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Abstract. The problem of stabilizing a robot-wheel at a target point
on a straight line subject to control and phase constraints is considered.
The phase and control constraints are met by applying an advanced
feedback law in the form of nested saturation functions. The selection of
the feedback coefficients is discussed that optimizes the performance of
the controller. An optimal controller is defined to be that that ensures
the greatest convergence rate near the target point, while preserving a
node-like phase portrait of the nonlinear system. The paper continues
the work reported at the Optima 2020 conference [1], where an estimate
of the greatest rate was obtained. The goal of this paper is to improve
the results obtained in that work by considering a curvilinear asymptote
and to get the exact value of the greatest rate.
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1 Introduction

This study is a sequel of the work [1] devoted to optimizing a controller stabiliz-
ing a wheel at a point. The problem of a wheel rolling on a plane or an uneven
terrain is of importance in many practical applications. A rising tide of interest
to this classical problem is due to appearance of robotic systems of a new type—
ball-shaped or spherical robots and robot–wheels—and search for new actuators
for such systems [2–6]. The problem of motion control for mobile robots of this
type that move owing to displacements of masses (pendulums) inside the shell
(wheel) is discussed in many publications (see, for example, [2,4,6,7]). In this
paper, we consider the simplest model of a robot-wheel assuming that it is driven
by a control torque applied to the wheel axis. We do not go into detail of imple-
mentation of the actuator assuming only that the control torque is constrained,
with the limit value being determined by physical parameters of the robot [2,7].
On the one hand, such a model, in spite of its simplicity, is of interest by itself in
the study of advanced control strategies, including optimal ones. On the other
hand, this model can be used as a reference one, in studying more complicated
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models, with the solutions obtained for the reference model being taken to be a
set of target trajectories for the original system [8].

We set the problem of synthesizing a control law in the form of feedback that
brings the wheel from an arbitrary initial position on a straight line to a given
one, with the velocity of motion being limited. To meet the phase and control
constraints, an advanced feedback law in the form of nested saturation functions
depending on four coefficients was suggested in [1]. Feedback laws of this type
were studied in [9,10]. The basic advantage of such laws is that they ensure
global stability of the closed-loop system and guarantee the fulfilment of the
phase and control constraints under appropriate choice of feedback coefficients.

Two of the four feedback coefficients are uniquely determined by the limit
value of the control torque and the maximum allowed wheel velocity, while the
selection of the other two coefficients can be used to optimize the performance of
the controller. The optimality criterion employed in this study, as well as in [1], is
similar to that in [11], where the selection of feedback coefficients of a saturated
linearizing feedback for a wheeled robot with constrained control resource was
discussed. The optimality is meant in the sense that the phase portrait of the
nonlinear closed-loop system is similar to that of a linear system with a stable
node, with the asymptotic rate of approaching the target point being as high
as possible. The problem statement in this study differs from that in [1] by the
definition of the concept of the node-like phase portrait. While in [1] it was
defined only for the domain of the phase plane satisfying the phase constraints
and the asymptote dividing the domain into two invariant sets was assumed
straight, in this work, the definition is extended to the entire phase plane and
the asymptote is allowed to be curvilinear. The optimal value of the asymptotic
convergence rate in terms of the new definition to be derived in this work is
considerably greater than that in terms of the definition introduced in [1].

The paper is organized as follows. In Sect. 2, the wheel stabilization prob-
lem statement is given, the governing equations are reduced to a dimensionless
form, and some earlier obtained results from [1] are presented. The optimization
problem statement is formulated in Sect. 3, and the solution of the optimization
problem is presented in Sect. 4. Section 5 summarizes the results of the study
and discusses prospects for future research.

2 Stabilization Problem Statement

We consider a wheel rolling without slipping on a plane along a straight line
(Fig. 1). The dynamics of the wheel are described by the equation [1]

Mẍ = R, Mr2θ̈ = rR − fθ̇ − U,

where M and r are mass and radius of the wheel, x is the coordinate of the wheel
center, θ is the rotation angle, R is the reaction force, f is the viscous friction
coefficient, and U is the control torque.
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Fig. 1. Schematic of the robot-wheel.

Applying the condition of rolling without slipping ẋ + rθ̇ = 0, we reduce the
system equations to one second-order equation

μẍ = −fẋ

r2
+

U

r
, (1)

where μ = 2M . In the point stabilization problem, it is required to synthesize a
control law U in the form of a feedback that brings the wheel to a given target
point on the line. Without loss of generality, we set the target point to be at the
origin. The control torque U is assumed to be limited, and we also assume that
the velocity of the wheel center cannot exceed a prescribed value:

|U | ≤ Umax, |ẋ| ≤ Vmax. (2)

The problem is further simplified by going to dimensionless form. Indeed, by
introducing the dimensionless time, coordinate, and control

t̃ = tVmax/r, x̃ = x/r, Ũ = U/Umax, (3)

as well as dimensionless parameters

μ̃ =
μV 2

max

Umax
, f̃ =

fVmax

rUmax
,

using the dot notation for the derivatives with respect to the new time, and
assuming that Umax − fVmax/r > 0 (see [1] for detail), Eq. (1) turns to the
dimensionless form:

μ̃¨̃x = −f̃ ˙̃x + Ũ , (4)

where 0 ≤ f̃ < 1, with constraints (2) taking the form

|Ũ | ≤ 1, | ˙̃x| ≤ 1. (5)
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In what follows, only the dimensionless model is used, and we omit tilde over all
variables and parameters to avoid messy notation.

In [1], it was proposed to stabilize the wheel by applying the feedback in the
form of nested saturators given by

U(x, ẋ) = −k4Sat(k3(ẋ + k2Sat(k1x))) +
fẋ

r
, (6)

where Sat(x) is the saturation function defined by the conditions Sat(x) = x for
|x| ≤ 1 and Sat(x) = sign(x) for |x| > 1 and ki > 0, i = 1, 2, 3, 4, are positive
coefficients.

It has been shown [1] that (6) is a stabilizing feedback. Moreover, if k2 = 1
and k4 = 1−f , then constraints (5) hold for any positive k1 and k3. Substituting
(6) into (4) with the above-specified coefficients k2 and k4, we get the following
equation governing the closed-loop system:

ẍ = −ηSat(k3(ẋ + Sat(k1x))). (7)

where η = (1 − f)/μ is the control resource per unit mass.

Fig. 2. An example of inappropriate selection of feedback coefficients in (7).

Although feedback (6) with the coefficients k2 = 1 and k4 = 1 − f stabilizes
the system and respects the constraints, inappropriate selection of the other
two coefficients can result in poor performance of the control system and great
overshooting. Figure 2 illustrates this. It shows a phase trajectory (curve 2) of
the wheel with μ = 1 and f = 0. Because of inappropriate selection of the
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feedback coefficients (here, k1 = 9 and k3 = 100), the wheel missed the target
point several times, with the overshootings being quite large. The phase portrait
of the system in this case reminds that of a focus, with the overshootings being
quite large, which does not sound good. The broken blue line (marked by 1) shows
the curve x2 + Sat(k1x1) = 0. Hence, it follows that the freedom in selection of
k1 and k3 can be employed to optimize the performance of the controller, which
is discussed in the remainder of the paper.

3 Optimization Problem Statement

Intuitively, speaking of desirable behavior, we want to have fast asymptotic con-
vergence to the origin in the time domain and the phase portrait of the nonlinear
system to look like that of a linear system with a node, when any trajectory
approaches the origin monotonically, or has at most one overshooting. Recall
that, in the linear case, the phase plane is divided into two invariant half-planes
by a straight line, which is the asymptote for all (but two if the node is not
a degenerate one) phase trajectories of the system. The concept of a node-like
phase portrait for a nonlinear system can formally be defined in terms of a
curvilinear asymptote dividing the phase plane into two invariant sets, which is
a generalization of the straight asymptote for a linear system.

Definition 1. We will say that the phase portrait of a nonlinear system is of the
node-like type if there is a curvilinear asymptote lying completely in the second
and fourth quadrants.

The property of being node-like defined above is a global one. It means that
not only the origin is a node of the linearized system but also that the behavior
of the phase trajectories in the entire phase plane is similar to the behavior of the
phase trajectories of a linear system. Like the straight asymptote in the linear
case, the curvilinear asymptote divides the phase plane into two invariant sets
such that any phase trajectory passes through only two quadrants of the phase
plane.

Now, the problem to be solved in this study can be formulated as follows.

Problem. Determine feedback coefficients k1 and k3 for which the asymptotic
rate of approaching the target point is maximal under the condition that the phase
portrait of system (7) is of the node-like type.

4 Solution of the Optimization Problem

First, we establish the general form a curvilinear asymptote (further, simply
asymptote) for system (7) and, then, will determine under what conditions the
asymptote passes only through the second and forth quadrants.

Let us introduce the notation x1 = x and x2 = ẋ and rewrite (7) in the
state-space form as

ẋ1 = x2

ẋ2 = −ηSat(k3(x2 + Sat(k1x1))).
(8)
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It is easy to see that the closed-loop system (8) is piecewise linear. Figure 3 shows
the partitioning of the phase plane. Here, the dashed lines depict the boundaries
between different linearity regions where one linear system switches to another.
The solid broken line

x2 + Sat(k1x1) = 0 (9)

is the set of points where the right-hand side of the second equation in (7)
vanishes. The control reaches saturation outside the broken strip bounded by
the two dashed lines parallel to (9).

In the intersection of the sets |x1| ≤ 1/k1 and |x2 + k1x1| ≤ 1/k3, which
includes the origin, Eq. (7) takes the form

ẍ + ηk3ẋ + ηk1k3x = 0. (10)

Fig. 3. Partition of the phase plane for system (8).

To simplify the following calculations, we confine our consideration in this
paper to the case of a degenerate node (repeated root of the characteristic equa-
tion) of the linearized system, which is governed by the equation

ẍ + 2λẋ + λ2x = 0, λ > 0, (11)

where λ is the rate of the asymptotic convergence. Comparing (10) and (11), we
find that the coefficients k1 and k3 are to be selected from the one-parameter
family

k1 =
λ

2
, k3 =

2λ

η
(12)
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parameterized by the exponent λ, and will seek for the maximal λ for which the
phase portrait of system (7) is of the node-like type.

Clearly, being a curve dividing the phase plane into two invariant sets, any
asymptote must be an integral curve of the system [12]. It was proved in [1,
Lemma 1] that any trajectory of equation (7) beginning in the strip |x2| ≤ 1
never leaves it, i.e., the strip is an invariant set of the system. It is easy to prove
that any trajectory beginning outside the strip cannot intersect the horizontal
segment of line (7) either. This follows from the facts that the horizontal segments
of line (9) are negative half-trajectories with the initial points (−1/k1, 1) and
(1/k1,−1), respectively, and that no trajectories can intersect [12]. Indeed, let
x1(0) = −1/k1, x2(0) = 1. Since the right-hand side of the second equation in (7)
is zero, x2(t) ≡ 1. Then, by virtue of the first equation, x(t) = x1(0)+ t < 0 and,
for t ≤ 0, the negative half-trajectory beginning at the point (−1/k1, 1) is the
left horizontal segment of line (9). Similarly, it is proved that the right horizontal
segment is the negative half-trajectory beginning at the point (1/k1,−1). Note
also that the positive half-trajectories of the system beginning at the same points
asymptotically approach the origin by virtue of the fact that the origin is the
equilibrium point of the system. This brings us at the following lemma.

Lemma 1. The asymptote of system (7) is an integral curve consisting of the
singular phase trajectory (equilibrium point) x(t) ≡ 0 and two pairs of the half-
trajectories beginning at the points (−1/k1, 1) and (1/k1,−1).

Thus, solving the Problem reduces to finding the maximal exponent λ for
which the positive half-trajectories beginning at the points (−1/k1, 1) and
(1/k1,−1) completely lie in the second and fourth quadrants. Taking into account
the symmetry of the phase portrait with respect to the origin, it will suffice to
consider only one of these half-trajectories, say, that beginning in the fourth
quadrant.

In [1], the estimate λ̃ = η for the maximal λ was obtained by seeking for a
straight asymptote that divides the strip |x2| ≤ 1 into two invariant sets. Further
in this section, we will show that, allowing the asymptote to be curvilinear, an
exact value of maximal λ can be obtained, which is considerably greater than
the estimate from [1]. Moreover, the curvilinear asymptote is shown to divide
the entire phase plane, rather than the strip, into two invariant sets.

In view of the system symmetry, we may confine our consideration to the
trajectories beginning in the left half-plane. It is evident that the positive half-
trajectory beginning in the corner of the broken line (9) completely lies in the
fourth quadrant if and only if it does not intersect the straight asymptote x2 =
−λx1 of the linear system (10). The latter may hold in the following two cases.
First, this obviously happens when the trajectory does not intersect the dotted
line x2+k1x1 = 1/k3 (i.e., when the control does not reach saturation). The other
case takes place when the system does reach saturation but the trajectory still
does not intersect the straight asymptote. Whether the second case is possible
will further be verified.
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Consider the first case. Solution of the linear equation (11) is given by

x1(t) = − 1
λ

(λt + 2) exp(−λt), x2(t) = (λt + 1) exp(−λt), (13)

from which it follows that
x1

x2
= − 1

λ

λt + 2
λt + 1

. (14)

Equation (11) in the half-plane x2 > 0 can be written as

d x2

d x1
= −2λ − λ2x1

x2
= −2λ − λ

λt + 2
λt + 1

= − λ2t

λt + 1
.

Taking into account that k1 = λ/2, the slope of the saturation (switching) line
x2 + k1x1 = 1/k3 is −λ/2.

Let us find t∗ for which the trajectory (13) has the same slope,

− λ2t

λt + 1
= −λ

2
.

This yields λt∗ = 1 and t∗ = 1/λ; the corresponding trajectory point is given by
x1(t∗) = −3e−1/λ, x2(t∗) = 2e−1. Substituting these into the equation of the
saturation line, we get

2e−1 − 3
2
e−1 =

η

2λ
,

from which it follows that λ∗ = ηe. The estimate obtained is by e times greater
than the estimate obtained with the help of a straight asymptote in [1]. The
coordinates of the touching point are (−3e−2/η, 2e−1).

Thus, in the considered case, the desired asymptote is defined parametrically
by Eq. (13) for λ = ηe as t varies from 0 to ∞. On the asymptote, the system is
linear and the control reaches saturation at the single point.

Now, let us check whether the exponent λ can be increased if we permit
saturation on the positive half-trajectory. After intersecting the saturation line,
system (8) turns to

ẋ1 = x2, ẋ2 = −η.

Rewriting these equations as
dx1

dx2
= −x2

η
,

and integrating the resulting equation, we find that the system trajectory is the
parabola

x1(t) = − 1
2η

x2
2(t) + C(x10, x20), (15)

where x10 and x20 are the coordinates of the point where the trajectory intersects
the saturation line and

C(x10, x20) = x10 +
x2
20

2η
=

1
8η

(
λ2x2

10 + 6x10η +
η2

λ2

)
.
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Equating the slope of the parabola to that of the straight asymptote, we find
that the tangent line to the parabola is parallel to the asymptote when x2 = η/λ.
The condition that the parabola touches the asymptote is that it passes through
the point with the coordinates x∗∗

1 = −η/λ2, x∗∗
2 = η/λ. Note also that it is at

this point where the asymptote and the saturation line intersect. Substituting
these into the parabola equation, we obtain

− η

λ2
= − η

2λ2
+ C

from which it follows that C = −η/2λ2. Equating the two expressions for C, we
get the following second-order algebraic equation in x10:

λ2x2
10

η2
+

6x10

η
+

5
λ2

= 0.

Two solutions of this equation are −5η/λ2 and −η/λ2. The former is the abscissa
of the first intersection point where the trajectory leaves the strip and the control
reaches saturation, and the latter is the abscissa of the second point where the
trajectory enters again the strip.

The above implies that, in order that the trajectory return to the strip at
the right point (x∗∗

1 , x∗∗
2 ), the first intersection with the saturation line must be

at the point with the coordinates x∗
1 = −5η/λ2, x∗

2 = 3η/λ. The value of λ and
the corresponding time t∗ are found by equating solutions (13) at t = t∗ to the
coordinates obtained

− 1
λ

(λt∗ + 2)e−λt∗
= −5η

λ2

and
(λt∗ + 1)e−λt∗

=
3η

λ
.

Dividing the first equation by the second one and solving the equation obtained,
we get

λt∗ =
1
2
, λ = 2η

√
e.

As can be seen, the exponential rate of approaching the origin obtained is by
2/

√
e ≈ 1.2 times greater than that in the previous case and is by 2

√
e ≈ 3.3

times greater than the estimate obtained in [1].
Moreover, this is the exact value of the maximal rate λ: λmax = 2η

√
e.

Indeed, for any λ > λmax, the positive half-trajectory emerging from the corner
of the broken line (9) necessarily intersects the straight asymptote and, being
the trajectory of the linear system (10), will intersect the x2-axis and enter the
first quadrant.

The above results are summarized in the following theorem.

Theorem 1. The greatest exponential rate λ of the deviation x decrease for
which the phase portrait of the nonlinear system (8) is of the node-like type is

λmax = 2η
√

e.
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The corresponding coefficients k1 and k3 are given by

k1 = η
√

e, k3 = 4
√

e. (16)

Fig. 4. Optimal asymptote for system (8) with µ = 1 and f = 0.

The optimal curvilinear asymptote for the system with μ = 1 and f = 0
(and, hence, η = 1), corresponding to the optimal value of λ is depicted in Fig. 4
by the bold black curve. For this system, λmax = 2

√
e, k1 =

√
e, and k3 = 4

√
e.

The two broken dashed lines in the figure are boundaries of the region where
the control does not reach saturation. The straight dashed line is the straight
asymptote x2 = −λmaxx1 of the linear system (10).

Let us describe the part of the asymptote lying in the fourth quadrant. As
noted earlier, it consists of the negative and positive half-trajectories beginning
at the point (−1/k1, 1). The former is the straight line (marked by 4) given
parametrically by x1(t) = −1/k1 + t, x2(t) ≡ 1, −∞ < t ≤ 0. The latter, in
turn, consists of the three segments: the first segment (curve 3) is the trajectory
of the linear equation (11) given by (13), where 0 ≤ t < t∗ = 1/2λ; the second
segment (curve 2) is a piece of parabola (15), t∗ ≤ t < t∗∗ = 5/2λ; and the third
segment (line 1) is a piece of the straight asymptote of (11), t∗∗ ≤ t < ∞. The
other part of the asymptote in the second quadrant is symmetric to this one
with respect to the origin.

Figure 5 shows the phase portrait of system (8) with μ = 1 and f = 0.25 (η =
0.75) for the optimal value of λ = λmax. The black bold line is the asymptote of
the system. The green broken lines are the boundaries of the region where the
control is not saturated. As can seen, any trajectory beginning below (above)
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Fig. 5. Phase portrait of system (8) with µ = 1 and f = 0.25.

the asymptote completely lies below (above) the asymptote, and any trajectory
intersects the x2-axis at most once. If we further increase λ, the asymptote will
intersect the x2-axis and will pass through all quadrants, which means that the
property of the phase portrait being node-like will be violated.

5 Conclusions

In the paper, the problem of optimizing a controller stabilizing a robot-wheel
at a target point on a straight line subject to phase and control constraints has
been discussed. The controller implementing an advanced feedback law in the
form of nested saturation functions was suggested in [1]. The feedback depends
on four coefficients two of which ensure the fulfillment of the phase and control
constraints, while the other two can be adjusted to optimize the performance of
the controller. An optimal controller has been defined to be that that ensures
the greatest convergence rate near the target point, while preserving a node-like
phase portrait of the nonlinear system. Optimal values of the feedback coeffi-
cients have been found, and the corresponding asymptote dividing the phase
plane into two invariant sets has been constructed. The use of the new definition
of the node-like phase portrait relying on the concept of a curvilinear asymptote
made it possible to get a greater value of the asymptotic convergence rate near
the target point compared to that in [1].

In the future, we plan to apply the approach developed in this paper to
optimizing coefficients of a controller for a more complicated system of a robot–
wheel with a pendulum. We also plan to synthesize a hybrid control law where
the selection of the feedback coefficients will depend on whether the system is
in the neighborhood of the target point or far from it.
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