when no agent
is forbidden. This algorithm is a parallel version of the top trading cycle (TTC)
mechanism attributed to Gale in [1].

Algorithm Housing-Market:
var

G: array[1..n] of int initially 1;// every agent starts with the top choice
T = (n, n, ..., n); //maximum number of proposals at ai

always
S(G) = largest J such that submatching(G, J)
forbidden(G, j,B) ≡ (j �∈ S(G)) ∧ (wish(G, j) ∈ S(G))

while ∃j : forbidden(G, j,B) do
for all j such that forbidden(G, j,B) in parallel:

if (G[j] = T [j]) then return null;
else G[j] := G[j] + 1;

endwhile;
return G; // the optimal solution

Fig. 6. A high-level parallel algorithm to find the optimal house market

We now show that

Theorem 2. There exists at least one feasible global state G such that
Bhousing(G).

Proof: Every agent has his own house in the list of preferences. If he ever makes
a proposal to his own house, he forms a submatching. That particular event
is never forbidden because it is a part of a submatching. Hence, lattice-linear
predicate detection algorithm will never mark that event as forbidden. Since
such an event exists for all processes, we are guaranteed to never go beyond this
global state. �

The above proof also shows that agents can never be worse-off by partici-
pating in the algorithm. Each agent will either get his own house back or get a
house that he prefers to his own house.

118 V. K. Garg

4 An Efficient Parallel Algorithm for the Housing Market
Problem

We now present an efficient parallel algorithm for the housing market problem.
We note here that [10] gives a distributed algorithm with O(n2) messages for the
housing market problem. In this paper, we focus on computing the core and give
a parallel algorithm for finding the core that is nearly linear in the number of
agents. Our algorithm takes expected O(n log2 n) time and expected O(n2 log n)
work.

By renumbering houses, if necessary, we assume that initially agent ai has the
house hi. We assume that the preference list is provided as two data structures:
prefList and prefPointer. The variable prefList is an array of doubly linked
list such that prefList[i] points to the list of preferences of agent i. As the
algorithm executes, we advance on prefList and the head of the prefList[i]
corresponds to the variable wish for agent ai in Fig. 6.

To facilitate the quick deletion of houses from this list, we also have a data
structure prefPointer. The variable prefPointer is a two dimensional array
such that prefPointer[i][j] points to the node corresponding to house hj in
the doubly-linked list of agent ai. If at any stage in the algorithm, we find out
that the house hj has been permanently allocated to some other agent than
ai, then we need to remove the house hj from the preference list of ai. Since
prefPointer[i][j] points to that node in the doubly linked list prefList[i], we
can delete the house in O(1) time. Due to these deletions, we maintain the
invariant that the head of prefList[i] always corresponds to the top choice of
the agent ai. Note that if the input is given as the two dimensional array pref ,
where pref [i][j] is the top jth choice for the agent ai, then it can be converted
into prefList and prefPointer in O(n) time with O(n) processors.

We keep the array fixed such that fixed[i] indicates that the agent i has
been assigned its final house. If an agent i is fixed, then it can never be forbidden
in Fig. 6. Once all agents are fixed, we get that no agent is forbidden and the
algorithm terminates.

At every iteration, we keep the array inCycle[i] that indicates agents that
are in Top Trading Cycle at that iteration. In Fig. 6, these agents correspond to
S(G) in the global state G. Algorithm LLP-TTC uses a while loop to fix some
number of agents in every iteration. At least one agent is fixed in every iteration,
and therefore there are at most n iterations of the while loop.

Each iteration has four steps. In the first step, we initialize inCycle to be false
by default. In the second step (function markRoots) we use symmetry breaking
via randomization and pointer jumping to mark one node called root in every
cycle as belonging to a cycle. The reader is referred to [13] for symmetry breaking
and pointer jumping. During the process of pointer jumping, we also construct
a tree rooted at a vertex such that it consists of all the nodes in the cycle. In
the third step (function informTree), we inform all the agents that are in some
rooted tree that they are in a cycle. In the fourth step, we fix all the agents that
are in cycles and remove their houses from prefList. This step corresponds to
advancing G in Fig. 6.

A Parallel Algorithm for the Housing Market Problem 119

ALGORITHM LLP-TTC. Parallel LLP Top Trading Cycle Algorithm

1 // By renumbering houses, ensure that initially agent ai is assigned house hi

2 var
3 prefList:array[1..n] of list initially ∀i : prefList[i] has preferences for ai;
4 prefPointer:array[1..n, 1..n] of pointer to the node in prefList;
5 fixed: array[1..n] of booean initially ∀i : fixed[i] = false;
6 inCycle: array[1..n] of booean initially ∀i : inCycle[i] = false;
7 children: array[1..n] of set of nodes that ai traversed initially {};

8 while (∃i : ¬fixed[i])
9 // Step 1: initialize inCycle

10 forall i : ¬fixed[i] in parallel do: inCycle[i] := false;
11 // Step 2: Mark one node in every cycle as the root
12 markRoots();
13 // Step 3: inform all the agents in any rooted tree that they are in a cycle
14 informTree();
15 // Step 4: Now delete all the agents that are in cycle
16 forall i : ¬fixed[i] ∧ inCycle[i], j : ¬[fixed[j] ∧ ¬inCycle[j] in parallel do
17 delete the node prefPointer[j][i] from the linked list prefList[j];
18 forall i : ¬fixed[i] ∧ inCycle[i] in parallel do
19 fixed[i] := true;
20 endwhile
21 return prefList; //prefList[i] points to the house assigned to the agent ai

The function markRoots uses variable active to denote agents that are active.
Initially, all agents are active. The variable succ[i] is used to point to the next
active agent. Initially, succ[i] points to the agent who has the top choice house
of agent i. The variable done[i] indicates whether a cycle has been discovered
in the subgraph that agent i is pointing to. Once, a cycle has been discovered
then any active agent knows that it cannot be part of any cycle and it becomes
inactive.

The function markRoots uses a while loop at line 5 to run while there is any
active node. Every active agent flips a coin at line 7. If its own coin is a head and
its successor gets a tail, then this agent becomes inactive at line 9. It is clear that
two consecutive agents can never become inactive in the same round because we
require an agent to get “head” and its successor to get “tail” to become inactive.
It is also clear that the number of active agents is reduced by a constant fraction
in every round of coin toss in expectation. Thus, the outer while loop at line 5
is executed expected O(log n) times.

If an agent is active, it traverses its succ pointer till it reaches the next active
node. This is done using the while loop at line 11. This traversal has a length of
one or zero because there cannot be two consecutive inactive agents due to the
rule of becoming active.

If agent i reaches itself as the next active node at line 15, it marks inCycle
to be true. It also sets done[i] to be true so that any active node j that points
to i knows that a cycle has been found and that the node j can stop looking for

120 V. K. Garg

the cycle. If the successor of the node is different, then we check if the successor
is done. If the successor is done, then this node is not part of the cycle and
can therefore make itself inactive and also mark itself as done. Since all agents
execute the statements in forall in parallel, we get that the function markRoots()
has parallel expected time complexity of O(log n). Also, for every cycle in the
graph, there is exactly one node that sets its inCycle to be true.

The function informTree uses variable rootSet to initially include all the roots
found in the function markRoots. Once all the nodes in any rooted tree have been
informed, the root is deleted from the rootSet. To inform agents in the tree, we
follow the usual method of broadcasting a value from the root to its children.
To detect that all agents in the tree have been notified, we let any subtree that
has finished informing its subtree to leave the tree by deleting itself from the
children set of its parent. If the agent is a root, then it deletes itself from the
rootSet. Once all roots have deleted themselves, the function terminates. Since
the height of any tree is expected to be O(log n) and the number of children of
any node is also O(log n), we get that the algorithm takes O(log2 n) time.

ALGORITHM markRoots. Function markRoots for the Parallel LLP Top

Trading Cycle Algorithm

1 function markRoots()
2 succ: array[1..n] of 1..n initially ∀i : succ[i] = prefList[i].head(); //successor

of ai which is active
3 active: array[1..n] of booean initially ∀i : active[i] = true;
4 done: array[1..n] of booean initially ∀i : done[i] = false;

5 while (∃i : active[i])
6 forall i : ¬fixed[i] ∧ active[i] in parallel do
7 coin[i] := “head” or “tail” // based on the flip of a coin
8 if (coin[i] = “head”) ∧ (coin[succ[i]] = “tail”) then
9 active[i] := false;

10 else // node i is active
11 while ¬active[succ[i]] do
12 children[i] := children[i] ∪ succ[i]
13 succ[i] := succ[succ[i]]
14 endwhile
15 if (succ[i] = i) // found a cycle
16 done[i] := true
17 inCycle[i] := true
18 active[i] := false
19 else if done[succ[i]] then
20 active[i] := false
21 done[i] := true
22 endforall
23 endwhile

A Parallel Algorithm for the Housing Market Problem 121

ALGORITHM informTree. Function informTree for the Parallel LLP Top

Trading Cycle Algorithm

1 function informTree()
2 informed: array[1..n] of booean initially ∀i : informed[i] = false;
3 parent: array[1..n] of 1..n initially ∀i : parent[i] = i;
4 rootSet: set of 1..n initially {i | inCycle[i]}
5 while (rootSet �= {}) do
6 forall i : ¬fixed[i] in parallel do
7 if (inCycle[i] ∧ ¬informed[i]) then
8 informed[i] := true
9 for (j ∈ children[i]) do

10 inCycle[j] := true
11 parent[j] := i
12 endfor
13 if (inCycle[i] ∧ informed[i] ∧ (children[i] = {})) then
14 if (parent[i] = i) then rootSet.remove(i);
15 else children[parent[i]] := children[parent[i]] − {i}
16 endforall
17 endwhile

We first show the correctness of the parallel AlgorithmLLP-TTC.

Theorem 3. The AlgorithmLLP-TTC returns the core of the housing market
problem.

Proof: It is sufficient to show that the Algorithm LLP-TTC finds all top trading
cycles in each iteration. Consider any top trading cycle of size 1 at node i. The
function markRoot can never mark node i in the cycle as inactive due to the
requirement of the coin turning at node i as head and its successor, itself, as tail.
Furthermore, since succ[i] equals i, node i is marked as inCycle. Now, consider
any top trading cycle of size k > 1. Since we require the successor of the node
to have a different toss to turn inactive, all nodes cannot turn inactive. The
active nodes keep the inactive nodes following it as its children. After every coin
toss, the length of the cycle for active nodes is expected to shrink by a constant
factor. Hence, in expected O(log n) coin tosses, the cycle reduces to size 1 and
the former case applies.

Now consider any node i that is not in any top trading cycle. Since our graph
is functional (every vertex has out-degree exactly one), node i leads to a cycle by
following the succ edge. By previous discussion in O(log n) expected time, one
of the nodes in that cycle, say j will set inCycle[j] and done[j] to be true. Since
any path of active nodes reduces by a constant factor, in O(log n) expected time
node i will point to a node that is done and will also mark itself as done.

The function informTree simply sets the variable inCycle of all nodes in
the cycle to be true. Finally, step 4 removes all houses and agents that are in
any cycle and thus implements the top trading cycle mechanism. �

122 V. K. Garg

We now analyze the time and work complexity of LLP-TTC.

Theorem 4. LLP-TTC takes expected O(n log2 n) time and expected
O(n2 log n) work.

Proof: Since every functional graph has at least one cycle, there exists at least
one new node that finds itself in a cycle in every iteration of the while loop.
Hence, there are at most n iterations of the while loop. In each iteration, Step
1 takes O(1) time and O(n) work. Step 2 takes expected O(log n) time and
expected O(n log n) work. Step 3 takes O(log2 n) time and O(n) work. Let αk be
the number of agents that are fixed in the kth iteration of the while loop. Step
4 takes O(αk) time and O(nαk) work. Adding up over all iterations, we get the
desired time and work complexity. �

Acknowledgments. I thank Changyong Hu, Robert Streit, and Xiong Zheng for
various discussions on the housing allocation problem. I also thank the anonymous
reviewers for comments on the paper.

References

1. Shapley, L., Scarf, H.: On cores and indivisibility. J. Math. Econ. 1(1), 23–37 (1974)
2. Hylland, A., Zeckhauser, R.: The efficient allocation of individuals to positions. J.

Polit. Econ. 87(2), 293–314 (1979)
3. Zhou, L.: On a conjecture by Gale about one-sided matching problems. J. Econ.

Theory 52(1), 123–135 (1990)
4. Abdulkadiroğlu, A., Sönmez, T.: Random serial dictatorship and the core from

random endowments in house allocation problems. Econometrica 66(3), 689–701
(1998)

5. Abdulkadiroğlu, A., Sönmez, T.: House allocation with existing tenants. J. Econ.
Theory 88(2), 233–260 (1999)

6. Roth, A.E., Postlewaite, A.: Weak versus strong domination in a market with
indivisible goods. J. Math. Econ. 4(2), 131–137 (1977)

7. Roth, A.E.: Incentive compatibility in a market with indivisible goods. Econ. Lett.
9(2), 127–132 (1982)

8. David, M.: Algorithmics of Matching Under Preferences, vol. 2. World Scientific
(2013)

9. Garg, V.K.: Predicate detection to solve combinatorial optimization problems. In:
Scheideler, C., Spear, M. (eds.) SPAA 2020: 32nd ACM Symposium on Parallelism
in Algorithms and Architectures, Virtual Event, USA, 15–17 July 2020, pp. 235–
245. ACM (2020)

10. Zheng, X., Garg, V.K.: Parallel and distributed algorithms for the housing allo-
cation problem. In: Felber, P., Friedman, R., Gilbert, S., Miller, A. (eds.) 23rd
International Conference on Principles of Distributed Systems, OPODIS 2019,
Neuchâtel, Switzerland, 17–19 December 2019. LIPIcs, vol. 153, pp. 23:1–23:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

11. Garg, V.K.: A lattice linear predicate parallel algorithm for the dynamic program-
ming problems. CoRR, abs/2103.06264 (2021)

12. Chase, C.M., Garg, V.K.: Detection of global predicates: techniques and their
limitations. Distrib. Comput. 11(4), 191–201 (1998)

13. JáJá, J.: An Introduction to Parallel Algorithms, vol. 17. Addison-Wesley Reading,
Boston (1992)

Security in Asynchronous Interactive
Systems

Ivan Geffner(B) and Joseph Y. Halpern

Cornell University, Ithaca, NY 14850, USA
ieg8@cornell.edu, halpern@cs.cornell.edu

Abstract. Secure function computation has been thoroughly studied
and optimized in the past decades. We extend techniques used for secure
computation to simulate arbitrary protocols involving a mediator. The
key feature of our notion of simulation is that it is bidirectional: not
only does the simulation produce only outputs that could happen in the
original protocol, but the simulation produces all such outputs. In asyn-
chronous systems there are also new subtleties that arise because the
scheduler can influence the output. Thus, these requirements cannot be
achieved by the standard notion of secure computation. We provide a
construction that is secure if n > 4t, where t is the number of mali-
cious agents, which is provably the best possible. We also show that our
construction is secure in the universal composability model and that it
satisfies additional security properties even if 3t < n ≤ 4t.

1 Introduction

In a distributed system, agents often want to be able to carry out a computation
without revealing any private information. There has been a great deal of work
showing how and to what extent this can be done. We briefly review the most
relevant work here.

Ben-Or, Goldwasser and Widgerson [3] (BGW from now on) and Chaum,
Crépeau, and Damgard [8] showed that, if n > 3t, then every function f of n
inputs can be t-securely computed by n agents in a synchronous system with
private communication channels, where “t-securely computed” means that no
coalition of at most t malicious agents can either (a) prevent the honest agents
from correctly computing the output of f given their inputs (assuming some
fixed inputs for malicious agents who do not provide inputs) or (b) learn any-
thing about the inputs of the honest agents (beyond what can be concluded
from the output of f). The notion of an agent “not learning anything” is for-
malized by comparing what happens in the actual computation to what could
have happened had there been a trusted third party (which we here call a medi-
ator) who will calculate f(x1, . . . , xn) after being given the input xi by agent

Supported in part by NSF grants IIS-1703846 and IIS-0911036, ARO grant W911NF-
17-1-0592, MURI grant W911NF-19-1-0217 from the ARO, and a grant from Open
Philanthropy.

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 123–140, 2021.
https://doi.org/10.1007/978-3-030-91081-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_9&domain=pdf
http://orcid.org/0000-0001-6900-2109
http://orcid.org/0000-0002-9229-1663
https://doi.org/10.1007/978-3-030-91081-5_9

124 I. Geffner and J. Y. Halpern

i, for i = 1, . . . , n. Then, roughly speaking, the malicious agents do not learn
anything if the distribution of outputs in the actual computation could have also
resulted in the computation with a mediator if the malicious agents had given
the appropriate input to the mediator.

Ben-Or, Canetti and Goldreich [2] (BCG from now on) proved analogous
results in the asynchronous case. Asynchrony raises new subtleties. For example,
agent i cannot tell if the fact that he has received no messages from another agent
j (which means that i cannot use j’s input in computing f) is due to the fact
that j is malicious or that its messages have not yet arrived. Roughly speaking,
when defining secure function computation in an asynchronous setting, BCG
require that for every scheduler σe and set T of malicious agents, no matter
what the agents in T do, the resulting distribution over outputs could have also
resulted in the computation with a mediator if the malicious agents had given
the appropriate input to the mediator.

BCG show that, in asynchronous systems, if n > 4t, the malicious agents
cannot prevent the honest agents from correctly computing the output of f
given their inputs, nor can the malicious agents learn anything about the inputs
of the honest agents. Ben-Or, Kelmer, and Rabin [4] (BKR from now on) then
showed if we are willing to tolerate a small probability ε > 0 that the agents do
not correctly compute f or that the malicious agents learn something, then we
can achieve this if n > 3t. BCG and BKR also prove matching lower bounds for
their results, showing that we really need to have n > 4t (resp., n > 3t).

We can view secure function computation as a one-round interaction with a
trusted mediator: each agent sends its input to the mediator, the mediator waits
until it receives enough inputs, applies f to these inputs (again, replacing missing
inputs with a default value), and sends the output back to the agents, who then
output it. We generalize BCG and BKR’s results for function computation to a
more general setting. Specifically, we want to simulate arbitrary interactions with
a mediator, not just function computation. Also, unlike previous approaches, we
want the simulation to be “bidirectional”: the set of possible output distributions
that arise with the mediator must be the same as those that arise without the
mediator, even in the presence of malicious parties. More precisely, we show that,
given a protocol profile π for n agents1 and a protocol πd for a mediator, we
can construct a protocol profile π′ such that for all sets T of fewer than n/4
malicious agents, the following properties hold:

(a) For all protocols τ ′
T for the malicious agents and all schedulers σ′

e in the
setting without the mediator, there exists a protocol τT for the agents in T
and a scheduler σe in the setting with the mediator such that, for all input
profiles x, the output distribution in the computation with π′, τ ′, and σ′

e

with input x is the same as the output distribution with π + πd, τ , and σe

with input x.
1 In the economics literature, the term “profile” is used to denote a tuple, so, for

example, a protocol profile is a tuple of protocols, one for each agent. In this paper,
we refer to protocol profiles as just “protocols”, as is standard in the distributed
computing literature.

Security in Asynchronous Interactive Systems 125

(b) For all protocols τT for the malicious agents and all schedulers σe in the
setting with the mediator, there exists a protocol τ ′

T for the agents in T
and a scheduler σ′

e in the setting without a mediator such that, for all input
profiles x, the output distribution in the computation with π′, τ ′, and σ′

e

with input x is the same as the output distribution with π + πd, τ , and σe

with input x.

We use the notation π + πd to indicate that the agents use protocol π and the
mediator uses protocol πd (we use the subscript d to denote the mediator); we
view the mediator as just another agent here. This result implies that arbitrary
distributed protocols that work in the presence of a trusted mediator can be
compiled to protocols that work without a mediator, as long as there are less
than n/4 malicious agents. And, just as BKR, if we allow a probability ε of error,
we can get this result while tolerating up to n/3 malicious agents. BCG proved
the analogue of (a) for secure function computation, which is enough for security
purposes: if there is any bad behavior in the protocol without the mediator, this
bad behavior must already exist in the protocol with the mediator. However,
(b) also seems like a natural requirement; if a protocol satisfies this property,
then all behaviors in the protocol with the mediator also occur in the protocol
without the mediator.

Property (b) is typically not required in security papers. It plays a critical
role in our work on implementing mediators [1], but we believe it of independent
interest. Requiring only (a) may result in protocols where outcomes that may
be likely in the mediator setting do not arise at all. This is especially relevant
in asynchronous systems, since by requiring only (a) we are implicitly assuming
that the adversary has total control over the scheduler. However, it may be the
case that the scheduler acts randomly or that is even influenced by honest agents.
For instance, suppose that a group of n agents wants to check who has the fastest
internet connection. To do this, each agent pings the server and waits for the
server’s response. The server (who we are viewing as the mediator) waits until
the first ping arrives, then sends a message to each agent saying which agent’s
ping was received first. In this example, the scheduler determines the lag in
the system. If we wanted to simulate this interaction without the mediator but
requiring only property (a), even with no malicious agents, a protocol profile
in which every honest agent does nothing and outputs 1 would suffice. But,
intuitively, this implementation does not capture the behavior of the server.
Similar examples exist even in the case of function evaluation. Suppose a group
of n congressmen vote remotely (by sending a vote to a trusted third party) to
either pass or not a bill that requires support from at least 90% of them. We can
view this as a multiparty computation of a function f in which each agent has
input 0 (vote against) or 1 (vote for), and the output is either 0 (reject the bill)
or 1 (pass the bill) depending on how many agents had input 1 (agents that do
not submit input count as 0). In this case, a protocol in which every agent does
nothing and outputs 0 securely computes f while tolerating up to n/4 malicious
agents. To see this, note that regardless of the adversary, the scheduler can
delay n/4 of the players until everyone else has finished the computation. This

126 I. Geffner and J. Y. Halpern

is indistinguishable from n/4 agents deviating from the protocol and submitting
no input. However, again, this protocol does not capture the intended behavior
of the voting process. By way of contrast, a protocol that bisimulates f would
come closer to capturing the intended behavior of the voting process.

Clearly, the results of BCG and BKR are special cases of our result. However,
in general, our results do not follow from those of BCG/BKR, as is shown in
Sect. 3.2. Specifically, the results of BCG/BKR do not give us property (b), since
the outcome can depend on the behavior of the scheduler. For example, consider
protocols for two agents and a mediator m in which each agent sends its input to
the mediator, the mediator m sends to each agent the first message it receives,
and each agent outputs whatever they receive from the mediator. Let σi

e be the
scheduler that delivers the message from agent i first, for i = 1, 2. It is easy to
check that if the agents have inputs 0 and 1, respectively, and play with mediator
σ1
e , then they both output 0, while if they play with σ2

e , then they both output 1.
This means that, unlike secure function computation, even if all the agents are
honest, the distribution over the agents’ outputs can depend on the scheduler’s
protocol, not just the agents’ inputs.

Even though our results do not follow from those of BCG/BKR, our proofs
very much follow the lines of those of BCG/BKR. However, there are some new
subtleties that arise in our setting. In particular, as the example above shows,
when we try to implement the setting with the mediator, the agents must some-
how keep track of the scheduler’s possible behaviors. Doing this adds nontrivial
complexity to our argument. We also show that our construction satisfies an
analogue of (a) and (b) in the universal composability framework [7], which
intuitively means that if a set of agents runs a distributed protocol that requires
calls to a subroutine that can be implemented with a mediator, then the agents
can implement that subroutine using our construction instead (with no need
of a mediator), and the resulting protocol would preserve its original security
properties.

Besides the main result, we also show that our protocol without the mediator
has two additional security properties, which may be of independent interest.
Specifically, we show that the following two properties hold for coalitions of
malicious agents of size at most t < n/3.

(P1) The only way malicious agents can disrupt the computation is by preventing
honest agents from terminating; if an honest agent terminates, then its output
is correct.

(P2) If 2t+1 or more honest agents terminate, then all honest agents terminate.
That is, either all the honest agents terminate or a nontrivial number of
honest agents (more than n − 2t) do not terminate.

If we allow an ε probability of error, we get analogous results if we have n > 2t
rather than n > 3t. We remark that these two properties are in fact also satisfied
by BCG’s and BKR’s implementations, but they do not prove this (or even state
the properties explicitly).

Our interest in these properties stems in part from a game-theoretic variant
of the problem that is considered by Abraham et al. [1], where agents get utility

Security in Asynchronous Interactive Systems 127

for various outcomes, and, in addition to honest and malicious agents, there are
rational agents, who will deviate from a protocol if (and only if) it is in their
interest to do so. We also assume that honest agents can leave “wills”, so that if
sufficiently many honest agents do not terminate, the remaining agents will be
punished. Property P2 guarantees that either all the honest agents terminate,
or sufficiently many of them do not terminate so as to guarantee that rational
agents will not try to prevent honest agents from terminating (due to the threat
of punishment). Property P1 guarantees that if all the honest agents terminate,
their output will be correct. Thus, using these results allows us to obtain results
stronger than those of this paper in the game-theoretic setting.

The focus of this paper is on upper bounds. Since our algorithms have the
same upper bounds as those of BCG and BKR, despite the results of BCG and
BKR being special cases of our results, and BCG and BKR prove lower bounds
that match their upper bonds on the number of malicious agents that can be
tolerated, we immediately get lower bounds that match our upper bounds from
the results of BCG and BKR.

2 The Model

The model used throughout this paper is that of an asynchronous network in
which every pair of agents can communicate through a private and reliable com-
munication channel. For most of our results, we assume that all messages sent
through any of these channels are eventually received, but they can be delayed
arbitrarily. The order in which these messages are received is determined by
the environment (also called the scheduler), which is an adversarial entity. The
scheduler also chooses the order in which the agents are scheduled. For some
of the results of this paper, we drop the condition that all messages must be
eventually delivered. We call these more general schedulers relaxed schedulers.

Whenever an agent is scheduled, it reads all the messages that it has received
since the last time it was scheduled, sends a (possibly empty) sequence of mes-
sages, and then performs some internal actions. We assume that the scheduler
does not deliver any message or schedule other agents during an agent’s turn.
Thus, although agent i does not send all its messages simultaneously when it is
scheduled, they are sent atomically, in the sense that no other agent is scheduled
while i is scheduled, nor are any messages delivered while i is scheduled. Note
that the atomicity assumption is really a constraint on the scheduler’s protocol.

More precisely, consider the following types of events:

– sch(i): Agent i gets scheduled.
– snd(μ, j, i): Agent i sends a message μ to agent j.
– rec(μ, j, i): Message μ sent by j is received by i. The message μ must be one

sent at an earlier time to i that was not already received.
– comp(v, i): Agent i locally computes value v.
– out(s, i): Agent i outputs string s.
– done(i): i is done sending messages and performing computations (for now).

128 I. Geffner and J. Y. Halpern

For simplicity, we assume that agents can output only strings in {0, 1}∗.
Note that all countable sets can be encoded by such strings, and thus we can
freely talk about agents being able to output any element of any countable set
(for instance, elements of a finite field Fq) by assuming that they are actually
outputting an encoding of these elements. We also assume that at most one
event occurs at each time step. Let h(m) denote a global view up to time m: a
sequence that starts with an input profile x, followed by the ordered sequence
of events that have occurred up to and including time m. We assume that the
only events between events of the form sch(i) and done(i) are ones of the form
snd(μ, j, i) and comp(v, i). This captures our atomicity assumption. We do not
include explicit events that correspond to reading messages. (Nothing would
change if we included them; they would simply clutter the notation.) Message
delivery (which is assumed to be under the control of the scheduler) occurs at
times between when agents are scheduled. We can also consider the subsequence
involving agent i, namely, i’s initial state, followed by events of the form sch(i),
snd(·, ·, i), comp(·, i), rec(·, ·, i), and done(i). This subsequence is called i’s local
view . We drop the argument m if it can be deduced from context or if it is
not relevant (for instance, when we consider the local view of an agent after a
particular event).

Agent i moves only after a sch(i) event. What it does (in particular, the order
in which i sends messages) is determined by i’s protocol, which is a function of i’s
local view. The scheduler moves after an action of the form done(i) or rec(·, ·, i).
It is convenient to assume that the scheduler is also running a protocol, which is
also a function of its local view. Since the scheduler does not see the contents of
messages, we can take its view to be identical to h(m), except that comp events
and the contents of the messages in snd and rec events are removed, although
we do track the index of the messages delivered; that is, we replace events of the
form snd(μ, i, j) and rec(μ, i, j) by snd(i, j) and rec(i, j, �), where � is the index
of the message sent by i to j in h(m). For instance, rec(i, j, 2) means that the
second message sent by i to j was delivered to j. Note that the scheduler does
see events of the form done(i); indeed, these are signals to the scheduler that
it can move, since i’s turn is over. Since we view the agents (and the mediator)
as sending messages atomically, in the sequel, we talk about an agent’s (or the
mediator’s) turn. An agent’s kth turn takes place the kth time it is scheduled.
During its turn, the agent sends a block of messages and performs some local
computation.

It is more standard in the literature to assume that agents perform at most
one action when they are scheduled. We can view this as a constraint on agents’
protocols. A single-action protocol for agent i is one where agent i sends at most
one message before performing the done(i) action. As we show in Appendix 3.6,
we could have restricted to single-action protocols with no loss of generality as
far as our results go; allowing agents to perform a sequence of actions atomically
just makes the exposition easier.

Even though it might appear that malicious agents and the scheduler act
independently, it is shown by Abraham et al. [1, Section A.1] that we can assume

Security in Asynchronous Interactive Systems 129

without loss of generality that they can coordinate their actions, even when
there is no direct communication channel between them. In fact, we can assume
without loss of generality that they are all under the control of a single entity
that is aware of all their local views at all times. We call this entity the adversary.

Definition 1. An adversary is a triple (T,σT , τe), consisting of a set T of mali-
cious agents, the protocol τT used by the agents in T , and a protocol σe for the
scheduler. An adversary where the scheduler is relaxed is a relaxed adversary.

In this paper, we consider protocols that involve a mediator, typically denoted
d, using a protocol denoted πd. In protocols that involve a mediator, we assume
that honest agents’ protocols are always such that the honest agents communi-
cate only with the mediator and not with each other, as opposed to malicious
agents that can do both. As far as the scheduler is concerned, the mediator is
like any other agent, so the scheduler (and the mediator’s protocol) determine
when the mediator sends and receives messages. However, the mediator is never
malicious, and thus never deviates from its announced protocol.

We deal only with bounded protocols, where there is a bound N on the
number of messages that an honest agent sends. Of course, there is nothing to
prevent malicious agents from spamming the mediator and sending an arbitrary
number of messages. We assume that the mediator reads at most N messages
from each agent i, ignoring any further messages sent by i.

For our results involving termination, specifically, (P2), it is critical that
agents know when the mediator stops sending messages. For these results, we
restrict the honest agents and the mediator to using protocols that have the
following canonical form: Using a canonical protocol, each honest agent tags its
�th message with label � and all honest agents are guaranteed to send at most
N messages regardless of their inputs or the random bits they use. Whenever
the mediator receives a message from an agent i, it checks its tag �; if � > N
or if the mediator has already received a message from i with tag �, it ignores
the message. The mediator is guaranteed to eventually terminate. Whenever this
happens, it sends a special “STOP” message to all agents and halts. Whenever
an honest agent receives a “STOP” message, it terminates.

Even though canonical protocols have a bound N on the number of messages
that honest agents and the mediator can send, the mediator’s local view in a
canonical protocol can be arbitrarily long, since it can be scheduled an arbi-
trary number of times. We conjecture that, in general, since the message space
is finite, the expected number of messages required to simulate the mediator is
unbounded. However, we can do better if the mediator’s protocol satisfies two
additional properties. Roughly speaking, the first property says that the medi-
ator can send messages only either at its first turn or in response to an agent’s
message; the second property says that the mediator ignores empty turns, that is,
turns where it does not receive or send messages. More precisely, the first prop-
erty says that whenever the mediator πd is scheduled with view hd, then if hd �=
() (i.e., if hd is not the initial view) or if the mediator has not received any mes-
sages in hd since the last time it was scheduled, then πd(hd) = done(d). The sec-

130 I. Geffner and J. Y. Halpern

ond property says that πd(hd) = πd(h′
d), where h′

d is the result of removing con-
secutive (done(d), sch(d)) pairs in hd (e.g., if hd = (sch(d), snd(μ, j, d), done(d),
sch(d), done(d), rec(μ′, i, d), sch(d), done(d), sch(d)), then h′

d = (sch(d), snd(μ,
j, d), done(d), rec(μ′, i, d), sch(d))). A protocol for the mediator that satisfies
these two properties is called responsive. In the full paper [9, Section 4.4], we
show that if the mediator uses a responsive protocol πd that can be represented
using a circuit with c gates, then we can simulate all protocol profiles π + πd in
such a way that the expected number of messages sent by honest agents during
the simulation is polynomial in n and N and linear in c.

3 Secure Computation in Interactive Settings

In this section, we present the main results of this paper and show how they
extend and generalize other well-known results.

3.1 The BGW/BCG Notion of Secure Computation

Secure computation is concerned with jointly computing a function f on n
variables, where the ith input is known only to agent i. For instance, if we
want to compute the average salary of the people from the state of New
York, then n would be New York’s population, the input xi is i’s salary, and
f(x1, . . . , xn) =

∑n
i=1 xi∑
xi �=0 1 . (For the denominator we count only people who are

actually working.) Ideally, a secure computation protocol that computes f would
be a protocol in which each agent i outputs f(x1, . . . , xn) and gains no informa-
tion about the inputs xj for j �= i. In our example, this amounts to not learning
other people’s salaries.

Typically, we are interested in performing secure computation in a setting
where some of the agents might be malicious and not follow the protocol. In
particular, they might not give any information about their input or might just
pretend that they have a different input (for instance, they can lie about their
salary). What output do we want the secure computation of f to produce in this
case? To make precise what we want, we use notation introduced by BGW and
BCG.

Let x be a vector of n components; let C be a subset of [n] (where we use the
notation [n] to denote the set {1, . . . , n}, as is standard); let xC denote the vector
obtained by projecting x onto the indices of C; and if z is a vector of length
|C|, let x/(C,z) denote the vector obtained by replacing the entries of x indexed
by C with z. Given a set C of indices, a default value, which we take here to be
0, and a function f , we take fC to be the function results from applying f , but
taking the inputs of the agents not in C to be 0; that is, fC(x) = f(x/(C,0)).
Roughly speaking, if only the agents in C provide inputs, we want the output of
the secure computation to be fc(x).

What about agents who lie about their inputs? A malicious agent i who lies
about his input xi and pretends to have some other input yi is indistinguishable
from an honest agent who has yi as his actual input. We can capture this lie

Security in Asynchronous Interactive Systems 131

using a function L : D|T | → D|T |, where D is the domain of the inputs and T is
the set of malicious agents. The function L encodes the inputs malicious agents
pretend to have given their actual inputs. BCG require that all the honest agent
output the same value and that the output has the form (C, fC(y)), where
y = x/(T,L(xT)). They allow C to depend on xT , since malicious agents can
influence the choice of C. They also allow the choice of C and the function L
to be randomized. Since the choice of L and C can be correlated, L and C are
assumed to take as input a common random value r ∈ R, where R denotes the
domain of random inputs. That is, C = c(xT , r) for some function c, and the
malicious agents with actual input xT pretend that their input is L(xT , r).

BCG place no requirements on the output of malicious agents, but they do
want the inputs of honest agents to remain as secret as possible. Hence, in an
ideal scenario, the outputs of malicious agents can depend only on xT , fC(y),
and possibly some randomization. Taking Oi to denote the output function of a
malicious agent i, we can now give BCG’s definitions.

Definition 2. An ideal t-adversary A is a tuple (T, c, L,O) consisting of a set
T ⊆ [n] of malicious agents with |T | ≤ t and three randomized functions c :
D|T | × R → P([n]) with |c(z, r)| ≥ n − t for all input profiles z and r, L :
D|T | × R → D|T | and O : D|T | × D × R → ({0, 1}∗)|T |. The ideal output ρ of A
given function f , input profile x, and a value r ∈ R is

ρi(x, A, r; f) =
{

(c(xT , r), fc(xT ,r)(x/(T,L(xT ,r)))) if i �∈ T
Oi(xT , fc(xT ,r)(x/(T,L(xT ,r))), r) if i ∈ T.

Note that an ideal t-adversary is somewhat different from the adversary as
defined in Definition 1, although they are related, as we show in Sect. 3.2. We
use variants of A to denote both types of adversary.

Let ρ(x, A; f) denote the distribution induced over outputs by the protocol
profile ρ on input x given the ideal t-adversary A. We can now give the BCG
definition of secure computation. Let π(x, A) be the distribution of outputs when
running protocol π on input x with adversary A = (T, τT , σe).

Definition 3 (Secure computation). Let f : Dn → D be a function on n
variables and π a protocol for n agents. Protocol π t-securely computes f if, for
every adversary A = (T, τT , σe), the following properties hold:

SC1. For all input profiles x, all honest agents terminate with probability 1.
SC2. There exists an ideal t-adversary A′ = (T, c, L,O) such that, for all input

profiles x, ρ(x, A′; f) and π(x, A) are identically distributed.

Note that BCG just require that some ideal t-adversary A gives the same
distribution over the outputs of π. This captures the idea that all ways that
malicious agents can deviate are modeled by adversaries. Also note that SC1
follows from SC2 if we view non-termination as a special kind of output.

BCG prove the following result:

Theorem 1 (BCG). Given n and t such that n > 4t and a function f : Dn →
D, there exists a protocol πf that t-securely computes f .

132 I. Geffner and J. Y. Halpern

The construction of πf is sketched in [2] and [9, Section 3.2.7]; most of the
primitives used in this construction are also used in ours.

3.2 Secure Computation and Mediators

Even though it is not explicitly proven by BCG, their construction of πf satisfies
an additional property that we call SC3, which is essentially a converse of SC2.

SC3. For all ideal t-adversaries A = (T, c, L,O), there exists an adversary
A′ = (T, τT , σe) such that, for all input profiles x, ρ(x, A; f) and π(x, A′) are
identically distributed.

Lemma 1. Given a function f : Dn → D, protocol πf satisfies SC3.

Proof (Proof (sketch)). Given a trusted-party adversary A = {T, c, L,O} and an
input profile xT , the adversary A′ runs πf

T with input L(xT), except that if a
malicious agent i would output a tuple of the form (S, z) (note that all outputs
of honest players have this form), it outputs Oi(xT , z) instead. Meanwhile, the
scheduler delays all messages from agents not in c(xT) until all honest players
finish their part of the computation. We can show that the outputs of A and A′

are identically distributed. Since the full proof requires the actual implementa-
tion of πf , the details are given in [9, Section 3.3]

We next show how secure computation relates to simulating a mediator.
Consider the following protocol τ f + τf

d for n agents and a mediator: Agents
send their inputs to the mediator the first time that they are scheduled. The
mediator waits until it has received a valid input from all agents in a subset
C ⊆ [n] with |C| ≥ n − t. The mediator then computes y = fC(x) and sends
each agent the pair (C, y). When the agents receive a message from the mediator,
they output that message and terminate.

Clearly τ f + τf
d satisfies SC1. It is easy to see that it also satisfies SC2:

Given a set T of malicious agents, a deterministic protocol profile τT for the
malicious agents, and a deterministic scheduler σe, define L(x, r) to be whatever
the malicious agents send to the mediator with input x, let c(x) be the set
of agents from whom the mediator has received a message the first time it is
scheduled after having received a message from a least n − t agents (given σe,
τT , and input x), and let O(x) be the output function that malicious agents
use in τ f + τf

d (note that they receive a single message with the output of the
computation, so their output depends only on x, τT , and σe). Clearly SC2 holds
with this choice of t-ideal adversary. Randomized functions τT and σe can be
viewed as resulting from sampling random bits r according to some distribution
and then running deterministically; the protocols c, h, and O can sample r from
the same distribution and then proceed as above with respect to the deterministic
τT (r) and σe(r).

The protocol τ f + τf
d satisfies SC3 as well. Given A = (T, c, L,O), the defi-

nition of τT and σe is straightforward: the agents in T choose a random input
r ∈ R and then each agent i ∈ T sends L(xi, r) to the mediator. The scheduler

Security in Asynchronous Interactive Systems 133

σe delivers all messages from the agents in c(xT , r) first, and then schedules the
mediator. It then delivers all the other messages.

Since both τ f + τf
d and πf satisfy SC2 and SC3, for all adversaries A, there

exists an adversary A′ (resp., for all adversaries A′ there exists an adversary A)
such that (τ f + τf

d)(x, A) and πf (x, A′) are identically distributed.
Unfortunately, given a protocol πd for the mediator, there might not exist a

function f such that SC2 and SC3 hold, as the example given in the introduction
shows (where the mediator sends to the agents the first message it receives). Note
that, in this example, the output of the agents is not a function of their input
profile; thus, there is no function f for which SC2 and SC3 hold. Nevertheless,
we are still interested in securely computing the output of the protocol with the
mediator. That is, we are interested in getting analogues to SC2 and SC3 for
arbitrary interactive protocols. This is captured by the following definition:

Definition 4. Protocol π′ t-bisimulates π if the following two properties hold:

(a) For all adversaries A = (T, τT , σe) with |T | ≤ t, there exists an adversary
A′ = (T, τ ′

T , σ′
e) such that for all input profiles x, π(x, A) and π′(x, A′) are

identically distributed.
(b) For all adversaries A′ = (T, τ ′

T , σ′
e) with |T | ≤ t, there exists an adversary

A = (T, τT , σe) such that all input profiles x, π(x, A) and π′(x, A′) are
identically distributed.

Note that the first clause is analogous to SC2, while the second clause is
analogous to SC3. There is no clause analogous to SC1 since we allow agents
not to terminate. In any case, since we can view non-termination as a special
type of output (i.e., we can view an agent that does not terminate as outputting
⊥), so SC2 already guarantees that non-termination happens with the same
probability in π′ and π (In the setting of BGW, since all functions terminate,
with this viewpoint, SC2 implies SC1, a point already made by Canetti [6].)

The following proposition follows from Theorem 1 and Lemma 1.

Proposition 1. πf t-bisimulates τ f + τf
d if n > 4t.

3.3 Beyond Secure Computation

Although BCG make claims for their protocol only if n > 4t, variants of some
of the properties that they are interested in continue to hold even if n < 4t. The
first of these properties is that if n > 3t, then the only way that the adversary
can affect πf is by preventing some honest agents from terminating. We can
capture this notion as follows.

Definition 5. A scheduler is relaxed if it can decide not to deliver some of
the messages. A protocol π′ (t, t′)-bisimulates π if it t-bisimulates π but the
schedulers σ′

e and σe of the first and second clause of Definition 4 respectively
may be relaxed for t ≥ |T | > t′.

Proposition 2. πf (t, t′)-bisimulates τ f + τd and t ≥ t′.

134 I. Geffner and J. Y. Halpern

This means that if 3t + t′ < n, then adversaries of size between t′ and t have
the same power to affect the outcome with πf as with τ f + τd as long as sched-
ulers are allowed to discard messages, so that they never reach their recipient. In
particular, this means that the adversary cannot influence the outcome in any
other way than by preventing some honest players from terminating. However,
we can show that the BCG protocol has the property that if at least 2t + 1
honest agents terminate, then all the remaining honest agents terminate. This
observation motivates the following definition:

Definition 6. A protocol π (t, k)-coterminates if, all adversaries A =
(T, τT , σe) with |T | ≤ t and all input profiles x, in all executions of π with
adversary A and input x, either all the agents not in T terminate or strictly
fewer than k agents not in T do.

Proposition 3. πf (t, 2t + 1)-coterminates.

We do not prove Proposition 2 or 3 here, since we prove a generalization of
them below (see Theorem 2).

3.4 Simulating Arbitrary Protocols

The goal of this paper is to show that we can securely implement any interaction
with a mediator, and do so in a way that ensure the two properties discussed in
Sect. 3.3. This is summarized in the following theorem:

Theorem 2. For every protocol π+πd for n agents and a mediator, there exists
a protocol π′ for n agents such that π′

(a) (t, t′)-bisimulates π if n > 3t + t′ and t ≥ t′, and
(b) (t, 2t + 1)-coterminates if n > 3t and π + πd is in canonical form.

Moreover, if πd is responsive, the expected number of messages sent in an exe-
cution of π′ is polynomial in n and N , and linear in c, where N is the expected
number of messages sent when running π + πd and c is the number of gates in
an arithmetic circuit that implements the mediator’s protocol.

The construction of π′ is sketched in Sect. 4 and given in full detail in given in
the full paper [9, Section 4.2] and, not surprisingly, uses many of the techniques
used by BCG. And, like BKR, if we allow an ε probability of error we get
stronger results. We define ε-t-bisimulation just like t-bisimulation (Definition 4),
except that, in both clauses, the distance between (π + πd)(x, A) and π′(x, A′)
is less than ε, where the distance d between probability measures ν and ν′ on
some finite space S is defined as d(ν, ν′) =

∑
s∈S |ν(s) − ν′(s)|. The definition

of ε-t-bisimulation and ε-(t, t′)-bisimulation are analogous. A protocol ε-(t, k)-
coterminates if it (t, k)-coterminates with probability 1 − ε.

Theorem 3. For every protocol π + πd for n agents and a mediator and all
ε > 0, there exists a protocol π′ for n agents such that π′

Security in Asynchronous Interactive Systems 135

(a) ε-(t, t′)-bisimulates π + πd if n > 2t + t′ and t ≥ t′, and
(b) ε-(t, t + 1)-coterminates if n > 2t and π + πd is in canonical form.

Moreover, if πd is responsive, π′ can be implemented in such a way that the
expected number of messages when running π′ + πd is polynomial in n and N ,
and linear in c, where N is the expected number of messages sent when running
π + πd.

3.5 Universally Composable Security

Both the definition of secure computation (Definition 3) and of bisimulation
(Definition 4) capture only the intended security properties in the stand-alone
model, where only a single execution of a given protocol is run. However, in many
cases, it is important that these properties are satisfied even when a protocol
is run several times in succession, or even when these executions are performed
concurrently. For this purpose, the standard approach is to prove that the given
protocol is secure in the universal composability model [7]. Kushilevitz, Lindell
and Rabin [10] showed that every protocol that is perfectly secure in the stand-
alone model and has a straight-line black-box simulator is also secure in the UC
model. Having a black-box straight-line simulator means that the adversary is
able to simulate what its view would be when running the protocol without the
mediator (resp., with the mediator), given its view in the protocol with the medi-
ator (resp., without the mediator), and that it is able to do so without having to
rewind, which means to go back to a previous state and interact with the other
agents in a different way. This is exactly the approach we take when showing
that the protocol presented in [9, Section 4.2] satisfies the properties of Theo-
rem 2 (see [9, Section 4.3] for details). Therefore, Theorem 2 holds with perfect
universally composable security as well; that is, if a protocol uses the mediator
as a subroutine, and we replace the subroutine with our implementation, then
all the desired properties would still hold, even if the protocol is ran concurrently
with another protocol.

3.6 Variant Models

In this section, we show that the choices made in our formal model are essentially
being made without loss of generality. We start by considering our assumption
that agents perform a sequence of actions atomically when they are scheduled.
We next show that we would get theorems equivalent to the ones that we are
claiming if we had instead assumed that agents perform just a single action when
they are scheduled. To prove this, we first need the following notion:

Definition 7. A protocol π is N -message bounded if, for all inputs, no agent
ever sends more than N messages in a single turn. A protocol is message
bounded if it is N -message bounded for some N .

Proposition 4. There exist a function H from message-bounded protocols to
single-action protocols such that for all protocols π, the following holds:

136 I. Geffner and J. Y. Halpern

(a) For all schedulers (resp., relaxed schedulers) σe there exists a scheduler
(resp., relaxed scheduler) σ′

e such that, for all input profiles x, π(x, σe) and
H(π)(x, σ′

e) are identically distributed, where H(π) := (H(π1), . . . , H(πn))
and we view σe and σ′

e, respectively, as the adversaries (i.e., we take T = ∅).
(b) For all schedulers (resp., relaxed schedulers) σ′

e there exists a scheduler
(resp., relaxed scheduler) σe such that, for all input profiles x, π(x, σe) and
H(π)(x, σ′

e) are identically distributed.

The converse of Proposition 4 is trivial, since single-action protocols are pro-
tocols. It follows from Proposition 4 that Theorem 2 holds even if we restrict
agents to using single-action protocols (note that canonical protocols are message
bounded).

Proof. Intuitively, H(πi) is identical to πi, except that rather than sending a
sequence of messages when it is scheduled, i sends the messages one at a time.
The scheduler σ′

e is then chosen to ensure that i is scheduled so that it sends
all of its messages as if they were sent atomically. In addition to keeping track
of the messages it has sent and received, i uses the variable Ui whose value is a
sequence of messages (intuitively, the ones that i would have sent at this point in
the simulation of πi that it has not yet sent), initially set to the empty sequence,
and a binary variable next , originally set to 1. When i is scheduled by σ′

e, H(πi)
proceeds as follows: If next = 1, then i sets Ui to the sequence of messages that
it would send with πi given its current view. (If πi randomizes, then H(πi) does
the same randomization. If Ui is the empty sequence (so πi would not send any
messages at that point), i performs the action done(i), and outputs whatever
it does with π; otherwise, i sets next to 0, sends the first message in Ui to its
intended recipient, and removes this message from Ui. If next = 0, then if Ui

is empty, i sets next to 1, sends done(i), and outputs whatever it does with π;
otherwise, i sends the first message in Ui to its intended recipient and removes
it from Ui.

Since π is message bounded, there exists an N such that π is N -message
bounded. For part (a), given σe, we construct σ′

e so that it simulates σe, except
that if σe schedules i, σ′

e schedules i repeatedly until either it observes done(i)
or until i sends messages in N + 1 consecutive turns. Since π is N -message
bounded, it is clear that π(x, σe) and H(π)(x, σ′

e) are identically distributed.
Note that it is necessary for π to be N -message bounded, since if the scheduler
schedules each agent i repeatedly until it stops sending a message during its
turn, an agent that keeps sending messages would be scheduled indefinitely, and
so would prevent other agents from being scheduled.

For part (b), given σ′
e, we construct σe so that it simulates σe. There is

one issue that we have to deal with. Whereas with σe, an agent i can send k
messages each time it is scheduled, with σ′

e, it can send only one message when
it is scheduled. The scheduler σ′

e constructed from σe in part (a) scheduled i
repeatedly until it sent all the messages it did with σe. But we cannot assume
that the scheduler σ′

e that we are given for part (b) does this. Thus, σe must

Security in Asynchronous Interactive Systems 137

keep track of how many of the messages that each agent i was supposed to send
the last time it was scheduled by σe have been sent so far. To do this, σe uses
variables mesi, one for each agent i, initially set to 0, such that mesi keeps
track of how many of the messages that agent i sent with σe still need to be sent
by σ′

e. As we observed above, given a local view h of the scheduler where the
agents use π and the scheduler uses σe, there is a corresponding local view h′

of the scheduler where the agents use π′ and the scheduler uses σ′
e. If, given h′,

σ′
e schedules agent i with probability αi, then with the same probability αi, σe

proceeds as follows: if mesi = 0 (which means that all the messages that i sent
the last time it was scheduled have been delivered in h′), then σe schedules i,
sees how many messages i delivers according πi, and sets mesi to this number;
if mesi �= 0, then mesi is decremented by 1 but no agent is scheduled. Again, it
is clear that that π(x, σe) and H(π)(x, σ′

e) are identically distributed.

BCG put further constraints on the scheduler. Specifically, they assume that,
except possibly for the first time that agent i is scheduled, i is scheduled imme-
diately after receiving a message and only then. That is, in our terminology,
BCG assume that a rec(·, ·, i) event must be followed by a sch(i) event, and all
sch(i) events except possibly the first one occur after a rec(·, ·, i) event. We call
the schedulers that satisfy this constraint BCG schedulers.

We now prove a result analogous to Proposition 4, from which it follows that
we could have obtained our results using a BCG scheduler.

Proposition 5. There exist a function H from protocols to protocols such that
for all protocols π the following holds:

(a) For all schedulers (resp., relaxed schedulers) σe there exists a BCG scheduler
(resp., relaxed BCG scheduler) σ′

e such that, for all input profiles x, π(x, σe)
and H(π)(x, σ′

e) are identically distributed.
(b) For all BCG schedulers (resp., relaxed schedulers) σ′

e there exists a scheduler
(resp., relaxed scheduler) σe such that, for all input profiles x, π(x, σe) and
H(π)(x, σ′

e) are identically distributed.

Proof. As in Proposition 4, the idea is that σ′
e simulates σe, but since σe can

schedule an agent only when it delivers a message, we have each agent i send
itself special messages, denoted proceed i, to ensure that there are always enough
messages in the system. In more detail, H(πi) works as follows. When it is first
scheduled, agent i sends itself a proceed i message. Since we are considering BCG
schedulers, agent i is scheduled subsequently only when it receives a message. If
it receives a message other than proceed i, it does nothing (although the message
is added to its view). If it receives a proceed i message, then it does whatever it
would do with πi given its current view with the proceed i messages and the sch(i)
events not preceded by a proceed i message removed, and sends itself another
proceed i message.

For part (a), given σe, σ′
e first schedules each agent once (in some arbitrary

order), to ensure that that each of them has sent a proceed i message that is
available to be delivered. Given a view h′, σ′

e considers what σe would do in the

138 I. Geffner and J. Y. Halpern

view h that results from h′ by removing the initial sch(i) event for each agent i,
the last message that each agent i sends when it is scheduled if it sends a message
at all, and the receipt of these messages. If h′ is a view that results where the
agents are running H(π), then the send and receive events removed are precisely
those that involve proceed i. If σe delivers a message with some probability, then
σ′
e delivers the corresponding message with the same probability; if σe schedules

an agent i with some probability, σ′
e delivers the last proceed i that i sent and

schedules agent i with the same probability. If there is no proceed i message to
deliver, then σ′

e does nothing, but our construction of H(πi) guarantees that if h′

is a view that results from running H(π), then there will be such a message that
can be delivered. Again, it is clear that π(x, σe) and H(π)(x, σ′

e) are identically
distributed.

For part (b), given σ′
e, the construction of σe is similar to that of Propo-

sition 4. Again, given a local view h of σe where the agents use π, there is a
corresponding view h′ of σ′

e where the agents use H(π). If, given input h′, σ′
e

delivers a message with some probability p and the messages is not a proceed i

message, then σe delivers the corresponding message with probability p. If the
message is a proceed i message, then σe also schedules agent i. If σ′

e schedules an
agent i with probability p, and in h′ this is the first time that i is scheduled, then
σe schedules i with probability p and otherwise does nothing with probability
p. Yet again, it is straightforward to show that π(x, σe) and H(π)(x, σ′

e) are
identically distributed.

4 Proof of Theorem 2

In this section we sketch the construction of a protocol π′ that satisfies Theo-
rem 2. We provide the full construction and the proof of correctness in the full
paper [9, Sections 4.3 and 4.5].

The construction uses a number of primitives, some of which were defined
by BCG and some of which go back much further. Among other, it uses secret-
sharing, which goes back to Shamir [11], a broadcast protocol due to Bracha [5],
and a circuit computation protocol. Recall that with secret sharing, a sender can
distribute a secret s (which is just an element of the field Fp) among n agents
in such a way that no subset of t agents can guess the value of s with better
probability than 1/p (the cardinality of Fp), but such that any subset of t + 1
agents can compute s with no probability of error. This is done by having the
sender choose a polynomial ps ∈ Fp[X] of degree t uniformly at random such
that ps(0) = s and sending each agent i i’s share of s, which is si := ps(i).
Bracha’s broadcast protocol allows a sender to broadcast a message to a group
in an asynchronous system so that, if n > 3t, all honest players will eventually
get it.

The circuit computation protocol [2] allows agents to compute their shares
of the output of a circuit f from their shares of the inputs of f without learning
anything about the shares of other players.

The construction proceeds as follows. Intuitively, agents simulate π + πd by
jointly computing the mediator’s state, which messages it receives, and which

Security in Asynchronous Interactive Systems 139

messages it would send to each agent. To keep the mediator’s computation secret,
instead of computing the mediator’s state directly, agents just compute their
share of it. Each agent i sends j its share of each of the messages that i sends in
the protocol with the mediator; each agent j then uses these shares to update
the state of the mediator. Agents use the verifiable secret sharing and circuit
computation protocols provided by BCG in order to tolerate malicious behavior
when distributing the shares of their messages and when computing the shares
of the mediator’s state every time it is updated. They also use Bracha’s consen-
sus protocol to agree on what messages the mediator receives every time it is
scheduled and in which order it does so. The properties of all of these primitives
are given in [5], [2], and [9, Section 3.2]

While this is the outline of the protocol, there are still a number of subtleties
that have to be dealt with. For example, we must decide when each agent and
the mediator is scheduled in the simulation of π + πd, or how agents update
the mediator’s state. All of these details are provided in the full version [9,
Section 4.2].

5 Conclusion

We have shown how to simulate arbitrary protocols securely in an asynchronous
setting in a “bidirectional” way (as formalized by our notion of bisimulation).
This bidirectionality plays a key role in the application of these results in [1]; we
believe that it might turn out to be useful in other settings as well. While this
property holds for BCG’s secure computation implementation, proving that we
can simulate arbitrary protocols so that it holds seems to be nontrivial.

Our construction may not be message-efficient in the general case. However,
for responsive mediators, a small modification (see [9, Section 4.4]) allows us
to bound the expected number of messages by a function that is polynomial
in the number of agents n and the maximum number of messages N sent in
the setting with the mediator, and linear in c, the number of gates in a circuit
that implements the mediator’s protocol. It is still an open problem whether
all protocols π + πd can be implemented in a way that the expected number of
messages sent by honest agents is bounded by some function of n, N , and c.

References

1. Abraham, I., Dolev, D., Geffner, I., Halpern, J.Y.: Implementing mediators with
asynchronous cheap talk. In: Proceedings 38th ACM Symposium on Principles of
Distributed Computing, pp. 501–510 (2019)

2. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In:
STOC 1993: Proceedings of the 25 Annual ACM Symposium on Theory of Com-
puting, pp. 52–61. ACM Press, New York (1993). http://doi.acm.org/10.1145/
167088.167109

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the 20th
ACM Symposium on Theory of Computing, pp. 1–10 (1988)

http://doi.acm.org/10.1145/167088.167109
http://doi.acm.org/10.1145/167088.167109

140 I. Geffner and J. Y. Halpern

4. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with opti-
mal resilience (extended abstract). In: Proceedings of the 13th ACM Symposium
Principles of Distributed Computing, pp. 183–192. ACM Press, New York (1994).
http://doi.acm.org/10.1145/197917.198088

5. Bracha, G.: An asynchronous [(n− 1)/3]-resilient consensus protocol. In: Proceed-
ings of the 3rd ACM Symposium on Principles of Distributed Computing, pp.
154–162 (1984)

6. Canetti, R.: Studies in secure multiparty computation and applications. Ph.D.
thesis, Technion (1996). http://citeseer.nj.nec.com/canetti95studies.html

7. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings of the 42nd IEEE Symposium Foundations of Computer
Science, p. 136 (2001)

8. Chaum, D., Crépeau, C., Damg̊ard, I.: Multi-party unconditionally secure proto-
cols. In: Proceedings of the 20th ACM Symposium on Theory of Computing, pp.
11–19 (1988)

9. Geffner, I., Halpern, J.Y.: Security in asynchronous interactive systems. https://
arxiv.org/abs/1906.02069

10. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols
and security under composition. SIAM J. Comput. 39(5), 2090–2112 (2010)

11. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

http://doi.acm.org/10.1145/197917.198088
http://citeseer.nj.nec.com/canetti95studies.html
https://arxiv.org/abs/1906.02069
https://arxiv.org/abs/1906.02069

A New Problem Setting for Mobile
Robots Based on Backscatter-Based

Communication and Sensing

Teruo Higashino1,2(B), Akira Uchiyama2, Hirozumi Yamaguchi2,
Shunsuke Saruwatari2, Takashi Watanabe2, and Toshimitsu Masuzawa2

1 Kyoto Tachibana University, Kyoto 607-8175, Japan
higashino-t@tachibana-u.ac.jp

2 Osaka University, Osaka 565-0871, Japan
{higashino,uchiyama,h-yamagu,saru,watanabe,masuzawa}@ist.osaka-u.ac.jp

Abstract. In this paper, we introduce a new problem setting for mobile
robots based on backscatter-based communication and sensing. Ambient
backscatter communication is a technology that transmits/receives data
only by switching the impedance of the antenna at high speed with-
out creating a carrier wave on the transmitting side (target backscatter
tag). It modulates and transmits data by turning on/off radio waves and
reflecting/absorbing radio waves such as Wi-Fi existing in the environ-
ment. Data transmission and backscatter tags’ sensing can be done with
several tens of µW of power consumption while general Wi-Fi commu-
nication requires several tens of mW of power consumption. We have
developed a software defined radio (SDR) system for backscatter-based
communication and advanced sensing of humans and objects. By equip-
ping each SDR system with multiple antennas and implementing a mech-
anism to estimate the direction of backscatter communication with high
accuracy, and by using multiple SDR systems, our SDR systems can not
only transmit/receive data of ambient backscatter communication but
also analyze signals obtained from backscatter tags and estimate their
positions concurrently with an error of a few centimeters. Computation
by a swarm of autonomous mobile robots is one of the most active fields
in the distributed computing community. By arranging the multiple SDR
systems in a target area, it may be possible to give new environmental
conditions to the time-series position estimation of mobile robots. Such
environmental conditions can be used for finding a new problem setting
for the mobile robots and/or context recognition of humans and objects
using mobile robots and backscatter-based communication.

Keywords: Mobile robots · Ambient backscatter · Software defined
radio

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 141–153, 2021.
https://doi.org/10.1007/978-3-030-91081-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_10

142 T. Higashino et al.

1 Introduction

Computation by a swarm of autonomous mobile robots [1,2] is one of the most
active fields in the distributed computing community. There also exist commer-
cial mobile robots such as Kilobot [3]. In order to reduce the energy consumption
of mobile robots, a model without memory nor communication function is set as
a basic model of the mobile robots. There are several variations for the visibility
and compasses of the mobile robots. Here, we focus on ultra-low power wire-
less communication technology called ambient backscatter communication and
introduce a new problem setting for mobile robots based on backscatter-based
communication and sensing.

Generally, IoT devices consume power for three processes: sensing, process,
and communication, but the power required for communication is extremely
high, and the key technology for connecting to the Internet of IoT devices is the
spread of ultra-low power consumption communication methods. In recent years,
a wireless communication technology called ambient backscatter communication,
which can reduce power consumption to about 1/10,000 (about 10 µW) of the
conventional one by using radio waves existing in the environment such as Wi-Fi,
is being developed [4,5]. Ambient backscatter communication does not generate
any radio waves on the transmitting side (target backscatter tag). It reflects or
absorbs radio waves such as Wi-Fi existing in the environment by switching the
impedance of the antenna and increases or decreases their signal strengths. It
sends 0/1 bits by utilizing the fact that the signal strengths can be increased
or decreased. In general, many existing sensing devices are powered by button
batteries and so on, but due to the time and efforts of battery replacement and
the complexity of voltage control circuits, many IoT devices cannot be connected
to the Internet. If we can develop a mechanism to sense the strength (fluctua-
tion) of wireless radio waves by ambient backscatter communication, it is one of
the promising ways to popularize battery-less and maintenance-free small IoT
devices for sensing the movement and stop of humans and objects, seating and
standing, temperature change, shape change, and so on.

Wi-Fi based backscatter communication technology capable of transmitting
and receiving data at the distance of several tens of meters at several Mbps and
RFID communication technology capable of transmitting and receiving data
from the distance of several meters are being developed [6]. In addition, sensing
elements that use only the electric power obtained from energy harvesting and
sensing technologies for grasping human behavior have been devised. However,
most of the existing sensing technologies based on ambient backscatter commu-
nication are limited to the development of relatively simple situational awareness
technologies for humans and objects, such as the existence of a person and the
presence or absence of movement at the target location [3]. It is less powerful
than the situational awareness technology assuming general Wi-Fi and enough
power supply. At present, we still need intellectual situation recognition technol-
ogy for humans and objects using battery-less and maintenance-free small IoT
devices that can be applied to practical purpose.

A New Problem Setting for Mobile Robots 143

For solving this problem, we have been developing a software defined radio
(SDR) system that can send and receive information obtained by ambient
backscatter communication as an existing IEEE 802.11 compatible frame (a wire-
less access point that mediates between regular Wi-Fi and backscatter). In the
developed SDR system, by applying reflection, absorption and modulation to tar-
get backscatter devices at different frequencies Δf , the IDs of those backscatter
devices can be known even in an environment where multiple backscatter devices
coexist. By equipping each SDR system with multiple antennas and implement-
ing a mechanism to estimate the direction of ambient backscatter communication
with high accuracy, our SDR systems can estimate their positions concurrently
with an error of a few centimeters. Using these SDR systems, we can recognize
the positions of multiple persons in a target area and estimate the trajectories
of multiple backscatter tags concurrently.

In the developed SDR systems, all the mobile robots in their wireless ranges
can know their positions concurrently. By giving ultra-low power communication
functions to the mobile robots, a model that knows only its own position can be
considered, or a model that can know the positions of a part of nearby mobile
robots can be considered. Different assumptions for ID recognition of nearby
mobile robots can be also considered. Since ambient backscatter communication
can be used for the ultra-low power context recognition of humans and objects,
several types of problems for context recognition of humans and objects using
mobile robots can be also considered. We hope the developed SDR systems can
be used for finding a new problem setting for the mobile robots and/or creating
ultra-low power methods for context recognition of humans and objects using
the mobile robots.

In this paper, Sect. 2 introduces the recent research trends for ambient
backscatter communication and the context recognition of humans and objects
using ambient backscatter communication. In Sect. 3, we introduce an overview
of the developed software defined radio (SDR) systems. In Sect. 4, we introduce
our recent research work for the context recognition of humans and objects using
the SDR systems. In Sect. 5, we present the basic model of the mobile robots and
discuss how our SDR systems can be used for finding a new problem setting for
the mobile robots and/or context recognition of humans and objects. Section 6
concludes the paper.

2 Ambient Backscatter Communication and Sensing

2.1 Ambient Backscatter Communication

Backscatter communication is a technology that can reduce the power consump-
tion of wireless transmission to 1/1000–1/10000. Generally, wireless communica-
tion consumes significant power. For example, the Silex SX-SDCAG 802.11a/b/g
SDIO card module for Wi-Fi consumes 525 mW for the transmission and 195
mW for the reception, and the Texas Instruments CC2530 for IEEE 802.15.4
(ZigBee) consumes 58 mW for the transmission and 48 mW for the reception.
Fig. 1(a) shows how an IEEE 802.15.4 transmitter works: the baseband signal,

144 T. Higashino et al.

generated as a 2 MHz signal, is multiplied by a 2.4 GHz carrier signal generated
by a local oscillator (LO) using a mixer and converted to a 2.402 GHz modulated
signal. The modulated signal is then amplified by a power amplifier (PA) and
emitted as radio waves into space. The transmitter consumes a large amount
of power in the LO that generates the 2.4 GHz carrier signal and the PA that
amplifies the transmitted signal.

Backscatter communication drastically reduces the transmission power by
transmitting data without using the LO and PA in Fig. 1(a). The basic idea of
backscatter communication is similar to that of the heliograph. Fig. 1(b) shows
an example of a heliograph. When sending information from the ground to an
airplane, information such as Morse code is sent by reflecting the sunlight with a
mirror. At this time, the only energy consumed by the transmitter is the energy
to move the mirror. Backscatter communication is the realization of heliograph
by radio waves. Fig. 1(c) shows the circuit diagram of backscatter communi-
cation. In backscatter communication, data is transmitted by superimposing a
signal on the flying radio wave by switching between reflecting and absorbing the
radio wave by changing the impedance at high speed. This backscatter mech-
anism eliminates the need for a LO and PA in a typical radio transmitter and
thus significantly reduces power consumption.

(a) radio transmitter (b) heliograph (c) backscatter communication
mirror

sunlight reflected
sunlight 2 MHz modulation

2.4 GHz continuous
waves

z1

z2

2.402 GHz backscatter
modulated signal

2 MHz baseband
signal PA

LO

2.4 GHz
continuous
waves

2.402 GHz
modulated signal

Fig. 1. The basis of backscatter communication.

As shown in Fig. 2, there are three types of communication models for
backscatter communication [5]. The first is monostatic backscatter, which has a
long history and corresponds to RFID communication [7]. The second is bistatic
backscatter [8, 9, 10]. Bistatic backscatter is a model that uses carrier signals
emitted by a carrier emitter such as a wireless LAN AP. Bistatic backscatter
assumes a clean carrier signal such as continuous waves. The use of the clean
carrier signal enables its flexibility in modulation, such as creating IEEE 802.11
frames [8] and IEEE 802.15.4 frames [9], and its more extended transmission
range than monostatic backscatter and ambient backscatter. By combining one
carrier emitter and multiple backscatter receivers, multiple backscatter commu-
nications can be realized simultaneously in single continuous waves [10]. The
third model is ambient backscatter [4,11]. While monostatic backscatter and
bistatic backscatter use continuous waves for backscatter communication, the
ambient backscatter shares the same signals used in other communications such

A New Problem Setting for Mobile Robots 145

as TV [4] and wireless LAN [11]. Although the communication distance is lower
than that of monostatic backscatter and bistatic backscatter, it has the advan-
tage that backscatter communication can be performed without a carrier emitter.

(a) monostatic
backscatter

(b) bistatic backscatter
(c) ambient backscatter

reader backscatter tag

continuous waves

backscatter signal
carrier
emitter

backscatter tag backscatter
receiver

continuous waves backscatter signal

ambient RF
source

backscatter tag backscatter
receiver

backscatter signal

smartphone

ambient RF signals

Fig. 2. Three types of backscatter communication.

2.2 Backscatter Sensing of Humans and Objects

As we reviewed in Sect. 2.1, backscatter is a key enabler for ultra-low-power wire-
less communication. Nevertheless, it still requires digital modulation for commu-
nication. This means it needs processing by computation modules such as micro-
controller units. This leads to additional costs for additional components as well
as additional energy consumption, which can limit the application design space.
However, interestingly, backscatter is also useful for sensing by directly observ-
ing the change of the signal backscattered from tags. For making signal changes,
backscatter sensing leverages analog sensors or physical movements owing to
contexts such as wind, water flow, acoustic vibration, and human interaction
(e.g., touch).

As for battery-less approaches, Printed Wi-Fi [12] is an interesting concept
which converts physical movement owing to various contexts into the fluctua-
tion of Wi-Fi signal without any IC chip and battery. The authors presented
prototypes of a wind speed meter, liquid flow meter, slider bar, and so on.
Similarly, LiveTag [13] is a printed tag with antennas and resonators which
backscatters Wi-Fi signal with absorption of specific frequency. Touching the
printed resonator cancels the corresponding frequency absorption, which is used
for battery-less touchpads.

On the other hand, researchers have also investigated another research direc-
tion using ultra-low-power backscatter tags. Because of its ultra-low-power
nature, we can deploy a large number of backscatter tags. This enables us to
observe fluctuation of signal backscattered from the tags due to human motion
in the proximity of the tags. BARNET [14] proposed Backscatter Channel State
Information (BCSI) between backscatter tags to obtain activity-related signal
change information, increasing the number of wireless links for sensing. Further-
more, we can directly attach the tags to the targets (i.e., humans and objects)
for sensing of their states such as movement. RF Bandaid [15] takes such an

146 T. Higashino et al.

approach for ultra-low-power sensing of various phenomena such as tempera-
ture, force, respiration, and heart rate. RF Bandaid employs a micropower pre-
cision programmable oscillator from Linear Technology LTC6906 which is a key
component for converting the resistance or capacitance of analog sensors into a
frequency shift in the backscattered signal. UbiquiTouch [16] designs a touchpad
by backscattering FM radio signal for modulating a touch point on a surface to
its corresponding time-series pattern of the frequency shift.

Meanwhile, RFID is a well-known system based on backscatter communi-
cation. Specifically, passive RFID tags operate without battery by charging
energy from radio signal transmitted by an RFID reader. Receiving Continu-
ous Wave (CW) signal from the reader, the tags send back their own identifi-
cation by backscatter communication. RFID readers provide information about
replied tags’ identification with Received Signal Strength (RSS) and phase of
the backscattered signal. Especially the phase information is useful for measure-
ment of distance change between a tag and a reader. Also, RFID readers and tags
are available on the market. Therefore, many researchers have proposed a wide
range of applications such as respiration monitoring [17], heart rate variability
sensing [18], pose estimation [19], and so on. In [20], we have also proposed some
backscatter communication-based sensing methods.

Different from RFID-based sensing, backscatter sensing further enhances
the capability of wireless sensing by directly converting context of humans and
objects into ambient RF signal change such as Wi-Fi and BLE. This is achieved
by designing backscatter tags for changing antenna impedance according to tar-
get context.

3 Developed Software Defined Radio (SDR) System

RF frontend: FMCOMMS3

low-MAC layer: ARM Cortex R5

Application: ARM Cortex A53

Linaro Linux

physical layer: Xilinx Zynq

Fig. 3. Developed software defined radio (SDR) system called SD-WiFi.

Figure 3 shows the overview of the developed software defined radio (SDR)
system called “SD-WiFi”. In SD-WiFi, we have developed a protocol stack
that allows existing communication protocols and backscatter communication to

A New Problem Setting for Mobile Robots 147

coexist in the MAC layer so that the obtained information in a backscatter tag
can be communicated in backscatter as existing IEEE 802.11 compatible frames
or IEEE 802.15.4 frames. We implemented the frontend using FMCOMMS3, the
physical layer using FPGA, the MAC layer using ARM Coretex R5, a real-time
CPU, and the data link layer to the application layer implemented using Core-
tex A53. The MAC layer can be programmed exclusively by the Realtime CPU,
which simplifies the implementation of the MAC protocol. The Coretex A53 runs
Debian-based Linaro Linux, which makes it easy to install various software and
services using apt commands.

Furthermore, receiving the same signal with two antennas makes it possible to
obtain the phase difference. From both antennas’ obtained radio wave strength,
it becomes possible to know in real-time from which direction and how strong the
radio wave is being transmitted. By installing several of the developed software
defined radio (SDR) systems in the target area and estimating the direction of
radio wave transmission from the radio wave strength information of each antenna,
the location of the backscatter device can be determined with high accuracy.

IEEE 802.15.4
compatible

backscatter tag

continuous waves

t

backscatter modulated signal

reflect
absorb

f

backscatter
modulated

signal

continuous waves

backscatter
modulated

signal

f + ff f

modulation

reflect

reflect

absorb

reflect

modulation

42.5 mm

30.0 m
m

2 MHz 2 MHz

Fig. 4. SD-WiFi and IEEE 802.15.4 compatible backscatter tag.

Figure 4 shows an example of the operation of SD-WiFi in combination with
an IEEE 802.15.4 compatible backscatter tag. The IEEE 802.15.4 compatible
backscatter tag consists of two parts: the MCU and the RF switch. We used
STMicroelectronics STM32F446RE as an MCU and single-pole double-throw
(SPDT) switch as an RF switch. Reference [9] shows the communication range
was 3 m, but later improvements were made to enable communication at 15 m. It
has also been confirmed that the IEEE 802.15.4 chip, Texas Instruments CC1352,

148 T. Higashino et al.

can receive the backscatter modulated signal. All these circuit data are avail-
able to GitHub [21,22], so you can run it by yourself. When continuous waves
of frequency f are switched at a rate of Δf at an IEEE 802.15.4 compatible
backscatter tag, the backscattered carrier signals appear at f +Δf and f −Δf .
In Fig. 4, two frames with f + Δf and f − Δf as center frequencies are gener-
ated by backscatter modulating the 2 MHz baseband signal with IEEE 802.15.4
modulation in the backscatter tag.

4 Context Recognition of Humans and Objects Using
SDR System

We have been designing and developing battery-less and maintenance-free IoT
sensing devices (human sensor, accelerometer, camera, temperature) that can be
applied to the situation recognition of humans and objects by using backscat-
ter communication technology and electronic circuit design technology using
3D printers together. Using those IoT devices, we are trying to create situa-
tion recognition technologies that can be used for (i) watching at facilities for
the elderly, (ii) understanding the activities of athletes, (iii) understanding the
movement trajectory of humans and detecting the invasion of wild animals, (iv)
building sociograms for understanding the relationships between children, (v)
grasping wind power and ground fluctuations on slopes, (vi) air conditioning
management of commercial facilities, and so on. We are also trying to develop a
design support environment for situation recognition of humans and objects.

For backscatter sensing based on the SDR system, we are developing an
ultra-low-power backscatter tag called a frequency shift tag which directly con-
verts target context into the existence/absence of specific frequency shift in the
backscattered signal of Bluetooth Low Energy (BLE). The tag consists of an
antenna, RF switch, oscillator, and motion switch. We note that it does not
require a microcontroller for simplicity of implementation and further reduction
of energy consumption. The simplicity is especially important for development
by users using 3D printers, and so on.

Fig. 5. Backscatter sensing by frequency shift tags.

A New Problem Setting for Mobile Robots 149

Figure 5 illustrates the overview of backscatter sensing by the frequency shift
tags. An exciter emits a carrier wave signal for the tags attached to humans and
objects such as shoes, doors, and chairs. A receiver then observes a frequency
spectrum to detect the existence of the tags and the state of the motion switches
coupled with corresponding contexts. We use our SDR system as exciters and
receivers.

If the backscatter tag exists in the target environment with its motion switch
turned on, the frequency shift corresponding to the frequency of the carrier
signal fc appears in the backscattered signal. We assume a pair of the oscillation
frequency fi of tagi and the corresponding context ci of the tag is registered in a
database. The receiver detects peaks in the frequency spectrum and determines
whether there is a frequency shift fi or not. If the peak at fi is detected, we
recognize the occurrence of ci.

Fig. 6. Frequency shift tag prototype.

We have implemented a prototype of the frequency shift tag as shown in
Fig. 6. Currently, we have confirmed that the backscatter sensing is achievable
within 3 m from an exciter and a receiver by using pseudo continuous waves
created by BLE Interscatter [23] as the backscatter signal source. In our pre-
liminary experiment, we used BLE Interscatter for the experiment in the real
environment (i.e., outside an RF shielded tent). We note that we are working on
obtaining Technical Standards Compliance Certification to use our SDR system
in the real environment. Also, the energy consumption of the frequency shift tag
is 19.8 µW at 1.8 V of the operating voltage. This means the lifetime of the tag
is more than 2 years with a CR2032 coin cell without any sleep mode. There-
fore, we can usually expect a longer lifetime since the energy is intermittently
supplied according to the state of the motion switch. By using the prototype,
we have implemented a seating sensor, pedometer, and door sensor as concept
applications. To further enhance the sensing range, we are planning to leverage
computation power and energy source on the infrastructure side (i.e., SDR AP).

150 T. Higashino et al.

5 Backscatter-Based Communication and a New Problem
Setting for Mobile Robots

Computation by a swarm of autonomous mobile robots is one of the most active
fields in the distributed computing community. Following the seminal work by
Suzuki and Yamashita [1], computability and complexity for several problems
have been extensively executed. Many fundamental results are surveyed in [2].

Here, we introduce commonly used models of mobile robots in a continu-
ous two-dimensional space. The robots are anonymous; they execute the same
algorithm, and they cannot be distinguished by their appearances. Each robot
has its own x-y coordinate system, called a compass, with the origin that is the
current position of the robot. The compasses of different robots may be differ-
ent in direction of the x-axis, unit length, and chirality. Each robot operates in
Look-Compute-Move (LCM) cycles, each consisting of a Look, a Compute, and a
Move operation in this order. A Look operation allows the robot to take a snap-
shot consisting of the current positions, in its own compass, of all the robots.
Note that the robots have no means for directly communicating with each other.
A Compute operation determines the destination point of the robot in its own
compass. The robot is oblivious (or memoryless) and thus the destination point
is determined only from the snapshot obtained by the Look operation in the
same LCM cycle. In a Move operation, the robot moves to the destination.

Several types of distributed cooperated problems using mobile robots have
been discussed so far [1,2]. In general, the mobile robots assume that each robot
does not have any memory nor communication function. This means that the
researchers for the mobile robots aim to build ultra-low energy distributed coop-
erated systems. As we discussed above, wireless communication requires rela-
tively a large amount of energy. On the other hand, ambient backscatter com-
munication requires relatively a very small amount of energy. The developed
SDR system can also provide a rather accurate location for each mobile robot
within the communication range of each SDR system.

We can develop mobile robots with a backscatter communication function
where each mobile robot can sense a specific frequency shift for the backscattered
signal. If we assume that each mobile robot has its own specific frequency for
the frequency shift, each mobile robot can only know its position with high
accuracy at regular intervals while it cannot know the positions of its neighboring
mobile robots. On the other hand, if multiple mobile robots have a common
specific frequency for the frequency shift and if those mobile robots ask their own
locations to a nearby SDR system asynchronously, those mobile robots can know
their positions in parallel although packet collisions might occur. In this case,
those mobile robots can know the locations and IDs of all the neighboring mobile
robots which use the same frequency for the frequency shift. Since each SDR
system has its own communication range and a large number of mobile robots
cannot have the common frequency for the frequency shift in real situations,
each mobile robot can only know the locations and IDs of a small part of its
neighboring mobile robots at different times. Also, the set of such neighboring
mobile robots is not fixed. Since the range of the radio is not so great, we need

A New Problem Setting for Mobile Robots 151

multiple SDR systems for covering a target area in general. It is not always
possible for each mobile robot to communicate with at least one of those SDR
systems. In such communication environments, we might be able to give different
environmental conditions for the mobile robots and find different distributed
cooperative problems.

In the backscatter, by detecting the directions of the radio waves from two
base stations (SDR systems), the exact position of a target backscatter tag is
known at the intersection of the two directions of the radio waves under the
assumption that we know the exact position of two base stations (SDR systems).
For two base stations, it is relatively easy to measure the distance between them
while it requires some effort to know their absolute positions (e.g., usage of accu-
rate GNSS systems, anchors, and accurate compasses, and so on). The problem
of finding the exact positions of a group of a large number of base stations when
arranging them is not so easy, but it is possible to find their rough positions.
There exist some iterative closest point (ICP) algorithms that calculate adequate
positions for multiple nodes (e.g., [24]). Actually, the following assumptions are
adequate: for each pair of two base stations, the distance between them is known,
their positions and directions are not exactly known, and it is possible to use
the premise that each mobile robot operates in an environment where there are
multiple sets of such base stations.

In such environments, we can assume that robots that can use the same
base stations have almost (but not exactly) common x-y coordinate systems.
Moreover, the robots can get the positions of each other when they use the
common frequency. These assumptions enhance the model of mobile robots. It
is interesting to investigate the impact of the assumptions on the complexity
or solvability of problems. In case that multiple frequencies are available, each
robot can change the robots that it can recognize by changing the frequency
it uses. In such an environment, there might be a problem in which a kind of
scheduling of how to dynamically change the frequency is the key. Also, if this
scheduling is made probabilistic, groups can be constructed with appropriate
sampling, and it may be possible to come up with an efficient solution for some
problems.

As we explained in Sect. 4, we can create several types of techniques for con-
text recognition of humans and objects based on ambient backscatter communi-
cation. Thus, there might exist problems for finding or surrounding backscatter
tags with specific features using autonomous mobile robots. Also, there might
exist problems for collecting the locations and/or IDs of backscatter tags with
specific features using autonomous mobile robots.

6 Conclusion

In this paper, we introduced a new problem setting of the mobile robots based on
backscatter-based communication and sensing. By equipping each SDR system
with multiple antennas and implementing a mechanism to estimate the direc-
tion of backscatter communication with high accuracy, and by using multiple

152 T. Higashino et al.

SDR systems, our SDR systems can not only transmit/receive data of ambient
backscatter communication but also analyze signals obtained from backscatter
tags and estimate their positions concurrently with an error of a few centime-
ters. For a swarm of autonomous mobile robots, it may be possible to give
new environmental conditions to the time-series position estimation of mobile
robots as we discussed in Sect. 5. Since the mobile robots assume ultra-low-power
consumption for moving and sensing, ambient backscatter communication-based
environments might be able to provide new types of problem settings for a swarm
of autonomous mobile robots. We hope our research could give some hints to
the distributed computing community.

Acknowledgements. The research in this paper is partly supported by JSPS Grants-
in-Aid for Scientific Research (Grant Numbers: 19H05665, 20K20398, 19K11941,
18H03231, and 19H01101). The research is also partly supported by JST PRESTO,
Japan (Grant Numbers: JPMJPR1932 and JPMJPR2032).

References

1. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots. In: 3rd Inter-
national Colloquium on Structural Information and Communication Complexity
(SIROCCO 1996), pp. 313–330 (1996)

2. Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile
Entities, Current Research in Moving and Computing. Theoretical Computer Sci-
ence and General Issues, vol. 11340. Springer, Heidelberg (2019). https://doi.org/
10.1007/978-3-030-11072-7

3. Kilobot: https://www.k-team.com/mobile-robotics-products/kilobot. Accessed 08
Sept 2021

4. Liu, V., Parks, A., Talla, V., Gollakota, S., Wetherall, D., Smith, J.R.: Ambient
backscatter: wireless communication out of thin air. SIGCOMM Comput. Com-
mun. Rev. 43(4), 39–50 (2013)

5. Huynh, N.V., Hoang, D.T., Lu, X., Niyato, D., Wang, P., Kim, D.I.: Ambient
backscatter communications: a contemporary survey. IEEE Commun. Surv. Tutor.
20(4), 2889–2921 (2018)

6. Uchiyama, A., Saruwatari, S., Maekawa, T., Ohara, K., Higashino, T.: Context
recognition by wireless sensing: a comprehensive survey. J. Inf. Process. (JIP) 29,
46–57 (2021)

7. Want, R.: An introduction to RFID technology. IEEE Pervasive Comput. 5(1),
25–33 (2006)

8. Kellogg, B., Talla, V., Gollakota, S., Smith, J. R.: Passive Wi-Fi: bringing low
power to Wi-Fi transmissions. In: 13th USENIX Symposium on Networked Systems
Design and Implementation (USENIX NSDI 2016), pp. 151–164 (2016)

9. Konishi, Y., Ueda, T., Kizaki, K., Fujihashi, T., Saruwatari, S., Watanabe, T.:
Experimental evaluation on IEEE 802.15.4 compatible backscatter. In: 2020 IEEE
Global Communications Conference (IEEE GLOBECOM 2020), pp. 1–6 (2020)

10. Zeba, O., Saruwatari, S., Watanabe, T.: QuadScatter for simultaneous transmis-
sions in a large-scale backscatter network. In: 2020 IEEE International Conference
on Communications (IEEE ICC 2020), pp. 1–6 (2020)

https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-030-11072-7
https://www.k-team.com/mobile-robotics-products/kilobot

A New Problem Setting for Mobile Robots 153

11. Kellogg, B., Parks, A., Gollakota, S., Smith, J.R., Wetherall, D.: Wi-Fi backscat-
ter: internet connectivity for RF-powered devices. In: 2014 ACM Conference on
SIGCOMM (ACM SIGCOMM 2014), pp. 607–618 (2014)

12. Iyer, V., Chan, J., Gollakota, S.: 3D printing wireless connected objects. ACM
Trans. Graph. 36(6), pp. 1–13 (2017). Article no. 242

13. Gao, C., Li, Y., Zhang, X.: LiveTag: sensing human-object interaction through
passive chipless WiFi tags. In: 15th USENIX Symposium on Networked Systems
Design and Implementation (USENIX NSDI 2018), pp. 533–546 (2018)

14. Ryoo, J., Karimi, Y., Athalye, A., Stanaćević, M., Das, S.R., Djurić, P.: BARNET:
towards activity recognition using passive backscattering tag-to-tag network. In:
16th ACM International Conference on Mobile Systems, Applications, and Services
(MobiSys 2018), pp. 414–427 (2018)

15. Ranganathan, V., Gupta, S., Lester, J., Smith, J.R., Tan, D.: RF Bandaid: a fully-
analog and passive wireless interface for wearable sensors. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol. 2(2), 1–21 (2018). Article no. 79

16. Waghmare, A., et al.: UbiquiTouch: self sustaining ubiquitous touch interfaces.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4(1), 1–22 (2020). Article
no. 27

17. Yang, Y., Cao, J.: Robust RFID-based respiration monitoring in dynamic environ-
ments. In: 17th Annual IEEE International Conference on Sensing, Communication
and Networking (SECON 2020), pp. 1–9 (2020)

18. Wang, C., Xie, L., Wang, W., Chen, Y., Bu, Y., Lu, S.: RF-ECG: heart rate
variability assessment based on COTS RFID tag array. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 2(2), 1–26 (2018). Article no. 85

19. Jin, H., Yang, Z., Kumar, S., Hong, J.I.: Towards wearable everyday body-frame
tracking using passive RFIDs. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 1(4), 1–23 (2018). Article no. 145

20. Higashino, T., Uchiyama, A., Saruwatari, S., Yamaguchi, H., Watanabe, T.: Con-
text recognition of humans and objects by distributed zero-energy IoT devices.
In: 2019 IEEE 39th International Conference on Distributed Computing Systems
(ICDCS 2019), pp. 1787–1796 (2019)

21. IEEE 802.15.4 Compatible Backscatter Tag. https://github.com/watalabo/
backscatter-15.4. Accessed 08 Sept 2021

22. 4 GHz Backscatter Communication Tools. https://github.com/watalabo/
backscatter-tools. Accessed 08 Sept 2021

23. Iyer, V., Talla, V., Kellogg, B., Gollakota, S., Smith, J.: Inter-technology backscat-
ter: towards internet connectivity for implanted devices. In: 2016 ACM SIGCOMM
Conference (ACM SIGCOMM 2016), pp. 356–369 (2016)

24. Yoshisada, H., Yamada, Y., Hiromori, A., Yamaguchi, H., Higashino, T.: Indoor
map generation from multiple LIDAR point clouds. In: 2018 IEEE International
Conference on Smart Computing (SMARTCOMP 2018), pp. 73–80 (2018)

https://github.com/watalabo/backscatter-15.4
https://github.com/watalabo/backscatter-15.4
https://github.com/watalabo/backscatter-tools
https://github.com/watalabo/backscatter-tools

Round-Oblivious Stabilizing Consensus
in Dynamic Networks

Manfred Schwarz1 and Ulrich Schmid2(B)

1 Schwarz Energietechnik and Geoinformatik, Mils, Austria
2 TU Wien, Vienna, Austria

s@ecs.tuwien.ac.at

Abstract. In this paper, we study deterministic consensus in practical
directed dynamic networks. We show that it is straightforward to remove
the dependence on round numbers even for quite complex algorithms like
the optimal terminating consensus algorithm for the short-lived vertex-
stable root components message adversary (Winkler et al., Distributed
Computing, 2019). The resulting algorithm is inherently resilient against
synchronization-related errors, and can be proved correct by a simple
simulation equivalence. Moreover, our approach naturally leads to a novel
optimal solution for stabilizing consensus for this message adversary.
Finally, we negatively answer the question of whether such algorithms
could benefit from a stronger communication model, where senders get
immediate notification of successful transmission. The typical strive for
implementing low-level bidirectional connectivity, or implicit acknowl-
edgments as in the JAG protocol (Boano et al., RTSS’12), in practical
implementations hence appears to be an overkill for solving consensus.

1 Introduction

We consider variants of deterministic consensus in dynamic networks, where a
potentially unknown number n � N of fault-free1 processes with unique ids that
may possibly join the system at different times communicate over unreliable
point-to-point links. Consensus, a pivotal service in truly distributed applica-
tions, is the problem of irrevocably computing a common output value based
on local input values of all the processes. Stabilizing consensus is the weaker
problem of computing an eventually stabilizing common output value, without
the need to irrevocably decide on a value once and forever, however.

An execution of a distributed algorithm in our system proceeds in a sequence
of lock-step synchronous rounds, where message loss is controlled by an omni-
scient message adversary [1] that determines the directed communication graph

1 Nevertheless, a crash of a process p in a round could easily be modelled by p sending
no messages in a later round.

M. Schwarz—Supported by the Austrian Science Fund (FWF) under project ADynNet
(P28182).

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 154–172, 2021.
https://doi.org/10.1007/978-3-030-91081-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_11&domain=pdf
http://orcid.org/0000-0002-6785-1411
http://orcid.org/0000-0001-9831-8583
https://doi.org/10.1007/978-3-030-91081-5_11

Round-Oblivious Stabilizing Consensus in Dynamic Networks 155

Gr for each round r. A directed edge (p → q) present in Gr means that the
message sent by p in round r is successfully received by q in the same round.

In most work in this area, e.g. [1,11,20,21], the message adversary is con-
sidered oblivious, i.e., may choose each Gr from a fixed set of admissible graphs
arbitrarily in each round. For instance, the classic result from Santoro and Wid-
mayer [20] states that consensus is impossible if the set of admissible graphs
comprises all graphs that suppress no more than n − 1 messages in every round.

By contrast, we explore consensus solvability under message adversaries that
support eventual stabilization [3–5,22,24]: Here, the set of admissible choices for
Gr may change with evolving round numbers r. Rather than constraining the set
of admissible graphs, we hence constrain admissible graph sequences here. For
example, the eventual vertex-stable root message adversary from [24] generates
graph sequences consisting of graphs that are single-rooted, i.e., have exactly one
root component (a strongly connected component without incoming edges from
outside of the component), and contain a subsequence of x = D + 1 consecutive
graphs whose root component is formed by the same set of nodes (“vertex-stable
root component”). Herein, the dynamic diameter D � n − 1 is the number of
rounds needed by the members of the root component to reach all processes in
the system. In [24], Winkler et al. proved that it is impossible to solve consensus
for x = D, and provided an optimal algorithm for x = D + 1. Note that it is
impossible to solve consensus under an oblivious message adversary that may
choose any of the graphs generated by the eventual vertex-stable root message
adversary [11,20].

Since the algorithm of [24], like the alternative algorithms [3–5,22] we are
aware of, send messages containing round numbers and trigger actions in spe-
cific rounds, they are obviously vulnerable w.r.t. synchronization errors: Mes-
sages containing a corrupted round number, not matching the receiver’s current
round counter, might be delivered in the wrong round. Unfortunately, unlike
the simultaneous round switching itself, which can be implemented robustly,
e.g., based on low-level pulse synchronization mechanisms [23] and even self-
stabilizing protocols [12,14], transiently erroneous round counters and, hence,
round numbers cannot easily be avoided in clock synchronization protocols like
the popular IEEE 1588 or FTSP [19]. Hence, the question arises whether and
how consensus algorithms for dynamic networks can be made round-oblivious,
i.e., resilient against such faults.

In addition, most of the existing work on consensus in directed dynamic net-
works under message adversaries assumes that all processes start their execution
simultaneously in round r = 1. This is inherently not required by stabilizing con-
sensus algorithms, like the strikingly simple MinMax algorithms proposed in [9],
however, which does not even need unique ids. Whereas the MinMax algorithm
has been shown to work correctly under message adversaries that guarantee root-

156 M. Schwarz and U. Schmid

edness with bounded delay2 in every round, it does not always work in graph
sequences where multiple root components can occur.

Another question, which has also been inspired by round obliviousness, is
whether algorithms for directed dynamic networks would benefit from a some-
what stronger communication model: There are network protocols that provide
the sender with immediate feedback, i.e., in the same round, on whether a sent
message has been successfully delivered or not. This is obviously the case in
systems that enforce bidirectional low-level communication between processes.
A more lightweight alternative is the popular CSMA/CA protocol as e.g. used
in the CANbus [15], where one can reasonably infer successful reception from
the absence of a collision in the packet header. Another interesting example
is the JAG protocol for wireless sensor networks [7], which has been explicitly
designed for guaranteeing sender-receiver agreement on messages by using jam-
ming in some clever way.

Obviously, if the sender of a message knows whether it has been received or
not, the lossy-link impossibility of consensus among 2 processes [20] disappears
immediately. The question remains, however, whether consensus among more
than 2 processes would also benefit from this feature in general.

Contributions: In this paper, we show how to convert the optimal consensus
algorithm for the vertex-stable root message adversary ♦STABLE�N,D(D + 1)
from [24] into a round-oblivious algorithm, and provide a simple simulation-
based correctness proof. The resulting algorithm, unlike the original one, hence
tolerates an arbitrary number of processes with erroneous round clocks, as long
as the lock-step synchrony of the round switching itself remains intact. Fur-
thermore, we prove that immediate acknowledgments do not allow reducing the
required stability interval of D + 1 rounds if at least 3 processes are present
in the system. Consensus does hence not benefit from bidirectional low-level
communication in our setting.

Moreover, for a considerably stronger message adversary, which is also too
strong for applying the MinMax algorithm [9], we develop an optimal stabilizing
consensus algorithm and prove its optimality using a matching impossibility
result. Note that our algorithm and MinMax differ fundamentally, in the sense
that the former (resp. latter) work under message adversaries that relax a safety
(resp. a liveness) property in ♦STABLE�N,D(D + 1).

Paper Organization: After providing some additional related work in Sect. 2,
we present our system model in Sect. 3 and a set of basic message adversaries
in Sect. 4. Section 5 provides a round-oblivious variant of the optimal consensus
algorithm from [24], along with the centerpiece of a simulation-based correctness
proof. In Sect. 6, we add immediate acknowledgments to our basic communica-
tion model and show that this does not provide an advantage in the worst case.
In Sect. 7, we provide the message adversary ♦WEAKSTAB�N (D + 1,D) and a

2 Essentially, rootedness with bounded delay means that at least one process must
have a path to all other processes in the product graph Gt ◦ · · · ◦ Gt+T−1, for every
t � 1 and some bounded T .

Round-Oblivious Stabilizing Consensus in Dynamic Networks 157

suitable stabilizing consensus algorithm, and prove it to be correct and optimal.
Some conclusions in Sect. 8 complete our paper.

2 Additional Related Work

Research on consensus in synchronous message passing systems subject to link
failures dates back at least to the seminal paper [20] by Santoro and Widmayer;
generalizations have been provided in [6,8,10,11,21]. In all these papers, consen-
sus, resp. variants thereof, are solved in systems where, in each round, a digraph
is picked from a set of possible communication graphs. The term message adver-
sary was coined by Afek and Gafni in [1].

The first instance of a stabilizing message adversary that allows solving con-
sensus has been provided in [3], namely, the 4D + 1-vertex-stable root message
adversary. It has been improved in [22], where a consensus algorithm for stability
periods of at least 2D + 1 rounds has been provided. An interesting property of
this algorithm is that the communication graphs outside the stable period need
not be single-rooted, in which case it is impossible to solve consensus for a stabil-
ity period of at most 2D. If all graphs are single-rooted, a D +1-vertex stable root
component has been proved necessary and sufficient for solving consensus in [24].

Considerably less is known about stabilizing consensus, which seems to have
been first introduced in [2]. The authors studied the problem in an asynchronous
system of fully connected processes with uids, which are subject to crashes
and even byzantine faults. A randomized solution has been proposed in [13]. In
[9], Charron-Bost and Moran considered deterministic stabilizing consensus in
directed dynamic networks controlled by message adversaries. In sharp contrast
to [2] (and our work), however, they consider anonymous processes. The authors
showed that the problem cannot be solved if the message adversary can generate
graph sequences where the set of processes that can eventually reach all others
infinitely often, i.e., can successfully broadcast infinitely often, is empty. For
message adversaries that guarantee bounded rootedness in all rounds, they pro-
vided a very elegant and non-full-history algorithm called MinMax and proved it
correct. This algorithm may fail, however, if the message adversary can generate
graphs with multiple root components.

Regarding stronger communication models, we are not aware of any related
work, except for the existing work on non-directed dynamic networks (where
all links are bidirectional). A prominent example of the latter is the work on
T -interval connectivity [17], which guarantees a common subgraph in the com-
munication graphs of every T consecutive rounds. Kuhn, Oshman and Moses
[18] study agreement problems in this setting, which are easy to solve here: 1-
interval-connectivity, the weakest form of T -interval connectivity, corresponds
to all nodes constituting a perpetually constant set of source nodes.

3 Basic System Model

We use the same system model and notations as [24], which we briefly summarize
below. Our system consists of a set of fault-free processes Π with unique ids,

158 M. Schwarz and U. Schmid

taken from {1, . . . , n} with n = |Π| � N , which communicate via message pass-
ing over unreliable directed point-to-point links. The processes execute a deter-
ministic algorithm and execute in lock-step synchronous rounds r = 1, 2, 3, . . . ,
each consisting of a message exchange phase and a simultaneous computing step.
We conveniently assume that all operations of round r take place strictly within
time r−1 and time r, which results in a well-defined configuration Cr, consisting
of the vector of local states of all processes at time r, i.e., at the end of round r,
with C0 denoting the initial configuration.

An admissible execution 〈C0, σ〉 (also called a run) is uniquely determined
by C0 and a graph sequence σ, which is an infinite sequence σ = G1,G2, . . . of
directed round-r communication graphs Gr = 〈Π,Er〉: The round-r message of p
sent to q is received by q in the same round if and only if (p, q) in Gr. Since every
process p always successfully receives from itself, (p, p) ∈ Gr for every r � 1. The
in-neighborhood of p in Gr, Inp(Gr) = {q | (q, p) ∈ Gr} is the set of processes
from which p received a message in round r.

A contiguous subsequence σ′ of σ, abbreviated σ′ ⊆ σ, ranging from round a
to round b, is denoted as σ′ = (Gr)b

r=a, with |σ′| = b − a + 1. Given two graphs
G = 〈V,E〉, G′ = 〈V,E′〉 with the same vertex set V , let the compound graph
G ◦ G′ := 〈V,E′′〉, where (p, q) ∈ E′′ if and only if there exists a p′ ∈ V such
that (p, p′) ∈ E and (p′, q) ∈ E′. Information propagation in an execution can
be crisply described by the well-known concept of the causal past:

Definition 1 Causal past [24, Def. 3]. Given a sequence σ of communication
graphs that contains rounds a and b, the causal past of process p from time b
down to time a is CP b

p (a) = ∅ if a � b and CP b
p (a) = Inp(Ga+1 ◦ · · · ◦ Gb) if

a < b.

A message adversary MA [1] is just a set of infinite graph sequences, which
are called admissible. Consequently, we can compare different message adver-
saries via set inclusion: A message adversary A is stronger than B iff A ⊇ B.
Conceptually, we assume that processes know a priori the specification3 of the
message adversary. Sometimes, it is convenient to make the system size, and
hence the size of the vertex set of the graph sequences generated by a message
adversary, explicit: MAn states that every graph sequence of MAn has a vertex
set of size exactly n, while MA�N denotes that this size is at most N . Note that
an algorithm designed for MA�N must be able to cope with any system size
n � N . For a given σ ∈ MA�N , we will sometimes use Πσ to denote the set of
vertices of the graphs in σ.

In the consensus problem, each process p starts with some input value xp ∈ N,
contained in the initial configuration C0, and has a dedicated write-once output
variable yp, where yp = ⊥ initially; eventually, every process needs to irrevocably
decide, i.e., assign a value to yp (termination) that is the same for every process

3 Whereas this does not mean that a solution algorithm is tied to one specific messages
adversary B, one cannot simply assume that the algorithm will also work under
any A ⊆ B. Typically, however, the processes require only knowledge of some key
parameters of B, see Sect. 5 for an example, which may also be respected by A.

Round-Oblivious Stabilizing Consensus in Dynamic Networks 159

(agreement) and was the input of a process (validity). A given algorithm A
solves consensus under message adversary MA if, for every σ ∈ MA and every
input assignment C0, validity, agreement, and termination are all satisfied in the
execution 〈C0, σ〉 of A.

As usual, we write ε ∼p ε′ if the finite or infinite executions ε and ε′ are
indistinguishable to p (i.e., the state of p at time r is the same in both executions)
until p decides. When establishing our lower bounds, we will often exploit that,
as outlined above, the configuration at time r is uniquely determined by the
initial configuration C0 and the sequence of communication graphs until round
r. As one of our impossibility proofs relies on a bivalence argument, we briefly
rephrase the terminology from [16]: Consider an algorithm A that solves the
binary consensus problem, where, for every process p, the initial value xp ∈
{0, 1}. Given a message adversary MA, we call a configuration C = 〈C0, σ〉 of A
univalent or, more specifically, v-valent, if all processes decide v in 〈C, σ′〉 for all
σ′ satisfying that the concatenated sequence σ ◦ σ′ ∈ MA. We call C bivalent, if
it is not univalent.

4 Basic Message Adversaries

We will now provide the definitions of some basic message adversaries, which
have been introduced in [24] and will be used in this paper as well. They rely
on the pivotal notion of a root component R, often called root for brevity, which
denotes the vertex set of a strongly connected component of a graph where there
is no edge from a process outside of R to a process in R.

Definition 2 Root Component [24, Def. 1]. R �= ∅ is a root (component)
of graph G, if it is the set of vertices of a strongly connected component R of G
and ∀p ∈ G, q ∈ R : (p → q) ∈ G ⇒ p ∈ R. A graph G that has a single root
component is called rooted; its root component is denoted by Root(G).

Note that a rooted graph G is weakly connected and contains a directed path
from every node of Root(G) to every other node of G.

If a (sub)sequence of rooted communication graphs has the same root com-
ponent R, possibly with varying interconnect topology, it is called the stable root
component of the sequence.

Definition 3 Stable Root Component [24, Def. 2]. We say that a non-
empty sequence (Gr)r∈I of graphs has a stable root component R, if and only if
each Gr of the sequence is rooted and ∀i, j ∈ I : Root(Gi) = Root(Gj) = R. We
call such a sequence an R-rooted sequence.

Note that while “rooted” is a graph property, “R-rooted” is a property of a
sequence of graphs.

We are now ready to introduce the message adversary that adheres to
dynamic network depth D, which gives a bound on the duration of the infor-
mation propagation from a stable root component to the entire network.

160 M. Schwarz and U. Schmid

Definition 4 From [24, Def. 4]. DEPTHn(D) is the set of all infinite com-
munication graph sequences σ s.t. |Πσ| = n and, for all finite rounds r1,
for all subsequences σ′ = (Gr1 , . . . ,Gr1+D−1) of σ, if σ′ is R-rooted, then
R ⊆ CP r1+D−1

p (r1 − 1) for all p ∈ Πσ.

Note that D has been shown in [5, Cor. 1] to satisfy D � n−1, so DEPTHn(D) for
D � n − 1 is void. However, there are also other relevant settings: For example,
D = O(log n) if all Gr are expander graphs.

The following liveness property, eventual stability, ensures that eventually
every graph sequence σ has an R-rooted subsequence σ′ ⊆ σ of length x.

Definition 5 From [24, Def. 5]. ♦GOODn(x) is the set of all infinite commu-
nication graph sequences σ such that |Πσ| = n and there exists a set R ⊆ Πσ

and an R-rooted σ′ ⊆ σ with |σ′| � x.

For finite x, ♦GOODn(x) alone is insufficient for solving consensus: Arbitrarily
long sequences of graphs that are not rooted before the stability phase occurs
can fool any consensus algorithm to make wrong decisions. For this reason, we
introduce a safety property in the form of the message adversary that generates
only rooted graphs.

Definition 6 From [24, Def. 6]. ROOTEDn is the set of all infinite sequences
σ of rooted communication graphs such that |Πσ| = n.

5 Round-Oblivious Consensus

In this section, we will provide a round-oblivious version of the consensus algo-
rithm from [24], which also works under the short-lived eventually stabilizing
message adversary ♦STABLE�N,D(D + 1) defined below. Theorem 1 will prove
that our algorithm actually simulates the original algorithm in a one-to-one fash-
ion. Consequently, the correctness proof given in [24] carries over immediately.

5.1 The Message Adversary ♦STABLE�N,D (D + 1)

The short-lived eventually stabilizing message adversary ♦STABLEn,D(D + 1) is
defined as follows:

Definition 7 From [24, Def. 7]. We call ♦STABLEn,D(x) = ROOTEDn ∩
♦GOODn(x)∩DEPTHn(D) the eventually stabilizing message adversary with sta-
bility period x. For a fixed D, we consider the following generalizations:

– ♦STABLE<∞,D(x) =
⋃

n∈N\{0,1} ♦STABLEn,D(x)

– ♦STABLE�N,D(x) =
⋃N

n=2 ♦STABLEn,D(x)

Note that it has been proved in [24] that it is impossible to solve consensus
if x � D.

Round-Oblivious Stabilizing Consensus in Dynamic Networks 161

5.2 A Round-Oblivious Consensus Algorithm for
♦STABLE�N,D (D + 1)

The round-oblivious consensus algorithm given in Algorithm2, which uses the
helper functions Algorithm1, is a very simple transformation of [24, Alg. 2].

Algorithm 1: Helper functions for process p

1 Function update(q, Pq, Sq, Aq):
2 P ← P ∪ {q} ∪ Pq

3 S ← S ∪ Sq

4 A ← A ∪ Aq

5 A ← A ∪ {(1, q, p)}
6 Function shiftLayerNumbers:
7 add −1 to s in every tuple (s, i, j) ∈ A as well as to s and l �= ⊥ in every

(p, s, x, l) ∈ S

8 Function searchRoot(s):
9 V ← {v ∈ P | ∃(s, ∗, v) ∈ A or ∃(s, v, ∗) ∈ A}

10 E ← {
(u, v) ∈ P2 | ∃(s, u, v) ∈ A

}

11 Let SCC(V,E) denote the set of vertex sets of the strongly connected
components (SCCs) of 〈V,E〉. A single node q may constitute a SCC only
if (q, q) ∈ E.

12 foreach C ∈ SCC(V,E) do
13 if �v ∈ V \ C : (v, u) ∈ E for some u ∈ C then
14 return C

15 return ∅
16 Function L(q, s):
17 if ∃(q, s, ∗, �) ∈ S then return �
18 else return −∞
19 Function X(q, s):
20 if ∃(q, s, x, ∗) ∈ S then return x
21 else return −1

22 Function latestRefutation(a, b, x):
23 T ← {i ∈ [a, b] | ∃q ∈ P : L(q, i) = ⊥ or X(q, i) /∈ {−1, x}}
24 if T �= ∅ then return max(T)
25 else return −∞
26 Function uniqueCandidate(a, b):
27 if ∃k ∈ N : ∀u ∈ P, ∀i ∈ [a, b] : L(u, i) �∈ {−∞, ⊥} ⇒ X(u, i) = k and

∃q ∈ P, ∃j ∈ [a, b] : L(q, j) �∈ {−∞, ⊥} then
28 return k
29 else
30 return −1

31 Function allGood(a, b, x):
32 return (∀q ∈ P, ∀i ∈ [a, b] : L(q, i) �= ⊥ and X(q, i) ∈ {−1, x})

162 M. Schwarz and U. Schmid

Algorithm 2: Consensus algorithm, code for process p. Uses function
definitions from Algorithm 1.

Initialization:
1 x ← xp, � ← ⊥, A ← ∅, P ← ∅
2 S ← {(p, 0, x, �)},

Round r communication, r � 1:
3 Attempt to send (P, S,A) to all
4 Receive mq from all q with (q, p) ∈ Gr

Round r computation, r � 1:
5 foreach mq s.t. p received mq = (Pq, Sq,Aq) in round r do
6 update(q,Pq, Sq,Aq)
7 shiftLayerNumbers()

8 R ← searchRoot(−D)
9 if R �= ∅ and (� = ⊥ or R �= searchRoot(−D − 1)) then

10 x ← max {X(q, −D) | q ∈ R}
11 � ← 0

12 else if r > N then
13 if latestRefutation(−N, −1, x) � � then
14 � ← ⊥
15 if uniqueCandidate(−N, −1) �= −1 then
16 x ← uniqueCandidate(−N, −1)

17 if r > N(D + 2N), yp = ⊥, � �= ⊥, and allGood(−N(D + 2N), −1, x) = true
then

18 yp ← x

19 S ← S ∪ (p, 0, x, �)
20 � ← � − 1

Following the high-level description of the algorithm from [24], the operation
of Algorithm 2 can be summarized as follows:

Every process maintains a local estimate of the current graph sequence and
the history of the states of the other processes, in particular, their current deci-
sion value estimate (proposal value) x, according to its local view. If a process
p detects a root component R that might have been stable for D + 1 rounds
in its graph approximation (the eventual occurrence of which is guaranteed by
♦STABLE�N,D(D + 1)), it locks on to the maximum of the proposal values of
the members of R. Subsequently, p waits for contradictory evidence, i.e., infor-
mation from some other process that disproves p’s assumed stability. If p gets
such information within a suitable chosen (quadratic in N) number of rounds, it
clears its locked-on state, otherwise, it decides on its current proposal value. To
ensure a safe decision, i.e., one that does not violate an earlier decision of some
other process q, process p always adopts the proposal value of every process q
that might be convinced to hold the correct proposal value, without locking on
to it, however.

Round-Oblivious Stabilizing Consensus in Dynamic Networks 163

The original [24, Alg. 2] organizes all the recorded history, in particular, the
graph approximation A, indexed by absolute round numbers. As all processes
start simultaneously at round r = 0 and round numbers are assumed to be
correct, this is perfectly feasible. In order to make the algorithm round-oblivious,
however, all that needs to be done is to index the recorded history relative to the
current round. We call these indices layers, with layer 0 referring to the current
round r, -1 to the round before the current round r − 1, etc. Processes merge
knowledge from other processes with their own layer-by-layer, prepend the local
history by a temporary layer 1, and finally shift all layer-related information
(that is, the round number s and the lock round �) by -1. Since round-oblivious
algorithms can rely upon the fact that only the round numbers may be erroneous,
but not the synchrony of the current round at all processes, layer -1 at different
processes still refers to the same round (r − 1 in the previous example).

All that needs to be done in the consensus algorithm [24, Alg. 2] to arrive at
Algorithm 2 is to replace every helper function call parameter r − s associated
with some round number (where r represents the current round) by r−s−r = −s.
For example, searchRoot(r-D) translates to searchRoot(-D). Note that the
smallest layer number accessed in Algorithm 2 is −N(D + 2N) (in Line 17),
which implies that the maintained history can be pruned appropriately.

In addition, as [24, Alg. 2] uses the values 0 and −1, which cannot occur
as round numbers but are legitimate layer numbers, as special values for the
lock round � and the return value of the functions latestRefutation(a, b) and
L(q, s), we just replace those by ⊥ and −∞, respectively.

The following Theorem 1 establishes a one-to-one correspondence of layers
and round numbers, which in conjunction with the correctness of [24, Alg. 2]
implies the correctness of Algorithm 2. It shows by induction that, for every pro-
cess p in the r-th round, the tuples (P,S,A) in the history of the new algorithm
indexed by layer −λ, 0 � λ � r, are the same as the tuples indexed in the history
of the original one with round number r − λ.

Theorem 1 Layer/round number correspondence. Let r � 0 be the r-th
round in any run of Algorithm2, and 0 � λ � r. Then, at every process p in the
current round, both

(i) every tuple (∗,−λ, ∗,−l) ∈ S of Algorithm2 if and only if (∗, r − λ, ∗, l′) ∈ S
of [24, Alg. 2], where l′ = 0 iff l = ⊥ and l′ = r − l otherwise.

(ii) every tuple (−λ, ∗, ∗) ∈ A of Algorithm2 if and only if (r − λ, ∗, ∗) ∈ A of
[24, Alg. 2].

Proof. We will show our theorem by induction on r � 0. For the induction base
r = 0, both algorithms have initialized their history identically in the initial
configuration, except for the different initial values � = ⊥ resp. �′ = 0 that
we will consider identically in our proof. For the induction step r → r + 1, we
assume identical histories of all processes according to (i) and (ii) during rounds
r′ ∈ {0, . . . , r}, for λ � r′. In the r + 1-st round of Algorithm 2 at process p,
every tuple mq = (Pq,Sq,Aq) received from process q, which originates from
the previous round r, is first integrated as-is into p’s history (P,S,A) by calling

164 M. Schwarz and U. Schmid

update(q,Pq,Sq,Aq) in Line 6. In addition, this function adds a tuple {(1, q, p)}
at layer 1 to A (see Line 5). Finally, shiftLayerNumbers() is called in Line 7,
which decreases the layer numbers (i.e., s and l �= ⊥) in all tuples in (P,S,A) of
p by one. Since each of the tuples mq = (Pq,Sq,Aq) originated from round r thus
ends up being integrated at layer -1, applying the induction hypothesis reveals
that the correspondences (i) and (ii) hold for r + 1 for all 1 � λ � r + 1; for
λ = 0, they hold since Algorithm 2 and [24, Alg. 2] update (P,S,A) identically
in the current round r + 1. ��

Whereas there are only a few simple changes required to make the original
algorithm of [24] round-oblivious, they make the algorithm significantly more
attractive in practice: Given the quite significant probability of observing erro-
neous round counters e.g. in cheap wireless sensor network nodes, this addi-
tional robustness (that comes free of charge) is an important asset. Moreover,
our findings paved the way for the development of the novel stabilizing consensus
algorithm presented in Sect. 7.

6 Impossibility of Consensus with Immediate
Acknowledgments

In this section, we will address the question of whether consensus algorithms
like Algorithm 2 would benefit from a stronger communication model, where the
sender of a round-r message gets immediate feedback, i.e., in the same round, of
whether the transmission was successful or not. As argued in Sect. 1, there are
wireless network protocols like JAG [7] that provide this feature.

In essence, immediate feedback implies that sender p and receiver q automat-
ically agree at the end of round r of whether (p, q) ∈ Gr or not. Obviously, this
immediately prevents the lossy-link consensus impossibility for n = 2 processes
[20]. Surprisingly, for larger n, it turns out that immediate feedback does not
change the solvability/impossibility border for consensus under stabilizing mes-
sage adversaries like ♦STABLEn,D(x) (Definition 7): We will prove that x = D+1
is also necessary and sufficient here.

Indeed, the statement of Theorem 3 below is almost the same as the one of [24,
Thm. 2], except for the increase of the minimum system size from D+1 to D+2.
Its proof, however, albeit it also uses a bivalence argument, is complicated by the
fact that changing a single edge in some Gr (which is traditionally used to prove
“valence connectivity” of the successor configurations of a bivalent configuration,
see [21]) changes the state of two processes, i.e., not just the receiver’s but also
the sender’s state.

For proving our main theorem, we need a technical lemma from [24]. It shows,
for n > 2, that by adding/removing a single edge at a time, we can arrive at a
desired rooted communication graph when starting from any other rooted com-
munication graph. Furthermore, during this construction, we can avoid graphs
that contain a certain “undesirable” root component R′′.

Round-Oblivious Stabilizing Consensus in Dynamic Networks 165

p2p1

p3

pD+2

a

p2p1

p3

pD+2

b

Fig. 1. Communication graphs for Theorem 3. We assume there is an edge from every
process depicted in the graph to every process not depicted in the graph.

Lemma 2 From [24, Lem. 1]. Let n > 2, let G be a rooted communication
graph with Root(G) = R, let G′ be a rooted communication graph with Root(G′) =
R′, and let R′′ be a root component with R′′ �= R and R′′ �= R′. Then, there is
a sequence of communication graphs, G = G1, . . . ,Gk = G′ s.t. each Gi in the
sequence is rooted, Root(Gi) �= R′′, and, for 1 � i < k, Gi and Gi+1 differ only
in a single edge.

We can now prove the main result of this section:

Theorem 3. There is no consensus algorithm for ♦STABLEn,D(x) with 1 � x �
D and n � 3, even if the adversary guarantees that the first x rounds are R-
rooted.

Proof. Since ♦STABLEn,D(x) ⊃ ♦STABLEn,D(D) for x � D, it suffices to show
the impossibility of consensus under ♦STABLEn,D(D): If the execution ε where
consensus cannot be solved is admissible under ♦STABLEn,D(D), it is also admis-
sible under ♦STABLEn,D(x).

Our bivalence proof is similar to the one of [24, Thm. 2], but uses the graph
sequences shown in Fig. 1 and a different argument for ensuring valence connec-
tivity in the induction step: We first prove that, for any consensus algorithm,
there is a bivalent configuration at the end of round r = D, and proceed by
induction to show that every bivalent configuration has a bivalent successor
configuration. Hence, any consensus algorithm permits a perpetually bivalent
execution under ♦STABLEn,D(D), where consensus cannot be solved.

We actually show that such a bivalent execution is even contained in the
slightly weaker message adversary ♦STABLE′

n,D(D) ⊆ ♦STABLEn,D(D), which
consists of those graph sequences of ♦STABLEn,D(D) where already the first D
rounds are R-rooted.

For the induction base r = D, we show that not all configurations of A at the
end of round D can be univalent: Assume that an algorithm A solves consensus
under ♦STABLE′

n,D(D) and suppose that all configurations of A at time D were
univalent.

Let C0 be an initial configuration of A with xp1 = 0 and xp2 = 1 and consider
the graphs Ga and Gb from Fig. 1. For i ∈ {a, b} let CD

i = 〈C0, (Gi)D
r=1〉 denote

166 M. Schwarz and U. Schmid

the configuration which results from applying Gi D times to C0. Let S(p) denote
the star-like graph where there is an edge from the center vertex p to every other
vertex and from every vertex to itself but there are no other edges in the graph.
Clearly, CD

a is 0-valent since 〈CD
a , (S(p1))∞

D+1〉 ∈ ♦STABLE′
n,D(D) and for p1

this is indistinguishable from the situation where all processes p have xp = 0. A
similar argument shows that CD

b is 1-valent. However, this provides the required
contradiction, since CD

a cannot be 0-valent as

〈CD
a , (S(pD+2))∞

D+1〉 ∼pD+2 〈CD
b , (S(pD+2))∞

D+1〉. (1)

Hence, not all configurations at the end of round D can be univalent.
For the induction step, let us assume that there exists a bivalent configura-

tion Cr for a time r � D. For a contradiction, assume that all configurations at
time (r+1) reachable from Cr are univalent. Thus, there exists a 0-valent config-
uration Cr+1

0 = 〈Cr,G0〉 that results from applying a communication graph G0

to Cr. Moreover, there is a 1-valent configuration Cr+1
1 = 〈Cr,G1〉 that results

from applying a communication graph G1 to Cr.
First, let us show that for G ∈ {G0,G1}, it holds that, if Root(G) = Root(Gr),

there is an applicable graph G′ s.t. 〈Cr,G′〉 has the same valency as 〈Cr,G〉 and
Root(G) �= Root(G′). The reason for this is that we can construct G′ from G
by simply adding an edge (p → q) for a q �= p, p �∈ Root(G), q ∈ Root(G) if
|Root(G)| = 1, respectively, by removing (p → q) for a p ∈ Root(G) and all
p �= q ∈ Root(G) if |Root(G)| > 1. This yields a graph G′ with the desired
property, as 〈Cr,G, (S(p))∞

r+1〉 ∼p 〈Cr,G′, (S(p))∞
r+1〉. The applicability of G′

follows because G′ is rooted and Root(G′) �= Root(Gr) ensures that the resulting
subsequence is a prefix of a sequence of DEPTHn(D) for all D > 1, because, for
these choices of D, a changing root component trivially satisfies Definition 4.

Hence, there are graphs G′
0,G′

1 such that Root(G′
0) �= Root(Gr), Root(G′

1) �=
Root(Gr), and 〈Cr,G′

0〉 is 0-valent while 〈Cr,G′
1〉 is 1-valent. Because of n >

2, we can hence apply Lemma 2 to go from G′
0 to G′

1 by adding/removing a
single edge at a time, without ever arriving at a graph that has more than
one root component or has the same root component as Gr. Somewhere during
adding/removing a single edge, we transition from a graph Gi to a graph Gi+1,
by modifying an edge (p → q), where the valency of C = 〈Cr,Gi〉 differs from
the valency of C ′ = 〈Cr,Gi+1〉. Nevertheless, Gi and Gi+1 can be applied to
Cr, because they are rooted and have a different root component as Gr, hence
guarantee the membership of the sequence in DEPTHn(D) for all D > 1. However,
C and C ′ cannot have a different valency, since n > 2 implies that ∃u �= p, q
such that 〈C, (S(u))∞

r+1〉 ∼u 〈C ′, (S(u))∞
r+1〉. This is a contradiction, hence not

all configurations at time (r + 1) can be univalent. ��

7 Stabilizing Consensus

In this section, we will turn our attention to the weaker stabilizing consensus
problem, which is essentially consensus without irrevocable decisions.

Round-Oblivious Stabilizing Consensus in Dynamic Networks 167

7.1 Extensions of the Basic Model

Among the advantages of stabilizing consensus is the fact that participants need
not start their execution simultaneously. In order to accommodate this in our
system model, we allow processes to be active or passive and allow them to start
passive. The environment is in control of this state and can switch the state of
a process at most once, from passive to active.

Only active processes participate in the execution of a distributed algorithm,
and the message adversary guarantees that there is no edge (p, q) ∈ Gr going out
from a non-active process p, not even the self-loop (p, p), in any round r before
p’s starting round ap � 1, at the beginning of which p has been activated for the
first time. For a given run of our system, let Πa = {p ∈ Π : ap < ∞} denote the
set of active processes. Note that we assume that the message adversary does
not generate any incoming edge (q, p) ∈ Gr for r < ap either. This is feasible,
since a passive process q would ignore any message sent to it in such a round
anyway. Thanks to these assumptions, the causal past (see Definition 1) of an
active process p only dates back until the beginning of round ap.

In the stabilizing consensus problem, every active process p ∈ Πa has an
input value xp and output value xp, initially xp = xp. Each process must assign
a value to xp, possibly multiple times, such that there exists some round s where
∀r � s, ∀p ∈ Π : xr

p = v (agreement), and xp is the input xq of some active
process q (validity). The input value xp for each active process p is specified in
the configuration Cap−1 at the beginning of p’s starting round ap; recall that we
assume that every process initially sets x

ap−1
p = xp as well.

7.2 The Message Adversary ♦WEAKSTAB�N (D + 1, D)

We start with the definition of the message adversary, under which we will solve
stabilizing consensus. It is essentially the MA from Definition 7, albeit without
incorporating ROOTEDn, but with the additional constraint that the stable root
guaranteed by ♦GOODn occurs after the last participating process became active.

Definition 8 Weakly stabilizing MA. Let ♦WEAKSTABn be the mes-
sage adversary defined by ♦WEAKSTABn(x,D) = ♦GOODn(x) ∩ DEPTHn(D),
restricted by the property that the R-rooted subsequence σ′ guaranteed by
♦GOODn(x) starts at or after round r0 = maxp∈Πa

{ap}. For a fixed upper
bound N on the number of processes, we define ♦WEAKSTAB�N (x,D) =
⋃N

n=2 ♦WEAKSTABn(x,D).

7.3 A Stabilizing Consensus Algorithm for ♦WEAKSTAB�N (D + 1, D)

We will now show that Algorithm4, which has been derived from the round-
oblivious Algorithm 2 by dropping the termination-related part, solves stabilizing
consensus under ♦WEAKSTAB�N (D+1,D). Note that this also allowed us to get
rid of the lock round variable � altogether, even in the state S of the processes.

168 M. Schwarz and U. Schmid

Algorithm 3: Helper functions for process p for stabilizing consensus
1 Function update(q, Pq, Sq, Aq):
2 P ← P ∪ {q} ∪ Pq

3 S ← S ∪ Sq

4 A ← A ∪ Aq

5 A ← A ∪ {(1, q, p)}
6 Function shiftLayerNumbers:
7 add −1 to s in every tuple (s, i, j) ∈ A and every (p, s, x) ∈ S
8 Function searchRoot(s):
9 V ← {v ∈ P | ∃(s, ∗, v) ∈ A or ∃(s, v, ∗) ∈ A}

10 E ← {
(u, v) ∈ P2 | ∃(s, u, v) ∈ A

}

11 Let SCC(V,E) denote the set of vertex sets of the strongly connected
components (SCCs) of 〈V,E〉. A single node q may constitute a SCC only
if (q, q) ∈ E.

12 foreach C ∈ SCC(V,E) do
13 if �v ∈ V \ C : (v, u) ∈ E for some u ∈ C then
14 return C

15 return ∅
16 Function X(q, s):
17 if ∃(q, s, x) ∈ S then return x
18 else return −1

Algorithm 4: Stabilizing consensus algorithm, code for process p. Uses
function definitions from Algorithm 3

Initialization:
1 x ← xp, A ← ∅, P ← ∅
2 S ← {(p, 0, x)}

Round r communication, r � 1:
3 Attempt to send (P, S,A) to all
4 Receive mq from all q with (q, p) ∈ Gr

Round r computation, r � 1:
5 foreach mq s.t. p received mq = (Pq, Sq,Aq) in round r do
6 update(q,Pq, Sq,Aq)
7 shiftLayerNumbers()
8 R ← searchRoot(−D)
9 if R �= ∅ and R �= searchRoot(−D − 1) then

10 x ← max {X(q, −D) | q ∈ R}
11 S ← S ∪ (p, 0, x)

For the proof of our main Theorem 6, we need (part of) two technical lem-
mas from [24], which will be re-stated below. Albeit they originally refer to
♦STABLE�N,D(D + 1) rather than ♦WEAKSTAB�N (D + 1,D) (and are not for-
mulated in a round-oblivious fashion), they are applicable here since their proofs

Round-Oblivious Stabilizing Consensus in Dynamic Networks 169

(that is, of the actually required parts) do not depend on the missing ROOTEDn.
Applying the substitution r−s → −s and s → r−s for translating absolute round
numbers into the corresponding layers, as introduced in Sect. 5.2, and restricting
their applicability to processes in Πa and to rounds � r0, these lemmas read as
follows:

Lemma 4 Adapted from [24, Lem. 5]. Pick σ ∈ ♦WEAKSTAB�N (D+1,D),
fix a round s � r0 and let the current round be r > s. If (Gi)s+D

i=s is R-rooted and
r � s + D, then searchRoot0p(s − r) = R for every process p ∈ Πa.

Lemma 5 Adapted from [24, Lem. 11]. If p ∈ Πa enters Line 10 in the
current round r with r − D � r0, then x0p = max{x−D

q | q ∈ Root(Gr−D)}.
The following Theorem 6 proves that Algorithm 4 indeed solves stabilizing

consensus under ♦WEAKSTAB�N (D + 1,D), with bounded stabilization time
(counted from the beginning of the stable root guaranteed by ♦GOODn):

Theorem 6. Algorithm4 solves stabilizing agreement under the message adver-
sary ♦WEAKSTAB�N (D + 1,D), with stabilization time D + 1.

Proof. Since ♦WEAKSTAB�N (D+1,D) still contains ♦GOODn(D+1), we can be
sure that there exists a R-rooted sequence σ of length � D+1; let b be the round
where σ ends. Moreover, ♦WEAKSTAB�N (D + 1,D) guarantees that σ starts in
round a � r0. By Lemma 4, it holds that at R is consistently detected by every
process in Πa in round a + D, and by Lemma 5, that every process p ∈ Πa

generates the same x0p = v based on R. Therefore, from round a + D + 1 on, x0p
cannot be changed at any process p ∈ Πa in the system, which guarantees the
agreement property of stabilizing consensus: Line 9 guarantees that Line 10 is
only executed after R changes. The earliest round after b at which any process can
detect such a change is r = b+D+1, at which, however, ∀p, q ∈ Πa : x0p = x0q = v
already holds.

Since validity is trivially fulfilled, as only input values x
ap
p are ever used to

generate proposal values by our algorithm, Theorem 6 follows. ��
We conclude this subsection by briefly comparing our algorithm to the Min-

Max algorithm from [9]. To be able to do so, we first note that we can easily get
rid of the assumption that the stability interval must occur after r0 in Definition
8, by just assuming that the stability interval recurs infinitely often. After all,
according to the proof of Theorem 6, stability intervals that occur before round
r0 are irrelevant in the sense that they either “froze” the proposal value (i.e.,
caused all processes in the system to adopt a unique value already), or are over-
ridden by the freeze done in the stability interval that occurs after r0. Further
stability intervals after r0 do not have any effect at all, as the proposal value is
already frozen.

The MinMax algorithm works in a system model with anonymous processes,
but with a property (“rootedness with bounded delay”, [9, Lem. 4]) that essen-
tially guarantees the bounded information propagation DEPTHn(D) to hold not
just for the (beginning(s) of the) stability interval(s), as in our case, but rather

170 M. Schwarz and U. Schmid

for every round. Obviously, this property does not hold for our message adver-
sary ♦WEAKSTABn, which may generate arbitrarily long subsequences where
there are multiple root components, isolated processes etc. that violate rooted-
ness with bounded delay. Consequently, MinMax cannot be used in conjunction
with ♦WEAKSTABn.

Conversely, even if one would add process ids to the system model of [9]
and strengthen the assumption of rootedness with bounded delay to rootedness
with some known delay, our Algorithm4 could not be used either: The resulting
system would not necessarily guarantee the stability property ♦GOODn(D + 1),
which is mandatory for the correctness of our algorithm. We note, however, that a
suitably parametrized version of Algorithm 4 would work in the counterexample
setting of [9, Thm. 13], which cannot be handled by any safe MinMax algorithm.

7.4 Impossibility of Stabilizing Consensus with Insufficient Stability

A natural question to ask is whether the stability interval of D + 1 used in
♦WEAKSTABn(D + 1,D) is necessary. We can answer this question in the affir-
mative, by re-using part of the proof of Theorem3 to show the following impos-
sibility result. Note carefully that it covers both our standard communication
model and immediate acknowledgments.

Theorem 7. There is no stabilizing consensus algorithm for ♦WEAKSTABn(x,
D) with 1 � x � D and n � 3, even if immediate acknowledgments are available,
r0 = 1 and the adversary guarantees that the first x rounds are R-rooted.

Proof. Our claim follows from the bivalence of some configuration at the end
of round D, as established in the induction base in the proof of Theorem3:
Recall that pD+2 could not distinguish CD

a and CD
b by Eq. 1, so must have

the same state in CD
a and CD

b . Since ♦WEAKSTABn(x,D) allows us to continue
after round D with an infinite suffix of empty graphs E (that only contain self-
loops) from both configurations, we arrive at 〈CD

a , (E)∞
D+1〉 ∼pD+2 〈CD

b , (E)∞
D+1〉.

Consequently, pD+2 must eventually set its output to some value xpD+2 = v, for
the last time, in both executions. We distinguish two cases: If v = 0, since process
p2 started with xp2 = 1 and 〈CD

b , (E)∞
D+1〉, it must eventually set its output xp2 =

1 by validity, as it only knows its own input value. This contradicts the agreement
property of stabilizing consensus, however. Analogously, if v = 1, we observe that
p1 started with xp1 = 0 and never gets any message in 〈CD

a , (E)∞
D+1〉, so must

output xp1 = 0 by validity, which again provides the required contradiction. ��

8 Conclusions

We showed that existing algorithms for consensus in directed dynamic networks
controlled by message adversaries could easily be made round-oblivious. The
resulting algorithms are hence inherently resilient to an arbitrary number of
processes suffering from erroneous round numbers in messages and erroneous
round counters of the processes, which is important in practice. On the other

Round-Oblivious Stabilizing Consensus in Dynamic Networks 171

hand, it turned out that, in general, consensus algorithms do not benefit from
the stronger communication model of immediate acknowledgments for a suc-
cessful transmission. The round-oblivious version of our consensus algorithm
also allowed us to derive a novel stabilizing consensus algorithm, which does
not require an irrevocable decision and allows the processes to start their exe-
cution arbitrarily. We accomplished this by dropping the rootedness assumption
ROOTEDn, but retaining the stability requirement ♦GOODn(D+1) of the message
adversary. By contrast, the anonymous MinMax stabilizing consensus algorithm
by Charron-Bost and Moran works for a message adversary that essentially guar-
antees ROOTEDn but not ♦GOODn(D + 1). Hence, consensus solvability can be
obtained on top of stabilizing consensus solvability by fundamentally different
means.

Acknowledgments. We are grateful to Christoph Echtinger-Sieghart for his feedback
on an earlier version of our paper.

References

1. Afek, Y., Gafni, E.: Asynchrony from synchrony. In: Frey, D., Raynal, M., Sarkar,
S., Shyamasundar, R.K., Sinha, P. (eds.) ICDCN 2013. LNCS, vol. 7730, pp. 225–
239. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35668-1 16

2. Angluin, D., Fischer, M.J., Jiang, H.: Stabilizing consensus in mobile networks. In:
Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol.
4026, pp. 37–50. Springer, Heidelberg (2006). https://doi.org/10.1007/11776178 3

3. Biely, M., Robinson, P., Schmid, U.: Agreement in directed dynamic networks. In:
Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 73–84.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31104-8 7

4. Biely, M., Robinson, P., Schmid, U., Schwarz, M., Winkler, K.: Gracefully degrad-
ing consensus and k -set agreement in directed dynamic networks. In: Bouajjani,
A., Fauconnier, H. (eds.) NETYS 2015. LNCS, vol. 9466, pp. 109–124. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-26850-7 8

5. Biely, M., Robinson, P., Schmid, U., Schwarz, M., Winkler, K.: Gracefully degrad-
ing consensus and k-set agreement in directed dynamic networks. Theor. Comput.
Sci. 726, 41–77 (2018)

6. Biely, M., Schmid, U., Weiss, B.: Synchronous consensus under hybrid process and
link failures. Theor. Comput. Sci. 412(40), 5602–5630 (2011)

7. Boano, C.A., Zamalloa, M.A.Z., Römer, K., Voigt, T.: JAG: reliable and pre-
dictable wireless agreement under external radio interference. In: Proceedings of
the 33rd IEEE Real-Time Systems Symposium, RTSS 2012, San Juan, PR, USA,
4–7 December 2012, pp. 315–326 (2012). https://doi.org/10.1109/RTSS.2012.82

8. Charron-Bost, B., Függer, M., Nowak, T.: Approximate consensus in highly
dynamic networks: the role of averaging algorithms. In: Halldórsson, M.M., Iwama,
K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 528–
539. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6 42

9. Charron-Bost, B., Moran, S.: Minmax algorithms for stabilizing consensus. Distrib.
Comput. 34(3), 195–206 (2021)

10. Charron-Bost, B., Schiper, A.: The heard-of model: computing in distributed sys-
tems with benign faults. Distrib. Comput. 22(1), 49–71 (2009). https://doi.org/
10.1007/s00446-009-0084-6

https://doi.org/10.1007/978-3-642-35668-1_16
https://doi.org/10.1007/11776178_3
https://doi.org/10.1007/978-3-642-31104-8_7
https://doi.org/10.1007/978-3-319-26850-7_8
https://doi.org/10.1109/RTSS.2012.82
https://doi.org/10.1007/978-3-662-47666-6_42
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/s00446-009-0084-6

172 M. Schwarz and U. Schmid

11. Coulouma, É., Godard, E., Peters, J.G.: A characterization of oblivious message
adversaries for which consensus is solvable. Theor. Comput. Sci. 584, 80–90 (2015).
https://doi.org/10.1016/j.tcs.2015.01.024

12. Daliot, A., Dolev, D., Parnas, H.: Self-stabilizing pulse synchronization inspired
by biological pacemaker networks. In: Huang, S.-T., Herman, T. (eds.) SSS 2003.
LNCS, vol. 2704, pp. 32–48. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-45032-7 3

13. Doerr, B., Goldberg, L.A., Minder, L., Sauerwald, T., Scheideler, C.: Stabilizing
consensus with the power of two choices. In: Rajaraman, R., auf der Heide, F.M.
(eds.) SPAA 2011: Proceedings of the 23rd Annual ACM Symposium on Parallelism
in Algorithms and Architectures, San Jose, CA, USA, 4–6 June 2011 (Co-located
with FCRC 2011), pp. 149–158. ACM (2011). https://doi.org/10.1145/1989493.
1989516

14. Dolev, D., Hoch, E.N.: Byzantine self-stabilizing pulse in a bounded-delay model.
In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 234–252.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76627-8 19

15. Farsi, M., Ratcliff, K., Barbosa, M.: An overview of controller area network. Com-
put. Control Eng. J. 10(3), 113–120 (1999). https://doi.org/10.1049/cce:19990304

16. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

17. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic net-
works. In: Proceedings of the Forty-Second ACM Symposium on Theory of Com-
puting (STOC), pp. 513–522 (2010)

18. Kuhn, F., Oshman, R., Moses, Y.: Coordinated consensus in dynamic networks. In:
Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing (PODC). pp. 1–10. ACM (2011)

19. Maróti, M., Kusy, B., Simon, G., Lédeczi, A.: The flooding time synchroniza-
tion protocol. In: 2nd International Conference on Embedded Networked Sensor
Systems (SenSys), pp. 39–49. ACM, New York (2004). https://doi.org/10.1145/
1031495.1031501

20. Santoro, N., Widmayer, P.: Time is not a healer. In: Monien, B., Cori, R. (eds.)
STACS 1989. LNCS, vol. 349, pp. 304–313. Springer, Heidelberg (1989). https://
doi.org/10.1007/BFb0028994

21. Schmid, U., Weiss, B., Keidar, I.: Impossibility results and lower bounds for consen-
sus under link failures. SIAM J. Comput. 38(5), 1912–1951 (2009). http://www.
vmars.tuwien.ac.at/documents/extern/2554/paper.pdf

22. Schwarz, M., Winkler, K., Schmid, U.: Fast consensus under eventually stabilizing
message adversaries. In: Proceedings of the 17th International Conference on Dis-
tributed Computing and Networking (ICDCN), pp. 7:1–7:10. ACM (2016). https://
doi.org/10.1145/2833312.2833323

23. Widder, J., Schmid, U.: The theta-model: achieving synchrony without clocks.
Distrib. Comput. 22(1), 29–47 (2009)

24. Winkler, K., Schwarz, M., Schmid, U.: Consensus in rooted dynamic networks with
short-lived stability. Distrib. Comput. 32(5), 443–458 (2019)

https://doi.org/10.1016/j.tcs.2015.01.024
https://doi.org/10.1007/3-540-45032-7_3
https://doi.org/10.1007/3-540-45032-7_3
https://doi.org/10.1145/1989493.1989516
https://doi.org/10.1145/1989493.1989516
https://doi.org/10.1007/978-3-540-76627-8_19
https://doi.org/10.1049/cce:19990304
https://doi.org/10.1145/1031495.1031501
https://doi.org/10.1145/1031495.1031501
https://doi.org/10.1007/BFb0028994
https://doi.org/10.1007/BFb0028994
http://www.vmars.tuwien.ac.at/documents/extern/2554/ paper.pdf
http://www.vmars.tuwien.ac.at/documents/extern/2554/ paper.pdf
https://doi.org/10.1145/2833312.2833323
https://doi.org/10.1145/2833312.2833323

Towards a Robust Distributed Framework
for Election-Day Voter Check-In

Alexander A. Schwarzmann(B)

Augusta University, Georgia, USA
aschwarzmann@augusta.edu

Abstract. Electronic poll books are computerized distributed systems
that replace paper-based voter lists used to enable eligible voters to
cast their ballots on the Election Day. These systems have the poten-
tial for speeding up voter check-in at the polling place, and making voter
records more accurate by reducing human errors in dealing with printed
voter lists and post-election transcription. At the same time, electronic
poll books are non-trivial distributed computing systems, and ensuring
correctness, security, integrity, fault-tolerance, and performance of such
systems is a challenging problem. In fact we are not aware of a single
commercially available system that does not contain major deficiencies
and risk factors. This paper focuses on the distributed system aspects of
electronic poll book solutions and identifies the obstacles that are inher-
ent in any distributed system that must deal with failure and asynchrony
while providing a consistent and dependable service. We review several
requirements that need to be satisfied by electronic poll book systems, we
discuss selected important results from distributed computing research
that the commercial developers of electronic poll book systems appear to
not be aware of. We then present a wider landscape, including social and
political science aspects, we survey broader research issues, and discuss
system implementation considerations. This paper brings for the first
time to the attention of the research community an in-depth presenta-
tion of an important new problem of immediate relevance. Moreover, the
electronic poll book technology is an attractive application domain for
the research results in dependable and secure distributed computing.

1 Introduction

Electronic voting systems are an integral component of the modern electoral
procedures and an essential part of any democratic society. Such systems are
composed of several entities working in concert: e.g., “Voter Registration Sys-
tems”, “Election Management Systems”, “Voting Terminals”, and “Electronic

Supported in part by NSF Award 2131538, with the senior personnel A. Aleroud,
C. Busch, R. DeFrancisco, D. Kowalski, G. Murray, N. Panwar, R. Rahaeimehr, A.
Schwarzmann, E. Tremel, J. Heslen, C. Albert (Augusta Univ.), and Sh. Dolev (Ben
Gurion Univ.). This paper also cites results obtained in collaboration with L. Michel,
A. Russell, and M. Desmarais (Univ. of Connecticut).

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 173–193, 2021.
https://doi.org/10.1007/978-3-030-91081-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_12

174 A. A. Schwarzmann

Poll Books”. The first of these has been computerized for some time using
well-understood database technologies. In the United States, the HAVA act of
2002 [39] mandated a nationwide modernization of the voting infrastructure
and led to the broad adoption of computerized solutions for the next two com-
ponents. Consequently, all 50 States initiated efforts to select digital voting
solutions. The private sector rushed to market with hastily created and often
inadequately engineered solutions. The result was an adoption of products that
suffered from severe flaws: poor engineering, lack of resilience against the most
elementary tampering or simple mis-configuration, the illusion of safety from
misuse of cryptography, and, in general, an under-appreciation for the complex-
ity of the electronic election systems that need to be built as sophisticated and
secure distributed systems. The third component, Electronic Poll Books, pro-
vides the key function that ensures that all eligible voters can cast their vote,
and cast it at most once, thus the imperative of “one voter, one vote.” These
systems are the focus of this presentation. They are relatively new, and they are
being widely adopted to replace the old manual processes. The broad concerns
surrounding the integrity and security of electronic election systems used in the
2016 and 2020 Presidential Elections underscore the need for a rigorous scientific
approach to designing and implementing all such systems.

Contributions. This paper brings for the first time to the attention of the
research community an in-depth view of an important new multidimensional
problem of immediate relevance. The electronic poll book technology is an attrac-
tive and worthy application domain for synergistic research encompassing dis-
tributed computing, fault tolerance, cryptography and authentication, network-
ing and network security, consisted distributed storage, and human factors. The
research directions suggested here have the promise of high impact in an impor-
tant area of political elections that are so essential for any democratic society.
Unlike some research advances whose applicability to solving real life problems
may need to wait for many years before having impact, in the space of electronic
check-in systems we have a rewarding situation where research advances can
directly benefit a crucial aspect of our increasingly digital civilization, viz. the
integrity and security of the electronic electoral process.

On the Broad State of Technology. Dislocation of theory and practice in
computing can lead to significant (and even sensational) problems with basic
computing infrastructure, and indeed, a number of striking examples arises
in the context of voting technology. Numerous technical reports have docu-
mented serious issues with electronic election systems, Electronic election sys-
tems [7,40,43,44] are perceived to be inherently complex from a security and
verification standpoint. Our own work had exposed a number of vulnerabilities in
the design and implementation of electronic voting systems, in their use of cryp-
tography, their logging capabilities and communication software that an attacker
could exploit to alter the result of an election, e.g., [13,14,27,29,30,37,45]. Tech-
nical issues have been reported by essentially all researchers and evaluators who
have conducted independent assessment of security and integrity of electronic
election systems, ranging from the well-known problems with the use of paper-

Towards a Robust Distributed Framework for Election-Day Voter Check-In 175

less DRE systems (direct recording, electronic) and the security vulnerabilities
in all examined stand-alone systems to severe problems in Internet voting sys-
tems [48]. In addition to raising concerns about the dependability of electronic
voting systems and suitability of adopted solutions, the ensuing reexamination
led a number of states to abandon their chosen solutions and switch technology
altogether at a remarkable cost to the U.S. taxpayer [42], e.g., in Maryland [18],
where the decision was made to migrate to Optical Scan technology with voter-
verified paper ballots, which emerged as the safest option due to its reliance on
voter generated paper audit trail.

Whereas researchers exposed a number of vulnerabilities in the design, imple-
mentation, use of cryptography, logging capabilities, and communication soft-
ware of voting systems that an attacker could exploit to alter the result of an
election, it is not surprising that the bulk of these problems can be traced back
to the divergence from, and the ignorance of, established results in algorithmics,
verification, validation, cryptography, and sound engineering practices.

In this work we focus on the problem of voter check-in in elections, the area
that received surprisingly little attention from the community of researchers
working on electronic election systems. While substantial research has been ded-
icated to electronic tabulation of votes, ballot processing, vote aggregation, and
audits, the very first step that enables voters to cast their votes on the election
day and that ensures the “one voter, one vote” imperative has not been the
target of sufficient research to our knowledge.

Document Structure. In Sect. 2 we describe the e-pollbook landscape in the
US. In Sect. 3 we present the high-level requirements that address the distributed
nature of e-pollbooks as replacement for the manual process, and provide spe-
cific examples of jurisdictional requirements. In Sect. 4 we presented selected
distributed systems facts that make it challenging to implement e-pollbooks. In
Sect. 5 we present a wide landscape that encompasses social and political sci-
ence dimension, broader research needs, and implementation considerations. We
conclude in Sect. 6.

2 Electronic Poll Books

It is interesting that while the premature deployment of immature technology
resulted in numerous documented cases of serious problems with voting terminals
and election management systems, another component of the electoral process—
the use of registered voter lists to allow voters to cast votes—still broadly relies on
perilously inadequate manual solutions using paper pollbooks, i.e., printed voter
lists. The use of a questionable manual process can cause poll opening delays,
long lines, and errors, possibly disenfranchising numerous voters [5]. According
to the National Conference of State Legislatures, the majority of jurisdictions
nationwide are using the manual process, however the usage of electronic solu-
tions is growing rapidly. In the 2020 Presidential Elections, already millions
of voters were checked-in electronically. The emerging computerized solutions,
“electronic poll books”, are a key component of an electronic election system

176 A. A. Schwarzmann

whose basic purpose is to ensure “One voter, one vote.” Electronic pollbooks, or
“e-pollbooks”, are available from a number of vendors, and while the integrity
and security of these systems is paramount to the entire electoral process, vendors
are again rushing to produce e-pollbooks based on naive premises and software
fraught with deficiencies (cf. patent [26]). Naturally, the integrity and security
of this component is paramount to the entire electoral process. Without the sci-
entific approach, the desire to modernize and ease the administrative process
can again lead to the premature adoption of severely deficient solutions. Indeed,
there were a number of reports in the press on the failures of e-pollbook systems
during the 2020 US Presidential Election.

It is noteworthy that while the electronic tabulators used on the election day
are stand-alone systems, an e-pollbook system is conceptually more complex
because it is inherently a dynamic distributed system where multiple check-in
devices must operate in concert in providing “one voter, one vote” guarantee,
with security and integrity, and despite possible failures and the resulting need
to dynamically reconfigure this distributed system on the fly.

We have worked for over a decade with several jurisdictions in New Eng-
land and New York on security and integrity of electronic election systems. In
particular, we provided substantial contributions to the definition of e-pollbook
requirements in the States of Connecticut [36] and New Hampshire [20]. We
have also participated in evaluating several e-pollbook systems, and while non-
disclosure and legal considerations prevent is from identifying specific systems,
we must report that the state of the technology in e-pollbook implementations
leaves much to be desired. To start with, some systems fail to synchronize prop-
erly, leaving a non-trivial window of vulnerability that allows a speedy and mis-
chievous vote to cast more than one ballot. Also, despite the claims of recon-
figurability, it is generally impossible to replace crashed devices, and it is not
easy to introduce new devices to deal with long lines. Typically, reconfiguration
is only possible offline, and even then the systems do not implemented con-
trols to identify and authenticate configured devices adequately. Other systems
do not secure wireless communications adequately, allowing nefarious actors to
eavesdrop and even launch an impersonation attacks. In one system the net-
work traffic is authenticated and encrypted, yet the keys are self-signed by a
third party using a personal email address (@gmail.com). (Here we also note
that for practical reasons wired connection are almost never used, thus keeping
the digital doors open for attempted attacks, including denial of service, which
can be trivially accomplished by inexpensive wireless jamming devices.) Some
system implementations also insist on relying on remote servers, where commu-
nication over the Internet on the election days creates the potential for obvious
problems. Existing implementations do not perform sufficient input checks, e.g.,
when scanning a barcode on an identity card, and some systems can be crashed
with the help of a maliciously designed barcode, or even allow injection attacks
that can disenfranchise voters.

In 2017, to address the challenges associated with the use of technology in
the elections, the National Academies of Sciences, Engineering, and Medicine

Towards a Robust Distributed Framework for Election-Day Voter Check-In 177

(NASEM) appointed an ad-hoc committee, the Committee on the Future of
Voting: Accessible, Reliable, Verifiable Technology. The committee held several
meetings, where we have also reported on the topic of security challenges, con-
cerns, and increasing vulnerabilities associated with e-pollbooks [2]. NASEM
published an extensive committee report “Securing the Vote: Protecting Amer-
ican Democracy” in 2018 [2]. The report summarizes its findings regarding e-
pollbooks as follows.

“Eligible voters may be denied the opportunity to vote a regular ballot if poll-

books are inaccurate. Internet access to e-pollbooks increases the risks associated

with the use of e-pollbooks to manage elections. Cyberattacks can alter the voter

registration databases used to generate and update pollbooks. If pollbooks are

altered by external actors, eligible citizens might, on election days, be denied

the right to vote or ineligible individuals might be permitted to vote. Cyberat-

tacks could also compromise the record of who actually voted on Election Day-or

disrupt an election in numerous other ways. If an e-pollbook is connected to a

remote voter registration database and there is no offline backup, a denial-of-

service cyberattack could force voting to be halted.”

Among its recommendations, the report states that “Congress should authorize
and fund” the development of “security standards and verification and validation
protocols for electronic pollbooks.” Our own work in this area is funded by a
NSF award within the Secure and Trustworthy Cyberspace (SaTC) program.

The distributed computing community is well positioned to address the chal-
lenges inherent in e-pollbook solutions. Indeed, there are a number of approaches
to the underlying problem that revolves around a collection of computing devices
reliably and securely maintaining distributed and replicated databases (i.e.,
“voter lists”) in the face of equipment failures. Equally importantly, the research
in distributed computing identified a number of problems that are notoriously
difficult to solve or that even cannot be solved in the most general setting. The
lack of adoption of existing techniques and certain obliviousness of the non-trivial
challenges in providing solutions could be attributed to a lack of awareness from
practitioners or, equally likely, to the difficulty of specializing and implementing
the known approaches in this application domain.

The main part of this paper focuses specifically on the distributed system
aspects of e-pollbook solutions. We also include a broader discussion of an app-
roach to researching and developing such systems that in our opinion needs to
include a sound computer science foundation, including the cybersecurity dimen-
sion, advanced system development, and also a social and political dimension
that reflects the societal and legal aspects.

3 Electronic Pollbooks as a Distributed System

In this section we describe the basic setting for poll books, the technological
challenges and specific questions regarding e-pollbook implementations.

178 A. A. Schwarzmann

3.1 The Manual Process

Consider the objectives of officials running an election at the scale of a precinct.
Prior to the election, officials are accumulating in a database the collection of
registered voters throughout the precinct. On Election Day, a paper listing is
printed for each polling station indicating which voters are expected. If electoral
procedures permit voters to register “on site”, the official must also record indi-
viduals who desire to vote but are not on the voter list. As ballots are issued to
eligible voters, their names get crossed off. Additionally, in some jurisdictions,
absentee voters who were previously issued a ballot must be accommodated
if they decide to vote in person. The process is meant to help achieve “one
voter, one vote”. Naturally, a rogue voter can go from polling station to polling
station and attempt to vote several times in this way. In such a case, since
the authorities collect voter credentials for on-site voting, they would have a
legal recourse. To deal with high voter turn-out, the voter lists are partitioned
either by street addresses or names, thus allowing for multiple check-in lines and
increased “throughput” at a polling place. Multiple voting is impossible because
a voter’s name appears in only one partition of the voter list. Clearly absent
are failures due to technology. From the procedural and safety standpoints, no
further significant weaknesses exist with a paper solution. Yet, a paper process
is slow, prone to human error, and work intensive before, during and after the
election as the voter information must be collated and re-encoded in the voter
database. High voter turn-out still results in long lines because the partition of
the voter lists cannot be balanced dynamically. An electronic solution is appeal-
ing to streamline the process, but it also creates many difficulties.

3.2 Distribution and Consistency: Immediate Challenge

Shared storage services are at the core of most information-age systems and
e-pollbooks are not an exception. Imagine an implementation that is based
on a central server storage system. The server accepts requests from check-in
devices to perform operations on its data objects (e.g., voter records) and returns
responses. While this is conceptually simple, this approach already presents two
major problems: (1) the central server is a performance bottleneck, and (2) the
server is a single point of failure. The quality of service in such an implementation
may degrade as the number of users grows, and the service becomes unavailable
if the server crashes. Thus the system must, first of all, be available. This means
that it must provide its services despite failures within the scope of its specifica-
tion. In particular, the system must be able to mask device and communication
failures up to a limit. The system must also support multiple concurrent accesses
without imposing unreasonable degradation in performance. The only way to
guarantee availability is through redundancy, that is, to use multiple check-in
devices and servers and to replicate the data among these devices.

It is also critically important to ensure data longevity. A storage system
may be able to tolerate failures of some servers, but over a long period it is
conceivable that all servers may need to be replaced, because no servers are

Towards a Robust Distributed Framework for Election-Day Voter Check-In 179

infallible. Additionally, it may be necessary to provide migration of data from
one collection of servers to another as the needs dictate. The storage system
must provide seamless runtime migration of data: one cannot stop the world and
reconfigure the system in response to failures and changing environment. A major
problem that comes with replication is consistency. How does the system find the
latest voter record if the data is replicated? What the users (people and high level
system components) should expect to see is the illusion of a single-copy object
that serializes all accesses so that each operation that reads the object returns
the value of the preceding write or update operation, and that this value is at
least as recent as that returned by any preceding operation [23,38]. This notion of
consistency is formalized as atomicity [32] or, equivalently, as linearizability [25],
and we aim to provide this, most desirable, notion of consistency.

3.3 Specific Technical Questions

Here we present some immediate questions that any e-pollbook solution must
address as a distributed system. These questions pose non-trivial challenges in
implementing functional and dependable solutions. We primarily focus on the
dynamic distributed system view of the required solutions, and in Sect. 5 we deal
with a broader landscape.

1. Multiple front-end devices are needed to allow concurrent check-in. How does
one ensure that device failures do not impact system functionality? How are
the misbehaving devices removed from the system? How are new devices
introduced to replace faulty devices and to deal with high voter turnout?

2. If electronic devices can fail, this raises questions about the status of voter
information accumulated in each device. How is the information recovered?
Passed on to other devices? Replicated in real-time? How does one transfer
on the fly the relevant state to a “spare device”?

3. Where is the information (voter lists) held? On each device? On a server
nearby on a LAN? In the (local) cloud for more reliability? Depending on the
answer, one must question what to do in case of network failure. What to do
if the network connectivity is lost? Experiences delays? How does one deal
with transient (or prolonged or even permanent) network partitions?

4. Any dynamic replication involves some protocol that may itself be subjected
to perturbations, e.g., denial of service attacks. How does one guarantee the
legitimacy of messages exchanged among the participating devices?

5. When multiple devices add voters or check-off voters upon handing out bal-
lots, how does one maintain a coherent view of the world guaranteeing con-
sistency and enforcing the rule of voting at most once?

6. Last, but not least is the question of functionality of the system with respect
to the voters and the election officials that the system is interacting with.
Does the system comply with the law? Does it favor one type of voter and
might it disenfranchise another? Is it is easy to use? Does it allow for all
acceptable forms of identification to be used to check in a voter? Does it
allow a manual override by a qualified election official in case of a problem?

180 A. A. Schwarzmann

Given the generally non-complimentary state of the extant electronic election
systems, there is the real concern that existing and emerging commercial offerings
for electronic poll-books might side-step the majority of these questions leaving
jurisdictions with brittle systems that suffer from major shortcomings and that
perform adequately only in benign and friendly environments. In the next section
we present some existing requirements for e-pollbooks systems. We note that
documenting such requirements is quite challenging. On one hand they must be
readable by people without a technical background, e.g., citizens and election
officials, on the other hand they must specific requirements that are most useful
for technologists who will perform the needed research and development. Thus
it is likely that the requirements officially adopted by jurisdictions are viewed as
incomplete by the technologists.

3.4 Requirements for Electronic Poll Books as Distributed Systems

Some of the more comprehensive requirements for e-pollbook systems have been
published by the States of Connecticut [36] and New Hampshire [20]. We extract
and present several requirements from [36] that specifically address the neces-
sarily distributed nature of e-pollbook solutions. We begin by stating several
definitions for the terms used in the requirements.

Electronic poll book system (EPBS) – A collection of hardware and software
including at least one electronic poll book and aiming to implement e-pollbook
functionality that satisfies the requirements (in [36]).

Electronic poll book (EPB) – A component of the electronic poll book system that
includes a user interface device and that is to be used by a poll worker to
view and update voter registration records.

EPB system configuration (EPBSC) – A physical instance of an EPBS with all its
components configured for use. An EPBS configuration consists of peripherals
(e.g., printers, scanners, etc.) and a set of configured, networked EPBs. An
EPBSC may contain auxiliary servers.

Voter record – The voter registration record and voter activity record of a voter.
Local voter database - A collection of all voter records specific to a jurisdiction.

The initial state of the local voter database is compiled and certified by the
relevant authority. Poll workers make updates to the local voter database
throughout the election by using the EPBS to reflect ongoing voter activity.

Voter list – A printable, exportable, and human-readable representation of the
local voter database.

Completed update – An update to a voter registration record is completed if a
query for said voter registration record on any active EPB within the EPBS
returns the same data.

Quiescent – The EPBS is quiescent if all user-initiated updates have completed
at all electronic poll books.

Reconfigure EPBSC – Configuring, adding, or removing any of the electronic poll
book configuration’s peripherals, electronic poll books, or auxiliary servers.

Towards a Robust Distributed Framework for Election-Day Voter Check-In 181

Requirements Relevant to the Distributed Nature of the System. We
now present the most relevant requirements [36] that specifically deal with the
distributed nature of any comprehensive e-pollbook solution. Broadly speaking,
the requirements are formulated to ensure the following.

– Fault-tolerance: The system must not contain a single point of failure, and
failures (up to a design limit) must not prevent the system from operating.
Main types of failures are the failures of the physical system components or
the software in these components, and communication failures.

– Service availability: The system must be able to provide the required service
in the face of adversity and perturbations (again, up to its design limits).

– Data consistency: The data contained within the system (e.g., voter records)
must be viewed consistently following any changes to the data.

– Data survivability: No data may be lost if certain components of the system
fail (up to its design limit).

– System reconfigurability: The system must enable faulty components to be
removed/replaced without requiring halting or restarting the overall system.

We now state the most relevant requirements [36] in an abridged form.

AR-2: No single point of failure: The EPBS must be designed to tolerate any
single point of failure scenarios.

AR-1: At least three EPBs in an EPBS: An EPBS must support at least three
(3) electronic poll books in a single polling location. Each of the electronic poll
books must be usable concurrently. Should one of the electronic poll books
become inoperable, the operation of the remaining electronic poll books must
not be affected.

FR-1: Adding a new EPB to the EPBS: The EPBS must provide means for the
integration of an additional EPB into its configuration at any point through-
out the election without requiring a shutdown or a restart.

FR-2: Removing an EPB from the EPBS: The EPBS must provide means for
the exclusion of an EPB from its configuration at any point throughout the
election without requiring a shutdown, or restart of the EPBS. This action
does not require physical access to the EPB that is to be excluded.

FR-21: One voter/one vote within EPBS: The EPBS must guarantee that within
an EPBS configuration a voter can be checked in at most once during normal
connectivity.

RR-1.1: Voter check-in during interruption of connectivity: In the event of a
temporary interruption of connectivity within an EPBS, the EPBS must per-
mit a voter to check-in.

RR-1.2: Upon restoration of connectivity: In the event of a temporary interrup-
tion of connectivity within an EPBS, the EPBS must automatically restore
voter list consistency across the EPBs after connectivity is restored.

RR-1.3: Identify double voting: In the event of a temporary interruption of
connectivity within an EPBS, the system must identify voters that have been
checked in more than once during the interruption of connectivity.

182 A. A. Schwarzmann

RR-5: Local voter database replicas: Within the EPBS there must exist at least
two replicas (logical or physical) of the local voter database. These replicas
must be stored in distinct physical storage components. (Note: together with
AR-1 and RR-1.1 the number of replicas may need to be higher.)

RR-6: Local voter database replica consistency: If the EPBS is in a quiescent
state all replicas of the local voter database must be logically consistent.

RR-7: Operational consistency: Any update to a voter record or to any other
data pertaining to the election completed on one EPB must be seen as com-
plete on all other EPBs.

These requirements are quite intuitive, and we consider them necessary for
any implementation of an e-pollbook system. Next we identify several results
that make it challenging to satisfy these requirements.

4 E-Pollbooks and the Distributed Systems Theory

We cite results from the distributed systems theory that stress the need for
careful design in developing e-pollbook solutions. A well-informed reader will be
familiar with some if not most of these results. Some of these results are quite
venerable, and they have been known for some time. This is why it is particularly
surprising and troubling that all existing commercial e-pollbook systems appear to
be oblivious of these results, and some claims regarding the capabilities of these
systems are in conflict with the known facts.

At first glance, the facts we cite here cast a pessimistic view on the ability
to build dependable systems that coordinate their activities in non-trivial ways
or that maintain replicated shared data with guaranteed consistency (e.g., if a
data object is changed, then the following read of the object value must reflect
the change). However, this does not mean that one cannot build reliable and
usable e-pollbook systems. In order to succeed, one needs to understand the
theoretical limitations and to make sensible assumptions about the nature of
failures, communication, and asynchrony. The main point here is that any claims
about a system that provides a solution that is able to deal with the requisite
adversity and perturbations in the computation and networking medium, but
that are not aware of these known results, is to be suspect.

In what follows we do not cross-reference the requirements from Sect. 3, but,
as indicated earlier, the selected set of requirements deals collectively with the
issues of fault-tolerance and availability (AR-1, AR-2), communication (RR-
1.1, RR-1.2), agreement and consistency (FR-21, RR-1.3, RR-6, RR-7), and
survivability (FR-1, FR-2, RR-5) of the shared data. (See [36] for details.)

Here we focus on the negative (impossibility) research results. Although spe-
cialized practical solutions exist for certain modified versions of the problems
given here, we do not present them: not only the solution space is very large,
but more importantly, it is the duty of responsible system designers to investigate
relevant solutions when they will have started gaining the necessary insight.

Towards a Robust Distributed Framework for Election-Day Voter Check-In 183

4.1 Consistent Data Store with Device Crashes

Any e-pollbook system must be able to tolerate benign failures of individual
devices, specifically, a failure where the faulty device stops at an arbitrary instant
of time and does not perform any further actions. Such benign failures are known
as crashes. E.g., a polling place may have several devices used to check in voters.
A crash of such a device must not prevent other working devices from function-
ing, and the crash must not destroy the consistency of the shared data maintained
by the system (of course the data must be replicated for survivability). E.g., if
a voter was successfully checked in, then all operating devices must agree that
this is the case, regardless of a crash. If this cannot be guaranteed, then an ill-
motivated voter may attempt to vote more than once. Suppose the type of data
we are interested in is consistent read/write data.1 This is a basic data type,
much simpler than data types that support more complicated read-modify-write
operations. It turns out that any system of devices implementing such objects
can tolerate the crashes of only a minority of the devices, e.g., [6,11]. A system
of N processors cannot implement a consistent read/write object where all object
access operations terminate (complete) in the presence of F crashes if N ≤ 2F .

This means that to tolerate a single crash, three replicas are needed. To tol-
erate two crashes requires replication at five devices, etc. Any poll book solution
that replicates its data in two locations and that claims to tolerate a single
runtime crash cannot possibly be correct.

4.2 Coordinated Action with Link Failures

Given that multiple devices are necessary in any e-pollbook system, they must
must provide their service consistently. Suppose several devices (say, individual
poll book devices) need to agree on a common course of action, e.g., by deciding
on a value that indicates what action to take. This is known as the agreement
problem, and the correctness conditions for a solution are as follows: (a) Agree-
ment : no two devices agree on different values, (b) Validity : if all devices propose
the same value, then this is the only possible agreement value, (c) Termination:
all non-faulty devices eventually decide. Now suppose that there are just two
devices that never fail, but communication can be unreliable, e.g., messages
can be lost because of failures or interference. If this is the case, one of the
oldest results in distributed computing tells us that there is no protocol that
always solves this agreement problem [24]. There is no algorithm that solves the
coordinated action problem for two processors that communicate using unreliable
messaging.

Needless to say, if the problem cannot be solved for two devices, it cannot be
solved for any larger number of devices. Of course, this problem still needs to be
solved in real systems. This is normally done by strengthening the assumptions
1 Recall that here we are interested in an implementation of a data object that is

consistent, i.e., atomic or linearizable, if the users that access the object are presented
with an illusion that there is a single copy of the object that is accessed sequentially
regardless of how the object is implemented in the underlying distributed system.

184 A. A. Schwarzmann

about the model of computation or by relaxing the problem requirements [34].
For example, this can be done by limiting the types of failure that the system
tolerates and by stating guarantees probabilistically, thus allowing a system to
be incorrect with very small probability. (Similar approaches can be applied in
solving other problems we describe in the sequel.) Incidentally, this problem
is known as the “Two Generals Problem” in the literature. Here, two generals
must launch a coordinated attack, lest they be defeated one at a time by the
opposing force. The generals communicate by messengers that can be intercepted
or destroyed. The commercially available e-pollbook solutions are routinely silent
about the system behavior when communication may be unreliable or lossy.

4.3 Availability, Consistency, and Network Partitions

All devices in the e-pollbook system must present a consistent view of the
underlying data shared by the system. Because there must not be any single
points of failure, the system must be distributed. If the system implementa-
tion is distributed, it must rely on some network for communication among its
components. The implementation cannot assume that communication is always
reliable; in particular, network failures may isolate some of the devices in the
system. Clearly it is desirable for the service to be available and consistent,
however, the well-known “Brewer’s conjecture” posits that it is not possible to
simultaneously guarantee consistency, availability, and partition-tolerance [12].
It is impossible for any distributed service implementation to provide the guar-
antees of (i) consistency, (ii) availability, and (iii) partition-tolerance.

The above statement can be made more specialized for read/write objects as
follows [22]. It is impossible for any distributed service implementation of shared
read/write data objects to guarantee (i) consistency, and (ii) availability, if the
underlying asynchronous messaging system allows for message loss.

This means, in particular, that if messages can be lost (e.g., due to jamming
or denial-of-service attack), then either the data (e.g., voter records) may appear
inconsistent or the service may be unavailable. The above result holds even if
the system becomes synchronous, with known delays on the messages.

4.4 Reaching Agreement in the Presence of Crashes
and Asynchrony

A polling place with several devices used to check in voters must be able to toler-
ate crashes. A crash must not prevent the overall system from taking coordinated
actions. As before, the e-pollbook devices may not be in perfect synchrony with
each other, e.g., processing delays and arbitrary timing of actions by the poll
officials is likely to introduce some measure of asynchrony. Unfortunately, reach-
ing agreement in the presence of even a single crash may be impossible in all
cases for an asynchronous system, even if no message is ever lost. A seminal and
venerable result from the distributed computing theory states the following [19].

Towards a Robust Distributed Framework for Election-Day Voter Check-In 185

For an asynchronous system of processors that communicate using reliable chan-
nels there is no algorithm that solves the agreement problem and that guarantees
termination in the presence of a single crash.

This generally means that if a system relies on solving the agreement problem
as part of its implementation, there may be some operations that never complete
(or that are very slow). Thus, any system that claims that all of its devices are
always in some type of agreement on certain values and that has good perfor-
mance for all operations must make several non-trivial assumptions about the
nature of failures and the constraints on asynchrony. If these assumptions are
not explicitly stated, then the claims are to be taken with a grain of salt.

4.5 Agreement in the Presence of Malicious Failures

Given the plethora of malware and viruses that may affect a computer system,
an e-pollbook system may also need to tolerate malicious failures of individual
devices. Such malicious failures are called byzantine failures [33,41]. Here if a
device fails, it does not stop as in a crash, but instead starts behaving arbitrarily,
and in particular, it may perform malicious actions. This will be the case if a
device is maliciously tampered with, or if it is infected with malware. For this
setting, another seminal result states that a system of three devices (processors)
cannot tolerate even a single byzantine fault [41]. A system of three processors
cannot solve the agreement problem in the presence of a single byzantine failure.

Note that this result holds even if the processors are in a complete synchrony
with each other and if there are no other perturbations, such as message delay
or loss. For e-pollbook systems this means that a system with less than four
devices cannot tolerate even a single malicious failure. The more general result
dictates that any system of processors cannot tolerate malicious failures of even a
third of the processors [41]. A system of N processors cannot solve the agreement
problem in the presence of F byzantine failures if N ≤ 3F .

Thus, in any system where the devices must reach agreement, the correct
devices must outnumber the faulty devices by more than a factor of three-to-
one. If this is not logistically feasible for a real installation, then the system
cannot possibly claim to tolerate tampering with (or theft of) even one device.

4.6 The Problem of Reconfiguration in Dynamic Systems

Thus far we looked at static systems, i.e., a system where the universe of devices
is fixed in the initial state. Providing e-pollbook solutions only for static systems
is inadequate. Consider a polling place with three initial check-in devices. On the
election day everything proceeds smoothly for a while. However the voter turnout
is much higher than expected and the lines are getting long. Now suppose one of
the three devices crashes. Even if the remaining two devices are operational and
are able to provide the needed services, the lines of voters are getting really long
now. A well-designed system must always allow for additional check-in devices

186 A. A. Schwarzmann

to be introduced in order to cope with the faulty devices and the higher-than-
expected voter turnout. Needless to say, this must be accomplished without
halting the check-in process and without restarting any devices in the system.

The general problem of removing devices from a system and introducing
new devices is known as the reconfiguration problem. In our context, we are
not concerned with simply adding and removing devices: we need to also make
sure that no data is lost and that the new devices are brought up to date with
respect to the state of the data. Here all devices must have a consistent view of
the state of the system. For a distributed system that is charged with maintaining
consistent shared data the reconfiguration operation is described as follows [21].

Reconfiguration is the process of replacing one set of devices in a distributed
system with an updated set of devices. In this process, the data is propagated
from the old devices to the new set, and allowing devices that are not in the
new configuration to safely leave the system. This changeover has no effect on
data-access operations, which may continue to store and retrieve the shared data.

Development of algorithms implementing reconfiguration while providing
uninterrupted and consistent access to data is an active area of research. A
discussion of approaches to reconfiguration, including the use of Consensus and
Group Communication Systems [9] can be found in [23,38]. The solutions to the
reconfiguration problem are going to be difficult and fraught with impossibility
results akin to those we discussed earlier. Regardless of how the reconfiguration
of the set of devices is done, any practical implementation of e-pollbooks must
address the challenge of deciding when to reconfigure. One approach is to leave
this decision to the environment, e.g., the users of the system. Access to the
reconfiguration service should be available to system administrators to enable
reconfiguration based on policies, such as introducing new device in case of high
voter turnout or removing misbehaving devices. For larger installations, recon-
figuration could be enacted automatically when a failure of a certain number of
devices is detected. This is a more complicated solution, but it has the potential
of providing superior quality of service. Given that solutions to the reconfigura-
tion problem are not routine, one must exercise caution. Any e-pollbook system
that claims to provide reconfiguration features without supporting documenta-
tion and without rigorous arguments about the system’s correctness must be
carefully examined before any use on the election day.

5 A Broader Look at E-Pollbook Landscape

While this presentation focuses on the distributed systems aspects of e-pollbook
systems, a comprehensive solution needs to consider a much broader landscape.
There are additional dimensions of this problem that include not only the techno-
logical issues, but also societal and legal issues that impose separate requirements
and that need to be incorporated. Furthermore, a substantial effort is needed
to research, design, and implement a robust framework with rigorous seman-
tics and security guarantees that provides a sound foundation for implementing
e-pollbook solutions meeting the relevant requirements. To be successful, an

Towards a Robust Distributed Framework for Election-Day Voter Check-In 187

approach to a solution needs to weave seamlessly key insights and contributions
in distributed computing and cryptography into a general and implementable
framework that is flexible, reusable and promotes the adoption of proven tech-
niques with strong theoretical underpinnings.

Fig. 1. Voters participate in the election
proper, i.e., they cast their votes, only
after they are admitted by means of the
electronic poll-book system. The develop-
ment of the systems rests on the three
integrated pillars as shown.

Thus, to ensure that the techno-
logical approach encompassing theory
and systems addresses meaningfully the
societal, political, and legal needs it
has envelop three interwoven areas:
(1) Social and Political Science Dimen-
sion, (2) Computer Science as a Foun-
dation for Software, and (3) Systems
Implementation and Evaluation. This is
illustrated in Fig. 1.

5.1 Social and Political Science

A 2020 poll conducted by well-regarded
polling firm Ipsos found among US
voters that 17% had waited in line
more than one hour to vote, 4% were
told their name was not on the regis-
tered voter list, 4% could not physically
access the polling location, and 3% were
told they did not have the correct iden-
tification [46]. Voter disenfranchisement can lead to a loss of system and gov-
ernment legitimacy [1]. Democracies are sustained and driven by the general
principle of one person one vote. When that principle is challenged, whether due
to social or administrative barriers, such as with a flawed voter check-in system,
negative systemic and governing outcomes can result. Pew survey following the
2020 US Election found that more than 40% of respondents believed the elec-
tion was not run well, and 15% were not confident that their vote was accurately
counted.

Any e-pollbook system must offer features that enhance system legitimacy
and efficiency. To accomplish this, it is important to conduct survey research,
including elections administrators and citizens, that assesses the features of
check-in systems. The results need to be incorporated into any e-pollbook sys-
tem, and then evaluated, while keeping in mind the efficiency, usability, and
availability of the implementation. Software artifacts need to be open-source
and publicly available to assuage voter concerns of security and propriety.

5.2 Computing Theory Foundation

Any usable e-pollbook system is an inherently distributed system, consisting of
multiple check-in devices and any supporting servers at the polling place (we
take the position that within the current state-of-the-art it is unwise to rely

188 A. A. Schwarzmann

on the Internet, or extend the system beyond a single polling place). In this
section we survey some of the research topics that can be considered “theory.”
The problems that are more engineering in nature are deferred to the following
section.

A framework for building secure and dependable e-pollbook systems must
support dynamically changing collections of physical devices and provide resilient
stores of objects supporting operations with provable semantics and consis-
tency [23]. The underlying platform can not be assumed to be “nice.” On the
contrary, it is subject to perturbations, such as failures, delays, arrivals and
departures of participating devices, and–ultimately–even malicious participants.
The algorithms included and implemented in the framework must come with
rigorous guarantees of fault-tolerance, security, and performance. These guaran-
tees must include system reconfigurability to deal with the changing collection
of participants, and consistency of the provided object storage.

Research in this area must include a definition of threat and failure model
for which the algorithms and protocols are to be designed. An e-pollbook system
must be resilient to ordinary failures of devices and networks, and to attacks by
a motivated adversary. The election officials and voters are aware of the possi-
bility for cyberattacks on election infrastructure and the States have mandated
that polling places must not allow election-related devices to connect to the
Internet [20,36], and the NASEM Committee on the Future of Voting recom-
mends avoiding Internet-dependent election systems [2]. An e-pollbook system
must operate in isolation within a polling place. Yet the system must tolerate
attacks that can occur in the proximity to the polling place. One needs to assume
that an adversary can monitor all network traffic at the polling place, and inject
arbitrary packets into this network. The adversary can also cause traffic in the
network to be dropped or delayed for an arbitrary, but finite, amount of time.
Moreover, the adversary can compromise some of the devices, turning them into
malicious participants that can also leak information to the adversary. All of
these attacks can be launched by an attacker in close geographic vicinity of the
public section of a polling place, especially if the devices comprising the system
communicate with the over a wireless network (which is usually the case).

While the distributed computing research has a wealth of relevant results,
much work remains in several ares. The data storage must be resilient and pro-
vide consistency guarantees supporting the at-most-once update semantics [28]
(at most one vote). The imperfect biological units (i.e., voters and officials) must
be able to interact with the system without destroying its semantics, here we
note that election officials must be legally authorized to override that automated
operation of the e-pollbook system. It is also fruitful to explore the provision of
lightweight blockchain-style services [17], e.g., to implement audit logs and the
monotone collection of data (yes, the reader expected us to say “blockchain” at
least once). It is also relevant to extend the realm of byzantine fault tolerance to
the current context (cf. [8,16]). While the byzantine model is heavy-handed, it
does incorporate all malicious behaviors. Auditability is a must, and so the pro-
vision of immutable audit logs and efficient tools for examining such logs [4,37]

Towards a Robust Distributed Framework for Election-Day Voter Check-In 189

is required. It is also necessary to adapt cryptographic techniques to deal effi-
ciently with the security requirements, although much of this can be addressed
through sound software engineering principles with respect to security, including
authentication and encryption.

Catastrophic failures present another challenge. What should happen if the
system completely fails? In the traditional distributed systems work one specifies
an upper bound on the number of failures, then all bets are off when the limit
is exceeded. This is unacceptable in the elections context, and solutions must
deal with such scenarios. Here an approach based on self-stabilization needs to
be explored (cf. [10,15]). But even this may not be enough, and for this reason
there may be no way to avoid having an up to date printed record as the election
progresses. In fact several states adopt the policy of a parallel use of the manual
systems alongside the e-pollbook system to avoid disasters.

5.3 Systems: Development, Implementation, and Evaluation

In tandem with the theoretical efforts in the previous section, it is also necessary
to develop and implement a middleware substrate, providing consistency guar-
antees, and to showcase this to solve a pressing implementation challenge in e-
pollbook systems. The solutions to the research problems must also be shown be
practical. The middleware must support dynamic storage [23] with at-most-once
updates [28], providing a tamper-proof append-only audit log [4,37], and lim-
iting the effect of compromised devices without imposing undue cryptographic
overhead [35,47]. The middleware needs to also manage a reconfigurable collec-
tion of devices while tolerating benign and malicious failures. It must maintain a
consistent view of the membership of devices, ensuring that only the authorized
devices can participate in the e-pollbook operation and submit check-in requests.
The reconfiguration of the system must be in response to failures and on demand
(by election officials) without disrupting the check-in process. Note that a theft
or an unauthorized access must cause or enable detection so that an immediate
action can be taken. The system must have acceptable performance and must
reasonably scale (in some jurisdictions there will be several tens of devices).
This performance must not unduly degrade or degrade gracefully in the face of
failures of devices or the network. This includes providing a reasonably short
response time for check-in requests regardless of how many client devices are
participating.

These goals must be achieved while also remaining resilient to adversarial
behavior. The system must minimize the effect of failed or compromised devices,
ensuring that malicious records they may introduce are not accepted by the
system components. If a system deploys local servers in addition to the check-
in device (usually tablets) the system must also tolerate malfunctions among
the servers, including byzantine failures, and a few compromised servers should
not spoil the integrity of the election. Finally, the system must implement the
generation of trustworthy, auditable logs of all actions taken by client and server
devices, and these logs must be recoverable despite any number of device failures.

190 A. A. Schwarzmann

The middleware must faithfully implement the guarantees of the underlying
algorithms, including the guaranteed performance that depends on the pertur-
bations in the underlying platform—the system must provide safety in all exe-
cutions and conditional performance guarantees. The focus here is not on high
volume data movers, but more on the integrity of the system state. Indeed, in the
case of e-pollbooks, the information being exchanged by the devices boils down
to the occasional on-site voter registration record creation and the “crossing-off”
of identified voters whose arrival rate at the polling station is slow relative to
the processing speed. However, resilience of the system is paramount as no infor-
mation can be lost, corrupted, unavailable or inconsistent because of the failures
(or disappearance, e.g., theft) of individual devices. It is equally important to
retain the ability to inject new devices into the active pool to offset the loss of
existing devices and without incurring any down time for any devices.

Because it is unavoidable that e-pollbook devices communicate wirelessly, it is
important to incorporate traffic analysis to detect possible network attacks. Here
a machine learning-based intrusion detection approach can be explored [3,31].
An e-pollbook system must also have means to communicate with the state-wide
voter registration systems prior to the start of an election. This communication
can be electronic and/or by means of removable media, in all cases the security,
authenticity, and integrity of the voter data must be guaranteed.

The system must implement a rigorous framework for authenticating devices,
software components, and communication, and for encrypting the relevant infor-
mation (but note that audit logs must be authenticated but not be encrypted
because the public must be able to inspect logs without relying on any system
for decryption). Much of this can be accomplished by a careful application of
known techniques, and intelligent the use of cryptographic tools (lest we create
only a false sense of security [14]).

Lastly, research on and development of e-pollbook systems must be evalu-
ated. To evaluate an implementation framework and the underlying algorithms,
the following criteria must be kept in mind: (1) Simplicity: The system should
be clear, with succinct, mathematically clear properties, and easy to understand
and to use. (2) Applicability: It should be directly useful in developing a real
e-pollbook application, such that a jurisdiction might be tempted to use. (3)
Feasibility: It should be implementable with acceptably good performance. The
underlying algorithms and protocols must be evaluated according to their cor-
rectness in with respect to their specifications, their simplicity, and their degree
of security, performance and fault-tolerance.

6 Discussion

We presented a view of e-pollbook solutions as distributed systems. We cited
requirements that need to be satisfied by any robust e-pollbook system in order
to guarantee fault-tolerance, availability, and consistency. We also present a
broader view that societal issues, additional research directions, and the need

Towards a Robust Distributed Framework for Election-Day Voter Check-In 191

for reference implementations. While it is also necessary to address certain secu-
rity issues, including the security of underlying physical platforms, and catas-
trophic failure issues, these are outside of the intended scope. We provide key
results from the distributed system research showing that it is challenging to
build adequate poll book solutions, and that without being grounded in rele-
vant research any solution is likely to be incorrect and provide only an illusion
of fault-tolerance, consistency, and safety. Indeed, we are not aware of a single
commercially available implementation that satisfies the overall requirements
and that are consistent with the relevant research. An important conclusion is
that e-pollbook development is an attractive application domain for the research
in dependable distributed computing.

References

1. Deepening democracy: a strategy for improving the integrity of elections world-
wide. In: Global Commission on Elections, Democracy and Security. Kofi Annan
Foundation (2012). https://aceproject.org/ace-en/topics/ei/onePage

2. Securing the Vote: Protecting American Democracy. National Academies of Sci-
ences, Engineering, and Medicine September 2018

3. AlEroud, A., Karabatis, G.: Bypassing detection of url-based phishing attacks
using generative adversarial deep neural networks. In: Proceedings of the Sixth
International Workshop on Security and Privacy Analytics, pp. 53–60 (2020)

4. Antonyan, T., et al.: Automating voting terminal event log analysis. In:
EVT/WOTE (2009)

5. Aponte, A., Cruz, J., Jennings, C., MacDonald, D., Wooden, S.: Committee of
Inquiry Report of Factual Findings. Tech. Rep, City of Hartford Court of Common
Council (2015)

6. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asyn-
chronous environment. J. ACM 37(3), 524–548 (1990)

7. Bernhard, M., et al.: Public evidence from secret ballots. In: Electronic Voting, pp.
84–109 (2017)

8. Binun, A., et al.: Self-stabilizing byzantine-tolerant distributed replicated state
machine. In: Bonakdarpour, B., Petit, F. (eds.) Stabilization, Safety, and Security
of Distributed Systems, SSS 2016. LNCS, vol. 10083, pp. 36–53. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49259-9 4

9. Birman, Ken: A history of the virtual synchrony replication model. In: Charron-
Bost, B., Pedone, F., Schiper, A. (eds.) Replication. LNCS, vol. 5959, pp. 91–120.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11294-2 6

10. Blanchard, P., Dolev, S., Beauquier, J., Delaët, S.: Practically self-stabilizing Paxos
replicated state-machine. In: Noubir, G., Raynal, M. (eds.) Networked Systems,
NETYS 2014. LNCS, vol. 8593, pp. 99–121. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-09581-3 8

11. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM
32(4), 824–840 (1985)

12. Brewer, E.A.: Towards robust distributed systems (abstract). 19th ACM Sympo-
sium on Principles District Computer, 7, ACM, 16-19 July 2000

13. Davtyan, S., et al.: Taking total control of voting systems: firmware manipula-
tions on an optical scan voting terminal. In: 2009 ACM Symposium on Applied
Computing, SAC 2009, pp. 2049–2053. ACM (2009)

https://aceproject.org/ace-en/topics/ei/onePage
https://doi.org/10.1007/978-3-319-49259-9_4
https://doi.org/10.1007/978-3-642-11294-2_6
https://doi.org/10.1007/978-3-319-09581-3_8
https://doi.org/10.1007/978-3-319-09581-3_8

192 A. A. Schwarzmann

14. Davtyan, S., Kiayias, A., Michel, L., Russell, A., Shvartsman, A.A.: Integrity of
electronic voting systems: fallacious use of cryptography. In: Proceedings of 27th
Annual ACM Symposium on Applied Computing, SAC 2012, pp. 1486–1493. ACM,
March 2012

15. Dolev, S., Georgiou, C., Marcoullis, I., Schiller, E.M.: Self-stabilizing byzantine
tolerant replicated state machine based on failure detectors. In: Dinur, I., Dolev,
S., Lodha, S. (eds.) Cyber Security Cryptography and Machine Learning, CSCML
2018. LNCS, vol. 10879, pp. 84–100. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94147-9 7

16. Dolev, S., Liber, M.: Toward Self-stabilizing blockchain, reconstructing totally
erased blockchain (preliminary version). In: Dolev, S., Kolesnikov, V., Lodha, S.,
Weiss, G. (eds.) Cyber Security Cryptography and Machine Learning, CSCML
2020. LNCS, vol. 12161, pp. 175–192. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-49785-9 12

17. Dolev, S., Wang, Z.: Sodsbc: Stream of distributed secrets for quantum-safe
blockchain. In: IEEE International Conference on Blockchain, pp. 247–256 (2020)

18. Cox, E.: New voting machines finally on horizon: seven years later, Maryland finally
buying voting machines with a paper trail. Baltimore Sun (2014)

19. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

20. Gardner, W.M.: New Hampshire Electronic Poll Book System Request for Infor-
mation V0.1. New Hampshire Department of State (2017)

21. Gilbert, S., Lynch, N., Shvartsman, A.: RAMBO: a robust, reconfigurable atomic
memory service for dynamic networks. Distrib. Comput. 23(4), 225–272 (2010)

22. Gilbert, S., Lynch, N.A.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2), 51–59 (2002)

23. Gramoli, V., Nicolaou, N., Schwarzmann, A.A.: Consistent Distributed Storage.
Morgan & Claypool Publishers (2021)

24. Gray, J.N.: Notes on data base operating systems. In: Bayer, R., Graham, R.M.,
Seegmüller, G. (eds.) Operating Systems. LNCS, vol. 60, pp. 393–481. Springer,
Heidelberg (1978). https://doi.org/10.1007/3-540-08755-9 9

25. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Prog. Lang. Syst. 12(3), 463–492 (1990)

26. Iredale, T., Clark, K.: System and method for synchronizing electronic poll book
voter databases. U.s. patent us8812594 b2, 19 August 2014

27. Jancewicz, R., Kiayias, L., Michel, Russell, A., Shvartsman, A.: Malicious takeover
of voting systems: arbitrary code execution on optical scan voting terminals. In:
28th Annual ACM Symposium on Applied Computer, pp. 1816–1823 (2013)

28. Kentros, S., Kiayias, A., Nicolaou, N., Shvartsman, A.A.: At-most-once semantics
in asynchronous shared memory. In: Keidar, I. (ed.) Distributed Computing, DISC
2009. LNCS, vol. 5805, pp. 258–273. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04355-0 27

29. Kiayias, A., Michel, L., Russell, A., Sashidar, N., See, A., Shvartsman, A.:. An
authentication and ballot layout attack against an optical scan voting terminal. In:
Electronic Voting Technology Workshop, EVT 2007. USENIX Association (2007)

30. Kiayias, A., et al.: Tampering with special purpose trusted computing devices:
a case study in optical scan e-voting. In: Computer Security App-s Conference,
ACSAC 2007. 23rd Annual, pp. 30–39 (2007)

31. Kolias, C., Kambourakis, G., Stavrou, A., Gritzalis, S.: Intrusion detection in
802.11 networks: empirical evaluation of threats and a public dataset. IEEE Com-
mun. Surv. Tutor. 18(1), 184–208 (2015)

https://doi.org/10.1007/978-3-319-94147-9_7
https://doi.org/10.1007/978-3-319-94147-9_7
https://doi.org/10.1007/978-3-030-49785-9_12
https://doi.org/10.1007/978-3-030-49785-9_12
https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.1007/978-3-642-04355-0_27
https://doi.org/10.1007/978-3-642-04355-0_27

Towards a Robust Distributed Framework for Election-Day Voter Check-In 193

32. Lamport, L.: On interprocess communication. part i: basic formalism. Distrib.
Comput. 2(1), 77–85 (1986). https://doi.org/10.1007/BF01786228

33. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4(3), 382–401 (1982)

34. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc. (1996)
35. Maleki, H., Rahaeimehr, R., Jin, C., van Dijk, M.: New clone-detection approach for

RFID-based supply chains. In: 2017 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pp. 122–127 (2017)

36. Merrill, D.W.: Connecticut Electronic Poll Book System: Requirement Specifica-
tion V1.0. Office of the Connecticut Secretary of the State (2015)

37. Michel, L.D., Shvartsman, A.A., Volgushev, N.: A systematic approach to analyzing
voting terminal event logs. USENIX J. Election Technol. Syst. (JETS) 2(2), 34–53
(2014)

38. Musial, P.M., Nicolaou, N.C., Shvartsman, A.A.: Implementing distributed shared
memory for dynamic networks. Commun. ACM 57(6), 88–98 (2014)

39. One Hundred Seventh Congress of the United States of America. Help America
Vote Act of 2002 (2002)

40. Pawlak, M., Guziur, J., Poniszewska-Marańda, A.: Towards the blockchain tech-
nology for system voting process. In: Cyberspace Safety and Security, pp. 209–223
(2018)

41. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980)

42. Peisch, P.: Procurement and the polls: how sharing responsibility for acquiring
voting machines can improve and restore confidence in American voting systems.
Georgetown Law J. 97(877), 877–915 (2009)

43. Rivest, R.: Clipaudit: a simple risk-limiting post-election audit. ArXiv,
abs/1701.08312 (2017)

44. Rivest, R.L., Stark, P.B.: When is an election verifiable? IEEE Secur. Priv. 15(3),
48–50 (2017)

45. Shvartsman, A.A., Kiayias, A., Michel, L., Russell, A.: On the security and integrity
issues of optical scan voting systems. In: County of Nassau Board of Elections
against State of New York, New York State Board of Elections, pp. 1–23. Supreme
Court of the State of New York, County of Nassau, 19 March 2010

46. Thomson-DeVeaux, A., Mithani, J., Bronner, L.: Why many Americans don’t vote.
In: FiveThirtyEight, 26 October 2020

47. van Dijk, M., Jin, C., Maleki, H., Ha Nguyen, P., Rahaeimehr, R.: Weak-
unforgeable tags for secure supply chain management. In: Meiklejohn, S., Sako,
K. (eds.) Financial Cryptography and Data Security, FC 2018. LNCS, vol. 10957,
pp. 80–98. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-58387-
6 5

48. Wolchok, S., Wustrow, E., Isabel, D., Halderman, J.A.: Attacking the Washington,
D.C. internet voting system. In: Keromytis, A.D. (ed.) Financial Cryptography and
Data Security, FC 2012. LNCS, vol. 7397, pp. 114–128. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32946-3 10

https://doi.org/10.1007/BF01786228
https://doi.org/10.1007/978-3-662-58387-6_5
https://doi.org/10.1007/978-3-662-58387-6_5
https://doi.org/10.1007/978-3-642-32946-3_10

Asynchronous Proof-of-Stake

Jakub Sliwinski(B) and Roger Wattenhofer

ETH Zurich, Zürich, Switzerland
{jsliwinski,wattenhofer}@ethz.ch

Abstract. We introduce a new permissionless blockchain architecture
called Cascade (Consensusless, Asynchronous, Scalable, Deterministic
and Efficient). The protocol is completely asynchronous, and does rely
on neither randomness nor proof-of-work. Transactions exhibit finality
within one round trip of communication.

Cascade is consensusless and only satisfies a relaxed form of consensus
by introducing a weaker termination property. Without full consensus,
the protocol does not support certain applications, such as general smart
contracts. However, many important applications do not require general
smart contracts, and Cascade is an advantageous solution for these appli-
cations. In particular, the architecture can implement the functionality
of a cryptocurrency such as Bitcoin, replacing Bitcoin’s energy-hungry
proof-of-work with a proof-of-stake validation.

1 Introduction

Nakamoto’s Bitcoin protocol [12] has taught the world how to achieve trust with-
out a designated trusted party. The Bitcoin architecture provides an interest-
ing deviation from classic distributed systems approaches, for instance by using
proof-of-work to allow anonymous participants to join and leave the system at
any point, without permission.

However, Bitcoin’s proof-of-work solution comes at serious costs and compro-
mises. The security of the system is directly related to the amount of investments
in designated proof-of-work hardware, and to spending energy to run that hard-
ware. Since the system’s participants that provide the distributed infrastructure
(often called miners) bear significant costs (hardware, energy), the protocol com-
pensates them with Bitcoins. However, adversaries might disrupt this scheme by
bribing the miners to behave untruthfully or disrupt the reward payments.

Irrespectively of how costly Bitcoin’s proof-of-work gets, this solution can
only process a fixed amount of transactions in a given time period, hampering
adoption and often making it infeasible to use Bitcoin at all.

To make matters worse, proof-of-work protocols assume critical requirements
related to the communication between the participants regarding message loss
and timing guarantees. In other words, such protocols are vulnerable to attacks
on the underlying network.

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 194–208, 2021.
https://doi.org/10.1007/978-3-030-91081-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_13

Asynchronous Proof-of-Stake 195

In the decade since the original Bitcoin publication, researchers have tried to
address the wastefulness and ineffectiveness of proof-of-work. One of the most
prominent research directions is replacing Bitcoin’s proof-of-work with a proof-
of-stake approach. In proof-of-stake designs, miners are replaced with partici-
pants who contribute to running the system according to the amounts of cryp-
tocurrency they hold. Alas, proof-of-stake protocols require similar communica-
tion guarantees as proof-of-work, and thus can also be attacked by disrupting the
network. Moreover, proof-of-stake introduces some of its own problems. Promi-
nently, existing proof-of-stake designs critically rely on randomness. To achieve
consensus, the participants of such systems repeatedly choose a leader among
themselves. Despite being random, this choice needs to be taken collectively and
in a verifiable way, which complicates the problem.

Due to the way blockchains typically process transactions, participants have
to wait a significant amount of time before they can be confident that their
transactions are accepted by the system. For example, it usually takes around
an hour for merchants to accept Bitcoin transactions as confirmed, which is
unacceptable for time-sensitive applications.

In his seminal paper, Nakamoto made the crucial assumption that his system
has to be able to totally order the transactions submitted to the system in order
to reject the fraudulent ones. However, meeting this requirement is equivalent to
solving the problem known as consensus. Nakamoto’s assumption has shaped the
design of blockchain systems to this day. Thus, many blockchain systems achieve
consensus while not taking advantage of this powerful property, but suffering the
associated costs.

Our Contribution. We relax the usual notion of consensus to extract the
requirements necessary for an efficient cryptocurrency. Thus we introduce a
blockchain design that is Consensusless, Asynchronous, Scalable, Determinis-
tic, and Efficient (Cascade). We claim the protocol to offer a host of exciting
properties:

Permissionless: Most importantly, Cascade offers its advantages without rely-
ing on permissioned participation. The protocol is permissionless in the same
way as other proof-of-stake systems, where participants of the system freely
exchange cryptocurrency tokens. Token holders run the system by validating
new transactions. Additionally, any token holder can delegate the validation
role to other participants, but preserving his ownership of the associated
tokens.

Parallelizable: In Cascade, validators running the system can parallelize the
processing of transactions. There is no limit to the number of transactions a
validator can process by parallelization.

Asynchronous: Cascade does not require the messages to be delivered within
any known period of time. Thus the protocol is fully resilient to all network-
related threats, such as delaying messages, denial-of-service, or network
eclipse attacks. An adversary having complete control of the network always

196 J. Sliwinski and R. Wattenhofer

Table 1. Comparison of cascade to selected BFT/blockchain protocols. Permissioned
protocols are on the left, permissionless protocols on the right. We mark all protocols
providing full consensus as supporting general smart contracts, even though particular
implementations might not feature smart contracts.

PBFT [3] HoneyBadger
BFT [11]

Broadcast-
based [7]

Bitcoin and
Ethereum [16]

Ouroboros [8] Algorand [4] Cascade

Permissionless � � � �
Proof-of-work free � � � � � �
Finality � � � � �
Asynchronous � � �
Deterministic � � �
Parallelizable � �
General smart contracts � � � � �

can delay the progress of the system (by simply disabling communication),
but otherwise cannot interfere with the protocol or trick the participants in
any way. Previously approved transactions cannot be invalidated and imper-
missible transactions cannot be approved.

Final: Under normally functioning network communication, transactions in Cas-
cade are instantly confirmed. Confirmation is final and impossible to revert.
This is in stark contrast to systems such as Bitcoin, where the confidence in
a transaction being confirmed only probabilistically increases over time.

Deterministic: We assume the functionality provided by asymmetric encryp-
tion and hashing. Apart from these cryptographic necessities, Cascade is
completely deterministic and surprisingly simple.

Efficient: Unlike proof-of-work, the security of the system does not depend
on the amount of devoted resources such as energy, computational power,
memory, etc. Instead, similarly to proof-of-stake protocols, Cascade requires
that more than two-thirds of the system’s cryptocurrency is held by honest
participants.

Cascade does not support consensus. This prevents the protocol from sup-
porting applications that involve smart contracts open for interaction with any-
body. For example, the smart contract functionality of Ethereum cannot be
directly implemented with Cascade. Many important applications (e.g., cryp-
tocurrencies or IoT systems), do not require consensus, and Cascade offers an
advantageous solution for these applications.

Table 1 compares the properties of Cascade with some of the most relevant
existing BFT/blockchain paradigms. Many more protocols exist that improve
some aspects, for example, many protocols improve upon PBFT. While many of
these protocols are more performant and efficient than the original PBFT, they
share the fundamental disadvantages of PBFT: They are not permissionless,
they are not parallelizable, and in order to make progress (“liveness”), they
need synchronous communication.

Asynchronous Proof-of-Stake 197

Table 1 shows the close relation of Cascade with broadcast-based protocols.
One may argue that Cascade brings the simplicity, robustness, and efficiency of
broadcast-based protocols to the permissionless domain.

In this paper we focus on the basic correctness properties of the protocol and
leave in depth discussion of the scalability aspect to future work.

1.1 Relaxing Consensus

In the context of a cryptocurrency, consensus is used to solve the problem of
double-spending. Suppose Alice holds one cryptocurrency coin. Now Alice sets
up a transaction that transfers her coin to Bob (in exchange for a good or ser-
vice). However, Alice wants to cheat, trying to simultaneously spend the same
coin in another transaction to Carol. Upon receiving one (or both) of Alice’s
transactions, honest agents need to agree on what happens to Alice’s coin, pre-
venting Alice from doubling her money. In this context, achieving consensus
consists of the following requirements:

Definition (Consensus).
Each honest agent observes some transaction from a pairwise conflicting set of
transactions {t0, t1, . . . }.
Agreement: If some honest agent accepts a transaction ti, every honest agent

will accept ti. No conflicting transaction can be accepted.
Validity: If all honest agents observe only one transaction ti, only ti can be

accepted by honest agents.
Termination: One of the transactions ti will be accepted by honest agents.

The insight leading to the relaxation, is that malicious agents do not need to
enjoy any guarantees. Alice tried to cheat by issuing two conflicting transactions.
Cascade does not guarantee that any of Alice’s conflicting transactions will be
accepted.

On the other hand, an honest agent will only create one transaction spending
her coin. Thus, every honest agent will see the same candidate transaction. Hence
we relax consensus to guarantee termination only for honest agents:

Definition (Cascade Consensus).

Agreement: As above.
Validity: As above.
Honest-Termination: If all honest agents observe only one transaction ti, ti

will be accepted by honest agents.

Under this relaxed notion of consensus, if Alice tries to cheat, it is possible
that neither Bob nor Carol will accept Alice’s transaction. Some honest agents
might see one of the transactions first, while others might see the other first. Then
the requirement of Honest-Termination does not apply, and the transactions
might stay without a resolution forever. This turn of events can be seen as Alice
losing her coin due to misbehaviour.

198 J. Sliwinski and R. Wattenhofer

Otherwise, Consensus and Cascade Consensus do not differ. Agreed upon
results are final, conflicting results are precluded and honest transactions are
accepted. Despite the difference being insignificant with respect to the function-
ing of a cryptocurrency, this relaxation allows Cascade to combine a large set of
advantages.

1.2 Intuition

For simplicity of presentation, we describe Cascade in the terminology of a cryp-
tocurrency and refer to the cryptocurrency managed by the protocol as the
money. A more formal description follows in Sect. 3.

Transactions. A transaction transfers money from one or more inputs to one or
more outputs. Inputs and outputs are money amounts paired with keys required
to spend them.

Validators. In proof-of-stake systems, the agents that own some of the money
in the system also run the system. These agents (validators) stay online and
participate in validating transactions. In Cascade, we do not require agents to
stay online and participate, but allow agents to delegate this responsibility to
other agents. Every agent can be a validator. Validators sign correct transactions.
The system works correctly as long as agents holding more than two-thirds of
the system’s money delegate to honest validators.

Confirmations. A transaction t is confirmed by the system if enough validators
ack (acknowledge by signing) t. If a transaction receives enough acks, no other
transaction conflicting with t can become confirmed. If a cheating Alice attempts
to issue two conflicting transactions t and t′ at roughly the same time, it is
possible that (a) either t or t′ gets confirmed (but not both), or (b) neither t
nor t′ are ever confirmed. Case (b) happens if some validators see and sign t,
while others see and sign t′. The system might stay in this state forever with
the validators’ approval split between t and t′. The result is equivalent to Alice
losing the money she attempted to double-spend, and does not constitute any
threat to the system.

It is intuitive to verify that such a system does work correctly, if the validating
power amounts are statically assigned to the validators, and a set of validators
controlling more than two-thirds of the cryptocurrency obeys the protocol. Our
system still works correctly when the agents can freely exchange the cryptocur-
rency and change the appointed validators, even in the harsh conditions of an
asynchronous network. Thus, we establish a system with the participation model
similar to proof-of-stake protocols, but much simpler than known proof-of-stake
protocols.

2 Model

Agents and Adversary. Our blockchain is used and maintained by its par-
ticipants called agents. Agents who follow the protocol are called honest. The

Asynchronous Proof-of-Stake 199

set of agents who do not follow the protocol is controlled by the adversary. The
adversary behaves in an arbitrary (adversarial) way.

We make a standard assumption pertaining to proof-of-stake systems that
the adversary always controls less than one-third of the cryptocurrency in the
system. The assumption is the equivalent of assuming that the adversary controls
less than one-third of the permissions in a BFT protocol, or half of the hashing
power in a proof-of-work system such as Bitcoin. The idea behind the assumption
is that an agent owning a large stake in a system is heavily invested in the system.
While sufficiently deep pockets make it possible to disrupt any system, the proof-
of-stake assumption ensures that an attack is costly and self-destructive. We
introduce more concepts to state this requirement precisely in Sect. 3.4.

Asynchronous Communication. All agents are connected by a virtual net-
work supporting a message diffusion mechanism (such as Bitcoin’s network),
where agents can broadcast their messages to all other agents. Like in Bitcoin,
new agents can join this network to receive new and prior messages.

The network is asynchronous: The adversary controls the network, dictat-
ing when messages are delivered and in what order. Messages are required to
arrive eventually, without any bound on the time it might take. Under such
weak requirements, an adversary delaying the delivery of messages can delay
the progress of an agent, but otherwise will not be able to interfere with the
protocol.

Cryptographic Primitives. We assume the functionality of asymmetric
encryption where a public key allows every agent to verify a signature of the
associated secret key. Agents can freely generate public/secret key pairs.

We also assume cryptographic hashing, where for every message a succinct,
unique hash can be computed. Whenever we say that a transaction t2 refers to
a transaction t1, we mean that t2 includes a hash of t1, and as such uniquely
identifies t1.

Apart from these two cryptographic primitives, the Cascade protocol is com-
pletely deterministic.

3 Protocol

3.1 Transactions

Outputs. Outputs are the basic unit of information. Outputs are included in
transactions and identify who owns how much money after the transaction was
confirmed by the system.

Definition 1 (Output). An output contains:

– Value: A number representing the amount of money.
– Owner key: A public key. The agent holding the associated secret key is the

owner of the money.

200 J. Sliwinski and R. Wattenhofer

Agents can reuse their keys for multiple outputs, but for simplicity of pre-
sentation we assume that the owner key uniquely identifies a single output.

Transactions. A transaction is a request issued by an agent (or a set of agents)
to transfer money to other agent(s). Outputs of a transaction identify recipi-
ents of the transaction. The transaction also indicates a validator – some agent
devoted to maintaining the system.

Outputs can be associated with some identifying number, but for simplicity
of presentation we assume that outputs uniquely identify the originating trans-
action.

Definition 2 (Transaction). A transaction t contains:

– A set of inputs, where each input is an output of some previous transaction.
Transaction t is said to spend these inputs.

– A set of outputs. The sum of values of the outputs equals the sum of values
of the inputs. This sum is called the value of the transaction.

– Validator key: A public key. The value of the transaction is delegated to the
agent holding the associated secret key (validator).

The transaction is signed by all secret keys associated with the inputs.

The validator cannot spend the transaction outputs. After t is confirmed, the
validator’s signing stake increases until t’s outputs are spent.

Genesis. The genesis is a special transaction without inputs. The genesis is
hard-coded in the protocol and known upfront to every agent. The genesis
describes the initial distribution of money among the original agents and the
initial validators (which could or could not be the same as the original agents).

The values of all genesis outputs sum up to M , so M is the total money in
the system. In this paper, we assume that M never changes.

→ (p1, 4)

→ (p2, 5)

→ (p3, 3)

Genesis

(p1, 4) → (p4, 2)

→ (p5, 2)

sign(s1)

(p2, 5) → (p6, 5)

sign(s2)

(p4, 2) → (p7, 1)

(p6, 5) → (p8, 2)

→ (p9, 4)

sign(s4, s6)

Fig. 1. Example DAG of transactions, validator keys are omitted. The pi’s are owner
keys, and si’s are the corresponding secret keys.

Asynchronous Proof-of-Stake 201

3.2 Validators

Validators are agents processing transactions in the system. Validators listen for
transactions being broadcast, and sign them if they have not observed a conflict.
An honest validator signs all non-conflicting transactions.

After a transaction t with a value of m is confirmed by the system (explained
below), the “signing power” of the validator v indicated in transaction t increases
by m (at the cost of the validators indicated in transactions that have output
the inputs of t). To spend an output of t, the owner of an output must later
broadcast a new transaction, as v cannot spend the outputs of t. An owner of
an output of t can change the appointed validator v to any other validator by
spending t’s output (for instance by self-sending the money), when including a
different validator key. Any agent can also indicate themselves as the validator.

The validator v signs transactions in the system to contribute to their con-
firmation, and the contribution is proportional to the amount delegated to v.

Number of Validators. Similarly to Bitcoin mining pools, the number of val-
idators in Cascade might naturally be relatively small, such that a small number
of validator’s signatures is needed to confirm a transaction. The protocol can also
enforce or encourage the number of validators to form groups, for example by
an appropriate fee structure. In contrast to Bitcoin mining pools, the validators
forming a group can maintain trustlessness with respect to each other by using
an aggregatable signature scheme such as BLS [1]. In this way, a few validator
pools would preserve the agency of individual validators. We believe that this
is more decentralized than for example Bitcoin. Due to the page limit, we leave
these aspects of the protocol to future work.

3.3 Confirmations

A validator broadcasts an ack message to communicate a new set of transactions
the validator signed.

Definition 3 (ack). An ack contains:

– A reference to the previous ack issued by the same validator.
– A set of references to transactions the validator signs.

The ack is signed by the validator’s secret key.

All messages can only reference previously created messages with hashes.
Cyclic hash references are impossible and hence all messages form a directed
acyclic graph (DAG), with the genesis being the only root. Messages are pro-
cessed in any order respecting references. Agents do not process a transaction t
until they have fully received past(t).

Definition 4 (past). The set of messages reachable by following references
from t is called past(t). For a set of messages T , past(T) =

⋃
t∈T past(t).

202 J. Sliwinski and R. Wattenhofer

→ (p1, 4), v1
→ (p2, 4), v2
→ (p3, 2), v3

Genesis

(p1, 4) → (p4, 3)

→ (p5, 1)

v4

(p4, 3) → (p7, 3)

v5

(p3, 2) → (p6, 2)

v2

(p1, 4) → (p9, 4)

v9

(p6, 2) → (p8, 5)

(p7, 3) →
v8

v1

v2 v4

v2

v3

(a) Example transaction DAG, pi’s represent the owners and vi’s the validators. Circle
nodes are acks labelled by the issuing validators. Acks point to the transactions being
signed and (if available) the previous acks of the same validator. Light blue transactions
are confirmed based on the acks. When issuing an ack, validators have to point to the
previously issued ack, as exhibited by v2. The dark grey transaction is an attempt at
double-spending; it conflicts with a confirmed transaction and will never be confirmed.
The white transaction is not yet confirmed.

→ (p1, 4), v1
→ (p2, 4), v2
→ (p3, 2), v3

Genesis

(p1, 4) → (p4, 3)

→ (p5, 1)

v4

(p4, 3) → (p7, 3)

v5

(p3, 2) → (p6, 2)

v2

v1

v2 v4

t1

t2

(b) A subview of the transaction DAG
from Figure 2a. The set At1 consisting of
the acks of validators v1 and v2 is proof
that t1 is confirmed. The set At2 consist-
ing of the acks of validators v1, v2 and v4
is proof that t2 is confirmed.

→ (p1, 3), v1
→ (p2, 2), v2
→ (p3, 2), v3
→ (p4, 2), v4

Genesis

(p2, 2) → (p5, 2)

v2

(p4, 2) → (p7, 2)

v5

(p4, 2) → (p6, 2)

v5

v1

v2 v3

v4

v4

(c) Example attempt at double-
spending. The validator v4 is adversarial,
does not reference previous acks in new
acks and attempts to confirm conflicting
transactions. Honest validators are split
between conflicting transactions such
that neither will ever be confirmed.

Fig. 2. Example DAGs.

Asynchronous Proof-of-Stake 203

Transactions can be confirmed by the system, and confirmation is perma-
nent. A transaction t becomes confirmed when enough validators broadcast an
ack signing it. After a transaction is confirmed, the stake delegated to the val-
idator indicated in t increases by the value of t (and appropriately decreases for
the validators to whom the inputs were delegated). Thus we define transaction
confirmation and the stake delegated to a validator inductively (from genesis)
with respect to each other. Genesis is confirmed from the start.

Definition 5 (delegated stake). Given a set of acks A, let TA be the set of
transactions confirmed in past(A) that indicate v as the validator. The stake
delegated to v in past(A) is equal to the sum of values of outputs of transactions
in TA that are delegated to v and that are unspent in past(A).

Definition 6 (confirmed). A transaction t is confirmed if the transactions
that output the inputs of t are confirmed, and there exists a set of acks At such
that:

– some validators v1, . . . , vk with respective delegated stake m1, . . . ,mk in
past(At) sign t, and

∑k
i=1 mi >

2
3M ;

– no transaction t′ ∈ past(At) shares any input with t.

Honest agents do not spend their outputs more than once, i.e. every output
becomes an input at most once. Assume that t is a transaction by an honest
agent. Then we will never see a transaction t′ which tries to spend the same
outputs as inputs of t. In this case, it is straightforward to collect validator acks
for t, and eventually t will have enough acks to be confirmed.

On the other hand, if some t′ is sharing inputs with t is also present in the
transaction DAG, it is unclear if there can be a set At such that t is confirmed.
It is only the misbehaving agent’s concern to find an appropriate At and prove
to the recipient of t that t is confirmed.

3.4 Adversary

The adversary behaves in an arbitrary way, and thus might create conflicting
transactions, transmit acks that do not reference previously issued acks, send
different messages to different recipients, etc.

Any message sent by an honest agent is immediately seen by the adversary.
The delivery of each message from an honest agent to an honest agent can be
delayed by the adversary for an arbitrary amount of time.

Stake. As explained in Sect. 2, we assume that the value of genesis outputs
delegated to the adversary sums up to less than M/3. In every transaction, a
new validator is indicated. Hence the stake delegated to the adversary shifts over
time.

Definition 7 (adversary stake). Let mh
t and ma

t be the sums of values of
inputs of t that are outputs of transactions delegated to honest agents and the
adversary respectively.

204 J. Sliwinski and R. Wattenhofer

When transaction t delegated to an honest agent is confirmed (i.e. any
At exists), then we subtract ma

t from the amount we count as delegated to the
adversary. When transaction t delegated to the adversary is issued, then we add
mh

t to the amount we count as delegated to the adversary.

4 Correctness

In this section we outline the proof that the Cascade protocol upholds Cascade
Consensus as defined in Sect. 1.1. The proof is available in the online version of
the paper [14].

The difficulty lies in the complete asynchrony of the system. In an orthodox
blockchain, all confirmed transactions are totally ordered. Such a total order
does not exist in Cascade. Moreover, the stake distribution among validators is
constantly shifting. The protocol prevents problems by requiring honest valida-
tors to reference previous acks. Moreover, when some transaction t shifts the
stake from a validator v1 to a validator v2, the stake is retracted from v1 as soon
as t is observed, but only credited to v2 when t is referenced by many other
validators and confirmed.

Theorem 8 is the main result we want to prove.

Theorem 8. The Cascade protocol satisfies Cascade Consensus.

Under our assumption from Sect. 3.4, more than two-thirds of the money is
always delegated to honest validators. Hence, if there is no double-spend alterna-
tive to a transaction t, honest validators will sign t and t will be confirmed by the
system. Thus Validity and Honest-Termination of Definition 1.1 hold. Whenever
any agent observes a transaction t as confirmed, the acks At serve as the proof
that t is confirmed to any other agent. Therefore, to show that Agreement holds,
it suffices to show that no pair of conflicting transactions is ever confirmed. Then
the Cascade protocol satisfies Cascade consensus.

For contradiction, assume that some transaction DAG can be produced by the
protocol where two conflicting transactions tx and ty are confirmed. Consider the
instance of such a DAG G that is minimal in terms of the number of transactions.

Consider some transaction t0 confirmed in G during the protocol’s execution
based solely on the stake distribution specified in genesis. We show that for any
other confirmed transaction t, either t0 ∈ past(At) or t ∈ past(At0) holds in DAG
G. We conclude that t0 cannot conflict with any transaction. Then t0 does not
serve a purpose for the construction of DAG G, as t0’s inputs could be replaced
in the genesis with t0’s outputs for a smaller DAG. This contradicts with the
choice of G, and Theorem 8 summarizes that under our assumptions, conflicting
transactions cannot be confirmed in a single DAG.

As we mention in Sect. 5, in practice agents running Cascade would not need
to precisely compute past(At) for normal workloads. Every agent would confirm
almost all transactions based on a lower-bound of the stake delegated to other
agents computed from the observed confirmed and yet-to-be-confirmed transac-
tions. Precise past(At) might need to be computed only for some contentious
transactions when there is a conflict.

Asynchronous Proof-of-Stake 205

5 Future Work

Due to space constraints we focussed on the basic properties of Cascade in this
paper. In this section we briefly outline the aspects of Cascade we plan to discuss
and expand on in the future to exhibit the advantages of the protocol.

Parallelization. Provided the topology of the workload is not inherently impos-
sible to parallelize (such as all transactions passing the same token in a chain
of transactions), validators can parallelize the signing and processing of trans-
actions. Thus, if we increase the number of machines (with constant bandwidth
each) at the validator’s disposal, the throughput of Cascade increases without
limit. To exclude the corner cases inherently resistant to parallelization, we state
Assumption 1.

Assumption 1. If xM is the value of honest transactions not determined to
be confirmed by some honest validators yet, honest validators control more than
(23 + x)M of the stake.

For example, if some 5% of the system’s money is being moved and uncon-
firmed at some instant, about 71.7% of validators need to be active to process
transactions in parallel efficiently.

Signing in Parallel. Each validator v can split the space of keys between
multiple servers, for example based on the first few characters of the key. The
servers can independently store the spent inputs corresponding to the assigned
key space.

To issue an ack signing a lot of transactions in parallel, the implementation
might support splitting an ack into multiple parallel messages marked with a
message count number and the same ack sequence number.

Determining Confirmation in Parallel. To determine transaction confirma-
tion in parallel, the key space is similarly split between machines that listen to
messages being broadcast in the network.

Since bandwidth is limited for individual machines, the network might simply
be split into a number of subnetworks corresponding to the key space splitting.

The validators maintain the sets of confirmed and yet-to-be-confirmed trans-
actions in their view. The set of outputs of confirmed transactions that are
unspent in the set of confirmed and unprocessed transactions gives a lower bound
of the stake delegated to each validator in the view. By Assumption 1, these lower
bounds are enough to determine transactions as confirmed without identifying
the exact sets of confirming acks At or the exact corresponding stake amounts.

Smart Contracts. To support smart contracts callable by arbitrary parties
Cascade needs to be augmented with a consensus mechanism ordering inputs.
However, such consensus mechanism would be invoked only for the inputs requir-
ing it, where traditional BFT/blockchain protocols totally order all transactions,
and hence introduce an inherent bottleneck in the design of a system.

The consensus overhead is only necessary for some smart contracts, only when
conflicting inputs are issued at the same time, and only with respect to such

206 J. Sliwinski and R. Wattenhofer

relevant inputs. Thus, a system processing mostly parallelizable content could
enjoy the properties of Cascade for the most part, while resorting to consensus
for the contents that require it.

Pruning the DAG. In contrast to standard blockchain systems, Cascade natu-
rally supports checkpoints and pruning old, redundant data from the blockchain,
which we discuss in the full version of the paper [14].

6 Related Work

Permissioned Systems. Traditionally, distributed ledgers [3,9] operate with a
carefully selected committee of trusted machines. Such systems are called per-
missioned. The committee repeatedly decides which transactions to accept, using
some form of consensus: The committee agrees on a transaction, votes on and
commits that transaction, and only then moves forward to agree on the next
transaction.

Gupta [7] proposes a permissioned transaction system that does not rely
on consensus. In this design, a static set of validators is designated to confirm
transactions. Our concepts (such as the use of parallelization) do work in the
permissioned setting as well, and could be applied to this work.

The authors of [6] show that the consensus number of a Bitcoin-like cryp-
tocurrency is 1, or in other words, that consensus is not needed. The paper
provides an analysis and discussion of which applications rely on consensus and
to what extent, all of which is directly relevant to Cascade. The authors draw
parallels between permissioned consensusless transaction systems and Byzantine
consistent broadcast [2,10].

HoneyBadger BFT [11] provides an asynchronous permissioned system by
relying on advanced cryptographic techniques with full consensus. Again, the
main differences from Cascade are that the system is permissioned, much more
involved, and reliant on randomization.

The authors of [5] introduce a protocol based on reliable broadcast that allows
participants to join and leave the system. However, the adversary is required to
control a limited number of participants (as opposed to hashing power or stake),
so the protocol cannot be applied in permissionless contexts where unknown par-
ticipants can join freely. The protocol consists of a few rounds of communication
to agree on nodes joining or leaving the system.

Permissionless Systems. Bitcoin [12] radically departed from the established
model and became the first permissionless blockchain. In the Bitcoin system,
there is no fixed committee; instead, everybody can participate. Bitcoin achieves
this by using proof-of-work. Proof-of-work is a randomized process tying com-
putational power and spent energy to the system’s security, while also requiring
synchronous communication. However, Bitcoin’s form of consensus hardly satis-
fies the traditional consensus definition. Instead of terminating at any point, the
extent to which the consensus is ensured raises over time, approaching but never

Asynchronous Proof-of-Stake 207

reaching certainty. More precisely, in Bitcoin transactions are never finalized,
and can be reverted with ever decreasing probability.

Similar to Bitcoin, Cascade allows permissionless participation. In contrast
to Bitcoin, Cascade does not rely on proof-of-work or randomization, features
parallelizability and finality, and works under full asynchrony.

To address the problems associated with proof-of-work, proof-of-stake has
been suggested, first in a discussion on an online forum [13]. Proof-of-stake
blockchains are managed by participants holding a divisible and transferable
digital resource, as opposed to holding hardware and spending energy. Academic
works proposing proof-of-stake systems include designs such as Ouroboros [8] or
Algorand [4]. Proof-of-stake blockchains solve consensus and thus do not par-
allelize without compromises. The reliance on synchronous communication and
randomization in proof-of-stake are potential security risks. Despite avoiding
these pitfalls, Cascade is also simpler.

DAG Blockchains. To increase the relatively modest throughput of Bitcoin,
some proof-of-work protocols employ directed acyclic graphs in the place of Bit-
coin’s single chain. SPECTRE [15] is likely the closest relative of Cascade among
such protocols, as it relaxes consensus similarly to Cascade. However, the sim-
ilarities are largely superficial, as SPECTRE remains a proof-of-work protocol,
employs different techniques, and does not share the other of Cascade’s advan-
tages. SPECTRE improves many aspects of Bitcoin, but with respect to the
harsh criteria of Table 1, SPECTRE can only earn a tick at permissionless.

ABC. We have been working on the idea of building a consensusfree permis-
sionless DAG blockchain for a few years already. A predecessor of this work [14]
discusses related topics not developed here due to space constraints, such as
pruning the transaction DAG, fees and money creation.

7 Conclusions

In this paper we presented Cascade, a permissionless and parallelizable block-
chain protocol. Cascade provides the functionality of a cryptocurrency without
consensus, without proof-of-work, without requiring synchronous communica-
tion, without relying on randomness. The protocol is scalable and exhibits final-
ity. The design of Cascade is arguably the simplest possible design for a variety
of blockchain applications.

Cascade provides an advantageous solution for applications like cryptocur-
rencies, where honest participants do not generate conflicting status updates.
Supporting general smart contracts would require performing consensus some of
the time. Adding this functionality would check the last box in Table 1.

References

1. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) Advances in Cryptology—ASIACRYPT 2001, ASIACRYPT 2001.

208 J. Sliwinski and R. Wattenhofer

LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45682-1 30

2. Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to Reliable and Secure
Distributed Programming. Springer Science & Business Media (2011)

3. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. OSDI 99, 173–186
(1999)

4. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium
on Operating Systems Principles, pp. 51–68. ACM (2017)

5. Guerraoui, R., Komatovic, J., Seredinschi, D.A.: Dynamic byzantine reliable broad-
cast [technical report]. arXiv preprint arXiv:2001.06271 (2020)

6. Guerraoui, R., Kuznetsov, P., Monti, M., Pavlovič, M., Seredinschi, D.A.: The con-
sensus number of a cryptocurrency. In: Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pp. 307–316. ACM (2019)

7. Gupta, S.: A Non-Consensus Based Decentralized Financial Transaction Processing
Model with Support for Efficient Auditing. Master’s Thesis (2016)

8. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

9. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. (TOCS) 16(2),
133–169 (1998)

10. Malkhi, D., Merritt, M., Rodeh, O.: Secure reliable multicast protocols in a wan. In:
Proceedings of 17th International Conference on Distributed Computing Systems,
pp. 87–94. IEEE (1997)

11. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT
protocols. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 31–42. ACM (2016)

12. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
13. QuantumMechanic (2011). https://bitcointalk.org/index.php?topic=27787.0
14. Sliwinski, J., Wattenhofer, R.: ABC: proof-of-stake without consensus (2019).

http://arxiv.org/abs/1909.10926
15. Sompolinsky, Y., Lewenberg, Y., Zohar, A.: Spectre: a fast and scalable cryptocur-

rency protocol. IACR Cryptology ePrint Arch. 2016, 1159 (2016)
16. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.

Ethereum Proj. Yellow Pap. 151(2014), 1–32 (2014)

https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/3-540-45682-1_30
http://arxiv.org/abs/2001.06271
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://bitcointalk.org/index.php?topic=27787.0
http://arxiv.org/abs/1909.10926

Lack of Quorum Sensing Leads to Failure
of Consensus in Temnothorax Ant

Emigration

Jiajia Zhao1(B) , Lili Su2 , and Nancy Lynch1

1 Massachusetts Institute of Technology, Cambridge, MA 02139, USA
{jiajiaz,lynch}@csail.mit.edu

2 Northeastern University, Boston, MA 02115, USA
l.su@northeastern.edu

Abstract. We investigate the importance of quorum sensing in the suc-
cess of house-hunting of emigrating Temnothorax ant colonies. Specifi-
cally, we show that the absence of the quorum sensing mechanism leads to
failure of consensus during emigrations. We tackle this problem through
the lens of distributed computing by viewing it as a natural distributed
consensus algorithm. We develop an agent-based model of the house-
hunting process, and use mathematical tools such as conditional proba-
bility, concentration bounds and Markov mixing time to rigorously prove
the negative impact of not employing the quorum sensing mechanism on
emigration outcomes. Our main result is a high probability bound for
failure of consensus without quorum sensing in a two-new-nest environ-
ment, which we further extend to the general multiple-new-nest environ-
ments. We also show preliminary evidence that appropriate quorum sizes
indeed help with consensus during emigrations. Our work provides the-
oretical foundations to analyze why Temnothorax ants evolved to utilize
the quorum rule in their house-hunting process.

Keywords: Bio-inspired algorithms · Distributed consensus ·
Stochastic dynamical systems

1 Introduction

Social insect colonies are motivated to move the locations of their nesting site
as a functional response to various selected forces, such as colony growth, com-
petition, foraging efficiency, microclimate, nest deterioration, nest quality, para-
sitism, predation, and seasonality [18]. Through constant adaptation to a chang-
ing environment, many social insect species such as ants, termites, and bees
have evolved robust algorithms to accomplish the task of collective nest relo-
cation [32]. In this paper, we study one such algorithm observed in colonies of
Temnothorax ants.

Temnothorax ant colonies have many biological constraints: individuals with
limited memory and computational power, limited communication, and no cen-
tral control. Despite that, colonies as a whole can reach various global goals
c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 209–228, 2021.
https://doi.org/10.1007/978-3-030-91081-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_14&domain=pdf
http://orcid.org/0000-0003-3046-5362
http://orcid.org/0000-0003-3538-5679
http://orcid.org/0000-0003-3045-265X
https://doi.org/10.1007/978-3-030-91081-5_14

210 J. Zhao et al.

such as nest-site selections and foraging [10]. Their remarkable collective intel-
ligence is not only an interesting problem for biologists, but also inspiring for
the computer science community. In particular, from the distributed computing
perspective, the collective house-hunting behavior is closely related to the fun-
damental problem of consensus. Building a theoretical understanding of the key
mechanisms in the house-hunting process can thus shed light on the designs of
novel distributed consensus algorithms.

Fig. 1. From [14] (Fig. 2). (a)
Recruitment via tandem running
in the ant of genus Temnothorax.
The worker at the front is lead-
ing a tandem run, and the follower
behind is about to signal its pres-
ence by tapping with its antennae
on the gaster of the leader. (b)
Recruitment by transport in Tem-
nothorax ants. One worker is sim-
ply carrying another quickly to the
new nestsite. (Both photographs
by S. C. Pratt.)

Colonies consist of active ants who move
the remaining passive workers, the queen, and
brood items (immature ants) [4,25]. All work-
ers are female ants. At the beginning of an
emigration event, individual active ants inde-
pendently search for new nest sites. If an
ant finds one, she evaluates the site’s qual-
ity according to various metrics [7,12]. Quality
evaluation is relative to the old home nest [3].
If she is not satisfied with the site, she keeps
searching. Otherwise if she is satisfied with the
site, she returns to the home nest after some
time interval that is inversely related to the
new nest site quality; during this interval she
might continue searching for other new poten-
tial nest sites [15,22]. If she returns to the old
nest, she recruits another active ant to the site
by leading a slow tandem run from the old
nest to the new site [19,26]. This is done by
the leader ant directing the follower ant along
a pheromone trail (Fig. 1(a)). Upon arriving
at the nest, the follower ant also evaluates the
nest’s quality independently of the leader ant.
Both ants then continue monitoring the qual-
ity of the nest and repeat the process of qual-
ity estimation, wait interval/continued search,
and further recruitment [29].

An ant continues leading tandem runs
until she perceives that the new nest’s population has exceeded a threshold,
or quorum [23]. At this point, she ceases tandem runs and instead starts trans-
porting other ants by picking one up and carrying her from the old home nest
to the new nest (Fig. 1(b)). These transports are much faster than tandem runs,
and they are largely directed at the passive workers and brood items, hence
they serve to quickly move the entire colony to the new nest [22,25]. The trans-
porter rarely drops out of transporting other ants, and hence is considered fully
committed to the new nest as the colony’s home [29].

Both tandem runs and transports are forms of recruitment to accelerate
the emigration process, but the marginal benefits of transports in ensuring

The Necessity of Quorum Sensing in Consensus 211

consensus remain relatively poorly understood. Previous studies have regarded
the quorum sensing mechanism as a way to tune the speed-accuracy trade-off
[9,16,17,20,24,31], where a smaller quorum prompts ants to commit sooner
(higher speed) to a nest that has accumulated enough population, although
that nest could be inferior to another nest that is discovered later in the process
(lower accuracy). However, these studies generally equate accuracy with con-
sensus or cohesion [5,6], when all or most ants commit to the same nest. The
difference between accuracy and consensus is that the former evaluates the indi-
viduals’ ability to choose the best option in the environment, but the latter is
concerned only with their ability to agree with each other. The ability to stay
in a single group is not only an interesting algorithmic question, but also highly
beneficial for the survival of these ant colonies [6,9,14,30]. However, consensus
during emigrations has been comparatively understudied. Such studies require
examinations of both consensus cases and split cases, and the latter is difficult
to induce experimentally. Therefore, in this paper, we conduct one of the first
theoretical studies of the role of quorum sensing in emigration consensus.

At the outset, quorum sensing significantly benefits consensus because once
enough ants make their choice, that choice is “locked in” and has a higher chance
of becoming the final choice. This helps to ensure consensus when there are many
choices and the search effort is dispersed. However, a closer look reveals that the
quorum size must be carefully chosen. If the quorum size is too large, it would
be very unlikely to be reached by any nest; if it is too small, multiple nests will
likely reach quorum (a split), incurring significant additional costs in time and
risk of exposure of the emigration [1,2,23]. These trade-offs pose the question
of whether quorums help with consensus at all. In this paper, we aim to answer
this question partially by investigating the probability of emigration consensus
without the quorum sensing mechanism.

We start by modeling individual active ants as coupled random processes
without considering the quorum sensing mechanism. Unlike in most classical
distributed algorithms, the ants in our model do not receive initial input prefer-
ences, but must determine these preferences through exploration. Another dif-
ference is that our consensus requirement exempts a small portion of ants from
committing to the same nest. Intuitively, we expect that the distribution of ant
states converges to a limiting distribution in the long run. However, due to the
probabilistic modeling, there is a non-zero probability that an emigration devi-
ates greatly from this expectation, and this probability depends also on how
many ants can be exempted by the requirement. Therefore, detailed calculations
are needed to quantify the probability of deviations that satisfy the consensus
requirement. Using probability tools such as conditional probability, concen-
tration bounds and Markov mixing time, we then show that without quorum
sensing, the probability of consensus is small and decays to zero exponentially
fast as the colony size grows. In addition, we show preliminary evidence that
appropriate quorum sizes indeed help with consensus during emigrations.

The rest of the paper is organized as follows. In Sect. 2, we present our model
of individual ants, of the entire colony, and of an execution, for two-nest environ-

212 J. Zhao et al.

ments. In Sect. 3, we formally state the definition of consensus, and the metrics
to measure a model’s performance in terms of consensus. In Sect. 4, we show that
with a high probability, emigrations cannot eventually reach consensus without
quorum sensing. In Sect. 5, we extend our results to general k−nest environments
where k > 2. Then, in Sect. 6, we consider the addition of the quorum sensing
mechanism to the emigration process in two-nest environments, and show sim-
ulation results on the quorum sizes that are sufficient for consensus.

2 Model

2.1 Timing Model and the Environment

Fig. 2. State transition diagram
for ant ai during round t +
1 before/without quorum attain-
ment. αi

1(t + 1) and αi
2(t + 1) are

composite functions each including
the probabilities of an ant taking
different paths (independent dis-
covery or tandem running) to tran-
sition out of n0 into n1 and n2,
respectively.

We divide time into discrete rounds. Individ-
ual active ants are modeled as identical proba-
bilistic finite state machines and their dynam-
ics are coupled through recruitment actions,
as described later in Sect. 2.2. Let N denote
the total number of active ants in the colony.
Note that passive ants, the queen, and brood
items can only be transported and have no
states. For ease of exposition, in the sequel, by
an “ant” we mean an “active ant”. Each ant
starts a round with its own state. During each
round, ants can perform various state transi-
tions and have new states, before all entering
the next round at the same time. Throughout
the paper, the state of an ant at round t refers
to her state at the end of round t.

The environment contains the original
home nest n0 and two new nests n1 and n2.
The new nests n1 and n2 have qualities q1 and
q2 respectively, relative to the home nest quality. For the convenience of our anal-
ysis, we let 0 < q2 < q1 ≤ 1, where a higher value corresponds to a better nest.
Each nest is also associated with a population that changes from round to round.
We use x0(t)N , x1(t)N and x2(t)N , where x0(t) + x1(t) + x2(t) = 1, to denote
(active) ant populations in nest n0, n1 and n2 respectively at the end of round
t. Initially, individual ants have no information on q1 and q2.

2.2 Model of Individual Ants Without Quorums

In this subsection, we describe the dynamics of an ant without quorums (a.k.a.
without performing state transitions based on seeing a quorum), compactly illus-
trated in Fig. 2 and Eq. (1)–(6). Though these dynamics are not Markovian as
the state transition of an ant is influenced by other ants during recruitments
(tandem runs), we prove (in Sect. 4) that after a finite time, the state transitions
of an ant become independent of the others’ states.

The Necessity of Quorum Sensing in Consensus 213

Individual State. The set of possible states of an ant is denoted as S �
{n0, n1, n2}. Each state ni refers to the ant being at nest ni, and thus in the
sequel we use “in state ni” and “in nest ni” interchangeably. Denote the state
of ant ai at the end of round t as si(t) with si(0) = n0 for all ai, i.e., initially
all ants locate at the home nest n0.

Transitions out of the Home Nest. In a round, an ant ai in n0 can be
recruited by following a tandem run to either n1 or n2. If ai is not recruited,
she discovers nest n1 or n2 for the first time through independent discovery with
probability α ∈ (0, 1/2] for either nest and a total discovery probability of 2α.
Note that the biological meaning of the parameter α is that it encodes the home
nest quality - the higher the home nest quality, the less likely ai is to search for
a new nest during any round t and the smaller α is. Recruitment takes priority
over her performing a probabilistic state transition to either n1 or n2 through
independent discovery.

Formally, at the end of round t, if ant ai is in n0, let TRi
1(t + 1), TRi

2(t + 1)
be the event that ant ai is recruited to n1 and n2 respectively during round t+1.
Let τ i

1(t+1), τ i
2(t+1) represent their respective conditional probabilities during

round t + 1, i.e.,

P
{
TRi

m(t + 1) | si(t) = n0

}
= τ i

m(t + 1), for m ∈ {1, 2}.

Note that for any ant ai, the two events are mutually exclusive, and τ i
1(t + 1) +

τ i
2(t + 1) ≤ 1. The exact expressions for τ i

1(t + 1) and τ i
2(t + 1) are very complex

and affect the time that ant ai transitions out of n0, which is an important
milestone time for the proofs in this paper. Fortunately, we manage to circumvent
calculating the exact expressions of τ i

1(t+1) and τ i
2(t+1) by deriving a bound on

this time using a coupling argument (Proposition 2). We found that this bound
was sufficient for proving our main theorem.

With this notation, conditioning on an ant ai being at state n0 at time t, the
probability of her transitioning to n1 in the nest round, denoted by αi

1(t) can be
expressed as

P {si(t + 1) = n1 | si(t) = n0} � αi
1(t + 1)

= P
{
TRi

1(t + 1) | si(t) = n0

}

+ P
{
si(t + 1) = n1 | (si(t) = n0 ∧ ¬(TRi

1(t + 1) ∨ TRi
2(t + 1)))

}

· P{¬(TRi
1(t + 1) ∨ TRi

2(t + 1)) | si(t) = n0

}

= τ i
1(t + 1) + α(1 − τ i

1(t + 1) − τ i
2(t + 1)), (1)

where α can be formally expressed as

α = P
{
si(t + 1) = n1 | (si(t) = n0 ∧ ¬(TRi

1(t + 1) ∨ TRi
2(t + 1)))

}

. It is easy to see that αi
1(t + 1) sums up the probability of her getting recruited

to n1 and the probability of independent discovery of n1 in the case that she

214 J. Zhao et al.

does not get recruited to either n1 or n2. Similarly, we define αi
2(t + 1) as the

probability of her transitioning to n2 during round t + 1, i.e.,

P {si(t + 1) = n2 | si(t) = n0}
� αi

2(t + 1) = τ i
2(t + 1) + α(1 − τ i

1(t + 1) − τ i
2(t + 1)). (2)

Correspondingly,

P {si(t + 1) = n0 | si(t) = n0} = 1 − αi
1(t + 1) − αi

2(t + 1). (3)

Transitions Between New Nests
When si(t) = nm for m ∈ {1, 2}, at the beginning of round t+1, with probability
(1 − um), ant ai chooses to search her environment and discover the new nest
she is not currently at, i.e.,

P {si(t + 1) = n3−m | si(t) = nm} = 1 − um, ∀ m ∈ {1, 2}; (4)

with probability um, ant ai tries to recruit another ant from state n0 through a
tandem run and comes back to nm, i.e.,

P {si(t + 1) = nm | si(t) = nm} = um, ∀ m ∈ {1, 2}. (5)

If there is no more ant left in n0 to recruit, the leader ant ai simply returns to nest
nm without recruiting another ant. The recruiting probability um is determined
by the quality of new nest nm as

um � 1
1 + exp (−λqm)

, ∀ m ∈ {1, 2}, (6)

where the parameter λ > 0 represents the noise level of individual decision
making to evaluate the quality of a nest nm for m ∈ {1, 2}. A larger λ means
a less noisy decision rule, and thus a higher probability of recruitment to the
superior site nm. Also note that u1, u2 ∈ [0.5, 1] and u1 > u2.

Our choice of the sigmoid function is rooted in empirical evidence. The deci-
sion making mechanism for individual ant recruitment has been shown by a
number of experimental and modeling studies to be both quality-dependent
[15,21,24,25] and threshold-based (individuals compare the perceived nest qual-
ity to a fixed threshold) [27,28]. The sigmoid function we chose here is thus a
common choice that incorporates both dependencies into the modeling of noisy
individual decision making. Intuitively, when nm has a quality higher than that
of n0’s, nm is the better choice and it is beneficial for ants to recruit to it. When a
nest nm is strongly superior to n0, i.e., the quality difference surpasses a thresh-
old, the probability of an individual ant recruiting to nm should thus be very
high (close to 1 in our model). The sigmoid function is a “smooth” representa-
tion of this threshold-based rule. On the other hand, when the quality difference
is small, the probability of recruitment has stronger dependencies on the quality
difference. This case is modeled by a near-linear segment in the sigmoid function.

Remark 1 (Non-markovian dynamics of an individual ant). The state si(t) of
any individual ant ai during round t has dependencies on 1) her own state in
the previous round si(t − 1), and 2) the recruitment actions of other ants.

The Necessity of Quorum Sensing in Consensus 215

2.3 Dynamics of the Entire Colony

We now describe what happens in an arbitrary execution, or emigration.
Throughout the paper, we use “an execution” and “an emigration” interchange-
ably, referring to an emigration event.

Let s(t) = {s1(t), · · · , sN (t)} for t = 0, 1, · · · denote the random process of
the entire colony state, represented by a vector of dimension N that stacks the
states of individual ants in the colony. Although si(t) for any i is not Markovian,
it is easy to see that s(t) is a Markov chain, since for any tandem leader in round
t, the choice of a follower only depends on s(t−1) and not on any history prior to
round t−1. An emigration starts from round 1, with si = n0 for all i = 1, · · · , N .
During each round, each ant not in n0 performs one state transition in random
order, followed by each ant in n0 performing one state transition in random
order. At the beginning of a round t, each ant has her own state si(t − 1) and
the colony has state s(t − 1). If at the beginning of round t she is in nest n1

or n2, respectively, the population at that nest at the beginning of round t is
also available to ai. During a round t, each individual ant performs one state
transition according to the individual models in Sect. 2.2, which results in a
transition of the colony state as well during this round. At the end of round t,
each ant has a new state si(t) and the colony has state s(t). All ants then enter
the next round t + 1 with their new states.

3 The Consensus Problem

Here we define what it means for an emigration to reach consensus. We say that
an emigration has reached Δ-consensus (where Δ ∈ [0, 1

2]) if there exists t̃ such
that for all t ≥ t̃ and a nest m ∈ {1, 2}, the proportion of the population at nest
nm at time t is greater than or equal to 1 − Δ, i.e., xm(t) ≥ (1 − Δ).

The metric to evaluate a model’s performance is the consensus probability C,
which is the probability that an emigration reaches consensus as defined above.

Remark 2. Note that Δ represents the proportion of ants that can be exempted
from the consensus requirement. We can see that the smaller Δ is (lowest value
is 0), the larger (1 − Δ)N is, and hence the more ants are required for an
emigration to reach consensus. In other words, the smaller Δ is, the more “strict”
the consensus metric is and the more challenging it is for an emigration to reach
consensus.

4 Failure of Consensus in Two-Nest Environments

In this section, we explore colony emigration behavior only with individual tran-
sition rules and tandem runs defined above (i.e., without quorum sensing). Equiv-
alently, we consider the case where the quorum size is N , so that the quorum
sensing mechanism never has any effect. We show an upper bound on the consen-
sus probability C for a given Δ and colony size N . This upper bound decreases
to 0 exponentially fast as N → ∞.

216 J. Zhao et al.

Next we introduce two quantities, denoted by H and π∗, that will be used in
the statement of our main result. It is easy to see from Eq. (4) and (5) that if an
ant ai jumps out of the home nest n0 at some time, then from that time onward,
the state transition of ai becomes Markovian and is governed by the following
transition matrix

H =
[

u1 1 − u1

1 − u2 u2

]
. (7)

The transition in H is also illustrated in Fig. 4. It can also be seen (which we
will formally show later) that the state of each ant has an identical limiting
distribution, denoted by π∗ � 1

2−u1−u2
[1 − u2, 1 − u1] ∈ R

2, with support on
{n1, n2} only.

Theorem 1. For any Δ ∈ [0, 1 − π∗(n1)], let ε0 = 1−π∗(n1)−Δ
2 > 0. Then it

holds that

P

{
N∑

i=1

1{si(t) = n1} ≥ (π∗(n1) + 2ε0) N = (1 − Δ)N

}

≤ 2 exp
(

−ε20N

2

)
,

for any t >
(

1
ln(1−2α) + 1

ln(1−R(H))

)
ln ε0

2 , where R(H) = 2 − u1 − u2 is
Dobrushin’s coefficient of ergodicity ([11, Chapter 6.2]) of H.

Remark 3. Theorem 1 is stated for n1. A similar result holds for n2. Theorem 1
says that for any t greater than

(
1

ln β + 1
ln(1−R(H))

)
ln ε0

2 , the probability of x1(t)

reaching (1 − Δ) is upper bounded by 2 exp
(
− ε20N

2

)
. Thus, the total consen-

sus probability C for the given Δ is upper bounded by 4 exp
(
− ε20N

2

)
, which

decreases to 0 exponentially fast as N increases. It is worth noting that real
ant colonies often need Δ to be very small or even zero for survival. From the
theorem expression, we can see that the smaller Δ is, i.e., the more stringent the
consensus, the lower is the upper bound of the consensus probability. Therefore,
Theorem 1 implies that extra mechanisms, such as the quorum rule are necessary
to help the emigration reach consensus.

Later in Sect. 5, we also show that the proofs in this section and related
results can easily extend to environments with multiple nests.

4.1 Analysis of Main Result

Despite the fact that the dynamics of the entire ant colony is a Markov chain,
analyzing this Markov chain is highly non-trivial because the state is quite
involved and the state space is huge – it contains all the possible partitions
of ants into three groups, with each group representing one nest as the state
of an individual ant. In this section we analytically show that despite the fact
that the emigration behaviors of individual ants are interactive, the dynamics

The Necessity of Quorum Sensing in Consensus 217

of any individual ant are independent of other ants shortly after she leaves the
original home nests either through discovery or through recruitment. Moreover,
we show that this independence manifests itself in a non-trivial way after a few
rounds – suggesting that a large portion of ants quickly rely only on individual
intelligence. Then we show that this independence is harmful to realizing social
cohesion.

Fig. 3. Flowchart of the proofs.

Several intermediate results are
derived in proving Theorem1. The
connections of the supporting lemmas
and corollaries with respect to Theo-
rem 1 are shown in Fig. 3. Please note
that due to space constraints, we show
the proof details of only Theorem1 in
this paper. Those of all other interme-
diate results can be found in [33].

Definition 1. For each i ∈ [N], define random variable T 1
i � inf{t : si(t)
=

n0} as the first round at the beginning of which ant ai has transitioned out of
the n0 state in any arbitrary execution of the emigration.

Remark 4. It can be shown that T 1
i is finite with probability 1 [33]. It follows

immediately from Definition 1 that P
{
si(t) = n0 | t ≥ T 1

i

}
= 0 for any ant ai.

It turns out that ant ai’s state transitions become independent of other ants
after T 1

i , the time that ai leaves n0, formally stated in the following proposition.

Proposition 1. For every i, j ∈ [N], i
= j and every t > T 1
i , the state transi-

tions of ant ai are independent from aj, i.e.,

P
{
si(t + 1) = s′

1 | (si(t) = s1) ∧ (sj(t) = s2) ∧ (t > T 1
i)
}

= P
{
si(t + 1) = s′

1 | (si(t) = s1) ∧ (t > T 1
i)
}

,

where s1, s2, s
′
1 ∈ S and s′

1
= n0.

The next proposition is devoted to showing that after a few rounds, many ants
have left the home nest n0. Consider N random indicator variables 1

{
T 1

i > t
}

for any t, each variable taking values in the {0, 1}. Using stochastic dominance
and Hoeffding’s inequality [13], we show a high probability upper bound on the
number of ants still in n0 at round t. Here stochastic dominance is used to
tackle the challenges caused by the dependency among the N indicator random
variables.

Proposition 2. Let β � 1 − 2α. For t ≥ 1 and any number d ∈ [0, 1], it holds
that

P

{
N∑

i=1

1
{
T 1

i > t
}

< N
(
βt + d

)
}

> 1 − exp
(−2Nd2

)
,

218 J. Zhao et al.

i.e., with a probability of at least (1 − exp
(−2Nd2

)
), the number of ants staying

at home nest beyond time t is at most N (βt + d).

Corollary 1. For any given ε ∈ (0, 1), for any t ≥ logβ(ε
2), it holds that

P

{
N∑

i=1

1
{
T 1

i > t
}

< εN

}

> 1 − exp
(−Nε2/2

)
.

In other words, with a probability of at least (1 − exp
(−Nε2/2

)
), at most εN

ants remain in the home nest n0 after round logβ(ε
2).

Next, we show that every ant ai has an identical limiting distribution.
Towards this, we first show that every ant ai that has transitioned out of n0

has the same limiting distribution. Furthermore, we show that all ants eventu-
ally transition out of n0 and thus all ants share the same limiting distribution.
The proof of Lemma 1 uses the quantity Q(t), defined as

Q(t) � {ai : si(t)
= n0} (8)

which is a random variable representing the set of ants that have transitioned out
of n0 by the end of round t, in an arbitrary emigration. Q(t) is thus a function
of an execution. It is easy to see that w.r.t. this emigration, Q(t − 1) ⊆ Q(t) for
any t ≥ 1.

Lemma 1. For each ai, its limiting
distribution, denoted by πi, is well-
defined, and can be expressed as

πi � 1
2 − u1 − u2

[1 − u2, 1 − u1] . (9)

For ease of exposition, we define π∗ =
πi. From Lemma 1 it can be seen
that the probability ratio π∗(n1)

π∗(n2)
=

exp (λ(q1 − q2)) is very sensitive to the
nest quality gap (q1 − q2) and λ.

Fig. 4. State transition diagram for
individual ants after they leave n0,
before/without quorum attainment.

It turns out that for t large enough, any ant that has transitioned out of n0

has state distributions “close” to the stationary distribution π∗, formally stated
next.

Lemma 2. For any ant ai, let πi,t denote the probability distribution of her
state over the possible states depicted in Fig. 4 at time t ≥ T 1

i . Then for any
number of rounds 	 > 0, it holds that

‖πi,T 1
i +� − π∗‖1 ≤ 2 (1 − R(H))�

.

Using Lemma 2, the following corollary immediately follows:

The Necessity of Quorum Sensing in Consensus 219

Corollary 2. Fix any δ ∈ (0, 1). For any ant ai and t > T 1
i + 	, where 	 �

log(1−R(H))
δ
2 , it holds that

‖πi,t − π∗‖1 ≤ δ.

Combined with Corollary 1, we are now ready to prove Theorem 1.

Proof of Theorem 1
We first give the intuition and a proof sketch to show an upper bound on the
probability of the population at n1 being higher than a certain number C0, for
t large enough.

We break down the problem into two cases. In the first case, by a certain
milestone-round k1, the number of ants that have transitioned out of n0 is low.
In the second case, that number is high. Now, by applying concentration bounds,
we show that the first case has a low probability. We thus subsequently focus
on analyzing the second case which has a high probability. From Corollary 2 we
know that after a certain number k2 of rounds, most of the ants that have left n0

will have distributions that are very close to the limiting distribution π∗. Thus,
at any round t ≥ k1 + k2, with high probability, the proportion of ants in n1

is also close to π∗(n1) among ants that have left n0 (at most N ants). In other
words, after k1 +k2 rounds the probability of n1’s population being much higher
than π∗(n1)N should be quite low. Summing up the bounds for the first and
second cases gives us an overall upper bound on this probability, proving the
theorem.

For ease of exposition, let Bi(t) = 1{si(t) = n1} for each i ∈ [N] and t ≥ 0.
Let C0 be an arbitrary positive number, C0 ∈ [0, N]. Let C1 = (1− ε0)N . Recall
that β = 1 − 2α.

P

{
N∑

i=1

1{si(t) = n1} ≥ C0

}

= P

{
N∑

i=1

Bi(t) ≥ C0

}

= P

{
N∑

i=1

Bi(t) ≥ C0 |
∣
∣
∣Q(logβ

ε0
2

)
∣
∣
∣ < C1

}

P

{∣∣
∣Q(logβ

ε0
2

)
∣
∣
∣ < C1

}

+ P

{
N∑

i=1

Bi(t) ≥ C0 |
∣
∣
∣Q(logβ

ε0
2

)
∣
∣
∣ ≥ C1

}

P

{∣∣
∣Q(logβ

ε0
2

)
∣
∣
∣ ≥ C1

}

≤ P

{∣∣
∣Q(logβ

ε0
2

)
∣
∣
∣ < C1

}
+ P

{
N∑

i=1

Bi(t) ≥ C0 |
∣
∣
∣Q(logβ

ε0
2

)
∣
∣
∣ ≥ C1

}

. (10)

We bound the two terms in the RHS of Eq. (10) separately.

220 J. Zhao et al.

Bounding the 1st term: For any t ≥ logβ
ε0
2 , we have

P {|Q(t)| < C1} = P {|Q(t)| < (1 − ε0)N}

= P

{
N∑

i=1

1{si(t)
= n0} < (1 − ε0)N

}

= P

{
N∑

i=1

1
{
T 1

i ≤ t
}

< (1 − ε0)N

}

= P

{
N∑

i=1

1
{
T 1

i > t
}

> ε0N

}

≤ exp
(

−ε20N

2

)
,

where the last inequality follows from Corollary 1.

Bounding the 2nd Term: Note that

N∑

i=1

Bi(t) =
∑

ai∈Q(t)

Bi(t) +
∑

ai /∈Q(t)

Bi(t).

It is easy to see that
∑

ai /∈Q(t)

Bi(t) = 0. (11)

In addition, we have

P

⎧
⎨

⎩

∑

ai∈Q(t)

Bi(t) −
∑

ai∈Q(t)

E [Bi(t)] ≥ ε0 |Q(t)| | |Q(t)| ≥ (1 − ε0)N

⎫
⎬

⎭

= P

⎧
⎨

⎩

∑

ai∈Q(t)

Bi(t) −
∑

ai∈Q(t)

πi,t(n1) ≥ ε0 |Q(t)| | |Q(t)| ≥ (1 − ε0)N

⎫
⎬

⎭

≤ exp
(−2 |Q(t)| ε20

)

≤ exp
(−2(1 − ε0)ε20 N

)
.

Conditioning on
∣
∣Q(logβ

ε0
2))
∣
∣ ≥ (1 − ε0)N , from Corollary 2, we know that for

each ai ∈ Q(logβ
ε0
2), for any t > logβ

ε0
2 + 	, where 	 = log(1−R(H))

ε0
2 , it holds

that πi,t(n1) ≤ π∗(n1) + ε0. Hence we get
∑

ai∈Q(t)

πi,t(n1) + ε0 |Q(t)| ≤ (π∗(n1) + ε0) |Q(t)| + ε0 |Q(t)|

≤ (π∗(n1) + 2ε0) N.

The Necessity of Quorum Sensing in Consensus 221

Thus,

P

⎧
⎨

⎩

∑

ai∈Q(t)

Bi(t) ≥ (π∗(n1) + 2ε0) N

⎫
⎬

⎭

≤ P

⎧
⎨

⎩

∑

ai∈Q(t)

Bi(t) −
∑

ai∈Q(t)

E [Bi(t)] ≥ ε0 |Q(t)| | |Q(t)| ≥ (1 − ε0)N

⎫
⎬

⎭

≤ exp
(−2(1 − ε0)ε20 N

)
. (12)

Combining Eq. (11) and (12), we conclude that

P

{
N∑

i=1

Bi(t) ≥ (π∗(n1) + 2ε0) N | |Q(t)| ≥ (1 − ε0)N

}

≤ exp
(−2(1 − ε0)ε20 N

)
.

Combining the probability bounds on the first and second terms of Tho-
erem 1, we have

P

{
N∑

i=1

1{si(t) = n1} ≥ (π∗(n1) + 2ε0) N

}

≤ exp
(−2(1 − ε0)ε20 N

)
+ exp

(
−ε20N

2

)

≤ 2 exp
(

−ε20N

2

)
as ε0 ∈ (0, 1/2),

proving Theorem 1.

5 Extension: Failure of Consensus in More-Nest
Environments

Both the results on asymptotic independence and its negative impact presented
in Sect. 4 can be extended to the general k-new-nest environments where k >
2. On a high level, the necessary additions to the individual transition model
(Fig. 2) are: 1) a new state for each new nest, each similar to the n1 and n2,
2) all new nests can exchange ants with each other, and 3) all new nests can
receive ants from n0 through recruitment or discovery. The model for timing,
environment, and execution of the whole colony remain the same as the two-nest
case, where n1 has the highest quality. After adjusting quantities H and π∗, one
can derive results similar to Theorem 1: without quorum sensing, the probability
of consensus can be arbitrarily low. We detail these changes below in this section.

Figure 5 shows the transition diagram for an individual ant before/without
her seeing a quorum at any nest, and Eq. (13)–(16) define transition probabilities
among the four states. Similar to the two-nest case, P

{
TRi

l(t + 1)
}

= τ i
l (t + 1)

for each l ∈ [1, k] is defined as the probability of the event that ant ai transitions

222 J. Zhao et al.

Fig. 5. State transition diagram for ant ai during round t + 1 in a k-nest environment
before/without quorum attainment. Probabilities αi

l(t + 1), l ∈ [1, k] are composite
functions each including the probabilities of an ant taking different paths (independent
discovery or tandem running) to transition out of n0 into nl. Compared to Fig. 2, this
figure shows the addition of one more new nest n3; any more new nests can be added
in the same way.

from n0 to nl during round t + 1 by following a tandem run. Figure 5 displays
only the addition of a third new nest, n3, and any more new nest can be added
in the same way. The addition of n3 requires that during round t, an ant at n0

transitions to n3 with probability α3(t); an ant at n3 stays in n3 with probability
u3; and an ant at a new nest l transitions to any other new nest m
= l with
transition probability 1−ul

k−1 .

P {si(t + 1) = nl | si(t) = n0} = αi
l(t) for l ∈ [1, k] (13)

P {si(t + 1) = n0 | si(t) = n0} = 1 −
k∑

l=1

αi
l(t) (14)

P {si(t + 1) = nl | si(t) = nl} = ul for l ∈ [1, k] (15)

P {si(t + 1) = nm | si(t) = nl} =
1 − ul

k − 1
for l,m ∈ [1, k] and m
= l (16)

The Necessity of Quorum Sensing in Consensus 223

where

αi
l(t) � P

{
TRi

l(t)
}

+ P
{
si(t + 1) = nl | (si(t) = n0 ∧ ¬(TRi

1(t) ∨ TRi
2(t) ∨ . . . ∨ TRi

k(t)))
}

· P{¬(TRi
1(t) ∨ TRi

2(t) ∨ . . . ∨ TRi
k(t)) | si(t) = n0

}

= τ i
l (t) + α(1 −

k∑

l=1

τ i
l (t)), for l ∈ [1, k],

ul � 1
1 + exp (−λql)

for l ∈ [1, k].

The two quantities used in the main theorem for a k-nest environment, H
and π∗, are also different, as shown below.

– H, a k × k transition matrix of an arbitrary ant ai’s state si after she tran-
sitions out of n0, as specified in Eq. (17).

– π∗ ∈ R
k, a vector representing the limiting distribution of an arbitrary ant

ai (Eq. (18)). The l-th element is the limiting distribution of state nl, for
l ∈ [1, k].

H =

⎡

⎢
⎢
⎢
⎢
⎣

u1
1−u1
k−1

1−u1
k−1

1−u1
k−1 . . . 1−u1

k−1
1−u2
k−1 u2

1−u2
k−1

1−u2
k−1 . . . 1−u2

k−1
1−u3
k−1

1−u3
k−1 u3

1−u3
k−1 . . . 1−u3

k−1

.
1−uk

k−1
1−uk

k−1
1−uk

k−1
1−uk

k−1
1−uk

k−1 uk

⎤

⎥
⎥
⎥
⎥
⎦

. (17)

Solving the equation system πi = πiH, we also obtain that

π∗(l) =

∏k
∀m∈[1,k],m �=l(1 − um)

∑k
w=1

(∏k
∀m∈[1,k],m �=w(1 − um)

) , for l ∈ [1, k]. (18)

Main Theorem for k-Nests

Theorem 2. For any Δ ∈ [0, 1 − π∗(n1)], let ε0 = 1−π∗(n1)−Δ
2 > 0. Then it

holds that

P

{
N∑

i=1

1{si(t) = n1} ≥ (π∗(n1) + 2ε0) N = (1 − Δ)N

}

≤ 2 exp
(

−ε20N

2

)
,

for any t >
(

1
ln(1−kα) + 1

ln(1−R(H))

)
ln ε0

2 , where R(H) is Dobrushin’s coefficient
of ergodicity ([11, Chapter 6.2]) of H.

Remark 5. Theorem 2 is stated for n1. A similar result holds for nl for l > 1.
Like in the two-nest case, Theorem 2 again implies that extra mechanisms, such
as the quorum rule are necessary to help the emigration reach consensus.

224 J. Zhao et al.

6 Consensus with Quorum Sensing in Two-Nest
Environments

Fig. 6. State transition diagram
for individual ants committed to
n1 and n2, on the left and right,
respectively.

An important work in progress is analyzing
the probability of consensus when the quorum
rule is in effect. In this section, we show as a
work in progress the addition of the quorum
sensing mechanism to our model, and our cur-
rent results on the quorum sizes that are suf-
ficient for consensus of average emigrations in
two-nest environments.

Note that the dynamics shown in Fig. 2 are
also accurate here before an ant ai sees a quo-
rum for the first time at either nest. Thus, she
starts her transitions according to Fig. 2 before seeing any quorum. The evalu-
ation of whether nm has reached quorum happens whenever ai is in nm at the
beginning of a round t. Before she performs any transitions during round t, she
compares the nest population to a quorum size, if ai has not yet seen a quorum
at nm (or at any other nest). Once she detects that the population is at least
as high as the quorum size, she becomes “committed” to nm. After that, she no
longer monitors the nest’s population. We model an ant’s commitment by disal-
lowing her to transition out of nm. This means she has to perform a transport
action and stay in the nm state at any round after nm’s quorum attainment. As
a result, once a nest reaches the quorum, it never drops out of the quorum and
every ant that transitions to that nest gets “stuck” in that nest. We thus model
a “committed” ant with a separate Markov chain that essentially only has one
possible state, as shown in Fig. 6 and Eq. (19)–(22). For a committed ant ai, let

Fig. 7. State transition diagram for ant ai during round t+1 with the quorum sensing
mechanism. She first starts transitioning according to the left part of the figure, iden-
tical to Fig. 2. Then once she sees a quorum at either n1 and n2 (but not both), she
commits to that nest and can only stay in that nest, as shown on the right part of the
figure, identical to Fig. 6.

The Necessity of Quorum Sensing in Consensus 225

nm be the nest that she is committed to where m ∈ {1, 2}. Then the other new
nest she is not committed to is n3−m.

P {si(t + 1) = nm | si(t) = nm} = 1 (19)
P {si(t + 1) = n3−m | si(t) = nm} = 0 (20)
P {si(t + 1) = nm | si(t) = n3−m} = 0 (21)
P {si(t + 1) = n3−m | si(t) = n3−m} = 0. (22)

Individual Model With Quorums. We show the full model in Fig. 7. The addition
of transporting as a possible recruitment method thus has two impacts in the
full model:

– An ant ai in n0 can get recruited by being transported to either n1 or n2, in
addition to following a tandem run.

– an ant ai in either state n1 or n2 choosing to stay in the same state tries to
recruit another ant from state n0 through a tandem run if the quorum is not
reached (Fig. 2, Eq. (5)), or through a transport otherwise (Fig. 6, Eq. (19)).
Whether the recruitment is successful or not still has no effect on ai’s own
state transitions during this round. Otherwise, if she does not recruit, she
searches her environment and discovers the new nest she is not currently at
(Eq. (4)).

It still holds that during any given round t, if an ant ai at n0 does not get
recruited, her transitions are Markovian and independent (Fig. 2, Fig. 6). The
whole colony dynamics are the same as shown in Sect. 2.3 and the whole colony
state retains its Markovian properties.

Fig. 8. 3D plots demonstrating quorum sizes that are sufficient for consensus, when
α ≤ 1

3
. Views from two angles.

226 J. Zhao et al.

Current Work: In our work in progress, through theoretical analysis and simula-
tion work, we are striving to derive quorum sizes that are sufficient for consensus.
Our preliminary results in Fig. 8 show such quorum sizes for two-nest environ-
ments. In these emigrations, we enforce that Δ = 0 to model the most challenging
requirement of consensus. In Fig. 8, for the full ranges of u1 and u2 in the fre-
quent case that α < 1

3 , we visualize the quorum sizes (QS) in the range [0.25, 0.5]
that are expected to lead to consensus. The desirable values of the quorum size
show general consistency with experimental findings of the observed quorum size
employed by Temnothorax ant colonies [8,22]. However, we are still working on
deriving the mathematical expressions for quorum sizes that are sufficient for
consensus, as well as on extending these results to k-nest environments (k > 2).
We plan to show all related details of this effort in a follow-up manuscript.

7 Discussion and Future Work

In this paper, we used analytical tools to show that without quorum sensing, the
collective nest site selection process by Temnothorax ants has a limited proba-
bility to reach consensus. And this probability can be arbitrarily low for a colony
size arbitrarily large. Conversely, we obtain a high probability bound for failure
of consensus. Without quorum sensing, the only form of recruitment, tandem
runs, does speed up the emigration process, but our results show that emigra-
tions would still have a high probability of splitting among multiple new sites,
imposing significant risks to the colony’s survival. We first analyze a model of
a two-new-nest environment, and then extend our results to environments with
more nests. Our results provide insights into the importance of extra mecha-
nisms, such as the quorum sensing mechanism, for emigrations to reach consen-
sus in an unpredictable environment with multiple nests.

In this paper we also provided a preview of an important work in progress
investigating how different quorum sizes influence emigration outcomes if quo-
rum sensing is involved, in two-nest environments. Further extensions in this
direction are to apply similar analytical methods to the general environment
with the addition of quorum sensing to gain insights on how the number of nests
and their qualities might influence the desirable values for the quorum size, with
the goal to avoid splits, or to ensure consensus, or with an objective involving a
specific degree or probability of consensus.

Additionally, another future work direction is to make our model more bio-
plausible. Specifically, our model does not consider the very small probability
that committed ants “drop out” of the nest they are committed to, and go back
to searching. Adding this into the model could make it biologically more realistic.

Finally, one more way to strengthen our theoretical results is by adding a
time bound metric to our consensus problem. Our current consensus metric, the
consensus probability C, only requires that at least (1 − Δ)N ants keep staying
at either n1 or n2 after a finite number of rounds. By adding a time bound metric
as well, we would be able to better characterize the consensus probability (even
if lower than a given C) of an emigration by a certain time t.

The Necessity of Quorum Sensing in Consensus 227

Acknowledgements. J. Zhao and N. Lynch are supported by NSF Awards CCF-
2003830, CCF-1461559 and CCF-0939370.

References

1. Doering, G.N., Pratt, S.C.: Queen location and nest site preference influence
colony reunification by the ant temnothorax rugatulus. Insectes Soc. 63(4), 585–
591 (2016). https://doi.org/10.1007/s00040-016-0503-1

2. Doering, G.N., Pratt, S.C.: Symmetry breaking and pivotal individuals during the
reunification of ant colonies. J. Exp. Biol. 222(5), jeb194019 (2019)

3. Doran, C., Newham, Z.F., Phillips, B.B., Franks, N.R.: Commitment time depends
on both current and target nest value in temnothorax albipennis ant colonies.
Behav. Ecol. Sociobiol. 69(7), 1183–1190 (2015). https://doi.org/10.1007/s00265-
015-1932-y

4. Dornhaus, A., Holley, J.A., Pook, V.G., Worswick, G., Franks, N.R.: Why do not all
workers work? Colony size and workload during emigrations in the ant temnothorax
albipennis. Behav. Ecol. Sociobiol. 63(1), 43–51 (2008)

5. Franks, N.R., Dechaume-Moncharmont, F.X., Hanmore, E., Reynolds, J.K.: Speed
versus accuracy in decision-making ants: expediting politics and policy implemen-
tation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 364(1518), 845–852 (2009)

6. Franks, N.R., Dornhaus, A., Fitzsimmons, J.P., Stevens, M.: Speed versus accuracy
in collective decision making. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 270(1532),
2457–2463 (2003)

7. Franks, N.R., Mallon, E.B., Bray, H.E., Hamilton, M.J., Mischler, T.C.: Strategies
for choosing between alternatives with different attributes: exemplified by house-
hunting ants. Anim. Behav. 65(1), 215–223 (2003)

8. Franks, N.R., Stuttard, J.P., Doran, C., Esposito, J.C., Master, M.C., Sendova-
Franks, A.B., Masuda, N., Britton, N.F.: How ants use quorum sensing to estimate
the average quality of a fluctuating resource. Sci. Rep. 5(1), 11890 (2015)

9. Franks, N., et al.: Speed-cohesion trade-offs in collective decision making in ants
and the concept of precision in animal behaviour. Anim. Behav. 85(6), 1233–1244
(2013)

10. Gordon, D.M.: The ecology of collective behavior in ants. Ann. Rev. Entomol.
64(1), 35–50 (2019). pMID: 30256667

11. Hajek, B.: Random Processes for Engineers. Cambridge University Press, Cam-
bridge (2015)

12. Healey, C.I.M., Pratt, S.C.: The effect of prior experience on nest site evaluation
by the ant temnothorax curvispinosus. Anim. Behav. 76, 893–899 (2008)

13. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

14. Johnstone, R.A., Dall, S.R.X., Franks, N.R., Pratt, S.C., Mallon, E.B., Britton,
N.F., Sumpter, D.J.T.: Information flow, opinion polling and collective intelligence
in house-hunting social insects. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci.
357(1427), 1567–1583 (2002)

15. Mallon, E., Pratt, S., Franks, N.: Individual and collective decision-making during
nest site selection by the ant leptothorax albipennis. Behav. Ecol. Sociobiol. 50(4),
352–359 (2001). https://doi.org/10.1007/s002650100377

16. Marshall, J.A.R., Bogacz, R., Dornhaus, A., Planqué, R., Kovacs, T., Franks, N.R.:
On optimal decision-making in brains and social insect colonies. J. R. Soc. Interface
6(40), 1065–1074 (2009)

https://doi.org/10.1007/s00040-016-0503-1
https://doi.org/10.1007/s00265-015-1932-y
https://doi.org/10.1007/s00265-015-1932-y
https://doi.org/10.1007/s002650100377

228 J. Zhao et al.

17. Marshall, J.A., Dornhaus, A., Franks, N.R., Kovacs, T.: Noise, cost and speed-
accuracy trade-offs: decision-making in a decentralized system. J. R. Soc. Interface
3(7), 243–254 (2006)

18. McGlynn, T.P.: The ecology of nest movement in social insects. Ann. Rev. Entomol.
57(1), 291–308 (2012). pMID: 21910641

19. Moglich, M.H.J.: Social organization of nest emigration in leptothorax (hym.,
form.) (1978)

20. Planqué, R., Dornhaus, A., Franks, N.R., Kovacs, T., Marshall, J.A.R.: Weight-
ing waiting in collective decision-making. Behav. Ecol. Sociobiol. 61(3), 347–356
(2007). https://doi.org/10.1007/s00265-006-0263-4

21. Pratt, S.C.: Behavioral mechanisms of collective nest-site choice by the ant tem-
nothorax curvispinosus. Insectes Soc. 52(4), 383–392 (2005). https://doi.org/10.
1007/s00040-005-0823-z

22. Pratt, S., Mallon, E., Sumpter, D., et al.: Quorum sensing, recruitment, and collec-
tive decision-making during colony emigration by the ant leptothorax albipennis.
Behav. Ecol. Sociobiol. 52(2), 117–127 (2002). https://doi.org/10.1007/s00265-
002-0487-x

23. Pratt, S.C.: Quorum sensing by encounter rates in the ant Temnothorax albipennis.
Behav. Ecol. 16(2), 488–496 (2005)

24. Pratt, S.C., Sumpter, D.J.T.: A tunable algorithm for collective decision-making.
Proc. Natl. Acad. Sci. 103(43), 15906–15910 (2006)

25. Pratt, S.C., Sumpter, D.J., Mallon, E.B., Franks, N.R.: An agent-based model
of collective nest choice by the ant temnothorax albipennis. Anim. Behav. 70(5),
1023–1036 (2005)

26. Richardson, T.O., Sleeman, P.A., Mcnamara, J.M., Houston, A.I., Franks, N.R.:
Teaching with evaluation in ants. Curr. Biol. 17(17), 1520–1526 (2007)

27. Robinson, E.J.H., Franks, N.R., Ellis, S., Okuda, S., Marshall, J.A.R.: A sim-
ple threshold rule is sufficient to explain sophisticated collective decision-making.
PLOS ONE 6(5), 1–11 (2011)

28. Robinson, E.J., Smith, F.D., Sullivan, K.M., Franks, N.R.: Do ants make direct
comparisons? Proc. R. Soc. B: Biol. Sci. 276(1667), 2635–2641 (2009)

29. Sasaki, T., Colling, B., Sonnenschein, A., Boggess, M.M., Pratt, S.C.: Flexibility
of collective decision making during house hunting in temnothorax ants. Behav.
Ecol. Sociobiol. 69(5), 707–714 (2015). https://doi.org/10.1007/s00265-015-1882-
4

30. Stroeymeyt, N., Giurfa, M., Franks, N.R.: Improving decision speed, accuracy and
group cohesion through early information gathering in house-hunting ants. PLOS
ONE 5(9), 1–10 (2010)

31. Sumpter, D.J., Pratt, S.C.: Quorum responses and consensus decision making.
Philos. Trans. R. Soc. B: Biol. Sci. 364(1518), 743–753 (2009)

32. Visscher, P.K.: Group decision making in nest-site selection among social insects.
Ann. Rev. Entomol. 52(1), 255–275 (2007). pMID: 16968203

33. Zhao, J., Su, L., Lynch, N.: (2021). https://github.com/snowbabyjia/
QuorumSensingConsensus

https://doi.org/10.1007/s00265-006-0263-4
https://doi.org/10.1007/s00040-005-0823-z
https://doi.org/10.1007/s00040-005-0823-z
https://doi.org/10.1007/s00265-002-0487-x
https://doi.org/10.1007/s00265-002-0487-x
https://doi.org/10.1007/s00265-015-1882-4
https://doi.org/10.1007/s00265-015-1882-4
https://github.com/snowbabyjia/QuorumSensingConsensus
https://github.com/snowbabyjia/QuorumSensingConsensus

Location Functions for Self-stabilizing
Byzantine Tolerant Swarms

Yotam Ashkenazi1(B), Shlomi Dolev1, Sayaka Kamei2, Yoshiaki Katayama3,
Fukuhito Ooshita4, and Koichi Wada5

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beersheba, Israel

{yotamash,dolev}@post.bgu.ac.il
2 Graduate School of Advanced Science and Engineering, Hiroshima University,

Higashihiroshima, Japan
s10kamei@hiroshima-u.ac.jp

3 Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
katayama@nitech.ac.jp

4 Graduate School of Science and Technology, Nara Institute of Science and
Technology, Ikoma, Japan
f-oosita@is.naist.jp

5 Department of Applied Informatics, Faculty of Science and Engineering,
Hosei University, Koganei, Japan

wada@hosei.ac.jp

Abstract. This paper proposes a novel framework to realize self-
stabilizing Byzantine tolerant swarms. In this framework, non-Byzantine
robots execute tasks while satisfying location functions, that is, the
robots use a policy for their location choice, which restricts their loca-
tion to satisfy the functions. We give a general Byzantine-resilient self-
stabilizing algorithm based on the location function, and then provide
an efficient implementation of the self-stabilizing algorithms for special
classes of tasks, called polynomial-based tasks and shape-based tasks.
We also demonstrate the usefulness of the proposed framework by imple-
menting typical tasks of robots.

Keywords: Mobile robots · Byzantine faults · Self-stabilization

1 Introduction

Often, a swarm of robots must perform a task with a specific structure defined
in a two- or three-dimensional space. For example, a line of marching robots may

This work was supported in part by JSPS KAKENHI No. 19K11828, 20H04140,
20K11685, and 21K11748 the Ministry of Science and Technology, Israel & JST
SICORP (Grant#JPMJSC1806), Lynne and William Frankel Center for Computer
Science, the Rita Altura Trust Chair in Computer Science and the German Research
Funding (DFG, Grant#8767581199). It was also supported in part by the Helmsley
Charitable Trust through the Agricultural, Biological and Cognitive Robotics Initia-
tive, the Marcus Endowment Fund both at Ben-Gurion University of the Negev.

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 229–242, 2021.
https://doi.org/10.1007/978-3-030-91081-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_15

230 Y. Ashkenazi et al.

clean a field, and drones may try to reduce air resistance by creating a three-
dimensional aerodynamic shape, possibly mimicking a swarm of fish moving
within a higher-level dimensional polynomial structure.

When dealing with a swarm of robots in practice, we have to consider the
presence of Byzantine, faulty, or malicious robots. These robots may not follow a
given algorithm, possibly, due to experiencing a fault or an intentional malicious
takeover that may intentionally interrupt or disturb other robots. For example,
the behavior is caused by a bug in the software of honest robots or malicious
malware injection. These possibly Byzantine robots may be temporarily or con-
stantly controlled by an adversary. Traditionally, a swarm is designed to cope
with a certain upper bound on the number of Byzantine robots [2–4,10]. How-
ever, the number of such Byzantine robots may exceed (at least temporally) any
given threshold up to all robots being faulty. Still, we would like the robots to exe-
cute their task once enough of them are correct(ed). In addition, there are cases
where a global fault, such as momentary lightning, effects all members in the
swarm. In these situations, automatic recovery in the form of self-stabilization
[6,7] in the presence of a minority of Byzantine robots is very important. Never-
theless only a few works consider self-stabilization and Byzantine-fault tolerance
at the same time for a swarm of robots, see [1,5] and the references therein.

This paper proposes a novel framework to realize self-stabilizing Byzantine
tolerant swarms. In this framework, non-Byzantine robots execute tasks while
satisfying location functions, that is, the robots use a policy for their location
choice, which restricts their location to satisfy the functions. For example, let us
consider a marching task where robots move while forming a line. In this task,
all non-Byzantine robots move so that their locations satisfy some line function.
For function f : R × R → {true, false}, we say non-Byzantine robots form f if
location (x, y) of every non-Byzantine robot satisfies f (i.e., f(x, y) = true). In
the marching task, non-Byzantine robots should form f such that, for some a, b
and c (ab �= 0), f(x, y) = true if and only if ax+by+c = 0. To define more gener-
ally, let us consider a two-dimensional environment where n synchronous robots
exist and t of them are Byzantine. Let T be a task executed by robots. Function
f : R×R → {true, false} is a location function of task T if non-Byzantine robots
form f at some legitimate configuration of task T . We characterize task T by a
set of location functions that cover all legitimate configurations of task T . We
refer to such a set of location functions as a location function set FT . For exam-
ple, in the case of the above marching task, the location function set consists of
functions corresponding to lines formed by robots. The location function set FT
is useful for Byzantine identification if n − t non-Byzantine locations identify a
unique function in FT regardless of t Byzantine locations.

The location functions enable robots to execute tasks in a self-stabilizing
Byzantine-tolerant fashion. If robots identify a unique function that current n−t
locations satisfy, they are in correct configurations and move to the next locations
based on the task definition (closure). Otherwise, robots can detect the incorrect
configurations and move to the default or corrected locations depending on the
current configuration (convergence).

Location Functions for Self-stabilizing Byzantine Tolerant Swarms 231

Although the framework gives a self-stabilizing Byzantine-tolerant algorithm,
finding a unique location function from the current locations is not easy. In
a trivial way, for every combination of n − t locations, robots must compute
whether the combination defines a unique location function or not. This requires
Ω(nt) local computation time and it is not practical. For this reason, this paper
proposes efficient methods for cases where the location functions are given as
polynomials or shape structures.

First, we focus on the case where location functions in FT are given as poly-
nomials, that is, any location function fi ∈ FT is defined as fi(x, y) = true ⇔
y = Pi(x) for some polynomial Pi(x). That is, non-Byzantine robots move so
that they form polynomial y = Pi(x) for some i. In this case, the proposed
framework exploits Berlekamp-Welch algorithm [12] (referred in the sequel as
the BW algorithm). The BW algorithm ensures that, when a polynomial P is of
degree at most n−2t−1 and at least n−t non-Byzantine robots stand on points
of P , then the non-Byzantine robots find the polynomial P with an efficient cal-
culation. Hence, if every location function in FT is a polynomial of degree at
most n − 2t − 1, robots can efficiently identify a unique location function by the
BW algorithm.

Next, we focus on the case where location functions in FT are given as shape
structures, that is, any location function fi ∈ FT is defined by a shape such as
a circle, an ellipse, and so on. For example, in case of a circle, location function
fi ∈ FT is defined such that fi(x, y) = true ⇔ (x − ai)2 + (y − bi)2 = r2i for
some ai, bi and ri. Such shapes can be defined by a relatively small set of points,
and hence the proposed framework uses the majority of such (sub)sets of the
robot locations to decide on Byzantine robots that do not obey the majority
agreement on the shape.

In the last part, this paper demonstrates that the proposed framework is
useful to implement typical tasks of robots. In particular, we demonstrate self-
stabilizing Byzantine-tolerant implementations of convergence, marching and
exploration.

2 Preliminaries

2.1 A Robot Model

The system consists of a set of n robots. We define R as a set of all robots. Each
robot is modeled as a point on a two-dimensional Euclidean space. Robots agree
on a global Cartesian coordinate system. We represent a position of a robot by
coordinate (x, y). We assume that, if multiple robots share the same coordinate,
they can recognize its local order among the robots, that is, they can change their
behaviors based on the local order. Robots are anonymous, that is, they have no
identifiers and execute the same algorithm. Robots are oblivious, that is, they
have no memories to record past information. Robots cannot communicate with
other robots explicitly, however they can communicate implicitly by observing
coordinates of all other robots.

232 Y. Ashkenazi et al.

We assume the fully-synchronous (FSYNC) model [8,9,11]. That is, every
robot repeats a cycle composed of Look, Compute and Move phases syn-
chronously. In the Look phase, the robot obtains a set of coordinates of all robots
and the number of robots in each of the coordinates. In the Compute phase,
depending on the observation in the previous Look phase, the robot decides
on its target coordinate. If the robot decides to move, it moves to the target
coordinate in the Move phase. We assume a rigid movement, that is, if a robot
moves, it arrives at the target coordinate during the Move phase. We say a robot
executes a step if it executes one cycle composed of Look, Compute and Move
phases.

In this paper, some robots may be Byzantine. Byzantine robots can make
arbitrary movements that do not obey the algorithm choice. We define RB ⊂ R
as a set of all Byzantine robots. We also define RN = R \ RB as a set of all
non-Byzantine robots. Throughout the paper, we assume that the number of
Byzantine robots is at most t.

A configuration c is defined as a combination of coordinates of all robots. A
sequence of configurations E = c1, c2, . . . is an execution starting from initial con-
figuration c1 if, for every i ≥ 1, ci+1 is reached from ci by a step of all robots. For
a configuration c and a subset of robots R′, we define partial configuration c|R′

as a combination of coordinates of robots in R′ in configuration c. Similarly, for
an execution E = c1, c2, . . . and a subset of robots R′, we define partial execution
E|R′ as a sequence of partial configurations c1|R′ , c2|R′ , From the definition,
E|RN

is an execution in case that we focus on only non-Byzantine robots in E.
A task T is defined as a predicate LT on executions without Byzantine robots.
We say an execution E achieves task T if and only if LT (E|RN

) = true holds.
A configuration c is legitimate if c appears in some execution E that achieves
task T . Note that in a legitimate configuration Byzantine robots can stay at
arbitrary points.

Definition 1. (t-Byzantine-resilient self-stabilization)
An algorithm A is a t-Byzantine-resilient self-stabilizing algorithm for T if and
only if, when |RB | ≤ t holds, there exists a set of safe configurations Csafe such
that both of the following properties hold.

– Convergence: Starting in any arbitrary configuration the system eventually
reaches a configuration in Csafe.

– Closure: For any execution E that starts from a configuration in Csafe,
LT (E|RN

) = true holds.

2.2 Location Functions

In this subsection, we introduce location functions. The location function spec-
ifies possible coordinates of non-Byzantine robots in legitimate configurations
for a task. For a set of coordinates S and a function f : R × R → {true, false},
we say S satisfies function f if f(x, y) = true holds for any (x, y) ∈ S. For a
set of robots R′, we define SR′(c) as a set of coordinates of all robots in R′ in
configuration c.

Location Functions for Self-stabilizing Byzantine Tolerant Swarms 233

Definition 2. (Location function)
Function f : R×R → {true, false} is a location function of task T if and only if
there exists a legitimate configuration c of task T such that SRN

(c) satisfies f .

Definition 3. (Location function set)
A location function set of task T , denoted by FT , is a set of location functions
of T such that, for any legitimate configuration c of T , SRN

(c) satisfies some
location function f ∈ FT .

Consider the case that a task T is given with its location function set FT .
Fix a legitimate configuration c of task T . Since |RB | ≤ t holds, at least n − t
coordinates (i.e., coordinates of non-Byzantine robots) in c satisfy some location
function f ∈ FT . Here, if no set of n − t coordinates in c satisfies f ′ ∈ FT \
{f}, robots can recognize the location function f corresponding to the current
configuration c and hence identify at most t Byzantine robots. If such a property
holds for every legitimate configuration of task T , robots can always use the
location function to identify Byzantine robots. Formally we define such a task
as a t-Byzantine-identifiable task in Definition 4.

Definition 4. (t-Byzantine-identifiable task)
A task T with location function set FT is t-Byzantine-identifiable if and only
if the following property holds: For any legitimate configuration c of task T , if
SRN

(c) satisfies location function f ∈ FT , no subset S ⊂ SR(c) with |S| = |R|−t
satisfies any location function f ′ ∈ FT \ {f}.

Consider a t-Byzantine-identifiable task T with FT . Definition 4 implies that,
if c is a legitimate configuration of T , there exists exactly one location function
f ∈ FT such that S ⊂ SR(c) with |S| = n − t satisfies f . If the number of such
location functions is more than one or zero in configuration c, c is not legitimate.

2.3 Function-Based Tasks

We can define some tasks by specifying location functions that robots form
during an execution. For example, a marching task with a line can be regarded
as a task such that robots form some linear functions successively. In general,
we define function-based tasks in Definition 5. Note that, to make robots form
some function with multiple coordinates, we force non-Byzantine robots not to
share the same coordinate.

Definition 5. (Function-based task)
Consider task T , its location function set FT , and a function ψT : FT → FT .
Task T is a function-based task with (FT , ψT) if and only if the following con-
dition holds: For an execution E = c0, c1, . . ., LT (E) = true holds if and only if
there exists a sequence of functions f0, f1, . . . starting from f0 ∈ FT such that
|SRN

(ci)| = |RN | holds, SRN
(ci) satisfies fi, and fi+1 = ψT (fi) holds for any

i ≥ 0.

234 Y. Ashkenazi et al.

As an example, let us consider a marching task T such that robots move to
direction (δx, δy) while keeping a circle. In this case, its location function set FT
contains any circle function, that is, FT = {fa,b,c | a, b, c ∈ R, c > 0}, where
fa,b,c is a function such that fa,b,c(x, y) = true holds if and only if (x − a)2 +
(y − b)2 = c2 holds. Then, transition function ψT is defined as ψT (fa,b,c) =
fa+δx,b+δy,c. Hence, we can define such marching task T as a function-based
task with (FT , ψT).

3 t-Byzantine-resilient Self-stabilizing Algorithms Based
on Location Functions

In this section, we describe how location functions can be used to real-
ize t-Byzantine-resilient self-stabilizing algorithms for t-Byzantine-identifiable
function-based tasks. In Sect. 3.1, we give a general t-Byzantine-resilient self-
stabilizing algorithm. However, a trivial implementation of the algorithm is
not efficient because it requires a vast amount of local computation. Hence, in
Sects. 3.2 and 3.3, we focus on polynomial-based and shape-based tasks, respec-
tively, and give more efficient implementation of the algorithm.

3.1 A General Algorithm

If T is a t-Byzantine-identifiable function-based task with (FT , ψT), we have
a simple t-Byzantine-resilient self-stabilizing algorithm for T based on location
functions.

Algorithm 1 gives the pseudocode of the algorithm. In the Look phase, each
robot r obtains the set of coordinates of all robots S. In the Compute phase,
r computes the coordinate that r moves to in the Move phase. To compute it,
r tries to find f ∈ FT such that some set S′ ⊂ S with |S′| = n − t satisfies f .
If r finds exactly one such location function f , it can identify the next location
function fnext by transition function ψT . Note that, since T is t-Byzantine-
identifiable, in any legitimate configuration r can identify such f and conse-
quently the next location function fnext. Then, r computes its next coordinate
(x, y) that satisfies fnext(x, y) = true. Here, to satisfy the condition of a function-
based task, r should choose (x, y) such that other non-Byzantine robots do not
choose the same coordinate (x, y). This is possible because robots can observe
all coordinates and break a tie by a local order even if multiple robots stay
at the same coordinate. If r does not find exactly one location function f , it
understands that the current configuration is not legitimate. Hence, r uses a
known default location function fdef , and moves to the next coordinate (x, y)
that satisfies fdef (x, y) = true. Here r also should choose (x, y) such that other
non-Byzantine robots do not choose the same coordinate (x, y).

Theorem 1. If T is a t-Byzantine-identifiable function-based task, Algorithm 1
is a t-Byzantine-resilient self-stabilizing algorithm for T .

Location Functions for Self-stabilizing Byzantine Tolerant Swarms 235

Algorithm 1. A t-Byzantine-resilient self-stabilizing algorithm for t-Byzantine-
identifiable function-based task T with (FT , ψT). Function fdef ∈ FT is a default
location function known to all robots.
A cycle of robot r
Look phase:
1: S ← the set of coordinates of all robots
Compute phase:
2: if there exists exactly one f ∈ FT such that some set S′ ⊂ S with |S′| = n − t

satisfies f then
3: fnext ← ψT (f)
4: (xnext, ynext) ← (x, y) s.t. fnext(x, y) = true and (x, y) is unique among robots
5: else
6: (xnext, ynext) ← (x, y) s.t. fdef (x, y) = true and (x, y) is unique among robots
7: end if
Move phase:
8: Move to coordinate (xnext, ynext)

Proof. Assume that T is a t-Byzantine-identifiable function-based task and
|RB | ≤ t holds. Let C be a set of configurations such that c ∈ C holds if
and only if |SRN

(c)| = n − t holds and SRN
(c) satisfies f for some f ∈ FT . We

prove that C is a set of safe configurations in Definition 1.
First we consider the convergence property. Consider an arbitrary initial

configuration c not in C. That is, there exists no location function f ∈ FT such
that SRN

(c) satisfies f . By considering the following two cases, we prove that
the next configuration is in C.

– Case that there exists exactly one function f ∈ FT and a set of robots R′ ⊂ R
such that |SR′(c)| = n − t holds and SR′(c) satisfies f . Note that this case
happens when R′ �= RN holds. In this case, all non-Byzantine robots identify
the same f in line 2. Consequently they compute the same fnext in line 3, and
obtain (xnext, ynext) that satisfies fnext(xnext, ynext) = true in line 4. Hence
all non-Byzantine robots move to different coordinates that satisfy the same
location function fnext in line 8, and thus the next configuration is in C.

– Other case. In this case, all non-Byzantine robots move to different coordi-
nates that satisfy the same default location function fdef . Hence, the next
configuration is in C.

Next we consider the closure property. Consider an execution E = c0, c1, . . .
starting from c0 ∈ C. From c0 ∈ C, |SRN

(c0)| = n − t holds and there exists
function f0 ∈ FT such that SRN

(c0) satisfies f0. Let f0, f1, . . . be a sequence of
functions that satisfies fi+1 = ψT (fi) for any i (i ≥ 0). We prove that |SRN

(ci)| =
n − t holds and SRN

(ci) satisfies fi for any i ≥ 0 by induction. The base case
is clear. Assume that |SRN

(ci)| = n − t holds and SRN
(ci) satisfies fi for some

i ≥ 0. Since T is t-Byzantine-identifiable, all non-Byzantine robots identify fi in
line 2. Hence all non-Byzantine robots move to different coordinates that satisfy
fi+1 = ψT (fi), and thus |SRN

(ci+1)| = n − t holds and SRN
(ci+1) satisfies fi+1.

236 Y. Ashkenazi et al.

Since Algorithm 1 satisfies the convergence and closure properties, it is a
t-Byzantine-resilient self-stabilizing algorithm for T . 	

Note that, although robots must choose, in line 4 (resp., line 6), different
coordinates that satisfy fnext (resp., fdef), Algorithm 1 does not describe which
coordinates robots actually choose. When implementing the algorithm, we can
specify the coordinates by considering other factors. For example, robots can
choose coordinates sufficiently close to each other, or choose coordinates that
are sufficiently distributed, as long as location functions allow such choices.

Although Algorithm 1 is general, it requires a vast number of local compu-
tation. This is because, in line 2 of Algorithm 1, robots must search for f such
that some subset S′ ⊂ S satisfies f . From |S′| = n − t and |S| = n, the num-
ber of possible sets of S′ is

(
n
t

)
= Ω(nt). This implies that each robot requires

an Ω(nt) amount of local computation. For this reason, in the following sub-
sections, we focus on polynomial-based and shape-based tasks, and give more
efficient implementation of the algorithm.

3.2 Implementation for Polynomial-Based Tasks

In this subsection, we focus on a special case of function-based tasks, called a
polynomial-based task. A polynomial-based task is a function-based task such
that every location function is represented by a polynomial. That is, robots
move so that they form polynomials specified by the task. We give the formal
definition in Definition 6.

Definition 6. (Polynomial-based task)
A function-based task T with (FT , ψT) is called a polynomial-based task with
(FT , ψT) if and only if any location function f ∈ FT is defined as f(x, y) =
true ⇔ y = P (x) for some polynomial P (x). By abuse of terminologies, we use
polynomial P to indicate location function f .

In line 2 of Algorithm 1, robots search for a polynomial that n − t coordi-
nates satisfy. Different from general function-based tasks, if the degree of the
polynomial is at most n − 2t − 1, robots can efficiently execute this by using the
Berlekamp-Welch (BW) algorithm.

Theorem 2. [12] (The BW algorithm). Let n, t, d be positive integers such
that d ≤ n−2t−1 holds. Let S = {(x1, y1), . . . , (xn, yn)} be a set of n coordinates
such that xi �= xj for i �= j. The BW algorithm takes S as an input, and computes
a single polynomial P with degree at most d such that at least n − t coordinates
in S are on y = P (x), if such polynomial P exists. If such polynomial P does not
exist, the BW algorithm fails to output. The BW algorithm requires an O(n3)
amount of computation.

Note that, when robots obtain a set of coordinates S = SR(c) in configura-
tion c, S can contain less than n coordinates if multiple robots share the same
coordinate. In addition, S can contain multiple coordinates whose x-coordinates

Location Functions for Self-stabilizing Byzantine Tolerant Swarms 237

are identical. However, as we prove in the following lemma, we can still use
the BW algorithm because at least n − t non-Byzantine robots stay at different
coordinates.

Lemma 1. Consider a t-Byzantine-identifiable polynomial-based task T with
(FT , ψT) such that FT consists of polynomials with degree at most d = n−2t−1.
Consider a legitimate configuration c of T and polynomial P ∈ FT such that
SR(c) satisfies P . In configuration c, robots can compute polynomial P by the
BW algorithm in an O(n3) amount of computation.

Proof. Let S = SR(c). Since c is legitimate, there exists polynomial P ∈ FT
with degree at most d such that at least n − t coordinates in S are on y = P (x).
Since all non-Byzantine robots stay at different coordinates, n − |S| Byzantine
robots share coordinates with some other robots if n > |S| holds. In addition,
since all non-Byzantine robots are on y = P (x), at most t− (n−|S|) coordinates
in S are not on y = P (x).

Let x1, . . . , xk be x-coordinates that duplicate in S, and let αi (1 ≤ i ≤ k)
be the number of coordinates in S whose coordinates are xi. We have αi ≥ 2
(1 ≤ i ≤ k) from the definition. We construct set S′ by removing from S all
coordinates that have duplicated x-coordinates, that is, S′ = {(x, y) ∈ S | x /∈
{x1, . . . , xk}}. Let n′ = |S′| = |S|−

∑k
i=1 αi. Let t′ be the number of coordinates

in S′ that are not on y = P (x). Now S′ does not contain duplicated x-coordinates
and n′ − t′ coordinates in S′ are on polynomial y = P (x) with degree at most
d. For each i (1 ≤ i ≤ k), since at most one coordinate with x-coordinate xi

in S is on y = P (x), at least αi − 1 coordinates with x-coordinate xi in S are
not on y = P (x). Hence, t′ ≤ t − (n − |S|) −

∑k
i=1(αi − 1) holds. This implies

that n′ − 2t′ − 1 ≥ n − 2t − 1 + (n − |S|) + (
∑k

i=1 αi − 2k) ≥ n − 2t − 1 ≥ d.
From Theorem 2, we can apply the BW algorithm to S′ and obtain polynomial
P . This requires an O(n′3) = O(n3) amount of computation. 	

From Lemma 1, we can apply the BW algorithm to search for a location
function in line 2 of Algorithm 1. Clearly, we have the following theorem.

Theorem 3. Consider a t-Byzantine-identifiable polynomial-based task T with
(FT , ψT) such that FT consists of polynomials with degree at most n−2t−1. In
this case, robots can execute Algorithm 1 for T with an O(n3) amount of local
computation.

3.3 Implementation for Shape-Based Tasks

In this subsection, we focus on a special case of function-based tasks, called a
shape-based task. A shape-based task is a function-based task such that every
location function is represented by a shape. That is, robots move so that they
form some shapes specified by the task. As examples of shapes, we can consider
a circle, an ellipse, a square, a hexagonal shape, and so on. Formally shape H
is defined as a set of (possibly an infinite number of) coordinates. We give the
formal definition in Definition 7.

238 Y. Ashkenazi et al.

Definition 7. (Shape-based task)
A function-based task T with (FT , ψT) is called a shape-based task with (FT , ψT)
if and only if any location function f ∈ FT is defined as f(x, y) = true ⇔ ((x, y)
is a coordinate on some shape H). By abuse of terminologies, we use shape H
to indicate location function f .

In line 2 of Algorithm 1, robots search for a shape such that n−t coordinates
are on the shape. Let x be the minimum number of coordinates that can identify
a single shape H in FT . Here x is smaller than n−t for many shapes. For example,
if FT contains only circles, x = 3 holds. Hence, for any configuration, we have
only

(
n
x

)
candidate shapes, and so, by checking all candidates, robots can find a

shape such that at least n − t coordinates are on the shape. Since robots check,
for

(
n
x

)
candidate shapes, whether at least n − t coordinates are on the shape,

this requires an O(nx+1) amount of local computation.
Here we consider the condition that robots can identify a single shape H.

In any legitimate configuration n − t non-Byzantine robots form a single shape.
On the other hand, t Byzantine robots can form another shape by using x − 1
coordinates from non-Byzantine robots. Hence, if n − t > t + x − 1 holds, robots
can identify a correct shape.

From the above discussion, clearly we have the following theorem.

Theorem 4. Consider a t-Byzantine-identifiable shape-based task T with
(FT , ψT) such that x coordinates can identify a shape in FT and x ≤ n−2t holds.
In this case, robots can execute Algorithm 1 for T with an O(nx+1) amount of
local computation.

4 Task Scheme

In this section we demonstrate that location functions (polynomials and shapes)
can support executing basic missions in self-stabilizing fashion, in the presence
of Byzantine robots. We consider basic tasks in [9].

4.1 Convergence

Under the global view and general movement assumptions convergence can be
done very easy. The convergence task T can be defined by using the shape-based
task with (FT , ψT) such that robots move to very small circle with some center
(δx, δy). In this case, its location function set FT contains any function that
represents a circle, that is, FT = {fa,b,ε | a, b, ε ∈ R} where fa,b,ε is a function
such that fa,b,ε(x, y) = true holds if and only if (x − δx)2 + (y − δy)2 = ε2 holds.
The transition function ψT is defined as ψT (fa,b,ε) = fa,b,ε/2.

Instead of choosing a specific location (δx, δy), we can choose the location
to be a function of the current location, say, the average location of all (non-
Byzantine, if identifiable) robots. At this point all robots move to the same
coordinate and the shape is reduced to be a small circle. In Fig. 1, all non-
Byzantine robots converge to a specific small circle.

Location Functions for Self-stabilizing Byzantine Tolerant Swarms 239

Fig. 1. Non-Byzantine robots (denoted by r1 to r4) converge to a specific small cir-
cle. A Byzantine robot (denoted by b) moves to another location and is identified as
Byzantine.

Fig. 2. Non-Byzantine robots (denoted by r1 to r4) march down ignoring a Byzantine
robot (denoted by b).

4.2 Marching

In Sect. 2.3 an example is presented to the marching task using a circle function.
The marching task can be done based on polynomial or shape structure.

Now, let us consider a marching task T such that robots move to direction
(δx, δy) while keeping their formation parallel to a polynomial y = P (x). The
marching task is defined as a polynomial-based task, and its location function
set FT contains function Pa,b = P (x − a) + b for any a and b. The marching
can be defined by increasing the x-value by δx and the y-value by δy, that is,
its transition function ψT is defined as ψT (Pa,b) = Pa+δx,b+δy . In Fig. 2, all
non-Byzantine robots march together keeping the polynomial with degree 1.

4.3 Exploration

To consider the exploration task, we regard a bounded two-dimensional
Euclidean environment as a bounded board. For integers x and y, we associate
coordinate (x, y) in the two-dimensional Euclidean environment to a tile (x, y)
in the board. The goal of the exploration task is to make robots visit every tile
in the board. We assume n ≥ 2t + 1.

Based on location functions, we can develop a self-stabilizing t-Byzantine-
resilient self-stabilizing algorithm for the exploration task. Let H be a set of all

240 Y. Ashkenazi et al.

Fig. 3. An example of exploration (n = 11 and t = 2). Non-Byzantine robots and
Byzantine robots are denoted by r and b, respectively.

tiles in the bounded board. We assign sequential indices to tiles and represent
them by H = {h0, h1, . . . , hm−1}, where m = |H|. For example, we can assign
indices using a “snake” path: We regard a right direction as a forward direction
in every even row, and regard a left direction as a forward direction in every
odd row (Fig. 3(a)). For simplicity, we consider mathematical operations on tile
indices as operations modulo m. Let l = �(n − 2t − 1)/(t + 1)�.

We formulate the exploration task in the following manner. In legitimate
configurations, we put robots on l + 1 successive tiles such that the head tile
contains at least t + 1 robots and each of other l tiles (called a tail) contains at
least one robot. To do this, non-Byzantine robots try to make a configuration
such that the head tile contains at least 2t + 1 robots and each of l tail tiles
contains at least t + 1 robots (Fig. 3(b)). That is, for some i, non-Byzantine
robots move so that, if Byzantine robots also move correctly, at least 2t+1 robots
stay on hi and at least t + 1 robots stay on each of tiles hi−l, hi−l+1, . . . , hi−1.
Of course, t Byzantine robots can move to arbitrary tiles. However, the head
tile hi contains at least t+1 non-Byzantine robots and Byzantine robots cannot
counterfeit such a head. In addition, each of l tail tiles contains at least one non-
Byzantine robot. Hence, non-Byzantine robots can easily identify the current
legitimate configuration (for example see Fig. 3(c)).

Robots move their formation forward by l + 1 tiles per cycle and explore
the board along the tile indices. That is, if robots identify the current head hi

with tail hi−l, hi−l+1, . . . , hi−1, they next construct the head hi+l+1 with tail
hi+1, hi+2, . . . , hi+l. For example, robots move from configuration in Fig. 3(b)
to Fig. 3(c) in one cycle. More concretely, robots move as follows. First robots
assign sequential numbers 0 to n − 1 to all robots along the tile indices; that
is, robots on tiles with small indices obtain small sequential numbers. Since we
assume that robots can recognize their local orders when they share the same
coordinate, they can assign different numbers even if they share the same tile.
Then, for every x (0 ≤ x ≤ l − 1), robots with numbers x(t + 1) to x(t + 1) + t
move to tile hi+x+1, and robots with numbers (l + 1)(t + 1) to n − 1 move
to hi+l+1. Since every tile of the head and the tail contains at least one non-

Location Functions for Self-stabilizing Byzantine Tolerant Swarms 241

Byzantine robot, robots can achieve exploration by repeating this behavior in
O(m/l) = O(mt/n) cycles.

To describe the behavior, we can define location function fi ∈ FT (0 ≤ i ≤
m − 1) as follows: fi(x, y) = true if and only if coordinate (x, y) corresponds
to a tile in {hi−l, hi−l+1, . . . , hi}. Similarly to Algorithm 1, robots can achieve
exploration in the self-stabilizing manner. If robots identify a unique location
function fi corresponding to the current configuration, they can move to the
next configuration corresponding to fi+l+1 as described above. Otherwise, they
can move to the configuration that satisfies the default function (for example fl

in Fig. 3(b)).

5 Conclusions

We demonstrated the usage of error correcting of functions and in particular
polynomials in coping with Byzantine robots in swarms. The implementations
of these fundamental tasks are self-stabilizing in spite of (a bounded number of)
Byzantine robots. Moreover, one can design a sequence of swarm tasks, moving
from one task to the next. Typically Byzantine tolerant algorithms cope with a
threshold on the number of Byzantine robots, as consistency of the swarm cannot
be preserved when too many (e.g., all) robots are Byzantine. Attackers that can
overtake several robots will surely try to exceed the declared threshold on the
number of compromised robots. Self-stabilization in spite of Byzantine robots
tolerates periods in which even all participants are Byzantine. Once enough
robots recover the self-stabilization property ensures that the entire swarm starts
convergence to act as desired again. We believe that we have established a rich
and useful framework for the designing and practical implementation of a swarm
of robots.

References

1. Ashkenazi, Y., Dolev, S., Kamei, S., Ooshita, F., Wada, K.: Forgive and forget:
self-stabilizing swarms in spite of byzantine robots. Concurr. Comput. Pract. Exp.,
188–194 (2020). CANDAR Workshops 2019

2. Attiya, H., Welch, J.L.: Distributed Computing - Fundamentals, Simulations, and
Advanced Topics. Wiley Series on Parallel and Distributed Computing, 2nd edn.
Wiley, Hoboken (2004)

3. Bouzid, Z., Gradinariu Potop-Butucaru, M., Tixeuil, S.: Byzantine convergence in
robot networks: the price of asynchrony. In: Abdelzaher, T., Raynal, M., Santoro,
N. (eds.) OPODIS 2009. LNCS, vol. 5923, pp. 54–70. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10877-8 7

4. Bouzid, Z., Potop-Butucaru, M.G., Tixeuil, S.: Optimal byzantine-resilient con-
vergence in uni-dimensional robot networks. Theoret. Comput. Sci. 411(34–36),
3154–3168 (2010)

5. Défago, X., Potop-Butucaru, M., Raipin-Parvédy, P.: Self-stabilizing gathering of
mobile robots under crash or Byzantine faults. Distrib. Comput. 33(5), 393–421
(2019). https://doi.org/10.1007/s00446-019-00359-x

https://doi.org/10.1007/978-3-642-10877-8_7
https://doi.org/10.1007/s00446-019-00359-x

242 Y. Ashkenazi et al.

6. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

7. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
8. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious

Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers (2012)

9. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Mobile Entities:
Current Research in Moving and Computing. Springer, Heidelberg (2019). https://
doi.org/10.1007/978-3-030-11072-7

10. Souissi, S., Izumi, T., Wada, K.: Byzantine-tolerant circle formation by oblivious
mobile robots. In: Proceedings of the International Conference on Communications,
Computing and Control Applications, pp. 1–6 (2011)

11. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

12. Welch, L., Berleklamp, E.: Error correction for algebraic block codes. US Patent 4
633 470 (1986)

https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-030-11072-7

Applications and Implications of a
General Framework for Self-Stabilizing

Overlay Networks

Andrew Berns(B)

Department of Computer Science, University of Northern Iowa, Cedar Falls, IA, USA
andrew.berns@uni.edu

Abstract. From data centers to IoT devices to Internet-based applica-
tions, overlay networks have become an important part of modern com-
puting. Many of these overlay networks operate in fragile environments
where processes are susceptible to faults which may perturb a node’s
state and the network topology. Self-stabilizing overlay networks have
been proposed as one way to manage these faults, promising to build
or restore a particular topology from any initial configuration or after
the occurrence of any transient fault. To date there have been several
self-stabilizing protocols designed for overlay networks. These protocols,
however, are either focused on a single specific topology, or provide very
inefficient solutions for a general set of overlay networks.

In this paper, we analyze an existing algorithm and show it can be
used as a general framework for building many other self-stabilizing over-
lay networks. Our analysis for time and space complexity depends upon
several properties of the target topology itself, providing insight into
how topology selection impacts the complexity of convergence. We then
demonstrate the application of this framework by analyzing the com-
plexity for several existing topologies. Next, using insights gained from
our analysis, we present a new topology designed to provide efficient per-
formance during convergence with the general framework. Our process
demonstrates how the implications of our analysis help isolate the factors
of interest to allow a network designer to select an appropriate topology
for the problem requirements.

Keywords: Topological self-stabilization · Overlay networks ·
Fault-tolerant distributed systems

1 Introduction

Distributed systems have become an ubiquitous part of modern computing, with
systems continuing to grow in size and scope. As these systems grow larger, the
need for topologies that allow for efficient operations like search and routing
increases. To this end, many systems use overlay networks to control the network
topology. In overlay networks, connections are made using logical links, each of
c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 243–257, 2021.
https://doi.org/10.1007/978-3-030-91081-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_16&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_16

244 A. Berns

which consists of zero or more physical links. This use of logical links means
program actions can add and delete edges in the network, allowing the system
to maintain an arbitrary logical topology even when the physical topology may
be fixed.

Many of these large systems operate in environments where faults are com-
monplace. Servers may crash, communication links may be damaged, and pro-
cesses may join or leave the system frequently. This reality has increased the
demand for fault tolerant overlay networks. One particularly strong type of
fault tolerance is self-stabilization, where a legal configuration is guaranteed to
be reached after any transient fault. For overlay networks, this means a correct
topology can always be built when starting from any configuration provided the
network is not disconnected.

1.1 Problem Overview

Our current work focuses on self-stabilizing overlay networks. A self-stabilizing
overlay network guarantees that program actions will build a legal topology even
when the system starts in any weakly-connected topology. Our interest, then,
is in the design and analysis of algorithms that, when executed on an arbitrary
initial weakly-connected topology, add and delete edges with program actions
until a legal target topology is reached.

To date, most work has focused on algorithms for a single topology, or has
been inefficient in terms of time or space complexity. Work focused on a specific
topology is hard to generalize and derive insights from for expanding to other
overlay network applications, while general frameworks with high time and space
complexity may be too inefficient to be useful in practice. Our interest is in
general frameworks for overlay network creation that allow efficient algorithms to
be built while still being general enough to provide insights into the stabilization
of arbitrary topologies.

1.2 Main Results and Significance

In this paper, we build upon the work of Berns [2] to present a general algo-
rithm for creating self-stabilizing overlay network protocols for a variety of target
topologies, and provide several examples of the application of our general algo-
rithm, including with a new overlay network topology. More specifically, our
contributions are as follows:

– We update the analysis of Berns [2] to show how their algorithm can be
extended into an algorithm for any target topology. Our updated analysis
is the first to show a general framework for self-stabilizing overlay network
creation that allows for efficient stabilization in both time and space.

– As part of this updated analysis, we introduce several measures of complexity
that are properties of the target topology itself. These measures are useful
for two reasons. First, they allow us to analyze the general algorithm easily
for a variety of topologies. Perhaps just as important, however, is that they

Applications and Implications of a General Framework 245

provide valuable insight into how the selection of the target topology affects
convergence in terms of both time and space.

– We analyze several existing overlay network topologies, providing the neces-
sary metrics for analysis in our general framework. This analysis provides an
example of how our framework can be applied, and also helps provide concrete
insight into factors affecting convergence and demonstrate how diameter,
degree, and robustness are balanced when designing self-stabilizing overlay
networks.

– Using the insight gained from our earlier contribution, we define a new net-
work topology which stabilizes with sublinear time and space complexity in
our framework. This demonstrates how the framework can provide network
designers with guidance to help them build new topologies that can stabilize
efficiently with our approach. The design and analysis of new topologies tar-
geted for efficient stabilization in this framework could be an interesting area
of future study.

The key idea of our work is the extension of the algorithm of Berns [2] to
work with other topologies by defining the target topology and analyzing several
relevant measures regarding this topology. This definition allows the creation and
analysis of many self-stabilizing overlay networks without having to design the
algorithm from scratch. Furthermore, our framework highlights the factors of
the network that affect stabilization, allowing a designer to tune the topology to
meet their needs.

1.3 Related Work and Comparison

The past few decades have seen a large body of work develop on overlay networks.
Early work focused on defining structured overlay networks, where a single cor-
rect configuration existed for a particular set of nodes. One such example of a
structured network is Chord [12]. Early work on structured networks often did
not consider fault tolerance, or considered a weak model with limited possible
failures.

As work expanded in overlay networks, so did work in various types of fault
tolerance. One category of work considered self-healing networks, where a par-
ticular network property could be maintained even during limited node dele-
tions [7]. Several examples of this work used virtual nodes [13], although they
were not used to create a specific embedding as done in this work. In DCon-
structor [5], the authors present a framework for building overlay networks.
DConstructor works by forming clusters and merging these clusters together.
However, DConstructor is not self-stabilizing as it assumes all nodes begin in
a single node cluster. Said in another way, DConstructor assumes an arbitrary
initial topology, but not an arbitrary initial state. This is also the same assump-
tion in the work of Götte et al. [6], who presented an algorithm for transforming
a constant-degree network into a tree in O(log n) rounds.

Our work considers self-stabilizing overlay networks, where the correct con-
figuration is reached after an arbitrary number of transient faults that do not

246 A. Berns

disconnect the network. There are several examples of these as well. The Skip+
graph [9] presents a self-stabilizing variant of the Skip graph [1] with poly-
logarithmic convergence time, although the space requirements are linear for
some configurations. Another example of a self-stabilizing overlay network is
Re-Chord [10], a Chord variant with virtual nodes and a convergence time of
O(n log n) rounds.

To date, most work has been focused on the convergence to a particular
topology. One exception to this is the Transitive Closure Framework [4], which
presents a general algorithm for creating any locally-checkable overlay network.
They identify a general measure of interest for stabilization time which they call
the detector diameter. Unfortunately the space requirement of their algorithm is
Θ(n) for any topology, limiting the applicability.

In Avatar [2], Berns presented both a locally-checkable definition of a net-
work embedding for arbitrary topologies, and a self-stabilizing algorithm for
building an embedded binary search tree with polylogarithmic time and space
requirements. The work only considered a single topology, however, and did not
offer insight into measures for arbitrary topologies. Our goal with this work is
to build upon Avatar to address these issues.

2 Preliminaries

2.1 Model of Computation

We model our distributed system as an undirected graph G = (V,E), with n
processes in V communicating over the edges E. Each node u ∈ V has a unique
identifier u.id ∈ N, which is stored as immutable data in u. Where clear from
the context, we will use u to represent the identifier of u.

Each node u ∈ V has a local state consisting of a set of variables and their
values, along with its immutable identifier u.id. A node executes a program whose
actions modify the values of the variables in its local state. All nodes execute
the same program. Nodes can also communicate with their neighbors. We use
the synchronous message passing model of computation [8], where computation
proceeds in synchronous rounds. During each round, a node receives messages
sent to it in the previous round from any node in its neighborhood N(u) = {v ∈
V : (u, v) ∈ E}, executes program actions to update its local state, and sends
messages to any of its neighbors. We assume reliable communication channels
with bounded delay, meaning a message is received by node u in some round i
if and only if it was sent to u in round i − 1.

In the overlay network model, nodes communicate over logical links that are
part of a node’s state, meaning a node may execute actions to create or delete
edges in G. In any round, a node may delete any edge incident upon it, as well
as create any edge to a node v which has been “introduced” to it from some
neighbor w, such that (u,w) and (w, v) are both in E. Said in another way, in
a particular round a node may connect its neighbors to one another by direct
logical links.

Applications and Implications of a General Framework 247

The goal for our computation is for nodes to execute actions to update their
state (including modifying the topology by adding and deleting edges to other
nodes) until a legal configuration is reached. A legal configuration can be repre-
sented as a predicate over the state of the nodes in the system. In the overlay
network model, links are part of a node’s state, meaning a legal configuration is
defined at least in part by the overlay network topology. The self-stabilizing over-
lay network problem is to design an algorithm A such that when executing A on
each node in a connected network with nodes in an arbitrary state, and allowing
A to add and delete edges, eventually a legal configuration, including a predicate
defined at least in part by the network’s logical topology, is reached. This means
that a self-stabilizing overlay network will always automatically restore a legal
configuration (including reconfiguring the network topology) after any transient
failure so long as the network remains connected.

2.2 Complexity Measures

When designing self-stabilizing overlay network protocols, there are two mea-
sures of interest: the time required to build a correct configuration, and the
space required to do so (in terms of a node’s degree). In our model, we are con-
cerned with the number of synchronous rounds that are required to reach a legal
state. In particular, the maximum number of synchronous rounds required to
build a legal topology when starting from any arbitrary configuration is called
the convergence time.

When measuring the space requirements, we use the degree expansion mea-
sure from the original Avatar work [2], which is defined as the ratio of the
maximum node degree of any node during convergence over the maximum node
degree from the initial or final configuration. This measure is based upon the
idea that if a node begins with a large degree in the initial configuration, or ends
with a large degree in the final configuration, the overall algorithm cannot be
expected to have a low degree during convergence. Instead, we are interested in
the “extra” degree growth caused by the algorithm during convergence.

3 Generalizing Avatar

The original Avatar work [2] provided two things: a definition of a locally-
checkable embedding from any set of real nodes to a particular target topology,
and a self-stabilizing algorithm for creating a specific binary tree topology. Below,
we review these contributions and expand the analysis of the algorithm to show
it can work for arbitrary topologies.

3.1 Avatar Definition

The Avatar network definition is simply a dilation-1 embedding between a
guest network and a host network. More specifically, let F be a family of graphs
such that, for each N ∈ N, there is exactly one graph FN ∈ F with node set

248 A. Berns

{0, 1, . . . , N − 1}. We call F a full graph family, capturing the notion that the
family contains exactly one topology for each “full” set of nodes {0, 1, . . . , N −1}
(relative to the identifiers). For any N ∈ N and V ⊆ {0, 1, . . . , N − 1},
AvatarF (N,V) is a network with node set V that realizes a dilation-1 embed-
ding of FN ∈ F . The specific embedding is given below. We also show that, when
given N , Avatar is locally checkable (N can be viewed as an upper bound on
the number of nodes in the system). It is on this full graph family guest network
that our algorithms shall execute, as we will show later.

Definition 1. Let V ⊆ [N] be a node set {u0, u1, . . . , un−1}, where ui < ui+1

for 0 ≤ i < n−1. Let the range of a node ui be range(ui) = [ui, ui+1) for 0 < i <
n − 1. Let range(u0) = [0, u1) and range(un−1) = [un−1, N). AvatarF (N,V) is
a graph with node set V and edge set consisting of two edge types:

Type 1: {(ui, ui+1)|i = 0, . . . , n − 2}
Type 2: {(ui, uj)|ui �= uj ∧ ∃(a, b) ∈ E(FN), a ∈ range(ui) ∧ b ∈ range(uj)}

When referring to a general Avatar network for any set of nodes, we will
omit the V and simply refer to AvatarF (N).

With Avatar, we consider two “networks”: a host network consisting of the
real nodes in V , and a guest network consisting of the N virtual nodes from the
target topology. Each real node in V is the host of one or more virtual nodes
in N . This embedding provides several advantages. First, it allows us to make
many networks locally-checkable provided all nodes know N in advance. Second,
it provides a simple mechanism for which to reason about network behavior in
the guest network. As the target N -node topology is fixed regardless of the actual
set of real nodes V , the design and analysis of our algorithms is simplified by
executing them on the guest network. Since we are using a dilation-1 embedding,
most metrics for performance regarding the guest network (e.g. diameter) still
apply to the host network. We shall assume that the virtual nodes also use the
same synchronous message passing model described for the real nodes.

Note the work of Avatar does require all nodes know N , an upper bound on
the number of nodes in the system. From a practical standpoint, even in cases
where N and n are significantly different, a polylogarithmic convergence time in
N may still be small enough (e.g. for IPv6, O(log N) is only 128).

3.2 The Avatar Algorithm

The original Avatar work was focused on the creation of a specific topology
(a binary search tree) as the target topology. Their algorithm followed a divide-
and-conquer approach, separating nodes into clusters and then merging them
together. One can think of their self-stabilizing algorithm as involving three
different components:

1. Clustering : The first step in the algorithm is for nodes to form clusters. These
clusters begin as a single host node hosting a full N node guest network of the

Applications and Implications of a General Framework 249

target topology (Cbt in the original work). In the initial configuration, nodes
may not be a part of a cluster, but since Avatar is locally checkable, all faulty
configurations contain at least one node which detects the faulty configura-
tion and will begin forming the single-node clusters. This fault detection and
cluster creation will propagate through the network until eventually all nodes
are members of N node clusters of the target topology.

2. Matching : The second step of the algorithm is to match together clusters
so that they may merge together. To do this, the root node of a spanning
tree defined on the cluster repeatedly polls the nodes of its cluster, asking
them to either find neighboring clusters that are looking for merge partners
(called the leader role), or to look at neighboring clusters that can assign
them a merge partner (called the follower role). The role of leader or follower
is randomly selected. Leader clusters will match together all of their followers
for merging by adding edges between the roots of each cluster, creating a
matching between clusters that may not be direct neighbors. This ability to
create edges to match non-neighboring clusters allows more matches to occur,
and thus more merges, and thus a faster convergence time.

3. Merging : The algorithm then deals with the merging of matched clusters. To
prevent degrees from growing too large, a cluster is only allowed to merge with
at most one other cluster at a time. Once two clusters have matched from
the previous step, the roots of the clusters connect as “partners” and update
their successor pointers based upon the identifier of the host of the root of the
other cluster. One node will have its responsible range become smaller, and
this node will send all virtual nodes that were in its old responsible range to its
partner in the other cluster. The children of the root nodes are connected, and
then they repeat the process of updating successor pointers and passing along
virtual nodes outside their new responsible range. Eventually this process
reaches the leaves, at which point all nodes in both clusters have updated their
responsible ranges and now form a new legal cluster of the target topology.

As it turns out, the algorithm components from the original Avatar work do
not depend upon the specific topology that is being built (the target topology).
While the analysis of complexity assumes a complete binary search tree, the
algorithm components themselves simply rely upon an arbitrary target topology
and a spanning tree defined upon that topology on which to execute PIF waves.
We can therefore extend this algorithm to other topologies if we update the
analysis and include several additional metrics. We define these metrics next
after discussing the algorithm’s intuition.

3.3 Relevant Metrics

To update the analysis of the original Avatar work for any target topology
requires two measures of the target topology. The first of these is diameter of
the target topology, which will be a factor in determining the convergence time.
The second of these is a measure of a real node’s degree inside the embedded
target topology, which will be a factor in determining the degree expansion.

250 A. Berns

Spanning Tree Diameter. In the original Avatar algorithm, a spanning tree
embedded onto the target topology was used to communicate and coordinate
between nodes in a particular cluster. For our work, we will simply use a spanning
tree with a root of (virtual) node 0 and consisting of the shortest path from node
0 to all other nodes. Obviously the diameter of this spanning tree is at most the
diameter of the target topology, and we therefore shall use the diameter of the
target topology as our first metric of interest. We denote the diameter of a
particular target topology T with N nodes as D(TN).

As we shall see, this diameter measure will be key in determining the stabi-
lization time. Intuitively, a low-diameter spanning tree results in faster commu-
nication within clusters, and therefore faster convergence than a higher diameter
spanning tree.

Maximum Degree of Embedding. The other measure of interest has to do
with the degree of the real nodes when embedding the target topology. More
formally, let the maximum degree of embedding TN in Avatar be defined as
the maximum degree of any node in AvatarT (N,V) for any node set V ⊆ N .
Where clear from context, we will refer to this simply as the maximum degree of
embedding and denote it as ΔA(TN). Note the maximum degree of embedding is
almost entirely determined by the target topology T , as there are only 2 edges
in AvatarT (N) per node that are not present to realize a dilation-1 embedding
of T .

The maximum degree of embedding is a critical measure for degree expansion
as it determines how many additional edges a node may receive during the
various stages of the algorithm. The clusters in the Avatar algorithm are N
node instances of the target topology T , and using metrics defined on TN is
acceptable for running time. However, each time an edge is added to a virtual
node within a cluster, we must consider the effects on the degree in the host
network, not just the guest network.

Note that the definition of maximum degree of embedding considers any pos-
sible subset of real nodes V . This differs from typical (non-stabilizing) overlay
network results, where it is common to assume that identifiers are uniformly dis-
tributed, meaning that the ranges of each real node are of similar size. However,
since we are building a self-stabilizing protocol, and each cluster is by itself an
N node instance of the target topology, the ranges of hosts inside clusters dur-
ing convergence may be quite skewed, even when the final distribution of node
identifiers is not.

3.4 Overall Complexity

If we are given the diameter and the maximum degree of embedding of an arbi-
trary target topology, we can then determine the convergence time and degree
expansion of Berns’ algorithm for the arbitrary target topology, as shown below.
The full analysis, modified from the original by Berns, can be found in the full
version of the paper [3]. Our contribution is the observation that the algorithm

Applications and Implications of a General Framework 251

works for any topology, the updated metrics for the analysis, and the examples
and discussion that follow.

Theorem 1. The algorithm of Berns [2] defines a self-stabilizing overlay net-
work for AvatarT , for some full graph family target topology T , with convergence
time of O(D(TN) · log N) in expectation, where D(TN) is the diameter of the N
node topology TN .

Proof Sketch. A sketch of the steps for proving this theorem are as follows:

– In at most O(D(TN)) rounds, every node is a member of a cluster.
– For any cluster, in an expected O(D(TN)) rounds, the cluster has completed

a merge with another cluster, meaning the number of clusters has decreased
by a constant fraction in O(D(TN)) rounds.

– Reducing the number of clusters by a constant fraction needs to be done
O(log N) times before a single cluster remains.

Theorem 2. The algorithm of Berns [2] defines a self-stabilizing overlay net-
work for AvatarT , for some full graph family target topology T , with degree
expansion of O(ΔA(TN) · log N) in expectation, where ΔA(TN) is the maximum
degree of embedding of the N node target topology TN .

Proof Sketch. To prove this, we consider the actions that might increase a node’s
degree.

– Regardless of the number of merges a node participates in, the node’s degree
will grow to at most O(ΔA(TN)) as the result of merge actions. By definition,
a node’s degree within its cluster after a merge cannot exceed ΔA(TN).

– During the process of matching clusters together, a node’s degree may grow
by one for every child it has in the spanning tree. Since the node has at
most ΔA(TN) children from other nodes, each time the node participates in
the matching its degree grows by O(ΔA(TN)). In expectation, this matching
happens O(log N) times (see proof of Theorem 1).

The implications of Theorems 1 and 2 are that we can simply define a target
topology and analyze its diameter and maximum degree of embedding to have
a self-stabilizing protocol for our target topology.

4 Examples

In this section, we demonstrate how the selection of the target topology affects
the complexity of our algorithm by considering several different topologies: the
Linear network, a complete binary search tree (Cbt, taken from [2]), and
Chord [12].

252 A. Berns

4.1 Linear

As the name suggests, the Linear network consists of a line of nodes sorted
by identifier. The formal desired end topology for the Linear network is given
next.

Definition 2. The Linear(N) network, for N ∈ N, consists of nodes V =
{0, 1, . . . , N − 1} and edges E = {(i, i + 1), i ∈ [0, N − 2]}.
Lemma 1. The diameter of an N node Linear network is O(N).

Each virtual node has a degree of at most 2, and it is easy to see that each
real node also has a degree of at most 2. Therefore, the maximum degree of
embedding for Linear is O(1).

Lemma 2. The maximum degree of embedding of the Linear topology is O(1).

Proof. Note that for any particular range(u) = [x, y], there are at most two
external edges: (x − 1, x) and (y, y + 1). All other edges are between virtual
nodes inside the range.

The above lemmas combined with Theorems 1 and 2 give us the following
corollary.

Corollary 1. The self-stabilizing Avatar algorithm builds AvatarLinear(N) in
an expected O(N · log N) rounds with an expected degree expansion of O(log N).

Note the convergence time of this algorithm is a logarithmic factor slower
than previous results [11]. This logarithmic factor comes from the “cost of coor-
dination”, as edges are only added when clusters have matched.

4.2 Complete Binary Search Tree

In the first Avatar paper, the author defined and analyzed an algorithm for
one specific topology, the complete binary search tree (called Cbt). We for-
mally define the desired end topology for Cbt, list the relevant measures for
this topology below and omit the proofs, as those are contained in the work of
Berns [2].

Definition 3. For a ≤ b, let Cbt[a, b] be a binary tree rooted at r = �(b+a)/2	.
Node r’s left cluster is Cbt[a, r − 1], and r’s right cluster is Cbt[r + 1, b]. If
a > b, then Cbt[a, b] = ⊥. We define Cbt(N) = Cbt[0, N − 1].

Lemma 3. The diameter of an N node Cbt network is O(log N).

Lemma 4. The maximum degree of embedding of an N node Cbt network is
O(log N).

The above lemmas combined with Theorems 1 and 2 give us the following
corollary.

Applications and Implications of a General Framework 253

Corollary 2. The self-stabilizing Avatar algorithm builds a target topology of
AvatarCbt(N) in expected O(log2 N) rounds with O(log2 N) expected degree
expansion.

Note the above corollary matches with the detailed proofs given in the origi-
nal Avatar work. Unlike the original, however, we reached our conclusions based
simply upon the metrics we defined earlier. This corollary, then, serves as a nice
“sanity check” on the accuracy of our results.

4.3 Chord

Both Linear and Cbt are tree topologies, meaning they are fragile: a single
node or link failure may partition the network. In this section, we consider the
more robust Chord network [12], defined as follows.

Definition 4. For any N ∈ N, let Chord(N) be a graph with nodes [N] and
edge set defined as follows. For every node i, 0 ≤ i < N , add to the edge set
(i, j), where j = (i+2k) mod N , 0 ≤ k < log N −1. When j = (i+2k) mod N ,
we say that j is the k-th finger of i.

The original Chord paper proves the following lemma regarding the net-
work’s diameter.

Lemma 5. The diameter of an N node Chord network is O(log N).

While the logarithmic diameter means we can efficiently build Chord in
terms of time complexity, the results are not so hopeful in terms of degree com-
plexity. In an N -node Chord network, every node has O(log N) neighbors, some
of which have identifiers up to N/2 away. The result of this is that if a real node
has a range of size N/2, each virtual node in the range may potentially have a
connection to a virtual node on a different host, leading to the following result.

Lemma 6. The maximum degree of embedding of the Chord topology is O(N).

Proof. To see this, consider a specific n node embedding of Chord where
range(u) = [0, N/2). Note each node in u’s range is incident on at least one edge
whose other endpoint is outside range(u) – specifically, the log N − 1 Chord
finger. As there are N/2 nodes in u’s range, we have at least N/2 edges with
exactly one endpoint outside range(u), and our lemma holds.

Note this result is not a concern in the final configuration if we assume iden-
tifiers are uniformly distributed (a common assumption with overlay networks).
However, we are working in a self-stabilizing setting where any initial configu-
ration is possible, and therefore one could imagine a scenario where the system
reaches a configuration where a single cluster consisting of node 0 is matched
with an N/2 node cluster consisting of all real nodes from the range [N/2, N).

Combining the above two lemmas with Theorem 1 and Theorem 2 gives us
the following corollary.

254 A. Berns

Corollary 3. The self-stabilizing Avatar algorithm builds AvatarChord(N) in
expected O(log2 N) rounds and with expected degree expansion of O(N · log N).

Note we can actually improve the bound of the degree expansion, as it is at
most O(N). As our theorems provide an upper bound, however, we leave them
stated as is for simplicity.

5 SkipChord

We showed above the role the diameter and maximum degree of embedding play
in determining performance of the Avatar algorithm. One of the benefits of
the general analysis of the Avatar algorithm is that it highlights the factors of
the topology that will affect convergence, allowing a network designer to select
an existing topology, or design new topologies, based upon the problem require-
ments while weighing the impact of the topology on convergence time and degree
expansion.

In this section, we present a new network topology designed specifically for
embedding in the Avatar framework which we call SkipChord. This ring-based
network is more robust than Linear and Cbt while avoiding the high degree
requirements of the Chord network.

5.1 Definition

As trees, the Linear and Cbt networks make poor choices for many fault-prone
applications as they are easily disconnected by node or link failure. Chord
represents a more robust choice, but suffers from a high maximum degree of
embedding due to each of the N nodes having a long link (to a neighbor with
identifier O(N) away from itself). Our SkipChord network tries to balance this
by limiting the number of fingers while still maintaining a topology more robust
than a simple tree. We give the formal definition of SkipChord below.

Definition 5. For any N ∈ N, let SkipChord(N, s) be a graph with nodes [N]
and skip factor s. The edge set for SkipChord(N, s) is defined as follows:

– Ring edges: For every node i, 0 ≤ i < N , add edges (i − 1 mod N, i) and
(i, i + 1 mod N)

– Finger edges: For every node j, where j = sk, for k = 0, 1, . . . , (N − s)/s,
add edge (j, j + 2k mod logN mod N). We say the size of this finger edge is
2k mod logN .

This construction basically takes the log N fingers from each node in the
original Chord and distributes them out over a range of nodes as determined
by the skip factor s. As we shall show, by “skipping” the fingers, fewer virtual
nodes in a real node’s range have long (to a neighbor O(N) away) outgoing
links, and therefore the number of edges to other real nodes is limited while not
compromising efficient routing.

Applications and Implications of a General Framework 255

(a) Six Fingers of Node 0 in Chord(64)

(b) First Six “Skipped” Fingers for SkipChord(64, 2)

Fig. 1. (a) The neighborhood of node 0 in Chord, and (b) the corresponding six fingers
in SkipChord. Note how the fingers in SkipChord are no longer all incident on node
0 but instead have “skipped” ahead.

To better understand SkipChord, consider Fig. 1. The network on the top
shows node 0’s neighborhood for Chord(64), while the network on the bottom
shows the corresponding fingers “skipped” with a skip factor of 2 (i.e. a subset of
the edges for SkipChord(64, 2)). The first six fingers in Chord are all incident
upon node 0, while the first six fingers in SkipChord are distributed amongst
nodes 0, 2, 4, 6, 8, and 10. As a result of this, each node in SkipChord has a
much smaller degree than in Chord.

5.2 Metrics

We begin with a proof of the diameter of SkipChord. The intuition behind our
result is simple: any node is at most s · log N away from an edge that at least
halves the distance from itself to any other node.

Lemma 7. The diameter of an N -node SkipChord network with skip factor
s (SkipChord(N, s)) is O(s · log2 N).

Proof. Consider the hops required to halve the distance between two arbitrary
nodes u and v. In at most O(s · log N) hops from u using ring edges, at least
one finger of every size is reachable. One of these fingers will at least halve the
distance to the other node v. As the distance to v can be halved in O(s · log N)
hops, and this halving will occur log N times before reaching v, our lemma holds.

Next we see how spreading the fingers out over a set of nodes results in a
lower maximum degree of embedding.

Lemma 8. The maximum degree of embedding of an N -node SkipChord with
a skip factor of s (SkipChord(N, s)) is O(N

s·logN).

Proof. Let an edge be called an external edge for node u if and only if it has
exactly one endpoint in range(u). Note that there are at most 2 external ring
edges for any possible range for node u. We consider then the external finger
edges in range(u). Let k be the largest finger that has exactly one endpoint in
range(u). There are at most |range(u)|/s · log N such fingers, where |range(u)|

256 A. Berns

denotes the size of the range (for our embeddings, the number of nodes u is
hosting). For the k − 1 fingers, there are at most half as many as the k fingers
with exactly one endpoint in range(u). Similarly, for the k−2 fingers, there are at
most 1/4 as many as the k fingers with exactly one endpoint in range(u), and so
on. Summing these together, we get (|range(u)|/(s · log N))+1/2(|range(u)|/(s ·
log N)) + 1/4(|range(u)|/(s · log N)) + . . . = 2(|range(u)|/(s · log N)). Since
|range(u)| is at most N , our lemma holds.

The above lemmas, combined with Theorem 1 and Theorem 2 give us the
following corollary.

Corollary 4. The Avatar algorithm builds the SkipChord(N, s) target topol-
ogy in an expected O(s · log3 N) rounds with an expected degree expansion of
O(N/s).

Note that we can select a skip factor in such a way as to have efficient
time and space complexity. For instance, if we select a skip factor of log N , we
have polylogarithmic convergence time, sublinear degree expansion, and a target
topology that is more robust than the tree topologies of Linear and Cbt.

Given the fact that SkipChord can be built efficiently whereas Chord can-
not, one can imagine several applications for its use. Like Chord, SkipChord
can be used as a distributed hash table for storing and retrieving files, particu-
larly in settings where transient failures may cause node and link failures, such
as with unreliable Internet connections, or in cases where the nodes join and
leave in large numbers frequently.

6 Discussion and Future Work

Besides providing a simple way to build and analyze self-stabilizing overlay net-
works, our analysis provides a set of parameters that a designer can tune to
achieve a target level of efficiency. One application of our work, then, is in guid-
ing the creation of new topologies that use the Avatar embedding and strive
for low diameter and low maximum degree of embedding while still maintaining
other desirable properties like robustness to node or link failure. We have demon-
strated this process with the creation of the SkipChord topology. It would be
interesting to see how other topologies perform in this framework.

Our framework can also be used to better understand the upper and lower
bounds for the work or degree expansion of self-stabilizing overlay network pro-
tocols. While our results deal entirely with network embeddings, it would be
interesting to see if the provided insights help find general bounds for any net-
work.

References

1. Aspnes, J., Shah, G.: Skip graphs. In: SODA ’03: Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 384–393. Society for
Industrial and Applied Mathematics, Philadelphia (2003)

Applications and Implications of a General Framework 257

2. Berns, A.: Avatar: a time- and space-efficient self-stabilizing overlay network. In:
Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015. LNCS, vol. 9212, pp. 233–247.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21741-3 16

3. Berns, A.: Applications and implications of a general framework for self-stabilizing
overlay networks (2021). https://arxiv.org/abs/2109.14125

4. Berns, A., Ghosh, S., Pemmaraju, S.V.: Building self-stabilizing overlay networks
with the transitive closure framework. In: Défago, X., Petit, F., Villain, V. (eds.)
SSS 2011. LNCS, vol. 6976, pp. 62–76. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-24550-3 7

5. Gilbert, S., Pandurangan, G., Robinson, P., Trehan, A.: Dconstructor: efficient and
robust network construction with polylogarithmic overhead. In: Proceedings of the
39th Symposium on Principles of Distributed Computing, PODC 2020, pp. 438–
447. Association for Computing Machinery, New York (2020). https://doi.org/10.
1145/3382734.3405716

6. Götte, T., Hinnenthal, K., Scheideler, C., Werthmann, J.: Time-optimal construc-
tion of overlay networks. In: Proceedings of the 2021 ACM Symposium on Princi-
ples of Distributed Computing, PODC’21, pp. 457–468. Association for Computing
Machinery, New York (2021). https://doi.org/10.1145/3465084.3467932

7. Hayes, T.P., Saia, J., Trehan, A.: The forgiving graph: a distributed data struc-
ture for low stretch under adversarial attack. In: Proceedings of the 28th ACM
Symposium on Principles of Distributed Computing, PODC 2009, pp. 121–130.
Association for Computing Machinery, New York (2009). https://doi.org/10.1145/
1582716.1582740

8. Herlihy, M., Rajsbaum, S., Tuttle, M.R.: Unifying synchronous and asynchronous
message-passing models. In: Proceedings of the Seventeenth Annual ACM Sympo-
sium on Principles of Distributed Computing, PODC 1998, pp. 133–142. Associa-
tion for Computing Machinery, New York (1998). https://doi.org/10.1145/277697.
277722

9. Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: A distributed polylog-
arithmic time algorithm for self-stabilizing skip graphs. In: PODC ’09: Proceedings
of the 28th ACM Symposium on Principles of Distributed Computing, pp. 131–140.
ACM, New York (2009). https://doi.org/10.1145/1582716.1582741

10. Kniesburges, S., Koutsopoulos, A., Scheideler, C.: Re-chord: a self-stabilizing
chord overlay network. In: Proceedings of the 23rd ACM symposium on Par-
allelism in algorithms and architectures, SPAA 2011, pp. 235–244. ACM, New
York (2011). https://doi.org/10.1145/1989493.1989527. http://doi.acm.org/10.
1145/1989493.1989527

11. Onus, M., Richa, A.W., Scheideler, C.: Linearization: locally self-stabilizing sorting
in graphs. In: ALENEX. SIAM (2007)

12. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a
scalable peer-to-peer lookup service for internet applications. SIGCOMM Comput.
Commun. Rev. 31(4), 149–160 (2001). http://doi.acm.org/10.1145/964723.383071

13. Trehan, A.: Self-healing using virtual structures. CoRR abs/1202.2466 (2012)

https://doi.org/10.1007/978-3-319-21741-3_16
https://arxiv.org/abs/2109.14125
https://doi.org/10.1007/978-3-642-24550-3_7
https://doi.org/10.1007/978-3-642-24550-3_7
https://doi.org/10.1145/3382734.3405716
https://doi.org/10.1145/3382734.3405716
https://doi.org/10.1145/3465084.3467932
https://doi.org/10.1145/1582716.1582740
https://doi.org/10.1145/1582716.1582740
https://doi.org/10.1145/277697.277722
https://doi.org/10.1145/277697.277722
https://doi.org/10.1145/1582716.1582741
https://doi.org/10.1145/1989493.1989527
http://doi.acm.org/10.1145/1989493.1989527
http://doi.acm.org/10.1145/1989493.1989527
http://doi.acm.org/10.1145/964723.383071

Network Scaffolding for Efficient
Stabilization of the Chord Overlay

Network

Andrew Berns(B)

Department of Computer Science, University of Northern Iowa, Cedar Falls, IA, USA
andrew.berns@uni.edu

Abstract. Overlay networks, where nodes communicate with neighbors
over logical links consisting of zero or more physical links, have become
an important part of modern networking. From data centers to IoT
devices, overlay networks are used to organize a diverse set of processes
for efficient operations like searching and routing. Many of these overlay
networks operate in fragile environments where faults that perturb the
logical network topology are commonplace. Self-stabilizing overlay net-
works offer one approach for managing these faults, promising to build
or restore a particular topology from any weakly-connected initial con-
figuration.

Designing efficient self-stabilizing algorithms for many topologies,
however, is not an easy task. For non-trivial topologies that have desir-
able properties like low diameter and robust routing in the face of node
or link failures, self-stabilizing algorithms to date have had at least linear
running time or space requirements. In this work, we address this issue
by presenting an algorithm for building a Chord network that has poly-
logarithmic time and space complexity. Furthermore, we discuss how the
technique we use for building this Chord network can be generalized
into a “design pattern” for other desirable overlay network topologies.

Keywords: Topological self-stabilization · Overlay networks ·
Fault-tolerant distributed systems

1 Introduction

As computers and network connectivity have become an ubiquitous part of soci-
ety, the size and scope of distributed systems has grown. It is now commonplace
for these systems to contain hundreds or even thousands of computers spread
across the globe connected through the Internet. To better facilitate common
operations for applications, like routing and searching, many distributed systems
are built using overlay networks, where connections occur over logical links that
consist of zero or more physical links. Overlay networks allow nodes to embed

An early version of this work appeared as a Brief Announcement in SPAA 2021.
c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 258–272, 2021.
https://doi.org/10.1007/978-3-030-91081-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_17

Network Scaffolding for Efficient Stabilization 259

a predictable topology onto their (usually fixed) physical topology, selecting the
best network for the application’s particular needs.

Complicating the use of these overlay networks, however, is the reality that
systems composed of such a wide variety and distribution of devices are more
prone to failures caused from problems with the devices or physical links. For
instance, fiber optic cables can be severed, power outages can cause machines
to disconnect without warning, and even intentional user actions like joining
or leaving the system on a predictable schedule can result in an incorrectly-
configured overlay network causing the client application to fail.

One approach for managing these faults and preventing failures is to design
protocols which are resilient to a targeted set of specific system faults, such as
nodes joining or leaving the system. However, the unpredictable nature of these
distributed systems makes it difficult to identify and control for every possible
fault. It is for this reason that researchers have turned to self-stabilizing overlay
networks. A self-stabilizing overlay network guarantees that after any transient
fault, a correct topology will eventually be restored. This type of network can
ensure autonomous operation of distributed systems even in the face of a variety
of unforeseen transient faults.

The Problem. Our focus is on building robust self-stabilizing overlay net-
works efficiently. More specifically, we are interested in creating efficient algo-
rithms that add and delete logical edges in the network to transform an arbitrary
weakly-connected initial topology into a correct robust topology. By efficient, we
mean these algorithms have a time and space complexity which is polylogarith-
mic in the number of nodes in the network. By robust, we mean topologies where
the failure of a few nodes is insufficient to disconnect the network.

Main Results and Significance. With this paper, we present an efficient self-
stabilizing overlay network with desirable practical properties like robustness
and low diameter. In particular, we present a self-stabilizing algorithm for the
creation of a Chord network which has expected polylogarithmic space and
time requirements. Note that this is the first work to present an efficient (in
terms of time and space) self-stabilizing overlay network for a robust topology.
Note that, while our algorithm is deterministic, it depends upon the prior work
of Berns [1], which was randomized, and therefore our results are in expectation.

Our second result is the explicit identification of a “design pattern” we call
network scaffolding for creating self-stabilizing overlay networks. This pattern
has been used in several other works, and the success of this approach, both
previously as well as in this work for building Chord, leads us to believe it can
be used for many other topologies as well. Our work is a first step towards fully
defining and analyzing this design pattern. Our goal is that explicit identification
of this design pattern can be useful to other researchers and practitioners in the
design and implementation of other self-stabilizing overlay networks.

A preliminary version of this work appeared as a brief announcement at
SPAA 2021 [2]. In this version, we provide a more detailed discussion of the

260 A. Berns

Avatar background, an improved analysis showing a better bound on the degree
expansion, and also provide an extended discussion about the identified design
pattern.

Related Work and Comparisons. The past few decades have seen tremen-
dous growth in both the theory and practice of overlay networks. Some of this
work has focused on unstructured overlay networks where connections need not
satisfy any particular property and there are no constraints on what is considered
a “legal” topology, such as Napster and Gnutella [13].

Our work focuses on structured overlay networks, where there is exactly one
correct topology for any given set of nodes. While constructing and maintaining
the correct topology adds additional work for the algorithm designer, common
operations such as routing and searching are much more efficient with these
structured networks. One example of such an overlay is Chord. Many of these
structured networks, however, provided very limited fault tolerance.

To this end, much previous work has focused on improving the fault tolerance
of overlay networks. One approach has looked at self-healing networks, where the
network can maintain certain properties while a limited number of faults occur
during a fixed time period. Examples of this work include the Forgiving Tree [8]
and DEX [12]. Many of these approaches also use virtual nodes [14] as done in
our work. More recently, Gilbert et al. presented DConstructor [6] which is
able to build a correct topology from any initial topology and maintain this in
the face of some joins and leaves. Götte et al. [7] also presented an algorithm
for transforming a constant-degree network into a tree in O(log n) rounds. The
key difference between these works and ours, however, is we use a stronger fault
model, requiring our algorithm to build the correct configuration regardless of
the initial topology or the initial state of the nodes. This is a paradigm called
self-stabilization, which we discuss next.

Self-stabilizing overlay networks are those that guarantee a legal configura-
tion will be automatically restored by program actions after any transient fault
so long as the network is not disconnected. This is often modeled as the abil-
ity for the network to form a correct topology when starting from an arbitrary
weakly-connected state. One of the first such examples of a self-stabilizing over-
lay network was for the simple structured Linear topology [11] where nodes
were arranged in a “sorted list”. Since then, there have been several other self-
stabilizing structured overlay networks created, including Skip+ [9] and Re-
Chord [10]. Unlike the simple Linear topology, Skip+ and Re-Chord main-
tain several desirable properties for client applications, including low node degree
and low diameter. Unfortunately, their worst-case time (in the case of Re-
Chord) or space (in the case of Skip+) complexity is linear in the number
of nodes.

To date, we are aware of only one self-stabilizing overlay network that is
efficient in terms of both time and space. Berns presented the Avatar network
framework as a mechanism for ensuring a faulty configuration is detectable for a
wide variety of networks, and also gave a self-stabilizing algorithm for the con-

Network Scaffolding for Efficient Stabilization 261

struction of a binary search tree [1]. Our current work builds upon this Avatar
network.

A goal of our current work is to identify a general “design pattern” which can
be used for building self-stabilizing overlay networks. There has been little work
done on identifying these general patterns for overlay network construction. One
exception to this is the Transitive Closure Framework [4] (TCF), which pro-
vides a way to build any locally-checkable topology by detecting a fault, forming
a clique, and then deleting those edges which are not required in the correct
configuration. While TCF can create any locally-checkable topology quickly, it
requires node degrees to grow to O(n) during convergence and is therefore not
practical for large networks.

2 Preliminaries

2.1 Model of Computation

We model our distributed system as an undirected graph G = (V,E), with
processes being the n nodes of V and the communication links being the edges
E. Each node u has a unique identifier u.id ∈ N, which is stored as immutable
data in u. Where clear from the context, we will use u to represent the identifier
of u.

Each node u ∈ V has a local state consisting of a set of variables and their
values, along with its immutable identifier u.id. A node may execute actions
from its program to modify the values of the variables in its local state. All
nodes execute the same program. Besides modifying its local state, a node can
also communicate with its neighbors. We use the synchronous message passing
model of computation with bounded communication channels, where computa-
tion proceeds in synchronous rounds. During each round, a node may receive
messages sent to it in the previous round from any of its neighbors, execute
program actions to update its state, and send messages to any node in its neigh-
borhood N(u) = {v ∈ V : (u, v) ∈ E}. We assume the communication channels
are reliable with bounded delay so that a message is received in some round i if
and only if it was sent in round i − 1.

In the overlay network model, nodes communicate over logical links that are
part of a node’s state, meaning a node may execute actions to create or delete
edges in G. In particular, in any round a node may delete any edge incident upon
it, as well as create any edge to a node v which has been “introduced” to it from
some neighbor w, such that (u,w) and (w, v) are both in E. Said in another way,
in a particular round a node may connect its neighbors to one another by direct
logical links.

The goal for our computation is for nodes to execute actions to update their
state (including modifying the topology by adding and deleting edges) until
a legal configuration is reached. A legal configuration can be represented as a
predicate over the state of the nodes in the system, and as links are part of
a node’s state for overlay networks, a legal configuration is defined at least in
part by the network topology. The self-stabilizing overlay network problem is

262 A. Berns

to design an algorithm A such that when executing A on a connected network
with nodes in an arbitrary state, eventually a legal configuration is reached. This
means that a self-stabilizing overlay network will always automatically restore
a legal configuration after any transient fault so long as the network remains
connected.

2.2 Performance Metrics

We analyze the performance of our self-stabilizing overlay network algorithms
in terms of both time and space. For time, we are interested in how quickly the
network will be able to recover from a transient fault. Specifically, we measure
the maximum number of (synchronous) rounds that may be required in the worst
case to take any set of n nodes from an arbitrary connected configuration to a
legal configuration. This is called the convergence time.

The space complexity measure of interest for us is related to the maximum
number of neighbors a node might have during convergence that were not present
in the initial configuration and are not required in the final configuration. Said
in another way, we are interested in the number of “extra” neighbors a node may
acquire due to the algorithm during convergence. More specifically, we use the
degree expansion metric [1], which is the ratio of the maximum node degree of
any node during convergence over the maximum node degree from the initial or
final configuration.

Finally we note that, as with many distributed algorithms, we consider an
efficient algorithm one which keeps these measures polylogarithmic in the num-
ber of nodes in the network.

3 Avatar

Our algorithm for creating the Chord network builds upon the work on the
Avatar overlay network framework by Berns [1]. We present a brief summary
and discussion below to provide the necessary background to understand our
new contributions.

3.1 The Avatar Overlay Network

The Avatar overlay network framework can be used to define a variation of any
particular network topology. The general idea behind the Avatar framework is
to create a dilation-1 embedding of a particular N node guest network (with node
identifiers in the range of [0, N)) onto the n node host network (with n ≤ N).
More specifically, in Avatar each node u ∈ V from the host network (except
the two nodes with the smallest and largest identifiers) simulates or “hosts” all
nodes from the guest network with identifiers in u’s responsible range, defined
as the range of [u.id, v.id), where v.id is the smallest identifier greater than u.id
taken from all nodes in V , which we call the successor of u. The node u0 with
the smallest identifier has a responsible range of [0, v.id) (where again v is the

Network Scaffolding for Efficient Stabilization 263

successor of u0), while the node with the largest identifier un−1 has a responsible
range of [un−1.id,N). To ensure a dilation-1 embedding, for every edge (a, b) in
the guest network there exists an edge between the host nodes of a and b in the
host network, or the host node for a and b is the same – that is, either both a.id
and b.id are in the responsible range of the same host node, or there exists the
edge (host(a), host(b)) in the host network such that a.id is in the responsible
range of host node host(a) and b.id is in the responsible range of host node
host(b). The definition of some N node guest network Guest(N) along with
the constraints on the corresponding edges in the host network define the legal
Avatar(Guest(N)) network.

The use of a guest and host network provides two advantages. First, the
requirement that there is exactly one correct configuration for any given N
(meaning the guest network uses nodes [0, N)), along with the fact that the
successor relationship used in the host network to define the responsible ranges
can easily be determined from a node’s local state, ensures that any topology is
locally checkable. Second, we can design our algorithms (for both stabilization
and end-user applications) to execute on the guest network, which has a sin-
gle predictable configuration for a given N , regardless of the node set V . This
simplifies both the design and analysis of our algorithms.

Note that Avatar does require all nodes to know N , the upper bound on
the number of nodes in the network, and that our analysis of convergence time
and degree expansion is in terms of this N . Given that all of our algorithms
have polylogarithmic time and space requirements, in practice one could easily
select an N which was large enough to accommodate any possible node additions
while still having a time and space complexity less than many existing algorithms
which have complexity at least linear in the actual number of nodes n. Said in
another way, even when N is much larger than n, our efficient algorithms may
still require fewer resources if logN � n. If we consider IPv6, for instance, logN
would be only 128.

3.2 Avatar(CBT)

Beyond defining the Avatar framework, Berns also defined the Cbt guest net-
work and a self-stabilizing algorithm for building the Avatar(Cbt) network in
a polylogarithmic number of rounds with a polylogarithmic degree expansion
(both in expectation). The Cbt topology is simply a complete binary search
tree of the specified N nodes.

Stabilization. Our work building the Chord network depends upon the exis-
tence of a “scaffold” Cbt network. To be self-stabilizing, we need a way to build
this Cbt in a self-stabilizing manner. This is exactly what is provided by the
earlier Avatar work of Berns. The full description of the self-stabilizing algo-
rithm for Avatar(Cbt) can be found in the original work [1]. We present a short
informal summary of the algorithm’s operation here to assist in understanding
and verifying the correctness of our approach.

264 A. Berns

The general idea for the Avatar(Cbt) algorithm can be described using
three components:

1. Clustering : The first step in the algorithm is for nodes to form clusters. These
clusters begin as a single host node hosting a full N virtual node Cbt net-
work. In the initial configuration, nodes may not be a part of a cluster, but
since Avatar is locally checkable, all faulty configurations of Avatar(Cbt)
contain at least one node which detects the faulty configuration and will begin
forming the single-node clusters. This fault detection and cluster creation will
propagate through the network until eventually all nodes are members of N
virtual node Cbt clusters.

2. Matching : The second step of the algorithm is to match together clusters so
that they may merge together. To do this, the root node of the binary tree
repeatedly polls the nodes of its cluster, asking them to either find neighbor-
ing clusters that are looking for merge partners (called the leader role), or to
look at neighboring clusters that can assign them a merge partner (called the
follower role). The role of leader or follower is randomly selected. Leader clus-
ters will match together all of their followers for merging, creating a matching
between clusters that may not be direct neighbors. This ability to create edges
to match non-neighboring clusters allows more matches to occur, and thus
more merges, and thus a faster convergence time.

3. Merging : The algorithm then deals with the merging of matched clusters. To
prevent degrees from growing too large, a cluster is only allowed to merge with
at most one other cluster at a time. Once two clusters have matched from
the previous step, the roots of the clusters connect as “partners” and update
their successor pointers based upon the identifier of the host of the root of the
other cluster. One node will have its responsible range become smaller, and
this node will send all guest nodes that were in its old responsible range to
its partner in the other cluster. The children of the root nodes are connected,
and then they repeat the process of updating successor pointers and passing
along guest nodes outside their new responsible range. Eventually this process
reaches the leaves, at which point all nodes in both clusters have updated their
responsible ranges and now form a new legal Cbt cluster.

This process of matching and merging continues until eventually only a sin-
gle cluster is left, which is the correct Avatar(Cbt) network. We restate the
following theorem from the original work and offer a brief sketch of the proof’s
intuition.

Theorem 1. The self-stabilizing algorithm for Avatar(Cbt) by Berns [1] has
a convergence time of O(log2 N) rounds in expectation, and a degree expansion
of O(log2 N) in expectation.

Intuition: A cluster has a constant probability of being matched and merged with
another cluster in O(logN) rounds, meaning the number of clusters is reduced
by a constant fraction every O(logN) rounds in expectation. This matching and
merging only needs to happen O(logN) times until we have a single cluster,

Network Scaffolding for Efficient Stabilization 265

giving us a time complexity of O(log2 N) rounds in expectation. The degree
of a node can grow during a merge or during the matching process. However,
during a merge a node’s degree will grow to at most O(log2 N), and the node’s
degree will increase by only a constant amount during each match and there are
only O(logN) such matches in expectation, meaning the degree expansion of
the algorithm is also O(log2 N).

Communication. The original work on Avatar(Cbt) also defined a commu-
nication mechanism to execute on the guest Cbt network. We will also use this
mechanism in our algorithm to ensure edges are added systematically and thus
limiting unnecessary degree growth. In particular, we will use a variant of a
propagation of information with feedback (PIF) algorithm [5] which will execute
on the (guest) nodes of Cbt. While the original work was snap-stabilizing, this
would not be a requirement in our work. We are instead simply interested in an
organized way to communicate information in waves in a tree.

In PIF, communication happens in waves that are initiated by the root of the
binary tree. The root executes a propagate action which sends information down
the tree level by level until it reaches the leaves, at which point the leaves begin
a feedback action, performing some operation and then signalling to their parent
that the message has been received by all descendants in the tree. Once the root
receives the feedback wave, it knows the message was successfully received and
acted upon by all nodes in the tree, and the root may continue with further PIF
waves if necessary.

We will use this communication mechanism to add edges to our network to
build Chord. As the PIF process itself is previously defined, we only need to
provide the actions each node will perform for each part, as well as any data that
is sent. In particular, we will say that a tree T executes a PIF (X) wave, meaning
the root of tree T will signal to its children that a propagation wave has begun
with the PIF (X) message. Furthermore, we will specify the propagate action of
a, which is what each non-root node a should do when it receives the propagation
message PIF (X). We also specify the feedback action of a, which is the actions
each node a should take when it receives acknowledgements from its children
that the most-recent propagation wave has completed and the corresponding
feedback wave is underway.

4 Avatar(Chord)

In this section we discuss how we can use the existing Avatar(Cbt) self-
stabilizing overlay network as the starting point for the efficient creation of a
variant of the Chord overlay network.

4.1 Overview of Our Approach

Arguably one of the major barriers to the practical implementation for self-
stabilizing overlay networks is the complexity that must be managed when

266 A. Berns

designing and analyzing these networks, particularly when we desire efficient
self-stabilization. For instance, TCF [4] is simple and works with any locally-
checkable topology, but it requires Θ(n) space. One could imagine a simple
“design pattern” which simply suggests that in every round, a node computes
their ideal neighborhood given the information available to them from their state
and the state of their neighbors, and then add and delete edges to form this ideal
neighborhood. Unfortunately, analyzing this algorithm in terms of both correct-
ness and efficiency is quite difficult as one must consider the implications of a
variety of actions on a variety of possible initial configurations.

One approach to managing complexity is to start by building smaller or sim-
pler structures, and then using these to continue towards the final goal. Consider,
for instance, the construction of a large building. One common approach is to
erect a simple scaffold and use this scaffold to build the more complex perma-
nent structure. As another example, consider the prior work on using convergence
stairs for analyzing general self-stabilizing algorithms. In this technique, one first
must show the system converges to some weaker predicate A0 from an arbitrary
initial configuration, then show it converges to A1 provided it is in A0, then
show it converges to A2 provided it is in A1, and so on until you have reached
the correct configuration. These patterns of design and analysis are similar in
that they take a complex set of required actions, decompose them into smaller
distinct steps, and then rely on prior solutions to the smaller steps to move to
the next ones.

In the remainder of this section, we discuss our approach for efficiently cre-
ating a self-stabilizing version of the Chord network based upon this idea of
scaffolding. In particular, we shall define the Chord topology, and then discuss
how we can use Avatar(Cbt) as a starting point for constructing Chord. We
then show how nodes can determine in a short amount of time whether they
should be building the “scaffold” (Cbt) or the target topology (Chord).

4.2 Chord(N)

Our target network aims to resolve the lack of robustness of the Cbt scaffold
network. In particular, our target network is an N -node Chord network defined
as follows:

Definition 1. For any N ∈ N, let Chord(N) be a graph with nodes [N] and
edge set defined as follows. For every node i, 0 ≤ i < N , add to the edge set
(i, j), where j = (i+2k) mod N , 0 ≤ k < logN −1. When j = (i+2k) mod N ,
we say that j is the k-th finger of i.

It is worth again noting that our use of the Avatar framework results in
a locally-checkable version of the Chord network. Chord as defined on an
arbitrary set of nodes is actually not locally checkable, particularly because of
the “ring” edges (in a legal configuration, exactly one node should have two
immediate neighbors with smaller identifiers, but which node this should be
cannot be determined if the node set is arbitrary). Unlike prior approaches,

Network Scaffolding for Efficient Stabilization 267

then, our stabilizing Chord network is silent, meaning no messages or “probes”
need to be continuously exchanged between nodes in a legal configuration.

Our goal, then, is to use the N -node topology of Cbt to add edges to the
guest nodes (and to the corresponding host network as required to maintain a
dilation-1 embedding) until we have formed the correct N -node Chord network.

4.3 Building Chord from Cbt

Figure 1 elaborates on the algorithm which uses our guest Cbt network as a
scaffold for creating the guest Chord network. The algorithm uses the fact that
Chord edges can be created inductively. That is, assuming all fingers from 0 to
k are present, the k + 1 finger can be created in a single round. Specifically, if
node b is the (i − 1) finger of c0, and c1 is the (i − 1) finger of b, the ith finger
of c0 is c1. The algorithm begins by correctly building finger 0, then recursively
adds the first finger, then the second, and so on. This adding of edges is done in
a metered fashion, however, to prevent unnecessary degree growth from faulty
initial configurations.

Once the scaffold network has been built, we can begin the process of con-
structing our final target topology. We design our algorithm to execute on the
N guest nodes of Cbt, with the goal being to add edges to the nodes of Cbt
until they have formed the N guest node Chord network. For now, we shall
assume that the network is in the legal Cbt configuration. We will relax this
assumption and consider an arbitrary initial configuration shortly.

The algorithm begins with the root of Cbt initiating a PIF wave which
connects each guest node with its 0th finger. Notice that, with the exception of
one node, the edges in the host network realizing every guest node’s 0th finger
are already present. For any guest node b �= N − 1, the 0th finger of b is either
(i) a guest node with the same host as b, or (ii) a guest node which is hosted
by the successor of hostb. Edges to guest nodes 0 and N − 1 are forwarded up
the tree during the feedback wave, allowing the root of the tree to connect them
at the completion of the wave, thus forming the base ring and completing every
guest node’s 0th finger. The root then executes logN − 1 additional PIF waves,
with wave k correctly adding the kth finger for all guest nodes. After O(log2 N)
rounds, we have built the correct Avatar(Chord) network.

4.4 Phase Selection

The final piece for our self-stabilizing Chord network is to create a mechanism
by which nodes can know which algorithm they should be executing: either
executing the steps required to build the Avatar(Cbt) network, or the steps
required to build the Chord target network from an existing Cbt network).
We assume each host node u maintains a phase variable phaseu whose value
is from the set {CBT,CHORD,DONE}. When phaseu = CBT , a node is
executing the algorithm for the Avatar(Cbt) network. If phaseu = CHORD ,
then the PIF waves in Algorithm 1 are executed. If phaseu = DONE , then a

268 A. Berns

// Execute when phaseu = CHORD; If phaseu = CBT, then execute
// the original Avatar(Cbt) algorithm [1].
// As part of each round, nodes exchange their local state, including
// LastWave, and check for faulty configurations as described in Section 4.4.

1. Tree T executes a PIF (MakeFinger(0)) wave:
2. Propagate Action for a: LastWavea = 0
3. Feedback Action for a:

// Let b be the 0th finger of a.
4. if LastWavea = LastWaveb = 0 then
5. Create the edge (a, b)
6. Forward an edge to node 0

or N − 1 (if present) to parent
7. else phaseu = CBT (where u is hosta) fi
8. for k = 1, 2, . . . , logN − 1 do
9. Tree T executes a PIF(MakeFinger(k)) wave:
10. Propagate Action for a: LastWavea = k
11. Feedback Action for a:

// Let b0, b1 be the k − 1 fingers of a.
12. if LastWavea = LastWaveb0 = LastWaveb1 = k then
13. Create edge (b0, b1), the kth finger of b0.
14. else phaseu = CBT (where u is hosta) fi
15. od

Fig. 1. Algorithm 1: PIF for Chord Target from Cbt Scaffold

node will take no actions provided its local neighborhood is consistent with a
legal Avatar(Chord) network.

Determining which algorithm to execute requires a node be able to determine
if the configuration they are in now is either completely correct or consistent with
one reached by building Chord from Cbt. We define a subset of states under
which Algorithm 1 will converge, and then define a predicate which nodes can
use to determine if the network is in one of these states.

Definition 2. A graph G with node set V is in a scaffolded Chord configura-
tion if G is reachable by executing the PIF waves defined by Algorithm 1 on a
correct Avatar(Cbt) network.

Thanks to the predictability of the Cbt scaffold network, nodes can deter-
mine if their state is consistent with that of a scaffolded Chord configuration.
Informally, each guest node can determine this by simply checking to see if its
neighborhood is a superset of Cbt but a subset of Chord, with the first k fin-
gers from Chord present, for some k ∈ [0, logN). We define the predicate a
node can use for this operation below.

Definition 3. Let scaffoldedb be a predicate defined over the local state of a
guest node b, as well as the state of nodes b′ ∈ N(b). The value of scaffoldedb is
the conjunction of the following conditions.

Network Scaffolding for Efficient Stabilization 269

1. Node b has all neighbors from Cbt, each with the proper host and tree iden-
tifier (a value set as part of a legal Cbt scaffold network).

2. Node b has last executed the kth feedback wave of a
PIF (MakeFinger(k),⊥) wave, for some 0 ≤ k < logN

3. All neighbors of b have either all k fingers present, or k+1 fingers (if a child
has just processed a feedback wave), or k − 1 (if parent has not yet processed
the current feedback wave), where k is the last feedback wave b has executed

4. Node b’s parent has last executed the kth feedback wave, and has the first k
Chord fingers, or k−1 fingers if b has just completed the feedback transition
and b’s parent has not.

In every round of computation, all nodes are checking their local state and the
state of their neighbors to determine if a faulty configuration is found. This check
for faults, along with the scaffoldedb predicate, is used to set the phaseu variable
as follows. If a fault is detected and scaffoldedb = false, then u = hostb sets
phaseu = CBT . Furthermore, if any neighbor v has a different value for phasev,
then phaseu = CBT . Notice that once the correct configuration is built, nodes
can execute a final PIF wave to set phaseu = DONE . If any node detects any
fault during this process, it simply sets phaseu = CBT . Since Avatar(Chord)
is locally checkable, at least one node will not set phaseu = DONE during the
final PIF wave, and the Avatar(Cbt) algorithm will begin.

5 Analysis

We sketch the proofs for our main results below. Full proofs of convergence and
degree expansion can be found in the full version of this paper [3].

Theorem 2. Algorithm 1, when combined with the self-stabilizing algorithm for
Avatar(Cbt) from Berns [1], is a self-stabilizing algorithm for the network
Avatar(Chord) with convergence time O(log2 N) in expectation.

Proof Sketch. To prove the convergence time of our algorithm, we first show that
if the configuration is not a scaffolded Chord configuration, within O(logN)
rounds, all nodes are executing the algorithm to build the scaffold Cbt net-
work. We then show that nodes will have built the correct Cbt network within
an additional O(log2 N) rounds in expectation, at which point all nodes begin
building the target Chord network. We will then show that this process suc-
ceeds in O(log2 N) rounds. Putting these together, we get an overall convergence
time of O(log2 N) in expectation.

Theorem 3. Algorithm 1, when combined with the self-stabilizing algorithm for
Avatar(Cbt) from Berns [1], is a self-stabilizing algorithm for the network
Avatar(Chord) with degree expansion of O(log2 N) in expectation.

Proof Sketch. By design, any edge that is added to the network when building
Chord from Cbt is an edge that will remain in the final correct configuration
and therefore does not affect the degree expansion. Furthermore, we know from

270 A. Berns

the original Avatar paper that the expected degree expansion is O(log2 N) when
all nodes are executing the Cbt algorithm.

The only new piece we need to consider, then, is to analyze the actions nodes
might take when they incorrectly believe, based on their local state, that they
are building the Chord network from the Cbt scaffold (a “false Chord” phase),
which we show can only happen for O(logN) rounds. Since adding Chord edges
is coordinated with a PIF wave, each guest node b can only increase its degree
by one during this time. At most, then, a node may increase its degree by a
factor of 2 during this time, leading to the initial degree growth of 2 during the
“false Chord” phase.

6 Generalizing Our Approach

Above we have provided an algorithm for using one self-stabilizing overlay net-
work to create another self-stabilizing overlay network. While we are not the first
to use this general idea in the construction of overlay networks, we are the first
to explicitly define and discuss this approach, which we call network scaffolding.
To use the network scaffolding approach, one must define several components.
In particular, we must define:

– The scaffold network, an intermediate topology which we can construct from
any initial configuration.

– The target network, the network topology that we wish to build for use with
our final application.

– A self-stabilizing algorithm for constructing the scaffold network.
– An algorithm for building the target network when starting from the correct

scaffold network.
– A local predicate allowing nodes to determine whether they should be building

the scaffold network or the target network.

Our self-stabilizing algorithm from above used Avatar(Cbt) as the scaf-
fold network to build a Avatar(Chord) target network. To do was relatively
straightforward: we defined a way to build Chord from Cbt, and then proved
nodes would quickly determine which network they were building.

This network scaffolding approach has been used in some form by other
previous work, and we hope it will be extended in future work as well. Our
approach heavily depends upon the scaffold network selected. The Cbt network
has many desirable properties for a scaffold network when compared to other
examples in prior work. These properties include:

Efficient Self-stabilization: If the scaffold itself is inefficient to build, we can-
not expect the target topology to be built efficiently. TCF [4] can be thought of
as an inefficient scaffold network that requires O(n) space. Avatar(Cbt) is a
logical choice as, prior to this work, it is the only self-stabilizing overlay network
we are aware of with efficient stabilization in terms of both time and space.

Low Node Degree: Unlike a real scaffold, we maintain the scaffold edges after
the target network is built. Therefore, the scaffold network must have low degree

Network Scaffolding for Efficient Stabilization 271

if we wish our final configuration to be so. Again, the suitability of Avatar(Cbt)
is apparent, as it requires only a few edges per virtual node (and a logarithmic
number of edges per real node).

Low Diameter: Low diameter allows (relatively) fast communication for adding
the target network’s edges one at a time. A previous work, Re-Chord [10], used
a “scaffold” of the Linear network, whose O(n) diameter contributed to the
O(n log n) convergence time of their algorithm.

Predictable Routing: The predictable routing, particularly for communica-
tion, allows us to add edges in a metered and checkable fashion. This predictabil-
ity helps with both design and analysis. It would be interesting to see if a semi-
structured overlay network could be used as a scaffold, as semi-structured over-
lays may be easier to build. To date, little work has been done on self-stabilizing
semi-structured overlay networks, but there are several examples of efficient cre-
ation of semi-structured networks in non-self-stabilizing settings [7] which may
be interesting starting points for future work.

Local Checkability: To be able to determine which phase of the algorithm
should be executed quickly, without “wasting” time and resources adding edges
from a faulty configuration, the scaffold should ideally be locally checkable. Some
previous overlay networks have used a “probing” approach where messages were
circulated continuously to try and detect faulty configurations. The risk of this
approach in network scaffolding is that nodes may spend too long adding edges
from an incorrect scaffold, or take too long to detect a faulty configuration.

7 Concluding Thoughts

In this paper, we have presented the first time- and space-efficient algorithm for
building a Chord network using a technique we call network scaffolding. We
discussed considerations for expanding this technique, in particular pointing out
considerations and implications for various properties of the scaffold network.

An obvious extension to our work would be to consider building other tar-
get topologies using Avatar(Cbt) as a scaffold network. For instance, networks
with good load balancing properties or with high resilience to churn could be con-
verted into self-stabilizing variants using Avatar to define the network topology
and the Cbt scaffold to build this correct topology. It would also be interesting
to investigate the correctness and complexity of this approach when using a more
realistic asynchronous communication model.

References

1. Berns, A.: Avatar: a time- and space-efficient self-stabilizing overlay network. In:
Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015. LNCS, vol. 9212, pp. 233–247.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21741-3_16

https://doi.org/10.1007/978-3-319-21741-3_16

272 A. Berns

2. Berns, A.: Network scaffolding for efficient stabilization of the chord overlay net-
work. In: Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA 2021, pp. 417–419. Association for Computing Machin-
ery, New York (2021). https://doi.org/10.1145/3409964.3461827

3. Berns, A.: Network scaffolding for efficient stabilization of the chord overlay net-
work (2021). https://arxiv.org/abs/2109.14126

4. Berns, A., Ghosh, S., Pemmaraju, S.V.: Building self-stabilizing overlay networks
with the transitive closure framework. In: Défago, X., Petit, F., Villain, V. (eds.)
SSS 2011. LNCS, vol. 6976, pp. 62–76. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-24550-3_7

5. Delaët, S., Devismes, S., Nesterenko, M., Tixeuil, S.: Snap-stabilization in message-
passing systems. J. Parallel Distrib. Comput. 70(12), 1220–1230 (2010)

6. Gilbert, S., Pandurangan, G., Robinson, P., Trehan, A.: Dconstructor: Efficient
and robust network construction with polylogarithmic overhead. In: Proceedings
of the 39th Symposium on Principles of Distributed Computing, PODC 2020, pp.
438–447. Association for Computing Machinery, New York (2020). https://doi.org/
10.1145/3382734.3405716

7. Götte, T., Hinnenthal, K., Scheideler, C., Werthmann, J.: Time-optimal construc-
tion of overlay networks. In: Proceedings of the 2021 ACM Symposium on Prin-
ciples of Distributed Computing, PODC 2021, pp. 457–468. Association for Com-
puting Machinery, New York (2021). https://doi.org/10.1145/3465084.3467932

8. Hayes, T., Rustagi, N., Saia, J., Trehan, A.: The forgiving tree: a self-healing dis-
tributed data structure. In: Proceedings of the Twenty-Seventh ACM Symposium
on Principles of Distributed Computing, PODC 2008, pp. 203–212. Association
for Computing Machinery, New York (2008). https://doi.org/10.1145/1400751.
1400779

9. Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: A distributed polylog-
arithmic time algorithm for self-stabilizing skip graphs. In: PODC ’09: Proceedings
of the 28th ACM symposium on Principles of distributed computing, pp. 131–140.
ACM, New York (2009). http://doi.acm.org/10.1145/1582716.1582741

10. Kniesburges, S., Koutsopoulos, A., Scheideler, C.: Re-chord: a self-stabilizing
chord overlay network. In: Proceedings of the 23rd ACM symposium on Par-
allelism in algorithms and architectures, SPAA 2011, pp. 235–244. ACM, New
York (2011). https://doi.org/10.1145/1989493.1989527. http://doi.acm.org/10.
1145/1989493.1989527

11. Onus, M., Richa, A.W., Scheideler, C.: Linearization: locally self-stabilizing sorting
in graphs. In: ALENEX. SIAM (2007)

12. Pandurangan, G., Robinson, P., Trehan, A.: Dex: self-healing expanders. Distrib.
Comput. 29(3), 163–185 (2016). https://doi.org/10.1007/s00446-015-0258-3

13. Saroiu, S., Gummadi, K.P., Gribble, S.D.: Measuring and analyzing the charac-
teristics of Napster and Gnutella hosts. Multimedia Syst. 9(2), 170–184 (2003).
https://doi.org/10.1007/s00530-003-0088-1

14. Trehan, A.: Self-healing using virtual structures. CoRR abs/1202.2466 (2012).
http://arxiv.org/abs/1202.2466

https://doi.org/10.1145/3409964.3461827
https://arxiv.org/abs/2109.14126
https://doi.org/10.1007/978-3-642-24550-3_7
https://doi.org/10.1007/978-3-642-24550-3_7
https://doi.org/10.1145/3382734.3405716
https://doi.org/10.1145/3382734.3405716
https://doi.org/10.1145/3465084.3467932
https://doi.org/10.1145/1400751.1400779
https://doi.org/10.1145/1400751.1400779
http://doi.acm.org/10.1145/1582716.1582741
https://doi.org/10.1145/1989493.1989527
http://doi.acm.org/10.1145/1989493.1989527
http://doi.acm.org/10.1145/1989493.1989527
https://doi.org/10.1007/s00446-015-0258-3
https://doi.org/10.1007/s00530-003-0088-1
http://arxiv.org/abs/1202.2466

The Agreement Power of Disagreement

Quentin Bramas1(B), Anissa Lamani1, and Sébastien Tixeuil2

1 ICUBE, Strasbourg University, CNRS, Strasbourg, France
bramas@unistra.fr

2 Sorbonne University, CNRS, LIP6, Paris, France

Abstract. We consider the rendezvous problem of two autonomous
robots with very weak capacities. This problem is notoriously impos-
sible to solve in the semi-synchronous execution model when robots are
deterministic, oblivious, and their ego-centered coordinate system is fully
symmetric.

We show that if the robots disagree on the unit distance of their coor-
dinate system, it becomes possible to solve rendezvous and agree on a
final common location, without additional assumptions.

1 Introduction

We consider swarms of mobile robots that must coordinate to solve a given
task. More precisely, we consider robots modeled by dimensionless points that
evolve in a Euclidean bidimensional space according to the Look-Compute-Move
(LCM) model introduced by Suzuki and Yamashita [11]. In the LCM model,
robots repeatedly execute cycles of Look-Compute-Move phases. In the Look
phase, the robot obtains an ego-centered view of the position of the other robots
(in its own coordinate system). In the Compute phase, the robot decides where
it should move next (still in its own coordinate system). Finally, in the Move
phase, the robot simply moves toward its destination.

The vast majority of the research effort in the LCM model [5] focuses on
understanding the exact hypotheses that make a task solvable. In most cases,
those hypotheses are tightly coupled with the amount of synchronization between
robots. Three main synchronization models have been considered: the fully syn-
chronous (FSYNC) model mandates all robots to execute their LCM cycles
simultaneously, the semi-synchronous (SSYNC) model allows that only a non-
empty subset of robots executes its LCM cycle simultaneously, while the asyn-
chronous (ASYNC) model makes no hypothesis about the relative speed of each
robot or each phase.

A benchmarking problem in this context is that of rendezvous, where two
robots have to meet in finite time at the exact same location, not known before-
hand. Despite its apparent simplicity, this problem triggered interest from the
research community as in FSYNC, it is solvable [11], while in SSYNC, it is
unsolvable [3,11] deterministically, without additional assumptions. One of the

This work was partially funded by the ANR project SAPPORO, ref. 2019-CE25-0005-1.
c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 273–288, 2021.
https://doi.org/10.1007/978-3-030-91081-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_18&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_18

274 Q. Bramas et al.

key reasons for impossibility is that the two robots may have initial symmetric
views (and hence make symmetric moves when operated synchronously), but
when only one robot is scheduled for execution (as is possible in SSYNC), only
half of the symmetric algorithm is performed at any time, preventing the robots
from actually meeting (they only converge toward one another).

Related Works. To circumvent the aforementioned impossibility result, several
options for breaking the initial symmetry were considered.

One line of work considers adding extra capacities to the robots. The seminal
paper by Suzuki and Yamashita [11] provides a probabilistic solution to the
problem (and each robot makes an constant expected number of coin tosses).
The rest of the literature focused on deterministic solutions. Another series of
papers considers robot that are endowed with some variant of persistent memory.
In more details, it was proposed to endow each robot with a light [4], that is, a
robot is capable of emitting one color among a fixed number of available colors,
visible to all other robots. This additional capacity allows to solve rendezvous in
the most general ASYNC model, provided that lights of robots are capable to
emit at least four colors [4]. In the SSYNC model, Viglietta [12] proved that being
able to emit two colors is sufficient to solve rendezvous. In the same paper [12],
Viglietta proves [12] that three colors are sufficient in ASYNC. Both solutions in
ASYNC [4,12] and SSYNC [12] output a correct behavior independently of the
initial value of the lights’ colors. Then, Okumura et al. [9] presented a rendezvous
algorithm with two colors in ASYNC assuming rigid moves (that is, the move of
every robot is never stopped by the scheduler before completion), or assuming
non-rigid moves but robots being aware of δ (the minimum distance before which
the scheduler cannot interrupt their move). Also, the solution of Okumura et
al. [9] requires lights to have a specific color in the initial configuration. Finally,
Heriban et al. [7] prove that two colors are necessary and sufficient in ASYNC
without extra assumptions.

Another line of work, most related to the current paper, considers restricting
the amount of symmetry that can occur in (an persist from) the initial configura-
tion. One set of papers relates to the directions and orientations of the coordinate
systems that are given to each robot by the adversary, to prevent a symmetric
situation to occur. This is abstracted by the notion of compass, that suppos-
edly points to the “North” of the local coordinate system of each robot. When
compasses are perfect (i.e., the two robots have the same “North”), SSYNC ren-
dezvous can be achieved [6]. Also, even if compasses are only eventually perfect
(there is a time t, unknown to the robots, after which compasses are perfect),
SSYNC rendezvous is also feasible [10]. Finally, a complete SSYNC characteriza-
tion of rendezvous solvability with respect to compasses is due to Izumi et al. [8]:
(i) if compasses are fixed (they do not change throughout the execution), ren-
dezvous is solvable if and only if the two compasses angle difference φ is smaller
than π

2 , and (ii) if compasses are dynamic (their direction may vary between
two LCM cycles), rendezvous is solvable if and only if φ is smaller than π

4 . The
case of ASYNC is only partially solved: while the results for static compasses

The Agreement Power of Disagreement 275

extend to ASYNC, rendezvous with dynamic compasses is feasible if φ < π
6 and

impossible if φ ≥ π
4 , but the interval

[
π
6 , π

4

)
remains unknown.

Finally, Bramas et al. [1] showed recently that, when robots agree only on
the North direction but not on the East (i.e., they might not have the same
chirality), then the rendezvous is solvable, which might seems surprising because
robots can start with symmetric views (and keep their views symmetric until the
rendezvous is achieved).

Our Contribution. We observe that the coordinate system that is given to
each robot also includes a unit distance (that may be different for each robot as
it is given by an adversary). Yet, to our knowledge, this unit distance was never
considered as a tool to break initial symmetry, but rather as an assumption (all
unit distances are equal) when designing impossibility results.

In this paper, we investigate the possibility to include the two robots’ unit
distance in the analysis of rendezvous solvability in SSYNC. In more details,
we consider two robots that are arbitrarily disoriented (so, the angle difference
φ may be equal to π

2), but have a different unit distance. Then, ρ is the ratio
between the largest and the smallest unit distance of the robots. In this setting,
we show that for any two real numbers ρmin and ρmax, known to the robots,
such that 1 < ρmin < ρmax, if ρ ∈ [ρmin, ρmax], then rendezvous is solvable in
SSYNC, without any additional assumption (robots are deterministic, oblivious,
and their compasses are arbitrary). The extreme case ρ = 1 (both unit distances
are equal) is known to render the problem unsolvable.

The rest of the paper is organized as follows. Section 2 describes the execu-
tion model. To warm up, Sect. 3 considers the simple case when ρ = 2. Then,
the general solution is described in Sect. 4. Concluding remarks are provided in
Sect. 5.

2 Preliminaries

We consider two robots, evolving in a Euclidean two dimensional space. Robots
are modeled as points and are assumed to be uniform (they execute the same
algorithm), and oblivious (they cannot remember past actions).

Let Z be a global coordinate system. A configuration at time t, denoted Ct, is
a set {r1, r2} containing the positions of both robots in Z at time t. Notice that ri,
i = 1, 2, denotes at the same time a robot and its position in R

2 in the coordinate
system Z. Robots do not know Z, instead, each robot ri has its own coordinate
system Zri

centered at the current position of ri. We assume disoriented robots
(they do not agree on any axis) that have different unit distance. Let ρ be
the ratio between the largest and the smallest unit distance of the robots i.e.,
unit2 = ρ · unit1, with unit2 > unit1. For a robot r, dr denotes the distance
between the two robots in its own coordinate system. Thus, if r and r′ are the
two robots, we have dr = ρdr′ or dr = dr′

ρ . For simplicity, in the remaining of
the paper, r1 denotes the robot with the largest unit distance and r2 the other
robot i.e., d1 < d2 (where we abusively write di instead of dri

, for i = 1, 2). Of
course, a robot is not aware of it being the robot with the largest unit distance.

276 Q. Bramas et al.

Robots operate in cycles that comprise three phases: Look, Compute and
Move. More precisely, at each time instant, an activated robot first takes a snap-
shot to see the position of the other robot in its ego-centered coordinate system.
Based on this snapshot, the robot either computes a destination or decides to
remain idle. Finally, the robot moves towards the computed destination (if any)
following a straight path. We assume non-rigid movements i.e. a robot can be
stopped anywhere along the path to its destination after traveling at least a
fixed positive distance δ. The value of δ is common to the two robots but it is
unknown. Its value can be arbitrarily small but it is fixed and never changes.

In configuration C, the local view of a robot ri, denoted Vri
is the output of

the look phase. More precisely, when a robot ri takes a snapshot, it observes the
position of the other robot in its own coordinate system Zri

(translated by −ri

so that ri is always at the center). An algorithm A is a function mapping local
views to destinations. When ri is activated at time t, algorithm A outputs ri’s
destination p in its local coordinate system Zri

based on Vri
.

We consider the SSYNC model where at each time instant, a non-empty
subset of robots is activated by an external entity called scheduler. The activated
robots execute their Look-Compute-Move cycle synchronously. We assume that
the scheduler is fair i.e. each robot is activated infinitely often. An execution
E = (C0, C1, . . .) of an algorithm A is a sequence of configurations, where C0

is an initial configuration, and every configuration Ct+1 is obtained from Ct by
applying A to the robots scheduled for execution by the scheduler.

3 An Algorithm When ρ = 2

As an introduction, we show a simple algorithm solving the problem when ρ = 2.
In this case, the level li ∈ Z of a robot ri is the unique integer such that
di ∈ [2−li , 2−li+1). By construction, we know that l2 = l1 − 1, because d2 = 2d1.
Then, Algorithm 1 solves the rendezvous with ρ = 2. Indeed, by construction,
only one robot remains idle and one robot moves to the other.

Algorithm 1: Rendezvous with ρ = 2, executed by robot r.
if lr ≡ 0 mod 2 then Remain idle
else Move to the other robot.

Visually:

case lr ≡ 0 mod 2
r

case lr ≡ 1 mod 2
r

The Agreement Power of Disagreement 277

Theorem 1. Algorithm 1 solves the rendezvous problem in SSYNC when ρ = 2.

Proof. As ρ = 2, at each time instant, |l1 − l2| = 1 where for any i ∈ {1, 2},
li ∈ Z is the level of robot ri. That is, by Algorithm 1, at each time instant, a
single robot is allowed to move. Its destination is the other robot’s position. Let
dt be the distance between the two robots at time t. Two cases are possible:

1. dt ≤ δ. As the scheduler is assumed to be fair, the robot allowed to move
is eventually activated. When it moves, as the other robot remains idle by
Algorithm 1, the rendezvous is achieved.

2. dt > δ. First observe that the distance between the two robots never increases.
Indeed, at each time instant, a robot either moves towards the other robot
along the straight line connecting them or remains idle. As the scheduler is
assumed to be fair, the robot allowed to move is eventually activated. When
it moves, the distance between the two robots decreases by at least δ. That
is, at each time a robot moves, the distance between the two robots decreases
by at least δ. Hence, we can deduce that there exists a time t′ > t such that
dt′ ≤ δ and we retrieve Case 1.

From Cases 1 and 2 we can deduce that the rendezvous is eventually achieved.
Hence, the theorem holds. ��

4 An Algorithm When ρ ∈ [ρmin, ρmax]

In this section, we assume that the robots know an upper and a lower bound on
the value ρ i.e., ρ ∈ [ρmin, ρmax]. In this case, the intervals defining the level of
a robot are more complex.

We define two infinite sequences of intervals as follows:

∀i ∈ Z Si = [ρ−i
minρ

−i
max, ρ

−(i−1)
min ρ−i

max) (1)

Mi = [ρ−i
minρ

−(i+1)
max , ρ−i

minρ
−i
max) (2)

The sets Si and Mi are called levels. We consider that the levels are ordered by
the inverse of their length i.e., for all i ∈ Z, we say level Mi, resp. Si, is greater
than level Mi′ , resp. Si′ , when i > i′. Moreover, level Mi is greater than level Si.

First, notice that ⋃

i∈Z

Si ∪ Mi = R
∗
+

and the intervals are pairwise disjoints, so the sequences form a partition of R∗
+.

Figure 1 illustrates this partition. We can see that when the distance dr seen by
a robot r decreases, its level increases. For simplicity, we say a robot r is in a
set X, or has level X, if its distance dr is in X.

We now prove a lemma that states that both robots cannot have a level of
type S, and the levels of the robots are not too far away.

Lemma 1. For every i ∈ Z, if a robot r has level Si, then the other robot r′ has
level Mi−1 or Mi.

278 Q. Bramas et al.

0 Si+1 Mi Si Mi−1 Si−1 Mi−2

Fig. 1. Partition of the line R
∗
+ into levels

Proof. We have dr ∈ [ρ−i
minρ

−i
max, ρ

−(i−1)
min ρ−i

max). If dr < dr′ , then

dr′ = ρdr ∈
[
ρmin × ρ−i

minρ
−i
max, ρmax × ρ

−(i−1)
min ρ−i

max

)
= Mi−1

If dr > dr′ , then

dr′ =
dr

ρ
∈

[
1

ρmax
× ρ−i

minρ
−i
max,

1
ρmin

× ρ
−(i−1)
min ρ−i

max

)
= Mi

��
For simplicity, let

M0 =
⋃

i≡0 mod 2

Mi

M1 =
⋃

i≡1 mod 2

Mi

S0 =
⋃

i≡0 mod 2

Si

S1 =
⋃

i≡1 mod 2

Si

Also, consider the indexes of those sets modulo 2 eg., M−1 = M3 = M1.
Let s(d) be the smallest value defined as follows:

d
1 − ρ−1

min

2ρ2minρ
2
max

≤ s(d) ≤ d
1 − ρ−1

min

2
such that s(d) ∈ S0 (3)

Lemma 2. s(d) is well defined

Proof. We have to prove that, for any d > 0, we have
[
d

1 − ρ−1
min

2ρ2minρ
2
max

, d
1 − ρ−1

min

2

]
∩ S0
= ∅

Assume, for the sake of contradiction, that the intersection is empty for a given
d > 0. Let a be the smallest number in S0 such that

d
1 − ρ−1

min

2
< a (4)

The Agreement Power of Disagreement 279

a is well defined because each interval Si is closed to the left. Then a ∈ Si for
some i ∈ Z, i ≡ 0 mod 2, and it is clear that a = ρ−i

minρ
−i
max (i.e., a is the lower

bound of the interval Si). Since by assumption

Si+2 ∩
[
d

1 − ρ−1
min

2ρ2minρ
2
max

, d
1 − ρ−1

min

2

)
= ∅

and by the minimality of a, we have

ρ
−(i+2)
min ρ−(i+2)

max ≤ d
1 − ρ−1

min

2ρ2minρ
2
max

⇒ a = ρ−i
minρ

−i
max ≤ d

1 − ρ−1
min

2

The last inequality contradicts Eq. (4). ��
We say a robot r executes Move(s) if it moves a distance s(dr) towards the

other robot. The first inequality ensures that if both robots execute Move(s), then
one of them eventually reaches the next level. The second part of the definition
ensures that if one robot executes Move(s) and the other executes Move(Other),
the one that executes Move(s) is now in S0.

Algorithm 2: The movement of a robot r depends on the distance
between the two robots d (seen by robot r), and on where the robot r
sees itself in the line (on the right or on the left)

d ∈ S0 ∪ S1

d ∈ M0

The right robot moves a distance s(d)

d ∈ M1

The left robot moves a distance s(d)

Our algorithm is defined in Fig. 2. First we notice that, by Lemma 1, robots
cannot both stay stationary. Indeed, if r1 is in Si, then d2 ∈ Mi−1 and if r2 is
in Si, then r1 ∈ Mi (recall r1 and r2 denotes the two robots such that d1 < d2).

Let Conf(X,Y) be the set of configurations where r1 ∈ X and r2 ∈ Y . Recall
that r1 and r2 are such that the distance d1 is smaller than d2, so r1 has a greater
level than (or the same as) r2.

We directly have the following lemma to reduce the number of cases we
handle in the sequel.

Lemma 3. For every i, j ∈ {0, 1},
Conf(Si,Mi) = Conf(Mi+1,Si) = Conf(Si,Sj) = ∅

280 Q. Bramas et al.

Proof. Since r1 has a greater level compared to r2 so, for every i ∈ Z, if r1 ∈ Si,
then r2 ∈ Mi−1, by Lemma 1, hence Conf(Si,Mi) = ∅. Similarly, if r2 ∈ Si,
then r1 ∈ Mi (because Mi is the level right above Si). Finally, we saw that, by
construction, both robots cannot be in an S level. ��
This means Conf(M0,S0), Conf(M0,M0), Conf(S1,M0), Conf(M1,M0),
Conf(M1,S1), and Conf(M1,M1) are the only non-empty set of configurations.

From Flexible to Rigid Movements. The following lemma shows that, the
robots eventually are, and remain, at distance at most δ from each other. Using
this lemma, we can now assume in the remaining of the paper that movements
are rigid.

Lemma 4. If the distance d between the two robots is greater than δ (in the
global coordinate system), then, after two rounds, the distance between robots
decreases by at least a constant C (that depends only on δ, ρmin and ρmax).

Proof. First, it is clear that robots cannot increase the distance between them.
If one or two robots execute Move(s), then the distance between the robots

decreases by at least

min
(

δ, d
1 − ρ−1

min

2ρ2minρ
2
max

)
≥ C with C = δ

1 − ρ−1
min

2ρ2minρ
2
max

If one robot remains idle and the other robot execute Move(s), then the
distance decreases by at least δ.

The last remaining case is when both robots are in M and execute
Move(Other) at time t. It is possible that the distance does not decrease at
all (if both robots reach their destination) or the distance decreases by an arbi-
trarily small amount. In the next round, at time t + 1, either (a) the robots are
in the same level as before, (b) the level of only one robot increases, or (c) the
level of both robots increases.

In case (a), the positions of the robots at time t + 1 are exchanged, so they
now both execute Move(s) and the property of the lemma is obtained after one
more round.

In case (b), one robot reaches S while the other remains in M, at time t + 1,
so the property is obtained after one more round as well (since one robot remains
idle).

In case (c), since both robots cannot reach S (by Lemma 1) so one robot must
increases from Mi to Mi′ with i < i′. we observe that, to do so, the distance
must decrease by at least d

ρmin
≥ δ

ρmin
, which is greater than C defined above,

and the Lemma is proved. ��

When a Single Robot is Activated. First, we compute the configurations
that are eventually reached when only one robot is activated.

Lemma 5. If a single robot is activated and executes Move(Other), then the
robots gather in one round.

The Agreement Power of Disagreement 281

Lemma 6. From Conf(Mi,Mi), if a single robot is activated and executes
Move(s), then eventually we reach either a configuration in Conf(Si+1,Mi).

Proof. Consider C ∈ Conf(Mi,Mi), with i ∈ Z, and d1 and d2 the distances
seen by r1 and r2 respectively in C. We have d1 ≥ ρ−i

minρ
−(i+1)
max . After a single

robot, say r1, executes Move(s), let d′
1 and d′

2 the distances seen by r1 and r2
respectively. So:

d′
1 = d1 − s(d1) ≥ d1 − d1

1 − ρ−1
min

2
≥ d1ρ

−1
min ≥ ρ

−(i+1)
min ρ−(i+1)

max

Where the first inequality comes from the definition of s(d), in Eq. 3. Hence,
d′
1 /∈ Mi+1. Similarly, d′

2 /∈ Mi+1. The same is true if only r2 executes Move(s).
This implies that, if a single robot comes closer by executing Move(s), the

level of the robots can increase by at most one, so we reach a configuration in
Conf(Mi ∪ Si+1,Mi ∪ Si+1).

Then, observe that both robots cannot increase simultaneously their level
because Conf(Si+1, Si) = ∅, by Lemma 3. Also, observe that r2 cannot increase
its level alone because Conf(Mi+1, Si+1) = ∅. Hence, eventually r1 enters level
Si+1 and we reach configuration Conf(Si+1,Mi). ��
Lemma 7. From Conf(Mi,Mj), with i
=j, if a single robot is activated and exe-
cutes Move(s), then eventually we reach either a configuration in Conf(Mi,Si).

Proof. We know that C ∈ Conf(Mi,Mi−1), for some i ∈ Z (because the level
of r2 is smaller than the one of r1). Similarly to the previous lemma, a single
robot increases its level and it cannot be r1 because Conf(Si+1,Mi−1) = ∅.
Hence, eventually r2 enters level Si and we reach configuration Conf(Mi, Si) ⊂
Conf(Mi,Si). ��

When Both Robots are Activated. The nine following Lemmas consider
all the possible cases, when both robots are activated, depending on the level
of each robot. Lemma 8–12 consider the cases where both robots are in M∗,
depending on which move the robots are executing (both Move(s) – Lemma 8–
9 –, both Move(Other) – Lemma 10 – or only one Move(s) – Lemma 11–12),
Lemma 13–15 consider the case where one robot is in S∗ (depending on whether
the moving robot executes Move(Other) – Lemma 13 – or Move(s) – Lemma 14–
15) and Lemma 3 proves that the remaining cases cannot occur.

Lemma 8. ∀i ∈ {0, 1}, if C ∈ Conf(Mi,Mi) and both robots execute Move(s),
then eventually we reach a configuration in Conf(Si+1,Mi). The same is true if
a single robot is activated.

Proof. Consider C ∈ Conf(Mi,Mi), with i ∈ Z, and d1 and d2 the distances seen
by r1 and r2 respectively in C. We have d1 ≥ ρ−i

minρ
−(i+1)
max . After both robots

execute Move(s), let d′
1 and d′

2 the distances seen by r1 and r2 respectively. So:

d′
1 = d1 − s(d1) − s(d2) ≥ d1 − 2d1

1 − ρ−1
min

2
= d1ρ

−1
min ≥ ρ

−(i+1)
min ρ−(i+1)

max

282 Q. Bramas et al.

Where the first inequality comes from the definition of s(d), in Eq. 3, and from the
fact that d1 < d2 (the same inequality is true if a single robot is activated). Hence,
d′
1 /∈ Mi+1. Similarly, d′

2 /∈ Mi+1. But since robots come closer, robots cannot
remain in Mi infinitely and eventually one robot reaches Si+1 (both cannot reach
Si+1 simultaneously because Conf(Si+1, Si+1) = ∅). Since r1 have a level greater
than r2, eventually we must reach Conf(Si+1,Mi) ⊂ Conf(Si+1,Mi). ��
Lemma 9. ∀i ∈ {0, 1}, if C ∈ Conf(Mi+1,Mi), and both robots execute
Move(s), then eventually we reach a configuration in Conf(Mi+1,Si+1). The
same is true if a single robot is activated.

Proof. Consider C ∈ Conf(Mi+1,Mi), for some i ∈ Z. Using the same proof as in
the previous Lemma, we obtain that d′

1 /∈ Mi+2 and d′
2 /∈ Mi+1. But since robots

come closer, robots cannot remain at the same level infinitely and eventually
reaches a level S. Since r1 have a level greater than r2, and r1 cannot reach Si+2

while r2 is still in Mi (Lemma 1), eventually we must reach Conf(Mi+1, Si+1) ⊂
Conf(Mi+1,Si+1). ��
Lemma 10. ∀i, j ∈ {0, 1}, if C ∈ Conf(Mi,Mj), and both robots execute
Move(Other), then after one round, the configuration is still in Conf(Mi,Mj)
and the robots have reversed their position, so they execute Move(s) in the next
round.

Proof. If both robots execute Move(Other), then both robots exchange their
position and the distance between them remain the same so that the lemma
follows. ��
Lemma 11. ∀i, j ∈ {0, 1}, if C ∈ Conf(Mi,Mj) and only r1 executes Move(s)
(r2 execute Move(Other)), then we reach a configuration in Conf(S0,M1) (and
the robots have reversed their position).

Proof. If r2 execute Move(Other) and r1 executes Move(s), then, by definition of
s(d1), robot r1 ∈ S0. Then, using Lemma 3, we know that r2 ∈ M1. ��
Lemma 12. ∀i, j ∈ {0, 1}, if C ∈ Conf(Mi,Mj) and only r2 executes Move(s)
(r1 execute Move(Other)), then we reach a configuration in Conf(M0,S0) (and
the robots have reversed their position).

Proof. If r1 execute Move(Other) and r2 executes Move(s), then, by definition of
s(d2), robot r2 ∈ S0. Then, using Lemma 3, we know that r1 ∈ M0. ��
Lemma 13. ∀i ∈ {0, 1}, if C ∈ Conf(Si,Mi−1)∪Conf(Mi,Si) and the moving
robot executes Move(Other), then the robots gather in one round.

Proof. Clearly if one robot remains idle while the other executes Move(Other),
then the robots gather. ��

The Agreement Power of Disagreement 283

Lemma 14. ∀i ∈ {0, 1}, if C ∈ Conf(Si,Mi−1) and r2 executes Move(s), then
eventually we reach either a configuration in Conf(Mi,Mi−1) or a configuration
in Conf(Mi,Si).

Proof. If r1 remains idle and r2 comes closer by executing Move(s), then one
or both robots eventually increase their levels. By definition of s(d2) (using the
same proof as in Lemma 8), r2 cannot go from level Mi−1 to level Mi directly.
Hence, either r2 enters level Si (in this case, r1 simultaneously enters Mi),
and we reach configuration Conf(Mi,Si), or only r1 enters Mi and we reach
configuration Conf(Mi,Mi−1). ��
Lemma 15. ∀i ∈ {0, 1}, if C ∈ Conf(Mi,Si) and r1 executes Move(s), then
eventually we reach either a configuration in Conf(Mi,Mi) or a configuration
in Conf(Si+1,Mi).

Proof. If r2 remains idle and r1 comes closer by executing Move(s), then one
or both robots eventually increase their levels. By definition of s(d1) (using the
same proof as in Lemma 8), r1 cannot go from level Mi to level Mi+1 directly.
Hence, either r1 enters level Si+1 (in this case, r2 simultaneously enters Mi),
and we reach configuration Conf(Si+1,Mi), or only r2 enters Mi and we reach
configuration Conf(Mi,Mi). ��

Main Proof of Correctness. We can characterize a configuration by only
looking at where is located r1 (right or left), whether r2 has the same orientation
has r1, and the level of each robot (in S0, S1, M0 or M1). For simplicity, we

use the notation X Y to denote the configuration where the left robot
is in level X ∈ {S0,S1,M0,M1} and the right robot has level Y . We add a line
over the level of r1 and a line under the level of r2. Finally, if both robots have
different orientations, we add a minus in front of r2’s level. To help the reader,
we also draw the destination of each robot in the configuration.

For instance a configuration C ∈ M1 S0 is a configuration where
r1 is located on the right, r2 on the left (they have the same orientation of the
line), r1 is in S0 and r2 in M1. Recall that, since r1 has a level greater than
r2, if r1 is in Si for some i ∈ Z (i ≡ 0 mod 2), then r2 must be in Mi−1. Since
C ∈ Conf(S0,M1) and r2 executes Move(s), by Lemma 14, we eventually reach

either a configuration in
M1 M0 or in

S0 M0 (the same is
true if a single robot is activated, since r1 remains idle).

As a second example, C ∈
M0 −M1

is a configuration where r1 is
on the left and r2 sees itself on the left as well. Again, if r1 is in Mi for some i ∈ Z

284 Q. Bramas et al.

(i ≡ 0 mod 2), then r2 is in Mi−1. If both robots are activated, by Lemma12 the

next configuration is in
−S0 M0 −S0 M0 . If a single robot

is activated, either the robots gather in one round (if r1 is activated) or we can

reach configuration
M0 −S0

(if only r2 is activated).
The information of where r1 is located (indicated by an over-line) does not

impact the movement of the robots, however, it limits the possibilities for the
reached configuration. For instance if both robots are in Mi and make a Move(s)
then we are sure that r1 is the first to reach Si+1.

Using these notations, we can construct the a graph depicting the transitions
between the different sets of configurations. Each arc is proved by one of the
previous Lemmas, whose number is indicated on the arc. It is easy to see that if
robots agree, resp. do not agree, on the orientation of the line, then the same is
true in any reached set of configurations. This implies that we can split the graph
in two, one that consider only sets of configuration where the robots agree on the
orientation of the line, Fig. 2, and one when they do not, Fig. 3. The dashed arcs
correspond to the transitions that can occur when a single robot is activated. Of

course, when a single robot is dictated to move (for instance in
M1 S0)

then activating only this robot results in the same configuration. But with a fair
scheduler, the other robot is eventually activated. Also, in this case, activating
only the moving robot is similar to activating both robot, so when this happen
we only draw the plain arc. Finally, for clarity, we do do represent the dashed
arcs corresponding to the case where a single robot is activated and executes
Move(Other), as robots gather in one round in this case.

Given the previous lemmas that proves the possible transitions between set
of configuration, the graphs have been generated by an algorithm (available
online [2]). It is easy to check that both graphs are in fact Directed Acyclic
Graphs (DAG) with a single sink, the gathered configuration. This means that
regardless of the starting configuration, we eventually reach the gathered con-
figuration.

Theorem 2. When ρ∈ [ρmin, ρmax], Algorithm 2 solves the rendezvous in
SSYNC.

Proof. Using Lemma 4, we know that eventually robots are and remains at dis-
tance at most δ so that we can consider that the movements are rigid. From
there, we showed in Figs. 2 and Fig. 3 that regardless of the configuration and
regardless of the orientation of the robots, we eventually reach the gathered
configuration. ��

The Agreement Power of Disagreement 285

GatheredM0 S0

S0 M0

M0 M0

S0 M1M0 S1

M0 M0

M1 S0

M1 M0

M0 M1

S1 M0

M1 M0

M1 S1

M1 M1

M0 M1

S1 M1

M1 M1

13

15

15

11

1313

12

14

14

9

10

14

14

9

15

15

11

10

13

12

6
6

6

6

Fig. 2. The DAG of configurations and the transitions between them, when the robots
have the same orientation. The number on the edges are the numbers of the Lemmas
proving the transition

286 Q. Bramas et al.

Gathered

M0 −S0

−M0 S1

−M0 M1

−S1 M1

−M0 M0

M0 −M0 −S0 M0

S0 −M1

M0 −M1

−M1 S0

−M1 M0

S1 −M0

M1 −M0

M1 −S1M1 −M1−M1 M1

13

15

15

8

14

14

12

13

10

14

14

12

13

11

13

11

15

158

10

7

7

7

7

Fig. 3. The DAG of configurations and the transitions between them, when the robots
have the opposite orientations. The number on the edges are the numbers of the Lem-
mas proving the transition.

The Agreement Power of Disagreement 287

5 Concluding Remarks

We introduced the possibility to use different unit distances to break symme-
tries for networks consisting on deterministic oblivious robots that operate in
the Look-Compute-Move model. As a case study, we considered the rendezvous
problem, that is notoriously impossible to solve in the semi-synchronous execu-
tion model, when robots share the same notion of unit distance. By contrast,
we proved that when robots have different unit distances (and are unaware of
the actual ratio between the unit distances), rendezvous becomes possible in the
same model.

A natural open question is to consider the completely asynchronous model
(ASYNC). Is it possible to solve rendezvous in ASYNC without any additional
capability (no access to a randomness source, nor persistent memory) or con-
straints (compasses may be fully symmetric) other that the difference in unit
distance? Observe that even if ρ = 2, the problem seems difficult, as our semi-
synchronous algorithm for this special case does not solve rendezvous in ASYNC
(one can construct an infinite execution where robots observe one another alter-
natively as they are moving, and thus never actually reach the other robot des-
tination).

References

1. Bramas, Q., Lamani, A., Tixeuil, S.: Stand up indulgent rendezvous. In: Devismes,
S., Mittal, N. (eds.) SSS 2020. LNCS, vol. 12514, pp. 45–59. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64348-5 4

2. Bramas, Q., Lamani, A., Tixeuil, S.: The agreement power of disagreement: graph
generation, September 2021. https://doi.org/10.5281/zenodo.5541136

3. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Impossibility of gathering, a certifi-
cation. Inf. Process. Lett. 115(3), 447–452 (2015)

4. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous
mobile robots with lights. Theor. Comput. Sci. 609, 171–184 (2016)

5. Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile
Entities-Current Research in Moving and Computing. Lecture Notes in Computer
Science, vol. 11340. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-
030-11072-7

6. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theor. Comput. Sci. 337(1–3), 147–168 (2005)

7. Heriban, A., Défago, X., Tixeuil, S.: Optimally gathering two robots. In: Proceed-
ings of 19th International Conference on Distributed Computing and Networking,
ICDCN, pp. 3:1–3:10, January 2018

8. Izumi, T., et al.: The gathering problem for two oblivious robots with unreliable
compasses. SIAM J. Comput. 41(1), 26–46 (2012)

9. Okumura, T., Wada, K., Katayama, Y.: Brief announcement: optimal asyn-
chronous rendezvous for mobile robots with lights. In: Spirakis, P., Tsigas, P. (eds.)
SSS 2017. LNCS, vol. 10616, pp. 484–488. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-69084-1 36

https://doi.org/10.1007/978-3-030-64348-5_4
https://doi.org/10.5281/zenodo.5541136
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-319-69084-1_36
https://doi.org/10.1007/978-3-319-69084-1_36

288 Q. Bramas et al.

10. Souissi, S., Défago, X., Yamashita, M.: Using eventually consistent compasses
to gather memory-less mobile robots with limited visibility. ACM Trans. Auton.
Adapt. Syst. 4(1), 9:1–9:27 (2009)

11. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

12. Viglietta, G.: Rendezvous of two robots with visible bits. In: Flocchini, P., Gao,
J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS,
vol. 8243, pp. 291–306. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-45346-5 21

https://doi.org/10.1007/978-3-642-45346-5_21
https://doi.org/10.1007/978-3-642-45346-5_21

The Max-Line-Formation Problem
And New Insights for Gathering and Chain-Formation

Jannik Castenow(B), Thorsten Götte, Till Knollmann,
and Friedhelm Meyer auf der Heide

Heinz Nixdorf Institute and Computer Science Department, Paderborn University,
Paderborn, Germany

{jannik.castenow,thorsten.goette,till.knollmann,fmadh}@upb.de

Abstract. We consider n robots with limited visibility : each robot can
observe other robots only up to a constant distance denoted as the
viewing range. The robots operate in discrete rounds that are either
fully synchronous (Fsync) or semi-synchronized (Ssync). Most previ-
ously studied formation problems in this setting seek to bring the robots
closer together (e.g., Gathering or Chain-Formation). In this work,
we introduce the Max-Line-Formation problem, which has a contrary
goal: to arrange the robots on a straight line of maximal length.

First, we prove that the problem is impossible to solve by robots with
a constant sized circular viewing range. The impossibility holds under
comparably strong assumptions: robots that agree on both axes of their
local coordinate systems in Fsync. On the positive side, we show that
the problem is solvable by robots with a constant square viewing range,
i.e., the robots can observe other robots that lie within a constant-sized
square centered at their position. In this case, the robots need to agree on
only one axis of their local coordinate systems. We derive two algorithms:
the first algorithm considers oblivious robots (OBLOT) and converges
to the optimal configuration in time O(n2 · log(n/ε)) under the Ssync
scheduler (ε is a convergence parameter). The other algorithm makes use
of locally visible lights (LUMI). It is designed for the Fsync scheduler
and can solve the problem exactly in optimal time Θ(n).

Afterward, we show that both the algorithmic and the analysis tech-
niques can also be applied to the Gathering and Chain-Formation
problem: we introduce an algorithm with a reduced viewing range for
Gathering and give new runtime bounds for Chain-Formation.

Keywords: Mobile robots · Runtime · Chain-formation · Gathering ·
Max-line-formation · Max-chain-formation

1 Introduction

Robot formation tasks aim to arrange n mobile robots in a specific formation.
The robots are modeled as points in the Euclidean plane, and usually, the robot

This work was partially supported by the German Research Foundation (DFG) under
the project number 453112019; ME 872/14-1. A full version can be found online [4].
c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 289–304, 2021.
https://doi.org/10.1007/978-3-030-91081-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_19&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_19

290 J. Castenow et al.

capabilities are very restricted. Robots are assumed to be externally identical
(all robots have the same appearance), anonymous (no identifiers), autonomous
(no central control) and homogeneous (all robots execute the same algorithm).
Furthermore, the robots operate in discrete rounds denoted as LCM cycles. Each
LCM cycle consists of three operations: Look, Compute and Move. During the
Look operation, each robot takes a snapshot of its surroundings. Afterward,
the robot computes a target point during Compute and finally moves there in
the Move operation. With the additional assumptions that robots are silent (no
communication) and oblivious (no memory of previous LCM cycles), this is known
as the OBLOT model. The LUMI model, on the contrary, does not demand
the robots to be silent and oblivious. Instead, each robot is equipped with a
light that nearby robots (as well as the robot itself) can perceive. The light can
have different colors, and thus, the robots obtain a constant-sized memory and
can communicate state information to their neighbors. In addition to these core
features, both models have a variety of freedom in some other assumptions; for
instance, the LCM cycles might be fully synchronous (Fsync), semi-synchronous
(Ssync) or completely asynchronous (Async). All schedulers are assumed to
be fair such that each robot can execute its LCM cycle infinitely often. Time is
measured in epochs, i.e., the smallest number of rounds such that each robot has
executed its LCM cycle at least once. In Fsync, an epoch is equal to one round.
See [15] for an overview about the mentioned models.

Our focus lies on robots with limited visibility, i.e., each robot cannot per-
ceive the entire swarm but only nearby robots. The terms connectivity range
and viewing range are distinguished (see e.g., [6,20]). Robots are connected to
all robots up to a distance equal to their connectivity range and can see all
robots within their viewing range (the viewing range is at least as large as the
connectivity range). Initial configurations are connected w.r.t. the connectivity
range and algorithms typically maintain this connectivity. The larger viewing
range enhances the local information of the robots. Additionally, viewing and
connectivity range can be circular or square. More precisely, a circular connec-
tivity range of c means that a robot is connected to all robots in the distance at
most c. In contrast, the square connectivity range of sc connects a robot r to all
other robots located within an axis aligned 2sc × 2sc-sized square centered at r.
Similarly, circular and square viewing ranges are defined. In many applications,
the connectivity and the viewing range are identical. The literature especially
focusing on the runtime of formation algorithms often benefits from a viewing
range that is larger than the connectivity range, see e.g., [1,3,5,20].

Typical well-studied benchmark problems for robots with limited visibility
are the Gathering and the Chain-Formation problem. Gathering demands
the robots to gather at a single, not predefined, position. Chain-Formation
considers a chain of robots between two stationary outer robots: each inner robot
has two identifiable neighbors (the neighborhoods are predefined and fixed).
Robots can observe only the positions of their predefined neighbors and nothing
more. The goal is to arrange the robots on the line segment connecting the
outer robots. Both Gathering and Chain-Formation can be characterized as

The Max-Line-Formation Problem 291

contracting : the robots move closer together. Much less is known about formation
tasks for robots with limited visibility that aim to achieve a contrary goal: to
expand the robots’ positions. One example is the Uniform-Circle-Formation
problem in which n robots are to move such that their positions form a regular
polygon [12,18]. Another, very recent example and the main inspiration for this
work is the Max-Chain-Formation problem [6]. The Max-Chain-Forma-
tion problem is a variant of the Chain-Formation problem. The difference is
that Max-Chain-Formation gives the outer robots the ability to move. The
new goal is to transform the chain of robots with connectivity and viewing range
c into a straight line of length (n − 1) · c.

In this work, we introduce the Max-Line-Formation problem. The goal
is similar to the Max-Chain-Formation problem: to move the robots with
connectivity range c such that their positions form a straight line of length (n −
1) ·c. The difference is that Max-Line-Formation does not consider predefined
chain neighborhoods. Instead, robots can observe the positions of all robots
within their viewing range and do not have any fixed neighbors. We investigate
under which robot capabilities the problem is solvable, derive algorithms, and
analyze their runtime.

Related Work We focus on robots that operate in the LCM model and results
about Gathering, Chain-Formation and Max-Chain-Formation with a
particular focus on research that considers a runtime analysis of the proposed
algorithms. For a very recent and comprehensive overview of different robot for-
mation algorithms, we refer the reader to [15]. Oblivious and disoriented robots
(OBLOT), can solve Gathering in O(n2) rounds (Fsync) with the GTC
algorithm. GTC moves robots in each round towards the center of the smallest
enclosing circle of their neighborhood [2,10]. GTC achieves the currently best-
known runtime for disoriented and oblivious robots in the Euclidean plane. Faster
algorithms for disoriented robots could so far only be designed under the LUMI
model. There are two algorithms for robots located on a two-dimensional grid
[1,8]. Another algorithm for robots in the Euclidean plane that are connected
in a closed chain topology [5] exists. When assuming the OBLOT model and
one axis agreement, an asymptotically optimal algorithm with runtime O(Δ)
has been introduced in [20]. The algorithm assumes a square connectivity range
of 1 and a circular viewing range of

√
10.

Chain-Formation has been initially introduced in [13]. The authors intro-
duce the GTM algorithm that moves each robot to the midpoint between its
neighbors. For the Fsync scheduler, a runtime of O(n2 · log(n/ε)) rounds has
been proven. Later on, an almost matching lower bound (for the algorithm) of
Ω(n2 · log(1/ε)) rounds has been derived [16]. Algorithms with stronger assump-
tions, e.g., the LUMI model, are able to achieve better runtimes [14,17].

Very recently, the Max-Chain-Formation problem has been introduced [6].
Started in one-dimensional configurations, the Max-GTM algorithm has a run-
time of O(n2 · log(n/ε)) and Ω(n2 · log(1/ε)) rounds under the Fsync sched-
uler. However, a specific class of input configurations does not converge to the
optimal configuration. For two-dimensional configurations, only a convergence

292 J. Castenow et al.

result is known. Additionally, for Gathering, Chain-Formation and Max-
Chain-Formation, it is known that the problems can be solved optimally in a
continuous time model [6,9].

Our Contribution. We introduce the Max-Line-Formation problem. The
goal is to arrange n robots with connectivity range c on a straight line of length
(n − 1) · c. We start with an impossibility result and prove that there are ini-
tial configurations for which the problem cannot be solved deterministically by
robots with constant sized circular viewing and connectivity ranges. In addition,
also no algorithm that converges to the optimal solution can exist for these con-
figurations. The impossibility result even holds under strong assumptions: fully
synchronized robots (Fsync) that agree on both axes of their local coordinate
systems. On the positive side, we show that the problem becomes solvable for
robots with identical square connectivity and viewing ranges. While square con-
nectivity and viewing ranges already have been proven to be useful to derive
an efficient Gathering algorithm [20], the Max-Line-Formation is the first
known problem that can be solved under square viewing ranges but not under
circular viewing ranges. Our algorithms require the robots to agree on only one
axis of their local coordinate systems. We introduce two algorithms: The first
algorithm considers the OBLOT model and converges to the optimal configu-
ration in O(n2 · log(n/ε)) epochs under the Ssync scheduler. The analysis idea
is based on the sample variance of time inhomogeneous Markov chains (a con-
cept similar to the mixing time of the time homogeneous case) inspired by [19].
Afterward, we show that enhancing the robots with the LUMI model allows us
to derive an improved algorithm, i.e., the algorithm solves the problem exactly
while simultaneously improving the runtime. The algorithm considers the Fsync
scheduler and solves the problem in Θ(n) epochs. The runtime is asymptotically
optimal. Moreover, the algorithm can be implemented with 9 colors. Note that,
with some additional synchronization, a combination of the two algorithms can
solve the problem exactly with the help of lights in O(n2) epochs under the
Ssync scheduler. For more details see [4].

Our results compare to the Max-GTM algorithm for Max-Chain-Forma-
tion (which has the same goal but considers predefined and fixed chain neigh-
borhoods) problem as follows: the runtime of our OBLOT algorithm holds under
the Ssync scheduler. For Max-GTM, only runtimes in Fsync are known [6].
Additionally, our results about Max-Line-Formation hold for every input con-
figuration in which robots have distinct initial positions. For Max-GTM, only
a convergence result for a large class of configurations is known. Additionally,
certain classes of configurations do not converge to the optimal configuration [6].

Moreover, we identify an interesting relation to Gathering and Chain-
Formation. We first show that we can apply the main algorithmic idea of the
Θ(n) algorithm to the Gathering problem. More precisely, we derive an algo-
rithm for the OBLOT model that solves Gathering of n robots that agree
on one axis of their local coordinate systems in Θ(Δ) epochs under the Fsync
scheduler, where Δ denotes the maximum distance of two robots in the initial

The Max-Line-Formation Problem 293

configuration.1 The algorithm uses a square viewing and connectivity range of 1.
Up to now, the best-known algorithm achieving the same runtime uses a square
connectivity range of 1 and a circular viewing range of

√
10 [20]. Thus, our algo-

rithm closes the gap between viewing and connectivity range. Furthermore, we
show how the analysis technique of the first algorithm (based on time inhomoge-
neous Markov chains) can also be applied for the Chain-Formation problem.
In this context, disoriented robots (no agreement on the local coordinate sys-
tems) that are connected in a chain topology are assumed as well as a circular
connectivity range and viewing range of 1. We prove that the GTM algorithm
[7,14], in which each robot moves to the midpoint between its two direct neigh-
bors in every round, converges to the optimal configuration in O(n2 · log(n/ε))
epochs assuming the Ssync scheduler. For one-dimensional configurations (all
robots are initially collinear) this is a significant improvement over the so far
best known runtime bound of O(n5 · log(n/ε)) epochs for this algorithm [7].
For two-dimensional configurations, our result is the first runtime bound for the
Chain-Formation problem derived for the Ssync scheduler.

2 Model and Notation

Time Model: Robots operate in discrete LCM (Look, Compute, Move) cycles,
denoted as rounds. Each robot takes a snapshot of its neighborhood during Look,
computes a target point in Compute, and moves to this point in Move. We assume
a rigid movement, robots always reach their target points during Move. The
timing of the executions of the LCM cycles is either fully synchronous (Fsync) or
semi-synchronous (Ssync), i.e., the cycles are synchronous, but only a subset of
all robots participates. The executions are always fair: All robots execute their
cycles infinitely often. Time is measured in epochs, i.e., the smallest number of
rounds until each robot processes one complete LCM cycle. The execution starts in
round t0, and we denote the first round of the k-th epoch by tek

. Thus, te1 = t0.

Robot Model: We consider n robots r1, . . . , rn positioned in R
2. Initially, the

robots are located at pairwise distinct locations. We assume a square connectivity
and viewing range of 1, i.e., two robots ri and rj are neighbors if rj is located
inside of the 2× 2-sized square centered at ri and vice versa. Note that 1 is only
chosen for simplicity; it can be replaced by any constant c. The neighborhood of
a robot ri (the set of all visible robots) in round t is denoted by Ni(t). The square
connectivity graph in which two robots share an edge if they are neighbors is
initially connected. Robots are assumed to be transparent and thus do not block
the views between other robots. Moreover, the robots agree on one axis of their
local coordinate systems. W.l.o.g., we assume that the robots agree on the x-
axis. Thus, the robots have a common understanding of left and right, while up
and down can be inverted. However, the robots agree on unit distance and can

1 Ω(Δ) is a trivial lower bound since at least one of the robots forming the diameter
Δ must cover a distance of at least Δ

2
to obtain Gathering. Since the robots have

limited visibility, this requires Ω(Δ) rounds.

294 J. Castenow et al.

measure distances precisely. When considering the OBLOT model, the robots
are also silent and oblivious.

For one algorithm, we consider the LUMI model. Each robot is equipped
with a constant number of lights �1, . . . , �k with color sets C1, . . . , Ck and at
every point in time, each light can have a single color out of its color set.2
Robots can perceive their light and the lights of their neighbors during Look
and can manipulate their light during Compute. Hence, if a robot ri decides to
change its light color in round t, its neighbors can see this earliest in round t+1.

Notation: The position of a robot rj in round t is denoted by pj(t) =
(xj(t), yj(t)) in a global coordinate system and by pi

j(t) = (xi
j(t), y

i
j(t)) in the

local coordinate system of ri. Each robot lies in the center of its local coordinate
system and thus pi

i(t) = (0, 0). For a robot ri, ri
�(t) denotes the leftmost robot of

its neighborhood in round t. The position of ri
�(t) in the local coordinate system

of ri in round t is denoted by pi
�(t) = (xi

�(t), y
i
�(t)). In case there are multiple

such robots, ri
�(t) represents an arbitrary robot of all leftmost robots. Similarly,

ri
r(t) and pi

r(t) are defined for the rightmost neighbor. Additionally, define ri
+(t)

and pi
+(t) to be the closest neighbor above of ri and its position. Analogously,

ri
−(t) and pi

−(t) is defined as the closest neighbor below and its position. In case
no such robot exists, ri

+(t) = ri and ri
−(t) = ri. For a vector v, we denote by v̂

the normalized vector 1
‖v‖v.

Problem Statement: Max-Line-Formation demands to move n robots with
connectivity range c such that their positions form a straight line of length
(n − 1) · c. We say that an (1− ε)-approximation of the optimal configuration is
reached if the positions form a straight line of length at least (1− ε) · (n − 1) · c.
In every round, the connectivity graph has to remain connected.

3 Impossibility Result and Intuition About Square
Ranges

This section proves that Max-Line-Formation is unsolvable with constant-
sized circular viewing and connectivity ranges. Afterward, we give an intuition
on how square ranges circumvent the impossibility.

3.1 Impossibility with Circular Ranges

Theorem 1. In the OBLOT model, for every constant circular connectivity
and viewing range, there exists an initial configuration with robots located at
distinct positions such that Max-Line-Formation is unsolvable. Furthermore,
no convergence algorithm can exist for these configurations. This holds for robots
that agree on both axes and the Fsync scheduler.

2 In the classical LUMI model [11] each robot is equipped with a single light and
color set. Our assumption of multiple lights and color sets can be transferred to the
classical setting by choosing a single light with a color set of size at most 2

∑k
i=1 |Ci|.

The Max-Line-Formation Problem 295

Fig. 1. The config. C1 transformed by M. Fig. 2. The configuration C2.

Proof. Initially, we assume an identical viewing and connectivity range of c. The
arguments for viewing ranges that are larger than the connectivity range are
analogous and can be found in [4]. We prove the claim by contradiction. We
assume that there is an algorithm M that can solve the Max-Line-Formation
problem. Next, we derive a combination of 2 initial configurations C1 and C2

and prove that if M is able to solve the problem starting in C1, it cannot solve
it starting in C2. The configuration C1 consists of three robots r1, r2 and r3
at arbitrary (connected) positions. Since M can solve the problem, there is a
time step tf such that the Max-Line-Formation problem is solved. W.l.o.g.
we assume that r1 and r3 are located at the end of the line and p1(tf), p2(tf)
and p3(tf) form a line parallel to the y-axis (otherwise we could rename the
robots and rotate the following configuration C2 accordingly). More precisely,
p1(tf)− p2(tf) = p2(tf)− p3(tf) = (0, c). See Fig. 1 for a depiction of the effects
of M started in C1.

The configuration C2 consists of 7 robots, r4, . . . , r10 located at the follow-
ing positions in a global coordinate system (not known to the robots): p4(t) =
(−c, c), p5(t) = (−c, 0), p6(t) = (−c,−c), p7(t) = (0, 0), p8(t) = (c, c), p9(t) =
(c, 0), and p10(t) = (c,−c). See Fig. 2 for a visualization of the configuration.
In C2, r4 can only see r5 and is located in distance c of r5. Moreover, it holds
p4(t) − p5(t) = p1(tf) − p2(tf). Thus, M is not allowed to move r4 since M
cannot distinguish r1 in configuration C1 after time tf and r4 in configuration
C2. By similar arguments, M is also not allowed to move r6, r8 and r10. Hence,
the only remaining robots that could be moved by M are r5, r7 and r9. However,
also these robots are not allowed to move. Consider the robot r5 which is located
in maximum distance to r4, r6 and r7. No matter where r5 moves, it loses the
connectivity to either r4 or r6 as these robots remain at their position. The same
arguments hold for r7 and r9. It follows that M cannot solve the problem started
in C2, which contradicts the assumption. ��

3.2 Intuition About Square Ranges

Next, we argue why the proof of Theorem 1 does not hold when considering
square viewing and connectivity ranges. Assume that the algorithm M trans-

296 J. Castenow et al.

forms the configuration C1 into a line that is parallel to the y-axis. Then, also the
configuration C2 is aligned with the y-axis. Still, the robots r4, r6, r8 and r10 are
not allowed to move. The robots r5 and r9, however, gain the possibility to move
horizontally. More precisely, r5 is allowed to move to the right without losing
the connectivity to r4 and r6 since the complete line segment connecting r5 and
r7 is contained in the square viewing range of both r4 and r6. Similarly, r9 can
move to the left. Consequently, an algorithm solving the Max-Line-Formation
with the help of square ranges should arrange the robots on a line parallel to the
y-axis. The square ranges are only beneficial in case the local coordinate systems
have the same orientation. In case the robots are disoriented, the impossibility
result of Sect. 3.1 also holds with square ranges.

4 OBLOT Algorithm

Based on the results of Sect. 3, Max-Line-Formation is unsolvable with cir-
cular viewing and connectivity ranges. In this section, we show that equipping
the robots with square connectivity and viewing ranges allows us to design an
algorithm that converges to the optimal solution. More precisely, we give an
algorithm that converges to the optimal configuration assuming the OBLOT
model and a square viewing and connectivity range of 1.

4.1 Intuition

The algorithm works in two phases. In the first phase, the positions of all robots
are arranged on a straight line parallel to the y-axis. Afterward, the line is
stretched in the second phase. Since the robots are oblivious and have limited
visibility, robots cannot distinguish the phases and act upon their local view.
Nevertheless, we will show that there is a round t′ such that all robots have
joined the second phase and will remain there for the rest of the execution.

Phase 1: A robot ri whose neighborhood has not yet formed a line parallel to the
y-axis moves only if its position is rightmost in its neighborhood. Then, ri moves
horizontally to the x-coordinate of its leftmost neighbor. If another robot already
occupies this position, ri executes a slight vertical movement into the positive
(from its local view) y-direction to avoid a collision. More precisely, if the robot
is located topmost in its neighborhood, it moves a constant distance upwards.
If the robot is not topmost, it determines the value yi

min, the y-coordinate of its
closest neighbor to the top. Afterwards, it moves 1

3yi
min upwards. The factor of 1

3
is essential since the robot with y-coordinate yi

min might do the same movement
while having an inverted understanding of up and down. Hence, a collision of
the two robots is avoided.

Phase 2: In the second phase, all robots are located on the same line parallel to
the y-axis, which can be seen as a particular case of the Max-Chain-Forma-
tion problem. Thus, the robots execute the Max-GTM algorithm designed for
Max-Chain-Formation [6]: each inner robot (robots that have neighbors in

The Max-Line-Formation Problem 297

each direction) move to the midpoint between their closest northern and their
closest southern neighbor. Outer robots (at the end of the line) have to stretch
the line and move as far as possible away from their closest neighbor without
losing connectivity. Concretely, outer robots move as follows. Let r1 be an outer
robot and r2 its closest neighbor and v(t) = p1(t) − p2(t). Then, r1 imagines a
virtual robot rv at the position pv(t) = p1(t)+ v̂(t) and moves to 1

2pv(t)+ 1
2p2(t).

4.2 Algorithm

We define the following set of possibly colliding robots. For a robot ri, define
Ci(t) = {rj ∈ Ni(t)|xi

j(t) = 0 or xi
j(t) = xi

�(t)}. Now, ri
min ∈ Ci(t) is the robot

with minimal yi
min(t) among all robots with yi

min(t) > 0. Thus, ri
min represents

the robot lying above of ri (from ri’s view) that has the smallest y-coordinate
among all robots in Ci(t). If no such robot exists, define yi

min = 1
10 . Algorithm1

describes the movement of a robot ri.

Algorithm 1. OBLOT Max-Line-Formation
1: if xi

r(t) = 0 and xi
�(t) < 0 then � Check if ri is rightmost but not leftmost

2: if no robot is located on (xi
�(t), 0) then

3: pi(t + 1) ← (xi
�(t), 0) � ri can move safely to the left

4: else
5: pi(t+1) ← (xi

�(t),
1
3

· yi
min) � ri avoids a collision with a vertical movement

6: else
7: if xi

r(t) = 0 and xi
�(t) = 0 then � Check if neighbors are collinear

8: if yi
+(t) = 0 and yi

−(t) < 0 then � Check if ri is top most
9: v−(t) ← pi

−(t) − pi(t); pv(t) ← pi(t) − v̂−(t) � Position of virtual robot
10: pi(t + 1) ← 1

2
p−(t) + 1

2
pv(t)

11: else if yi
+(t) > 0 and yi

−(t) = 0 then � Check if ri is bottom most
12: v+(t) ← pi

+(t) − pi(t); pv(t) ← pi(t) − v̂+(t) � Position of virtual robot
13: pi(t + 1) ← 1

2
p+(t) + 1

2
pv(t)

14: else
15: pi(t + 1) ← 1

2
p−(t) + 1

2
p+(t)

16: ri moves to pi(t + 1)

4.3 Analysis

Next, we introduce the analysis idea to prove the main theorem (Theorem 2)
about the OBLOT algorithm. All proofs can be found in [4].

Theorem 2. For every 0 < ε < 1, after O(n2 · log (n/ε)) epochs, the robots have
formed a line of length at least (1 − ε) · (n − 1).

First, we argue that the first phase of the algorithm ends after O(n2) rounds.

Lemma 1. After O(n2) epochs, all robots are located on distinct positions on the
same vertical line parallel to the y-axis. Moreover, the configuration is connected.

298 J. Castenow et al.

Now, we can assume that the first phase is completed, and thus all robots
are located on the same vertical line. W.l.o.g., we rename the robots such that
y1(t) ≤ y2(t) ≤ ... ≤ yn(t). Moreover, define w1(t) = 1 and wi(t) = yi(t)−yi−1(t)
for 2 ≤ i ≤ n. In addition, define zi(t) = wi(t)−w1(t). The algorithm is designed
such that limt→∞ wi(t) = 1 for all i. To analyze this behavior, we consider the
following function: Φ(t) =

∑n
i=2 zi(t)2. The function Φ(t) is also known as the

sample variance [19]. The name comes from a relation to time inhomogeneous
Markov chains. Although the algorithm is deterministic, the behavior of the
vectors wi(t) can be interpreted as a time inhomogeneous Markov Chain. The
main course of our analysis is based on [19], where the authors analyzed a similar
behavior in the context of the distributed averaging consensus problem. In this
problem, there are n agents, each having a numerical opinion. Every round, an
agent gets to know some other opinions and updates its opinion to the average.
Our application has one important difference: the values wi(t) do not average
but converge to the fixed value w1(t). Hence, many parts of the proof in [19]
have to be reworked and adapted to our application. First, we derive a bound
on the change of Φ(t) between two epochs. Define wπ1(tek

), . . . , wπn
(tek

) to be
the values wi(tek

) sorted from largest to smallest with ties broken arbitrarily.

Lemma 2. Φ(tek
) − Φ(tek+1) ≥ 1

4

∑n−1
i=1

(

wπi
(tek

) − wπi+1 (tek
))2, for any

epoch k.

Based on Lemma 2, a lower bound on the relative change is derived.

Lemma 3. Suppose that Φ(tek
) > 0. Then,

Φ(tek)−Φ(tek+1)

Φ(tek)
≥ 1

8n2 .

A combination of Lemmas 2 and 3 yields the statement of Theorem 2.

5 LUMI Algorithms

In this section, we derive an algorithm that solves Max-Line-Formation
exactly with the help of the LUMI model under the Fsync scheduler. The
algorithm (Algorithm2) achieves an optimal runtime of Θ(n) rounds and works
in two phases: In the first phase, all robots are arranged on a straight line par-
allel to the y-axis, and in the second phase, the line is stretched until it has
maximal length. Compared to the OBLOT algorithm (Sect. 4), the algorithm
uses different core ideas in both phases. In the first phase, all robots (instead of
only the rightmost ones of their neighborhood) move to the left – this is nec-
essary to achieve a linear speedup of the first phase. The second phase makes
use of lights to implement a sequential movement denoted as a run inspired by
[1,5,8,17]. Due to space constraints, we present a variant of the algorithm in
which the robots still move to the left during the second phase. More precisely,
after a linear number of rounds, the first phase ends, and the robots form a line
parallel to the y-axis that continuously moves a distance of 1 to the left. Simul-
taneously, the robots stretch the line until it has maximal length. However, the
line structure is always maintained such that Max-Line-Formation is solved
finally and remains solved (although the line keeps moving to the left). Moving

The Max-Line-Formation Problem 299

continuously to the left can be removed from the algorithm with some additional
effort; an intuition is given in [4].

Phase 1: All robots move as far as possible to the left: each robot ri moves
to the x-coordinate xi

r(t) − 1. Again, collision avoidance has to be ensured.
While moving to xi

r(t) − 1, the robot ri could collide with every robot located
on its local x-axis. The robot ri executes a vertical movement to avoid a colli-
sion. Based on the ordering of neighbors on the local x-axis, ri gets assigned a
unique y-coordinate as follows: Define Yi(t) = {rj ∈ Ni(t)| yi

j(t) = 0} and let
xπ1(t), xπ2(t), . . . , xπ|Yi(t)|

(t) be the x-coordinates of robots in Yi(t) in increasing
order. Additionally, let ki(t) ∈ {1, . . . , |Yi(t)|} denote the position of xi(t) in the
sorted sequence xπ1(t), xπ2(t), . . . , xπ|Yi(t)|

(t). Furthermore, define yi
min(t) to be

the minimal yi
j(t) of all yi

j(t) > 0 of robots rj ∈ Ni(t). If no such robot exists,
define yi

min(t) =
1
10 (any constant of size at most 1 works). Then, ri gets assigned

the y-coordinate ki(t)−1
|Yi(t)| · 1

3yi
min(t). The factor ki(t)−1

|Yi(t)| is unique for every robot
on the local x-axis and the factor of 1

3 is needed to prevent a collision with other
robots that execute the same collision avoidance.

Phase 2: For the second phase, lights are used. Assume w.l.o.g. that the robots
are ordered along the y-axis, i.e., y1(t) ≥ · · · ≥ yn(t). The core idea is a sequential
movement started at r1 and rn implemented with lights. Such a movement is
called a run [1,5,8,17]. Assume that a run starts in round t. Then, only r1 and
rn move. In round t+1, only r2 and rn−1 move and so on. A new run is started
every three rounds. Runs are realized with lights as follows. The first required
light �c with color set Cc = {0, 1, 2} is used as a round counter. Every round, all
robots increment their light �c. Whenever �c = 2 holds, both r1 and rn activate
a light �mov with Cmov = {0, 1} (the light is either active or inactive). Thus,
in the next round, it holds �c = 0 and both r1 and rn detect an active light
�mov. Both r1 and rn now execute a movement (see below). Additionally, they
deactivate the light �mov and activate a light �prev with color set Cprev = {0, 1}
to remember the movement. Simultaneously, the robots r2 and rn−1 observe a
neighbor on the y-axis with active light �mov (r1 and rn). Additionally, neither
r2 nor rn−1 has activated �prev. Hence, the robots activate �mov to continue the
run. In the next round, r1 and rn observe a neighbor with active light �mov but
do not activate their own light �mov since �prev is active.

Robots that have a run (the light �mov is active) move as follows. In case r1
has a run and not r2 (n > 2), r1 moves in distance 1 vertically away from r2. More
formally, p1(t+1) = (x1

r(t)−1,− y1
2(t)

|y1
2(t)|) (remember that in this variant the robots

move also in phase 2 to the left). Similar, rn moves away from rn−1 in distance 1.
In case a robot ri has a run that came from ri−1 (ri−1 has activated �prev and ri

has activated �mov) and ri+1 does not have a run, ri moves in vertical distance 1

away from r+1: pi(t+1) = (xi
r(t)−1,− yi

i+1(t)

|yi
i+1(t)|

). Lastly, in case two neighboring
robots have a run, for instance ri and ri+1 have activated �mov both move only
a vertical distance of 1

2 away from each other: pi(t+1) = (xi
r(t)− 1,− yi

i+1(t)

2|yi
i+1(t)|

).
The handling of the lights and the corresponding movement is depicted in Fig. 3.

300 J. Castenow et al.

Algorithm 2. LUMI Algorithm Fsync executed from the local view of ri

1: if all neighbors are located on the y-axis then
2: if ri = ri

+(t) or ri = ri
−(t) then

3: if �mov = 1 then � �mov = 1 implies �c = 0
4: �mov ← 0; �prev ← 1
5: rc ← closest neighbor on y-axis
6: if rc has activated �mov then � Special case n = 2
7: pi(t + 1) ← (xi

r(t) − 1, − 1
2·|yc(t)| · yc(t)) � Move distance of 1

2

8: else
9: pi(t + 1) ← (xi

r(t) − 1, − 1
|yc(t)| · yc(t)) � Move distance of 1

10: else
11: if �prev = 1 then � Deactivate �prev

12: �prev ← 0
13: else
14: if �c = 2 then � Start new run
15: �mov ← 1
16: pi(t + 1) ← (xi

r(t) − 1, 0))
17: else
18: if �mov = 1 then
19: �mov ← 0, �prev ← 1
20: if closest neighbor above and below have set �mov = 0 then
21: rc ← closest neighbor with �prev = 0
22: pi(t + 1) ← (xi

r(t) − 1, − 1
|yc(t)| · yc(t))

23: else
24: rc ← neighbor with �mov = 1
25: pi(t + 1) ← (xi

r(t) − 1, − 1
2·|yc(t)| · yc(t))

26: else
27: if �prev = 1 then
28: �prev ← 0
29: else
30: if closest neighbor above or below has set �mov = 1 then
31: �mov ← 1
32: pi(t + 1) ← (xi

r(t) − 1, 0))
33: else
34: {�mov, �prev} ← 0 � Deactivate lights if neighborhood is not in phase 2
35: if |Yi(t)| > 0 then
36: pi(t + 1) ← (xi

r(t) − 1, ki(t)−1
|Yi(t)| · 1

3
yi

min(t))
37: else
38: pi(t + 1) ← (xi

r(t) − 1, 0)
39: �c ← �c + 1
40: ri moves to pi(t + 1)

Analysis: In the analysis [4], it is proven that after a linear number of rounds,
the first phase ends. As a part of the proof, it is proven that no collisions occur,
and the connectivity is always maintained. Moreover, it is proven that as soon as
phase 2 is reached, the robots remain in phase 2 (following from the algorithm’s

The Max-Line-Formation Problem 301

�c = 0 �c = 1�c = 2 �c = 2 �c = 0

1

1

1

1
1

1

Fig. 3. A square (cross) depicts a robot with active light �mov (�prev). Time proceeds
from left to right. In the first line it holds �c = 2 for all robots. In this round, the
topmost and the bottom-most robot activate �mov. In the next round (�c = 0), these
two robots move in distance 1 of their neighbor (depicted by an arrow) and additionally
deactivate �mov while activating �prev. Afterward, the movement continues.

description). Afterward, the runs of the second phase are analyzed. The first run
ensures that after O(n) rounds, the robots r�n/2� and r�n/2�+1 have a vertical
distance of 1. The second run ensures the same both for r�n/2�−1 and r�n/2� as
well as r�n/2�+1 and r�n/2�+2. Hence, after O(n) runs, the line reaches maximal
length. Since each 3 rounds, a new run is started, the linear runtime follows.

Theorem 3. After O(n) epochs, the robots have solved Max-Line-Formation.

The algorithm can be implemented in the classical LUMI model with a
single light having 9 colors. Observe that no robot ever activates the lights �prev

and �mov at the same time. Thus, for each robot, it always holds: either �prev,
�mov or none of both are activated. Additionally, each robot counts rounds with
the light �c requiring 3 colors. Hence, the total number of required colors is 9: 3
colors of �c, each combined with 3 possible cases for the lights �mov and �prev.

302 J. Castenow et al.

6 Relation to Gathering and Chain-Formation

Finally, we apply the main ideas of our algorithms for the Max-Line-
Formation problem in the context of Gathering and Chain-Formation.

Gathering: We consider robots in the OBLOT model that agree on one axis of
their local coordinate systems and operate under the Fsync scheduler. Define
Δ to be the maximal distance of two robots in the initial configuration in round
t0. The core idea of the Gathering algorithm is as follows: to use the first
phase of Algorithm 2 to arrange the robots on a vertical line fast. In this phase,
every robot moves as far as possible to the left. While in Algorithm 2, collisions
have to be avoided, this is not necessary for Gathering since collisions are
desired to gather all robots on a single point. In Sect. 5, it has been proven
that this phase requires O(n) epochs. We show with a slightly more elaborate
argument that this phase requires only O(Δ) epochs. During the second phase of
the algorithm, robots at the end of the line move half the distance towards their
farthest neighbor. All other robots move to the midpoint between their farthest
neighbor above and below. A pseudocode description, as well as a proof of the
following theorem, can be found in [4].

Theorem 4. Gathering of n robots agreeing on one axis can be solved with
a square viewing and connectivity range of 1 in O(Δ) epochs under the Fsync
scheduler in the OBLOT model.

Chain-Formation: Lastly, we study the Chain-Formation problem that con-
siders disoriented robots. The robots are connected in a chain topology: there
are n + 2 robots r0, r1, . . . , rn+1; both r0 and rn+1 do not move. Every other
robot ri has exactly two chain neighbors: ri−1 and ri+1 whose positions it can
always observe. The robots have a circular connectivity and viewing range of 1.
Define by wi(t) = (wx

i (t), w
y
i (t)) = pi(t) − pi−1(t) the vectors along the chain

and L(t) =
∑n+1

i=1 ‖wi(t)‖. Additionally, D = ‖p0(t) − pn+1(t)‖. The goal of the
Chain-Formation problem is to move the robots such that L(t) = D and to
distribute the robots uniformly along the line segment between r0 and rn+1.
W.l.o.g, assume that r0 is positioned in the origin of a global coordinate system
and rn+1 on the positive x-axis in distance D to r0. Then, in the optimal config-
uration it holds wi(t) = w∞ = D

n+1 for all i. We say that an ε-approximation of
the optimal configuration is reached in case ‖wi(t)−w∞‖ ≤ ε for all 1 ≤ i ≤ n+1.
The GTM algorithm moves each robot in every round to the midpoint between
its two direct neighbors [7,14]. The movement is similar to the second phase of
the OBLOT algorithm (Algorithm1) with the exception that the robots at the
end of the line (r0 and rn+1) do not move instead of stretching the line. Nev-
ertheless, we can apply a very similar analysis idea to the GTM algorithm: We
prove convergence independently for wx

i (t) and wy
i (t). Since the arguments are

identical, we concentrate on wx
i (t). Define x = 1

n+1 ·
∑n+1

i=1 wx
i (t). Furthermore,

define zi(t) = wx
i (t)−x and Φ2(t) =

∑n+1
i=1 zi(t)2. Φ2(t) can be analyzed in most

parts analogously to Φ(t) in Sect. 4. See [4] for a proof.

The Max-Line-Formation Problem 303

Theorem 5. For every 0 < ε < 1, GTM reaches an ε-approximation of the
optimal configuration in O(n2 · log(n/ε)) epochs under the Ssync scheduler.

References

1. Abshoff, S., Cord-Landwehr, A., Fischer, M., Jung, D., Meyer auf der Heide, F.:
Gathering a closed chain of robots on a grid. In: IPDPS, pp. 689–699. IEEE Com-
puter Society (2016)

2. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point con-
vergence algorithm for mobile robots with limited visibility. IEEE Trans. Robotics
Autom. 15(5), 818–828 (1999)

3. Castenow, J., Fischer, M., Harbig, J., Jung, D., Meyer auf der Heide, F.: Gathering
anonymous, oblivious robots on a grid. Theor. Comput. Sci. 815, 289–309 (2020)

4. Castenow, J., Götte, T., Jung, D., Knollmann, T., Meyer auf der Heide, F.: The
Max-Line-Formation Problem. CoRR abs/2109.11856 (2021). https://arxiv.org/
abs/2109.11856

5. Castenow, J., Harbig, J., Jung, D., Knollmann, T., Meyer auf der Heide, F.: Gath-
ering a euclidean closed chain of robots in linear time. In: Gąsieniec, L., Klasing, R.,
Radzik, T. (eds.) ALGOSENSORS 2021. LNCS, vol. 12961, pp. 29–44. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-89240-1_3

6. Castenow, J., Kling, P., Knollmann, T., Meyer auf der Heide, F.: A discrete and
continuous study of the Max-Chain-Formation problem. In: Devismes, S., Mit-
tal, N. (eds.) SSS 2020. LNCS, vol. 12514, pp. 65–80. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64348-5_6

7. Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems.
Theor. Comput. Sci. 399(1–2), 71–82 (2008)

8. Cord-Landwehr, A., Fischer, M., Jung, D., Meyer auf der Heide, F.: Asymptotically
optimal gathering on a grid. In: SPAA, pp. 301–312. ACM (2016)

9. Degener, B., Kempkes, B., Kling, P., Meyer auf der Heide, F.: Linear and com-
petitive strategies for continuous robot formation problems. ACM Trans. Parallel
Comput. 2(1), 2:1–2:18 (2015)

10. Degener, B., Kempkes, B., Langner, T., Meyer auf der Heide, F., Pietrzyk, P.,
Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous
robots with limited visibility. In: SPAA, pp. 139–148. ACM (2011)

11. Di Luna, G.A., Viglietta, G.: Robots with lights. In: Flocchini, P., Prencipe, G.,
Santoro, N. (eds.) Distributed Computing by Mobile Entities. LNCS, vol. 11340,
pp. 252–277. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-
7_11

12. Dutta, A., Gan Chaudhuri, S., Datta, S., Mukhopadhyaya, K.: Circle formation by
asynchronous fat robots with limited visibility. In: Ramanujam, R., Ramaswamy,
S. (eds.) ICDCIT 2012. LNCS, vol. 7154, pp. 83–93. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28073-3_8

13. Dynia, M., Kutyłowski, J., Lorek, P., auf der Heide, F.M.: Maintaining communica-
tion between an explorer and a base station. In: Pan, Y., Rammig, F.J., Schmeck,
H., Solar, M. (eds.) BICC 2006. IIFIP, vol. 216, pp. 137–146. Springer, Boston,
MA (2006). https://doi.org/10.1007/978-0-387-34733-2_14

14. Dynia, M., Kutylowski, J., Meyer auf der Heide, F., Schrieb, J.: Local strategies
for maintaining a chain of relay stations between an explorer and a base station.
In: SPAA, pp. 260–269. ACM (2007)

https://arxiv.org/abs/2109.11856
https://arxiv.org/abs/2109.11856
https://doi.org/10.1007/978-3-030-89240-1_3
https://doi.org/10.1007/978-3-030-64348-5_6
https://doi.org/10.1007/978-3-030-11072-7_11
https://doi.org/10.1007/978-3-030-11072-7_11
https://doi.org/10.1007/978-3-642-28073-3_8
https://doi.org/10.1007/978-0-387-34733-2_14

304 J. Castenow et al.

15. Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile
Entities, Current Research in Moving and Computing. LNCS, vol. 11340. Springer,
Cham (2019)

16. Kling, P., Meyer auf der Heide, F.: Convergence of local communication chain
strategies via linear transformations. In: SPAA, pp. 159–166. ACM (2011)

17. Kutylowski, J., Meyer auf der Heide, F.: Optimal strategies for maintaining a chain
of relays between an explorer and a base camp. Theor. Comput. Sci. 410(36), 3391–
3405 (2009)

18. Mondal, M., Gan Chaudhuri, S.: Uniform circle formation by swarm robots under
limited visibility. In: Hung, D.V., D’Souza, M. (eds.) ICDCIT 2020. LNCS, vol.
11969, pp. 420–428. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
36987-3_28

19. Nedic, A., Olshevsky, A., Ozdaglar, A.E., Tsitsiklis, J.N.: On distributed averaging
algorithms and quantization effects. IEEE Trans. Autom. Control 54(11), 2506–
2517 (2009)

20. Poudel, P., Sharma, G.: Universally optimal gathering under limited visibility. In:
Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 323–340. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69084-1_23

https://doi.org/10.1007/978-3-030-36987-3_28
https://doi.org/10.1007/978-3-030-36987-3_28
https://doi.org/10.1007/978-3-319-69084-1_23

Message Delivery in the Plane by Robots
with Different Speeds

Jared Coleman1(B), Evangelos Kranakis2, Danny Krizanc3,
and Oscar Morales Ponce4

1 Department of Computer Science, University of Southern California,
Los Angeles, CA, USA
jaredcol@usc.edu

2 School of Computer Science, Carleton University, Ottawa, ON, Canada
3 Department of Mathematics and Computer Science, Wesleyan University,

Middletown, CT, USA
4 Department of Computer Science, California State University, Long Beach, USA

Abstract. We study a fundamental cooperative message-delivery prob-
lem on the plane. Assume n robots which can move in any direction, are
placed arbitrarily on the plane. Robots each have their own maximum
speed and can communicate with each other face-to-face (i.e., when they
are at the same location at the same time). There are also two designated
points on the plane, S (the source) and D (the destination). The robots
are required to transmit the message from the source to the destination
as quickly as possible by face-to-face message passing. We consider both
the offline setting where all information (the locations and maximum
speeds of the robots) are known in advance and the online setting where
each robot knows only its own position and speed along with the posi-
tions of S and D.

In the offline case, we discover an important connection between the
problem for two-robot systems and the well-known Apollonius circle
which we employ to design an optimal algorithm. We also propose a√

2 approximation algorithm for systems with any number of robots.
In the online setting, we provide an algorithm with competitive ratio
1
7

(
5 + 4

√
2
)

for two-robot systems and show that the same algorithm has
a competitive ratio less than 2 for systems with any number of robots. We
also show these results are tight for the given algorithm. Finally, we give
two lower bounds (employing different arguments) on the competitive
ratio of any online algorithm, one of 1.0391 and the other of 1.0405.

Keywords: Delivery · Face-to-Face · Plane · Pony express · Robot ·
Speed

1 Introduction

We study the problem of delivering a message in minimum time from a source to a
destination using autonomous mobile robots with different maximum speeds. We

E. Kranakis—Research supported in part by NSERC Discovery grant.

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 305–319, 2021.
https://doi.org/10.1007/978-3-030-91081-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_20&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_20

306 J. Coleman et al.

extend the work on this communication problem studied previously on graphs [1,
3,8,9]. In our setting, the robots are initially distributed in arbitrary locations
in the plane and the locations of the source and destination are known by all.
The robots may move with their own (maximum) speed. Robots cooperate by
exchanging information (the message) using face-to-face (F2F) communication.
We study message transmission and allow messages to be replicated (as opposed
to package delivery). The goal is to give an algorithm which minimizes the time
required to deliver the message from the source to the destination through a
series of F2F message transfers. In this paper we study how to complete this
task efficiently and propose various centralized offline and distributed online
algorithms which take into account the knowledge that the robots have about
their speeds and initial locations.

1.1 Model, Notation and Terminology

The setup of our pony express problem will be in the Euclidean plane and points
will be identified with their cartesian coordinates. We use capital letters to denote
points and lower-case letters with subscripts to denote their components (e.g.
point A = (a1, a2)). For any points A,B,C, |AB| denotes the Euclidean distance
between A and B, ∠(ABC) denotes the angle formed by A,B,C in this order,
and �(ABC) denotes the triangle formed by A,B,C. Finally, C(A, r) denotes
a circle centered at A with radius r.

Assume that n robots r1, r2, . . . , rn are placed at arbitrary positions in the
Euclidean plane. The respective speeds of the robots are v1, v2, . . . , vn. The move-
ment of a robot is determined by a well-defined trajectory. A robot trajectory
is a continuous function t → f(t), with f(t) the location of the robot at time
t, such that |f(t) − f(t′)| ≤ v|t − t′|, for all t, t′, where v is the speed of the
robot. A robot can move with its own constant speed and during the traver-
sal of its trajectory it may stop and/or change direction instantaneously and
at any time. Robot communication is F2F in that two robots can communicate
(instantaneously) with each other only when they are co-located.

Algorithms describe the trajectories robots will follow and we will take into
account the time it takes the algorithm to conclude the delivery task from the
start, obtaining the message at a given source S, and eventually delivering it to a
given destination D. In general, we are interested in offline and online algorithms.
In the offline setting, the locations and speeds of all robots are known in advance
and are available to a central authority that assigns trajectories to the robots.
In the online setting, the robots know only their own initial position and speed,
along with the positions of S and D. To measure the performance of our online
algorithms, we consider their competitive ratio defined as follows. Let t∗(I) be
the optimal delivery time for an instance I of a given problem and tA(I) be the
time needed by some online algorithm A for the same instance. The competitive
ratio of A is maxI

tA(I)
t∗(I) . Our goal is to find online algorithms that minimize this

competitive ratio.

Message Delivery in the Plane by Robots with Different Speeds 307

1.2 Related Work

Communicating mobile robots or agents have been used to address problems
such as search, exploration, broadcasting and converge-casting, patrolling, con-
nectivity maintenance, and area coverage (see [11]). For example, [6] addresses
the problem of how well a group of collaborating robots with limited commu-
nication range is able to monitor a given geographical space. To this end, they
study broadcasting and coverage resilience, which refers to the minimum num-
ber of robots whose removal may disconnect the network and result in uncovered
areas, respectively. Similarly, rendezvous is a relevant communication paradigm
and in [13,18] the authors investigate rendezvous in a continuous domain under
the presence of spies. A related study on message transmission in a synchro-
nized multi-robot system may be found in [6]. Another application is patrolling
whereby mobile robots are required to keep perpetually moving along a specified
domain so as to minimize the time a point in the domain is left unvisited by an
agent, e.g., see [17] for a related survey.

Data delivery and converge-cast with energy exchange under a centralized
scheduler were studied in [16]. A restricted version concerns n mobile agents of
limited energy that are placed on a straight line and which need to collectively
deliver a single piece of data from a given source point S to a given target point
D on the line can be found in [10]. In [12] it is shown that deciding whether the
agents can deliver the data is (weakly) NP-complete. Additional research under
various conditions and topological assumptions can be found in [4] which studies
the game-theoretic task of selecting mobile agents to deliver multiple items on
a network and optimizing or approximating the total energy consumption over
all selected agents, in [2,5,7] which study data delivery and combine energy and
time efficiency, and in [19,20] which are concerned with collaborative exploration
in various topologies.

Our problem was previously studied on graphs in [1,3,8,9]. In particular it
is shown in [8] that the problem can be solved with k agents on an n-node,
m-edge weighted graph in time O(kn log n + km). We use this algorithm in the
development of our approximation algorithm.

Our current work is related to the Pony Express communication problem
proposed in [15]. In that paper, the authors provide both optimal offline and
online algorithms for the anycast and broadcast problems in the case where the
underlying domain was a continuous line segment. To our knowledge, the planar
case studied in our paper has not been considered previously.

1.3 Outline and Results of the Paper

In Sect. 2 we propose an optimal offline algorithm for two robots. For ease of
exposition, we first consider the case when the slower robot starts at the source
and then the general case of arbitrary starting positions. In Sect. 3 we study the
offline multirobot case. We propose an algorithm which approximates the optimal
delivery time to within a factor of

√
2. Section 4 is dedicated to online algorithms.

For two robots we give an algorithm with competitive ratio of 1
7

(
5 + 4

√
2
)

and

308 J. Coleman et al.

show that for n robots, this same algorithm has a competitive ratio of at most 2.
We also analyze lower bounds for this specific algorithm showing these bounds
are tight. In Sect. 5 we prove lower bounds on the competitive ratio of arbitrary
online algorithms. We discuss two approaches, one where the position of a robot
is unknown and the other where the speed of a robot is unknown. These dif-
ferent approaches provide lower bounds of 1.0391 and 1.0405, respectively. We
conclude in Sect. 6 by discussing possibilities for additional research in this area.
All missing proofs can be found in the complete version of the paper [14].

2 Optimal Offline Algorithm for Two Robots

In this section, we will consider two robots rv and r1 which can move with
respective constant speeds v and 1 (v > 1) and design optimal offline algorithms
with respect to the F2F communication model (observe that by scaling the
distances, setting the speed of the slow robot to be 1 yields no loss of generality.)
Let L and K be the starting positions of robots r1 and rv, respectively. There
are three cases to consider:

1. |KS|
v ≤ |LS|: the fast robot can get to S before the slow robot. In this case, it

is clear that in the optimal solution, the fast robot should move to S, acquire
the message, and carry it to D.

2. |KD|
v ≥ |LS| + |SD|: the slow robot can deliver the message to D before the

fast robot can even reach D. In this case, the optimal solution is also clear.
The slow robot should move to S, acquire the message, and carry it to D.

3. In all other cases, the slow robot can get to S before the fast robot, but the
fast robot can get to the destination faster. The optimal solution, then, must
involve a handover between the robots at some point M in the plane.

For the first two cases, the optimal solution is trivial. The third case, however,
is not as we must find the point at which the robots meet. First, we characterize
the optimal meeting point M for Case 3 through a series of lemmas.

Lemma 2.1. For Case 3, there exists an optimal solution such that if M is the
handover, then |LS| + |SM | = |KM |

v .

Intuitively, Lemma 2.1 says that robots must move at their maximum speeds
directly towards the location they will acquire the message and then directly
toward the location they handover or deliver the message. This restricts the set
of feasible meeting points to the set of points in the plane such that both robots,
moving in one direction at their maximum speeds, meet at the same time. For
the case where the slow robot starts at the source (L = S), this is directly related
to an ancient theorem by the Greek philosopher Apollonius, which states “the
trajectory traced by a point P which moves in such a way that its Euclidean
distance from a given point S is a constant multiple of its Euclidean distance
from another point K is a circle” [21]. As a consequence, if the robots r1, rv start
at positions S,K, respectively, then the locus of points at which the two robots

Message Delivery in the Plane by Robots with Different Speeds 309

may travel directly towards and meet at the same time is the circle of Apollonius
(see Fig. 1). This circle, then is the locus of all possible handover points between
the two robots. The precise statement in the context of mobile robots is stated
in Lemma 2.2.

rv r1

A BK

P

S C

Fig. 1. The Apollonius circle is the locus of points P such that robots rv and r1 are
equal time away from their starting positions K and S, respectively.

Lemma 2.2. Two robots rv and r1 with speeds v and 1 (v > 1) are initially
placed at points K and S, respectively. The locus of points P such that robots rv

and r1 are equal time away from points K and S, respectively, i.e., |PK|
|PS| = v,

forms a circle with center C and radius R so that

C = S +
S − K

v2 − 1
and R =

v|SK|
v2 − 1

(1)

The following definition of the Apollonius Circle will be used throughout this
paper.

Definition 1 (Apollonius Circle). The circle with center C and radius R
given by Eqs. (1) is called the Apollonius circle between robots rv and r1 when
their respective starting positions are K,S.

For instances of the problem where L = S and whose optimal solutions
do not involve either robot delivering the message by itself, the previous dis-
cussion results in the following lemma whose proof follows directly from Lem-
mas 2.1 and 2.2.

Lemma 2.3. The optimal meeting point M is the point on the Apollonius circle
between robots r1 and rv which minimizes the total delivery time |SM |+ |MD|

v =
|KM |+|MD|

v . ��

2.1 Optimal Algorithm When a Robot Starts at the Source

First we give an algorithm in the restricted case where one robot starts at the
source where the message is located (L = S). Let S = (0, 0) be the source, K be
the starting position of the fast robot which we assume to be on the x axis, and
D = (x, y) the destination. Without loss of generality, we assume y ≥ 0 (if y < 0,
the instance can be reflected about the x axis and solved equivalently, since K

310 J. Coleman et al.

S

D

C

M

K

Fig. 2. The two-robot delivery problem with a slow robot at S, a faster robot at K,
and an Apollonius circle between the two centered at C.

is on the x axis). By Lemma 2.3, our goal is to find the point M on the robots’
Apollonius circle which minimizes the delivery time |SM | + |MD|

v = |KM |+|MD|
v

(see Fig. 2).
Consider the following offline algorithm for computing the optimal delivery

time.

Algorithm 1. Optimal Two-Robot Algorithm with the Slow Robot Starting at
the Source
1: if |KD|

v
≥ |SD| then

2: return |SD|
3: β ← ∠SKD
4: if sin(β) ≤ 1

v
then

5: α ← π − β − arcsin(v sin β)

6: M ← |SK|
v2−1

(v cos α − 1, v sin α)
7: if |KD| < |KM | then
8: M ← point on Apollonius circle such that CM bisects the angle ∠(DMK)

9: else
10: M ← point on Apollonius circle such that CM bisects the angle ∠(DMK)

11: return |KM|+|MD|
v

Theorem 2.1. Algorithm1 returns the optimal delivery time for instances with
two robots r1 and rv with speeds 1 and v, and starting positions S and K, respec-
tively. Algorithm1 can be implemented using a constant number of operations
(including trigonometric functions).

Proof. First, note that Case 1 (from the three cases at the beginning of the
section) is not considered since the slow robot, r1 is assumed to start at the
source. Case 2 is obviously handled by line 1 in the algorithm. Case 3 is divided
into two subcases based on whether or not the condition in line 4 is satisfied.
First, we consider the case where it is not. Let β be the angle ∠SKD. Observe
that if KD is tangent to the Apollonius circle (Fig. 3), then sin(β) = |SK|v

v2−1 ·
v2−1

|SK|v2 = 1
v . Clearly for any smaller value for β, KD intersects the Apollonius

circle at two points (and for any larger value, KD does not intersect the circle).

Message Delivery in the Plane by Robots with Different Speeds 311

Fig. 3. The maximum β such that KD intersects the Apollonius Circle

Then, let α = ∠KCM and γ = ∠KMC (Fig. 4 left). By the law of sines
(v2−1) sin γ

|SK|v2 = (v2−1) sin β
|SK|v and γ = arcsin(v sin β). Thus α = π−β−arcsin(v sin β)

and M = |SK|
v2−1 (v cos α− 1, v sinα) is just the associated point on the Apollonius

circle.
Observe M is the intersection point closest to K. Since the condition in line 4

is satisfied, rv can move directly toward D and, without veering from a direct
path, meet r1 at M , acquire the message, and continue towards D to deliver the
message. We know, since the first case was not satisfied, that rv can reach the
destination before r1 can, so this is clearly the optimal trajectory. Now, suppose
the condition in line 4 is not satisfied. Consider the ellipse with foci K and D
whose semi-major axis has length 1

2vt for some time t ≥ 0. Then, by a defining
property of an ellipse, the sum of the distances from each foci to a point on the
ellipse is equal to a constant value vt. Consequently, a robot starting at K with
speed v takes exactly t time to travel to a point on the ellipse and then to D.
Observe that if the ellipse and Apollonius circle intersect, then the two robots
can meet at one of the intersection points and, by the previous statement, the
fast robot can deliver the message in time t. If they intersect at two points,

Fig. 4. On the left, D is such that the line-segment KD intersects with the Apollonius
Circle. In the general case (right), CM must bisect ∠(DMK), and thus α such that
MK′ be collinear to MD, where K′ = |CK|(cos(α), sin(α)).

312 J. Coleman et al.

though, then any point on the Apollonius circle between these two intersections
would yield a better solution. The solution, then, is to find the minimal t which
causes the Apollonius circle and the ellipse to intersect at exactly one point M .
Thus CM must be normal to both the Apollonius circle and the ellipse. That
CM , therefore, must bisect ∠(DMK) follows from a well-known property of the
ellipse, namely that a normal line through a point on an ellipse bisects the angle
it forms with the ellipse’s foci.

Next, we show the algorithm can be implemented to run using a constant
number of operations (including trigonometric functions). The only lines in the
algorithm that are not clearly computable with a constant number of operations
are lines 8 and 10. To show that M can be computed in constant time, we
provide a formulation which can be given as input to Equation Solving tools
(e.g., Mathematica) to find a closed-form solution1. Let α = ∠KCM and K ′ be
the point given by rotating K 2α around C (into the positive half-plane, Fig. 4
right). Observe that if CM bisects ∠(DMK), then DK ′ is collinear with MD,
or: |SK| cos(2α)−|CS|−x

|SK| sin(2α)−y = x−cosα−|CS|
y−sinα where D = (x, y). ��

2.2 Optimal Algorithm in the General Case

In this subsection we consider the more general case where the slow robot does
not start at the source. Let the starting positions of source and destination be
S = (s1, s2) and D = (d1, d2) and let the robots rv and r1 start from arbitrary
points K = (k1, k2) and L = (l1, l2) in the plane, respectively. Again, we are
interested in finding the point M = (x1, x2) for the third case (from the cases
at the beginning of the section), since optimal solutions for the first two cases
are trivial to find. As depicted in Fig. 5, robot rv follows a trajectory which first
visits a point Q at distance v|LS| from its starting position, then continues along
a straight-line trajectory to meet robot r1 at a suitable point M = (x1, x2), and
finally delivers the message to the destination D. The main steps of the algorithm
are as follows.

QSC

M

K

L

D

rv
rv

rv

r1

r1

Fig. 5. Trajectories of the robots for message delivery from S to D. Robot rv starts at
the point K and robot r1 at the point L. Robot r1 arrives at the source S before rv

does and meets robot rv at M which then delivers the message to M .

1 Link to Mathematica solution for Theorem 2.1.

https://www.wolframcloud.com/obj/oscar.moralesponce/Published/Pony_Express_Theorem_1

Message Delivery in the Plane by Robots with Different Speeds 313

1. If |KS|
v ≤ |LS|, then rv reaches S before r1 and rv should complete the

delivery on its own.
2. Otherwise, if |LS|+ |SD| ≤ |KD|, then r1 can deliver the message on its own

before rv can even reach the destination.
3. Otherwise r1 reaches S in time |LS| and, at the same time, robot rv goes to

a specially selected point Q = (q1, q2) which lies on the circle centered at K
with radius v|LS|.

4. Robot rv meets robot r1 at a point M = (x1, x2) determined by the locus
of points which are equal time away from Q and S (by Lemma 2.2, this is
the circle with center C and radius R as given in Eq. (1)). Robot r1 passes
message to rv which delivers it to D.

Observe that by Lemma 2.1, K, Q, and M must be collinear. We can then
generalize the result of Sect. 2.1 using the following lemma. Recall that the center
of similitude (also known as homothetic center) is a point from which at least
two geometrically similar figures can be seen as a dilation or contraction of one
another (see [22][Section 1.1.2]).

Lemma 2.4. Let C be the center of the Apollonius circle between r1 and rv

when r1 is at S and rv is at K. Then, S is the center of similitude of the circles
C(K, v|LS|) and C(C, v|LS|/(v2−1)). Consider any point Q in the circumference
of C(K, v|LS|). Let β be the angle ∠(SKQ), then Cβ = (v|LS|

v2−1 cos β, v|LS|
v2−1 sin β)+

C is the center of the Apollonius circle of S.

Consider two points Cβ and Q as described in Lemma 2.4, for some β. We can
now use Theorem 2.1 to characterize the solution. However, this approach does
not lead to a closed-form solution. Instead, in the following lemma, we present
another approach using optimization which does.

Lemma 2.5. Let a = |LS|. Then the optimal trajectory is obtained by a point
M = (x1, x2) which minimizes the objective function

√
(k1 − x1)2 + (k2 − x2)2 +

√
(x1 − d1)2 + (x2 − d2)2 (2)

subject to the condition
(

(x1 − k1)2 + (x2 − k2)2

2av2
− (x1 − s1)2 + (x2 − s2)2

2a
− a

2

)2

= (x1 − s1)2 + (x2 − s2)2.

(3)

The resulting optimization problem has two unknowns x1, x2 in the objective
function (2) and must satisfy the condition of Eq. (3). It can be used to substitute
variables and express the final optimization function described in Formula (2)
using only a single variable, say x1, which can then be minimized using stan-
dard analytical methods. This is easily seen since Eq. (3) is of degree 4 in the
variable x2 (as well as in the variable x1, for that matter). Therefore a closed
form expression of the variable x2 in terms of the variable x1 and the known
parameters S,D is easily derived.

314 J. Coleman et al.

There are two symmetries in Eq. (3) which simplify the objective function
and make the calculation of the solution easier. They are easily revealed with
simple geometric transformations.

For the first symmetry, consider a rotation of the axis and a translation of
the entire configuration of points so that K and S lie on the horizontal axis,
i.e., (k1, k2) = (0, 0) and (s1, s2) = (s1, 0). Then Eq. (3) is transformed to the
equation

(
x2
1 + x2

2

2av2
− (x1 − s1)2 + x2

2

2a
− a

2

)2

= (x1 − s1)2 + x2
2 (4)

The resulting symmetry is along the horizontal x1-axis in Eq. (4). Namely, if
(x1, x2) is a solution so is (x1,−x2). If we consider Eq. (4) in the unknown x2

we see that it is of degree 4, but which is also a quadratic in x2
2. Therefore x2

can be easily expressed as a function of x1 using the formula for the roots of
the quadratic equation. The second symmetry is obtained in a similar manner.
If (x1, x2) is a solution so is (−x1, x2). One considers a rotation of the axis and
a translation of the entire configuration of points so that K and S lie on the
vertical axis, i.e., (k1, k2) = (0, 0) and (s1, s2) = (0, s2). Details can be completed
as above. To sum up we have the following Algorithm2 which determines the
handover point which yields the optimal trajectory.

Algorithm 2. Optimal Two-Robot Algorithm
1: if |KS|

v
≤ |LS| then

2: return |KS|+|KD|
v

3: else if |KD|
v

≥ |SD| then
4: return |SD|
5: else
6: M∗ ← M which minimizes Formula (2)

7: return |KM∗|+|M∗D|
v

Theorem 2.2. Algorithm2 returns the optimal delivery time for two robots r1
and rv with speeds 1 and v, respectively, and can be implemented using a constant
number of operations (including trigonometric functions).

3 Offline
√

2 Approximation for Multiple Robots

In principle, the equations derived in the previous section can be generalized to
solve the problem optimally for n robots. Unfortunately, we are not able to solve
the resulting set of equations. We do not speculate on the complexity of the
general problem here. Instead, in this section we provide a

√
2-approximation

algorithm, The robots know the location of the source S and destination D but

Message Delivery in the Plane by Robots with Different Speeds 315

A

B

P X

Y

Fig. 6. Replacing Euclidean movements with rectilinear movements.

also all robots know the initial locations and speeds of all other robots. The
basic idea of our proof is contained in the following observation depicted in
Fig. 6. Suppose that during the execution of an optimal “Euclidean” algorithm
(i.e., optimal in the sense of the Euclidean distance) two robots placed at A and
B, follow the straight-line trajectories A → P and B → P , respectively, and
meet at the point P .

Now we replace the Euclidean trajectories A → P and B → P with the
rectilinear trajectories A → X → P and B → Y → P , respectively. Elementary
geometry implies that

|AX| + |XP | ≤
√

2|AP | and |BY | + |Y P | ≤
√

2|BP |. (5)

This observation leads to the following lemma.

Lemma 3.1. Consider the pony express problem for n robots, a source S and a
destination D in the plane. Then OptRect ≤ √

2·OptEucl, where OptRect, OptEucl

are the delivery costs of the optimal trajectories of the pony express problem
for delivering from a source to a destination measured in the rectilinear and
Euclidean metrics, respectively.

Consider n robots in the plane with starting positions p1, . . . , pn. Without
loss of generality assume the slowest robot has speed 1. Further, let the source of
a message be located at a point S and the destination at a point D and assume,
without loss of generality, that the line segment SD is horizontal. Enclose the
points S,D and p1, . . . , pn in a Δ×Δ square with sides parallel to the x−, y−axis,
where Δ is a positive real proportional to the diameter of the set {S,D} ∪
{p1, . . . , pn}. For ε > 0 arbitrarily small, partition the Δ×Δ square with parallel
vertical and horizontal lines with consecutive distances ε > 0, respectively, so as
to form a Δ

ε × Δ
ε grid. Without loss of generality we may assume that S and D

are vertices in this grid graph (This is easy to accomplish by choosing ε to be
an integral fraction of the distance |SD| between S and D.) Clearly, this forms
a grid graph with

(
Δ
ε

)2
vertices so that S,D are also vertices and

(
Δ
ε

)2
edges.

Now consider the following algorithm.

316 J. Coleman et al.

Algorithm 3. Grid Algorithm (S source, D destination, ε > 0)
1: In phase 1, each robot moves from its starting position pi to one vertex p′

i of the
ε × ε square in which it is contained; all the robots synchronize so that they can
start the next phase at the same time by waiting for time at most ε;

2: In phase 2, run the optimal algorithm in [8] on the Δ
ε

× Δ
ε

grid to provide trajectories
for the n robots with starting positions p′

1, . . . , p
′
n in optimal time in order to deliver

the message from the course S to the destination D; when a robot meets another
robot for a message handover the robot that arrives first waits for the arrival of
the second robot;

Theorem 3.1. For any ε′ > 0 arbitrarily small, there exists an algorithm that
finds trajectories for n robots to deliver the message from the source S to the
destination D in time O

(
n3

(
Δ
ε′

)2
log

(
nΔ

ε′
))

whose delivery time is at most√
2 multiplied by the delivery time of the optimal Euclidean algorithm plus the

additional additive overhead ε′, where Δ is the diameter of the point set.

4 Online Upper Bounds

In this section we discuss online algorithms. In Subsect. 4.1 we give an online
algorithm with competitive ratio 1

7 (5+4
√

2) for two robots with knowledge only
of the source S and destination D. We show this bound is tight for the given
algorithm. In Subsect. 4.2 we show that the same algorithm when generalized to
n robots has competitive ratio at most 2. Further, we show that for any n > 2,
the competitive ratio of our algorithm is at least 2 − 2

2n−1 .

4.1 Two Robot Algorithm with Competitive Ratio 1
7
(5 + 4

√
2)

Consider the following Algorithm4 for multiple robots.

Algorithm 4. Online Algorithm (S source, D destination)
1: Move toward S
2: Acquire the message at S
3: Move toward and deliver the message to D

Observe that in this algorithm the robots act independently. In particular no
attempt is made to co-ordinate the action of the robots and if two robots meet
they ignore each other. This is not required in order to achieve the upper bounds
below. For our lower bounds on this algorithm, we assume that the robots do
not interact even if it may improve the time to complete the task.

Theorem 4.1. For the case of two robots, Algorithm4 delivers the message from
the source S to the destination D in at most 1

7 (5+4
√

2) times the optimal offline
time.

Message Delivery in the Plane by Robots with Different Speeds 317

Example 1. Now we give a tight lower bound on the competitive ratio of Algo-
rithm4 for two robots. Consider the following example input. One robot is placed
at the source S which is the point (0, 0) and has speed 1

1+
√
2
. The destination

D is placed at the point (1, 0). The second robot has speed 1 and is placed at
the point (

√
2, 0). The robots are initially placed at distance

√
2. In the opti-

mal algorithm the robots meet in time
√
2

1+ 1
1+

√
2

= 1 at the point x = 1
1+

√
2
.

The faster robot picks up the message at x and delivers it to D in additional
time 1 − x = 1 − 1

1+
√
2
. Therefore the delivery time of the optimal algorithm

is equal to 1 + 1 − x = 2 − 1
1+

√
2
. It follows that the competitive ratio satisfies

c2 ≥ 1+
√
2

2− 1
1+

√
2

= 1
7 (5 + 4

√
2) ≈ 1.522407

Remark 1. Note that in Example 1 if we parametrize the speed of the slow robot
to 1

1+y , and place the fast robot at position y > 1 then similar calculations show

that c2 ≥ y2+3y+2
y2+y+2 . Further, it is easy to see that the lower bound y2+3y+2

y2+y+2 is
maximized for y =

√
2.

4.2 Multi Robot Algorithm with Competitive Ratio ≤ 2

Theorem 4.2. Algorithm4 has competitive ratio at most 2 for any n > 2 robots.

Theorem 4.3. Given n > 2 robots, there is a robot deployment such that Algo-
rithm4 has competitive ratio at least 2 − 2

2n−1 .

Remark 2. Observe that for any ε > 0 by taking n > log(1 + 2/ε) we have the
competitive ratio of Algorithm 4 is at least 2 − ε.

5 Online Lower Bounds for Two Robots

In this section we prove two lower bounds on the competitive ratio for arbitrary
online algorithms. Our lower bounds require only two mobile robots. In the first
lower bound (Theorem5.1) we assume that the speed of one of the robots is
unknown and in the second (Theorem5.2) we assume that the starting position
of one of the robots is unknown. We provide both bounds (even though the
second is slightly better) as the arguments are somewhat different and it seems
plausible that an improved lower bound may come from combining the two
approaches.

Theorem 5.1. The lower bound for the competitive ratio when the fast robot
does not know whether the speed of the slow robot is one or zero is at least
1.0391.

Theorem 5.2. The lower bound for the competitive ratio when the slow robot
does not know the position of the fast robot is at least 1.04059.

318 J. Coleman et al.

6 Conclusion

In this paper we studied the pony express communication problem for delivering
a message from a source to a destination in the plane. We gave an optimal offline
algorithm for the case of two robots and a

√
2 approximation for n robots. We

studied a particular simple online algorithm and provided tight bounds for its
performance in both the two robot and n robot case. Finally, we gave two distinct
arguments for lower bounds on the competitive ratio of any online algorithm.

Our investigations leave a number of open problems. Of special interest is
the complexity of the offline problem for the case of n robots. While it seems
unlikely, we can not even be sure the question of deciding if an instance can
be solved in a given time bound is decidable as the equations we derive involve
trigonometric functions. In the online setting, there remains a gap between the
upper bounds and lower bounds in both the case of just two robots and the
case of n robots. Based upon this preliminary investigation, it would appear the
exact bound will vary with the number of robots considered.

Additional questions arise when one attempts to solve well-known communi-
cation tasks such as broadcast and converge-cast. The delivery task considered
in this paper made use of our ability to freely replicate the message which is to
be delivered from the source to the destination. However, the problem is also
interesting if the message to be delivered can be replicated only a given fixed
number of times or even if it cannot be replicated at all (e.g., it is a physical
object) in which case the problem resembles a transportation problem. Another
interesting question would be to study the pony express communication problem
in a setting where the robots may be subject to faults.

References

1. Anaya, J., Chalopin, J., Czyzowicz, J., Labourel, A., Pelc, A., Vaxès, Y.: Converge-
cast and broadcast by power-aware mobile agents. Algorithmica 74(1), 117–155
(2016)

2. Bärtschi, A., et al.: Energy-efficient delivery by heterogeneous mobile agents. arXiv
preprint arXiv:1610.02361 (2016)

3. Bärtschi, A., Graf, D., Mihalák, M.: Collective fast delivery by energy-efficient
agents. In: Potapov, I., Spirakis, P.G., Worrell, J. (eds.) 43rd International Sym-
posium on Mathematical Foundations of Computer Science, MFCS 2018, Liver-
pool, UK, 27–31 August 2018. LIPIcs, vol. 117, pp. 56:1–56:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2018)

4. Bärtschi, A., Graf, D., Penna, P.: Truthful mechanisms for delivery with mobile
agents. arXiv preprint arXiv:1702.07665 (2017)

5. Bärtschi, A., Tschager, T.: Energy-efficient fast delivery by mobile agents. In: Klas-
ing, R., Zeitoun, M. (eds.) FCT 2017. LNCS, vol. 10472, pp. 82–95. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-55751-8 8

6. Bereg, S., Brunner, A., Caraballo, L.-E., Dı́az-Báñez, J.-M., Lopez, M.A.: On the
robustness of a synchronized multi-robot system. J. Comb. Optim. 39(4), 988–1016
(2020). https://doi.org/10.1007/s10878-020-00533-z

http://arxiv.org/abs/1610.02361
http://arxiv.org/abs/1702.07665
https://doi.org/10.1007/978-3-662-55751-8_8
https://doi.org/10.1007/s10878-020-00533-z

Message Delivery in the Plane by Robots with Different Speeds 319

7. Bilò, D., Gualà, L., Leucci, S., Proietti, G., Rossi, M.: New approximation algo-
rithms for the heterogeneous weighted delivery problem. In: Jurdziński, T., Schmid,
S. (eds.) SIROCCO 2021. LNCS, vol. 12810, pp. 167–184. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-79527-6 10

8. Carvalho, I.A., Erlebach, T., Papadopoulos, K.: An efficient algorithm for the fast
delivery problem. In: G ↪asieniec, L.A., Jansson, J., Levcopoulos, C. (eds.) FCT
2019. LNCS, vol. 11651, pp. 171–184. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-25027-0 12

9. Carvalho, I.A., Erlebach, T., Papadopoulos, K.: On the fast delivery problem with
one or two packages. J. Comput. Syst. Sci. 115, 246–263 (2021)

10. Chalopin, J., Das, S., Mihal’ák, M., Penna, P., Widmayer, P.: Data delivery by
energy-constrained mobile agents. In: Flocchini, P., Gao, J., Kranakis, E., Meyer
auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 111–122.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45346-5 9

11. Chalopin, J., Godard, E., Métivier, Y., Ossamy, R.: Mobile agent algorithms ver-
sus message passing algorithms. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006.
LNCS, vol. 4305, pp. 187–201. Springer, Heidelberg (2006). https://doi.org/10.
1007/11945529 14

12. Chalopin, J., Jacob, R., Mihalák, M., Widmayer, P.: Data delivery by energy-
constrained mobile agents on a line. In: Esparza, J., Fraigniaud, P., Husfeldt, T.,
Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 423–434. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-43951-7 36

13. Chuangpishit, H., Czyzowicz, J., Killick, R., Kranakis, E., Krizanc, D., Morales-
Ponce, O.: Optimal rendezvous on a line by location-aware robots in the presence
of spies. Discret. Math. Algorithms Appl. (2021, to appear)

14. Coleman, J., Kranakis, E., Krizanc, D., Morales-Ponce, O.: Message delivery in
the plane by robots with different speeds. arXiv preprint arXiv:2109.12185 (2021)

15. Coleman, J., Kranakis, E., Krizanc, D., Morales-Ponce, O.: The pony express com-
munication problem. In: Proceedings of IWOCA21; also Extended Version as arXiv
preprint arXiv:2105.03545 (2021)

16. Czyzowicz, J., Diks, K., Moussi, J., Rytter, W.: Communication problems for
mobile agents exchanging energy. In: Suomela, J. (ed.) SIROCCO 2016. LNCS,
vol. 9988, pp. 275–288. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48314-6 18

17. Czyzowicz, J., Georgiou, K., Kranakis, E.: Patrolling. In: Flocchini, P., Prencipe,
G., Santoro, N. (eds.) Distributed Computing by Mobile Entities. LNCS, vol.
11340, pp. 371–400. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
11072-7 15

18. Czyzowicz, J., Killick, R., Kranakis, E., Krizanc, D., Morales-Ponce, O.: Gathering
in the plane of location-aware robots in the presence of spies. Theor. Comput. Sci.
836, 94–109 (2020)

19. Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration by energy-
constrained mobile robots. In: Scheideler, C. (ed.) SIROCCO 2014. LNCS, vol.
9439, pp. 357–369. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
25258-2 25

20. Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration of trees by
energy-constrained mobile robots. Theory Comput. Syst. 62(5), 1223–1240 (2018)

21. Ogilvy, C.S.: Excursions in Geometry. Dover Publications (1990)
22. Yiu, P.: Introduction to the Geometry of the Triangle. Version 4.0510, Florida

Atlantic University Lecture Notes (2004)

https://doi.org/10.1007/978-3-030-79527-6_10
https://doi.org/10.1007/978-3-030-25027-0_12
https://doi.org/10.1007/978-3-030-25027-0_12
https://doi.org/10.1007/978-3-642-45346-5_9
https://doi.org/10.1007/11945529_14
https://doi.org/10.1007/11945529_14
https://doi.org/10.1007/978-3-662-43951-7_36
http://arxiv.org/abs/2109.12185
http://arxiv.org/abs/2105.03545
https://doi.org/10.1007/978-3-319-48314-6_18
https://doi.org/10.1007/978-3-319-48314-6_18
https://doi.org/10.1007/978-3-030-11072-7_15
https://doi.org/10.1007/978-3-030-11072-7_15
https://doi.org/10.1007/978-3-319-25258-2_25
https://doi.org/10.1007/978-3-319-25258-2_25

Exploring a Dynamic Ring Without
Landmark

Archak Das1 , Kaustav Bose2(B) , and Buddhadeb Sau1

1 Department of Mathematics, Jadavpur University, Kolkata, India
{archakdas.math.rs,buddhadeb.sau}@jadavpuruniversity.in

2 Advanced Computing and Microelectronics Unit, Indian Statistical Institute,
Kolkata, India

Abstract. Consider a group of autonomous mobile computational enti-
ties, called agents, arbitrarily placed at some nodes of a dynamic but
always connected ring. The agents neither have any knowledge about
the size of the ring nor have a common notion of orientation. We con-
sider the Exploration problem where the agents have to collabora-
tively explore the graph and terminate, with the requirement that each
node has to be visited by at least one agent. It has been shown by Di
Luna et al. [Distrib. Comput. 2020] that the problem is solvable by two
anonymous agents if there is a single observably different node in the
ring called landmark node. The problem is unsolvable by any number
of anonymous agents in absence of a landmark node. We consider the
problem with non-anonymous agents (agents with distinct identifiers) in
a ring with no landmark node. The assumption of agents with distinct
identifiers is strictly weaker than having a landmark node as the prob-
lem is unsolvable by two agents with distinct identifiers in absence of a
landmark node. This setting has been recently studied by Mandal et al.
[ALGOSENSORS 2020]. There it is shown that the problem is solvable in
this setting by three agents assuming that they have edge crossing detec-
tion capability. Edge crossing detection capability is a strong assumption
which enables two agents moving in opposite directions through an edge
in the same round to detect each other and also exchange information.
In this paper we give an algorithm that solves the problem with three
agents without the edge crossing detection capability.

Keywords: Multi-agent systems · Mobile agent · Dynamic network ·
Exploration · Meeting

1 Introduction

Consider a team of autonomous computational entities, usually called agents
or robots, located at the nodes of a graph. The agents are able to move from a
node to any neighboring node. The Exploration problem asks for a distributed
algorithm that allows the agents to explore the graph, with the requirement that
each node has to be visited by at least one agent. Being one of the fundamental
c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 320–334, 2021.
https://doi.org/10.1007/978-3-030-91081-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_21&domain=pdf
http://orcid.org/0000-0002-1630-3052
http://orcid.org/0000-0003-3579-1941
http://orcid.org/0000-0001-7008-6135
https://doi.org/10.1007/978-3-030-91081-5_21

Exploring a Dynamic Ring Without Landmark 321

problems in the field of autonomous multi-agent systems, the problem has been
extensively studied in the literature. However, the majority of existing literature
studies the problem for static graphs, i.e., the topology of the graph does not
change over time. Recently within the distributed computing community, there
has been a surge of interest in highly dynamic graphs: the topology of the graph
changes continuously and unpredictably. In highly dynamic graphs, the topolog-
ical changes are not seen as occasional anomalies (e.g., link failures, congestion,
etc.) but rather integral part of the nature of the system [20,27]. We refer the
readers to [4] for a compendium of different models of dynamic networks con-
sidered in the literature. If time is discrete, i.e., changes occur in rounds, then
the evolution of a dynamic graph can be seen as a sequence of static graphs. A
popular assumption in this context is always connected (Class 9 of [4]), i.e., the
graph is connected in each round.

In the dynamic setting, the Exploration problem was first studied in [21].
In particular, the authors studied the Exploration problem in a dynamic but
always connected ring by a set of autonomous agents. They showed that Explo-
ration is solvable by two anonymous agents (agents do not have unique iden-
tifiers) under fully synchronous setting (i.e., all agents are active in each round)
if there is a single observably different node in the ring called landmark node.
They also proved that in absence of a landmark node, two agents cannot solve
Exploration even if the agents are non-anonymous and they have chirality,
i.e., they agree on clockwise and counterclockwise orientation of the ring. The
impossibility result holds even if we relax the problem to Exploration with
partial termination. As opposed to the standard explicit termination setting
where all agents are required to terminate, in the partial termination setting at
least one agent is required to detect exploration and terminate. If the agents are
anonymous, then Exploration with partial termination with chirality remains
unsolvable in absence of a landmark node even with arbitrary number of agents.
Then in [23], the authors considered the Exploration problem (without chiral-
ity and requiring explicit termination) with no landmark node. Since the prob-
lem cannot be solved even with arbitrary number of anonymous agents, they
considered non-anonymous agents, in particular, agents with unique identifiers.
Since the problem is unsolvable by two non-anonymous agents, they considered
the question that whether the problem can be solved by three non-anonymous
agents. They showed that the answer is yes if the agents are endowed with
edge crossing detection capability. Edge crossing detection capability is a strong
assumption which enables two agents moving in opposite directions through an
edge in the same round to detect each other and also exchange information. In
collaborative tasks like exploration, the agents are often required to meet at a
node and exchange information. However, the edge crossing detection capabil-
ity allows two agents to exchange information even without meeting at a node.
The assumption is particularly helpful when the agents do not have chirality
where it is more difficult to ensure meeting. Even if we do not allow exchange of
information, simple detection of the swap can be useful in deducing important
information about the progress of an algorithm. In [23], it was also shown that

322 A. Das et al.

the assumption of edge crossing detection can be removed with the help of ran-
domness. In particular, without assuming edge crossing detection capability, they
gave a randomized algorithm that solves Exploration with explicit termina-
tion with probability at least 1− 1

n where n is the size of the ring. Therefore this
leaves the open question that whether the problem can be solved by a determin-
istic algorithm by three non-anonymous agents without edge crossing detection
capability. In this paper, we answer this question affirmatively. In particular we
give a deterministic algorithm that solves Exploration in absence of chirality
by three non-anonymous agents without edge-crossing detection capability. As
basic ingredients of our algorithm, we also solve two problems called Meeting
and Contiguous Agreement. These problems may be of independent interest
and useful for solving other problems in similar settings.

1.1 Related Work

The problem of Exploration by mobile agents in static anonymous graph has
been studied extensively in the literature [2,6,8,9,11,13,26]. Prior to [21], there
have been a few works on Exploration of dynamic graphs, but under assump-
tions such as complete a priori knowledge of location and timing of topological
changes (i.e., offline setting) [10,16,18,24] or periodic edges (edges appear peri-
odically) [12,17] or δ-recurrent edges (each edge appears at least once every
δ rounds) [18] etc. In the online or live setting where the location and tim-
ing of the changes are unknown, distributed Exploration of graphs without
any assumption other than being always connected was first considered in [21].
In particular, they considered the problem on an always connected dynamic
ring. They proved that without any knowledge of the size of the ring and with-
out landmark node, Exploration with partial termination is impossible by
two agents even if the agents are non-anonymous and have chirality. They also
proved that if the agents are anonymous, have no knowledge of size, and there
is no landmark node then Exploration with partial termination is impossible
by any number of agents even in the presence of chirality. On the positive side
the authors showed that under fully synchronous setting, if an upper bound N
on the size of the ring is known to two anonymous agents, then Exploration
with explicit termination is possible within 3N − 6 rounds. They then showed
that for two anonymous agents, if chirality and a landmark node is present,
then exploration with explicit termination is possible within O(n) round, and in
the absence of chirality with all other conditions remaining the same, Explo-
ration with explicit termination is possible within O(n log n) rounds, where n
is the size of the ring. They have also proved a number of results in the semi-
synchronous setting (i.e., not all agents may be active in each round) under
different assumptions. Then in [23], the authors considered agents with unique
identifiers and edge crossing detection capability in a ring without any landmark
node. They showed that Exploration with explicit termination is impossible
in the absence of landmark node and the knowledge of n by two agents with
access to randomness, even in the presence of chirality, unique identifiers and
edge-crossing detection capability. In the absence of randomness even Explo-

Exploring a Dynamic Ring Without Landmark 323

ration with partial termination is impossible in the same setting. With three
agents under fully synchronous setting, the authors showed that Exploration
with explicit termination is possible by three non-anonymous agents with edge-
crossing detection capability in absence of any landmark node. Removing the
assumption of edge-crossing detection and replacing it with access to random-
ness, the authors gave a randomized algorithm for Exploration with explicit
termination with success probability at least 1 − 1

n . Exploration of an always
connected dynamic torus was considered in [15]. In [14] the problem of Perpet-
ual Exploration (i.e., every node is to be visited infinitely often) was studied
in temporally connected (i.e., may not be always connected but connected over
time) graphs. Other problems studied in dynamic graphs include Gathering
[3,22,25], Dispersion [1,19], Patrolling [7] etc.

1.2 Our Contributions

We consider a dynamic but always connected ring of size n. A team of three
agents are operating in the ring under a fully synchronous scheduler. Each agent
has a k bit unique identifier where k is a fixed constant. The agents do not have
any knowledge of n and they do not have chirality. Furthermore, they do not
have edge crossing detection capability. In this setting, we give a deterministic
algorithm for Exploration with explicit termination. Recall that in [21], the
problem was solved by two agents in a ring with a landmark node. The overall
idea behind our algorithm is to reduce the problem to a setting similar to [21]
by artificially creating a landmark node. For this, we need to solve the problem
Meeting where any two agents in the team are required to meet each other at
a node. When two agents meet, one of them (say, the one with smaller ID) will
settle at that node and act as landmark. Although the situation now becomes
similar to [21], they are not exactly the same. This is because, unlike in [21], the
landmark agent needs to detect the completion of exploration and terminate.
Therefore, several modifications are required in order to employ the strategy
from [21] in this setting. However, the main difficult part of the algorithm is
to ensure that two agents meet at a node, i.e., to solve the Meeting prob-
lem. Solving Meeting in the current setting is a challenging problem and may
be of independent interest. It can be useful for solving other problems as well,
especially where the agents may need to communicate or exchange information.
Recall that in our setting, the only way two agents can communicate is by meet-
ing each other at a node. We first give an algorithm that solves Meeting in the
presence of chirality. Then we define and solve a new problem called Contigu-
ous Agreement which requires the agents to agree on some common direction
for some number of consecutive rounds. Then we solve Meeting in the absence
of chirality by using these two algorithms as subroutine. In particular, the main
idea is to simulate the Meeting algorithm with chirality in the period when the
agents agree on a common direction. Our Contiguous Agreement protocol
can be useful for solving other problems as it can be used as a tool to trans-
form certain algorithms that functions in presence of chirality to algorithms that
work without chirality. After meeting, one of the agents will become landmark as

324 A. Das et al.

planned. From there we solve Exploration with termination using a strategy
which is partly similar to [21]. Overall, the round complexity of our algorithm is
Θ(n), where n is the size of the ring. This is asymptotically optimal as there are
n nodes to be explored and in each round, three agents can visit at most three
nodes. Furthermore, our algorithm solves the problem with optimum number
of agents as in view of the impossibility results of [21], the problem cannot be
solved with two agents in this setting. A comparison of the results obtained in
this paper with previous works is given in Table 1.

Table 1. Comparison of our results with previous works. All the above algorithms
works without chirality and takes O(n) rounds where n is the size of the ring

Paper Number of
agents

Agents Landmark
node

Edge cross.
detection

Algorithm

[21] 2 Anonymous Yes No Deterministic

[23] 3 Have unique identifiers No Yes Deterministic

[23] 3 Have unique identifiers No No Randomized

This paper 3 Have unique identifiers No No Deterministic

1.3 Outline of the Paper

In Sect. 2, we describe the model and terminology used in the paper. In Sect. 3, we
give an algorithm for Exploration in the simpler setting where the agents have
chirality. In Sect. 4, we use the techniques used in Sect. 3 to give an algorithm
for Exploration in the absence of chirality.

2 Model and Terminology

We consider a dynamic ring of size n. All nodes of the ring are identical. Each
node is connected to its two neighbors via distinctly labeled ports. The labeling
of the ports may not be globally consistent and thus might not provide an orien-
tation. We consider a discrete temporal model i.e., time progresses in rounds. In
each round at most one edge of the ring may be missing. Thus the ring is con-
nected in each round. Such a network is known in the literature as a 1-interval
connected ring.

We consider a team of three agents operating in the ring. The agents do
not have any knowledge of the size of the ring. Each agent is provided with
memory and computational capabilities. An agent can move from one node to a
neighbouring node if the edge between them is not missing. Two agents moving
in opposite direction on the same edge are not able to detect each other. An
agent can only detect an active agent co-located at the same node i.e., if an
agent terminates it becomes undetectable by any other agent. Two agents can
communicate with each other only when they are present at the same node. Each
agent has a unique identifier which is a bit string of constant length k > 1, i.e.,

Exploring a Dynamic Ring Without Landmark 325

the length k of the identifier is the same for each agent. For an agent r, its unique
identifier will be denoted by r.ID. Also val(r.ID) will denote the numerical value
of r.ID. For example val(00110) = 6, val(10011) = 19, etc. Hence for any agent
r, val(r.ID) < 2k.

Each agent has a consistent private orientation of the ring, i.e., a consistent
notion of left or right. If the left and right of all three agents are the same
then we say that the agents have chirality. By clockwise and counterclockwise
we shall refer to the orientations of the ring in the usual sense. These terms
will be used only for the purpose of description and the agents are unaware of
any such global orientation if they do not have chirality. For two agents r1 and
r2 on the ring, d�(r1, r2) and d�(r1, r2) denotes respectively the clockwise and
counterclockwise distance from r1 to r2.

We consider a fully synchronous system, i.e., all three agents are active in each
round. In each round, the agents perform the following sequence of operations:

Look: If other agents are present at the node, then the agent exchanges messages
with them.

Compute: Based on its local observation, memory and received messages, the
agent performs some local computations and determines whether to move or
not, and if yes, then in which direction.

Move: If the agent has decided to move in the Compute phase, then the agent
attempts to move in the corresponding direction. It will be able to move only
if the corresponding edge is not missing. An agent can detect if it has failed
to move.

During the execution of algorithm, two agents can meet each other in two
possible ways: (1) two agents r1 and r2 moving in opposite direction come to
the same node, or, (2) an agent r1 comes to a node where there is a stationary
agent r2. In the second case we say that r1 catches r2. If two agents r1, r2 are
moving in opposite direction on the same edge in the same round, then we say
that r1 and r2 swaps over an edge.

3 Exploration by Agents with Chirality

In this section, we shall assume that the agents have chirality. Since the agents
have agreement in direction we shall use the terms clockwise and counterclock-
wise instead of right and left respectively. In Sect. 3.1 we present an algorithm
for Meeting where at least two agents are required to meet at a node. Then in
Sect. 3.2 we shall use this algorithm as a subroutine to solve Exploration.

3.1 Meeting by Agents with Chirality

We have three agents placed arbitrarily at distinct nodes of the ring. Our objec-
tive is that at least two of the agents should meet. The algorithm works in several
phases. The lengths of the phases are 2j+k, j = 0, 1, 2, In phase j, an agent

326 A. Das et al.

r tries to move clockwise for the first val(r.ID)2j rounds, and then remains
stationary for (2k − val(r.ID))2j rounds.

Notice that in each phase, the agent with the smallest ID value stops trying
to move first. The main idea behind the algorithm is that if the remaining
agents keep trying to move for long enough then a meeting should take place.
This is stated in Lemma 1. This lemma will be used several times in the proofs
throughout the paper. The intuition behind the lemma is the following. Once the
first agent stops moving, the remaining two agents are trying to move towards it.
If the closer one is not blocked by edge removals in too many rounds then it will
be able to catch the static agent within a certain time. Otherwise if the agent
is blocked for too long, it will get caught by the third agent. This is because in
the rounds where the agent is blocked, the third agent is able to make progress
as at most one edge may disappear in each round. A formal proof of the lemma
is given in the full version [5]. Using this lemma, we can show that a meeting is
guaranteed to take place at or before the pth phase where p = �log 2n�. So the
algorithm solves the problem within 2k

∑p
i=0 2i < 2k+�logn�+2 rounds. This is

formally stated in Theorem 1. The proof of the theorem is given in [5].

Lemma 1. Let r1, r2 and r3 be three agents in the ring such that at round t,
0 ≤ d�(r1, r3) < d�(r1, r2). If r1 remains static and both r2 and r3 try to move
clockwise for the next 2n rounds, then within these 2n rounds either r2 meets r1
or r3 meets r2.

Theorem 1. The above algorithm solves Meeting for three agents with chi-
rality. The algorithm ensures that the meeting takes place within 2k+�logn�+2

rounds.

3.2 Exploration with Termination by Agents
with Chirality

We consider three agents in the ring having chirality. For simplicity assume that
the agents are initially placed at distinct nodes of the ring. We shall later remove
this assumption. Our plan is to first bring two of the agents at the same node
using the Meeting algorithm described in Sect. 3.1. Then one of them will settle
at that node and play the role of landmark node. Then the situation reduces
to a setting similar to [21]. However we cannot use the same algorithm from
[21] in our case. This is because unlike in [21] we have to ensure that the agent
acting as landmark also terminates. However our algorithm uses some ideas from
[21]. We shall now give a brief description algorithm. The detailed pseudocode
description of the algorithm is given in [5].

Initially all the agents start with their state variable set to search. Until
an agent meets another agent, it executes the Meeting algorithm described in
Sect. 3.1. Now according to Theorem 1, two agents are guaranteed to meet within
2k+�log 2n�+2 rounds from the start of the algorithm. On meeting the agents
compare their IDs and the one with smaller ID changes its state to settled
and stops moving. The other agent changes its winner variable to True and

Exploring a Dynamic Ring Without Landmark 327

henceforth abandons its phase-wise movement and attempts to move clockwise
in each round. Let us now describe the case when an agent with state search
meets the settled agent. If an agent with winner = False encounters the
settled agent it also abandons its phase-wise movement and henceforth tries to
move in the clockwise direction in every round. If an agent with winner = True
meets the settled agent r, then it indicates that it is meeting the settled
agent for the second time and hence all nodes of the ring have been explored.
The agent can also calculate the size of the ring as it is equal to the number of
successful moves between the two meetings. The agent assigns this value to the
variable RSize and also informs the settled agent about it. Then the agent
will continue to move in the clockwise direction for 2n more rounds. Both these
agents will terminate after the completion of these 2n rounds. Now consider the
case when an agent with state = search and winner = True meets an agent
with state = search and winner = False. If the agent with winner = True
already knows n, i.e., it has visited the settled agent twice, then both of them
terminates immediately. If the agent with winner = True does not already know
n, then it changes its state to forward and continues to move in the clockwise
direction every round. On the other hand, the agent with winner = False
changes its state to bounce and starts moving in the counterclockwise direction.
This phenomenon is called the formation of settled-forward-bounce triplet. In
this case, both the agents initiate a variable TTime to keep track of the number
of rounds elapsed after triplet formation.

After the triplet is created, the agent with state forward will continue to
move in clockwise direction. The agent with state bounce will move counter-
clockwise and then on fulfillment of certain conditions, it may change its state
to return and start moving clockwise. Then it may again change its state to
bounce and start moving counterclockwise. The period between any two such
state changes will be called a run. While moving in the clockwise direction with
state forward, the agent keeps count of the number of successful steps with state
forward in the variable FSteps. The variable BSteps (resp. RSteps) is used to
keep count of the number of successful steps with state bounce (resp. return) in
the current run. Also while moving in the counterclockwise direction with state
bounce, the variable BBlocked counts the number of unsuccessful attempts to
move in that run. An agent r with state bounce will change its state to return
if one of the following takes place: 1) r.BBlocked exceeds r.BSteps or 2) the
agent r encounters the settled agent twice in the same run. An agent r with
state return will change its state to bounce if r meets with the agent with state
forward and r.RSteps > 2r.BSteps, where BSteps was counted in the last run
with state bounce. Here the main idea is that the agents will try to gauge the
size of the ring. An agent may be able to find the size n exactly or calculate an
upper bound of n. An agent can exactly find n only if it visits the static settled
agent twice in the same direction. In this case it will also inform the settled
agent about n. Clearly when this happens the ring has been explored completely.
However the two agents cannot terminate immediately because the third agent
is not aware of this. So the agents will remain active till TTime = 16n, i.e.,

328 A. Das et al.

16n rounds from the time when the triplet was created. It should be noted here
that the settled agent initially did not know the time when the triplet was
created. It came to know about this from the TTime value of some agent that
it met and initiated its own TTime counter accordingly. Now it can be shown
that within these 16n rounds the third agent will meet one of the two agents
that already know n. These two agents will terminate immediately upon meet-
ing. Now consider the case where an agent is able to find an upper bound of n.
This happens when one of the following three takes place: 1) the forward agent
meets the agent with state bounce, 2) the forward agent catches the agent with
state return, 3) the agent with state return catches the forward agent with
RSteps ≤ 2BSteps. It can be shown in each of the cases, these two agents will
be able to correctly calculate an upper bound SBound of n. Furthermore these
cases imply that the ring has been already explored completely. However the two
agents cannot terminate immediately because the settled agent is not aware of
this. Therefore in order to acknowledge the settled agent, these two agents will
start moving in opposite directions for SBound more rounds and then terminate.
Clearly one of them will be able to meet the settled agent.

It can be shown that this algorithm solves Exploration with explicit termi-
nation in 2k+�logn�+3 + 23n = O(n) rounds. This is formally stated in Theorem
2. The proof of this quite involved and is deferred to [5] due to space constraints.

Theorem 2. Exploration with explicit termination is solvable by three agents
with chirality in 2k+�logn�+3 + 23n = O(n) rounds.

4 Exploration by Agents Without Chirality

4.1 Contiguous Agreement

In this section we define a new problem called Contiguous Agreement. Three
agents with unique identifiers are placed at three different nodes in the ring. In
each round, each agent chooses a direction according to a deterministic algorithm
based on its ID and current round. The requirement of the problem is that the
agents have to choose the same direction for some N consecutive rounds where
N is a constant unknown to the agents.

Before presenting the algorithm, we describe the construction of modified
identifiers which will be used in the algorithm. Recall that r.ID is a binary string
of length k. We now describe the construction of the corresponding modified
identifier r.MID which is a binary string of length k(k−1)

2 + k + 1. We shall first
concatenate a string of length k(k−1)

2 at end of r.ID. Let us write k(k−1)
2 = l. To

define the string, we shall identify each position of the string as, instead of an
integer from [l] = {1, . . . , l}, a 2-tuple from the set S = {(u, v) ∈ [k]×[k] | u < v}.
In order to formally describe this, let us define a bijection φ : S → [l] in the
following way. Notice that |S| = l. Arrange the elements of S in lexicographic
order. For any (u, v) ∈ S, we define φ((u, v)) to be the position of (u, v) in
this arrangement. For example, if k = 4, then the elements of S, arranged in

Exploring a Dynamic Ring Without Landmark 329

lexicographic order, are (1,2), (1,3), (1,4), (2,3), (2,4), (3,4). Therefore, we have
φ((1, 2)) = 1, φ((1, 3)) = 2, φ((1, 4)) = 3, φ((2, 3)) = 4, φ((2, 4)) = 5 and
φ((3, 4)) = 6. Now we define the string of length l that will be concatenated
with r.ID. The ith bit of the string is the Z2 sum of the uth and vth bit of
r.ID where (u, v) = φ−1(i). After the concatenation, we get a string of length
k + l = k + k(k−1)

2 . Finally we append 0 at the beginning of this string to obtain
r.MID of length k(k−1)

2 + k + 1 (c.f. Fig. 1).

0 1 1 0

1 2 43

0 1 1 0

1 2 43

0 1 1 0 0

(1,2) (1,3) (2,3)(1,4)

1 1

(3,4)(2,4)

0+
1=

1

1+
1=

0

The original identifier

The modified identifier

Fig. 1. The construction of the modified identifier.

We now present the algorithm that solves Contiguous Agreement.
The algorithm works in phases with the length of the phases being
2j

(
k(k−1)

2 + k + 1
)
, j = 0, 1, 2, For a string S and a positive integer t, let

Dup(S, t) denote the string obtained by repeating each bit of string S t times.
For example, Dup(101, 3) = 111000111. For the jth phase, the agent r computes
Dup(r.MID, 2j). Notice that the length of the jth phase is equal to the length
of Dup(r.MID, 2j). In the ith round of the jth phase, r moves left if the ith bit
of Dup(r.MID, 2j) is 0 and otherwise moves right.

The idea behind the algorithm is the following. Let us first look at the 0th
phase. If the local orientations of all three agents are the same (say left = coun-
terclockwise for each agent) then all three agents will choose the same direction
in the first round. This is because MIDs of all agents start with 0 and in the first
round all agents choose left which is the counterclockwise direction. Now if the
local orientations of all three agents are not the same still two of the agents will
be in agreement. There are three possible cases based on which two agents have
the same local orientation. Notice if there is an index where the bit of the MIDs
of those two agents are equal, but is different from that of third agent, then all
agents will choose the same direction in the round corresponding to that index.

330 A. Das et al.

It can be shown that such indices exist for each of the three possible cases. This
implies that there is a round in the 0th phase in which all three agents choose the
same direction. Hence for j = �log N�, the agents will choose the same direction
for N consecutive rounds in the jth phase. The formal proof of correctness of
the algorithm is given in [5].

Theorem 3. The algorithm described above solves Contiguous Agreement.

4.2 Meeting by Agents Without Chirality

In Sect. 3.1, we describe an algorithm that solves Meeting by agents with chiral-
ity. In the current setting where agents do not have chirality, the main idea is to
use the strategy of Contiguous Agreement so that the agents can implicitly
agree on a common direction and solve Meeting by employing the strategy from
Sect. 3.1. Similar to the algorithm for Contiguous Agreement, our algorithm
for Meeting also works in phases. In the algorithm for Contiguous Agree-

ment the length of the phases were 2j
(

k(k−1)
2 + k + 1

)
, j = 0, 1, 2, For

Meeting, the phases will be of length 2j+k
(

k(k−1)
2 + k + 1

)
, j = 0, 1, 2, In

the jth phase of the algorithm an agent r uses the string Dup(r.MID, 2j+k)
to decide its movement. Notice that the length of Dup(r.MID, 2j+k) is equal
to the length of the jth phase. The string Dup(r.MID, 2j+k) is a concatena-
tion of

(
k(k−1)

2 + k + 1
)

blocks of length 2j+k where each block consists of all
0’s or all 1’s. Our plan is to simulate the Meeting algorithm from Sect. 3.1.
So, in the 2j+k rounds corresponding to each block, the agent r will (try to)
move in the first val(r.ID)2j rounds and will be stationary for the remaining(
2k − val(r.ID)

)
2j rounds. If the block consists of 0’s, then the movement will

be towards left and otherwise towards right. It can be shown that the algorithm
solves the problem within k22k+�logn�+3 rounds as stated in Theorem 4. Formal
proof of this is given in [5].

Theorem 4. The above algorithm solves Meeting for three agents without chi-
rality. The algorithm ensures that the meeting takes place within k22k+�logn�+3

rounds.

4.3 Exploration with Termination by Agents Without
Chirality

For simplicity assume that the agents are placed arbitrarily at distinct nodes of
the ring. We shall remove this assumption at the end of this section. Initially the
state variable of all three agents are set to search. We shall adopt a strategy
similar to the one used in Sect. 3. In fact, we only need to make some modifi-
cations in the algorithms to be executed by the agents with state search and
settled.

The agents will execute the Meeting algorithm described in Sect. 4.2 until
another agent is encountered. The agents will keep count of the number of rounds

Exploring a Dynamic Ring Without Landmark 331

since the beginning in the variable STime. Now by Theorem 4, two of the agents
are guaranteed to meet within k22k+�logn�+3 rounds. Upon meeting the agents
will agree on a common direction, say the right direction of the agent with larger
ID. Without loss of generality assume that the agreed direction is the clockwise
direction. The agent with smaller ID, say r1, will become the settled agent and
the one with larger ID, say r2, will continue moving in the clockwise direction.
The agent r1 will save the port number leading to the agreed direction, i.e.,
clockwise. Let r3 denote the third agent which is still executing the Meeting
algorithm. It can be shown that a second meeting is guaranteed to take place on
or before �log 2n� + 1th phase, i.e., within k22k+�logn�+4 rounds from the start
of the algorithm. However unlike in Sect. 3 where the agents had chirality, here
the second meeting may also take place between r1 and r2. This is because r3
is moving in clockwise direction in some rounds and counterclockwise in other
rounds. Hence there is a possibility that r2 and r3 may swap over an edge and r1
meets r2 first. However even then it is not difficult to see that r3 is guaranteed
to meet r1 or r2 on or before (�log 2n� + 1)th phase i.e., within k22k+�logn�+4

rounds from the start of the algorithm. To see this, observe that r2 and r3
will try to move in the same direction for some 4n consecutive rounds in the
(�log 2n� + 1) = �log 4n�th phase. Within the first 2n rounds a meeting should
take place by Lemma 1. If this meeting involves r3 then we are done. Otherwise
r1 and r2 meet each other and then by again applying by Lemma 1, r3 will meet
one of them within the following 2n rounds.

Now consider the following cases depending on which of the two robots meet
on the second meeting.

1. Suppose that the second meeting takes place between r1 and r2. In this case
the ring has been explored and r2 finds out n and informs r1 about it. Then
r2 will continue moving in the clockwise direction. Both agents will terminate
after the round when STime = k22k+�logn�+4. Recall that r3 is guaranteed
to meet one of them in the meantime and will terminate immediately.

2. Suppose that the second meeting takes place between r2 and r3. Then r2
informs r3 about the agreed direction. Hence the case reduces to the setting
of Sect. 3. Therefore r2 and r3 will change their state to forward and bounce
respectively and execute the algorithms as before.

3. Now suppose that the second meeting takes place between r1 and r3. In this
case r3 will come to know about the agreed direction and again the case
reduces to the setting of Sect. 3. So r3 will continue to move in the agreed
direction i.e., clockwise.

It follows from the above discussions and the results in Sect. 3 that the agents
will terminate after exploring the ring within k22k+�logn�+4+23n = O(n) rounds.

Theorem 5. Exploration with explicit termination is solvable by three agents
without chirality in k22k+�logn�+4 + 23n = O(n) rounds.

Recall that we assumed that the agents are placed initially at distinct nodes
of the ring. We now show that this assumption is not necessary if the initial

332 A. Das et al.

configuration has two agents r1, r2 at the same node and the third agent r3 at
a different node. Then the case reduces to the situation when the first meeting
takes place. Then r1 and r2 will change their state to settled and forward
while r3 will execute the Meeting algorithm with state search. The algorithm
will progress as before and achieve exploration with termination.

If all three agents are in the same node in the initial configuration then the
three agents will compare their identifiers and will change their state to settled,
forward and bounce accordingly. Again, the algorithm will progress as before
and achieve exploration with termination.

5 Concluding Remarks

We showed that Exploration (with explicit termination) in a dynamic always
connected ring without any landmark node is solvable by three non-anonymous
agents without chirality. This is optimal in terms of the number of agents used
as the problem is known to be unsolvable by two agents. Our algorithm takes
Θ(n) rounds to solve the problem where n is the size of the ring. However, the
dependency on k, the bit length of the identifiers is exponential. An interesting
question is whether the problem can be solved in O(poly(k)n) rounds. A chal-
lenging problem that remains open is Exploration in a dynamic network of
arbitrary underlying topology. Except for some bounds on the number of agents
obtained in the recent work [14], almost nothing is known.

Acknowledgement. The first author is supported by UGC, Govt. of India. We would
like to thank the anonymous reviewers for their valuable comments which helped us to
improve the quality and presentation of the paper.

References

1. Agarwalla, A., Augustine, J., Moses, W.K., Jr., Madhav, S.K., Sridhar, A.K.:
Deterministic dispersion of mobile robots in dynamic rings. In: Proceedings of the
19th International Conference on Distributed Computing and Networking, ICDCN
2018, Varanasi, India, 4–7 January 2018, pp. 19:1–19:4. ACM (2018). https://doi.
org/10.1145/3154273.3154294

2. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput.
29(4), 1164–1188 (2000). https://doi.org/10.1137/S009753979732428X

3. Bournat, M., Dubois, S., Petit, F.: Gracefully degrading gathering in dynamic
rings. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 349–
364. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6 23

4. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408
(2012). https://doi.org/10.1080/17445760.2012.668546

5. Das, A., Bose, K., Sau, B.: Exploring a dynamic ring without landmark. CoRR
abs/2107.02769 (2021). https://arxiv.org/abs/2107.02769

6. Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of
unknown graphs by multiple agents. Theor. Comput. Sci. 385(1–3), 34–48 (2007).
https://doi.org/10.1016/j.tcs.2007.05.011

https://doi.org/10.1145/3154273.3154294
https://doi.org/10.1145/3154273.3154294
https://doi.org/10.1137/S009753979732428X
https://doi.org/10.1007/978-3-030-03232-6_23
https://doi.org/10.1080/17445760.2012.668546
https://arxiv.org/abs/2107.02769
https://doi.org/10.1016/j.tcs.2007.05.011

Exploring a Dynamic Ring Without Landmark 333

7. Das, S., Di Luna, G.A., Gasieniec, L.A.: Patrolling on dynamic ring networks.
In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.) SOFSEM 2019.
LNCS, vol. 11376, pp. 150–163. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-10801-4 13

8. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph Theory
32(3), 265–297 (1999)

9. Dieudonné, Y., Pelc, A.: Deterministic network exploration by anonymous silent
agents with local traffic reports. ACM Trans. Algorithms 11(2), 10:1–10:29 (2014).
https://doi.org/10.1145/2594581

10. Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graph exploration. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9134, pp. 444–455. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47672-7 36

11. Flocchini, P., Kellett, M., Mason, P.C., Santoro, N.: Map construction and explo-
ration by mobile agents scattered in a dangerous network. In: 23rd IEEE Inter-
national Symposium on Parallel and Distributed Processing, IPDPS 2009, Rome,
Italy, 23–29 May 2009, pp. 1–10. IEEE (2009). https://doi.org/10.1109/IPDPS.
2009.5161080

12. Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks.
Theor. Comput. Sci. 469, 53–68 (2013). https://doi.org/10.1016/j.tcs.2012.10.029

13. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a
finite automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005). https://doi.org/
10.1016/j.tcs.2005.07.014

14. Gotoh, T., Flocchini, P., Masuzawa, T., Santoro, N.: Exploration of dynamic net-
works: tight bounds on the number of agents. J. Comput. Syst. Sci. 122, 1–18
(2021). https://doi.org/10.1016/j.jcss.2021.04.003

15. Gotoh, T., Sudo, Y., Ooshita, F., Kakugawa, H., Masuzawa, T.: Group exploration
of dynamic tori. In: 38th IEEE International Conference on Distributed Comput-
ing Systems, ICDCS 2018, Vienna, Austria, 2–6 July 2018, pp. 775–785. IEEE
Computer Society (2018). https://doi.org/10.1109/ICDCS.2018.00080

16. Ilcinkas, D., Klasing, R., Wade, A.M.: Exploration of constantly connected dynamic
graphs based on cactuses. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS,
vol. 8576, pp. 250–262. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09620-9 20

17. Ilcinkas, D., Wade, A.M.: On the power of waiting when exploring public trans-
portation systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS
2011. LNCS, vol. 7109, pp. 451–464. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25873-2 31

18. Ilcinkas, D., Wade, A.M.: Exploration of the T -interval-connected dynamic graphs:
the case of the ring. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013.
LNCS, vol. 8179, pp. 13–23. Springer, Cham (2013). https://doi.org/10.1007/978-
3-319-03578-9 2

19. Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Efficient dispersion of mobile robots
on dynamic graphs. In: 40th IEEE International Conference on Distributed Com-
puting Systems, ICDCS 2020, Singapore, 29 November–1 December 2020, pp. 732–
742. IEEE (2020). https://doi.org/10.1109/ICDCS47774.2020.00100

20. Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. SIGACT News
42(1), 82–96 (2011). https://doi.org/10.1145/1959045.1959064

21. Di Luna, G., Dobrev, S., Flocchini, P., Santoro, N.: Distributed exploration of
dynamic rings. Distrib. Comput. 33(1), 41–67 (2018). https://doi.org/10.1007/
s00446-018-0339-1

https://doi.org/10.1007/978-3-030-10801-4_13
https://doi.org/10.1007/978-3-030-10801-4_13
https://doi.org/10.1145/2594581
https://doi.org/10.1007/978-3-662-47672-7_36
https://doi.org/10.1007/978-3-662-47672-7_36
https://doi.org/10.1109/IPDPS.2009.5161080
https://doi.org/10.1109/IPDPS.2009.5161080
https://doi.org/10.1016/j.tcs.2012.10.029
https://doi.org/10.1016/j.tcs.2005.07.014
https://doi.org/10.1016/j.tcs.2005.07.014
https://doi.org/10.1016/j.jcss.2021.04.003
https://doi.org/10.1109/ICDCS.2018.00080
https://doi.org/10.1007/978-3-319-09620-9_20
https://doi.org/10.1007/978-3-319-09620-9_20
https://doi.org/10.1007/978-3-642-25873-2_31
https://doi.org/10.1007/978-3-642-25873-2_31
https://doi.org/10.1007/978-3-319-03578-9_2
https://doi.org/10.1007/978-3-319-03578-9_2
https://doi.org/10.1109/ICDCS47774.2020.00100
https://doi.org/10.1145/1959045.1959064
https://doi.org/10.1007/s00446-018-0339-1
https://doi.org/10.1007/s00446-018-0339-1

334 A. Das et al.

22. Luna, G.A.D., Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Viglietta, G.:
Gathering in dynamic rings. Theor. Comput. Sci. 811, 79–98 (2020). https://doi.
org/10.1016/j.tcs.2018.10.018

23. Mandal, S., Molla, A.R., Moses, W.K.: Live exploration with mobile robots in a
dynamic ring, revisited. In: Pinotti, C.M., Navarra, A., Bagchi, A. (eds.) ALGO-
SENSORS 2020. LNCS, vol. 12503, pp. 92–107. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-62401-9 7

24. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs.
Theor. Comput. Sci. 634, 1–23 (2016). https://doi.org/10.1016/j.tcs.2016.04.006

25. Ooshita, F., Datta, A.K.: Brief announcement: feasibility of weak gathering in
connected-over-time dynamic rings. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018.
LNCS, vol. 11201, pp. 393–397. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03232-6 27

26. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33(2),
281–295 (1999). https://doi.org/10.1006/jagm.1999.1043

27. Santoro, N.: Time to change: on distributed computing in dynamic networks
(Keynote). In: 19th International Conference on Principles of Distributed Sys-
tems, OPODIS 2015, Rennes, France, 14–17 December 2015. LIPIcs, vol. 46, pp.
3:1–3:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015). https://doi.
org/10.4230/LIPIcs.OPODIS.2015.3

https://doi.org/10.1016/j.tcs.2018.10.018
https://doi.org/10.1016/j.tcs.2018.10.018
https://doi.org/10.1007/978-3-030-62401-9_7
https://doi.org/10.1007/978-3-030-62401-9_7
https://doi.org/10.1016/j.tcs.2016.04.006
https://doi.org/10.1007/978-3-030-03232-6_27
https://doi.org/10.1007/978-3-030-03232-6_27
https://doi.org/10.1006/jagm.1999.1043
https://doi.org/10.4230/LIPIcs.OPODIS.2015.3
https://doi.org/10.4230/LIPIcs.OPODIS.2015.3

Loosely-Stabilizing Maximal Independent
Set Algorithms with Unreliable

Communications

Rongcheng Dong1(B), Yuichi Sudo2, Taisuke Izumi1,
and Toshimitsu Masuzawa1

1 Osaka University, Osaka, Japan
{r-dong,t-izumi,masuzawa}@ist.osaka-u.ac.jp

2 Hosei University, Tokyo, Japan
sudo@hosei.ac.jp

Abstract. Self-stabilization is a promising paradigm to design highly
adaptive distributed systems. However, it cannot be realized when the
communication between processes is unreliable with some constant prob-
ability. To circumvent such impossibility, this paper adopts the concept
of loose-stabilization for the first time, which is a practical alternative
of self-stabilization, and proposes three systematic approaches to real-
ize loose-stabilization in the atomic-state model with probabilistically
erroneous communications, namely, the redundant-state approach, the
step-up approach, and the repetition approach. Further, we apply these
approaches to design three corresponding loosely-stabilizing algorithms
for the maximal independent set problem.

Keywords: Loose-stabilization · Maximal independent set ·
Probabilistically erroneous communications

1 Introduction

Self-stabilization [4] is a promising paradigm to design distributed systems that
can autonomously adapt to dynamics caused by transient faults and topology
changes of networks. A self-stabilizing system is characterized by two properties
called convergence and closure. The convergence allows the system to eventu-
ally reach legitimate configurations (i.e., configurations satisfying the problem
specification) regardless of the initial configuration, and the closure makes the
system stay in legitimate configurations forever.

An inherent limitation of conventional self-stabilizing algorithms is that it
requires the system to be fault-free during its convergence. Thus, the design of
self-stabilizing algorithms under the threat of perpetual faults is often recog-
nized as a challenging problem. The adversarial message corruption is one of

This work was partially supported by JSPS KAKENHI Grant Numbers 19H04085,
19K11824, 21H05854, and 20H04140.

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 335–349, 2021.
https://doi.org/10.1007/978-3-030-91081-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_22&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_22

336 R. Dong et al.

the popular and strong models of perpetual faults, where at each time step the
adversary chooses a set of links (whose size is typically constrained) and modifies
the messages transferred through the chosen edges maliciously. Even if the num-
ber of corrupted edges is bounded, the adversarial message corruption model can
preclude self-stabilizing solutions for most of the non-trivial problems. It can be
easily proved by the standard partition-based argument: consider the maximal
independent set (MIS) problem in a network consisting of two processes (A and
B) and one link between the processes. Briefly speaking, a set S of processes in
a graph (or a network) is an independent set if any two processes in S are not
adjacent to each other, and if S is not a proper subset of any other independent
set, we say S is a maximal independent set. In a legitimate configuration where
A is independent (i.e., a member of an MIS S) and B is dominated (i.e., a non-
member of S), when A sends a message to inform B that A is an independent
process, such message may be corrupted in the link by the adversary and B can-
not get the correct information, hence B decides to change its state to become
an independent process, which leads to an illegitimate configuration.

The above observation yields the interest in exploring a reasonably relaxed
model of message corruption. Probabilistic error models, where message cor-
ruption is modeled as a stochastic event that the adversary cannot control, are
widely accepted as a reasonable assumption. It is not only standard in informa-
tion theory but also popular in distributed computing. Self-stabilizing solutions
are, however, still ruled out even in most of the probabilistic error-models because
it still admits the partition-based argument. More precisely, it allows an execu-
tion starting from any legitimate configuration to some non-legitimate one with
a non-zero probability.

To circumvent the impossibility of self-stabilization in probabilistic error
models, this paper focus on loose-stabilization [13], which is a relaxed variant
of conventional self-stabilization. While keeping the same convergence property
with self-stabilization, loose-stabilization relaxes the closure property: the sys-
tem is allowed to deviate from legitimate configurations after being legitimate
for a long time. Loose-stabilization is practically equivalent to self-stabilization
if the duration when the system stays in legitimate configurations (called hold-
ing time) is much longer (e.g., exponentially longer) than the time required to
reach a legitimate configuration (called convergence time). Therefore, even if
some unexpected error occurs and causes the system to become illegitimate, in a
relatively short time the system can converge to legitimate configurations again
and keeps being legitimate for a sufficiently long time with high probability.

1.1 Related Work

The maximal independent set problem has been well studied by many researchers
for decades because it is a very fundamental problem and has many applications
in networks. Luby [11] proposed a classic randomized distributed MIS algorithm
with round complexity O(log n) based on Monte Carlo algorithms, where n is the
number of processes. It is first improved by Barenboim et al. [3], who proposed
an MIS algorithm running in O(log2 Δ + 2O(

√
log log n)) rounds where Δ is the

Loosely-Stabilizing MIS with Unreliable Communications 337

maximum degree, while the message size is up to poly(Δ log n) bits. Rozhon et
al. [12] improved the round complexity to O(log Δ)+poly(log log n), which is the
fastest randomized MIS algorithm currently. In their paper they also proposed a
deterministic MIS algorithm that runs in poly(log n) rounds while the message
size is only O(log n).

Hedetniemi et al. [8] proposed a simple self-stabilizing MIS algorithm with
constant round complexity while assuming a centralized scheduler. Arapoglu
et al. [2] proposed a self-stabilizing MIS algorithm under the fully distributed
scheduler running in max{3n − 6, 2n − 1} moves (the total number of process
actions). Turau [15] considered randomization and proposed a randomized self-
stabilizing MIS algorithm in the synchronous model that converges in O(log n)
rounds.

Self-stabilization over unreliable communications has been studied for
decades. Afek et al. [1] proposed a self-stabilizing alternating bit protocol while
considering message loss. Dolev et al. [5] proposed a self-stabilizing data-link pro-
tocol that emulates a reliable FIFO communication channel over unreliable non-
FIFO channels, where messages could be lost, duplicated, created or reordered.

The notion of loose-stabilization was first proposed by Sudo et al. [13] to
circumvent the impossibility that the closure of self-stabilizing leader election in
the probabilistic population protocol (PPP) model is impossible to satisfy, and it
is mainly used on leader election problem in the PPP model such as [10,13,14].
Feldmann et al. [6] adopted the idea of loose-stabilization and applied it in the
message passing model to design a randomized congestion control algorithm.
Other variants of self-stabilization are also studied by researchers, such as prob-
abilistic stabilization [9] and weak stabilization [7].

1.2 Our Contributions

In this paper, self-stabilization tolerant to erroneous communication is con-
sidered for the first time, and the concept of loose-stabilization is applied
to circumvent the impossibility of closure property in networks with proba-
bilistically erroneous communication. Specifically, we present three systematic
approaches for designing loose-stabilizing algorithms in probabilistic error mod-
els: the redundant-state, the step-up, and the repetition approaches. All the
approaches assume the atomic-state model (where each process can atomically
change its state depending on its state and the neighbors’ current states) with
the stochastic scheduler and follow a certain kind of error-correction/detection
mechanism. Two different models of message corruption are considered: uni-
formly distributed error and arbitrarily distributed error models. Both models
assume that each message is corrupted with a constant probability ρ (0 < ρ < 1).
Uniformly distributed error model assumes that the values of the corrupted mes-
sage are uniformly distributed on the message’s domain, while in the arbitrarily
distributed error model there are no such constraints.

We apply these approaches to design three corresponding loosely-stabilizing
algorithms for the maximal independent set (MIS) problem, and the performance
of the algorithms are summarized in Table 1, where n denotes the number of the

338 R. Dong et al.

processes, d denotes a sufficiently large constant, and Δ denotes the maximum
degree among all processes. In the following, we briefly describe these approaches.

Redundant-State Approach. The redundant-state approach is applicable to
anonymous networks of bounded degree (i.e., Δ = O(1)) and the uniformly
distributed error model with error probability ρ = 1 − ε for an arbitrarily small
constant ε. The key idea of this approach is to enlarge the domain of the message
by introducing a large amount of redundancy so that even if some message is
corrupted, it becomes a meaningless message (i.e., the bit sequence is invalid
in the correct behavior of the algorithm) with high probability. In other words,
the erroneous value in such a message can be detected and does not cause any
incorrect effect to the receiver with high probability. This mechanism allows
processes to greatly confine the influences from erroneous communications.

Step-Up Approach. To circumvent the constraint of bounded degree in the
redundant-state approach, the step-up approach makes better use of the redun-
dant values of the messages. In the previous approach, we only use the redundant
values to reduce the effect of corrupted messages, and we do not care about the
exact values in the corrupted messages, while in this approach processes confine
the effect of corrupted messages by utilizing the redundant values as the buffer,
so that even if a process takes a bad action due to some corrupted message, with
high probability the result of such action can be corrected before the neighbors
of the process are influenced.

Repetition Approach. The repetition approach assumes the arbitrarily dis-
tributed error model with error probability ρ = 1/2 − ε for an arbitrarily small
constant ε. Different from the previous two approaches, the repetition approach
does not use the redundant values. The key idea of this approach is the error-
correction by a very simple repetition code with majority decoding. The assump-
tion of ρ < 1/2 − ε admits an error-correction with high probability for a suffi-
ciently large number of repetitions. It should be emphasized that this approach
is not so trivial: to utilize block codes (including most of the linear codes with
strong error-correction features), some synchronization mechanism is necessary,
but our system assumption does not equip with full (round-based) synchrony.
It is not clear how one can develop such a mechanism in the loosely-stabilizing
manner under the probabilistic scheduler with unreliable communication. Fortu-
nately, the repetition code works without any synchronization mechanism, except
for the period around the time when the encoded value changes. Thus it keeps
a long holding time after the states of all processes stabilize. In the convergence
period, however, the change of processes’ states would cause the failure of error
correction with an unexpectedly high probability. To prevent such failure, we
install an additional mechanism of priority-based monotone fixing of processes’
states. Compared with the error-free case, it yields a longer convergence time,
but it is still polynomial of n.

Loosely-Stabilizing MIS with Unreliable Communications 339

Table 1. Performance of three loosely-stabilizing MIS algorithms

Redundant-State Step-Up Repetition

Process ID Unavailable Unavailable Available

Maximum Degree Constant Arbitrary Arbitrary

Error Distribution Uniform Uniform Arbitrary

maxECT O(log n) O(n log3 n) O(n2 log n)

minEHT Ω(nd) Ω(nd) eΩ(n)

Space Complexity O(log n) O(log n) O(nΔ log n)

2 Preliminaries

A distributed system comprises a set of autonomous processes and the com-
munication links that connect the processes. We abstract such system as an
undirected graph G = (V,E): the vertex set V = {p0, p1, ..., pn−1} represents
the set of n processes where n ≥ 1, and the edge set E ⊆ V × V represents the
set of communication links. If (pi, pj) ∈ E, we say the process pi and the process
pj are neighbors and can communicate with each other. The set of neighbors of
process pi is denoted by Neigh(pi) = {pj | (pi, pj) ∈ E}, and pi can distinguish
each of its neighbors by some local labeling mechanism. Denote the degree of
process pi by Δi = |Neigh(pi)| and the maximum degree among all processes
by Δ = max{Δi | i ∈ {0, 1, . . . , n − 1}}. In this paper, we have no assumptions
on the topology of G. In other words, G has an arbitrary topology.

The computational model used in this paper is the atomic-state model: each
process pi has some local variables, and the values of variables of pi define the
state of pi. A configuration of G is a function that specifies the states of all
processes. Each process can read its state and all of its neighbors’ states but can
update only its state. Since we consider the unreliable communication links in
this paper, we assume that each time a process pi tries to read the value of one
variable from process pj ∈ Neigh(pi), with a constant probability ρ (0 < ρ < 1),
process pi obtains an incorrect result.

With respect to the unreliable communication, we introduce two kinds of
error model: the uniformly distributed error model and the arbitrarily distributed
error model. In the uniformly distributed error model, when the process pi tries
to read the state of its neighbor pj ∈ Neigh(pi) and the erroneous communica-
tion occurs, pi gets the value s as pj ’s current state with probability 1/(|S| − 1)
for each s ∈ S \ {sj}, where S is the set of all process-states and sj is the true
state of pj . In this model, we assume 0 < ρ < 1 − ε for some positive constant ε.
In the arbitrarily distributed error model, when the process pi tries to read the
state of its neighbor pj ∈ Neigh(pi) and the erroneous communication occurs,
then the resultant state pi reads from pj is an arbitrary value (i.e., chosen from
the adversary). In this model, we assume 0 < ρ < 1/2 − ε.

The activation of processes is determined by a scheduler. We assume a uni-
formly distributed scheduler U in this paper: at each time step (step for short),

340 R. Dong et al.

each process is independently activated by U , with a constant probability φ, to
make a move. If pi is activated at step t, it reads the states of all its neighbors and
its own, then does some local computations, and updates its state if necessary.
Given an initial configuration C0 and the scheduler U , an execution EAlg(C0, U)
of an algorithm Alg is an infinite sequence of configurations C0, C1, ... where
Ci+1 is obtained by taking a step from Ci for all i ≥ 0.

2.1 Loosely-Stabilizing MIS

We first define the specification of the MIS problem and then define the loosely-
stabilizing MIS algorithm.

A set of processes S ⊆ V of a graph G = (V,E) is called an independent
set if ∀p, q ∈ S : (p, q) /∈ E. Further, if S is not a proper subset of any other
independent set, we call S the maximal independent set (MIS). We assume that
every algorithm specifies its output function that maps each process-state to an
output value. Given an output function ξ mapping each process-state to 0 or
1, the specification of the MIS problem, denoted by SPMIS , is defined as the
following predicate on configurations:

Definition 1. For any configuration C, define f(C) as the set of processes that
is in state s such that ξ(s) = 1. Then, we define SPMIS as the following:
SPMIS(C) = true holds if and only if f(C) is a maximal independent set in
G.

Denote by C the set of all possible configurations of G. For any S ⊆ C

and C ∈ C, define ECTAlg(C,S) as the expected time until an execution of
an algorithm Alg reaches a configuration in S starting from C ∈ C. Define
EHTAlg(C, ξ) as the expected time until an execution of an algorithm Alg that
starts from a configuration C changes the output of some process for the first
time, i.e., the expected time until the execution reaches a configuration C ′ such
that ξ(C(v)) �= ξ(C ′(v)) for some agent v.

Definition 2. An algorithm Alg is an (α, β)-loosely-stabilizing MIS algorithm
if there exists a set S of configurations satisfying:

− ∀C ∈ S : SPMIS(C) = true

− max
C∈C

ECTAlg(C,S) ≤ α

− min
C∈S

EHTAlg(C, ξ) ≥ β

We call α and β the maximum expected convergence time and the minimum
expected holding time of Alg respectively, and S the set of safe configurations.

3 Redundant-State Approach

3.1 Description of Algorithm RS

The algorithm RS is based on the redundant-state approach, thus it assumes a
constant maximum degree (i.e. Δ = Θ(1)) and the uniformly distributed error

Loosely-Stabilizing MIS with Unreliable Communications 341

model with error probability ρ = 1 − ε for an arbitrarily small constant ε. Pro-
cesses are anonymous, that is, identifiers are not available to processes. Each
process pi has one variable vi ∈ {0, 1, ..., c} where the parameter c = Θ(nd+1)
and d is a sufficiently large constant. A process sets value c (resp. 0) when it is
a member (resp. non-member) of the MIS the algorithm constructs, and values
from 1 to c − 1 are treated as the redundant values. The output function ξRS

of RS is defined as follows: for each process pi ∈ V , if vi = c then ξRS(vi) = 1,
otherwise ξRS(vi) = 0.

The algorithm RS (given in Algorithm 1) works as follows. Each time a
process pi is activated, it reads the states of its neighbors. Next, if vi is maximal
around its neighbors and vi is not c, it is set to c; if there exists a neighbor of
pi such that vi is smaller than that of the neighbor, then vi is set to 0; if vi is
c and there exists a neighbor of pi such that the state of the neighbor is also c,
then vi is set to 0.

Algorithm 1: RS

Variables in pi:
vi ∈ {0, 1, ..., c} where c = Θ(nd+1) and d is a sufficiently large constant

1 if ∀pj ∈ Neigh(pi) : vj ≤ vi ∧ vi �= c then
2 vi ← c

3 if ∃pj ∈ Neigh(pi) : vj > vi then
4 vi ← 0

5 if ∃pj ∈ Neigh(pi) : vj = c ∧ vi = c then
6 vi ← 0

3.2 Analysis of RS

At first, we divide processes into four types according to the states of their own
and their neighbors’.

Definition 3. (1) independent process: a process pi is an independent process
if vi = c and ∀pj ∈ Neigh(pi) : vj < c.
(2) dominated process: a process pi is a dominated process if vi = 0 and ∃pj ∈
Neigh(pi) : pj is an independent process.
(3) pseudo-dominated process: a process pi is a pseudo-dominated process if vi =
0, ∃pj ∈ Neigh(pi) : vj = c, but pi is not dominated (i.e., there is no independent
neighbor).
(4) illegal process: a process pi is illegal if pi is not independent, dominated, or
pseudo-dominated. That is, (i) 0 < vi < c, (ii) vi = 0∧∀pj ∈ Neigh(pi) : vj < c,
or (iii) vi = c ∧ ∃pj ∈ Neigh(pi) : vj = c.

Based on Definition 3, we define the safe configurations of RS:

342 R. Dong et al.

Definition 4. The set of safe configurations S1 of RS is the set of configura-
tions where only independent and dominated processes exist.

Maximum Expected Convergence Time. In general, the algorithm RS can
be considered to have two phases. In the first phase, we eliminate all the values
of processes’ states from 1 to c − 1 by setting them to 0 or c. See Lines 1 to 4
in the pseudo-code. Since once a process makes a move, it can only change its
value to 0 or c, and by the union bound every process makes at least one move in
O(log n) steps with high probability, we can conclude that the first phase ends
in O(log n) steps with high probability. Moreover, at the end of this phase, all
illegal processes are either in the second or third category of the illegal process.

The second phase is where the redundant states start to work. Due to the
existence of the redundant states, the algorithm RS keeps the independent (or
dominated respectively) processes staying independent (or dominated respec-
tively) with high probability. Along with the assumption of constant degree,
illegal (or pseudo-dominated, respectively) processes become independent (or
dominated, respectively) with at least a constant probability. If the degree is
unbounded, the probability that an illegal process pi in the second or third
category becomes independent is exponentially small in the worst case when
the values of all pi’s neighbors are not 0, which yields an exponentially long
convergence time. Therefore, the constraint of bounded degree is needed in this
algorithm. By also taking O(log n) steps there are no illegal or pseudo-dominated
processes in the configuration with high probability. Combining with the first
phase we can get the maximum expected convergence time of RS.

Theorem 1. max
C∈C1

ECTRS(C,S1) = O(log n) in terms of steps, where C1 is the

set of all possible configurations of RS.

Minimum Expected Holding Time. Next we analyze the minimum expected
holding time of RS. Again, thanks to the redundant states, the probability that
at least one process becomes illegal in any step from a safe configuration is at
most O(n/c), hence the minimum expected holding time is Ω(c/n) steps, which
is Ω(nd) steps by the choice of the parameter c.

Theorem 2. min
C∈S1

EHTRS(C, ξRS) = Ω(nd) in terms of steps.

Space Complexity. The space complexity of RS is straightforward: each pro-
cess pi has one variable vi ∈ {0, 1, ..., c}, hence the space complexity is O(log c),
which is O(log n) bits by the definition of the parameter c.

4 Step-Up Approach

4.1 Description of Algorithm SU

The algorithm SU is based on the step-up approach that has same setting as the
redundant-state approach, and circumvents the constraint of bounded degree,

Loosely-Stabilizing MIS with Unreliable Communications 343

thus we consider the graphs that SU works on have no restriction on the degree
of processes. The output function ξSU of SU is defined as follows: for each process
pi ∈ V , if vi = c then ξSU(vi) = 1, otherwise ξSU(vi) = 0.

The algorithm SU (given in Algorithm 2) works as follows. Each time a
process pi is activated, it reads the states of its neighbors. Next, if pi has at
least one neighbor whose state is c, then vi is set to 0; in the other case vi takes
a step up: it is increased by c/ log2 c unless vi exceeds the domain, and if that
happens vi is set to c. Notice that in SU we do not treat the states from 1 to
c− 1 as the contaminated values, but as the buffer that the processes can utilize
to confine the effect of erroneous communications in the following way: even if
a process misrecognizes that no neighbor of it is a member of the MIS due to
some erroneous communication, the process gradually approaches to the state
of an MIS member instead of instantly becoming an MIS member. This enables
the process to correct its state with high probability before becoming an MIS
member.

Algorithm 2: SU
Variables in pi:

vi ∈ {0, 1, ..., c} where c = Θ(nd+1) and d is a sufficiently large constant

7 if ∃pj ∈ Neigh(pi) : vj = c then
8 vi ← 0

9 if ∀pj ∈ Neigh(pi) : vj �= c then
10 vi ← min{c, vi + c/ log2 c}

4.2 Analysis of SU

Processes in SU are divided into three types according to the states of their own
and their neighbors’.

Definition 5. (1) independent process: a process pi is an independent process if
vi = c and ∀pj ∈ Neigh(pi) : vj �= c. Further, process pi is a safely independent
process if vi = c and ∀pj ∈ Neigh(pi) : |vj − c| = ω(c/ log c).
(2) dominated process: a process pi is a dominated process if vi �= c and ∃pj ∈
Neigh(pi) : vj = c.
(3) illegal process: a process is an illegal process if it does not belong to any of
the above two types of processes.

Based on Definition 5, we define a potential set Pot(C) in each configuration
C, and a set of safe configurations S2 of SU as follows.

Definition 6. The potential set Pot(C) concerning the configuration C is the
set of safely independent processes and all their neighbors in the configuration
C.

344 R. Dong et al.

Definition 7. The set of safe configurations S2 of SU is the set of configura-
tions C where Pot(C) = V .

Minimum Expected Holding Time. In a safe configuration, there only
exist safely independent processes and dominated processes whose values are
low enough by Definition 5, thus these are the processes that we need to concern
about now. Similar to the algorithm RS, each safely independent process in
SU does not change its values with probability 1− O(Δ/c) due to the existence
of the redundant states. On the other hand, although a dominated process may
incorrectly think that the values of all the neighbors are not c and then increases
its value with a constant probability, its value is low enough so that O(log c) such
moves are needed to make it illegal, as well as its safely independent neighbors.
Such gap (the difference between the values of a safely independent process and
a dominated process) works as a buffer that makes dominated processes illegal
only with an extremely small probability of Θ(1)Ω(log c) = e−Ω(log c). Therefore,
the minimum expected holding time of SU is min{Ω(c/Δ), eΩ(log c)} = Ω(c/Δ)
steps, which is Ω(nd+1/Δ) = Ω(nd) steps by the choices of the parameter c and
d.

Theorem 3. min
C∈S2

EHTSU(C, ξSU) = Ω(nd) in terms of steps.

Maximum Expected Convergence Time. Next, we analyze the expected
convergence time of SU. To do so, we define a set of processes that have high val-
ues as High(C) in each configuration C. Processes in this set can be seen as good
candidates to become safely independent processes in subsequent configurations.

Definition 8. Define High(C) ⊆ V −Pot(C) to be the set of processes pi which
have values vi in configuration C such that |vi − c| = O(c/ log c).

Algorithm SU consists of multiple iterations. In each iteration, we can guar-
antee that High(C) is not empty for long. In other words, there are always some
good candidates to become safely independent processes during the iteration
with high probability. Consider the worst case where all the values of processes
are 0 at the beginning of the iteration, thus all processes now are illegal pro-
cesses. Each time a process pi does not obtain value c from any of its neighbors,
it can increase its value by c/ log2 c. Even if the degree of processes is unbounded,
such case happens with at least a constant probability. By the Chernoff bound
and the property of binomial distribution, we can prove that pi ∈ High(C) in
O(log2 c) steps with high probability.

Now we consider the processes in High(C). Processes in High(C) are merely
influenced by those that are not in High(C) due to the existence of the buffer
between them, hence we focus on the processes that are neighboring with those
that are also in High(C). Although such processes may set their values to 0 with
constant probability, it can be proved that there exists at least one process in
High(C) that reaches value c and keeps this value in O(log c) steps with at least

Loosely-Stabilizing MIS with Unreliable Communications 345

a constant probability. Therefore, in O(log n · log2 c) steps from the beginning
of the iteration, the number of safely independent processes is incremented by
at least one with high probability, which means that after O(n) iterations a safe
configuration S is reached, i.e., Pot(S) = V , with high probability.

Compared with the previous algorithm RS, illegal processes in SU need to
take a non-negligible number of “steps” to become independent. Consequently,
the convergence time is longer than that of RS. However, by using this mecha-
nism, we can remove the constraint of bounded degree in RS. By the definition
of the parameter c, we have the following theorem.

Theorem 4. max
C∈C2

ECTSU(C,S2) = O(n log3 n) in terms of steps, where C2 is

the set of all possible configurations of SU.

Space Complexity. Processes in SU have the same variables as those in RS,
thus the space complexity of SU is also O(log n) bits.

5 Repetition Approach

5.1 Description of Algorithm RE

The algorithm RE is based on the repetition approach, thus it assumes the
arbitrarily distributed error model with error probability ρ = 1/2 − ε for an
arbitrarily small constant ε. A unique identifier IDi for each process pi is needed
in this algorithm to break symmetry. Each process pi has a binary variable
vi ∈ {0, 1}. The output function ξRE of RE is defined as follows: for each process
pi ∈ V , if vi = 1 then ξSU(vi) = 1, otherwise ξSU(vi) = 0.

The algorithm RE (given in Algorithm 3) works as follows. For each process
pi, if the counter counteri that represents the number of readings pi makes so
far is less than 2k+1 where the parameter k = Θ(n), it obtains IDj and vj from
each of its neighbor pj , stores the IDj in a dictionary id candi(j), increments
another counter counter onei(j) if vj = 1, which represents the number of value
1 pi obtains from pj , and increments counteri. If counteri = 2k + 1, process
pi updates vi in the following way: at first, for each pj ∈ Neigh(pi), process
pi regards the key with the largest value in the dictionary id candi(j) as true
IDj , and stores each IDj in a list id tablei; besides, process pi regards vj = 1 if
counter onei(j) > k. Next, if ∃pj ∈ Neigh(pi) such that IDj > IDi and vj = 1,
process pi sets vi to 0; in other cases pi sets vi to 1. At last, process pi resets all
the counters and dictionaries id candi.

5.2 Analysis of RE

Since each process pi regards the majority value among the results of 2k + 1
reads from each neighbor pj , we expect that such majority is the true value of pj

with high probability. However, it does not hold if pj changes its state during the
communication period. Therefore, we try to fix the state of a process gradually
by introducing the notion of a maximal process.

346 R. Dong et al.

Algorithm 3: RE

Constant in pi:
IDi

Variables in pi:
vi ∈ {0, 1}
counteri ∈ {1, 2, ..., 2k + 1}
counter onei(j) ∈ {1, 2, ..., 2k + 1}
id candi(j): a dictionary where keys are IDjs read from pj ∈ Neigh(pi)
id tablei: a list indexed on the neighbors of pi

Notation:
counteri counts the number of times that pi communicates with its neighbors.
counter onei(j) counts the number of times that pi gets vj = 1 from pj .
id candi(j)[IDj] represents the number of times that pi gets IDj from pj .
id tablei[j] represents the ID of pj that pi regards.

11 if counteri < 2k + 1 then
12 counteri ← counteri + 1
13 for each pj ∈ Neigh(pi) do
14 if IDj ∈ id candi(j) then
15 id candi(j)[IDj] ← id candi(j)[IDj] + 1
16 else
17 create key IDj in id candi(j)
18 id candi(j)[IDj] ← 1

19 if vj = 1 then
20 counter onei(j) ← counter onei(j) + 1

21 if counteri = 2k + 1 then
22 for each pj ∈ Neigh(pi) do
23 id tablei[j] ← arg max

key
id candi(j)[key]

24 if ∃pj ∈ Neigh(pi) : id tablei[j] > IDi ∧ counter onei(j) > k then
25 vi ← 0
26 else
27 vi ← 1

28 counteri ← 0
29 for each pj ∈ Neigh(pi) do
30 counter onei(j) ← 0
31 id candi(j) ← empty

Definition 9. Process pi is a maximal process in G if ∀pj ∈ Neigh(pi) : IDj <
IDi holds in G.

Based on Definition 9, we inductively define some related sets of processes.

Definition 10. Define M(1) to be the set of maximal processes in G, and N(1)
to be the set of processes in G that are neighboring to any process in M(1). For

Loosely-Stabilizing MIS with Unreliable Communications 347

any integer x ≥ 2, define M(x) to be the set of maximal processes in the induced

sub-graph Gx = G

[
V −

x−1⋃
y=1

(M(y) ∪ N(y))

]
, and N(x) to be the set of processes

in Gx that are neighboring to any process in M(x).

To define the safe configurations of RE, we first define the set of independent
and dominated processes and then introduce the notion of legitimate initial state
for each process.

Definition 11. Process pi is in the legitimate initial state if counteri = 0 and
∀pj ∈ Neigh(pi) : counter onei(j) = 0 and id candi(j) = ∅.
Definition 12. (1) independent process: a process pi is an independent process
if vi = 1 and ∀pj ∈ Neigh(pi) : vj = 0. (2) dominated process: a process pi is a
dominated process if vi = 0 and ∃pj ∈ Neigh(pi) : vj = 1.

Based on the above two definitions, we define the safe configurations of RE.

Definition 13. The set of safe configurations S3 of RE is the set of configura-

tions where ∀p ∈
n⋃

y=1
M(y) : p is an independent process, ∀q ∈

n⋃
y=1

N(y) : q is

a dominated process, and each process has reached its legitimate initial state at
least once.

The reason why we require that each process has reached its legitimate initial
state at least once in safe configurations is that, if we do not require this, in
some initial configurations maybe there only exist independent and dominated
processes, but the states of the processes are arbitrary and in the worst case some
of them may become illegitimate in one step with a non-negligible probability.

Maximum Expected Convergence Time. Obviously, for any integer x ≥ 2,

if V −
x−1⋃
y=1

(M(y)∪N(y)) is not empty, then M(x)∪N(x) �= ∅. Therefore, we have

n⋃
y=1

(M(y) ∪ N(y)) = V . As a consequence, all processes are gradually fixed into

the corresponding sets based on the IDs. At the same time, the state of each
process is also gradually fixed with high probability by Algorithm RE, starting
from the processes in M(1) and expanding into N(1),M(2), N(2), · · · . In this
manner, a fixed process pi can change its state only if the majority result of pi’s
reading from one of its fixed neighbors, say pj , becomes a wrong value, and such
event happens with a negligible probability.

Theorem 5. max
C∈C3

ECTRE(C,S3) = O(n2 log n) in terms of steps, where C3 is

the set of all possible configurations of RE.

348 R. Dong et al.

Minimum Expected Holding Time. From a safe configuration, the worst
case that makes the specification SPMIS violated is that a process pi obtains
an incorrect value of a variable from pj ∈ Neigh(pi), and the probability that
such case happens is e−O(k). Together with the choice of the parameter k, the
maximum expected holding time is Θ(k)/e−O(k) = eΩ(n)

Theorem 6. min
C∈S3

EHTRE(C, ξRE) = eΩ(n) in terms of steps.

Space Complexity. For each process pi, the most space consuming variable
is the dictionary id candi. For each pj ∈ Neigh(pi), there is a corresponding
id candi(j); each id candi(j) stores at most n keys, and the value for each key
is at most 2k + 1. Therefore, id candi requires O(nΔ log k) bits, and the space
complexity is also O(nΔ log k) bits, which is O(nΔ log n) bits by the definition
of the parameter k.

6 Summary

We proposed three systematic approaches to deal with erroneous communica-
tions in distributed systems and applied these approaches to design three loosely-
stabilizing MIS algorithms.

Loose-stabilization is not widely used for now. To our knowledge, it is only
used in the leader election problem in the PPP model and the congestion con-
trol problem in the message passing model. Although many problems like leader
election have self-stabilizing solutions, if we alter the ideal setting and introduce
some probabilistic fault such as unreliable communications, self-stabilizing solu-
tions may become impossible to achieve. At this moment, we can try to apply
loose-stabilization and get a solution that may not be perfect but is totally
enough for practical use.

References

1. Afek, Y., Brown, G.M.: Self-stabilization over unreliable communication media.
Distrib. Comput. 7(1), 27–34 (1993)

2. Arapoglu, O., Akram, V.K., Dagdeviren, O.: An energy-efficient, self-stabilizing
and distributed algorithm for maximal independent set construction in wireless
sensor networks. Comput. Standards Interfaces 62, 32–42 (2019)

3. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed
symmetry breaking. J. ACM (JACM) 63(3), 1–45 (2016)

4. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

5. Dolev, S., Dubois, S., Potop-Butucaru, M., Tixeuil, S.: Stabilizing data-link over
non-fifo channels with optimal fault-resilience. Inf. Process. Lett. 111(18), 912–920
(2011)

6. Feldmann, M., Götte, T., Scheideler, C.: A loosely self-stabilizing protocol for ran-
domized congestion control with logarithmic memory. In: Ghaffari, M., Nesterenko,
M., Tixeuil, S., Tucci, S., Yamauchi, Y. (eds.) SSS 2019. LNCS, vol. 11914, pp.
149–164. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34992-9 13

https://doi.org/10.1007/978-3-030-34992-9_13

Loosely-Stabilizing MIS with Unreliable Communications 349

7. Gouda, M.G.: The theory of weak stabilization. In: Datta, A.K., Herman, T. (eds.)
WSS 2001. LNCS, vol. 2194, pp. 114–123. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-45438-1 8

8. Hedetniemi, S.M., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing
algorithms for minimal dominating sets and maximal independent sets. Comput.
Math. Appl. 46(5–6), 805–811 (2003)

9. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-
stabilizing mutual exclusion. In: Proceedings of the Ninth Annual ACM Symposium
on Principles of Distributed Computing, pp. 119–131 (1990)

10. Izumi, T.: On space and time complexity of loosely-stabilizing leader election. In:
Scheideler, C. (ed.) SIROCCO 2014. LNCS, vol. 9439, pp. 299–312. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-25258-2 21

11. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM J. Comput. 15(4), 1036–1053 (1986)

12. Rozhoň, V., Ghaffari, M.: Polylogarithmic-time deterministic network decomposi-
tion and distributed derandomization. In: Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, pp. 350–363 (2020)

13. Sudo, Y., Nakamura, J., Yamauchi, Y., Ooshita, F., Kakugawa, H., Masuzawa, T.:
Loosely-stabilizing leader election in a population protocol model. Theor. Comput.
Sci. 444, 100–112 (2012)

14. Sudo, Y., Ooshita, F., Kakugawa, H., Masuzawa, T.: Loosely stabilizing leader
election on arbitrary graphs in population protocols without identifiers or random
numbers. IEICE Trans. Inf. Syst. 103(3), 489–499 (2020)

15. Turau, V.: Making randomized algorithms self-stabilizing. In: Censor-Hillel, K.,
Flammini, M. (eds.) SIROCCO 2019. LNCS, vol. 11639, pp. 309–324. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-24922-9 21

https://doi.org/10.1007/3-540-45438-1_8
https://doi.org/10.1007/3-540-45438-1_8
https://doi.org/10.1007/978-3-319-25258-2_21
https://doi.org/10.1007/978-3-030-24922-9_21

On Regenerating Codes and Proactive
Secret Sharing: Relationships

and Implications

Karim Eldefrawy1, Nicholas Genise1(B), Rutuja Kshirsagar2, and Moti Yung3,4

1 SRI International, Menlo Park, USA
{karim.eldefrawy,nicholas.genise}@sri.com

2 Virginia Tech, Blacksburg, USA
rutujak@vt.edu

3 Google, Menlo Park, USA
motiyung@google.com

4 Columbia University, New York, USA

Abstract. We look at two basic coding theoretic and cryptographic
mechanisms developed separately and investigate relationships between
them and their implications. The first mechanism is Proactive Secret
Sharing (PSS), which allows randomization and repair of shares using
information from other shares. PSS enables constructing secure multi-
party computation protocols that can withstand mobile dynamic attacks.
This self-recovery and the redundancy of uncorrupted shares allows a sys-
tem to overcome recurring faults throughout its lifetime, eventually fin-
ishing the computation (or continuing forever to maintain stored data).
The second mechanism is Regenerating Codes (RC) which were exten-
sively studied and adopted in distributed storage systems. RC are error
correcting (or erasure handling) codes capable of recovering a block
of a distributedly held codeword from other servers’ blocks. This self-
healing nature enables more robustness of a code distributed over dif-
ferent machines. Given that the two mechanisms have a built-in self-
healing (leading to stabilizing) and that both can be based on Reed
Solomon Codes, it is natural to formally investigate deeper relationships
between them. We prove that a PSS scheme can be converted into an RC
scheme, and that under some conditions RC can be utilized to instan-
tiate a PSS scheme. This allows us, in turn, to leverage recent results
enabling more efficient polynomial interpolation (due to Guruswami and
Wooters) to improve the efficiency of a PSS scheme. We also show that
if parameters are not carefully calibrated, such interpolation techniques
(allowing partial word leakage) may be used to attack a PSS scheme over
time. Secondly, the above relationships give rise to extended (de)coding
notions. Our first example is mapping the generalized capabilities of
adversaries (called generalized adversary structures) from the PSS realm
into the RC one. Based on this we define a new variant of RC we call
Generalized-decoding Regenerating Code (GRC) where not all network
servers have a uniform sub-codeword (motivated by non-uniform prob-
ability of attacking different servers case). We finally highlight several

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 350–364, 2021.
https://doi.org/10.1007/978-3-030-91081-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_23&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_23

On Regenerating Codes and Proactive Secret Sharing 351

interesting research directions due to our results, e.g., designing new
improved GRC, and more adaptive RC re-coding techniques.

1 Introduction

Many times in the past, it was found that different areas and concepts in com-
puting are related in some fashion. Uncovering such relations, in turn, led to
information flowing and ideas transferring across areas. In this work we deal
with two areas that are fundamental to major aspects of safe (and secured)
self-healing distributed computing. The first area, Coding Theory, is one of the
oldest and most fundamental branches of modern computing and communica-
tion, dealing with keeping integrity of data in various situations (originally com-
munication channels, then storage media, and finally distributed fault tolerant
storage). In the context of modern distributed computing (clusters, storage sys-
tems, cloud computing, etc.), a fundamental mechanism to perform fault-tolerant
distributed storage is to encode the data to be stored using regenerating codes
(RC) [1] (our first area’s concentration). RC are a class of error correcting codes
(ECC) invented in 2010, which, besides the traditional task of ensuring reliabil-
ity of data recovery, also provide for efficient repair (regeneration) of failed nodes
(holding blocks of the codeword) in a distributed storage system, where recovery
is from information stored at other nodes, assuring better maintenance capabil-
ity of the distributed codeword. We note that most RC work is in the erasure
codes model, where servers can fail-stop, but some are in the error correcting
mode where servers’ memory can be maliciously modified.

The second area is Secret Sharing Schemes: given that data in distributed
cryptographic systems may be sensitive (e.g., a redundant storage of crypto-
graphic keys), these systems may be the target of byzantine/malicious corruption
(not only random or fail-stop faults) which attempt to violate confidentiality of
the stored data and its availability. To that end, (threshold) secret sharing (SS)
was originally proposed as a fundamental cryptographic defense technique in the
late 70s. It distributes a secret with redundancy into shares, where, in order to
recover the secret, one needs a threshold of shares, while less than the threshold
of shares reveals no information about the secret; the mechanism was employed
heavily in security protocols. The security of the standard, and first, SS tech-
nique (known as Shamir’s SS [2]) is based on polynomial interpolation, and is
closely related to Reed-Solomon codes [3]. This relation was the first hint regard-
ing certain connections between coding theoretic methods and sharing secrets
procedures, yet this, early uncovered relationship did not continue to attract
much attention since then.

In 1991, motivated by malicious adversaries being mobile as in the spread of
malware, SS was extended to what became known as Proactive Secret Sharing
(PSS) [4]. PSS (our second area’s concentration), in fact, protects against a
mobile adversary that can change the subset of corrupted nodes overtime and
thus may eventually compromise all involved nodes over a long period of time
(while the standard SS notion only assumes that a subset of the nodes can

352 K. Eldefrawy et al.

be corrupted, even over a long period of time). PSS, in fact, adds to SS the
ability to t-wise randomize the information held by the sharing servers, and
allows for the recovery of the current state held by a server in case a share has
been previously destroyed by the adversary which moved away. Since then, PSS
was extended [5,6] to more generic settings, beyond threshold adversaries, i.e.,
what is often called general adversary structures. PSS has also been employed in
developing secure multi-party computations against mobile adversaries [6], and
for building threshold cryptosystems, say, for supporting distributed certification
authorities, and in recent years in various Blockchain based protocols, e.g., [7].

In this paper, renewing connections between coding theory and distributed
secret sharing methods, we explore fundamental connections between RC and
PSS. It is a natural question to ask, due to the fact that both notions involve
reconstruction of information (shares or codewords) held by servers using infor-
mation (shares or codewords) held at other servers, and that some schemes in
both areas are, in fact, related to Reed Solomon (or other algebraic) codes.
We also suggest (and demonstrate) utilization of the observed connections to
imply new useful paradigms and extensions in one area (RC), building on related
paradigms existing in the second area (PSS).

Our Contributions: This paper is the first systematic study of the close rela-
tion between proactive secret sharing (PSS) and regenerating codes (RC), and
makes the following concrete contributions:

1. We show how security of common PSS schemes (treating/restricting leakage
as/to full shares only leakage) fails to hold in simple generalized leakage mod-
els – models allowing leaks of smaller pieces of shares. This is accomplished by
developing a new generalized model (Sect. 4) to reason about PSS and ana-
lyze its relation to RC. This new model takes into account partial leakage of
information about shares of non-compromised nodes as opposed to complete
information leaked (all or nothing) from compromised nodes.

2. We demonstrate a (conditional1) equivalence between PSS and RC. We pro-
vide two main theorems (Theorems 2 and 3 in Sect. 5) as a simple starting
point demonstrating the a conditional equivalence between PSS and RC. This
allows for a flow of ideas and constructions between the two areas.

3. As a first demonstration of a flow of constructions and ideas from RC to
PSS, we show that due to our result proving the equivalence between the
two notions, recent techniques for efficient polynomial interpolation due to
Guruswami and Wootters [8] may improve efficiency of several bottleneck sub-
protocols in PSS. We also show that such efficient interpolation may cause
a threat if parameters are not carefully calibrated, i,e., such interpolation
technique may be used to attack PSS over a long period of time, (Corollary
1 in Sect. 5); further studying such attacks may be of independent interest.

1 Our condition is that an RC code is MDS. This is to simplify this first treatment of
the topic, we note that there is more work required to understand what conditions
on the RC side imply certain types of security on the PSS side.

On Regenerating Codes and Proactive Secret Sharing 353

4. Conversely (i.e., considering ideas flowing in the other direction), we map (in
Sect. 6) adversarial capabilities – called general adversary structures – from
the PSS realm into the RC realm by defining a new notion of RC, called
Generalized-decoding Regenerating Code (GRC). In a GRC, the decoding
structure is captured by a collection of specific subsets of nodes that may
decode, as opposed to the usual case where any set larger than a given thresh-
old can decode. We also show how to construct a GRC scheme based on PSS
and Theorem 2. We emphasize a general decoding structure is needed in many
applications since network nodes often differ greatly in reliability, trust, and
connections.

Paper Outline: Section 2 provides the necessary background and notation,
whereas Sect. 3 overviews related work in PSS and RC; Sect. 4 describes a new
generalized model to reason about PSS and which allows us to analyze its relation
to RC; Sect. 5, in turn, contains the main technical results mapping RC to PSS
and PSS to RC, while Sect. 6 discusses how relationships between the PSS and
RC notions can further give rise to new extended notions in the RC realm. Our
first example of such implications is mapping the generalizations of the capabili-
ties of adversaries (called general adversary structures) from the PSS realm into
the RC one, and define a new notion of RC which we call Generalized-decoding
Regenerating Code (GRC).

2 Background and Notation

In this section we define the underlying mathematical and protocol notions
employed in this work. Due to space constraints, we have further background
material in the Appendix.

Finite Fields. We denote finite fields as F , L always such that F is a finite
extension of L (L ≤ F). Let GF (p) be the underlying prime field and let t = [F :
L] be F ′s degree over L. The ring of polynomials with coefficients in F is denoted
as F [x] and the subset of polynomials with degree at most k − 1 is denoted as
F [x]≤k−1. The latter is a k-dimensional vector space over F . Whenever we need
the fields’ cardinalities, we say F = GF (qt) and L = GF (q) (where q = pd is
some positive integer d).

Definition 1. Let F = GF (qt) be a field extension of L = GF (q) with degree t.
Then, the field trace is defined as

trF/L(α) = α + αq + αq2
+ · · · + αqt−1

.

2.1 Reed-Solomon Codes

Definition 2. An (n, k) Reed-Solomon code with distinct evaluation points A =
{α1, . . . , αn} ⊂ F is the subspace of Fn defined as

RS(A, k) := {(f(α1), . . . , f(αn))|f ∈ F [x]≤k−1}.

354 K. Eldefrawy et al.

We call n the block-length and k the dimension of the code. Reed-Solomon codes
are Maximally Separable Distance (MDS) codes since they achieve the Singleton
bound. That is, their minimum distance is n−k +1 and any collection of k code
symbols, f(αi), can be used to efficiently recover the original message, f . One
can also efficiently decode Reed Solomon codes in the presence of k < n/3 errors
using the Berlekamp-Welch algorithm [9].

2.2 Regenerating Codes

An (n, k, d, α, β) regenerating code [1] distributes a file, represented as a poly-
nomial f in F [x]≤k−1, by encoding it and sending elements of the encoding to n
nodes where each node stores α bits of data. A failed node can recover (repair)
its share by accessing size β data from d surviving nodes, and we denote the
repair bandwidth as γ = dβ. Any k nodes are able to reconstruct the original file
f when using their collective stored data. For example, an (n, k) Reed-Solomon
code gives α = log2 |F | at each node and using the trivial reconstruction to
repair a node yields d = k, β = log2 |F |, and γ = k log2 |F |. We give the formal
definition in Definition 3 for completeness.

Definition 3. Let P1, . . . ,Pn be labeled as nodes and S be labeled as a share-
generator. An (n, k, d, α, β) regenerating code is a tuple of three protocols
(Encode, Repair, Decode) defined as follows:

– Encode: This protocol has S take a file/string, represented by f ∈ F [x]≤k−1,
as input and distributes a codeword c = (c1, . . . , cn) ∈ Fn to the storage nodes
according to their index (ci to Pi).

– Repair: Here, a failed node Pj contacts d other nodes, each of which sends it β
bits of data. Then, the node computes a function on their sent data (δ1, . . . , δd)
to generate its new local storage.

– Decode: This protocol accesses any k nodes to reconstruct the original file/
string.

It is clear from the construction that each failed node can be reconstructed by
accessing full data from at least k other nodes. However, this does not provide
the optimum bandwidth. Regenerating codes facilitate the failed nodes to access
fewer bits (β) from more than k surviving nodes for reconstruction. The follow-
ing theorem summarizes the result for Reed-Solomon codes over general field
extensions.

Theorem 1 (Lemma 4 in [10], Implicit in [8]). Let F be a t-degree extension
of a finite field L, let f be a polynomial of degree at most k − 1 over F , and let
f(α1), . . . , f(αn) be evaluations of f on n distinct points α1, . . . , αn. Let α0 be an
element in F and let g1(x), . . . , gt(x) be t distinct polynomials over F of degree
at most n − k such that {gi(α0)}i∈[t] is a basis for F over L. Then, it suffices to
know the set of values

⋃
i∈[n]{trF/L(gj(αi)f(αi))}j∈[t] in order to recover f(α0).

On Regenerating Codes and Proactive Secret Sharing 355

2.3 Secret Sharing Schemes

Here we assume that all secret sharing schemes operate over finite fields. In
general, we use the term secret sharing (SS) scheme to denote the following:

Definition 4. Let F be a finite field. A (k, n, F) information-theoretically
secure secret threshold sharing scheme over F is a pair of protocols used between
servers labeled as the, unique and fixed, sharing node S and the set of storage
nodes A := {P1, . . . ,Pn}:

Share(s0): on input s0 ∈ F , S randomly generates n shares x1, . . . , xn ∈ F
and returns xi to server Pi.
Reconstruct(s): Any k +1 nodes combine their shares, represented as a vector
x ∈ F k+1, to reconstruct the secret s′ ∈ F .

Let H(·) be the classical Shannon entropy function. For information-theoretic
security, we assume s0 is a non-trivial random variable over F . Then, the
scheme’s correctness and security is defined as follows:

Security: if x ∈ F k is any (k)-sized subset of shares xj1 , . . . , xjk
, then H(s0|x)

= H(s0) > 0.
Correctness: if x ∈ F k+1 is any (k + 1)-sized subset of shares xj1 , . . . , xjk+1 ,
then H(s0|x) = 0.

In the following definition, we break up the timeline into distinct phases once
the shares are distributed. Each phase is represented by a positive integer σ.

Definition 5. A proactive secret sharing scheme (PSS) is a secret sharing
scheme as in definition 4 with the following additional algorithms:

Refresh: All storage nodes P1, . . . ,Pn use their respective shares from phase t

to generate new random shares (for the same secret), x
(t+1)
1 , . . . , x

(t+1)
n . Then,

it distributes x
(t+1)
i to Pi.

Recover: A corrupted node, Pr, contacts d uncorrupted nodes which combine
their shares to compute (potentially with new randomness)

Next, we define Shamir’s secret sharing scheme and its accompanying proac-
tive protocols [2,11]2. We assume the finite field is at least the size of the number
of storage nodes plus one, |F | ≥ n + 1. We denote the set of nodes needing to
recover their share as B, with |B| ≤ k, and the non-corrupted nodes as D := A\B.
The set of evaluation points A = {α1, . . . , αn} ⊂ F is fixed beforehand and
known to all nodes.

Definition 6. The proactive (n, k) Shamir secret sharing scheme over a finite
field F with evaluation points A = {α1, · · · , αn} ⊆ F is defined as follows:

Share(s0): on input s0 ∈ F , S randomly generates a degree k polynomial f

over F conditioned on f(0) = s0. Then, S sends x
(0)
i := f(αi) ∈ F to Pi.

2 There are more efficient PSS schemes, [12] for example, but we describe the scheme
in [11] for its clear relation to Reed-Solomon codes.

356 K. Eldefrawy et al.

Reconstruct(x): Any k + 1 nodes interpolate their shares, represented as a
vector x ∈ F k+1, to reconstruct the secret s′ ∈ F .
Refresh: Each storage node Pi generates a random polynomial δi of degree k
conditioned on δi(0) = 0 and sends δi(αj) to Pj for all j �= i. Then, each
storage node Pi updates their share as xt+1

i ← xt
i +

∑
j δj(αi) (and erases all

intermediate values used to compute xt+1
i).

Recover: For each corrupted node Pr ∈ B, each Pi ∈ D does the following.
Generate a uniformly random polynomial of degree k, ξi, such that ξi(αr) = 0.
Then, send ξi(αj) to Pj for all Pj ∈ D. Each Pj ∈ D updates their share as
xt

j ← xt
j +

∑
i,Pi∈D ξi(αj). Finally, each Pi ∈ D sends its updated share xt

i to
Pr and Pr interpolates them to get its original share, xt

r.

2.4 Leakage Model

Leakage is fundamental to modeling secret sharing schemes. Here we define leak-
age functions using the terminology of [13]. We restrict the output of the leakage
function to field elements, either in some large field F or some subfield L ≤ F .

Definition 7. Let L ≤ F such that t = [F : L], and fix a secret sharing scheme
over F , denoted by Share : F → Fn. We denote LeakL = (LeakL

1 , . . . , LeakL
n) for

a length l L-leakage function with l < t, where Leaki : F → Ll is a leakage func-
tion, possibly randomized, defined for each node. When (x1, . . . , xn) ← Share(s0),
we denote the collection of leakage outputs as (b1, . . . , bn) ← LeakL(x1, . . . , xn)
where bi = LeakL(xi). In addition, for any S ⊆ [n] we define RevealS : Fn → Fn

as revealing an entire share at node i if i ∈ S. That is, RevealS(i) = 1i∈S ·Sharei

where 1i∈S is the indicator function for S.

For epoch i, we denote F (i) ⊂ [n] as the set of nodes which leak full shares
and L(i) as the set of nodes which leak partial shares (elements in Ll).

3 Related Work

Now that we have introduced the basic notions and mechanisms we need and
employ, let us review further related earlier work.

Proactive Secret Sharing. The notion of proactive security was first proposed
by Ostrovsky and Yung [4], and subsequently utilized to protect cryptographic
keys by secret sharing them and computing RSA signatures in a distributed
manner [11]. Specifically, Proactive Secret Sharing (PSS) aims to protect against
a mobile adversary that can change the subset of corrupted parties over time and
thus may eventually compromise all involved parties over a long period of time;
the model assumes that such a mobile adversary is limited to simultaneously
corrupting no more than t parties during the same period though. PSS initially
only considered static groups and for settings with honest majorities, Dynamic
Proactive Secret Sharing (DPSS) schemes are both proactively secure and allow

On Regenerating Codes and Proactive Secret Sharing 357

the set of parties to dynamically change over time. The dynamic group problem
has been addressed [14–20], but mostly for the honest majority and non-proactive
settings, and only in [21] in the proactive setting.

In the dishonest majority setting most of the PSS literature [22,23] assumes
a static group of parties, i.e., unchanged during the secret lifetime. PSS pro-
tocols for dynamic groups with dishonest majorities were only recently con-
structed [6,24]. As for any secret sharing against dishonest majorities, security
is only computational. In addition to efficiently handling dynamic groups, recent
work [24] introduces a notion of batched PSS that retain fairness against mixed
(passive and active) adversaries and reduces the communication complexity of
DPSS from O(n4) to O(n2) when batching is used and O(n3) in the single secret
setting.

Regenerating Codes. A large file can divided into pieces, each of which is stored
at a different nodes using distributed storage. Server corruption can lead to
loss of information. Error-correction coding3 techniques allow the recovery of
information stored in a corrupted node using the information stored in other
servers. Regenerating codes were first introduced by Dimakis et al. in [1] to
improve the repair bandwidth for distributed storage systems. The aim is to
recreate the information stored in a corrupted node without recreating the entire
encoded information. Given a file of size M, it can be divided into k pieces of size
M/k which are stored in n nodes using an (n, k) MDS code. Each node stores α
symbols. Information stored in a corrupted node can be recovered by accessing
β sub-symbols from d surviving nodes. This can be done in the following three
ways.

– Exact repair: the encoded block is regenerated exactly as before.
– Functional repair: the corrupted nodes are regenerated such that the new

system represents an MDS code of length n.
– Exact repair of systematic parts: this is a hybrid between the above two repair

schemes. The code contains exactly one replica of the information. Systematic
parts of the code are regenerated using the exact repair scheme and the non-
systematic part is regenerated using the functional repair scheme.

The trade-off between storage efficiency and repair bandwidth is a point of inter-
est. Two special cases of regenerating codes are given by the optimal cases:
minimum-storage regenerating (MSR) codes and minimum-bandwith regenerat-
ing (MBR) codes.

Other Works. Though there are other works combining regenerating codes and
secret sharing, we emphasize that this paper is the first to do so in the proactive
secret sharing setting. First, Huang and Bruck [10] apply the GW paradigm to
threshold secret sharing schemes and prove optimality. They stay in the simplest

3 Regenerating codes are studied from the point of view of erasure recovery in coding
theory literature. However, here we refer to it as a subset of error-correction because
we also care about corruption of nodes along with node failures.

358 K. Eldefrawy et al.

security model, ignoring leakage, and are not concerned with proactive schemes.
A previous work by Huang et al. [25] studies the communication complexity of
threshold secret schemes and presents a scheme with optimal decoding band-
width based on Reed-Solomon codes. However, [25] does not concern repairing
in secret sharing schemes, leakage, randomizing shares (proactive schemes), or
generalized decoding structures.

4 Leakage and Reconstruction: Old Models, New Lens

This section is to show how considering a simple leakage model affects the
security of proactive secret sharing (PSS) schemes across epochs. We show the
connection between repairing Reed-Solomon codes (Subsection 2.1) and PSS
schemes using the leakage model described in (Subsection 2.4). In other words,
we show how the algorithms comprised in [8] can be used to attack an incorrectly-
implemented PSS scheme.

Model. Let (Share,Reconstruct,Refresh,Recover) be a Shamir-based (n, k, F) PSS
scheme (Definition 6) with evaluation points A′ ⊂ F . Our model is simple.
During each epoch of a PSS scheme an adversary A receives either nothing, a
collection of l < t small field elements (α ∈ Ll), or a full field element from
each node. Let l(i) be the number of subfield elements leaked in epoch i, and
let f (i) be the number of full field elements leaked during epoch i. The key
notion throughout this section is that the linear transformations used in [8]’s
reconstruction algorithms are independent of the polynomial f representing the
distributed data (potentially secret). In the notation of [8, Algorithm 1], the
polynomials μζ,α(x) only depend on A4. Lastly, we extend the evaluation points
to include 0 in order to bridge Definitions 6 and a linear exact repair scheme [8,
Algorithm 1], A := A′ ∪ {0}.

4.1 Static Leakage

Here we look at the case to where the leakage function LeakL is static between
epochs.

Proposition 1. Let b be the repair bandwidth of the Reed-Solomon linear exact
repair scheme also being used as a Shamir-based PSS scheme. There is an effi-
cient adversary which receives l(i) leaked subfield elements and f (i) leaked full
field elements which needs b−(tf (i)+ l(i)) subfield elements during a single epoch
to reconstruct the secret s0 ∈ F for a static leakage function between epochs.

The above proposition shows how an adversary can be under the security thresh-
old for whole shares, f (i) < k, during each epoch but can still reconstruct the
secret!
4 For example, Corollary 9 in [8] constructs these polynomials as μζ,α(α∗) = p(α) ·

∏
β∈A\{α∗}(β−α∗)

∏
β∈A\{α}(β−α)

where p is a polynomial dependent only on the evaluation points

A.

On Regenerating Codes and Proactive Secret Sharing 359

4.2 Dynamic Leakage

Here we consider a leakage function that changes between epochs. This setting
represents the case where storage nodes fail to completely erase some data used
in computing the Refresh protocol.

Proposition 2. Let b be the repair bandwidth of the Reed-Solomon linear exact
repair scheme also being used as a Shamir-based PSS scheme. Then, there is an
efficient adversary which needs b leaked subfield elements in order to reconstruct
the secret across epochs assuming the leaked nodes store a non-zero value.

Note that this is a strong leakage model. However, updating a leakage func-
tion via multiplying and inverting finite field elements at each node is a plau-
sible scenario which should be known to those utilizing and implementing PSS
schemes.

5 On the Equivalence of Regenerating Codes and
Proactive Secret Sharing

In this section we prove the equivalence between Regenerating Codes (RC) and
threshold Proactive Secret Sharing (PSS) under certain conditions. Theorem 2
treats the PSS to RC direction, while Theorem 3 treats the reverse one, restricted
to linear, MDS codes. These properties on the RC are required for threshold
security and to construct a simple Refresh protocol.

Theorem 2. For each (t, n) proactive secret sharing scheme represented as a
tuple of algorithms (Share,Reconstruct,Recover,Refresh) which stores α bits at
each node and contacts d nodes in the RecoverPSS protocol (Definition 5), each
sending β bits of data to the failed node, there is an erasure (n′ = n, k′ =
t+1, d′ = d, α′ = α, β′ = β) regenerating code represented as a tuple of algorithms
(Encode, Decode, Repair), as in Definition 3.

Remark 1. We note that the rate given implicitly in Theorem 2 is only 1/n.
However, there are clear ways to achieve a better rate. The first is when the PSS
scheme is linear. Here, the encoding procedure usually involves a linear code of
dimension t+1 and t of the input symbols are uniformly random elements in F .
This randomness is only for security so we can replace these t symbols with data
elements. The second is the case of batching [21], employing a basic technique
from [26], where the PSS scheme takes a secret as an element in F l. The proof
of Theorem 2 for the batching case is the same except s, s′ ∈ F l.

The other direction, from RC to PSS only makes sense if we are able to show
threshold security. This was proven for non-proactive secret sharing schemes
with repair in [10, Theorems 1 and 2]. Here we extend this result to the proactive
setting.

360 K. Eldefrawy et al.

Theorem 3. For every (n+1, k +1, d, α, β) MDS linear regenerating code over
F , there is a (k, n) proactive secret sharing scheme whose RecoverPSS protocol
contacts d nodes, each sending β bits to the damaged node.

Theorem 3 and the result of Guruswami and Wootters [8], Theorem 1 in
the special case where the number of parties equals the degree of the exten-
sion, together imply the existence of an alternative RecoverPSS protocol that
only receives symbols in a subfield for the Shamir-based PSS scheme. This may
be advantageous in settings with restricted communication during the recovery
phase. This is summarized in the following Corollary.

Corollary 1. The Shamir-based PSS scheme, Definition 6 [2,11], over a finite
field F with subfield L ≤ F with degree t = [F : L] has an alternative RecoverPSS

protocol which contacts the remaining n − 1 nodes and receives t symbols in L
from each node in order to recover the lost share.

We emphasize that Corollary 1’s efficient recover protocol is information-
theoretically secure in the setting illustrated by Theorem 1, without leakage. This
is because Theorem 1’s repair algorithm only sends a user t subfield elements
and its secret is exactly comprised of t subfield elements.

6 From General Adversary Structures to General
Decoding Structures

In this section we demonstrate how, due to the relationships between the notions,
an interesting useful paradigm in one area (PSS) can induce an interesting new
notion in the other area (RC). Secret sharing (SS) schemes, and proactive SS
(PSS) in particular, can be extended [6,21,23,24] to accommodate for different
adversaries beyond a threshold one (i.e., more general secure subsets of shares),
and to deal with dynamic change of the servers holding the shares (dynamic
groups). Such extensions make sense in the case of a network of nodes/processors,
holding shares jointly. Since RC is a coding theoretic technique for a network
of nodes/processors to hold sub-codewords, the extended notions make sense in
storage-oriented RC codes. Here we demonstrate such translation of a relevant
extension.

The most generic adversarial capabilities are captured (since PODC’97 [5])
using the general adversary structure (GAS) in the secure computation litera-
ture. The GAS notion is a more general (and practically motivated via different
availability of different types of servers in a network) and more flexible one when
modeling adversaries, compared to only the threshold limitation on corruptions.
GAS applies to various scenarios, for example when only special combinations
of nodes is required to reconstruct a secret, when some nodes are authorized by
some authority and others by another authority and combination of authorities
is required, etc.

Let 2P denote the set of all the subsets of nodes (P) involved in a secret
sharing scheme. A subset of 2P is qualified if nodes in the subset can reconstruct

On Regenerating Codes and Proactive Secret Sharing 361

the secret, while a subset of 2P that nodes in the set obtain no information about
the secret is called ignorant. Every subset of P is either qualified or ignorant5.
The secrecy condition is stronger: even if any ignorant set of nodes hold any
kind of partial information about the shared value, they must not obtain any
additional information about the shared value.

The access structure Γ is the set of all qualified subsets of P and the secrecy
structure Σ is the set of all ignorant subsets of P. Naturally, Γ includes all
supersets of each element in it (so often called monotone access structure), while
Σ includes all subsets of each element in it. We call such minimum or maximum
sets as basis structure, and denote it with ·̃. i.e., the basis access structure Γ̃ is
the set of all minimal subsets in Γ , and the basis secrecy structure Σ̃ is the set
of all maximal subsets in Σ.

The adversary structure Δ ⊆ Σ is a set of subsets of nodes that can be
potentially corrupted. The adversary can choose a set in Δ and corrupt all the
nodes in the set. Note that the adversary structure in t-threshold SS is the set
of all subsets of P of at most t nodes and GAS extends this to non-threshold
models. A GAS includes all of these structures, (Γ,Σ,Δ). We define a family of
security properties on the sets Δ by a covering condition: Δ ∈ Qk(P,Δ) if for
all distinct A1, . . . , Ak ∈ Δ, A1 ∪ · · · ∪ Ak �= P [5,28]. That is, no k different
adversary patterns can cover the set of nodes in the protocol. Further, we are
focused on the Q2(P,Δ) setting: ∀ A,B ∈ Δ,A ∪ B �= P.

One can extend the definition of secret sharing for the threshold structure
(see Definition 4) to the GAS as follows:

Definition 8 (Secret Sharing for GAS). Let F be a finite set. An (n, F)
information-theoretically secure secret threshold sharing scheme over F for a
GAS (Γ,Σ,Δ) is a pair of protocols used between servers labeled as the, unique
and fixed, sharing node S and the set of storage nodes A := {P1, . . . ,Pn}:

Share(s0): on input s0 ∈ F , S randomly generates n shares x1, . . . , xn ∈ F
and returns xi to server Pi.
Reconstruct(s): Any set of nodes in Γ can combine their shares, represented
as a vector of elements x, to reconstruct the secret s′ ∈ F .

For information-theoretic security, we assume s0 is a non-trivial random variable
over F . Then, the scheme’s correctness and security is defined as follows:

Security: if x is any subset of shares corresponding to a set in Σ, then
H(s0|x) = H(s0) > 0.
Correctness: if z is any subset of shares with indices corresponding to a set
of nodes in Γ then H(s0|z) = 0.

When extending the definition to the proactive setting, we break up the
timeline into distinct phases once the secret shares are distributed. Each phase
is represented by a positive integer σ (analogous to Definition 5).

5 That is, we only consider perfect secret sharing schemes [27, Definition 11.59].

362 K. Eldefrawy et al.

Definition 9 (Proactive Secret Sharing for GAS). A proactive secret-
sharing scheme for a GAS (Γ,Σ,Δ) is a secret-sharing scheme as in definition 8
with the following additional algorithms:

Refresh: All storage nodes P1, . . . ,Pn use their respective shares from phase t

to generate new random shares (for the same secret), x
(t+1)
1 , . . . , x

(t+1)
n . Then,

it distributes x
(t+1)
i to Pi.

Recover: A corrupted node, Pr, contacts d uncorrupted nodes which combine
their shares to compute (potentially with new randomness) a new share for
the corrupted node. Pr receives their new (recovered) share.

Lemma 1. There exists a proactive secret sharing (PSS) scheme for general
adversary structures (GAS) as defined in Definition 9 with Q2(P,Δ) adversaries.

Proof. This follows a constructive proof, from a PSS for a GAS given in [6].

6.1 Generalized Decoding in Regenerating Codes

Let P be a set of all servers involved in distributed storage and 2P all its subsets.
A subset of 2P is available if servers in the subset can be accessed to reconstruct
the original data, while a subset of 2P that cannot be used for data reconstruction
is called unavailable. Every subset of P is either available or unavailable. Therefore,
let ΓRC be the sets of servers which can decode when available. We call ΓRC the
decoding structure. Any decoding structure is monotone, i.e., it is closed under
taking supersets.

The analogy between Γ on the secret sharing side and ΓRC on the regen-
erating code side is clear: these are the sets which can decode the secret. So,
there must remain one which is not tampered with, or, equivalently, an erasure
pattern, υ, can come from P as long as there exists B ∈ Γ such that υ ∩B = ∅.
On the other hand, the coding analogy of the sets of tolerable active adver-
saries, Δ, is more subtle. It is, however, the sets of error patterns which the
code can withstand and still decode. In addition, we define the error property
Qk

RC(P,Δ) analogously in the coding setting: For all distinct A1, . . . , Ak ∈ ΔRC ,
A1 ∪ · · · ∪ Ak �= P.

Definition 10 (Generalized-decoding Regenerating Code (GRC)). Let
P1, . . . ,Pn be labeled as servers and S be labeled as a share-generator. Let F be
a finite set. An (n, k, d, α, β) general error and erasure regenerating code for a
decoding structure for (ΓRC ,ΔRC), ∅ �= ΓRC ,ΔRC ⊂ 2P and ΓRC∩ΔRC = ∅, is
a tuple of three protocols (Encode, Repair, Decode) which are defined as follows:

Encode: This protocol has S take a file, represented by f ∈ F [x]≤k−1, as input
and distributes a codeword c = (c1, . . . , cn) ∈ Fn.
Repair: Here, a failed node Pj contacts d other uncorrupted, each of which
sends it β bits of data. Then, the node computes a function on their sent data
(δ1, . . . , δd) to generate its new local storage.

On Regenerating Codes and Proactive Secret Sharing 363

Decode: This protocol accesses any set of servers in ΓRC to reconstruct the
original file.

Moreover, we require the following correctness constraints:

Errors: for all error patterns in ΔRC , Decode correctly decodes to the original
message.
Erasures: for all erasure patterns υ such that there exists a B ∈ ΓRC such
that υ ∩ B = ∅, Decode correctly decodes to the original message.

Now we show the existence of any GRC with Q2
RC error patterns via the

mapping applied in Theorem 2’s proof. We emphasize that the following theorem
is an existence result and not optimized for parameters. We leave optimization
open for future works.

Theorem 4. For every (ΓRC ,ΔRC) with property Q2
RC(P,ΔRC), there exists

a linear GRC as defined in Definition 10 over a finite field F . Moreover, all
erasure patterns, υ, such that there is a B ∈ ΓRC such that υ ∩ B = ∅ can be
correctly decoded.

References

1. Dimakis, A.G., Godfrey, B., Wu, Y., Wainwright, M.J., Ramchandran, K.: Network
coding for distributed storage systems. IEEE Trans. Inf. Theory 5, 4539–4551
(2010)

2. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)
3. McEliece, R.J., Sarwate, D.V.: On sharing secrets and Reed-Solomon codes. Com-

mun. ACM 24, 583–584 (1981)
4. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended

abstract). In: PODC (1991)
5. Hirt, M., Maurer, U.M.: Complete characterization of adversaries tolerable in

secure multi-party computation (extended abstract). In: PODC. IEEE (1997)
6. Eldefrawy, K., Hwang, S., Ostrovsky, R., Yung, M.: Communication-efficient

(proactive) secure computation for dynamic general adversary structures and
dynamic groups. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238,
pp. 108–129. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6 6

7. Maram, S.K.D., et al.: CHURP: dynamic-committee proactive secret sharing. In:
CCS 2019 (2019)

8. Guruswami, V., Wootters, M.: Repairing Reed-Solomon codes. In: STOC (2016)
9. Berlekamp, E.R.: Bounded distance+1 soft-decision Reed-Solomon decoding. IEEE

Trans. Inf. Theory 42, 704–720 (1996)
10. Huang, W., Bruck, J.: Secret sharing with optimal decoding and repair bandwidth.

In: ISIT. IEEE (2017)
11. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how

to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 339–352. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
44750-4 27

12. Baron, J., Eldefrawy, K., Lampkins, J., Ostrovsky, R.: How to withstand mobile
virus attacks, revisited. In: PODC. ACM (2014)

https://doi.org/10.1007/978-3-030-57990-6_6
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/3-540-44750-4_27

364 K. Eldefrawy et al.

13. Nielsen, J.B., Simkin, M.: Lower bounds for leakage-resilient secret sharing. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 556–577.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 20

14. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

15. Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable mul-
tiparty computation with nearly optimal work and resilience. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 14

16. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 23

17. Desmedt, Y., Jajodia, S.: Redistributing secret shares to new access structures and
its applications. Technical Report ISSE TR-97-01, George Mason University, July
1997

18. Schultz, D.: Mobile proactive secret sharing. Ph.D. thesis, Massachusetts Institute
of Technology (2007)

19. Wong, T.M., Wang, C., Wing, J.M.: Verifiable secret redistribution for archive
system. In: IEEE Security in Storage Workshop (2002)

20. Zhou, L., Schneider, F.B., van Renesse, R.: APSS: proactive secret sharing in asyn-
chronous systems. ACM Trans. Inf. Syst. Secur. 8, 259–286 (2005)

21. Baron, J., Defrawy, K.E., Lampkins, J., Ostrovsky, R.: Communication-optimal
proactive secret sharing for dynamic groups. In: Malkin, T., Kolesnikov, V., Lewko,
A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 23–41. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 2

22. Dolev, S., ElDefrawy, K., Lampkins, J., Ostrovsky, R., Yung, M.: Proactive secret
sharing with a dishonest majority. In: Zikas, V., De Prisco, R. (eds.) SCN 2016.
LNCS, vol. 9841, pp. 529–548. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44618-9 28

23. Eldefrawy, K., Ostrovsky, R., Park, S., Yung, M.: Proactive secure multiparty
computation with a dishonest majority. In: Catalano, D., De Prisco, R. (eds.) SCN
2018. LNCS, vol. 11035, pp. 200–215. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98113-0 11

24. Eldefrawy, K., Lepoint, T., Leroux, A.: Communication-efficient proactive secret
sharing for dynamic groups with dishonest majorities. In: Conti, M., Zhou, J.,
Casalicchio, E., Spognardi, A. (eds.) ACNS 2020. LNCS, vol. 12146, pp. 3–23.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57808-4 1

25. Huang, W., Langberg, M., Kliewer, J., Bruck, J.: Communication efficient secret
sharing. IEEE Trans. Inf. Theory 62, 7195–7206 (2016)

26. Franklin, M.K., Yung, M.: Communication complexity of secure computation
(extended abstract). In: STOC (1992)

27. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Secure Multiparty Computation and Secret
Sharing. Cambridge University Press, Cambridge (2015)

28. Hirt, M., Maurer, U.M.: Player simulation and general adversary structures in
perfect multiparty computation. J. Cryptol. 13, 31–60 (2000)

https://doi.org/10.1007/978-3-030-45721-1_20
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-540-85174-5_14
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-319-28166-7_2
https://doi.org/10.1007/978-3-319-44618-9_28
https://doi.org/10.1007/978-3-319-44618-9_28
https://doi.org/10.1007/978-3-319-98113-0_11
https://doi.org/10.1007/978-3-319-98113-0_11
https://doi.org/10.1007/978-3-030-57808-4_1

Extending Lattice Linearity
for Self-stabilizing Algorithms

Arya Tanmay Gupta(B) and Sandeep S. Kulkarni

Computer Science and Engineering, Michigan State University, East Lansing, USA
{atgupta,sandeep}@msu.edu

Abstract. In this article, we focus on extending the notion of lattice
linearity to self-stabilizing programs. Lattice linearity allows a node to
execute its actions with old information about the state of other nodes
and still preserve correctness. It increases the concurrency of the pro-
gram execution by eliminating the need for synchronization among its
nodes.

The extension –denoted as eventually lattice linear algorithms– is per-
formed with an example of the service-demand based minimal dominat-
ing set (SDDS) problem, which is a generalization of the dominating
set problem; it converges in 2n moves. Subsequently, we also show that
the same approach could be used in various other problems including
minimal vertex cover, maximal independent set and graph coloring.

Keywords: Eventually lattice linear algorithms · Self-stabilization ·
Dominating set · Vertex cover · Graph coloring

1 Introduction

In a distributed program, a node cooperates with other nodes to solve the
problem at hand such as leader election, mutual exclusion, tree construction,
dominating set, independent set, etc. There are several models for such dis-
tributed programs. These can be broadly classified as message passing programs
or shared-memory programs. In message passing programs, nodes do not share
memory. Rather, they communicate with each other via messages. On the other
hand, the shared-memory model allows a node to read the memory of other
nodes to solve the given problem.

Implementation of such shared memory programs introduces several chal-
lenges to allow a node to read the state of its neighbors in a consistent fashion.
One solution in this context is that the nodes only execute in a coordinated
manner where when a node is activated by the scheduler, it reads the variables
of other nodes and updates its own state. Furthermore, the scheduler needs
to ensure that any conflicting nodes are not activated at the same time. This
approach, however, is expensive and requires synchronization among nodes.

To alleviate the issue of consistency while reading remote variables, Garg
(2020) [4] introduced lattice linear predicate detection in combinatorial opti-
mization problems. In [4], it is shown that when an algorithm exploits lattice
c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 365–379, 2021.
https://doi.org/10.1007/978-3-030-91081-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_24&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_24

366 A. T. Gupta and S. S. Kulkarni

linearity of the underlying problem, it preserves correctness even if nodes execute
with old information. However, this work assumes that the algorithm begins in
a specific initial state and, hence, is not applicable for self-stabilizing algorithms
since a self-stabilizing algorithm guarantees that starting from an arbitrary state,
the algorithm reaches a legitimate state (invariant) and remains there forever.
With this intuition, in this work, we extend the results in [4] to self-stabilizing
algorithms.

We proceed as follows. We begin with the problem of service-demand based
minimal dominating set (SDDS) which is a generalization of the dominating set
problem. We devise a self-stabilizing algorithm for SDDS. We scrutinize this
algorithm and disassemble it into two parts, one of which satisfies the lattice
linearity property of [4] if it begins in a feasible state. Furthermore, we show that
the second part of the algorithm ensures that the algorithm reaches a feasible
state. We show that the resulting algorithm is self-stabilizing, and the algorithm
has limited-interference property (to be discussed in Sect. 5.5) due to which it is
tolerant to the nodes reading old values of other nodes.

We also demonstrate that this approach is generic. It applies to various other
problems including vertex cover, independent set and graph coloring.

1.1 Contributions of the Article

– We present a self-stabilizing algorithm for the minimal SDDS problem. The
algorithm can be modified to solve other generalizations of dominating set
present in the literature. The algorithm converges in 2n moves, which is an
improvement over the other algorithms in the literature.

– We extend the notion of lattice linear predicate detection from [4] to introduce
the class of lattice linear self-stabilizing algorithms and eventually lattice lin-
ear self-stabilizing algorithms. Such algorithms allow the program to converge
even when the nodes read old values. This is unlike the algorithms presented
in [4] where it is required that (1) the problems have only one optimal state,
and (2) the program needs to start in specific initial states.

– Our solution to SDDS can be extended to other problems including minimal
vertex cover, maximal independent set and graph coloring problems. The
resulting algorithms are eventually lattice linear and can be modified to lattice
linear self-stabilizing algorithms.

1.2 Organization of the Article

In Sect. 2, we discuss the related work in the literature. In Sect. 3, we discuss
some notations and definitions that we use in the article. In Sect. 4, we describe
the algorithm for the service-demand based dominating set problem. In Sect. 5,
we analyze the characteristics of the algorithm and show that it is eventually
lattice linear. In Sect. 6, we use the structure of eventually lattice linear self-
stabilizing algorithms to develop algorithms for vertex cover, independent set
and graph coloring problems. Finally, we conclude the article in Sect. 7.

Extending Lattice Linearity for Self-stabilizing Algorithms 367

2 Literature Study and Discussion on Our Contribution

Self-stabilizing algorithms for the minimal dominating set problem have been
proposed in several works in the literature, for example, in [2,6,9,16,19]. The
best convergence time among these works is 4n moves.

Other variations of the dominating set problem are also studied. Fink and
Jacobson (1985) [3] proposed the minimal k-dominating set problem; here, the
task is to compute a minimal set of nodes D such that for each node v ∈ V (G),
v ∈ D or there are at least k neighbors of v in D. When k = 1, the definition of D
here is same as that in the general dominating set problem. Kamei and Kakugawa
(2003) [10] proposed self-stabilizing algorithm for tree networks under central
and distributed schedulers for the minimal k-dominating set; the converge time
is n2 moves. Kamei and Kakugawa (2005) [11] have proposed a self-stabilizing
distributed algorithm which converges in 2n+3 rounds; their algorithm runs on
synchronous daemon.

A generalization of the dominating set problem is described in Kobayashi et
al. (2017) [13]. This article assumes the input to include wish sets (of nodes) for
every node. For each node i, either i should be in the dominating set D or at
least one of its wish set must be a subset of D. In this case, the input size may
be exponential. The nodes require to read the latest values of other nodes.

Self-stabilizing algorithms for the vertex cover problem has been studied in
Kiniwa (2005) [12], Astrand and Suomela (2010) [15], and Turau (2010) [17]. A
survey of self-stabilization algorithms on independence, domination and coloring
problems can be found in Guellati and Kheddouci (2010) [7].

Garg (2020) [4] studied the exploitation of lattice linear predicates in sev-
eral problems to develop parallel processing algorithms. Lattice linearity ensures
convergence of the system to an optimal solution while the nodes perform exe-
cutions parallely and are allowed to do so without coordination, and are allowed
to perform executions based on the old values of other nodes. Garg (2021) [5]
introduces lattice linearity to dynamic programming problems such as longest
increasing subsequences and knapsack problem. In this approach, the lattice
arises from the computation. We are going to pursue a similar goal for self-
stabilizing problems.

Our SDDS algorithm uses local checking to determine if it is in an inconsistent
state and local correction to restore it. Thus, it differs from [18] where global
correction in the form of reset is used. Local detection and correction is also
proposed in [1,14]. The key difference with our work is that we are focusing on
scenarios where local detection can be performed without requiring coordination
with other nodes.

3 Preliminaries

3.1 Modeling Algorithms

Throughout the article, we denote G to be an arbitrary graph on which we apply
our algorithms. V (G) is the vertex-set and E(G) is the edge-set of G. In G, for

368 A. T. Gupta and S. S. Kulkarni

any node i, Adji is the nodes connected to i in G, and Ni = Adji ∪ {i}. deg(i)
denotes the degree of node i.

Each node i is associated with a set of variables. The algorithm is written
in terms of rules, where each rule for process i is of the form guard −→ action
where guard is a proposition over variables of some nodes which may include the
variables of i itself along with the variables of other nodes. If any of the guards
hold true for some node, we say that the node is enabled. As the algorithm
proceeds, we define a move with reference to a node to be an action in which
it changes its state. A round with reference to a scheduler is a minimum time-
frame where each node is given a chance to evaluate its guards and take action
(if some guard evaluates to true) at least once.

An algorithm is silent if no node is enabled when G reaches an optimal state
(we describe the respective optimal states as we discuss the problems in this
article).

Scheduler/Daemon. A central scheduler/daemon is a scheduler which chooses
only one node to evaluate its guards in a time-step and execute the corresponding
action. A distributed scheduler/daemon chooses an arbitrary subset of nodes of
V (G) in a time-step to evaluate their guards and execute the corresponding
actions respectively. A synchronous scheduler/daemon chooses all the nodes in
V (G) in each time-step to evaluate their guards and execute the corresponding
actions respectively together.

Read/Write Model. In the read/write model, we partition the variables of a
node as public variables that can be read by others, and private variables that
are only local to that node. In this model, the rules of the node are allowed to
be either:

(a) read rules, where any node i is allowed to read the public variables of one or
more or all of its neighbors and copies them into a private variable of i, or

(b) write rules, where i reads only its own variables to update its public variables.

3.2 Lattice Linear Predicates

Lattice Linearity [4] of a problem is a phenomenon by which all the state vectors
of a global state of a system G form a distributive lattice. The predicate which
defines an optimal state of the problem (under which such a lattice forms) is
called a lattice linear predicate. In such a lattice, if the state of a system G is
false according to the predicate, then at least one node i ∈ V (G) can be identified
such that it is forbidden, that is, in order for G to reach an optimal state, i must
change its state. Since this article studies self-stabilization problems, we define
the predicate to be an optimal state with respect to the respective problems.

3.3 The Communication Model

The nodes of a graph communicate via shared memory. In each action, a node
reads the values of its distance-k neighbors (where value of k depends upon the
specific algorithm) and updates its own state. We make no assumptions about

Extending Lattice Linearity for Self-stabilizing Algorithms 369

atomicity with respect to reading the variables. In other words, while one node
is in the middle of updating its state, its neighbors may be updating their owns
state as well. In turn, this means that when node i changes its state (based on
state of node j) it is possible that the state of node j has changed. In other
words, i is taking an action based on an old value of node j. Therefore, our
algorithms will run equally well in a message passing model (with distance-k
flooding), without the requirement of synchronization or locks.

4 Service-Demand Based Dominating Set

In this section, we introduce a generalization of the dominating set problem,
the service-demand based dominating set problem and describe an algorithm to
solve it.

Definition 1. Service-demand based dominating set problem (SDDS).
In the minimal service-demand based dominating set problem, the input is a
graph G and a set of services Si and a set of demands Di for each node i in G;
the task is to compute a minimal set D such that for each node i,

1. either i ∈ D, or
2. for each demand d in Di, there exists at least one node j in Adji such that

d ∈ Sj and j ∈ D.

In the following subsection, we present a self-stabilizing algorithm for the min-
imal SDDS problem. Each node i is associated with variable st.i with domain
{IN,OUT}. st.i defines the state of i. We define D to be the set {i ∈ V (G) :
st.i = IN}.

4.1 Algorithm for SDDS Problem

The list of constants stored in each node is described in the following table. For
a node i, Di is the set of demands of i, Si is the set of services that i can provide
to its neighbors. Di and Si are provided as part of the input.

Constant What it stands for

Di the set of demands of node i

Si the set of services provided by node i

The list of macros stored in each node is described in the following table.
Recall that D is the set of nodes which currently have the state as IN . Satis-
fied(i) is true if i ∈ D or each demand d in Di is being served by some node j in
Adji. If Removable(i) is true, then D\{i} is also a dominating set given that D
is a dominating set. Dominators-Of(i) is the set of nodes that are (possibly)
dominating node i: if some node j is in Dominators-Of(i), then there is at
least one demand d ∈ Di such that d ∈ Si. We also defined Forbidden(i) to
capture the notion of forbidden in [4] (discussed in Sect. 3).

370 A. T. Gupta and S. S. Kulkarni

Macro What it stands for

D {i ∈ V (G) : st.i = IN}
Satisfied(i) st.i = IN ∨ (∀d ∈ Di,∃j ∈ Adji : d ∈ Sj ∧ st.j = IN)

Unsatisfied-DS(i) ¬Satisfied(i)
Removable-DS(i) (∀d ∈ Di : (∃j ∈ Adji : d ∈ Sj ∧ st.j = IN))∧

(∀j ∈ Adji,∀ d ∈ Dj : d ∈ Si =⇒
(∃k ∈ Adjj , k �= i : (d ∈ Sk ∧ st.k = IN)))

Dominators-Of(i) {j ∈ Adji, st.j = IN : ∃d ∈ Di : d ∈ Sj} ∪ {i} if st.i = IN

{j ∈ Adji, st.j = IN : ∃d ∈ Di : d ∈ Sj} otherwise

Forbidden-DS(i) st.i = IN∧ Removable-DS(i)∧
(∀j ∈ Adji,∀ d ∈ Dj : d ∈ Si =⇒

((∀k ∈ Dominators-Of(j), k �= i : (d ∈ Sk ∧ st.k = IN)) =⇒
(id.k < id.i ∨ ¬Removable-DS(k))))

The general idea our algorithm is as follows.

1. We allow a node to enter the dominating set unconditionally if it is unsatisfied,
i.e., Satisfied(i) is false. This ensures that G enters a feasible state (where
D is a dominating set) as quickly as possible.

2. While entering the dominating set is not coordinated with others, leaving the
dominating set is coordinated with neighboring nodes. Node i can leave the
dominating set only if it is removable. But before it does that, it needs to
coordinate with others so that too many nodes do not leave, creating a race
condition. Specifically, if i serves for a demand d in Dj where j ∈ Adji and
the same demand is also served by another node k (k ∈ Adjj) then i leaves
only if (1) id.k < id.i or (2) k is not removable. This ensures that if some
demand d of Dj is satisfied by both i and k both of them cannot leave the
dominating set simultaneously. This ensures that j will remain dominated.

Thus, the rules for Algorithm 1 are as follows:

Algorithm 1 Rules for node i.

Forbidden-DS(i) −→ st.i = OUT .
Unsatisfied-DS(i) −→ st.i = IN .

We decompose Algorithm 1 into two parts: (1) Algorithm 1.1, that only con-
sists of first guard and action of Algorithm 1 and (2) Algorithm 1.2, that only
consists of the second guard and action of Algorithm 1. We use this decomposi-
tion in some of the following parts of this article section to relate the algorithm
to eventual lattice linearity.

5 Lattice Linear Characteristics of Algorithm 1

In this section, we analyze the characteristics of Algorithm 1 to demonstrate that
it is eventually lattice linear. We proceed as follows. In Sect. 5.1, we state the
propositions which define the feasible and optimal states of the SDDS problem,

Extending Lattice Linearity for Self-stabilizing Algorithms 371

along with some other definitions. In Sect. 5.2, we show that G reaches a state
where it manifests a (possibly non-minimal) dominating set. In Sect. 5.3, we show
that after when G reaches a feasible state, Algorithm 1 behaves like a lattice
linear algorithm. In Sect. 5.4, we show that when D is a minimal dominating set,
no nodes are enabled. In Sect. 5.5, we argue that because there is a bound on
interference between Algorithm 1.1 and 1.2 even when the nodes read old values,
Algorithm 1 is an Eventually Lattice Linear Self-Stabilizing (ELLSS) algorithm.
In Sect. 5.6, we study the time and space complexity attributes of Algorithm 1.

5.1 Propositions Stipulated by the SDDS Problem

Notice that the SDDS problem stipulates that the nodes whose state is IN must
collectively form a dominating set. Formally, we represent this proposition as P ′

d

which is defined as follows.

P ′
d(D) ≡ ∀i ∈ V (G) : (i ∈ D ∨ (∀d ∈ Di,∃j ∈ Adji : (d ∈ Sj ∧ j ∈ D))).

The SDDS problem stipulates an additional condition that D should be a
minimal dominating set. We formally describe this proposition Pd as follows.

Pd(D) ≡ P ′
d(D) ∧ (∀i ∈ D,¬P ′

d(D \ {i})).

If P ′
d(D) is true, then G is in a feasible state. And, if Pd(D) is true, then G

is in an optimal state.
Based on the above definitions, we define two scores with respect to the

global state, RANK and BADNESS. RANK determines the number of nodes
needed to be added to D to change D to a dominating set. BADNESS deter-
mines the number of nodes that are needed to be removed from D to make it a
minimal dominating set, given that D is a (possibly non-minimal) dominating
set. Formally, we define RANK and BADNESS as follows.

Definition 2. RANK(D) ≡ min{|D′| − |D| : P ′
d(D′) ∧ D ⊆ D′}.

Definition 3. BADNESS(D) ≡ max{|D| − |D′| : P ′
d(D′) ∧ D′ ⊆ D}.

5.2 Guarantee to Reach a Feasible State by Algorithm 1.2

In this subsection, we show that if the nodes execute Algorithm 1.2 only, then
G is guaranteed to reach a feasible state where D is a (possibly non-minimal)
dominating set.

Lemma 1. Let t.D be the value of D at the beginning of round t. If t.D is not
a dominating set then (t + 1).D is a dominating set.

Proof. Let i be a node such that i ∈ t.D and i �∈ (t + 1).D, i.e., i leaves the
dominating set in round t. This means that i will remain satisfied and each node
in Adji is satisfied, even when i is removed. This implies that i will not reduce
the feasibility of t.D; it will not increase the value of RANK.

372 A. T. Gupta and S. S. Kulkarni

Now let � be a node such that � �∈ t.D which is not satisfied when it evaluates
its guards in round t. This implies that ∃ d ∈ D� such that d is not present in
Sj for any j ∈ Adj�. According to the algorithm, the guard of the second action
is true for �. This implies that st.� will be set to IN .

It can also be possible for the node � that it is satisfied when it evaluates
its guards in round t. This may happen if some other nodes around � already
decided to move to D, and as a result � is now satisfied. Hence � �∈ (t+1).D and
we have that � is dominated at round t + 1.

Therefore, we have that (t+1).D is a dominating set, which may or may not
be minimal. �

By Lemma 1, we have that if the G is in a state where RANK > 0 then by
the next round, RANK will be 0.

5.3 Lattice Linearity of Algorithm 1.1

In the following lemma, we show that Algorithm 1.1 is lattice linear.

Lemma 2. If t.D is a non-minimal dominating set then according to Algorithm
1 (more specifically, Algorithm 1.1), there exists at least one node such that
G cannot reach a minimal dominating set until that node is removed from the
dominating set.

Proof. Since D is a dominating set, we have that the second guard is not true
for any node in G.

Since D is not minimal, there exists at least one node that must be removed
in order to make D minimal. Let S′ be the set of nodes which are removable. Let
M be some node in S′. If M is not serving any node, then Forbidden(M) is
trivially true. Otherwise there exists at least one node j which is served by M ,
that is, ∃d ∈ Dj : d ∈ SM . We study two cases which are as follows: (1) for some
node j served by M , there does not exist a node b ∈ S′ which serves j, and (2)
for any node b ∈ S′ such that M and b serve some common node j, id.b < id.M .

In the first case, M cannot be removed because Removable(M) is false and,
hence, M cannot be in S′, thereby leading to a contradiction. In the second case,
Forbidden(M) is true and Forbidden(b) is false since id.b < id.M . Thus, node
b cannot leave the dominating set in that b cannot leave until M leaves. In both
the cases, we have that j stays dominated.

Since ID of every node is distinct, we have that there exists at least one node
M for which Forbidden(M) is true. For example, Forbidden(M) is true for
the node with the highest ID in S′; G cannot reach a minimal dominating set
until M is removed from the dominating set. �

From Lemma 2, it follows that Algorithm 1.1 satisfies the condition of lattice
linearity defined in Sect. 3. It follows that if we start from a state where D is a
(possibly non-minimal) dominating set and execute Algorithm 1.1 then it will
reach a state where D is a minimal dominating set even if nodes are executing
with old information about others. Next, we have the following result which
follows from Lemma 2.

Extending Lattice Linearity for Self-stabilizing Algorithms 373

Lemma 3. Let t.D be the value of D at the beginning of round t. If t.D is a
non-minimal dominating set then |(t + 1).D| ≤ |t.D| − 1, and (t + 1).D is a
dominating set.

Proof. From Lemma 2, at least one node M (including the maximum ID node
in S′ from the proof of Lemma 2) would be removed in round t. Furthermore,
since D is a dominating set, Unsatisfied(i) is false at every node i. Thus, no
node is added to D in round t. Thus, the |(t + 1).D| ≤ |t.D| − 1.

For any node M that is removable, Forbidden(i) is true only if any node j
which is (possibly) served by M has other neighbors (of a lower ID) which serve
the demands which M is serving to it. This guarantees that j stays dominated
and hence (t + 1).D is a dominating set. �

5.4 Termination of Algorithm 1

The following lemma studies the action of Algorithm 1 when D is a minimal
dominating set.

Lemma 4. Let t.D be the value of D at the beginning of round t. If D is a
minimal dominating set, then (t + 1).D = t.D.

Proof. Since D is a dominating set, Satisfied(i) is true for every node in V (G).
Hence, the second action is disabled for every node in V (G). Since D is minimal,
Removable(i) is false for every node in D. Hence, the first action is disabled at
every node i in D. Thus, D remains unchanged. �

5.5 Eventual Lattice Linearity of Algorithm 1

Lemma 2 showed that Algorithm 1.1 is lattice linear. In this subsection, we make
additional observations about Algorithm 1 to generalize the notion of lattice lin-
earity to eventually lattice linear algorithms. We have the following observations.

1. From Lemma 1, starting from any state, Algorithm 1.2 will reach a feasible
state even if a node reads old information about the neighbors. This is due
to the fact that Algorithm 1.2 only adds nodes to D.

2. From Lemma 2, if we start G in a feasible state where no node has incorrect
information about the neighbors in the initial state then Algorithm 1.1 reaches
a minimal dominating set. Note that this claim remains valid even if the nodes
execute actions of Algorithm 1.1 with old information about the neighbors as
long as the initial information they use is correct.

3. Now, we observe that Algorithm 1.1 and Algorithm 1.2 have very limited
interference with each other, and so an arbitrary graph G will reach an optimal
state even if nodes are using old information. In this case, observe that any
node i can execute the action of the first guard incorrectly at most once.
After going OUT incorrectly, when it reads the correct information about
other nodes, then it will execute the guard of the second action and change its
state to IN , after which, it can go out only if it evaluates that Forbidden(i)
is true.

374 A. T. Gupta and S. S. Kulkarni

From the above observations, if we allow the nodes to read old values, then
the nodes can violate the feasibility of G finitely many times and so G will
eventually reach a feasible state and stay there forever. We introduce the term
Eventually Lattice Linear Self-stabilizing algorithms (ELLSS). Before defining
ELLSS algorithms, we define the class of Lattice Linear Algorithms (LL) as
follows.

Definition 4. Lattice Linear Algorithms. LL algorithms are the algorithms
under which a system G is forced to traverse a lattice of states and proceed to
reach an optimal solution.

Note that LL is a generalization of the notion of lattice linearity introduced
in [4]. In [4], the existence of the lattice arises from the problem at hand. In LL,
it arises by constraints imposed by the algorithm.

The class of ELLSS algorithms can be defined as follows.

Definition 5. Eventually Lattice Linear Self-Stabilizing Algorithms.
An algorithm is ELLSS if its rules can be split into F1 and F2 and there exists
a predicate R such that

(a) Any computation of F1[]F2, that is, the union of the actions in F1 and F2,
eventually reaches a state where R is stable in F1[]F2, i.e., R is true and
remains true subsequently (even if the nodes read old values of other nodes),

(b) F2 is an LL algorithm, given that it starts in a state in R,
(c) Actions in F1 are disabled once the program reaches R.

In Algorithm 1, F1 corresponds to Algorithm 1.2 and F2 corresponds to
Algorithm 1.1. And, the above discussion shows that this algorithm satisfies
the properties of Definition 5 and R corresponds to the predicate that D is a
dominating set, i.e., R ≡ P ′

d(D).
Finally, we note that in Algorithm 1, we chose to be aggressive for a node

to enter the dominating set but cautious to leave the dominating set. A sim-
ilar ELLSS SDDS algorithm is feasible where a node is cautious to enter the
dominating set but aggressive to leave it.

5.6 Analysis of Algorithm 1: Time and Space Complexity

We make the following observations about the time and space complexities of
Algorithm 1. For reasons of space, the proofs are provided in [8].

1. Algorithm 1 converges in 2n moves.
2. D will be feasible within 1 round. After entering a feasible state, D will be

optimal within n moves.
3. Algorithm 1 is self-stabilizing and silent.
4. At any time-step, we have that a node will take O((Δ)4 × (maxd)2) time,

where (1) Δ is the maximum degree of any node in V (G), and (2) maxd is
the total number of distinct demands made by all the nodes in V (G).

5. The space required to store the services and demands in each node is
O(maxd), where maxd is the total number of distinct demands made by
all the nodes in V (G).

Extending Lattice Linearity for Self-stabilizing Algorithms 375

6 Other Examples

The sequence of states of G under Algorithm 1 is essentially divided into two
phases: (1) the system entering a feasible state (reduction of RANK to zero), and
then (2) the system entering an optimal state (reduction of BADNESS to zero).
Algorithm 1 first takes the system to a feasible state where RANK = 0 and then
it takes the system to an optimal state where RANK = 0 ∧ BADNESS = 0.

This notion was used to define the concept of ELLSS algorithms. The notion
of ELLSS algorithms can be extended to numerous other problems where the
optimal global state can be defined in terms of a minimal (or maximal) set S
of nodes. This includes the vertex cover problem, independent set problem and
their variants. Once the propositions regarding S is defined where its structure
depends on some relation of nodes with their neighbours, the designed algorithm
can decide which node to put IN the set and which nodes to take OUT .

In this section, we describe algorithms for vertex cover and independent set,
along with graph coloring, which follow from the structure that we have laid
for the SDDS problem. Thus, the algorithms we describe for these problems
are also ELLSS algorithms. The proofs of correctness follow from the proofs of
correctness described above for the SDDS problem.

6.1 Vertex Cover

In the vertex cover (VC) problem, the input is an arbitrary graph G, and the
task is to compute a minimal set V such that for any edge {i, j} ∈ E(G), (i ∈
V) ∨ (j ∈ V). If a node i is in V, then st.i = IN , otherwise st.i = OUT . To
develop an algorithm for VC, we utilize the macros in the following table.

Removable-VC(i) (∀j ∈ Adji, st.j = IN).
Unsatisfied-VC(i) (st.i = OUT) ∧ (∃j ∈ Adji : st.j = OUT).
Forbidden-VC(i) (st.i = IN) ∧ (Removable-VC(i))∧

(∀j ∈ Adji : (id.j < id.i) ∨ ¬Removable-VC(j)).

The proposition P ′
v defining a feasible state and the proposition Pv defining

the optimal state can be defined as follows.

P ′
v(V) ≡ ∀i ∈ V (G) : ((i ∈ V) ∨ (∀j ∈ Adji, j ∈ V)).

Pv(V) ≡ P ′
v(V) ∧ (∀i ∈ V,¬P ′

v(V − {i})).

Based on the definitions above, the algorithm for VC is described as follows.

Algorithm 2 Rules for node i.

Forbidden-VC(i) −→ st.i = OUT .
Unsatisfied-VC(i) −→ st.i = IN .

376 A. T. Gupta and S. S. Kulkarni

Once again, this is an ELLSS algorithm in that it satisfies the conditions
in Definition 5, where F1 corresponds to the second action of Algorithm 2, F2

corresponds to its first action, and R ≡ P ′
v(V). Thus, starting from any arbitrary

state, the algorithm eventually reaches a state where V is a minimal vertex cover.
Note that in Algorithm 2, the definition of Removable relies only on the

information about distance-1 neighbors. Hence, the evaluation of guards take
O(Δ3) time. In contrast, (the standard) dominating set problem requires infor-
mation of distance-2 neighbors to evaluate Removable. Hence, the evaluation
of guards in that would take O(Δ4) time.

6.2 Independent Set

In VC and SDDS problems, we tried to reach a minimal set. Here on the other
hand, we have to obtain a maximal set. In the independent set (IS) problem, the
input is an arbitrary graph G, and the task is to compute a maximal set I such
that for any two nodes i ∈ I and j ∈ I, if i �= j, then {i, j} �= E(G).

The proposition P ′
i defining a feasible state and the proposition Pi defining

the optimal state can be defined as follows.

P ′
i(I) ≡ ∀i ∈ V (G) : ((i �∈ I) ∨ (∀j ∈ Adji : j �∈ I)).
Pi(I) ≡ P ′

i(I) ∧ (∀i ∈ V (G) \ I,¬P ′
i(I ∪ {i})).

If a node i is in I, then st.i = IN , otherwise st.i = OUT . To develop the
algorithm for independent set, we define the macros in the following table.

Addable(i) (∀j ∈ Adji, st.j = OUT).
Unsatisfied-IS(i) (st.i = IN) ∧ (∃j ∈ Adji : st.j = IN).
Forbidden-IS(i) st.i = OUT∧ Addable(i)∧

(∀j ∈ Adji : ((id.j < id.i) ∨ (¬Addable(j))).

Based on the definitions above, the algorithm for IS is described as follows.

Algorithm 3 Rules for node i.

Forbidden-IS(i) −→ st.i = IN .
Unsatisfied-IS(i) −→ st.i = OUT .

This algorithm is an ELLSS algorithm as well: as per Definition 5, F1 corre-
sponds to the second action of Algorithm 2, F2 corresponds to its first action, and
R ≡ P ′

i(I). Thus, starting from any arbitrary state, the algorithm eventually
reaches a state where I is a maximal independent set.

In Algorithm 3, the definition of Addable relies only on the information
about distance-1 neighbors. Hence, the evaluation of guards take O(Δ3) time.

Extending Lattice Linearity for Self-stabilizing Algorithms 377

6.3 Coloring

In this section, we extend ELLSS algorithms to graph coloring. In the graph
coloring (GC) problem, the input is a graph G and the task is to assign colors
to all the nodes of G such that no two adjacent nodes have the same color.

Unlike vertex cover, dominating set or independent set, coloring does not
have a binary domain. Instead, we correspond the equivalence of changing the
state to IN to the case where a node increases its color. And, the equivalence of
changing the state to OUT corresponds to the case where a node decreases its
color. With this intuition, we define the macros as shown in the following table.

Conflicted(i) (∃j ∈ Adji : (color.j = color.i))
Subtractable(i) ∃c ∈ [1 : color.i − 1] : ((∀j ∈ Adji : color.j �= c))
Unsatisfied-GC(i) Conflicted(i)
Forbidden-GC(i) ¬Conflicted(i) ∧ Subtractable(i)∧

(∀j ∈ Adji : (id.j < id.i ∨ ¬Subtractable(j)))

The proposition P ′
c defining a feasible state and the proposition Pc defining

an optimal state is defined below. Pc is true when all the nodes have lowest
available color, that is, for any node i and for all colors c in [1 : deg(i) + 1],
either c should be greater than color.i or c should be equal to the color of one
of the neighbors j of i.

P ′
c ≡ ∀i ∈ V (G),∀j ∈ Adji : color.i �= color.j.

Pc ≡ P ′
c ∧ (∀i ∈ V (G) : (∀c ∈ [1 : color.i − 1] :

(c < color.i =⇒ (∃j ∈ Adji : color.j = c)))).

Unlike SDDS, VC and IS, in graph coloring (GC), each node is associated
with a variable color that can take several possible values (the domain can be as
large as the set of natural numbers). As mentioned above, the action of increasing
the color is done whenever a conflict is detected. However, decreasing the color is
achieved only with coordination with others. Thus, the actions of the algorithm
are shown in Algorithm 4.

Algorithm 4 Rules for node i.

Forbidden-GC(i) −→ color.i = min
c

{c ∈ [1 : color.i − 1] : (∀j ∈ Adji : color.j �= c)}.
Unsatisfied-GC(i) −→ color.i = color.i+ id.i.

Algorithm 4 is an ELLSS algorithm: according to Definition 5, F1 corresponds
to the second action of Algorithm 2, F2 corresponds to its first action, and R ≡
P ′

c. Thus, starting from any arbitrary state, the algorithm eventually reaches a
state where no two adjacent nodes have the same color and no node can reduce
its color.

378 A. T. Gupta and S. S. Kulkarni

7 Conclusion

We extended lattice linear algorithms from [4] to the context of self-stabilizing
algorithms. The approach in [4] relies on the assumption that the algorithm starts
in specific initial states and, hence, it is not directly applicable in self-stabilizing
algorithms. A key benefit of lattice linear algorithms is that correctness is pre-
served even if nodes are reading old information about other nodes. Hence, they
allow a higher level of concurrency.

We began with the service-demand based dominating set (SDDS) problem
and designed a self-stabilizing algorithm for the same. Subsequently, we observed
that it consists of two parts: One part is a lattice linear algorithm that constructs
a minimal dominating set if it starts in some valid initial states, say R. The
second part makes sure that it gets the program in a state where R becomes true
and stays true forever. We also showed that these parts can only have bounded
interference thereby guaranteeing that the overall program is self-stabilizing even
if the nodes read old values of other nodes.

We introduced the notion of eventually lattice-linear self-stabilization to cap-
ture such algorithms. We demonstrated that it is possible to develop eventually
lattice linear self-stabilizing (ELLSS) algorithms for vertex cover, independent
set and graph coloring.

We note that Algorithms 1–4 could also be designed to be lattice linear self-
stabilizing algorithms (LLSS) if we change the second action of these algorithms
to account for the neighbors in the same fashion as done for the second action.

The Algorithms 1–4 converge under central, distributed, or synchronous dae-
mon. Due to the property of ELLSS, its straightforward implementation in
read/write model is also self-stabilizing. Intuitively, in a straightforward trans-
lation, each remote variable is replaced by a local copy of that variable and this
copy is updated asynchronously. Normally, such straightforward translation into
read/write atomicity does not preserve self-stabilization. However, the ELLSS
property of the self-stabilization ensures correctness of the straightforward trans-
lation.

As future work, an interesting direction can be to study which class of prob-
lems can the paradigm of LL and ELLSS algorithms be extended to. Also, it is
interesting to study if we can implement approximation algorithms under these
paradigms.

References

1. Arora, A., Gouda, M.: Closure and convergence: a foundation of fault-tolerant
computing. IEEE Trans. Software Eng. 19(11), 1015–1027 (1993)

2. Chiu, W.Y., Chen, C., Tsai, S.-Y.: A 4n-move self-stabilizing algorithm for the
minimal dominating set problem using an unfair distributed daemon. Inf. Process.
Lett. 114(10), 515–518 (2014)

3. Fink, J.F., Jacobson, M.S.: N-Domination in Graphs, pp. 283–300. Wiley, Hoboken
(1985)

Extending Lattice Linearity for Self-stabilizing Algorithms 379

4. Garg, V.K.: Predicate detection to solve combinatorial optimization problems. In:
Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Archi-
tectures. SPAA 2020, pp. 235–245. Association for Computing Machinery, New
York (2020)

5. Garg, V.K.: A lattice linear predicate parallel algorithm for the dynamic program-
ming problems. CoRR abs/2103.06264 (2021)

6. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K., Xu, Z.: Self-stabilizing
graph protocols. Parallel Process. Lett. 18(01), 189–199 (2008)

7. Guellati, N., Kheddouci, H.: A survey on self-stabilizing algorithms for indepen-
dence, domination, coloring, and matching in graphs. J. Parallel Distrib. Comput.
70(4), 406–415 (2010)

8. Gupta, A.T., Kulkarni, S.S.: Extending lattice linearity for self-stabilizing algo-
rithms. CoRR abs/2109.13216 (2021)

9. Hedetniemi, S., Hedetniemi, S., Jacobs, D., Srimani, P.: Self-stabilizing algorithms
for minimal dominating sets and maximal independent sets. Comput. Math. Appl.
46(5), 805–811 (2003)

10. Kamei, S., Kakugawa, H.: A self-stabilizing algorithm for the distributed mini-
mal k-redundant dominating set problem in tree networks. In: Proceedings of the
Fourth International Conference on Parallel and Distributed Computing, Applica-
tions and Technologies, pp. 720–724 (2003)

11. Kamei, S., Kakugawa, H.: A self-stabilizing approximation algorithm for the dis-
tributed minimum k-domination. IEICE Trans. Fundam. Electron. Commun. Com-
put. Sci. E88-A(5), 1109–1116 (2005)

12. Kiniwa, J.: Approximation of self-stabilizing vertex cover less than 2. In: Tixeuil,
S., Herman, T. (eds.) SSS 2005. LNCS, vol. 3764, pp. 171–182. Springer, Heidelberg
(2005). https://doi.org/10.1007/11577327 12

13. Kobayashi, H., Kakugawa, H., Masuzawa, T.: Brief announcement: a self-stabilizing
algorithm for the minimal generalized dominating set problem. In: Spirakis, P.,
Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 378–383. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69084-1 27

14. Leal, W., Arora, A.: Scalable self-stabilization via composition. In: 2004 Proceed-
ings of the 24th International Conference on Distributed Computing Systems, pp.
12–21 (2004)

15. Åstrand, M., Suomela, J.: Fast distributed approximation algorithms for vertex
cover and set cover in anonymous networks. In: Proceedings of the Twenty-Second
Annual ACM Symposium on Parallelism in Algorithms and Architectures. SPAA
2010, pp. 294–302. Association for Computing Machinery, New York (2010)

16. Turau, V.: Linear self-stabilizing algorithms for the independent and dominating
set problems using an unfair distributed scheduler. Inf. Process. Lett. 103(3), 88–
93 (2007)

17. Turau, V.: Self-stabilizing vertex cover in anonymous networks with optimal
approximation ratio. Parallel Process. Lett. 20(02), 173–186 (2010)

18. Varghese, G.: Self-stabilization by local checking and correction. Ph.D thesis, Mas-
sachusetts Institute of Technology, October 1992

19. Xu, Z., Hedetniemi, S.T., Goddard, W., Srimani, P.K.: A synchronous self-
stabilizing minimal domination protocol in an arbitrary network graph. In: Das,
S.R., Das, S.K. (eds.) IWDC 2003. LNCS, vol. 2918, pp. 26–32. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-24604-6 3

https://doi.org/10.1007/11577327_12
https://doi.org/10.1007/978-3-319-69084-1_27
https://doi.org/10.1007/978-3-540-24604-6_3

Information Exchange in the Russian
Cards Problem

Zoe Leyva-Acosta1, Eduardo Pascual-Aseff1, and Sergio Rajsbaum2(B)

1 Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas,
Universidad Nacional Autónoma de México (UNAM), 04510 Mexico City, Mexico
2 Instituto de Matemáticas, Universidad Nacional Autónoma de México (UNAM),

04510 Mexico City, Mexico
rajsbaum@im.unam.mx

Abstract. Alice and Bob wish to privately exchange information by
public announcements overheard by Cath. To do so by a deterministic
protocol, their inputs must be correlated. Dependent inputs are repre-
sented using a deck of cards. There is a publicly known signature (a,b, c),
meaning that A gets a cards, B gets b cards, and C gets c cards, out of
the deck of n cards, n = a + b + c + r. We use a perspective inspired
by distributed computing that considers colorings of a generalization of
Johnson graphs, together with techniques based on Singer difference sets
and shifting, to study the classic Russian cards problem a = b = 3,
c = 1, and r = 0. We consider also a novel variant where they wish to
learn something about each other’s hands. We focus on the number of
bits that Alice and Bob need to exchange to solve either the classic or
the minimally informative version of the problem.

1 Introduction

Peter Winkler [24] motivated a long research line e.g. [12,15,18], by “the surpris-
ing discovery that information can be passed both covertly and legally between
bridge partners”. It inspired Fischer and Wright e.g. [12] to consider card games,
where A,B,C draw cards from a deck D of n cards, as specified by a signature
(a,b, c), with n = a+b+c, meaning that A gets a cards, B gets b cards, and C
gets c cards; they thought of the cards as representing correlated random initial
local variables for the players, that have a simple structure. Their protocols are
information-theoretic secure, but they are not concerned with keeping the cards
of A and B secret from C.

Another research line started with an in-depth, combinatorial and epistemic
logic study of van Ditmarsch [8] of the Russian cards problem, presented at the
Moscow Mathematics Olympiad in 2000, where the cards of A and B should be
kept secret from C. Here A, B and C draw (3, 3, 1) cards, respectively, from a
deck of 7 cards. First A makes an announcement, and then B makes an announce-
ment. The goal is for A and B to learn each other cards, while ensuring that C,

Supported by the UNAM-PAPIIT project IN106520.

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 380–394, 2021.
https://doi.org/10.1007/978-3-030-91081-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_25&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_25

Russian Cards Problem 381

who listens to both announcements, cannot deduce a single card of A (nor of
B). The problem has received a fair amount of attention since then, including its
generalized form (a,b, c), and other variants, including multiround, multiplayer,
and different security requirements, using techniques from modular arithmetic,
combinatorial designs, and epistemic logic e.g. [1,2,4–6,9,10,16,22,23].

There is yet another long research line on communication complexity based
on correlated inputs in information theory e.g. [19], but the focus is not in
correlated inputs from card games nor preserving the privacy of the inputs; our
work takes inspiration from this line, as well as from fault-tolerant distributed
computing e.g. [7].

Motivation and the New Approach. In a recent work Rajsbaum [20] considered
the generalized Russian cards problem (a,b, c), for a deck D, with the possibility
that nobody gets r cards, n = a + b + c + r, and studied the case of one-
way information transfer, where A sends a public message using a deterministic
protocol PA. Given a hand a, she sends a public message PA(a) to B, from
which B can deduce a using his own hand b, secretly against C. It showed that
the possibility of r > 0 introduces interesting new aspects to the problem. In
fact, even in the one-way information transfer case, a full characterization of the
signatures for which the problem is solvable is still open.

The set of possible hands of A is Pa(D), all subsets of size a of D. The
vertices of the d-distance Johnson graph Jd(n,a) are Pa(D). Vertices a, a′ of
Jd(n,a) are adjacent whenever a−d ≤ |a∩a′|. In particular, we have a Johnson
graph when d = 1. Let MA be the set of messages that A may send. The protocol
PA can be viewed as a coloring of the vertices of Jd(n,a), d = c + r, a function

PA : Pa(D) → MA.

It was noticed in [20] that B can deduce the hand of a if and only if PA is a
proper coloring of Jd(n,a), d = c + r. Thus, the chromatic number of Jd(n,a)
determines the number of messages needed for PA to be informative. There are
many interesting open questions concerning the chromatic number even when
d = 1, i.e., Johnson graphs [13].

Contributions. We extend the one-way approach of [20] to two-step protocols,
(PA, PB). Using her protocol PA, A makes a public announcement, M = PA(a),
based on her hand, a. Using his own hand, b, B responds using his protocol
PB with a public announcement PB(b,M). In the language of e.g. [4,6,9], the
protocol is informative, if A and B learn each other hands, and a protocol is
safe if C does not learn any of the cards of A and B. We consider additionally
minimally informative protocols, where A and B should learn something about
each other hands.

We start by modeling formally the setting using ideas from distributed com-
puting [14], dealing with the additional difficulties of allowing r > 0, and also,
those of the new notion of minimally informative protocol. We hope this general
formulation is interesting in itself, although for the following results, we use it
only in special cases.

382 Z. Leyva-Acosta et al.

We introduce several combinatorial techniques, and apply them to the classic
Russian cards problem, where a,b = 3. We are interested in communication
complexity, namely, if MA,MB are the sets of messages that A and B can
send, we study how small can MA,MB be, to implement either an informative
or a minimally informative safe protocol.

Remarkably, A and B can implement safe, minimal information transmission,
by exchanging just one bit. We show that when c + r = 1, minimal information
transmission is equivalent to learning one of each other cards. The protocol is
designed using Singer difference sets [21].

Regarding informative protocols, when a,b = 3, since there is no informative
and safe two-step protocol if c+ r ≥ 2, we consider the case of c+ r = 1. We show
that there is a safe informative solution using 6 messages for the weak Russian
cards problem, when c = 0 and r = 1. In the Russian cards case, c = 1, r = 0,
there is a well-known informative and safe solution with 7 messages1, known
since [17]. But there are solutions with only 6 messages [22], and this is optimal,
since the chromatic number of J(7, 3) is known to be 6. However, as opposed
to the 7 message solution, these solutions are not uniform; color classes are of
different sizes. We prove that there is no uniform safe and informative solution
with 6 messages. This result provides evidence that usual uniform solutions based
on modular arithmetic or combinatorial design techniques would not work with
6 messages.

Organization. In Sect. 2 we formalize the problem for general signatures, then
rephrase it in terms of Johnson graphs, and discuss some consequences. In Sect. 3
we present the results about the minimal information variant of the problem
when a = b = 3, and in Sect. 4 we present the results about informative six-
message solutions. The conclusions are in Sect. 5. For lack of space some proofs
have been omitted from this extended abstract.

2 Secure Information Exchange

The problem is defined here, adapting the distributed computing formalization
of [14] to the case of an eavesdropper.

2.1 Correlated Inputs

Let D = {0, . . . , n − 1}, n > 1, be the deck of n distinct cards. An element in the
deck is a card. A subset x of cards is a hand, x ∈ P(D). We may say for short
that x, |x| = m, is an m-set or m-hand, namely, if x ∈ Pm(D), the subsets of D
of size m. A deal = (a, b, c) consists of three disjoint hands, meaning that cards
in a are dealt to A, cards in b to B, and cards in c to C. We call γ = (a,b, c)
the signature of the deal = (a, b, c) if |a| = a, |b| = b and |c| = c, following the

1 First A sends the sum of her cards modulo 7. Using this information, B can deduce
the hand of A, and thus responds by announcing the card of C.

Russian Cards Problem 383

notation by Fischer and Wright [12]. We assume that A, B and C are aware of
the deck and the signature. It has been usually assumed that n = a+b+ c, but
following [20] we consider the case where nobody gets r cards, n = a+b+c+ r.
While A and B get at least one card, a,b ≥ 1, C may get none c ≥ 0. However,
we assume c + r ≥ 1. Otherwise, if c = r = 0, without any communication A
and B know each other hands.

All possible deals are represented by sets of the form I =
{(A, a), (B, b), (C, c)}, which define an input configuration. The sets of all such
deals I, together with all their subsets, form the input complex I. The vertices
are of the form (Y, y), Y ∈ {A,B,C}, and y a hand. Such a vertex is called a
Y -vertex. We say that the hand y is the input of X. Notice that the A-vertices of
I are in a one-to-one correspondence with Pa(D), the B-vertices with Pb(D),
and the C-vertices with Pc(D). Indeed, when c = 0, there is a single vertex for
C in I.

2.2 Informative, Minimally Informative and Safe Protocols

In a one-step protocol, A announces a message M , defined by a deterministic
function PA(a) = M , for each input vertex (A, a) ∈ I, where M belongs to MA,
the domain of possible messages that A may send.

In a two-step protocol, after listening to A’s announcement, B responds with
his own announcement, M ′, using his protocol, also a deterministic function,
PB(b,M) = M ′, M ′ ∈ MB . We say that PA is the protocol of A, respectively.
PB is the protocol of B, and (PA, PB) is simply a protocol. The third player C
listens to the conversation, without sending any messages2.

For a facet I = {(A, a), (B, b), (C, c)} ∈ I, and a protocol (PA, PB), we denote
by α(I) the execution starting with I, where A announces PA(a) and B responds
with PB(b, PA(a)), and C observes both announcements. For a one-step protocol
PA, an execution is defined only by A announcing PA(a). For an execution α,
denote by inputX(α) the hand of player X ∈ {A,B,C}.

For an input simplex I ′ ∈ I, |I ′| < 3, defining inputs for either one or two
players, α(I ′) = {α(I) : I ′ ⊂ I ∈ I, |I| = 3}. For example, if I ′ = {(C, c)} then
α(I ′) denotes all executions where A and B start with disjoint hands of size a,b,
respectively, that are disjoint from c.

The view of a player in an execution consists of its input and the sequence of
messages announced in the execution. Two executions α, α′ are indistinguishable
to X ⊆ {A,B,C}, if the players in X have the same view in both, denoted
α X ∼ α′ (e.g. [3]).

Definition 1 (Informative and minimally informative). Let X,X ′ ∈
{A,B}, be two different agents, and (X ′, x′) by any vertex in I.

– A protocol PX is informative for X ′ if any two executions α1, α2 ∈ α(X ′, x′),
such that inputX(α1)
= inputX(α2), are distinguishable to X ′.

2 Notice that when C listens to a message M , say from A, she knows that the hand
of A could be any a such that PA(a) = M . Thus, M can be seen as an encoding of
all such hands a, as in some previous papers e.g. [4].

384 Z. Leyva-Acosta et al.

– A protocol PX is minimally informative for X ′ if there exist two executions
α1, α2 ∈ α(X ′, x′), such that inputX(α1)
= inputX(α2), which are distin-
guishable to X ′.

– A protocol (PA, PB) is (minimally) informative if it is (minimally) informa-
tive for both A and B.

This definition is based on the graph which is the subcomplex of I induced by
the A-vertices and the B-vertices. The C-vertices appear now; following previous
papers, we require that C cannot tell who holds any individual card.

Definition 2 (Safe protocol). A protocol PA (or a two-step protocol
(PA, PB)) is safe if for any C-vertex (C, c) of I, any protocol execution α in
α(C, c), and any pair of cards x, y held by A and B, respectively, in α, there are
two other executions of the protocol α1, α2 ∈ α(C, c), with y ∈ inputA(α1) and
x ∈ inputB(α2), such that α C ∼α1 and α C ∼α2.

Notice that this is a generalization to r ≥ 0 of the definition used in previous
papers for the case r = 0. When r > 0, C may learn cards that neither A nor
B hold, but for any other pair of cards (x, y), she does not learn which party
holds which card. That is, C might be able to learn a set of cards of size c + r
(including her own).

2.3 Protocols and Johnson Graphs

Recall the d-distance Johnson graph Jd(n,a), consisting of vertices a, a′ ∈
Pa(D), adjacent whenever a − d ≤ |a ∩ a′|. In particular, we have a Johnson
graph when d = 1.

The vertices of A that B considers possible with input b, are the A-neighbors
of (B, b) in I. They are denoted Kp(b̄), where b̄ = D − b. They induce a clique
in Jd(n,a), d = c + r (overloading notation the clique itself is also sometimes
denoted by Kp(b̄)). The vertices in Kp(b̄) are all a ⊆ b̄ with |a| = a. Thus, when
B has input b, B considers possible that A has any input a, a ∈ Kp(b̄). Notice
that Kp(b̄) is of size p =

(
n−b
a

)
, consisting of all a ∈ Pa(D), such that a ⊂ b̄,

and is in fact a maximal clique3.
We have, for one-step protocols, the following reformulation of Definitions 1

and 2.

Theorem 1. Let PA : Pa(D) → MA be a protocol.

– PA is informative for B if and only if PA is a proper vertex coloring of
Jc+r(n,a)

– When c + r ≥ 1, PA is minimally informative for B if and only if for each
b ∈ Pb(D) there is some edge {a, a′} in the clique Kp(b̄) of Jc+r(n,a) such
that PA(a)
= PA(a′)

3 The set of maximal cliques in J(n,m) have been well-studied, they are of size n−m+1
and m + 1 e.g. [13].

Russian Cards Problem 385

– Consider any c ∈ Pc(D), and any y ∈ c̄. PA is safe if and only if for each
M ∈ PA(Kp(c̄)), there exist a, a′ ∈ Kp(c̄) with PA(a) = PA(a′) = M such
that y ∈ a�a′.

One of the interesting implications is the following observation [20]. It is a
generalization of the well-known duality of Johnson graphs: the graphs J(n,m)
and J(n, n−m) are isomorphic. In the following, the protocol P̄A : Pn−a(D) →
MA is defined by P̄A(a) = PA(ā).

Lemma 1 (duality). Assume c + r = 1, so n = a + b + 1. A protocol PA is
informative and safe for (a,b, c) if and only if the protocol P̄A is informative
and safe for (b + 1,a − 1, c).

3 Minimal Information Exchange

We consider here minimal informative solutions for the classic signature (3, 3, 1),
r = 0, n = 7. We present first a two-message minimally informative protocol PA,
in Sect. 3.1. We then show in Sect. 3.2 that for general signatures with c+ r = 1,
any two-message minimally informative protocol is also safe. This implies that
the previous protocol PA for (3, 3, 1) is also safe. Furthermore, in Sect. 3.3 we
show how this protocol can be used in a two-step minimally informative and safe
solution.

A natural two-message protocol PA sends the sum of the cards modulo 2.
However, it is not minimally informative for (3, 3, 1), as was proved in [20].

3.1 Two-Message Minimally Informative Protocol from Singer Sets

The construction we present here is based on Singer difference sets [21] and is
inspired by the good announcement construction proposed in [2, Theorem 3]. A
set S of size m + 1 is a Singer difference set if the differences si − sj modulo
m(m + 1) + 1, with i
= j, si, sj ∈ S, are all the different integers from 1 to
m(m + 1). In the following, the notation x + S for a set S stands for the set
{x + s mod v | s ∈ S}.

Lemma 2. Let S be a Singer difference set of size m+1 and v = m(m+1)+1, then
for any two distinct elements l1, l2 ∈ {x + S | x ∈ Zv}, it holds that |l1 ∩ l2| = 1.

For a prime power m there is a Singer difference set of size m + 1, with all
elements between 0 and m(m+1) [21]. Thus, we know there is a Singer difference
set S of size 3, such that S ⊆ Z7 which is what we need for the following protocol
construction.

Let S be a Singer difference set of size 3 and S′ a 3-set such that S′ ⊆ D−S.
Let L and L′ be defined as follows:

L = {x + S | x ∈ Z7}, L′ = {x + S′ | x ∈ Z7} (1)

386 Z. Leyva-Acosta et al.

Then, the protocol χS : P3(D) → Z2 is defined by,

χS(0)−1 = L ∪ L′, χS(1)−1 = P3(D) − χS(0)−1.

Lemma 3. The cliques Kp(ā) of J(7, 3), with a ∈ L, partition P3(D) − L.

The main result of this section is the following:

Theorem 2. Let S be a Singer difference set of size 3 and S′ a 3-set such that
S′ ⊆ D − S. The protocol PA = χS is minimally informative for B, for (3, 3, 1).

Proof. By Lemma 3, for any b ∈ P3(D) we have two cases, namely b ∈ L or
b ∈ Kp(ā) for some a ∈ L.

Suppose b ∈ L, then there is x ∈ Z7, such that b = x +S. Therefore x + S′ ∈
Kp(b̄), otherwise if x + S and x + S′ were to have common elements, it would
mean that S and S′ are not disjoint. Thus, as |L| = |L′|, for any b ∈ L there is
exactly one element a ∈ L′ such that a ∈ Kp(b̄), given that all the cliques Kp(b̄),
b ∈ L are disjoints by Lemma 3. Finally, let a ∈ Kp(b̄) be x + S′ and a′ be any
element in Kp(b̄) − a, then χS(a) = 0 and χS(a′) = 1.

Now suppose b ∈ Kp(ā) for some a ∈ L. Then a ∈ Kp(b̄) and χS(a) = 0.
Let a′ be any element in Kp(b̄) − {a}, then dist(a, a′) = 1, i.e. |a ∩ a′| = 2 and
therefore a′
∈ L, otherwise it would contradict Lemma 2. Now let a1, a2, a3 be
the three elements in Kp(b̄) − {a}, and assume for contradiction that χS(a1) =
χS(a2) = χS(a3) = 0, i.e. a1, a2, a3 ∈ L′. Let b̄ = {x, y, z, k}, then w.l.o.g.
a1 = {x, y, z}, a2 = {x, y, k} and a3 = {x, k, z}. Thus, there are only three
different ways in which the elements of these sets could be obtained according
to (1), from S′ = {s′

1, s
′
2, s

′
3} and different i, j, l ∈ Z7:

s′
1 s′

2 s′
3

+i x y z
+j y x k
+l - - -

s′
1 s′

2 s′
3

+i x y z
+j k x y
+l z k x

s′
1 s′

2 s′
3

+i x y z
+j y k x
+l z x k

Thus, for any of the previous scenarios to hold we would need resp. that

x − y ≡ y − x, x − z ≡ z − x, k − x ≡ x − k mod 7.

Given that 7 is prime, any of the previous statements is clearly impossible.
Then, we have arrived to a contradiction, and the theorem follows.

Regarding the final argument from the previous proof, the reader can verify
that we can always arrive to a contradiction of the form x − y ≡ y − x mod 7,
for different x, y ∈ Z7 or the more trivial x + i ≡ x + j mod 7, for different
x, i, j ∈ Z7 (which we discarded from the beginning in the proof).

Russian Cards Problem 387

3.2 Safety for Two-Message Minimally Informative Protocols

The two-message protocol PA of the previous section is safe, in light of the
following theorem.

Theorem 3. Let c+ r = 1, b ≥ 2. If a two-message protocol PA for (a,b, c) is
minimally informative then it is safe.

Proof. Let χ : Pa(D) → Z2 be a minimally informative coloring for J(n,a).
Assume for contradiction that χ is not safe. That is, according to the safety
characterization Theorem 1 there ∃c ∈ D,∃M ∈ Z2,∃x ∈ c̄, such that for any
a-sets a, a′ ⊆ c̄, it holds ¬(χ(a) = χ(a′) = M) ∨ x
∈ a�a′. Thus, for such c, M
and x we have χ(a) = χ(a′) = M ⇒ x ∈ a ∩ a′ ∨ x
∈ a ∪ a′; so, if we consider
any a, a′ ⊆ c̄ such that a, a′ ∈ χ−1(M), if x ∈ a then x ∈ a′ or else if x
∈ a then
x
∈ a′. This means, for this c, M and x one of the following should hold:

1. for any a ⊆ c̄, if χ(a) = M then x
∈ a
2. for any a ⊆ c̄, if χ(a) = M then x ∈ a

Let {M ′} = Z2 − {M}, then the previous is equivalent to:

1. for any a ⊆ c̄, if x ∈ a, then χ(a) = M ′

2. for any a ⊆ c̄, if x
∈ a, then χ(a) = M ′

Suppose case 1 holds. Let a′ ⊆ c̄ be an a-set such that x
∈ a′, then χ(a′)
= M ′,
otherwise if b = D − a′ − {x} (so that b̄ = a′ ∪ {x}), for any a1 ∈ Kp(b̄), we
have χ(a1) = M ′ (given that x ∈ a1 or a1 = a′), and then χ is not minimally
informative. Thus, let b be a b-set such that c, x ∈ b, then for all a-set a′ ∈ Kp(b̄),
we have χ(a′)
= M ′. Thus, all a-set a′ ∈ Kp(b̄) are equally colored by χ (given
that there are only two colors in Z2), a contradiction to χ being a minimally
informative coloring for J(n,a), so χ is safe.

Suppose case 2 holds. Let b be a b-set such that c, x ∈ b, then for all a-set
a′ ∈ Kp(b̄), we have χ(a′) = M ′. Thus all a-set a′ ∈ Kp(b̄) are equally colored
by χ, thus we arrived to the same contradiction as before.

Notice that c + r = 1 is necessary for the arguments in the proof. Thus, for
example, the result does not hold for the case (3, 3, 2).

3.3 Two-Step Minimally Informative Solution for (3, 3, 1)

A two-step solution, for signature (3, 3, 1) is obtained when both A and B send
just one bit, using the same protocol, based on the construction from Sect. 3.1,
denoted (χS , χS). We remark that the message sent by B does not depend on
the one by A, so they could both send their announcements concurrently.

Theorem 4. Let S be a Singer difference set of size 3 and S′ a 3-set such that
S′ ⊆ D − S. The two-step protocol (χS , χS) is a minimally informative and safe
for (3, 3, 1), with |MA| = |MB | = 2.

388 Z. Leyva-Acosta et al.

Proof. By Theorem 2, it is straightforward that (χS , χS) is minimally informa-
tive for (3, 3, 1). Regarding the safety property, according to Definition 2, we
must consider any card c ∈ D4 that C might hold, any execution α ∈ α(C, c),
and any pair of cards x, y held by A and B, respectively, in α. Let M and M ′ be
the messages announced by A and B in α, respectively, i.e., M = χS(inputA(α))
and M ′ = χS(inputB(α)). We must show that there are two other executions
of the protocol α1, α2 ∈ α(C, c), with y ∈ inputA(α1) and x ∈ inputB(α2), such
that α C ∼α1 and α C ∼α2.

First, assume that M = M ′. Now, consider the execution α′ for the deal
(inputB(α), inputA(α), c). Since both A and B use the same protocol, α′ C ∼ α
and y ∈ inputA(α′) and x ∈ inputB(α′). Thus, we are done.

Assume (M,M ′) = (0, 1). Notice that, there are exactly three elements in
L′ = {x + S′ | x ∈ Z7} that contain card c. Let us say these elements are
t + S′, u + S′ and v + S′. Then, the elements t + S, u + S and v + S from L are
in Kp(c̄) ∩ χ−1

S (0). Let t + S, u + S and v + S be a1, a2 and a3 respectively.
Consider the 3-sets b1 = D −a1 − c, b2 = D −a2 − c and b3 = D −a3 − c, so that
b1 ∈ Kp(ā1), b2 ∈ Kp(ā2) and b3 ∈ Kp(ā3). Let α1, α2 and α3 be the executions
for the deals (a1, b1, c), (a2, b2, c) and (a3, b3, c), respectively. Notice that, by
Lemma 2, b1, b2, b3
∈ L, since a1 ∩ b1 = ∅, a2 ∩ b2 = ∅ and a3 ∩ b3 = ∅. Assume
for contradiction that there are at least two distinct elements in Kp(ā1) ∩ L′.
Then, one of these elements must be t + S′, and other must be k + S′ for
some k ∈ Z7, with k
= t. This means, that Kp(t + S) and Kp(k + S) are not
disjoint, a contradiction with Lemma 3. Then, there is exactly one element in
Kp(ā1)∩L′, which is t+S′. But, since c ∈ t+S′, it follows that b1
∈ Kp(ā1)∩L′,
i.e., b1
∈ L′. Thus, b1
∈ χ−1

S (0), which means χS(b1) = 1. Similarly, we can
prove that b2
∈ L′ and b3
∈ L′ then, b2
∈ χ−1

S (0) and b3
∈ χ−1
S (0), therefore

χS(b2) = 1 and χS(b3) = 1. It follows that α C ∼α1, α C ∼α2 and α C ∼ α3.
By Lemma 2, the intersection of any pair of elements from L is exactly one.
Then, since c
∈ a1 ∪ a2 ∪ a3, from the inclusion-exclusion principle, it follows
that |a1 ∪ a2 ∪ a3| = 6 and |a1 ∩ a2 ∩ a3| = 0. Then, there must be two elements
in {a1, a2, a3} such that one contains the card y, and other that do not contains
the card x. W.l.o.g, let’s say these elements are a1 and a2. Thus, we have that
y ∈ inputA(α1) and x ∈ inputB(α2).

Assume (M,M ′) = (1, 0). Given that a = b, A and B use the same protocol,
this follows from the previous case, i.e., they are symmetric.

4 Russian Cards Problems

We study here informative two-step protocols for the case a = b = 3. We
consider the case of c + r = 1, since there are no informative and safe solutions
when c + r ≥ 2. In the classic Russian cards problem c = 1, r = 0. In the weak
Russian cards problem c = 0, r = 1, namely, C gets no cards at all.

4 We also denote the singleton set with card c as c, as it is always clear from the
context which case it is.

Russian Cards Problem 389

First, by [20, Theorem 5], we have the following impossibility, justifying why
we consider only the case of n = 7, for both the classic signature (3, 3, 1) and for
the weak variant (3, 3, 0).

Theorem 5. There is no informative and safe two-step protocol for either of
the two following cases: signature (3, 3, 1) and r ≥ 1 and signature (3, 3, 0) and
r ≥ 2.

The classic Russian cards problem with signature (3, 3, 1) and n = 7 has
been thoroughly studied, an exhaustive analysis can be found in [8]. It is well-
known that there is a simple, modular arithmetic solution sending seven mes-
sages, |MA| = |MB | = 7.

4.1 Solutions with Six Messages

Considering Theorem 1, recall that the chromatic number of Johnson graphs
has been well studied due to its importance in combinatorics [13] and coding
theory [11]. In general, determining the chromatic number of a Johnson graph
is an open problem [13, Chapter 16]. It is known that χ(J(7, 3)) = 6, and hence
there is an informative protocol with 6 messages, and no less5. We present an
explicit solution below, which is informative, but not safe for the weak version,
and then a solution that is informative and safe for the weak version, but not
for the classic version. At the end we prove there is no uniform solution with 6
messages for the classic version.

While J(7, 3) is the same for the Russian cards problem and for its weak
version, for the protocol to be safe one needs to consider the possible inputs of
C. In the Russian cards problem, the C-vertices are Pc(D), c = 1, while in the
weak version, there is a single C-vertex, (C, ∅). It is not hard to see that in both
cases there is a two-step protocol with |MA| = 6 (which is informative and safe),
see the technical report of [20]. While this is the smallest number of messages for
A, it is possible for B to send only 4 different messages, if safety is not required.

Theorem 6. There is an informative (non-safe) two-step protocol for the Rus-
sian cards problem and also for the weak version, that is optimal for both A and
B, with |MA| = 6 and |MB | = 4.

4.2 Impossibility of Uniform Solutions

Here we discuss a new technique to study the structure of six message protocols
PA to the Russian cards problem. In a six message solution, every color class
must be of size at least 5, or at most 7. Given that there are 35 possible hands of
A, there are only three possibilities for the classes’ size distribution: the uniform
solutions 5, 6, 6, 6, 6, 6 and 5, 5, 6, 6, 6, 7, and the non uniform one 5, 5, 5, 6, 7, 7.
This is optimal for a six message uniform solution, namely, two color classes
5 The same lower bound is [22, Theorem 4], proved by reduction to a combinatorial

design theorem.

390 Z. Leyva-Acosta et al.

must be of size 7. Thus, there is no solution with six messages with classes of
sizes 5, 6, 6, 6, 6, 6 nor 5, 5, 6, 6, 6, 7. This is stated in the following theorem.

Theorem 7. There is no uniform protocol PA for the Russian cards problem
with six messages.

Proof. Assume for contradiction that there is such a protocol PA, which parti-
tions all the 35 possible hands of A into 6 color classes. One class must have 5
hands, by a counting argument, not all can have at least 6, and it is not hard to
check that a color class cannot have only 4 hands. Also, a color class cannot have
more than 7 hands (as observed in [8]). Thus, the most uniform solution induces
a partition of sizes 5, 6, 6, 6, 6, 6. And the less-uniform solutions are either of sizes
5, 5, 6, 6, 6, 7, or 5, 5, 5, 6, 7, 7.

A partition with 5 hands must have a single card, say 0, that appears in 3
hands. All other cards appear twice. There are 15 hands containing 0. Consider
all remaining 12 hands containing 0 in the other color classes, say 2 through 6.

In the remaining 5 classes there must be 3 with two hands containing 0, and
2 classes with three hands containing 0. Recall that each card must appear at
least twice in a color class, [20]. Also, no color class can have 4 hands containing
0, because then two hands would have an intersection of 2 cards (and share an
edge of J(7, 3), violating the properness of the coloring).

a- 012 034 +56

b- 013 056 +24

c- 025 046 +13

1 2 5

643

a

a

bb

c

c

1 3

24

5

1 5

36

2 4

56

5

6 6

4

4
2 2

1

1
3 3

a- 012 046 +35

b- 013 056 +24

c- 025 034 +16

1 2 5

643

a

c

bb

c

a

1 4

26

5

1 5

36

2 3

54

5
3 3

2

2
4 4

1

1

6 6

1 5

36

2

2
4 4

146 in common

a

b

c

b

a

b

c

G0

G0

Fig. 1. First configuration on top 12, 34; 13, 56; 25, 46. Second configuration on bottom
12, 46; 13, 56; 25, 34. On the right part of the trees of possible ways of completing them.

Consider three color classes of size 6, denoted a, b, c, each one has exactly two
hands containing 0. The case where one of these classes is of size 7, and hence
it has three hands containing 0, is similar; it will be discussed at the end.

Russian Cards Problem 391

a- 012 045 +36

b- 013 056 +24

c- 023 046 +15

1 2 5

643

a

a bb

c

c

1 5

24

3

1 5

36

2 4

36

3
6 6

4

4
2 2

1

1
5 5

1 5

36

2

2
4 4

146 in common

2 4

36

5

5
1 11 5

24

6

1 5

36

2 4

36

6
3 3

2

2
4 4

5

5
1 1

1 5

36

4

4
2 2

235 in common

2 4

36

1

1
5 5

Fig. 2. The a, b, c classes define two triangles. On the right part are the trees of possible
ways of completing first a, then b and then c, to have each 6 hands. Each hand is
represented by an edge.

The 3 color classes a, b, c with two hands containing 0 define a graph G0 on
the vertices D\0 = {1, 2, 3, 4, 5, 6}, each vertex representing a card. An edge of
this graph is colored with an element from {a, b, c}, meaning that if an edge x, y
is colored i, then the hand 0xy is in class i ∈ {a, b, c}.

Since two hands in a class cannot have an intersection of more than one card,
it follows that the edges of the same color are independent in G0.

Now, assume for contradiction that a vertex, say 1, has degree 3. The three
edges {1, v1} , {1, v2} , {1, v3} are colored with different elements from {a, b, c}.
As we shall see, this implies that 1 appears in three hands of each class, a, b, c.
Therefore, it appears in two hands, of each of the remaining classes, d, e, f . We
can thus consider the graph G1 on the vertices D\1, with edges colored with
elements from {d, e, f}, meaning that if an edge x, y is colored i, then the hand
1xy is in class i. The vertex 0 of G1 must then have degree 3, because as we
shall see, this is needed for 0 to appear three times in each class d, e, f . But
this implies that 0 is incident to one of v1, v2, v3, say vi, since the graph has
only 6 vertices. Namely, {0, vi} is and edge of G1, and {1, vi} is and edge of G0,
so the hand 01vi appears twice, in a class of {a, b, c} and a class of {d, e, f}, a
contradiction to the assumption that a vertex has degree three in G0.

Thus, the edges of G0 either they form a cycle or two triangles. There are
two types of cyclic configurations for the three classes a, b, c with two hands
containing 0: either for each i ∈ {a, b, c}, the edges colored i are opposite in the
cycle or not. For instance, 12, 34; 13, 56; 25, 46 (all plus 0) or else 12, 46; 13, 56;
25, 34 (all plus 0). See Fig. 1 for these two cyclic configurations, and Fig. 2 for
the triangles case. These figures illustrate the case where 0 appears in exactly
two hands, and the color classes are of size 6.

392 Z. Leyva-Acosta et al.

We need to complete each set of two hands to form a color class of 6 hands,
by adding 4 more hands. These 4 more hands do not contain 0. The process to
do it, is represented by three graphs, Ga, Gb, Gc. Now the vertices of the graph
Gi, i ∈ {a, b, c} are the four cards spanned by the two independent edges of the
class Gi. There are four edges on these four vertices forming a cycle in each Gi;
each edge corresponds to a combination that does not appear in one of the two
independent edges of Gi (because two cards that already appeared in a hand,
cannot occur in another hand). The goal is to color these four edges, with the
two remaining colors (0 is no longer available, because it already appears in two
hands).

Notice that a loop on a vertex x could in principle be used, coloring it with
the two remaining colors, giving the hand xyz, if the two remaining colors are yz.
However, at most one such loop can be used (using two such loops, would give
hands with intersection yz, with violets the requirement that the color is proper).
And using a loop prevents using the two adjacent edges, leaving only the other
two, non-adjacent edges to be used, i.e., coloring only 3 edges. It follows that
no such loop can be used, because we need to color 4 edges, to obtain together
with the 2 hands containing 0, the total number of hands which is 6 in the color
class.

Consider all 4 combinations of taking one card from each pair (of 2 values
different from 0). Then add each of the two remaining cards to complementary
pairs, as illustrated in the figures. For example, in Fig. 1, for the pairs (a) 12,34
one most add values 56. And there are only two options of getting independent
edges. Add 5 to 13 and to 24; add 6 to 14 and to 23, as in the figure. Or else
add 6 to 13 and to 24; add 5 to 14 and to 23.

Once 5 is added to 13 and to 24, and 6 to 14 and to 23, the next move is
determined, to complete class (b). In the figure a blue arrow shows that 146
would be in common to the next class, if we added 2 to 15 and 36; and 4 to
16 and 35. Thus, the only option is the complementary choice. But then, either
way, it is not possible to add 1 and 3 to class (c). In the figure one choice is
shown, where 236 is repeated in classes (a) and (c). The reader can verify that
in either of the two types of configurations, this process cannot be completed.
The figure of the full tree for the first configuration and the proof for the class
of size 7 are in the technical report of [20].

5 Conclusions

We have presented an indistinguishability-based formalization of the problem of
A and B communicating to each other information about their hands, by public
announcements, without C learning for any of their cards who holds it. We
described two variants: one where A and B learn each other hands, and one where
they learn something about each other hands. For concreteness, the formalization
was done for two-step protocols, where A makes the first announcement, and
then B makes the second announcement, but can be used also for multi-round
protocols. We then viewed the formalization as vertex colorings of distance d

Russian Cards Problem 393

Johnson graphs. This allows to prove general properties about when there exists
a solution, in terms of the number of cards n and the signature (a,b, c), and
exposing a relation with coding theory.

We studied in detail the case where a = b = 3, introducing new ideas both
for the informative and for the minimally informative case, that we hope can
be useful for more general signatures. But already in this specific case there
are interesting combinatorial problems. We presented the two following main
technical results. First, the surprising result that exploits the correlated inputs
of A and B to inform one of their cards to each other privately, using a single bit
announcement (Theorem 4). Second, there are no uniform six-message solutions
to the Russian cards problem, and hence no corresponding colorings of J(7, 3)
(Theorem 7).

Many interesting questions remain open. While for c = 1, r = 0, there is
a characterization of the signatures (a,b, c) that allow for a two-step informa-
tive and safe solution [20], namely, for graphs J(n,a), the general case Jc+r(a,b)
remains open. Even more cases remain open, for the minimally informative prob-
lem. We followed the definition of security of most previous papers e.g. [1,2,4–
6,8,9], that requires privacy for individual cards only, but it would be interesting
to investigate stronger requirements, in particular where C should learn nothing
about the hands of A and B, such as in [16,22], which become more subtle in
the case of r > 0, and have not been studied at all for the minimally informa-
tive problem. It would also be interesting to study the case of four players, with
signature (a,b, c, r), n = a+b+ c+ r, which seems similar to the case of three
players we considered here where no one gets r cards, and relate it to previous
multi-players work e.g. [10].

Acknowledgement. We thank Hans van Ditmarsch for his comments.

References

1. Albert, M., Cordón-Franco, A., van Ditmarsch, H., Fernández-Duque, D., Joosten,
J.J., Soler-Toscano, F.: Secure communication of local states in interpreted sys-
tems. In: Abraham, A., Corchado, J.M., González, S.R., De Paz Santana, J.F.
(eds.) International Symposium on Distributed Computing and Artificial Intelli-
gence. Advances in Intelligent and Soft Computing, vol. 91, pp. 117–124. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19934-9 15

2. Albert, M.H., Aldred, R.E.L., Atkinson, M.D., van Ditmarsch, H., Handley, C.C.:
Safe communication for card players by combinatorial designs for two-step proto-
cols. Australas. J. Comb. 33, 33–46 (2005)

3. Attiya, H., Rajsbaum, S.: Indistinguishability. Commun. ACM 63(5), 90–99 (2020)
4. Cordón-Franco, A., van Ditmarsch, H., Fernández-Duque, D., Joosten, J.J., Soler-

Toscano, F.: A secure additive protocol for card players. Australas. J. Comb. 54,
163–176 (2012)

5. Cordón-Franco, A., Ditmarsch, H., Fernández-Duque, D., Soler-Toscano, F.: A
geometric protocol for cryptography with cards. Des. Codes Cryptogr. 74(1), 113–
125 (2015)

https://doi.org/10.1007/978-3-642-19934-9_15

394 Z. Leyva-Acosta et al.

6. Cordón-Franco, A., Van Ditmarsch, H., Fernández-Duque, D., Soler-Toscano, F.:
A colouring protocol for the generalized Russian cards problem. Theor. Comput.
Sci. 495, 81–95 (2013). https://doi.org/10.1016/j.tcs.2013.05.010

7. Delporte-Gallet, C., Fauconnier, H., Rajsbaum, S.: Communication complexity of
wait-free computability in dynamic networks. In: Richa, A.W., Scheideler, C. (eds.)
SIROCCO 2020. LNCS, vol. 12156, pp. 291–309. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-54921-3 17

8. van Ditmarsch, H.: The Russian cards problem. Stud. Log. 75, 31–62 (2003)
9. van Ditmarsch, H., Soler-Toscano, F.: Three steps. In: Proceedings of CLIMA XII.

Lecture Notes in Computer Science, vol. 6814, pp. 41–57. Springer, New York
(2011)

10. Duan, Z., Yang, C.: Unconditional secure communication: a Russian cards protocol.
J. Comb. Optim. 19(4), 501–530 (2010)

11. Etzion, T., Bitan, S.: On the chromatic number, colorings, and codes of the Johnson
graph. Discret. Appl. Math. 70(2), 163–175 (1996)

12. Fischer, M.J., Wright, R.N.: An efficient protocol for unconditionally secure secret
key exchange. In: Proceedings of 4th Symposium Discrete Algorithms (SODA). p.
475–483. SIAM, USA (1993)

13. Godsil, C., Meagher, K.: Erdős-Ko-Rado Theorems: Algebraic Approaches. Cam-
bridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge
(2015)

14. Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combi-
natorial Topology. Elsevier-Morgan Kaufmann (2013)

15. Koizumi, K., Mizuki, T., Nishizeki, T.: A revised transformation protocol for
unconditionally secure secret key exchange. Theory Comput. Syst. 42(2), 187–221
(2008)

16. Landerreche, E., Fernández-Duque, D.: A case study in almost-perfect security
for unconditionally secure communication. Des. Codes Cryptogr. 83(1), 145–168
(2017)

17. Makarychev, Y.S., Makarychev, K.: The importance of being formal. Math. Intelli.
23(1) (2001)

18. Mizuki, T., Shizuya, H., Nishizeki, T.: A complete characterization of a family of
key exchange protocols. Int. J. Inf. Secur. 1(2), 131–142 (2002)

19. Orlitsky, A., Viswanathan, K.: One-way communication and error-correcting codes.
IEEE Trans. Inf. Theory 49(7), 1781–1788 (2003)

20. Rajsbaum, Sergio: A distributed computing perspective of unconditionally secure
information transmission in Russian cards problems. In: Jurdziński, Tomasz,
Schmid, Stefan (eds.) SIROCCO 2021. LNCS, vol. 12810, pp. 277–295. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-79527-6 16. Full preliminary ver-
sion in arXiv:2009.13644, September 2020

21. Singer, J.: A theorem in finite projective geometry and some applications to number
theory. Trans. Am. Math. Soc. 43(3), 377–385 (1938)

22. Swanson, C.M., Stinson, D.R.: Combinatorial solutions providing improved secu-
rity for the generalized Russian cards problem. Des. Codes Cryptogr. 72(2), 345–
367 (2014)

23. Swanson, C.M., Stinson, D.R.: Additional constructions to solve the generalized
Russian cards problem using combinatorial designs. Electron. J. Combin. 21(3)
(2014)

24. Winkler, P.: The advent of cryptology in the game of bridge. Cryptologia 7(4),
327–332 (1983)

https://doi.org/10.1016/j.tcs.2013.05.010
https://doi.org/10.1007/978-3-030-54921-3_17
https://doi.org/10.1007/978-3-030-54921-3_17
https://doi.org/10.1007/978-3-030-79527-6_16
http://arxiv.org/abs/2009.13644

Compact Distributed Interactive Proofs
for the Recognition of Cographs
and Distance-Hereditary Graphs

Pedro Montealegre1(B), Diego Ramı́rez-Romero2,3, and Ivan Rapaport3

1 Facultad de Ingenieŕıa y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
p.montealegre@uai.cl

2 Departamento de Ingenieŕıa Matemática, Universidad de Chile, Santiago, Chile
dramirez@dim.uchile.cl

3 DIM-CMM (UMI 2807 CNRS), Universidad de Chile, Santiago, Chile
rapaport@dim.uchile.cl

Abstract. We present compact distributed interactive proofs for the
recognition of two important graph classes, well-studied in the con-
text of centralized algorithms, namely complement reducible graphs and
distance-hereditary graphs. Complement reducible graphs (also called
cographs) are defined as the graphs not containing a four-node path
P4 as an induced subgraph. Distance-hereditary graphs are a super-class
of cographs, defined as the graphs where the distance (shortest paths)
between any pair of vertices is the same on every induced connected sub-
graph.

First, we show that there exists a distributed interactive proof for the
recognition of cographs with two rounds of interaction. More precisely,
we give a dAM protocol with a proof size of O(log n) bits that recognizes
cographs with high probability. Moreover, our protocol can be adapted
to verify any Turing-decidable predicate restricted to cographs in dAM
with certificates of size O(log n).

Second, we give a three-round, dMAM interactive protocol for the
recognition of distance-hereditary graphs, still with a proof size of
O(log n) bits.

Finally, we show that any one-round (denoted dM) or two-round, dMA
protocol for the recognition of cographs or distance-hereditary graphs
requires certificates of size Ω(log n) bits. Moreover, we show that any
constant-round dAM protocol using shared randomness requires certifi-
cates of size Ω(log log n).

Keywords: Distributed interactive proofs · Distributed recognition of
graph classes · Cographs · Distance hereditary graph

Partially supported by CONICYT via PIA/ Apoyo a Centros Cient́ıficos y Tecnológicos
de Excelencia AFB 170001 (P.M. and I.R.), FONDECYT 1170021 (D.R. and I.R.)
and FONDECYT 11190482 (P.M.) and PAI + Convocatoria Nacional Subvención a la
Incorporación en la Academia Año 2017 + PAI77170068 (P.M.).

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 395–409, 2021.
https://doi.org/10.1007/978-3-030-91081-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_26&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_26

396 P. Montealegre et al.

1 Introduction

The study of graph classes provides important insights to address basic graph
problems such as coloring, maximum independent set, dominating set, etc.
Indeed, as such problems are hard in general, restricting the input to a par-
ticular graph-class is a natural approach in order to exploit structural properties
for designing efficient algorithms.

A well-known example is the class of perfect graphs [20], i.e., the class of
graphs satisfying that the chromatic number equals the size of the largest clique
of every induced subgraph. Many NP-complete problems on general graphs, such
as coloring, maximum clique, maximum independent set, etc., can be solved in
polynomial-time when the input is known to be a perfect graph [22].

The design of efficient algorithms for particular graph-classes has also inter-
est in the context of distributed algorithms. Besides the classes of sparse and
bounded degree graphs, there are many examples of efficient distributed algo-
rithms specially designed to run on planar graphs [19], interval graphs [23],
chordal graphs [32] and others. It is therefore very important to efficiently check
the membership of a graph to a given class. Through this checking procedure we
make sure that the execution is performed in the right type of input, in order to
avoid erroneous computations or even the lack of termination.

Distributed Interactive Proofs. Distributed decision refers to the task in
which the nodes of a connected graph G have to collectively decide (whether
G satisfies) some graph property [38]. For performing any such task, the nodes
exchange messages through the edges of G. The input of distributed decision
problems may also include labels given to the nodes and/or to the edges of G.
For instance, the nodes could decide whether G is properly colored, or decide
whether the graph belongs to a given graph-class.

Acceptance and rejection are defined as follows. If G satisfies the property,
then all nodes must accept; otherwise, at least one node must reject. This type
of algorithm could be used in distributed fault-tolerant computing, where the
nodes, with some regularity, must check whether the current network configura-
tion is in a legal state for some Boolean predicate [33]. Then, if the configuration
becomes illegal at some point, the rejecting node(s) raise the alarm or launch a
recovery procedure.

Deciding whether a given coloring is proper can be done locally, by exchang-
ing messages between neighbors. These types of properties are called locally
decidable. Nevertheless, some other properties, such as deciding whether G is a
simple path, are not. As a remedy, the notion of proof-labeling scheme (PLS)
was introduced [33]. Similar variants were also introduced: non-deterministic
local decisions [16], locally checkable proofs [21], and others.

Roughly speaking, in all these models, a powerful prover gives to every node
v a certificate c(v). This provides G with a global distributed proof. Then, every
node v performs a local verification using its local information together with c(v).
PLSs can be seen as a distributed counterpart to the class NP, where, thanks to
nondeterminism, the power of distributed algorithms increases.

Distributed Interactive Proofs for Cographs and Distance-Hereditary Graphs 397

Just as it happened in the centralized framework a natural step forward is to
consider a model where the nodes are allowed to have more than one interaction
round with the prover. Interestingly, there is no gain when interactions are all
deterministic. When there is no randomness, the prover, from the very beginning,
has all the information required to simulate the interaction with the nodes. Then,
in just one round, the prover could simply send to each node the transcript of
the whole communication, and the nodes simply verify that the transcript is
indeed consistent. A completely different situation occurs when the nodes have
access to some kind of randomness [2,18]. In that case, the exact interaction with
the nodes is unknown to the prover until the nodes communicate the realization
of their random variables. Adding a randomized phase to the non-deterministic
phase gives more power to the model [2,18].

The notion of distributed interactive protocols was introduced by Kol, Osh-
man, and Saxena in [31] and further studied in [10,17,36,37]. In such protocols, a
centralized, untrustable prover with unlimited computation power, named Mer-
lin, exchanges messages with a randomized distributed algorithm, named Arthur.
Specifically, Arthur and Merlin perform a sequence of exchanges during which
every node queries Merlin by sending a random bit-string, and Merlin replies to
each node by sending a bit-string called proof. Neither the random strings nor
the proofs need to be the same for each node. After a certain number of rounds,
every node exchanges information with its neighbors in the network, and decides
(i.e., it outputs accept or reject). For instance, a dMAM protocol involves three
interactions: Merlin provides a certificate to Arthur, then Arthur queries Mer-
lin by sending a random string. Finally, Merlin replies to the query by sending
another certificate. Recall that this series of interactions is followed by a phase
of distributed verification performed between every node and its neighbors.

When the number of interactions is k we refer to dAM[k] protocols (if the last
player is Merlin) and dMA[k] protocols (otherwise). For instance, dAM[2] = dAM,
dMA[3] = dAMA, etc. Also, the scenario of distributed verification, where there
is no randomness and only Merlin interacts, corresponds dM. In other words,
dM is the PLS model.

In distributed interactive proofs, Merlin tries to convince the nodes that G
satisfies some property in a small number of rounds and through short messages.
We say that an algorithm uses O(f(n)) bits if the messages exchanged between
the nodes (in the verification round) and also the messages exchanged between
the nodes and the prover are upper bounded by O(f(n)). We include this band-
width bound in the notation, which becomes dMA[k, f(n)] and dAM[k, f(n)] for
the corresponding protocols.

It is known that all Turing-decidable predicates on graphs admit a PLS with
certificates of size O(n2) bits [33]. Interestingly, some distributed problems are
hard, even when a powerful prover provides the nodes with certificates. It is
the case of symmetry, the language of graphs having a non-trivial automor-
phism (i.e., a non-trivial one-to-one mapping from the set of nodes to itself
preserving edges). Any PLS recognizing symmetry requires certificates of size
Ω(n2) [21]. However, many problems requiring Ω(n2)-bit certificates in any PLS,

398 P. Montealegre et al.

such as symmetry, admit distributed interactive protocols with small certifi-
cates, and very few interactions. In fact, symmetry is in both dMAM[log n] and
dAM[n log n] [31].

Local Certification of Graph Classes. Regarding local certification of graph
classes, there exist PLSs (with logarithmic-sized certificates) for the recognition
of many graph classes such as acyclic graphs [33], planar graphs [15], graphs with
bounded genus [14], etc. More recently, Busquet et al. [3] tackle the problem of
locally certifying graphs classes defined by a finite set of minors.

Recently, Naor, Parter and Yogev defined in [37] a compiler which (1) turns
any problem solved in NP in time τ(n) into a dMAM protocol using private ran-
domness and bandwidth τ(n) log n/n and; (2) turns any problem which can be
solved in NC into a dAM protocol with private randomness, poly log n rounds of
interaction and bandwidth poly log n. This result has implications in the recogni-
tion of graph-classes. For example, it implies that any class of sparse graphs that
can be recognized in linear time, can also be recognized by a dMAM protocol with
logarithmic-sized certificates. This raises automatically the question of whether
one can design, for the recognition of a given graph class, a distributed inter-
active proof based on fewer interactions than the interactions given by directly
applying the compiler (while keeping the certificates as small as possible).

A graph-class is hereditary if the class is closed under vertex and edge dele-
tion. Examples of hereditary graph classes include planar graphs, forests, bipar-
tite graphs, perfect graphs, etc. Interestingly, all graph properties that are known
to require large certificates (e.g. small diameter [6], non-3- colorability [21], hav-
ing a non-trivial automorphism [21]), are non-hereditary.

Therefore, natural question is whether all hereditary graph-classes admit
a distributed interactive proof with a constant number of interactions, and
logarithmic-sized certificates. In this work we address the problem of the dis-
tributed recognition of two hereditary graph classes (which are in fact perfect
graphs), namely complement reducible graphs and distance-hereditary graphs.

Cographs and Distance-Hereditary Graphs. The class of complement
reducible graphs, or simply cographs, has several equivalent definitions, as it has
been re-discovered in many different contexts [8,28,39,40]. A graph is a cograph
if it does not contain a four-node path P4 as an induced subgraph. Equivalently,
a graph is a cograph if it can be generated recursively from a single vertex by
complementation and disjoint-union. A graph is a distance-hereditary graph if
the distance between any two vertices is the same on every connected induced
subgraph [25]. An equivalent definition is that every path between two vertices
is a shortest path. It is known that every cograph is a distance-hereditary graph.

Many NP-complete problems are solvable in polynomial-time, or even linear
time, when restricted to cographs and distance-hereditary graphs. For instance,
maximum clique, maximum independent set, coloring (as distance-hereditary
graphs are perfect [25]), hamiltonicity [27], Steiner tree and connected domina-
tion [13], computing the tree-width and minimum fill-in [5], among others. By a

Distributed Interactive Proofs for Cographs and Distance-Hereditary Graphs 399

result of Courcelle, Makowsky and Rotics [9], every decision problem expressible
in a type of monadic second order logic can be solved in linear time on distance-
hereditary graphs. Observe that all these results also apply to cographs. Other
problems, like graph isomorphism, can be solved in linear time on cographs [8].

In the centralized setting, both cographs and distance-hereditary graphs can
be recognized in linear time [12].

Respect to algorithms in the distributed setting, both recognition problems
have also been addressed in the One-Round Broadcast Congested Clique Model
(1BCC), also known as the Distributed Sketching Model [1]. In this model, the
nodes of a graph send a single message to a referee, which initially has no infor-
mation about the graph and, only using the received messages, has to decide
a predicate of the input graph. 4 In [29] and [35], randomized protocols recog-
nizing both classes of graphs in the 1BCC model are given. Interestingly, these
protocols not only recognize the classes but reconstruct them, meaning that the
referee learns all the edges of the input graph.

In this work, we focus on the recognition of cographs and distance-hereditary
graphs in the model of distributed interactive proofs. We show that both classes
can be recognized with compact certificates and constant (two or three) rounds
of interaction.

Our Results. We show that the recognition of cographs is in dAM[log n]. Our
result consists of adapting an algorithm given in [29,35], originally designed for
the 1BCC model. In this regard, we exploit the natural high connectivity of this
class, combined with the use of non-determinism in order to route all messages
in the network to a leader node, which is delegated to act as a referee. In fact,
our protocol allows this leader to learn all the edges of the input graph. We use
this fact to show that any Turing-decidable predicate restricted to cographs is
decidable in dAM[log n].

Interestingly, our results imply that any one-round deterministic protocol in
the 1BCC model recognizing cographs, would immediately imply a dM (i.e. a
PLS) protocol for the recognition of cographs. Unfortunately, up to our knowl-
edge, it is not known whether recognizing cographs can be done through a deter-
ministic 1BCC protocol.

Then, we adapt the protocol for the recognition of cographs and we combine
it with a set of tools related to the structure of distance-hereditary graphs in
order to show that the recognition of this class is in dMAM[log n]. In this case, we
are not able to simulate the 1BCC protocol by gathering all the information in a
single node representing the referee. Instead, we find a way to verify each step of
the computation of the referee in a distributed manner, by choosing nodes that
can receive (with the help of the prover) all necessary messages for performing
the task.

We remark that our protocols beat the performance of the compiler of
Naor, Parter and Yogev. In fact, both graph classes can have Θ(n2) edges and,
therefore, the use of the compiler shows that the recognition of these classes
is in dMAM[n log n] and in dAM[poly log n,poly log n] (note that cographs and

400 P. Montealegre et al.

distance-hereditary graphs can be recognized in NC [11] and in linear time in
the centralized setting [12], see the Related Work section).

Finally, we give some lower-bounds. More precisely, we show that any dM
or dMA protocol for the recognition of cographs or distance-hereditary graphs,
requires messages of size at least Ω(log n). Our results are obtained extending
a lower-bound technique described in [21], for the detection of a single leader in
the context of locally checkable proofs. We note that our protocols use shared
randomness. In that sense we prove that, any dAM protocol using shared ran-
domness for the previous problems, requires messages of size at least Ω(log log n).

Related Work. The recognition of cographs and distance-hereditary graphs has
been studied thoroughly in the parallel setting, where both problems have been
shown to be in NC [11,24,30]. The currently best algorithms for the recognition
of both classes run in time O(log2 n) and using a linear number of processors
in a CREW-PRAM [11]. There also exist fast-parallel algorithms for NP-hard
problems restricted to cographs and distance-hereditary graphs [26,34].

Unfortunately, there are no much research regarding distributed algorithms
specially designed for cographs and distance-hereditary. Nevertheless, the struc-
tural properties of distance-hereditary graphs have been used in the design of
compact routing tables for interconnection networks [7].

Structure of the Article. Section 2 is the preliminary section, where we give
some graph-theoretic background, including the formal definitions of cographs
and distance-hereditary graphs. We also give the precise definition of distributed
interactive proofs. In Sect. 3 we give the results regarding cographs, and in Sect. 4
we give the results regarding distance-hereditary graphs. Finally, in Sect. 5, we
provide some lower-bounds. Due the lack of space, the results are only outlined
in their corresponding sections, while the full proofs are detailed in the appendix

2 Preliminaries

Background on Cographs and Distance-Hereditary Graphs. All the
graphs in this paper are simple and undirected. Let G = (V,E) be a graph. For
a set U ⊆ V , we define G[U], the induced subgraph of G = (V,E) according to
U , as the graph H = (U,E(U)), where E(U) = E∩(

U
2

)
. We denote H ⊆ G when

H is s an induced subgraph of G. If, instead, we have a graph with vertex set
U such that its edges are only contained in E(U), we simply call it a subgraph
of G. A spanning subgraph of G is a subgraph H with V (H) = V (G). Given
two nodes u, v of a connected graph H, the distance between them, denoted by
dH(u, v), is defined as the length of the shortest path between u and v in H. A
P4 is an induced path of length four.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), we define the union
between both graphs, denoted by G1 ∪ G2 as the graph G̃ = (V̂ , Ẽ), with Ṽ =
V1∪V2 and Ẽ = E1∪E2. Given two graphs G1 = (V1, E1) and G2 = (V2, E2), we
define the join between both graphs, denoted by G1∗G2 as the graph Ĝ = (V̂ , Ê),
with V̂ = V1 ∪ V2 and Ê = E1 ∪ E2 ∪ {v1v2 such that v1 ∈ V1, v2 ∈ V2}.

Distributed Interactive Proofs for Cographs and Distance-Hereditary Graphs 401

The set of neighbors of a node u is denoted N(u), and the closed neighbor-
hood N [u] is the set N(u) ∪ {u}. A node v is said to be a pending node if it has
a unique neighbor in the graph. A pair of nodes u, v ∈ V are said to be twins
if their neighborhoods are equal. That is, N(u) = N(v) or N [u] = N [v]. In the
case that u and v are adjacent (N [u] = N [v]) we refer to them as true twins
and, otherwise, we refer to them as false twins.

As we mentioned in the introduction, a cograph is a graph that does not
contain a P4 as an induced subgraph (i.e. it is P4-free). Another equivalent
definition states that cographs are the graphs which can be obtained recursively
following three rules: (1) A single vertex is a cograph, (2) the disjoint union
between two cographs is a cograph and (3) the join of two cographs is a cograph.
An advantage of cographs is that they admit other characterizations that may
be useful for local verification. First, we define a twin ordering as an ordering
(vi)n

i=1 of the nodes of V such that, for each j ≥ 2, vj has a twin in G[{v1, . . . vj}]
(Fig. 1).

Proposition 1 ([29]). Given a graph G the following are equivalent:

1. G is a cograph.
2. Each non trivial induced subgraph of G has a pair of twins.
3. G is P4-free.
4. G admits a twin ordering.

a
d

e
xf

cb

(1, e)

(3, f)
(4, a)(7, f)

(6, f)

(2, x) (5, a)
(t, v5)

(̄t, v8)(t, v6)(t, v8)

(p, v8)

(p, v8)

(p, v9)

(∗)

(p, v4)

v9

v8

v7

v5

v4 v3

v1

v6v2
(

(

Fig. 1. Left: A cograph with labels according to a twin ordering. The first entry repre-
sents the step at which they are removed, while the second entry indicates the node’s
twin at such step. Right: A distance-hereditary graph with labels according to its order-
ing. The first entry indicates whether it is removed as a true twin (̄t), as a false twin
(t) or as a pending node (p).

A graph G is said to be distance-hereditary if for any induced subgraph H ⊆
G and any pair u, v ∈ H satisfy that dH(u, v) = dG(u, v). That is, any induced
path between a pair of nodes is a shortest path. A relevant characterization for
this class is the following.

402 P. Montealegre et al.

Proposition 2 ([4]). An n-node graph G is distance hereditary iff there exists
an ordering (vi)n

i=1 such that, for any i ∈ [n], either there exists j < i such that
vi and vj are twins in Gi = G[{v1, ..vi]} or vi is a pending node at Gi.

Model Definitions. Let G be a simple connected n-node graph, let I : V (G) →
{0, 1}∗ be an input function assigning labels to the nodes of G, where the size of
all inputs is polynomially bounded on n. Let id : V (G) → {1, . . . ,poly(n)} be a
one-to-one function assigning identifiers to the nodes. A distributed language L is
a (Turing-decidable) collection of triples (G, id, I), called network configurations.

A distributed interactive protocol consists of a constant series of interactions
between a prover called Merlin, and a verifier called Arthur. The prover Merlin
is centralized, has unlimited computing power and knows the complete configu-
ration (G, id, I). However, he cannot be trusted. On the other hand, the verifier
Arthur is distributed, represented by the nodes in G, and has limited knowledge.
In fact, at each node v, Arthur is initially aware only of his identity id(v), and his
label I(v). He does not know the exact value of n, but he knows that there exists
a constant c such that id(v) ≤ nc. Therefore, for instance, if one node v wants
to communicate id(v) to its neighbors, then the message is of size O(log n).

Given any network configuration (G, id, I), the nodes of G must collectively
decide whether (G, id, I) belongs to some distributed language L. If this is indeed
the case, then all nodes must accept; otherwise, at least one node must reject
(with certain probabilities, depending on the precise specifications we are con-
sidering).

There are two types of interactive protocols: Arthur-Merlin and Merlin-
Arthur. Both types of protocols have two phases: an interactive phase and a ver-
ification phase. Let us define first Arthur-Merlin interactive protocols. If Arthur
is the party that starts the interactive phase, he picks a random string r1(v) at
each node v of G (this string could be either private or shared) and send them to
Merlin. Merlin receives r1, the collection of these n strings, and provides every
node v with a certificate c1(v) that is a function of v, r1 and (G, id, I). Then
again Arthur picks a random string r2(v) at each node v of G and sends r2 to
Merlin, who, in his turn, provides every node v with a certificate c2(v) that is
a function of v, r1, r2 and (G, id, I). This process continues for a fixed number
of rounds. If Merlin is the party that starts the interactive phase, then he pro-
vides at the beginning every node v with a certificate c0(v) that is a function
of v and (G, id, I), and the interactive process continues as explained before. In
Arthur-Merlin protocols, the process ends with Merlin. More precisely, in the
last, k-th round, Merlin provides every node v with a certificate c�k/2�(v). Then,
the verification phase begins. This phase is a one-round deterministic algorithm
executed at each node. More precisely, every node v broadcasts a message Mv

to its neighbors. This message may depend on id(v), I(v), all random strings
generated by Arthur at v, and all certificates received by v from Merlin. Finally,
based on all the knowledge accumulated by v (i.e., its identity, its input label, the
generated random strings, the certificates received from Merlin, and all the mes-
sages received from its neighbors), the protocol either accepts or rejects at node

Distributed Interactive Proofs for Cographs and Distance-Hereditary Graphs 403

v. Note that Merlin knows the messages each node broadcasts to its neighbors
because there is no randomness in this last verification round.

A Merlin-Arthur interactive protocols of k interactions is an Arthur-Merlin
protocol with k−1 interactions, but where the verification round is randomized.
More precisely, Arthur is in charge of the k-th interaction, which includes the ver-
ification algorithm. The protocol ends when Arthur picks a random string r(v)
at every node v and uses it to perform a (randomized) verification algorithm.
In other words, each node v randomly chooses a message Mv from a distribu-
tion specified by the protocol, and broadcast Mv to its neighbors. Finally, as
explained before, the protocol either accepts or rejects at node v. Note that,
in this case, Merlin does not know the messages each node broadcasts to its
neighbors (because they are randomly generated). If k = 1, a distributed Merlin-
Arthur protocol is a (1-round) randomized decision algorithm; if k = 2, it can
be viewed as the non-deterministic version of randomized decision, etc.

Definition 1. Let V be a verifier and M a prover of a distributed interactive
proof protocol for languages over graphs of n nodes. If (V,M) corresponds to an
Arthur-Merlin (resp. Merlin Arthur) k-round, O(f(n)) bandwidth protocol, we
write (V,M) ∈ dAMprot[k, f(n)] (resp. (V,M) ∈ dMAprot[k, f(n)]).

Definition 2. Let ε ≤ 1/3. The class dAMε[k, f(n)] (resp. dMAε[k, f(n)]) is the
class of languages L over graphs of n nodes for which there exists a verifier V
such that, for every configuration (G, id, I) of size n, the two following conditions
are satisfied.

Completeness. If (G, id, I) ∈ L then, there exists a prover M such that
(V,M) ∈ dAMprot[k, f(n)] (resp. (V,M) ∈ dMAprot[k, f(n)]) and

Pr
[
V accepts (G, id, I) in every node given M

]
≥ 1 − ε.

Soundness. If (G, id, I) /∈ L then, for every prover M such that
(V,M) ∈ dAMprot[k, f(n)] (resp. (V,M) ∈ dMAprot[k, f(n)]),

Pr
[
V rejects (G, id, I) in at least one nodes given M

]
≥ 1 − ε.

We also denote dAM[k, f(n)] = dAM1/3[k, f(n)] and dMA = dMA1/3[k, f(n)],
and omit the subindex ε when its value is obvious from the context.

In this paper, we are interested mainly in two languages, that we call
cograph and dist-hereditary which are the languages of graphs that are
cographs and distance-hereditary graphs, respectively. Formally,

– cograph = {〈G, id〉 s.t. G is a cograph}.
– dist-hereditary = {〈G, id〉 s.t. G is distance-hereditary}.

Also, for a distributed language L, the restriction of L to cographs, denoted
Lcograph is the subset of network configurations (G, id, I) ∈ L such that G is a
cograph.

404 P. Montealegre et al.

3 Cographs

We first show a way to distribute the proofs received by the network in such a
way that we can centralize the verification process.

Lemma 1. Given a cograph G, it is possible to construct a spanning tree T of
depth two, such that each node at depth one, has at most one child.

By the previous lemma, we know that for any two round protocol P over a
cograph G with cost Ω(log n) bits, we may assume, without loss of generality,
that there is a root ρ with access to all coins and messages received by the whole
network. We simply construct the spanning tree given by Lemma1, by choosing
the root ρ as follows. First, a bipartite graph can be easily verified with two
colors, and ρ can be chosen to be the node in G2 with the smallest identifier.
Then, it suffices to assign to each node u of depth one in the spanning tree, both
its proof and the proof received by its child w, along with the random coin it
drew. Then, the nodes can locally verify the consistency of this message and the
root will have received all the messages in the network.

Lemma 2. Given any dM (resp. dAM) protocol with bandwidth L that runs
over a cograph, we can construct a dM (resp. dAM) protocol with bandwidth cost
L + O(log n) and where there exists a node ρ which has access to all messages
(resp. all messages and coins) in the network.

An advantage of this procedure is that we may simulate any protocol in
the (non-deterministic) One-Round Broadcast Congested Clique model (by using
the root ρ as referee) by either using one round of interaction (if the simulated
protocol is deterministic) or two rounds (when the simulated protocol is ran-
domized). From here it follows that we can use the protocol by [29] to recognize
cographs, therefore constructing a protocol for cograph detection in two rounds
of interaction and O(log n) bits. That is, cograph ∈ dAM[log n]. For the sake
of completeness, we now describe the protocol of [29].

Definition 3. Given a cograph G = (V,E), we can define its canonical order as
follows. We start by choosing the smallest pair of twins (those with the smallest
identifiers in lexicographic order) which we know to exist by Proposition 1. From
there we choose and remove the smallest node from this pairing. Then, we repeat
this process by finding another pair and removing one of its members until we
end up with a single node.

Let p be a prime and φ = (φw)w∈V be a family of linearly independent
polynomials in Zp[x]. Given w ∈ V we define, qw =

∑
w′∈N(w) φw′ and q̄w =

qw + φw. We also define the derived polynomials of φ as the collection

αu,v = φu − φv βu,v = qu − qv, γu,v = q̄u − q̄v, u.v ∈ V

Now, given a pair of twins u and v, we assign to G−v the polynomials {φ′
w}w∈V −v

defined as

φ′
w =

{
φw if w �= u

φu + φv if w = u

Distributed Interactive Proofs for Cographs and Distance-Hereditary Graphs 405

With this construction, from φu(x) = xid(u) it is possible to construct a sequence
of polynomials φi

u for i ∈ [n] according to the canonical order {vi}n
i=1 and u in

the graph G − {vj}n
j=i+1. We call these functions the basic polynomials of G.

And so the canonical family of polynomials of G is defined as the union between
its basic and derived polynomials. It follows that this family of functions has at
most 3n3 elements.

Definition 4. Let G be a cograph. We say that a vector m = ((aw, bw))w∈V ∈
(Zp)2n is valid for G in t ∈ Zp if there exists a family of linearly independent
polynomials (φw)w∈V in Zp[X] such that aw = φw(t) and bw = qw(t) for each
w ∈ V .

Lemma 3. Let m = ((aw, bw))w∈V ∈ (Zp)2n be a valid vector for G in t.
Consider u, v to be a pair of twins in G such that au �= av. Then, the vector
m′ = ((a′

w, b′
w))w∈V −v ∈ (Zp)2n−2 is valid for G − v in t, where its coordinates

are given by

(a′
w, b′

w) =

{
(aw, bw) if w ∈ V − {u, v}
(au + av, bu − avδuv) if w = u

with δuv equals one if and only if au + bu = av + bv

With this lemma now we can proceed to describe the protocol.

Theorem 1. There is a distributed interactive proof with two rounds for the
recognition of cographs, i.e., cograph ∈ dAM[log n]. Moreover, the protocol
uses shared randomness and gives the correct answer with high probability.

Proof. Let G = (V,E) be an n-node graph. Without loss of generality we may
assume the graph has identifiers in [n] as, following Lemma 1, it is possible to
implement a permutation protocol in a single round: Merlin sends to each node
v an identifier īd : V → [n] and the root, by receiving all proofs, can see that
they all received distinct identifiers which are consistent with their original ones.

Let p be a prime such that 3nc+4 ≤ p ≤ 6nc+4. The protocol is the following:
All nodes collectively generate a seed t ∈ Fp uniformly at random. Then Merlin
sends to each node w a message mw such that m = (mw)w∈V is a valid vector
for G at t. Each node then computes such message by defining φw(x) = xīd(w).

After the nodes exchange messages, following Lemma 1 we obtain that the
root ρ owns a vector m ∈ F

2n
p . From here, the root repeats the following proce-

dure at most n − 1 times trying to construct a canonical ordering {vi}n
i=1 for G.

At step i, it starts at graph Gi and a vector mi ∈ F
2(n−i+1)
p (where G1 = G

and m1 = m) and looks for a pair of nodes u, v in Gi such that ai
u �= ai

v and
either bi

u = bi
v or ai

u + bi
u = ai

v + bi
b. Then it chooses, among all pairs it has

found, the first in lexicographic order. If no such pair exists, then he rejects. On
the contrary, he defines Gi+1 = Gi − v, and setting vn−i+1 = v (without loss
of generality we assume that id(v) < id(u)). Then the root computes mi+1 from
the previous vector mi following Lemma 3. If the root reaches step n − 1 then it
accepts.

406 P. Montealegre et al.

Completeness and Soundness. It follows then that as the messages depend on
the original identifiers and the root ρ has access to all messages, then both
acceptance errors depend solely in the 1BCC construction. Now, by Lemma 3 it
follows that the only point at which the protocol might fail is if the chosen t
turns out to be a root for any of the polynomials in the canonical family from
Definition 3. As there are at most 3n3 such polynomials, each of degree at most
n , we have that the acceptance error is at most 3n4/3nc+4 = 1/nc and the
theorem follows. �

As we mentioned in the Introduction, the result obtained in [29] is much
stronger than just recognizing cographs. In fact, the referee not only can recog-
nize a cograph but actually can reconstruct it. In other words, when the input
graph is a cograph, after the communication round, the referee learns all the
edges. In our context, this implies that the root ρ not only recognizes cographs,
but also can recognize any distributed language restricted to them.

Theorem 2. For every distributed language L, there is a distributed interactive
proof with two rounds for its restriction to cographs, i.e. Lcograph ∈ dAM[log n].
Moreover, the protocol uses shared randomness and gives the correct answer with
high probability.

Proof. It is sufficient to notice that the tree-root ρ in the construction from
Lemma 1 has access to all proofs in the network. In particular, the id’s and
positions for each node in the twin-ordering π. As such, ρ has knowledge of the
entire topology of the network and its inputs (provided that these are of size
O(log n)) and can compute any property related to them, with the acceptance
error matching that of the verification procedure in Theorem1. As for the rest
of the nodes, they simply accept and delegate this decision to the root. �

4 Distance-Hereditary Graphs

Following the protocol described for cographs, it is possible to derive an interac-
tive protocol for distance-hereditary graphs, which admit a similar construction.
Indeed, as described before, any distance-hereditary graph can be constructed
by sequentially adding twins or pending nodes. Notice that for the protocol in
Theorem 1, the verification process is done by the root as it prunes the graph
in n − 1 steps. This leads to an order by which the nodes were selected, and we
call it canonical ordering. While we cannot delegate the verification routine to a
single node (as distance-hereditary graphs can have arbitrarily large diameter),
we can distribute the verification process by letting different nodes check differ-
ent steps of the computation. As the rule described in Lemma 3 for pruning the
graph involves only the pair of twins at each step, we only need to find nodes
that, for a fixed node v, can receive all the proofs sent by v, its twins and its
pending nodes.

In order to prune the graph in this new setting, we need a rule for pruning
pending nodes from a graph and updating the vectors of each node accordingly.
Here, we use the definition of a valid vectoras described in Sect. 3.

Distributed Interactive Proofs for Cographs and Distance-Hereditary Graphs 407

Lemma 4. Let m = ((aw, bw))w∈V ∈ (Zp)2n be a valid vector for G at some
point t. If u ∈ G has v as a pending node adjacent to it, then, the vector m′ =
((a′

w, b′
w))w∈V −v ∈ (Zp)2n−2 is valid for G − v in t, where the coordinates of m′

are given by

(a′
w, b′

w) =

{
(aw, bw) if w ∈ V − {u, v}
(aw, bw − av) if w = u

In order to distribute the verification procedure, for any fixed v we wish to set a
node to compute the correctness of the vectors of all nodes assigned as twins of
v. Indeed, for a fixed ordering π for pruning the graph and a node v with πv < n,
consider the predecessor of v, denoted by ant(v), to be v’s neighbor whose value
for π(·) is immediately after that of v among its neighbors. As all previous nodes
in the order which are twins of v have the same neighborhood, it follows that
all these nodes must be adjacent to ant(v). In case that no such a node exists,
by assuming that G is connected, it follows that the last node according to π
which is assigned as a twin of v must be a true twin and, therefore, be adjacent
to him. And the same reasoning holds.

Thus, the main strategy of our protocol is that, given an initial vector (av, bv)
for a node v in the graph, each node ant(v) has the task of updating this vector
until it obtains the vector v that the referee should have at the time the node is
pruned from the graph, which we denote by (aπ

v , bπ
v). Then, each node u which

is a twin of v provides its vector (aπ
u, bπ

u) (which is proved to be correct by
some other node) and so the predecessor of v compares and updates v’s vector
according to the rules from Lemmas 3 and 4.

Theorem 3. There is a distributed interactive proof with three rounds of inter-
action for the recognition of distance-hereditary graphs, i.e., dist-hereditary ∈
dMAM[log n]. Moreover, the protocol uses shared randomness and gives the cor-
rect answer with high probability.

5 Lower Bounds

In this section, we provide lower-bounds on the certificate size of distributed
interactive proofs for cograph or dist-hereditary. Due the lack of space, the
proof of the result on this section are detailed in the appendix. The following
result is based on a construction by [21].

Theorem 4. If cograph or dist-hereditary belongs to the class dM[f(n)],
then f(n) = Ω(log n). Moreover, for any fixed k, if cograph or dist-
hereditary belongs to dAMpub[k, g(n)], then g(n) = Ω(log log n).

Following an approach introduced by Fraigniaud et al. [17], we obtain that
the graph constructions used in the proof of Theorem 4 can be adapted in order
to obtain lower-bounds for the models dMA.

Corollary 1. If any of the problems cograph or dist-hereditary belongs to
dMA1/7[f(n)], then f(n) = Ω(log n).

408 P. Montealegre et al.

References

1. Assadi, S., Kol, G., Oshman, R.: Lower bounds for distributed sketching of maximal
matchings and maximal independent sets. In: Emek, Y., Cachin, C. (eds.) PODC
’20: ACM Symposium on Principles of Distributed Computing, Virtual Event,
Italy, 3–7 August 2020, pp. 79–88. ACM (2020)

2. Baruch, M., Fraigniaud, P., Patt-Shamir, B.: Randomized proof-labeling schemes.
In: Symposium on Principles of Distributed Computing, pp. 315–324 (2015)

3. Bousquet, N., Feuilloley, L., Pierron, T.: Local certification of graph decompositions
and applications to minor-free classes. arXiv preprint arXiv:2108.00059 (2021)

4. Brandstadt, A., Spinrad, J.P., et al.: Graph Classes: A Survey, vol. 3. SIAM (1999)
5. Broersma, H., Dahlhaus, E., Kloks, T.: A linear time algorithm for minimum fill-

in and treewidth for distance hereditary graphs. Discret. Appl. Math. 99(1–3),
367–400 (2000)

6. Censor-Hillel, K., Paz, A., Perry, M.: Approximate proof-labeling schemes. Theo-
ret. Comput. Sci. 811, 112–124 (2020)

7. Cicerone, S., Di Stefano, G., Flammini, M.: Compact-port routing models and
applications to distance-hereditary graphs. J. Parallel Distrib. Comput. 61(10),
1472–1488 (2001)

8. Corneil, D., Lerchs, H., Burlingham, L.: Complement reducible graphs. Discret.
Appl. Math. 3(3), 163–174 (1981)

9. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000). https://doi.org/10.1007/s002249910009

10. Crescenzi, P., Fraigniaud, P., Paz, A.: Trade-offs in distributed interactive proofs.
In: 33rd International Symposium on Distributed Computing (DISC 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

11. Dahlhaus, E.: Efficient parallel recognition algorithms of cographs and distance
hereditary graphs. Discret. Appl. Math. 57(1), 29–44 (1995)

12. Damiand, G., Habib, M., Paul, C.: A simple paradigm for graph recognition: appli-
cation to cographs and distance hereditary graphs. Theoret. Comput. Sci. 263(1–
2), 99–111 (2001)

13. D’Atri, A., Moscarini, M.: Distance-hereditary graphs, Steiner trees, and connected
domination. SIAM J. Comput. 17(3), 521–538 (1988)

14. Feuilloley, L., Fraigniaud, P., Montealegre, P., Rapaport, I., Rémila, É., Todinca, I.:
Local certification of graphs with bounded genus. arXiv preprint arXiv:2007.08084
(2020)

15. Feuilloley, L., Fraigniaud, P., Montealegre, P., Rapaport, I., Rémila, É., Todinca, I.:
Compact distributed certification of planar graphs. Algorithmica 83, 1–30 (2021).
https://doi.org/10.1007/s00453-021-00823-w

16. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local dis-
tributed computing. J. ACM (JACM) 60(5), 1–26 (2013)

17. Fraigniaud, P., Montealegre, P., Oshman, R., Rapaport, I., Todinca, I.: On dis-
tributed Merlin-Arthur decision protocols. In: Censor-Hillel, K., Flammini, M.
(eds.) SIROCCO 2019. LNCS, vol. 11639, pp. 230–245. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-24922-9 16

18. Fraigniaud, P., Patt-Shamir, B., Perry, M.: Randomized proof-labeling schemes.
Distrib. Comput. 32(3), 217–234 (2019). https://doi.org/10.1007/s00446-018-
0340-8

19. Ghaffari, M., Haeupler, B.: Distributed algorithms for planar networks I: planar
embedding. In: Proceedings of the 2016 ACM Symposium on Principles of Dis-
tributed Computing, pp. 29–38 (2016)

http://arxiv.org/abs/2108.00059
https://doi.org/10.1007/s002249910009
http://arxiv.org/abs/2007.08084
https://doi.org/10.1007/s00453-021-00823-w
https://doi.org/10.1007/978-3-030-24922-9_16
https://doi.org/10.1007/s00446-018-0340-8
https://doi.org/10.1007/s00446-018-0340-8

Distributed Interactive Proofs for Cographs and Distance-Hereditary Graphs 409

20. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs (Annals of Dis-
crete Mathematics, vol 57). North-Holland Publishing Co., NLD (2004)

21. Göös, M., Suomela, J.: Locally checkable proofs in distributed computing. Theory
Comput. 12(1), 1–33 (2016)

22. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combina-
torial Optimization. Springer, Heidelberg (1993). https://doi.org/10.1007/978-3-
642-78240-4

23. Halldórsson, M.M., Konrad, C.: Distributed algorithms for coloring interval graphs.
In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 454–468. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45174-8 31

24. He, X.: Parallel algorithm for cograph recognition with applications. J. Algorithms
15(2), 284–313 (1993)

25. Howorka, E.: A characterization of distance-hereditary graphs. Q. J. Math. 28(4),
417–420 (1977)

26. Hsieh, S.Y., Ho, C.W., Hsu, T.S., Ko, M.T., Chen, G.H.: Efficient parallel algo-
rithms on distance hereditary graphs. Parallel Process. Lett. 09(01), 43–52 (1999)

27. Hung, R.W., Chang, M.S.: Linear-time algorithms for the Hamiltonian problems
on distance-hereditary graphs. Theoret. Comput. Sci. 341(1–3), 411–440 (2005)

28. Jung, H.: On a class of posets and the corresponding comparability graphs. J.
Comb. Theory Ser. B 24(2), 125–133 (1978)

29. Kari, J., Matamala, M., Rapaport, I., Salo, V.: Solving the Induced Subgraph
problem in the randomized multiparty simultaneous messages model. In: Schei-
deler, C. (ed.) SIROCCO 2014. LNCS, vol. 9439, pp. 370–384. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-25258-2 26

30. Kirkpatrick, D.G., Przytycka, T.: Parallel recognition of complement reducible
graphs and cotree construction. Discret. Appl. Math. 29(1), 79–96 (1990)

31. Kol, G., Oshman, R., Saxena, R.R.: Interactive distributed proofs. In: ACM Sym-
posium on Principles of Distributed Computing, pp. 255–264. ACM (2018)

32. Konrad, C., Zamaraev, V.: Brief announcement: distributed minimum vertex col-
oring and maximum independent set in chordal graphs. In: Proceedings of the 2018
ACM Symposium on Principles of Distributed Computing, pp. 159–161 (2018)

33. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4),
215–233 (2010). https://doi.org/10.1007/s00446-010-0095-3

34. Lin, R., Olariu, S.: Fast parallel algorithms for cographs. In: Nori, K.V., Veni
Madhavan, C.E. (eds.) FSTTCS 1990. LNCS, vol. 472, pp. 176–189. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-53487-3 43

35. Montealegre, P., Perez-Salazar, S., Rapaport, I., Todinca, I.: Graph reconstruction
in the congested clique. J. Comput. Syst. Sci. 113, 1–17 (2020)

36. Montealegre, P., Ramı́rez-Romero, D., Rapaport, I.: Shared vs private randomness
in distributed interactive proofs. LIPIcs, vol. 181, pp. 51:1–51:13. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2020)

37. Naor, M., Parter, M., Yogev, E.: The power of distributed verifiers in interactive
proofs. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 1096–115. SIAM
(2020)

38. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6),
1259–1277 (1995)

39. Seinsche, D.: On a property of the class of n-colorable graphs. J. Comb. Theory
Ser. B 16(2), 191–193 (1974)

40. Sumner, D.P.: Dacey graphs. J. Aust. Math. Soc. 18(4), 492–502 (1974)

https://doi.org/10.1007/978-3-642-78240-4
https://doi.org/10.1007/978-3-642-78240-4
https://doi.org/10.1007/978-3-662-45174-8_31
https://doi.org/10.1007/978-3-319-25258-2_26
https://doi.org/10.1007/s00446-010-0095-3
https://doi.org/10.1007/3-540-53487-3_43

Asynchronous Gathering Algorithms
for Autonomous Mobile Robots

with Lights

Rikuo Nakai1(B), Yuichi Sudo2, and Koichi Wada3

1 Graduate School of Science and Engineering, Hosei University, Koganei City, Japan
rikuo.nakai.7r@stu.hosei.ac.jp

2 Faculty of Computer and Information Sciences, Hosei University,
Koganei City, Japan

3 Faculty of Science and Engineering, Hosei University, Koganei City, Japan

Abstract. We consider a Gathering problem for n autonomous mobile
robots with persistent memory called light in an asynchronous scheduler
(ASYNC). Gathering is well known to be impossible when robots have
no lights in basic standard models if the system is semi-synchronous
(SSYNC) or even centralized (only one robot is active at each time).
It is known that robots can solve Gathering with 10 colors of lights
in ASYNC. This result is obtained by combining the following results.
(1) The simulation of SSYNC robots with k colors by ASYNC robots
with 5k colors [7], and (2) Gathering is solved by SSYNC robots with 2
colors [28].

In this paper, we improve the result by reducing the number of colors
and show that Gathering can be solved by ASYNC robots with 3 colors
of lights. We also show that we can construct a simulation algorithm of
any unfair SSYNC algorithm using k colors by ASYNC robots with 3k
colors, where unfairness does not guarantee that every robot is activated
infinitely often. Combining this simulation and the Gathering algorithm
by SSYNC robots with 2 colors [28], we obtain a Gathering algorithm
by ASYNC robots with 6 colors. Our main result can be obtained by
reducing the number of colors from 6 to 3.

1 Introduction

1.1 Background and Motivation

The computational issues of autonomous mobile entities have been the object
of much research in distributed computing. In this paper, we focus on mobile
objects operating on a two-dimensional Euclidean space but there are several
research on three-dimensional spaces and graphs [16]. Each robot operate in
Look -Compute-Move (LCM) cycles. In the Look phase, an entity, viewed as a

This research was supported in part by JSPS KAKENHI No. 20H04140, 20KK0232,
20K11685, 21K11748, and by Japan Science and Technology Agency (JST) SICORP
Grant#JPMJSC1806.
c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 410–424, 2021.
https://doi.org/10.1007/978-3-030-91081-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_27&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_27

Gathering Problems for Autonomous Mobile Robots with Lights in ASYNC 411

point and usually called robot, obtains a snapshot of the space; in the Compute
phase it executes its algorithm (the same for all robots) using the snapshot
as input; it then moves towards the computed destination in the Move phase.
Repeating these cycles, the robots are able to collectively perform some tasks and
solve some problems. The research interest has been on determining the impact
that internal capabilities (e.g., memory, communication) and external conditions
(e.g. synchrony, activation scheduler) have on the solvability of a problem.

We also explore such weakest capabilities to solve the task. The problem
considered in this paper is Gathering, which is one of the most fundamental
tasks of autonomous mobile robots. Gathering is the process of n mobile robots,
initially located on arbitrary positions, meeting within finite time at a location,
not known a priori. When there are only two robots, this task is called Ren-
dezvous. Since Gathering and Rendezvous are simple but essential problems, they
have been intensively studied, and a number of possibility and/or impossibility
results have been shown under the different assumptions [1,2,4,6,9,10,14,19–
24,26]. The solvability of Gathering and Rendezvous depends on the activation
schedule and the synchronization level. Usually three basic types of schedulers
are identified, the fully synchronous (FSYNC), the semi-synchronous (SSYNC)
and the asynchronous (ASYNC)1 Gathering and Rendezvous are trivially solv-
able in FSYNC and the basic model. However, these problems cannot be solved
in SSYNC without any additional assumptions [15], and the same is true in
ASYNC.

In [7], persistent memory called light has been introduced to reveal rela-
tionship between ASYNC and SSYNC and they show asynchronous robots with
lights equipped with a constant number of colors, are strictly more powerful than
semi-synchronous robots without lights: for any algorithm A designed for semi-
synchronous robots (without colors), they give a simulation algorithm by which
asynchronous robots with 5 colors simulate an execution of A. Rendezvous can be
solved by robots with lights without any other additional assumptions [7,17,29].
Gathering is also solvable by robots with lights and it can be solved by robots
with 2 colors of lights in SSYNC [28]. The power of lights to solve other problems
are discussed in [11–13].

1.2 Our Contribution

In this paper, we study Gathering algorithms by robots with lights in the most
realistic schedulers, ASYNC and some of the weakest conditions in term of com-
putational power. As for Gathering algorithms in ASYNC, the following results
are known; Cielieback et al. [6] solves the distinct Gathering for more than two
robots with weak multiplicity detection, where the distinct gathering means all
robots are initially placed in different positions, and weak multiplicity detection
helps a robot to identify multiple occurrences of robots at a single point. Bhagat
et al. [3] solves a gathering problem for five or more robots under the additional
constraint to minimize the maximum distance traversed by any robots, with

1 In addition to these basic models, the new model semi-asynchronous (SAsync) [5] is
recently proposed to reveal the gap between SSYNC and ASYNC.

412 R. Nakai et al.

weak multiplicity detection or 4 colors of lights. Both algorithms work without
any extra assumptions like agreements of coordinate systems, unit distance and
chirality and rigidity of movement, but they solve some constrained gathering
problem. Gathering can be solved by ASYNC robots with 10 colors of lights by
using the following two results;

(a) Any algorithm in SSYNC using k colors of light can be simulated by ASYNC
robots with 5k colors of lights [7], and

(b) A Gathering algorithm is constructed by SSYNC robots with 2 colors of
lights [28].

Since the algorithm shown in [28] needs the chirality assumption but no any
other extra assumptions, the obtained algorithm works only with chirality.2

This paper improves the result just stated above by reducing the number of
colors and shows that Gathering can be solved by ASYNC robots with 3 colors
of lights in no any other extra assumptions except chirality as follows;

1. We construct a simulation algorithm of any unfair SSYNC algorithm using k
colors by ASYNC robots with 3k colors of lights, where unfair SSYNC is that
the adversary makes enabled robots (changing its color or moving a different
location) active in SSYNC. We have reduced the number of colors used in the
simulation to 3k from 5k, although the simulated algorithms are limited to
ones working in unfair SSYNC. Since many robots algorithms seem to work
in unfair SSYNC if it works in (fair) SSYNC, this simulation is interesting
in itself and can be used to reduce the number of colors used in algorithms
working in ASYNC.

2. We show that the Gathering algorithm with 2 colors of light shown in [28] can
still work in unfair SSYNC. Hence we obtain that Gathering can be solved
by ASYNC robots with 6 colors of lights in no any other extra assumptions
except chirality. The Gathering algorithm of [28] is divided into two sub-
algorithms. The first one makes a configuration that all robots are located
on one straight line from any initial configuration and the second one is a
Gathering algorithm from any initial configuration such that all robots are
located on the straight line. The first one needs no lights but assumption of
chirality and the second one need no extra assumptions and uses 2 colors.
We show that the both algorithms can work in unfair SSYNC by defining a
potential function for each algorithm and showing that each function becomes
monotonically decreasing for any behaviour of each algorithm.

3. We improve the number of colors used in the algorithm into 3. Since the
second algorithm uses 2 colors in SSYNC, the resultant algorithm have 6
colors. Thus in order to reduce the number of colors, we directly construct a
3-color Gathering algorithm from any configuration such that all robots are
located on the straight line in ASYNC. Combining with the simulation of
the first algorithm, we have obtained an ASYNC Gathering algorithm with
3 colors of light.

2 Note that Rendezvous and Gathering cannot be solved by SSYNC and ASYNC
robots without light even if the chirality is assumed [15].

Gathering Problems for Autonomous Mobile Robots with Lights in ASYNC 413

2 Model and Preliminaries

2.1 The Basics

The systems considered in this paper consist of a team R = {r0, · · · , rn−1} of
computational entities moving and operating in the Euclidean plane R

2. Viewed
as points, and called robots, the entities can move freely and continuously in the
plane. Each robot has its own local coordinate system and it always perceives
itself at its origin; there might not be consistency between these coordinate
systems. A robot is equipped with sensorial devices that allows it to observe the
positions of the other robots in its local coordinate system.

The robots are identical: they are indistinguishable by their appearance and
they execute the same protocol. The robots are autonomous, without a central
control.

At any point in time, a robot is either active or inactive. Upon becoming
active, a robot ri executes a Look -Compute-Move (LCM) cycle performing the
following three operations:

1. Look : The robot activates its sensors to obtain a snapshot of the positions
occupied by robots with respect to its own coordinate system3. The snapshot
of ri is denoted as SSi.

2. Compute: The robot executes its algorithm using the snapshot as input. The
result of the computation is a destination point.

3. Move: The robot moves in a straight line toward the computed destination
but the robot may be stopped by an adversary before reaching the computed
destination. In this case, the movement is called non-rigid. Otherwise, it is
called rigid. When stopped before reaching its destination in the non-rigid
movement, a robot moves at least a minimum distance δ > 0. If the distance
to the destination is at most δ, the robot can reach it. We assume non-rigid
movement throughout the paper. If the destination is the current location,
the robot stays still.

When inactive, a robot is idle. All robots are initially idle. The amount of time
to complete a cycle is assumed to be finite, and the Look operation is assumed
to be instantaneous.

There might not be consistency between the local coordinate systems and
their unit of distance. The absence of any a-priori assumption on consistency of
the local coordinate systems is called disorientation.

The robots are said to have chirality if they share the same circular orienta-
tion of the plane (i.e., they agree on “clockwise” direction). If there is chirality,
then there exists a unique circular ordering of locations occupied robots [27].
Thus, for each edge of the convex hull obtained by locations of n robots (n ≥ 3),
all robots can agree with the right vertex of the edge.

3 This is called the full visibility (or unlimited visibility) setting; restricted forms of
visibility have also been considered for these systems.

414 R. Nakai et al.

2.2 The Models

Different models, based on the same basic premises defined above, have been
considered in the literature and we will use the following two models.

In the most common model, OBLOT , the robots are silent: they have no
explicit means of communication; furthermore they are oblivious: at the start of
a cycle, a robot has no memory of observations and computations performed in
previous cycles.

In the other common model, LUMI, each robot ri is equipped with a per-
sistent visible state variable �i, called light, whose values are taken from a finite
set C of states called colors (including the color that represents the initial state
when the light is off). The colors of the lights can be set in each cycle by ri at the
end of its Compute operation. A light is persistent from one computational cycle
to the next: the color is not automatically reset at the end of a cycle; the robot
is otherwise oblivious, forgetting all other information from previous cycles. In
LUMI, the Look operation produces a colored snapshot; i.e., it returns the set
of pairs (position, color) of the other robots4. Note that if |C| = 1, then the light
is not used; thus, this case corresponds to the OBLOT model.

We denote by �i(t) the color of light ri has at time t and pi(t) ∈ IR2 the
position occupied by robot ri at time t represented in some global coordinate
system. A configuration C(t) at time t is a multi-set of n pairs (�i(t), pi(t)),
each defining the color of light and the position of robot ri at time t. When no
confusion arises, C(t) is simply denoted by C.

If a configuration is that robots are located on a line segment connecting p
and q (denoted as pq), this configuration is denoted by a regular-expression-like
sequence of colors robots have from the endpoint p to the other endpoint q.
Formally we define color-configurations for a configuration of line segment pq as
follows; Let C(t) be the line-segment configuration at time t.Color-configurations
for C(t) are defined as (0)–(3) as follows;

(0) Factor f is defined as either α, (α|β) or (α|β|γ), where α, β and γ are colors
and (α|β) and (α|β|γ)) denote α or β and α, β or γ, respectively. Color(s)
which robots at a point have are denoted as f . Let f , g and h be factors.

(1) fg denotes a configuration that all robots at p have colors f , all robots at q
have colors g, and there are no robots inside the segment.

(2) fg+h denotes a configuration that all robots at p have colors f , all robots at
q have colors h, and there exists at least one point inside the segment that
all robots located there have colors g.

(3) fgmh, if all robots at p have colors f , all robots at q have colors h, and all
robots at the mid-point of the segment have colors g and there are no robots
except on the three locations.

If a color-configuration is one of (1)–(3), it is denoted as fg∗h. Let
dis(C(t)) denote the length of the segment in the configuration C(t).The color-
configuration for C(t) is denoted as cc(C(t)) and the number of points which have

4 If (strong) multiplicity detection is assumed, the snapshot is a multi-set.

Gathering Problems for Autonomous Mobile Robots with Lights in ASYNC 415

color α in C(t) is denoted as #α(C(t)). We also use this notation for a snapshot
of robot.

In Sect. 4, color-configurations defined here are used, and in addition, one
abuse of notation is used as follows. Letting f , g, and h be factors, f+gh∗

denotes that all robots at p have colors f , all robots at q have colors g or h, and
all robots inside the segment have colors f , g, and h.

2.3 The Schedulers

With respect to the activation schedule of the robots, and the duration of their
LCM cycles, the fundamental distinction is between the asynchronous and syn-
chronous settings.

In the synchronous setting (SSYNC), also called semi-synchronous, time is
divided into discrete intervals, called rounds; in each round some robots are acti-
vated simultaneously, and perform their LCM cycle in perfect synchronization.

A popular synchronous setting which plays an important role is the fully-
synchronous setting (FSYNC), where every robot is activated in every round;
that is, the activation scheduler has no adversarial power.

In the asynchronous setting (ASYNC), there is no common notion of time,
each robot is activated independently of the others, the duration of each phase
is finite but unpredictable and might be different in different cycles. In this
paper, we are concerned with ASYNC and we assume the following; In a Look
operation, a snapshot of the environment is taken at some time tL and we say
that the Look operation is performed at time tL. Each Compute operation of ri

is assumed to be done at time tC and the color of its light �i(t) and its pending
destination desi are both set to the computed values for any time greater than
tC

5. When the movement in a Move operation begins at time tB and ends at
tE , we say that it is performed during interval [tB , tE], and the beginning (resp.
ending) of the movement is denoted by MoveBEGIN (resp. MoveEND) occurring
at time tB (resp. tE). In the following, Compute, MoveBEGIN and MoveEND are
abbreviated as Comp, MB and ME , respectively. When a cycle has no actual
movement (i.e., robots only change color and their destinations are the current
positions), we can equivalently assume that the Move operation in this cycle is
omitted, since we can consider the Move operation to be performed just before
the next Look operation.

Without loss of generality, we assume the set of time instants at which the
robots start executions of Look , Comp, MB and ME to be IN. We also assume
the followings for each operation.

1. Comp operation is performed instantaneously at integer time tC and if some
robot performs a Look operation at time tC , then it observes the former color
and if it does at time tC + 1, then it observes the newly computed color.

5 Note that if some robot performs a Look operation at time tC , thenit observes the
former color and if it does at time tC + ε(∀ε > 0), thenit observes the newly computed
color.

416 R. Nakai et al.

2. When the movement in a Move operation begins at tB and ends at tE ≥
tB + 1 and if a robot performs a Look operation at time tB then it observes
the location before moving and it does at time t(tB + 1 ≤ t ≤ tE), then
it observes any location on the half-open line segment between one before
moving (inclusive) and the destination (exclusive) satisfying the following
condition, letting pt be the location of the moving robot at time t, for times t
and t′ such that tB +1 ≤ t < t′ ≤ tE , it holds that dis(ptB , pt) < dis(ptB , pt′),
where dis(p, q) denotes the distance between p and q. The selected location
is assumed to be determined by adversary. Also if it does at time tE + 1, it
observes the destination.

In SSYNC and ASYNC settings, the selection of which robots are activated
is made by an adversarial scheduler, whose only limit is that every robot must
be activated infinitely often (i.e., it is a fair scheduler). We also consider an
unfair scheduler. When a robot becomes active and performs the LCM cycle,
the robot is enabled if it changes its color and/or the computed destination is
different from the current position at each activation. The unfair scheduler does
not guarantee that every robot is activated infinitely often. It is only guaranteed
that if there is one or more enabled-robots at a time t, at least one enabled-
robot will be activated or become non-enabled at some time t′ > t. Note that
in a computation under this scheduler, an enabled-robot may not be activated
until it becomes the only enabled robot.

3 Simulating Algorithms in Unfair SSYNC by ASYNC
LUMI Robots

In this section, we show that any OBLOT algorithm working in unfair SSYNC
can be simulated by LUMI robots with 3 colors in ASYNC. In what follows,
all proofs are omitted due to lack of space and are shown in the full version [25].

3.1 Simulation in ASYNC for Algorithms in Unfair SSYNC

We show an algorithm in ASYNC that simulates algorithms in unfair SSYNC.
The algorithm is shown in Algorithm 1. The algorithm in square brackets indi-
cates that it is given as input of a robot and simulated. Let Aunfair be a simulated
algorithm in unfair SSYNC. When a robot r is enabled at a configuration C(t)
in algorithm A, we say that r is A-enabled at C(t). Our simulating algorithm
uses light with 3 colors, S(tay), M(ove), and E(nd). We use the notation ∀col
for a color col denoting a set of configuration such that all robots have color
col. We also use the notation ∀col1, col2 for colors col1 and col2 denoting a set
of configurations such that each robot has color col1 or col2 and there exists at
least one robot with color col1 and there exists at least one robot with color col2.
Initial configuration is in ∀S. This algorithm repeats a color-cycle, that is, the
transition of ∀S → ∀M → ∀E. When the configuration is in ∀S, since Aunfair -
enabled-robots exist, some Aunfair -enabled-robots that become active among

Gathering Problems for Autonomous Mobile Robots with Lights in ASYNC 417

Algorithm 1. SIM-for-Unfair(ri)[Aunfair]
Assumptions: non-rigid, LUMI, �i has 3 colors(S, M , and E), initially �i = S;
Input: Aunfair : algorithm working in unfair SSYNC, snapshot SSi of ri;
1: case cc(SSi) of
2: ∈ ∀S:
3: if ri is Aunfair -enabled then
4: ri executes Aunfair

5: desi ← the computed destination of Aunfair

6: li ← M
7: ∈ ∀S, M :
8: li ← M
9: ∈ ∀M or ∀M, E:
10: li ← E
11: ∈ ∀E or ∀S, E:
12: li ← S
13: endcase

those execute Aunfair , change their colors to M , and move to the computed des-
tination. While they move after changing their colors to M , other robots change
their colors to M until the configuration becomes one in ∀M . Note that when
the configuration is in ∀M , some robots may be still moving. After the robots
reach a configuration in ∀M , the robots change their colors to E until the con-
figuration becomes one in ∀E. In the same way, the configuration changes from
a configuration in ∀E to a configuration in ∀S. This cycle is repeated until the
robots reach a configuration where no robot is Aunfair -enabled and all robots
are colored S. Each time a configuration in ∀S where one or more robots are
Aunfair -enabled is reached, at least one of them becomes active and performs
Aunfair observing the same configuration. In consequence, this algorithm can
simulate algorithms in unfair SSYNC.

Lemma 1. Let the configuration be in ∀S at time tS and let Re be a set of
Aunfair -enabled-robots at tS. After tS, the followings hold for SIM-for-Unfair(ri)
if Re �= ∅.

(1) There is a time tM > tS at which the configuration is in ∀M .
(2) There are a time tf (tS < tf < tM) and a non-empty subset R′

e of Re such
that all robots in R′

e perform Aunfair observing the same configuration and
all robots in Re − R′

e do nothing between tS and tf .

Lemma 2. If the configuration is in ∀M at time tM , there is a time tE at which
it is in ∀E.

Note that since robots with M stay when changing their colors from M to
E, the configuration at tE is unchanged until some robots are activated after tE .

Lemma 3. If the configuration is in ∀E at time tE, there is a time tS at which
it is in to ∀S.

418 R. Nakai et al.

Using Lemmas 1, 2 and 3, we can verify that algorithm SIM-for-Unfair(ri)
simulates OBLOT -algorithm Aunfair in unfair SSYNC correctly in ASYNC with
3 colors of LUMI-light, and if Aunfair uses k colors of LUMI-light, SIM-for-
Unfair(ri) uses 3k colors. Then the following theorem is obtained.

Theorem 1. SIM-for-Unfair in ASYNC with LUMI of 3k colors simulates
algorithms in unfair SSYNC with LUMI of k colors.

3.2 Gathering Algorithm with Simulation

In order to show that an algorithm A works in unfair SSYNC, we use a concept
of potential function for A, which represents how close current configuration is
to the final configuration. A potential function fA for algorithm A is a function
from time t (∈ IN) to feature value obtained from configuration C(t) for the
algorithm A, which is taken from a total ordered set. If the potential function
fA for algorithm A working in SSYNC is monotonically decreasing, that is,
fA(t) > fA(t+1) for any t, we can show that the algorithm A can work in unfair
SSYNC.

We show that the Gathering algorithm with two colors of light shown in
SSYNC in [28] can still work in unfair SSYNC by constructing potential func-
tions.

The Gathering algorithm [28] is divided into two sub-algorithms. The first
one (called ElectOneLDS) obtains a configuration that all robots are located on
one straight line segment (called onLDS) from any initial configuration, and the
second one (called LUMI-Gather) is a Gathering algorithm from any initial
configuration of onLDS.

We obtain an algorithm with SIM-for-Unfair, ElectOneLDS, and LUMI-
Gather by replacing the line 4 in Algorithm 1 with the line

if not onLDS then ElectOneLDS(ri) else LUMI-Gather(ri).
This algorithm simulates ElectOneLDS(ri) until onLDS is attained and once
onLDS is obtained it simulates LUMI-Gather and Gathering is completed. If
ElectOneLDS and LUMI-Gather can work in unfair SSYNC, we can show that
the synthesized algorithm solves Gathering in ASYNC. We can show that poten-
tial functions are defined for ElectOneLDS and LUMI-Gather and these func-
tions are monotonically decreasing. However, due to lack of space, the details
are stated in the full version [25].

We obtain the following theorem by Theorem 1 indicating that an algorithm
with k colors in unfair SSYNC can be simulated by ASYNC robots with 3k color,
and the result that ElectOneLDS and LUMI-Gather work in unfair SSYNC.

Theorem 2. Gathering can be solved in ASYNC by LUMI robots having 6
colors under non-rigid movement and agreement of chirality.

4 Gathering Algorithm in ASYNC with 3 Colors

In this section, we give a Gathering algorithm called 3-color-Gather-in-ASYNC
working in ASYNC with 3 colors. The pseudocode is shown in Algorithm 2. This

Gathering Problems for Autonomous Mobile Robots with Lights in ASYNC 419

algorithm consists of two algorithms, where one is to make onLDS and uses the
simulation of ElectOneLDS (SIM-for-Unfair[ElectOneLDS]), and the other is a
Gathering algorithm from onLDS and does not use the simulation and is newly
developed (called LUMI-Gather-in-ASYNC). As we will show in Corollary 1, in
SIM-for-Unfair[ElectOneLDS], once a configuration becomes onLDS, it remains
onLDS forever. Therefore, the algorithm works in ASYNC with 3 colors and
therefore 3-color-Gather-in-ASYNC attains Gathering in ASYNC with 3 colors.

Algorithm 2. 3-color-Gather-in-ASYNC(ri)
Assumptions: non-rigid, ASYNC,
Subroutine: SIM-for-Unfair(ri), ElectOneLDS(ri), LUMI-Gather-in-ASYNC(ri);
1: if not onLDS then SIM-for-Unfair(ri)[ElectOneLDS]
2: else LUMI-Gather-in-ASYNC(ri)

4.1 Configurations Becoming OnLDS

In 3-color-Gather-in-ASYNC, it is switched to LUMI-Gather-in-ASYNC from
the simulation when the configuration becomes onLDS. We consider configura-
tions which become onLDS when ElectOneLDS is simulated by SIM-for-Unfair.

Since we are concerned with ASYNC, C(t) contains moving robots6 and/or
robots having performed Look but not performing Compute. The former robots
are said to be in pending move at C(t) and the latter robots are said to be in
pending color at C(t) [8]. Then the following notations are introduced in color-
configurations. In factor f of a color-configuration for C(t), if some robots have
the possibility to be in pending move or pending color at a position represented
by f , the factor is denoted by f [pm] and f [pc → α], respectively. If there is
possibility of robots being in pending move and in pending color, the factor is
denoted by f [pm, pc], where pc → α shows that the color is changed to α when
performing Compute. When robots in pending move with color α move to the
destination d in the factor α[pm], we say that α[pm] has destination d.

Lemma 4. If the configuration becomes onLDS at t when SIM-for-Unfair sim-
ulates ElectOneLDS. It holds that

(1) cc(C(t)) = SS∗S,
(2) cc(C(t)) = (S|S[pc → M]|M |M [pm])(S|S[pc → M]|M |M [pm])∗(S|S[pc →

M]|M |M [pm]) with at least one M ,
(3) cc(C(t)) = (M |M [pm, pc → E]|E)(M |M [pm, pc → E]|E)∗(M |M [pm, pc →

E]|E) with at least one M ,
(4) cc(C(t)) = (S|M) with at least one M , or
(5) cc(C(t)) = (M |E) with at least one M .

6 Robots having performed Compute and not finishing Move yet.

420 R. Nakai et al.

Fig. 1. Transition graph for LUMI-Gather-in-ASYNC from C in Lemma 4.

In (2) and (3), all M [pm] has a destination of a point on the straight line through
onLDS in C(t).

Corollary 1. In SIM-for-Unfair[ElectOneLDS], if the configuration becomes
onLDS from non-onLDS at time t, destination of any moving robot at t is a
point on the straight line through onLDS in C(t).

We will show that LUMI-Gather-in-ASYNC can work from the configura-
tions shown in Lemma 4.

4.2 Correctness of LUMI-Gather-in-ASYNC

LUMI-Gather-in-ASYNC (Algorithm 3) is an extension of Algorithm LUMI-
Gather [28] so that it can work in ASYNC, and uses color-cycles similar to that of
Algorithm 1. This algorithm uses 3 colors S,M, and E and its color-cycle repeats
∀S(SS) → ∀M → ∀E(EE) → ∀S(SS). Notations in parentheses indicate that
the configuration is limited to two points.

In the algorithm, robots gather at the midpoint of some onLDS, or Gathering
point, where configuration C has a Gathering point pG if and only if C is in ∀M,E,
#E(C) = 1 and pG has E. Thus, the aim of this algorithm to create Gathering
point during color-cycles.

Gathering Problems for Autonomous Mobile Robots with Lights in ASYNC 421

Algorithm 3. LUMI-Gather-in-ASYNC(ri)
Assumptions: non-rigid, LUMI, 3 colors(S, M and E).
Input: configuration onLDS and configuration satisfying Lemma 4.
1: (Let pn be the nearest endpoint to pi, and let pf be the furthest endpoint to pi)
2: case cc(SSi) of
3: ∈ ∀S:
4: if cc(SSi) = SS then// → SMS, SM+S, MM∗M , SMM , or SM∗M
5: li ← M
6: desi ← (pn + pf)/2
7: else //cc(SSi) = SS+S
8: if pi �= pn then desi ← pn //→ SS
9: ∈ ∀S,M :
10: if cc(SSi) = M+(S|M)M∗, M∗(S|M)M+, or (S|M) then
11: if li = S then li ← E //M+(S|M)M∗ → M+EM∗ or (S|M) → (M |E)
12: else if cc(SSi) = (S|M)M∗(S|M) and #S(SSi) = 2 and li = S then
13: li ← M //→ SM∗M or MM∗M
14: desi ← (pn + pf)/2
15: else if #S(SSi) ≥ 2 and li = S then li ← M //The number of S decreases.
16: ∈ ∀S,E:
17: if cc(SSi) = (S|E)(S|E) and li = E then li ← S //→ SS
18: else //(S|E)E(S|E)
19: if cc(SSi) = (S|E)E(S|E) and #E(SSi) > 1 and pi = pn and li = E then
20: li ← S //→ SES
21: else if cc(SSi) = SES and li = S then //→ (S|M)E(S|M)
22: li ← M
23: ∈ ∀M :
24: li ← E //MM∗M → (M |E)(M |E)∗(M |E)
25: ∈ ∀M,E:
26: if cc(SSi) = M+(E|M)M∗ or M∗(E|M)M+ then
27: (Let pE be a point with E)
28: if pi �= pE then desi ← pE //Possibly the color-configuration becomes (M |E).
29: else// #E(SSi) ≥ 2 or cc(SSi) = (M |E)
30: if li = M then li ← E //(M |E)(M |E)∗(M |E) → EE∗E or (M |E) → E
31: ∈ ∀E:
32: if cc(SSi) = E then do nothing //Gather
33: else if cc(SSi) = EE then li ← S //→ (S|E)(S|E)
34: else if cc(SSi) = EEE then
35: if pi = pn then
36: li ← S //→ (S|E)E(S|E)
37: else //cc(SSi) = EE+E
38: if pi �= pn then desi ← (pn + pf)/2 //EE+E → EEE
39: ∈ ∀S,M,E:
40: if cc(SSi) = M+(S|M |E)M∗, M∗(S|M |E)M+ or (S|M |E) and li = S then
41: li = E //M+(S|M |E)M∗ → M+(E|M)M∗ or (S|M |E) → (M |E)
42: else if cc(SSi) = (S|M)E(S|M) and pi = pn and li = S then
43: li = M //→ MEM
44: endcase

In ∀S(SS) → ∀M , robots on the two points with S change their colors to
M and move to the midpoint. Note that robots at the endpoints move to the
midpoint only if the endpoints have S and the color of the robots is S. Gathering
point is created during transitions in color-cycles for the following cases;

422 R. Nakai et al.

(1) During ∀S(SS) → ∀M , robots with S look configuration C such that
#S(C) = 1.

(2) configuration C during ∀M → ∀E.
(3) After configuration becomes ∀E configuration C such that #E(C) ≥ 3.

We show how to create a Gathering point from each of (1), (2), and (3).
For (1), a robot ri with S changes its color to E if ri looks the configuration

with #S(C) = 1. From the configuration it will make a configuration such that
#E(C) = 1 and ∀M,E, and then a Gathering point is created.

For (2), Gathering point is lost if there are more than one point with E. On
the other hands, Gathering point is confirmed if there is only one point with
E. Let tM be a time at which the configuration becomes ∀M , let tE(> tM) be
the first time at which some robot changes its color to E, and let pE be the
location having robots with E. If there are not activated robots at points except
pE between tM + 1 and tE , robots activated after tE observe a configuration
with #E(C) = 1 and ∀M,E. Therefore, there are no robots that change their
colors to E, and the Gathering point pE is confirmed.

In (3), robots with E do not move, and the both endpoints are fixed and
robots at points except the endpoints move to the midpoint. Thus the config-
uration becomes EEE. The transition of the configuration becomes EEE →
SES → MEM , where the last configuration satisfies #E(C) = 1 and in ∀M,E.
This case also determines a Gathering point.

If the configuration becomes (1), (2) or (3), Gathering point is made. If the
configuration does not become (1), (2) and (3), it becomes EE, will change SS
and again begins the next color-cycle ∀S(SS) → ∀M → ∀E(EE) → ∀S(SS).
If color-cycles are repeated, the distance of the endpoints is reduced by at least
2δ in one cycle. Therefore the distance will become less than 2δ when the color
configuration becomes ∀S(SS). Then, if the configuration is in ∀M , robots with
M reach the midpoint, and Gathering is achieved.

Transitions between color configurations in Algorithm 3 are shown in Fig. 1.
In this figure, boxes with numbers and � are starting configurations and the
number corresponds to that in Lemma 4. Arrow labelled with L.n(i) means it
is proved in Lemma n(i) which will be shown in Appendix. “DONE” means
Gathering is attained.

Since we can show that Algorithm 3 can work from the configurations in
Lemma 4, we have the following theorem and obtain our main result.

Theorem 3. LUMI-Gather-in-ASYNC solves Gathering from onLDS for
LUMI robots having 3 colors, under non-rigid movement.

Theorem 4. Gathering can be solved in ASYNC by LUMI robots having 3
colors under non-rigid movement and agreement of chirality.

5 Concluding Remarks

We have shown a Gathering algorithm in non-rigid and ASYNC with LUMI of
three colors. In order to obtain the algorithm, we have shown a simulating algo-
rithm of any algorithm in unfair SSYNC by LUMI of three colors in ASYNC.

Gathering Problems for Autonomous Mobile Robots with Lights in ASYNC 423

We have reduced the number of colors used in the simulation to three from five,
although the simulated algorithms are ones in unfair SSYNC.

The method by combining the simulation of SSYNC robots by ASYNC ones
and algorithms working in SSYNC not only reduces the number of colors used
in the resultant algorithm but also simplifies the proof of correctness of it. As
is known from an example of ElectOneLDS, it seems to be very complicated to
extend ElectOneLDS such that it can work in ASYNC and prove the correctness.
However, about correctness of the synthesized algorithm, it is enough to prove
the correctness of the simulation working in ASYNC because the correctness of
ElectOneLDS working in SSYNC has been obtained.

One of the interesting open questions is the number of colors to solve Gather-
ing in ASYNC, although two colors are enough to solve Rendezvous in ASYNC
[18], we conjecture that three colors are necessary to solve Gathering in ASYNC.

References

1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. SIAM J. Comput. 36(1), 56–82 (2006)

2. Ando, H., Osawa, Y., Suzuki, I., Yamashita, M.: A distributed memoryless point
convergence algorithm for mobile robots with limited visibility. IEEE Trans. Robot.
Autom. 15(5), 818–828 (1999)

3. Bhagat, S., Mukhopadhyaya, K.: Optimum gathering of asynchronous robots. In:
Gaur, D., Narayanaswamy, N.S. (eds.) CALDAM 2017. LNCS, vol. 10156, pp.
37–49. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53007-9 4

4. Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple crash
faults. In: The 33rd International Conference on Distributed Computing Systems,
pp. 334–346 (2013)

5. Cicerone, S., Stefano, G.D., Navarra, A.: “semi-asynchronous”: a new scheduler in
distributed computing. IEEE Access 9, 41540–41557 (2021)

6. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)

7. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous
mobile robots with lights. Theor. Comput. Sci. 609, 171–184 (2016)

8. Défago, X., Hériban, A., Tixeuil, S., Wada, K.: Using model checking to formally
verify rendezvous algorithms for robots with lights in euclidean space. In: 2020
International Symposium on Reliable Distributed Systems (SRDS), pp. 113–122
(2020)

9. Défago, X., Potop-Butucaru, M.G., Clément, J., Messika, S., Parvédy, P.R.: Fault
and byzantine tolerant self-stabilizing mobile robots gathering - feasibility study.
CoRR abs/1602.05546, arXiv (2016)

10. Degener, B., Kempkes, B., Langner, T., auf der Heide, F.M., Pietrzyk, P., Watten-
hofer, R.: A tight run-time bound for synchronous gathering of autonomous robots
with limited visibility. In: 23rd ACM SPAA, pp. 139–148 (2011)

11. D’Emidio, M., Frigioni, D., Navarro, A.: Synchronous robots vs asynchronous
lights-enhanced robots on graphs. Electr. Notes Theor. Comput. Sci. 322, 169–
180 (2016)

12. D’Emidio, M., Stefano, G.D., Frigioni, D., Navarra, A.: Characterizing the com-
putational power of mobile robots on graphs and implications for the euclidean
plane. Inf. Comput. 263, 57–74 (2018)

https://doi.org/10.1007/978-3-319-53007-9_4

424 R. Nakai et al.

13. Di Luna, G., Flocchini, P., Chaudhuri, S., Poloni, F., Santoro, N., Viglietta, G.:
Mutual visibility by luminous robots without collisions. Inf. Comput. 254(3), 392–
418 (2017)

14. Dieudonné, Y., Petit, F.: Self-stabilizing gathering with strong multiplicity detec-
tion. Theor. Comput. Sci. 428(13), 47–57 (2012)

15. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious
Mobile Robots. Morgan & Claypool (2012)

16. Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile
Entities, Current Research in Moving and Computing. Lecture Notes in Computer
Science, vol. 11340. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-
030-11072-7

17. Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Rendezvous with constant
memory. Theor. Comput. Sci. 621, 57–72 (2016)

18. Hériban, A., Défago, X., Tixeuil, S.: Optimally gathering two robots. In: Proceed-
ings of 19th International Conference on Distributed Computing and Networking
(ICDCN), pp. 1–10 (2018)

19. Izumi, T., Katayama, Y., Inuzuka, N., Wada, K.: Gathering autonomous mobile
robots with dynamic compasses: an optimal result. In: Pelc, A. (ed.) DISC 2007.
LNCS, vol. 4731, pp. 298–312. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75142-7 24

20. Izumi, T., et al.: The gathering problem for two oblivious robots with unreliable
compasses. SIAM J. Comput. 41(1), 26–46 (2012)

21. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Asynchronous mobile robot gath-
ering from symmetric configurations without global multiplicity detection. In:
Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 150–161.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22212-2 14

22. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theoret. Comput. Sci. 390(1), 27–39 (2008)

23. Lin, J., Morse, A., Anderson, B.: The multi-agent rendezvous problem. Parts 1 and
2. SIAM J. Comput. 46(6), 2096–2147 (2007)

24. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots.
Theor. Comput. Sci. 384(2–3), 222–231 (2007)

25. Rikuo, R., Sudo, Y., Wada, K.: Asynchronous gathering algorithms for autonomous
mobile robots with lights. arXiv.org cs (ArXiv:2109.12289) (2021)

26. Souissi, S., Défago, X., Yamashita, M.: Using eventually consistent compasses
to gather memory-less mobile robots with limited visibility. ACM Trans. Auton.
Adapt. Syst. 4(1), 1–27 (2009)

27. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28, 1347–1363 (1999)

28. Terai, S., Wada, K., Katayama, Y.: Gathering problems for autonomous mobile
robots with lights. arXiv.org cs (ArXiv:1811.12068) (2018)

29. Viglietta, G.: Rendezvous of two robots with visible bits. In: Flocchini, P., Gao,
J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS,
vol. 8243, pp. 291–306. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-45346-5 21

https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-540-75142-7_24
https://doi.org/10.1007/978-3-540-75142-7_24
https://doi.org/10.1007/978-3-642-22212-2_14
http://arxiv.org/abs/org
http://arxiv.org/abs/2109.12289
http://arxiv.org/abs/org
http://arxiv.org/abs/1811.12068
https://doi.org/10.1007/978-3-642-45346-5_21
https://doi.org/10.1007/978-3-642-45346-5_21

Synchronization Modulo k in Dynamic
Networks

Louis Penet de Monterno1(B), Bernadette Charron-Bost2, and Stephan Merz3

1 École polytechnique, IP Paris, 91128 Palaiseau, France
penetdemonterno@lix.polytechnique.fr

2 DI ENS, CNRS, École Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France
3 Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France

Abstract. We define the mod k-synchronization problem as a weak-
ening of the Firing Squad problem, where all nodes fire not at the
same round, but at rounds that are all equal modulo k. We propose
an algorithm that achieves mod k-synchronization in any dynamic net-
work where there exist – possibly several – fixed spanning stars within
each period of Δ consecutive rounds. In other words, we require that
there always exists a temporal path of length at most Δ between some
fixed node γ and every other node. As opposed to the perfect synchro-
nization achieved in the Firing Squad problem, mod k-synchronization
thus does not require any strong connectivity property in the network.
In our algorithm, all the nodes “know” Δ, but they ignore what nodes
are the centers of the spanning stars. We also prove that if the bound
Δ for guaranteeing fixed spanning stars exists but is unknown to the
agents, then mod k-synchronization is impossible.

All nodes in our algorithm fire in less that 6kn + 4k rounds after all
nodes become active, but unfortunately uses unbounded counters. We
then propose a refinement of this algorithm so that it becomes finite
state while maintaining the same time complexity. The correctness of
our first algorithm has been formally established in the proof assistant
Isabelle.

1 Introduction

Distributed algorithms are often designed in a synchronous computing model, in
which computation is divided into communication-closed rounds: any message
sent at some round can be received only at that round. In this model, it is usually
assumed that each run of an algorithm is started by all nodes simultaneously,
i.e., at the same round, or even at round one. For instance, most synchronous
consensus algorithms (e.g., [8,13,14]), as well as many distributed algorithms for
dynamic networks (e.g., [10,11]) require synchronous starts.

This assumption makes the sequential composition of two distributed algo-
rithms A;B – in which each node starts executing B when it has completed the
execution of A – quite problematic. Indeed, nodes start the algorithm B asyn-
chronously when the algorithm A terminates asynchronously, and the properties
of B are no more guaranteed in this context of asynchronous starts.
c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 425–439, 2021.
https://doi.org/10.1007/978-3-030-91081-5_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_28&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_28

426 L. P. de Monterno et al.

This leads to the problem of simulating synchronous starts, classically
referred to as the firing squad problem: Each node is initially passive and then
becomes active at an unpredictable round. The goal is to guarantee that the
nodes, when all active, eventually synchronize by firing – i.e., entering a desig-
nated state for the first time – at the same round.

Unfortunately, the impossibility result in [4] demonstrates that the firing
squad problem is not solvable without a strong connectivity property of the net-
work, namely, there exists some positive integer Δ such that the communication
graph within every period of Δ consecutive rounds is strongly connected and
the bound on the delay Δ is “known”1. In many situations, this connectivity
property is not guaranteed: as an example, in the dynamic graphs correspond-
ing to the Heard-Of models for benign failures, a node that suffers permanent
and complete send omissions is constantly a sink in the communication graph.

However, looking more closely at many distributed algorithms designed in
the round-based model, we see that these algorithms actually do not require
perfectly synchronous starts, and still work under the weaker condition that
all the nodes start executing the algorithms in rounds with numbers that are
equal modulo k, for some positive integer k. The corresponding synchronization
problem, that we call mod k-synchronization, is formally specified as follows:

Termination. If all nodes are eventually active, then every node eventually
fires.

mod k-simultaneity. If two nodes fire at round t and t′, then t′ ≡ t mod k.

Indeed, let A be an algorithm organized into regular phases consisting of
a fixed number k of consecutive rounds: the sending and transition functions
of every node at round t are entirely determined by the value of t modulo k.
Moreover, assume that A has been proved correct (with respect to some given
specification) when all nodes start A synchronously (at round one), but with
any dynamic graph in a family G that is stable under the addition of arbitrary
finite prefixes. For instance, the ThreePhaseCommit algorithm for non-blocking
atomic commitment [1], as well as the consensus algorithms in [9] or the LastVot-
ing algorithm [6] – corresponding to the consensus core of Paxos – fulfill all the
above requirements for phases of length k = 3 and k = 4, respectively, and
the family G of dynamic graphs in which there exists an infinite number of
“good” communication patterns (e.g., a sequence of 2k consecutive communica-
tion graphs in which a majority of nodes is heard by all nodes in each graph).
The use of a mod k-synchronization algorithm prior to the algorithm A yields a
new algorithm that executes exactly like A does, after a finite preliminary period
during which every node becomes active and fires. The above property on the
set of dynamic graphs G then guarantees this variant of A to be correct with
asynchronous starts and dynamic graphs in G.

Another typical example for which perfect synchronization can be weakened
to synchronization modulo k is the development of the basic rotating coordi-
nator strategy in the context of asynchronous starts. Roughly speaking, this

1 in a sense that will be detailed in Sect. 3.5.

Synchronization Modulo k in Dynamic Networks 427

strategy consists in the following: if nodes have unique identifiers in {1, . . . , n},
the coordinator at round t is the node whose identifier is t modulo n. For that,
each node u maintains a local counter cu whose current value is the number of
rounds in which it has been active. At each round, the coordinator of u is the
node with the identifier that is equal to the current value of cu modulo n. Since
there may be only one coordinator per round, such a selection rule requires syn-
chronous starts. Clearly, with the use of a modn-synchronization algorithm in a
preliminary phase and a counter for each node that now counts the number of
rounds elapsed since the node fired, the above scheme implements the rotating
coordinator strategy from the first round where all nodes have fired.

A natural question is then whether synchronization modulo k may be
achieved without strong connectivity. In this paper, we address this issue and
show that this problem is solvable under the sole assumption of a fixed center
γ with a fixed and “known” bound on the delay Δ, that is, every node receives
a message from γ (possibly indirectly) in every period of Δ consecutive rounds.
In fact, we exhibit an algorithm, denoted by SynchModk, that achieves synchro-
nization modulo k in any dynamic graph with a fixed center and a delay at
most equal to k. The case where Δ > k will be covered separately, in Sect. 3.5.
Interestingly, our algorithm requires no node identifiers. In particular, nodes are
not assumed to “know” what node is the center of the graph. Provided that the
communication graph is centered with delay at most Δ, no other assumption is
made on the dynamic graph.

The correctness proof of our algorithm relies on a series of preliminary lemmas
that consider all the possible cases for the respective values of the variables in the
algorithm. In order to increase our confidence in the correctness and remove any
doubts on such combinatorial proofs, we have developed a formal proof of the
correctness of our algorithm in the interactive theorem prover Isabelle/HOL [12].

2 Preliminaries

2.1 The Computational Model

We consider a networked system with a fixed set V of n nodes. We assume a
round-based computational model in the spirit of the Heard-Of model [6], in
which point-to-point communications are organized into synchronized rounds:
each node sends messages to all nodes and receives messages sent by some of
the nodes. Rounds are communication closed in the sense that no node receives
messages in round t that are sent in a round different from t. The collection
of communications (which nodes receive messages from which nodes) at each
round t is modelled by a directed graph (digraph, for short) with a set of nodes
equal to V . The digraph at round t is denoted by G(t) = (V,Et), and is called
the communication graph at round t. The set of u’s incoming neighbors in the
digraph G(t) is denoted by Inu(t).

We assume a self-loop at each node in all these digraphs since every node
can communicate with itself instantaneously. The sequence of such digraphs G =
(G(t))t≥1 is called a dynamic graph [3].

428 L. P. de Monterno et al.

In round t (t = 1, 2, . . .), each node u successively (a) broadcasts messages
determined by its state at the beginning of round t, (b) receives some of the
messages sent to it, and finally (c) performs an internal transition to a successor
state. A local algorithm for a node is given by a sending function that determines
the messages to be sent in step (a) and a transition function for state updates in
step (c). An algorithm for the set of nodes V is a collection of local algorithms,
one per node.

We also introduce the notion of start schedules, represented as collections
S = (su)u∈V , where each su is a positive integer or is equal to ∞.

The execution of an algorithm A with the dynamic graph G and the start
schedule S then proceeds as follows: Each node u is initially passive. If su = ∞,
then the node u remains passive forever. Otherwise, su is a positive integer, and
u becomes active at the beginning of round su, setting up its local variables. In
round t (t = 1, 2 . . .), a passive node sends only heartbeats, corresponding to
null messages, and cannot change its state. An active node applies its sending
function in A to its current state to generate the messages to be sent, then it
receives the messages sent by its incoming neighbors in the directed graph G(t),
and finally applies its transition function Tu in A to its current state and the
list of messages it has just received (including the null messages from passive
nodes), to compute its next state. Since each local algorithm is deterministic,
an execution of the algorithm A is entirely determined by the initial state of the
network, the dynamic graph G, and the start schedule S.

The states “passive” and “active” do not refer to any physical notion, and are
relative to the algorithm under consideration: as an example, if two algorithms
A and B are sequentially executed according to the order “A followed by B”,
then at some round, a node may be active w.r.t. A while it is passive w.r.t. B. In
such a situation, the node is integrally part of the system and can send messages,
but these messages are empty with respect to the semantics of the algorithm B.

2.2 Network Model and Start Model

Let us first recall the notion of product of two digraphs G1 = (V,E1) and G2 =
(V,G2), denoted by G1 ◦ G2 and defined as follows [5]: G1 ◦ G2 has V as its
set of nodes, and (u, v) is an edge if there exists w ∈ V such that (u,w) ∈ G1

and (w, v) ∈ G2. For any dynamic graph G and any integer t′ > t ≥ 1, we let
G(t : t′) = G(t) ◦ G(t + 1) ◦ · · · ◦ G(t′). By extension, we let G(t : t) = G(t).

The set of incoming neighbors of u in G(t : t′) is noted as Inu(t : t′). The set
Inu(t : t) is simply noted Inu(t).

Each edge (u, v) in the digraph G(t : t′) corresponds to a u � v path in the
interval [t, t′], i.e., a finite sequence of nodes u = wt−1, wt, . . . , wt′ = v such that
each pair (wi, wi+1) is an edge of G(t + i). This path is said to be active if each
node wt−1, wt, . . . , wt′ is active in rounds t − 1, t, . . . t′, respectively.

A network model is any non-empty set of dynamic graphs. We will focus on
those network models G∗

Δ of dynamic graphs G where each digraph G(t : t+Δ−1)
contains a fixed star graph, namely,

∃γ ∈ V, ∀t ∈ N, ∀u ∈ V, γ ∈ Inu(t : t + Δ − 1).

Synchronization Modulo k in Dynamic Networks 429

The dynamic graph G is said to be centered at the node γ with delay Δ, and γ
is called a Δ-center of G.

The network model G∗
Δ contains some dynamic graphs which are partitionned

during less than Δ consecutive rounds. If the network model containing dynamic
graphs which are rooted in each round is denoted by Grooted, we can easily check
that, because of self-loops, if a node γ is a root of each digraph G(t), then the
dynamic graph G is centered at γ with delay |V | − 1. Then Grooted ⊆ G∗

|V |−1.
Similarly, if the network model containing dynamic graphs which are strongly
connected in each round is denoted by Gstrong, we get Gstrong ⊆ Grooted ⊆ G∗

|V |−1.
We also define a start model as a non-empty set of start schedules. A start

schedule S = (su)u∈V is complete if every su is finite, i.e., no node is passive
forever. Synchronous starts correspond to complete start schedules where all su

are finite and equal. The point of this paper is to simulate mod k-synchronous
starts defined by su ≡ sv mod k for every pair of nodes u and v, with any
complete start schedule.

The algorithm we introduce in the next section requires the existence of a
Δ-center. By comparison, the firing squad problem is solvable with some strong
connectivity hypothesis. In other words, every node must be a Δ-center.

3 The Algorithm

In this section, we present simultaneously the pseudo-code of our algorithm, and
its formal definition in the Isabelle framework. The correctness of the algorithm
has been formally verified in Isabelle.2 The proof that we present in this article
closely follows our formal proof.

3.1 Pseudo-code and Formal Definition

The state of each node is represented by five variables whose initial value is given
below.
record locState =

x :: nat
synch :: bool
ready :: bool
force :: nat — force ∈ {0, 1, 2}
level :: nat — level ∈ {0, 1, 2}

definition initState where

initState ≡ � x = 0, synch = False, ready = False, force = 0, level = 0 �

We define a datatype for messages sent between two nodes u and v: messages
either carry a value of some type ′msg , or are equal to Null if u is passive, or to
Void if u is not an incoming neighbor of v.

datatype ′msg message = Content ′msg | Null | Void

2 The complete Isabelle development is available at https://github.com/louisdm31/
asynchronous starts HO model/tree/master/proof/sync-mod.

https://github.com/louisdm31/asynchronous_starts_HO_model/tree/master/proof/sync-mod
https://github.com/louisdm31/asynchronous_starts_HO_model/tree/master/proof/sync-mod

430 L. P. de Monterno et al.

Algorithm 1: The SynchModk algorithm
1 Initialization:
2 cu ∈ N, initially 0
3 synchu ← false
4 readyu ← false
5 forceu ∈ {0, 1, 2}, initially 0
6 levelu ∈ {0, 1, 2}, initially 0

7 At each round:
8 send 〈cu, synchu, forceu, readyu〉 to all
9 receive incoming messages: let Ina be the set of nodes from which a non-null

message is received.
10 if all received messages are non-null then
11 synchu ← ∧

v∈Ina
synchv ∧ cv ≡ cu mod k

12 end
13 else
14 synchu ← false
15 end
16 readyu ← ∧

v∈Ina
readyv

17 forceu ← max
v∈Ina

forcev

18 cu ← 1 + min
v∈Ina

forcev=forceu

cv

19 if cu ≡ 0 mod k then
20 if levelu = 0 ∧ synchu then
21 levelu ← 1
22 if forceu < 2 then
23 forceu ← 1
24 cu ← 0
25 end

26 end
27 else if levelu = 1 ∧ readyu ∧ synchu then
28 levelu ← 2 /* the node u fires */

29 forceu ← 2
30 cu ← 0
31 end
32 synchu ← true
33 readyu ← levelu > 0
34 end

3.2 Informal Description of the Algorithm

We fix some k > 2. In this algorithm, the nodes hold a level variable. When
they become active, they move from passive state to level 0. They later move to
level 1, then to level 2. Each time a node moves from some level to the next, this
constitutes a level-up event. From now on, the level reached during this level-up
event will be called the strength of this event. Reaching level 2 means firing. The

Synchronization Modulo k in Dynamic Networks 431

conditional statements at lines 20 and 27 of Algorithm 1 are executed when the
node reaches level 1 and 2 respectively. The intuition of the algorithm can be
summarized by two simple ideas.

Firstly, each node keeps track of the most recent strongest level-up event.
Only the strongest level-up events are considered: if some node “knows” about
a level-up event from level 1 to level 2, it will not record any level-up event from
level 0 to level 1, nor any level-up event from passive state to level 0. Among
the strongest level-up events, the nodes keep track of the age of the most recent
one. For that purpose, they hold two variables cu and forceu. At any round,
node u knows that cu rounds ago, some node reached a level equal to forceu

from the previous level (as proved in Lemma 6), and the node does not know
any node which reached a level equal to forceu (or higher) in any more recent
round (as proved in Lemma 7). With lines 17 and 18, they update their cu

and forceu variables using those of their incoming neighbors. The presence of
self-loops implies that, in these lines, the minima and maxima are well-defined.

Fig. 1. Evolution of the incoming neighbors of u between round t−k and t: case where
every cu is congruent to 0 in round t − k

Secondly, a node may level up in round t only if its counter cu is congruent
to 0 and the counter of γ was also congruent to 0 k rounds ago. Since the nodes
do not “know” a fixed Δ-center, they conservatively level up only if all of their
incoming neighbors v ∈ Inu(t − k + 1 : t) were congruent to 0 k rounds ago.
The assumption Δ ≤ k guarantees that γ is one of these incoming neighbors.
For that purpose, they use a Boolean variable synch. When the counter of some
node v becomes congruent to 0 in some round t−k, it sets its synchv variable to
true in line 32. During the next k − 1 rounds, it will check whether the counters
of its incoming neighbors are all congruent to its own counter (line 11). In case
they are not, the node will set its synchu variable to false. This false value will

432 L. P. de Monterno et al.

Fig. 2. Evolution of the incoming neighbors of u between round t−k and t: case where
some cu are not congruent to 0 in round t − k

disseminate to its outgoing neighbors (also line 11). If, in round t, its synchu

variable is still true, node u knows that no non-congruence was detected between
round t−k and round t. This means that every Δ-center was congruent with 0 in
round t−k (as proved in Lemma 3.c). In that case, a level-up event will take place
(see Fig. 1). In contrast, if some node v ∈ Inu(t−k +1 : t) is not congruent with
0 in round t−k, then the line 11 guarantees that synchu will ultimately be false
at the beginning of round t (see Fig. 2). In addition to synch, the ready variable
makes sure that γ was already in level 1 k rounds ago (as proved in Lemma 4).
Otherwise, the level-up event to level 2 is forbidden. Intuitively, the round tγ
in which γ reaches level 1 is used as a landmark for the mod k-synchronization:
Lemma 9 shows that nodes fire in rounds which are congruent to tγ modulo k.

3.3 Notation and Preliminary Lemmas

In the rest of this section, we fix an execution ρ of the SynchModk algorithm
for a complete activation schedule S and a Δ-centered dynamic graph G ∈ G∗

Δ

with Δ ≤ k. Let smax = maxu∈V s(u) (note that smax < ∞) and let γ denote
any Δ-center of G.

If the node u is active in round t, the value of any u’s variable xu just before u
executes line 19 at round t and at the very end of round t are denoted by xpre

u (t)
and xu(t) respectively. By extension, xu(t) refers to the initial state if t = su −1.
In our formal proof, these values are encapsulated in a rho variable: for any round
t, for any node u, rho t u returns either Passive or Active s, where s :: locState
contains cu(t), synchu(t) We now prove that this execution satisfies both
properties of the mod k-synchronization problem.

definition liveness where — termination
liveness rho ≡ ∀ u. ∃ t s. rho t u = Active s ∧ level s = 2

definition safety where — mod k-simultaneity
safety rho ≡ ∃ c. ∀ u t s ss.

Synchronization Modulo k in Dynamic Networks 433

rho t u = Active s −→ level s < 2 −→
rho (Suc t) u = Active ss −→ level ss = 2 −→ t mod k = c

We proved these propositions under the following assumptions:

assumes ∀ u t. path In gamma u t k — gamma is a k-center
and ∀ u t. u ∈ In t u — the graph contains self-loops
and HORun (HOMachine k) rho In — rho is an execution
and ∀ p. ∃ t. rho t p = Asleep — the schedule is complete
and k > 2

The HORun term above is defined in [7] and characterizes executions of
an algorithm. Since this definition was first written for synchronous starts, we
adapted it to describe asynchronous starts.

We denote Ina
u(t) the subset of nodes in Inu(t) which are active in round t−1

in this execution. Some simple claims follow immediately from the definition
of the transition function, regardless of the connectivity properties of G. We
consider some node u ∈ V and some round t in which u is active (i.e., t ≥ su).

Lemma 1.

(a) levelu(t + 1) ∈ {levelu(t), levelu(t) + 1}
(b) If cu(t) = 0, then forceu(t) = forcepre

u (t) and cu(t) = cpre
u (t).

(c) cu(t) ≡ cpre
u (t) mod k.

(d) If synchpre
u (t) = true holds, then each node v ∈ Inu(t) is active at round

t − 1 with: cpre
v (t − 1) + 1 ≡ cpre

u (t) mod k.
(e) If cpre

u (t) ≡ 1 mod k and synchpre
u (t) holds, then each node v ∈ Inu(t) is

active in round t − 1 with synchpre
v (t − 1).

(f) If cpre
u (t) ≡ 1 mod k and synchpre

u (t) = readypre
u (t) = true,

then for every node v ∈ Ina
u(t), it holds that readypre

v (t − 1) = true.
(g) For every v ∈ Ina

u(t), we have:
forcepre

v (t − 1) ≤ forcev(t − 1) ≤ forcepre
u (t) ≤ forceu(t).

(h) ∀v ∈ Ina
u(t), forcepre

v (t − 1) = forcepre
u (t) ⇒

cpre
u (t) ≤ 1 + cv(t − 1) ≤ 1 + cpre

v (t − 1).
(i) levelu(t) ≤ forceu(t).

Lemma 2. No node can perform a level-up event action in round k−1 or earlier.

We now show a few properties on the incoming neighbors of nodes that reach
level 1 or 2. This situation is illustrated in Fig. 1.

Lemma 3. Let i be an integer, 0 ≤ i < k, and let u and v be two nodes such
that u ∈ Inv(t− k + i+1 : t). If v is active in round t, if cpre

v (t) ≡ 0 mod k and
synchpre

v (t) = true hold, then

(a) t ≥ k.
(b) u is active in round t − k + i.
(c) cpre

u (t − k + i) ≡ i mod k.
(d) If readypre

v (t) is true and i > 0, then readypre
u (t − k + i) is true as well.

Lemma 4. If some node u reaches level 2 in round tu, then γ is already in level
1 in round tu.

434 L. P. de Monterno et al.

Lemma 5. If γ reaches level 1 in round tγ , no node can reach level 1 or 2 in
any of the rounds tγ + 1, . . . , tγ + k − 1.

Lemma 6. Let u be some node, and t be some round in which u is active. There
exists some node w which reached a level equal to forcepre

u (t) in round t−cpre
u (t).

Moreover, an active w � u path exists in the interval [t − cpre
u (t) + 1, t].

We consider the set Z = {(f, t),∃u ∈ V, levelu(t) = f ∧ levelu(t − 1) = f}.
This set is the finite set of level-up events. Using Lemma 6, any node u satisfies
zu(t) = (forcepre

u (t), t − cpre
u (t)) ∈ Z in every round t ≥ su in which u is active.

We order Z lexicographically. The following two lemmas prove that zu(t) is the
most recent strongest level-up event “known” by u in round t.

Lemma 7. For every node u and v, if u leveled up in round t, then for every
i > 0 such that there exists an active u � v path in the interval [t + 1, t + i],

levelu(t) ≤ forcepre
v (t + i)

∧ levelu(t) = forcepre
v (t + i) ⇒ cpre

v (t + i) ≤ i.

Lemma 8. If there exists an active u � v path between two nodes u and v in the
interval [t + 1, t′], then zu(t) ≤ zv(t′).

Lemma 9. If γ reached level 1 in some round tγ , whereas some u reaches level
1 or 2 in some round tu ≥ tγ , then tu ≡ tγ mod k.

Proof. By contradiction, we consider the earliest node u which levels up in some
round tu ≥ tγ with tu ≡ tγ mod k. By Lemma 2, tγ ≥ k. The Lemma 6 implies
the existence of a node v which reached a level equal to forcepre

u (tu) in some
round tv = tu − cpre

u (tu).
In the case forcepre

u (tu) = 2, from Lemma 4, we obtain tv ≥ tγ .
In the case forcepre

u (tu) = 1, Lemma 5 tells us that tu−tγ ≥ k. Using self-loops
and G ∈ G∗

Δ respectively, there exists a γ � γ path in the interval [tγ + 1, tu − k]
and a γ � u path in the interval [tu − k + 1, tu]. By concatenation, we obtain a
γ � u path in the interval [tγ + 1, tu] Using Lemma 3.b, this path is active. From
Lemma 7, cpre

u (tu) ≤ tu − tγ . We also get tv ≥ tγ .
The case forcepre

u (tu) = 0 is impossible: we have forceγ(t) ≥ levelγ(t) ≥ 1 by
Lemma 1.i. Using Lemma 1.g, we get 1 ≤ forceγ(t) ≤ forcepre

wt+1
(t + 1) ≤ · · · ≤

forcepre
u (tu), where wt, wt+1, . . . , wtu

is the γ � u path constructed above.
In both possible cases, we have tv ≥ tγ . By line 19, we have cpre

u (t) ≡ 0
mod k. Recalling tv = tu − cpre

u (tu), we obtain tv ≡ tu ≡ tγ mod k. This
contradicts the fact that u was the earliest such node. ��

We say that the system is monovalent in round t if every node u is active and
the values in the family (cpre

u (t))u∈V are mutually congruent modulo k. Moreover,
we denote c̄pre(t) some integer which is congruent to every value (cpre

u (t))u∈V .

Lemma 10. If the system is monovalent in round t, it is monovalent in any
round t + i. Moreover, c̄pre(t + i) ≡ c̄pre(t) + i mod k.

Lemma 11. If, in some round t, the system is monovalent, then every node u
is in level 1 in round t + 2k and in level 2 in round t + 3k.

Synchronization Modulo k in Dynamic Networks 435

3.4 Correctness Proof

Lemma 12. Under the assumption of a Δ-centered dynamic graph with Δ ≤
k, any execution of the SynchModk algorithm satisfies the mod k-simultaneity
property.

Proof. We fix some node u, and we assume that u reaches level 2 in round tu.
From Lemma 4, we obtain tu ≥ tγ , where tγ is the round in which γ reaches level
1. By Lemma 9, tu ≡ tγ mod k. That proves the mod k-simultaneity property.

��

Lemma 13. Under the assumptions of a complete activation schedule and of a
Δ-centered dynamic graph with Δ ≤ k, any execution of the SynchModk algo-
rithm terminates.

Proof. For every node u, the sequence (zu(t))t≥su
belongs to the finite set Z.

Moreover, by Lemma 8, this sequence is non-decreasing. Then it eventually sta-
bilizes to some value zmax

u . Let zmin be min{zmax
u , u ∈ V }. We consider the

round t0 in which every node is active, and every sequence (zu(t))t≥su
has sta-

bilized to zmax
u . We consider the subset Vmin = {u ∈ V, zmax

u = zmin}. We claim
that ∀t > t0,∀u ∈ Vmin, Inu(t) ⊆ Vmin:

By contradiction, if in some round t > t0, some w /∈ Vmin belongs to Inu(t),
we would obtain zmax

u = zmin < zw(t − 1) ≤ zu(t), using u ∈ Vmin, w /∈ Vmin

and Lemma 8.
We apply Lemma 11 to the subsystem consisting of Vmin. Since for all t > t0

and u ∈ Vmin, Inu(t) ⊆ Vmin, this subsystem behaves like an independent
system. Then, in round t0 + 3k, every node in Vmin is in level 2. By Lemma 1.i,
every node u ∈ Vmin satisfies forcepre

u (t0 + 3k) = 2. By definition of Vmin, every
node u ∈ V has forcepre

u (t0 + 3k) = 2. Now, we prove that in round t0 + 3k, the
entire system is monovalent:

Let us consider two nodes u1 and u2. By Lemma 6, we obtain two nodes w1

and w2 which reached level 2 in round t0 + 3k − cpre
u1

(t0 + 3k) and t0 + 3k −
cpre
u2

(t0 + 3k) respectively. By Lemma 12, we obtain cpre
u1

(t0 + 3k) ≡ cpre
u2

(t0 + 3k)
mod k. That proves monovalence.

The termination property now follows from Lemma 11. ��

The previous two lemmas yield the following correctness theorem:

Theorem 1. Under the assumption of a Δ-centered dynamic graph with Δ ≤ k,
and a complete activation schedule, the SynchModk algorithm solves the mod k-
synchronization problem for any integer k greater than 2.

3.5 Solvability Results

We show that the mod k-synchronization problem is always solvable, regardless
of the value of k, if the bound Δ on the delay is known: for each possible Δ, we
can exhibit an algorithm which solves mod k-synchronization in any Δ-centeed
dynamic graph.

436 L. P. de Monterno et al.

Corollary 1. For any positive integer k, the mod k-synchronization problem is
solvable in each network model G∗

Δ in any complete activation schedule.

Proof. Depending on the relative values of k and Δ, we consider the following
cases:

1. k = 1. The problem is trivially solvable in any network model, in particular
G∗

Δ.
2. Δ ≤ k and k > 2. By Theorem 1, the SynchModk algorithm solves the mod k-

synchronization problem in G∗
Δ if k > 2.

3. Δ ≤ k = 2. Theorem 1 shows that the SynchMod4 algorithm achieves mod 4-
synchronization in G∗

2 , and hence achieves mod 2-synchronization in G∗
2 .

4. Δ > k. We have Δ ≤ �Δ
k � ·k. By Theorem 1, the mod �Δ

k � ·k-synchronization
problem is solvable in G∗

Δ using SynchMod � Δ
k �·k . The mod k-synchronization

problem is also solvable in G∗
Δ, a fortiori. ��

In contrast, we show that the mod k-synchronization problem is not solvable
if the delay Δ is unknown to the nodes.

Theorem 2. If k > 1, then the mod k-synchronization problem is not solvable
in the network model

⋃

i∈N

G∗
i .

Proof. By contradiction, assume that an algorithm A solves the problem in the
above-mentioned network model. We consider any system and we fix two nodes
u and v in this system. We denote I the digraph only containing self-loops. We
denote Cu and Cv the digraphs only containing self-loops and a star centered in
u and v respectively. We construct four executions of A:

1. Every node starts in round 1. The dynamic graph is equal to Cu at each
round. This dynamic graph belongs to G∗

1 . Using the termination of A, u fires
in some round fu.

2. Every node starts in round 1. The dynamic graph is equal to Cv at each
round. This dynamic graph belongs to G∗

1 . Using the termination of A, v fires
in some round fv.

3. Every node starts in round 1. During the first fu + fv rounds, the commu-
nication graph is equal to I. In every subsequent round, the communication
graph is equal to Cu. This dynamic graph belongs to G∗

1+fu+fv
.

4. the node u starts in round 1, whereas every other node starts in round 2.
During the first fu + fv rounds, the communication graph is equal to I.
In every subsequent round, the communication graph is equal to Cu. This
dynamic graph belongs to G∗

1+fu+fv
.

From the point of view of u, the third execution is indistinguishable from the
first execution. Then u fires in round fu in the third execution. From the point
of view of v, the third execution is indistinguishable from the second execution
during the first fv rounds. Then v fires in round fv in the third execution. Using
the mod k-simultaneity of A in the third execution, we obtain:

fu ≡ fv mod k.

Synchronization Modulo k in Dynamic Networks 437

Similarly, u fires in round fu and v fires in round 1+fv in the forth execution.
Using the mod k-simultaneity of A in the forth execution, we obtain:

fu ≡ fv + 1 mod k.

We obtain a contradiction if k > 1. ��

4 Complexity Analysis

4.1 Time Complexity Analysis

Theorem 3. There are at most 6kn + 4k rounds between the activation of all
nodes and the firing of all nodes.

Proof. We now bound the number of rounds between the activation of all nodes
(noted smax) and the firing of all nodes. Let tγ be the round in which γ reaches
level 1. First, we try to bound tγ − smax. We consider the non-decreasing series
(zγ(t))t≥sγ

. By Lemma 4, no node can reach level 2 before round tγ . Then, for
any t ∈ {sγ , . . . , tγ}, we have zγ(t) ∈ Z− = {(f, t) ∈ Z, f < 2}. This set Z− ⊆ Z
is the set of level-up events of strength 0 or 1. Since nodes can reach level 0 and
1 only once, the cardinality of Z− is bounded by 2n, where n is the total number
of nodes. We can show that γ is in level 1 in round t if (zγ(t))t∈N remains stable
between rounds t − 3k and t. Then the worst case scenario happens if zγ(sγ)
starts with the lowest value of Z−, and every 3k rounds, zγ(t) moves to the
closest greater element of Z−. Then tγ − smax is bounded by 2n × 3k = 6kn.

Second, if γ is in level 1 in round tγ , then every node u satisfies zu(tγ + k) ≥
zγ(tγ). By Lemma 9, the system is monovalent in round tγ + k. By Lemma 11,
every node is in level 2 in round tγ + 4k. We finally obtain that there is at most
6kn + 4k rounds between the activation of all nodes and the firing of all nodes.

��

4.2 Reducing Memory Usage

For all nodes u, for all rounds t, we have (forcepre
u (t), t− cpre

u (t)) ∈ Z by Lemma
6. Since Z is finite, cpre

u (t) tends to infinity as t tends to infinity. We present
below a idea (inspired by [2]) which can alleviate this issue: in each execution
of Algorithm 1, total memory usage increases forever, whereas in each execution
of Algorithm 2, total memory usage grows during some arbitraryly-long initial
period, and then drops and remains bounded forever. The idea is as follows:

As soon as forceu(t) = 2, the node u “knows” that some node v fired in round
t − cu(t) (see Lemma 6). Then u may fire in any round t′ ≡ t − cu(t) mod k. At
this point, the transition function can thus be simplified as in Algorithm 2. This
simplified version uses a constant amount of memory.

438 L. P. de Monterno et al.

Algorithm 2: The OptSynchModk algorithm
1 Initialization:
2 initialize with SynchModk’s initial state

3 At each round:
4 if forceu = 2 then
5 send 〈cu, true, 2, true〉 to all
6 cu ← 1 + cu mod k
7 if levelu < 2 ∧ cu = 0 then
8 levelu ← 2
9 end

10 end
11 else
12 apply SynchModk’s transition function
13 end

Theorem 4. Under the assumption of a Δ-centered dynamic graph with Δ ≤ k
and a complete activation schedule the Algorithm 2 solves the mod k-synchro-
nization problem. Moreover, in each execution of Algorithm 2, the memory usage
of each node is finite.

5 Conclusion and Future Work

In this paper, we presented the mod k-synchronization problem, and we intro-
duced an algorithm solving this problem. We provided an optimized version of
this algorithm to tackle large memory usage. We also provided an upper-bound
on the number of rounds between the start of all nodes and the firing of all nodes.
This bound is linear in both k and n, which is not bad. However, this bound
is deteriorated by a few nasty worst-case scenarios. We believe that some addi-
tional assumptions could provide a much tighter bound, which would not depend
on n. That would be especially useful in very large systems. This consitutes a
possible topic for a future work.

References

1. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley, Boston (1987)

2. Boldi, P., Vigna, S.: Universal dynamic synchronous self-stabilization. Distrib.
Comput. 15(3), 137–153 (2002)

3. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) ADHOC-NOW
2011. LNCS, vol. 6811, pp. 346–359. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22450-8 27

4. Charron-Bost, B., Moran, S.: The firing squad problem revisited. In: 35th Sympo-
sium on Theoretical Aspects of Computer Science (STACS 2018). Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 96, pp. 20:1–20:14 (2018)

https://doi.org/10.1007/978-3-642-22450-8_27
https://doi.org/10.1007/978-3-642-22450-8_27

Synchronization Modulo k in Dynamic Networks 439

5. Charron-Bost, B., Moran, S.: Minmax algorithms for stabilizing consensus. CoRR
abs/1906.09073 (2019). http://arxiv.org/abs/1906.09073

6. Charron-Bost, B., Schiper, A.: The heard-of model: computing in distributed sys-
tems with benign faults. Distrib. Comput. 22(1), 49–71 (2009)

7. Debrat, H., Merz, S.: Verifying fault-tolerant distributed algorithms in the heard-
of model. Archive of Formal Proofs (2012). http://isa-afp.org/entries/Heard Of.
html. Formal proof development

8. Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM
J. Comput. 12(4), 656–666 (1983)

9. Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the presence of partial
synchrony. J. ACM 35(2), 288–323 (1988)

10. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: Proceedings of 42nd ACM Symposium on Theory of Computing (STOC 2010),
pp. 513–522. ACM, New York (2010). https://doi.org/10.1145/1806689.1806760

11. Kuhn, F., Moses, Y., Oshman, R.: Coordinated consensus in dynamic networks.
In: Proceedings of 30th ACM Symposium on Principles of Distributed Computing
(PODC). ACM (2011)

12. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL. A Proof Assistant for Higher-
Order Logic. Lecture Notes in Computer Science, vol. 2283. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45949-9

13. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228–234 (1980)

14. Srikanth, T.K., Toueg, S.: Simulating authenticated broadcasts to derive simple
fault-tolerant algorithms. Distrib. Comput. 2(2), 80–94 (1987)

http://arxiv.org/abs/1906.09073
http://isa-afp.org/entries/Heard_Of.html
http://isa-afp.org/entries/Heard_Of.html
https://doi.org/10.1145/1806689.1806760
https://doi.org/10.1007/3-540-45949-9

Partial Gathering of Mobile Agents
in Dynamic Rings

Masahiro Shibata1(B), Yuichi Sudo2, Junya Nakamura3, and Yonghwan Kim4

1 Kyushu Institute of Technology, Kitakyushu, Fukuoka, Japan
shibata@cse.kyutech.ac.jp

2 Hosei University, Chiyoda, Tokyo, Japan
sudo@hosei.ac.jp

3 Toyohashi University of Technology, Toyohashi, Aichi, Japan
junya@imc.tut.ac.jp

4 Nagoya Institute of Technology, Nagoya, Aichi, Japan
kim@nitech.ac.jp

Abstract. In this paper, we consider the partial gathering problem of
mobile agents in synchronous dynamic bidirectional rings. The partial
gathering problem is a generalization of the (well-investigated) total
gathering problem, which requires that all k agents distributed in the
network terminate at a non-predetermined single node. The partial gath-
ering problem requires, for a given positive integer g (< k), that agents
terminate in a configuration such that either at least g agents or no agent
exists at each node. The requirement for the partial gathering problem
is strictly weaker than that for the total gathering problem, and thus it
is interesting to clarify the difference in the move complexity between
them. So far, partial gathering has been considered in static graphs. In
this paper, we consider this problem in 1-interval connected rings, that
is, one of the links in the ring may be missing at each time step. In
such networks, we aim to clarify the solvability of the partial gathering
problem and the move complexity, focusing on the relationship between
values of k and g. First, we consider the case of 3g ≤ k ≤ 8g − 2. In
this case, we show that our algorithm can solve the problem with the
total number of O(kn) moves, where n is the number of nodes. Since
k = O(g) holds when 3g ≤ k ≤ 8g − 2, the move complexity O(kn)
in this case can be represented also as O(gn). Next, we consider the
case of k ≥ 8g − 3. In this case, we show that our algorithm can also
solve the problem and its move complexity is O(gn). These results mean
that, when k ≥ 3g, the partial gathering problem can be solved also
in dynamic rings. In addition, agents require a total number of Ω(gn)
(resp., Ω(kn)) moves to solve the partial (resp., total) gathering prob-
lem. Thus, the both proposed algorithms can solve the partial gathering
problem with the asymptotically optimal total number of O(gn) moves,
which is strictly smaller than that for the total gathering problem.

Keywords: Mobile agent · Partial gathering problem · Dynamic ring

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 440–455, 2021.
https://doi.org/10.1007/978-3-030-91081-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_29&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_29

Partial Gathering of Mobile Agents in Dynamic Rings 441

1 Introduction

1.1 Background and Related Work

A distributed system comprises a set of computing entities (nodes) connected by
communication links. As a promising design paradigm of distributed systems,
(mobile) agents have attracted much attention [6]. The agents can traverse the
system, carrying information collected at visited nodes, and execute an action
at each node using the information to achieve a task. In other words, agents can
encapsulate the process code and data, which simplifies design of distributed
systems [10].

The total gathering problem (or the rendezvous problem) is a fundamen-
tal problem for agents’ coordination. When a set of k agents are arbitrarily
placed at nodes, this problem requires that all the k agents terminate at a non-
predetermined single node. By meeting at a single node, all agents can share
information or synchronize their behaviors. The total gathering problem has
been considered in various kinds of networks such as rings [4,8,9], trees [1], tori
[7], and arbitrary networks [3].

Recently, a variant of the total gathering problem, called the g-partial gath-
ering problem [13], has been considered. This problem does not require all agents
to meet at a single node, but allows agents to meet at several nodes separately.
Concretely, for a given positive integer g (< k), this problem requires that agents
terminate in a configuration such that either at least g agents or no agent exists
at each node. From a practical point of view, the g-partial gathering problem
is still useful especially in large-scale networks. That is, when g-partial gather-
ing is achieved, agents are partitioned into groups each of which has at least
g agents, each agent can share information and tasks with agents in the same
group, and each group can partition the network and then patrol its area that
it should monitor efficiently. The g-partial gathering problem is interesting also
from a theoretical point of view. Clearly, if k < 2g holds, the g-partial gather-
ing problem is equivalent to the total gathering problem. On the other hand,
if k ≥ 2g holds, the requirement for the g-partial gathering problem is strictly
weaker than that for the total gathering problem. Thus, there exists possibility
that the g-partial gathering problem can be solved with strictly smaller total
number of moves (i.e., lower costs) compared to the total gathering problem.

As related work, in case of k ≥ 2g, Shibata et al. considered the g-partial
gathering problem in rings [13,14,18], trees [16], and arbitrary networks [15]. In
[13,14], they considered it in unidirectional ring networks with whiteboards (or
memory spaces that agents can read and write) at nodes. They mainly showed
that, if agents have distinct IDs and the algorithm is deterministic, or if agents
do not have distinct IDs and the algorithm is randomized, agents can achieve g-
partial gathering with the total number of O(gn) moves (in expectation), where
n is the number of nodes. Notice that in the above results agents do not have
any global knowledge such as n or k. In [18], they considered g-partial gathering
for another mobile entity called mobile robots that have no memory but can
observe all nodes and robots in the network. In case of using mobile robots,
they also showed that g-partial gathering can be achieved with the total number

442 M. Shibata et al.

Fig. 1. An example of the g-partial gathering problem in a dynamic ring (g = 3).

of O(gn) moves. In addition, the g-partial (resp., the total) gathering problem
in ring networks requires a total number of Ω(gn) (resp., Ω(kn)) moves. Thus,
the above results are asymptotically optimal in terms of the total number of
moves, and the total number O(gn) of moves is strictly smaller than that for
the total gathering problem when g = o(k). In tree and arbitrary networks, they
also proposed algorithms to solve the g-partial gathering problem with strictly
smaller total number of moves compared to the total gathering problem for some
settings, but we omit the details in this paper.

Although all the above work on the total gathering problem and the g-partial
gathering problem are considered in static graphs where a network topology does
not change during an execution, recently many problems involving agents have
been studied in dynamic graphs, where a topology changes during an execution.
For example, the total gathering problem [12], the exploration problem [5,11],
the compact configuration problem [2] and the uniform deployment problem [17]
are considered in dynamic graphs. However, to the best of our knowledge, there
is no work for g-partial gathering in dynamic graphs, and hence in this paper
we consider it in dynamic rings as a first step.

1.2 Our Contribution

In this paper, we consider the g-partial gathering problem of mobile agents
in synchronous dynamic bidirectional rings with whiteboards at nodes. In this
paper, we consider 1-interval connected rings [2,11,12,17], that is, one of the
links may be missing at each time step. An example is given in Fig. 1. In such
networks, we aim to clarify the solvability of the g-partial gathering problem and
the move complexity, focusing on the relationship between values of k and g.

In this paper, we assume that agents have distinct IDs, chirality, and knowl-
edge of n and k. In Table 1, we compare our contributions with the result for
agents with distinct IDs in static rings. We also analyze the time complexity for
solving the problem. First, we consider the case of 3g ≤ k ≤ 8g − 2. In this case,
we show that our algorithm can solve the problem with O(n) time and the total
number of O(kn) moves. Next, we consider the case of k ≥ 8g − 3. In this case,
we show that our algorithm can also solve the problem and the time complexity
and the move complexity are O(n) and O(gn), respectively. These results mean

Partial Gathering of Mobile Agents in Dynamic Rings 443

Table 1. Results of g-partial gathering for agents with distinct IDs in ring networks
(n: #nodes, k: #agents).

Result in [13] Results of this paper

Result 1 (Sect. 3) Result 2 (Sect. 4)

Static/Dynamic ring Static Dynamic Dynamic

Knowledge of n and k No Available Available

Relation between k and g k ≥ 2g 3g ≤ k ≤ 8g − 2 k ≥ 8g − 3

Time complexity Θ(n) Θ(n) Θ(n)

Total number of agent moves Θ(gn) O(kn)(= O(gn)) Θ(gn)

that, although it is open that whether or not the g-partial gathering problem
can be solved in dynamic rings when 2g ≤ k < 3g, it can be solved when k ≥ 3g
and the time complexity O(n) of our algorithms is asymptotically optimal. In
addition, since k = O(g) holds when 3g ≤ k ≤ 8g−2 holds like the first case, the
both proposed algorithms can achieve g-partial gathering also with the asymp-
totically the total number of O(gn) moves, which is strictly smaller than the
move complexity for the total gathering problem. Furthermore, it is worthwhile
to mention that, while total gathering (i.e., all agents gather at a single node)
cannot be solved in dynamic rings and it needs to relax the requirement so that
agents stay at either of two nodes connected by a link [12], g-partial gathering
can be achieved without relaxing the requirement.

Due to the page limitation, we omit several pseudocodes and proofs of theo-
rems and lemmas.

2 Preliminaries

2.1 System Model

We basically follow the model defined in [12]. A dynamic bidirectional ring R
is defined as 2-tuple R = (V,E), where V = {v0, v1, . . . , vn−1} is a set of n
nodes and E = {e0, e1, . . . , en−1} (ei={vi, v(i+1) mod n}) is a set of links. For
simplicity, we denote v(i+j) mod n (resp., e(i+j) mod n) by vi+j (resp., e(i+j)) for
any integers i and j. We define the direction from vi to vi+1 (resp., vi to vi−1)
as the forward or clockwise (resp., backward or counterclockwise) direction. In
addition, one of links in the ring may be missing at each time step, and which
link is missing is controlled by an adversarial scheduler. Such a dynamic ring is
known as a 1-interval connected ring. The distance from node vi to vj is defined
to be (j − i) mod n. Note that this definition of the distance is correct when any
of the links from vi to vj is not missing. Moreover, we assume that nodes are
anonymous, i.e., they do not have IDs. Every node vi ∈ V has a whiteboard that
agents at node vi can read from and write on.

Let A = {a0, a1, . . . , ak−1} be a set of k (≤ n) agents. Agents can move
through directed links, that is, they can move from vi to vi+1 (i.e., move forward)

444 M. Shibata et al.

or from vi to vi−1 (i.e., move backward) for any i. Agents have distinct IDs
and knowledge of n and k1. Agents have chirality, that is, they agree on the
orientation of clockwise and counterclockwise direction in the ring. In addition,
agents cannot detect whether other agents exist at the current node or not.
An agent ai is defined as a deterministic finite automaton (S, W , δ, sinitial,
sfinal, winitial, w′

initial). The first element S is the set of all states of an agent,
including two special states, initial state sinitial and final state sfinal. The second
element W is the set of all states (contents) of a whiteboard, including two
special initial states winitial and w′

initial. We explain winitial and w′
initial in the

next paragraph. The third element δ : S × W �→ S × W × M is the state
transition function that decides, from the current states of ai and the current
node’s whiteboard, the next states of ai and the whiteboard, and whether ai

moves to its neighboring node or not. The last element M = {−1, 0, 1} in δ
represents whether ai makes a movement or not. The value 1 (resp., −1) means
moving forward (resp., backward) and 0 means staying at the current node. We
assume that δ (sfinal, wj) = (sfinal, wj , 0) holds for any state wj ∈ W , which
means that ai never changes its state, updates the contents of a whiteboard,
or leaves the current node once it reaches state sfinal. We say that an agent
terminates when its state changes to sfinal. Notice that S, δ, sinitial, and sfinal
can be dependent on the agent’s ID.

In an agent system, (global) configuration c is defined as a product of the
states of all agents, the states (whiteboards’ contents) of all nodes, and the
locations (i.e., the current nodes) of all agents. We define C as a set of all
configurations. In an initial configuration c0 ∈ C, we assume that agents are
deployed arbitrarily at mutually distinct nodes, (or no two agents start at the
same node), and the state of each whiteboard is winitial or w′

initial depending on
the existence of an agent. That is, when an agent exists at node v in the initial
configuration, the initial state of v′s whiteboard is winitial. Otherwise, the state
is w′

initial.
During an execution of the algorithm, we assume that agents move instanta-

neously, that is, they always exist at nodes (do not exist on links). Each agent
executes the following four operations in an atomic action: 1) reads the contents
of its current node’s whiteboard, 2) executes local computation (or changes its
state), 3) updates the contents of the current node’s whiteboard, and 4) moves
to its neighboring node or stays at the current node. If several agents exist at
the same node, they take atomic actions interleavingly in an arbitrary order. In
addition, when an agent tries to move to its neighboring node (e.g., from node
vj to vj+1) but the corresponding link (e.g., link ej) is missing, we say that the
agent is blocked, and it still exists at vj at the beginning of the next atomic
action.

In this paper, we consider a synchronous execution, that is, in each time step
called round, all agents perform atomic actions. Then, an execution starting from
c0 is defined as E = c0, c1, . . . where each ci (i ≥ 1) is the configuration reached

1 The knowledge of k is used for agents to decide which proposed algorithm they apply
by comparing it with the value of g.

Partial Gathering of Mobile Agents in Dynamic Rings 445

from ci−1 by atomic actions of all agents. An execution is infinite, or ends in a
final configuration where the state of every agent is sfinal.

2.2 The Partial Gathering Problem

The requirement for the g-partial gathering problem is that, for a given integer
g, agents terminate in a configuration such that either at least g agents or no
agent exists at each node. Formally, we define the problem as follows.

Definition 1. An algorithm solves the g-partial gathering problem in dynamic
rings when the following conditions hold:

– Execution E is finite (i.e., all agents terminate in state sfinal).
– In the final configuration, at least g agents exist at any node where an agent

exists.

In this paper, we evaluate the proposed algorithms by the time complexity
(the number of rounds for agents to solve the problem) and the total number of
agents moves. In [13], the lower bound on the total number of agent moves for
static rings is shown to be Ω(gn). This theorem clearly holds also in dynamic
rings.

Theorem 1. A lower bound on the total number of agent moves required to
solve the g-partial gathering problem in dynamic rings is Ω(gn) if g ≥ 2.

On the time complexity, the following theorem holds. Intuitively, this is
because there exist an initial configuration and link-missings such that the dis-
tance between some agent ai and its nearest agent is Ω(n), which requires Ω(n)
rounds for ai to meet with other agents.

Theorem 2. A lower bound on the time complexity required to solve the g-
partial gathering problem in dynamic rings is Ω(n).

3 The Case of 3g ≤ k ≤ 8g − 2

In this section, when 3g ≤ k ≤ 8g − 2, we propose a naive algorithm to solve
the g-partial gathering problem in dynamic rings with O(n) rounds and the
total number of O(kn) moves. Since k = O(g) holds in this case, this algorithm
is asymptotically in terms of both the time and move complexities, similar to
the second algorithm explained in Sect. 4. In this algorithm, all agents try to
travel once around the ring to get IDs of all agents, and then determine a single
common node where all agents should gather. However, it is possible that some
agent cannot travel once around the ring and get IDs of all agents due to miss-
ing links. Agents treat this by additional behaviors explained by the following
subsections. The algorithm comprises two phases: the selection phase and the
gathering phase. In the selection phase, agents move in the ring and determine
the gathering node where they should gather. In the gathering phase, agents try
to stay at the gathering node.

446 M. Shibata et al.

3.1 Selection Phase

The aim of this phase is that each agent achieves either of the following two
goals: (i) It travels once around the ring and gets IDs of all agents, or (ii) it
detects that all agents stay at the same node. To this end, we use an idea similar
to [12] which considers total gathering in dynamic rings. First, each agent ai

writes its ID on the current whiteboard, and then tries to move forward for 3n
rounds. During the movement, ai memorizes values of observed IDs to array
ai.ids[]. After the 3n rounds, the number ai.nVisited of nodes that ai has visited
is (a) at least n or (b) less than n due to missing links. In case (a), ai must have
completed traveling once around the ring. Thus, ai can get IDs of all k agents
(goal (i) is achieved). Then, ai (and the other agents) select the gathering node
vgather as the node where the minimum ID min is written.

In case (b) (i.e., ai has visited less than n nodes during the 3n rounds), we
show in Lemma 1 that all k agents stay at the same node (goal (ii) is achieved).
This situation means that agents already achieve g-partial (or total) gathering,
and they terminate the algorithm execution.

Concerning the selection phase, we have the following lemma.

Lemma 1. After finishing the selection phase, each agent achieves either of the
following two goals: (i) It travels once around the ring and gets IDs of all agents,
or (ii) it detects that all agents stay at the same node.

3.2 Gathering Phase

In this phase, agents aim to achieve g-partial (or total) gathering by trying to
visit the gathering node vgather. Concretely, for 3n rounds from the beginning of
this phase, each agent ai tries to move forward until it reaches vgather. If agents
are blocked few times, all agents can reach vgather and they achieve g-partial (or
total) gathering. However, it is possible that some agent cannot reach vgather
due to link-missings. To treat this, we introduce a technique called splitting.
Intuitively, in this technique, when at least 2g agents exist at some node, from
there an agent group with at least g agents tries to move forward and another
agent group with at least g agents tries to move backward. In addition, when
an agent group with at least g agents visits a node where less than g agents
exist, the less than g agents join the agent group and try to move to the same
direction as that of the group. By this behavior, it does not happen that all
agents are blocked, and agents can eventually terminate in a configuration such
that at least g agents exist at each node where an agent exists.

Concretely, after the 3n round from when agents tried to move forward to
reach vgather, by the similar discussion of Lemma 1, all agents that do not reach
vgather stay at the same node. Let v′ be the node. Then, there are at most two
nodes vgather and v′ where agents exist after the movement. If between g and
2g − 1 agents exist at vgather or v′ (or both), the agents staying there terminate
the algorithm execution. On the other hand, if less than g agents exist at vgather
(resp., v′), at least 2g agents exist at v′ (resp., vgather) since we consider the

Partial Gathering of Mobile Agents in Dynamic Rings 447

Fig. 2. An execution example of the gathering phase (g = 3).

case of k ≥ 3g. We call the node with at least 2g agents vmore. Notice that it is
possible that at least 2g agents exist at both vgather and v′. Let k′(≥ 2g) be the
number of agents staying at vmore. Then, each agent ai at vmore calculates how
small its ID is among the k′ agents. We denote the ordinal number by ai.rank.
Then, if 1 ≤ ai.rank ≤ g holds, it belongs to the forward agent group Af and
tries to move forward. Else if (k′ < 3g)∨ (g +1 ≤ ai.rank ≤ 2g) holds, it belongs
to the backward agent group Ab and tries to move backward. If ai does not satisfy
any of the above conditions, it terminates the algorithm execution because there
still exist at least g agents even after Af and Ab leave vmore.

While Af and Ab move in the ring, if Af (resp., Ab) visits a new node vj , it
sets a flag vj .fMarked (resp., vj .bMarked) representing that vj is visited by Af

(resp., Ab). These flags are used for an agent group A to check whether or not
the current node is visited by another agent group and A can stop moving in the
ring. In addition, if Af (resp., Ab) visits a node with less than g agents, the less
than g agents join Af (resp., Ab) and try to move forward (resp., backward).
However, it is possible that the number num of agents in the updated group
is more than 2g. In this case, using their IDs, only g agents continue to try
moving and the remaining num − g agents terminate the algorithm execution
at the current node. By this behavior, each link is passed by at most 2g agents
and the total number of moves for agent groups can be reduced to O(gn) (this
technique is used in Sect. 4). Moreover, since Af or Ab can visit a next node
at each round even when some link is missing, Af (resp., Ab) repeats such a
behavior for n rounds or until it visits some node vj with vj .bMarked = true
(resp., vj .fMarked = true), which implies that all the remaining nodes that Af

(resp., Ab) should visit are already visited by another agent group Ab (resp.,
Af).

An example is given in Fig. 2 (we omit nodes unrelated to the example).
From (a) to (b), a backward group Ab visits a node with two (< g) agents, and
the two agents join Ab. Then, since the number of agents in the updated Ab

is 7, (> 2g), only three agents continue to try moving and the remaining four

448 M. Shibata et al.

agents terminate the algorithm execution there ((b) to (c)). From (c) to (d), we
assume that a forward agent group Af continues to be blocked due to a missing
link. Even in this case, Ab can continue to move since there is only one missing
link at each round. When Af (resp., Ab) visits a node with a flag set by Ab

(resp., Af) like (e), or n rounds passed from when agent groups started trying
to move, agents achieve g-partial gathering.

Concerning the gathering phase, we have the following lemma.

Lemma 2. After finishing the gathering phase, agents achieve g-partial gather-
ing.

We have the following theorem for the proposed algorithm.

Theorem 3. When 3g ≤ k ≤ 8g − 2 holds, the proposed algorithm solves the
g-partial gathering problem in dynamic rings with O(n) rounds and the total
number of O(kn) moves.

4 The Case of k ≥ 8g − 3

In this section, when k ≥ 8g − 3, we propose an algorithm to solve the problem
with O(n) rounds and the total number of O(gn) (i.e., optimal) moves. Since
the move complexity is not O(kn) but O(gn), it is not possible that all agents
try to travel once around the ring as in Sect. 3. Hence, in this section agents
aim to reduce the total number of moves using distinct IDs and the fact of
k ≥ 8g − 3. The algorithm comprises three phases: the semi-selection phase, the
semi-gathering phase, and the achievement phase. In the semi-selection phase,
agents select a set of gathering-candidate nodes each of where at least 2g agents
may gather. In the semi-gathering phase, agents try to stay at a gathering-
candidate node. As a result, at least 2g agents gather at some node (the node
may not be a gathering-candidate node due to link-missings). In the achievement
phase, agents achieve g-partial gathering by the same method as that for the
gathering phase in Sect. 3.2.

4.1 Semi-selection Phase

The aim of this part is to select a set of gathering-candidate nodes each of
where at least 2g agents may gather. A possible approach is that each agent ai

moves forward and backward for getting IDs of its 1-st, 2-nd, . . . , (2g − 1)-st
forward agents and IDs of its 1-st, 2-nd, . . . , (2g − 1)-st backward agents, and
then returns to its initial node. Here, the i-th (i �= 0) forward (resp., backward)
agent a′ of agent a represents the agent such that i − 1 agents exist between
a and a′ in a’s forward (resp., backward) direction in the initial configuration.
Thereafter, ai compares its ID and the obtained 4g − 2 IDs. If its ID is the
minimum, ai selects its initial node as a gathering-candidate node vcandi. Then,
the 2g − 1 agents existing in ai’s backward direction try to move forward to
stay at vcandi and eventually 2g agents may gather at vgather. However, since

Partial Gathering of Mobile Agents in Dynamic Rings 449

we consider 1-interval connected rings, there are two problems: (1) it is possible
that no gathering-candidate node is selected since some agent may not be able
to collect 4g − 2 IDs due to link-missings, and (2) even if a gathering-candidate
node vcandi is selected, it is possible that some agent cannot reach vcandi due to
link-missings and only less than 2g agents gather at each node.

To treat these problems, each agent ai in this phase keeps trying to move
forward, tries to observe more than 4g − 2 IDs, and considers some observed
ID as its own ID when it observed the necessary number of IDs. Concretely, for
3n rounds, each agent ai tries to move forward until it observes 10g − 4 IDs
or at least 2g agents exist at the current node. Thereafter, ai determines its
behavior depending on whether it observed at least 8g − 3 IDs or not. If ai did
not observe at least 8g−3 IDs, we show in Lemma 3 that at least 2g agents exist
at some node vj and then a flag vj .candi is set to true to represent that vj is a
gathering-candidate node (problem (1) is solved). Intuitively, this is because ai

does not observe at least (10g − 4) − (8g − 4) = 2g IDs and this means that at
least 2g − 1 agents existing in ai’s backward direction also do not observe the
necessary number of IDs and they eventually stay at ai’s node.

On the other hand, if ai observed at least 8g − 3 IDs, it uses the first 8g − 3
IDs for comparison and considers the (4g − 1)-st ID as its own ID. Then, this
situation is similar to one that ai compares its ID with 4g − 2 forward IDs and
4g−2 backward IDs. Hence, if the (4g−1)-st ID is the minimum among the 8g−3
IDs, ai sets vj .candi = true at the current node vj . Then, since k ≥ 8g −3 holds,
all the 8g − 3 IDs are distinct and thus 4g − 2 agents existing in ai’s backward
direction can recognize ai’s staying node as the nearest gathering-candidate node
vcandi in the forward direction when they observed at least 8g −3 IDs. Thus, the
4g − 1 agents in total (ai and the 4g − 2 agents) try to move forward and stay
at vcandi (the detail is explained in the next subsection). Then, when some link
continues to be missing, the 4g − 1 agents are partitioned into two groups and
at least one group has 2g agents (problem (2) is solved).

The pseudocode of the semi-selection phase is described in Algorithm 1.
Global variables used in the algorithm is summarized in Table 2 (several vari-
ables are used in other sections). Concerning the semi-selection phase, we have
the following lemma.

Lemma 3. After finishing the semi-selection phase, there exists at least one
node vj with vj .candi = true.

Proof. Let amin be the agent with minimum ID among all agents and ai be the
(4g − 2)-nd backward agent of amin. We consider the cases that the value of
ai.nIDs after executing Algorithm 1 is (a) less than 8g −3 and (b) at least 8g −3
in this order. First, (a) if ai.nIDs < 8g − 3 holds, let g′ = (10g − 4) − ai.nIDs be
the number of IDs that ai could not observe and ai−1, ai−2, . . . , ai−(g′−1) be the
1-st, 2-nd, . . . , (g′ −1)-st backward agents of ai. Then, since (g′ −1)+ai.nIDs =
((10g −4)−ai.nIDs)−1+ai.nIDs = 10g −5 < 10g −4, agent ai−(g′−1) does not
observe the required number 10g − 4 of IDs. Thus, ai−1, ai−2, . . . , ai−(g′−1) also
observed less than 10g −4 IDs and they stay at the same node (a′

is node) by the
similar discussion of Lemma 1. Since g′ − 1 ≥ (10g − 4) − (8g − 4) − 1 = 2g − 1

450 M. Shibata et al.

Table 2. Global variables used in the proposed algorithm.

Variables for agent ai

Type Name Meaning Initial
value

int ai.rounds number of rounds from some round 1

int ai.nIDs number of different IDs that ai has observed from
some round

0

int ai.nVisited number of nodes that ai has ever visited 0

int ai.rank ordinal number of how its ID is small among IDs
of agents at the same node

0

array ai.ids[] sequence of IDs that ai has observed ⊥
Variables for node vj

Type Name Meaning Initial
value

int vj .id ID stored by vj ⊥
int vj .nAgents number of agents staying at vj 0

boolean vj .fMarked whether vj is visited by a forward group or not false

boolean vj .bMarked whether vj is visited by a backward group or not false

boolean vj .candi whether vj is a gathering-candidate node or not false

Algorithm 1. The behavior of agent ai in the semi-selection phase (vj is the
current node of ai.)
Main Routine of Agent ai

1: vj .id := ai.id, ai.ids[ai.nIDs] := vj .id
2: ai.nIDs := ai.nIDs + 1, vj .nAgents := vj .nAgents + 1,
3: while ai.rounds < 3n do
4: if (ai.nIDs < 10g − 4) ∧ (vj .nAgents < 2g) then
5: vj .nAgents := vj .nAgents − 1
6: Try to move from the current node vj to the forward node vj+1

7: if (ai reached vj+1 (that becomes new vj)) ∧ (vj .id �=⊥) then
8: ai.ids[ai.nIDs] := vj .id, ai.nIDs := ai.nIDs + 1
9: end if

10: vj .nAgents := vj .nAgents + 1, ai.rounds := ai.rounds + 1
11: end if
12: end while
13: if (vj .nAgents ≥ 2g)∨((ai.nIDs ≥ 8g−3)∧(∀h ∈ [0, 8g−2]\{4g−2}; ai.ids[4g−2] <

ai.id[h])) then
14: vj .candi := true
15: Terminate the semi-selection phase and enter the semi-gathering phase
16: end if

holds, at least 2g agents (including ai) stay at the same node vj and thus vj .candi
is set to true. Next, (b) if ai.nIDs ≥ 8g − 3 holds, ai recognizes that amin’s ID
is its own ID and the ID is the minimum among the 8g − 3 IDs. Hence, ai sets
vj .candi = true at the current node vj . Therefore, the lemma follows. 	

Partial Gathering of Mobile Agents in Dynamic Rings 451

Algorithm 2. The behavior of agent ai in the semi-gathering phase (vj is the
current node of ai.)
Main Routine of Agent ai

1: ai.rounds := 1, ai.nIDs := 1
2: while (ai.rounds < 3n) ∧ (ai.nIDs �= 4g − 1) do
3: if vj .candi = false then
4: vj .nAgents := vj .nAgents − 1
5: Try to move from the current node vj to the forward node vj+1

6: if (ai reached vj+1 (that becomes new vj)) ∧ (vj .id �=⊥) then ai.nIDs :=
ai.nIDs + 1

7: vj .nAgents := vj .nAgents + 1
8: if vj .nAgents ≥ 2g then vj .candi := true
9: end if

10: ai.rounds = ai.rounds + 1
11: end while
12: Terminate the semi-gathering phase and enter the achievement phase

4.2 Semi-gathering Phase

In this phase, agents aim to make a configuration such that at least 2g agents
exist at some node. By Lemma 3, there exists at least one gathering-candidate
node vj with vj .candi = true at the end of the semi-selection phase. In the
following, we call such a candidate node vcandi. Then, if less than 2g agents exist
at vcandi, 4g − 2 agents in total that already stay at vcandi and exist in vcandi’s
backward direction try to stay at vcandi. Concretely, in this phase, for 3n rounds
each agent tries to move forward until it stays vcandi or at least 2g agents exist
at the current node. Then, due to link-missings, it is possible that only less than
2g agents gather at vcandi after the movement. In this case, we can show by the
similar discussion of Lemma 1 that all the agents that do not reach vcandi among
the 4g − 2 agents stay at the same node. Then, the 4g − 1 agents (the 4g − 2
agents and the agent originally staying at vcandi) are partitioned into two groups
and at least one group has at least 2g agents in any partition. Thus, agents can
make a configuration such that at least 2g agents exist at some node.

The pseudocode of the semi-gathering phase is described in Algorithm2. Note
that, during the movement, when agents are blocked few times and they do not
stay at a node with at least 2g agents, agents may require the total number of
more than O(gn) moves. To avoid this, each agent stop moving when it observed
4g − 1 IDs even if it does not stay at a node with at least 2g agents (line 2).

Concerning the semi-gathering phase, we have the following lemma.

Lemma 4. After finishing the semi-gathering phase, there exists at one node vj

with vj .nAgents ≥ 2g.

Proof. We consider a configuration such that there exists no node with at least
2g agents at the beginning of the semi-gathering phase. By Lemma 3, there exists
at least one node vj with vj .candi = true, and 4g−2 agents in total that already

452 M. Shibata et al.

stay at vj and exist in vj ’s backward direction try to stay at vj by Algorithms 1
and 2. Then, by the similar discussion of the proof of Lemma1, after executing
Algorithm 2 for 3n rounds, all agents among the 4g − 2 agents that do not reach
vj stay at the same node. Thus, the 4g − 1 agents (the 4g − 2 agents and the
agent originally staying at vj) are partitioned into two groups and at least one
group has at least 2g agents in any partition. Therefore, the lemma follows. 	

4.3 Achievement Phase

In this phase, agents aim to achieve g-partial gathering. By Lemma 4, there
exists at least one node with at least 2g agents as in Sect. 3.2. The difference
from Sect. 3.2 is that there may exist more than two nodes with agents and
there may exist several nodes each of which has at least 2g agents. Also from
this situation, agents can achieve g-partial gathering using the same method as
that in Sect. 3.2, that is, (1) agents staying at a node with at least 2g agents
are partitioned into a forward group and a backward group and they try to
move forward and backward respectively, and (2) when a forward group (resp.,
a backward group) visits a node with less than 2g agents, the less than 2g agents
join the forward group (resp., a backward group).

An example is given in Fig. 3. In Fig. 3 (a), there exist two nodes vp and vq

each of which has 6 (= 2g) agents. Hence, a forward group Afp
and a backward

group Abp (resp., Afq
and Abq) start moving from node vp (resp., from node vq).

From (a) to (b), Abp reaches node v� with less than 2g agents, and the less than
2g agents join Abp and try to move backward. From (b) to (e), we assume that
Afq

continues to be blocked by a missing link. From (b) to (c), Afp
and Abq

crossed and they recognize the fact by the existence of flags, and they terminate
the algorithm execution. From (c) to (d), Abp reaches node vm with less than 2g
agents, and the less than 2g agents join Abp and try to move backward. Then,
since the number num of agents in the updated Abp is 7 (> 2g), by using their
IDs, only g agents continue to try moving backward and the remaining num− g
agents terminate the algorithm execution there ((d) to (e)). By this behavior,
during this phase each link is passed by at most 2g agents and the achievement
phase can be achieved with the total number of O(gn) moves. From (e) to (f),
Afq

and Abp reach some node simultaneously and recognize the fact by flags, and
they terminate the algorithm execution and agents achieve g-partial gathering.

Concerning the achievement phase, we have the following lemma.

Lemma 5. After executing the achievement phase, agents achieve g-partial
gathering.

We have the following theorem for the proposed algorithm.

Theorem 4. When k ≥ 8g−3 holds, the proposed algorithm solves the g-partial
gathering problem in dynamic rings with O(n) rounds and the total number of
O(gn) moves.

Partial Gathering of Mobile Agents in Dynamic Rings 453

Fig. 3. An execution example of the achievement phase (g = 3).

5 Conclusion

In this paper, we considered the g-partial gathering problem in bidirectional
dynamic rings and considered the solvability of the problem and the move com-
plexity, focusing on the relationship between values of k and g. First, when
3g ≤ k ≤ 8g − 2, we showed that the proposed algorithm can solve the problem
with O(n) rounds and the total number of O(kn) moves. Next, when k ≥ 8g −3,
we showed that the proposed algorithm can solve the problem with O(n) rounds
and the total number of O(gn) moves. These results show that, when k ≥ 3g,
the g-partial gathering problem can be solved also in dynamic rings. In addition,
since k = O(g) holds when 3g ≤ k ≤ 8g − 2 holds like the first case, the both
proposed algorithms can achieve g-partial gathering with the asymptotically
optimal total number of agent moves.

Future works are as follows. First, we consider the solvability in case of
2g ≤ k < 3g. Second, when 3g ≤ k < 8g − 3, we consider whether agents can
achieve g-partial gathering with the total number of moves smaller than O(kn)
or not. Finally, we will consider agents with weaker capabilities, e.g., agents with-
out distinct IDs, without chirality, or agents that behave semi-synchronously or
asynchronously. In any of the above cases, we conjecture that agents cannot
solve the problem or require more total number of moves than the proposed
algorithms.

454 M. Shibata et al.

Acknowledgement. This work was partially supported by JSPS KAKENHI Grant
Number 18K18029, 18K18031, 20H04140, 20KK0232, and 21K17706; the Hibi Science
Foundation; and Foundation of Public Interest of Tatematsu.

References

1. Baba, D., Izumi, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Linear time and
space gathering of anonymous mobile agents in asynchronous trees. Theoret. Com-
put. Sci. 478, 118–126 (2013)

2. Das, S., Luna, D.G., Mazzei, D., Prencipe, G.: Compacting oblivious agents on
dynamic rings. PeerJ Comput. Sci. 7, 1–29 (2021)

3. Dieudonné, Y., Pelc, A.: Anonymous meeting in networks. Algorithmica 74(2),
908–946 (2016). https://doi.org/10.1007/s00453-015-9982-0

4. Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple mobile
agent rendezvous in a ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol.
2976, pp. 599–608. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24698-5 62

5. Gotoh, T., Sudo, Y., Ooshita, F., Kakugawa, H., Masuzawa, T.: Group exploration
of dynamic tori. In: ICDCS, pp. 775–785 (2018)

6. Gray, R.S., Kotz, D., Cybenko, G., Rus, D.: D’agents: applications and performance
of a mobile-agent system. Softw. Pract. Exper. 32(6), 543–573 (2002)

7. Kranakis, E., Krizanc, D., Markou, E.: Mobile agent rendezvous in a synchronous
torus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887,
pp. 653–664. Springer, Heidelberg (2006). https://doi.org/10.1007/11682462 60

8. Kranakis, E., Krozanc, D., Markou, E.: The mobile agent rendezvous problem in
the ring. Syn. Lect. Distrib. Comput. Theory 1, 1–122 (2010)

9. Kranakis, E., Santoro, N., Sawchuk, C., Krizanc, D.: Mobile agent rendezvous in
a ring. In: ICDCS, pp. 592–599 (2003)

10. Lange, D., Oshima, M.: Seven good reasons for mobile agents. CACM 42(3), 88–89
(1999)

11. Di Luna, G., Dobrev, S., Flocchini, P., Santoro, N.: Distributed exploration of
dynamic rings. Distrib. Comput. 33(1), 41–67 (2018). https://doi.org/10.1007/
s00446-018-0339-1

12. Luna, D.G., Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Viglietta, G.: Gath-
ering in dynamic rings. Theoret. Comput. Sci. 811, 79–98 (2018)

13. Shibata, M., Kawai, S., Ooshita, F., Kakugawa, H., Masuzawa, T.: Partial gather-
ing of mobile agents in asynchronous unidirectional rings. Theoret. Comput. Sci.
617, 1–11 (2016)

14. Shibata, M., Kawata, N., Sudo, Y., Ooshita, F., Kakugawa, H., Masuzawa, T.:
Move-optimal partial gathering of mobile agents without identifiers or global
knowledge in asynchronous unidirectional rings. Theoret. Comput. Sci. 822, 92–
109 (2020)

15. Shibata, M., Nakamura, D., Ooshita, F., Kakugawa, H., Masuzawa, T.: Partial
gathering of mobile agents in arbitrary networks. IEICE Trans. Inf. Syst. 102(3),
444–453 (2019)

16. Shibata, M., Ooshita, F., Kakugawa, H., Masuzawa, T.: Move-optimal partial gath-
ering of mobile agents in asynchronous trees. Theoret. Comput. Sci. 705, 9–30
(2018)

https://doi.org/10.1007/s00453-015-9982-0
https://doi.org/10.1007/978-3-540-24698-5_62
https://doi.org/10.1007/978-3-540-24698-5_62
https://doi.org/10.1007/11682462_60
https://doi.org/10.1007/s00446-018-0339-1
https://doi.org/10.1007/s00446-018-0339-1

Partial Gathering of Mobile Agents in Dynamic Rings 455

17. Shibata, M., Sudo, Y., Nakamura, J., Kim, Y.: Uniform deployment of mobile
agents in dynamic rings. In: Devismes, S., Mittal, N. (eds.) SSS 2020. LNCS, vol.
12514, pp. 248–263. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64348-5 20

18. Shibata, M., Tixeuil, S.: Partial gathering of mobile robots from multiplicity-
allowed configurations in rings. In: Devismes, S., Mittal, N. (eds.) SSS 2020. LNCS,
vol. 12514, pp. 264–279. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64348-5 21

https://doi.org/10.1007/978-3-030-64348-5_20
https://doi.org/10.1007/978-3-030-64348-5_20
https://doi.org/10.1007/978-3-030-64348-5_21
https://doi.org/10.1007/978-3-030-64348-5_21

Optimal Protocols for 2-Party Contention
Resolution

Dingyu Wang(B)

University of Michigan, Ann Arbor MI, USA
wangdy@umich.edu

Abstract. Contention Resolution is a fundamental symmetry-breaking
problem in which n devices must acquire temporary and exclusive access
to some shared resource, without the assistance of a mediating authority.
For example, the n devices may be sensors that each need to transmit a
single packet of data over a broadcast channel. In each time step, devices
can (probabilistically) choose to acquire the resource or remain idle; if
exactly one device attempts to acquire it, it succeeds, and if two or more
devices make an attempt, none succeeds. The complexity of the problem
depends heavily on what types of collision detection are available. In
this paper we consider acknowledgement-based protocols, in which devices
only learn whether their own attempt succeeded or failed; they receive
no other feedback from the environment whatsoever, i.e., whether other
devices attempted to acquire the resource, succeeded, or failed.

Nearly all work on the Contention Resolution problem evaluated the
performance of algorithms asymptotically, as n → ∞. In this work we
focus on the simplest case of n = 2 devices, but look for precisely optimal
algorithms. We design provably optimal algorithms under three natural
cost metrics: minimizing the expected average of the waiting times (avg),
the expected waiting time until the first device acquires the resource
(min), and the expected time until the last device acquires the resource
(max). We first prove that the optimal algorithms for n = 2 are periodic
in a certain sense, and therefore have finite descriptions, then we design
optimal algorithms under all three objectives.

avg. The optimal contention resolution algorithm under the avg objec-
tive has expected cost

√
3/2 + 3/2 ≈ 2.72474.

min. The optimal contention resolution algorithm under the min objec-
tive has expected cost 2. (This result can be proved in an ad hoc
fashion, and may be considered folklore.)

max. The optimal contention resolution algorithm under the max objec-
tive has expected cost 1/γ ≈ 3.33641, where γ ≈ 0.299723 is the
smallest root of 3x3 − 12x2 + 10x − 2 (We may also express γ in

radical form: γ = − 1
6

(
1 − i

√
3
) 3

√
13 + i

√
47 + 4

3
− 1+i

√
3

3
√

13+i
√
47

.).

Keywords: Contention resolution · Probabilistic algorithm

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 456–468, 2021.
https://doi.org/10.1007/978-3-030-91081-5_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_30&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_30

Optimal Protocols for 2-Party Contention Resolution 457

1 Introduction

The goal of a contention resolution scheme is to allow multiple devices to even-
tually obtain exclusive access to some shared resource. In this paper we will use
often use the terminology of one particular application, namely, wireless devices
that wish to broadcast messages on a multiple-access channel. However, con-
tention resolution schemes are used in a variety of areas [13,15,20], not just
wireless networking. We consider a model of contention resolution that is distin-
guished by the following features.

Discrete Time. Time is partitioned into discrete slots. It is the goal of every
device to obtain exclusive access to the channel for exactly one slot, after
which it no longer participates in the protocol. We assume that all n devices
begin at the same time, and therefore agree on slot zero. (Other work consid-
ers an infinite-time model in which devices are injected adversarially [3,8,10],
or according to a Poisson distribution [17,21] with some constant mean.)

Feedback. At the beginning of each time slot each device can choose to either
transmit its message or remain idle. If it chooses to idle, it receives no feed-
back from the environment; if it chooses to transmit, it receives a signal indi-
cating whether the transmission was successful (all other devices remained
idle). (“Full sensing” protocols like [3,8,10,17,21], in contrast, depend on
receiving ternary feedback at each time slot indicating whether there was no
transmission, some successful transmission, or a collision.)

Noiseless operation. The system is errorless; there is no environmental noise.
Anonymity. Devices are indistinguishable and run the same algorithm, but can

break symmetry by generating (private) random bits.

There are many ways to measure the time-efficiency of contention resolution
protocols. In infinite-time models, we want to avoid deadlock [2,5–8,10], min-
imize the latency of devices in the system, and generally make productive use
of a (large) constant fraction of the slots [5,8,10]. When all n devices begin at
the same time [6,7], there are still several natural measures of efficiency. In this
paper we consider three: minimizing the time until the first successful transmis-
sion (min), the last successful transmission time (max, a.k.a. the makespan),
and the average transmission time (avg).

1.1 Prior Work

Classic infinite-time protocols like ALOHA [1] and binary exponential backoff
algorithms [14,15] are simple but suffer from poor worst case performance and
eventual deadlock [2,6,7], even under non-adversarial injection rates, e.g., Pois-
son injection rates with arbitrary small means. These are acknowledgement-based
protocols which do not require constant (ternary) channel feedback. One line
of work aimed to achieve deadlock-freeness under Poisson arrivals [9,12,17,21],
assuming ternary channel feedback. The maximum channel usage rate is known
to be between 0.48776 [17,21] and 0.5874 [16]. A different line of work aimed

458 D. Wang

at achieving deadlock-freeness and constant rate of efficiency under adversarial
injections and possibly adversarial jamming, also assuming ternary feedback. See
[3,8,10] for robust protocols that can tolerate a jamming adversary. One prob-
lem with both of these lines of work is that all devices must monitor the channel
constantly (for the ternary silence/success/collision feedback). Bender et al. [5]
considered adversarial injection rates and showed that it is possible to achieve
a constant efficiency rate while only monitoring/participating in O(log(log∗ n))
time slots. This was later shown to be optimal [11].

When all n devices start at the same time slot (n unknown), we have a
pretty good understanding of the avg, min, and max objectives. Here there are
still variants of the problem, depending on whether the protocol is full-sensing
(requiring ternery feedback) or merely acknowledgement-based. Willard [22] and
Nakano and Olariu [18] gave full sensing protocols for the min objective when n
is unknown that takes time O(log log n+log f−1) with probability 1−f , which is
optimal. The decay algorithm [4] is an acknowledgement-based protocol for the
min objective that runs in O(log n log f−1) time with probability 1− f , which is
also known to be optimal [19]. When n is unknown, binary exponential backoff
achieves optimal O(n) time under the avg objective, but suboptimal Θ(n log n)
time under the max objective [6,7]. The sawtooth protocol of Bender et al. [6,7]
is optimal O(n) under both avg and max; it is acknowledgement-based.

1.2 New Results

In this paper we consider what seems to be the simplest non-trivial symmetry
breaking problem, namely, resolving contention among two parties (n = 2) via an
acknowledgement-based protocol. The asymptotic complexity of this problem is
not difficult to derive: O(1) time suffices, under any reasonable objective func-
tion, and O(log f−1) time suffices with probability 1 − f . However, our goal is
to discover precisely optimal algorithms.

We derive the optimal protocols for the avg, min, and max objectives, in
expectation, which are produced below. The optimal min protocol is easy to
obtain using ad hoc arguments; it has expected cost 2. However, the optimal
protocols for avg and max require a more principled, rigorous approach to the
problem. We show that the protocol minimizing avg has expected cost

√
3/2 +

3/2 ≈ 2.72474, and that the optimal protocol minimizing max has expected cost
1/γ ≈ 3.33641, where γ ≈ 0.299723 is the unique root of 3x3 − 12x2 + 10x − 2
in the interval [1/4, 1/3].

avg-Contention Resolution:

Step 1. Transmit with probability 4−√
6

3 ≈ 0.516837. If successful, halt;
if there was a collision, repeat Step 1; otherwise proceed to Step 2.

Step 2. Transmit with probability 1+
√
6

5 ≈ 0.689898. If successful, halt;
if there was a collision, go to Step 1; otherwise proceed to Step 3.

Step 3. Transmit with probability 1. If successful, halt; otherwise go to
Step 1.

Optimal Protocols for 2-Party Contention Resolution 459

min-Contention Resolution:

– In each step, transmit with probability 1/2 until successful.

max-Contention Resolution:

Step 1. Transmit with probability α ≈ 0.528837, where α is the unique
root of x3 + 7x2 − 21x + 9 in [0, 1]. If successful, halt; if there was a
collision, repeat Step 1; otherwise proceed to Step 2.

Step 2. Transmit with probability β ≈ 0.785997, where β is the unique
root of 4x3−8x2+3 in [0, 1]. If successful, halt; if there was a collision,
go to Step 1; otherwise proceed to Step 3.

Step 3. Transmit with probability 1. If successful, halt; otherwise go to
Step 1.

One may naturally ask: what is the point of understanding Contention Reso-
lution problems with n = O(1) devices? The most straightforward answer is that
in some applications, contention resolution instances between n = O(1) devices
are commonplace.1 However, even if one is only interested in the asymptotic case
of n → ∞ devices, understanding how to resolve n = O(1) optimally is essential.
For example, the protocols of [9,12,17,21] work by repeatedly isolating subsets
of the n′ active devices, where n′ is Poisson distributed with mean around 1.1,
then resolving conflicts within this set (if n′ > 1) using a near-optimal procedure.
The channel usage rate of these protocols (≈ 0.48776) depends critically on the
efficiency of Contention Resolution among n′ devices, where E[n′] = O(1). More-
over, improving these algorithms will likely require a much better understanding
of O(1)-size contention resolution.

Organization. In Sect. 2 we give a formal definition of the model and state The-
orem 1 on the existence of an optimal protocol for any reasonable objective
function. In Sect. 3 we prove another structural result on optimal protocols for
n = 2 devices under the avg, min, and max objectives (Theorem 2), and use
it to characterize what the optimal protocols for avg (Theorem 3), min (The-
orem 4), and max (Theorem 5) should look like. Corollary 1 derives that avg-
Contention Resolution is the optimal protocol under the avg objective, and
Corollary 2 does the same for max-Contention Resolution under max. The
proofs of Theorems 1 and 2 and Corollaries 1 and 2 appear in the Appendix in
the full version of this paper2.

2 Problem Formulation

After each time step the channel issues responses to the devices from the set
R = {0, 1, 2+}. If the device idles, it always receives 0. If it attempts to transmit,
1 For a humorous example, consider the Canadian Standoff problem https://www.

cartoonstock.com/cartoonview.asp?catref=CC137954.
2 The full version is available at http://www.ancientwang.com/document/Optimal Pr

otocols for 2 Party Contention Resolution%20(1).pdf.

https://www.cartoonstock.com/cartoonview.asp?catref=CC137954
https://www.cartoonstock.com/cartoonview.asp?catref=CC137954
http://www.ancientwang.com/document/Optimal_Protocols_for_2_Party_Contention_Resolution%20(1).pdf
http://www.ancientwang.com/document/Optimal_Protocols_for_2_Party_Contention_Resolution%20(1).pdf

460 D. Wang

it receives 1 if successful and 2+ if unsuccessful. A history is word over R∗. We
use exponents for repetition and ∗ as short for R∗; e.g., the history 0322+ is short
for 0002+2+ and ∗1∗ is the set of all histories containing a 1. The notation a ∈ w
means that symbol a has at least one occurrence in word w.

Devices choose their action (transmit or idle) at time step t ∈ N and receive
feedback at time t + 0.5. A policy is a function f for deciding the probability of
transmitting. Define F = {f : R∗ → [0, 1] | ∀w ∈ R∗, 1 ∈ w =⇒ f(w) = 0}
to be the set of all proper policies, i.e., once a device is successful (1 ∈ w), it
must halt (f(w) = 0).3 Every particular policy f ∈ F induces a distribution on
decisions {Dk,t}k∈[n],t∈N and responses {Rk,t}k∈[n],t∈N, where Dk,t = 1 iff the
kth device transmits at time t and Rk,t ∈ R is the response received by the kth
device at time t + 0.5. In particular,

P(Dk,t = 1 | Rk,0Rk,1 · · · Rk,t−1 = h) = f(h), (1)

Rk,t(w) =

⎧
⎪⎨

⎪⎩

0, Dk,t(w) = 0
1, (Dk,t(w) = 1) ∧ (∀j
= k,Dj,t(w) = 0)
2+, (Dk,t(w) = 1) ∧ (∃j
= k,Dj,t(w) = 1)

(2)

Define Xi to be the random variable of the number of time slots until device i
succeeds. Note that since we number the slots starting from zero,

Xi = 1 + min{t ≥ 0 | Ri,t = 1}.

Note that {Xi}i∈[n] are identically distributed but not independent. For example,
minimizing the average of {Xi}i∈[n] is equivalent to minimizing X1 since:

E

∑n
i=1 Xi

n
=

∑n
i=1 EXi

n
=

nEX1

n
= EX1.

2.1 Performance Metrics and Existence Issues

For our proofs it is helpful to assume the existence of an optimal protocol but
it is not immediate that there exists such an optimal protocol. (Perhaps there
is just an infinite succession of protocols, each better than the next.) In the full
version, we prove that optimal protocols exist for all “reasonable” objectives. A
cost function T : Zn

+ → R+ is one that maps the vector of device latencies to a
single (positive) cost. The objective is to minimize ET (X1, . . . , Xn).

Definition 1 (Informal). A function T : Zn
+ → R

+ is reasonable if for any
s > 0 there exists some N > 0 such that T (x1, . . . , xn) < s can be known if each
of x1, x2, . . . , xn is either known or known to be greater than N .

For example, T1(x1, . . . , xn) =
∑n

k=1 xk

n (avg), T2(x1, . . . , xn) = min(x1, . . . ,
xn) (min), and T3(x1, . . . , xn) = max(x1, . . . , xn) (max) are all reasonable, as
are all �p norms, etc.
3 A policy may have no finite representation, and therefore may not be an algorithm

in the usual sense.

Optimal Protocols for 2-Party Contention Resolution 461

Theorem 1. Given the number of users n and a reasonable objective function
T , there exists an optimal policy f∗ ∈ F that minimizes ET (X1,X2, . . . , Xn).

3 Contention Resolution Between Two Parties

In this section we restrict our attention to the case n = 2. One key observation
that makes the n = 2 case special is that whenever one device receives 2+
(collision) feedback, it knows that its history and the other device’s history are
identical. For many reasonable objective functions the best response to a collision
is to restart the protocol. This is proved formally in Theorem 2 for a class of
objective functions that includes avg, min, and max. See the full version for
proof.

Theorem 2. Let n = 2, T be a reasonable objective function, and f be an
optimal policy for T . Another policy f∗ is defined as follows.

f∗(0k) = f(0k), ∀k ∈ N

f∗(∗2+0k) = f(0k), ∀k ∈ N

f∗(∗1∗) = 0

If T (x + c, y + c) = T (x, y) + c for any c (scalar additivity), then f∗ is also an
optimal policy for T .

Theorem 2 tells us that for the objectives that are scalar additive (including
avg, min, and max), we can restrict our attention to policies f ∈ F defined by
a vector of probabilities (pi)i≥0, such that f(w0k) = pk, where w is empty or
ends with 2+, i.e., the transmission probability cannot depend on anything that
happened before the last collision.

3.1 Avg: Minimizing the Average Transmission Time

Let (pk)k≥0 be the probability sequence corresponding to an optimal policy f
for avg. We first express our objective EX1 in terms of the sequence (pk). Then,
using the optimality of f , we deduce that (pk)k≥0 must take on the special
form described in Theorem 3. This Theorem does not completely specify what
the optimal protocol looks like. Further calculations (Corollary 1) show that
choosing N = 2 is the best choice, and that avg-Contention Resolution (see
Sect. 1) is an optimal protocol.

Theorem 3. There exists an integer N > 0 and a0, a1, a2 ∈ R where a0 − a1 +
a2 = 1 and a0 + a1N + a2N

2 = 0 such that the following probability sequence

pk = 1 − a0 + a1k + a2k
2

a0 + a1(k − 1) + a2(k − 1)2
, 0 ≤ k ≤ N,

induces an optimal policy that minimizes EX1.

462 D. Wang

Remark 1. Note that defining p0, . . . , pN is sufficient, since pN = 1 induces a cer-
tain collision if there are still 2 devices in the system, which causes the algorithm
to reset. In the next time slot both devices would transmit with probability p0.

Proof. Assume we are using an optimal policy f∗ induced by a probability
sequence (pi)∞

i=1. Define S1, S2 ≥ 0 to be the random variables indicating the
index of the first slot in which devices 1 and 2 first transmit. Observe that S1 and
S2 are i.i.d. random variables, where P(S1 = k) = P(S2 = k) = pk

∏k−1
i=0 (1−pi).4

We have

EX1 =
∞∑

k=0

[P(S1 = k)(k + 1 + P(S2 = k) · EX1)]

⇐⇒ EX1 =
∞∑

k=0

[

pk

(
k−1∏

i=0

(1 − pi)

)

·
(

k + 1 + pk

(
k−1∏

i=0

(1 − pi)

)

· EX1

)]

.

(3)

Define mk =
∏k

i=0(1 − pi) to be the probability that a device idles in time steps
0 through k, where m−1 = 1. Note that pkmk−1 = mk−1 − mk is true for all
k ≥ 0. We can rewrite Eq. (3) as:

EX1 =
∞∑

k=0

[(mk−1 − mk)(k + 1 + (mk−1 − mk) · EX1)]

⇐⇒ EX1 = EX1 ·
∞∑

k=0

(mk−1 − mk)2 +
∞∑

k=0

(mk−1 − mk)(k + 1)

⇐⇒ EX1 =
∑∞

k=0 mk−1

1 − ∑∞
k=0(mk−1 − mk)2

. (4)

By definition, (mk)∞
k=−1 is a non-increasing sequence with m−1 = 1 and mk ≥ 0.

There is no optimal policy with mk−1 = mk
= 0 (meaning pk = 0), since oth-
erwise we can delete mk from the sequence, leaving the denominator unchanged
but reducing the numerator. This implies (mk)∞

k=−1 is either an infinite, positive,
strictly decreasing sequence or a finite, positive, strictly-decreasing sequence fol-
lowed by a tail of zeros. Pick any index k0 ≥ 0 such that mk0 > 0. We know
mk0−1 > mk0 > mk0+1. By the optimality of f∗, mk0 must, holding all other
parameters fixed, be the optimal choice for this parameter in its neighborhood.
In other words, we have ∂EX1

∂mk0
= 0, which implies

1 − ∑∞
k=0(mk−1 − mk)

2 +
∑∞

k=0 mk−1(−2(mk0−1 − mk0) + 2(mk0 − mk0+1))

(1 − ∑∞
k=0(mk−1 − mk)2)2

= 0

Therefore we have for any k0 ≥ 0 such that mk0 > 0,

2mk0 − mk0+1 − mk0−1 = C

⇐⇒ mk0 − mk0+1 = mk0−1 − mk0 + C (5)

4 We use the convention that
∏−1

i=0 ak = 1, where (ak)∞
k=0 is any sequence.

Optimal Protocols for 2-Party Contention Resolution 463

where C =
∑∞

k=0(mk−1−mk)
2−1

2
∑∞

k=0 mk−1
is a real constant. Note that C = − 1

2EX1
< 0.

Fix any k1 ≥ 0 such that mk1 > 0. By summing up Eq. (5) for k0 = 0, 1, . . . , k1
and rearranging terms, we have

mk1 − mk1+1 = (k1 + 1)C + m−1 − m0. (6)

Fix any k2 ≥ 0 such that mk2 > 0. By summing up Eq. (6) for k1 = 0, 1, . . . , k2,
we have

mk2+1 = (m0 − m−1)(k2 + 2) + m−1 − (k2 + 1)(k2 + 2)
2

C (7)

= −C

2
k2
2 +

(
−3C

2
+ m0 − m−1

)
k2 + 2m0 − m−1 − C. (8)

Recall that C < 0 and mk ∈ [0, 1]. This rules out the possibility that the sequence
(mk)∞

k=0 is an infinite strictly decreasing sequence, since a non-degenerate
quadratic function is unbounded as k goes to infinity. As a result, there must
be a positive integer N ≥ 1 for which mN−1 > 0 and mN = 0. Also note that
Eq. (7) is not only true for k2 = 0, 1, . . . N −1, but also true for k2 = −1 and −2.
(This can be checked by directly setting k2 = −1 and −2.) We conclude that it
is possible to write (mk) as

mk = a0 + a1k + a2k
2, −1 ≤ k ≤ N,

for some constants a0, a1, a2 satisfying

m−1 = a0 − a1 + a2 = 1

mN = a0 + a1N + a2N
2 = 0.

Writing pk = 1 − mk

mk−1
gives the statement of the theorem.

Based on Theorem 3, we can find the optimal probability sequence for each
fixed N by choosing the best a2. It turns out that N = 2 is the best choice,
though N = 3 is only marginally worse. The proof of Corollary 1 is in the full
version.

Corollary 1. avg-Contention Resolution is an optimal protocol for n = 2
devices under the avg objective. The expected average time is

√
3/2 + 3/2 ≈

2.72474.

3.2 Min: Minimizing the Earliest Transmission Time

It is straightforward to show Emin(X1,X2) = 2 under the optimal pol-
icy. Nonetheless, it is useful to have a general closed form expression for
Emin(X1,X2) in terms of the (mk) sequence of an arbitrary (suboptimal) pol-
icy, as shown in the proof of Theorem 4. This will come in handy later since
Emax(X1,X2) can be expressed as 2EX1 − Emin(X1,X2).

464 D. Wang

Theorem 4. The policy that minimizes Emin(X1,X2), min-Contention Res-
olution, transmits with constant probability 1/2 until successful. Using the opti-
mal policy, Emin(X1,X2) = 2.

Proof. By Theorem 2 we can consider an optimal policy defined by a sequence
of transmission probabilities (pk)k≥0. Let Hj,k be the transmission/idle history
of player j ∈ {1, 2} up to time slot k. Then we have

Emin(X1, X2) =
∞∑

k=0

P(H1,k = H2,k = 0k1)(k + 1 + Emin(X1, X2))

+

∞∑

k=0

P({H1,k, H2,k} = {0k1, 0k0})(k + 1)

=
∞∑

k=0

(
k−1∏

i=0

(1 − pi)
2 · p2

k(k + 1 + Emin(X1, X2))

)

+
∞∑

k=0

(
k−1∏

i=0

(1 − pi)
2 · 2pk(1 − pk)(k + 1)

)

=

∞∑

k=0

(
k−1∏

i=0

(1 − pi)
2 · (

(1 − (1 − pk)
2)(k + 1) + p2

k · Emin(X1, X2)
)
)

.

Defining mk =
∏k

i=0(1 − pi) as before, we have

=
∞∑

k=0

(
(m2

k−1 − m2
k)(k + 1) + m2

k−1p
2
k · Emin(X1,X2)

)

As mk−1pk = mk−1 − mk, we can write Emin(X1,X2) in closed form as

Emin(X1,X2) =
∑∞

k=0(m
2
k−1−m2

k)(k+1)

1−∑∞
k=0(mk−1−mk)2

=
∑∞

k=0 m2
k−1

1−∑∞
k=0(mk−1−mk)2

(9)

=
∑∞

k=0 m2
k−1

2
∑∞

k=0(mk−1−mk)mk

≥
∑∞

k=0 m2
k−1

2
∑∞

k=0(
mk−1

2)2
= 2. (10)

Thus Emin(X1,X2) attains minimum 2 if and only if for all k ∈ N, mk−1−mk =
mk, i.e. mk = mk−1

2 and m0 = 1
2 . Thus pk = 1− mk

mk−1
= 1

2 for all k. This constant
probability sequence corresponds to the constant policy with sending probability
1
2 (i.e., min-Contention Resolution).

3.3 Max: Minimizing the Last Transmission Time

Before determining the optimal policy under the max objective, it is useful to
have a crude estimate for its cost.

Optimal Protocols for 2-Party Contention Resolution 465

Lemma 1. Let f be the optimal policy for the max objective and Xf
1 ,Xf

2 be the
latencies of the two devices. Then Emax(Xf

1 ,Xf
2) ∈ [3, 4].

Proof. The optimal policy under the min objective, f∗, sends with probabil-
ity 1/2 until successful. It is easy to see that Emax(Xf∗

1 ,Xf∗
2) = 4, so f can

do no worse. Under f (or any policy), Emax(Xf
1 ,Xf

2) ≥ 1 + Emin(Xf
1 ,Xf

2).
By the optimality of f∗ for min, Emin(Xf

1 ,Xf
2) ≥ Emin(Xf∗

1 ,Xf∗
2) = 2, so

Emax(Xf
1 ,Xf

2) ≥ 3.

Theorem 5. Let f be the optimal policy for the max objective and define 1/γ =
Emax(Xf

1 ,Xf
2) to be its expected cost. Let x1, x2 be the roots of the polynomial

x2 − (2 − γ)x + 1. (11)

There exists an integer N ≥ 0 and reals C1, C2 where C1x
−1
1 + C2x

−1
2 = 0 and

C1x
N+1
1 + C2x

N+1
2 = −1, such that the following probability sequence

pk = 1 − C1x
k
1 + C2x

k
2 + 1

C1x
k−1
1 + C2x

k−1
2 + 1

, 0 ≤ k ≤ N + 1,

induces an optimal policy that minimizes Emax(X1,X2).

Remark 2. Note that pN+1 = 1, thus it is sufficient to only define p0, p1, . . . ,
pN+1.

Proof. Assume the optimal policy f is characterized by the probability sequence
(pk)∞

k=0. Using the derived expressions (Eq. (4) and Eq. (9)) in Theorem 3 and
4, we have

Emax(X1,X2) = 2EX1 − Emin(X1,X2)

= 2
∑∞

k=0 mk−1

1 − ∑∞
k=0(mk−1 − mk)2

−
∑∞

k=0 m2
k−1

1 − ∑∞
k=0(mk−1 − mk)2

=
2
∑∞

k=0 mk−1 − ∑∞
k=0 m2

k−1

1 − ∑∞
k=0(mk−1 − mk)2

, (12)

where mk =
∏k

i=0(1 − pi) with m−1 = 1.
The only requirement on the sequence (mk)∞

k=−1 is that it is strictly decreas-
ing with mk ∈ [0, 1]. First we observe if mk = mk+1, we must have both of them
equal to zero. Otherwise, we can remove mk which will leave the denominator
unchanged but reduce the numerator. Therefore, the optimal sequence is either
a strictly decreasing sequence or a strictly decreasing sequence followed by a
tail of zeros. Fix any v ≥ 0 for which mv > 0 we have, by the optimality of
(mk)∞

k=−1,

∂Emax(X1,X2)
∂mv

=
(2 − 2mv)B − 2A(mv−1 − mv − (mv − mv+1))

D
= 0, (13)

466 D. Wang

where B = 1 − ∑∞
k=0(mk−1 − mk)2 and A = 2

∑∞
k=0 mk−1 − ∑∞

k=0 m2
k−1. Let

γ = B
A = 1

Emax(X1,X2)
, then we have, from Eq. (13)

mv+1 = (2 − γ)mv − mv−1 + γ (14)
⇐⇒ (mv+1 − 1) = (2 − γ)(mv − 1) − (mv−1 − 1) (15)

Equation (15) defines a linear homogeneous recurrence relation for the

sequence (mv+1 − 1), whose characteristic roots are x1, x2 = 2−γ±
√

γ2−4γ

2 . One
may verify that they satisfy the following identities.

x1 + x2 = 2 − γ (16)
x1x2 = 1 (17)

From Lemma 1 we know γ ∈ [14 , 1
3]. Thus we have γ2 − 4γ < 0 which implies x1

and x2 are distinct conjugate numbers and of the same norm
√

x1x2 = 1. Then
mk − 1 = C1x

k
1 + C2x

k
2 for all k for which at least one of mk−1,mk or mk+1 is

greater than zero.
If it were the case that mk > 0 for all k, then by summing (14) up for all

v ∈ N, we have

∞∑

k=0

mk+1 = (2 − γ)
∞∑

k=0

mk −
∞∑

k=0

mk−1 + γ · ∞

which implies
∑∞

k=0 mk = ∞. This is impossible since, by the upper bound of
Lemma 1,

4 ≥ Emax(X1,X2) =
1 + 2

∑∞
k=0 mk − ∑∞

k=0 m2
k

1 − ∑∞
k=0(mk−1 − mk)2

≥ 1 +
∑∞

k=0 mk

1
.

Therefore the optimal sequence must be of the form

mk = (C1x
k
1 + C2x

k
2 + 1)1k≤N

for some integer N ≥ 0, where C1x
N
1 +C2x

N
2 +1 = 0 and C1x

−1
1 +C2x

−1
2 +1 = 1.

Writing pk = 1 − mk

mk−1
gives the statement of the theorem.

The proof of Corollary 2 is in the full version.

Corollary 2. max-Contention Resolution is an optimal protocol for n =
2 devices under the max objective. The expected maximum latency is 1/γ ≈
3.33641, where γ is the unique root of 3x3 − 12x2 + 10x − 2 in the interval
[1/4, 1/3].

4 Conclusion

In this paper we established the existence of optimal contention resolution poli-
cies for any reasonable cost metric, and derived the first optimal protocols for

Optimal Protocols for 2-Party Contention Resolution 467

resolving conflicts between n = 2 parties under the avg, min, and max objec-
tives.

Generalizing our results to n ≥ 3 or to more complicated cost metrics (e.g.,
the �2 norm) is a challenging problem. Unlike the n = 2 case, it is not clear,
for example, whether the optimal protocols for n = 3 select their transmission
probabilities from a finite set of reals. It is also unclear whether the optimal
protocols for n = 3 satisfy some analogue of Theorem 2, i.e., that they are
“recurrent” in some way.

References

1. Abramson, N.: The ALOHA system: another alternative for computer communi-
cations. In: Proceedings of the November 17–19, 1970, Fall Joint Computer Con-
ference, pp. 281–285. ACM (1970)

2. Aldous, D.J.: Ultimate instability of exponential back-off protocol for
acknowledgment-based transmission control of random access communication
channels. IEEE Trans. Inf. Theory 33(2), 219–223 (1987). https://doi.org/10.1109/
TIT.1987.1057295

3. Awerbuch, B., Richa, A.W., Scheideler, C.: A jamming-resistant MAC protocol for
single-hop wireless networks. In: Proceedings of the Twenty-Seventh Annual ACM
Symposium on Principles of Distributed Computing (PODC), pp. 45–54 (2008).
https://doi.org/10.1145/1400751.1400759

4. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in
multi-hop radio networks: an exponential gap between determinism and random-
ization. J. Comput. Syst. Sci. 45(1), 104–126 (1992)

5. Bender, M., Kopelowitz, T., Pettie, S., Young, M.: Contention resolution with
constant throughput and log-logstar channel accesses. SIAM J. Comput. 47(5),
1735–1754 (2018). https://doi.org/10.1137/17M1158604

6. Bender, M.A., Farach-Colton, M., He, S., Kuszmaul, B.C., Leiserson, C.E.: Adver-
sarial analyses of window backoff strategies. In: Proceedings 18th International
Parallel and Distributed Processing Symposium (IPDPS) (2004). https://doi.org/
10.1109/IPDPS.2004.1303230, https://doi.org/10.1109/IPDPS.2004.1303230

7. Bender, M.A., Farach-Colton, M., He, S., Kuszmaul, B.C., Leiserson, C.E.: Adver-
sarial contention resolution for simple channels. In: Proceedings of the 17th Annual
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp.
325–332 (2005). https://doi.org/10.1145/1073970.1074023

8. Bender, M.A., Fineman, J.T., Gilbert, S., Young, M.: Scaling exponential backoff:
constant throughput, polylogarithmic channel-access attempts, and robustness. J.
ACM 66(1), 6:1–6:33 (2019)

9. Capetanakis, J.: Tree algorithms for packet broadcast channels. IEEE Trans. Inf.
Theory 25(5), 505–515 (1979). https://doi.org/10.1109/TIT.1979.1056093

10. Chang, Y., Jin, W., Pettie, S.: Simple contention resolution via multiplicative
weight updates. In: Proceedings 2nd Symposium on Simplicity in Algorithms
(SOSA), pp. 16:1–16:16 (2019). https://doi.org/10.4230/OASIcs.SOSA.2019.16

11. Chang, Y., Kopelowitz, T., Pettie, S., Wang, R., Zhan, W.: Exponential separations
in the energy complexity of leader election. In: Proceedings 49th Annual ACM
Symposium on Theory of Computing (STOC), pp. 771–783 (2017). https://doi.
org/10.1145/3055399.3055481, http://doi.acm.org/10.1145/3055399.3055481

https://doi.org/10.1109/TIT.1987.1057295
https://doi.org/10.1109/TIT.1987.1057295
https://doi.org/10.1145/1400751.1400759
https://doi.org/10.1137/17M1158604
https://doi.org/10.1109/IPDPS.2004.1303230
https://doi.org/10.1109/IPDPS.2004.1303230
https://doi.org/10.1109/IPDPS.2004.1303230
https://doi.org/10.1145/1073970.1074023
https://doi.org/10.1109/TIT.1979.1056093
https://doi.org/10.4230/OASIcs.SOSA.2019.16
https://doi.org/10.1145/3055399.3055481
https://doi.org/10.1145/3055399.3055481
http://doi.acm.org/10.1145/3055399.3055481

468 D. Wang

12. Gallager, R.G.: Conflict resolution in random access broadcast networks. In: Pro-
ceedings AFOSR Workshop on Communications Theory Applications, Province-
town, MA, 17–20 September, pp. 74–76 (1978)

13. Jacobson, V.: Congestion avoidance and control. ACM SIGCOMM Comput. Com-
mun. Rev. 18, 314–329. ACM (1988)

14. Kwak, B.J., Song, N.O., Miller, L.E.: Performance analysis of exponential backoff.
IEEE/ACM Trans. Netw. (TON) 13(2), 343–355 (2005)

15. Metcalfe, R.M., Boggs, D.R.: Ethernet: distributed packet switching for local com-
puter networks. Commun. ACM 19(7), 395–404 (1976)

16. Mikhailov, V.A., Tsybakov, B.S.: Upper bound for the capacity of a random mul-
tiple access system. Problemy Peredachi Informatsii 17(1), 90–95 (1981)

17. Mosely, J., Humblet, P.A.: A class of efficient contention resolution algorithms for
multiple access channels. IEEE Trans. Commun. 33(2), 145–151 (1985). https://
doi.org/10.1109/TCOM.1985.1096261

18. Nakano, K., Olariu, S.: Uniform leader election protocols for radio networks.
IEEE Trans. Parallel Distrib. Syst. 13(5), 516–526 (2002). https://doi.org/10.
1109/TPDS.2002.1003864

19. Newport, C.: Radio network lower bounds made easy. In: Proceedings of the 28th
International Symposium on Distributed Computing (DISC), pp. 258–272 (2014)

20. Rajwar, R., Goodman, J.R.: Speculative lock elision: enabling highly concurrent
multithreaded execution. In: Proceedings of the 34th Annual ACM/IEEE Inter-
national Symposium on Microarchitecture, pp. 294–305. IEEE Computer Society
(2001)

21. Tsybakov, B.S., Mikhailov, V.A.: Slotted multiaccess packet broadcasting feedback
channel. Problemy Peredachi Informatsii 14(4), 32–59 (1978)

22. Willard, D.E.: Log-logarithmic selection resolution protocols in a multiple access
channel. SIAM J. Comput. 15(2), 468–477 (1986). https://doi.org/10.1137/
0215032

https://doi.org/10.1109/TCOM.1985.1096261
https://doi.org/10.1109/TCOM.1985.1096261
https://doi.org/10.1109/TPDS.2002.1003864
https://doi.org/10.1109/TPDS.2002.1003864
https://doi.org/10.1137/0215032
https://doi.org/10.1137/0215032

Computer Aided Formal Design of Swarm
Robotics Algorithms

Thibaut Balabonski1, Pierre Courtieu2, Robin Pelle1, Lionel Rieg3,
Sébastien Tixeuil4(B), and Xavier Urbain5

1 Université Paris-Saclay, CNRS, LMF, Gif-sur-Yvette, France
2 Cédric, Conservatoire des Arts et Métiers, Paris, France

3 VERIMAG, UMR 5160, Grenoble INP, Univ. Grenoble Alpes, Grenoble, France
4 Sorbonne University, CNRS, LIP6, Paris, France

Sebastien.Tixeuil@lip6.fr
5 Université Claude Bernard Lyon 1, LIRIS UMR5205, Lyon, France

Abstract. Previous works on formally studying mobile robotic swarms
consider necessary and sufficient system hypotheses enabling to solve
theoretical benchmark problems (geometric pattern formation, gather-
ing, scattering, etc.). We argue that formal methods can also help in the
early design stage of mobile robotic swarms correct-by-design protocols,
even for tasks closer to real-world use cases and not previously studied
theoretically. Our position is supported by a concrete case study. Start-
ing from a real-world case scenario, we jointly design the formal problem
specification, a family of protocols that are able to solve the problem,
and their corresponding proof of correctness, all expressed with the same
formal framework. The concrete framework we use for our development
is the Pactole library based on the Coq proof assistant.

Context. Swarm robotics envisions groups of mobile robots self-organizing
and cooperating toward the resolution of common objectives, such as
patrolling, exploring and mapping disaster areas, constructing ad hoc mobile
communication infrastructures to enable communication with rescue teams, etc.
As several of those applications are life-critical, the correctness of the deployed
protocols becomes of paramount importance. In turn, correctness reasoning
about autonomous moving and computing entities that collaborate to achieve
a global objective in a setting where unpredictable hazards may occur is com-
plex and error prone. A first step into more formal reasoning is to use a sound
mathematical model.

Suzuki & Yamashita [25] introduced such a mathematical model describing
the behaviour of robots in this context. The model is targeted at swarms of
very weak robots evolving in harsh environments. At its core, the model simply
commands individual robots to repetitively observe their environment before
computing a path of actions to pursue and acting on it, usually by moving to a

This work was partially supported by Project SAPPORO of the French National
Research Agency (ANR) under the reference 2019-CE25-0005-1.

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 469–473, 2021.
https://doi.org/10.1007/978-3-030-91081-5_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_31&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_31

470 T. Balabonski et al.

specific location. Three different levels of synchronization have been commonly
considered. The fully-synchronous (FSYNC) case [25] ensures each phase of each
cycle is performed simultaneously by all robots. The semi-synchronous (SSYNC)
case [25] allows that only a proper subset of robots execute a cycle at each
round. Finally, the asynchronous (ASYNC) case [18] allows each robot to execute
its cycle at its own pace. The Look-Compute-Move (LCM) model received a
considerable amount of attention from the Distributed Computing community,1

yielding a large variety of submodels used to assess the solvability of a certain
task assuming certain system hypotheses. As such, the Distributed Computing
literature about mobile robots so far can be seen as computability-oriented.

Alas, the various submodels make it extremely tedious to check whether a
particular property of a robot protocol holds in a particular setting. Further-
more, these variants do not behave well regarding proof reusability: checking
that a property holding in a given setting also holds in another setting that is
not strictly contained in the former often amounts to developing a completely
new proof, regardless of the proof arguments similarity. This problem is spe-
cially acute because of the great diversity of subtly different models: one may
be tempted to simply hand-wave their way around the issue by declaring that
the proof in this model is “obviously” also valid in this very close model, even
more so as even a careful examination may not always find the most subtle
errors. Last but not least, protocols are typically written in an informal high-
level language: assessing whether they conform to a particular model setting is
particularly cumbersome, and may lead to hard to find mismatches. As a result,
sustained research effort was made in the last decade to use formal methods in
the context of mobile robotic swarms.

Related Work. Formal methods encompass a long-lasting path of research
that is meant to overcome errors of human origin. Perhaps the most well known
instance in the Distributed Computing community is the Temporal Logic of
Actions and its companion tools TLA/TLA+[12,22]. Though very expressive,
TLA is designed for the shared memory and message passing contexts, thus not
well suited to studying mobile robotic swarms. Model-checking and its powerful
automation proved useful to find bugs in existing literature [7,16,17], and to
assess formally published algorithms [7,13,15]. Automatic program synthesis (for
the problem of perpetual exclusive exploration in a ring-shaped discrete space)
is due to Bonnet et al. [9], and can be used to obtain automatically algorithms
that are “correct-by-design”. The approach was refined by Millet et al. [23] for
the problem of gathering in a discrete ring network. However, these are limited
to instances with few robots. Generalizing them to an arbitrary number of robots
with similar models is doubtful as Sangnier et al. [24] proved that safety and
reachability problems are undecidable in the parameterized case.

The approach on which we focus in this work is formal proof, that is proof
development mechanically certified by a proof assistant. Mechanical proof assis-
tants are proof management systems where a user can express data, programs,
1 Yamashita received the “Prize for Innovation in Distributed Computing” for his

seminal work on this model.

Computer Aided Formal Design of Swarm Robotics Algorithms 471

theorems and proofs. In sharp contrast with automated provers (like model-
checkers), they are mostly interactive, and thus require some kind of expertise
from their users. Sceptical proof assistants provide an additional guarantee by
checking mechanically the soundness of a proof after it has been interactively
developed. Formal proofs allow for more generality as this approach is not lim-
ited to particular instances of algorithms. During the last twenty years, the use
of tool-assisted verification has extended to the validation of distributed pro-
cesses, in contexts such as process algebras [8,19], symmetric interconnection
networks [20], message passing settings [21], self-stabilization [1,14], etc. The
main approach for mechanized proof dedicated to swarms of mobile entities is
the Pactole framework (https://pactole.liris.cnrs.fr), based on the Coq proof
assistant. Briefly, Coq is a Curry-Howard-based interactive proof assistant that
enjoys a trustworthy kernel. Then, a proof development consists in building,
interactively and using tactics, a λ-term, the type of which corresponds to the
theorem to be proven. Most importantly: a theorem or a lemma can only be
saved/defined in the system if it comes with its type-checked proof. Designed for
mobile entities, and making the most of Coq’s assets, Pactole allows for work-
ing on a given protocol to establish and certify its correctness [5,11], as well as
for quantifying over all protocol so as to prove impossibility results [2,6,10], with
an unspecified number of robots, possibly including a proportion of Byzantine
faults, in continuous or discrete spaces. FSYNC/SSYNC and ASYNC modes
are all supported, and the framework is expressive enough to state and certify
results as theoretical as comparisons between demons or models [3].

Our Contribution. Taking some perspective over aforementioned works mixing
formal methods and swarm robotics, one can only notice that the computability-
centric approach of the Suzuki and Yamashita model yielded a concentration of
efforts towards few benchmark problems that are theoretically interesting (one
can get impossibility results or correctness certification) but of little practical
relevance, such as perpetual or terminating exploration of a ring-shaped graph,
and gathering or concentrating all robots at a particular location.

On the other side, relevant practical problems, such as constructing ad
hoc mobile communication infrastructures to enable communication with res-
cue teams, remain untouched using a formal approach. Yet, their correctness is
crucial, and possibly life-critical, so it should be assessed formally and mechan-
ically verified. Overall, for those practical problems, the question is not really
to characterize which system hypotheses enable problem solvability, but rather
how to design a provably correct solution using hypotheses that correspond to
real devices.

This paper is the first step in this direction. In more details, we start from
a real-life application scenario to jointly design (i) its formal specification, (ii)
a family of protocols that are able to solve the problem, and (iii) their corre-
sponding proof of correctness, all expressed with the same formal framework,
Pactole. In this process, we illustrate how formal methods and Pactole in
particular could be used to derive protocols that are correct-by-design before
they are deployed to actual devices.

https://pactole.liris.cnrs.fr

472 T. Balabonski et al.

The full version of the paper is available on ArXiv [4]. The developments
described in this work, for Coq v8.13, based on the current version of Pactole,
are available at https://pactole.liris.cnrs.fr.

References

1. Altisen, K., Corbineau, P., Devismes, S.: A framework for certified self-
stabilization. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp.
36–51. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8 3

2. Auger, C., Bouzid, Z., Courtieu, P., Tixeuil, S., Urbain, X.: Certified impossi-
bility results for Byzantine-tolerant mobile robots. In: Higashino, T., Katayama,
Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS,
vol. 8255, pp. 178–190. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
03089-0 13

3. Balabonski, T., Courtieu, P., Pelle, R., Rieg, L., Tixeuil, S., Urbain, X.: Continuous
vs. discrete asynchronous moves: a certified approach for mobile robots. In: Atig,
M.F., Schwarzmann, A.A. (eds.) NETYS 2019. LNCS, vol. 11704, pp. 93–109.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31277-0 7

4. Balabonski, T., Courtieu, P., Pelle, R., Rieg, L., Tixeuil, S., Urbain, X.: Computer
aided formal design of swarm robotics algorithms. CoRR abs/2101.06966 (2021).
https://arxiv.org/abs/2101.06966

5. Balabonski, T., Delga, A., Rieg, L., Tixeuil, S., Urbain, X.: Synchronous gathering
without multiplicity detection: a certified algorithm. Theory Comput. Syst. 63(2),
200–218 (2017). https://doi.org/10.1007/s00224-017-9828-z

6. Balabonski, T., Pelle, R., Rieg, L., Tixeuil, S.: A foundational framework for cer-
tified impossibility results with mobile robots on graphs. In: Bellavista, P., Garg,
V.K. (eds.) Proceedings of the 19th International Conference on Distributed Com-
puting and Networking, ICDCN 2018, Varanasi, India, 4–7 January 2018, pp. 5:1–
5:10. ACM (2018). https://doi.org/10.1145/3154273.3154321

7. Bérard, B., Lafourcade, P., Millet, L., Potop-Butucaru, M., Thierry-Mieg, Y.,
Tixeuil, S.: Formal verification of mobile robot protocols. Distrib. Comput. 29(6),
459–487 (2016). https://doi.org/10.1007/s00446-016-0271-1

8. Bezem, M., Bol, R., Groote, J.F.: Formalizing process algebraic verifications in the
calculus of constructions. Formal Aspects Comput. 9, 1–48 (1997)

9. Bonnet, F., Défago, X., Petit, F., Potop-Butucaru, M., Tixeuil, S.: Discovering and
assessing fine-grained metrics in robot networks protocols. In: 33rd IEEE Interna-
tional Symposium on Reliable Distributed Systems Workshops, SRDS Workshops
2014, Nara, Japan, 6–9 October 2014, pp. 50–59. IEEE (2014). https://doi.org/10.
1109/SRDSW.2014.34

10. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Impossibility of gathering, a certifi-
cation. Inf. Process. Lett. 115, 447–452 (2015). https://doi.org/10.1016/j.ipl.2014.
11.001

11. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Certified universal gathering in R
2

for oblivious mobile robots. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS,
vol. 9888, pp. 187–200. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53426-7 14

12. Cousineau, D., Doligez, D., Lamport, L., Merz, S., Ricketts, D., Vanzetto, H.:
TLA+ Proofs. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol.
7436, pp. 147–154. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32759-9 14

https://pactole.liris.cnrs.fr
https://doi.org/10.1007/978-3-319-39570-8_3
https://doi.org/10.1007/978-3-319-03089-0_13
https://doi.org/10.1007/978-3-319-03089-0_13
https://doi.org/10.1007/978-3-030-31277-0_7
https://arxiv.org/abs/2101.06966
https://doi.org/10.1007/s00224-017-9828-z
https://doi.org/10.1145/3154273.3154321
https://doi.org/10.1007/s00446-016-0271-1
https://doi.org/10.1109/SRDSW.2014.34
https://doi.org/10.1109/SRDSW.2014.34
https://doi.org/10.1016/j.ipl.2014.11.001
https://doi.org/10.1016/j.ipl.2014.11.001
https://doi.org/10.1007/978-3-662-53426-7_14
https://doi.org/10.1007/978-3-662-53426-7_14
https://doi.org/10.1007/978-3-642-32759-9_14
https://doi.org/10.1007/978-3-642-32759-9_14

Computer Aided Formal Design of Swarm Robotics Algorithms 473

13. Défago, X., Heriban, A., Tixeuil, S., Wada, K.: Using model checking to for-
mally verify rendezvous algorithms for robots with lights in Euclidean space. In:
International Symposium on Reliable Distributed Systems, SRDS 2020, Shanghai,
China, 21–24 September 2020, pp. 113–122. IEEE (2020). https://doi.org/10.1109/
SRDS51746.2020.00019

14. Deng, Y., Monin, J.F.: Verifying self-stabilizing population protocols with coq. In:
Chin, W.N., Qin, S. (eds.) Third IEEE International Symposium on Theoretical
Aspects of Software Engineering (TASE 2009), Tianjin, China, pp. 201–208. IEEE
Computer Society, July 2009

15. Devismes, S., Lamani, A., Petit, F., Raymond, P., Tixeuil, S.: Optimal grid explo-
ration by asynchronous oblivious robots. In: Richa, A.W., Scheideler, C. (eds.) SSS
2012. LNCS, vol. 7596, pp. 64–76. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33536-5 7

16. Doan, H.T.T., Bonnet, F., Ogata, K.: Model checking of a mobile robots per-
petual exploration algorithm. In: Liu, S., Duan, Z., Tian, C., Nagoya, F. (eds.)
SOFL+MSVL 2016. LNCS, vol. 10189, pp. 201–219. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57708-1 12

17. Doan, H.T.T., Bonnet, F., Ogata, K.: Model checking of robot gathering. In: Asp-
nes, J., Bessani, A., Felber, P., Leitão, J. (eds.) 21st International Conference on
Principles of Distributed Systems, OPODIS 2017, Lisbon, Portugal, 18–20 Decem-
ber 2017. LIPIcs, vol. 95, pp. 12:1–12:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2017). https://doi.org/10.4230/LIPIcs.OPODIS.2017.12

18. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theor. Comput. Sci. 337(1–3), 147–168 (2005).
https://doi.org/10.1016/j.tcs.2005.01.001

19. Fokkink, W.: Modelling Distributed Systems. EATCS Texts in Theoretical Com-
puter Science, Springer, Heidelberg (2007)

20. Gaspar, N., Henrio, L., Madelaine, E.: Bringing coq into the world of GCM dis-
tributed applications, pp. 643–662 (2014)

21. Küfner, P., Nestmann, U., Rickmann, C.: Formal verification of distributed algo-
rithms. In: Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol.
7604, pp. 209–224. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33475-7 15

22. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
16(3), 872–923 (1994). https://doi.org/10.1145/177492.177726

23. Millet, L., Potop-Butucaru, M., Sznajder, N., Tixeuil, S.: On the synthesis of mobile
robots algorithms: the case of ring gathering. In: Felber, P., Garg, V. (eds.) SSS
2014. LNCS, vol. 8756, pp. 237–251. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11764-5 17

24. Sangnier, A., Sznajder, N., Potop-Butucaru, M., Tixeuil, S.: Parameterized verifi-
cation of algorithms for oblivious robots on a ring. Formal Methods Syst. Des. (6),
55–89 (2019). https://doi.org/10.1007/s10703-019-00335-y

25. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

https://doi.org/10.1109/SRDS51746.2020.00019
https://doi.org/10.1109/SRDS51746.2020.00019
https://doi.org/10.1007/978-3-642-33536-5_7
https://doi.org/10.1007/978-3-642-33536-5_7
https://doi.org/10.1007/978-3-319-57708-1_12
https://doi.org/10.4230/LIPIcs.OPODIS.2017.12
https://doi.org/10.1016/j.tcs.2005.01.001
https://doi.org/10.1007/978-3-642-33475-7_15
https://doi.org/10.1007/978-3-642-33475-7_15
https://doi.org/10.1145/177492.177726
https://doi.org/10.1007/978-3-319-11764-5_17
https://doi.org/10.1007/978-3-319-11764-5_17
https://doi.org/10.1007/s10703-019-00335-y

Delta-State JSON CRDT: Putting
Collaboration on Solid Ground

Amos Brocco(B)

University of Applied Sciences and Arts of Southern Switzerland, Lugano, Switzerland
amos.brocco@supsi.ch

Abstract. In this paper we present a framework to support the imple-
mentation of offline-first asynchronous collaboration using a variety of
data storage and communication backends. In particular, our approach
can make use of Solid pods to exchange data between users.

Keywords: Collaborative applications · JSON · CRDT · Solid

1 Introduction

In this paper we present a framework for the development of collaboration fea-
tures into applications, by combining the advantages of CRDTs [7,10] with the
flexibility and safety of decentralized storage. As such, our intent is to exploit
Solid pods [1] as a communication channel for exchanging data between users.
However, thanks to the simplicity and modularity of our design, storage solu-
tions such as shared folders or cloud file-sharing platforms, as well as physical
devices like thumb drives, can also serve the same function as a pod. To ease the
integration of our solution, we allow transparent replication of complex JSON
documents without explicit editing. It is therefore possible to implement collab-
orative features into existing programs without altering their data model. The
remaining of this paper presents a brief review of the relevant related work in
the field of CRDTs, a formal overview of our data structure and some details
of its implementation. Finally, an evaluation of the proposed solution and the
corresponding results will be discussed.

2 Related Work

CRDTs can be grouped into three different categories, namely operation-based,
state-based and delta-state based. Operation-based solutions [3] rely on update
operations which are propagated to all replicas, and are best suited for high-
frequency updates, such as in the context of real-time collaborative text editors.
In the literature it is possible to find examples of operation-based CRDTs which
support JSON-like data, for instance Yjs [8] or the Automerge [6] library, but
require explicit editing of the document in order to keep track of each modifi-
cation. State-based CRDTs [10] always store the full state of the data, and are
c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 474–478, 2021.
https://doi.org/10.1007/978-3-030-91081-5_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_32&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_32

Delta-State JSON CRDT: Putting Collaboration on Solid Ground 475

therefore better suited for situations where updates are less frequent, commu-
nication is unreliable, or operations are not commutative. The main drawback
of state-based CRDTs is that the size of the state can become very large [2],
consequently delta-state solutions (referred to as δ-CRDTs) have been proposed
[2,9]. δ-CRDTs rely on disseminating small updates (changesets) called delta
mutations: these updates are idempotent, which means that they can be applied
possibly several times to an existing state without compromising its consistency,
and can be disseminated over unreliable communication channels. The CRDT
discussed in this paper uses delta states and presents a practical architecture for
collaborative applications with a modular design supporting different types of
communication and storage backends.

3 Overview of the Data Structure

We consider a generic collection C of JSON objects which is generated from
an arbitrary JSON document using a reversible data transformation algorithm
[5]. In contrast to other solutions, which require explicit editing operations, this
algorithm processes an input document (as produced by an application) to auto-
matically extract nested objects and determine their changes. This collection can
be replicated on multiple sites and concurrently updated by each participant.
Each object o in this collection is identified by a UUID ido and its value (or con-
tent) can be modified independently on each replica. We assume that objects are
atomic and immutable. The collection is a grow-only data structure, where dele-
tions are recorded using a tombstone. To efficiently compare different versions of
an object, the content x is hashed to produce a string digest H(x).

Object Map. On each replica of the data structure, the set O of tuples 〈H(x), x〉
stores the content of each version of each object. The set O is referred to as the
object map, and allows for retrieving the value associated with a specific digest.

Revision String. Let xN represent the content of the N -th version of object
x. The revision string rN associated with xN is defined as N -H(xN) TailN ,
where N is a monotonically increasing numerical index (starting at 1), TailN =
T (H(rN−1)), and T is a determistic function (such as the identity function, a
hashing function or a simple string transformation). A revision string rk univo-
cally refers to a specific version xk in the history of an object, and allows for
retrieving the exact content through the embedded digest string H(xk).

Revision Trees. Modifications made to an object can be recorded as sequences
of revision strings. The history of modifications made to each object o across all
replicas is represented by a revision tree rto, which can be conveniently stored
as a collection of tuples 〈rN , rN−1〉 (rN−1 being referred to as the parent of rN).
The revision tree for a newly created object is 〈r1, ∅〉. The revision with the
highest numerical index is considered the winning revision rW , and determines
the contents that shall be returned when querying for the latest version of an
object. If multiple revisions share the same index, revision strings are compared
in lexicographic sort order.

476 A. Brocco

State Set. Given a replica of a collection of JSON objects C, we define its state
set (or simply state) X = D ∪ O, where D =

⋃
o∈C rto, and O is the object map

as defined above.

3.1 Delta-State Decomposition

According to [2], a δ-CRDT consists of a triple (S,M δ, Q), where S is a join-
semilattice of states, M δ is a set of delta-mutators, and Q is a set of query func-
tions. The state transition at each replica is given by either joining the current
state X ∈ S with a delta-mutation (X ′ = X � mδ(X)), or by joining the cur-
rent state with some received delta-group D (X ′ = X � D). Delta-mutators are
defined as functions, corresponding to an update operation, which take a state
X in a join-semilattice S as parameter and return a delta-mutation mδ(X) ∈ S.
Finally, a delta-group is inductively defined as either a delta-mutation or a join of
several delta-groups. In the considered scenario, each transition from state X to
state X ′ can be represented by an update set U = X ′ \X, with U ∈ S, since S is
closed under set difference. Update sets are equivalent to delta-mutations, since
X ′ = mδ(X) = X � mδ(X) = X � U , where X,X ′ ∈ S and mδ(X) ∈ S is the
delta mutation. Delta-mutators mδ are defined by the relation mδ(X) = X � U .
Furthermore, update sets also translate into delta-groups D, as the relation
X ′ = X � D holds when D = mδ(X), and by associativity this relation is veri-
fied even when considering a join of several delta-groups. Since the join operation
is associative, commutative and idempotent, the requirements for convergence
(as stated in [2]) are fulfilled.

3.2 Delta-State Serialization and Adapters

The serialization format is derived from the one presented in [4]. Update sets are
serialized into two different JSON structures, namely delta blocks and data packs.
The former stores revision tree updates, whereas the latter maintains the actual
content of each new object. Both structures are immutable, hence they can be
cached locally to reduce network overhead. To cope with the possibility that a
data pack hasn’t yet been delivered to a replica, we redefine winning revision as
the one with the highest numerical index whose content is available. To store
and replicate data on different platforms, the low-level task of reading or writing
the delta blocks and data packs is fulfilled by means of adapters. Adapters can
be used to seamlessly support different types of storage, such as main memory,
filesystems (where delta blocks and packs are files), databases, decentralized data
pods, or cloud sharing platforms (such as Dropbox and Nextcloud).

3.3 Example Architecture of a Collaborative Application

The functionalities of the underlying CRDT are exposed through a high-level
API which implements methods to update, read and synchronize replicas. An
application can make use of these methods to support asynchronous collaborative
editing without reinventing its data model.

Delta-State JSON CRDT: Putting Collaboration on Solid Ground 477

Fig. 1. Example architecture of a collaborative application

Figure 1 shows an example architecture with two local replicas and one shared
replica (a simple data store). Each user can work on their data while offline.
Replication is achieved by serializing the contents of the data model into a JSON
document and subsequently update the local replica. By means of the melding
procedure, changes made to the local replica are propagated to the shared replica
through a backend adapter. Afterwards, changes from the shared replica are
melded into the local one, integrating modifications made by other users. Finally,
the local replica can be read and deserialized so as to obtain an updated model.
This workflow can be used to mimic the co-authoring functionality called save
and refresh offered by Microsoft Office.

Solid Pod Adapter. The Solid specification [1] provides a standard for building
an ecosystem of personal web-accessible data pods. Access to a pod is controlled
by the owner, and linked data is exploited to promote interoperability between
applications and pods. In our framework we store delta blocks and data packs
as LDP Resources inside LDP Containers.

4 Evaluation

To evaluate the proposed solution, we consider a synthetic benchmark to deter-
mine the space overhead in comparison to Automerge [6]. We employ an editing
trace1 of a large text document with 182 315 single-character insertion opera-
tions, and 77 463 single-character deletion operations. To simulate asynchronous
collaboration, the editing process is divided into batches of 10, 100, 1 000, and
10 000 single-character operations: when a batch is completed, a changeset is
generated. As shown in Table 1, as the number of edits in each batch increases,
our delta-state CRDT incurs a smaller space overhead compared to Automerge.

1 https://github.com/automerge/automerge-perf.

https://github.com/automerge/automerge-perf

478 A. Brocco

Table 1. Results of the synthetic benchmark after 259 778 edit operations

Batch size Batches Cumulative size of the changesets (MBytes)

Automerge Delta-State JSON CRDT Full-states

10 ops 25 978 56.5 86 1 699.8

100 ops 2 598 54 23.7 170

1 000 ops 260 52.8 16.5 17

10 000 ops 26 51.5 15 1.7

5 Conclusion

In this paper, we presented a JSON δ-CRDT solution to support the development
of multi-user applications based on asynchronous collaboration. Our design is
both simple and modular, and by means of adapters, it allows for seamless
interoperation between different storage and communication backends, such as
Solid pods. Future work includes performance optimizations, the implementation
of additional adapters, and porting the library to other languages and platforms
(such as WebAssembly).

Acknowledgments. This work has been financially supported by the Swiss Innova-
tion Agency, Project nr. 42832.1 IP-ICT and by Banana.ch SA.

References

1. Solid technical reports (2021). https://solidproject.org/TR/. Accessed 5 Aug 2021
2. Almeida, P.S., Shoker, A., Baquero, C.: Delta state replicated data types. J. Parallel

Distrib. Comput. 111, 162–173 (2018)
3. Baquero, C., Almeida, P.S., Shoker, A.: Making operation-based CRDTs operation-

based. In: Proceedings of the First Workshop on Principles and Practice of Eventual
Consistency, PaPEC 2014. Association for Computing Machinery, New York (2014)

4. Brocco, A.: The document chain: a delta-CRDT framework for arbitrary JSON
data. In: SEBD: 29th Italian Symposium on Advanced Database Systems (2021)

5. Brocco, A., Ceppi, P., Sinigaglia, L.: libJoTs: JSON that syncs! In: SEBD: 28th
Italian Symposium on Advanced Database Systems (2020)

6. Kleppmann, M., Beresford, A.R.: A conflict-free replicated JSON datatype. IEEE
Trans. Parallel Distrib. Syst. 28(10), 2733–2746 (2017)

7. Letia, M., Preguiça, N., Shapiro, M.: Consistency without concurrency control in
large, dynamic systems. SIGOPS Oper. Syst. Rev. 44(2), 29–34 (2010)

8. Nicolaescu, P., Jahns, K., Derntl, M., Klamma, R.: Yjs: a framework for near
real-time P2P shared editing on arbitrary data types, June 2015

9. Rinberg, A., Solomon, T., Khazma, G., Lushi, G., Shlomo, R., Ta-Shma, P.: Array
CRDTs using delta-mutations. In: 8th Workshop on Principles and Practice of
Consistency for Distributed Data, PaPoC 2021. ACM, April 2021

10. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study of
Convergent and Commutative Replicated Data Types. Research Report RR-7506,
Inria - Centre Paris-Rocquencourt; INRIA, January 2011

https://solidproject.org/TR/

Self-stabilization and Byzantine Tolerance
for Maximal Independent Set

Johanne Cohen1, Laurence Pilard2, and Jonas Sénizergues1(B)

1 LISN-CNRS, Université Paris-Saclay, Orsay, France
{Johanne.Cohen,Jonas.Senizergues}@lri.fr

2 LI-PaRAD, UVSQ, Université Paris-Saclay, Orsay, France
Laurence.Pilard@uvsq.fr

Abstract. We analyze the impact of transient and Byzantine faults on
the construction of a maximal independent set in a general network. We
adapt the self-stabilizing algorithm presented by Turau [15] for comput-
ing such a vertex set. Our algorithm is self-stabilizing, and also works
under the more difficult context of arbitrary Byzantine faults.

Byzantine nodes can prevent nodes close to them from taking part in
the independent set for an arbitrarily long time.

We give boundaries to their impact using a variation on the notion of
containment radius. As far as we know, we present the first algorithm
tolerating both transient and Byzantine faults under the fair distributed
daemon. We prove that this algorithm converges in O(Δn) rounds with
high probability. Additionally, we present a modified version of this algo-
rithm for anonymous systems under the adversarial distributed daemon
that converges in O(n2) expected number of steps.

Introduction

Maximal independent set has received a lot of attention in different areas. For
instance, in wireless networks, the maximum independent sets can be used as
a black box to perform communication (to collect or to broadcast information)
(see [5,12] for example). An independent set I in a graph is a set of vertices such
that no two of them form an edge in the graph. It is called maximal when it is
maximal inclusion-wise (in which case it is also a minimal dominating set). The
maximal independent set (MIS) problem has been extensively studied in parallel
and distributed settings, following the seminal works of [1,11,13].

Self-stabilizing algorithms for maximal independent set have been designed
in vario us models (anonymous network [14,16] or not [6,9]). Up to our knowl-
edge, Shukla et al. [14] present the first algorithm designed for finding a MIS in a
graph using self-stabilization paradigm for anonymous networks. Some other self-
stabilizing works deal with this problem assuming identifiers: with a synchronous
daemon [6] or distributed one [9]. These two works require O(n2) moves to con-
verge. Turau [15] improves these results to O(n) moves under the distributed
daemon. Recently, some works improved the results in the synchronous model.

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 479–483, 2021.
https://doi.org/10.1007/978-3-030-91081-5_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_33&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_33

480 J. Cohen et al.

For non-anonymous networks, Hedetniemi [8] designed a self-stabilization algo-
rithm for solving the problem related to dominating sets in graphs in particular
for a maximal independent set which stabilizes in O(n) synchronous rounds.
Moreover, for anonymous networks, Turau [16] designs some Randomized self-
stabilizing algorithms for maximal independent set w.h.p. in O(log n) rounds.
See the survey [7] for more details on MIS self-stabilizing algorithms.

We focus on the construction of a MIS handling both transient and Byzantine
faults. On one side, transient faults can appear in the whole system, possibly
impacting all nodes. However, these faults are not permanent, thus they stop
at some point of the execution. Self-stabilization [3] is the classical paradigm to
handle transient faults. On the other side, (permanent) Byzantine faults [10] are
located on some faulty nodes and so those faults only occur from them.

1 Model

A system consists of a set of processes where two adjacent processes can com-
municate with each other. The communication relation is represented by a
graph G = (V,E) where V is the set of the processes (nodes) and E rep-
resents the neighborhood relation between them, i.e. uv ∈ E when u and v
can communicate. By convention we write |V | = n. If u is a node, we note
N(u) = {v ∈ V |uv ∈ E}, deg(u) = |N(u)|, and Δ = max {deg(u)|u ∈ V }.

We assume the system to be anonymous meaning that a node has no iden-
tifier. We use the state model, which means that each node has a set of local
variables which make up the local state of the node. A node can read its local
variables and all the local variables of its neighbors, but can only rewrite its own
local variables. A configuration is the value of the local states of all nodes. When
u is a node and x a local variable, the x-value of u is the value xu.

An algorithm is a set of rules, where each rule is of the form 〈guard〉 →
〈command〉. The guard is a predicate over the variables of a node and its neigh-
bors. The command is some actions that may change the values of the node’s
variables. The activation of a rule on a node may only change the value of vari-
ables of that specific node, but multiple moves may be performed at the same
time, as long as they act on different nodes. A move is a couple (u, r) where u
is a node, and r a rule.

Then, a transition is a triplet γ
t−→ γ′ such that γ′ is a configuration accessible

from γ by performing simultaneously all the moves of t. An execution is an
alternate sequence of configurations and move sets such that the sequence either
is infinite or finishes by a configuration and every factor of length three beginning
by a configuration is a transition.

When the execution is finite, the last element of the sequence is the last
configuration of the execution. An execution is maximal if it is infinite, or it is
finite and no node is activable in the last configuration (such a configuration is
called stable). It is called partial otherwise.

The daemon is the adversary that chooses, from a given configuration, which
nodes to activate in the next transition. Two types are used in this paper: the

Self-stabilization and Byzantine Tolerance for Maximal Independent Set 481

adversarial distributed daemon that allows all possible executions and the fair
distributed daemon that only allows executions where nodes cannot be continu-
ously activable without being eventually activated.

Given a specification and L the associated set of legitimate configuration,
i.e., the set of the configurations that verify the specification, a probabilistic
algorithm is self-stabilizing when these properties are true: (correctness) every
configuration of an execution starting by a configuration of L is in L and (con-
vergence) from any configuration, whatever the strategy of the daemon, the
resulting execution eventually reaches a configuration in L with probability 1.

The time complexity of an algorithm that assumes the fair distributed dae-
mon is given as a number of rounds. The concept of round was introduced by
Dolev et al. [4], and reworded by Cournier et al. [2] to take into account activable
nodes. We quote the following definition from Cournier et al. [2]:

Definition 1. Let E be an execution. A round is a sequence of consecutive tran-
sitions in E. The first round begins at the beginning of E; successive rounds begin
immediately after the previous round has ended. The current round ends once
every node u ∈ V satisfies at least one of the following two properties: (i) u has
been activated in at least one transition during the current round or (ii) u has
been non-activable in at least one configuration during the current round.

Our first algorithm is to be executed in the presence of Byzantine nodes: there
is a subset B ⊆ V of adversarial nodes. Byzantine nodes are always activable,
and when activated, they are free to update or not their local variables. Finally,
observe that in the presence of Byzantine nodes all maximal executions are
infinite. We denote by d(u,B) the minimal (graph) distance between node u and
a Byzantine node, and we define for i ∈ N: Vi = {u ∈ V |d(u,B) > i}. Note that
V0 is exactly the set of non-Byzantine nodes, and that Vi+1 is exactly the set of
nodes of Vi whose neighbors are all in Vi.

2 With Byzantine Nodes Under the Fair Daemon

The algorithm builds a maximal independent set represented by a local vari-
able s. The approach of the state of the art is the following: when two nodes
are candidate to be in the independent set, then a local election decides who
will remain in the independent set. To perform a local election, the standard
technique is to compare the identifiers of nodes. Unfortunately, this mechanism
is not robust to the presence of Byzantine nodes.

Keeping with the approach outlined above, when a non-Byzantine node
observes that its neighbors are not in (or trying to be in) the independent set,
the node decides to join it with a certain probability. The choice of probability
should reduce the impact of Byzantine nodes while maintaining the efficiency
of the algorithm. Rand(p) with p ∈ [0, 1] represents the random function that
outputs 1 with probability p, and 0 otherwise.

482 J. Cohen et al.

Algorithm 1. Any node u has two local variables su ∈ {⊥,�} and xu ∈ N and
may make a move according to one of the following rules:
(Refresh) xu 	= |N(u)| → xu := |N(u)| (= deg(u))
(Candidacy?) (xu = |N(u)|) ∧ (su = ⊥) ∧ (∀v ∈ N(u), sv = ⊥) →
. if Rand

(
1

1+max({xv|v∈N(u)∪{u}})

)
= 1 then su := �

(Withdrawal) (xu = |N(u)|) ∧ (su = �) ∧ (∃v ∈ N(u), sv = �) → su := ⊥
A node joins the MIS with a probability 1

1+max({xv|v∈N(u)∪{u}}) . The idea to
ask the neighbors about their own number of neighbors (through the use of the x
variable) to choose the probability of a candidacy comes from the mathematical
property ∀k ∈ N, (1− 1

k+1)k > e−1, which will allow to have a good lower bound
for the probability of the event “some node made a successful candidacy, but
none of its neighbors did”.

Since Byzantine nodes are not bound to follow the rules, we cannot hope
for a correct solution in the entire graph. What we wish to do is to find a
solution that works when we are far enough from the Byzantine nodes. One could
think about a fixed containment radius around Byzantine nodes, but it is not as
simple, and does not work with our approach. We define on any configuration
γ the following set of nodes, that represents the already built independent set:
Iγ = {u ∈ V1|(sγ

u = �) ∧ ∀v ∈ N(u), sγ
v = ⊥} in order to adapt the notion of

containment radius.

Theorem 1. For any p ∈ [0, 1[. From any configuration γ, Algorithm is self-
stabilizing for a configuration γ′ where Iγ′ is a maximal independent set of V2 ∪
Iγ′ , with time complexity 1 + max

(
−α2 ln p,

√
2√

2−1
n
α

)
rounds with probability at

least 1 − p, where α = 1
(Δ+1)e .

3 Anonymous System Under the Adversarial Daemon

The previous algorithm works in this case, but as the measure of complexity
changes without fairness hypothesis, the above analysis would not give a suitable
bound. We keep the idea of having nodes making candidacy, and then withdraw
if the situation to be candidate is not right. As we still do not have identifiers,
we also need probabilistic tie breaking. But contrary to the Byzantine case, we
move the probabilities to the Withdrawal rule: a non-candidate node with no
candidate neighbor will always become candidate when activated, but a can-
didate node with a candidate neighbor will only withdraw with probability 1

2 .

Algorithm 2. Any node u has a single local variable su ∈ {⊥,�} and may
make a move according to one of the following rules:
(Candidacy) (su = ⊥) ∧ (∀v ∈ N(u), sv = ⊥) → su := �
(Withdrawal?) (su = �) ∧ (∃v ∈ N(u), sv=�) → if Rand(1

2)=1 then su:=⊥
The idea behind this is that we can give a non-zero lower bound on the

probability that a connected component of candidate nodes eventually collapses

Self-stabilization and Byzantine Tolerance for Maximal Independent Set 483

into at least one definitive member of the independent set. As every transition
with Candidacy moves makes such sets appear, and Withdrawal? moves make
those collapse into members of the independent set with non-zero probability, it
should converge toward a maximal independent set.

Theorem 2. From any configuration γ, the expected number of steps to reach
a stable configuration is at most 3n2.

References

1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)

2. Cournier, A., Devismes, S., Villain, V.: Snap-stabilizing PIF and useless computa-
tions. In: ICPADS, pp. 39–48 (2006)

3. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

4. Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election.
IEEE Trans. Parallel Distrib. Syst. 8(4), 424–440 (1997)

5. Gao, X., et al.: A novel approximation for multi-hop connected clustering problem
in wireless networks. IEEE/ACM Trans. Netw. 25(4), 2223–2234 (2017)

6. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing pro-
tocols for maximal matching and maximal independent sets for ad hoc networks.
In: IPDPS, p. 14-p. IEEE (2003)

7. Guellati, N., Kheddouci, H.: A survey on self-stabilizing algorithms for indepen-
dence, domination, coloring, and matching in graphs. JPDC 70, 406–415 (2010)

8. Hedetniemi, S.T.: Self-stabilizing domination algorithms. In: Structures of Domi-
nationin Graphs, pp. 485–520 (2021)

9. Ikeda, M., Kamei, S., Kakugawa, H.: A space-optimal self-stabilizing algorithm for
the maximal independent set problem. In: PDCAT, pp. 70–74 (2002)

10. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

11. Linial, N.: Distributive graph algorithms global solutions from local data. In: 28th
Annual Symposium on Foundations of Computer Science, pp. 331–335 (1987)

12. Liu, T., Wang, X., Zheng, L.: A cooperative SWIPT scheme for wirelessly powered
sensor networks. IEEE Trans. Commun. 65(6), 2740–2752 (2017)

13. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM J. Comput. 15(4), 1036–1053 (1986)

14. Shukla, S.K., Rosenkrantz, D.J., Ravi, S.S., et al.: Observations on self-stabilizing
graph algorithms for anonymous networks. In: Proceedings of the Second Workshop
on Self-stabilizing Systems, vol. 7, p. 15 (1995)

15. Turau, V.: Linear self-stabilizing algorithms for the independent and dominating
set problems using an unfair distributed scheduler. Inf. Process. Lett. 103(3), 88–
93 (2007)

16. Turau, V.: Making randomized algorithms self-stabilizing. In: Censor-Hillel, K.,
Flammini, M. (eds.) SIROCCO 2019. LNCS, vol. 11639, pp. 309–324. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-24922-9 21

https://doi.org/10.1007/978-3-030-24922-9_21

Coordinating Amoebots
via Reconfigurable Circuits

Michael Feldmann1, Andreas Padalkin1(B), Christian Scheideler1,
and Shlomi Dolev2

1 Paderborn University, Paderborn, Germany
{michael.feldmann,andreas.padalkin,scheideler}@upb.de

2 Ben-Gurion University of the Negev, Be’er Sheva, Israel
dolev@cs.bgu.ac.il

Abstract. We consider an extension to the geometric amoebot model
that allows amoebots to form so-called circuits. Given a connected amoe-
bot structure, a circuit is a subgraph formed by the amoebots that per-
mits the instant transmission of signals. We show that such an extension
allows for significantly faster solutions to a variety of problems related to
programmable matter. More specifically, we provide algorithms for leader
election, consensus, compass alignment, chirality agreement, and shape
recognition. Leader election can be solved in Θ(log n) rounds, w.h.p.,
consensus in O(1) rounds, and both, compass alignment and chirality
agreement, can be solved in O(log n) rounds, w.h.p. For shape recogni-
tion, the amoebots have to decide whether the amoebot structure forms
a particular shape. We show that the amoebots can detect a shape com-
posed of triangles within O(1) rounds. Finally, we show how the amoe-
bots can detect a parallelogram with linear and polynomial side ratio
within Θ(log n) rounds, w.h.p.

Keywords: Progammable matter · Amoebot model · Reconfigurable
circuits

1 Introduction

Programmable matter is a physical substance consisting of tiny, homogeneous
robots (also called particles) that is able to dynamically change its physical
properties like shape or density. Such a substance can be deployed, for example,
for minimal invasive surgeries through injection into the human body (detecting
cancer cells, repairing bones, closing blood vessels, etc.). Programmable matter
has been envisioned for 30 years [7] and is yet to be realized in practice. However,
theoretical investigations on various models (such as the self-assembly model [6],

This work has been supported by the DFG Project SCHE 1592/6-1 (PROGMATTER).
A full version of this brief announcement is available online at the following address:
https://arxiv.org/abs/2105.05071.

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 484–488, 2021.
https://doi.org/10.1007/978-3-030-91081-5_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_34&domain=pdf
https://arxiv.org/abs/2105.05071
https://doi.org/10.1007/978-3-030-91081-5_34

Coordinating Amoebots via Reconfigurable Circuits 485

the nubot model [8] or the geometric amoebot model [2]) have already started
and is still continuing in the distributed computing community.

Shape formation algorithms are of particular interest. Algorithms of polylog-
arithmic complexity are known for the nubot model [8]. However, these assume
particles on the molecular scale since it requires the rotation of entire substruc-
tures. Due to the acting forces, this would not be possible on the micro or macro
scale. In contrast, many problems for the geometric amoebot model come with
a natural lower bound of Ω(D), where D is the diameter of the structure formed
by the amoebots. The main goal of our research is to formulate a model that is
able to break this lower bound while still being reasonable on the micro or even
macro scale.

Many of the various models for programmable matter take their inspiration
from nature. For example, the particles of the nubot model resemble molecules,
and the locomotion of the particles of the amoebot model is inspired by amoeba.
However, many more fascinating forms of locomotion can be found in nature. Our
model is inspired by the muscular system. Muscles are composed of muscle fibers,
which can be stimulated to perform coordinated contractions. These contractions
(and their counterpart relaxations) allow for fast locomotion. The stimuli are
inflicted by the nervous system. The nervous system consists of highly connected
nerves. These are able to rapidly transmit primitive signals (the stimuli) over
long distances. Our aim is to come up with a model for programmable matter
incorporating both concepts: the muscular system and the nervous system.

Instead of proposing an entirely new model, we build our model on top of
the geometric amoebot model. This model is tailor-made for our purpose since it
already provides contractions (and expansions) on a small scale of single parti-
cles. Inspired by the nervous system described above, in this brief announcement,
we introduce reconfigurable circuits to the geometric amoebot model. Each parti-
cle is allowed to create a constant amount of circuits with a subset of the particle
structure. A circuit formed by particles allows for the instantaneous transmission
of primitive signals to all of these. Since physical constraints like the maximum
force at which particles can contract or expand have to be taken into account,
the proper modeling of the muscular system is subject of future work.

2 Reconfigurable Circuit Extension

We build our extension on the canonical amoebot model recently proposed by
Daymude et al. [1] and focus on the geometric variant though our circuit exten-
sion can also be applied to any other grid graph.

In the geometric amoebot model [1], a set of n amoebots is placed on the
infinite regular triangular grid graph Geqt = (V,E) (see Fig. 1a). An amoebot
is an anonymous, randomized finite state machine that either occupies one or
two adjacent nodes of Geqt, and every node of Geqt is occupied by at most
one amoebot. If an amoebot occupies just one node, it is called contracted and
otherwise expanded, and exactly one of its occupied nodes is called its head.
We assume that initially, the amoebot structure is connected and all amoebots

486 M. Feldmann et al.

are contracted. Each amoebot has a compass orientation (it defines one of its
incident edges as the northern direction) and a chirality (a sense of clockwise
or counterclockwise rotation) that it can maintain as it moves, but initially the
amoebots might not agree on their compass orientation and chirality. We refer
to [1] for more details on the model.

In our reconfigurable circuit extension, each edge between two neighboring
amoebots u and v is replaced by k edges called external links with endpoints
called pins, for some constant k ≥ 1 that is the same for all amoebots. For each
of these links, one pin is owned by u while the other pin is owned by v. We
assume that the k pins on the side of u resp. v are consecutively numbered from
1 to k, and there are two possible ways by which these pins are matched (i.e.,
belong to the same link). If u and v have the same chirality, pin i of u is matched
with pin k − i + 1 of v, and if u and v have different chiralities, pin i of u is
matched with pin i of v (see also Fig. 1c).

Each amoebot u can connect its pin set P (u) via an arbitrary set of internal
links L(u), i.e., its pin set can form an arbitrary undirected graph H(u) =
(P (u), L(u)). We call H(u) the pin configuration of u. Let X be the set of all
external links. Moreover, let P =

⋃
A P (u) be the set of all pins in the system

and L = X ∪ (
⋃

u∈S L(u)) be the set of all links in the system. Then, we call
H = (P,L) the pin configuration of the system and any connected component
C of H a circuit (see Fig. 1b). Note that if

⋃
u∈S L(u) is empty, then every

circuit of H just connects two neighboring amoebots. However, an external link
between the neighboring amoebots u and v can only be maintained as long as
both, u and v occupy the incident nodes. If either amoebot leaves the respective
node, the external link, its pins, and all internal links attached to those pins
are removed from the pin configurations. An amoebot is part of a circuit iff the
circuit contains at least one of its pins. A priori, an amoebot u may not know
whether two of its pins belong to the same circuit or not since initially it only
knows H(u).

Each amoebot can send a primitive signal (a beep) via any of its pins p that
is received by all amoebots of the circuit belonging to p in the next round. More
specifically, an amoebot receives a beep at pin p if at least one amoebot sends a
beep on the circuit belonging to p, but the amoebots neither know the origin of
the signal nor the number of origins. We have chosen a primitive signal instead
of more complex messages to keep our extension as simple as possible. Also, we
do not have to worry about interference issues in this case.

We assume the fully synchronous activation model, i.e., the time is divided
into synchronous rounds, and every amoebot is active in each round. The time
complexity of an algorithm is measured by the number of synchronized rounds
required by it. The amoebots operate in synchronized look-compute-move-send
cycles, where each cycle takes place in one round. In the look phase, the amoebot
listens to each of its pins. In the compute phase, it performs any finite number of
calculations on its local memory. In the move phase, it may perform a movement.
In the send phase, it may reconfigure its pin configuration and send a beep via
any of its pins. These beeps are received during the next look phase.

Coordinating Amoebots via Reconfigurable Circuits 487

(a) (b)

1
2

3
123

3
2
1
3
2
1

3 2 1
3
2
1

(c)

Fig. 1. (a) shows an amoebot structure. (b) shows an amoebot structure with k = 2
external links between neighboring amoebots. The amoebots are shown in gray. The
pins are the nodes and the internal and external links are the colored edges. Each color
indicates another circuit. (c) shows the local labeling of the pins. The yellow amoebot
labels its pins counterclockwise, while the gray amoebots label their pins clockwise. The
pin labels of the yellow amoebot match the pin labels of the gray amoebots. However,
the pin labels between the two gray amoebots do not match. (Color figure online)

3 Problem Statement and Our Contribution

Table 1 summarizes the following results. First, we study the leader election prob-
lem. Here, the amoebots have to eventually agree on exactly one amoebot, which
becomes the leader. Since amoebots only have constant storage capacity and due
to the absence of node identifiers, leader election is a non-trivial problem. We
propose a protocol which requires Θ(log n) rounds, w.h.p.1 This is a significant
improvement on the runtime of previous algorithms that require at least linear
complexity. We refer to [3] for an overview of leader election algorithms.

Next, we consider the consensus problem. Initially, each amoebot has a con-
stant-sized input value stored in its local memory. The amoebots are tasked to
agree on the same value (agreement). However, the agreed on value has to be
one of the input values (validity). Also, each amoebot has to eventually decide
on the agreed on value (termination). Our algorithm solves the problem after
O(1) rounds.

Then, we study the compass alignment problem. Initially, the amoebots may
not agree on a common orientation. Thus, the goal of the problem is to align the
compasses of all amoebots globally. A compass alignment is essential to coordi-
nate synchronized movements. Our algorithm requires O(log n) rounds, w.h.p.
The same approach can also be used to solve the chirality agreement problem.
Within the standard amoebot model, this problem was solved by Di Luna et
al. [5]. Their algorithm requires O(n) rounds. Note that compass alignment and
chirality agreement are harder problems than consensus since one is not able
to just use a global circuit in order to change the compasses/chiralities of all
amoebots at once.

1 An event holds with high probability (w.h.p.) if it holds with probability at least
1 − 1/nc where the constant c can be made arbitrarily large.

488 M. Feldmann et al.

Finally, we look into the shape recognition problem. Amoebots are exposed to
environmental influences, which may damage their structure. In order to detect
and repair these structural flaws, the amoebot structure has to check whether its
shape matches the desired one. Having access to simple shape recognition algo-
rithms may be beneficial when checking whether a shape transformation algo-
rithm has reached its desired shape. We propose algorithms for various classes of
shapes. In particular, we present Θ(log n)-round algorithms for parallelograms
with linear and polynomial side ratio, respectively, and an O(1)-round algorithm
for shapes composed of triangles. The recognition algorithms for parallelograms
are based on results by Gmyr et al. [4].

Table 1. An overview over our algorithmic results.

Problem Minimum required pins Common chirality Runtime

Leader election 1 No Θ(log n) w.h.p.

Consensus 1 No O(1)

Compass alignment 1 Yes O(log n) w.h.p.

Chirality agreement 2 No O(log n) w.h.p.

Shape recognition

Shapes composed of triangles 1 Yes O(1)

Parallelograms 1 No O(1)

Parallelograms with linear side ratio 1 No Θ(log n) w.h.p.

Parallelograms with polynomial side ratio 2 No Θ(log n) w.h.p

References

1. Daymude, J.J., Richa, A.W., Scheideler, C.: The canonical amoebot model: algo-
rithms and concurrency control. In: Gilbert, S. (ed.) 35th International Symposium
on Distributed Computing (DISC 2021), LIPIcs, vol. 209, pp. 20:1–20:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Germany (2021). https://doi.org/10.
4230/LIPIcs.DISC.2021.20. https://drops.dagstuhl.de/opus/volltexte/2021/14822

2. Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann,
T.: Brief announcement: amoebot - a new model for programmable matter. In:
SPAA, pp. 220–222. ACM (2014)

3. Dufoulon, F., Kutten, S., Moses Jr., W.K.: Efficient deterministic leader election for
programmable matter. In: PODC, pp. 103–113. ACM (2021)

4. Gmyr, R., Hinnenthal, K., Kostitsyna, I., Kuhn, F., Rudolph, D., Scheideler, C.:
Shape recognition by a finite automaton robot. In: MFCS. LIPIcs, vol. 117, pp.
52:1–52:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

5. Di Luna, G.A., Flocchini, P., Santoro, N., Viglietta, G., Yamauchi, Y.: Shape for-
mation by programmable particles. Distrib. Comput. 33(1), 69–101 (2019). https://
doi.org/10.1007/s00446-019-00350-6

6. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares (extended abstract). In: STOC, pp. 459–468. ACM (2000)

7. Toffoli, T., Margolus, N.: Programmable matter: concepts and realization. Int. J.
High Speed Comput. 5(2), 155–170 (1993)

8. Woods, D., Chen, H., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active self-
assembly of algorithmic shapes and patterns in polylogarithmic time. In: ITCS, pp.
353–354. ACM (2013)

https://doi.org/10.4230/LIPIcs.DISC.2021.20
https://doi.org/10.4230/LIPIcs.DISC.2021.20
https://drops.dagstuhl.de/opus/volltexte/2021/14822
https://doi.org/10.1007/s00446-019-00350-6
https://doi.org/10.1007/s00446-019-00350-6

On Optimal Doorway Egress by
Autonomous Robots

Rory Hector1(B) , Ramachandran Vaidyanathan1 , Gokarna Sharma2 ,
and Jerry Trahan1

1 Louisiana State University, Baton Rouge, LA 70803, USA
{rhecto1,vaidy,jtrahan}@lsu.edu

2 Kent State University, Kent, OH 44242, USA
sharma@cs.kent.edu

Abstract. We consider the distributed setting of n autonomous mobile
robots operating in Look-Compute-Move (LCM) cycles in the Euclidean
plane. In this paper, we introduce and study the problem of exiting n
robots positioned initially on one side of a wall to its other side through a
door (which we call the Doorway Egress problem). This problem is funda-
mental as it resembles evacuating robots from a working area after they
are done with an assigned job. We consider both point (dimensionless)
and fat (unit circle) robots. For each of these, we consider three abil-
ities: visibility, lights, and synchronization. We show that without any
of these abilities (i.e., obstructed visibility, no lights, and asynchronous
setting), both point and fat robots can solve Doorway Egress in O(n)
time. We then show that with any one of the three abilities (global vis-
ibility or lights or semi-synchronous setting) point robots can solve the
problem in optimal Θ(1) time. Finally, we show that with global visi-
bility, grid-alignment, and any one of the two other abilities (lights or
semi-synchronous setting), fat robots can solve the problem in optimal
Θ

(√
n + n

s

)
time, where 2s is the width of the door. Our results also

point to possible dependencies and trade-offs between these abilities.

Keywords: Doorway egress · Mobile robots · Point and fat robots ·
Time complexity

1 Introduction

Coordination problems for robot swarms have attracted increasing interest
recently. In particular, the literature has focused on the minimal capabilities
necessary for a swarm of robots to accomplish a task. While a more power-
ful swarm (equipped with better sensors, memory, etc.) may function well, dis-
tributed problem solving by simple, cheap robots allows for greater scalability.
In this paper, we consider only the distributed computing aspect [4].

In the literature, the robots are typically modeled as autonomous (no exter-
nal control), anonymous (no unique identifiers), indistinguishable (no external
identifiers), and disoriented (no inherent agreement on local coordinate systems).
c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 489–494, 2021.
https://doi.org/10.1007/978-3-030-91081-5_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_35&domain=pdf
http://orcid.org/0000-0003-4752-1543
http://orcid.org/0000-0002-9883-1077
http://orcid.org/0000-0002-4930-4609
http://orcid.org/0000-0003-4160-0013
https://doi.org/10.1007/978-3-030-91081-5_35

490 R. Hector et al.

Each robot operates in Look-Compute-Move (LCM) cycles. That is, when a robot
is initially activated, it takes a snapshot of its surroundings from its local per-
spective (Look), then it uses the snapshot and the algorithm it is executing to
determine an action to take (Compute), then it performs the action (Move). The
robots each execute the same algorithm.

Often, the robots are assumed to be oblivious (retaining no memory of prior
LCM cycles). Furthermore, the robots are often assumed to be silent (no means
of direct communication). These assumptions are standard in the classical model.
A popular variant of the classical model is the robots with lights model [3,5],
which relaxes the assumptions of obliviousness and silence. In this model, each
robot is endowed with an external light that may assume any one color at a time
from a constant-sized set of colors. The lights are persistent (continuing across
LCM cycles until changed by a robot in the “Move” phase of an LCM cycle).
These lights can be perceived by others, offering a form of direct communication,
and persist, offering a form of memory across LCM cycles. Except for the lights,
robots are oblivious as in the classical model.

The literature varies in the notion of visibility and extent of the robots.
Visibility typically falls into one of two categories: global visibility (the robots
are transparent, and all robots can determine the positions of all robots at any
time) or obstructed visibility (the robots are opaque, and a robot ri can only
see the position of another robot rj if there is no robot rk between them that
obstructs ri’s view of rj and vice-versa). The extent of the robots typically falls
into one of two categories: point (each robot is dimensionless) or fat (each robot
is a disc of unit diameter) [1,2]. We assume that fat robots are initially grid-
aligned. That is, the initial configuration of fat robots places each robot in a cell
of an imaginary, infinite 2-dimensional discrete grid. The origin of the grid is at
the center of the doorway (defined in the next section) and the grid lines are
parallel or perpendicular to the wall (also defined in the next section). Each cell
is of unit width (which is the diameter of a robot).

One final, important variation is that of synchronization. In the fully syn-
chronous setting (FSYNC), every robot is activated every LCM cycle. Fur-
ther, all robots begin and end each phase of each LCM cycle (Look, Compute,
and Move) at exactly the same time. Immediately after the conclusion of the
“Move” phase of an LCM cycle, the “Look” phase of the next LCM cycle fol-
lows. That is, no robots have any period of inactivity. In the semi-synchronous
setting (SSYNC), at least one robot is active in every LCM cycle. Over an
infinite number of SSYNC LCM cycles, each robot is activated infinitely many
times. While a subset of robots may be inactive, the timing of LCM cycles is as
in FSYNC, where each phase of the LCM cycle begins and ends at the same
time across all robots. In the asynchronous setting (ASYNC), robots have no
common notion of time. There is no consistency between start times or durations
of phases of LCM cycles across robots. As in SSYNC, robots may be inactive
for periods but each robot is activated infinitely many times over an infinite
period. Time is measured in rounds in FSYNC and in epochs in SSYNC and
ASYNC, where an epoch is the smallest time interval during which each robot

On Optimal Doorway Egress by Autonomous Robots 491

Table 1. Doorway Egress Algorithms. ‘–’ means the classical model (no lights).

Algorithm Extent {Lights, Visibility, Synchronization} Time

1 Point/Fat {–, Obstructed, ASYNC} O(n)

2 Point {Light with 10 Colors, Obstructed, ASYNC} Θ(1)

3 Point {–, Global, ASYNC} Θ(1)

4 Point {–, Obstructed, SSYNC} Θ(1)

5 Fat {–, Global, SSYNC} Θ(
√

n + n
s
)

6 Fat {Light with 9 Colors, Global, ASYNC} Θ(
√

n + n
s
)

is active at least once. Therefore, in FSYNC, a round is equivalent to an epoch.
We will use the term “time” generically to mean rounds for FSYNC and epochs
for SSYNC and ASYNC.

In this paper, we introduce the problem of Doorway Egress. In this problem,
the 2-dimensional real plane is bisected by an infinite line or wall. Let the robots
begin in any arbitrary, but unique, positions on one side of the wall. The goal is
to move the robots through a doorway of width 2s that is located on the wall,
at which time they terminate and disappear. Doorway Egress is fundamental
as it simulates the evacuation of robots that have completed their task, or the
infiltration of robots into a target space. We investigate this problem across
many combinations of the model variants previously discussed. Specifically, we
vary the visibility (global or obstructed), lights (robots with lights or oblivious),
and synchronization (SSYNC or ASYNC) of the model. We then provide one
linear-time algorithm (for point/fat robots) and five time-optimal algorithms
(three for point robots and two for grid-aligned, fat robots) for a variety of these
combinations. All six algorithms are collision-free.

Contributions. We establish six results (summarized in Table 1) for Doorway
Egress.

Result 1: A O(n) time algorithm for point or fat robots with obstructed vis-
ibility in ASYNC in the classical model (no lights). Therefore, this algorithm
runs correctly in O(n) for any of the model variants we discuss in this paper.

Results 2–4: Three O(1) time, time-optimal, algorithms for point robots with
each algorithm using exactly one of {lights, global visibility, SSYNC}.
Results 5–6: Two O(

√
n+ n

s) time, time-optimal, algorithms for fat robots that
are initially grid-aligned, with each algorithm using global visibility and exactly
one of {lights, SSYNC}.

2 Doorway Egress

Let W be any line that bisects the real plane R
2. Let ̂W be a finite segment of

W that has length 2s. The real plane can be viewed as one with a “wall,” W

492 R. Hector et al.

with a doorway ̂W of width 2s > 0. The Doorway Egress Problem models the
movement of robots on one side of a wall to the other side through the doorway.
More specifically, a set of n robots are placed on one side of the wall. To move
through the doorway, each robot first positions itself on the line segment, ̂W ,
representing the doorway, and then it crosses over to the other side immediately
or at a subsequent epoch. When robots cross over to the other side of the wall,
they “disappear” spontaneously. A solution to Doorway Egress is to cause all
robots to disappear across the wall.

We now provide a O(n)-time, collision-free algorithm (Algorithm 1) for both
point and fat robots with no abilities, i.e. obstructed visibility, ASYNC, and clas-
sical model (no lights). This algorithm running in O(n) time moves the innermost
robot (closest to c, the center of the doorway) with the smallest angle ∠(W, c, ri),
call it a leader, through the doorway along the line cri.

Theorem 1. Algorithm 1 solves Doorway Egress in O(n) epochs for both point
and fat robots in the classical model in ASYNC under obstructed visibility.

3 Doorway Egress by Point Robots

We discuss here Algorithms 2–4. The key challenge for point robots to solve
Doorway Egress optimally is how to move Ω(n) robots to the door during at
least one epoch without robots moving to the same location or crossing paths.
Note that any O(1)-time algorithm is asymptotically optimal for Doorway Egress
for point robots since the robots need at least 1 epoch to reach the doorway.
Therefore, Algorithms 2–4 we design here are time-optimal.

Algorithm 2 operates in 4 phases. Phase 1 positions special guiding robots
called beacons beside each line li (passing through c and a robot’s position)
containing multiple robots. In Phase 2, each non-beacon robot moves directly
towards its corresponding beacon such that all robots form unique lines from c.
In Phase 3, the robots move along their lines to a distance of s

3 from c. Then,
they lie on the perimeter of one quadrant of a circle. This necessarily positions
them in unique heights within the height of the door. In Phase 4, the robots
move horizontally from the perimeter of the circle to the door and disappear.

This algorithm uses 10 colors. Algorithms 3 and 4 use the same framework.

Theorem 2. Algorithm 2 solves Doorway Egress in O(1) epochs for point robots
without collisions in the lights model with 10 colors in ASYNC under obstructed
visibility.

Theorem 3. Algorithm 3 solves Doorway Egress in O(1) epochs for point robots
without collisions in the classical model in ASYNC under global visibility.

Theorem 4. Algorithm 4 solves Doorway Egress in O(1) epochs for point robots
without collisions in the classical model in SSYNC under obstructed visibility.

On Optimal Doorway Egress by Autonomous Robots 493

4 Doorway Egress by Fat Robots

We discuss here Algorithms 5 and 6. The key challenge for fat robots to solve
Doorway Egress optimally is how to move s robots to the door each epoch
(after some initial setup epochs) without robots moving to the same location or
crossing paths, even partially. Unlike point robots, fat robots are limited in that
no more than s can move through simultaneously (on each half-plane). Thus,
Ω(ns) epochs are needed. Further, if the robots are initially placed in a packed√

n × √
n square, then Ω(

√
n) epochs are required for the innermost robots to

have room to move, irrespective of the width of the doorway. This explains the
Ω(

√
n + n

s) lower bound. Both Algorithms 5 and 6 match this lower bound.
Algorithms 5 and 6 use the same 3-phase framework. Phase 1 moves all of

the robots to unique horizontal lanes. Phase 2 moves all of the robots within
their unique horizontal lanes to be in unique vertical lanes as well. In Phase 3,
the rightmost s robots move vertically then horizontally through the door before
disappearing; this process is repeated until all robots have exited the doorway.

Theorem 5. Algorithm 5 solves Doorway Egress in O(
√

n+ n
s) epochs for grid-

aligned, fat robots without collisions in the classical model (no lights) in SSYNC
under global visibility.

Theorem 6. Algorithm 6 solves Doorway Egress in O(
√

n+ n
s) epochs for grid-

aligned, fat robots without collisions in lights model with 9 colors in ASYNC
under global visibility.

5 Concluding Remarks

In this paper, we have introduced the problem of Doorway Egress and provided
five time-optimal algorithms for specific model variants and provided a O(n)-
time algorithm for any model variant. We conjecture that for either point or fat
robots with no abilities, Ω(n) time is required. It would also be interesting to
examine fat robots under obstructed visibility. This model offers unique chal-
lenges with respect to visibility (such as complete obstruction of the wall and/or
door) and collisions. Finally, it would be of interest to characterize the relation-
ship between capabilities of the robots. Our results seem to point to a relation
between abilities and time.

References

1. Agathangelou, C., Georgiou, C., Mavronicolas, M.: A distributed algorithm for gath-
ering many fat mobile robots in the plane. In: PODC, pp. 250–259 (2013)

2. Bose, K., Adhikary, R., Kundu, M.K., Sau, B.: Arbitrary pattern formation by
opaque fat robots with lights. In: Changat, M., Das, S. (eds.) CALDAM 2020.
LNCS, vol. 12016, pp. 347–359. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-39219-2 28

https://doi.org/10.1007/978-3-030-39219-2_28
https://doi.org/10.1007/978-3-030-39219-2_28

494 R. Hector et al.

3. Bose, K., Kundu, M.K., Adhikary, R., Sau, B.: Arbitrary pattern formation by
asynchronous opaque robots with lights. In: Theoretical Computer Science, vol.
849, pp. 138–158. Elsevier (2021)

4. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Mobile Entities.
Current Research in Moving and Computing. Springer, Heidelberg (2019). https://
doi.org/10.1007/978-3-030-11072-7

5. Sharma, G., Vaidyanathan, R., Trahan, J.L.: Optimal randomized complete visibil-
ity on a grid for asynchronous robots with lights. Int. J. Netw. Comput. 11, 50–77
(2021). IJNC Editorial Committee

https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-030-11072-7

Byz-GentleRain: An Efficient
Byzantine-Tolerant Causal Consistency

Protocol

Kaile Huang1, Hengfeng Wei1(B), Yu Huang1, Haixiang Li2, and Anqun Pan2

1 State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing, China

MG1933024@smail.nju.edu.cn, {hfwei,yuhuang}@nju.edu.cn
2 Tencent Inc., Shenzhen, China

{blueseali,aaronpan}@tencent.com

Abstract. Causal consistency is a widely used weak consistency model
and there are plenty of research prototypes and industrial deployments of
causally consistent distributed systems. However, none of them consider
Byzantine faults, except Byz-RCM proposed by Tseng et al. Byz-RCM
achieves causal consistency in the client-server model with 3f +1 servers
where up to f servers may suffer Byzantine faults, but assumes that
clients are non-Byzantine. In this work, we present Byz-Gentlerain, the
first causal consistency protocol which tolerates up to f Byzantine servers
among 3f + 1 servers in each partition and any number of Byzantine
clients. Byz-GentleRain is inspired by the stabilization mechanism of
GentleRain for causal consistency. To prevent causal violations due to
Byzantine faults, Byz-GentleRain relies on PBFT to reach agreement
on a sequence of global stable times and updates among servers, and
only updates with timestamps less than or equal to such common global
stable times are visible to clients. Byz-GentleRain achieves Byz-CC, the
causal consistency variant in the presence of Byzantine faults. All reads
and updates complete in one round-trip. The preliminary experiments
show that Byz-GentleRain is efficient on typical workloads.

Keywords: Causal consistency · Byzantine faults · PBFT ·
GentleRain

1 Introduction

Causal consistency [1,2,6] is a widely used weak consistency model that allows
high availability despite network partitions. It guarantees that an update does
not become visible to clients until all its causality are visible. There are plenty of
research prototypes and industrial deployments of causally consistent distributed

He is also with Software Institute, Nanjing University, China. This work was partially
supported by the CCF-Tencent Open Fund (CCF-Tencent RAGR20200124) and the
National Natural Science Foundation of China (61772258). A full version of this work
is available at https://arxiv.org/abs/2109.14189.

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 495–499, 2021.
https://doi.org/10.1007/978-3-030-91081-5_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_36&domain=pdf
https://arxiv.org/abs/2109.14189
https://doi.org/10.1007/978-3-030-91081-5_36

496 K. Huang et al.

Fig. 1. Why the servers need to synchronize their global stable times.

systems (e.g., COPS [5], GentleRain [4], MongoDB [8], and Byz-RCM [7]). Gen-
tleRain in a key-value store uses a stabilization mechanism to make updates
visible while respecting causal consistency. It timestamps all updates with the
physical clock value of the server where they originate. Each server s periodi-
cally computes a global stable time gst, which is a lower bound on the physical
clocks of all servers. This ensures that no updates with timestamps ≤ gst will
be generated. Thus, it is safe to make the updates with timestamps ≤ gst at s
visible to clients. A get operation on key k with dependency time dt issued to s
will wait until gst ≥ dt and then obtain the latest version of k before gst.

However, none of these causal consistency protocols/systems consider Byzan-
tine faults, except Byz-RCM (Byzantine Resilient Causal Memory) in [7]. Byz-
RCM achieves causal consistency in the client-server model with 3f + 1 servers
where up to f servers may suffer Byzantine faults, and any number of clients may
crash. However, Byz-RCM did not tolerate Byzantine clients, and thus it could
rely on clients’ requests to identify bogus requests from Byzantine servers [7].

In this work, we present Byz-GentleRain, the first Byzantine-tolerant causal
consistency protocol which tolerates up to f Byzantine servers among 3f + 1
servers in each partition and any number of Byzantine clients. It uses PBFT [3]
to reach agreement among servers on a total order of client requests. The major
challenge Byz-GentleRain faces is to ensure that the agreement is consistent
with the causal order. To this end, Byz-GentleRain should prevent causality
violations caused by Byzantine clients or servers: Byzantine clients may violate
the session order by fooling some servers that a request happened before another
that was issued earlier. Byzantine servers may forge causal dependencies by
attaching arbitrary metadata for causality tracking to the forward messages.
To migrate the potential damages of Byzantine servers, we let clients assign
totally ordered timestamps to updates in Byz-GentleRain. Utilizing the digital
signatures mechanism, Byzantine servers cannot forge causal dependencies.

To preserve causality, Byz-GentleRain uses the stabilization mechanism of
GentleRain. As explained above, the timestamps in Byz-GentleRain are gener-
ated by clients. However, it is unrealistic to compute a lower bound on phys-
ical clock values of an arbitrary number of clients. Therefore, each server s in
Byz-GentleRain maintains and periodically computes a global stable time gst
which is a lower bound on physical clock values of the clients it is aware of.
Simply refusing any updates with timestamps ≤ gst on each server may lead

Byz-GentleRain 497

to causality violations. Consider a system of four servers which are replicas all
maintaining a single key k , as shown in Fig. 1. Due to asynchrony, these four
servers may have different values of gst. Without loss of generality, we assume
that gst1 < gst2 = gst3 < gst4, as indicated by vertical lines. Now suppose that
a new update u : k ← 5 with timestamp between gst3 and gst4 arrives, and we
want to install it on ≥ 3 servers, using quorum mechanism. In this scenario, if
each server refuses any updates with timestamps smaller than or equal to its gst,
the update u can only be accepted by the first 3 servers, indicated by dashed
boxes. Suppose that server 3 is a Byzantine server, which may expose or hide
the update u as it will. Consequently, later read operations which read from ≥ 3
servers may or may not see this update u. That is, the Byzantine server 3 may
cause causality violations.

To cope with this problem, we synchronize the global stable times of servers.
When a server periodically computes its gst, it checks whether no larger global
stable time has been or is being synchronized. If so, the server will try to synchro-
nize its gst among all servers, by running PBFT independently in each partition.
For each partition, the PBFT leader is also responsible for collecting updates
with timestamps ≤ gst from 2f+1 servers, and synchronizing them on all servers.
Once successfully synchronized, a global stable time becomes a common global
stable time, denoted cgst, and in each partition the updates with timestamps
≤ cgst on all correct servers are the same. Therefore, each server can safely
refuse any updates with timestamps smaller than or equal to its cgst.

Still, the classic PBFT is insufficient, since a Byzantine leader of each par-
tition may propose an arbitrary set of updates. To avoid this, the leader will
also include the sets of updates it collects from 2f + 1 servers in its propose
message. A server will reject the propose message if it finds the contents of this
message have been manipulated by checking hash and signatures.

2 Byzantine Causal Consistency

Byz-GentleRain achieves Byzantine Causal Consistency (Byz-CC) defined as
follows. For two events e and f , we say that e happens before f , denoted e � f ,
if and only if one of the following three rules holds:

– Session-order. Events e and f are two operation requests issued by the same
correct client, and e is issued before f .

– Read-from relation. Event e is a put request issued by some client and f is
a get request issued by a correct client, and f reads the value updated by
e. Since a get of Byzantine clients may return an arbitrary value, we do not
require read-from relation induced by it.

– Transitivity. There is another operation request g such that e � g and g � f .

If e � f , we also say that f causally depends on e and e is a causal dependency
of f . A version vv of a key k causally depends on version vv ′ of key k ′, if the
update of vv causally depends on that of vv ′. A key-value store satisfies Byz-CC
if, when a certain version of a key is visible to a client, then so are all of its
causal dependencies.

498 K. Huang et al.

3 The Byz-GentleRain Protocol

We consider a distributed multi-version key-value store. It runs at D data centers,
each of which has a full copy of a data. In each data center, the full data is shared
in to P partitions. We denote by rpd the replica of partition p in data center d ,
and storepd the store at replica rpd . Each partition consists of at least 3f+1 replicas
and at most f of them may be Byzantine. Any clients may be Byzantine.

When a client issues an update, it assigns to the update a timestamp which
is its current clock value. All updates are totally ordered according to their
timestamps, with client identifiers used for tie-breaking. We distinguish between
the updates that have been received by a server and those that have been made
visible to clients. Byz-GentleRain guarantees that an update can be made visible
to clients only if so are all its causal dependencies.

In Byz-GentleRain, both clients and servers maintain a common global stable
time cgst. We denote the cgst at client c by cgstc and that at replica rpd by cgstpd .
Replicas get their gst synchronized using PBFT, to obtain a cgst. All the updates
with timestamps ≤ cgst issued to each individual partition will be synchronized
as well. Byz-GentleRain maintains the following key invariants about cgst:

Inv (I): Consider cgstc at any time σ. All updates issued by correct client c after
time σ have a timestamp > cgstc .

Inv (II): Consider cgstpd at any time σ. No updates with timestamps ≤ cgstpd
will be successfully executed at > f correct replicas of partition p after time
σ.

Inv (III): Consider a cgst value. For any two correct replicas rpd and rpi (where
i �= d) of partition p, if cgstpd ≥ cgst and cgstpi ≥ cgst , then the updates with
timestamps ≤ cgst in storepd and storepi are the same.

Each operation returns only when it receives at least 2f + 1 replies from the
replicas of the partition it accesses. Byz-GentleRain enforces the following rules
for reads and updates:

Rule (I): For a correct replica rpd , any updates with timestamps > cgstpd in
storepd are invisible to any clients (via get operations).

Rule (II): Any correct replica rpd will reject any updates with timestamps ≤
cgstpd .

Rule (III): For a read operation with timestamp ts issued by client c, any correct
replica rpd that receives this operation must wait until cgstpd ≥ ts before it
returns a value to client c.

4 Evaluation

We implement both Byz-GentleRain and Byz-RCM in Java. The key-value stores
hold 300 keys in main memory, with each key of size 8 bytes and each value of
size 64 bytes. We run all experiments on 4 Aliyun1 instances running Ubuntu
1 Alibaba Cloud: https://www.alibabacloud.com/.

https://www.alibabacloud.com/

Byz-GentleRain 499

16.04. Each instance is configured as a data center, with 1 virtual CPU core, 300
MB memory, and 1G SSD storage. All keys are shared into 3 partitions within
each data center, according to their hash values.

We first explore the system throughput and the latency of get and put oper-
ations of both Byz-GentleRain and Byz-RCM in failure-free scenarios. First, Byz-
GentleRain is quite efficient on typical workloads, especially for read-heavy work-
loads (2,000 ∼ 3,000 operations per second). Second, Byz-RCM performs better
than Byz-GentleRain, especially with low get : put ratios. This is because
Byz-RCM assumes Byzantine fault-free clients and is signature-free. In contrast,
Byz-GentleRain requires clients sign each put request. Third, the performance of
Byz-GentleRain is closely comparable to that of Byz-RCM, if digital signatures
are omitted deliberately from Byz-GentleRain.

We then evaluate the impacts of various Byzantine failures on the system
throughput of Byz-GentleRain. Specifically, we consider Byzantine clients that
may send get or put requests with incorrect timestamps, and Byzantine replicas
that may broadcast different global stable time cgst to replicas in different parti-
tions. We find that these Byzantine failures have little impact on throughput. In
contrast, frequently sending arbitrary messages in PBFT does hurt throughput.
This is probably due to the signatures carried by these messages.

References

1. Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory: def-
initions, implementation, and programming. Distrib. Comput. 9(1), 37–49 (1995).
https://doi.org/10.1007/BF01784241

2. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: spec-
ification, verification, optimality. In: Proceedings of the 41st ACM Symposium on
Principles of Programming Languages, pp. 271–284. POPL 2014 (2014)

3. Castro, M.: Practical Byzantine fault tolerance. Ph.D. thesis, Massachusetts Insti-
tute of Technology, Cambridge, MA, USA (2000)

4. Du, J., Iorgulescu, C., Roy, A., Zwaenepoel, W.: Gentlerain: cheap and scalable
causal consistency with physical clocks. In: Proceedings of the ACM Symposium on
Cloud Computing, pp. 1–13. SoCC 2014 (2014)

5. Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t settle for even-
tual: scalable causal consistency for wide-area storage with cops. In: Proceedings of
the 23rd ACM Symposium on Operating Systems Principles, pp. 401–416. SOSP
2011 (2011). https://doi.org/10.1145/2043556.2043593

6. Perrin, M., Mostefaoui, A., Jard, C.: Causal consistency: beyond memory. In: Pro-
ceedings of the 21st ACM Symposium on Principles and Practice of Parallel Pro-
gramming. PPoPP 2016 (2016). https://doi.org/10.1145/2851141.2851170

7. Tseng, L., Wang, Z., Zhao, Y., Pan, H.: Distributed causal memory in the presence of
byzantine servers. In: 18th IEEE International Symposium on Network Computing
and Applications, NCA 2019, pp. 1–8 (2019)

8. Tyulenev, M., Schwerin, A., Kamsky, A., Tan, R., Cabral, A., Mulrow, J.: Imple-
mentation of cluster-wide logical clock and causal consistency in mongodb. In: Pro-
ceedings of the 2019 International Conference on Management of Data, pp. 636–650.
SIGMOD 2019 (2019). https://doi.org/10.1145/3299869.3314049

https://doi.org/10.1007/BF01784241
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/2851141.2851170
https://doi.org/10.1145/3299869.3314049

Mitigating Internal, Stealthy DoS Attacks
in Microservice Networks

Amr Osman1(B), Jeannine Born2, and Thorsten Strufe1

1 KIT Karlsruhe, Karlsruhe, Germany
amr.osman@kit.edu

2 TU Dresden, Dresden, Germany

Abstract. The advent of Microservice (MS) architectures has led to
increasingly complex communication patterns between distributed web
applications in the cloud. In order to process an incoming request, each
MS must invoke multiple remote API calls to the MSes that it is con-
nected to along a service dependency graph. This allows attackers to
exploit long-running remote API calls along the performance-critical
path to cause application DoS, and potentially amplify subsequent inter-
MS communication. This paper focuses on mitigating a class of stealthy,
low-volume DDoS attacks that are launched internally from within and
exploit this. The attacker uses the MSes under its control to disguise
then send and resource-heavy requests to target MSes in a way that is
indistinguishable from benign requests. We propose a probabilistic algo-
rithm to proactively identify MSes involved in DDoS, and mitigate the
attack in real-time.

1 Introduction

In today’s inter-connected microservices, a single incoming request could vir-
tually trigger a chain of hundreds of expensive remote API calls between the
involved MSes, forming a complex dependency chain and consuming a lot of
CPU and I/O resources. Even a single slow-performing MS may act as a bot-
tleneck to other MSes along the path that is traversed by inter-MS network
requests. As a consequence, a high end-to-end delay is experienced.

This opens up new attack vectors to overwhelm MSes with expensive requests
in the form of Stealthy, Internal, Low-volume DDoS attacks [6] targeted at
slowly-performing MSes (SILVDDoS). In such attacks, the adversary disguises
resource-consuming requests at low rates using patterns below the detection
thresholds of DDoS countermeasures; making them difficult to detect and mit-
igate as they evade signatures and anomalies observed by traditional Intrusion
detection systems [3]. Also as the attacks originate internally and masquerade
benign traffic, most countermeasures that rely on perimeter defense [4] and auto-
scaling [2] are not effective against them.

This work identifies the MSes that participate in SILVDDoS and mitigates
the attack on a granular level. Our main contributions are the following: (1)
A risk metric to evaluate the likelihood of a MS becoming either a target or

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 500–504, 2021.
https://doi.org/10.1007/978-3-030-91081-5_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_37&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_37

Mitigating Internal, Stealthy DoS Attacks in Microservice Networks 501

a source for a SILVDDoS attack. (2) A probabilistic algorithm to approximate
the identity of the sources SILVDDoS and mitigate it. (3) We mount a stealthy,
SILVDDoS attack and evaluate the effectiveness of our approach using a popular
container-based open-source MS application.

2 Assumptions and Threat Model

We consider a MSes deployment in a container-based cloud environment, e.g.
a docker cluster. Each MS is isolated from other MSes via a separate Linux
container and communicates with other MSes through a network-exposed API
such as REST over HTTPS, or secure RPC. The MSes are exposed to the outside
network, i.e. Internet, via an external load-balancing gateway that receives the
requests from the end users. MSes may be elastically scaled by internal load
balancers. This model is aligned with the vast array of MS deployments and
kubernetes clusters today.

Adversary. The main goals of SILVDDoS is to exhaust the CPU and/or I/O
resources on target MSes such that the network requests traversing the paths
leading to them experience a high end-to-end delay leading to unavailability.
A side-goal is financial DoS as cloud schedulers elastically scale the attacked
MSes and cloud customers are charged for the newly provisioned resources,
e.g. Yo-yo attack [2]. The adversary remotely controls multiple MSes inter-
nally and uses them to initiate its SILVDDoS attack on other target MSes
from within. By controlling a MS, the attacker has access to all its resources
such as mounted volumes (e.g. Databases), network name-spaces, processes,
and user groups. Thus, it also has access to secret keys, and may authenti-
cate itself to the network and other MSes. It may passively observe traffic
and learn about its neighbours and measure their request-response times, or
actively replay legitimate user traffic. It aims to remain stealthy by following
the same paths and patterns that are followed by benign requests [3,5].

3 Mitigating SILVDDoS

Existing DDoS countermeasures assume that attack traffic is distinguishabe,
which is not true in a SILVDDoS [4]. Cluster resource management protects the
infrastructure from overutilization but cannot be used in the presence of SILVD-
DoS where the bottleneck are the MSes themselves [5] [3]. Chaos Engineering [1]
is only used for resilience testing and does not assume malicious intent. Critical-
Path-Analysis unfortunately requires knowledge about the application, low-level
instrumentation and does not assume adversarial presence [7].

Our approach. We propose a risk metric that assesses the susceptibility of
MSes and costly APIs of being used in a SILVDDoS attack based on key
network performance and graph properties, and then later use this risk metric
in an iterative probabilistic estimation algorithm that improves its quality

502 A. Osman et al.

every iteration to identify the attack sources and mitigate the attack. Unlike
a greedy Critical-Path-Analysis (CPA), our algorithm also considers cases
when the adversary uses MSes that may not lie on the critical path to mount
the attack.

we formulate a risk metric that is computed for each API endpoint a for each
MS m to determine DDoS sinks as follows:

<

hm,a =
w1(1 − T) + w2(1 − R) + w3E + w4L + w5Din + w6A + w0

7
(1)

Similarly, we formulate a DDoS source risk metric for each API end point
per node as:

>

hm,a =
w1(T) + w2(R) + w3(1 − E) + w4(1 − L) + w5Dout + w6A + w0

7
(2)

where w0..6 ∈ [0, 1] ⊂ Q are selected weights for each metric, and
T,R,E,L,D, A are the arithmetic means in their normalized form in the range
[0, 1] and are calculated for each API a ∈ m for each MS m.

These properties used are: Transfer rate (T), Request rate (R), Error rate
(E), Latency (L), Node degree (D): The number of possible logical connections
each MS has to other MSes in the topology. We distinguish between incom-
ing (Din) and outgoing connections (Dout), Amplification factor (A): The ratio
between the number of external requests sent to other MSes and a given incom-
ing request. The algorithm to mitigate SILVDDoS on a MS s can be summarized
in the following steps:

1. Pick a ∈ s with j + 1th highest
<

hs,a and m ∈ M with i + 1th highest
>

hm,a‘,
where m

a→ s
2. Apply either rate-limiting or container-restart to m with respect to a and s
3. Measure the performance metrics, i.e. health, of s.
4. With probabilies p1 and p2, increment j and i to the next API and microser-

vice respectively.
5. With a probability p3, undo all rate-limiting and container-restart ∀m∀a

6. If the health of s has improved, go to step 1. Otherwise, undo step 2 and
go to step 1.

7. After a health threshold for s or num. of iterations is reached, terminate
and return all (m,a) that were used in step 2.

4 Preliminary Evaluation

We deployed an open-source heterogeneous MSes-based application [8] with the
topology in Fig. 1. We then used FastNetmon to detect high volume DoS, and
Zeek to detect traffic anomalies and low-volume DoS. After that, we initiated
a SILVDDoS attack on ’carts’ from ’frontend’ and ’orders’ following the same
benign user traffic paths. (See Eq. 1 and 2). Neither FastNetmon nor zeek with

Mitigating Internal, Stealthy DoS Attacks in Microservice Networks 503

Fig. 1. Sockshop MSes topology

the latest up to date rules were able to detect SILVDDoS and zero alarms were
triggered, confirming the stealthiness of our attack.

We then evaluate two main questions: (1) How does our risk-based placement
of countermeasures compare to critical-path-analysis or a random placement?
(2) What is the impact of our approach on benign user traffic?

Quality of risk-based selection. We compared the risk-based application
of rate-limiting compared to a random placement approach that, based on
majority-occurance, rate-limits requests from ’orders’ to ’user’. Second, we
performed a Critical path analysis with the sink as a root node and applied
the rate limiters to the MSes that lie on that critical path. CPA rate-limits
requests from ’orders’ to ’user’ and from ’orders’ to ’carts’. The output can
be see in Fig. 2a.

Fig. 2. Latency measurements. Subfig. (a) shows the median response time of ’carts’
(under attack). Subfig. (b) shows the median response times experienced by endusers
at the frontend. Each experiment was evaluated with a confidence level of 80%

We observe that random 1 does not lead to a performance restoration. The
sources of the DoS were not correctly identified and restricted. CPA however,
correctly identified and rate-limited only one of the sources, namely, ’orders’. It

504 A. Osman et al.

also rate-limited requests from ’orders’ to ’user’ which lies on the critical path.
That effectively reduced the concurrency level from 2 to 1, and explains why the
sink has a slightly lower latency compared to our risk-based selection mechanism.
So, while CPA appears to be a better strategy than risk-based selection, it in fact
also excessively limits benign user traffic. With reference to Fig. 2b, we observed
that the benign user traffic latency was increased to 38.4 ms which is higher than
both: the benign setting and the risk-based application of countermeasures.

Impact on benign users. To measure the impact of the risk-based application
of rate-limiting on the perceived performance by the end users, we measure
the HTTP request rate to the ’frontend’. The output is in Fig. 2b.

During DoS, the user experiences 64.1 ms of HTTP response time instead of
18 ms in the case of benign traffic. The risk-based application of rate-limiting
improved the response time and brought the HTTP response time down to 22.7
ms. Hence, the end user temporarily experiences a 26.11 % performance penalty
when the risk-based application of rate-limiting is done, instead of a 256.11%
performance penalty.

Discussion. Our approach mitigates the attack, but temporarily rate-limits
some existing benign traffic, until the sources of the attack are identified and
replaced with fresh instances. Unlike a greedy CPA, our approach is able
to correctly identify attacks that may be off the critical path, and requires
neither prior knowledge of the system and application, nor low-level instru-
mentation. In the future, we would like to optimize the algorithm parameter
selection with respect to the properties of multiple MS topologies and com-
pare the effectiveness of different countermeasures other than rate-limiting.

References

1. Blohowiak, A., Basiri, A., Hochstein, L., Rosenthal, C.: A platform for automating
chaos experiments. In: IEEE ISSREW (October 2016)

2. Bremler-Barr, A., Brosh, E., Sides, M.: DDoS attack on cloud auto-scaling mecha-
nisms. In: IEEE INFOCOM (May 2017)

3. Ficco, M., Rak, M.: Stealthy denial of service strategy in cloud computing. IEEE
TCC 3(1), 80–94 (2015)

4. Garcia, V.F., et al.: DeMONS: a DDoS mitigation NFV solution. In: IEEE AINA
(May 2018)

5. Li, Z., Jin, H., Zou, D., Yuan, B.: Exploring new opportunities to defeat low-rate
DDoS attack in container-based cloud environment. IEEE TPDS 31(3), 695–706
(2020)

6. Payne, B., Behrens, S.: Starting the avalanche: application ddos in microser-
vice architectures (July 2017). https://netflixtechblog.com/starting-the-avalanche-
640e69b14a06

7. Qiu, H., et al.: FIRM: An intelligent fine-grained resource management framework
for slo-oriented microservices. In: USENIX OSDI 20, pp. 805–825 (November 2020)

8. Weaveworks: Microservice sockshop (June 2021). https://microservices-demo.
github.io/

https://netflixtechblog.com/starting-the-avalanche-640e69b14a06
https://netflixtechblog.com/starting-the-avalanche-640e69b14a06
https://microservices-demo.github.io/
https://microservices-demo.github.io/

Flat-Combining-Based Persistent Data
Structures for Non-volatile Memory

Matan Rusanovsky1,3(B), Hagit Attiya2, Ohad Ben-Baruch1, Tom Gerby1,
Danny Hendler1(B), and Pedro Ramalhete4

1 Ben-Gurion University of the Negev, Be’er Sheva, Israel
{matanru,ohadben,tomger}@post.bgu.ac.il, hendlerd@cs.bgu.ac.il

2 Department of Computer Science, Technion, Haifa, Israel
hagit@cs.technion.ac.il

3 Israel Atomic Energy Commission, Tel Aviv-Yafo, Israel
4 Cisco Systems, San Jose, USA

Abstract. In this work, we present the first persistent (also called
durable or recoverable) object implementations that employ the flat-
combining (FC) synchronization paradigm. Specifically, we introduce a
detectable FC-based implementation of concurrent LIFO stack, FIFO
queue, and double-ended queue. Our empirical evaluation establishes
that our novel FC-based implementations require a much smaller num-
ber of costly persistence instructions than competing algorithms and are
therefore able to significantly outperform them.

1 Introduction

Byte-addressable non-volatile main memory (NVM) combines the performance
benefits of conventional (volatile) DRAM-based main memory with the durabil-
ity of secondary storage. The recent availability of NVM-based systems increased
the interest in the development of persistent concurrent objects. These are
objects that are able to recover from system failures (crashes) and ensure consis-
tency by retaining their state in NVM and fixing it, if required, upon recovery.
Of particular interest are detectable objects [5] that also allow recovery code to
infer if a failed operation took effect before the crash and obtain its response.

The correctness condition for persistent objects that we use in this work is
durable linearizability [8], which, simply stated, requires that linearizability be
maintained in spite of crash-failures. Devising durably linearizable recoverable
objects in general, and detectable ones in particular, is challenging. Although
data stored in main memory will not be lost upon a system crash, with the
currently available technology, caches and registers are volatile and their content
is lost if the system fails before they are persisted (that is, written to NVM).
A system crash may occur in the midst of operations applied to the object and
leave it in an inconsistent state that must be fixed upon recovery. Ensuring
correctness is further complicated since cache lines are not necessarily evicted
in the order in which they were written by the program. Consequently, program
c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 505–509, 2021.
https://doi.org/10.1007/978-3-030-91081-5_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_38&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_38

506 M. Rusanovsky et al.

stores may be persisted out of order. Persistence order can be guaranteed by
explicitly invoking persistence instructions such as flushes and fences. However,
these instructions are expensive and should be used as sparingly as possible.

Persistent transactional memories (PTMs) (e.g., [1,3,9]) are general-purpose
implementations that support persistent memory transactions. Although they
make the construction of persistent objects easier, PTMs often incur significant
performance overheads. Another shortcoming of PTMs is that none of them pro-
vides detectability. Unfortunately, for many key concurrent objects, optimized
non-transactional detectable implementations still do not exist.

Flat combining (FC) [6] is a coarse-grained lock-based synchronization tech-
nique, in which threads delegate their work to a single combiner thread, which
combines operations by multiple threads in a manner that exploits the semantics
of the implemented concurrent object and then jointly applies them.

This work presents detectable flat combining (DFC), a generic approach for
persistent objects that is based on FC, and applies it to derive detectable stacks,
queues and double-ended queues. We experimented in our DFC objects with
the concept of elimination. In the case of a stack object, pairs of push and pop
are combined by “eliminating” them: each pop operation in the pair return the
item that is the argument of the push operation in the pair. Surplus push or
pop operations are combined by atomically extending or truncating a linked-list
stack representation. We employ elimination in our double-ended-queue imple-
mentation as well. We compare the performance of our DFC-based algorithms
with that of several PTM-based implementations. Our results establish that the
new algorithms greatly outperform the competition and the margin increases
when a large fraction of operations are eliminated. Our DFC queue, which does
not employ elimination, also significantly outperforms PTM-based queues.

System Model. Shared memory holds both non-volatile shared variables (residing
in NVM) and volatile shared variables (residing in DRAM). The contents of
the cache and processor registers are volatile. Writes to non-volatile variables
are persisted to NVM using explicit flush instructions, or when a cache line is
evicted. A write-back to persistent storage is triggered by a persistent write-
back (pwb) instruction. The program order of pwb instructions is not necessarily
preserved. When ordering is required, a pfence instruction orders preceding pwb
instructions before all subsequent pwb instructions. A psync instruction waits
until all previous pwb instructions complete the write back. For each memory
location, persistent write-backs preserve program order.

Since in current architectures a pfence acts as both pfence and psync, our
pseudocode uses pfence to indicate the execution of both. A system-wide crash-
failure may occur, which resets all volatile variables to their initial values, but
preserves the values stored in the NVM. An operation’s response is lost if a
crash occurs before it was persisted to a non-volatile variable. Following a crash,
the system resurrects all threads and lets them execute the Recover procedure,
in order to recover the data-structure by fixing inconsistencies in it, if any. An
implementation is detectable [2] if Recover also finishes p’s crashed operation (if
there is one) and returns its response.

Flat-Combining-Based Persistent Data Structures 507

We only describe our DFC-based stack. The full paper [10] contains addi-
tional details for the stack and the detailed algorithms for the other data struc-
tures.

2 The DFC Stack

As done in FC-based algorithms, each process announces its operation by writing
its operation code and arguments to its entry in an announcement array. Then,
each process attempts to capture a global lock that protects a sequential data
structure and become a combiner. Processes that fail to capture the lock (non-
combiner processes) wait for the combiner to apply their operations, whereas
the combiner proceeds to traverse the announcement array, collect announced
operations, apply them to the data structure, and write operation responses
to their corresponding announcement array entries. In our implementation, the
stack is represented by a linked list.

Algorithm 1 (left) presents the Op procedure, which implements both Push
and Pop operations. cEpoch counts the number of combining phases performed
so far (multiplied by 2, for reasons we explain soon). At the beginning of each
operation (lines 2–3), a thread t creates a local copy opEpoch of the current
cEpoch. Then, t announces its operation in the next available announcement
structure in tAnn[t], which consists of two such announcement structures. A 2-
bit variable valid indicates which of the announcement structures is the active
one and whether it is ready for the combiner to collect. The update of valid is
done in two stages. This ensures that in case of a crash, the recovery combiner will
handle the correct announcement structure. Then, a thread attempts to become
the combiner in the TakeLock procedure (line 13). The combiner returns from
TakeLock without waiting and proceeds to combine all announced operations
by calling the Combine procedure in line 17 (the code of this procedure appears
in the full paper [10]).

In our implementation, the combiner employs elimination [7] to pair concur-
rent Push and Pop operations. It applies each operations pair by setting the
response of the Pop operation to be the input of the Push operation without
accessing the linked list. This reduces the number of persistency instructions.
The combiner modifies the linked list only if the numbers of Push and Pop
operations that it collected differ. Combine persists the data in two stages,
to ensure that in case of a crash it can find a stable copy of the stack. For
this reason, cEpoch is incremented twice. A non-combiner t busy-waits for the
combiner to increase cEpoch by 2 (or more). If this condition is satisfied, it is
guaranteed that all combined announcement structures received valid response
values. Consequently, if t finds a response value in line 47, it can safely return
that value. Otherwise, if cEpoch was incremented but there is no response value,
then t has arrived late, that is, it has completed announcing its operation only
after the combiner checked its announcement structure. In this case, opEpoch is
incremented by two in line 48 in order to wait for the next combiner to collect
the operation. The algorithm guarantees that this scenario can occur only once,
since the next combiner will surely collect the thread’s announcement.

508 M. Rusanovsky et al.

Algorithm 1. DFC Stack. Op, Recover and auxiliary procedures
1: procedure Op(param)

2: opEpoch := cEpoch

3: if opEpoch%2 = 1 then opEpoch + +
4: nOp := 1 − LSB(tAnn[t].valid)

5: tAnn[t].ann[nOp].val :=⊥
6: tAnn[t].ann[nOp].epoch := opEpoch

7: tAnn[t].ann[nOp].param := param

8: tAnn[t].ann[nOp].name := Op

9: pwb(&tAnn[t].ann[nOp]); pfence()

10: tAnn[t].valid = nOp

11: pwb(&tAnn[t].valid); pfence()

12: MSB(tAnn[t].valid) := 1

13: value := TakeLock(opEpoch)

14: if value �=⊥ then

15: return value
16: else
17: Combine()

18: return tAnn[t].ann[nOp].val

19: procedure TakeLock(opEpoch)

20: if cLock.Cas (0, 1) = F alse then

21: while cEpoch ≤ opEpoch + 1 do

22: if (cLock = 0 and
cEpoch ≤ opEpoch + 1) then

23: return TakeLock (opEpoch)
24: return TryToReturn(opEpoch)

25: else return ⊥

26: procedure Recover(param)

27: if rLock.Cas (0, 1) then

28: if cEpoch%2 = 1 then

29: cEpoch + +

30: pwb(&cEpoch); pfence()
31: GarbageCollect()

32: for i = 1 to N do
33: vOp := tAnn[i].valid

34: opEpoch := tAnn[i].ann[LSB(vOp)].epoch

35: if MSB(vOp) = 0 then

36: MSB(tAnn[i].valid) := 1
37: if opEpoch = cEpoch then

38: tAnn[i].ann[LSB(vOp)].val :=⊥
39: Combine()

40: rLock = 2
41: else
42: while rLock = 1 do spin
43: return tAnn[t].ann[LSB(tAnn[t].valid)].val

44: procedure TryToReturn(opEpoch)

45: vOp := LSB(tAnn[t].valid)

46: val := tAnn[t].ann[vOp].val

47: if val =⊥ then � late arrival
48: opEpoch := opEpoch + 2

49: return TakeLock(opEpoch)

50: else return val

The Recovery Procedure. In case of a crash, all threads execute the Recover
procedure upon recovery (Algorithm 1 (right)). If required, the recovery function
recovers the shared stack by re-executing the last combining phase, thus com-
pleting all pending operations and updating their responses. Each thread first
attempts to capture the recovery lock rLock that protects the critical section of
the recovery code. If the thread fails to capture the lock, it simply busy-waits
until the lock is freed in line 42. If it succeeds, it becomes the recovery combiner.
DFC needs to re-collect and re-apply all operations of the last crashed combin-
ing phase, even ones for which response values were persisted before the crash.
Thus, all announcement structures are traversed again and inconsistencies are
fixed, such that in the following combining phase in line 39, all operations from
the last crashed combining phase will be collected and applied again. Finally,
the recovery combiner releases the lock in line 40 and returns its own response
value (as do all other threads) in line 43.

3 Experimental Evaluation

We compared the performance of the DFC stack with stack implementations
using Romulus [3], OneFile [9] and PMDK [1] in an experiment in which we
executed 1M pairs of push and pop operations, that were distributed equally
between the threads. More details regarding these algorithms and the machine
we used appear in the full paper [10]. Figure 1 presents (from left to right) the
throughput, and the average number of pwb and pfence instructions. As can be
seen, the DFC stack slightly lags behind the Romulus stack for up to 8 threads

Flat-Combining-Based Persistent Data Structures 509

Fig. 1. Throughput, pwbs, pfences for push-pop benchmark.

but outperforms all algorithms by a wide margin for higher concurrency levels.
This is largely due to the fact that its operations perform on average significantly
fewer pwb and pfence instructions.

Very recent work [4] presents detectable implementations of several objects,
including a stack. This work employs combining as well, but there are some differ-
ences in technical implementation details. We provided our previously-archived
code to the authors and the performance evaluation they present shows higher
throughput in comparison to our DFC stack for high concurrency levels, on a
different machine than ours. As we did not have access to their code, we were
unable to fully explore the differences between the two implementations, and
could not evaluate the performance of their implementation on our machine.

References

1. Persistent memory development kit (2020). https://pmem.io/pmdk
2. Ben-David, N., Blelloch, G.E., Friedman, M., Wei, Y.: Delay-free concurrency on

faulty persistent memory. In: SPAA, pp. 253–264 (2019)
3. Correia, A., Felber, P., Ramalhete, P.: Romulus: efficient algorithms for persistent

transactional memory. In: SPAA, pp. 271–282 (2018)
4. Fatourou, P., Kallimanis, N.D., Kosmas, E.: Persistent software combining. CoRR

abs/2107.03492 (2021). https://arxiv.org/abs/2107.03492
5. Friedman, M., Herlihy, M., Marathe, V.J., Petrank, E.: A persistent lock-free queue

for non-volatile memory. In: SPAA, pp. 28–40 (2018)
6. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the

synchronization-parallelism tradeoff. In: SPAA, pp. 355–364 (2010)
7. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. J.

Parallel Distrib. Comput. 70(1), 1–12 (2010)
8. Izraelevitz, J., Mendes, H., Scott, M.L.: Linearizability of persistent memory

objects under a full-system-crash failure model. In: Gavoille, C., Ilcinkas, D. (eds.)
DISC 2016. LNCS, vol. 9888, pp. 313–327. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53426-7 23

9. Ramalhete, P., Correia, A., Felber, P., Cohen, N.: OneFile: a wait-free persistent
transactional memory. In: DSN, pp. 151–163. IEEE (2019)

10. Rusanovsky, M., Attiya, H., Ben-Baruch, O., Gerby, T., Hendler, D., Ramal-
hete, P.: Flat-combining-based persistent data structures for non-volatile memory
(2021). https://arxiv.org/abs/2012.12868v3

https://pmem.io/pmdk
https://arxiv.org/abs/2107.03492
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1007/978-3-662-53426-7_23
https://arxiv.org/abs/2012.12868v3

SodsBC/SodsBC++ & SodsMPC:
Post-quantum Asynchronous Blockchain
Suite for Consensus and Smart Contracts

Shlomi Dolev1 and Ziyu Wang1,2(B)

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beersheba, Israel

Dolev@cs.bgu.ac.il
2 School of Cyber Science and Technology, Beihang University, Beijing, China

wangziyu@buaa.edu.cn

Abstract. SodsBC is the first asynchronous permissioned blockchain
consensus (asynchronous BFT, aBFT in short) utilizing the concurrent
preprocessing model to achieve post-quantum security while keeping high
performance simultaneously. SodsBC concurrently preprocesses common
random coins (from a global secret sharing pool) for the consensus nec-
essary randomness usage, and also preprocesses symmetric encryption
keys for considerable censorship resilience. The finalization of a stage of
the global secret sharing pool utilizes the aBFT itself, as a transaction in
the new block. SodsBC (and its followed work SodsBC++) is faster than
the quantum-sensitive aBFT competitors. SodsMPC is a post-quantum
smart contract system, in which all participants execute a contract by
secure multi-party computation (MPC) protocols. MPC ensures the con-
tract execution correctness while keeping the data privacy. Moreover,
SodsMPC expresses the logic of a contract by a blind polynomial with
secret-shared coefficients, and utilizes a finite state machine (FSM) to
simplify the blind polynomial for better efficiency. When using MPC
to compute this blind polynomial, the contract business logic privacy
is obtained. SodsMPC participants also preprocess random permutation
matrices to hide the real contract input relation, which protects the con-
tract user anonymous identity.

Keywords: Blockchain · Post-quantum · Asynchrony · Smart
Contract

1 Introduction

Shor algorithm can efficiently break the basic mathematical intractabilities like
integer factorization and discrete logarithm (Dlog). The recent theoretical or

This brief announcement introduces the published work SodsBC [6] (with a full ver-
sion [8]) and SodsMPC [7].

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 510–515, 2021.
https://doi.org/10.1007/978-3-030-91081-5_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_39&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_39

SodsBC/SodsBC++ & SodsMPC 511

practice developments of blockchain consensus protocols or smart contract sys-
tems, heavily depend on the use of quantum-sensitive cryptography tools. A
perfect information-theoretical (I.T.) secure algorithm can be proved to resist a
quantum adversary. Also, some symmetric cryptography tools are believed to be
post-quantum if the security parameter is long enough.

Honeybadger [12] first makes an aBFT practical by trying to solve a con-
sistent union of all block parts proposed by each participant, which adopts
a quantum-sensitive threshold encryption scheme to avoid censorship in an
asynchronous common subset (ACS) and instantiates a common random coin
source via quantum-sensitive threshold signature. Dumbo [10] breaks the Hon-
eybadger O(log n) round complexity bottleneck and designs a quantum-sensitive
threshold-signature-based external validity predicate when replaying n binary
Byzantine agreement (BBA) instances with a multi-value Byzantine agreement
(MVBA), which terminates in a constant round. The design of practical post-
quantum aBFT based on both BBA-ACS and MVBA-ACS approaches was an
open problem which we now close.

Several permissionless blockchain private contract systems [4,5] cope with the
contract privacy problem relying on zero-knowledge proof (ZKP). In these sys-
tems, users execute the contract (with or without privacy protection) in the off-
chain style. Later, the execution result proof is included in the blockchain, which
may not reveal the contract executions. However, the deployed ZKP schemes are
quantum-sensitive in these systems.

Our Contribution. For consensus, we propose a post-quantum framework for
aBFT via concurrent preprocessing, and instantiate this framework to SodsBC.
We preprocess common random coins and symmetric encryption keys utilizes
the same aBFT architecture as the aBFT for blocks. We design an aBFT based
blockchain consensus, while the consensus itself provides the consensus ability
for the aBFT protocol reversely. Common random coins supply the necessary
aBFT randomness, while the symmetric encryption keys (and the encryption
scheme) provides the considerable aBFT anti-censorship property. The practical
performance of the SodsBC implementation demonstrates that it is efficient to
deploy concurrent preprocessing to achieve post-quantum security. Moreover, we
also propose a scheme to implement a global wait-free bootstrap for SodsBC,
utilizing waiting (partial-synchronous) components.

For executing a smart contract, we also arrange permissioned blockchain
participants to act as MPC participants. When executing a contract by an MPC
protocol, data privacy is basically obtained. In SodsMPC, a contract can be
expressed by a blind polynomial whose coefficients are secretly shared. So that
participants execute the contract without knowing the contract business logic.
SodsMPC specially utilizes a finite state machine (FSM) to encode a contract
to state transitions to save the multiplication overhead. When enforcing the
“mixing-then-contract” paradigm, the secret-shared inputs of a contract are first
mixed and then the mixing results are regarded as contract inputs for user
anonymity. Our robust online phase has only one matrix-vector multiplication
consuming a preprocessed permutation matrix, which keeps the secret share form
outputs and achieves a full randomized shuffle.

512 S. Dolev and Z. Wang

2 SodsBC: Post-quantum aBFT Consensus

Asynchronous Weak Verifiable Secret Sharing (awVSS). In a weak com-
mitment VSS scheme, participants verify the threshold in a reconstruction stage
[1]. In our awVSS scheme, honest participants can detect the malicious behavior
and set a shared secret to a default value (e.g., zero) after reconstruction.

A Post-quantum Common Random Coin Design. In a SodsBC online
stage, our BBA will consume post-quantum, fresh, and one-time used common
random coins, reconstructing from the shared secrets distributed in history pre-
processing stages. This online stage is also a preprocessing stage, simultaneously,
in which each participant shares secrets for future coins by awVSS. Previous
aBFTs [9,10,12] use quantum-sensitive coins.

A SodsBC common random coin encompasses f + 1 shared random secrets
produced by f + 1 distinct dealers, i.e., coin = secret1 + · · · + secretf+1 mod 2.
Since each coin component is secretly shared, before the first honest participant
invocates the coin recovery, the at most f adversaries do not learn any infor-
mation about the coin value if at least one coin component is well-shared by
an honest participant under the f + 1 threshold (the awVSS secrecy). Every
participant will recover the f + 1 consistent coin components resulting in the
consistent coin. Moreover, honest participants consistently set at most f coin
components to zero when detecting the malicious behaviors, while one success-
ful reconstruction still keeps a well-defined coin without bias.

Algorithm 1. SodsBC Consensus (for pi) [6].

1: AESEnc(aesKeyi, Bp parti) → Bc parti .
// Consensus core

2: In RBC∗
i , broadcast Bc parti , share

aesKeyi and secrets by piggybacked
awVSS messages.

3: Input 1 to BBAi if RBC∗
i finishes.

4: Input 0 to remained BBAs if n − f
BBAs output 1.
// Reconstruct BBA coins by awVSS.

// Decryption and output
5: If BBAj outputs 1, reconstruct

aesKeyj and AES decrypts Bc partj .
If the decryption fails, or RBCj

is aborted (BBAj outputs 0), set
Bpartj =⊥.

6: Make B =
⋃n

j=1 Bpartj , and assign
agreed awVSS batches to n queues.

Different asynchronous participants may have different observations about
the secrets shared by participants. We employ SodsBC itself to achieve secret
pool consensus. Each SodsBC dealer runs an awVSS batch to sharing some
secrets, and n BBAs in SodsBC finalize these n awVSS batches, leading to a
global awVSS pool. Then, honest participants can assign f + 1 secrets (shared
from f + 1 distinct dealers) to one coin, and assign each coin to n BBA queues.
From a global view to observe this pool, the assigned object is for each secret.
Locally, every honest participant will assign its share from the pool it stores.

SodsBC/SodsBC++ & SodsMPC 513

A Post-quantum Censorship Resilience Solution. No matter adopting
BBA-ACS or MVBA-ACS to implement aBFT, censorship resilience can-
not be guaranteed since malicious participants can intentionally exclude some
particular block parts according to the content of these block parts. We follow
the encryption-consensus-decryption idea [12] to achieve censorship resilience.
Each participant pi AES encrypts its block part Bp parti , and secretly sharing
aesKeyi simultaneously when reliably broadcasting Bc parti . After consensus, par-
ticipants reconstruct the shared AES keys, then decrypt the agreed encrypted
block parts. The previous protocols [9,10,12] use quantum-sensitive threshold
encryption schemes [2,13] to further encrypt the AES keys.

The SodsBC Protocol (Algorithm 1). SodsBC participants agree on the
termination of n awVSS batches distributed by a specific dealer for future
coins (PredawVSS coin), n awVSSs for AES keys (PredawVSS aeskey), and n RBC
instances for block parts (PredRBC). Hence, a SodsBC predicate is Pred =
PredRBC ∧PredawVSS coin ∧PredawVSS aeskey, which decides a complex instance hav-
ing three sub-instances. Since SodsBC keeps the Honeybadger-ACS architecture,
Algorithm 1 can satisfy the BFT agreement, total order, and liveness properties.

The SodsBC communication complexity is O(|B|n+λn4 log n), slightly larger
than the quantum-sensitive competitors HoneyBadger and BEAT (O(|B|n +
λn3 log n))1. However, our post-quantum improvements avoid the time expensive
cryptographic functions usage, so that the SodsBC prototype can be around 53%
faster than Honeybadger when n = 100 and |Bpart| = 20, 000 benchmark (250B)
transactions in an AWS LAN network [8].

Extending the Post-quantum Framework to an MVBA-Based aBFT.
The bottleneck of a BBA-ACS-based aBFT gradually emerges when the number
of participants n is increasing, since the slowest BBA instance of the n BBAs
would spend O(log n) rounds. Dumbo [10] breaks through this bottleneck uti-
lizing an MVBA, which dramatically decreases the BBA usage to a constant
time. However, Dumbo heavily relies on quantum-sensitive threshold signatures.
SodsBC can be extended to SodsBC++ to make Dumbo post-quantum. Still in
a typical n = 100 AWS LAN network, SodsBC++ prototype accelerates Dumbo
to be faster in 7.5% or so [8].

3 SodsMPC: Post-quantum Smart Contracts

Blind-Coefficient Polynomials and Finite State Machine. A smart con-
tract can be a mutual-execution distributed protocol run by distrusted entities.
Roughly speaking, if this contract (a computer program) can be expressed by an
arithmetic polynomial, we can use an MPC protocol to compute this contract.
If the coefficients of the polynomial are also secret-shared, the contract business
logic is also hidden. However, directly computing a contract polynomial may

1 λ is the security parameter for SodsBC symmetric cryptography schemes and Hon-
eybadger/BEAT asymmetric and quantum-sensitive schemes.

514 S. Dolev and Z. Wang

not be efficient. For instance, a three-input millionaire problem (find the maxi-
mum input index in the field GF (11)) can be encoded to a very long polynomial
f(x, y, z), which has 909 monomials from 0 to x10y10z10 (the coefficients of some
terms are zero). Directly solving this polynomial (with all secret-shared coeffi-
cients) requires 30 rounds and around 20,000 multiplication gates [3]. Accord-
ingly, our FSM-based comparator with blind transitions spends only 16 rounds
and 32 multiplications to achieve the same target.

Besides, we also instantiate an FSM-based adder and a secret sharing base
conversion protocol (for integer to binary) in the published version [7]. Using an
FSM to design a smart contract also assists a contract programmer to express
the correct design logic with fewer bugs [11].

MPC Mixing for the User Anonymity. Our MPC for transaction mixing
in the online phase is only one matrix-vector multiplication. The preprocessing
work for a permutation matrix lies in the verification and randomness extraction,
which is from the permutation matrix definition. Every row or every column of
a permutation matrix has and only has one 1-value item, and the remained
elements should be 0-value. Moreover, each matrix item should be 1-value or 0-
value secret share, so that we extra blindly test whether the shares of each matrix
item [x] satisfying [x2] − [x] = [0] utilizing a preprocessed square tuple. If the
reconstruction is 0, then x must be 0 or 1. For extracting a random permutation
matrix from f + 1 dealers, the direct way is to multiply f + 1 valid permutation
matrices generated by f + 1 distinct dealers, i.e., M = Πi=f+1

i=1 Mi.

References

1. Backes, M., Kate, A., Patra, A.: Computational verifiable secret sharing revisited.
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 590–609.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 32

2. Baek, J., Zheng, Y.: Simple and efficient threshold cryptosystem from the gap
Diffie-Hellman group. In: GLOBECOM 2003, pp. 1491–1495 (2003)

3. Bitan, D., Dolev, S.: Optimal-round preprocessing-MPC via polynomial representa-
tion and distributed random matrix (extended abstract). IACR Cryptology ePrint
Archive, p. 1024 (2019)

4. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: ZEXE: enabling
decentralized private computation. In: S&P 2020, pp. 947–964 (2020)

5. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: towards privacy in a smart
contract world. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp.
423–443. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4 23

6. Dolev, S., Wang, Z.: SodsBC: stream of distributed secrets for quantum-safe
blockchain. In: IEEE Blockchain 2020, pp. 247–256 (2020)

7. Dolev, S., Wang, Z.: SodsMPC: FSM based anonymous and private quantum-safe
smart contracts. In: NCA 2020, pp. 1–10 (2020)

8. Dolev, S., Wang, Z.: SodsBC: a post-quantum by design asynchronous blockchain
framework. IACR Cryptology ePrint Archive, p. 205 (2020)

9. Duan, S., Reiter, M.K., Zhang, H.: BEAT: asynchronous BFT made practical. In:
CCS 2018, pp. 2028–2041 (2018)

https://doi.org/10.1007/978-3-642-25385-0_32
https://doi.org/10.1007/978-3-030-51280-4_23

SodsBC/SodsBC++ & SodsMPC 515

10. Guo, B., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Dumbo: faster asynchronous BFT
protocols. In: CCS 2020, pp. 803–818 (2020) (2020)

11. Mavridou, A., Laszka, A.: Designing secure ethereum smart contracts: a finite state
machine based approach. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol.
10957, pp. 523–540. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-
662-58387-6 28

12. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT
protocols. In: CCS 2016, pp. 31–42 (2016)

13. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054113

https://doi.org/10.1007/978-3-662-58387-6_28
https://doi.org/10.1007/978-3-662-58387-6_28
https://doi.org/10.1007/BFb0054113

Distributed Reconfiguration of Spanning
Trees

Yukiko Yamauchi1(B), Naoyuki Kamiyama1, and Yota Otachi2

1 Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
yamauchi@inf.kyushu-u.ac.jp, kamiyama@imi.kyushu-u.ac.jp

2 Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
otachi@nagoya-u.jp

Abstract. We introduce a new type of distributed reconfiguration prob-
lem, where an initial instance of a combinatorial object is transformed
to a goal instance by “local” exchange operations. We present a dis-
tributed algorithm that transforms an arbitrary spanning tree to another
one through a sequence of spanning trees. We then discuss distributed
reconfiguration of hypertrees and maximum bipartite matchings.

Keywords: Distributed reconfiguration problem · Spanning tree ·
Hypertree · Maximum bipartite matching

1 Introduction

Construction of combinatorial objects such as a spanning tree, maximum match-
ing, maximum independent set, and vertex coloring in spite of local control has
been one of the most important problems in distributed computing. As dynamic
networks such as P2P networks and mobile ad-hoc networks become widely avail-
able, it is expected that a distributed system continuously updates its behavior
so that it can adapt to dynamic changes. However, most construction algorithms
build an instance from scratch and no instance is available during construction.

Recently, in sequential algorithm theory, reconfiguration problems introduced
by Ito et al. [4] has attracted much attention. A reconfiguration problem asks
when given two feasible solutions Fs and Ft for an instance I of a problem P and
an adjacency relation between feasible solutions of I, if there exists a sequence
F0 = Fs, F1, F2, . . . , Fk = Ft of feasible solutions for I such that Fi and Fi+1 are
adjacent for i = 0, 1, 2, . . . , k − 1. In other words, the reconfiguration problem
asks reachability from a feasible solution to another feasible solution by exchange
operations specified by the adjacency relation. It is shown that reconfiguration
problems of many NP-complete problems such as independent sets, cliques, and

This work was supported by JSPS KAKENHI Grant Numbers JP20H05793,
JP20H05795, JP18H04091, JP18K11168, JP18K11169, and JP21K11752. The authors
would like to thank Shuji Kijima for helpful discussions.
c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 516–520, 2021.
https://doi.org/10.1007/978-3-030-91081-5_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_40&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_40

Distributed Reconfiguration of Spanning Trees 517

vertex covers, where an exchange operation is adding or deleting a single ver-
tex, are PSPACE-complete [4]. However, little is known about reconfiguration
problems in distributed settings.

Our Contribution. In this paper, we introduce a new type of distributed
reconfiguration problem, where adjacency relation conforms to locality in dis-
tributed systems. That is, each intermediate object is obtained by an update of
local variables at a single process. We first consider distributed reconfiguration
of spanning trees. The base exchange property of a graphic matroid guaran-
tees reconfiguration between any pair of spanning trees. However, it does not
consider locality. We first present a distributed reconfiguration algorithm for
spanning trees. We then discuss distributed reconfiguration of hypertrees and
maximum bipartite matchings.

Related Work. The minimum spanning tree reconfiguration problem by edge
exchanges was first presented by Ito et al. [4]. They generalized the problem to
a reconfiguration of matroid bases with a weight function and showed that the
problem is in P. Bousquet et al. considered reconfiguration of spanning trees by
edge flips [2]. Mizuta et al. considered reconfiguration of minimum Steiner trees
by vertex exchanges on an unweighted graph [7].

Several papers considered distributed reconfiguration problems with a differ-
ent type of adjacency relations. Bonamy et al. considered distributed reconfigu-
ration of vertex colorings, where adjacent processes (i.e., vertices) cannot change
their colors simultaneously [1]. They investigated the number of communication
rounds for the processes to agree on a recoloring schedule, the length of the
schedule, and the effect of adding extra colors. Censor-Hillel and Rabie investi-
gated distributed reconfiguration of maximal independent sets, where adjacent
processes cannot change their membership simultaneously [3]. They relaxed cov-
ering requirement during reconfiguration and showed a trade-off between the
length of a reconfiguration schedule and the number of communication rounds.

2 Preliminaries

A distributed system is represented by an undirected graph G = (V,E), where
the set V of vertices is the set of processes and the set E of undirected edges is the
set of bidirectional communication links. The cardinality of V is n. Each process
maintains a set of local variables and a state of a process is an assignment of
values to its local variables. Each process u ∈ V is assigned a unique ID denoted
by IDu. When an edge {u, v} ∈ E, we say process u is a neighboring process of
v. Let Nu = {v | {u, v} ∈ E, v �= u}. Each process u can read the local variables
at itself and its neighboring processes without any delay, and u can change the
values of its own local variables.

An algorithm at process u is a finite set of guarded actions in the form of
〈label〉 : 〈guard〉 → 〈action〉, where 〈guard〉 is a predicate over the states of
processes in Nu ∪ {u} and 〈action〉 is a statement that changes u’s state. A
guarded action is said to be enabled if its guard is evaluated to true and a
process is said to be enabled if at least one of its guarded actions is enabled.

518 Y. Yamauchi et al.

A configuration is the set of states of all processes. The central scheduler
selects a single process from enabled processes at each discrete time step, and
a selected process non-deterministically chooses one of its enabled guards and
executes the corresponding action. We assume that the scheduler is weakly fair,
that is, any continuously enabled process is selected in finite time.

An execution of a distributed algorithm under a given scheduler is a maxi-
mal sequence of configurations E = γ0, γ1, . . . such that for each i ≥ 0, γi+1 is
obtained from γi by executions of local algorithms at a single process. The time
complexity of a distributed algorithm is measured by rounds.

We assume that a spanning tree in G is represented by a pointer parentu ∈
Nu ∪ {u} at each process u ∈ V . We say T = {parentu | u ∈ V } is a spanning
tree when ET = {{u, v} | {u, v} ∈ E, parentu = v} is a spanning tree. Process r
is a root if parentr = r. The condition says that (i) ET is a rooted in-tree or (ii)
ET consists of two subtrees and the roots of the subtrees point at each other. A
local exchange operation at process u ∈ V is an update of parentu.

Definition 1 (Spanning tree reconfiguration problem). Given two span-
ning trees TA and TB in a distributed system G = (V,E), find a finite sequence
of spanning trees TA = T0, T1, T2, . . . , Tk = TB where Ti+1 is obtained from Ti

by a local exchange operation for all i = 0, 1, 2, . . . , k − 1.

3 Proposed Algorithm

In this section, we present a distributed spanning tree reconfiguration algorithm.
The proposed algorithm shows that an orientation of a spanning tree helps each
process locally decide when and on which pair of incident edges it performs
a local exchange operation so that it can avoid cycles and keep connectivity.
The proposed algorithm terminates in O(n) rounds and requires O(log n) bits
memory at each process1.

Let an initial spanning tree TA and a goal spanning tree TB be rooted in-
trees with a root rA and rB , respectively. A local exchange operation at process
u ∈ V is changing its parent to its parent in TB. The proposed algorithm is
based on the following two observations. First, a local exchange operation at a
leaf of TA does not form any cycle. Then, a local exchange operation at process u
whose descendants have performed local exchange operations keep connectivity
and does not form any cycle. Its new parent does not belong to its current
descendants because all the descendants belong to a subtree of TB rooted at u.
The proposed algorithm starts local exchange operations at leaves of TA and
propagates the update to their ancestors.

Secondly, when rB �= rA, rB cannot perform any local exchange operation
because it disconnects rB . Furthermore, this results in a deadlock because the
ancestors of rB cannot perform any local exchange operation. We use “root

1 An orientation of a tree can be obtained in O(n) rounds by a tree orientation algo-
rithm [5]. When an initial and a goal spanning trees are not oriented, the proposed
algorithm together with the orientation algorithm terminates in O(n) rounds.

Distributed Reconfiguration of Spanning Trees 519

Algorithm 3.1. Spanning tree reconfiguration algorithm at process u ∈ V

(Local exchange operation at u �= rB)
S1: (updateu = false) ∧ (∀v ∈ Child(u) : updatev = true) ∧ ¬NewRoot(u) ∧
{parentu = v ∧ parentv �= u} → parentu := new parentu, updateu := true
(Local exchange operation at rB)
S2: (updateu = false)∧ (∀v ∈Child(u) : updateu = true)∧ (NewRoot(u)∧Root(u))

→ updateu := true
(Root hopping)
S3: Root(u) ∧ ¬NewRoot(u) → parentu := NextChild(u, receiveu)
(Accept root hopping)
S4: parentu = v ∧ v �= u ∧ parentv = u → parentu := u, receiveu := v

hopping,” in which a root of the current tree passes the privilege to one of its
children so that the root walks along a tree and eventually reaches rB .

Given an initial spanning tree TA = {parentu | u ∈ V } and a goal spanning
tree TB = {new parentu | u ∈ V }, Algorithm 3.1 solves the distributed spanning
tree reconfiguration problem. Each process u ∈ V maintains four local variables,
parentu, new parentu, updateu, and receiveu. The pointer parentu represents
u’s current parent and the pointer new parentu represents u’s parent in TB . The
Boolean variable updateu represents whether u has updated its pointer or not,
and receiveu is a pointer for root hopping. In an initial configuration, we have
updateu = false, receiveu = u for all u ∈ V , and parentu and new parentu are
set according to TA and TB . In a terminal configuration, we have parentu =
new parentu and updateu = true for all u ∈ V .

We use the following predicates and functions at u ∈ V .

– Root(u) returns true if parentu = u, otherwise false.
– NewRoot(u) returns true if new parentu = u, otherwise false.
– Child(u) returns the set {v | v ∈ Nu, parentv = u} in the current configura-

tion. Any predicate on Child(u) holds if Child(u) is an empty set.

We make the root hopping follow a depth first search (DFS) in TA. Each
process has a list of its parent and children in TA in some local ordering, whose
last element is the parent. Let δu be the degree of u in TA and the i-th child of
u be the (i mod δu)-th child in u’s local list. Function NextChild(u, v) returns
the process that (i) is a current child or a parent of u, (ii) has not performed
local exchange operation, and (iii) appears after v in the local list at u. If no
neighboring process satisfies the above condition or v is not in Nu∪{u}, it returns
u. We note that the DFS does not need to visit a process that has performed a
local exchange operation because rB is not in the descendants of the process.

Let E = γ0, γ1, . . . be an arbitrary execution of Algorithm 3.1 under the cen-
tral scheduler. In configuration γi, let Ti = {parentu | u ∈ V }. When process
u performs a local exchange operation by S1, its current descendants are also
descendants in TB. Hence, u does not point at its descendants. No process dis-
connects itself because rB waits until it becomes a current root by S2. Hence,
each Ti is a spanning tree in G.

520 Y. Yamauchi et al.

The root walks along a DFS in TA by S3 and S4 and eventually reaches rB . In
the worst case, the root hopping procedure moves the root n times which takes
2n rounds. The local exchange operations take place concurrently with the root
hopping operations. Hence, T0, T1, . . . is finite and it is a sequence of spanning
trees.

4 Discussion and Conclusion

We introduced a new type of distributed reconfiguration problem for spanning
trees and presented a distributed algorithm for the problem.

We finally discuss an extension of the proposed algorithm and distributed
reconfiguration of related combinatorial objects. We can extend the proposed
distributed spanning tree reconfiguration algorithm to hypertrees. A hypertree
can be represented by a spanning tree in its graph representation [6]. We can
easily show that a sequence of spanning trees that our algorithm outputs corre-
sponds to a sequence of hypertrees.

We can also obtain a distributed reconfiguration algorithm for maximum
bipartite matchings. Given two maximum bipartite matchings MA and MB ,
MA ∪ MB consists of connected components, each of which is either a path or a
cycle of even size. We assume that matching edges are represented by pointers
of both endpoint processes and a local exchange operation is an update of this
pointer at a single process. For a given graph, a near maximum matching is a
matching whose size is smaller than the maximum matching by one. We can
obtain a distributed reconfiguration sequence of near maximum matchings from
MA to MB by circulating a single token to allow at most one connected compo-
nent undergo reconfiguration and electing a leader in each connected component
to propagate local exchange operations from the leader along the path or cycle.

References

1. Bonamy, M., Ouvrard, P., Rabie, M., Suomela, J., Uitto, J.: Distributed recoloring.
In: Proceedings of the DISC 2018, pp. 12:1–12:17 (2018)

2. Bousquet, N., et al.: Reconfiguration of spanning trees with many or few leaves. In:
Proceedings of the ESA 2020, pp. 24.1–25.15 (2020)

3. Censor-Hillel, K., Rabie, M.: Distributed reconfiguration of maximal independent
sets. In: Proceedings of the ICALP 2019, pp. 135:1–135:14 (2019)

4. Ito, T., et al.: On the complexity of reconfiguration problems. Theor. Comput. Sci.
412, 1054–1065 (2011)

5. Karaata, M.H., Pemmaraju, S.V., Bruell, S.C., Ghosh, S.: Self-stabilizing algorithms
for finding centers and medians of trees. In: Proceedings of the PODC 1994, pp. 374
(1994)

6. Lovász, L.: A generalization of König’s theorem. Acta Mathematic Academia Scei-
entiarum Hungaricae 21, 443–446 (1970)

7. Mizuta, H., Hatanaka, T., Ito, T., Zhou, X.: Reconfiguration of minimum steiner
trees via vertex exchanges. In: Proceedings of the MFCS 2019, pp. 79:1–79:11 (2019)

Correction to: Distributed Computing
with the Cloud

Yehuda Afek, Gal Giladi, and Boaz Patt-Shamir

Correction to:
Chapter “Distributed Computing with the Cloud”
in: C. Johnen et al. (Eds.): Stabilization, Safety, and Security
of Distributed Systems, LNCS 13046,
https://doi.org/10.1007/978-3-030-91081-5_1

In an older version of this paper, the presentation of Gal Giladi’s affiliation was
misleading. This has been corrected.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-030-91081-5_1

© Springer Nature Switzerland AG 2022
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, p. C1, 2022.
https://doi.org/10.1007/978-3-030-91081-5_41

https://doi.org/10.1007/978-3-030-91081-5_1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_41&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_41&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_41&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_1
https://doi.org/10.1007/978-3-030-91081-5_41

Author Index

Afek, Yehuda 1
Albouy, Timothé 21
Alvisi, Lorenzo 34
Ashkenazi, Yotam 229
Attiya, Hagit 505

Balabonski, Thibaut 469
Ben-Baruch, Ohad 505
Berns, Andrew 243, 258
Boffa, Daniel 78
Born, Jeannine 500
Bose, Kaustav 320
Bramas, Quentin 273
Brocco, Amos 474

Canakci, Burcu 34
Castenow, Jannik 289
Charron-Bost, Bernadette 425
Cohen, Johanne 479
Coleman, Jared 305
Courtieu, Pierre 469

Das, Archak 320
Daymude, Joshua J. 51
de Monterno, Louis Penet 425
Dolev, Shlomi 229, 484, 510
Dong, Rongcheng 335

Eldefrawy, Karim 350
Engel, Daniel 66

Feldmann, Michael 484
Fischer, Michael J. 78
Fraigniaud, Pierre 90
Frey, Davide 21

Garg, Vijay K. 108
Geffner, Ivan 123
Genise, Nicholas 350
Gerby, Tom 505
Giladi, Gal 1
Götte, Thorsten 289
Gupta, Arya Tanmay 365

Halpern, Joseph Y. 123
Harasha, Noble C. 51
Hector, Rory 489
Hendler, Danny 505
Herlihy, Maurice 66
Higashino, Teruo 141
Hochman, Jonathan E. 78
Huang, Kaile 495
Huang, Yu 495

Izumi, Taisuke 335

Kamei, Sayaka 229
Kamiyama, Naoyuki 516
Katayama, Yoshiaki 229
Kim, Yonghwan 440
Knollmann, Till 289
Kranakis, Evangelos 305
Krizanc, Danny 305
Kshirsagar, Rutuja 350
Kulkarni, Sandeep S. 365

Lamani, Anissa 273
Leyva-Acosta, Zoe 380
Li, Haixiang 495
Lynch, Nancy 209

Masuzawa, Toshimitsu 141, 335
Merz, Stephan 425
Meyer auf der Heide, Friedhelm 289
Montealegre, Pedro 395

Nakai, Rikuo 410
Nakamura, Junya 440

Ooshita, Fukuhito 229
Osman, Amr 500
Otachi, Yota 516

Padalkin, Andreas 484
Pan, Anqun 495
Pascual-Aseff, Eduardo 380
Patt-Shamir, Boaz 1

Pelle, Robin 469
Pilard, Laurence 479
Ponce, Oscar Morales 305

Rajsbaum, Sergio 380
Ramalhete, Pedro 505
Ramírez-Romero, Diego 395
Rapaport, Ivan 395
Raynal, Michel 21
Richa, Andréa W. 51
Rieg, Lionel 469
Rusanovsky, Matan 505

Saruwatari, Shunsuke 141
Sau, Buddhadeb 320
Scheideler, Christian 484
Schmid, Ulrich 154
Schwarz, Manfred 154
Schwarzmann, Alexander A. 173
Sénizergues, Jonas 479
Sharma, Gokarna 489
Shibata, Masahiro 440
Sliwinski, Jakub 194
Strufe, Thorsten 500
Su, Lili 209
Sudo, Yuichi 335, 410, 440

Taïani, François 21
Tixeuil, Sébastien 273, 469
Trahan, Jerry 489

Uchiyama, Akira 141
Urbain, Xavier 469

Vaidyanathan, Ramachandran 489
van Renesse, Robbert 34

Wada, Koichi 229, 410
Wang, Dingyu 456
Wang, Ziyu 510
Watanabe, Takashi 141
Wattenhofer, Roger 194
Wei, Hengfeng 495

Xue, Yingjie 66

Yamaguchi, Hirozumi 141
Yamauchi, Yukiko 516
Yiu, Ryan 51
Yung, Moti 350

Zhao, Jiajia 209

522 Author Index

	Preface
	Organization
	Contents
	Distributed Computing with the Cloud
	1 Introduction
	1.1 Model Specification
	1.2 Problems Considered and Main Results
	1.3 Related Work

	2 Communication Primitives in CWC
	3 Computing and Writing Combined Values
	3.1 Combining in General Graphs
	3.2 Combining Commutative Operators in Fat Links Network

	4 Non-commutative Operators and the Wheel Settings
	5 CWC Applications
	5.1 Federated Learning in CWC
	5.2 File Deduplication with the Cloud

	6 Conclusion and Open Problems
	References

	Byzantine-Tolerant Reliable Broadcast in the Presence of Silent Churn
	1 Introduction
	2 Computing Model
	3 Silent Churn Byzantine-Tolerant Broadcast: Definition
	4 An Algorithm Implementing the SCB-Broadcast Abstraction
	4.1 Signatures, Local Data Structures and Message Types
	4.2 Algorithm

	5 Proof of the Algorithm
	6 Cost of the Algorithm
	7 Conclusion
	References

	Building Systems of Systems with Escher
	1 Introduction
	2 Escher Design
	2.1 System Model: Agents and Message Bus
	2.2 Refining Agents
	2.3 Wrappers
	2.4 Deploying and Managing Agents
	2.5 Compatibility with Legacy Services

	3 Implementation
	3.1 Message Merging
	3.2 Message Delivery
	3.3 Implementing Tagging and Merging
	3.4 Garbage Collection of Delivered Messages

	4 Related Work
	5 Conclusion
	References

	Deadlock and Noise in Self-Organized Aggregation Without Computation
	1 Introduction
	2 The Gauci et al. Swarm Aggregation Algorithm
	3 Impossibility of Aggregation for n > 3 Robots
	4 Robustness to Error and Noise
	5 Using a Cone-of-Sight Sensor
	6 Conclusion
	References

	Failure is (literally) an Option: Atomic Commitment vs Optionality in Decentralized Finance
	1 Introduction
	2 Model
	3 Classical Two-Phase Commit Protocol
	4 Cross-Chain Atomicity
	5 Cross-Chain Atomicity with Optionality
	6 Cross-Chain Atomicity with Transferable Optionality
	7 Related Work
	8 Conclusions
	References

	Privacy-Preserving Data Sharing for Medical Research
	1 Introduction
	2 Related Work
	3 Medical Information Workflow
	4 Privacy-Preserving Linking of Patient Data
	4.1 Blinding-Completion Pairs
	4.2 Implementation
	4.3 Key Rotation

	5 Proposed Workflow for Enhanced Security
	5.1 Trust
	5.2 Parties
	5.3 Identifiers
	5.4 Initialization
	5.5 Contribution of Patient Profiles
	5.6 Accessing Medical Data for Research

	6 Threat Analysis
	7 Conclusion
	References

	How Do Mobile Agents Benefit from Randomness?
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Model
	2.1 Deterministic Systems
	2.2 Randomized Systems

	3 Indistinguishability
	4 Distinguishability
	5 Conclusion
	References

	A Lattice Linear Predicate Parallel Algorithm for the Housing Market Problem
	1 Introduction
	2 Background
	2.1 Gale's Top Trading Cycle (TTC) Algorithm for Housing Market
	2.2 LLP Algorithm
	2.3 Notation

	3 Applying LLP Algorithm to the Housing Market Problem
	4 An Efficient Parallel Algorithm for the Housing Market Problem
	References

	Security in Asynchronous Interactive Systems
	1 Introduction
	2 The Model
	3 Secure Computation in Interactive Settings
	3.1 The BGW/BCG Notion of Secure Computation
	3.2 Secure Computation and Mediators
	3.3 Beyond Secure Computation
	3.4 Simulating Arbitrary Protocols
	3.5 Universally Composable Security
	3.6 Variant Models

	4 Proof of Theorem 2
	5 Conclusion
	References

	A New Problem Setting for Mobile Robots Based on Backscatter-Based Communication and Sensing
	1 Introduction
	2 Ambient Backscatter Communication and Sensing
	2.1 Ambient Backscatter Communication
	2.2 Backscatter Sensing of Humans and Objects

	3 Developed Software Defined Radio (SDR) System
	4 Context Recognition of Humans and Objects Using SDR System
	5 Backscatter-Based Communication and a New Problem Setting for Mobile Robots
	6 Conclusion
	References

	Round-Oblivious Stabilizing Consensus in Dynamic Networks
	1 Introduction
	2 Additional Related Work
	3 Basic System Model
	4 Basic Message Adversaries
	5 Round-Oblivious Consensus
	5.1 The Message Adversary STABLEN,D(D+1)
	5.2 A Round-Oblivious Consensus Algorithm for STABLEN,D(D+1)

	6 Impossibility of Consensus with Immediate Acknowledgments
	7 Stabilizing Consensus
	7.1 Extensions of the Basic Model
	7.2 The Message Adversary WEAKSTABN(D+1,D)
	7.3 A Stabilizing Consensus Algorithm for WEAKSTABN(D+1,D)
	7.4 Impossibility of Stabilizing Consensus with Insufficient Stability

	8 Conclusions
	References

	Towards a Robust Distributed Framework for Election-Day Voter Check-In
	1 Introduction
	2 Electronic Poll Books
	3 Electronic Pollbooks as a Distributed System
	3.1 The Manual Process
	3.2 Distribution and Consistency: Immediate Challenge
	3.3 Specific Technical Questions
	3.4 Requirements for Electronic Poll Books as Distributed Systems

	4 E-Pollbooks and the Distributed Systems Theory
	4.1 Consistent Data Store with Device Crashes
	4.2 Coordinated Action with Link Failures
	4.3 Availability, Consistency, and Network Partitions
	4.4 Reaching Agreement in the Presence of Crashes and Asynchrony
	4.5 Agreement in the Presence of Malicious Failures
	4.6 The Problem of Reconfiguration in Dynamic Systems

	5 A Broader Look at E-Pollbook Landscape
	5.1 Social and Political Science
	5.2 Computing Theory Foundation
	5.3 Systems: Development, Implementation, and Evaluation

	6 Discussion
	References

	Asynchronous Proof-of-Stake
	1 Introduction
	1.1 Relaxing Consensus
	1.2 Intuition

	2 Model
	3 Protocol
	3.1 Transactions
	3.2 Validators
	3.3 Confirmations
	3.4 Adversary

	4 Correctness
	5 Future Work
	6 Related Work
	7 Conclusions
	References

	Lack of Quorum Sensing Leads to Failure of Consensus in Temnothorax Ant Emigration
	1 Introduction
	2 Model
	2.1 Timing Model and the Environment
	2.2 Model of Individual Ants Without Quorums
	2.3 Dynamics of the Entire Colony

	3 The Consensus Problem
	4 Failure of Consensus in Two-Nest Environments
	4.1 Analysis of Main Result

	5 Extension: Failure of Consensus in More-Nest Environments
	6 Consensus with Quorum Sensing in Two-Nest Environments
	7 Discussion and Future Work
	References

	Location Functions for Self-stabilizing Byzantine Tolerant Swarms
	1 Introduction
	2 Preliminaries
	2.1 A Robot Model
	2.2 Location Functions
	2.3 Function-Based Tasks

	3 t-Byzantine-resilient Self-stabilizing Algorithms Based on Location Functions
	3.1 A General Algorithm
	3.2 Implementation for Polynomial-Based Tasks
	3.3 Implementation for Shape-Based Tasks

	4 Task Scheme
	4.1 Convergence
	4.2 Marching
	4.3 Exploration

	5 Conclusions
	References

	Applications and Implications of a General Framework for Self-Stabilizing Overlay Networks
	1 Introduction
	1.1 Problem Overview
	1.2 Main Results and Significance
	1.3 Related Work and Comparison

	2 Preliminaries
	2.1 Model of Computation
	2.2 Complexity Measures

	3 Generalizing Avatar
	3.1 Avatar Definition
	3.2 The Avatar Algorithm
	3.3 Relevant Metrics
	3.4 Overall Complexity

	4 Examples
	4.1 Linear
	4.2 Complete Binary Search Tree
	4.3 Chord

	5 SkipChord
	5.1 Definition
	5.2 Metrics

	6 Discussion and Future Work
	References

	Network Scaffolding for Efficient Stabilization of the Chord Overlay Network
	1 Introduction
	2 Preliminaries
	2.1 Model of Computation
	2.2 Performance Metrics

	3 Avatar
	3.1 The Avatar Overlay Network
	3.2 Avatar(CBT)

	4 Avatar(Chord)
	4.1 Overview of Our Approach
	4.2 Chord(N)
	4.3 Building Chord from Cbt
	4.4 Phase Selection

	5 Analysis
	6 Generalizing Our Approach
	7 Concluding Thoughts
	References

	The Agreement Power of Disagreement
	1 Introduction
	2 Preliminaries
	3 An Algorithm When = 2
	4 An Algorithm When [min, max]
	5 Concluding Remarks
	References

	The Max-Line-Formation Problem
	1 Introduction
	2 Model and Notation
	3 Impossibility Result and Intuition About Square Ranges
	3.1 Impossibility with Circular Ranges
	3.2 Intuition About Square Ranges

	4 OBLOT Algorithm
	4.1 Intuition
	4.2 Algorithm
	4.3 Analysis

	5 LUMI Algorithms
	6 Relation to Gathering and Chain-Formation
	References

	Message Delivery in the Plane by Robots with Different Speeds
	1 Introduction
	1.1 Model, Notation and Terminology
	1.2 Related Work
	1.3 Outline and Results of the Paper

	2 Optimal Offline Algorithm for Two Robots
	2.1 Optimal Algorithm When a Robot Starts at the Source
	2.2 Optimal Algorithm in the General Case

	3 Offline 2 Approximation for Multiple Robots
	4 Online Upper Bounds
	4.1 Two Robot Algorithm with Competitive Ratio 17(5+4 2)
	4.2 Multi Robot Algorithm with Competitive Ratio 2

	5 Online Lower Bounds for Two Robots
	6 Conclusion
	References

	Exploring a Dynamic Ring Without Landmark
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions
	1.3 Outline of the Paper

	2 Model and Terminology
	3 Exploration by Agents with Chirality
	3.1 Meeting by Agents with Chirality
	3.2 Exploration with Termination by Agents with Chirality

	4 Exploration by Agents Without Chirality
	4.1 Contiguous Agreement
	4.2 Meeting by Agents Without Chirality
	4.3 Exploration with Termination by Agents Without Chirality

	5 Concluding Remarks
	References

	Loosely-Stabilizing Maximal Independent Set Algorithms with Unreliable Communications
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Preliminaries
	2.1 Loosely-Stabilizing MIS

	3 Redundant-State Approach
	3.1 Description of Algorithm RS
	3.2 Analysis of RS

	4 Step-Up Approach
	4.1 Description of Algorithm SU
	4.2 Analysis of SU

	5 Repetition Approach
	5.1 Description of Algorithm RE
	5.2 Analysis of RE

	6 Summary
	References

	On Regenerating Codes and Proactive Secret Sharing: Relationships and Implications
	1 Introduction
	2 Background and Notation
	2.1 Reed-Solomon Codes
	2.2 Regenerating Codes
	2.3 Secret Sharing Schemes
	2.4 Leakage Model

	3 Related Work
	4 Leakage and Reconstruction: Old Models, New Lens
	4.1 Static Leakage
	4.2 Dynamic Leakage

	5 On the Equivalence of Regenerating Codes and Proactive Secret Sharing
	6 From General Adversary Structures to General Decoding Structures
	6.1 Generalized Decoding in Regenerating Codes

	References

	Extending Lattice Linearity for Self-stabilizing Algorithms
	1 Introduction
	1.1 Contributions of the Article
	1.2 Organization of the Article

	2 Literature Study and Discussion on Our Contribution
	3 Preliminaries
	3.1 Modeling Algorithms
	3.2 Lattice Linear Predicates
	3.3 The Communication Model

	4 Service-Demand Based Dominating Set
	4.1 Algorithm for SDDS Problem

	5 Lattice Linear Characteristics of Algorithm 1
	5.1 Propositions Stipulated by the SDDS Problem
	5.2 Guarantee to Reach a Feasible State by Algorithm 1.2
	5.3 Lattice Linearity of Algorithm 1.1
	5.4 Termination of Algorithm 1
	5.5 Eventual Lattice Linearity of Algorithm 1
	5.6 Analysis of Algorithm 1: Time and Space Complexity

	6 Other Examples
	6.1 Vertex Cover
	6.2 Independent Set
	6.3 Coloring

	7 Conclusion
	References

	Information Exchange in the Russian Cards Problem
	1 Introduction
	2 Secure Information Exchange
	2.1 Correlated Inputs
	2.2 Informative, Minimally Informative and Safe Protocols
	2.3 Protocols and Johnson Graphs

	3 Minimal Information Exchange
	3.1 Two-Message Minimally Informative Protocol from Singer Sets
	3.2 Safety for Two-Message Minimally Informative Protocols
	3.3 Two-Step Minimally Informative Solution for (3, 3, 1)

	4 Russian Cards Problems
	4.1 Solutions with Six Messages
	4.2 Impossibility of Uniform Solutions

	5 Conclusions
	References

	Compact Distributed Interactive Proofs for the Recognition of Cographs and Distance-Hereditary Graphs
	1 Introduction
	2 Preliminaries
	3 Cographs
	4 Distance-Hereditary Graphs
	5 Lower Bounds
	References

	Asynchronous Gathering Algorithms for Autonomous Mobile Robots with Lights
	1 Introduction
	1.1 Background and Motivation
	1.2 Our Contribution

	2 Model and Preliminaries
	2.1 The Basics
	2.2 The Models
	2.3 The Schedulers

	3 Simulating Algorithms in Unfair SSYNC by ASYNC LUMI Robots
	3.1 Simulation in ASYNC for Algorithms in Unfair SSYNC
	3.2 Gathering Algorithm with Simulation

	4 Gathering Algorithm in ASYNC with 3 Colors
	4.1 Configurations Becoming OnLDS
	4.2 Correctness of LUMI-Gather-in-ASYNC

	5 Concluding Remarks
	References

	Synchronization Modulo k in Dynamic Networks
	1 Introduction
	2 Preliminaries
	2.1 The Computational Model
	2.2 Network Model and Start Model

	3 The Algorithm
	3.1 Pseudo-code and Formal Definition
	3.2 Informal Description of the Algorithm
	3.3 Notation and Preliminary Lemmas
	3.4 Correctness Proof
	3.5 Solvability Results

	4 Complexity Analysis
	4.1 Time Complexity Analysis
	4.2 Reducing Memory Usage

	5 Conclusion and Future Work
	References

	Partial Gathering of Mobile Agents in Dynamic Rings
	1 Introduction
	1.1 Background and Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 System Model
	2.2 The Partial Gathering Problem

	3 The Case of 3gk8g-2
	3.1 Selection Phase
	3.2 Gathering Phase

	4 The Case of k8g-3
	4.1 Semi-selection Phase
	4.2 Semi-gathering Phase
	4.3 Achievement Phase

	5 Conclusion
	References

	Optimal Protocols for 2-Party Contention Resolution
	1 Introduction
	1.1 Prior Work
	1.2 New Results

	2 Problem Formulation
	2.1 Performance Metrics and Existence Issues

	3 Contention Resolution Between Two Parties
	3.1 Avg: Minimizing the Average Transmission Time
	3.2 Min: Minimizing the Earliest Transmission Time
	3.3 Max: Minimizing the Last Transmission Time

	4 Conclusion
	References

	Computer Aided Formal Design of Swarm Robotics Algorithms
	References

	Delta-State JSON CRDT: Putting Collaboration on Solid Ground
	1 Introduction
	2 Related Work
	3 Overview of the Data Structure
	3.1 Delta-State Decomposition
	3.2 Delta-State Serialization and Adapters
	3.3 Example Architecture of a Collaborative Application

	4 Evaluation
	5 Conclusion
	References

	Self-stabilization and Byzantine Tolerance for Maximal Independent Set
	1 Model
	2 With Byzantine Nodes Under the Fair Daemon
	3 Anonymous System Under the Adversarial Daemon
	References

	Coordinating Amoebots via Reconfigurable Circuits
	1 Introduction
	2 Reconfigurable Circuit Extension
	3 Problem Statement and Our Contribution
	References

	On Optimal Doorway Egress by Autonomous Robots
	1 Introduction
	2 Doorway Egress
	3 Doorway Egress by Point Robots
	4 Doorway Egress by Fat Robots
	5 Concluding Remarks
	References

	Byz-GentleRain: An Efficient Byzantine-Tolerant Causal Consistency Protocol
	1 Introduction
	2 Byzantine Causal Consistency
	3 The Byz-GentleRain Protocol
	4 Evaluation
	References

	Mitigating Internal, Stealthy DoS Attacks in Microservice Networks
	1 Introduction
	2 Assumptions and Threat Model
	3 Mitigating SILVDDoS
	4 Preliminary Evaluation
	References

	Flat-Combining-Based Persistent Data Structures for Non-volatile Memory
	1 Introduction
	2 The DFC Stack
	3 Experimental Evaluation
	References

	SodsBC/SodsBC++ & SodsMPC: Post-quantum Asynchronous Blockchain Suite for Consensus and Smart Contracts
	1 Introduction
	2 SodsBC: Post-quantum aBFT Consensus
	3 SodsMPC: Post-quantum Smart Contracts
	References

	Distributed Reconfiguration of Spanning Trees
	1 Introduction
	2 Preliminaries
	3 Proposed Algorithm
	4 Discussion and Conclusion
	References

	Correction to: Distributed Computingwith the Cloud
	Correction to:Chapter “Distributed Computing with the Cloud”in: C. Johnen et al. (Eds.): Stabilization, Safety, and Securityof Distributed Systems, LNCS 13046,https://doi.org/10.1007/978-3-030-91081-5_1

	Author Index

