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Preface

This volume contains the first part of the refereed proceedings of the XII International
Conference on Optimization and Applications (OPTIMA 2021)1.

Organized annually since 2009, the conference has attracted a significant number
of researchers, academics, and specialists in many fields of optimization, operations
research, optimal control, game theory, and their numerous applications in practical
problems of operations research, data analysis, and software development.

The broad scope of OPTIMA has made it an event where researchers involved
in different domains of optimization theory and numerical methods, investigating
continuous and discrete extremal problems, designing heuristics and algorithms with
theoretical bounds, developing optimization software, and applying optimization tech-
niques to highly relevant practical problems, can meet together and discuss their
approaches and results. We strongly believe that this facilitates collaboration between
researchers working inmodern optimization theory, methods, and applications and those
employing them to resolve valuable practical problems.

The conference was held during September 27 – October 1, 2021, in Petrovac,
Montenegro, in the picturesque Budvanian riviera on the azure Adriatic coast. Due to
the COVID-19 pandemic situation the Program Committee (PC) decided to organize
online sessions for those who were not able to come to Montenegro this year. The main
organizers of the conference were the Montenegrin Academy of Sciences and Arts,
Montenegro, the Dorodnicyn Computing Centre, FRC CSC RAS, Russia, the Moscow
Institute of Physics and Technology, Russia, Lomonosov Moscow State University,
Russia, and the University of Évora, Portugal. This year, the key topics of OPTIMA
were grouped into seven tracks:

(i) Mathematical programming
(ii) Global optimization
(iii) Discrete and combinatorial optimization
(iv) Optimal control
(v) Optimization and data analysis
(vi) Game theory and mathematical economics
(vii) Applications.

TheProgramCommittee (PC) and the reviewers of the conference includedmore than
onehundredwell-knownexperts in continuous anddiscrete optimization, optimal control
and game theory, data analysis, mathematical economy, and related areas from leading
institutions of 26 countries including Argentina, Australia, Austria, Belgium, China,
Finland, France, Germany, Greece, India, Israel, Italy, Lithuania, Kazakhstan, Mexico,
Montenegro, The Netherlands, Poland, Portugal, Russia, Serbia, Sweden, Taiwan,
Ukraine, the UK, and the USA. This year we received 98 submissions, mostly from

1 http://agora.guru.ru/display.php?conf=OPTIMA-2021.
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Russia but also fromAzerbaijan, Belarus, China, Finland, France,Germany,Kazakhstan,
Moldova,Montenegro, UAE, Poland, Romania, SaudiArabia, Serbia, andUkraine. Each
submission was reviewed by at least three PC members or invited reviewers, experts in
their fields, to supply detailed and helpful comments. Out of 63 qualified submissions,
the Program Committee decided to accept 22 full and 3 short papers to the first volume
of the proceedings. Thus the acceptance rate for this volume was about 40%.

In addition, the Program Committee proposed about 19 papers to be included in the
second volume of the proceedings after a short presentation of the candidate papers,
discussion at the conference, and subsequent revision.

The conference featured five invited lecturers, and several plenary and keynote talks.
The invited lectures included:

– Anton Bondarev, International Business School Suzhou, Xi’an Jiaotong-Liverpool
University, China, “Optimality of sliding dynamics in hybrid control systems”

– NenadMladenovic, Khalifa University of Science and Technology, Abu Dhabi, UAE,
“Formulation Space Search Metaheuristic”

– Yurii Nesterov, CORE/INMA, Université Catholique de Louvain, Belgium, “Inexact
high-order proximal-point methods with auxiliary search procedure”

– PanosM. Pardalos,University of Florida,USA, “Artificial Intelligence,Data Sciences,
and Optimization in Economics and Finance”

– Alexey Tret’yakov, Siedlce University of Natural Sciences and Humanities, Poland,
“Exit from singularity. New optimization methods and the p-regularity theory
applications”

We would like to thank all the authors for submitting their papers and the members
of the PC for their efforts in providing exhaustive reviews. We would also like to express
special gratitude to all the invited lecturers and plenary speakers.

October 2021 Nicholas N. Olenev
Yuri G. Evtushenko
Milojica Jaćimović
Michael Khachay
Vlasta Malkova
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Optimality of Sliding Dynamics in Hybrid Control
Systems

Anton Bondarev

International Business School Suzhou, Xi’an Jiaotong-Liverpool University,
P. R. China

https://www.xjtlu.edu.cn/zh/departments/academic-
departments/international-business-school-

suzhou/staff/anton-bondarev

Abstract. There is growing evidence on the presence of sliding dynam-
ics in many piecewise-smooth dynamical systems (PWS), reported in
papers on population biology, renewable resources and etc. However to
our best knowledge there are no studies on the optimality of such a type
of dynamics. This talk will go through some recent advances in the theory
of hybrid optimal control which deals with PWS dynamics and present
findings on the optimality of the sliding dynamics in such systems, both
in the optimal control problems and differential games. Moreover some
results on the presence of hybrid limit cycles in such systems will be
discussed.

In particular, hybrid control problem may have the equilibrium of the
sliding flow as the only possible long-run outcome if all conventional
equilibria of the PWS at hand are infeasible. Moreover, this equilib-
rium may be reached only from the outside of the sliding flow itself.
Next, hybrid limit cycles (HLC) may be optimal or not depending on
the definition of the switching manifold and the dimensionality of the
problem.

At last, some further open questions of interest in the field are
discussed.



Formulation Space Search Metaheuristic

Nenad Mladenovic

Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
http://www.mi.sanu.ac.rs/nenad/

Abstract.Manymethods for solving discrete and continuous global opti-
mization problems are based on changing one formulation to another,
which is either equivalent or very close to it. These types of methods
include dual, primal-dual, Lagrangian, linearization, surrogation, convex-
ification methods, coordinate system change, discrete/continuous refor-
mulations, to mention a few. However, in all those classes, the set of for-
mulations of one problem are not considered as a set having some struc-
ture provided with some order relation among formulations. The main
idea of Formulation Space Search (FSS) is to provide the set of formula-
tions with some metric or quasi-metric relations, used for solving a given
class or type of problem. In that way, the (quasi) distance between formu-
lations is introduced, and the search space in solving Global optimization
problems is extended to the set of formulations as well. In this talk I will
present the general methodology of FSS, and give an overview of several
applications taken from the literature that fall within this framework. I
will also examine two of these applications in more detail.

This is joint work with J. Brimberg, R. Todosijevic and D. Urosevic.

https://orcid.org/0000-0001-6655-0409


Inexact High-Order Proximal-Point Methods
with Auxiliary Search Procedure

Yurii Nesterov

CORE/INMA, Université Catholique de Louvain, Belgium
https://uclouvain.be/fr/repertoires/yurii.nesterov

Abstract. In this talk, we present new framework of Bi-Level Uncon-
strained Minimization based on high-order proximal-point method with
the maximal convergence rate O(1/k(1+3p)/2), where k is the iteration
counter and p is the order of the scheme. Under assumption on the bound-
edness of the (p+ 1)th derivative of the objective function, each iteration
of the scheme can be implemented by one step of the pth order augmented
tensor method. In this way, for p= 2, we get a new second-order method
with the rate of convergence O(1/k7/2) and logarithmic complexity of the
auxiliary search at each iteration.

Another possibility is to compute the proximal-point operator by a
lower-order minimization method. As an example, for p= 3, we consider
the upper-level process convergent as O(1/k5). Assuming boundedness
of the fourth derivative, an appropriate approximation of the proximal-
point operator canbe computedby a second-ordermethod in a logarithmic
number of iterations. This combination gives a second-order schemewith
much better complexity than the existing theoretical limits.



Artificial Intelligence, Data Sciences, and Optimization
in Economics and Finance

Panos M. Pardalos

University of Florida, USA
http://www.ise.ufl.edu/pardalos/
https://nnov.hse.ru/en/latna/

Abstract. Artificial Intelligence (along with data sciences and optimiza-
tion) has been a fundamental component of many activities in economics
and finance in recent years. In this lecture we first summarize some of the
major impacts of AI tools in economics and finance and discuss future
developments and limitations. In the second part of the talk we present
details on neural network embeddings on corporate annual filings for
portfolio selection.



Exit from Singularity. New Optimization Methods
and the P-Regularity Theory Applications

Alexey Tret’yakov

Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
https://www.researchgate.net/profile/Alexey_Tretyakov

Abstract. We introduce a new nonsingular operator instead of a degen-
erate operator of the first derivative in a singular case for solving and
describing nonregular optimization problems and some problems in cal-
culus. Such operator is called p-factor-operator and its construction is
based on the derivatives up to order p as well as on some element h,
which we call the “exit from singularity”.

The special variant of the method of the modified Lagrange func-
tions for constrained optimization problems with inequality constraints
is justified on the basis of the 2-factor transformation and constructions
of p-regularity theory. These results are used in some classical branches
of calculus: implicit function theorem is given for the singular case and
is shown the existence of solutions to a boundary-valued problem for
a nonlinear differential equation in the resonance case. New numerical
methods are proposed including the p-factor method for solving ODEs
with a small parameter.

This is joint work with Yuri Evtushenko and Vlasta Malkova.
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Exit from Singularity. New Optimization
Methods and the p-Regularity Theory

Applications

Yuri Evtushenko1,2 , Vlasta Malkova1(B) , and Alexey Tret’yakov1,3,4

1 Dorodnicyn Computing Centre, FRC CSC RAS, Vavilov Street 40,
119333 Moscow, Russia

2 Moscow Institute of Physics and Technology, Moscow, Russia
3 System Research Institute, Polish Academy of Sciences, Newelska 6,

01-447 Warsaw, Poland
4 Faculty of Sciences, Siedlce University, 08-110 Siedlce, Poland

tret@ap.siedlce.pl

Abstract. In the paper, we introduce a new nonsingular operator
instead of a degenerate operator of the first derivative in a singular case
for solving and describing nonregular optimization problems and some
problems in calculus. Such operator is called p-factor-operator and its
construction is based on the derivatives up to order p as well as on some
element h, which we call the “exit from singularity”. The special vari-
ant of the method of the Modified Lagrangian Functions for optimiza-
tion problems with inequality constraints is justified on the basis of the
2-factor transformation and constructions of p-regularity theory. These
results are used in some classical branches of calculus: implicit function
theorem is given for the singular case and is shown the existence of solu-
tions to a boundary-valued problem for a nonlinear differential equation
in the resonance case. New numerical methods are proposed including
the p-factor method for solving ODEs with a small parameter and new
formula is obtained for the solutions of such type equations.

Keywords: p-regularity · Nonlinear optimization · Modified
Lagrangian Functions · Singularity

1 Introduction

Previously published papers [1–3] describe a number of applications of the p-
regularity theory in various areas of mathematics. In this paper, new applica-
tions of the developed theory are considered. Namely, in the first part of the
paper, the p-regularity theory is used to construct methods for solving degener-
ate nonlinear equations and to substantiate a special version of the method of
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Modified Lagrangian Functions (MLF) proposed by Yu.G. Evtushenko in [4] for
solving optimization problems with inequality-type constraints in the nonregular
case. In the second part of this paper, the p-regularity theory is used to analyze
the existence of a solution to a degenerate nonlinear boundary value problem. In
addition, a method for solving degenerate ordinary differential equations (ODE)
is proposed. The method is a modification of the small parameter method.

All this became possible thanks to the introduction of a new h element into
consideration, which we called “exit from singularity” and which plays a key
role in the construction of an apparatus for describing and solving degenerate
problems and is essentially new in comparison with traditional constructions.
Its presence, as it were, guarantees in the degenerate case an exit from the
singularity of the problem at the initial stage, and therefore the presence of this
element in all considered schemes is a significant deference from the previously
considered approaches.

2 p-Factor Operator and p-Regular Mappings

Consider the mapping F : X → Z, where F ∈ Cp+1(X,Z), X, and Z are Banach
spaces. By x∗ we denote the solution of the equation

F (x) = 0. (1)

Let’s assume that
Im F ′(x∗) �= Z,

that is, the mapping F is degenerate at the point x∗.
In this paper, the p-factor operator is used as a tool for obtaining various

kinds of results in the degenerate case. Without loss of generality, we assume
that the space Z is decomposable into a direct sum of closed subspaces Zi,
i = 1, . . . , p:

Z = Z1 ⊕ · · · ⊕ Zp,

where Z1 = cl (Im F ′(x∗)), Zi = cl (span ImPWi
F (i)(x∗)[·]i), i = 2, . . . , p − 1,

Zp = Wp, Wi is the closed complement of the subspace (Z1 ⊕ · · · ⊕ Zi−1) to the
space Z, i = 2, . . . , p and PWi

: Z → Wi is the projection operator on Wi along
(Z1 ⊕ · · · ⊕ Zi−1). Following [5], we define the mappings

fi(x) : X → Zi,
fi(x) = PZi

F (x), i = 1, . . . , p,

where PZi
: Z → Zi is the operator of projection onto Zi along (Z1⊕· · ·⊕Zi−1⊕

Zi+1 ⊕ · · · ⊕ Zp), i = 1, . . . , p.

Definition 1. The linear operator Ψp(h) ∈ L(X,Z1 ⊕ · · · ⊕ Zp), h ∈ X, h �= 0,

Ψp(h) = f ′
1(x

∗) + f ′′
2 (x∗)[h] + . . . +

1
(p − 1)!

f (p)
p (x∗)[h]p−1, (2)

is called the p-factor operator of the mapping F (x) on the element h at the point
x∗.
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The presence of h, which we called the “exit from singularity”, yield a family
of the p-factor operators “replacing” the nonregular operator F ′(x∗).

Definition 2. The mapping F (x) is called p-regular at the point x∗ on the ele-
ment h if

Im Ψp(h) = Z

or ‖{Ψp(h)}−1‖ < ∞. Here ‖{Ψp(h)}−1‖ = sup
‖z‖=1

inf{‖y‖ |Ψp(h)[y] = z}.

Definition 3. The mapping F (x) is called p-regular at the point x∗ if F (x) is
p-regular at the point x∗ on the elements

h ∈
p⋂

k=1

Ker kf
(k)
k (x∗),

where Ker kf
(k)
k (x∗) is the k-kernel of the mapping f

(k)
k (x∗) and is defined as:

Ker kf
(k)
k (x∗) = {h ∈ X|f (k)

k (x∗)[h]k = 0}.

3 2-Factor Methods for Solving Degenerate Equations

Following [6], consider methods for solving degenerate equations. Let in the
equation (1) the mapping F acts from the space R

n to the space R
n. We assume

that in the solution x∗ of the equation (1) the Jacobi matrix F ′(x∗) is degenerate,
that is Im F ′(x∗) �= R

n. Consider two versions of the p-factor method for solving
the degenerate system (1) for p = 2.

First Version of the 2-Factor Method. Due to the fact that kerF ′(x∗) �= {0},
there is a vector h �= 0 such that F ′(x∗)h = 0. Therefore, the x∗ point is also a
solution to the system.

F (x) + F ′(x)h = 0n, (3)

and a 2-factor-method scheme has the form:

xk+1 = xk − {F ′(xk) + F ′′(xk)h}−1 (F (xk) + F ′(xk)h), k = 0, 1, . . . . (4)

Here h is “exit from singularity”.
Note that in this paper, taking into account the specifics of the problem,

the vector h is built without using information about solving the x∗ problem.
We also note that the 2-factor-method scheme (4) coincides with the Newton
method, but applied not to the initial Eq. (1), and to the modified system (3).

Second Version of the 2-Factor Method. Due to the fact that Im F ′(x∗) �=
R

n, the projection operator P on (Im F ′(x∗))⊥ non-zero, that is, P �= 0. There-
fore, the point x∗ is also a solution of the system

F (x) + PF ′(x)ξ = 0n
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for any ξ �= 0. In this case, the second scheme of the 2-factor method has the
form

xk+1 = xk−{F ′(xk) + PF ′′(xk)ξ}−1 (F (xk)+PF ′(xk)ξ), k = 0, 1, . . . . (5)

where ξ is “exit from singularity”.
The justification of the convergence of the 2-factor methods (4) and (5) are

the following theorems.

Theorem 1. Let F ∈ C3(Rn) and for h ∈ ker F ′(x∗), h �= 0n there exists
(F ′(x∗) + F ′′(x∗)h)−1. Then for the 2-factor method (4) there is an estimate of
the convergence rate

‖xk+1 − x∗‖ ≤ α1‖xk − x∗‖2, k = 0, 1, . . . ,

where x0 ∈ Uε(x∗), ε > 0 is sufficiently small, and α1 > 0 is independent
constant.

The proof of the Theorem 1 see in [1].

Theorem 2. Let F ∈ C3(Rn) and for some element ξ �= 0n there exists
(F ′(x∗) + PF ′′(x∗)ξ)−1. Then, for the 2-factor method (5) there is an estimate
of the convergence rate

‖xk+1 − x∗‖ ≤ α2‖xk − x∗‖2, k = 0, 1, . . . ,

where x0 ∈ Uε(x∗), ε > 0 is sufficiently small, and α2 > 0 is independent
constant.

The proof of the Theorem 2 is similar to the proof of the Theorem 1.

Remark 1. In the case of the existence of h ∈ Ker F ′(x∗) such that Im F ′′(x∗)h =
R

n, the 2-factor-method scheme may be as follows:

xk+1 = xk − {F ′′(xk)h}−1
F ′(xk)h. (6)

In this case, for quadratic maps F (x) = Q[x]2 + Ax + B, where Q : Rn → R
n

– quadratic form, A : Rn → R
n – matrix, B – vector of dimension n, will be

correct the exact formula for the solution point x∗:

x∗ = −1
2
[Qh]−1(Ah), (7)

where h satisfies the condition (2Qx∗ + A)h = 0n. Note that the method (6)
converges for quadratic mappings in one step.
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4 2-Factor Modified Lagrangian Functions Method for
Solving the Problem of Constrained Optimization

Consider a nonlinear programming problem

min
x∈X

ϕ(x), (8)

where an feasible set
X = {x ∈ R

n | g(x) ≤ 0m},

0m is a zero vector from R
m, (g(x))� = (g1(x), . . . , gm(x))—vector function.

With respect to the problem (8), we assume that the set of its solutions X∗ ∈ R
n

is nonempty.
We define the Lagrange function,

L(x, v) = ϕ(x) +
m∑

i=1

vigi(x).

Everywhere below, it is assumed that the constraints regularity condition (RC)
is satisfied, in other words, the gradients of active constraints are linearly inde-
pendent. This condition guarantees that to each x∗ ∈ X∗ there corresponds a
unique vector of Lagrange multipliers v∗ ≥ 0 such that the relation

∇L(x∗, v∗) = ∇ϕ(x∗) +
m∑

i=1

v∗
i ∇gi(x∗) = 0n

holds and v∗
i = 0, if gi(x∗) > 0, i = 1, . . . , m.

Consider the non-standard version of the MLF method proposed in [4], in
which the modified Lagrange function has the form

LE(x, λ) = ϕ(x) +
1
2

m∑

i=1

λ2
i gi(x),

where λ ∈ R
m. Combine the vectors x and λ with one symbol w ∈ R

n+m.
Similarly, the pair [x∗, λ∗] will be denoted by w∗, therefore LE(x, λ) = LE(w).

According to the Kuhn-Tucker theorem, the vector w∗ satisfies the system
of equations

G(w) =

⎡

⎢⎣
∇ϕ(x) +

1
2

m∑

i=1

λ2
i ∇gi(x)

D(λ)g(x)

⎤

⎥⎦ = 0n+m. (9)

Here D(λ) is a diagonal matrix, the dimension of which is determined by the
dimension of the vector λ, its i-th diagonal element is λi. Note that the system
(9) can have an infinite set of solutions in a neighborhood of the point w∗.
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Let g′(x) be a Jacobi matrix of the mapping g(x). In turn, the Jacobi matrix
for the system (9) has the form

G′(w) =

⎡

⎢⎢⎢⎣

∇2ϕ(x) +
1
2

m∑

i=1

λ2
i ∇2gi(x) g′(x)D(λ)

D(λ)[g′(x)]� D(g(x))

⎤

⎥⎥⎥⎦ . (10)

For the pair [x∗, λ∗] we define the set of active constraints I(x∗), the set of weakly
active constraints I0(x∗) and the set of strictly active constraints I+(x∗) using
the following relations:

I(x∗) = {j = 1, . . . , m | gj(x∗) = 0},
I0(x∗) = {j = 1, . . . , m | λ∗

j = 0, gj(x∗) = 0},
I+(x∗) = {j = 1, . . . , m | λ∗

j �= 0, gj(x∗) = 0}.
(11)

When justifying and analyzing the MLF method, the following conditions
are usually introduced in addition to the RC:
1. the strict complementary slackness condition (SCS), i.e.

v∗
i gi(x∗) = 0, i = 1, . . . , m,

and, if gi(x∗) = 0, then v∗
i �= 0 for all i = 1, . . . , m;

2. the sufficient condition for optimality of the 2nd order: there exists a number
ν > 0 such that

z�∇2
xxL(x∗, v∗)z ≥ ν‖z‖2 (12)

for all z ∈ R
n, satisfying the conditions [∇gj(x∗)]�z ≤ 0 and j ∈ I(x∗).

Suppose that at the point x∗ the SCS is not satisfied. Then, for some index
i, both equalities λ∗

i = 0 and gi(x∗) = 0 hold, therefore the set I0(x∗) is not
empty. In this case, the matrix (10) becomes degenerate at the point w∗ and,
therefore, Newton-type methods for solutions to the system of equations (9) are
unacceptable. Let us show that in this situation it will be efficient to use the
apparatus of p-factor operators.

Consider a system of nonlinear equations (9). Let the mapping G be irregular
at the point w∗ or, in other words, the Jacobi matrix (10) is degenerate and
rankG′(w∗) = r < n + m. In this case, w∗ is called a degenerate solution of
the system (9). The degeneracy condition for the matrix G′(w∗) is written as
Im G′(w∗) �= R

n+m. It means, that there is at least one vector h (‖h‖ �= 0) such
that G′(w∗)h = 0n+m. Obviously, the solution of the system (9) will also be the
solution of the modified system

Ψ(w) = G(w) + G′(w)h = 0n+m (13)

and, moreover, if the matrix G′(w∗) is degenerate, then, on the contrary, the
matrix Ψ ′(w∗) = G′(w∗)+G′′(w∗)h is not degenerate and the solution w∗ of the
system (13) is locally unique. Here h is some vector from Ker G′(w∗), one of the
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construction examples of which is given below. The property of nondegeneracy
of the matrix Ψ ′(w∗) underlies the construction of a 2-factor method for solving
degenerate systems of nonlinear equations.

For the mapping G, we introduce the 2-factor operator

G′(w) + G′′(w)h,

where the vector h ∈ Ker G′(w∗) is defined so that

rank(G′(w∗) + G′′(w∗)h) = n + m.

The specific form of h is formed taking into account the specifics of the system
(9) and here the vector h will play role of element “exit from singularity”.

Consider the first version of the 2-factor method (4) for solving the system
(9):

wk+1 = wk − (G′(wk) + G′′(wk)h)−1 (G(wk) + G′(wk)h) , k = 0, 1, . . . . (14)

Below, we show that under sufficient optimality conditions for problem (8), the
mapping G defined in (9) is 2-regular in the solution w∗ on some h ∈ Ker G′(w∗).
Therefore, to solve the system G(w) = 0n+m, we can apply the 2-factor method
(4) and according to Theorem 1 the resulting method will have a quadratic
convergence rate, which cannot be achieved when applying Newton’s method to
the solution of the system (11).

Suppose that the SCS does not hold at the point x∗ and without loss of
generality we can assume that the set I0(x∗) consists of the first s indices, i.e.
I0(x∗) = {1, . . . , s}. To numerically determine the set I0(x∗), the so-called pro-
cedure for identifying zero elements, first proposed in [7], can be used.

Note that Newton’s method, together with a differentiable penalty, was used
to solve linear programming problems with inequality-type constraints in the
works [8,9], where it was shown that for penalty coefficients greater than a
certain threshold value, from the results of minimizing the penalty function
using simple formulas the exact solution of the problem is found.

Let’s come back to substantiate the 2-factor method (14). Since λj = 0 and
gj(x∗) = 0 for all j ∈ I0(x∗) = {1, . . . , s}, the rows of the matrix G′(w∗), starting
from (n + 1)-th to (n + s)-th, consist of all zeros. Let’s define the vector (“exit
from singularity”) h ∈ R

n+m:

h� = (0�
n , 1�

s , 0�
p−s, 0

�
m−p) (15)

and consider the mapping

Φ(w) = G(w) + G′(w)h, (16)

where the vector h is defined by the formula (15).

For further consideration, we need the following auxiliary lemma.
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Lemma 1. Let the V -matrix of dimension n×n and the Q-matrix of dimension
n × p be such that the columns of the Q matrix are linearly independent and

〈V x, x〉 > 0 for all x ∈ {Ker Q�}\{0}.

Suppose also that GN is a full rank diagonal matrix of dimension 
 × 
. Then
the matrix

Ā =

⎛

⎝
V Q 0
Q� 0 0
0 0 GN

⎞

⎠

is not degenerate.

The Lemma 1 is similar to many results of linear algebra, therefore we omit
the proof here.

Lemma 2. Suppose that ϕ, gi ∈ C3(Rn), i = 1, . . . , m, the RC is satisfied, the
sufficient optimality conditions (12) and the mapping Φ is given by the formula
(16). Then the 2-factor operator Φ′(w) = G′(w) + G′′(w)h is not degenerate at
the point w∗ = [x∗, λ∗].

The proof follows from Lemma 1 if we put in it V = ∇2
xxLE(x∗, λ∗), GN =

D(gN (x∗)), where gN (x) = (gp+1(x), . . . , gm(x))�, and

Q =
[∇g1(x∗), . . . ,∇gs(x∗), λ∗

s+1∇gs+1(x∗), . . . , λ∗
p∇gp(x∗)

]
.

Then Φ′(w∗) = Ā.
Lemma 2 implies that the 2-factor method (14) can be used to solve the

system (9), namely, the following theorem holds.

Theorem 3. Suppose that point x∗ is a solution to problem (8). Suppose that
ϕ, gi ∈ C3(Rn), i = 1, . . . , m, the RC and sufficient optimality conditions (12)
are satisfied. Then there exists a sufficiently small neighborhood Uε(w∗) of the
Kuhn-Tucker point w∗ = [x∗, λ∗] such that the method (14) satisfies the estimate

‖wk+1 − w∗‖ ≤ β‖wk − w∗‖2,

where w0 ∈ Uε(w∗) and β > 0 is an independent constant.

Let us illustrate the application of the described method with the following
example.

Example 1. Consider the problem

min
x∈R2

x2
1 + x2

2 + 4x1x2 (17)

under the constraints
−x1 ≤ 0, −x2 ≤ 0.
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It is easy to check that the point x∗ = (0, 0)� is a solution to the problem (17)
with the corresponding Lagrange multiplier v∗ = (0, 0)�. In this example, the
set I0(x∗) = {1, 2}, and the modified Lagrange function has the form

LE(x, λ) = x2
1 + x2

2 + 4x1x2 − 1
2
λ2
1x1 − 1

2
λ2
2x2.

Let h = (0, 0, 1, 1)�, then the system (9) will be written as follows:

G(w) =

⎡

⎢⎢⎢⎢⎣

2x1 + 4x2 − 1
2
λ2
1

2x2 + 4x1 − 1
2
λ2
2

−λ1x1

−λ2x2

⎤

⎥⎥⎥⎥⎦
= 04.

The Jacobi matrix of the latter system has the form

G′(w) =

⎡

⎢⎢⎣

2 4 −λ1 0
4 2 0 −λ2

−λ1 0 −x1 0
0 −λ2 0 −x2

⎤

⎥⎥⎦ .

This matrix is degenerate at the point (x∗
1, x

∗
2, λ

∗
1, λ

∗
2)

� = (0, 0, 0, 0)�.
However, the mapping G is 2-regular at the point (0, 0, 0, 0)� on the intro-

duced element h, and the scheme of the 2-factor method is written as
⎡
⎢⎢⎣

2 4 −λ1 − 1 0
4 2 0 −λ2 − 1

−λ1 − 1 0 −x1 0
0 −λ2 − 1 0 −x2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x̄1 − x1

x̄2 − x2

λ̄1 − λ1

λ̄2 − λ2

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

2x1 + 4x2 − 1
2
λ2
1 − λ1

2x2 + 4x1 − 1
2
λ2
2 − λ2

−λ1x1 − x1

−λ2x2 − x2

⎤
⎥⎥⎦ ,

where k = 0, 1, . . . , (x1, x2, λ1, λ2)� = ((x1)k, (x2)k, (λ1)k, (λ2)k)� and
(x̄1, x̄2, λ̄1, λ̄2)� = ((x1)k+1, (x2)k+1, (λ1)k+1, (λ2)k+1)�.

In this example, the system (13) has a non-unique solution, so there is no
global convergence of the specified version of the method. However, a simplified
version of the 2-factor method (6) can be applied by solving the system

Ψ(w) = G′(w)h = 04, (18)

where h ∈ KerG′(w∗). Due to the 2-regularity of the mapping G on the element
h at the point w∗ = 04, the matrix Ψ ′(w∗) is not degenerate and, therefore, this
problem has a unique solution w∗. The exact formula (7) is valid for w∗, since
the system (18) will be linear relative to w and w∗ = w0−[G′′(w0)h]−1(G′(w0)h)
for any w0 ∈ R

4 or w∗ = −1/2[Qh]−1(Ah), where

Qh =

⎡

⎢⎢⎣

0 0 −1 0
0 0 0 −1

−1 0 0 0
0 −1 0 0,

⎤

⎥⎥⎦ , A =

⎡

⎢⎢⎣

2 4 0 0
4 2 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦ , h =

⎡

⎢⎢⎣

0
0
1
1

⎤

⎥⎥⎦ .
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5 The Implicit Function Theorems in the Degenerate
Case

Consider the issue of the solution y = y(x) existence for equation

F (x, y) = 0,

where F ∈ Cp+1(X × Y,Z), X, Y and Z – Banach spaces, F (x∗, y∗) = 0 and

Im F ′
y(x∗, y∗) �= Z.

Determine the p-factor-operator for mapping F (x, y) in the same way as in (2),
replacing F (x) to F (x, y), derivatives to derivatives by variable y, i.e. F (k)(x∗)
– to F

(k)
y (x∗, y∗), and fi(x) – to fi(x, y).

We introduce a p-order mixed operator Ψp : Y → Z:

Ψp =
(

f ′
1 y(x∗, y∗),

1
2
f ′′
2 y(x∗, y∗), . . . ,

1
p!

f (p)
p y (x∗, y∗)

)

so that the action of Ψp on an element y is defined as

Ψp[y]p = f ′
1y(x∗, y∗)[y] + · · · +

1
p!

f (p)
py (x∗, y∗)[y]p

and the inverse (multivalued) operator Ψ−1
p :

Ψ−1
p (z) =

{
h ∈ Y | f ′

1y(x∗, y∗)[h] + · · · +
1
p!

f (p)
py (x∗, y∗)[h]p = z

}
.

Following [3], we present the following result.

Theorem 4 (the first implicit function theorem in the degenerate
case). Let X, Y and Z be Banach spaces, U(x∗), U(y∗) be some sufficiently
small neighborhoods of the points x∗ and y∗, B(0, r) is a ball of radius r cen-
tered at zero in the space Y , F ∈ Cp+1(X × Y ), and F (x∗, y∗) = 0. Suppose the
following conditions are met:

1. degeneracy condition:

f
(r)
i x . . . x

︸ ︷︷ ︸

q

y . . . y
︸ ︷︷ ︸

r−q

(x∗, y∗) = 0, r = 1, . . . , i − 1, q = 0, . . . , r − 1, i = 1, . . . , p,

f
(i)
i x . . . x

︸ ︷︷ ︸

q

y . . . y
︸ ︷︷ ︸

i−q

(x∗, y∗) = 0, q = 1, . . . , i − 1, i = 1, . . . , p;

2. p-factor approximation condition:

‖fi(x, y∗ + y1) − fi(x, y∗ + y2) − 1
i!

f
(i)
i (x∗, y∗)[y1]i +

1
i!

f
(i)
i (x∗, y∗)[y2]i‖ ≤

≤ ε
(‖y1‖i−1 + ‖y2‖i−1

) ‖y1 − y2‖, i = 1, . . . , p
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for all x ∈ U(x∗), y1, y2 ∈ B(0, r) and ε > 0 sufficiently small;
3. Banach condition: for x ∈ U(x∗) there exists h = h(x) such that

Ψp[h]p = −F (x, y∗), ‖h‖ ≤ c1‖F (x, y∗)‖1/p;

4. p-regularity condition with respect to the variable y:
∥∥∥{Ψp(h/‖h‖)}−1

∥∥∥ ≤ c2,

where c1, c2 are independent constants.
Then for any δ > 0 there exist σ > 0, k > 0 and a mapping ϕ : U(x∗, σ) →

U(y∗, δ) such that the following relations are satisfied:

ϕ(x) = y∗ + h(x) + ϑ(x), ϕ(x∗) = y∗, h(x∗) = 0, ϑ(x∗) = 0; (a)

F (x, ϕ(x)) = 0, ‖ϑ(x)‖ = o(‖h(x)‖); (b)

‖ϕ(x) − y∗‖Y ≤ k

p∑

r=1

‖fr(x, y∗)‖1/r
Zr

∀x ∈ U(x∗, σ). (c)

The proof of this theorem is similar to that for the case p = 2 (see, for
example, [3]), but using the general construction from the monograph [10]. Here
h(x) – “exit from singularity”.

Below we need one more modification of the implicit function theorem.

Theorem 5 (the second implicit function theorem in the degenerate
case). Let F (x, y) ∈ Cp+1(X × Y ), F : X × Y → Z, X, Y and Z – Banach
spaces, F (x∗, y∗) = 0 and the condition of p-regularity with respect to the variable

y on the element h ∈
p⋂

k=1

Kerkf
(k)
k (x∗, y∗), h = (x, 0), that is

{
f ′
1(x

∗, y∗) + f ′′
2 (x∗, y∗)[h] + · · · + f (p)

p (x∗, y∗)[h]p−1
}

· ({0} × Y ) = Z.

Then for x ∈ U(x∗) there exists y = y(x) such that

F (x, y(x)) = 0

and
‖y(x) − y∗‖ ≤ c‖x − x∗‖.

Here U(x∗) is a sufficiently small neighborhood of the point x∗, and c > 0 is an
independent constant.

Here element h is “exit from singularity”. The proof is similar to the proof
of the implicit function theorem in [10], but using the contraction map.

Φ(y) = y −
{

f ′
1(x

∗, y∗) + · · · +
1

(p − 1)!
f (p)

p (x∗, y∗)[h]p−1

}−1

Y

· F (x, y∗ + y).
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6 p-Factor Approach for Solving Degenerate Nonlinear
Ordinary Differential Equations

Let us show how the apparatus of p-factor operators (or simple factor operators)
can be applied to analyze and solve degenerate ordinary differential equations
(ODE).

Consider an ODE of the form

ÿ(t) + y(t) + g(y(t)) = x(t) (19)

under the condition:

y(0) = y(π) = 0, x(0) = x(π) = 0. (20)

We assume that y(·) ∈ C2[0, π], x(·) ∈ C[0, π] and g(·) ∈ Cp+1(C2[0, π]). More-
over, we assume that

g(0) = g′(0) = 0. (21)

Let us investigate the question of the solution existence of the Eq. (19). Let us
introduce some notation and definitions. We define a mapping

F (x, y) = ÿ + y + g(y) − x,

where F : X × Y → Z, F ∈ Cp+1(X × Y ), X = {x ∈ C[0, π] | x(0) = x(π) = 0},
Y = {y ∈ C2[0, π] | y(0) = y(π) = 0}, Z = {z ∈ C[0, 1] | z(0) = z(π) = 0}, and
g ∈ Cp+1(Y ). Then the Eq. (19) can be rewritten as

F (x, y) = 0.

Without loss of generality, we assume that x∗(t) = 0 and y∗(t) = 0.
Moreover, the operator F ′

y(0, 0) = (̈·) + (·) + g′(0) is degenerate at the point
(0, 0) (which is why the Eq. (19) is degenerate). Indeed, the operator F ′

y(0, 0):

F ′
y(0, 0)y = ÿ + y

is not surjective, since for z(t) = sin t boundary value problem

ÿ(t) + y(t) = sin t, y(0) = y(π) = 0

has no solution [11]. According to the Sturm-Liouville theory, the boundary value
problem

ÿ(t) + y(t) = x(t), y(0) = y(π) = 0

has a solution only if the condition holds [12]

π∫

0

sin τx(τ)dτ = 0.



Exit from Singularity. New Optimization Methods and the p-Regularity 15

Therefore, the question of the solution existence of the degenerate equation

F (x, y) = ÿ + y + g(y) − x = 0, y(0) = y(π) = 0

cannot be investigated using the classical implicit function theorem. Let us show
that for F (x, y) we can apply Theorem 4 under appropriate assumptions on g(·)
and x(t). In our case

Z1 = Im F ′
y(0, 0) =

⎧
⎨

⎩z(·) ∈ Z |
π∫

0

ϕ(τ)z(τ)dτ = 0

⎫
⎬

⎭ �= Z, ϕ(t) = sin t.

The subspace W2 = span{ϕ(t)}, therefore, according to [3], the projector PW2

is introduced as follows:

PW2z =
2
π

ϕ(t)

π∫

0

ϕ(τ)z(τ)dτ, z ∈ Z,

and

Z2 = span
(
ImPW2F

′′
y(0, 0)[·]2)

= span
(

z(t) | ∃y ∈ Y : z(t) = 2
π sin t

π∫
0

sin τg′′(0)[y(τ)]2dτ

)
.

(22)

The rest of the constructions – the subspaces Z3, . . . , Zp and the mappings
f2(x, y), . . . , . . . , fp(x, y) – are introduced similarly and depend only on the prop-
erties of the mapping g(y). According to (21), g′(0) = 0 and also

F ′′
y (0, 0) = g′′(0), . . . , F (p)

y (0, 0) = g(p)(0).

Therefore, the p-factor operator has the form

Ψp(h) = (̈·) + (·) +
1
2
PZ2g

′′(0)[h] + · · · +
1
p!

PZp
g(p)(0)[h]p−1.

Let’s return to Theorem 4. Recall that in our consideration x∗(t) = 0, y∗(t) =
0. Condition 1 of Theorem 4 is fulfilled in accordance with the construction of
the mappings fi(x, y) and the properties of the mappings g(y). Condition 2 –
p-factor-approximation – depends only on the properties of the mapping g(y),
i.e. if a

PZk

[(

g(y1) − g(y2) − 1

k!
g
(k)

(0)[y1]
k
+

1

k!
g
(k)

(0)[y2]
k

)]

≤ ε
(

‖y1‖k−1 + ‖y2‖k−1
)

‖y1 − y2‖,

(23)

where ε > 0 is sufficiently small, y1, y2 ∈ UY (0), then Condition 2 is satisfied.
Conditions 3 and 4, respectively, are equivalent to the existence of h(t) such

that the following relations hold

ḧ(t) + h(t) + PZ2g
′′(0)h2 + · · · + PZp

g(p)(0)[h]p = x(t), (24)
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‖h(t)‖ ≤ c1‖F (x, 0)‖1/p, x ∈ Ux(0);
∥∥∥∥
{

(̈·) + (·) + PZ2g
′′(0)[h̄] + · · · + PZp

g(p)(0)[h̄]p−1
}−1
∥∥∥∥ ≤ c2, x ∈ Ux(0), (25)

where h̄(t) = h(t)/‖h(t)‖, c1 > 0, c2 > 0 are independent constants and h(t) is
“exit form singularity”. Thus, we can finally formulate the following theorem.

Theorem 6. Let for the boundary value problem (19)–(20) there exist suffi-
ciently small neighborhoods Ux(0) and Uy(0) such that the conditions (23)–(25)
hold. Then for x(t) ∈ Ux(0) there exists a solution y = y(x, t), and

‖y(x, t)‖ ≤ m‖x(t)‖1/p,

where m > 0 is an independent constant.

To illustrate the theorem, consider the equation

ÿ(t) + y(t) + y2(t) = v sin t, y(0) = y(π) = 0, (26)

often found in technical applications. Here g(y) = y2, x(t) = v sin t, F (x, y) =
ÿ + y + y2 − v sin t, F : X × Y → Z, X, Y and Z were defined above. It is easy
to check that the conditions of Theorem 6 are satisfied for the mapping F (x, y)
for v ≥ 0 sufficiently small and p = 2. Thus, there exists a solution y(x) of the
Eq. (26) for v ≥ 0, and

‖y(t)‖ ≤ m‖v sin t‖1/2 ≤ cv1/2.

Similarly, one can illustrate the application of Theorem 5 to equations with a
small parameter ε of the form

εẏ(t) + g(y, ε) = 0,

where g(0, 0) = g′(0, 0) = g′′(0, 0) = 0 and y(0) = y0.
Put F (ε, y) = εẏ(t) + g(y, ε), here the role of x will be played by ε. For

example, if g(y, ε) = y3 + ε3, then for the equation εẏ(t) + y3(t) + ε3 = 0 it
can be shown that h = (ε, 0)� is “exit from singularity” and the conditions of
Theorem 5 are satisfied. Therefore, there is a solution y = y(ε, t) such that

‖y(ε, t)‖ ≤ cε, y(ε, 0) = y0,

where c > 0 is a constant, t ∈ U(0) is a small neighborhood of the point 0.

7 p-Regularity Theory and the Small Poincaré Parameter
Method

When solving the equation

ÿ(t) + a2y(t) + μy2(t) = sin t, y(0) = y(π) = 0, (27)
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where a �= 0, μ > 0 is a small parameter, the most popular is the search for a
solution in the form of a series [11]

y(t) = y0(t) + μy1(t) + μ2y2(t) + . . . . (28)

Substituting (28) in (27) and equating the coefficients at the same powers of
mu, we obtain the first equation to determine y0(t)

ÿ0(t) + a2y0(t) = sin t, y0(0) = y0(π) = 0, (29)

from where
y0(t) =

c sin t

a2 − 1
.

For a2 = 1 this technique is inapplicable, because Eq. (29) has no solution.
However, the original Eq. (27) has a solution for a2 = 1 and μ > 0 small.

Note that problem (27) is equivalent to the following system:

P1(y′′(t) + y(t) + μy2(t)) = P1(sin t),
P2(y′′(t) + y(t) + μy2(t)) = P2(sin t), y(0) = y(π) = 0, (30)

where Pi is a projector on Zi, i = 1, 2.
We are looking for a solution y(t) in the form:

y(t) = h(t) + y0(t) + μ1/2y1(t) + μy2(t) + μ3/2y3(t) + . . . , (31)

where yi(t), i = 0, 1 . . . are defined as

yi(t) = ỹi(t) + ŷi(t), P1(ŷi) = 0,

and h(t) is “exit from singularity” and is calculated as a solution to the equation

P2(μh2(t)) = sin t.

or
2μ sin t

π

π∫

0

sin τh2(τ)dτ = sin t

Solving this equation, we get:

h(t) =
√

3π

8μ
sin t.

Substituting (31) into the first equation of the system (30) and equating the
free terms, we obtain the following problem to determine ỹ0:

ỹ0
′′(t) + ỹ0(t) +

3π

8
sin2 t − sin t = 0, ỹ0(0) = ỹ0(π) = 0.

Solving, we find

ỹ0(t) =
π

4
cos t + sin t − t

2
cos t − 3π

16
− π

16
cos 2t. (32)
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Substitution (31) into the second equation of the system (30) and comparing the
coefficients of μ1/2, we obtain the equation for determining the function ŷ:

0 =
π∫
0

sin(τ)(μh(τ)ỹ0(τ) + μh(τ)ŷ0(τ))dτ

=
π∫
0

sin2(τ)(ỹ0(τ) + ŷ0(τ))dτ

We are looking for the function ŷ in the form ŷ = A sin t where A is a constant
defined as

A

π∫

0

sin2(τ) sin(τ)dτ = −
π∫

0

sin2(τ)(ỹ0(τ))dτ

Substitution ỹ0(τ) defined in (32) and integrating the resulting expression, we
find A and, therefore, ŷ.

Acting sequentially, we substitute y(t) with the found components in the
first, then in the second equation of the system (30), comparing the coefficients
at the same powers of μ to find the next component in expansion of the function
y(t).

Finally, we get the new formula for the solution:

y(t) =
√

3π

2
√

2μ1/2
sin t + ỹ0(t) + ŷ0(t) + μ1/2(ỹ1(t) + ŷ1(t)) + . . . . (33)

For an approximate construction of a solution to the equation (27) with
a2 = 1, one can also apply the 2-factor method, the scheme of which has the
form

yk+1 = yk − [F ′
y(0, 0) + PF ′′

yy(0, 0)h]−1F (x, h + yk), k = 0, 1, . . . , (34)

where

y0 = 0, h(t) =
√

3π

8μ
sin t,

F (y) = ÿ(t) + y(t) + μy2(t) − sin t, P (·) =
2 sin t

π

π∫

0

sin τ(·)dτ.

The scheme (34) is equivalent, for example, for k = 0, to the equation

ÿ1(t) + y1(t) +
√

3μ sin t√
2π

π∫

0

sin2 τy1(τ)dτ = sin t − 3π

8
sin2 t.

Obviously, the last equation has a solution. The process will converge for any
sufficiently small μ > 0 due to the properties of the 2-factor method and the
specificity of the mapping F .
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3 Université Grenoble Alpes, Grenoble, France
4 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Abstract. In this paper, we present a generic framework that allows
accelerating almost arbitrary non-accelerated deterministic and random-
ized algorithms for smooth convex optimization problems. The major
approach of our envelope is the same as in Catalyst [37]: an accelerated
proximal outer gradient method, which is used as an envelope for a non-
accelerated inner method for the �2 regularized auxiliary problem. Our
algorithm has two key differences: 1) easily verifiable stopping condi-
tion for inner algorithm; 2) the regularization parameter can be tuned
along the way. As a result, the main contribution of our work is a new
framework that applies to adaptive inner algorithms: Steepest Descent,
Adaptive Coordinate Descent, Alternating Minimization. Moreover, in
the non-adaptive case, our approach allows obtaining Catalyst without
a logarithmic factor, which appears in the standard Catalyst [37,38].

Keywords: Adaptive methods · Catalyst · Accelerated methods ·
Steepest descent · Coordinate descent · Alternating minimization ·
Distributed methods · Stochastic methods

1 Introduction

One of the main achievements in numerical methods for convex optimization is
the development of accelerated methods [43]. Until 2015 acceleration schemes for
different convex optimization problems seem to be quite different to unify them.
But starting from the work [37] in which universal acceleration technique (Cata-
lyst) was proposed, there appears a series of subsequent works [34,38,46,47] that
allows generalizing Catalyst on monotone variational inequalities, non-convex
problems, stochastic optimization problems. In all these works, the basic idea
is to use an accelerated proximal algorithm as an outer envelope [51] with non-
accelerated algorithms for inner auxiliary problems. The main practical draw-
back of this approach is the requirement to choose a regularization parameter
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such that the conditional number of the auxiliary problem becomes O(1). To
do that, we need to know the smoothness parameters of the target that are not
typically free available.

An alternative accelerated proximal envelope [48] was proposed in the paper
[41]. The main difference with standard accelerated proximal envelops is the
adaptability of the scheme [41]. Note, that this scheme also allows one to con-
struct (near) optimal tensor (high-order) accelerated methods [18,19,21,43,56].
That is, the “acceleration” potential of this scheme seems to be the best known
for us for the moment. So the main and rather simple idea of this paper can be
formulated briefly as follows: To develop adaptive Catalyst, we replace the
accelerated proximal envelope with a fixed regularization parameter
[38,48] on the adaptive accelerated proximal envelope from [41].

In Sect. 2, we describe adaptive Catalyst envelope – Algorithm 1 and gener-
alized Monteiro–Svaiter theorem from [41] to set out how to make this envelope
work. We emphasize that the proof of the theorem contains, as a byproduct,
the new theoretical analysis of the stopping condition for the inner algorithm
(9). This stopping condition allows one to show that the proposed envelope in a
non-adaptive mode is log-times better (see Corollary 1) in the total number of
oracle calls of the inner method (here we measure the complexity of the envelope
in such terms) in comparison with all other envelopes known for us.

By using this adaptive accelerated proximal envelope, we propose in Sect. 3 an
accelerated variant of steepest descent [18,50] as an alternative to A. Nemirovski
accelerated steepest descent (see [7,44] and references therein), adaptive accel-
erated variants of alternating minimization procedures [3] as an alternative to
[6,25,55] and adaptive accelerated coordinate descent [42]. For the last exam-
ple, as far as we know, there were no previously complete adaptive accelerated
coordinate descent. The most advanced result in this direction is the work [15]
that applies only to the problems with increasing smoothness parameter along
the iteration process. For example, for the target function like f(x) = x4, this
scheme does not recognize that smoothness parameters (in particular Lipschitz
gradient constant) tend to zero along the iteration process.

We expect that the proposed approach allows accelerating not only pro-
cedures that are adaptive in themselves, but also many other different non-
accelerated non-adaptive randomized schemes by settings on general smoothness
parameters of target function that can be difficult to analyze patently [22–24].

The first draft of this paper appeared in arXiv in November 2019. Since
that time, this paper has developed (and cited) in different aspects. The main
direction is a convenient (from the practical (6) and theoretical (9) point of
view) condition to stop the inner algorithm that is wrapped in accelerated prox-
imal envelope. We emphasize that our contribution in this part is not a new
accelerated proximal envelope (we use the well-known envelope [41]), but we
indicate that this envelope is better than the other ones due to the new the-
oretical analysis of its inner stopping condition that lead us from (6) to (9).
Although this calculation looks simple enough, to the best of our knowledge,
this was the first time when it was provably developed an accelerated proximal
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envelope that required to solve the auxiliary problem with prescribed relative
accuracy in argument �1/5. Since the auxiliary problem is smooth and strongly
convex, this observation eliminates the logarithmic factor (in the desired accu-
racy) in the complexity estimate for such an envelope in comparison with all
known analogues. Note that this small observation will have a remarkable influ-
ence on the development of accelerated algorithms. A close stopping condition,
for instance, arises in the following papers [8,9] that developed (sub-)optimal
accelerated tensor method based on accelerated proximal envelopes. The pro-
posed “logarithm-free” envelope allows one to improve the best known bounds
[39] for strongly convex-concave saddle-point problems (with different constants
of strong convexity and concavity) on logarithmic factor [11]. Composite variant
of this envelope also allows one to develop “logarithm-free” gradient sliding-
type methods1 [11,12,27] and its tensor generalizations [29]. Moreover, one of
the variants of the hyper-fast second-order method was also developed based
on this envelope [30]. Though this envelope had known before, it seems that
the original idea of this paper to use this envelope in Catalyst type procedures
and new (important from the theoretical point of view) reformulation of stop-
ping condition for inner algorithm (9) has generated a large number of appli-
cations, some of them mentioned in this paper, the others can be found in the
literature cited above. As an important example, we show in Sect. 3.2 that the
developed envelop e with non-accelerated coordinate descent method for aux-
iliary problem works much better in theory (and better in practice) than all
known direct accelerated coordinate-descent algorithms for sparse soft-max type
problem. Before this article, this was an open problem, how to beat standard
accelerated coordinate-descent algorithms that do not allow one to take into
account sparsity of the problem for soft-max type functional [16,49].

The other contribution of this paper is an adaptive choice of the smooth
parameter. Since our approach requires two inputs (lower bound Ld and upper
bound Lu for the unknown smoothness parameter L), it is hardly possible to
call it “adaptive”. Moreover, the greater the discrepancy between these two
parameters, the worthier is our adaptive envelope in theory. But almost all of
our experiments demonstrate low sensitivity to these parameters rather than to
real smoothness parameter. But even for such a “logarithm-free” and adaptive
envelope, we expect that typically the direct adaptive accelerated procedures will
work better than its Catalyst type analogues. It was recently demonstrated in the
following work [54] for accelerated alternating minimization procedure. But even
to date, there are problems in which one can expect that firstly optimal acceler-
ated algorithms will be developed by using Catalyst type procedures rather than
direct acceleration. Recent advances in saddle-point problems [11,39,59] and
decentralized distributed optimization2 [26,35] confirm this thought. We expect
that for Homogeneous Federated Learning architectures, Accelerated Local SGD

1 Note, that [12] contains variance reduction [1,52] generalization (with non proximal-
friendly composite) of proposed in this paper scheme.

2 Note, that the results of these papers were further reopened by using direct acceler-
ation [33,36].
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can be developed (see [57] for the state of the art approach) by using Catalyst-
type envelop e with SCAFFOLD version of local SGD algorithm [32]. As far as
we know, it is still an open problem to build Accelerated local SGD as an inner
algorithm. In this paper, we demonstrate some optimistic experiments in this
direction.

2 The Main Scheme

Let us consider the following minimization problem

min
y∈Rn

f(y), (1)

where f is a convex function, and its gradient is Lipschitz continuous w.r.t. ‖ ·‖2
with the constant Lf :

‖∇f(x) − ∇f(y)‖2 ≤ Lf‖x − y‖2.
We denote x� a solution of (1).

To propose the main scheme of the algorithm we need to define the following
functions:

FL,x(y) = f(y) + L
2 ||y − x||22,

fL(x) = min
y∈Rn

FL,x(y) = FL,x(yL(x)),

then the function FL,x is L-strongly convex, and its gradient is Lipschitz con-
tinuous w.r.t. ‖ · ‖2 with the constant (L + Lf ). So, the following inequality
holds

||∇FL,x(y2) − ∇FL,x(y1)||2 ≤ (L + Lf )||y1 − y2||2. (2)

Due to this definition, for all L ≥ 0 we have that fL(x) ≤ f(x) and the convex
function fL has a Lipschitz-continuous gradient with the Lipschitz constant L.
Moreover, according to [50] [Theorem 5, ch. 6], since

x�∈Argmin
x∈Rn

fL(x),

we obtain

x� ∈ Argmin
x∈Rn

f(x) and fL(x�) = f(x�).

Thus, instead of the initial problem (1), we can consider the Moreau–Yosida
regularized problem

min
x∈Rn

fL(x). (3)

Note that the problem (3) is an ordinary problem of smooth convex optimization.
Then the complexity of solving the problem (3) up to the accuracy ε with respect
to the function using the Fast Gradient Method (FGM) [43] can be estimated
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Algorithm 1. Monteiro–Svaiter algorithm

Parameters: z0, y0, A0 = 0
for k = 0, 1, . . . , N − 1 do

Choose Lk+1 and yk+1 such that

‖∇FLk+1,xk+1(y
k+1)‖2 ≤ Lk+1

2
‖yk+1 − xk+1‖2,

where

ak+1 =
1/Lk+1+

√
1/L2

k+1+4Ak/Lk+1

2
,

Ak+1 = Ak + ak+1,

xk+1 = Ak
Ak+1

yk +
ak+1
Ak+1

zk

zk+1 = zk − ak+1∇f
(
yk+1

)

end for
Output: yN

as follows O

(√
LR2

ε

)
. The ‘complexity’ means here the number of oracle calls.

Each oracle call means calculation of ∇fL(x) = L(x − yL(x)), where yL(x) is
the exact solution of the auxiliary problem min

y∈Rn
FL,x(y).

Note that the smaller the value of the parameter L we choose, the smaller
is the number of oracle calls (outer iterations). However, at the same time, this
increases the complexity of solving the auxiliary problem at each iteration.

At the end of this brief introduction to standard accelerated proximal point
methods, let us describe the step of ordinary (proximal) gradient descent (for
more details see [48])

xk+1 = xk − 1
L∇fL(xk) = xk − L

L (xk − yL(xk)) = yL(xk).

To develop an adaptive proximal accelerated envelope, we should replace stan-
dard FGM [43] on the following adaptive variant of FGM Algorithm 1, intro-
duced by [41] for smooth convex optimization problems.

The analysis of the algorithm is based on the following theorem.

Theorem 1. (Theorem 3.6 [41]). Let sequence (xk, yk, zk), k ≥ 0 be gener-
ated by Algorithm 1 and define R :=

∥∥y0 − x�

∥∥
2
. Then, for all N ≥ 0,

1
2

∥∥zN − x�

∥∥2

2
+ AN · (

f
(
yN

) − f (x�)
)

+ 1
4

N∑
k=1

AkLk

∥∥yk − xk
∥∥2

2
≤ R2

2 ,

f
(
yN

) − f (x�) ≤ R2

2AN
,

∥∥zN − x�

∥∥
2

≤ R,

N∑
k=1

AkLk

∥∥yk − xk
∥∥2

2
≤ 2R2.

(4)
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We also need the following Lemma.

Lemma 1 (Lemma 3.7a [41]). Let sequences {Ak} , {Lk}, k ≥ 0 be generated
by Algorithm 1. Then, for all N ≥ 0,

AN ≥ 1
4

(
N∑

k=1

1√
Lk

)2

. (5)

Let us define non-accelerated method M that we will use to solve auxiliary
problem.

Assumption 1. The convergence rate (after t iterations/oracle calls) for the
method M for problem

min
y∈Rn

F (y)

can be written in the general form as follows: with probability at least 1− δ holds
(for randomized algorithms, like Algorithm 4, this estimates holds true with high
probability)3

F (yt) − F (y�) = O
(
LF Ry

2 log t
δ

)
min

{
Cn

t , exp
(
− μF t

CnLF

)}
,

where y� is the solution of the problem, Ry = ||y0 − y�||2, function F is
μF -strongly convex and LF is a constant which characterized smoothness of
function F .

Typically, Cn = O(1) for the standard full gradient first order methods,
Cn = O(p), where p is a number of blocks, for alternating minimization with p
blocks and Cn = O(n) for gradient-free or coordinate descent methods, where n
is dimension of y. See the references in next Remark for details.

Remark 1. Let us clarify what we mean by a constant LF which characterized
smoothness of function F . Typically for the first order methods this is just the Lip-
schitz constant of gradient F (see, [5,50] for the steepest descent and [6,31,55]
for alternating minimization); for gradient-free methods like Algorithm 4 this con-
stant is the average value of the directional smoothness parameters, for gradient-free
methods see [2,10,13,14,17,53], for coordinate descent methods see [42,45,58] and
for more general situations see [24].

Remark 2. Note that in Assumption 1 the first estimate corresponds to the
estimate of the convergence rate of the method M for convex problems. And the
second estimate corresponds to the estimate for strongly convex problems.

Our main goal is to propose a scheme to accelerate methods of this type. But
note that we apply our scheme only to degenerate convex problems since it does
not take into account the strong convexity of the original problem.

Denote F k+1
L,x ≡ FLk+1,xk+1 . Based on Monteiro–Svaiter accelerated proximal

method we propose Algorithm 2.
3 For deterministic algorithms we can skip “with probability at least 1− δ” and factor

log N
δ

.
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Algorithm 2. Adaptive Catalyst

Parameters: Starting point x0 = y0 = z0; initial guess L0 > 0; parameters α >
β�γ > 1; optimization method M, A0 = 0.
for k = 0, 1, . . . , N − 1 do

Lk+1 = β · min {αLk, Lu}
r = 0
repeat

r := r + 1
Lk+1 := max {Lk+1/β, Ld}
Compute

ak+1 =
1/Lk+1+

√
1/L2

k+1+4Ak/Lk+1

2
,

Ak+1 = Ak + ak+1,

xk+1 = Ak
Ak+1

yk +
ak+1
Ak+1

zk.

Compute an approximate solution of the following problem with auxiliary
non-accelerated method M

yk+1 ≈ argmin
y

F k+1
L,x (y) :

By running M with starting point xk+1 and output point yk+1 we wait Nr iterations
to fulfill adaptive stopping condition

‖∇F k+1
L,x (yk+1)‖2 ≤ Lk+1

2
‖yk+1 − xk+1‖2.

until r > 1 and Nr ≥ γ · Nr−1 or Lk+1 = Ld

zk+1 = zk − ak+1∇f
(
yk+1

)

end for
Output: yN

Now let us prove the main theorem about the convergence rate of the pro-
posed scheme. Taking into account that Õ(·) means the same as O(·) up to a
logarithmic factor, based on the Monteiro–Svaiter Theorem 1 we can introduce
the following theorem:

Theorem 2. Consider Algorithm 2 with 0 < Ld < Lu for solving problem (1),
where Q = R

n, with auxiliary (inner) non-accelerated algorithm (method) M
that satisfy Assumption 1 with constants Cn and Lf such that Ld ≤ Lf ≤ Lu.

Then the total complexity4 of the proposed Algorithm 2 with inner method M
is

Õ

(
Cn · max

{√
Lu

Lf
,
√

Lf

Ld

}
·
√

LfR2

ε

)

with probability at least 1 − δ.

4 The number of oracle calls (iterations) of auxiliary method M that required to find
ε solution of (1) in terms of functions value.
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Proof. Note that the Monteiro–Svaiter (M-S) condition

‖∇F k+1
L,x (yk+1)‖2 ≤ Lk+1

2 ‖yk+1 − xk+1‖2 (6)

instead of the exact solution yk+1
� = yLk+1(x

k+1) of the auxiliary problem, for
which

‖∇F k+1
L,x (yk+1

� )‖2 = 0,

allows using the inexact solution that satisfies the condition (6).
Since yk+1

� is the solution of the problem min
y

F k+1
L,x (y), the ∇F k+1

L,x (yk+1
� ) = 0.

Then, using inequality (2) we obtain

||∇F k+1
L,x (yk+1)||2 ≤ (Lk+1 + Lf )||yk+1 − yk+1

� ||2. (7)

Using the triangle inequality we have

||xk+1 − yk+1
� ||2 − ||yk+1 − yk+1

� ||2 ≤ ||yk+1 − xk+1||2. (8)

Since r.h.s. of the inequality (8) coincide with the r.h.s. of the M-S condition
and l.h.s. of the inequality (7) coincide with the l.h.s. of the M-S condition up to
a multiplicative factor Lk+1/2, one can conclude that if the inequality

||yk+1 − yk+1
� ||2 ≤ Lk+1

3Lk+1+2Lf
||xk+1 − yk+1

� ||2 (9)

holds, the M-S condition holds too.
To solve the auxiliary problem min

y
FLk+1,xk+1(y) we use non-accelerated

method M. Using Assumption 1 with probability ≥ 1 − δ
N (where N is the

total number of the Catalyst’s steps), we obtain that the convergence rate (after
t iterations of M, see Assumption 1)

F k+1
L,x (yk+1

t ) − F k+1
L,x (yk+1

� ) = O
(
(Lf + Lk+1)R2

k+1 log Nt
δ

)
exp

(
− Lk+1t

Cn(Lf+Lk+1)

)
.

Note, that Rk+1 = ||xk+1 − yk+1
� ||2 since xk+1 is a starting point.

Since F k+1
L,x is Lk+1-strongly convex function, the following inequality holds

[43]
Lk+1

2 ||yk+1
t − yk+1

� ||22 ≤ F k+1
L,x (yk+1

t ) − F k+1
L,x (yk+1

� ).

Thus,

||yk+1
t − yk+1

� ||2 ≤ O

(√
(Lf+Lk+1)R

2
k+1

Lk+1
log Nt

δ

)
exp

(
− Lk+1t

2Cn(Lf+Lk+1)

)
. (10)

From (9), (10) and the fact that we start M at xk+1, we obtain that the com-
plexity T (number of iterations of M) of solving the auxiliary problem with
probability at least 1 − δ

N is determined from

O

(
Rk+1

√
(Lf+Lk+1)

Lk+1
log NT

δ

)
exp

(
− Lk+1T

2Cn(Lf+Lk+1)

)
� Lk+1

3Lk+1+2Lf
Rk+1, (11)
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hence
T = Õ

(
Cn

(Lk+1+Lf )
Lk+1

)
. (12)

Since we use in (12) Õ(·) notation, we can consider T to be the estimate that
corresponds to the total complexity of auxiliary problem including all inner
restarts on Lk+1.

Substituting inequality (5) into estimation (4) we obtain

f(yN ) − f(x�) ≤ 2R2
(

N∑
k=1

1√
Lk

)2 .

Since the complexity of the auxiliary problem with probability at least 1 − δ
N is

T we assume that in the worst case all Lk+1 are equal. Then the worst case we
can estimate as the following optimization problem

max
Ld≤L≤Lu

L+Lf

L

√
LR2

ε ,

Obviously, the maximum is reached at the border. So, using union bounds
inequality over all N iterations of the Catalyst we can estimate the complexity
in the worst two cases as follows:

– If all Lk+1 = Ld ≤ Lf (at each iteration we estimate the regularization
parameter as lower bound), then (Lk+1+Lf )

Lk+1
≈ Lf

Lk+1
and total complexity

with probability ≥ 1 − δ is

Õ

(
Cn

Lf

Ld

√
LdR2

ε

)
= Õ

(
Cn

√
Lf

Ld
·
√

LfR2

ε

)
.

– If all Lk+1 = Lu ≥ Lf (at each iteration we estimate the regularization
parameter as upper bound), then (Lk+1+Lf )

Lk+1
≈ 1 and total complexity with

probability ≥ 1 − δ is

Õ

(
Cn

√
LuR2

ε

)
= Õ

(
Cn

√
Lu

Lf
·
√

LfR2

ε

)
.

Then, using these two estimations we obtain the result of the theorem.

Note that this result shows that such a procedure will works not worse than

standard Catalyst [37,38] up to a factor Õ

(
max

{√
Lu

Lf
,
√

Lf

Ld

})
independent

on the stopping condition in the restarts on Lk+1.
Since the complexity of solving the auxiliary problem is proportional to

(Lk+1+Lf )Cn

Lk+1
, when we reduce the parameter Lk+1 so that Lk+1 < Lf the com-

plexity of solving an auxiliary problem became growth exponentially. Therefore,
as the stopping condition of the inner method, we select the number of iterations
Nt compared to the number of iterations Nt−1 at the previous restart t−1. This
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means that if Nt ≤ γNt−1 then the complexity begins to grow exponentially
and it is necessary to go to the next iteration of the external method. By using
such adaptive rule we try to recognize the best possible value of Lk+1 � Lf .
The last facts are basis of standard Catalyst approach [37,38] and have very
simple explanation. To minimize the total complexity we should take parameter
Lk+1 ≡ L such that

min
L

√
LR2

ε · Õ
(

Lf+L
L

)
.

This leads us to Lk+1 � Lf .
Note that also in non-adaptive case (if we choose all Lk+1 ≡ Lf ) we can

obtain the following corollary from the Theorem 2.

Corollary 1. If we consider Algorithm 2 with Lk+1 ≡ Lf for solving prob-
lem (1), then the total complexity of the proposed Algorithm 2 with inner non-
randomized method M is

O

(
Cn

√
LfR2

ε

)
. (13)

Proof. Using (11) without log NT
δ factor (since M is non-randomized) we derive

that the complexity of the auxiliary problem is (see also (12))

T = O
(
Cn

(Lk+1+Lf )
Lk+1

· log 3Lk+1+2Lf

Lk+1

)

And since we choose Lk+1 ≡ Lf ,

3Lk+1+2Lf

Lk+1
= 5

Then the complexity of the auxiliary problem is T = O (Cn). Using this esti-
mate, we obtain that the total complexity is (13).

If method M is randomized we have the additional factor log NT
δ � log 1

δε .
Hence, (13) changes: with probability at least 1 − δ

O

(
Cn log 1

δε ·
√

LfR2

ε

)
.

Note that in the standard Catalyst approach [37,38] the total complexity is

O

(
Cn log 1

δε ·
√

LfR2

ε · log 1
ε′

)
, where ε′ = Poly(ε) is the relative accuracy of

solving the auxiliary problem at each iteration. From this we get that choosing
the stopping criterion for the inner method as the criterion from the Algorithm 2
we can get the Catalyst without a logarithmic cost log 1

ε′ . It seems that such
variant of Catalyst can be useful in many applications. For example, as universal
envelope for non-accelerated asynchronized centralized distributed algorithms
[40].
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3 Applications

In this section, we present a few examples of algorithms that we consider as inner
solvers. Most of them have an adaptive structure. It is natural to apply adaptive
envelop e to adaptive algorithms since the developed methods keep adaptability.

3.1 Steepest Descent

Consider the following problem

min
x∈Rn

f(x),

where f is a Lf -smooth convex function (its gradient is Lipschitz continuous
w.r.t. ‖ · ‖2 with the constant Lf ).

To solve this problem, let us consider the general gradient descent update:

xk+1 = xk − hk∇f(xk).

In [50] it was proposed an adaptive way to select hk as following (see also [5] for
precise rates of convergence)

hk = argmin
h∈R

f(xk − h∇f(xk)).

Algorithm 3. Steepest descent

Parameters: Starting point x0.
for k = 0, 1, . . . , N − 1 do

Choose hk = argminh∈R
f(xk − h∇f(xk))

Set xk+1 = xk − hk∇f(xk)
end for
Output: xN

In contrast with the standard selection hk = 1
Lf

for Lf -smooth functions f ,
in this method there is no need to know smoothness constant of the function. It
allows to use this method for the smooth functions f when Lf is unknown (or
expensive to compute) or when the global Lf is much bigger than the local ones
along the trajectory.

On the other hand, as far as we concern, there is no direct acceleration of
the steepest descent algorithm. Moreover, it is hard to use Catalyst with it as
far as acceleration happens if Lk (κ in Catalyst article notations) is selected
with respect to Lf and the scheme does not support adaptivity out of the box.
Even if global Lf is known, the local smoothness constant could be significantly
different from it that will lead to the worse speed of convergence.

Note that for Algorithm 3 the Assumption 1 holds with Cn = O(1) and Lf

is the Lipschitz constant of the gradient of function f .
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3.2 Random Adaptive Coordinate Descent Method

Consider the following unconstrained problem

min
x∈Rn

f(x).

Now we assume directional smoothness for f , that is there exists β1, . . . , βn such
that for any x ∈ R

n, u ∈ R

|∇if (x + uei) − ∇if(x)| ≤ βi|u|, i = 1, . . . , n,

where ∇if(x) = ∂f(x)/∂xi. For twice differentiable f it is equivalent to
(∇2f(x))i,i ≤ βi. Due to the fact that we consider the situation when smoothness
constants are not known, we use such a dynamic adjustment scheme from [42,58].

Algorithm 4. RACDM

Parameters: Starting point x0;
lower bounds β̂i := β0

i ∈ (0, βi] , i = 1, . . . , n
for k = 0, 1, . . . , N − 1 do

Sample ik ∼ U [1, . . . , n]
Set xk+1 = xk − β̂−1

ik
· ∇ikf

(
xk

) · eik

While ∇ikf(xk) · ∇ikf(xk+1) < 0 do

{
β̂ik = 2β̂ik , xk+1 = xk − β̂−1

ik
· ∇ikf

(
xk

)
· eik

}

Set βik = 1
2
βik

end for
Output: xN

Note that for Algorithm 4 the Assumption 1 holds with Cn = O(n) (for x ∈
R

n) and5 Lf = Lf := 1
n

n∑
i=1

βi (the average value of the directional smoothness

parameters).
As one of the motivational example, consider the following minimization

problem

min
x∈Rn

f(x) = γ ln

(
m∑

i=1

exp [Ax]i
γ

)
− 〈b, x〉, (14)

where A ∈ R
m×n, b ∈ R

n. We denote the ith row of the matrix A by Ai. A is
sparse, i.e. average number of nonzero elements in Ai is less than s. f is Lf -
smooth w.r.t. ‖ · ‖2 with Lf = maxi=1,...,m ‖Ai‖22 and its gradient is component-
wise βj-continuous with βj = maxi=1,...,m |Aij |.
5 Strictly speaking, such a constant takes place for non-adaptive variant of the CDM

with specific choice of ik [42]: π(ik = j) =
βj∑n

j′=1
βj′ . For described RACDM the

analysis is more difficult [49].
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Fast Gradient Method (FGM) [44] requires O

(√
LfR2

ε

)
iterations

with the complexity of each iteration O (ns). Coordinate Descent Method
(CDM) [4] requires O

(
n

LfR2

ε

)
iterations with the complexity of each itera-

tion6 O (s). Accelerated Coordinate Descent Method (ACDM) [20,45] requires

O

(
n

√
L̃fR2

ε

)
iterations with the complexity of each iteration O (n), where

L̃f =
1
n

n∑
j=1

√
βj .

For proposed in this paper approach we have O

(
n

√
LfR2

ε

)
iterations of

CDM with complexity of each inner iteration O(s) and complexity of each outer
iteration O(ns). However, outer iteration executes ones per ∼ n inner iterations,
so average-case iteration complexity is O(s).

We combine all these results in the table below. From the table one can
conclude that if Lf < Lf , then our approach has better theoretical complexity.

Algorithm Complexity Reference

FGM O

(
ns

√
LfR2

ε

)
[44]

CDM O
(
ns

LfR2

ε

)
[4,42]

ACDM O

(
n2

√
L̃fR2

ε

)
[45]

Catalyst CDM O

(
ns

√
LfR2

ε

)
This paper

Note that the use of Component Descent Method allows us to improve con-
vergence estimate by factor

√
n compared to Fast Gradient Method. Indeed, for

this problem we have Lf = maxi=1,...,m ‖Ai‖22 = O(n), and on the other hand
Lf = 1

n

∑
j=1,...,n maxi=1,...,m |Aij | = O(1). Therefore, the total convergence

estimate for Fast Gradient Method can be written as

O

(
ns · √

n ·
√

R2

ε

)
,

and for proposed in this paper method factor
√

n is reduced to O(1) and could
be omitted:

O

(
ns ·

√
R2

ε

)
.

6 Here one should use a following trick in recalculation of ln
(∑m

i=1 exp ([Ax]i)
)

and its
gradient (partial derivative). From the structure of the method we know that xnew =
xold+δei, where ei is i-th orth. So if we’ve already calculate Axold then to recalculate
Axnew = Axold + δAi requires only O(s) additional operations independently of n
and m.
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The best complexity improvement is achieved if Lf = n, which means there
is at least one row in the matrix such that Ai = 1n, even though all other rows
can be arbitrary sparse.

3.3 Alternating Minimization

Consider the following problem

min
x=(x1,...,xp)T ∈⊗p

i=1R
ni

f(x),

where f is a Lf -smooth convex function (its gradient is Lipschitz continuous
w.r.t. ‖ · ‖2 with the constant Lf ).

For the general case of number of blocks p � 2 the Alternating Minimization
algorithm may be written as Algorithm 5. There are multiple common block
selection rules, such as the cyclic rule or the Gauss–Southwell rule [3,6,31,55].

Algorithm 5. Alternating Minimization

Parameters: Starting point x0.
for k = 0, 1, . . . , N − 1 do

Choose i ∈ {1, . . . , p}
Set xk+1 = argmin

xi

f(xk
1 , ...xk

i−1, xi, x
k
i+1, ..., x

k
p)

end for
Output: xN

Note that for Algorithm 5 the Assumption 1 holds with Cn = O(p) (p is number
of blocks) and Lf is the Lipschitz constant of the gradient of function f .

3.4 Theoretical Guarantees

Let us present the table that establishes the comparison of rates of convergence
for the above algorithms before and after acceleration via Algorithm 2. In non-
accelerated case these algorithms apply to the convex but non-strongly convex
problem, therefore, we use estimates for the convex case from Assumption 1.
But in the case of acceleration of these methods, we apply them to a regularized

function which is strongly convex. Denote χ = max
{√

Lu

Lf
,
√

Lf

Ld

}
, then we

represent the following table.
The numerical experiments with the steepest descent, adaptive coordinate

descent, alternating minimization and local SGD can be viewed in the full version
of the article on the arXiv [28].
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Non-accelerated M-S accelerated

Steepest descent
LfR2

ε
χ

√
LfR2

ε

Random adaptive coordinate descent method n · LfR2

ε
n · χ

√
LfR2

ε

Alternating minimization p · LfR2

ε
p · χ

√
LfR2

ε

Conclusion

In this work, we present the universal framework for accelerating the non-
accelerated adaptive methods such as Steepest Descent, Alternating Least
Squares Minimization, and RACDM and show that acceleration works in prac-
tice (code is available online on GitHub). Moreover, we show theoretically that
for the non -adaptive run proposed in this paper, acceleration has in a log-
factor better rate than via Catalyst. Note, that this “fight” for the log-factor in
accelerated procedure’s become popular in the last time, see [33,36] for concrete
examples. In this paper, we eliminate log-factor in a rather big generality.
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Abstract. Numerous efforts in the literature are devoted to study-
ing error bounds in optimization problems. The existence of local error
bounds is closely related with constraint qualifications. It is well-known
that some constraint qualifications imply error bounds. We consider con-
straint qualifications, which do not impose as strong requirements on the
structure of the optimization problem as traditional conditions do. On
their base necessary and sufficient conditions of error bounds are derived.

Keywords: Error bound · Necessary conditions · Sufficient
conditions · Nonlinear programming

1 Introduction

The concept of error bound are studied in numerous papers [2–4,9,11,15–17,
20,21,24,26], etc. It has been proved to be extremely useful in analyzing the
convergence of many algorithms for solving optimization problems, as well as
serving as a constraint qualification for optimality conditions [2,3,5,11,16,25,
26]. The study of error bounds turns also out to be of great importance in
stability and sensitivity issues, subdifferential calculus [4,5,9,17]. Results in the
framework of the theory of error bounds also include the investigation of the
local upper Lipschitz stability for the solutions of parametric Karush – Kuhn –
Tucker systems [10], the relation between the equivalence of an error bound
and a quadratic growth condition [7] necessary and sufficient criteria for metric
subregularity of set-valued mappings [12]. Subdifferential conditions for Hölder
error bounds and some new estimates for the corresponding modulus are treated
in [13].

For more details, we refer the reader to the surveys by Pang [24], Lewis and
Pang [15], to the paper by Fabian et al. [9], and their references.

Let us consider a set

C = {y ∈ Rm | hi(y) ≤ 0 i ∈ I, hi(y) = 0 i ∈ I0} (1)
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where I = {1, . . . , s} and I0 = {s + 1, . . . , p}, hi i = 1, 2, . . . , p are continuously
differentiable functions from Rm to R.

Let dC(y) be the Euclidean distance from the point y to C.
We say the local error bound (LEB) holds at a point y0 ∈ C if there exist

a number M > 0 and a neighborhood V (y0) of this point such that dC(y) ≤
Mmax{0, hi(y) i ∈ I, |hi(y)| i ∈ I} for all y ∈ V (y0).

Constraint qualifications (see [1–3,5,16–21,25] and other numerous publica-
tions) play an important role in studying optimization problems. This concerns
an analytical description of tangent cones to sets of feasible points, in derivations
of duality relations, in sensitivity analysis with respect to parameter perturba-
tions, as well as in the investigations of convergence of numerical optimization
algorithms. A fundamental necessary optimality condition in nonlinear program-
ming is the Karush – Kuhn – Tucker condition (KKT) [14]. However, KKT holds
only under constraint qualifications and it loses validity if they are not satisfied.

Since the local error bound itself is a constraint qualification and implies
KKT, the concept of error bound is closely related with some other constraint
qualifications. Beginning with the work of Robinson [26] there is a question
whether some constraint qualification implies an error bound.

One of such constraint qualifications is the well-known Mangasarian – Fromo-
vitz constraint qualification (MFCQ) [18].

Denote I(y) = {i ∈ I | hi(y) = 0}.
MFCQ holds at a point y ∈ C if the vectors ∇hi(y) i ∈ I are linearly inde-

pendent and there exists a vector ŷ such that

〈∇hi(y), ŷ〉 = 0 i ∈ I0, 〈∇hi(y), ŷ〉 < 0 i ∈ I(y).

It is known that MFCQ at a point y ∈ C is equivalent to the condition
Λ0(y) = 0, where

Λ0(y) = {λ ∈ Rp |
p∑

i=1

λi∇hi(y) = 0, λi ≥ 0 and λihi(y) = 0 i ∈ I}.

Despite the wide applicability of MFCQ and the fact that it is quite effective,
there are some sets (1) for which this condition is not valid, so other constraint
qualifications are needed. The constant rank condition (CRCQ) [8] and its gen-
eralization, the relaxed constant rank condition (RCRCQ) [21], are constraint
qualifications of different nature than that of MFCQ and they are independent
of MFCQ.

It is proved [21] that RCRCQ implies LEB.
It is interesting to have weaker constraint qualifications which generalize the

both MFCQ and RCRCQ.
Consider the tangent cone TC(y) and the Clarke tangent cone T̂C(y) to the

set C at a point y ∈ C, given by, respectively,

TC(y) = {ȳ ∈ Rm | ∃tk ↓ 0 and ȳk → ȳ such that y + tkȳ
k ∈ C, k = 1, 2, . . . },

T̂C(y) = {ȳ ∈ Rm | ∀tk ↓ 0 and ∀yk C→ y,∃ȳk → ȳ
such that yk + tkȳ

k ∈ C, k = 1, 2, . . . }.
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Introduce also the linearized tangent cone to C at a point y ∈ C:

ΓC(y) = {ȳ ∈ Rm | 〈∇hi(y), ȳ〉 ≤ 0 i ∈ I(y), 〈∇hi(y), ȳ〉 = 0 i ∈ I0}.

One of the weakest constraint qualifications is the Abadie condition (ACQ) [1]
which holds at y ∈ C if TC(y) = ΓC(y). ACQ ensures KKT but counterexamples
show that ACQ doesn’t imply error bound.

The relaxed Mangasarian – Fromovitz constraint qualification (RMFCQ) was
introduced in [11,19] and in the work [2] (under the name CRSC, i.e. constant
rank of the subspace component condition). Following [21,22] we introduce the
set of indices of all essentially active inequality constraints for the set Γ(C, y):

Ia(y) = {i ∈ I(y) | 〈∇hi(y), ȳ〉 = 0 for all ȳ ∈ Γ(C, y)}
We say that RMFCQ holds at a point y0 ∈ C if there exists a neighborhood

of V (y0) such that the system of vectors {∇hi(y) i ∈ I0 ∪ Ia(y0)} is of constant
rank for all points y ∈ V (y0).

Due to [2,11,19] RMFCQ is a constraint qualification implying ACQ.
Note that, if Ia(y) = ∅ and the gradients ∇hi(y) i ∈ I0 are linearly inde-

pendent, RMFCQ reduces to MFCQ. Moreover, in [22] it has been proved that
RMFCQ was the MFCQ-like constraint qualification and implied MFCQ to hold
in some alternative parametrization of the set C. Since RMFCQ is implied
by some other constraint qualifications (CRCQ [8], RCRCQ [21], CPLD [25],
RCPLD [3]), they all are MFCQ-like too.

Andreani et al. [2] proved that, under the twice continuous differentiability
of constraint functions, CRSC (or, equivalently, RMFCQ) implies the existence
of local error bound. In [16] this result was extended to the systems with con-
tinuously differentiable constraint functions.

The main goal of our paper is to find sufficient conditions for LEB.
We denote by |y| the Euclidean norm of a vector y ∈ Rm. Denote also by

V (y0) a neighborhood of the point y0.
Let v ∈ Rm. Denote by ΠC(v) the set of points from C closest to v and

introduce the Mordukhovich normal cone [23] NC(y) = lim sup
v→y

[cone(v−ΠC(v))]

to the set C at a point y ∈ C. It is known [23,27] that NC(y)∗ = T̂C(y) where
K∗ = {y∗ ∈ Rm | 〈y∗, y〉 ≤ 0 ∀y ∈ K} for a set K ⊂ Rm.

2 Necessary Conditions for Error Bound

Propositions below give necessary conditions for the local error bound holds at
a feasible point y0.

Proposition 1. Let LEB hold at y0 ∈ C. Then T̂C(y0) = ΓC(y0).

Proof. If ΓC(y0) = {0}, the assertion is evident. Let ȳ ∈ ΓC(y0) and ȳ �= 0. It is
known that LEB at y0 ∈ C implies LEB at all feasible points y ∈ y0+δ0B, where
δ0 is some small positive number. Take δ > 0 such that δ < 2−1δ0 and such that
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hi(y) < 0 for all y ∈ y0 + 2δB and all i ∈ (I\I(y0)). Denote t0 = δ|ȳ|−1. Then
hi(y + tȳ) for all y ∈ y0 + δB, t ∈ [0, t0], i ∈ (I\I(y0)).

For any y ∈ C ∩ (y0 + δB) and for all t ∈ [0, t0] from LEB at y follows

dC(y + tȳ) − dC(y)

≤ M max{0, hi(y + tȳ) i ∈ I, |hi(y + tȳ)| i ∈ I0}
= M max{0, hi(y + tȳ) i ∈ I(y0), |hi(y + tȳ)| i ∈ I0}
= M max{0, hi(y) + t〈∇hi(y), ȳ〉 + tγi i ∈ I(y0),

|hi(y) + t〈∇hi(y), ȳ〉 + tγi| i ∈ I0}
≤ tM max{0, 〈∇hi(y), ȳ〉 i ∈ I(y0), |〈∇hi(y), ȳ〉| i ∈ I0} + tγ,

where τi ∈ (0, 1), γi = 〈∇hi(y + τitȳ) − 〈∇hi(y), ȳ〉, γ = max{|γi| τi ∈ (0, 1), i ∈
I0 ∪ I(y0)}.

The latter inequality implies

d0C(y0; ȳ) = lim sup
y

C→y0,y↓0
t−1[dC(y + tȳ) − dC(y)]

≤ M max{0, 〈∇hi(y), ȳ〉 i ∈ I(y0), |〈∇hi(y), ȳ〉| i ∈ I0} = 0.

This means that ȳ ∈ T̂C(y0) (see, [27]) and, hence, ΓC(y0) ⊂ T̂C(y0). Since
the opposite inclusion always holds, we obtain ΓC(y0) = T̂C(y0).

Corollary 1. Let LEB hold at y0 ∈ C. Then there exists a neighborhood V (y0)
such that T̂ (y) = ΓC(y) for all y ∈ V (y0) ∩ C and lim inf

y
C→y0

ΓC(y) = ΓC(y0).

Proposition 2. Let LEB hold at y0 ∈ C. Then there exists a neighborhood
V (y0) such that Ia(y) ⊂ Ia(y0) for all y ∈ V (y0) ∩ C.

Proof. Suppose the opposite. Then there is a sequence {yk} ⊂ C such that
yk → y0 and for any k there exists ik ∈ Ia(yk) such that ik /∈ Ia(y0). Since the
set I is finite, without loss of generality one may assume that I(yk) = K ⊂ I(y0)
and Ia(yk) = Ka, where K and Ka don’t depend of k. Moreover, we can assume
that ik = j and doesn’t depend of k. Thus, there exists some index j ∈ Ka such
that j /∈ Ia(y0). Take an arbitrary vector ȳ ∈ ΓC(y0). From Corollary 1 follows
that there exists a sequence ȳk ∈ ΓC(yk) such as ȳk → ȳ as k → ∞. Pass to the
limit in the following equalities and inequalities

〈∇hi(yk), ȳk〉 = 0 i ∈ I0 ∪ Ka, 〈∇hi(yk), ȳk〉 ≤ 0 i ∈ K\Ka as k → ∞.

In result we have

〈∇hi(y0), ȳ〉 = 0 i ∈ I0 ∪ Ka, 〈∇hi(y0), ȳ〉 ≤ 0 i ∈ K\Ka

for any ȳ ∈ ΓC(y0). Thus, 〈∇hj(y0), ȳ〉 = 0 for all ȳ ∈ ΓC(y0) and, hence,
j ∈ Ia(y0). This contradicts to our assumption.
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Example 1. Let C = {y ∈ R3 | y1 + y2 = 0, y2
3 ≤ 0}, y0 = (0, 0, 0)T . In this

example ΓC(y0) = {ȳ ∈ R3 | ȳ1 + ȳ2 = 0} �= T̂C(y0) = {ȳ ∈ R3 | ȳ1 + ȳ2 =
0, ȳ3 = 0}. Therefore, due to Proposition 1 LEB can’t hold at y0.

An example below shows that the condition T̂C(y0) = ΓC(y0) is not sufficient
for LEB.

Example 2. Let C = {y ∈ R2 | y4
1 − y2

2 ≤ 0,−y2 ≤ 0}, y0 = (0, 0)T . Then
ΓC(y0) = {ȳ ∈ R2 | ȳ1 ∈ R, ȳ2 ≥ 0}, NC(y0) = {v ∈ R2 | v1 = 0, v2 ≤ 0}.
Therefore, NC(y0) = Γ∗

C(y0), i.e. TC(y0) = ΓC(y0). On the other hand, for
v = (ε, 0)T , where ε ↓ 0, we obtain dC(v) ≥ ε2, max{0, h1(v), h2(v)} = ε4, i.e.
LEB doesn’t hold at the given point.

Example 3. Let C = {y ∈ R2 | y2−y2
1 ≤ 0,−y2 ≤ 0}, y0 = (0, 0)T . Here h1(y) =

y2−y2
1 , h2(y) = −y2. It is not difficult to see that rank{∇h1(y),∇h2(y)} �= const

in V (y0). One can check that Ia(y0) = {1, 2} but Ia(y) = ∅ for y ∈ V (y0)\y0.

3 Sufficient Conditions for Local Error Bound

Let y0 ∈ C and ε > 0. Consider all subsets K ⊂ I(y0) such that for every K
there is a continuous arc g : [0, ε] → Rm such that g(0) = y0, g(t) ∈ C for all
t ∈ [0, ε], hi(g(t)) = 0 i ∈ K and hi(g(t)) < 0 i ∈ I\K for all t ∈ [0, ε].

Introduce the sets

C(K) = {y ∈ Rm | hi(y) ≤ 0 i ∈ K,hi(y) = 0 i ∈ I0}

and consider

ΓC(K) = {ȳ ∈ Rm | 〈∇hi(y0), ȳ〉 ≤ 0 i ∈ K, 〈∇hi(y0), ȳ〉 = 0 i ∈ I0}.

Let v ∈ Rm, v /∈ C. Consider the set ΠC(v) of points from C closest to v.
Evidently these points are the solutions of the following problem

|y − v| → min, y ∈ C. (2)

Theorem 1. Let y0 ∈ C and let T̂C(K)(y0) = ΓC(K)(y0) (or, equivalently,
NC(K)(y0) = ΓC(K)(y0)∗ ) hold for every K ⊂ I(y0). Then LEB holds at y0.

Proof. The assertion of the theorem is valid, if y0 ∈ intC. Assume that y0 is
a boundary point for C. Suppose that C doesn’t satisfy LEB at y0 ∈ C. Then
there exists a sequence vk → y0 such that vk /∈ C and

dC(vk) > k max{0, hi(vk) i ∈ I, |hi(vk)| i ∈ I0}, k = 1, 2, . . . . (3)

Let yk = y(vk) ∈ ΠC(vk), where ΠC(v) is the set of points from C closest to a
point v. Denote v̄k = (vk−yk)|vk−yk|−1, k = 1, 2, . . . . Then |vk−yk| ≤ |vk−y0|
and, hence, yk → y0.
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In view of finiteness of the set I one can extract from the sequences {vk}
and {yk} such subsequences (for the simplicity we keep the notation {vk} and
{yk} and for them) that I(yk) = K ⊂ I(y0) and doesn’t depend of k. Then,
hi(yk) = 0 for i ∈ K and hi(yk) < 0 for i ∈ I\K. Due to the continuity of
functions hi there is a neighborhood V (yk) such that hi(y) < 0 for all i ∈ I\K
and all y ∈ V (yk), i.e., V (yk) ∩ C(K) and ΠC(vk) = ΠC(k)∩V (yk)(vk).

Without loss of generality we can also assume that v̄k → v̄. Then, from (3)
follows

|vk − yk| > k max{0, 〈∇hi(ṽk
i ), vk − yk〉 i ∈ K, |〈∇hi(ṽk

i ), vk − yk〉| i ∈ I0, }

and
1
k

> max{0, 〈∇hi(ṽk
i ), v̄k〉 i ∈ K, |〈∇hi(ṽk

i ), v̄k〉| i ∈ I0}

where ṽk
i = yk + τki(vk − yk), 0 ≤ τki ≤ 1.

Therefore, max{0, 〈∇hi(y0), v̄〉 i ∈ K, |〈∇hi(y0), v̄〉| i ∈ I0} ≤ 0 and, there-
fore,

v̄ ∈ ΓC(K)(y0) (4)

From the definition of NC(K)(y0) follows that v̄ ∈ NC(K)(y0) if yk ∈
ΠC(K)(vk). Otherwise there exist small numbers τk > 0 such that ΠC(K)(yk +
τk(vk − yk)) = {yk} and v̄k is a proximal normal (see, 6.16 [27]) to C(K)

at a point yk. Then,
τk(vk − yk)
|τk(vk − yk)| = v̄k → v̄, v̄ ∈ NC(K)(y0). Consequently,

v̄ ∈ NC(K)(y0) and taking into account of (4) v̄ ∈ NC(K)(y0) ∩ ΓC(K)(y0) =
Γ∗
C(K)(y

0) ∩ ΓC(K)(y0). Since v̄ �= 0, the latter inclusion is impossible. Thus, C

satisfies LEB at y0.

The following examples show that Theorem 1 is effective.

Example 4. Let h1(y) = 1 − y2
1 − (y2 − 1)2 ≤ 0, h2(y) = 1 − y2

1 − (y2 + 1)2 ≤ 0,
y0 = (0, 0)T . It’s easy to check that MFCQ and RMFCQ don’t hold for C at
y0. However, the sets C, C(K1) = {y ∈ R2 | 1 − y2

1 − (y2 − 1)2 ≤ 0} under
K1 = {1} and C(K2) = {y ∈ R2 | 1 − y2

1 − (y2 + 1)2 ≤ 0} under K2 = {2}
satisfy the condition T̂C(K)(y0) = ΓC(K)(y0). Thus, LEB holds at y0 according
to Theorem 1.

Example 5. Let C = {y ∈ R2 | y2−y2
1 ≤ 0,−y2 ≤ 0,−y2−y2

1 ≤ 0}, y0 = (0, 0)T .
Then h1(y) = y2 − y2

1 , h2(y) = −y2, h3(y) = −y2 − y2
1 . Since ΓC(y0) = {ȳ ∈

R2 | ȳ2 = 0}, all constraints are essentially active at the point y0, i.e. Ia(y0) =
{1, 2, 3}. We have

rank{∇h1(y),∇h2(y),∇h3(y)} = rank

(−2y1 0 −2y1
1 −1 −1

)
�= const

Thus, RMFCQ does not hold at y0. In this case stronger constraint qualifications
MFCQ, RCRCQ, RCPLD do not hold too. On the other hand, it is easy to check
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that the conditions of Theorem 1 are fulfilled. This means in virtue of Theorem 1
LEB holds at the given point.

We can check it immediately. For all y such that y2 < 0, we obtain dC(y) =
|y2| and max{0, y2 − y2

1 ,−y2,−y2 − y2
1} = |y2|. Also, for y such that y2 > 0 and

y /∈ C we have dC(y) ≤ y2 − y2
1 and max{0, y2 − y2

1 ,−y2,−y2 − y2
1} = y2 − y2

1 .
Thus, dC(y) ≤ max{0, h1(y), h2(y), h3(y)} near y0.

This means LEB holds at the point under consideration.

4 Essentially Active Inequality Constraints and Error
Bound Properties

In this section we need the following lemmas about essentially active inequality
constraints.

Lemma 1. ([22]) Let y ∈ C. Then there exists a vector ȳ ∈ ΓC(y) such that
〈∇hi(y), ȳ〉 = 0 for all i ∈ I0 ∪ Ia(y), 〈∇hi(y), ȳ〉 < 0 for all i ∈ I(y)\Ia(y).

Lemma 2. ([6,22]) Let y ∈ C. Then Ia(y) = {i ∈ I(y) | ∃λ ∈ Λ0(y) such that
λi > 0}.

It is easy to see that from Lemma 2 follows that there exists λ ∈ Λ0(y) such
that λi > 0 for all i ∈ Ia(y) and λi = 0 for all i ∈ I\Ia(y).

We also need the following Caratheodory’s Lemma [3].

Lemma 3. Let 0 �= y =
∑
i∈J

αiv
i +

∑
i∈K

αiv
i, αi �= 0 for all i ∈ K, where the

vectors {vi i ∈ J} are linearly independent. Then there exist a set S ⊂ K and
numbers βi i ∈ J∪S such that the vectors {vi i ∈ J∪S} are linearly independent
and y =

∑
i∈J

βiv
i +

∑
i∈S

βiv
i, where αiβi > 0 for i ∈ S.

Let y0 ∈ C and let subsets K ⊂ I(y0) be defined as at the beginning of the
Sect. 3.

The following definition is motivated by the definition of RCPLD [3], consid-
ering positive-linearly dependent families of gradients.

Let S0 ⊂ I0, S ⊂ I. A vector family {∇hi(y) i ∈ S0 ∪ S} is called positive-
linearly dependent if there exist numbers λi ∈ R for all i ∈ S0 and λi ≥ 0 for all
i ∈ S such that ∑

i∈S0∪S

λi∇hi(y) = 0.

Let I00 be such that {∇hi(y0) i ∈ I00} is a basis for the vector family
{∇hi(y0) i ∈ I0}. We say that a feasible point y0 satisfies the positive linear
dependence condition (PLD) if there exists a neighborhood V (y0) of y0 such that

1) {∇hi(y) i ∈ I0} has the same rank for every y ∈ V (y0);
2) for every K ⊂ I(y0), if {∇hi(y0) i ∈ I00 ∪ (Ia(y0) ∩ K)} is positive-linearly

dependent, then {∇hi(y) i ∈ I00 ∪ (Ia(y0) ∩ K)} is linearly dependent for
every y ∈ V (y0) .
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We say that a feasible point y0 satisfies the positive linear dependence condi-
tion on C (PLDC) if the both requirements in the definition of PLD are fulfilled
for y ∈ V (y0) ∩ C.

Theorem 2. Let y0 ∈ C. Suppose that there is a neighborhood V (y0) such that

(i) there is a constraint qualification which holds at any feasible point near y0;
(ii) y0 satisfies PLDC .

Then LEB holds at the given point.

Proof. Suppose that LEB doesn’t hold at y0 ∈ C. Then, repeating the first
part of the proof Theorem 1 we obtain that there exist sequences vk → y0,
vk /∈ C, and yk ∈ ΠC(vk) such that yk → y0, v̄k = (vk − yk)|vk − yk|−1 → v̄,
I(yk) = K ⊂ I(y0), and (4) holds.

Due to KKT there exist Lagrange multipliers λk ∈ Rp such that

vk − yk

|vk − yk| =
p∑

i=1

λk
i ∇hi(yk), λk

i ≥ 0 i ∈ I, and λk
i = 0 for i ∈ I\K.

From the latter equality follows

v̄k =
∑

i∈I0∪K

λk
i ∇hi(yk), λk

i ≥ 0 i ∈ K, λk
i = 0 i ∈ I\K. (5)

We can rewrite (5) in the following way

v̄k −
∑

i∈K\Ia(y0)

λk
i ∇hi(yk) =

∑

i∈I00

αk
i ∇hi(yk) +

∑

i∈Ia(y0)∩K

λk
i ∇hi(yk), (6)

where λk
i ≥ 0 i ∈ K, αk

i ∈ R i ∈ I00.
1) Suppose that

v̄k −
∑

i∈K\Ia(y0)

λk
i ∇hi(yk) �= 0

for all k = 1, 2, ... beginning with some k0. Then due to Lemma 3 for any k there
exists a set J(k) ⊂ Ia(y0) ∩ K such that

v̄k −
∑

i∈K\Ia(y0)

λk
i ∇hi(yk) =

∑

i∈I00

αk
i ∇hi(yk) +

∑

i∈J(k)

αk
i ∇hi(yk),

where αk
i > 0 for all i ∈ J(k) and the vectors {∇hi(yk) i ∈ I00 ∪ J(k)} are

linearly independent.
Without loss of generality one may assume that the set J(k) is the same for

all k, i.e. J(k) = J .
Then

v̄k =
∑

i∈K\Ia(y0)

λk
i ∇hi(yk) +

∑

i∈I00

αk
i ∇hi(yk) +

∑

i∈J

αk
i ∇hi(yk), (7)
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where vectors {∇hi(yk) i ∈ I00 ∪ J} are linear independent, and αk
i > 0 for all

i ∈ J .
Let Mk = max{λk

i i ∈ K\Ia(y0), αk
i i ∈ J, |αk

i | i ∈ I00} → ∞. Then divid-
ing (7) by Mk, passing to a subsequence, if necessary, and taking the limit we
obtain

∑

i∈K\Ia(y0)

λi∇hi(y0) +
∑

i∈I00

λi∇hi(y0) +
∑

i∈J

λi∇hi(y0) = 0, (8)

where λi ≥ 0 i ∈ J ∪ (K\Ia(y0)), λi ∈ R i ∈ I00, and there are some λi �= 0.
Multiply (8) by a vector ȳ from Lemma 1. Then we have

∑

i∈K\Ia(y0)

λi〈∇hi(y0), ȳ〉 = 0.

On the other hand, according to Lemma 2 〈∇hi(y0), ȳ〉 for all i ∈ K\Ia(y0).
This means that λi = 0 for all i ∈ K\Ia(y0) and, therefore, (8) implies

∑

i∈I00

λi∇hi(y0) +
∑

i∈J

λi∇hi(y0) = 0,

where there are λi �= 0 .
Since vectors {∇hi(yk) i ∈ I00 ∪ J} are linear independent, this equality

contradicts PLDC .
Suppose that {Mk} is bounded. Then without loss of generality one may

assume that λk
i → λi ≥ 0 i ∈ K\Ia(y0), αk

i → λi ≥ 0 i ∈ J , αk
i → λi ∈ R i ∈

I00.
Taking the limit in (7) we have

v̄ =
∑

i∈K\Ia(y0)

λi∇hi(y0) +
∑

i∈I00

λi∇hi(y0) +
∑

i∈J

λi∇hi(y0) ∈ [ΓC(K)(y0)]∗.

This contradicts (4).
2) Suppose that

v̄k =
∑

i∈K\Ia(y0)

λk
i ∇hi(yk) (9)

for some infinite number of k (for the simplicity assume that for all k). If {λk
i }

is unbounded, then dividing (9) by max{λk
i i ∈ K\Ia(y0)} and passing to the

limit we have ∑

i∈K\Ia(y0)

λi∇hi(y0) = 0,

where there are some λi �= 0.
However, due to Lemma 2 and the definition of the set K\Ia(y0) all λi should

be null. This means that under (9) the sequence {λk
i } cannot be unbounded.

Thus, the sequence {λk
i } is bounded. Then without loss of generality λk

i → λi ≥ 0
and, hence,

v̄ =
∑

i∈K\Ia(y0)

λi∇hi(y0) ∈ [ΓC(K)(y0)]∗.
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This contradicts (4).
Thus, LEB holds at y0.

Remark. Remind that the set C satisfies the weakest constraint qualification
at a point y ∈ C if, independently of the objective function f having a local
minimizer y on the set C, there exists vector λ ∈ Rp such that the KKT condition
holds:

∇f(y) +
p∑

i=1

λi∇hi(y) = 0, λi ∈ R for i ∈ I0, λi ≥ 0 and λihi(y) = 0 for i ∈ I.

The following example shows that Theorem 2 can be useful in the case where
RMFCQ (hence, also MFCQ, RCRCQ and RCPLD) is not effective.

Example 6. Let C = {y ∈ R2 | y2−y2
1 ≤ 0,−y2 ≤ 0,−y2−y2

1 ≤ 0}, y0 = (0, 0)T .
Then h1(y) = y2 − y2

1 , h2(y) = −y2, h3(y) = −y2 − y2
1 . Since ΓC(y0) = {ȳ ∈

R2 | ȳ2 = 0}, all constraints are essentially active at the point y0, i.e. Ia(y0) =
{1, 2, 3} . We have

rank{∇h1(y),∇h2(y),∇h3(y)} = rank

(−2y1 0 −2y1
1 −1 −1

)
�= const

Hence, RMFCQ (hence, MFCQ, RCPLD, RCRCQ too) does not hold at y0.
Check the condition of Theorem 2. It is easy to check that ACQ holds at

all feasible points near y0. In the example the sets K from Theorem 2 are the
following:

K = K1 = {1}, K = K2 = {2}, K = K123 = {1, 2, 3}.

In this case the vector families {∇hi(y0) i ∈ K1} and {∇hi(y0) i ∈ K2} are
not positively-linear dependent. At the same time

{∇hi(y0) i ∈ K123} = {
(

0
1

)
,

(
0

−1

)
,

(
0

−1

)
}

is positively-linear dependent, and

{∇hi(y) i ∈ K123} = {
(−2y1

1

)
,

(
0

−1

)
,

(−2y1
−1

)
}

is linearly dependent in V (y0).
Thus y0 satisfies PLDC and, hence, in virtue of Theorem 2 LEB holds at the

point y0.
Check this directly. For all y such that y2 < 0, we obtain dC(y) = |y2| and

max{0, y2 − y2
1 ,−y2,−y2 − y2

1} = |y2|. Also, for y such that y2 > 0 and y /∈ C
we have dC(y) ≤ y2 − y2

1 and max{0, y2 − y2
1 ,−y2,−y2 − y2

1} = y2 − y2
1 . Thus,

dC(y) ≤ max{0, h1(y), h2(y), h3(y)} near y0.
This means LEB holds at the point under consideration.
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5 Final Remarks

In the paper we have investigated necessary conditions for the local error bound.
We also proved sufficient conditions which imply the existence of local error
bounds for the systems of inequalities and equalities whenever constraints func-
tions are continuously differentiable. The obtained sufficient conditions extend
some known results devoted to the local error bound in nonlinear programming.

One of the results derives sufficient conditions for the local error bound on
the base of normal and tangent cones. On the other hand, it is well known that
some constraint qualifications (in particular, RCPLD) guarantee the existence
of the local error bound. In the paper we prove sufficient conditions involving
weaker assumptions than in RCPLD on the behavior of the gradients for the
active inequality constraints.
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Abstract. The single-projection linear optimization method (Nurmin-
ski, E.A.: Single-projection procedure for linear optimization. Journal
of Global Optimization. 66(1), 95–110 (2016)) demonstrated a promis-
ing computational performance on the series of giga-scale academic and
practical problems shown in this talk. Another attractive feature of this
method is its potential for row-wise decomposition of large-scale prob-
lems. It can be applied irrelevant to the problem structure but also can
make use of it if present. This decomposition technique might take dif-
ferent forms as well, and a few variants will be presented.
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Introduction

This article deals with the esteemed linear optimization problem

min cx
x ∈ X

= cx� (1)

where X is a polyhedral set defined by the different combinations of equalities
and inequalities. It was shown in [1] that (1) can be solved by a single projection
operation, which might be an interesting theoretical result but its practical sig-
nificance was difficult to estimate. Since that we implemented several versions of
projection procedures and accumulated specific experience with this idea which
raised some hopes for the competitive advantage of this approach even in the
well-established area of linear optimization. Apart from rather interesting com-
putational results obtained by numerical experiments with this approach, this
idea presents new possibilities for the decomposition of large problems which
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have a high degree of sparseness only without any specific structure or have a
mixture of these which are difficult to separate.

The computational core of this approach is a projection operation that is
widely used in theoretical mathematics, computational algorithms and numer-
ous applications: image processing, machine learning, automatic classification,
to name just a few. So projection toolbox contains many procedures, the most
notable and related to the aims of this paper is Von Neumann alternating projec-
tion algorithm [2] and its extensions (see f.i. [3]) and polytope projection method
of Ph. Wolfe [4] which we adapted for projection onto a polyhedral convex cone.

1 Notations and Preliminaries

Let E be a finite-dimensional vector space of the primal variables with the stan-
dard inner product and the norm ‖x‖2 = xx. This space is then self-conjugate
with the duality relation induced by the inner product. The dimensionality of
this space, if needed, is determined as dim(E) and the space of dimensionality
n when necessary is denoted as En.

The non-negative part of any space E will be denoted as E+. Among the
others special vectors and sets we mention the null vector 0, vector of ones
1 = (1, 1, . . . , 1), and the standard simplex Δ = E+ ∩ {x : 1x = 1}. Convex
and conical hulls of set X are denoted in more or less standard notation: co(X)
and Co(X). By using the inner product we can define a notion of the orthogonal
complement of a linear subspace L ⊂ E: L⊥ = {x : xz = 0 for all z ∈ L}.

We define linear operators, acting from E into E′ with dim(E′) = m as
collections of vectors A = {a1, a2, . . . , am} with ai ∈ E which produce vector y =
(y1, y2, . . . , ym) ∈ Em according to following relations yi = aix, i = 1, 2, . . . ,m.
In the classical matrix-vector notation vectors A form the rows of the matrix
A and y = Ax. At the same time we will consider the row subspace E′ as the
linear envelope of A:

E′ = lin(A) = {x =
m∑

i=1

aizi = AT z, z ∈ Em} ⊂ E.

The projection operator of a point p onto a closed convex set X in E is
defined as

p ↓ X = argmin min
x∈X

‖p − x‖,

that is minx∈X ‖p − x‖ = ‖p − p ↓ X‖. For closed convex X, this operator is
well-defined and Lipschitz-continuous with the Lipschitz constant less or equal
1. We will also notice that this operator is idempotent: (p ↓ X) ↓ X = p ↓ X and
linear for projection on linear subspace L of E: αp ↓ L = α(p ↓ L) for α ∈ IR
and (p + q) ↓ L = p ↓ L + q ↓ L. Of course p = p ↓ L + p ↓ L⊥. The point-to-set
projection operation is naturally generalized for sets: X ↓ A = {z = x ↓ A,
x ∈ X}. Using this generalization it is easy to prove the following result which
will be used further on.
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Lemma 1. For any set X and linear space L with orthogonal complement L⊥

X ↓ L⊥ = (X + L) ∩ L⊥. (2)

Proof. If x⊥ ∈ X ↓ L⊥ then x⊥ ∈ L⊥, and there exists x ∈ X such that
(x⊥−x)z = 0 for any z ∈ L⊥ by optimality condition for x⊥. But that means that
x⊥−x ∈ L, and hence x⊥ ∈ x+L ⊂ X+L which proves X ↓ L⊥ ⊂ (X+L)∩L⊥.

The reverse holds true as well. If x⊥ ∈ (X +L)∩L⊥ then there exists x ∈ X
such that (x+L)∩L⊥ = x⊥ and therefore x⊥L⊥, and x⊥ ∈ x+L or x−x⊥ ∈ L.
Hence (x − x⊥)z = 0 for any z ∈ L⊥.

By optimality conditions which are in this case necessary and sufficient and
uniqness arguments x⊥ = x ↓ L⊥ ⊂ X ↓ L⊥ which complete the proof.

For a closed convex set X denote as (X)z its support function

(X)z = min
x ∈ X

xz. (3)

With the help of this function we can transform the least-norm problem for
polyhedron X into unconditional non-smooth problem and vice versa.

Lemma 2 [10]. Let X is a bounded convex polyhedron. Then

min
x ∈ X

1
2
‖x‖2 = −min

x
{1
2
‖x‖2 + (X)x}. (4)

Proof. Indeed, X can be represented as a convex hull of its extreme points:
X = co(xi, i = 1, 2, . . . , N). Then

min
x ∈ X

1
2
‖x‖2 = min

x = Xu, u ∈ Δ

1
2
‖x‖2 = min

x, u ∈ Δ
max
w

{1
2
‖x‖2 + w(x − Xu)}

= max
w

min
x

{1
2
‖x‖2 + wx} + min

u ∈ Δ
(−wXu) = max

w
{−1

2
‖w‖2 − max

z ∈ X
wz}

= −min
w

{1
2
‖w‖2 + (X)w}.

It is interesting to note that the initial form of the problem and the final expres-
sion do not make any use of the finite representation of X. Nevertheless it is
required for the proof.

2 Projection and Linear Optimization

The main result, which is going to be used here, is the fact that the projection
operation can be used to solve the linear optimization problem (1) where X is a
polyhedral set defined by the different combinations of equalities and inequalities.
It was shown in [1] that under not very restrictive assumptions (1) can be solved
by a single projection operation, that is x� = (x0 − τc) ↓ X for arbitrary x0
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and τ > 0 large enough. This result is an interesting fact by itself was difficult
to estimate from the practical point of view and this note aims to show its
computational perspectives.

To begin with we consider (1) in more details as

min
Ax ≤ b

cx = cx� (5)

with n-dimensional x ∈ En and m-dimensional right-hand side b ∈ Em.
The above-mentioned result claims that

min
Ax ≤ b

‖x − (x0 − τc)‖2 = ‖x� − (x0 − τc)‖2 (6)

for arbitrary x0 and τ > 0 large enough. After simple shift in variables y =
x − (x0 − τc) the latter problem becomes

min
Ay ≤ b′

‖y‖2 = ‖y�‖2 (7)

where b′ = b − A(x0 − τc). It means that without any loss of generality, we may
consider the least-norm problem for the feasible set described by the same linear
operator and recalculated right-hand sides of constraints.

The following lemma justifies the use of convenient exact penalty function
based on Chebyshev-like cost of constraint violation for solving problems like (7).

Lemma 3. There exists Γ > 0 such that for all γ ≥ Γ the problem (5) and

min{1
2
‖x‖2 + γ|Ax − b|+} = min{1

2
‖x‖2 + γπA,b(x)} (8)

where
πA,b(x) = |Ax − b|+ = max{0, max

i=1,2,...,n
(Ax − b)i},

and (Ax − b)i—i-th coordinate of the vector Ax − b are equivalent.

For further developments we complement the vector x with one additional
coordinate, i.e. define x̄ = (x, χ) ∈ En+1 and extended m × (n + 1) matrix

Ā = ‖A
... − b‖. Then the penalty term in (5) can be rewritten as

πA,b(x) = γ|Ax − b|+ = γ max{0, max
i=1,2,...,m

(Āx̄)i}
= γ max{0, max

u∈Δm

uĀx̄} = γ max
z∈co({0,ĀT Δm})

zx̄

= γ(co({0, ĀT Δm}))x̄ =
(
co({0, γĀT Δm})

)
x̄

(9)

with x̄ = (x, 1).
Combining Lemmas 2, 3, and the penalty formula (9) we can obtain the

following theorem.
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Theorem 1 [11]. Solution of the problem min ‖x‖2, Ax ≤ b can be derived from
the solution pe ↓ K of the projection problem

min
x̄∈K

‖x̄ − pe‖2 = ‖pe ↓ K − pe‖2 (10)

where x̄ = (x, χ) ∈ En+1, pe = (0, 0, . . . , 0, 1) ∈ En+1, and K = ĀT Em
+ is a

cone, generated by rows of the extended matrix Ā.

Proof. Referring to Eq. 8 consider the problem

min
x̄pe = 1

{1
2
‖x̄‖2 + γ(D)x̄}

= max
ω

min
x̄

{1
2
‖x̄‖2 + γ(D)x̄ + ω(x̄pe − 1)}

= max
ω

{−ω + min
x̄

{1
2
‖x̄‖2 + γ(D)x̄ + ωx̄pe}}

= max
ω

{−ω + min
x̄

{1
2
‖x̄‖2 + (γD + ωpe)x̄}}

= max
ω

{−ω − min
x̄ ∈ γD + ωpe

1
2
‖x̄‖2}

= max
ω

{−ω − min
x̄ ∈ γD

1
2
‖x̄ − ωpe‖2}

= −ω� − 1
2

min
x̄ ∈ γD

‖x̄ − ω�pe‖2,

(11)

where ω is the Lagrange multiplier for the constraint x̄pe = 1 and ω� is its unique
optimal value.

Together with γD we consider the cone K = Co(D) and prove that

min
x̄ ∈ γD

‖x̄ − ω�pe‖2 = min
x̄ ∈ K

‖x̄ − ω�pe‖2 = δ(ω�)2, (12)

for γ > 0 large enough.
Indeed, let

min
x̄ ∈ K

‖x̄ − ω�pe‖2 = ‖x̄� − ω�pe‖2, (13)

where x̄� =
∑N

i=1 μiĀi. Of course

‖x̄� − ω�pe‖2 ≤ min
x̄ ∈ γD

‖x̄ − ω�pe‖2 (14)

as γD ⊂ K for any γ.
On the other hand

x̄� =
N∑

i=1

μiĀi ∈ γD = {z =
N∑

i=1

λiĀi, λi ∈ [0, γ]}
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for γ > maxi μi, so

‖x̄� − ω�pe‖2 ≥ min
x̄ ∈ γD

‖x̄ − ω�pe‖2 (15)

for γ large enough. Combination of (14) and (15) proves (12).
To complete we specify the dependence of δ(ω�) upon ω� in (12). By definition

δ(ω)2 = min
x̄ ∈ K

‖x̄ − ωpe‖2 = ω2 min
x̄ ∈ K

‖x̄/ω − pe‖2

= ω2 min
x̄ ∈ K/ω

‖x̄ − pe‖2 = ω2 min
x̄ ∈ K

‖x̄ − pe‖2 = ω2δ2
(16)

and the dual problem with respect to ω becomes min
ω

{ω +
1
2
δ2ω2} with the

solution ω� = −δ−2.
From the computational point of view, we replaced the linear problem with

many constraints (we need at least n + 1 constraints to obtain a bounded poly-
hedron) with the cone projection problem of less dimensionality but many cone
generators. The correspondence between (1) and the projection problem (10) is
graphically demonstrated by Fig. 1.

Fig. 1. Transformation of the linear optimization problem (1) into projection
problem (10)

As seen from Fig. 1, this transformation adds one additional variable into
the projection problem, and uses rows-constraints of the original problem as the
code generators. There is a hope that the projection algorithm may effectively
select active generators which actually determine solution of (10) and thus have
good computational behavior.
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These hopes were confirmed by the computational experiments, where we
compared run times for the solution of large-scale dense linear optimization prob-
lems by projection algorithm and state-of-art optimization solver CPLEX. This
set of experiments was conducted with linear optimization problems (5) with
random dense matrices A generated according to the suggestion of Ph. Wolfe [4]
which produces sufficiently different random rows of constraints. The results of
these experiments are shown in Fig. 2, where you can see the dependence of
run-time for the solver CPLEX [5] (dotted line) and the projection algorithm
(two kinds of crosses) upon the total data volume measured in units of 100 000
double-precision numbers. To test the stability of the projection algorithm, we
run it twice, which is shown in the Figure.

Fig. 2. Dependence of the solution run-time upon the total volume of problem data

For technical and administrative reasons, CPLEX and projection algorithms
were executed on different machines. CPLEX (version 12.6.1.0) used Intel Xeon
E7-4870 (1 socket, 8 cores, RAM 96 Gb 2.4 GHz). Projector algorithm used Intel
Core i3-3220 CPU 3.30 GHz, 4 cores computer with 4 Gb RAM packed into HP
nettop.

For CPLEX, each test problem was presented in MPS format. We allowed
CPLEX to choose the best solving algorithm and presolver automatically for the
input problem and to use the maximum possible number of threads for any of the
parallel CPLEX optimizers. The analysis of the CPLEX protocols demonstrated
first that the automatic presolve procedure excluded no rows or columns from
any test problem. It means that the problems were complex enough. Secondly,
the conducted experiments showed that CPLEX used the dual simplex method
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for the number of nonzeros elements of the constraint matrix less than 3 · 106,
and the barrier algorithm otherwise. So it can be said that CPLEX tried its best.

The linear optimization problems used 100% dense random matrices with
elements in the range [−5,+5] and the rows-to-columns ratio of about 3 : 1. All
in all, twenty test problems (4) were generated in this experiment if disregard
repetition of the test computations for projection algorithm. The number of
nonzero elements of the constraint matrix varied from 106 to 2 · 107 with the
step size 106, so the pick memory usage for input data only was about 160 Mb.
It can be seen from Fig. 2 that projection routine steadily outperform CPLEX
and its advantage becomes large when problems grow. Further details of the
experiment, test generator, etc., are available upon request.

Of course, there are other linear optimization solvers, but they are hardly
free accessible for the problems of this side. For instance, the popular NEOS
platform provides free access to such solvers as MINOS, GUROBI, but for the
problems which can be written into the file up to 16 MB. Our smallest test
problem that has been generated for numerical experiments occupies 21,25 MB
in MPS format.

3 Canonical Linear Optimization Problems

In this section, we consider the standard formulation of the problem (1) where
contrains are divided into two sets XA and XP accoding to the textbook formu-
lation of the linear optimization problems. There the feasible set X is considered
as the intersection of affine subspace XA, described by the set of linear equations
XA = {x : Ax = b} and polyheadron XP = {x : Px ≤ q}, which is mostly often
just the nonnegativity constraints.

This representation provides a convenient framework for the simplex method
and often really takes place in practical problems where these parts are very
different in their structure and size. The affine subspace XA can be responsi-
ble for something like material an/or flow balances and has essentially lesser
rows than columns, which represent processes itself. Polyhedron XP describes
technological and physical constraints for process variables and typically has the
number of rows of the order of variables, by the necessity for instance, including
non-negativity or boundary constraints on variables. However, it may include
much more rows of additional restrictions.

The constraines may be subdivided in additional subgroupes, related for
instance to diffrent time periods in dynamic linear programming. If these groupes
have a few linking variables it may be used to construct effective numerical
methods [9].

Taking into account this decomposition the feasible set X becomes in alge-
braic term the intersection

X = XA ∩ XP = {x : Ax = b} ∩ {x : Px ≤ q}. (17)

After transformation of (1) into dual projection problem, described early in the
Sect. 2 the cone Co(X) will look like following:

K = {z : z = AT u + PT v, u ∈ Eu, v ∈ E+
v } = A + P (18)
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where we misuse the same notations for the different things:

A = AT Eu—the linear row space of the matrix A;
P = PT E+

v —convex closed cone, generated by rows of the matrix P

Without going into finer decomposition the main projection problem becomes

min
z ∈ Z

‖p − z‖2 = ‖p − p ↓ Z‖2, (19)

where Z = A + P .
The problem (19) in its turn can be rewritten as the least distance problem

between two sets: Aα = A − αp and Pα = (1 − α)p − P where α is an arbitrary
constant which can be used to split p between these two sets. Consequently (19)
becomes

min
zA ∈ Aα

zP ∈ Pα

‖zA − zP ‖2 = ‖z�
A − z�

P ‖2 (20)

the notable problem for computational mathematics, which dates back to [2].

3.1 Alternative Projection Algorithms

As we are specifically interested in large-scale problems, we are looking for the
most straightforward methods for solving (20). A very natural candidate for this
is the alternating projection method of von Neumann [2] which is described in
Algorithm 1. This method is most often considered for the solution of convex
feasibility problems, but fortunately, for the case of nonoverlapping convex sets,
it solves namely the least distance problem (20).

Data: Sets Co(X), lin(A), the vector p.
Result: z�

A ∈ lin(A) and z�
X ∈ Co(X) which solve (20).

Initialization: Set k = 0, zk
X = p, zk

A = 0;

while zk
A and zk

X do not solve (20) do

Compute zk
A = (p+ zk

X) ↓ A;

Compute zk
X = zk

A ↓ Co(X);
Increment iteration counter k → k + 1, etc.

end

Algorithm 1: Alternating projection algorithm
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Figure 3 demonstrates not very impressive convergence of this algorithm for
computing the minimal distance between 40-dimensional linear subspace A =
AT E40 of 400-dimensional non-negative ortant E400

+ shifted by a random vector
to avoid intersection of these two sets. The algorithm demonstrates the expected
linear convergence with the multiplier of the order of 0.985 which implies the
10-fold accuracy improvement in 150 iterations. This convergence was acceler-
ated using many ideas, the earliest is probably [6], and see, for instance, [3,7] and
references therein for further developments. However, these ideas mainly focused
either on the convex feasibility problem or on the case of linear subspaces. At the
moment, we have no experience with these suggestions but we intend to study
these possibilities.

Fig. 3. Von Neumann alternating projection algorithm

For a moment, we consider the case of two sets, one of them being a linear
subspace and the other being a convex polyhedral cone with a finite number
of generators. The problem of two sets is a special case anyway, see [8], and
subspace-cone is also a special one which allows to transform (19) into reduced
projection problem which can be solved in a finite number of elementary projec-
tion operations. There are suggestions for accelerating the convergence of this
method; see f.i. [7] and references therein.
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3.2 Single Projection Algorithm

The problem (19) can be solved in two-stage manner:

min
z = zL + zK

zL ∈ L, zK ∈ K

‖p − z‖2 = min
zK ∈ K

min
zL ∈ A

‖p − zL − zK‖2 =

min
zK ∈ K

‖p − zK − (p − zK) ↓ L‖2 =

min
zK ∈ K

‖p − p ↓ L − (zK − zK ↓ L)‖2 =

min
zK ∈ K

‖p ↓ L⊥ − zK ↓ L⊥)‖2 = min
zK ∈ K ↓ L⊥

p⊥
L − zK‖2 =

min
zK ∈ K⊥

L

‖p⊥
L − zK‖2 = ‖p⊥

L − p⊥
L ↓ K⊥

A ‖2 =

‖p − pL − p⊥
L ↓ K⊥

L ‖2 = ‖p − z�‖2.

(21)

where K⊥
L = K ↓ L⊥ = Co(X) ↓ L⊥ and p⊥

L = p ↓ L⊥.
It can be shown that z� = pL + p⊥

L ↓ K⊥
L ∈ K + L, therefore it solves (19).

Indeed, what we obtained from these transformations is that

min
y ∈ K⊥

‖p⊥ − y‖2 = min
z ∈ K + L

‖p − z‖2 (22)

Solution of the left-hand side of (22) is of course y� = p⊥ ↓ K⊥. To determine the
solution of the right-hand side of (22) we notice that according to Lemma 1 K⊥ =
(K + L) ∩ L⊥ and hence y� = p⊥ ↓ K⊥ = zK + zL for some zK ∈ K, zL ∈ L.
Further on

p⊥ − p⊥ ↓ K⊥ = p − pL − (zK + zL) = p − w�,

where w� = pL + (zK + zL) = pL + p⊥ ↓ K⊥ ∈ K + L and hence by uniqness
argument solves the right-hand side of (22).

The result of these transformations allows to suggest the Algorithm 2. The
main computational burden of Algorithm 2 consists in computing p⊥

A ↓ K⊥
A

which in turn involves the projection of the cone K onto A⊥.

Data: Sets Co(X), lin(A), the vector p.
Result: z� ∈ lin(A) + Co(X) which solves (20).
Step 1. Compute pA = p ↓ A and set p⊥

A = p − pA;

Step 2. Compute KA = K ↓ A and set K⊥
A = K − KA component-wise, that is

by generators;

Step 3. Compute p⊥
A ↓ K⊥

A ;

Step 4. Set z� = pA + p⊥
A ↓ K⊥

A .

Algorithm 2: Cone projection algorithm
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The computational performance of this algorithm can be estimated from the
experiments presented on Fig. 4. The exciting feature of these experiments is
that with the growing problem, the dependence is becoming closer to linear and
so the algorithm may outperform the conventional algorithms, which generally
demonstrate polynomial growth.

Fig. 4. Dependence of the solution run-time upon the total volume of problem data

Another set of experiments was performed with the randomly generated lin-
ear optimization problems, where the numbers of the equality constrains con-
sisted 10% of the number of variables, so the peak number of nonzero elements
was about 600 ths, and the run-time for the largest test was about 210 s.

The detailed analysis of the performance of this algorithm reveals that the
number of internal iterations in the procedure for computing p⊥

A ↓ K⊥
A grows

practically linear with the dimensionality of the problem, as presented on Fig. 5.
It means that the algorithm pracically does not err in selecting active gen-

erators in the conical part of constraints, so the major improvements which can
be done consist in speeding up the linear algebra operations and selections of
candidats to enter the basis. Great part of these operations can be, for instance,
parallelized.
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Fig. 5. Dependence of the number of internal iterations on dimensionality of the
problem

Conclusion

It can be said that both theoretical considerations and numerical experiments
allow saying that the idea of using projection operation for solving large lin-
ear optimization problems has certain computational advantages. However, this
algorithm’s key operation–projection of a point onto a polyhedral cone needs
substantial speedup, connected, for instance, with the effective use of sparsity
features and/or parallel computations.
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Abstract. The linear second-order cone programming problem is con-
sidered. For its solution the variant of the primal simplex-type method
is proposed. The notion of the S-extreme point of the feasible set is
introduced. Among all S-extreme points the regular S-extreme points
are regarded separately. The passage from the regular S-extreme point
to another one is described. The method can be treated as the general-
ization of the primal simplex-type method for linear programming. At
each iteration the dual variable together with the dual weak variable are
defined. As in linear programming, the basis of the extreme point is used.
Among all basic variables the facet basic variables and the interior basic
variable are selected.

Keywords: Linear second-order cone programming · Primal
simplex-type method · Extreme and S-extreme points

1 Introduction

The standard linear second-order cone programming problem (SOCP) is the
problem of minimizing the linear goal function on the intersection of the linear
manyfold with the direct product some second-order cones [1,2]. Many others
optimization problems, including combinatorial optimization problems, can be
reformulated as SOCP [1,3].

The main approach to constructing numerical techniques for solving the
SOCP is based on the generalization of the corresponding methods from linear
programming. The interior point methods are especially well generalized for the
SOCP [4,5]. Unlike to interior point methods, the generalization of the simplex-
type algorithms for SOCP is encountered with many difficulties. Certainly, this
is because the second-order cone is not polyhedral. The other difficulty is con-
nected with the possible different dimensions of the partial second-order cones.
Nevertheless, there are some variants of the primal simplex-type methods for
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partial cases of the SOCP [6,7]. The principal simplex-type method for cone
programming is given in [8] too.

In [9] the variant of the primal simplex-type method for SOCP had been
proposed. In this method the passage from one extreme point to another one
was described under assumption that all extreme points in iterative process are
regular. In other words, all these extreme points are non-degenerate. Due to
this regularity the system of linear equations for determining the dual variable
has the single solution. But in many cases we have the non-regular extreme
points in which the system of linear equations for computing the dual variable is
undetermined. In order to overcome this difficulty in present paper the special
notion of the S-extreme point is introduced. This notion is based on consideration
of sub-cones of less dimensions with respect to the initial second-order cones.

The paper is organized as follows. In Sect. 2, the statement of SOCP is given.
In Sect. 3, the notion of the S-extreme points is introduced. The pivoting in the
case of regular S-extreme point is described in Sect. 4. Here the definitions of
basis of the S-extreme point and the definitions of facet and interior variables
are given too.

2 The Problem Statement

Let Kn denote the second order cone (the Lorentz cone) in R
n. According to its

definition
Kn =

{
x = [x1; x̄] ∈ R × R

n−1 : x1 ≥ ‖x̄‖} ,

where ‖ · ‖ is the standard Euclidean norm. Here and in what follows the point
with comma in enumerations of vectors or components of the vector means that
these vectors or components are placed one under another. The cone Kn is self-
dual, i.e. (Kn)∗ = Kn. It induces in R

n the partial order, namely, x1 �Kn x2, if
x1 − x2 ∈ Kn.

Consider the cone programming problem

min
∑r

i=1〈ci, xi〉,∑r
i=1 Aixi = b, x1 �Kn1 0n1 , . . . , xr �Knr 0nr

.
(1)

Here ci ∈ R
ni , 1 ≤ i ≤ r, and b ∈ R

m. The matrix Ai has the dimension m × ni,
1 ≤ i ≤ r. Angle brackets denote the Euclidean inner product in R

ni .
The following problem is dual to (1)

max 〈b, u〉,
AT

i u + yi = ci, 1 ≤ i ≤ r, y1 �Kn1 0n1 , . . . , yr �Knr 0nr
,

(2)

where u ∈ R
m.

Let n = n1 + · · · + nr. Using the notations

c = [c1; . . . ; cr] ∈ R
n, x = [x1; . . . ;xr] ∈ R

n; y = [y1; . . . ; yr] ∈ R
n,

and also
A = [A1, . . . Ar, ] , K = Kn1 × · · · × Knr ,
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the pair of problems (1) and (2) may be written in the form:

min 〈c, x〉, Ax = b, x �K 0n, (3)

max 〈b, u 〉, ATu + y = c, y �K 0n. (4)

We assume that solutions of problems (3) and (4) exist, and the rows of the
matrix A are linear independent. The feasible set of problem (3) denote by FP .

The necessary optimality conditions for problems (3) and (4) are following:

〈x, y〉 = 0, Ax = b, ATu + y = c, x ∈ K, y ∈ K. (5)

The simplex-method is one of the ways for solving this system of equations and
inclusions,

3 The Extreme and S-Extreme Points of FP

Let x ∈ K. Choose among all components xi of the vector x the null components
and the non-null components. In addition, we choose among non-null components
the interior components xi, which belong to the interior of the cone Kni , and the
boundary components xi, which belong to the boundary of Kni (more exactly,
which belong to any non-zero face of this cone). We compose from boundary,
interior and zero components of x three blocks: xF , xI and xO. Without loss
of generality suppose that at the given point x these blocks are located at the
indicate order, that is x = [xF ;xI ;xO]. Suppose also that

xF = [x1; . . . ;xrF ] , xI =
[
xrF+1; . . . ;xrF+rI

]
, xN =

[
xrF+rI+1; . . . ;xrF+rI+rO

]
.

Thus, the first block consists of the rF components. The second and the third
blocks consist of rI and rO components, respectfully. Some blocks may be empty,
in this case the corresponding numbers rF , rI or rO are zero. We have rF + rI +
rO = r.

According to introduced partition of x onto three blocks of components there
exists the partition of the index set Jr = [1 : r] onto three subsets

JF (x) = [1, . . . , rF ], JI(x) = [rF + 1, . . . , rB ], JO(x) = [rB + 1, . . . , r],

where rB = rF + rI . Below the notation JB(x) = JF (x) ∪ JI(x) is also used.
For each non-zero component xi, i ∈ JB(x), the following decomposition

xi = ηi,1 ei,1 + ηi,ni
ei,ni

, (6)

takes place (see [1]). Here ei,1 and ei,ni
are the vectors having the form

ei,1 =
1√
2

[
1;

x̄i

‖x̄i‖
]

, ei,ni
=

1√
2

[
1;− x̄i

‖x̄i‖
]

,
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and
ηi,1 =

1√
2

(
x1
i + ‖x̄i‖

)
, ηi,ni

=
1√
2

(
x1
i − ‖x̄i‖

)
.

Both vectors ei,1 and ei,ni
have the unit length and are orthogonal each to

other. If xi ∈ Kni , then ηi,1 ≥ 0 and ηi,ni
≥ 0. Moreover, if i ∈ JF (x), then

ηi,1 =
√

2x1
i , ηi,ni

= 0.
With each non-zero point xi ∈ R

ni the following symmetric matrix

Arr (xi) =
[

x1
i x̄T

i

x̄i x1
i Ini−1

]
.

is associated. Here and in what follows Ik is a unite matrix of order k. The
point xi belongs to the cone Kni if and only if the matrix Arr (xi) is positive
semi-definite. Moreover, if xi is an interior point of Kni , the matrix Arr (xi) is
positive definite.

Denote by Ei an orthogonal matrix with columns being the eigenvectors of
the matrix Arr (xi). The vectors ei,1 and ei,ni

are the eigenvectors of Arr (xi).
The matrix Ei can be represented in the form

Ei =

[

ei,1, E′
i, ei,ni

]

,

where E′
i is the matrix with dimension ni × (ni − 2). All columns of Ei are

orthogonal each to others and have the unit length. Moreover, columns of Ei are
orthogonal to the vectors ei,1 and ei,ni

.
In what follows, we need in the definition of an extreme point of the feasible

set FP of problem (3). Let Fmin(x|K) be the minimal face of the cone K con-
taining the point x ∈ K. Moreover, let N (A) be the null space of the matrix A.
According to [8] x ∈ FP be an extreme point of the set FP , if

lin (Fmin(x | K)) ∩ N (A) = {0n},

where lin (Fmin(x|K)) is a liner hull of the face Fmin(x|K). Therefore, the dimen-
sion of the minimal face Fmin(x|K) and the dimension of the null-space N (A),
which is equal to n − m, does not exceed the dimension of the whole space R

n.
This circumstance imply the inequality: dimFmin(x|K) ≤ m.

We have

dim Fmin(xi |Kni) =
{

1, i ∈ JF (x),
ni, i ∈ JI(x).

Therefore, for the dimension of the minimal face, to which the extreme point x
belongs, the inequality dimFmin(x | FP ) ≤ m must hold, where

dim Fmin(x | FP ) = rF + nI , nI = nI(x) =
∑

i∈JI(x)

ni.

An extreme point x ∈ FP is called regular, if dimFmin(x | FP ) = m. In the case,
where dim Fmin(x | FP ) < m, an extreme point x ∈ FP is called irregular.
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Let x = [xF ; xI ; xO] be the extreme point of the set FP . Let, in addition,
xi = ηi,1ei,1, where i ∈ JF (x), and

ηi = [ηi,1; 0; . . . ; 0; ηi,ni
] ∈ R

ni
+ , i ∈ JI(x).

We set

ηF = [η1,1, . . . , ηrF ,1] ∈ R
rF
+ , ηI = [ηrF+1; . . . ; ηrB ] ∈ R

nI
+ .

Assume also that xi = Eiηi, i ∈ JI(x).
Denote

AE
F =

[

A1e1,1, . . . , ArF erF ,1

]

, AE
I =

[

ArF+1ErF+1, . . . , ArBErB

]

, (7)

and join together both matrices in the unique matrix

AE
B = [AE

F ,AE
I ] =

[

A1e1,1, . . . , ArF erF ,1, ArF+1ErF+1, . . . , ArBErB

]

.

The matrix AE
B is consisted from nB = rF + nI columns. If the extreme point

x is irregular, then nB < m. If x is a regular extreme point, then nB = m. The
following equality AE

BηB = b takes place, where ηB = [ηF ; ηI ]. In the case, where
x is a regular extreme point, the matrix AE

B is called the basis of this point.

Proposition 1 (The criterion of an extreme point [1]). The point x ∈ FP

is an extreme point, if and only if the columns of the matrix AE
B are linear

independent.

Let us introduce the notion of S-extreme point of the set FP . This notion
is based on replacement of the cone Kni by the cone Kni

S ⊆ Kni of the lesser
dimension.

Assume that we have a point xi ∈ R
ni . Assume also that the corresponding

matrix Arr (xi) is determined. Moreover, the orthogonal matrix Ei, consisting
from eigenvectors of Arr (xi), is determined too.

Suppose that in the index set Jni = [1 : ni], i ∈ JI(x), by some manner
the subset Jni

S ⊆ Jni is selected. The total number of indexes containing in this
subset is equal to nS

i . Suppose that nS
i ≥ 2, and that the indexes 1 and ni be a

part of Jni

S .
Further, introduce into consideration the square matrix Si of order ni with

columns being unite vectors ej of the space R
ni or null vectors. More precisely,

we assume Si,j = ej , if j ∈ Jni

S , and we assume Si,j = 0j at the opposite case.
Here Si,j is the jth column of the matrix Si.

The following matrix

Si =

⎡

⎢
⎢
⎢
⎣

1 0 . . . 0 0
0 0 . . . 0 0

...
0 0 . . . 0 1

⎤

⎥
⎥
⎥
⎦

, (8)
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is an example of the matrix Si. It corresponds to the case, where Jni

S = {1, ni}.
Thus, in this case the variable xi = EiSiηi, where ηi ∈ R

ni , must belong to
the two-dimensional linear subspace, determining by vectors ei,1 and ei,ni

. If
Jni

S = Jni , then Si = Ini
.

Assume that at the point x ∈ FP the matrices Si, i ∈ JI(x), are specified. In
the matrix Si we extract the sub-matrix S′

i with dimension ni × nS
i , removing

from Si all null columns and leaving only unit columns. Replace the matrix AE
I

in (7) on the following one

AE,S′
I =

[

ArF+1ErF+1S′
rF+1, . . . , ArBErBS

′
rB

]

. (9)

Join together the matrix AF from (7) and the matrix AE,S′
I from (9) to the

unique matrix AE,S′
B =

[

AE
F , AE,S′

I

]

.

Definition 1. The point x ∈ FP is called S-extreme, if columns of the matrix
AE,S′

B are linear independent.

It is clear that, if the point x ∈ FP is S-extreme, then the number of columns
nS
B in the matrix AE,S′

B does not exceed the number m. In the case, where the
number of columns is equal to m, such S-extreme point x we will call regular. In
the opposite case we will call the S-extreme point x irregular. The matrix AE,S′

B

is regarded as S-basis of the S-extreme point x ∈ FP .
At regular S-extreme point x ∈ FP we have: nS

B = m. If all Si, i ∈ JI(x),
are identity matrices, then for S-extreme point the criterion 1 is fulfilled, as for
the usual extreme point.

4 Pivoting at the Regular S-Extreme Point

Assume that the regular S-extreme point x ∈ FP is given. Assume also that the
S-basis of this S-extreme point AE,S′

B is known. Our aim is to make passage from
this S-extreme point to another S-extreme point (possibly, to the usual extreme
point). This transfer we will make preserving the complementarity condition
from (5).

Firstly, compute the weak dual variable y, taking into consideration the con-
dition 〈x, y〉 = 0. This condition can be rewritten in the form

∑r
i=1〈xi, yi〉 = 0.

Since xi = 0ni
, where i ∈ JO(x), it is sufficient to require that

∑

i∈JB(x)

〈xi, yi〉 = 0. (10)

This condition holds, if 〈xi, yi〉 = 0 for each i ∈ JB(x). Therefore, it is worth to
take yi = 0ni

for i ∈ JB(x).



70 V. Zhadan

Take into account that yi = ci − AT
i u for all i ∈ Jr. Denote cEi = eTi,1ci,

where i ∈ JF (x), and denote cE,S′
i = (S′

i)
TET

i ci, where i ∈ JI(x). Denote also

cE,S′
B =

[
cE1 ; . . . ; cErF ; cE,S′

rF+1; . . . ; cE,S′
rB

]
.

Setting equal yi = 0ni
, i ∈ JB(x), we obtain the system of linear equations with

respect to the dual variable u:

cE,S′
B −

(
AE,S′

B

)T

u = 0m. (11)

This system consists of m equations.
Since, by assumption, x is a regular S-extreme point, the matrix AE,S′

B of
system (11) is nonsingular

Solving system (11), we get

u =
(

AE,S′
B

)−T

cE,S′
B .

Here the notation M−T is used instead of
(
MT

)−1.
Compute yi, i ∈ Jr. Let i ∈ JF (x). Define the linear hyperplane

Γ (ei,1) = {zi ∈ R
ni : 〈ei,1, zi〉 = 0}

with the directing vector ei,1. The ray

l(ei,1) = {zi ∈ R
ni : zi = λiei,1, λi ≥ 0},

is a minimal face of the cone Kni containing the point xi. The ray

l(ei,ni
) = {zi ∈ R

ni : zi = λiei,ni
, λi ≥ 0}

is a conjugate face to the face l(ei,1) of the cone Kni .
Let now i ∈ JI(x). Denote by S

′
i the complement of the matrix S ′

i in the sense
that columns of S

′
i are unit vectors ej , which do not contain in S ′

i . Introduce
into considerations the linear manyfold

Γi(Ei,Si) =
{

yi ∈ R
ni : yi = EiS

′
iθ

′
i

}
, i ∈ JI(x),

where θ
′
i ∈ R

n̄S
i , and n̄S

i is the number of columns in the matrix S
′
i .

It follows from system (11) that yi ∈ Γ (ei,1) for i ∈ JF (x), and yi ∈ Γi(Ei,Si)
for i ∈ JI(x). If S ′ = Ini

, then yi = 0ni
, i ∈ JI(x). In the case, where i ∈ JO(x),

the vector yi may be arbitrary.

Proposition 2. Let i ∈ JF (x). Then yi ∈ Kni if and only if yi ∈ l(ei,ni
).
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Proposition 3. Let i ∈ JI(x). Then yi ∈ Kni if and only if

yi ∈ Γi,+(Ei,Si) =
{

yi ∈ni : yi = EiS
′
iθ

′
i, θ

′
i ∈ R

n̄S
i

+

}
.

Analyzing yi, i ∈ Jr, we derive to the following possible cases:

1. The optimal solution. This case is realized under the following assertion.

Proposition 4. Let yi ∈ Kni for all i ∈ Jr. Then the point x ∈ FP is the
solution of problem (1).

Proof. In this case due to (10) and made assumptions all optimality conditions
(5) are satisfied.

2. The current point x is not optimal. Assume that there is the index
k ∈ Jr such that yk /∈ Kni . If x is a regular S-extreme point, it is possible only
when k ∈ JO(x) or k ∈ JF (x). If x is a non-regular extreme point, it is possible
also that k ∈ JI(x).

Similar to (6) decompose the vector yk:

yk = θk,1dk,1 + θk,nk
dk,nk

,

where dk,1 dk,nk
are vectors of the form

dk,1 =
1√
2

[
1;

ȳk
‖ȳk‖

]
, dk,nk

=
1√
2

[
1;− ȳk

‖ȳk‖
]

.

Both vectors dk,1 and dk,nk
have the unit length. The coefficients θk,1 and θk,nk

are following:

θk,1 =
1√
2

(
y0
k + ‖ȳk‖

)
, θk,nk

=
1√
2

(
y0
k − ‖ȳk‖

)
.

Since by assumption yk /∈ Knk , at least one of two coefficients θk,1 or θk,nk
is

negative. Assume without loss of generality that θk,1 < 0.
Let ΔxB = [Δx1; . . . ; ΔxrB ]. Moreover, let Δxi = ei,1Δηi,1, i ∈ JF (x), and

Δxi = EiS′
iΔη′

i, i ∈ JI(x). Consider the system of equations

ABΔxB + Akdk = 0m, (12)

where AB = [A1, , . . . , ArB ]. By setting

ΔηB =
[
Δη1,1; . . . ;ΔηrF ,1; Δη′

rF+1; . . . ;Δη′
rB

]
,

system (12) may be written in the form

AE,S′
B ΔηB + Akdk = 0m. (13)
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As, by assumption, x is a regular S-extreme point of FP , the matrix AE,S′
B is

nonsingular. Solving system (13), we get

ΔηB = −
(

AE,S′
B

)−1

Akdk. (14)

Therefore, ΔxB = E ΔηB , where E is a block diagonal matrix with the vectors
e1,1, . . . , erF ,1 and with blocks ErF+1S′

rF+1, . . . , ErBS
′
rB on its diagonal.

Denote ΔxN =
[
ΔxrB+1; . . . ; Δxr

]
, Δx =

[
ΔxB ;ΔxN

]
. The following

assertion is valid.

Proposition 5. Let all components of the vector ΔxN equal to zero. Moreover,
let the kth component be taken equal to Δxk := Δxk + dk,1. Then AΔx = 0m.

Proof. We have
AΔx = ABΔxB + AkΔxk. (15)

Substituting Δxk and ΔxB , we conclude that equality (15) holds.

Proposition 6. Let x be a regular S-extreme point of the set FP . Then Δx is
the feasible direction with respect to the cone K.

Proof. The cone of feasible directions CK(x) with respect to K at the point x ∈ K
is the direct product of the cones of feasible directions CKni (xi), i ∈ Jr. But if
h ∈ CKni (xi), then h = h1+h2, where h1 belongs to the linear hull of the minimal
face containing the point xi, and h2 is a direction belonging to the same cone
Kni .

Assume for simplicity, that k ∈ JO(x). At the case, where i ∈ JF (x), the
Δxi belongs to the linear hull of minimal face of the cone Kni , coinciding with
the linear hull of the vector ei,1. If i ∈ JI(x), then xi is an interior point of the
cone Kni . Hence, the cone CKni (xi) is the whole space R

ni . All the more, we
obtain that Δxi = EiS′

iΔη′ belongs to CKni (xi). If k ∈ JB(x), then as far as
dk,1 ∈ ∂Knk , we have Δxk + dk,1 ∈ CKnk (xk). The inclusions Δxi ∈ CKni for
the rest i ∈ JB(x) are preserved.

Corollary 1. Taking into account Propositions 5 and 6, we conclude that at the
regular S-extreme point x ∈ FP the direction Δx is feasible with respect to the
set FP .

Proposition 7. Let assumptions of Propositions 5 and 6 hold. Then Δx is the
decreasing direction of the goal function in problem (3).

Proof. According to (14)

〈c, Δx〉 = 〈cB , ΔxB〉 + 〈ck,dk,1〉 = −〈cE,S′
B ,

(
AE,S′

B

)−1
Akdk〉 + 〈ck,dk,1〉

= −〈(AE,S′
B )−T cE,S′

B , Akdk〉 + 〈ck,dk,1〉 = −〈u, Akdk〉 + 〈ck,dk,1〉 = 〈ck − AT
k u,dk〉

= 〈yk,dk〉 = 〈θk,1dk,1 + θk,nk
dk,nk

,dk1 〉 = θk,1 < 0.

From here the required inequality 〈c,Δx〉 < 0 is followed.
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3. The solution absence. The solution absence is possible only in the case
when the feasible set FP in problem (3) is unbounded. Let x̂(α) = x + αΔx.

Proposition 8. Let the solution of the system (13) be such that Δxi ∈ Kni ,
i ∈ JB(x), and ΔxN = 0. Besides, let Δxk := Δxk + dk. Then the feasible set
FP in problem (3) is unbounded, and x̂(α) ∈ K under α ≥ 0. Moreover,

〈c, x̂(α)〉 → −∞ (16)

when α → +∞.

Proof. According to made assumptions we obtain that xi + αΔxi ∈ Kni for
all i ∈ Jr α ≥ 0. Moreover, by Proposition 5 the equality AΔx = 0m takes
place. Therefore, x̂(α) ∈ FP , where α ≥ 0. Since by Proposition 7 the inequality
〈c,Δx〉 < 0 holds, the limit equality (16) is valid.

4. Passage to the new extreme point. Assume that the conditions of
Propositions 4 or 8 do not hold. Then, in principle, the passage from S-extreme
point x ∈ FP to the new S-extreme point x̂ ∈ FP with lesser value of the goal
function is possible.

Suppose that x is the regular S-extreme point. Describe the algorithm of the
passage.

For each i ∈ JB(x) compute the maximal possible step size:

αi = max {α ≥ 0 : ηi,1 + α Δηi,1 ≥ 0} , i ∈ JF (x),

αi = max {α ≥ 0 : xi + α Δxi ∈ Kni} , i ∈ JI(x).

Denote α̂F = mini∈JF (x) αi, α̂I = mini∈JI(x) αi and α̂B = min{α̂F , α̂I}. Deter-
mine the index sets

JU
F (x) = {i ∈ JF (x) : αi = α̂B}, JU

I (x) = {i ∈ JI(x) : αi = α̂B},

and also the set JU
B (x) = JU

F (x) ∪ JU
I (x). The set JU

B (x) contains at least one
index. By σU

B(x) denote the number if indexes in the set JU
B (x), i.e. σU

B(x) =
|JU

B (x)|. Below for simplicity suppose, that the set σU
B(x) consists of the single

index l ∈ JU
B (x).

If l ∈ JU
F (x), we take the step size equal to α̂. If l ∈ JU

I (x), we set α̂ := α̂−ε,
where ε > 0 is a sufficiently small number. Taking Δxi = 0ni

, i ∈ JO(x), we
make the passage to the new S-extreme point

x̂ = x + α̂Δx. (17)

In addition we make the passage

x̂k := x̂k + α̂dk,1. (18)

Since dk,1 belongs to the boundary of the cone Knk , we obtain at any case that
the point x̂k is turned out in the cone Knk .
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The variable xi, i ∈ JB(x), we call basic. Among all basic variables we dis-
tinguish facet basic variables, when i ∈ JF (x), and interior basic variables, when
i ∈ JI(x). Introduce the notion of S-index of the basic variable xi. The S-index
of the facet basic variable is set equal to one. By the S-index of the interior basic
variable xi we call the number of columns in the matrix S′

i and denote it γS(xi).
The S-index of the interior basic variable can not be less than two. In the case,
where γS(xi) = ni, the interior basic variable xi we call by the full interior basic
variable. If for the interior basic variable xi the equality γS(xi) = 2 holds, such
variable xi we call the principal interior basic variable.

The following number

ΓS(x) =
∑

i∈JB(x)

γS(xi)

we call the general S-index of the point x. The general S-index of the regular
S-extreme point x is equal to m.

Consider possible cases of belonging indexes k and l to the various index sets,
when passage from the S-extreme point to updated S-extreme point is realized
by formulas (17) and (18). At the same time, we will describe the passage
rules, when the index l is unique.

1. Let k ∈ JO(x). If l ∈ JU
F (x), we obtain that the variable x̂l ceased to be

facet basic variable. But the variable x̂k becomes the new facet basic variable.
Taking the γS-indexes of other variables x̂i former, we obtain that the general
ΓS-index of x̂ is equal to m, i.e. x̂ is turned out to be regular S-extreme point.

Assume now that l ∈ JU
I (x). At this case x̂i, i ∈ JU

F (x), remain the facet
basic variables. All variables x̂i, where i ∈ JU

I (x) and i �= l, remain interior
basic. Moreover, their γS-indexes we remain equal to γS-indexes of the corre-
sponding variables xi. If the γS-index of the variable xl greater than two, we
decrease the γS-index of the variable x̂l at one. The general ΓS-index of the
point x̂ does not change with respect to the point x and remains equal to m.

2. Suppose now that k ∈ JF (x) and consider separately the cases, where l ∈
JF (x) and l ∈ JI(x). Let l ∈ JF (x). If l = k, the x̂l remains by facet basic
variable. If l �= k, the variable x̂l becomes zero, i.e. l ∈ JO(x̂). The x̂k is the
interior basic variable . We set γS(x̂k) = 2. Then in any case, regardless l = k
or l �= k, the equality ΓS(x̂) = m holds, that is x̂ turns out to be the regular
S-extreme point.

Let l ∈ JI(x). Then x̂k we turn into the principal interior basic variable. The
variable x̂l is remained by the interior basic variable, but its S-index γS(x̂l)
we decrease at one with respect to S-index of xl, i.e. γS(xl) = γS(xl) − 1.
If xl is a principal interior variable, then x̂l turns out to be the facet basic
variable.

3. At last, consider the case, where k ∈ JI(x). This is possible only, when among
interior basic variables there are the variables, which are not full interior basic
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variables. The variable x̂k we remain by the interior basic variable with the
same S-index, which the variable xk has. It is possible to make, because the
weak dual variable yk belongs to the boundary of the cone Knk .

Proposition 9. Let x be the S-extreme point of FP , and let the step size α̂ be
finite. Moreover, let the set JU

B (x) consist of the single index l. Then x̂ is also
the regular S-extreme point of FP .

Proof. This assertion is followed from the described above rules of passage from
the S-extreme point x at the new S-extreme point x̂.

Remark 1. If the index l at the point x is not unique, the point x̂ turns out to be
non-regular, that is ΓS(x̂) < m. In order to choose l, it should use any technique
for overcoming the degeneracy. It may be the approach similar to using in the
linear programming, for example, ε-technique.

5 Conclusion

We have proposed the variants of the primal simplex-type method for solving
the linear second-order cone programming problem. This variant of the method
has preference with respect to other variants since the pivoting is possible both
in regular and non-regular extreme points.
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Abstract. Clustering is traditionally one of the basic tools of data anal-
ysis widely applied in diverse fields. By now, one of the most common
clustering models is the Euclidean minimum-sum-of-squares clustering
problem (MSSC). Consequently, Lloyd’s algorithm, often referred to as
k-means, is probably the most popular clustering algorithm. Despite
its popularity, Lloyd’s algorithm is a local search heuristic for MSSC
that in general converges to local optima only. In this paper, we aim
at enhancing k-means by employing the global optimality conditions for
MSSC represented as a problem with DC (difference of convex) functions.
We then embed the k-means algorithm into the so-called global search
framework for DC minimization problems where it is employed to find
local optimal solutions. We tested such an improved implementation of
k-means in a series of computation experiments on well-known test
library of medium-size datasets and compared it with the conventional
k-means and k-means++ algorithms.

Keywords: Clustering · k-means · Nonconvex optimization · Global
optimality conditions · Machine learning

1 Introduction

Cluster analysis is one of the traditional and basic subroutines in unsupervised
machine learning. At the same time, it is one of the oldest machine learning
problems. Clustering is to partition a set of data items or objects into groups
(clusters) based on their similarity, i.e. the data items of the same cluster are
of high similarity, whereas the items of different clusters are of low similarity.
Clustering is traditionally one of the basic tools of data analysis widely applied in
diverse fields. Since there are no strict mathematical definitions of similarity and
quality partitions, there is a wide range of clustering approaches proposed in the
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fields ranging from mathematics to bioinformatics and computational medicine.
All the approaches can be categorized in many ways according to the principles
of organizing data into groups. However, one of the most popular and widespread
approaches to cluster analysis is the so-called center-based clustering. It assumes
that a partition of data items is defined by a set of cluster representatives (or
cluster centers), and clusters are obtained by assigning data items to the “closest”
(most similar) cluster center.

The problem of finding such a set of cluster centers can be formulated as an
optimization problem. The number of clusters can also be integrated as a variable
in the problem [30]. Unfortunately, most of such problems are NP-hard. By now,
the most popular center-based clustering models are k-medoids (minimum sum of
stars clustering), k-center, and k-means (minimum sum of squares) clustering.
All these models are to find a set of cluster representatives to minimize the
total sum of dissimilarities between data items and the closest cluster centers.
Probably, the most popular clustering model applied in plenty of applications
is the minimum sum of squares clustering model (MSSC), whereas the most
popular and well-known clustering algorithm is Lloyd’s algorithm, which is often
referred to as k-means [25]. The latter is a local search heuristic for MSSC.

Besides being a basic data analysis tool, cluster analysis is a useful approach
to image segmentation [33] or optimal location of service and distribution cen-
ters. Indeed, the center-based clustering models can be considered as facility
location problems, e.g., k-medoids problem from machine learning is the well
known p-median facility location problem, and MSSC is a particular case of the
multi-source Weber problem, in which the locations of customers are given in a
multidimensional space, the distances between customers and facilities are com-
puted according to the squared Euclidean distance (instead of the Euclidean dis-
tance in the Weber problem), and the customers’ demands are equal to 1. Finally,
center-based clustering is often utilized as a compression or vector quantization
method that aims at representing each data item by the center it is assigned to
or by the distances to all cluster centers.

The problem MSSC can be formulated as the following non-smooth opti-
mization problem. Given a set J = {1, . . . , m} of objects, represented as
aj ∈ R

n, j ∈ J . The problem is to find k cluster centers (centroids) ci ∈ Rn,
i ∈ I = {1, . . . , k} such that the total sum of squared Euclidean distances
between objects and their closest centers is minimized:

min
C⊂Rn

{ m∑
j=1

min
c∈C

‖aj − c‖2, |C| = k
}

, (1)

where ‖ · ‖ is the Euclidean distance.
The problem is NP-hard even in the plane for arbitrary number of clusters

k [27]. It is also NP-hard in general dimension even for k = 2 [1] and NP-hard
when the dimension n is a part of the input, whereas the number of clusters k
is not [10].

Being one of the most popular clustering models, MSSC has been attracting
much attention from different communities of researchers. Together with the
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k-medoids clustering problem, MSSC was first formulated as an optimization
problem in [39]. The first exact algorithm, branch and bound, was proposed
in [12] and then refined in [9]. The most effective exact algorithm was developed
in [11] where the authors proposed an extended formulation of the problem
with an exponential number of columns that correspond to all possible clusters.
They devised a branch and price method where an auxiliary fractional quadratic
binary problem of determining the entering column is solved by a combination
of Dinkelbach’s algorithm and a variable neighborhood search. This approach
was further improved much later in [2] where the authors proposed a geometric
approach to solving the auxiliary problem being the main bottleneck of the
algorithm from [11].

As exact methods are usually not tractable in practical clustering settings,
many research efforts have been focused on devising various heuristic techniques,
most of which are modifications of the conventional k-means algorithm. The
rise of this research strand is also caused by some drawbacks of Lloyd’s algo-
rithm, especially sensitivity to initial solutions and low efficiency for large-scale
datasets. For more than 50 years of research nearly all metaheuristics have been
applied to MSSC (for a survey see [23,28]). The most prominent heuristics are
the global k-means [5,24,31], harmonic clustering [7], j-means [19] etc. For exam-
ple, the global k-means is an incremental algorithm that, starting from the mean
of the initial dataset, finds the next centroid as the data item minimizing the
objective value the most. The algorithm halts when all k cluster centers are
determined.

There is also a relatively small number of solution methods based on repre-
sentation of MSSC as an optimization problem with DC (difference of convex)
functions. For example, in [8] the authors considered a DC representation of
the non-smooth problem (1) and developed a truncated codifferential descent
method. In [6] the authors proposed an incremental algorithm for MSSC based
on a procedure from [31] for finding starting solutions and a DC approach rested
upon a non-smooth formulation of MSSC. Another approach was considered
in [21], where a DCA algorithm was developed. It is based on a mixed program-
ming formulation of MSSC that is reformulated into an unconstrained DC mini-
mization problem by replacing binary variables and applying a penalty method.

In this paper, we devise and implement a solution approach to MSSC based
on the special global search theory and the global optimality conditions. It is
built upon the conventional k-means algorithm that we use to find local optimal
solutions. To escape a local optimum found by k-means, we develop a special
procedure based on the so-called global optimality conditions. We tested such
an improved implementation of k-means in a series of computation experiments
on a well-known test library of medium-size datasets and compared it with the
k-means algorithm and its modifications.

2 K-Means Algorithm

As was noted above, well-known Lloyd’s algorithm remains one of the most
popular clustering algorithms. It is an alternate heuristic similar to Cooper’s
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Algorithm 1. k-means (Lloyd’s) algorithm
1: Choose initial cluster centers ci ∈ R

n, i ∈ I (often ci ∈ {a1 . . . , am}).
2: while clusters Ci change do
3: Assign data items aj , j ∈ J , to the closest cluster center i∗ by computing

i∗ ← argmin
i∈I

‖aj − ci‖2. Form clusters Ci of data items assigned to the center ci.

4: For each cluster Ci, i ∈ I, compute ci as the center of gravity (mean) of all the
data items from Ci: ci ← 1

|Ci|
∑

s:as∈Ci

as.

5: end while

algorithm proposed for the multi-source Weber problem. Its simplicity and rel-
atively high efficiency for small size datasets made it popular in diverse applica-
tions. The idea of the algorithm is to sequentially assign data items to the current
closest cluster centers (according to the squared Euclidean distance) and then
recompute the centers as means of objects assigned to the same clusters. The
algorithm halts when there are no changes in cluster assignments of a sufficiently
large number of data items (see Algorithm 1).

One can observe that an iteration of Algorithm1 requires O(kmn) time. The
k-means algorithm is guaranteed to converge only to local optimal solutions.
Moreover, as was noted in [4], it may provide arbitrary bad partitions and has
superpolynomial running time, e.g. for some datasets and specified initial clus-
ter centers it requires 2Ω(

√
m) iterations. Moreover, the running time remains

superpolynomial with high probability even if the initial centroids are chosen
uniformly at random [3]. An upper bound on the running time for the case of
the real line is O(mΔ2) where Δ is the ratio between the largest and the smallest
distances between data items.

Besides Lloyd’s algorithm, there are some other local search heuristics for
MSSC that are also often referred to as k-means in the literature. For example,
MacQueen’s algorithm [26] follows a little bit different flow of operations: i.e.
it starts with k arbitrary chosen data items as cluster centers and assigns each
new data item one by one to the closest center. After a data item is assigned
to a cluster, its center is recomputed [26]. Note that MacQueen’s approach can
be viewed as an online version of k-means. Another variant of local search for
MSSC implemented in many machine learning packages as a default k-means
method is Hartigan and Wong’s algorithm [20]. It first iteration is identical to
Lloyd’s algorithm. However, it then swaps data items between clusters in order
to improve the objective value. If such a improving swap exists, it is performed
and the next data item is considered.

Sensitivity of Lloyd’s algorithm to the choice of initial solution has resulted in
multiple attempts to develop seeding procedures that guarantee finding quality
solutions. One of the most well-known such a modification of Lloyd’s algorithm
is k-means++ [4] that picks initial centers according to the procedure originally
proposed in [32]. Its main idea is to choose a first cluster center uniformly at
random and the next ones with probability proportional to the ratio between
distance from the new center to the closest already chosen center and the sum of
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distances from all data items to closest already chosen centers. Note that such
a simple seeding technique guarantees that Lloyd’s algorithm obtains Θ(log k)-
approximate solution for MSSC [4].

3 Minimum-Sum-of-Squares Clustering Problem

As was observed in the introduction, MSSC can be formulated as a mathematical
programming problem in several ways. For example, it can quite naturally be
cast as an integer program. Let us remind that given data items aj , j ∈ J, which
are supposed to be partitioned into k clusters. MSSC is to determine cluster
centers ci, i ∈ I, such that the total sum of squared Euclidean distances between
data items and their closest centers is minimized.

Let us introduce the following binary variables

xij =
{

1, if data item j is assigned to cluster i,
0, otherwise, i = 1, . . . , k, j = 1, . . . , m.

which are often referred to as assignment variables.
We also introduce the variables yi ∈ IRn that define locations of cluster

centers i = {1, . . . , k}. With these notations, the problem can be written as the
following mixed integer program:

k∑
i=1

m∑
j=1

xij‖yi − aj‖2 ↓ min
(x,y)

, (2)

k∑
i=1

xij = 1 ∀ j = 1, . . . , m; (3)

xij ∈ {0, 1} ∀i = 1, . . . , k; ∀j = 1, . . . , m. (4)

The objective function (2) minimizes the sum of squared Euclidean distances,
whereas constraints (3) ensure that each data item is assigned to exactly one
cluster center. The integrality of the assignment variables is guaranteed by con-
straints (4). However, as in many facility location problems aimed at minimizing
service costs, the integrality of xij can be relaxed to 0 ≤ xij ≤ 1, i = 1, . . . , k;
j = 1, . . . ,m. Indeed, if some variables xij take not integer values (data item
j is assigned to several equidistant centers), then an equivalent integer xij can
be obtained by fixing one of them to one and the rest to zero. Thus, the prob-
lem (2)–(4) can be reduced to a nonconvex continuous optimization problem. In
general, it has plenty of local solutions that are not globally optimal ones.

In the following we demonstrate how to leverage the nonconvex continuous
formulation to obtain a procedure of escaping from local optimal solutions which
is based on the special global optimality conditions.
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4 Global Search Theory for the DC Minimization
Problem

First, let us consider the main ingredients of the global search theory for DC
minimization problems. Let us consider the following optimization problem

f(x) = g(x) − h(x) ↓ min, x ∈ D, (DC)

where g(·) and h(·) are convex functions, whereas D is a convex set, D ⊂ IRn.
The general global search method includes two main components:

1. Special local search;
2. Procedures of escaping from a point provided by a local search method.

The idea of the special local search method is simple and consists in solv-
ing a series of the following (partially) linearized (at a current point xs ∈ D)
problems [22,34]

Ψs(x) := g(x) − 〈∇h(xs), x〉 ↓ min
x

, x ∈ D, (DCLs)

which are convex. Hence, such linearazied problems can be solved with any
conventional convex optimization methods.

The second part, a procedure of escaping from a solution found by the local
search, is the most important step of the approach. The procedure is built upon
a theoretical basis guaranteed by the Global Optimality Conditions, which takes
the following form for Problem (DC).

Theorem 1 [35,36]. Suppose that ∃ q ∈ IRn : f(q) > f(z) =: ζ.
Then, a point z is a global solution to Problem (DC) if and only if

∀(y, β) ∈ IRn × IR : h(y) = β − ζ,
g(x) − β ≥ 〈∇h(y), x − y〉 ∀x ∈ D.

}
(E)

Now we try to violate the so-called principal inequality of (E) by selecting the
“perturbation parameters” (y, β) and solving the linearized problem (cf. (DCLs))

Ψy(x) := g(x) − 〈∇h(y), x〉 ↓ min
x

, x ∈ D.

In this case, we obtain a set of starting points x(y, β) to initialize the local search
and find a feasible solution with a better objective value.

Note that on each level ζk = f(zk), it is not necessary to test all the pairs
(y, β) satisfying the equation ζk = β − h(y), but it is enough to discover a pair
(ŷ, β̂) that violates the principal inequality of (E). We denote by x̂ the solution
found by the local search that starts from the point (ŷ, β̂).

After that, we proceed to the next iteration of the global search: zk+1 := x̂,
ζk+1 := f(zk+1), and start the global search procedure from the very beginning.

Hence, due to Theorem 1, the basic stages of the global search scheme can
be described as follows (see Algorithm 2) [35,36].
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Algorithm 2. Global Search Scheme
1: Find a local solution z.
2: Choose a number β ∈ [β−, β+], where the numbers β− = inf(g, D), β+ = sup(g, D)

can be approximated by rather rough estimates.
3: Construct an approximation

R(β) = {y1, . . . , yN | h(yi) = β − ζ, i = 1, . . . , N = N(β)}
of the level surface {y ∈ IRn | h(y) = β − ζ} of the function h(·).

4: Starting at each point yi of the approximation R(β), find a feasible point ui by
means of the local search method.

5: Verify the principal inequality from the Global Optimality Condition (E)

g(ui) − β ≥ 〈∇h(wi), ui − wi〉 ∀i = 1, . . . , N, (5)

where wi can be found as the projection of the point ui onto the convex set

L(h, β − ζ) = { x ∈ IRn | h(x) ≤ β − ζ }
.

6: If ∃j ∈ {1, . . . , N} such that (5) is violated, then set z ← uj , ζ ← f(uj) and return
to step 3. Otherwise, return to step 2.

Note that this approach was successfully applied to solving various prac-
tical DC optimization problems [13–15,17]. In the following we consider how
the aforementioned principals can be adapted to solve MSSC formulated as the
problem (2)–(4).

5 Implementation for K-Means Clustering

Recall that we consider the problem (2)–(4) where the integrality of assignment
variables xij ∈ {0, 1} is relaxed to xij ∈ [0, 1]. The resultant problem is to
minimize a nonconvex function over a convex feasible set:

f(x, y) =
k∑

i=1

m∑
j=1

xij‖yi − aj‖2 ↓ min
(x,y)

, x ∈ S, y ∈ IRk×n, (6)

where S = {xij ∈ [0, 1] :
k∑

i=1

xij = 1, j = 1, . . . ,m}.

The first step in applying the Global Search Theory for MSSC is to determine
an explicit DC representation of the nonconvex objective function.

As the DC representation is known to be not unique, we propose to represent
the objective function of the problem (6) as the following difference of two convex
functions

f(x, y) = g(x, y) − h(x, y), (7)
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where

g(x, y) =
k∑

i=1

m∑
j=1

[
d1 ‖ yi − aj ‖2 + d2x

2
ij

]
,

h(x, y) =
k∑

i=1

m∑
j=1

[
d1 ‖ yi − aj ‖2 + d2x

2
ij − xij ‖ yi − aj ‖2] ,

with some constants d1, d2 > 0.
It is obvious that the function g(·) is convex. The convexity of the function

h(·) with d1 > 1, d2 >
1

2d1
max

i,j
‖ yi − aj ‖2, was proved in [16].

The key component of the procedure of escaping from a local optimum is
an approximation of the level surface of the convex function h(·). The latter
generates the basic nonconvexity in Problem (P) (see step 3 of Algorithm 2). The
way the approximation is constructed is crucial for finding high-quality solutions
by a local search algorithm. There are actually many ways and techniques to
define the approximation. To take into account the particularities of MSSC, we
construct the approximation by varying only variables yi, i ∈ I (cluster centers)
of the function h(·). Note that in [16], we tested another type of approximation,
i.e. we used the unit vectors el from the Euclidean basis of IRn to construct the
approximation R(β) of the level surface {h(·) = β − ζ} by the following rule:
wil = zi + μile

l, i = 1, . . . , k, l = 1, . . . , n.
Here we employ another approach which is based on conjugated vectors

instead of the unit vectors from the Euclidean basis. In this case, we may vary
not one but up to n coordinates of each cluster center choosing one at a time:

w = (z1, z2, . . . , zi−1, zi + νip
i, zi+1, . . . , zk) (8)

where z = (z1, . . . , zk) is the current local solution, i is the varied cluster center
and pi, i = 1, . . . , k, are the vectors conjugated with respect to the (n × n)
matrices As, s = 1, 2, . . . , the rows of which are n data items chosen at random
(n ≤ k). The parameters νi may be found analytically, as it requires solving
the following quadratic equation of one variable νi for the quadratic (with fixed
variables xij) function h(x̂, y):

ν2
i ‖ pi ‖2

m∑
j=1

(d1 − x̂ij) − 2νi

m∑
j=1

(d1 − x̂ij)〈zi − aj , pi〉 + γ = 0,

where γ = h(x̂, z) − β + ζ. If for some index î the discriminant turns out to be
negative, then the variation of cluster center î is not performed.

Thus, we construct the set P = {p1, . . . , pn, pn+1, . . . , p2n, . . . , pk} of vectors
satisfying the following condition:

〈pi, Aspt〉 = 0 ∀i = t, i, t = 1, . . . , n, s = 1, 2, . . . . (9)
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Algorithm 3. Conjugated vectors construction
1: i ← 1, pi ← (1, 1, . . . , 1)�, ri ← −pi.

2: α1
i ← 〈ri, ri〉

〈pi, Api〉 .

3: ri+1 ← ri + α1
i · Api.

4: α2
i+1 ← 〈ri+1, ri+1〉

〈ri, ri〉 .

5: pi+1 ← −ri+1 + α2
i+1p

i.
6: i ← i + 1. If i < n, then loop to step 2, else STOP.

In other words, the vectors pi are conjugated one to another with respect to the
matrix A := Aŝ. Such vectors can be constructed according to Algorithm3 (e.g.
see [29]).

Thus, we can enhance Lloyd’s algorithm by employing the aforementioned
global optimality conditions for DC minimization problems and approximation
of the level surface. Thus, when Lloyd’s algorithm halts and returns a local
optimal solution, we apply the procedure described above to escape it and try
to find a better local solution. Note that our approach can also be considered as
the global search algorithm presented in Sect. 4, where the k-means algorithm is
employed as a local search method.

6 Computational Experiments

To test our modification of the k-means algorithm enhanced by the DC mini-
mization optimality conditions, we carried out a series of computational experi-
ments. In particular, we compared it with the conventional widespread Lloyd’s
algorithm and its most popular modification—k-means++. We implemented the
algorithms using C++ and compiled with Microsoft Visual C++ 16.2.0 compiler.
We ran them on a PC with Intel Core i7-4790K CPU 4.0 GHz. Only one pro-
cessing core was utilized.

We compared the algorithms on the so-called BIRCH test data collection
widely used to test solution algorithms for clustering and facility location prob-
lems [18,37,38]. The BIRCH dataset includes test instances of two types (Types
I and III). Each instance consists of two-dimensional points distributed accord-
ing to a Gaussian mixture model. The cluster means are either located on a grid
(Type I) or chosen uniformly at random (Type III). Note that the instances of
Type I are easier to solve than ones of Type III. The test problems are relatively
large and contains from 10, 000 to 20, 000 points, whereas the number of clusters
k varies from 25 to 100.

For all the competing algorithms we chose random initial solutions. As
k-means and k-means++ are converge in general to only local optimal solutions,
we restarted them 30 times. For k-means and k-means++ we report maximal,
minimal, and average objective values found over all reruns. The stopping cri-
teria for k-means and k-means++ are the number of iterations (500) and the
fraction of points that changed their assignment (0.001).
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First, we report the computational results on our enhanced k -means algo-
rithm (EKA) in Tables 1, 2, where the following denotations are employed:

– Name—problem’s name;
– m—number of data items;
– k—number of clusters;
– Start Obj.V al.—the objective value at starting point;
– Best Obj.V al.—the objective value at the solution found by our algorithm;
– St—number of local solutions passed by our algorithm (note that St indicates

the number of local optima where the objective value was improved);
– Time—CPU time in seconds.

Table 1. The computational results of the developed enhanced k-means on BIRCH
problems of Type I

Name m k Start Obj. Val. Best Obj. Val. St Time

ds1x1 10000 100 5093172.87 790.16 123 16.84

ds1x2 15000 100 7758020.84 1254.45 198 56.96

ds1x3 20000 100 10821594.33 1574.27 91 95.94

ds1x4 9600 64 3509505.16 1006.46 188 16.79

ds1x5 12800 64 4702545.87 1307.28 97 21.84

ds1x6 16000 64 5881998.58 1694.58 240 31.98

ds1x7 19200 64 6065932.30 2015.26 118 44.74

ds1x8 10000 25 1106641.41 1591.18 67 4.51

ds1x9 12500 25 1716771.50 1966.56 28 5.12

ds1x10 15000 25 1869527.89 2394.94 80 7.26

ds1xA 17500 25 1903583.29 2893.65 122 7.38

ds1xB 20000 25 1965303.63 3402.85 11 18.09

Table 2. The computational results of the developed enhanced k-means on BIRCH
problems of Type III

Name m k Start Obj. Val. Best Obj. Val. St Time

ds3x1 10000 100 14584810.00 1586.35 15 34.31

ds3x2 15000 100 28114197.90 2348.98 189 63.35

ds3x3 20000 100 43819743.68 3064.72 64 102.48

ds3x4 9600 64 6650014.66 1427.52 88 22.78

ds3x5 12800 64 6719172.05 2231.62 153 25.74

ds3x6 16000 64 11040283.26 2382.12 100 41.87

ds3x7 19200 64 12414395.87 2721.93 71 42.72

ds3x8 10000 25 861147.58 1498.45 34 4.70

ds3x9 12500 25 637772.19 1746.02 91 7.59

ds3x10 15000 25 1151099.92 2430.12 36 8.65

ds3xA 17500 25 1655681.98 2744.12 34 10.39

ds3xB 20000 25 1866104.81 2646.70 58 12.97
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One can observe that the “complexity” of test instances (with respect to
the number of “escaped” local optima), in general, does not depend on the
problem size. Indeed, we can see that our algorithm identified and left (with an
improvement of the objective value) 240 local solutions for ds1x6 (m = 16, 000
and k = 64), whereas it passed only 91 and 11 local solutions for problems ds1x3
and ds1xB, respectively. Note that the latter problems involves larger number of
points and the number of clusters is 100 and 25, respectively. This behavior can
be explained by the choice of initial solutions as well as the special structure of
some specific data instances. Similar results are obtained for Type III instances.
Again, we can see some problems that force our approach to find a particularly
large number of sequentially better local optima (e.g. see problem ds3x2 in
Table 2). We can see that the run time may vary even for problem instances of
the same size. It happens since the algorithm may pass a large number of local
solutions that do not improve the current best objective value.

In Tables 3, 4 we report a computational comparison of our algorithm with
the conventional k-means and k-means++ tested on the same set of instances.
Note that we used the same starting points for all the competing algorithms. We
follow the same notations in the tables. The columns k-means and k-means++
contains the minimum, maximum, and average values of the objective function
over 30 reruns. Note that we ran our algorithm (EKA) only one time.

Table 3. A computational comparison of the developed algorithm with k-means and
k-means++ on BIRCH instances of Type I

Name m k k-means k-means++ EKA

min max av min max av

ds1x1 10000 100 818.12 902.62 862.13 803.77 844.17 825.19 790.16

ds1x2 15000 100 1207.59 1356.93 1281.34 1199.49 1265.38 1231.47 1254.45

ds1x3 20000 100 1638.97 1845.56 1723.98 1589.51 1674.54 1621.32 1574.27

ds1x4 9600 64 996.39 1131.78 1047.54 969.63 1004.36 988.40 1006.46

ds1x5 12800 64 1330.30 1508.91 1392.35 1302.51 1356.00 1324.60 1307.28

ds1x6 16000 64 1671.98 1842.77 1768.30 1657.11 1691.79 1675.75 1694.58

ds1x7 19200 64 2034.20 2167.71 2088.88 1964.77 2131.66 2016.23 2015.26

ds1x8 10000 25 1603.36 1770.01 1681.10 1589.35 1880.99 1657.17 1591.18

ds1x9 12500 25 2003.10 2695.17 2156.42 1979.51 2224.23 2075.02 1966.56

ds1x10 15000 25 2441.11 2725.58 2544.07 2436.76 2592.44 2492.98 2394.94

ds1xA 17500 25 2762.81 3268.65 3003.41 2767.87 2993.84 2846.67 2893.65

ds1xB 20000 25 3201.55 3769.73 3463.38 3189.64 3473.32 3330.53 3402.85
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We can observe that our approach provides very competitive results: it out-
performs k-means in most of the cases. Moreover, it even finds the best solu-
tions for 4 problems of Type I and for 3 problems of Type III. In general,
we can observe that EKA performs in average better than k-means that may
demonstrate highly unstable results (see ds3x3 in Table 4). At the same time,
k-means++ turns out to be more effective than k-means and converges to the
local optimal solutions relatively similar to those found by EKA.

Table 4. A computational comparison of the developed algorithm with k-means and
k-means++ on BIRCH instances of Type III

Name m k k-means k-means++ EKA

min max av min max av

ds3x1 10000 100 1587.29 2048.38 1781.85 1408.93 1592.24 1470.34 1586.35

ds3x2 15000 100 2373.46 2788.77 2586.53 2309.06 2465.19 2374.93 2348.98

ds3x3 20000 100 3174.60 10703.25 4865.63 2952.78 3162.77 3059.66 3064.72

ds3x4 9600 64 1407.40 4488.79 1894.66 1363.60 1462.85 1399.58 1427.52

ds3x5 12800 64 1897.60 4797.09 2660.50 1849.69 1973.51 1911.26 2231.62

ds3x6 16000 64 2490.46 5875.91 4294.89 2228.66 2341.86 2308.67 2382.12

ds3x7 19200 64 2740.70 5572.09 3392.88 2638.77 2958.72 2715.73 2721.93

ds3x8 10000 25 1559.70 2100.35 1916.96 1500.41 1947.88 1647.11 1498.45

ds3x9 12500 25 2123.51 2468.39 2314.77 1757.23 2232.98 1957.40 1746.02

ds3x10 15000 25 2459.91 2627.91 2535.81 2114.44 2476.05 2246.28 2430.12

ds3xA 17500 25 2477.85 2950.68 2820.16 2467.23 2807.57 2571.58 2744.12

ds3xB 20000 25 2997.86 3440.25 3173.35 2690.94 3060.20 2865.75 2646.70

7 Conclusion

In this paper, we developed an approach to enhancing the well-known k-means
algorithm by leveraging the so-called global optimality conditions for DC min-
imization problems. We developed a procedure for escaping local optimal solu-
tions found by k-means which is based on a DC representation of the minimum-
sum-of-squares clustering problem. We tested our approach in a series of compu-
tational experiments and compared it with the conventional k-means clustering
algorithms. The obtained results demonstrated the effectiveness of the proposed
algorithm in the case of medium-size problem instances.

Our future research may be focused on improving the procedure of escap-
ing local optimal solutions, which can substantially decrease the run time of
our enhanced k-means algorithm, e.g. by reducing the number of local search
iterations that do not result in finding better local optimal solutions.
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Abstract. This paper addresses a nonconvex optimization problem
where the cost function and inequality constraints are d.c. functions.
Two special local search methods based on the idea of the consecutive
solution of partially linearized problems are developed. The latter prob-
lems turn out to be convex and therefore solvable with the help of soft-
ware packages for convex optimization. The first method linearizes both
the objective function of the problem and all constraints functions. The
second approach is based on the reduction of the original problem to a
penalized problem without constraints via the exact penalization the-
ory. The methods developed were computationally tested on some well-
known test examples and specially generated problems with known local
and global solutions.

Keywords: Nonconvex quadratic problem · D.C. functions · Local
search methods · Exact penalty · Linearized problem

1 Introduction

As well-known, almost all real-life optimization problems are explicitly or implic-
itly nonconvex. Such problems may have a lot (often a large number) of station-
ary vectors and local pits [12,13,17] that may be rather far from global solutions.
As a consequence, classical convex optimization methods (conjugate gradients,
Newton’s and quasi-Newton’s methods, TRM, SQP, IPM, etc. [2,17]) turn out to
be inoperative as to find a global solution, in general, and often fail when directly
applied to nonconvex problems (providing only the KKT points and sometimes,
only feasible points). At the same time, some methods of Global Optimization
(B&B, cut’s methods, etc.) [8,13,24] suffer the so-called “curse of dimension-
ality” when the exponential growth of computational efforts corresponds to an
increase in dimension of the problem in question.
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Because of this, the development of new algorithms especially for special
classes of nonconvex problems can be viewed as one of the promising directions
in nonconvex optimization. Over the last two decades, researchers pay more and
more attention to special local search methods for nonconvex optimization prob-
lems. In these fields, one can find several different and very interesting propo-
sitions. In particular, it was developed several local search methods that can
find stationary points in such nonconvex problems as d.c. minimization, reverse
convex, and convex maximization problems, etc. (see [2,8,9,13,20–23]).

In this paper, we investigate two local search methods for solving the non-
convex optimization problem with d.c. inequality constrains. The first one, pro-
posed in [21], operates with the original problem and is based on linearization
with respect to the basic nonconvexities. The second combines the exact penalty
methodology with the principal ideas of special local search methods. It deals
with the penalized problem and dynamically changes penalty parameter during
the computational process [20–22].

The paper is organized as follows. After the statement of Problem (P) in
Sect. 2, we recall the principal ideas for constructing a special local search method
for this problem. Further, in Sect. 4, the original problem is reduced to a prob-
lem without nonconvex constraints by the exact penalization theory, so that the
reduced (penalized) problem is also a d.c. minimization problem. After that,
we introduce a special local search method for the penalized problem (Pσ),
where the penalty parameter may be changed during computational solving of
linearized problems. Furthermore, in Sect. 5, we present the results of computa-
tional testings of two local searches on some low-dimensional test problems from
the literature. Finally, we give the results of a comparison of the two special
local search methods with well-known computational software.

2 Problem Statement

Consider a d.c. minimization problem with d.c. inequality constraints:

(P) :
f0(x) = g0(x) − h0(x) ↓ min

x
, x ∈ S,

fi(x) = gi(x) − hi(x) ≤ 0, i ∈ I = {1, . . . , m},

}
(1)

where functions gi, hi, i ∈ I ∪ {0} are convex, S ∈ IRn is a closed convex set.
Below, assume that the feasible set of Problem (P) is nonempty:

F := {x ∈ S | fi(x) ≤ 0, i ∈ I} �= 0, and the optimal value of Problem (P) is
finite: V(P) = inf

x
{f0(x) | x ∈ F} > −∞.

3 Special Local Search Method I

The main idea of this local search method (LSMI), first described in [21], consists
in the consecutive solution of partially linearized problems. We linearize not only
the objective function of Problem (P) but all nonconvex constraints.
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Let us given a feasible starting point x0 ∈ F and a current iterate xs ∈ F .
Then we find the next iterate xs+1 as a solution to the following problem:

(PLs) :
Φ0s(x) := g0(x) − 〈∇h0(xs), x〉 ↓ min

x
, x ∈ S,

Φis(x) := gi(x) − 〈∇hi(xs), x − xs〉 − hi(xs) ≤ 0, i ∈ I.

}
(2)

Since the objective function and the feasible set Fs of Problem (PLs) are convex,

Fs := FLs = {x ∈ S | gi(x) − 〈∇hi(xs), x − xs〉 − hi(xs) ≤ 0, i ∈ I}, (3)

then, Problem (PLs) turns out to be also convex and can be solved by suitable
classical optimization methods. Therefore, the next point xs+1 is produced to
satisfy the following inequality

Φ0s(xs+1) := g0(xs+1) − 〈∇h0(xs), xs+1〉 ≤ V(PLs) + δs, (4)

and V(PLs) := inf
x

{g0(x) − 〈∇h0(xs), x〉 | x ∈ Fs} is the optimal value of

Problem (PLs), where the sequence δs is chosen according the next conditions

δs ≥ 0, s = 1, 2, . . . ,
∞∑

δs < ∞. (5)

Furthermore, every new iterate xs+1 ∈ Sol(PLs) is feasible not only in the
linearized Problem (PLs) but also in the original Problem (P): xs+1 ∈ F . Indeed,
due to the convexity of the functions hi(·), i ∈ I, we have:

0 ≥ gi(xs+1) − 〈∇hi(xs), xs+1 − xs〉 − hi(xs) = Φis(xs+1)
≥ gi(xs+1) − [hi(xs+1) − hi(xs)] − hi(xs)
= gi(xs+1) − hi(xs+1) = fi(xs+1), i ∈ I.

(6)

Thus, fi(xs+1) ≤ 0 ∀i ∈ I, and the sequence {xs}, generated by the rule (4)–(5),
turns out to be feasible in the original Problem (P).

Definition 1. A point x∗ is called to be a critical point in Problem (P) with
respect to the LSM (4)–(5) if it is a solution to the Problem (PL∗), i.e.

g0(x∗) − 〈∇h0(x∗), x∗〉 = inf
x

{g0(x) − 〈∇h0(x∗), x〉 | x ∈ FL∗}. (7)

where

(PL∗) :
g0(x) − 〈∇h0(x∗), x〉 ↓ min

x
, x ∈ S,

gi(x) − 〈∇hi(x∗), x − x∗〉 − hi(x∗) ≤ 0, i ∈ I.

}
(8)

Using theoretical results on the convergence of LSMI proposed in [21], we
can use one of the following inequalities as a stopping criterion:

⎧⎨
⎩

a) f0(xs) − f0(xs+1) ≤ τ

2
,

b) Φ0s(xs) − Φ0s(xs+1)=� g0(xs) − g0(xs+1) − 〈∇h0(xs), xs − xs+1〉 ≤ τ

2
,

(9)
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where τ is an accuracy. If one of the inequalities (9) is satisfied and δs ≤ τ/2,
then the point xs is a τ -critical point in Problem (PLs), which means that it is
a τ -solution to the Problem (PLs), or equivalent the next inequality holds:

g0(xs) − 〈∇h0(xs), xs〉 ≤ inf
x

{g0(x) − 〈∇h0(xs), x〉 | x ∈ FLs} + τ. (10)

Let us be given a starting point x0 ∈ F and a sequence {δs} satisfying (5).

Local Search Scheme I

Step 0. Set s := 0, xs := x0 ∈ F .
Step 1. Find xs+1 as a δs-solution to the linearized problem (PLs).
Step 2. (Stopping criteria) If the inequality (9 b) holds and δs ≤ τ

2
then STOP:

xs+1 is a τ -critical point relatively to LSMI.
Step 3. Set s := s + 1, and return to Step 1.

It is worth noting that the starting point x0 should be feasible in (P), x0 ∈ F
ensuring that the set FLs is nonempty. Therefore, the sequence {xs} produced
by the rule (4)–(5) is a sequence of feasible points in Problem (P) as shown
in (6).

4 The Penalization and Local Search Method II

Let us introduce the penalized problem [11,12,17]

(Pσ) : Θσ(x) := f0(x) + σW (x) ↓ min
x

, x ∈ S, (11)

where σ ≥ 0 is a penalty parameter, and the penalty function W (x) is defined
as follows:

W (x) := max{0, f1(x), . . . , fm(x)}. (12)

It means that Problem (P) is reduced to a penalized problem (Pσ), which is a
d.c. minimization problem without nonconvex constraints. Let us verify that the
objective function Θσ(x) of the penalized problem (Pσ) is a really d.c. function.
Indeed, the function Θσ(·) can be represented as follows:

Θσ(x) = f0(x) + σ max {0, f1(x), . . . , fm(x)} = Gσ(x) − Hσ(x), (13)

where the functions

Gσ(x) = g0(x) + σ max

⎧⎨
⎩

∑
p∈I

hp(x);

⎡
⎣gi(x) +

p�=i∑
p∈I

hp(x)

⎤
⎦ , i ∈ I

⎫⎬
⎭ ,

Hσ(x) = h0(x) + σ
∑
p∈I

hi(x)

are convex, thanks to the properties of this class of functions (see [12]).
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Let us describe a local search method (LSMII), producing a sequence {xs}
every member of which is an approximate solution to the next linearized problem

(PsLs) : Φs(x) := Gs(x) − 〈∇Hs(xs), x〉 ↓ min
x

, x ∈ S, (14)

where Gs := Gσs
,Hs := Hσs

, ∇Hs(xs) = ∇h0(xs) + σs

∑
i∈I

∇hi(xs). It can

be readily seen [11,12,17,20] that Problem (PsLs) is a convex problem, where
the function Hs(·), that accumulates all nonconvexities of the Problems (P)
and (Pσ), was linearized. It means that a point xs+1 is produced to satisfy the
following inequality:

Φs(xs+1)
�
= Gs(xs+1) − 〈∇Hs(xs+1), xs+1〉 ≤ V(PsLs) + δs, (15)

where V(PsLs) := inf
x

{Gs(x) − 〈∇Hs(xs+1), x〉 | x ∈ S} is an optimal value of

Problem (PsLs) and the sequence {δs} is defined as in (5).
Moreover, let us introduce the following auxiliary problem:

(APW Ls) : ΦW (x) := GW (x) − 〈∇HW (xs), x〉 ↓ min
x

, x ∈ S, (16)

where GW (x) = σ−1
s [Gs(x)− g0(x)] = max{ ∑

p∈I
hp(x); [gi(x)+

p�=i∑
p∈I

hp(x)], i ∈ I},
∇HW (xs) = σ−1

s [∇Hs(xs) − ∇h0(x)] =
∑
i∈I

∇hi(xs).

It is easy to verify that Problem (APW Ls) is a linearized problem of the
penalty function minimization:

(PW ) : W (x)
�
=GW (x) − HW (x) ↓ min

x
, x ∈ S, (17)

where GW (x) = max{ ∑
p∈I

hp(x); [gi(x) +
p�=i∑
p∈I

hp(x)], i ∈ I}, HW (x) =
∑
i∈I

hi(x).

Let us given a starting point x0 ∈ S, the initial value of the penalty parameter
σ0 > 0, and the method parameters η1, η2 ∈ ]0, 1[.

Local Search Scheme II

Step 0. Set s := 0, xs := x0, σs := σ0 (say, σ0 = 1).
Step 1. Find a δs-solution x(σs) to the linearized problem (PsLs).
Step 2. If W (x(σs)) = 0, then set σ+ := σs, x(σ+) := x(σs), and go to Step 7.
Step 3. If W (x(σs)) > 0, find a solution xs

W ∈ Sol(APW Ls) to the auxiliary
problem (APW Ls).
Step 4. If W (xs

W ) = 0, then, starting at xs
W , (by increasing, if necessary, the

value σ > σs) solve consecutively the problems (PsLs), and find σ+ > σs such
that W (x(σ+)) = 0, x(σ+) ∈ Sol(Pσ+Ls), and go to Step 7.
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Step 5. If W (xs
W ) > 0, and a feasible penalty parameter σ+ > σs, such that

W (x(σ+)) = 0, is not found (during Step 4), find σ+ > σs which satisfies the
following inequality:

W (xs) − W (x(σ+)) ≥ η1[W (xs) − W (xs
W )]. (18)

Step 6. Increase σ+, (if necessary), to fulfill the inequality

Φs(xs) − Φσ+(x(σ+)) ≥ η2σ+[W (xs) − W (x(σ+))]. (19)

Step 7. Set s := s + 1, σs+1 := σ+, xs+1 := x(σ+), and return to Step 1.

The inequalities (18) and (19) estimate that the change in the penalty func-
tion is a good measure of progress made by linearized and penalty functions [2].
The theoretical results of the convergence of the LSMII were proposed and dis-
cussed in detail in [22]. According to it, we use the following inequalities as a
stopping criterion: {

a) W (x(σ+) ≤ ν,

b) Φs+1(xs) − Φs+1(x(σ+) ≤ τ

2
,

(20)

where ν, τ are given accuracies. It is worth noting that inequality (20 a) ensures
that the point x(σ+) is a feasible point of Problem (Pσ) (meanwhile LSMII can
start at unfeasible points). Moreover, if the inequality (20 b) is satisfied with δs ≤
τ/2, then according to Remark 7.6 [22] the point xs generated by Local search
scheme II is τ -critical point and τ -solution to the linearized problem (PsLs)
(linearized at the point xs with the penalty parameter σ+ > 0). Hence the
stopping criterion (20) can be used in a computational simulation.

5 Numerical Testing

In this section, we perform a comparative numerical testing of the two local
search methods described above. The testing was carried out on one of the
most frequent subclasses of Problem (P), where fi(·) i ∈ I ∪ {0} are noncon-
vex quadratic functions. First, we tested local search methods on the small-scale
problems from the open-access data sets to verify the algorithm performance.
After that, we used specially generated test problems to observe algorithms’
behavior on the multiextremal problems and to demonstrate their efficiency dur-
ing the numerical solution of these high-dimension problems.

5.1 Low-Dimensional Instances

For the first stage of numerical testing, we chose 4 low-dimensional test exam-
ples from the literature [5,6,8,9] with known global solutions. For solving, we
used a computer with the Intel Core i5-4670K 3.40 GHz processor. The auxil-
iary linearized problems (convex problems) were solved by the built-in fmincon
procedure (MATLAB R2011b [14]), in which we employed tree algorithms: sqp
method, active-set approach, and interior point method.
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The first test instance “Hesse” is a nonconvex minimization problem with
reverse-convex inequality constraints. The feasible set of the problem contains
two nonconvex inequalities, linear and box constraints. Hence the noncon-
vexity of the problem is generated by the cost function and two inequality
constraints. The problem has 18 local extrema and a unique global solution
z = (5, 1, 5, 0, 5, 10).

Example 1. “Hesse” [8,9] (n = 6,m = 2,V(P) = −310)

f0(x)=−25(x1−2)2−(x2−2)2− (x3−1)2−(x4−4)2−(x5−1)2−(x6−4)2 ↓ min
x

,

f1(x)= −x2
3 + 6x3 − x4 ≤ 5, f2(x) = −x2

5 + 6x5 − x6 ≤ 5,

S = {x ∈ IR6 : x1 − 3x2 ≤ 2, −x1 + x2 ≤ 2, x1 + x2 ≤ 6, x1 + x2 ≥ 2,

x1 ≥ 0, x2 ≥ 0, 1 ≤ x3 ≤ 5, 0 ≤ x4 ≤ 6, 1 ≤ x5 ≤ 5, 0 ≤ x6 ≤ 10.}
Table 1 presents results illustrating the performance of two local search meth-

ods. We use the following denotations: the value of the objective function at the
starting point is f0(x0), this one at the obtained point is f0(x∗), PL stands for
the number of solved linearized problems. The second local search method table
presents the value of the final penalty parameter σ∗ and the number of iterations

Table 1. Results of solving the problem “Hesse”

# f0(x0) Solver LSMI LSMII

f0(x∗) PL Time f0(x∗) σ∗ PL Itr T ime

1 −58 sqp −132 8 0.34 −132 0.1 2 1 0.04

as −132 8 0.15 −132 0.1 2 1 0.07

ip −131.99 7 0.25 −131.99 0.1 12 6 0.28

2 −80.5 sqp −298 3 0.09 −298 0.1 2 1 0.14

as −298 3 0.05 −298 0.1 2 1 0.47

ip −297.99 4 0.17 −298 0.1 2 1 0.11

3 −44 sqp −132 8 0.09 −132 0.1 2 1 0.07

as −132 8 0.09 −132 0.1 2 1 0.04

ip −131.99 7 0.16 −131.99 0.1 12 6 0.29

4 −181.34 sqp −257.99 11 0.35 −258 0.1 4 2 0.07

as −36 13 0.67 −258 0.1 4 2 0.09

ip −35.99 15 0.57 −258 0.1 10 5 0.49

5 −497.67 sqp −132 17 0.42 −132 0.1 4 2 0.12

as −132 13 0.44 −132 0.1 4 2 0.16

ip −131.99 11 0.39 −131.99 0.1 18 9 0.53

6 −64.35 sqp −132 9 0.32 −148 0.1 10 5 0.21

as −132 10 0.54 −148 0.1 10 5 0.19

ip −131.99 8 0.38 −163.99 0.1 24 12 0.82
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of the local search Itr. The LSMI and the LSMII were launched from six starting
points using the built-in matlab algorithm denoted in the column Solver. The
cases where any special local search method found a global solution (with the
accuracy ε = 10−4) are highlighted in bold.

Note that starting from all points both local search methods found the feasi-
ble points. Further, LSMI, is starting at a feasible point, produces the sequence
of feasible vectors {xs} according to the inequalities (6), meanwhile, the LSMII
(which can start at unfeasible points) generates the sequence {xs} such that
lim

s→∞ W (xs) = 0.
In addition, Table 1 shows that both methods provide a rather good improve-

ment of the values of the cost function in less than a second. Indeed, one can
see that starting from point #2, the LSMII needs only 2 iterations to achieve
the point close to the global solution, according to the value of the objective
function. However, the interior-point algorithm showed results worse than other
methods. It required twice as many iterations to reach the same points.

Note that the values of the objective function obtained by the LSMII
launched from the starting points #4, #6 turn out to be better than those
of LSMI. Although in the LSMII, the penalty parameter value starting from
σ0 = 0.1 remains the same for all points. On the other hand, it is clear that
in this test example, both local search methods failed to find global solutions
V(P) = −310 starting from all initial points.

The next two test instances “Hs108” and “Mistake” have a similar structure.
The objective function of examples contains bilinear elements highlighting the
d.c. structure of the function. They have four and five nonconvex constraints,
respectively, which are also bilinear. The best known solution to the problem
“Hs108” is z = (0.9238, 0.3828, 0.1304, 0.9915, 0.9238, 0.3828, 0.1304, 0.9915, 0).
For the problem “Mistake”, the point z = (0.7575, 0.7958, 0.3433, 0.8463,
0.9961, 0.0888, 0.6688, 1.7918, 0.1430) provides the best known solution to the
problem. The starting points for the two examples are the same, moreover, three
of them are infeasible.

Example 2. “Hs108” [6] (n = 9,m = 4,V(P) = −0.866025)

f0(x) = −0.5(x1x4 − x3x2 + x3x9 − x5x9 + x8x5 − x6x7) ↓ min
x

,

f1(x) = x2x3 − x1x4 ≤ 0, f2(x) = −x3x9 ≤ 0,

f3(x) = x5x9 ≤ 0, f4(x) = x6x7 − x5x8 ≤ 0,

S = {x ∈ IR9 : x2
3 + x2

4 ≤ 1, (x1 − x5)2 + (x2 + x6)2 ≤ 1, x2
5 + x2

6 ≤ 1,

(x1 − x7)2 + (x2 + x8)2 ≤ 1, x2
9 ≤ 1, x9 ≥ 0, x2

1 + (x2 + x9)2 ≤ 1,

(x3 − x7)2 + (x4 + x8)2 ≤ 1, (x3 − x5)2 + (x4 + x6)2 ≤ 1.}
The results of solving the problem “Hs108” in Table 2 demonstrate that the LSMI
launched from the starting point #2 found the best known solution. The biggest
number of solved linearized problems for this problem shows the interior point
method, by which the LSMI found the global solution by solving 97 linearized
problems. And, except for the time which interior point method takes for solving
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Table 2. Results of solving the problem “Hs108”

# f0(x0) Solver LSMI LSMII

f0(x∗) PL Time f0(x∗) σ∗ PL Itr T ime

1 −0.31 sqp −0.67 64 3.08 −0.8659 0.1 50 25 2.67

as −0.67 75 2.31 −0.8659 0.1 50 25 2.54

ip −0.67 64 7.92 −0.8657 0.1 50 25 7.88

2 −0.34 sqp −0.87 37 1.34 −0.8653 0.3 102 50 1.98

as −0.87 27 0.78 −0.8655 0.3 104 51 1.99

ip −0.87 97 12.11 −0.8652 0.4 99 48 8.19

3 −0.42 sqp −0.67 45 2.25 −0.6726 0.1 44 22 1.74

as −0.67 46 1.54 −0.6725 0.1 42 21 1.42

ip −0.67 60 6.28 −0.6726 0.1 44 22 8.02

4 −1.47 sqp −0.53 7 1.99 −0.8657 0.1 22 11 0.93

as −0.40 10 3.43 −0.8658 0.1 24 12 1.13

ip −0.51 14 6.63 −0.866 0.2 44 16 7.15

5 −32.73 sqp −0.67 9 2.84 −0.8658 0.1 86 43 2.98

as −0.85 9 3.08 −0.8659 0.1 86 43 2.80

ip −0.63 13 11.44 −0.8659 0.3 112 49 15.77

6 −11.43 sqp −0.61 7 2.53 −0.8658 0.1 18 9 0.67

as −0.41 8 2.96 −0.8659 0.1 20 10 0.76

ip −0.27 22 14.36 −0.8659 0.1 20 10 3.02

the test example we can conclude that the LSMI solves the problem “Hs108” in
less than four seconds.

Moreover, in this case, for the starting points #2, #4, and #5, we can see
that the LSMII doubled (or even tripled) the penalty parameter during the com-
putational process. Even though LSMII found a global solution (with accuracy
ε = 10−4) only at the starting point #4 (using the interior-point method), all
other produced points, except #3, are too close to the optimal one.

Example 3. “Mistake” [6] (n = 9,m = 5,V(P) = −1.0)

f0(x) = −0.5(x1x4 − x3x2 + x3x9 − x5x9 + x8x5 − x6x7) ↓ min
x

,

f1(x) = x2x3 − x1x4 ≤ 0, f2(x) = −x8x9 ≤ 0, f3(x) = −x5x9 ≤ 0,

f4(x) = x6x7 − x5x8 ≤ 0, f5(x) = x2
7 + x9x8 ≤ 1,

S = {x ∈ IR9 : (x1 − x7)2 + (x2 + x8)2 ≤ 1, (x3 − x7)2 + (x4 + x8)2 ≤ 1,

x2
9 ≤ 1, x2

3 + x2
4 ≤ 1, x2

1 + (x2 + x9)2 ≤ 1, (x1 − x5)2 + (x2 + x6)2 ≤ 1,

x2
5 + x2

6 ≤ 1, (x3 − x5)2 + (x4 + x6)2 ≤ 1.}
Table 3 demonstrates computational results for the problem “Mistake”. The

LSMI starting from the points #4, #5, and #6, found the best known solution
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Table 3. Results of solving the problem “Mistake”

# f0(x0) Solver LSMI LSMII

f0(x∗) PL Time f0(x∗) σ∗ PL Itr T ime

1 −0.31 sqp −0.49 23 1.57 −0.932 0.8 209 102 6.28

as −0.49 20 1.19 −0.932 0.8 209 102 5.38

ip −0.93 156 34.67 −0.932 0.8 229 112 29.65

2 −0.34 sqp −0.86 15 0.67 −0.931 0.8 179 87 4.43

as −0.86 15 0.53 −0.931 0.8 181 88 3.81

ip −0.86 15 1.73 −0.931 0.8 185 90 18.74

3 −0.42 sqp −0.49 33 1.74 −0.998 0.3 348 173 8.41

as −0.66 87 2.92 −0.998 0.3 348 173 7.21

ip −0.49 44 20.93 −0.997 0.4 313 155 37.22

4 −1.47 sqp −1 123 6.82 −0.998 0.2 239 119 6.27

as −0.34 13 4.97 −0.998 0.3 238 118 5.26

ip −0.99 371 92.34 −0.997 0.4 239 118 26.13

5 −32.73 sqp −1 36 2.25 −0.999 0.1 24 12 1.07

as −1 25 2.82 −0.999 0.1 24 12 0.85

ip −0.99 247 35.77 −0.999 0.1 24 12 4.46

6 −11.43 sqp −1 29 2.16 −0.999 0.1 62 31 2.45

as −0.99 32 2.37 −0.999 0.1 62 31 2.11

ip −0.99 297 71.78 −0.999 0.1 62 31 12.12

while the LSMII only from the points #5 and #6. Similar to the previous exam-
ple, for almost all starting points the LSMII found the critical ones, which are
too close to the optimal solution. For all points, the running times of the interior
point algorithm in both local search methods confirm once more that we should
not use it in further testing.

The final problem “Colville” is particularly interesting at this stage of numer-
ical testing. It contains a nonconvex quadratic objective function subject to six
nonconvex inequality constraints. The data of this test example are specially
modeled to be unscaled, i.e. the left-hand side of the constraints is consider-
ably smaller than the right-hand side. In addition, these constraints have a d.c.
structure. The global optimum is z = (78, 33, 29.99, 45, 36.77).
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Example 4. “Colville” [5,8] (n = 5,m = 6,V(P) = −30665.54)

f0(x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141 ↓ min

x
,

f1(x) = 0.0056858x2x5 − 0.0022053x3x5 + 0.0006262x1x4 ≤ 6.665593,

f2(x) = 0.0022053x3x5 − 0.0056858x2x5 − 0.0006262x1x4 ≤ 85.334407,

f3(x) = 0.0071317x2x5 + 0.0021813x2
3 + 0.0029955x1x2 ≤ 29.48751,

f4(x) = −0.0071317x2x5 − 0.0021813x2
3 − 0.0029955x1x2 ≤ −9.48751,

f5(x) = 0.0047026x3x5 + 0.0019085x3x4 + 0.0012547x1x3 ≤ 15.599039,

f6(x) = −0.0047026x3x5 − 0.0019085x3x4 − 0.0012547x1x3 ≤ −10.699039,

S = {x ∈ IR5 : 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ x3 ≤ 45,
27 ≤ x4 ≤ 45, 27 ≤ x5 ≤ 45.}

Table 4. Results of solving the problem “Colville”

# f0(x0) Solver LSMI LSMII

f0(x∗) PL Time f0(x∗) σ∗ PL Itr Time

1 −28716.82 sqp −30665.54 1125 79.12 – – – – –

as −30665.54 1233 101.82 −30665.54 1297 32702 16345 433.89

ip −30665.54 1235 85.11 −30349.28 1946 6605 3296 118.86

2 −24803.19 sqp −30665.54 1130 78.19 −30665.54 1297 10694 5341 179.94

as −30665.54 1057 91.36 −30665.54 1297 34158 17073 810.71

ip −30665.54 1056 73.71 −30499.75 1297 12156 6072 217.40

3 −29459.92 sqp −30665.54 548 36.11 −30665.54 1297 12452 6220 214.05

as −30665.54 548 50.17 −30665.54 1297 34960 17474 669.58

ip −30665.54 548 36.5 −30549.08 1946 7155 3571 130.31

4 22776.82 sqp −30665.54 1364 76.85 – – – – –

as −30665.54 1212 95.69 −30665.54 1297 35542 17765 430.41

ip −30665.54 1396 100.3 −30342.82 1297 4736 2362 91.69

5 −8156.53 sqp −30665.54 263 14.71 −30665.54 1946 537977 268982 2639.45

as −30665.54 267 18.65 −30665.54 1297 27320 13654 335.40

ip −30665.54 263 15.74 −30531.86 1297 13642 6815 230.15

6 5788.81 sqp −30665.54 1511 105.07 – – – – –

as −30665.54 573 99.49 −30665.54 1297 5770 17879 424.72

ip −30665.54 1321 104.89 −30152.50 1946 8783 4385 154.89

The results of Table 4 show that the running times increased significantly for
both local search methods compared to the previous test examples. Partly, this
is due to the increased number of solved linearized problems. It is also interesting
that already at this (local!) stage the LSMI found the global solution for all starting
points. Let us note that the LSMII, using sqp algorithm for solving auxiliary convex
problems (PσLs), failed to find any results starting from 3 initial points.

Analyzing the results of numerical testing of two local search methods on low-
dimensional problems, one can see that both methods have shown their efficiency
in solving non-convex quadratic problems. In problems “Hs108”, “Mistake” and
“Colville”, from some starting points it was possible to find a global solution
(with an accuracy ε = 10−4). The best and the most stable results have been
achieved by using the active-set algorithm as a built-in Matlab algorithm for
solving auxiliary linearized problems. Therefore, it will be used as the principal
one at the next stage of the numerical experiment.
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5.2 Generated Examples

However, one can conclude that the existing range of test problems turns out to
be insufficient for the further comparison of the two algorithms. The necessity to
have a test problem collection for general nonconvex problems of high dimension
and the lack of such data in free libraries motivates us to generate a new field of
test instances with known local and global solutions. To this end, we developed
a technique for generating nonconvex test problems with quadratic data [1]. Let
us remind the main idea of this method of generation and its basic stages.

Based on the idea of P. Calamai and L. Vicente [3], the proposed method
of generation consists of three stages. First of all, we construct low-dimensional
(n = 2) kernel problems and find all local and global solutions to these problems.
Then, by uniting a finite number of kernel problems with different properties we
obtain a separable problem of the required dimension. Finally, the separable
problem is transformed to eliminate the separability of the constructed problem.
In this manner, one can construct test instances of any dimension with the
required properties and known local and global solutions [1,3].

At this stage of numerical testing, we compare two local search methods
between them. To this end, using the technique proposed, we generated a series
of 8 examples in the following form:

⎧⎨
⎩

f0(x) := 〈x,Q0x〉 + 〈b0, x〉 + d0 ↓ min
x

, x ∈ S,

fi(x) := 〈x,Qix〉 + 〈bi, x〉 + di ≤ 0, i ∈ I = {1, ...,m},
S ={x ∈ IRn : fj(x) := 〈x,Qjx〉+〈bj , x〉+dj ≤ 0, j ∈ J ={m + 1, ..., 2m}}.

where matrices Qi ∈ IRn×n, i ∈ I ∪ {0} are indefinite, matrices Qj ∈ IRn×n,
j ∈ J are positive-definite, therefore S ⊂ IRn is a convex, closed set.

Table 5 shows the parameters of constructed examples, such as the problem’s
dimension (n), a number of nonconvex inequalities (m), numbers of stationary
points (st), and global solutions (gl) in the problem. The column “density”
shows the density of constructed matrices Qi ∈ IRn×n, i ∈ I ∪ {0}. Note that
the complexity of the test problem depends on the number of kernel problems
of a particular class (ri, i = 1, 2, 3).

Table 5. Parameters of generated examples

# n m r1 r2 r3 Density st gl

Q10K1-2-2 10 5 1 2 2 0.7 35 2

Q10K2-1-2 10 5 2 1 2 0.7 35 4

Q20K0-5-5 20 10 0 5 5 0.75 310 1

Q20K1-4-5 20 10 1 4 5 0.75 310 2

Q30K0-8-7 30 15 0 8 7 0.5 315 1

Q30K1-7-7 30 15 1 7 7 0.7 315 2

Q40K2-9-9 40 20 2 9 9 0.5 320 4

Q50K2-12-11 50 25 2 12 11 0.5 325 4
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The results of the numerical experiment on specially generated examples
are given in Table 6. They demonstrate a considerable difference between the
effectiveness of the two developed methods of local search. We can conclude
that the LSMII tends to find a point close to the global solution by solving a
large number of linearized problems. Moreover, it chooses a penalty parameter
to achieve a global solution (already at the local stage). At the same time, the
LSMI quickly passes through feasible points and stops at a first critical point by
solving a small number of linearized problems.

Table 6. Comparison of two local search methods

x0 f0(x0) LSMI LSMII

f0(x∗) PL Time f0(x∗) σ∗ PL Itr Time

Q10K1-2-2

1 3.75 −8.6 9 0.29 −9.6 1.2 346 170 3.84

2 12.84 −8.8 19 0.52 −9.6 1.2 234 111 3.24

3 11.46 −9.6 17 0.57 −9.6 1.2 354 174 4.25

4 17.3054 −7.8 24 0.79 −9.6 1.2 358 176 4.68

Q10K2-1-2

1 3.575 −8.0375 20 0.77 −9.0375 1.7 278 132 5.09

2 1.775 −7.2375 55 1.63 −9.0375 1.7 306 146 6.82

3 18.19 −8.6375 71 2.33 −9.0375 1.7 286 136 5.72

4 −185.69 −8.0375 63 2.66 −9.0375 1.7 272 129 4.71

Q20K0-5-5

1 3.74 −17.5374 110 9.04 −19.9375 2.6 1362 673 48.76

2 7.46 −18.3375 183 15.03 −19.5375 3.8 1046 514 43.64

3 −0.65 −16.9375 209 17.46 −19.9375 2.6 1396 690 54.96

4 −170.31 −15.4731 117 13.26 −19.9375 2.6 1424 704 52.06

Q20K1-4-5

1 5.64 −17.5749 51 6.82 −19.375 3.8 1792 882 57.03

2 3.18 −17.7749 128 15.0 −19.375 3.8 2118 1049 77.25

3 5.19 −16.7749 178 16.55 −19.375 3.8 1800 891 60.54

4 −766.13 −16.175 301 37.15 −18.975 3.8 1216 597 62.39

Q30K0-8-7

1 8.63 −25.1 12 8.58 −30.1 3.8 714 347 52.82

2 34.28 −27.7 18 7.97 −30.1 3.8 784 382 54.13

3 42.13 −26.3 21 8.28 −30.1 3.8 810 395 59.04

4 −387.89 −28.1 21 12.61 −30.1 3.8 766 373 62.74

Q30K1-7-7

1 13.05 −26.7375 444 72.42 −29.5375 5.8 1698 839 270.98

2 14.95 −26.3375 505 88.79 −29.5375 5.8 1748 863 293.50

3 −2693.00 −26.7374 753 155.34 −29.5375 5.8 1836 908 317.07

4 −3050.35 −27.1375 528 125.32 −29.5375 5.8 1758 869 277.00

Q40K2-9-9

1 6.15 −32.1375 135 56.37 −33.08 5.8 3160 1569 1553.65

2 5.75 −35.5375 695 194.33 −31.04 5.8 1878 928 773.16

3 −2690.59 −33.1373 1109 373.31 −39.14 5.8 4794 2385 1691.55

4 −2438.47 −34.1368 1579 508.84 −39.14 5.8 4978 2477 1792.09

Q50K2-12-11

1 11.6139 −43.8447 17 34.85 −49.3 7.6 4345 2170 2327.53

2 30.4595 −43.597 14 23.32 −49.3 7.6 4307 2151 2115.11

3 −3073.65 −43.0446 68 156.48 −49.3 7.6 4507 2251 2923.64

4 17.9451 −44.3731 16 27.62 −49.3 7.6 4599 2297 2251.93
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5.3 Comparison with Modern Software Packages

Nowadays, most modeling systems and solvers include tools for dealing with non-
convex optimization problems. New software packages offer the possibility to solve
increasingly difficult problems with a large number of variables and constraints.
However, almost all of them use the well-known approaches based on branch-and-
bound and whose direct implementation for high dimensional problems may lead
to huge search trees. Nevertheless, these methods are widely employed for find-
ing a global solution to applied problems. Among those are ANTIGONE [16],
BARON [18], COUENNE [7], LINDOGlobal [15] that implement a spatial branch-
and-bound algorithm, Conopt [4] and SCIP [19], which, in addition to branch-and-
bound approaches, use various primal heuristics.

Table 7. Results of solving generated examples via software packages

# CONOPT COUENNE LINDOGL MINOS SCIP

fval T ime fval T ime fval T ime fval T ime fval T ime

Q10K1-2-2 −7.6 0.2 −7.6 >3600 −7.6 0.7 −7.6 0.2 −9.6 >3600

Q10K2-1-2 −8.038 0.5 −6.88 >3600 −8.04 0.7 −8.038 18.2 −9.038 86.2

Q20K0-5-5 −14.94 0.3 −17.74 >3600 −14.94 0.3 −14.94 0.2 −15.54 >3600

Q20K1-4-5 −15.38 0.3 −15.38 >3600 −15.38 0.3 −18.98 0.2 −16.58 96.3

Q30K0-8-7 −22.1 0.2 −30.1 0.4 −22.1 0.3 −22.1 0.1 −28.7 87.3

Q30K1-7-7 −22.54 1.2 −26.69 >3600 −22.54 1.1 −22.54 0.3 −26.69 129.8

Q40K2-9-9 −30.14 1.3 −39.14 >3600 −30.14 0.8 −30.14 0.31 −32.79 >3600

Q50K2-12-11 −37.3 5.9 −49.3 1.14 −37.29 2.7 −37.3 0.9 −43.76 93.74

To verify the competitiveness of developed local search methods with respect
to modern software packages, we test some of them numerically. As an interface
for these packages, we use the modeling system GAMS 25.1.1 [10].

The results in Table 7 show that the generated instances have indeed proved
to be complex. The table uses the following denotations: fval is an obtained
value, all time values Time are expressed in seconds. Only two modern solvers
(Couenne, Scip) managed to find (in some cases) the global solution.

Hence, comparing Tables 6 and 7, it can be readily seen that on the specially
generated examples of dimensions n = 10, 20, 30, 40, 50, the LSMII demonstrated
considerable advantages with respect to all applied software packages.

6 Conclusion

In this paper, we considered a nonconvex optimization problem with inequality
constraints given by d.c. functions. With the help of exact penalization tech-
niques, the original problem was reduced to a penalized problem, the goal func-
tion of which was presented as d.c. function. Two local search methods based on
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linearization of the objective function and constraints of the original and penal-
ized problems were studied. Finally, preliminary computational testing of two
LSMs was carried out.

It is worth noting that the obtained numerical results have demonstrated
a considerable difference between the effectiveness of the two methods of local
search. On the other hand, the results of comparison of these methods with
popular approaches on specially generated instances have shown that in some
cases the proposed local search methods considerably outperform some state-of-
the-art techniques for solving nonconvex problems. Thus, the results obtained
have demonstrated the promising effectiveness of the LSMs and the possibili-
ties of their use in future studies within global search algorithms in large-scale
nonconvex problems.
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Abstract. We propose an approach to finding the roots of systems of
quadratic equations in a box. This approach is based on a reduction to
an auxiliary optimization problem. The auxiliary problem turns out to
be, in general, a nonconvex optimization problem, with the objective
function and inequality constraints given by d.c. functions. We use the
linearization technique with respect to the basic nonconvexity and box
partition procedure to try to find all solutions of the system or proof
that there are no solutions in the box. The results of the computational
simulation are given.

Keywords: System of quadratic equations · Finding roots of system
of nonlinear equations · DC programming · Quadratic programming ·
Linearized problem · Local search

1 Introduction

Finding solutions of nonlinear equations is an important problem which is widely
encountered in science and engineering. One of the important problems arising
in energy systems and requiring an effective solution is the problem of solving
nonlinear equations of steady-state modes of electric power systems (see, for
instance, [17]). Nonlinear equations of nodal voltages describe the steady-state
of the electrical system.

The mathematical and computational theory for solutions of systems of alge-
braic equations developed well when solving linear systems. The situation is
much more complicated when the equations in the system given by nonlinear
(quadratic, nonconvex) functions.

It is worth mentioning that in this case there is a multitude of critical points
(generated by Newton’s methods) that are rather far from the root set. As a
consequence, the classical optimization methods for the nonconvex problem and
numerous variants of Newton’s schemes turn out to be, in general, inoperative
and ineffective when it comes to finding a solution to the equation system because
they fail to escape a local pit (and therefore find all roots of the system) in the
case of an arbitrary starting point (see [7,14,19]).
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A recent review of iterative methods of solving systems of nonlinear equa-
tions is present by [2]. Among the modern effective methods, the LP-Newton
method can be mentioned (see [9,13] and references therein). At the same time,
the problem of finding all the roots of a system of nonlinear equations remains
relevant enough. For the system of multivariate polynomial equations there exists
quite comprehensive theoretical approach based on numerical polynomial alge-
bra [6,8,26]. Within this approach it is possible to describe roots varieties of
polynomial systems [3]. However, practical implementation of the developed
algorithms demands calculation of extremely large number of auxiliary polyno-
mials. Another approach uses interval arithmetics techniques [22,23,31]. Global
optimization methods in combination with multistart and other heuristics are
suggested in [10,12,20,29,30]. A partition technique with Newton’s method sim-
ilar to the branch and bound methodology in global optimization is described
in [24]. A sequential determining roots method by means of cutting planes is
presented in [5].

In this paper, we propose to apply an optimization approach for solving
systems of quadratic equations, that lead us to an optimization problem which
is a nonconvex one. The paper is structured exactly as follows. In Sect. 2, we
investigate the problem statement and reduce the original problem to nonconvex
optimization problem. In Sect. 3 we describe the local search method, which is
often called DCA. Section 4 concerns the question about construction low and
upper bounds on objective function over box constraint. In Sect. 5 we developed
a scheme for finding all roots of the system of quadratic equations and in Sect. 6
we demonstrate the result of computational simulations on two test systems from
literature.

2 Problem Statement

Consider the following system of quadratic equations

fi(x) = x�Qix + c�
i x + ri = 0, i ∈ I = {1, . . . , n}, (1)

where Qi are n × n matrices, ci ∈ IRn and ri ∈ IR, i ∈ I, and try to find all
roots of system (1) on the following box:

Π = {x ∈ IRn | ai ≤ xi ≤ bi, i ∈ I}. (2)

To find all roots of system of quadratic equations (1) in a box (2) we propose
optimization approach based on solving the auxiliary nonconvex quadratically
constrained quadratic problem, as follows

F (x)
�
=

n∑

i=1

fi(x) → min, x ∈ Π,

fi(x) ≥ 0, i ∈ I.

⎫
⎪⎪⎬

⎪⎪⎭
(P)
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Denote D = {x ∈ Π | fi(x) ≥ 0, i ∈ I}. Reduction (P) was earlier suggested in
[4]. Previous reductions are described by the two following auxiliary problems

Ψ1(x) =
n∑

i=1

f2
i (x) → min, x ∈ Π (3)

and

Ψ2(x) =
n∑

i=1

|fi(x)| → min, x ∈ Π. (4)

Problems (3) and (4) have very nice property, namely, if Ψ1(x̂) = 0 or Ψ2(x̂) = 0
for some feasible x̂, then x̂ is a root of system (1). Moreover, if lower bounds
Ψ1 : Ψ1(x) ≥ Ψ1 ∀x ∈ Π and Ψ2 : Ψ2(x) ≥ Ψ2 ∀x ∈ Π such that Φ1 > 0 or
Ψ2 > 0 are available, then system (1) is inconsistent over Π. These two properties
can by considered as a root-certificate and system-inconsistency properties.

The relations between the problem of finding roots of system (1) in a box
and optimization Problem (P) are obviously stated by following result.

Proposition 1. Any solution x∗ to Problem (P) such that F (x∗) = 0 is the
root of the system (1).

Proof. Suppose that x∗ ∈ Sol(P), F (x∗) = 0, but ∃j ∈ {1, . . . , n} : fj(x∗) �= 0.
Then two following options are possible
1) fj(x∗) < 0. But in this case x∗ turns out to be infeasible to Problem (P), i.e.
x∗ /∈ D.
2) fj(x∗) > 0. Then

∑

i�=j

fi(x∗) + fj(x∗) > 0 which contradicts the fact that

F (x∗) = 0.

Hence, problem (P) also has root-certificate and system-inconsistency prop-
erties. In what follows we use smooth optimization methods, so problem (4) will
not be considered any more since its objective function is not differentiable. As
for the problem (3) we see that the objective is a sum of squared quadratic func-
tions. In contrast to that, in our investigation we would like to remain in the field
of quadratic optimization. The difference between (3) and (P) consists in the
following: in problem (3) feasible (starting) points are readily available. In prob-
lem (P) feasible domain may be nonconvex and disconnected and direct search
for a feasible point can be a nontrivial task. However, the following trick was
suggested in [15]. Take a point x̂ ∈ Π. Define functions f̃i(·), i = 1, . . . , n in the
following way. If fi(x̂) ≥ 0 then f̃i(x) = fi(x), if fi(x̂) < 0 then f̃i(x) = −fi(x).
Obviously, point x̂ is feasible for system f̃i(x) ≥ 0, i = 1, . . . , n and systems
fi(x) = 0, i = 1, . . . , n and f̃i(x) = 0, i = 1, . . . , n have the same roots.

According to Proposition 1 the application of any method for solving the
continuous optimization Problem (P) can produce an approximate solution to
the system (1) if the objective function is sufficiently small. Therefore, we are
able to avoid the direct solution of the system (1) and address the search for
points which are feasible to Problem (P), and the value of the objective function
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at these points is equal to zero. Hence, we propose to combine a solution of
Problem (P) with a box partition procedure and [16] relaxation of a quadratic
terms.

3 Local Search

In order to find the feasible (to Problem (P)) point z : F (z) = 0, we apply the
special local search method for the general DC optimization problem (see [11,27,
28]). Its main idea consists in the linearization of the function, which defines “the
basic non-convexity” of Problem (P), at a current point with the subsequent
minimization of the convex approximation of the objective function over the
convex set obtained by replacing nonconvex constraints with their linearizations.
Observe that the algorithm designed in that way provides critical points by
employing only tools and methods of convex programming. However, we have
to construct the DC representation of the objective function and constraint
functions.

It is known that any symmetric quadratic matrix Q may be represented as
the difference of two symmetric positive definite matrices Q1 and Q2. Thus, we
can get the following representation of the quadratic part of function fi(x) :

x�Qix = x�Q1
ix − x�Q2

ix, i ∈ I.

Therefore Problem (P) can be present as its DC form, as follows

F (x) = G(x) − H(x) → min, x ∈ Π,

−fi(x) = gi(x) − hi(x) ≤ 0, i ∈ I,

⎫
⎬

⎭
(5)

where
G(x) =

n∑

i=1

[
x�Q1

ix + c�
i x + ri

]
, H(x) =

n∑

i=1

x�Q2
ix;

gi(x) = x�Q2
ix − c�

i x − ri, hi(x) = x�Q1
ix, i ∈ I,

(6)

are strongly convex functions (since Q1
i , Q2

i , i ∈ I, are positive definite matrices).
Note, that the representations (6) are not unique.

Assume further that a feasible starting point x0 ∈ Π is given and, further-
more, that after several successive iterations we find a current point xs ∈ Π,
s ∈ {1, 2, . . .}, so the linearized (at xs) problem can be written as follows:

Φs(x) = G(x) − [∇H(xs)]�x → min
x

, x ∈ Π,

gi(x) − [∇hi(xs)]�(x − xs) − hi(xs) ≤ 0, i ∈ I.

⎫
⎬

⎭
(PLs)

Note that Problem (PLs) is convex, since both its objective function and feasible
set

Ds = {x ∈ Π | gi(x) − [∇hi(xs)]�(x − xs) − hi(xs) ≤ 0, i ∈ I}
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are convex, meanwhile Problem (P) was a nonconvex one. Hence, Problem (PLs)
can be solved with a suitable convex optimization method (for example, [18])
at any given precision. Let us compute a new iteration xs+1 as an approximate
solution to the linearized problem (PLs), so that xs+1 is feasible, i.e. xs+1 ∈ Ds,
and satisfies the following inequality:

Φs(xs+1) = G(xs+1) − [∇H(xs)]�xs+1 ≤ Vs + Δs, (7)

where Vs is the optimal value of Problem (PLs), i.e. Vs = inf
x

{Φs(x) | x ∈ Ds},

while a given sequence {Δs} is such that

Δs ≥ 0, s = 0, 1, 2, . . . ;
∞∑

s=0

Δs < ∞.

One can see that Ds ⊂ D. Hence xs+1 is feasible not only for the linearized
problem (PLs), but also for the original Problem (P), since, due to convexity of
hi(·), we have

0 ≥ gi(xs+1) − [∇hi(xs)]�(xs+1 − xs) − hi(xs)

≥ gi(xs+1) − hi(xs+1) = −fi(xs+1).

As was proposed by [27], we can use one of the following inequalities as the
stopping criterion of the local search:

F (xs+1) − F (xs) ≤ τ

2
, Δs ≤ τ

2
, (8)

or

Φs(xs) − Φs(xs+1) ≤ G(xs) − G(xs+1) − [∇H(xs)]�(xs − xs+1) ≤ τ

2
,

Δs ≤ τ

2
,

(9)

Thus, if one of the inequalities (8)–(9) holds, the point xs turns out to be a
critical point for Problem (PLs) with the accuracy τ under the assumption that
Δs ≤ τ

2
. Indeed, (8)–(9) and the inequality (7) imply that

G(xs) − [∇H(xs)]�xs ≤ τ

2
+G(xs+1)−[∇H(xs)]�xs+1 ≤ Vs +

τ

2
+ Δs.

Therefore, if Δs ≤ τ

2
, the point xs is a τ -solution to Problem (PLs).

We intend to use the local search method described in this section, on boxes
Πk ⊂ Π, k = 1, 2, . . . , (see the following section) where we cannot determine,
according low and upper bounds, if the root of the system is in the k-box or not.



On Search for All Roots of SQE 115

4 Low and Upper Bounds

In order to determine the areas with roots of the system of quadratic equations,
we use the relaxation [16] of a bi-linear term x�y with y = Qx + c for finding
low and upper bounds on objective function F (x) over box constraint Π.

Therefore we relaxed the sets

Sj =
{
(xj , yj , vj) ∈ [

xL
j , xU

j

] × [
yL
j , yU

j

] × IR | vj = xjyj
}

, j = 1, . . . , n,

with the following four inequalities (j = 1, . . . , n):

vj ≥ xL
j yj + yL

j xj − xL
j yL

j
�
= l1j ,

vj ≥ xU
j yj + yU

j xj − xU
j yU

j
�
= l2j ;

(10)

vj ≤ xL
j yj + yU

j xj − xL
j yU

j
�
= l3j ,

vj ≤ xU
j yj + yL

j xj − xU
j yL

j
�
= l4j .

(11)

For a single bi-linear term vj = xjyj , the relaxations (10)–(11) describe the
convex hull of set Sj , j = 1, . . . , n (see [1]).

Using (10) and (11) we easy get

αj
�
= max

{
l1j ; l

2
j

} ≤ vj ≤ min
{
l3j ; l

4
j

} �
= βj , j = 1, . . . , n. (12)

Therefore Lk
i =

n∑

j=1

αk
j + ri and Uk

i =
n∑

j=1

βk
j + ri turn out to be low and upper

bounds, respectively, on box Πk, k = 1, 2, . . . , for quadratic functions fi(·), i ∈ I,
from the system (1).

Note that boundaries yL
j and yU

j on auxiliary variables yj can easily be cal-
culated using boundaries xL

j and xU
j on variables xj , j = 1, . . . , n, equality

y = Qx + c and interval arithmetic (see, for example, [25]).
The following statement is quite obvious.

Proposition 2. Let Lk
i and Uk

i be low and upper bounds, respectively, for func-
tions fi(·), i ∈ I, on some box Πk. If there exists number p ∈ {1, . . . , n} such
that Lk

p > 0 or Uk
p < 0, then there are no roots of the system (1) in box Πk.

5 Search Scheme for Quadratic System Roots

In order to find the roots of the system (1), we combined a box partition proce-
dure, function value estimations, and method for finding local solutions to the
problem (5) into an algorithm, applying the Search Scheme for System Roots
(Algorithm 1).

Let π be the set of boxes Πl ⊂ Π, |π| ≤ M , ε be the accuracy by the
objective function of the reducing optimization Problem (P).

The cardinality M of the set π, the minimum length of the box edge resulting
from partition, and the accuracy ε of equality to zero the objective function F (·)
are the algorithm parameters that can be varied.



116 T. V. Gruzdeva and O. V. Khamisov

Algorithm 1. Search Scheme for System Roots
π:= {Π}.
repeat

Select the box Πk with the maximum edge from the set of boxes π. Remove Πk

from π.
Split the box Πk into 2 parts by bisection the maximum edge at midpoint: Πk =

Π1
k

⋃
Π2

k .
for l = 1, 2; i ∈ I do

Find low Lk
li and upper Uk

li bounds for function fi(·) on box Πl
k.

end for
if there are no j such that Lk

lj > 0 or Uk
lj < 0 then

add Πl
k in π.

end if
until |π| ≤ M
for l = 1, 2, ..., M do

Applying local search method from Sect. 3, find solution zl to Problem (P) with
additional constraint x ∈ Πl, Πl ∈π.

if |F (zl)| ≤ ε then
zl is the ε

n
-root of the system (1).

end if
end for

6 Computational Simulations

The algorithm was coded in C++ language and applied to search all roots
of some systems of quadratic equations from [21] test collection on box Π =
[−10n; 10n]n. These test systems are with sparse matrices, which are consistent
with the properties of problems arising in energy systems.

System 1 (Test 222, [21])

fi = (3 − 2xi)xi − xi−1 − 2xi+1 + 1 = 0, i = 1, . . . , n

x0 = xn+1 = 0.

System 2 (Test 217, [21])

fi = 3xi(xi+1 − 2xi + xi−1) +
(xi+1 − xi−1)2

4
= 0,

x0 = 0, xn+1 = 20, i = 1, . . . , n.

Note that System 2 is more complicated because the functions fi(·), i ∈ I,
are nonconvex.

For n = 2 all roots of Systems 1:

z1 = (1.6456; 0.260407), z2 = (−0.453289;−0.385405);

and of System 2:

z1 = (0.104444;−1.43569), z2 = (−0.81506; 11.2038), z3 = (8.33828; 14.5584);



On Search for All Roots of SQE 117

Fig. 1. Plots of functions, and roots for System 1 (n = 2)

are displayed on Fig. 1 and Fig. 2, respectively.
The computational experiments were performed on the Intel Core i3-10110U

CPU 2.10 GHz. All auxiliary convex (linearized) problems arising during the
implementation of the local search method were solved by the software package
IBM ILOG CPLEX 12.6.2.

Tables 1 and 2 show the results of computational testing of Algorithm 1 for
finding all roots of Systems 1 and 2, respectively, and employ the following
denotations:

– n is the number of equations;
– roots stands for the number of roots finding by the algorithm;
– LS is the number of local search method startups;
– Time stands for the CPU time in seconds.

We have chosen the following parameters of the algorithm: M = 100n, ε =
10−5. The minimum length of the box edge was equal to 0.1.

Most of the CPU time is spent on local search in Problems (P) with additional
constraint x ∈ Πl, l = 1, . . . , M , therefore faster method for finding roots of the
system of quadratic equations on the small box will significantly reduce the
algorithm’s operation time.

The results of the computational experiment showed that the number of
found roots of System 2 directly depends on the accuracy of the equalities
fi(·) = 0, i ∈ I, and System 2 (as the system with equations given by non-
convex quadratic functions) is rather interesting for further research to improve
the algorithm.
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Fig. 2. Plots of functions, and roots for System 2 (n = 2)

Table 1. System 1

n Roots LS Time

5 2 115 18.236

8 2 191 151.873

10 2 237 359.098

12 2 291 658.444

15 2 365 879.154

18 2 453 1058.134

20 2 478 1134.475

25 2 602 3195.599

Table 2. System 2

n Roots LS Time

3 4 309 114.520

4 6 455 174.846

5 7 478 199.728

6 8 622 330.085

7 9 699 367.306

8 10 825 735.348

9 6 938 1133.535

10 4 1538 2140.265
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Abstract. We consider a problem of optimal allocation of processing
tools to a conveyor belt with parallel execution of tasks, which is known
as a Transfer Lines Balancing Problem. It requires to form a set of blocks
of tasks and assign them to machines so that the cycle time constraint
is satisfied. The execution times of some tasks are supposed to be uncer-
tain. Since this uncertainty has an impact on the feasibility of the solu-
tion because of existing constraint on cycle time, it is required to find
a solution with the maximum stability radius, i.e. the maximum devi-
ation from the initial data for which the feasibility of the solution can
assured. In our case, it also can be viewed as an application of the thresh-
old robustness approach. The relations between tasks are defined by a
precedence graph. In addition to the earlier formulation from the liter-
ature we extend the problem with exclusion and inclusion constraints
that play an important role in the area of machining lines balancing.
We propose MIP-based greedy and local search algorithms, in which a
given solution is iteratively built or improved by formulating subprob-
lems of smaller size and solving them with a MIP solver. The numerical
experiments showed that our algorithms outperform the straightforward
application of a MIP solver on large-scale problems.

Keywords: Transfer line · Balancing · Stability radius · Threshold
robustness · Uncertainty · Robust optimization · MIP · Heuristics

1 Introduction

The classic lines balancing problems usually deal with assignment of a set of
tasks V = {1, . . . , n} to a sequence of machines W = {1, . . . , m}. For each task
j ∈ V , its processing time tj is known, and the limit on the total workload time
of each machine (cycle time) is given and denoted by T .
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Differences in industrial environment generated an important number of ver-
sions of production line balancing problem formulations. In this paper, in particu-
lar, we consider the machining environment, in which all the tasks are automated
and realised by a sequence of machines connected by an automated conveyor belt.
In the literature, this type of line is known as transfer line.

In a transfer line, the tasks may be grouped into blocks, the tasks of the same
block are performed simultaneously. The processing time of a block is equal to
the longest task included in it. Each machine can perform several blocks in a
sequential order. As a consequence, the workload time of a machine is a sum of
processing times of its blocks. The number of tasks in a block is limited by the
given parameter rmax.

A partial order on the set of tasks is given in a form of directed acyclic
graph G = (V,A), where (i, j) ∈ A means that the block containing task j
must be placed after the block containing task i either on the same or on some
subsequent machine. The block exclusion constraints are defined by the family
Eb of sets of tasks, such that the tasks from e ∈ Eb cannot be assigned to the
same block. Similarly, the families En and Im define the machine exclusion and
machine inclusion constraints, which mean that the tasks from e ∈ Em cannot
be assigned to one machine, and tasks from e ∈ Im must be assigned to the same
machine.

A mathematical model for the deterministic version of this problem has
been introduced in [6]. The problem has been shown to be NP-hard. A num-
ber of heuristic methods have been therefore developed to deal with large-size
problem instances [4] including decomposition methods [5,9] and matheuristic
approaches [10]. A comparative study between exact and heuristic methods has
been conducted in [8] which provided useful guidelines for decision makers for
choosing the most efficient solution methods depending on the structure of the
problem instance and its size.

Further, uncertainty in task processing times has been introduced in [7] and
the notion of stability measure has been developed. It defines the maximum
possible deviation in task processing time which does not impact the feasibility
of the solution or optimality of the solution. The uncertainty of task processing
time is important to take into account at the design stage in order to not face the
infeasible situation at the operational level when the transfer line is implemented.

The first version of balancing problem with the objective to maximize the sta-
bility radius has been introduced in [13] for a simple line balancing problem. The
first robust version maximizing the stability radius for a transfer line balancing
problem has been proposed in [11]. In this paper, we extend this formulation and
develop a new solution method that outperforms the straightforward application
of a MIP solver in numerical experiments on large-scale problems.

The rest of the paper is organised in the following way. Section 2 introduces
the considered objective function and presents the corresponding mathematical
model. Section 3 develops a new solution method. Section 4 presents the results
obtained in numerical experiment and Sect. 5 concludes this study.
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2 Problem Formulation and MIP Model

Usually, in the line balancing problems it is required to minimize the cycle time
given the limited number of machines or vice versa. Other criteria like some
particular cost or cumulative functions can be also applied. In this paper, we
consider the robust formulation of the problem as in [11], in which a set of
uncertain tasks ˜V ⊆ V is given. For such tasks the processing times may deviate
from their nominal values and their probability distribution is not supposed to
be known.

In this robust version of the problem, the objective is to find a solution S with
the maximum stability radius, i.e. the maximum value of deviation supported by
the solution which keeps its feasibility:

ρ(S, t) = max{ε | ∀ξ ∈ B(ε) solution S stays feasible if t is replaced by t + ξ},

where t = (t1, ..., tn) is the vector of execution times and

B(ε) = {ξ ∈ Rn | ξj > 0 for j ∈ ˜V , ξj = 0 for j �∈ ˜V , and ‖ξ‖ ≤ ε}

is a space of all possible execution time deviations of the uncertain tasks,
bounded by ε. In this study, we consider the case of l1 norm: ‖ξ‖1 =

∑

j ξj .
Note that it can be also viewed as an application of the threshold robustness

approach [3], in which the robust version of the optimisation problem is obtained
by bounding the objective function by a certain threshold and considering the
robustness as the smallest deviation of the uncertain parameters that causes vio-
lation of this threshold limit. In our case, suppose that an original optimisation
problem (without uncertainity) asks to minimize the cycle time with the fixed
number of machines. Define by T (t) the optimal value of the cycle time for some
given vector of processing times t. Then in the uncertain version, we bound the
objective function by a fixed threshold T and define the robustness

ρ(S, t) = inf{‖ξ‖ : ξ ∈ Rn, ξj > 0 for j ∈ ˜V , T (t + ξ) > T}.

It is easy to see that both definitions of ρ(S, t) are equivalent, because the
inequality T (t + ξ) > T means that for t + ξ there are no feasible solutions and
vice versa.

A first MIP model for the robust transfer line balancing problem has been
proposed in [11].

To evaluate the stability radius, the following approach is used. Suppose
a solution of the considered transfer line balancing problem is given. For any
uncertain block k (a block containing at least one uncertain task) of machine
p define a save time as the difference between the block working time τk and
the processing time of its longest uncertain task, i.e., Δ

(p)
k := τk − maxj∈˜Vk

tj .

For machine p a minimal save time Δ
(p)
min is defined as Δ

(p)
min := mink∈˜U(p) Δ

(p)
k ,

where ˜U(p) is the set of uncertain blocks on machine p. For blocks and machines
without uncertain tasks these values do not need to be defined.



126 P. Borisovsky and O. Battäıa

It was proven in [11] that the stability radius ρ corresponding to l1-norm for
a given feasible solution can be calculated as follows

ρ = min
p∈˜W

ρp, where ρp = T −
∑

k∈U(p)

τk + Δ
(p)
min, (1)

˜W is the set of machines containing uncertain tasks and U(p) is the set of all
blocks installed on machine p. This expression helps to evaluate and optimize ρ
by means of mixed linear programming technique.

To formulate a MIP model it is assumed that the set of all blocks in
the line is U = {1, 2, ...,m · bmax} where bmax is the maximal number of
blocks on one machine. If it is not given in the input data it is estimated as
bmax = max{k|∑k

i=1 tπj
≤ T}, where (π1, ..., πn) is a sequence of tasks sorted

by decreasing order of their processing times. The subset of blocks correspond-
ing to machine p is U(p) = {(p − 1)bmax + 1, ..., pbmax} for all p = 1, ...,m. The
decision variables of the MIP formulation are:

xjk ∈ {0, 1} is equal to 1 if and only if task j is allocated to block k;
yk ∈ {0, 1} is equal to 1 if block k is not empty;
τk ≥ 0 is the working time of block k;
Δ

(p)
min ≥ 0 is the minimal save time of machine p;

ap ∈ {0, 1} is equal to 1 if and only if machine p contains at least one uncertain
task (it can be shown that variables ap can be regarded as real-valued in
interval [0, 1]);
zk ∈ {0, 1} is equal to 1 if an uncertain task is allocated to block k.

For the sake of convenience when modeling the inclusion constraints in (16) we
will assume that each inclusion set e ∈ Im is formally represented as an ordered
sequence of tasks e = (je

1 , ..., j
e
|e|), in which the particular order does not matter

and can be arbitrary.
The MIP model is as follows:

Maximise ρ; (2)

∑

k∈U

xjk = 1, ∀j ∈ V ; (3)

∑

j∈V

xjk ≤ rmax, ∀k ∈ U ; (4)

xjk ≤ yk, ∀k ∈ U, j ∈ V ; (5)

yk ≤
∑

j∈V

xjk, ∀k ∈ U ; (6)

xjk ≤ zk, ∀k ∈ U, ∀j ∈ ˜V ; (7)
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xjk ≤ ap, ∀p ∈ W, k ∈ U(p), j ∈ ˜V ; (8)

tj · xj,k ≤ τk, ∀k ∈ U, j ∈ V ; (9)

∑

k∈U(p)

τk ≤ T, ∀p ∈ W ; (10)

∑

k∈U

kxik ≤
∑

k∈U

kxjk − 1, ∀(i, j) ∈ A; (11)

Δ
(p)
min ≤ T · (2 − yk − zk) + τk − tj · xjk, ∀p ∈ W, k ∈ U(p), j ∈ ˜V ; (12)

ρ ≤ T · (2 − ap) −
∑

k∈U(p)

τk + Δ
(p)
min, ∀p ∈ W ; (13)

∑

j∈e

xjk ≤ |e| − 1, ∀k ∈ U, e ∈ Eb; (14)

∑

j∈e,k∈U(p)

xjk ≤ |e| − 1, ∀p ∈ W, e ∈ Em; (15)

∑

k∈U(p)

xjh,k =
∑

k∈U(p)

xjh+1,k, ∀p ∈ W, e ∈ Im, jh, jh+1 ∈ e; (16)

ρ, Δ
(p)
min, ap, τk ≥ 0, ∀p ∈ W, k ∈ U ; (17)

xjk, zk, yk ∈ {0, 1}, ∀j ∈ V, k ∈ U. (18)

Equation (3) means that each task must be assigned to one block. Con-
straint (4) limits the number of tasks in each block by rmax. Constraints (5)–(8)
are required to support the definitions of variables yk, zk, and ap. Constraints (9)
and (10) estimate the blocks working times and ensure the cycle time constraints.
Constraints (11) reflect the precedence requirements. Constraints (12) and (13)
estimate the minimal save time for each machine and evaluate the objective
function. Constraints (14)–(16) correspond to block exclusion, machine exclu-
sion, and machine inclusion constraints.

To solve this problem, we develop a new matheuristic approach which is
presented in the next section.
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3 Solution Approach

To solve the described problem we propose two algorithms of matheuristic type.
Both of them are based on the idea of creating subproblems of smaller size
and applying a MIP solver for their solution. This is also known as the “relax-
and-fix” approach, which is amply presented in [12]. The first algorithm is a
constructive greedy heuristic that processes one machine at a time solving a
problem by balancing a given set of tasks. The second one is a local search
method that tries to withdraw some tasks from the most loaded machine and
reallocate them to some other machines. This basic scheme it quite generic and
can be applied for different problems, formulated in a MIP form. For example, it
was used for a transfer line balancing problem (without uncertainity) in [10], and
for an industrial scheduling problem in [2]. The main difficulty in this approach
consists in formulating the subproblems of rather small size to be easily solved
but at the same time large enough to provide a good overall solution quality.

3.1 Greedy Algorithm

The basic idea of the greedy algorithm is similar to the one of the multi-start
heuristic [11], in which a certain lower bound on the objective function ρ is fixed
and tasks are added to the current machine until its stability radius falls below
this bound. When this happens, a new machine is added to the line and the
process continues. In our approach, we also construct machines one by one, but
we do this with solving an appropriate MIP model. This model is basically the
same as the one formulated above, but with the following modifications. New
variables vj ∈ {0, 1} are introduced, so that vj = 1 if and only if task j is
chosen to be assigned to the current machine. Instead of objective function (2),
we consider ρ as a fixed parameter and maximize the total duration of chosen
tasks:

Maximise
∑

j

tjvj (19)

Equation (3) is rewritten as follows:
∑

k∈U

xjk = vj , ∀j ∈ V (20)

The precedence constraint for any (i, j) ∈ A is not used, if the second task of
the arc is not chosen, so Eq. (11) turn to:

∑

k∈U

kxik ≤
∑

k∈U

kxjk − 1 + n(1 − vj), ∀(i, j) ∈ A (21)

Besides, if the second task of the arc is chosen, then the first task must be chosen
as well, this requires to add new equations to the model:

vi ≥ vj , ∀(i, j) ∈ A. (22)
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Thus, the model used in the greedy algorithm has objective function (19),
constraints (20), (4)–(10), (21)–(22), (12)–(18), the set of machines W consists
of one machine, and the value of ρ in (13) is fixed. This model is labeled as Mgrd.

To keep the problem small, only a reduced subset of tasks is fed into the
model. To do this, a random sequence of tasks consistent with the precedence
relations is generated. To generate it, firstly, a random permutation π is built
and modified as follows: iteratively choose the most-left task from π without
predecessors in π and move this task to the end of new sequence S. This step
is repeated until all tasks are moved from π to S. As a result, a new random
sequence S is obtained, in which the tasks are sorted according to the given
partial order.

At each iteration, the greedy algorithm extracts the first h elements from the
sequence for passing them to model Mgrd. The number h is a tunable parameter.
If a taken subset contains at least one task from an inclusion set e ∈ Im, then
the whole set e is also added. If for taken tasks i and l, there exist tasks i, j, l
such that (i, j) ∈ A, (j, l) ∈ A, then j must be taken too. Model Mgrd is then
solved for the taken tasks, the obtained solution is saved, the used tasks are
removed from the sequence π, and the process continues. If the model cannot be
solved, the whole run of the algorithm is considered as failed with the given tasks
sequence and parameter ρ, and it should be restarted with different parameters.
If the number of stations reaches m, but there are unallocated tasks, this run
is also considered as failed. The described algorithm is referred to as procedure
Greedy, and its formal outline is as follows.

Algorithm 1. Procedure Greedy(target radius ρ, sequence of tasks seq):
1: Let S be a copy of seq and p := 1.
2: while S is not empty and p ≤ m do
3: Let F be the first h elements from S. For all e ∈ Im : e ∩ F �= ∅ add e to F . For

all tasks i, j, l such that (i, j) ∈ A, (j, l) ∈ A and i, l ∈ F add j to F .
4: Solve the model Mgrd for the machine p, the set of tasks F , and radius ρ.
5: if a feasible solution is found then
6: Save the obtained assignment of the tasks to the blocks and remove the tasks

j with vj = 1 from S.
7: else
8: Return “solution is not found”.
9: end if
10: end while
11: if S is empty then
12: Return the constructed solution.
13: else
14: Return “solution is not found”.
15: end if

To find a solution of the initial problem, it is necessary to find maximal ρ for
which the procedure Greedy returns a feasible solution. The most evident way
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to do this is to apply the bisection search starting from some lower and upper
bounds on ρ (denoted by LB and UB). Initially, LB may be set to 0, the way to
estimate UB will be described below.

Algorithm 2. Bisection Algorithm
1: Build a random sequence seq of tasks consistent with the precedence relations.
2: while UB − LB > ε do
3: Let ρ := (LB + UB)/2.
4: Call procedure Greedy(ρ, seq).
5: if a feasible solution is obtained then
6: Set LB := ρ.
7: else
8: Set UB := ρ.
9: end if
10: end while
11: Return the best found solution.

Upper Bound Estimation. To start the bisection algorithm an initial upper
bound on ρ is needed. The value of the line cycle time T may serve for it,
but two simple procedures provide better bounds. The first one identifies the
worst case when some uncertain task is placed alone on a machine, which gives

UB1 = max
j∈˜V

(T − tj). (23)

The second procedure takes into account the machine inclusion constraints.
Within family Im, for all tasks of each set e ∈ Im the reduced one-machine
problem is solved. Since such a problem is quite small-sized, the MIP model can
be used. The lowest objective value over all e ∈ Im gives a valid upper bound
UB2. In addition, this procedure may prove infeasibility in case of a conflict
between inclusion constraints, cycle time, and rmax limit, precisely, when the
tasks from an inclusion set have large execution times and/or rmax is too small
to run them in parallel.

3.2 Local Search Algorithm

The proposed local search algorithm is based on the generic scheme described
in [1]. Starting from an initial solution of the MIP problem, an attempt is made to
move to a better solution. Each time a subset of binary variables is chosen to be
considered as “free” and other binary variables are “fixed” to their current values.
This problem with some fixed variables is solved by a MIP solver and the solution
is updated. The way of choosing the subset of free variables is quite a challenging
task which has a major influence on the performance of the algorithm. For the
considered problem, the difficulties arise because the successful move from one
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feasible solution to another may involve changes in many machines or even in
all of them. This is illustrated in Fig. 1, where task 3 moves to machine 2 and
task 5 moves to machine 3. The direct jump of task 3 to machine 3 could be
impossible due to precedence or exclusion constraints.

Fig. 1. An example of a move from one feasible solution to another.

In this study, a different approach is proposed, in which infeasible solutions
are allowed in some intermediate steps. In the current solution, the worst machine
(i.e. the one with the smallest value of ρ) is chosen and a MIP model is solved
in order to increase ρ even if some tasks should be thrown out. These tasks are
supposed to be assigned to some other machines at the next steps. Clearly, due
to precedence constraints a task can be shifted either “to the left”, so that the
processed machine may contain its successors but not predecessors, or, on the
contrary, “to the right”. Accordingly, we formulate three models: Mright is the
same as the one used in the greedy algorithm; model M left, in which constraints
(21)–(22) are changed to

∑

k∈U

kxik ≤
∑

k∈U

kxjk − 1 + n(1 − vi), ∀(i, j) ∈ A (24)

vi ≤ vj , ∀(i, j) ∈ A (25)

The third model, Mfin, is the original model (2)–(18) and it is used when there
are no more non-viewed machines in the chosen direction and the tasks cannot
be thrown out. Unlike in the greedy algorithm, the models are applied to two
consecutive machines rather than one, which given an additional possibility to
reallocate tasks within two machines.
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Algorithm 3. Local Search Algorithm
1: Start from a given initial solution.
2: while the given time limit is not exceeded do
3: Fix all variables xjk to the values of the current solution.
4: Compute ρ1, ..., ρm and find machine p with the minimal ρp.
5: Choose the direction: if p = 1 then d = 1 (“right”), if p = m them d = −1

(“left”), else choose among {−1, 1} at random.
6: Choose an appropriate model: if p+d = 1 or p+d = m choose Mfin else choose

M left or Mright according to the direction.
7: Unfix variables xjk corresponding to machines p and p+ d and solve the chosen

model with ρ = ρp + δ.
8: If in the solution no tasks were thrown out, then an improved solution was

obtained, update and proceed with line 2. Otherwise, if the model is M last, then
the attempt is considered as failed; restore the previous solution and proceed
with line 2. Otherwise, set up p := p + d and proceed with line 6.

9: end while

4 Computational Evaluation

For the computer experiments, we used the same benchmark sets as in [11]
but extended with the data for inclusion/exclusion constraints. Originally, these
instances were generated in [8] and [10], where all the data were assumed to
be certain1. In [11], they were simplified by removing the inclusion/exclusion
data, and different limits for the maximal number of machines were set. In
addition, each instance contains a random permutation of tasks that is used
to define the set of uncertain tasks, namely a parameter ratio ∈ [0, 1] must
be chosen, then the first 	ratio ∗ n� tasks of the indicated permutation are
considered as uncertain2. Varying parameters ratio and rmax different problems
can be obtained. In this study, we took the last mentioned dataset and restored
the inclusion/exclusion data from the original benchmarks3. In our experiments,
we consider ratio ∈ {0.5, 0.75, 1} and rmax ∈ {2, 3}.

The algorithms were coded in Java and run on the server with AMD EPYC
7502 CPU, OS Ubuntu 20.04 and OpenJDK 14. As a MILP solver, Gurobi 9.0.3
was used.

In the first part of the experiments, we analyse the performance of the algo-
rithms and compare them with the straightforward use of Gurobi on the small-
sized instances of series S1. These series consist of 50 instances with 25 tasks
and 5 machines. The results are summarized in Table 1. Column “Gurobi # opt”
shows the number of optimally solved instances when running Gurobi with the
30 min time limit and allowing up to 8 threads. For each instance, the greedy
1 The original TLBP instances are available at
http://www.math.nsc.ru/AP/benchmarks/english.html.

2 The TLBP instances with uncertainity are available at
http://pagesperso.ls2n.fr/∼gurevsky-e/data/R-TLBP.zip.

3 The TLBP instances with uncertainity and inclusion/exclusion data are available at
https://github.com/pborisovsky/TLBP/tree/main/instances.

http://www.math.nsc.ru/AP/benchmarks/english.html
http://pagesperso.ls2n.fr/~gurevsky-e/data/R-TLBP.zip
https://github.com/pborisovsky/TLBP/tree/main/instances
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Table 1. Results for small-sized instances of series S1.

rmax ratio Gurobi # opt Greedy LS

avgGAP,% #1%GAP avgTime avgGAP,% #1%GAP avgTime

2 0.5 18 8.9 8 5.2 3.8 25 68

2 0.75 16 7 9 5.6 2.3 26 75

2 1 17 7.4 10 6.5 2.7 25 39.8

3 0.5 48 6.6 17 3.1 0.9 42 14.2

3 0.75 46 5.9 20 3.1 0.9 41 4.4

3 1 48 5 18 3.4 0.4 44 4.3

algorithm was run five times and the best solution was returned. In order to
reduce the number of iterations in the bisection algorithm, the lower bound was
updated after each run for using it in the next computations. The parameter h
of the greedy algorithm was chosen as h = 2n/m which is twice as much as the
average number of tasks on one machine.

The columns in the table have the following meaning: “avgGAP” is a
gap (relative error) between the greedy and Gurobi solutions, i.e. (ρgurobi −
ρgreedy)/ρgurobi · 100%, taken on average over all instances; the next column,
“# 1%GAP”, is the number of cases, in which this gap is less than 1%; the last
column is an average running time in seconds. The local search was given ten
iterations starting from the best greedy solution. The three columns in the table
have the same meaning as before. In both greedy and LS, the MIP subproblems
were solved by Gurobi. The execution time of each individual call of the solver
was limited by 20 s. The parameter δ of the LS was set to 0.1.

Table 2. Results for large-sized instances of series S7.

rmax ratio #feas Greedy LS

#opt avgTime #opt Impr, % avgTime

2 0.5 8 1 853 4 3.4 793

2 0.75 8 2 808 3 2.7 1013

2 1 8 2 717 4 4.5 766

3 0.5 17 2 538 8 2 510

3 0.75 17 3 505 5 7.8 625

3 1 17 2 635 4 4 634

As it can be seen, the problems with rmax = 2 are rather hard for both
the MIP solver and heuristics. The greedy solutions have large gaps but are
obtained in a short time. The local search provides significant improvements
in reasonable time, in many cases the solutions are close to the best solutions
obtained by Gurobi. The problems with rmax = 3 are much easier, almost all
instances are solved optimally, and the gaps and the running times are smaller
for both heuristics. The solutions obtained by the LS are very close to optima.
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The second experiment was carried out for the large-sized problems of series
S7. It consists of 20 instances having from 87 to 125 tasks and from 19 to 36
machines. An attempt to solve them straightforwardly applying Gurobi to the
model (13)–(18) setting the five hours time limit for each instance was made,
but no feasible solutions were found. The results obtained by the developed algo-
rithms are summarized in Table 2. The settings of the tunable parameters were
the same as before. The upper bound estimation procedure described in Sect. 3.1
proved infeasibility of some instances with certain values of rmax. In all other
cases, feasible solutions were obtained by the greedy algorithm. The number of
feasible instances is shown in column “# feas”. Column “#opt” gives the number
of instances for which the value of ρ of the best found solution coincides with the
upper bound. Column “avgTime” provides the average solution time in seconds.
For the local search, the relative improvement of the solution comparing to the
initial one provided by the greedy algorithm is shown in column “Impr”. It is
computed as (ρls − ρgreedy)/ρgreedy · 100% and is averaged over all instances, for
which greedy solutions are not optimal (because otherwise the improvement is
always equal to zero).

It can be seen again that with rmax = 3 problems are easier to solve than
with rmax = 2. Unfortunately, the optimal solutions are not known, and the
available upper bounds are too rough for an adequate estimation of the algo-
rithms performance, but we may conclude that the heuristics show good ability
to find feasible solutions in a reasonable time, and the local search increases the
number of optima and provides a notable improvement of the objective function.
Note that some instances were solved optimally even by the greedy algorithm,
which happens when the number of machines is large enough and the problems
are easy to solve. The complete results for all the considered benchmarks can be
found at https://github.com/pborisovsky/TLBP/tree/main/results.

5 Conclusions

In this paper, a robust formulation of the transfer line balancing problem is
extended with exclusion and inclusion relations. Two matheuristic algorithms
are developed to solve large-size problem instances which are intractable by
conventional solvers. Experimentally, for the small-sized benchmark problems
the algorithms showed good approximation with respect to the straightforward
application of the MIP solver. For the larger problems, which were not solved
by the MIP solver within quite a large time limit, the proposed algorithms were
able to find feasible solutions in rather short time. Since the basic schemes of
the algorithms are quite generic, it would be worthwhile to implement them
for other line balancing problems and investigate their performance. Another
promising direction for the further research could be using this approach within
the metaheuristic frameworks such as tabu search or genetic algorithm.

Acknowledgement. An AMD EPYC
TM

based server of Sobolev Institute of Math-
ematics, Omsk Branch is used for computing.

https://github.com/pborisovsky/TLBP/tree/main/results
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Abstract. The Generalized Traveling Salesman Problem (GTSP) is a
well-known combinatorial optimization problem having numerous valu-
able practical applications in operations research. In the Precedence Con-
strained GTSP (PCGTSP), any feasible tour is restricted to visit all the
clusters according to some given partial order. Unlike the common setting
of the GTSP, the PCGTSP appears still weakly studied in terms of algo-
rithmic design and implementation. To the best of our knowledge, all the
known algorithmic results for this problem can be exhausted by Salmans’s
general branching framework, a few MILP models, and the PCGLNS
meta-heuristic proposed by the authors recently. In this paper, we present
the first problem-specific branch-and-bound algorithm designed with an
extension of Salman’s approach and exploiting PCGLNS as a powerful
primal heuristic. Using the public PCGTSPLIB testbench, we evaluate
the performance of the proposed algorithm against the classic Held-Karp
dynamic programming scheme with branch-and-bound node fathoming
strategy and Gurobi state-of-the-art solver armed by our recently pro-
posed MILP model and PCGLNS-based warm start.

Keywords: Generalized Traveling Salesman Problem · Precedence
constraints · Branch-and-bound algorithm

1 Introduction

The Generalized Traveling Salesman Problem (GTSP) is a well-known combina-
torial optimization problem introduced in the seminal paper [27] by S. Srivastava
et al. and attracted the attention of many researchers (see the survey in [10]).

In the GTSP, for a given weighted digraph G = (V,E, c) and partition V1 ∪
. . .∪Vm of the nodeset V into non-empty mutually disjoint clusters, it is required
to find a minimum cost closed tour T that visits each cluster Vi exactly once.

In this paper, we consider the Precedence Constrained Generalized Traveling
Salesman Problem (PCGTSP), where the clusters should be visited according
c© Springer Nature Switzerland AG 2021
N. N. Olenev et al. (Eds.): OPTIMA 2021, LNCS 13078, pp. 136–148, 2021.
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to some given partial order. This extended version of the GTSP has numerous
relevant industrial applications including

– toolpath optimization for Computer Numerical Control (CNC) machines [2]
– air time minimization in metal sheet cutting [5,20]
– coordinate measuring machinery [24]
– path optimization in multi-hole drilling [6].

Related Work. The GTSP is an extension of the classic Traveling Sales-
man Problem (TSP). Therefore, any time when the number of clusters m is
a part of the input, the problem is strongly NP-hard even on the Euclidean
plane [23]. On the other hand, the well-known Held and Karp dynamic program-
ming scheme [11] adapted to the GTSP has running-time bound O(n3m2 · 2m),
i.e. this problem belongs to the class FPT being parameterized by the number
of clusters. Furthermore, the GTSP can be solved to optimality in polynomial
time, provided m = O(log n).

As it follows from the literature, algorithmic design for the GTSP developed
in several ways.

The first approach is based on the reduction of the initial problem to some
corresponding instance of the Asymmetric TSP, after that this auxiliary instance
can be solved by an algorithm designed to the ATSP [19,22]. Despite its math-
ematical elegance, this approach suffers from a couple of shortcomings:

(i) the resulting ATSP instances have a rather unusual shape making their solu-
tion hard even for the state-of-the-art MIP solvers like Gurobi and CPLEX

(ii) close-to-optimal solutions of these instances can produce infeasible solutions
of the initial problem [13].

Another approach deals with developing problem-specific exact algorithms and
approximation algorithms with theoretical performance guarantees. Among them
are branch-and-bound and branch-and-cut algorithms (see, e.g. [8,30]) and Poly-
nomial Time Approximation Schemes (PTAS) for several special settings [7,14].

Finally, the third approach is about designing various heuristics and meta-
heuristics. Thus, G.Gutin and D.Karapetyan [9] proposed an efficient memetic
algorithm, in [12], the famous Lin-Kernighan-Helsgaun heuristic solver was
extended to the GTSP, and in [26] the powerful Adaptive Large Neighborhood
Search (ALNS) meta-heuristic was developed, which appear to be a best-perfor-
mer to date.

Unfortunately, for the PCGTSP, algorithmic results still remain quite rare.
To the best of our knowledge, the published results are exhausted by

(i) efficient algorithms for the Balas-type special precedence constraints [1,3,
4] and the precedence constraints leading to quasi- and pseudo-pyramidal
optimal tours [16,17]

(ii) general scheme of a possible branch-and-bound algorithm for this prob-
lem [25]
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(iii) recent PCGLNS heuristic proposed by the authors [15] as an extension of
the results of [26].

In this paper, we try to bridge this gap.

Contribution of this paper is three-fold:

(i) extending the ideas proposed in [25], we design and implement the first
problem-specific branch-and-bound algorithm for the PCGTSP

(ii) relying on the classic branching approach [21], we implement the Held and
Karp dynamic programming scheme supplemented with an original bound-
ing strategy

(iii) carried out numerical experiments show that the proposed and implemented
algorithms are competitive with the state-of-the-art Gurobi solver equipped
with the best known MILP model and MIP start solution, both in terms of
the running time and accuracy.

2 Problem Statement

We consider the general setting of the Precedence Constrained Generalized Trav-
eling Problem (PCGTSP). An instance of this problem is given by a triplet
(G, C,Π), where

– an edge-weighted digraph G = (V,E, c) defines a groundset network supple-
mented with transportation costs c(u, v) for any arc (u, v) ∈ E

– a partition C = {V1, . . . , Vm} splits the nodeset V of the graph G into m
non-empty pairwise-disjoint clusters

– a directed acyclic graph Π = (C, A) defines a partial order (precedence con-
straints) on the set of clusters C.

For any node v ∈ V , by V (v) we denote the (only) cluster Vp ∈ C, such that
v ∈ Vp. Further, without loss of generality, we assume Π to be transitively closed
(i.e. (Vi, Vj) ∈ A and (Vj , Vk) ∈ A imply (Vi, Vk) ∈ A) and that (V1, Vp) ∈ A for
any p ∈ {2, . . . , m}.

A closed m-tour T = v1, . . . , vm is called a feasible solution of the PCGTSP, if

– it departs for and arrives at some node v1 ∈ V1

– it visits each cluster Vp ∈ C in one node exactly
– the tour T is consistent with the partial order Π, i.e. any cluster Vq is visited

by the tour T only after all the clusters that precede1 Vq in the order Π.

To any tour T , we assign its cost

cost(T ) = c(vm, v1) +
m−1∑

i=1

c(vi, vi+1).

The goal is to find a feasible tour T of the minimum cost cost(T ).
1 The only evident exception is made for the last arc (vm, v1) closing the tour T .
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3 Preliminaries

Both algorithms, the branch-and-bound and dynamic programming designed
and implemented in this paper exploit the similar main idea.

3.1 Instance Decomposition

At any node of the search tree, before the branching, we decompose the initial
problem instance into pair of smaller auxiliary sub-problems as follows:

(i) consider a subset C′ ⊂ C, such that V1 ∈ C′, fix some cluster Vl ∈ C′ and
nodes v ∈ V1 and u ∈ Vl, respectively

(ii) let cmin be a lower bound for the minimum cost of v-u-paths traversing all
the clusters in C′ and fulfilling the precedence constraints2

(iii) excluding from C′ all the inner clusters and connecting V1 with Vl directly
by a zero-cost arc(s), we consider a smaller auxiliary subproblem P, which
inherits other transportation costs, clustering, and precedence constraints
from the initial instance

(iv) taking
LB = cmin + OPT(Prel) (1)

as a lower bound, we fathom the current node of search tree each time when
LB > UB. Here, OPT(Prel) is the optimum of some efficiently solvable
relaxation of P and UB is the cost of the best known feasible solution.

3.2 Lower Bounds

In this subsection, we compare the lower bounds obtained by several relaxations
of the auxiliary problem P. To relax P, we use the two-stage approach proposed
in [25].

At the first stage, we reduce P to the appropriate ATSP instance by one of
the following ways:

(i) relax the initial precedence constraints by exclusion all the arcs (v′, v′′) ∈ E,
for which (V (v′′), V (v′)) ∈ A. Then, reduce the obtained instance to ATSP
using the classic Noon and Been transformation [22]

(ii) after the same relaxation of the precedence constraints, reduce the relaxed
problem to the ATSP instance defined by the auxiliary cluster graph H1 =
(C̃′, A1, c1), where

C̃′ = C \ C′ ∪ {V1, Vl},

A1 = {(V1, Vl)} ∪ {(Vi, Vj) | i > 2, {Vi, Vj} ⊂ C̃′, ∃(v′ ∈ Vi, v
′′ ∈ Vj) : (v

′, v′′) ∈ E},

c1(V1, Vl) = 0, c1(Vi, Vj) = min{c(v′, v′′) : v′ ∈ Vi, v
′′ ∈ Vj , (v′, v′′) ∈ E}

(iii) reduce the initial problem to the instance of ATSP defined by the digraph
H2 = (C̃′, A2, c2), for which

2 In our dynamic programming, this bound is tight.
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A2 = {(V1, Vl)} ∪ {(Vi, Vk) | i > 2,

∃(j > 1) : {Vi, Vj , Vk} ⊂ C̃′ ∧ ({(Vj , Vi), (Vk, Vj), (Vk, Vi)} ∩ A = ∅)
∧∃(v′ ∈ Vi, v

′′ ∈ Vj , v
′′′ ∈ Vk) : ({(v′, v′′), (v′′, v′′′)} ⊂ E)}

∪{(Vi, Vk) | i > 2, ({Vi, Vk} ⊂ C̃′) ∧ ((Vk, Vi) �∈ A)
∧∃(v′ ∈ Vi, v1 ∈ V1, v

′′ ∈ Vk) : {(v′, v1), (v1, v′′)} ⊂ E},

i.e., for any Vi ∈ C̃′ \ {V1}, the ordered pair (Vi, Vk) ∈ A2, if there exists
Vj ∈ C̃′ and nodes v′ ∈ Vi, v

′′ ∈ Vj and v′′′ ∈ Vk, such that the path
π = v′, v′′, v′′′ is consistent with the initial precedence constraints.
Then,

c2(V1, Vl) = 0, c2(Vi, Vk) = min{c(v′, v′′) + c(v′′, v′′′) : π = v′, v′′, v′′′ is consistent}.

At the second stage, relaxing the obtained ATSP instance by reduction either
to the Minimum Spanning Arborescence Problem (MSAP) or to the Assignment
Problem (AP), we compute the appropriate lower bounds by Eq. (1). In addition,
to increase the tightness of our lower bounds, we compute optimum values for
some ATSP instances obtained by option (ii), using the solver Gurobi. For con-
venience, we present the designations for all the used lower bounds in Table 1(a).
Its columns represent the ways to transform the auxiliary problem P into ATSP
that are Noon and Bean transformation (option (i) at the list above), building
cluster graph H1 (option (ii)), and H2 (option (iii)) respectively. Its rows are the
methods used to solve ATSP instance.

Table 1. Lower bounds: (a) bound names; (b) for each bound we present 95%-
confidence interval for its averaged ratio to L3

Noon-Bean H1 H2

AP E1 L1 L2

MSAP E2 E3 E4

Gurobi E5 L3 E6

(a)

E1 E2 = E3 E4

0.48 ± 0.03 0.54 ± 0.01 0.60 ± 0.002

L1 L2 L3

0.91 ± 0.02 0.97 ± 0.02 1.00

(b)

Relying on results of the exploratory experiments, we shorten the list of
lower bounds employed in the subsequent evaluation (see Table 1(b)). Indeed, the
bounds L1–L3 appear to be tighter than others, which is statistically significant
with a 95% confidence level. Also, we skip bounds E5 and E6, whose computation
leads to extremely high time consumption. Thus, in Sect. 6, we restrict ourselves
to the bounds, defined by the following equation

LBi = cmin + Li, i ∈ {1, 2, 3}.

4 Branch-and-Bound Algorithm

To solve the PCGTSP instance (G, C,Π), we traverse the search tree in Breadth
First Search order (see Algorithm 1). Each node of this tree is associated with a
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prefix σ = (Vi1 , Vi2 , . . . Vir ), where Vij ∈ C, Vi1 = V1, and r ∈ {1, . . . m}. Clusters
Vij are visited exactly in order specified by σ, while other clusters can be visited
in any order (considering partial order Π), thus contributing to the auxiliary
problem P, see Subsect. 3.1.

For each node of the search tree we apply the Bounding procedure (Algo-
rithm2) to perform the following actions:

Algorithm 1. BnB :: Main
Input: the graph G, clusters C, the DAG Π
Output: the tour and cost of optimal solution

1: initialize Q = empty queue
2: start from Root = V1

3: Q.push(Root)
4: while not Q.empty() do
5: get prefix to process: σ = Q.pop()
6: process = Bounding(σ)
7: if not process then
8: prefix is fathomed; continue
9: end if

10: UpdateLowerBound(σ)
11: for each child ∈ Branching(σ) do
12: queue child prefix Q.push(child)
13: end for
14: end while

Algorithm 2. BnB :: Bounding procedure
Input: the prefix σ
Output: the flag if the prefix survives or is fathomed

1: global DT
ij

2: global OptT

3: calculate tuple T = (Vi1 , {Vi1 , Vi2 , . . . Vir} , Vir )
4: Dij = MinCosts(σ)

5: if D
(σ)
ij ≥ DT

ij [T ], ∀i, j then
6: return false
7: end if
8: update best weights DT

ij [T ] = min
(
DT

ij [T ], Dij

)
, ∀i, j

9: cmin = min
i,j

Dij

10: if T /∈ OptT then
11: calculate bounds OptT [T ] = max (L1(σ), L2(σ)))
12: end if
13: LB = cmin + OptT [T ]
14: if LB > UB then
15: return false
16: end if
17: return true
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– for the prefix σ, we assign the tuple

T (σ) = (Vi1 , {Vi1 , Vi2 , . . . Vir} , Vir )

– at step 4, we compute the matrix D(σ) of minimal pairwise costs by the
following formula:

D(σ)vu = min {cost(Pv,u) : v ∈ Vi1 , u ∈ Vir , Pv,u is a partial v-u path along σ} .

This can be easily calculated incrementally using matrix D(σ′) of parent tree
node

– if, for some σ1, T (σ) = T (σ1) and

D(σ)vu ≥ D(σ1)vu, (v ∈ Vi1 , u ∈ Vir ),

then, prefix σ is dominated by σ1 and is fathomed
– at step 11, we calculate bounds L1 and L2, see Table 1 and assign the global

variable OptT by the formula

OptT (σ) = max(L1, L2)

– for current node σ, its lower bound is calculated by the formula

LB(σ) = min
vu

D(σ)vu + OptT (σ)

at step 13
– finally, the node σ is fathomed if LB > UB.

Algorithm 3. BnB :: Branching procedure
Input: the prefix σ
Output: the list of children prefixes to process

1: initialize R = empty queue
2: for each V ∈ C do
3: valid = true
4: for each W ∈ σ do
5: if W = V or (V, W ) ∈ Π then
6: valid = false
7: break
8: end if
9: end for

10: if valid then
11: append new prefix R.push(σ + V )
12: end if
13: end for
14: return R

Nodes that survived are subjected to the Branching procedure (Algo-
rithm3), where we try to enlarge the current prefix σ taking into account the
precedence constraint Π.
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Algorithm 4. DP :: inductive construction of the lookup table
Input: the graph G, the DAG Π, the layer Lk of the lookup table, and the current

best upper bound UB
Output: the (k + 1)-th layer Lk+1

1: initialize Lk+1 = ∅

2: for each C′ ∈ Ik do
3: for each cluster Vl ∈ C \ C′, s.t. C′ ∪ {Vl} ∈ Ik+1 do
4: for each v ∈ V1 and u ∈ Vl do
5: if there exists a state S = (C′, U, v, w) ∈ Lk, s.t. (w, u) ∈ E then
6: define new state S′ = (C′ ∪ {Vl}, Vl, v, u)
7: S′[cost] = min{S[cost] + c(w, u) : S = (C′, U, v, w) ∈ Lk}
8: S′[pred] = arg min{S[cost] + c(w, u) : S = (C′, U, v, w) ∈ Lk}
9: S′[LB] = S′[cost] + max{L1, L2, L3}

10: if S′[LB] ≤ UB then
11: append S′ to Lk+1

12: end if
13: end if
14: end for
15: end for
16: end for
17: return Lk+1

5 Dynamic Programming

The branch-and-bound algorithm proposed in Sect. 4 appears to be closely
related to the classic Dynamic Programming (DP) scheme of Held and Karp [11]
adapted to take into account precedence constraints and augmented with one of
the bounding strategies introduced in the seminal paper [21].

Therefore, in this paper, we implement the revised version of this scheme to
examine numerically the performance of our BnB algorithm. Like to the classic
DP, our algorithm consists of two main stages.

(i) at this stage, the lookup table is constructed incrementally, in the forward
direction, layer by layer. The optimum of the instance to be solved is com-
puted after the construction of the last m-th layer

(ii) here the optimal tour is reconstructed on the lookup table, in the backward
direction.

Each DP state (entry of the lookup table) corresponds to a partial v-u-path
and is indexed by a tuple (C′, Vl, v, u), where

(i) C′ ⊂ C is an ideal of the partially ordered set of clusters C, i.e.

∀(V ∈ C′, V ′ ∈ C) (V ′, V ) ∈ A) ⇒ (V ′ ∈ C′);

obviously, in our setting, V1 belongs to an arbitrary ideal C′ ⊂ C
(ii) Vl ⊂ C′, for which there is no V ∈ C′, such that (Vl, V ) ∈ A
(iii) v ∈ V1, u ∈ Vl.
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Content of each DP entry S consists of the reference S[pred] to the predecessing
state, the local lower bound S[LB], and the cost S[cost] of the corresponding
partial v-u-path.

Let Ik be a subset of ideals of the same size k ∈ {1, . . . , m}. Evidently,
I1 = {{V1}}, therefore, the 1st layer L1 of the lookup table can be constructed
trivially. Inductive construction of other layers is defined in Algorithm4.

5.1 Remarks

(i) The optimum of the given instance can be found by the classic Bellman’s
equation

OPT = min
v∈V1

min{S[cost] + c(u, v) : S = (C′, Vl, v, u) ∈ Lm}

(ii) By construction, the size of the lookup table is O(n2m · |I|). Therefore, the
running time of our algorithm is O(n3m2 · |I|). In particular, in the case
of a partial order of any fixed width w, |I| = O(mw) [28]. Therefore, the
PCGTSP can be solved to optimality in a polynomial time, even without
state fathoming at Steps 10–12.

(iii) After construction of any current layer Lk, we recalculate the global lower
bound value, which leads to a decrease in the overall gap.

(iv) In our implementation, to speed up the algorithm, we compute the bound
L3 at Step 9 only for a small number of states, with the smallest lower
bounds.

6 Numerical Evaluation

In this section, we report the results of numerical performance evaluation of the
proposed branch-and-bound algorithm in comparison with the DP scheme and
the Gurobi solver supplemented with our recent MILP model [15].

6.1 Experimental Setup

All the algorithms are tested against the public PCGTSPLIB testbench
library [25]. To perform a warm start on each testing instance, all algorithms
are supplied by the same feasible solution obtained by the PCGLNS heuristic
solver [18]. For the BnB and DP algorithms, all computations are carried out on
the same hardware (16-core Intel Xeon 128G RAM) within the same time limit
of 10 h. As a stop criteria, we use 5% gap tolerance, where

gap =
UB − LB

LB
. (2)

For the baseline, we reproduce numerical experiments of [15] for Gurobi and
PCGLNS MIP-start solutions, using exactly aforementioned experimental setup,
that is the same hardware, time limit of 10 h and gap tolerance of 5% according
to (2).

The source code of our algorithms along with auxiliary scripts is freely avail-
able at [29].
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Table 2. Experimental results: lines, where BnB or DP algorithms appears to be the
best performers are highlighted

Instance Gurobi Branch & Bound DP

# ID n m UB0 Time

(sec)

LB Gap

(%)

Time

(sec)

LB Gap

(%)

Time

(sec)

LB Gap

(%)

1 br17.12 92 17 43 82.00 43 0.00 11.2 43 0.00 27.3 43 0.00

2 ESC07 39 8 1730 0.24 1730 0.00 1.3 1726 0.23 8.37 1730 0.00

3 ESC12 65 13 1390 3.35 1390 0.00 4.3 1385 0.36 14.99 1390 0.00

4 ESC25 133 26 1418 10.61 1383 0.00 32 1383 0.00 60.69 1383 0.00

5 ESC47 244 48 1399 3773 1064 4.93 36000 980 42.76 36000 981 42.61

6 ESC63 349 64 62 25.35 62 0.00 1.3 62 0.00 0.52 62 0.00

7 ESC78 414 79 14872 1278.45 14630 1.66 1.3 14594 1.63 0.68 14594 1.63

8 ft53.1 281 53 6194 36000 5479 13.04 36000 4839 28.27 36000 4839 28.27

9 ft53.2 274 53 6653 36000 5511 20.7 36000 4934 34.84 36000 4940 34.68

10 ft53.3 281 53 8446 36000 6354 32.92 36000 5465 54.55 36000 5465 54.55

11 ft53.4 275 53 11822 20635 11259 5.00 35865 11274 4.86 2225 11290 4.71

12 ft70.1 346 70 32848 83.70 31521 4.21 36000 31153 5.44 36000 31177 5.36

13 ft70.2 351 70 33486 36000 31787 5.35 36000 31268 7.09 36000 31273 7.08

14 ft70.3 347 70 35309 36000 32775 7.73 36000 32180 9.72 36000 32180 9.72

15 ft70.4 353 70 44497 36000 41160 8.11 36000 38989 14.13 36000 41640 6.86

16 kro124p.1 514 100 33320 36000 29541 12.79 36000 27869 19.56 36000 27943 19.24

17 kro124p.2 524 100 35321 36000 29983 17.80 36000 28155 25.45 36000 28155 25.45

18 kro124p.3 534 100 41340 36000 30669 34.79 36000 28406 45.53 36000 28406 45.53

19 kro124p.4 526 100 62818 36000 46033 36.46 36000 38137 64.72 36000 38511 63.12

20 p43.1 203 43 22545 4691 21677 4.00 36000 738 2954.88 36000 788 2761.04

21 p43.2 198 43 22841 36000 21357 6.94 36000 749 2949.53 36000 877 2504.45

22 p43.3 211 43 23122 36000 15884 45.57 36000 898 2474.83 36000 906 2452.10

23 p43.4 204 43 66857 36000 45198 47.92 4470 66846 0.00 333.02 66846 0.00

24 prob.100 510 99 1474 36000 805 83.10 36000 632 133.23 36000 632 133.23

25 prob.42 208 41 232 13310 196 4.86 36000 149 55.70 36000 153 51.63

26 rbg048a 255 49 282 24.22 282 0.00 0.9 272 3.68 0.25 272 3.68

27 rbg050c 259 51 378 13.83 378 0.00 0.2 372 1.61 0.25 372 1.61

28 rbg109a 573 110 848 6 848 0.00 2407 812 4.43 682 809 4.82

29 rbg150a 871 151 1415 15 1382 2.38 0.4 1353 4.58 0.53 1353 4.58

30 rbg174a 962 175 1644 27 1605 2.43 0.4 1568 4.85 0.67 1568 4.85

31 rbg253a 1389 254 2376 61 2307 2.99 0.8 2269 4.72 1.42 2269 4.72

32 rbg323a 1825 324 2547 416 2490 2.29 2.0 2448 4.04 3.59 2448 4.04

33 rbg341a 1822 342 2101 18470 2033 4.97 36000 1840 14.18 36000 1840 14.18

34 rbg358a 1967 359 2080 17807 1982 4.95 36000 1933 7.60 36000 1933 7.60

35 rbg378a 1973 379 2307 32205 2199 4.91 36000 2032 13.53 36000 2031 13.59

36 ry48p.1 256 48 13135 36000 11965 9.78 36000 10739 22.31 36000 10764 22.03

37 ry48p.2 250 48 13802 36000 12065 14.39 36000 10912 26.48 36000 11000 25.47

38 ry48p.3 254 48 16540 36000 13085 26.40 36000 11732 40.98 36000 11822 39.91

39 ry48p.4 249 48 25977 36000 22084 17.62 18677 25037 3.75 14001 25043 3.73

6.2 Results

The obtained numerical results are reported in Table 2. It is organized as follows:
The first column group describes problem instance with its ID, number of nodes
(n) and clusters (m), and the weight of the start solution, given by PCGLNS
heuristic (UB0). Then goes three groups of columns for Gurobi solver and two
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proposed algorithms. Each group reports time to run (in seconds), the best lower
bound (LB), and the obtained gap computed using the final UB value (any time,
when the gap equals to 0, an optimum value is reported). Each instance, where
one of the proposed algorithms outperforms Gurobi, is highlighted in bold.

As it follows from Table 2, for 13 out of 39 instances (33%) one of our
algorithms was the best performer. Among them, (sub)optimal solution of the
required gap was obtained faster for 12 instances and, for 7 instances approxi-
mation ratio appears to be better.

Notice that, the proposed algorithms managed to find an optimal solution for
6 out of 39 instances (although it was not required in this experiment). Further,
for 10 (15) out of the remaining tasks including almost the largest instances
rbg323a and rbg358a of 1825 and 1967 nodes respectively, suboptimal solutions
were obtained with gap less than 5% (10%) were obtained.

On the other hand, for some instances (e.g. p43.1, p43.2 and p43.3), our
algorithms are defeated by Gurobi, we guess the reason is untight lower bounds.
Note, however, instances p43.4 and ry48p.4, where, on the contrary, our algo-
rithms significantly outperform Gurobi.

In general, although Gurobi is more likely to win so far, BnB and DP are
usually lag slightly behind, with rare exceptions. To be fair, we should note,
that Gurobi was provided with very good MIP-start PCGLNS solution, which
is rather unusual in such experiments.

7 Conclusion

In this paper, we designed and implemented the first problem-specific branch-
and-bound algorithms for the Precedence Constrained GTSP. The algorithms
evolve ideas of the classic Held and Karp DP scheme and Salman’s bounding
framework.

To evaluate performance of the proposed algorithms, we carried out numerical
experiments in comparison with Gurobi solver, which show that our algorithms
appear to be quite competitive with a state-of-the-art MIP-solver.

To the future work we postpone design of more tight lower bounds. In addi-
tion, we believe that further optimization and parallelization can significantly
speed up the implementation of our algorithms.
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An industrially validated CMM inspection process with sequence constraints. Pro-
cedia CIRP 44, 138–143 (2016). 6th CIRP Conference on Assembly Technologies
and Systems (CATS). https://doi.org/10.1016/j.procir.2016.02.136. http://www.
sciencedirect.com/science/article/pii/S2212827116004182

25. Salman, R., Ekstedt, F., Damaschke, P.: Branch-and-bound for the precedence
constrained generalized traveling salesman problem. Oper. Res. Lett. 48(2), 163–
166 (2020). https://doi.org/10.1016/j.orl.2020.01.009

26. Smith, S.L., Imeson, F.: GLNS: an effective large neighborhood search heuristic for
the generalized traveling salesman problem. Comput. Oper. Res. 87, 1–19 (2017).
https://doi.org/10.1016/j.cor.2017.05.010

27. Srivastava, S., Kumar, S., Garg, R., Sen, P.: Generalized traveling salesman prob-
lem through n sets of nodes. CORS J. 7(2), 97–101 (1969)

28. Steiner, G.: On the complexity of dynamic programming for sequencing problems
with precedence constraints. Ann. Oper. Res. 256, 103–123 (1990). https://doi.
org/10.1007/BF02248587

29. Ukolov, S., Khachay, M.: Branch-and-bound algorithm for the Precedence Con-
strained GTSP (2021). https://github.com/ukoloff/PCGTSP-BnB

30. Yuan, Y., Cattaruzza, D., Ogier, M., Semet, F.: A branch-and-cut algorithm for
the generalized traveling salesman problem with time windows. Eur. J. Oper. Res.
286(3), 849–866 (2020). https://doi.org/10.1016/j.ejor.2020.04.024. https://www.
sciencedirect.com/science/article/pii/S0377221720303581

https://doi.org/10.1007/978-3-319-93800-4_6
https://doi.org/10.1007/978-3-319-93800-4_6
https://doi.org/10.1007/s10472-019-09626-w
https://github.com/AndreiKud/PCGLNS/
https://doi.org/10.1080/03155986.1999.11732374
https://doi.org/10.1080/00207543.2017.1401746
http://www.jstor.org/stable/169764
https://doi.org/10.1080/03155986.1993.11732212
https://doi.org/10.1080/03155986.1993.11732212
https://doi.org/10.1016/j.procir.2016.02.136
http://www.sciencedirect.com/science/article/pii/S2212827116004182
http://www.sciencedirect.com/science/article/pii/S2212827116004182
https://doi.org/10.1016/j.orl.2020.01.009
https://doi.org/10.1016/j.cor.2017.05.010
https://doi.org/10.1007/BF02248587
https://doi.org/10.1007/BF02248587
https://github.com/ukoloff/PCGTSP-BnB
https://doi.org/10.1016/j.ejor.2020.04.024
https://www.sciencedirect.com/science/article/pii/S0377221720303581
https://www.sciencedirect.com/science/article/pii/S0377221720303581


Optimal Control



Optimal Control of Two Linear
Programming Problems

Anatoly Antipin1 and Elena Khoroshilova2(B)

1 FRC, Computer Science and Control, RAS, Vavilov 40, 119333 Moscow, Russia
2 Lomonosov MSU, CMC Faculty, Leninskiye Gory, 119991 Moscow, Russia

Abstract. On a fixed time interval, a terminal control problem gener-
ating a phase trajectory is considered. Three points are selected on the
segment: two end points and one intermediate point, they correspond
to the values of the trajectory. The left end of the trajectory is fixed.
Finite-dimensional linear programming problems are associated with the
intermediate and last moments of time, and the corresponding values of
the phase trajectory should at the same time be optimal solutions of
these problems. It is required to draw a phase trajectory by choosing a
control so that, starting from the left end, the trajectory passes through
an intermediate point and reaches the right end of the time interval. To
solve the problem, a new approach is proposed based on duality the-
ory and Lagrangian formalism. An iterative computational process of
the saddle-point type is investigated. The convergence of the process
in all components of the solution is proved. It is emphasized that only
evidence-based computing technologies transform mathematical models
into a tool for making guaranteed solutions.

Keywords: Optimal control · Lagrange function · Duality · Linear
programming · Saddle point · Iterative solution methods · Convergence

1 Introduction

A new approach to solving terminal control problems based on saddle-point suf-
ficient optimality conditions is considered. This is the author’s approach based
on the Lagrangian formalism and the duality theory [3,4]. We study linear con-
trolled dynamics with a phase trajectory loaded at two points of the time interval
[t0, t2] with linear programming problems. These problems (one is formulated at
some intermediate point t1 of the time interval, the other is formulated at the ter-
minal point t2) generate solutions in the corresponding finite-dimensional spaces.
It is assumed that the phase trajectory x(t) passes through these solutions of
the problems.

The computational process is based on the saddle-point gradient method,
which simultaneously moves in each of the intermediate spaces and provides the
solution of intermediate problems. The convergence of the computational pro-
cess to the problem solution in all its components is proved, including strong
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convergence in phase and conjugate trajectories, as well as in finite-dimensional
variables of the intermediate and boundary value problems, and weak conver-
gence in controls.

The proven convergence of the computational process guarantees obtaining
a solution to the original problem with a given accuracy, which is determined by
the accuracy of specifying the input information when setting the problem.

2 Controlling Intermediate and Boundary Value
Problems of Linear Programming

On the time interval [t0, t2] we consider a linear controlled differential system.
This system assigns to each control u(t) ∈ U a phase trajectory x(t), which is a
solution to the differential system. The situation is complicated by the fact that
the time interval at the point t1 ∈ [t0, t2] is divided into two parts: subsegments
[t0, t1] and [t1, t2]. Accordingly, the phase trajectory is also divided into two
parts, and each part of the trajectory can be considered independently of each
other on its subsegment. In this case, for any fixed t the phase trajectory takes
on its values in n-dimensional space R

n. Therefore, in finite-dimensional spaces
corresponding to points t1, t2 of the segment, we can formulate linear (convex)
programming problems. We will call the first of the problems “intermediate”
with respect to the entire segment [t0, t2], and the second one we will call “the
boundary value problem”. In what follows, for the sake of brevity, both problems
will also be called intermediate.

In view of the above, we can formulate the following formal setting: find the
optimal solution (x∗

1, x
∗
2, u

∗(t), x∗(t)), where t ∈ [t0, t2], satisfying the system of
problems

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d

dt
x(t) = D(t)x(t) + B(t)u(t), x(t) ∈ ACn[t0, t2], u(t) ∈ U,

t0 ≤ t ≤ t2, x(t0) = x0, x(t1) = x∗
1, x(t2) = x∗

2,

x∗
1 ∈ Argmin{〈ϕ1, x(t1)〉 | G1x(t1) ≤ g1, x(t1) ∈ R

n},

x∗
2 ∈ Argmin{〈ϕ2, x(t2)〉 | G2x(t2) ≤ g2, x(t2) ∈ R

n}.

(1)

The problem is considered in Hilbert space L
n
2 [t0, t2] with scalar product 〈x, y〉.

The dynamics is defined on segment [t0, t2], U ⊂ R
r is a closed convex set; the

inclusion u(t) ∈ U means that for almost all t ∈ [t0, t2] the points u(t) belong to
U. Matrices D(t), B(t) in (1) are given continuous functions of size n × n, n × r;
G1, G2 are fixed matrices of size m × n. Vectors ϕ1, ϕ2, g1, g2 are also fixed;
x1 = x(t1), x2 = x(t2). Controls u(t) are functions of space L

r
2[t0, t2]. The initial

value of the trajectory x(t0) = x0 is also considered given.
Phase trajectory x(t) as a solution of the differential equation for some

fixed control u(t) ∈ U according to the classical theorems of analysis [15,17]
is an absolutely continuous function. An absolutely continuous function can be
viewed as a generalization of the concept of an antiderivative function, when it
is required to restore the original function from its derivative using indefinite
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integration. Therefore, as a solution to the differential system (1) we mean any
pair (x(t), u(t)) ∈ L

n
2 × U, satisfying identically the condition

x(t) = x(t0) +
∫ t

t0

(D(τ)x(τ) + B(τ)u(τ))dτ, t0 ≤ t ≤ t2. (2)

Identity (2) defines a generalized solution to dynamics (1). In [17, Book 1, p. 443]
it is shown that any control u(t) ∈ U in a linear differential system corresponds
to a unique trajectory x(t), and this pair satisfies identity (2). In applications,
control u(t) is often a piecewise continuous function. In this case, the presence
of discontinuity points on control u(t) does not in any way affect the values
of trajectory x(t). Moreover, the trajectory will remain unchanged even if the
values of function u(t) are changed on the set of measure zero [15]. Condition
(2) also excludes from consideration functions of the Cantor ladder type, i. e.,
functions that transform sets of measure zero into sets of positive measure. The
class of absolutely continuous functions is a linear variety, dense everywhere in
L
n
2 [t0, t2]. This class will be denoted as ACn[t0, t2] ⊂ L

n
2 [t0, t2]. For any pair of

functions (x(t), u(t)) ∈ ACn[t0, t2] × U, both the Newton–Leibniz formula and,
respectively, the formula for integration by parts hold.

If control u(t) runs through entire set of controls U, then the phase trajectory
corresponding to each such u(t) forms at points t1, t2 the reachable sets x1 ∈ X1,
x2 ∈ X2. It is also assumed that the intersections of reachable sets and admissible
sets (defined by inequalities Gix(ti) ≤ gi, i = 1, 2) for the intermediate and
boundary value problems from (1) are not empty. In turn, problem (1) can be
viewed as a generalization of the terminal control problem with linear controlled
dynamics, which develops on the entire segment [t0, t2] (but without intermediate
loaded problems) with a fixed left end and a movable right end [3,4].

It follows from the above that problem (1) splits into two independent sub-
problems, each on its own subsegment. Each of these subproblems is analogous
to a linear programming problem formulated in a functional Hilbert space. Each
subproblem has the fixed left end and the movable right end. At the right end of
the time segment, we have the finite-dimensional linear programming problem.
This problem has its dual counterpart in the dual space. Accordingly, the linear
differential system from (1) also has its image in the dual (conjugate) space,
known as the dual differential equation [14].

Under regularity conditions like the Slater condition, the Lagrange function
for problem (1) has a saddle point [2]. All of the above applies equally to any seg-
ment of partition [t0, t1], [t1, t2], and to segment [t0, t2] as a whole. Thus, system
(1) on each subsegment can work independently if there are terminal conditions.
In principle, passing from one subsegment to the adjacent one, one can solve
the entire problem on segment [t0, t2]. In general, system (1) can be interpreted
as a problem whose dynamics are loaded with intermediate and boundary-value
linear programming problems [3,4].
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3 Problem Statement in Vector-Matrix Form

Taking into account the separable (shared) structure of problem (1), the latter
one can be rewritten as

d

dt
x(t) = D(t)x(t) + B(t)u(t), x(t) ∈ ACn[t0, t2], u(t) ∈ U,

t0 ≤ t ≤ t2, x(t0) = x0, x∗(t1) = x∗
1, x∗(t2) = x∗

2,

(
x∗
1

x∗
2

)

∈ Argmin

{
(
ϕ1, ϕ2

)
(

x(t1)
x(t2)

) ∣
∣
∣
∣
∣

(
G1 0
0 G2

)(
x(t1)
x(t2)

)

≤
(

g1
g2

)}

. (3)

Recall once again that pair (x(t), u(t)) forms the solution to the differential
equation of this system, defined on segment [t0, t2]. Accordingly, xi(t), ui(t),
i = 1, 2, are the parts of this solution defined on subsegments [t0, t1], [t1, t2]. In
other words, the phase trajectory of system (3) will also be used in the form

x(t) =

{
x1(t), t ∈ [t0, t1],
x2(t), t ∈ [t1, t2].

We emphasize that each phase trajectory x(t) generates a mapping that assigns
to any partition of segment [t0, t2] a vector with components x = (x(t1), x(t2)) =
(x1, x2), the number of which is equal to the number of dividing points of the
segment (in this case, there are two of them). Moreover, each component of
this vector, in turn, is a vector, the size of which is equal to n. Thus, in this

case we have a space of dimension R
2n. The diagonal matrix G =

(
G1 0
0 G2

)

is

defined in this space, and we can see two components of this matrix in the form
of submatrices Gi, i = 1, 2, of size m × n. These submatrices are used to form
inequality-type constraints with the right-hand side, which is specified by vector
g = (g1, g2). The linear objective function of finite-dimensional problem from (3)
is determined by its normal vector ϕ = (ϕ1, ϕ2) and variable (x(t1), x(t2)), and
has the form 〈ϕ, x〉.

Using the introduced notation for matrices and vectors, we can represent
problem (3) in a compact vector-matrix form

⎧
⎨

⎩

d

dt
x(t) = D(t)x(t) + B(t)u(t), t0 ≤ t ≤ t2, x(t0) = x0, x(t1) = x∗

1, x(t2) = x∗
2,

x∗ ∈ Argmin{〈ϕ, x〉 | Gx ≤ g, x ∈ R
2n}, u(t) ∈ U,

(4)

where D(t), B(t) are continuous matrices, respectively, of size n × n, n × r;
x(t0) = x0 is the initial condition, x∗ = (x∗

1, x
∗
2) = (x∗(t1), x∗(t2)). The values of

control u(t) for each t ∈ [t0, t2] belong to set U, which is a convex compact set
from R

r.
Note that macrosystem (4) is obtained as a result of linear convolution of

intermediate problems (1), and, both in form and in essence, coincides with the
scalar terminal control problem from [3,4]. The authors consider the proposed
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problem as a dynamic version of the linear programming problem. Therefore, the
approaches to the construction of methods for solving the problems under con-
sideration and the proof of their convergence in general repeat logic of reasoning
[3,4].

The geometric picture here is as follows. When control u(t) runs through
its set of controls U, then the right ends of phase subtrajectories (each on its
own intermediate subspace corresponding to the sections at points t1 and t2,
respectively) describe their own reachable sets. Linear programming problems
are specified in each of these subspaces. The minimum point of these problems
must be found at the intersection of their reachable set and the feasible set of
the problem, the last of which is some polyhedron. Note that in the intermediate
and boundary value problems from (1) and (4), the reachability sets X1,X2 as
separate constraints in an explicit form are absent, since they are automatically
taken into account as the ends of the phase trajectory on time subsegments.

4 Classical Lagrangian

We consider the regular case when all polytopes (inequality-type constraints)
for intermediate finite-dimensional problems satisfy the Slater conditions. These
conditions (the existence of interior points for sets G1x < g1, G2x < g2) guar-
antee the existence of saddle points for small Lagrangians of the corresponding
intermediate problems [2].

Recall that in problem (1) it is required to choose control u(t) so that the
corresponding phase trajectory satisfies the following conditions: at point t0 the
value of phase trajectory is fixed by the initial condition x(t0) = x0; at point t1
the value of phase trajectory coincides with solution of the intermediate problem
x∗(t1) = x∗

1, and at point t2 the value of trajectory coincides with the solution
of the boundary value problem x∗(t2) = x∗

2.
Problem (4) is nothing more than problem (1) written in macro format.

Accordingly, the Lagrange function for this problem in this format has the form

L(x, x(t), u(t); p, ψ(t))

=
∫ t2

t0

〈ψ(t),D(t)x(t) + B(t)u(t) − d

dt
x(t)〉dt + 〈ϕ, x〉 + 〈p,Gx − g〉 (5)

for all (x(t), u(t)) ∈ ACn[t0, t2]×U, ψ(t) ∈ Ψn[t0, t2], where Ψn[t0, t2] is the linear
variety of absolutely continuous functions from the space dual to the space of
primal variables L

n
2 [t0, t2]. The Lagrange function is defined for all p = (p1, p2),

x = (x1, x2), pi ∈ R
m
+ , xi ∈ R

n, i = 1, 2, where x1 = x(t1), x2 = x(t2). Here
(x, x(t), u(t)) are primal variables, and (p, ψ(t)) are dual variables.

Note that the small Lagrangian of function (5) splits into two small
Lagrangians of problem (1), that is,

〈ϕ, x〉 + 〈p,Gx − g〉 = 〈ϕ1, x1〉 + 〈p1, G1x1 − g1〉 + 〈ϕ2, x2〉 + 〈p2, G2x2 − g2〉.
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The latter is due to the fact that the finite-dimensional optimization problem
from (4) is the optimization problem for a linear function on a parallelepiped,
i.e. a separable problem. In other words, the finite-dimensional problem from
(4) is split into the system of problems from (1). By virtue of the analogue of
the Kuhn–Tucker theorem [2], formulated in Hilbert space for problem (1), we
can assert that if the problem has a solution (x∗, x∗(t), u∗(t)), then there is a
set of corresponding dual variables (p∗, ψ∗(t)) such that together these variables
form a saddle point of the Lagrange function. Thus, the problem can be reduced
to finding the saddle point of the Lagrangian. The converse is also true: primal
components (x∗, x∗(t), u∗(t)) of the saddle point of Lagrange function (5) are a
solution to original problem (4) and, accordingly, a solution to problem (1) [5].

The system of saddle-point inequalities for problem (4) in macro format will
have the form

∫ t2

t0

〈ψ(t),D(t)x∗(t) + B(t)u∗(t) − d

dt
x∗(t)〉dt + 〈ϕ, x∗〉 + 〈p,Gx∗ − g〉

≤
∫ t2

t0

〈ψ∗(t),D(t)x∗(t) + B(t)u∗(t) − d

dt
x∗(t)〉dt + 〈ϕ, x∗〉 + 〈p∗, Gx∗ − g1〉

≤
∫ t2

t0

〈ψ∗(t),D(t)x(t) + B(t)u(t) − d

dt
x(t)〉dt + 〈ϕ, x〉 + 〈p∗, Gx − g〉 (6)

for all (x, x(t), u(t)) ∈ R
2n × ACn[t0, t2] × U, (p, ψ(t)) ∈ R

2m
+ × Ψn[t0, t2].

So, if problem (4) has primal and dual solutions, then this pair is the saddle
point of the Lagrange function. Let us show that the converse is true: saddle
point (6) of the Lagrange function is primal and dual solutions to (4).

The left inequality of (6) is the problem of maximizing a linear function with
respect to variables (p, ψ(t)) on the whole space R

2m
+ × Ψn[t0, t2]:

∫ t2

t0

〈ψ(t) − ψ∗(t),D(t)x∗(t) + B(t)u∗(t) − d

dt
x∗(t)〉dt

+ 〈p − p∗, Gx∗ − g〉 ≤ 0, (7)

where p ∈ R
2m
+ , ψ(t) ∈ Ψn[t0, t2]. Inequality (7) implies that

D(t)x∗(t) + B(t)u∗(t) − d

dt
x∗(t) = 0, x∗(t0) = x0, (8)

〈p − p∗, Gx∗ − g〉 ≤ 0,

for all p ∈ R
2m
+ . Setting first p = 0 and then p = 2p∗, we get

D(t)x∗(t) + B(t)u∗(t) − d

dt
x∗(t) = 0, x∗(t0) = x0, (9)

〈p∗, Gx∗ − g〉 = 0, Gx∗ − g ≤ 0.
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Moving from vector notation to coordinate notation according to (3), the lower
finite-dimensional system in (9) can be rewritten as

〈p∗
1, G1x

∗
1 − g1〉 = 0, G1x

∗
1 − g1 ≤ 0,

〈p∗
2, G2x

∗
2 − g2〉 = 0, G2x

∗
2 − g2 ≤ 0, (10)

which matches (1) and (3).
The right inequality of (6) is the problem of minimizing the Lagrange function

with respect to variables x, x(t), u(t) for fixed values p = p∗, ψ(t) = ψ∗(t). Let
us show that (p∗, ψ∗(t);x∗, x∗(t), u∗(t)) is a solution to (6). Taking into account
(10), from the right inequality of (6) we have

〈ϕ, x∗〉 ≤ 〈ϕ, x〉+〈p∗, Gx−g〉+
∫ t2

t0

〈ψ∗(t),D(t)x(t)+B(t)u(t)− d

dt
x(t)〉dt (11)

for all x ∈ R
2n, (x(t), u(t)) ∈ ACn[t0, t1] × U.

Consider inequality (11) with additional scalar constraints

〈p∗, Gx − g〉 ≤ 0,

∫ t2

t0

〈ψ∗(t),D(t)x(t) + B(t)u(t) − d

dt
x(t)〉dt = 0.

Then we get the optimization problem

〈ϕ, x∗〉 ≤ 〈ϕ, x〉

under constraints

〈p∗, Gx − g〉 ≤ 0,

∫ t2

t0

〈ψ∗(t),D(t)x(t) + B(t)u(t) − d

dt
x(t)〉dt = 0 (12)

for all x ∈ R
2n, (x(t), u(t)) ∈ ACn[t0, t2]×U. Taking into account the inequality

and the equation from (9), we obtain that the solution (x∗(t), u∗(t)) belongs to
a narrower set than (11). Therefore, the indicated point remains a minimum on
the subset of solutions of the resulting system

d

dt
x(t) = D(t)x(t)+B(t)u(t), t0 ≤ t ≤ t2, x(t0) = x0, x(t1) = x∗

1, x(t2) = x∗
2,

〈ϕ, x∗〉 ≤ 〈ϕ, x〉, Gx ≤ g

for all x ∈ R
2n, (x(t), u(t)) ∈ ACn[t0, t2]×U. Thus, if Lagrange function (5) has

a saddle point, then the vector of primal components of the saddle point is a
solution to the boundary value (intermediate) linear programming problem (4).
The last problem, due to the diagonality of matrix G from (3), splits into two
independent linear programming problems (1), each in its own coordinate.
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5 Dual Lagrangian

The Lagrange function in finite-dimensional and dynamic problems allows one
to pass from the original problem formulated in the space of primal variables
to the dual problem formulated in the dual space. Let us show how this can be
done using system (4) as an example. We write out formulas for the transition
to adjoint linear operators

〈p,Gx〉 = 〈GTp, x〉,

〈ψ(t),D(t)x(t)〉 = 〈DT(t)ψ(t), x(t)〉, 〈ψ(t), B(t)u(t)〉 = 〈BT(t)ψ(t), u(t)〉 (13)

and formulas for integration by parts on intervals [t0, t1] and [t1, t2]

〈ψ(t1), x(t1)〉 − 〈ψ(t0), x(t0)〉 =
∫ t1
t0

〈 d
dtψ(t), x(t)〉dt +

∫ t1
t0

〈ψ(t), d
dtx(t)〉dt,

〈ψ(t2), x(t2)〉 − 〈ψ(t1), x(t1)〉 =
∫ t2
t1

〈 d
dtψ(t), x(t)〉dt +

∫ t2
t1

〈ψ(t), d
dtx(t)〉dt.

Let us turn to the union of segments [t0, t1] and [t1, t2] into one large segment
[t0, t2]. To do this, add the last two equalities and get

〈ψ(t2), x(t2)〉−〈ψ(t0), x(t0)〉 =
∫ t2

t0

〈 d

dt
ψ(t), x(t)〉dt+

∫ t2

t0

〈ψ(t),
d

dt
x(t)〉dt. (14)

Here, terms 〈ψ(t1), x(t1)〉 with different signs cancel each other out, and the sum
of the integrals, due to its additivity, is represented as a single integral, but on
the union of these segments. Term 〈ψ(t0), x(t0)〉 in the resulting expression can
be omitted: ψ(t0) = 0, since ψ(t0) has the meaning of a gradient (reference plane
normal) for the adjoint equation, which acts as a constraint. For simplicity of
calculations, we will assume that the gradient at the moment t = t0 is equal to
zero.

Note also that the structure of formula (14) does not depend on the number
of dividing points of segment [t0, t2] into subsegments. There may be more than
two of them. Formula (14) will be correct.

Next, we use the formulas for transition from primal variables to dual vari-
ables (13) and (14). For this purpose, all components (terms) with respect to
primal variables in (5), and then in (6), are replaced by (13) and (14) with their
equal components with respect to dual variables. All terms containing matrices
are replaced by transposed ones, and the differential operator under the scalar
product is transformed using formula (14). Then we carry out the corresponding
transformations and obtain first the dual Lagrange function and then the dual
system of saddle point inequalities

LT(p, ψ(t);x, x(t), u(t))

=
∫ t2

t0

〈DT(t)ψ(t) +
d

dt
ψ(t), x(t)〉dt +

∫ t2

t0

〈BT(t)ψ(t), u(t)〉dt
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+ 〈ϕ + GTp − ψ, x〉 + 〈−g, p〉 + 〈ψ(t0), x0〉 (15)

for all (x, x(·), u(·)) ∈ R
2n × ACn[t0, t2] × U, (p, ψ(·)) ∈ R

2m
+ × Ψn[t0, t2]. Here

〈ϕ + GTp − ψ, x〉 + 〈−g, p〉 + 〈ψ(t0), x0〉 = 〈ϕ1 + GT
1 p1 − ψ1, x1〉 + 〈−g1, p1〉

+〈ϕ2 + GT
2 p2 − ψ2, x2〉 + 〈−g2, p2〉 + 〈ψ(t0), x0〉.

For simplicity of calculations, we can always assume that term 〈ψ(t0), x0〉 is
equal to zero.

The saddle point system of inequalities, dual to (6), has the form:

∫ t2

t0

〈DT(t)ψ(t) +
d

dt
ψ(t), x∗(t)〉dt +

∫ t2

t0

〈BT(t)ψ(t), u∗(t)〉dt

+〈ϕ + GTp − ψ, x∗〉 + 〈−g, p〉

≤
∫ t2

t0

〈DT(t)ψ∗(t) +
d

dt
ψ∗(t), x∗(t)〉dt +

∫ t2

t0

〈BT(t)ψ∗(t), u∗(t)〉dt

+〈ϕ + GTp∗ − ψ∗, x∗〉 + 〈−g, p∗〉

≤
∫ t2

t0

〈DT(t)ψ∗(t) +
d

dt
ψ∗(t), x(t)〉dt +

∫ t2

t0

〈BT(t)ψ∗(t), u(t)〉dt

+ 〈ϕ + GTp∗ − ψ∗, x〉 + 〈−g, p∗〉. (16)

From right inequality (16) we obtain

∫ t2

t0

〈DT(t)ψ∗(t) +
d

dt
ψ∗(t), x∗(t) − x(t)〉dt +

∫ t2

t0

〈BT(t)ψ∗(t), u∗(t) − u(t)〉dt

+ 〈ϕ + GTp∗ − ψ∗, x∗ − x〉 ≤ 0 (17)

for all (x, x(t), u(t)) ∈ R
2n × ACn[t0, t2] × U. Due to the independent change

of each of variables (x, x(t), u(t)) within its admissible subspaces (sets), the last
inequality is decomposed into three independent inequalities

∫ t2

t0

〈DT(t)ψ∗(t) +
d

dt
ψ∗(t), x∗(t) − x(t)〉dt ≤ 0, x(t) ∈ ACn[t0, t2],

∫ t2

t0

〈BT(t)ψ∗(t), u∗(t) − u(t)〉dt ≤ 0, u(t) ∈ U.

〈ϕ + GTp∗ − ψ∗, x∗ − x〉 ≤ 0, x ∈ R
2n.

The linear functional reaches a finite extremum on the entire subspace only if
its gradient vanishes, and this leads to system of problems

DT(t)ψ∗(t) +
d

dt
ψ∗(t) = 0, ϕ + GTp∗ − ψ∗ = 0, (18)
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∫ t2

t0

〈BT(t)ψ∗(t), u∗(t) − u(t)〉dt ≤ 0, ∀u(t) ∈ U. (19)

From left inequality (16), taking into account (18) and (19), we have
∫ t2

t0

〈DT(t)ψ(t)+
d

dt
ψ(t), x∗(t)〉dt+

∫ t2

t0

〈BT(t)ψ(t), u∗(t)〉dt+ 〈ϕ+GTp−ψ, x∗〉

+〈−g, p〉 ≤ 〈−g, p∗〉 +
∫ t2

t0

〈BT(t)ψ∗(t), u∗(t)〉dt.

Considering this inequality subject to the scalar constraints

〈ϕ + GTp − ψ, x∗〉 = 0,

∫ t2

t0

〈DT(t)ψ(t) +
d

dt
ψ(t), x∗(t)〉dt = 0,

we arrive at the problem of maximizing the scalar function

〈−g, p〉 +
∫ t2

t0

〈BT(t)ψ(t), u∗(t)〉dt ≤ 〈−g, p∗〉 +
∫ t2

t0

〈BT(t)ψ∗(t), u∗(t)〉dt,

where (p, ψ(t)) ∈ R
2m
+ × Ψn[t0, t2].

Combining this problem with (18) and (19), we get a problem dual to (1):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p∗, ψ∗(t)) ∈ Argmax
{

〈−g, p〉 +
∫ t2

t0

〈BT(t)ψ(t), u∗(t)〉dt |

DT(t)ψ(t) +
d

dt
ψ(t) = 0, ψ = ϕ + GTp

}

,

∫ t2

t0

〈BT(t)ψ∗(t), u∗(t) − u(t)〉dt ≤ 0, u(t) ∈ U,

(20)

where ψ = ϕ + GTp is the transversality condition.

6 Saddle Point Differential System (Sufficient Conditions
for Optimality)

Combining in one system the main elements of primal and dual problems, we
finally arrive at the saddle point differential system. With respect to original
problem (1), this system plays the role of a necessary and sufficient optimality
condition

d

dt
x∗(t) = D(t)x∗(t) + B(t)u∗(t), x∗(t0) = x0, (21)

〈Gx∗ − g, p − p∗〉 ≤ 0, p ≥ 0, (22)

d

dt
ψ∗(t) + DT(t)ψ∗(t) = 0, ψ∗ = ϕ + GTp∗, (23)
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∫ t2

t0

〈BT(t)ψ∗(t), u∗(t) − u(t)〉dt ≤ 0, u(t) ∈ U. (24)

It is interesting that if differential system (21) is loaded with intermediate prob-
lems [1], then its dual system (23) belongs to the class of switched differential
systems [16].

The variational inequalities of system (21)–(24) can be rewritten in equivalent
form of operator equations with operators of projection onto the corresponding
convex closed sets:

d

dt
x∗(t) = D(t)x∗(t) + B(t)u∗(t), x∗(t0) = x0,

p∗ = π+(p∗ + α(Gx∗ − g)),

d

dt
ψ∗(t) + DT(t)ψ∗(t) = 0, ψ∗ = ϕ + GTp∗,

u∗(t) = πU (u∗(t) − αBT(t)ψ∗(t)),

where π+(·), πU (·) are projection operators, respectively, to positive orthant R2m
+

and to set of controls U (α > 0).
Saddle point optimality conditions open up great opportunities and prospects

for the development of the theory of methods for solving terminal control prob-
lems with boundary value problems at the ends of time interval [3–13]. Terminal
control problems in this case are transferred to the class of saddle point (game)
problems.

7 Saddle Point Method of Extragradient Type

Based on the saddle point differential system, we construct an iterative process
(parameter α > 0 characterizes the size of iteration step):

d

dt
xk(t) = D(t)xk(t) + B(t)uk(t), x(t0) = x0,

pk+1 = π+(pk + α(Gxk − g)),

d

dt
ψk(t) + DT(t)ψk(t) = 0, ψk = ϕ + GTpk,

uk+1(t) = πU (uk(t) − αBT(t)ψk(t)), k = 0, 1, 2...,

where xk = xk(t).
This process is a simple iteration method. This method converges to solutions

of optimization problems, where gradient generates vector fields with fixed points
of “stable focus” type. For saddle point problems, the gradient method generates
vector fields of rotation (around fixed points of “center” type), and in this case
the gradient process, generally speaking, will not converge to this point. In order
to ensure convergence to a point of “center of rotation” type, we must split the
iterative step into two halfsteps. One halfstep implements the movement of the
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computational process along one closed curve. This is followed by a jump of
the trajectory to another closed trajectory. Formally, this jump is realized by
splitting one iteration into two half-iterations. Thus, one saddle point iteration is
split into two half-iterations. The set of such iterations forms a spiral trajectory
that twists around a fixed point of the vector field (saddle point). Therefore,
in the considered saddle point situation, we use the saddle point extragradient
method to solve the problem.

The extragradient method is a controlled simple iteration method, each iter-
ation of which is split into two half-steps:

1) predictive half-step

d

dt
xk(t) = D(t)xk(t) + B(t)uk(t), xk(t0) = x0, t0 ≤ t ≤ t2, (25)

p̄k = π+(pk + α(Gxk − g)), (26)

d

dt
ψk(t) + DT(t)ψk(t) = 0, ψk = ϕ + GTpk, (27)

ūk(t) = πU (uk(t) − αBT(t)ψk(t)); (28)

2) main half-step

d

dt
x̄k(t) = D(t)x̄k(t) + B(t)ūk(t), x̄k(t0) = x0, t0 ≤ t ≤ t2, (29)

pk+1 = π+(pk + α(Gx̄k − g)), (30)

d

dt
ψ̄k(t) + DT(t)ψ̄k(t) = 0, ψ̄k = ϕ + GTp̄k, (31)

uk+1(t) = πU (uk(t) − αBT(t)ψ̄k(t)), k = 0, 1, 2... (32)

Note that variables x, p and others in this paper have the dimensions of
macro variables with respect to the variables in (3). The considered multi-agent
problem (in this case, two agents) admits a finite number of agents. The problem
under consideration was formally scalarized in such a way that it does not differ
from the scalar formulations [3,4]. Therefore, the theorem on the convergence of
the method considered above is not given here due to the limited volume of the
publication. The logic of this proof can be easily restored by analogy with [3,4].

The following theorem is proved for the computational process (25)–(32).

8 Theorem on Convergence

Theorem. If set of solutions (x∗
1, x

∗
2, x

∗(t), u∗(t); p∗
1, p

∗
2, ψ

∗(t)) to problem (1), or
(4), is not empty, then sequence {(xk

1 , x
k
2 , x

k(t), uk(t); pk1 , p
k
2 , ψ

k(t))} generated by
method (25)–(32) with step length α (chosen from some special condition) con-
tains a subsequence {(xki

1 , xki
2 , xki(t), uki(t); pki

1 , pki
2 , ψki(t))}, which converges to
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the solution of the problem, including: weak convergence in controls, strong con-
vergence in phase trajectories, conjugate trajectories, as well as in variables of
finite-dimensional (intermediate and terminal) spaces. In particular, sequence

{|pk1 − p∗
1|2 + |pk2 − p∗

2|2 + ‖uk(t) − u∗(t)‖2}

decreases monotonically on the Cartesian product R
m
+ × R

m
+ × U.

9 Conclusions

The article investigates the terminal control problem with additional finite-
dimensional intermediate and boundary value problems. The problem belongs
to the class of multi-agent linear systems and has a convex structure. The latter
makes it possible, within the framework of duality theory, to use the saddle point
property of the Lagrangian, in particular, to develop the theory of saddle point
methods for solving multi-agent terminal control problems.

The proposed approach makes it possible to recalculate the phase trajecto-
ries by using the iterative saddle point gradient method, and to solve linear pro-
gramming problems in intermediate finite-dimensional spaces. The trajectories
are gradually “pulled up” to the optimal point. Limit points of finite-dimensional
saddle points processes are the points of optimality for phase trajectories. We
emphasize once again that only evidence-based optimization transforms math-
ematical models into a tool for making guaranteed decisions. Evidence-based
optimization is, in fact, a beautiful continuation of the ideas of Lyapunov
stability.

References

1. Abdullayev, V.M., Aida-zade, K.R.: Approach to the numerical solution of opti-
mal control problems for loaded differential equations with nonlocal conditions.
Comput. Math. Math. Phys. 59(5), 696–707 (2019). https://doi.org/10.1134/
S0965542519050026

2. Alekseev, V.M., Tikhomirov, V.M., Fomin, S.V.: Optimal Control. Springer,
Boston (1987). https://doi.org/10.1007/978-1-4615-7551-1

3. Antipin, A.S., Khoroshilova, E.V.: Linear programming and dynamics. Trudy Inst.
Mat. Mech. Ural Branch Russian Acad. Sci. 19(2), 7–25 (2015) (in Russian)

4. Antipin, A.S., Khoroshilova, E.V.: Linear programming and dynamics. Ural Math.
J. 1(1), 3–19 (2015)

5. Antipin, A.S., Khoroshilova, E.V.: Optimal control with connected initial and ter-
minal conditions. Proc. Steklov Inst. Math. 289(1), 9–25 (2015). https://doi.org/
10.1134/S0081543815050028

6. Antipin, A.S., Khoroshilova, E.V.: Saddle-point approach to solving problem of
optimal control with fixed ends. J. Global Optim. 65(1), 3–17 (2016)

7. Antipin, A., Khoroshilova, E.: On methods of terminal control with boundary-
value problems: lagrange approach. In: Goldengorin, B. (ed.) Optimization and Its
Applications in Control and Data Sciences. SOIA, vol. 115, pp. 17–49. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-42056-1 2

https://doi.org/10.1134/S0965542519050026
https://doi.org/10.1134/S0965542519050026
https://doi.org/10.1007/978-1-4615-7551-1
https://doi.org/10.1134/S0081543815050028
https://doi.org/10.1134/S0081543815050028
https://doi.org/10.1007/978-3-319-42056-1_2


164 A. Antipin and E. Khoroshilova

8. Antipin, A.S., Khoroshilova, E.V.: Feedback synthesis for a terminal control prob-
lem. Comput. Math. Math. Phys. 58(12), 1903–1918 (2018). https://doi.org/10.
1134/S0965542518120035

9. Antipin, A.S., Khoroshilova, E.V.: Lagrangian as a tool for solving linear optimal
control problems with state constraints. Optimal control and differential games. In:
Proceedings of the International Conference Dedicated to the 110th Anniversary
of the Birth of Lev Semenovich Pontryagin, pp. 23–26 (2018)

10. Antipin, A., Khoroshilova, E.: Controlled dynamic model with boundary-value
problem of minimizing a sensitivity function. Optim. Lett. 13(3), 451–473 (2017).
https://doi.org/10.1007/s11590-017-1216-8

11. Antipin, A.S., Khoroshilova, E.V.: Dynamics, phase constraints, and linear pro-
gramming. Comput. Math. Math. Phys. 60(2), 184–202 (2020)

12. Antipin, A., Jacimovic, V., Jacimovic, M.: Dynamics and variational inequalities.
Comp. Maths. Math. Phys. 57(5), 784–801 (2017)

13. Antipin, A., Vasilieva, O.: Dynamic method of Multipliers in terminal control.
Comp. Maths. Math. Phys. 55(5), 766–787 (2015)

14. Dmitruk, A.V.: Convex Analysis. Moscow, MAKS-PRESS, Elementary Introduc-
tory Course (2012).(in Russian)

15. Kolmogorov, A.N., Fomin, S.V.: Elements of the Theory of Functions and Func-
tional Analysis. FIZMATLIT, Moscow (2009).(in Russian)

16. Makarenko, A.V.: Intelligent control. In: Novikov, D.A. (ed.) Control Theory
(Additional Chapters), 552p. LENAND, Moscow (2019) (in Russian)

17. Vasilyev, F.P.: Optimization methods. In: 2 Books. Moscow Center for Continuous
Mathematical Education (2011) (in Russian)

https://doi.org/10.1134/S0965542518120035
https://doi.org/10.1134/S0965542518120035
https://doi.org/10.1007/s11590-017-1216-8


Existence of Bounded Soliton Solutions
for a Finite Difference Analogue

of the Wave Equation with a Nonlinear
Potential of General Form

Levon A. Beklaryan1 and Armen L. Beklaryan2(B)

1 Central Economics and Mathematics Institute RAS, Nachimovky Prospect 47,
117418 Moscow, Russia
beklar@cemi.rssi.ru

2 National Research University Higher School of Economics, 26-28 Ulitsa Shabolovka,
119049 Moscow, Russia
abeklaryan@hse.ru

http://www.hse.ru/en/staff/beklaryan

Abstract. In the presented work, the existence of a family of bounded
soliton solutions for a finite difference wave equation with a nonlinear
potential of general form is established. The proof is carried out within
the framework of a formalism establishing a one-to-one correspondence
between soliton solutions of an infinite-dimensional dynamical system
and solutions of a family of functional differential equations of point-
wise type. The key fact for the considered class of equations is also the
presence of a number of symmetries.
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1 Introduction

In the theory of plastic deformation, the following infinite-dimensional dynamical
system is studied

mÿi = yi−1 − 2yi + yi+1 + φ(yi), i ∈ Z, yi ∈ R, t ∈ R, (1)

where the potential φ(·) is given by a smooth periodic function. The Eq. (1)
is a system with the Frenkel-Kontorova potential [8]. Such a system is a finite
difference analogue of a nonlinear wave equation, simulates the behavior of a
countable number of balls of mass m, placed at integer points of the real line,
where each pair of adjacent balls is connected by an elastic spring, and describes
the propagation of longitudinal waves in an infinite homogeneous absolutely
elastic rod.
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For equations of mathematical physics, an important class of solutions are
traveling wave solutions (soliton solutions) [11,13]. In a number of models, such
solutions are well approximated by traveling wave solutions for finite difference
analogs of the original equations, which, in place of a continuous environment,
describe the interaction of clumps of a environment placed at lattice sites [8,13].
Emerging systems belong to the class of infinite-dimensional dynamical sys-
tems. The most widely considered classes of such problems are infinite systems
with Frenkel-Kontorova potentials (periodic and slowly growing potentials) and
Fermi-Pasta-Ulam (potentials of exponential growth), a broad survey of which
is given in the paper [12].

Definition 1. {yi(·)}+∞
−∞ is called a solution to the system (1) if for any i ∈ Z

the function yi(·) is continuously differentiable and its derivative is an absolutely
continuous function, and almost everywhere satisfies the system (1). �
The study of such systems with different potentials is one of the intensively
developing directions in the theory of dynamical systems. For them, the central
task is to study soliton solutions (solutions of the traveling wave type) as one of
the observed classes of waves.

Definition 2. We can state that the solution {yi(·)}+∞
−∞ of system (1), defined

for all t ∈ R, has a traveling wave type if there exists τ > 0 that does not depend
on t and i, such that for all i ∈ Z and t ∈ R, the following equality holds:

yi(t + τ) = yi+1(t).

The constant τ will be known as characteristic of a traveling wave. �
Thus, for the considered finite difference analogue of the wave equation, the

study of soliton solutions is reduced to the study of the space of solutions of the
following boundary value problem with linear nonlocal boundary conditions.

mÿi(t) = yi−1(t) − 2yi(t) + yi+1(t) + φ(yi(t)), i ∈ Z, yi ∈ R, t ∈ R, (2)
yi(t + τ) = yi+1(t), τ ≥ 0. (3)

The presented work uses the capabilities of the formalism developed in [1–4].
Within the framework of this formalism, the localization of soliton solutions is
used by specifying their asymptotics both in space and in time. This approach
is based on the existence of a one-to-one correspondence of soliton solutions for
infinite-dimensional dynamical systems with solutions of the family of induced
functional differential equations of pointwise type [1–4,9,10,14,15].

The phase space of the system (2) is the space of infinite sequences

K2
Z

=
∏

q∈Z

R
2
q, R

n
q = R

2, κ ∈ K2
Z
, κ = {xi}i∈Z, xi = (xi1, xi2)′.

with the standard Tikhonov topology. In the space K2
Z

we define the family of
Hilbert subspaces K2

Z2μ, μ ∈ (0, 1)

K2
Z2μ =

{
κ : κ ∈ K2

Z
;
∑

i∈Z

‖xi‖2R2μ2|i| < +∞
}



Bounded Soliton Solutions for a Wave Equation with a Nonlinear Potential 167

with the norm
‖κ‖Z2μ =

[∑

i∈Z

‖xi‖2R2μ2|i|] 1
2 .

We define a linear operator A, a shift operator T, and a nonlinear operator
F, acting continuously from the space K2 into itself according to the following
rule: for any i ∈ Z, κ ∈ K2

(Aκ)i = (xi2,m
−1[x(i+1)1 − 2xi1 + x(i−1)1])

′
,

(Tκ)i = (κ)i+1, (F(κ))i = (0,m−1φ(xi1))
′
.

Note that the shift operator T commutes with the operators A and F, which is
typical of models describing processes in homogeneous environments.

The system (2)–(3), which defines soliton solutions, can be rewritten in the
following operator form

κ̇ = Aκ + F(κ), t ∈ R, (4)
κ(t + τ) = Tκ(t), (5)

which is a boundary value problem with linear nonlocal boundary conditions.
The boundary conditions (5) mean that the time shift of the solution is equal to
the space shift.

In the case of the problem under consideration, the soliton solutions, the solu-
tions of the system (2)–(3), are in one-to-one correspondence with the solutions
of the family of induced functional differential equations of pointwise type

ż1(t) = z2(t), (z1, z2)′ ∈ R
2, t ∈ R, (6)

ż2(t) = m−1
[
z1(t − τ) − 2z1(t) + z1(t + τ) + Φ(z1(t))

]
. (7)

The correspondence between these solutions is as follows

z1(t) = y0(t), z2(t) = ẏ0(t), t ∈ R. (8)

To study the existence and uniqueness of soliton solutions, it is proposed to
localize solutions of induced functional differential equations of pointwise type
in spaces of functions majorized by functions of a given exponential growth with
exponent as a parameter

Ln
μC(k)(R) =

{
z(·) : z(·) ∈ C(k) (R, Rn) , max

0≤r≤k
sup
t∈R

‖z(r)(t)μ|t|‖Rn < +∞
}

,

‖z(·)‖(k)μ = max
0≤r≤k

sup
t∈R

‖z(r)(t)μ|t|‖Rn , k = 0, 1, . . . , μ ∈ (0,+∞).

This approach turns out to be especially successful for systems with Frenkel-
Kontorova potentials. When describing processes in inhomogeneous environ-
ments, the commutativity condition for the right-hand side of the system in
operator form and the shift operator is violated. In this case, the space of soliton
solutions turns out to be trivial. At the same time, within the framework of
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the developed formalism, it is possible to obtain the “correct” extension of the
concept of a traveling wave (soliton solution) in the form of solutions of the type
of quasi-traveling waves [5,6].

Under minimal restrictions on the potential φ(·) in the form of the presence
of the Lipschitz condition (quasilinear potentials), this problem was studied in
the monograph [4]. The corresponding Lipschitz constant for the potential φ(·)
we denote by Lφ.

Let us consider a transcendental equation in two variables τ ∈ (0,+∞) and
μ ∈ (0, 1)

Cφτ
(
2μ−1 + 1

)
= lnμ−1, (9)

where
Cφ = max

{
1; 2m−1

√
L2

φ + 2
}
.

The set of solutions to the Eq. (9) is described by the functions μ1(τ), μ2(τ)
given in Fig. 1. The value τ̂ has some absolute estimate τ̂ ≤ (2Cφ)−1 and, in
particular, τ̂ ≤ 1

2 .

Fig. 1. Graphs of the functions μ1(τ), μ2(τ).

Let us formulate a theorem on the existence and uniqueness of a solution for
the induced functional differential equation (6)–(7).

Theorem 1 ([4]). Let the potential Φ satisfy the Lipschitz condition with the
constant LΦ. Then for any initial data a, b ∈ R, t̄ ∈ R and characteristic τ > 0
satisfying the condition

0 < τ < τ̂ ,
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in the space L2
μC(0)(R), μτ ∈ (μ1(τ), μ2(τ)) for the system of functional differen-

tial equations (6)–(7) exists and, moreover, a unique solution (z1(t), z2(t))′, t ∈ R

such that it satisfies the initial conditions z1(t̄) = a, z2(t̄) = b. Such a solution
as an element of the space L2

μC(0)(R) continuously depends on the initial data
a, b ∈ R, as well as on the mass m, the characteristic τ , and the potential Φ(·).
�

Theorem 1 not only guarantees the existence of a solution, but also sets a
limit on its possible growth in time t. Obviously, for each 0 < τ < τ̂ the
spaces L2

( τ
√

μ2(τ)−ε)
C(0)(R) for small ε > 0 are much narrower than the spaces

L2

( τ
√

μ1(τ)+ε)
C(0)(R). The theorem guarantees the existence of a solution in nar-

rower spaces and uniqueness in wider spaces.
Theorem 1 can be reformulated in terms of traveling wave solutions (soliton

solutions) for the original wave equation (in terms of the system (2)–(3)).

Theorem 2 ([4]). Let the potential Φ satisfy the Lipschitz condition with the
constant LΦ. Then for any initial data ī ∈ Z, a, b ∈ R, t̄ ∈ R and characteristic
τ > 0 satisfying the condition

0 < τ < τ̂ ,

for the initial system of differential equations (2) there is a unique solution
{yi(·)}+∞

−∞ of traveling wave type (soliton solution) with characteristic τ such
that it satisfies the initial conditions yī(t̄) = a, ẏī(t̄) = b. For any parameter
μ, μτ ∈ (μ1(τ), μ2(τ)), the values of the vector function

ω(t) = {(yi(t), ẏi(t))
′}+∞

−∞

for any t ∈ R belong to the space K2
Z2μ, and the function

ρ(t) = ‖ω(t)‖2μ

belongs to the space L1
μC(0)(R). Such a solution continuously depends on the

initial data a, b ∈ R, as well as on the mass m, the characteristic τ , and the
potential Φ(·). �

Theorem 2 not only guarantees the existence of a solution, but also sets a
restriction on its possible growth both in time t and in coordinates i ∈ Z (in
space). Obviously, for each 0 < τ < τ̂ the spaces K2

Z2( τ
√

μ2(τ)−ε)
for small ε > 0

are much narrower than the spaces K2

Z2( τ
√

μ1(τ)+ε)
. The theorem guarantees the

existence of a solution in narrower spaces and uniqueness in wider spaces.
Within the framework of this approach, families of bounded solutions are

described in the paper [7] for a finite-difference analog of the wave equation
with a quadratic potential. Most of the preliminary results presented there were
obtained without taking into account the specific form of the nonlinear potential.
Therefore, the presented approach is universal in nature and can be applied to
the study of a wide class of systems with nonlinear potential, which will be
demonstrated below.
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2 Some Preliminary Results for a System with a General
Nonlinear Potential

We are going to study soliton solutions of the system (solutions of the system
(2)–(3)) with a general nonlinear potential. Within the framework of such a task,
a number of universal properties inherent in such systems are established.

Recall that the corresponding induced functional differential equation of
pointwise type has the form

ż1(t) = z2(t), (z1, z2)′ ∈ R
2, t ∈ R, (10)

ż2(t) = m−1
[
z1(t − τ) − 2z1(t) + z1(t + τ) + Φ(z1)

]
. (11)

The Correspondence is Valid: a bounded soliton solution (the solution of the
system (2)–(3)) corresponds to the solution of the induced functional differential
equation of pointwise type (10)–(11) with bounded first coordinate z1(t), t ∈ R

and vice versa.

Remark 1. Points of a closed set

S = {z : z = (z1, z2)′, (z1, z2)′ ∈ R
2; z2 = 0, Φ(z1) = 0}

and only they are fixed points for the induced functional differential equation of
pointwise type (10)–(11). �

To study other solutions of the induced functional differential equation with the
condition of boundedness in the first coordinate, a family of auxiliary functional
differential equations of pointwise type is constructed.

For any Δ > 0, we define the potential ΦΔ

Φ(ξ) =

⎧
⎪⎨

⎪⎩

Φ(−Δ), if ξ < −Δ,

Φ(ξ), if ξ ∈ [−Δ,Δ],
Φ(Δ), if ξ > Δ.

The Lipschitz constant for such a function ΦΔ is equal to the Lipschitz con-
stant for the function Φ|[−Δ,Δ], as restrictions of the potential Φ on the interval
[−Δ,Δ], and is denoted by LΦΔ

. Obviously, LΦΔ
is monotonically increasing in

the parameter Δ > 0.
Consider an auxiliary functional differential equation of pointwise type

ż1(t) = z2(t), (z1, z2)′ ∈ R
2, t ∈ R, (12)

ż2(t) = m−1
[
z1(t − τ) − 2z1(t) + z1(t + τ) + ΦΔ(z1(t))

]
. (13)

By analogy with the Eq. (9), we consider the transcendental equation in two
variables τ ∈ (0,+∞) and μ ∈ (0, 1)

CΦΔ
τ

(
2μ−1 + 1

)
= lnμ−1, (14)
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where
CΦΔ

= max
{
1; 2m−1

√
L2

ΦΔ
+ 2

}

and CΦΔ
is monotonically increasing in the parameter Δ > 0.

The solution to the Eq. (14) is described by the functions μΔ1(τ) and μΔ2(τ).
The qualitative behavior of the functions μΔ1(τ), μΔ2(τ) is the same as the
behavior of the functions μ1(τ), μ2(τ) in Fig. 1, and the value τ̂ is replaced by
the corresponding value τ̂Δ, which is monotonically decreasing in the parameter
Δ > 0.

For the auxiliary functional differential equation of pointwise type (12)–(13),
the theorem 1 is also true, in which the potential Φ should be replaced by ΦΔ,
the functions μ1(τ), μ2(τ) replace with functions μΔ1(τ), μΔ2(τ), and the value
τ̂ by τ̂Δ. Any solution (z1(t), z2(t))′, t ∈ R of the auxiliary functional differential
equation (12)–(13) with the property of being bounded in the first coordinate
|z1(t)| ≤ Δ, t ∈ R is a solution of the induced functional differential equation
of pointwise type (10)–(11) with nonlinear potential and the same bounded-
ness condition along the first coordinate. Thus, by virtue of the matching rule
formulated above, it suffices to establish the existence of solutions of the aux-
iliary functional differential equation of pointwise type (12)–(13) satisfying the
property of being bounded in the first coordinate |z1(t)| ≤ Δ, t ∈ R.

The presence of symmetries, as well as the behavior of the vector field for
the considered initial equation and auxiliary equations, allows one to describe a
family of bounded solutions.

Let us define the sets

B = {a : Φ(a) = 0}, D = R\B,

BΔ = {a : ΦΔ(a) = 0}, DΔ = R\BΔ.

Obviously, the set S coincides with the natural embedding of the set B into R
2.

Due to the continuity of the potentials Φ(·), ΦΔ(·), the sets B,BΔ are closed,
and the sets D,DΔ are open. Then the open sets D,DΔ consist of the union of
at most countably many open intervals, that is,

D =
⋃

i∈I

di, di = (αi, βi), i ∈ I,

DΔ =
⋃

i∈IΔ

dΔ
i , dΔ

i = (αΔ
i , βΔ

i ), i ∈ IΔ,

where I, IΔ are finite or countable sets of indices. Obviously, the values of the
potentials Φ(·), ΦΔ(·), respectively, on each of the intervals di, i ∈ I, dΔ

i , i ∈ IΔ,
are constant sign. Depending on the sign of the potential value, all indices I, IΔ

can be divided into two subsets I−, I+, IΔ
− , IΔ

+ and, accordingly, I = I−∪I+, IΔ =
IΔ
− ∪ IΔ

+ . Elements of the sets of indices I−, IΔ
− , I+, IΔ

+ we denote by i−, i+,
respectively. Note that any finite interval di−, i− ∈ I− (di+, i+ ∈ I+), starting
from some large value Δ > 0, coincides with one from the intervals dΔ

i−, i ∈
IΔ
− ,(dΔ

i+, i ∈ IΔ
+ ).
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Fig. 2. Graphs of the potentials Φ, ΦΔ.

Let us comment on Fig. 3. Small circles denote stationary solutions of hyper-
bolic type. The crosses denote stationary solutions that are sinks and sources
for the same solutions and also have a hyperbolic type. Dotted lines denote sep-
aratrices, and green color denotes solutions unbounded in the first coordinate
z1.

3 Main Result

Let us formulate a result on the existence of a solution bounded in the first
coordinate of the induced functional differential equation.

Theorem 3. Let Δ > 0 be given, and B ∩ [−Δ,Δ] 
= ∅. Then for any τ ∈
(0, τ̂Δ) and μ, μτ ∈ (μΔ1(τ), μΔ2(τ)) the solution (z1(·), z2(·))′ ∈ L2

μC(0)(R)
of the induced functional differential equation of pointwise type (10)–(11) with
nonlinear potential and initial conditions (z1(0), z2(0))′ = (a, 0)′ exists and is
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unique for all a such that

a ∈ [( ⋃

i−∈IΔ
− ,−Δ≤αΔ

i−

(αΔ
i−, βΔ

i−)
) ⋃ ( ⋃

i+∈IΔ
+ ,βΔ

i+≤Δ

(αΔ
i+, βΔ

i+)
) ⋃

B
]⋂

[−Δ,Δ]

Fig. 3. Qualitative picture of bounded solutions of an auxiliary functional differential
equation of pointwise type with a quasilinear right-hand side.

and such a solution satisfies the boundedness condition |z1(t)| ≤ Δ, t ∈ R in the
first coordinate z1. �

Fig. 4. Qualitative picture of bounded solutions for an induced functional differential
equation of pointwise type with a nonlinear potential.

Let us comment on Fig. 4. In Fig. 4, in comparison with Fig. 3, there are
only those solutions bounded in the coordinate z1 that belong to the cylinder
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{(z1, z2) : z1 ∈ [−Δ,Δ]}, since only such solutions of the auxiliary functional
differential equation of pointwise type are simultaneously solutions of the induced
functional differential equation of pointwise type.

Now we can give an equivalent reformulation of Theorem 3 on the existence
of a solution to an induced functional differential equation of pointwise type
(system (12)–(13)) bounded in the first coordinate. This reformulation takes the
form of the main result on the existence of bounded soliton solutions for the
original wave equation (system (10)–(11)).

Theorem 4. Let Δ > 0 be given, and B ∩ [−Δ,Δ] 
= ∅. Then for the system
(10)–(11) with nonlinear potential for any fixed τ, 0 < τ < τ̂Δ and

a ∈ [( ⋃

i−∈IΔ
− ,−Δ≤αΔ

i−

(αΔ
i−, βΔ

i−)
) ⋃ ( ⋃

i+∈IΔ
+ ,βΔ

i+≤Δ

(αΔ
i+, βΔ

i+)
) ⋃

B
]⋂

[−Δ,Δ]

there is bounded soliton solution {(yi(t), ẏi(t))
′}+∞

−∞, t ∈ R with characteristic τ
and initial data (y0(0), ẏ0(0))′ = (a, 0)′.

For any parameter μ, μτ ∈ (μ1(τ), μ2(τ)), the values of the vector function

ω(t) = {(yi(t), ẏi(t))
′}+∞

−∞

for any t ∈ R belong to the space K2
Z2μ, and the function

ρ(t) = ‖ω(t)‖2μ

belongs to the space L1
μC(0)(R). This is the only solution. Moreover, the bound-

edness condition for such a soliton solution has the form |y0(t)| ≤ Δ, t ∈ R.
�
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Abstract. The problem of motion control of a wheeled robot is con-
sidered. The robot is supposed to be moving without lateral slippage
along an arbitrary, sufficiently smooth three-dimensional surface. The
target path of the robot is defined by a curve with constrained curva-
ture on a given surface. The rear wheels are assumed to be driving while
the front wheels are responsible for the rotation of the robot’s platform.
A control law is synthesized based on the feedback linearization app-
roach [5]. The purpose of the paper is to construct an estimate of the
invariant attraction domain in the space “cross-track deviation - angular
deviation” taking into account the constraints on the maximum steering
angle. This problem has received much attention in connection with pre-
cision farming applications [14]. The control goal is to drive the specified
target point, taken as a middle of the rear axle, to the target path and
to stabilize its motion. The system is presented in the so called Lurie
form [1,15] and embedded in the class of systems with nonlinearities
constrained by the sector condition. The method of attraction domain
estimation in the state space of the system is proposed. The negativity
condition for the derivative of the Lyapunov function with respect to
the system’s dynamics under sector conditions is formulated in terms of
solvability of the linear matrix inequality (LMI) [2]. The LMI, the left
side of which depends on the matrix of the quadratic form, gives the
constraints of the considered optimization problem. The cost function of
the optimization problem is the trace of the matrix. Such a cost func-
tion is widely used in control theory to optimize the volume of invariant
sets [2]. Numerical results are presented.
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1 Introduction

In this paper considered is the motion of the wheeled robot following the curvi-
linear path laid on uneven surface. More precisely, the problem of stabilization of
such a motion is considered. It is supposed that the all four wheels move without
cross-track slippage i.e. motion is subjected to non-holonomic constraints. The
rear wheels are assumed to be driving while the front wheels are responsible for
the rotation of the robot’s platform. The control goal is to drive the target point
(a specific point selected on the platform) to the target path and to stabilize its
motion. In this paper, we don’t restrict ourselves to the simple case of motion
along a straight path (see [8,10,14]). Instead, most general case of feasible target
path is considered. Here the feasibility means that the path can be followed by
the robot with constrained steering wheels angle. The control law is obtained by
the feedback linearization approach and is subject to the two-sided constraints
as described in the earlier papers [10,11]. To estimate attraction domain of the
closed loop system the quadratic Lyapunov function will be used. Parameters
to be chosen are entries of the positive definite square matrix. The motion is
described by the system of nonlinear ordinary differential equations.

One of the fundamental problems of nonlinear control systems theory is a
description of the attraction domain of the equilibrium state. Usually the equi-
librium refers to nominal system’s operation, which should be stabilized. Com-
plete solution of this problem in general form is extremely hard. Therefore, an
internal (by inclusion) estimate of the attraction domain is important for appli-
cations. Usually engineers are looking for an estimate of a domain that combines
two properties: it must provide asymptotic attraction and it must be invariant.
By invariance we mean such a property of the domain, that the trajectory of
the system, once getting inside, will no longer leave it. Standard approach for
the construction of such estimates consists in using Lyapunov functions from
certain parametric classes. Let z ∈ Rn be the system state. Given the Lyapunov
function V (z), the estimate of the attraction domain is constructed as a level set
{z : V (z) ≤ c}, provided the time derivative with respect to the system dynam-
ics is negative: V̇ < 0. Candidates for use as a Lyapunov function are selected
from some parametric class. Thus, the more general is the parametric class of
Lyapunov functions, the more is freedom of choice, and the less conservative is
the resulting estimate of the attraction domain. Desire to maximize the volume
of the attraction domain leads to the problem of optimal parameters choice.

As for design of the target path, it is supposed that the optimal field coverage
problem was already solved for the particular working site and desired path was
obtained as a result. The site is in general hilly and has curvilinear boundary.

The goal of this study is to propose a method of attraction domain esti-
mation in the state space of the system. Description of the attraction domain
inscribed into the band of certain width around the target path and guarantee-
ing prescribed exponential convergence rate is considered. Results of the paper
are illustrated by example.



178 A. Generalov et al.

Note that the absolute stability approach used by authors for stability anal-
ysis of systems with constrained control is not the only possible approach, see
for example [12,13] for other approaches.

2 Problem Statement, Motion Equations and Change of
Variables

Starting with the description of the coordinate frames we then define the
parametrization of the target path and the kinematic model of the wheeled
robot. Then ordinary differential equations describing motion of the robot are
given. For convenience, the middle point of the rear axle is taken as the tar-
get point. Everywhere in the paper vectors are assumed to be columns and the
symbol T stands for the matrix transpose.

2.1 Coordinate Frames

Position of the wheeled robot r is described by position of the origin of a mobile
coordinate frame B associated with the robot in some fixed coordinate frame I.

The coordinate frame B has the origin fixed at the target point. The xB axis
is directed along the centerline of the robot’s platform, the yB axis lies in the
plane of the platform and directed left orthogonal to xB , and zB completes the
right triple. Hereinafter subscripts B and I mean that a quantity is expressed
in the B or I-frame respectively. Double subscripts x, y, z are used to express
appropriate entry of the vector.

The subscript IB is used to denote transformations between coordinate
frames. The robot’s platform orientation is defined by a quaternion q in such
a way, that an arbitrary vector, expressed in the robot’s frame B is transformed
into the frame I as rI = qIB ◦ rB ◦ q̃IB , where ◦ stands for a Hamilton product,
the quaternion q̃IB is inverse to qIB , the fourth zero entry is added to three
dimensional vectors to complete quaternion operations.

The unit vectors exB
, eyB

, and ezB
are aligned with appropriate axes of the

B-frame. Taking into account these notations we have for example exBx
= 1 and

exBy
= exBz

= 0.

2.2 Surface and Target Path

We assume that the surface on which the robot moves is given by a continuous
function

fs(x, y, z) = 0,

for which the first and second derivatives are everywhere defined and continuous.
The inverse of the curvature of the surface is much larger than the robot’s size,
and the third axis of the coordinate system associated with the robot ezB

remains
collinear with the normal to the surface.

The target path is given by a continuous function p(s), for which the first and
second derivatives are everywhere defined and continuous and which belongs to
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the surface fs. Hereinafter the symbol ′ is used to denote differentiation with
respect to the variable s. Function p(s) is naturally parameterized, that is, for any
two values of the path parameter sa and sb, arc length l(p(sa), p(sb)) = |sb −sa|.
Thus, the derivative of the parameter

p′(s) = 1,

and the second derivative is everywhere perpendicular to the tangent to the
curve

p′(s)p′′(s)T = 0,

and defines the curvature vector of the curve at a given point

cv = p′′(s).

We assume that the length of the projection of the curvature vector cv on the
tangent plane to the surface fs is bounded by the value

|cs| ≤ cmax

at each point of the path.

2.3 Motion Equations

The robot’s motion with time is defined by its orientation and a scalar velocity of
the target point v > 0 (hereinafter the symbol ˙ is used to denote differentiation
with respect to the time):

ṙB = vexB
= (v 0 0)T ,

ṙI = v(qIB ◦ exB
◦ q̃IB).

An angular velocity vector expressed in the B-frame ΩB = (ωx ωy ωz)T

connects the quaternion with its time derivative by the Euler–Poisson equation

q̇IB =
1
2
qIB ◦ ΩB . (1)

The current orientation of the robot is defined by the steering wheel angle which
in turn defines the instant curvature u of the target point and the normal vector
to the surface ns, the robot is moving on. The orientation quaternion can be
expressed in the following form:

qIB = qγ ◦ qα,
qγ = (cos γ

2 ns sin γ
2 )T ,

γ̇ = vu = ωz,
qα = (cos α

2 nb sin α
2 )T .

Here the angle γ defines the rotation of the robot around the vector ns, α is
the angle between ns and ez, the vector nb is defined as a common normal to
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the vector nsB
and ez = (0 0 1)T . In the case of ns and ez are collinear,

qα = (1 0 0 0)T . Since the surface is defined as fs(x, y, z) = 0, then

ns =
∇fs

‖∇fs‖ .

Let Δ be the vector of the lateral deviation of the robot’s target point from
the target path

ΔI = rI − p(s∗),

where p(s∗) defines the nearest point of the target path for which the following
equality holds:

ΔT
I p′(s∗) = 0. (2)

Then
Δ̇I = veI − p′(s∗)ṡ∗. (3)

Let δ be the distance to the target path

δ =
√

ΔT
I ΔI .

Then

δ̇ =
ΔT

I Δ̇I

δ
=

ΔT
I (veI − p′(s∗)ṡ∗)

δ
=

vΔT
I eI

δ
. (4)

Let us choose ξ - the path length as a natural independent variable. Then

ξ̇ = v. (5)

Let us define z1 = δ, be the distance to the target path. Then, taking into
account (4) and (5):

(z1)ξ =
δ̇

ξ̇
=

ΔT
I

δ
eI = cos ϕ,

where ϕ is an angle between a direction to the nearest point of the target path

dI =
ΔI

δ
,

and the direction of the velocity of the target point eI . Let z2 = cos ϕ. Then

(z2)ξ =
dT

I ėI + ḋT
I eI

ξ̇
,

where
ėI = ΩI × eI = [ΩI ]×eI , (6)

and

ḋI =
Δ̇I

δ
− ΔI

δ2
δ̇ =

Δ̇I

δ
− vΔI cos ϕ

δ2
.
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In the Eq. (6) the matrix [ΩI ]× is defined as

[ΩI ]× =

⎡
⎣

0 −ΩI,3 ΩI,2

ΩI,3 0 −ΩI,1

−ΩI,2 ΩI,1 0

⎤
⎦ .

Thus, the operation [·]× converts the vector to the skew-symmetric matrix.
Further,

(z2)ξ =
dT

I [ΩI ]× +
Δ̇T

I eI

δ
v

eI − cos2 ϕ

δ
=

dT
I [ΩI ]×eI

v
+

Δ̇T
I eI

δv
− cos2 ϕ

δ
, (7)

where Δ̇I is defined in (3). Then,

(z2)ξ =
dT

I [ΩI ]×eI

v
+

sin2 ϕ

δ
− (p′ṡ∗)T eI

δv
. (8)

The expression for ṡ∗ can be obtained by differentiation of (2):

ṡ∗ =
veT

I p′

‖p′‖2 − ΔT
I p′′ . (9)

Substitution of (3, 9) into (7) gives:

(z2)ξ =
dT

I [ΩI ]×eI

v
+

1
δ

− p′T eT
I p′eI

δ(‖p′‖2 − ΔT
I p′′)

− cos2 ϕ

δ
, (10)

where
p′T eT

I p′eI = ‖p′‖2 sin2 ϕ.

Farther,

(z2)ξ =
1
δ

(
1 − cos2 ϕ − ‖p′‖2 sin2 ϕ

‖p′‖2 − δdT
I p′′

)
+

dT
I [ΩI ]×eI

v
, (11)

where
dT

I [ΩI ]×eI

v
=

(eI × dI)T ΩI

v
=

(eB × dB)T ΩB

v
. (12)

If the closest point of the target path is in the plane of the robot’s motion,
the cross product in the last equation can be expressed as:

eB × dB = ez sin ϕ S(dBy), (13)

where S(dBy) is the sign of the second entry of the vector dB . The expression
(11) can be rewritten as:

(z2)ξ = sinϕ

(
dT

I p′′ sin ϕ

δdT
I p′′ − ‖p′‖2 + u S(dBy)

)
. (14)
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Assuming that vector dI is in the plane of the closest segment of the target
path, dT

I p′′ = cs(ξ). Summing up results of this section, arrive at the following
system describing wheeled robot’s motion along the target path with curvature
cs(ξ):

(z1)ξ = cos ϕ,

(z2)ξ = sin ϕ

(
cs(ξ) sin ϕ

cs(ξ)δ − 1
+ u S(dBy)

)
.

(15)

2.4 Change of Variables

The angle ϕ between the velocity vector of the target point (collinear to the
centerline if a lateral slippage is absent) and the direction to the nearest point
of the target path experiences a singularity as the robot approaches it. To avoid
singularity it is convenient to use the angle ψ between the velocity vector and
the tangent to the target path at the nearest point (s∗). Then z2 = cos ϕ ≡ sin ψ.

The asymptotic stability of the zero solution of the system (15) closed by
the control u will be analized using the quadratic Lyapunov functions [7,10]. To
simplify analysis let us introduce the new variables z̃1 and z̃2 as follows:

z̃1 = S(dBy)z1,
z̃2 = (z̃1)ξ = S(dBy)z2.

The second equation in (15) can be rewritten in the form:

(z̃2)ξ = cos ψ

(
u +

c̃s(ξ) cos ψ

c̃s(ξ)z̃1 − 1

)
,

where c̃s(ξ) = S(dBy)cs(ξ).
Now we arrive at the following system describing motion along the target

path with variable curvature c̃s(ξ) dependent on ξ:

(z̃1)ξ = z̃2,

(z̃2)ξ = u
√

1 − z̃22 +
c̃s(ξ)(1 − z̃22)
c̃s(ξ)z̃1 − 1

.
(16)

Similar expression was derived in [6]. The following notation must be taken.
Using the expression

√
1 − z̃22 for cos ψ we look like loosing possibility of having

a negative sign for it. In fact, our goal is to preserve a positive sign of cosψ
along the whole trajectory of the closed - loop system, provided we started with
orientation with cosψ > 0 in the very beginning. This means, that the robot
will never have the “wrong” (cos ψ ≤ 0) orientation to the target path and will
not go along it the opposite direction corresponding to ξ̇ < 0, if the orientation
was “right” at the beginning of operation. To reach this goal we introduce the
invariant attraction domains in the following sections.
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3 Control Law Synthesis

Using the feedback linearization approach, we choose the control u in (16) in the
form

u =
−σ − c̃s(ξ)(1 − z̃22)

c̃s(ξ)z̃1 − 1√
1 − z̃22

, (17)

for some desired rate of exponential decrease λ > 0 and

σ = 2λz̃2 + λ2z̃1.

The closed loop system from (16), (17) takes the form:

(z̃1)ξ = z̃2,
(z̃2)ξ = −σ.

This leads to (z̃1)ξξ +2λ(z̃1)ξ +λ2z̃1 = 0, which implies the exponential stability
with the rate −λ of all components of vector z̃ = (z̃1, z̃2)T . However, in general,
control (17) does not satisfy the two-sided constraints:

−u ≤ u ≤ u.

Taking constrained control with saturation in the form

u = su

⎛
⎜⎜⎜⎝

−σ − c̃s(ξ)(1 − z̃22)
c̃s(ξ)z̃1 − 1√
1 − z̃22

⎞
⎟⎟⎟⎠ , (18)

where

su(u) =

⎧⎪⎪⎨
⎪⎪⎩

−u for u ≤ −u,

u for |u| < u,

u for u ≥ u,

may not guarantee that vector z decrease exponentially with given rate of expo-
nential stability and undesirable overshoot in variations of the variables is possi-
ble. In what follows, the problem of attraction domain estimation inscribed into
the band of certain width and guaranteeing prescribed exponential convergence
rate is considered.

4 Attraction Domain Estimation

In this section, we are estimating the set of initial conditions z̃0 guaranteeing
that a) along the trajectories of the system (16) z̃(ξ) decreases exponentially with
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the rate −μ (0 < μ ≤ λ), and b) entries of the vector z̃(ξ) satisfy the two-sided
constraints |z̃1(ξ)| ≤ α1, |z̃2(ξ)| ≤ α2. More specific, we want to guarantee

dV (z̃(ξ))
dξ

+ 2μV (z̃(ξ)) ≤ 0, ξ ≥ 0. (19)

for some quadratic form
V (z̃) = z̃T P z̃ (20)

with P being a positively definite matrix P 	 0, PT = P . In what follows
the symbols 	 (≺) and � (�) will be used to denote the positive (negative)
definiteness and positive (negative) semi-definiteness of symmetric real valued
matrices respectively.

Following the absolute stability approach introduced in [7,9,10], denote

Ω(P ) = {z̃ : V (z̃) ≤ 1}.

Given positive values α1 and α2, we are looking for the matrix P satisfying
the linear matrix inequalities (LMI’s)

P �
[

1
α2

1
0

0 0

]
, P �

[
0 0
0 1

α2
2

]
, (21)

meaning that the desired domain Ω(P ) is inscribed into the rectangle

Π(α1, α2) = {z̃ : −α1 ≤ z̃1 ≤ α1,−α2 ≤ z̃2 ≤ α2}.

We now characterize the values of μ, α1 and α2 that guarantee

Ω(P ) ⊆ Π(α1, α2) (22)

for some matrix P 	 0.
Rewrite the last equation in (16) taking the control u as (18):

(z̃2)ξ = su

⎛
⎜⎜⎜⎝

−σ − c̃s(ξ)(1 − z̃22)
c̃s(ξ)z̃1 − 1√
1 − z̃22

⎞
⎟⎟⎟⎠

√
1 − z̃22 +

c̃s(ξ)(1 − z̃22)
c̃s(ξ)z̃1 − 1

.= −Φ(z̃, σ). (23)

Then

Φ(z̃, σ) = s
u
√

1−z̃2
2

(
σ +

c̃s(ξ)(1 − z̃22)
c̃s(ξ)z̃1 − 1

)
− c̃s(ξ)(1 − z̃22)

c̃s(ξ)z̃1 − 1
, (24)

and the system (16) takes the form:

(z̃1)ξ = z̃2,
(z̃2)ξ = −Φ(z̃, σ). (25)

Denote d = (λ2, λ)T and
c = sup |c̃s(ξ)|. (26)

The following auxiliary assertion holds:
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Lemma 1. Assume that for a matrix P satisfying (21) and numbers α1, α2 sat-
isfying the inequality

u0
.= (u − c

1 − cα1
)
√

1 − α2
2 > 0, (27)

the inclusion
z̃ ∈ Ω(P ) (28)

holds. Then the following inequalities hold

− σ0 ≤ σ ≤ σ0, (29)

su0(σ) ≤ Φ(z̃, σ) ≤ σ for σ ≥ 0,

σ ≤ Φ(z̃, σ) ≤ su0(σ) for σ ≤ 0,
(30)

where
σ0 =

√
dT P−1d. (31)

Proof. From conditions (28) and (21) it follows that

z̃21 ≤ α2
1, z̃22 ≤ α2

2. (32)

From (24) we have

Φ(z̃, σ) =

⎧
⎪⎪⎨
⎪⎪⎩

σ1 for σ > σ1,

σ for − σ2 ≤ σ ≤ σ1,

−σ2 for σ < −σ2,

(33)

where

σ1 = u
√

1 − z̃22 − c̃s(ξ)(1 − z̃22)
c̃s(ξ)z̃1 − 1

,

σ2 = u
√

1 − z̃22 +
c̃s(ξ)(1 − z̃22)
c̃s(ξ)z̃1 − 1

.

Keeping (32), (26) and (27) in mind, we obtain for j = 1, 2

σj ≥ u0. (34)

Combination (33) and (34) gives (30). Next, consider the convex optimization
problem σ → max subject to constraints (28). Necessary and sufficient conditions
for the extremum have the form

2νP z̃ = d, (35)

where ν > 0 is the Lagrange multiplier. Multiplying the last equation by z̃T

and accounting for the fact that the extremum in this case is attained at the
boundary of the domain (28), we obtain

ν =
1
2
σ∗, (36)
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where σ∗ is the solution of the optimization problem. Multiplying (35) by dT P−1,
we arrive at

νσ∗ =
1
2
dT P−1d. (37)

Combining (36) with (37), we obtain σ∗ = ±
√

dT P−1d, so that at the maximum,
the equality σ∗ = σ0 =

√
dT P−1d holds. Now, formulating the minimization

problem and using similar reasonings, we obtain that at the minimum point, the
equality σ∗ = −σ0 holds, which yields (29). Proof of Lemma 1 is complete.

Along with the function Φ(z̃, σ) in the formulation of system (25), introduce
the function

φ(ξ, σ) = β(ξ)σ,

where β(ξ) satisfies the conditions

k0 ≤ β(ξ) ≤ 1, k0 = min{u0

σ0
, 1}. (38)

The graph of the function Φ(z̃, σ), satisfying the conditions (30), is inscribed into
a “sector” on the plane σ − Φ for values σ satisfying conditions (29). Conditions
(38) define the size of the sector. We next expand the class of systems (25) by
considering systems of the form

(z̃1)ξ = z̃2,
(z̃2)ξ = −β(ξ)σ.

(39)

We now require that the function β(ξ) satisfy the existence conditions of abso-
lutely continuous solution of system (39). If system (39) possesses property (19)
for all functions β(ξ) satisfying conditions (38) then property (19) also holds
along the trajectories of system (25) satisfying (28). Consider the matrices

Aβ =
[

0 1
−βλ2 −2βλ

]
.

Theorem 1. Assume that given numbers u > 0, c > 0 and α1 > 0, α2 > 0
satisfying (27) there exist numbers μ > 0 and 0 < β ≤ 1 such that the following
LMI’s in the variable P are feasible:

PA1 + AT
1 P + 2μP � 0,

PAβ + AT
β P + 2μP � 0,

(40)

⎡
⎣

P d

dT u2
0

β2

⎤
⎦ 	 0, (41)

P �
⎡
⎣

1
α2
1

0

0 0

⎤
⎦ , P �

⎡
⎣

0 0

0
1
α2
2

⎤
⎦ , (42)

then the domain Ω(P ) is an attraction domain of system (16) under control
(18); moreover, the condition (22) holds.
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Proof. The stability of the zero solution of system (39) for all possible functions
β(ξ) satisfying (38) implies the stability of the zero solution of system (25)
and hence, the stability of the zero solution of system (16) under control (18)
and initial conditions satisfying (28). Moreover, the existence of the Lyapunov
function of the form (20) satisfying condition (19) ensures the exponential decay
of z with rate μ. In order that condition (19) be fulfilled for all functions β(ξ),
satisfying (38), it is necessary and sufficient that the conditions

PA1 + AT
1 P + 2μP � 0,

PAk0 + AT
k0

P + 2μP � 0,
(43)

be satisfied, where k0 is defined by the second condition in (38). For a given value
of k0, conditions (43) are fulfilled for a certain matrix P 	 0, provided that for
some 0 < β ≤ k0, the linear matrix inequalities (40) in P 	 0 are feasible. By
(31) and (38), the condition 0 < β ≤ k0 writes

β2 ≤ u2
0

σ2
0

or, equivalently,

dT P−1d ≤ u2
0

β2
.

Together with the condition P 	 0 and (27), the last inequality means that
the matrix (41) is positive semi-definite. In combination with Lemma 1, this
assertion leads to the following result. Under condition (28) and the conditions
of Theorem 1, the solution of system (25) is exponentially decaying with rate
−μ. Moreover, condition (28) holds along the whole trajectory of system (25).
This completes the proof of Theorem 1.

5 Numerical Example

To illustrate the proposed method, numerical example was considered. We used
CVX, a Matlab package for solving convex optimization problems [4].

As for design of the target path, it is supposed that the optimal field coverage
problem was already solved for the particular working site (Fig. 1, left) and target
paths for two robots to operate simultaneously were obtained as a result (Fig. 1,
right).

The desired paths were constructed with the reasonable limitation on maxi-
mum turning radius of the robot. In the following example this limitation is 3 m,
which corresponds to the curvature constraint |c̃s(ξ)| < 0.33.

The formulation of the Theorem 1 implies not unique choice of parameters.
Therefore, possibility of the optimal choice arises. Given the u > 0, c > 0, λ >
0, 0 < μ ≤ λ one needs to find such a matrix P satisfying assumptions of
Theorem 1 for which the volume of the ellipsoid Ω(P ) takes the maximum value.
The last demand can be formulated in the form of SDP:

min tr(P )
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Fig. 1. Left: optimal field coverage for the particular working site. Right: target paths
with constrained curvature for two robots operating simultaneously.

under the LMI constraints (40)–(42). Then, we decrease the β satisfying (38) and
increase the α1, α2 satisfying (27) and check the feasibility of the SDP problem
until CVX finds a solution.

To illustrate the behavior of the system (16) closed by the control (18) and
to show its trajectories with respect to the estimate of the attraction domain we
combine both the phase portrait and the attraction domain. Thus, Fig. 2 shows
the attraction domain estimate obtained with the quadratic Lyapunov function
based on the formulation of Theorem 1. We set ū = 0.5 and c = 0.33. The blue
ellipsoidal contour line denotes the attraction domain estimate. Green lines show
the trajectories of the system (16) for the initial conditions from the boundary
of ellipsoid and for the curvature c̃s(ξ) taken from previously planned path. The
trajectories of the system (16) practically coincide for both target paths shown
in the Fig. 1.

The elliptic estimation of the attraction domain is inscribed into the band
of a certain width around any state space variables of the system. Here optimal
α1 = 0.4, α2 = 0.97 and σ0 = 0.145 were achieved for μ = 0.1λ with λ = 0.5.

The ellipsoid is invariant for the system: once getting inside, the system
trajectories are not leave it. Moreover, prescribed exponential convergence rate
is guaranteeing for the system.

6 Applications to the Autonomous Robotics

The use of attraction domains in automatic control systems of wheeled robots
is introduced in papers [7,8,10] as assistance to operators. On the other hand,
the autonomous robots concept is extensively developed today. The autonomy
concept excludes the presence of people at all. Therefore, the behavior of robots
should be very predictable. There are a lot of potential areas for autonomous
robotic operations. For example, small wheeled robots are used for precision
farming, golf course lawn mowing, and so on. The common challenge for these
areas is to make the robot behavior reliable and fully predictable, including safe
and secure operation [3] excluding collisions.
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Fig. 2. Attraction domain estimate for given ū = 0.5, c = 0.33, μ = 0.1λ with λ =
0.5, α1 = 0.5, α2 = 0.97 and σ0 = 0.145.

One can assume, that the robot is delivered first to the neighborhood of the
working site and left in arbitrary position near the beginning of the target path.
The autonomous control goal is to bring the robot to the desired start of the
path and stabilize the motion of a target point along it [10,11,14]. Also, it should
be ensured that the control algorithm will not cause a system stability loss. It
means, that the robot should get inside the attraction domain of the dynamic
system closed by a synthesized control law, thus guaranteeing the asymptotic
stability. In addition, even starting sufficiently close to the target path, the robot
may perform large oscillations going far enough even if the closed loop system
is stable. Thus, the estimate of the attraction domain must be invariant for the
closed loop system and satisfy reasonable geometric constraints.

7 Conclusion

To stabilize the wheeled robot following a curvilinear path over an uneven sur-
face, the control law based on the feedback linearization was used. Using the sat-
uration function for implementation of the constrained control can destroy the
exponential stability. To guarantee the exponential stability, a method of attrac-
tion domain estimation based on absolute stability approach was proposed. The
numerical example illustrates the proposed approach. The results obtained are
used in practice for design of the autonomous wheeled robot control system. Of
further interest is attraction domain estimation taking into account the internal
dynamics of the system (e.g. steering actuator).
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Optimizing Coefficients of a Controller
in the Point Stabilization Problem

for a Robot-Wheel

Alexander Pesterev(B) and Yury Morozov

Institute of Control Sciences, Moscow 117997, Russia

Abstract. The problem of stabilizing a robot-wheel at a target point
on a straight line subject to control and phase constraints is considered.
The phase and control constraints are met by applying an advanced
feedback law in the form of nested saturation functions. The selection of
the feedback coefficients is discussed that optimizes the performance of
the controller. An optimal controller is defined to be that that ensures
the greatest convergence rate near the target point, while preserving a
node-like phase portrait of the nonlinear system. The paper continues
the work reported at the Optima 2020 conference [1], where an estimate
of the greatest rate was obtained. The goal of this paper is to improve
the results obtained in that work by considering a curvilinear asymptote
and to get the exact value of the greatest rate.

Keywords: Robot-wheel · Optimal feedback coefficients · Point
stabilization problem · Phase and control constraints · Nested
saturators

1 Introduction

This study is a sequel of the work [1] devoted to optimizing a controller stabiliz-
ing a wheel at a point. The problem of a wheel rolling on a plane or an uneven
terrain is of importance in many practical applications. A rising tide of interest
to this classical problem is due to appearance of robotic systems of a new type—
ball-shaped or spherical robots and robot–wheels—and search for new actuators
for such systems [2–6]. The problem of motion control for mobile robots of this
type that move owing to displacements of masses (pendulums) inside the shell
(wheel) is discussed in many publications (see, for example, [2,4,6,7]). In this
paper, we consider the simplest model of a robot-wheel assuming that it is driven
by a control torque applied to the wheel axis. We do not go into detail of imple-
mentation of the actuator assuming only that the control torque is constrained,
with the limit value being determined by physical parameters of the robot [2,7].
On the one hand, such a model, in spite of its simplicity, is of interest by itself in
the study of advanced control strategies, including optimal ones. On the other
hand, this model can be used as a reference one, in studying more complicated
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models, with the solutions obtained for the reference model being taken to be a
set of target trajectories for the original system [8].

We set the problem of synthesizing a control law in the form of feedback that
brings the wheel from an arbitrary initial position on a straight line to a given
one, with the velocity of motion being limited. To meet the phase and control
constraints, an advanced feedback law in the form of nested saturation functions
depending on four coefficients was suggested in [1]. Feedback laws of this type
were studied in [9,10]. The basic advantage of such laws is that they ensure
global stability of the closed-loop system and guarantee the fulfilment of the
phase and control constraints under appropriate choice of feedback coefficients.

Two of the four feedback coefficients are uniquely determined by the limit
value of the control torque and the maximum allowed wheel velocity, while the
selection of the other two coefficients can be used to optimize the performance of
the controller. The optimality criterion employed in this study, as well as in [1], is
similar to that in [11], where the selection of feedback coefficients of a saturated
linearizing feedback for a wheeled robot with constrained control resource was
discussed. The optimality is meant in the sense that the phase portrait of the
nonlinear closed-loop system is similar to that of a linear system with a stable
node, with the asymptotic rate of approaching the target point being as high
as possible. The problem statement in this study differs from that in [1] by the
definition of the concept of the node-like phase portrait. While in [1] it was
defined only for the domain of the phase plane satisfying the phase constraints
and the asymptote dividing the domain into two invariant sets was assumed
straight, in this work, the definition is extended to the entire phase plane and
the asymptote is allowed to be curvilinear. The optimal value of the asymptotic
convergence rate in terms of the new definition to be derived in this work is
considerably greater than that in terms of the definition introduced in [1].

The paper is organized as follows. In Sect. 2, the wheel stabilization prob-
lem statement is given, the governing equations are reduced to a dimensionless
form, and some earlier obtained results from [1] are presented. The optimization
problem statement is formulated in Sect. 3, and the solution of the optimization
problem is presented in Sect. 4. Section 5 summarizes the results of the study
and discusses prospects for future research.

2 Stabilization Problem Statement

We consider a wheel rolling without slipping on a plane along a straight line
(Fig. 1). The dynamics of the wheel are described by the equation [1]

Mẍ = R, Mr2θ̈ = rR − fθ̇ − U,

where M and r are mass and radius of the wheel, x is the coordinate of the wheel
center, θ is the rotation angle, R is the reaction force, f is the viscous friction
coefficient, and U is the control torque.
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Fig. 1. Schematic of the robot-wheel.

Applying the condition of rolling without slipping ẋ + rθ̇ = 0, we reduce the
system equations to one second-order equation

μẍ = −fẋ

r2
+

U

r
, (1)

where μ = 2M . In the point stabilization problem, it is required to synthesize a
control law U in the form of a feedback that brings the wheel to a given target
point on the line. Without loss of generality, we set the target point to be at the
origin. The control torque U is assumed to be limited, and we also assume that
the velocity of the wheel center cannot exceed a prescribed value:

|U | ≤ Umax, |ẋ| ≤ Vmax. (2)

The problem is further simplified by going to dimensionless form. Indeed, by
introducing the dimensionless time, coordinate, and control

t̃ = tVmax/r, x̃ = x/r, Ũ = U/Umax, (3)

as well as dimensionless parameters

μ̃ =
μV 2

max

Umax
, f̃ =

fVmax

rUmax
,

using the dot notation for the derivatives with respect to the new time, and
assuming that Umax − fVmax/r > 0 (see [1] for detail), Eq. (1) turns to the
dimensionless form:

μ̃¨̃x = −f̃ ˙̃x + Ũ , (4)

where 0 ≤ f̃ < 1, with constraints (2) taking the form

|Ũ | ≤ 1, | ˙̃x| ≤ 1. (5)
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In what follows, only the dimensionless model is used, and we omit tilde over all
variables and parameters to avoid messy notation.

In [1], it was proposed to stabilize the wheel by applying the feedback in the
form of nested saturators given by

U(x, ẋ) = −k4Sat(k3(ẋ + k2Sat(k1x))) +
fẋ

r
, (6)

where Sat(x) is the saturation function defined by the conditions Sat(x) = x for
|x| ≤ 1 and Sat(x) = sign(x) for |x| > 1 and ki > 0, i = 1, 2, 3, 4, are positive
coefficients.

It has been shown [1] that (6) is a stabilizing feedback. Moreover, if k2 = 1
and k4 = 1−f , then constraints (5) hold for any positive k1 and k3. Substituting
(6) into (4) with the above-specified coefficients k2 and k4, we get the following
equation governing the closed-loop system:

ẍ = −ηSat(k3(ẋ + Sat(k1x))). (7)

where η = (1 − f)/μ is the control resource per unit mass.

Fig. 2. An example of inappropriate selection of feedback coefficients in (7).

Although feedback (6) with the coefficients k2 = 1 and k4 = 1 − f stabilizes
the system and respects the constraints, inappropriate selection of the other
two coefficients can result in poor performance of the control system and great
overshooting. Figure 2 illustrates this. It shows a phase trajectory (curve 2) of
the wheel with μ = 1 and f = 0. Because of inappropriate selection of the
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feedback coefficients (here, k1 = 9 and k3 = 100), the wheel missed the target
point several times, with the overshootings being quite large. The phase portrait
of the system in this case reminds that of a focus, with the overshootings being
quite large, which does not sound good. The broken blue line (marked by 1) shows
the curve x2 + Sat(k1x1) = 0. Hence, it follows that the freedom in selection of
k1 and k3 can be employed to optimize the performance of the controller, which
is discussed in the remainder of the paper.

3 Optimization Problem Statement

Intuitively, speaking of desirable behavior, we want to have fast asymptotic con-
vergence to the origin in the time domain and the phase portrait of the nonlinear
system to look like that of a linear system with a node, when any trajectory
approaches the origin monotonically, or has at most one overshooting. Recall
that, in the linear case, the phase plane is divided into two invariant half-planes
by a straight line, which is the asymptote for all (but two if the node is not
a degenerate one) phase trajectories of the system. The concept of a node-like
phase portrait for a nonlinear system can formally be defined in terms of a
curvilinear asymptote dividing the phase plane into two invariant sets, which is
a generalization of the straight asymptote for a linear system.

Definition 1. We will say that the phase portrait of a nonlinear system is of the
node-like type if there is a curvilinear asymptote lying completely in the second
and fourth quadrants.

The property of being node-like defined above is a global one. It means that
not only the origin is a node of the linearized system but also that the behavior
of the phase trajectories in the entire phase plane is similar to the behavior of the
phase trajectories of a linear system. Like the straight asymptote in the linear
case, the curvilinear asymptote divides the phase plane into two invariant sets
such that any phase trajectory passes through only two quadrants of the phase
plane.

Now, the problem to be solved in this study can be formulated as follows.

Problem. Determine feedback coefficients k1 and k3 for which the asymptotic
rate of approaching the target point is maximal under the condition that the phase
portrait of system (7) is of the node-like type.

4 Solution of the Optimization Problem

First, we establish the general form a curvilinear asymptote (further, simply
asymptote) for system (7) and, then, will determine under what conditions the
asymptote passes only through the second and forth quadrants.

Let us introduce the notation x1 = x and x2 = ẋ and rewrite (7) in the
state-space form as

ẋ1 = x2

ẋ2 = −ηSat(k3(x2 + Sat(k1x1))).
(8)
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It is easy to see that the closed-loop system (8) is piecewise linear. Figure 3 shows
the partitioning of the phase plane. Here, the dashed lines depict the boundaries
between different linearity regions where one linear system switches to another.
The solid broken line

x2 + Sat(k1x1) = 0 (9)

is the set of points where the right-hand side of the second equation in (7)
vanishes. The control reaches saturation outside the broken strip bounded by
the two dashed lines parallel to (9).

In the intersection of the sets |x1| ≤ 1/k1 and |x2 + k1x1| ≤ 1/k3, which
includes the origin, Eq. (7) takes the form

ẍ + ηk3ẋ + ηk1k3x = 0. (10)

Fig. 3. Partition of the phase plane for system (8).

To simplify the following calculations, we confine our consideration in this
paper to the case of a degenerate node (repeated root of the characteristic equa-
tion) of the linearized system, which is governed by the equation

ẍ + 2λẋ + λ2x = 0, λ > 0, (11)

where λ is the rate of the asymptotic convergence. Comparing (10) and (11), we
find that the coefficients k1 and k3 are to be selected from the one-parameter
family

k1 =
λ

2
, k3 =

2λ

η
(12)
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parameterized by the exponent λ, and will seek for the maximal λ for which the
phase portrait of system (7) is of the node-like type.

Clearly, being a curve dividing the phase plane into two invariant sets, any
asymptote must be an integral curve of the system [12]. It was proved in [1,
Lemma 1] that any trajectory of equation (7) beginning in the strip |x2| ≤ 1
never leaves it, i.e., the strip is an invariant set of the system. It is easy to prove
that any trajectory beginning outside the strip cannot intersect the horizontal
segment of line (7) either. This follows from the facts that the horizontal segments
of line (9) are negative half-trajectories with the initial points (−1/k1, 1) and
(1/k1,−1), respectively, and that no trajectories can intersect [12]. Indeed, let
x1(0) = −1/k1, x2(0) = 1. Since the right-hand side of the second equation in (7)
is zero, x2(t) ≡ 1. Then, by virtue of the first equation, x(t) = x1(0)+ t < 0 and,
for t ≤ 0, the negative half-trajectory beginning at the point (−1/k1, 1) is the
left horizontal segment of line (9). Similarly, it is proved that the right horizontal
segment is the negative half-trajectory beginning at the point (1/k1,−1). Note
also that the positive half-trajectories of the system beginning at the same points
asymptotically approach the origin by virtue of the fact that the origin is the
equilibrium point of the system. This brings us at the following lemma.

Lemma 1. The asymptote of system (7) is an integral curve consisting of the
singular phase trajectory (equilibrium point) x(t) ≡ 0 and two pairs of the half-
trajectories beginning at the points (−1/k1, 1) and (1/k1,−1).

Thus, solving the Problem reduces to finding the maximal exponent λ for
which the positive half-trajectories beginning at the points (−1/k1, 1) and
(1/k1,−1) completely lie in the second and fourth quadrants. Taking into account
the symmetry of the phase portrait with respect to the origin, it will suffice to
consider only one of these half-trajectories, say, that beginning in the fourth
quadrant.

In [1], the estimate λ̃ = η for the maximal λ was obtained by seeking for a
straight asymptote that divides the strip |x2| ≤ 1 into two invariant sets. Further
in this section, we will show that, allowing the asymptote to be curvilinear, an
exact value of maximal λ can be obtained, which is considerably greater than
the estimate from [1]. Moreover, the curvilinear asymptote is shown to divide
the entire phase plane, rather than the strip, into two invariant sets.

In view of the system symmetry, we may confine our consideration to the
trajectories beginning in the left half-plane. It is evident that the positive half-
trajectory beginning in the corner of the broken line (9) completely lies in the
fourth quadrant if and only if it does not intersect the straight asymptote x2 =
−λx1 of the linear system (10). The latter may hold in the following two cases.
First, this obviously happens when the trajectory does not intersect the dotted
line x2+k1x1 = 1/k3 (i.e., when the control does not reach saturation). The other
case takes place when the system does reach saturation but the trajectory still
does not intersect the straight asymptote. Whether the second case is possible
will further be verified.
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Consider the first case. Solution of the linear equation (11) is given by

x1(t) = − 1
λ

(λt + 2) exp(−λt), x2(t) = (λt + 1) exp(−λt), (13)

from which it follows that
x1

x2
= − 1

λ

λt + 2
λt + 1

. (14)

Equation (11) in the half-plane x2 > 0 can be written as

d x2

d x1
= −2λ − λ2x1

x2
= −2λ − λ

λt + 2
λt + 1

= − λ2t

λt + 1
.

Taking into account that k1 = λ/2, the slope of the saturation (switching) line
x2 + k1x1 = 1/k3 is −λ/2.

Let us find t∗ for which the trajectory (13) has the same slope,

− λ2t

λt + 1
= −λ

2
.

This yields λt∗ = 1 and t∗ = 1/λ; the corresponding trajectory point is given by
x1(t∗) = −3e−1/λ, x2(t∗) = 2e−1. Substituting these into the equation of the
saturation line, we get

2e−1 − 3
2
e−1 =

η

2λ
,

from which it follows that λ∗ = ηe. The estimate obtained is by e times greater
than the estimate obtained with the help of a straight asymptote in [1]. The
coordinates of the touching point are (−3e−2/η, 2e−1).

Thus, in the considered case, the desired asymptote is defined parametrically
by Eq. (13) for λ = ηe as t varies from 0 to ∞. On the asymptote, the system is
linear and the control reaches saturation at the single point.

Now, let us check whether the exponent λ can be increased if we permit
saturation on the positive half-trajectory. After intersecting the saturation line,
system (8) turns to

ẋ1 = x2, ẋ2 = −η.

Rewriting these equations as
dx1

dx2
= −x2

η
,

and integrating the resulting equation, we find that the system trajectory is the
parabola

x1(t) = − 1
2η

x2
2(t) + C(x10, x20), (15)

where x10 and x20 are the coordinates of the point where the trajectory intersects
the saturation line and

C(x10, x20) = x10 +
x2
20

2η
=

1
8η

(
λ2x2

10 + 6x10η +
η2

λ2

)
.
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Equating the slope of the parabola to that of the straight asymptote, we find
that the tangent line to the parabola is parallel to the asymptote when x2 = η/λ.
The condition that the parabola touches the asymptote is that it passes through
the point with the coordinates x∗∗

1 = −η/λ2, x∗∗
2 = η/λ. Note also that it is at

this point where the asymptote and the saturation line intersect. Substituting
these into the parabola equation, we obtain

− η

λ2
= − η

2λ2
+ C

from which it follows that C = −η/2λ2. Equating the two expressions for C, we
get the following second-order algebraic equation in x10:

λ2x2
10

η2
+

6x10

η
+

5
λ2

= 0.

Two solutions of this equation are −5η/λ2 and −η/λ2. The former is the abscissa
of the first intersection point where the trajectory leaves the strip and the control
reaches saturation, and the latter is the abscissa of the second point where the
trajectory enters again the strip.

The above implies that, in order that the trajectory return to the strip at
the right point (x∗∗

1 , x∗∗
2 ), the first intersection with the saturation line must be

at the point with the coordinates x∗
1 = −5η/λ2, x∗

2 = 3η/λ. The value of λ and
the corresponding time t∗ are found by equating solutions (13) at t = t∗ to the
coordinates obtained

− 1
λ

(λt∗ + 2)e−λt∗
= −5η

λ2

and
(λt∗ + 1)e−λt∗

=
3η

λ
.

Dividing the first equation by the second one and solving the equation obtained,
we get

λt∗ =
1
2
, λ = 2η

√
e.

As can be seen, the exponential rate of approaching the origin obtained is by
2/

√
e ≈ 1.2 times greater than that in the previous case and is by 2

√
e ≈ 3.3

times greater than the estimate obtained in [1].
Moreover, this is the exact value of the maximal rate λ: λmax = 2η

√
e.

Indeed, for any λ > λmax, the positive half-trajectory emerging from the corner
of the broken line (9) necessarily intersects the straight asymptote and, being
the trajectory of the linear system (10), will intersect the x2-axis and enter the
first quadrant.

The above results are summarized in the following theorem.

Theorem 1. The greatest exponential rate λ of the deviation x decrease for
which the phase portrait of the nonlinear system (8) is of the node-like type is

λmax = 2η
√

e.
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The corresponding coefficients k1 and k3 are given by

k1 = η
√

e, k3 = 4
√

e. (16)

Fig. 4. Optimal asymptote for system (8) with µ = 1 and f = 0.

The optimal curvilinear asymptote for the system with μ = 1 and f = 0
(and, hence, η = 1), corresponding to the optimal value of λ is depicted in Fig. 4
by the bold black curve. For this system, λmax = 2

√
e, k1 =

√
e, and k3 = 4

√
e.

The two broken dashed lines in the figure are boundaries of the region where
the control does not reach saturation. The straight dashed line is the straight
asymptote x2 = −λmaxx1 of the linear system (10).

Let us describe the part of the asymptote lying in the fourth quadrant. As
noted earlier, it consists of the negative and positive half-trajectories beginning
at the point (−1/k1, 1). The former is the straight line (marked by 4) given
parametrically by x1(t) = −1/k1 + t, x2(t) ≡ 1, −∞ < t ≤ 0. The latter, in
turn, consists of the three segments: the first segment (curve 3) is the trajectory
of the linear equation (11) given by (13), where 0 ≤ t < t∗ = 1/2λ; the second
segment (curve 2) is a piece of parabola (15), t∗ ≤ t < t∗∗ = 5/2λ; and the third
segment (line 1) is a piece of the straight asymptote of (11), t∗∗ ≤ t < ∞. The
other part of the asymptote in the second quadrant is symmetric to this one
with respect to the origin.

Figure 5 shows the phase portrait of system (8) with μ = 1 and f = 0.25 (η =
0.75) for the optimal value of λ = λmax. The black bold line is the asymptote of
the system. The green broken lines are the boundaries of the region where the
control is not saturated. As can seen, any trajectory beginning below (above)
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Fig. 5. Phase portrait of system (8) with µ = 1 and f = 0.25.

the asymptote completely lies below (above) the asymptote, and any trajectory
intersects the x2-axis at most once. If we further increase λ, the asymptote will
intersect the x2-axis and will pass through all quadrants, which means that the
property of the phase portrait being node-like will be violated.

5 Conclusions

In the paper, the problem of optimizing a controller stabilizing a robot-wheel
at a target point on a straight line subject to phase and control constraints has
been discussed. The controller implementing an advanced feedback law in the
form of nested saturation functions was suggested in [1]. The feedback depends
on four coefficients two of which ensure the fulfillment of the phase and control
constraints, while the other two can be adjusted to optimize the performance of
the controller. An optimal controller has been defined to be that that ensures
the greatest convergence rate near the target point, while preserving a node-like
phase portrait of the nonlinear system. Optimal values of the feedback coeffi-
cients have been found, and the corresponding asymptote dividing the phase
plane into two invariant sets has been constructed. The use of the new definition
of the node-like phase portrait relying on the concept of a curvilinear asymptote
made it possible to get a greater value of the asymptotic convergence rate near
the target point compared to that in [1].

In the future, we plan to apply the approach developed in this paper to
optimizing coefficients of a controller for a more complicated system of a robot–
wheel with a pendulum. We also plan to synthesize a hybrid control law where
the selection of the feedback coefficients will depend on whether the system is
in the neighborhood of the target point or far from it.
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Abstract. The paper discusses the algorithm for the numerical solu-
tion of applied optimal control problems in robotics. The proposed algo-
rithm is the Powell method modification, which uses the combined one-
dimensional nonlocal search algorithm developed by the authors based on
the Strongin and parabolas methods as an auxiliary one. The developed
algorithm is implemented in C language and integrated within a single
software package. The obtained using the proposed algorithm solutions
of two problems are presented: the problem of the optimal control of the
mobile robot and the task of the industrial robot arm control. All the
obtained solutions found a meaningful interpretation.

Keywords: Optimal control · Global optimization · Numerical
methods · Robotics

1 Introduction

The problems of optimal control (optimization of dynamic systems, trajectory
optimization) everywhere arise in the consideration and investigation of mechan-
ical systems. One of the recent and relevant classes of trajectory optimization
problems is applied tasks from the field of robot control. The optimal control
problems in robotic systems have distinct specific features. The most important
of them is the indispensable presence of constraints on the trajectory of the con-
trolled system imposed both at finite time instants (terminal restrictions) and
throughout the entire time interval (phase, mixed, interval constraints). Many
problems of this class are optimal performance tasks, which consist of minimiz-
ing the time of transferring a system from one point to another, are non-convex
and multi-extreme.
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The finding of a global extremum in non-convex optimal control tasks
remains one of the most troublesome optimization problems and, to date,
does not have a satisfying solution. The development of theoretical approaches
to the investigation of linear problems was carried out by many specialists
(R. Bellman, V.A. Baturin, F.L. Chernousko, V.A. Dykhta, Yu.G. Evtushenko,
R.P. Fedorenko, C.A. Floudas, C.J. Goh, V.I. Gurman, V.F. Krotov, I.L. Lopez
Cruz, E. Polak, A. Schwartz, V.A. Srochko, A.S. Strekalovsky, K.L. Teo,
K.H. Wong, et al.). A significant number of publications are devoted to the
development of numerical methods for optimizing dynamical systems. Some of
them (for example, [4,8,9,14,25]) focus on the creation of algorithms established
on the optimal control theory – the Pontryagin maximum principle, sufficient
optimality conditions, et al. But no approaches have been found that guarantee
a globally optimal solution for nonlinear systems, based on which it is possible
to construct efficiently working algorithms. According to the authors, to date,
no theoretical results have been obtained that could become the ideological basis
for building guaranteed algorithms for solving nonlinear optimal control prob-
lems. The authors of some works (for instance, [1,2,17,20,22,23]) proposed to
reduce optimal control problems to finite-dimensional optimization tasks and use
developed software for mathematical programming. All currently known global
extremum search algorithms in nonlinear optimal control problems should be
considered heuristic. To date, for example, the following globalized heuristic
algorithms for searching the extremum in nonlinear optimal control problems
are known: genetic algorithms [5], random multistart method [10], convexity
method [24], algorithm of stochastic approximations of the reachable set [11],
“curvilinear search” method [12], “stochastic coverings” algorithm [13], et al.

We can argue that in any software implementation of the algorithms,
hypotheses are implicitly laid that do not guarantee the finding of a global
extremum (we can only talk about increasing the probability of its obtaining). At
present, it seems that it is impossible to guarantee a global solution to nonlinear
optimal control problems even if there is a reliable theoretical basis. Therefore, it
is advisable to use other methodological approaches to the study of non-convex
problems. Consequently, the paper proposes the use of “presentation logic”: we
consider a problem temporarily successful if the algorithm can find an extremum
with a sufficiently “good” value of the objective functional. Further, the result
obtained is published and is considered a plausible solution to the problem until
the “moment of refutation” (the presentation of a better solution by someone). A
similar approach has long been used in finite-dimensional optimization (in math-
ematical programming) when creating collections of test problems (the principle
of “best of known”).

As you know, the basis of any successful search strategy is the balance
between global scanning of the feasible set and local refinement of the approxima-
tions obtained. Therefore, numerical methods for solving applied optimal control
problems should include separate “global” and “local” stages, oriented accord-
ingly to find an approximation to the solution in the whole space understudy and
local refinement of the result obtained at the first stage [29]. The combination
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of various stages in the algorithms and the order of their alternation determine
a specific computational scheme.

A well-known method for finding the global extremum for the optimal control
problem is the dynamic programming method (see, for example, [6,16]). Unfor-
tunately, no other methods have been published that would guarantee a global
solution for nonlinear systems. The main drawback of the dynamic programming
method is the “curse of dimensionality” – its complexity increases dramatically
with the increase in the dimension of the problem. Therefore, this method is
suitable only for optimization problems of small dimensions. At least 100 sam-
pling nodes (finite-dimensional variables) are usually required to construct ade-
quate approximations of optimal control problems, which doesn’t allow using
the dynamic programming method in practice. A way out of this situation is the
idea of constructing specialized optimization algorithms that take into account
the specifics of the optimal control problem as an extremal problem.

The paper proposes a heuristic algorithm for solving non-convex optimal con-
trol problems, which is much lighter computationally than the dynamic program-
ming method. It is based on the Powell method and a combined one-dimensional
optimization algorithm established on the Strongin and “parabolas” methods.
At iterations of the algorithm under consideration, we constructed conjugate
descent directions by solving numerous auxiliary problems of finding the global
minimum of a univariate function.

2 Statement of the Optimal Control Problem

We described the controlled process by a system of ordinary differential equations
with initial conditions

ẋ = f (x (t) , u (t) , t) , x (t0) = x0, (1)

where t is the time from the interval [t0, t1], x (t) = (x1 (t) , x2 (t) , ..., xn (t)) is
the vector of phase coordinates, u (t) = (u1 (t) , u2 (t) , ..., ur (t)) is the vector of
control actions. A vector function f (x (t) , u (t) , t) is assumed to be continuously
differentiable for all arguments except t. Admissible functions are piecewise-
continuous control functions u(t) for any time values t belonging to the set U ,
where

U = {u (t) ∈ R
r : ul ≤ u (t) ≤ ug} , (2)

ul, ug ∈ R
r are vectors of lower and upper control constraints. The optimal

control problem in the standard-setting is to find an admissible control u∗ (t)
that delivers a minimum to the terminal functional

I0 (u) = ϕ0 (x (t1)) → min . (3)

There are also terminal restrictions

Ij (u) = ϕj (x (t1)) = (≤) 0, j = 1, m (4)
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and inequality type phase constraints

Ij (u) = gj (x (t) , u (t) , t) ≤ 0, j = m + 1, mt. (5)

All functions ϕj (x (t1)) , j = 0, m and gj (x (t) , u (t) , t) , j = m + 1, mt are
assumed to be continuously differentiable for all arguments.

3 Consideration of Phase Constraints

The complexity of problems with phase constraints is associated with the iner-
tia property of a dynamic system, and the inertia of robotic systems is usually
quite high. Currently, the following methods of consideration of phase constraints
are known [10]: algorithm of external penalty functionals, method of modified
Lagrange functionals, parameterization of constraints algorithm, reduced gradi-
ent method, linearization algorithm.

In this work, when solving problems, the method of external penalty func-
tionals was used since, by its simplicity, it does not entail any unpredictable
computational effects. We reduced all phase constraints to the terminal one
xn+1(t0) = 0 by introducing cubic penalty functionals, which made it possible
to preserve the continuity property of the second derivatives, as follows:

ẋn+1 = K

n+1∑

i=1

θ (gi (x)) g3i (x), (6)

where θ (A) =

{
1, A > 0,

0, A ≤ 0
is the Heaviside function, K → ∞ is the penalty

parameter. After this transformation, the problem assumed the standard form
of the optimal control problem with terminal constraints [10]. Thus, the total
functional has the following structure: Ī (u) = I0 (u) + xn+1 (t1) → min.

4 Algorithm for the Numerical Solution of Problems

For the numerical solution of optimal control problems, the discretization of the
system of differential equations and approximate methods for solving the Cauchy
problem are used. We divided the time change segment into nu − 1 parts and
constructed a uniform grid, in the nodes of which the controls and trajectories are
stored (nu is the number of sampling points). The type of control approximation
is piecewise linear.

Powell method [15] is a local search algorithm in which, due to the solution
of numerous univariate problems on iterations, we constructed the conjugate
descent directions.
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4.1 Powell Algorithm

1. Choose u0 (t), t ∈ T .
2. Set parameters of the algorithm: Δτ is the sampling rate by τ and t; Kupd is

the update frequency.
3. Assume P 0(τ, t) = 0, if τ �= t; P 0 (τ, t) = 1, if τ = t; τ ∈ T , t ∈ T .

On the k-th iteration (k ≥ 0):
4. Perform conversion of variables:

(a) Assume dk (t) =
2(uk(t)−0.5(ul+ug))

ug−ul
, t ∈ T .

(b) To avoid the rounding errors effect, project dk(t) onto a valid area:
if dk(t) > 1, assume dk(t) = 1, t ∈ T ;
if dk(t) < −1, assume dk(t) = −1, t ∈ T .

(c) Calculate the converted control wk(t) = arcsin
(
dk(t)

)
, t ∈ T .

5. If k is divisible by Kupd, make an update: assume P k (τ, t) = 0, if τ �= t;
P k (τ, t) = 1, if τ = t; τ ∈ T , t ∈ T .

6. Assume yk (0, t) = wk(t), t ∈ T .
7. In the cycle of τ with the step Δτ , τ ∈ T :

(a) Assume hk(t) = P k (τ, t), t ∈ T .
(b) Search yk(τ + Δτ, t) = arg min

{
I0

(
yk (τ, t) + αhk (t)

)
,−∞ < α < ∞}

.
(c) Assume sk(t) = yk (τ + Δτ, t) − wk(t), t ∈ T .
(d) Assume P k+1 (τ, t) = P k (τ + Δτ, t), if τ �= T ;

P k+1 (T, t) = sk (t), if τ = T .
8. Search

wk+1(t) = arg min
{
I0

(
yk (T, t) + α

[
wk (t) − y (T, t)

])
,−∞ < α < ∞}

.
9. Perform inverse conversion of variables

uk+1 (t) = 0.5 (ul + ug) + (ug − ul) sin
(
wk+1 (t)

)
, t ∈ T .

The iteration is complete.

In this paper, we proposed a modification of the Powell method, which con-
sists in using the combined one-dimensional nonlocal search algorithm developed
by the authors based on the Strongin and “parabolas” methods as an auxiliary
one (steps 7(b), 8 of the Powell algorithm). We used the indicated algorithm to
solve numerous univariate problems of constructing conjugate descent directions.

The algorithm proposed by R.G. Strongin [21], is one of the most famous and
effective methods of univariate global optimization. In this method, between the
neighboring points, a search is performed for the interval with the most probable
location of the global extremum. On the found interval, we selected a point that
corresponds to the mathematical expectation of the minimum position. At a
given point, we calculated the function value, added to the set of known values,
and the algorithm proceeds to the next iteration. The algorithm stops when the
length of the compression interval becomes less than the specified criterion.

One of the methods of univariate search, established on heuristic ideology, is
the “parabolas” method [3,28]. It is based on the idea of finding the minima of
all parabolas formed by “convex triples”. The algorithm has been successfully
used in many applications, including for solving optimal control problems [27].
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By “convex triple” for a function I0(α), we mean a sequentially located triple
of points αi, αi+1, αi+2 belonging to [a, b] for which the following inequality
holds:

I0 (αi) ≥ I0 (αi+1) ≤ I0 (αi+2) . (7)

Since the “parabolas” method is a heuristic algorithm, it cannot guarantee
the finding of a global minimum of a function in all possible cases. It seems
appropriate hybridization of the “parabolas” method with one of the “guaran-
teed” algorithms – the Strongin method. Therefore, we proposed a combined
algorithm using these methods as the base.

4.2 The Combined Algorithm Based on the Strongin and the
“Parabolas” Methods

1. Set the parameter of the algorithm: Np ∈ N is the number of starting samples.
Select points α1 = a , αNp

= b. Randomly generate points αi, 2 ≤ i ≤ Np − 1
on the line segment [a, b].

2. Sort points αi, 1 � i � k: a = α1 < α2 < ... < αk = b.
3. If the iteration has an odd number, then

(a) Assume Imax
0 = −∞. Check each triple of points αi, αi+1, αi+2, 1 � i �

Np − 2 for “convexity”. Under the condition (7), if I0(αi+1) > Imax
0 , then

Imax
0 = I0(αi+1).

(b) For each “convex triple” α̃i, α̃i+1, α̃i+2 calculate evaluation
δi = |Imax

0 − I0 (αi+1)|.
(c) Based on the calculated estimates, select the index of the convex triple

in a probabilistic way.
(d) Find a minimum α∗

i of the parabola formed by the selected convex triple
using a combination of local one-dimensional search methods. Choose the
point αk+1 = α∗

i , the number of samples k increases by 1.
4. If the iteration has an even number, then perform the steps of the Strongin

method:
(a) Calculate the value m that is an estimate of the Hölder constant:

M = max |I0(αi)−I0(αi−1)|
|αi−αi−1| 1

N
, m =

{
1, M = 0
M, M > 0

, 1 � i � k, where N � 1 is

the Hölder index.
(b) For each interval (αi−1, αi ), 1 � i � k , calculate characteristics

R(i) = (αi − αi−1) + (I0(αi)−I0(αi−1))
2

m2Kc
2(αi−αi−1)

− 2 I0(αi)+I0(αi−1)
mKc

, where Kc > 1 is
the caution ratio.

(c) Select the interval (αt−1, αt) to which the maximum characteristic
R(t) = max {R(i), 1 � i � k} corresponds.

(d) If the stop criterion is met (αt −αt−1 � εα, where εα is the set accuracy),
then the algorithm stops working; otherwise, select a point
αk+1 = 1

2 (αt + αt−1) − sign (I0 (αi) − I0 (αi−1)) 1
2Kc

[
I0(αi)−I0(αi−1)

m

]
,

calculate the value I0
(
αk+1

)
, the number of samples k increases by 1.

The iteration is complete.
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The main disadvantage of the Powell method is that it is a local search
method. A modification of the Powell method proposed in the paper eliminates
this drawback and ultimately represents a globalized algorithm. The global-
ization of the algorithm is achieved by solving auxiliary problems of nonlocal
one-dimensional search.

The above non-convex optimization algorithm is implemented in C using
uniform software standards. The next section presents the numerical solutions
of several applied problems of optimal control in robotic systems, performed
using the proposed algorithm. Since the original Powell method is a local search
algorithm, it converges to a local extremum and cannot cope with the solution
of the problems presented in Sect. 5.

5 Solving Applied Problems

5.1 The Optimal Control Problem of the Mobile Robot

The mathematical model of the mobile robot is described by the following system
of differential equations [7,18,19]:

⎧
⎪⎨

⎪⎩

ẋ1 = 0.5 (u1 + u2) cos x3,

ẋ2 = 0.5 (u1 + u2) sin x3,

ẋ3 = 0.5 (u1 − u2) .

The controls are subject to conditions: |ui(t)| � 10, i = 1, 2. The phase
coordinates must satisfy the following inequalities:

g1 (x) = 1.5 −
√

(x1 − 2.5)2 + (x2 − 2.5)2 � 0,

g2 (x) = 1.5 −
√

(x1 − 7.5)2 + (x2 − 7.5)2 � 0,

g3 (x) = 3 −
√

(x1 − 2)2 + (x2 − 8)2 � 0,

g4 (x) = 3 −
√

(x1 − 8)2 + (x2 − 2)2 � 0.

The problem is to transfer the system from point x(t0) = (10, 10, 0) to point
x(t1) = (0, 0, 0) in the shortest possible time t1, under all restrictions. The
objective functional is I0 (u) = t1 → min. The selection of the optimum time
was performed, minimizing the discrepancy (8) using the proposed algorithm:

n∑

i=1

[xi − xi (t1)]
2 → min. (8)

A mobile robot is an automatic wheeled vehicle that has a moving chassis with
automatically controlled drives. Figure 1 shows a model of this wheeled robot. The
target point Xm is in the middle of the rear axis of the robot platform and has
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Fig. 1. Kinematic diagram of a wheeled mobile robot.

coordinates x1, x2. The angle x3 formed by the central axis of the platform and the
x1 axis determines the orientation of the robot. The two rear wheels are driving,
and the two front wheels are responsible for turning the platform.

In the course of the solution, it was possible to obtain the optimal value of the
functional I∗

0 (u) = 2.48 and the trajectory, which are slightly better compared
to the results of computations given in [7] (the value of the functional is 2.51).
Figure 2 shows the optimal trajectories of the mobile robot for the solution found:
on the plane (left), depending on time (right). On the left graph, in the form of
dashed circles, the areas defined by phase constraints are shown – areas beyond
which the robot cannot enter. The arrows indicate the direction of movement of
the robot.

5.2 The Optimal Control Problem of the Industrial Robot Arm

When industrial robots are introduced into production, a problem arises related
to the speed of technological operations. Even with simple actions, the robot
can work slower than a skilled worker, which limits the productivity of the work.
Robot control is often built on guaranteed but completely non-optimal programs.
Thus, there is a significant problem of increasing the speed of an industrial
robot when performing simple mechanical operations. On the other hand, the
movement of the robot along a given trajectory is traditionally provided by
independent drives for different degrees of mobility.
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Fig. 2. Optimal trajectories of the mobile robot: on the plane (left), depending on time
(right).

Consider the problem of finding the controls and trajectories of the robot
with a limited influence of various degrees of mobility on each other. The motion
dynamics of a flat two-link robot of an anthropomorphic type is described by
the following system of differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2,

ẋ2 =
(M1 − F1) · a22 − (M2 − F2) · a12

a11 · a22 − a21 · a12
,

ẋ3 = x4,

ẋ4 =
(M2 − F2) · a11 − (M1 − F1) · a21

a11 · a22 − a21 · a12
,

where M1 = −C1(x1 − u1), M2 = −C2(x3 − x1 − u2), F1 = −m1 · l1 · R1 ·
sin(x3 − x1) · x2

2, F2 = −m2 · l2 · R2 · sin(x3 − x1) · x2
4, a11 = m1 · ρ21 + m2 · l21,

a12 = a21 = m2 ·R2 · l1 · cos(x3 −x1), a22 = m2 ·ρ22. Here x1, x3 are angles of link
rotation, x2, x4 are turning velocities, u1, u2 are software angle values (controls),
l1, l2 are link lengths, m1,m2 are link masses, ρ1, ρ2 are radii of inertia, R1, R2

are distances to the center of mass, C1, C2 are gear ratios.
The problem variables are subject to conditions associated with the design

features of the robot: |ui(t)| � π, i = 1, 2, |Mi(t)| � 10, i = 1, 2, π/6 � x1(t) �
5/6 · π, π/3 � x1(t) − x3(t) � 5/6 · π, t ∈ [0, t1].

We consider a specific version of the robot (“TUR-10”) with the following
characteristics: m1 = 7.62, ρ1 = 0.968, R1 = 0.239, l1 = 0.50, C1 = 10.0,
m2 = 8.73, ρ2 = 0.973, R2 = 0.251, l2 = 0.67, C2 = 10.0.

The problem is to transfer the system from point x(t0) = (π/6, 0,−π/6, 0)
to point x(t1) = (5/6π, 0, π/3, 0) in the shortest possible time t1 under all
restrictions. The objective functional is I0 (u) = t1 → min. We performed the



212 P. Sorokovikov et al.

selection of the optimum time, minimizing the discrepancy (8) using the devel-
oped algorithm. As a result of the solution, the optimal value of the functional
is I∗

0 (u) = 2.88. Figure 3 shows the plots of the optimal control and the corre-
sponding phase coordinates.

Fig. 3. Optimal control and corresponding trajectories in the problem of the industrial
robot arm.

We compared efficiency and reliability of the proposed Powell method modifi-
cation (PMM) with other heuristic algorithms: genetic algorithm (GA), differen-
tial evolution (DE) [5], “stochastic coverings” algorithm (SC) [13], “curvilinear
search” method (CS) [12], harmony search (HS), biogeography-based optimiza-
tion method (BBO) and firefly algorithm (FA) [26]. Table 1 shows the values of
the functionals found by each algorithm for 100000 solved Cauchy problems (for
both optimal control tasks). The testing of the developed algorithm has shown
significantly higher efficiency and reliability in comparison with its competitors.

Table 1. Solutions obtained by algorithms for the optimal control problems of the
mobile robot (Value 1) and the industrial robot arm (Value 2).

No. Algo Value 1 Value 2 No. Algo Value 1 Value 2

1 PMM 2.48 2.88 5 CS 2.61 2.99

2 GA 2.53 2.95 6 HS 2.83 3.24

3 DE 2.54 2.95 7 BBO 2.86 3.25

4 SC 2.54 2.97 8 FA 3.02 3.47
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6 Conclusion

An algorithm for the numerical solution of non-convex optimal control prob-
lems was proposed. The developed algorithm was implemented in C language
and integrated within a single software package. Several applied optimal control
problems in robotic systems have been successfully solved using this algorithm.
In all the problems considered, a comparison of the obtained solutions with the
published computations allows us to conclude that the proposed algorithm has
sufficiently high efficiency and reliability. The method proposed in the paper
was tested on a variety of nonlinear optimal control problems from different
application areas. All the obtained solutions found a meaningful interpretation.
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A Derivative-Free Nonlinear Least
Squares Solver

Igor Kaporin(B)
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Abstract. A nonlinear least squares iterative solver developed earlier by
the author is modified to fit the derivative-free optimization paradigm.
The proposed algorithm is based on easily parallelizable computational
kernels such as small dense matrix factorizations and elementary vector
operations and therefore has a potential for a quite efficient implemen-
tation on modern high-performance computers. Numerical results are
presented for several standard test problems to demonstrate the com-
petitiveness of the proposed method.

Keywords: Nonlinear least squares · Derivative-free optimization ·
Preconditioned subspace descent

1 Introduction

Application areas of nonlinear least squares are numerous and include, for
instance, acceleration of neural network learning processes using Levenberg -
Marquardt type algorithms, pattern recognition, signal processing etc. This
explains the need in further development of robust and efficient nonlinear least
squares solvers.

The present paper is mainly based on the results of [11] specialized to the
case of derivative-free optimization. Similar to [5–7], we use the inexact New-
ton/Krylov subspace framework, however with search subspaces augmented by
several previous directions, with different stepsize choice rule and with the use
of quasirandom rectangular preconditioner. The latter algorithimic feature is
critically important for the nonlinear least square solver proposed in the present
paper. Indeed, in general case the residuals cannot be readily used to form search
directions as it was done in [5–7] when the number of equations is equal to the
number of unknowns.

2 General Description of Nonlinear LS Solver

A standard least squares problem is formulated as

x∗ = arg min
x∈Rn

ϕ(x), (1)

Supported by RFBR grant No.19-01-00666.

c© Springer Nature Switzerland AG 2021
N. N. Olenev et al. (Eds.): OPTIMA 2021, LNCS 13078, pp. 217–230, 2021.
https://doi.org/10.1007/978-3-030-91059-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91059-4_16&domain=pdf
http://orcid.org/0000-0002-1451-1632
https://doi.org/10.1007/978-3-030-91059-4_16


218 I. Kaporin

where the function ϕ : Rn → R has the form

ϕ(x) =
1
2
‖f(x)‖2 ≡ 1

2
f�(x)f(x), (2)

and f(x) is a nonlinear mapping

f : Rn → Rm, m ≥ n. (3)

Assuming sufficient smoothness of f , an iterative procedure is constructed to
find the minimizer x∗ numerically. Note that x∗ satisfies the equation

grad ϕ(x∗) = 0, (4)

where
grad ϕ(x) = J�(x)f(x) ∈ Rn, (5)

and
J(x) ≡ ∂f

∂x
∈ Rm×n, (6)

is the Jacobian matrix of f at x.

2.1 Descent Along a Subnormalized Direction

Let x0, x1, . . . , xt, . . . be the sequence of approximations to the stationary point
x∗ constructed in the course of iterations, where t is the outer iteration index.
Further on, we will use the notations

ft = f(xt), Jt = J(xt), gt = grad(xt) = J�
t ft. (7)

The next approximation xt+1 to x∗ is constructed as

xt+1 = xt + αtpt, (8)

where the stepsize parameter αt satisfies

0 < αt < 2,

and pt is a direction vector satisfying the subnormalization condition

(Jtpt)�(ft + Jtpt) ≤ 0, (9)

which can conveniently take into account the inexactness of the Jacobian by a
vector products. Inequality (9) is a generalization of the normalization condition

(Jtpt)�(ft + Jtpt) = 0

used earlier in [8–11], where the explicit availability of Jt as an m × n matrix
was assumed. Next we consider sufficient conditions for the descent of ϕ(xt).
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2.2 General Estimate for Residual Norm Reduction

Under rather mild conditions, see, e.g. [9,11], there exists the limiting stepsize
α̂t ∈ (0, 2) such that for all 0 < α ≤ α̂t the estimate

ϕ(xt + αpt)
ϕ(xt)

≤ 1 −
((

α − α2

2

)

θ2t

)2

(10)

is valid, where ϕ is defined in (2), direction pt is subnormalized by (9), and θt is
determined as

θt =
‖Jtpt‖
‖ft‖ . (11)

Note that by the subnormalization condition (9) it holds

ϑt = ϑ(ft, Jtpt) ≡ −(Jtpt)�ft

‖ft‖‖Jtpt‖ ≥ ‖Jtpt‖
‖ft‖ = θt, (12)

so that the quantity (11) is a lower bound for the cosine ϑt of the Euclidean
acute angle between m-vectors ft and (−Jtpt). Clearly, estimate (10) shows the
importance of finding subnormalized directions pt with values of θt as large as
possible.

Remark 1. Similar to [8,11], the proof of (10) is based on the assumption that
the limiting stepsize α̂ = α̂(f, p) along a subnormalized direction p exists such
that the limiting stepsize condition

‖f(x + αp) − f − αJp‖ ≤
(

α − α2

2

) ‖Jp‖2
‖f‖ (13)

is satisfied for all 0 < α ≤ α̂. (To clarify the notations, further we will omit the
iteration index t where possible.) Indeed, (10) can be obtained from (13) and
(9) as follows:

‖f(x + αp)‖ ≤ ‖f + αJp‖ + ‖f(x + αp) − f − αJp‖
=

(‖f‖2 + 2αf�Jp + α2‖Jp‖2)1/2
+ ‖f(x + αp) − f − αJp‖

≤ (‖f‖2 − 2α‖Jp‖2 + α2‖Jp‖2)1/2
+

(

α − α2

2

) ‖Jp‖2
‖f‖

= ‖f‖
(

(

1 − (2α − α2)
‖Jp‖2
‖f‖2

)1/2

+
(

α − α2

2

) ‖Jp‖2
‖f‖2

)

≤ ‖f‖
(

1 −
((

α − α2

2

) ‖Jp‖2
‖f‖2

)2
)1/2

,

where the latter estimate follows from the inequality

√

1 − η +
η

2
≤

√

1 − η2

4
,

which holds for any 0 ≤ η ≤ 1 and is used with η = α(2 − α)‖Jp‖2/‖f‖2, see
also (12).
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Remark 2. It appears that α̂ characterizes the nonlinearity of f in the neighbor-
hood of x, while θ is related to the precision of approximate solution p of the
“Newton equation” f +Jp = 0. Note that the latter may not (and often cannot)
be solved exactly in the context of our considerations.

2.3 Choosing the Stepsize

Based on estimate (10) one can develop the following Armijo type procedure
[1] for evaluating appropriate stepsize αt providing for a certain decrease of
the residual norm. Let pt be a direction vector satisfying the subnormalization
condition (9). The value of stepsize is determined by checking the validity of
estimate (26) (see the corresponding Section below; we cannot directly use Jp
as in earlier papers) for a decreasing sequence of trial values of α ∈ (0, 2); the
standard choice is

α(l) = 2−l, l = 0, 1, . . . , lmax − 1, (14)

with lmax = 30, which approximately corresponds to α(l) > 2 · 10−8. As soon
as (10) be satisfied, one sets αt = α(l). In numerical testing, the backtracking
criterion (10) was often satisfied at once for l = 0 with the stepsize αt = 1.

2.4 Approximating Product of Jacobian by a Vector

The derivative-free approximation for products like Jp is obtained using

J(x)p ≈ ˜J(x)p =
f(x + ζp) − f(x)

ζ
, (15)

where ζ = O(τ1/2) and τ is the floating point tolerance, or by the more precise
formula

J(x)p ≈ ˜J(x)p =
f(x + ζp) − f(x − ζp)

2ζ
, (16)

where ζ = O(τ1/3).

2.5 Choosing Subspace Basis and Descent Direction

Let us choose the direction pt such as

p0 ˜∈ span{K�
0 f0, K�

0 J0K
�
0 f0, . . . , (K�

0 J0)k−1K�
0 f0},

p1 ˜∈ span{K�
1 f1, K�

1 J1K
�
1 f1, . . . , (K�

1 J1)k−1K�
1 f1, p0},

. . .

pt ˜∈ span{K�
t ft, K�

t JtK
�
t ft, . . . , (K�

t Jt)k−1K�
t ft, pt−1, . . . , pt−min(t,l)},

. . .

where k ≥ 1 and l ≥ 1 are small integers. Recall that pt−1 = (xt−xt−1)/αt−1, . . .
are the previous search directions. Here the rectangular matrix Kt ∈ Rm×n
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serves as a kind of preconditioner, see Sect. 2.8 below. Symbol ˜∈ reflects the
use of (15) or (16) for the approximation of the Jacobian by a vector products.
(The exact meaning of ˜∈ is determined by the orthogonalization procedure given
below.) This construction is a generalization of the one proposed in [9] and used
in [10,11].

Further in this section, we omit the iteration index t, for instance, J = J(xt)
and pk−i = pt+k−i.

Since we use rather rough approximations for the products of J by a vector,
we will use the following Arnoldi-type orthogonalization procedure for construct-
ing the bases of the above defined subspaces:

v1χ1,0 = f, vi+1χi+1,i = ˜Jui −
i

∑

j=1

vjχj,i, i = 1, . . . , k + l,

where
ui = K�vi, i = 1, . . . , k,

ui = pk−i, i = k + 1, . . . , k + l,

and the coefficients χ1,0 = ‖f‖,

χj,i = v�
j

˜Jui, j = 1, . . . , i, χi+1,i = ‖˜Jui −
i

∑

j=1

vjχj,i‖

are determined to satisfy the orthonormality condition v�
i vj = δi−j . As the

result, one obtains the factorization

JU = V H + Z, (17)

where

U = [u1 | ... | uk+l], V = [v1 | ... | vk+l+1], V �V = Ik+l+1,

U ∈ Rn×(k+l), V ∈ Rm×(k+l+1), H ∈ R(k+l+1)×(k+l), Z ∈ Rm×(k+l).

The matrix Z accounts for the errors arising from the approximation of the
Jacobian by a vector multiplications so that

zi = Jui − ˜Jui.

Therefore, the direction is determined as

p = Us, s ∈ Rk+l, (18)

where s will be specified below in the next Section.

Remark 3. Setting α = ζ and combining (13) with (15) one obtains the condition

‖Jp − ˜Jp‖
‖Jp‖ ≤

(

1 − ζ

2

) ‖Jp‖
‖f‖ =

(

1 − ζ

2

)

θ, (19)
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which means that smaller values of θ = ‖Jp‖/‖f‖ impose a more restrictive
upper bound on the numerical finite difference error in (15). Since the second
order formula (16) typically reduces the left hand part of (19), it can be more
appropriate for practical use. Moreover, the use of larger subspace dimensions
k + l is preferable in order to increase θ in the right hand side of (19).

2.6 Characterizing Inexactness and Choosing Search Directions

Assume for a moment that Z = 0 in (17), which corresponds to exact compu-
tations with the Jacobian. In this case, the minimum norm solution of the form
(18) for the overdetermined linear equation f + Jp = 0 is given by

s = −(H�H)−1H�e1‖f‖,

where e1 = [1 0 . . . 0]� ∈ Rk+l+1 is the first unit vector. Indeed, using

f = V e1‖f‖,

(18), and (17) with Z = 0, one has

‖f + Jp‖ = ‖V e1‖f‖ + JUs‖ = ‖V (e1‖f‖ + Hs)‖ = ‖e1‖f‖ + Hs‖, (20)

and the formula for the least squares solution readily follows. To estimate the
effect of inexactness (which corresponds to Z 	= 0), the following condition is the
most convenient:

Z�Z ≤ ξ2 H�H, (21)

where ξ is a (typically small) positive parameter. As is shown in the next section,
setting

s = −1
2
(H�H)−1H�e1‖f‖ (22)

is a safe choice for s whenever 0 ≤ ξ ≤ 1/2.

Remark 4. In actual computations, the use of an approximate pseudo-inversion
formula

s = −1
2

(

H�H + ζI
)−1

H�e1‖f‖, 0 < ζ 
 ‖H‖2,
is preferable, which relaxes the possible ill-conditioning of H. A comprehensive
analysis for the case of nonzero ζ will be given elsewhere.

2.7 Subnormality of Search Directions and the Lower Bound for θ

Denote the orthogonal projector

Π = H(H�H)−1H� ∈ R(k+l+1)×(k+l+1), (23)

so that
Hs = −1

2
Π e1‖f‖. (24)
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In the general case, similar to (20) one has

Jp = V Hs + Zs, f + Jp = V (e1‖f‖ + Hs) + Zs,

and therefore

(Jp)�(f + Jp) = (s�H�V � + s�Z�)(V (e1‖f‖ + Hs) + Zs)

= s�H�(e1‖f‖ + Hs) + s�Z�V (e1‖f‖ + 2Hs) + s�Z�Zs

= −1
4
e�
1 Π e1‖f‖2 + s�Z�V (I − Π )e1‖f‖ + s�Z�Zs,

where the last equality holds by (24). Further, using (21) one has

s�Z�Zs ≤ ξ2 s�H�Hs =
ξ2

4
e�
1 Π e1‖f‖2

which yields

(Jp)�(f + Jp) ≤ ‖f‖2
(

−1
4
e�
1 Π e1 +

ξ

2

√

e�
1 Π e1(1 − e�

1 Π e1) +
ξ2

4
e�
1 Π e1

)

.

Finally, the right hand side of the latter inequality is negative if

ξ ≤
√

e�
1 Π e1

1 +
√

1 − e�
1 Π e1

.

Therefore, a simple sufficient condition for subnormality (as defined by (9)) of
direction (22) is

ξ ≤ 1
2

√

e�
1 Π e1. (25)

It only remains to notice that the quantity e�
1 Π e1 ∈ (0, 1] monotonically tends

to 1 from below in the progress of the Arnoldi iterations. Thus, the condition
(21) turns to be less restrictive (as soon as the minimum singular value of H
stays separated from zero).

Using the orthogonality of V and (21), one has then

‖Jp‖ = ‖(V H + Z)s‖ =
‖f‖
2

‖V Π e1 + Z(H�H)−1H�e1‖

≥ ‖f‖
2

(‖V Π e1‖ − ‖Z(H�H)−1H�e1‖
) ≥ ‖f‖

2
(1 − ξ)

√

e�
1 Π e1,

and, assuming that by (25) it holds ξ ≤ 1/2, we estimate θ from below:

θ =
‖Jp‖
‖f‖ ≥ 1

4

√

e�
1 Π e1.

Therefore, the stepsize can be safely determined from appropriately modified
estimate (10):

‖f(x + αp)‖2
‖f‖2 ≤ 1 −

((

α − α2

2

)

e�
1 Π e1
16

)2

, (26)

as soon as conditions (21) and (25) hold.
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2.8 Using Quasirandom Preconditioning

As the preconditioner we consider a full column rank matrix Kt ∈ Rm×n satis-
fying

K�
t Kt ≈ In. (27)

Clearly, the forming of Kt and multiplying it by a vector q = Ktv must be
as cheap as possible. Here we will consider preconditionings having a potential
for a quite efficient implementation on modern high-performance computers. In
particular, we consider Kt taken as Hankel matrix with quasirandom entries
generated by the logistic sequence.

2.9 Description of Computational Algorithm

The above described preconditioned subspace descent algorithm can be summa-
rized as follows. Note that indicating f(x) as an input means the availability of
computational module for the evaluation of vector f(x) for any given x.

Algorithm 1.
Key notations:

Ut = [u1| . . . |uimax+1] ∈ Rm×(imax+1), Vt = [v1| . . . |vimax ] ∈ Rn×imax ,

Hi =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

χ1,1 χ1,2 χ1,3 . . . χ1,i

χ2,1 χ2,2 χ2,3 . . . χ2,i

0 χ3,2 χ3,3 . . . χ3,i

. . . . . . . . . . . . . . .
0 . . . 0 χi,i−1 χi,i

0 . . . 0 0 χi+1,i

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R(i+1)×i, hi =

⎡

⎢

⎢

⎢

⎢

⎣

χ1,1

χ1,2

χ1,3

. . .
χ1,i

⎤

⎥

⎥

⎥

⎥

⎦

∈ Ri;

Input: f(x) ∈ Rm, x0 ∈ Rn;
Initialization:
s = k + l ≤ n, δ = 10−12, ζ = 5 · 10−6,
ε = 10−10, τmin = 10−8, tmax = 10000,
f0 = f(x0), ρ0 = f�

0 f0;
Iterations:
for t = 0, 1, . . . , tmax − 1:

generate quasirandom Kt ∈ Rm×n

u1 := ft/
√

ρt

w := u1

imax := k + min(l, t)
for i = 1, . . . , imax:

if (i ≤ k) then
vi := K�

t w
end if
w := (f(xt + ζvi) − f(xt − ζvi))/(2ζ)
for j = 1, . . . , i:

χj,i = u�
j w
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w := w − ujχj,i

end for
χi+1,i =

√
w�w

w := w/χi+1,i

ui+1 = w
end for
LtL

�
t = H�

imax
Himax + δ trace(H�

imax
Himax)I

zt := (Lt)−1himax

ϑt := z�
t zt

zt := (Lt)−�ztρt

pt = −Vtzt

vk+1+(tmodl) := pt

α(0) = 1
for l = 0, 1, . . . , lmax − 1:

x
(l)
t = xt + α(l)pt

f
(l)
t = f(x(l)

t )
ρ
(l)
t = (f (l)

t )�f
(l)
t

τ = α(l)(2 − α(l))ϑt/16
if (τ < τmin) return xt

if (ρ(l)t /ρt > 1 − (τ/2)2) then
α(l+1) = α(l)/2
x
(l+1)
t = xt + α(l+1)pt

else
go to NEXT

end if
end for
NEXT: xt+1 = x

(l)
t , ft+1 = f

(l)
t , ρt+1 = ρ

(l)
t ;

if (ρt+1 < ε2ρ0) or (ρt+1 ≥ ρt) return xt+1

end for

Remark 5. In the above algorithm, the notation was changed as u ↔ v to con-
form the one used in an earlier code.

Remark 6. The use of quantity ϑt can be explained as follows. For simplicity, let
us consider δ = 0 and drop the indices t, imax, and (l). Then, by H�H = LL�,
h = H�e1, and (23), it holds

ϑ = z�z = h�L−�L−1h = e�
1 H(H�H)−1H�e1 = e�

1 Πe1,

and therefore

τ/2 =
1
2
α(2 − α)ϑ/16 =

(

α − α2

2

)

e�
1 Πe1
16

.

Comparing the latter equality with (26) gives exactly the backtracking condition
ρ
(l)
t /ρt > 1 − (τ/2)2 used in Algorithm 1 for the refinement of stepsize α.
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3 Test Problems and Numerical Results

Below some results of application of Algorithm 1 to several standard hard-to-
solve nonlinear test problems are presented. For the test runs, one core of Pen-
tium(R) Dual-Core CPU E6600 3.06 GHz, 3.25 Gbytes RAM desktop PC was
used. We will consider sufficiently large subspace dimensions with k ≥ l and
k + l ≤ n. For the nonzero residual problems, the iterations typically terminate
by the condition τ < τmin = 10−10, see the corresponding line in Algorithm 1.

Table 1. Performance of Algorithm 1 for medium-size problems

Test name m n k + l #iter #fun. eval. opt. value ‖x‖C
Broyden tridiagonal 500 500 50+50 15 1726 6.7E−10 0.707

chained Rosenbrock 198 100 50+50 664 133538 9.9E−08 1.000

inv. 3D dist. tensor 27000 150 75+75 101 25008 0.01113926 0.601

inv. 3D dist. tensor 125000 250 125+125 126 47880 0.02763617 0.653

Lennard-Jones 2D 4950 200 180+20 74 29258 68.260376 7.915

Lennard-Jones 3D 78 39 20+19 41 2861 5.8028612 1.459

Lennard-Jones 3D 1485 165 150+15 308 101720 34.762002 12.85

3 × 3 × 3 Brent eq. 729 63 33+30 29 2768 4.1E−13 1.144

3.1 Broyden Tridiagonal Function

Following [14], for n = m and m = 500 define f(x) as

fi = (3 − 2xi)xi − xi−1 − 2xi+1 + 1, 1 ≤ i ≤ 500,

where x0 = xn+1 = 0. The optimum value is f�f = 0 and the starting point is
set as x̃ = [−1 . . . − 1]�. The results are presented in Table 1. This test can be
considered as relatively easy due to the actual closeness of the initial guess x̃ to
the solution x∗.

3.2 Chained Rosenbrock Function

This test function was introduced in [18], and we will use its version with m =
2n − 2 and essentially variable coefficients:

f2i−1 = i(xi − x2
i+1), f2i = 1 − xi+1, i = 1, . . . , n − 1.

The optimum value is f�f = 0 at x∗ = [1 . . . 1]� and the starting point is
x̃ = [−1 . . . − 1]�. The results are given in Table 1 for m = 198 and n = 100.
For this test case, the convergence history demonstrated the behavior typical
for linear conjugate gradients with fast residual norm decrease at initial steps
followed by a near stagnation phase and fast superlinear decrease at the final
stage.



A Derivative-Free Nonlinear Least Squares Solver 227

3.3 Approximate Canonical Decomposition of Inverse 3D Distance
Tensor

This problem was considered, e.g., in [12,16,17]. Since the 3D array under con-
sideration

ti,j,k =
(

i2 + j2 + k2
)−1/2

is symmetric, the residual function can be taken as

fi+(j−1)q+(k−1)q2 = − (

i2 + j2 + k2
)−1/2

+
r

∑

l=1

x(l−1)q+ix(l−1)q+jx(l−1)q+k,

where 1 ≤ i, j, k ≤ q, so that m = q3 and n = qr. The particular case we consider
is q = 30 and r = 5. The initial guess was set as x̃ = [1/2 . . . 1/2]�. This is rather
hard-to-solve nonzero residual problem (especially for k + l 
 n).

3.4 Lennard-Jones Potential Minimization

The problem of finding

x = [r�
1 . . . r�

N ]� = arg min
x

∑

1≤i<j≤N

(‖ri − rj‖−12 − 2‖ri − rj‖−6
)

,

where ri ∈ Rd and d = 2 or d = 3, serves as a popular hard-to-solve benchmark
system for optimization algorithms, see, e.g., [2,15,19]. Its reformulation as a
nonzero residual nonlinear LS problem with m = N(N − 1)/2 and n = 3d
readily follows if one sets

fi,j = ‖ri − rj‖−6 − 1, 1 ≤ i < j ≤ N.

Clearly, the minimum of the Lennard-Jones potential is expressed as

min
∑

1≤i<j≤N

(‖ri − rj‖−12 − 2‖ri − rj‖−6
)

= min
x

‖f(x)‖2 − N(N − 1)
2

.

The results for d = 2, N = 100 and d = 3, N = 13 or N = 55 are shown in
Table 1. The obtained minima well agree with that published in the existing liter-
ature: for 2D problem f(x) = 68.26037 yields −290.521 compared to −293.697 in
[2], while for the smaller 3D problem f(x) = 5.802861 yields −44.326801 which
value exactly coincides with that of [15,19]. For the larger 3D problem with
N = 55 we have obtained the local minimum −276.603 compared to −279.248
in [15,19].

Note that for such complicated problems with multiple minima, the choice
of the initial guess is probably the most important tuning parameter. In our
tests with Lennard-Jones and Brent equations, we used 100 quasirandom initial
guesses generated by the called logistic sequence (see, e.g., [20] and references
cited therein):

ξ0 = 0.2, ξk = 1 − 2ξ2k−1, k = 1, 2, . . . ;

x
(s)
0 (j) = ξsj/8, 1 ≤ j ≤ n, s = 1, 2, . . . , 100;

the best results are shown in Table 1.
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3.5 3 × 3 × 3 Brent Equations: Semi-analytical Solution

Let us consider (see, e.g., [11] and references cited therein) a particular case of
“Brent Equations” [4] which arise in connection with the development of Fast
Matrix Multiplication (FMM) algorithms. The problem setting is specified by
the following definition of 3D tensor components

ti,j,k = δ(i2 − j1)δ(j2 − k1)δ(k2 − i1), 1 ≤ i, j, k ≤ q2, (28)

where
i = i1 + (i2 − 1)q, 1 ≤ i1, i2 ≤ q,

j = j1 + (j2 − 1)q, 1 ≤ j1, j2 ≤ q,

k = k1 + (k2 − 1)q, 1 ≤ k1, k2 ≤ q.

Thus, for a general Canonical Decomposition for 3D array (28) we obtain the
residual equation

fi,j,k(x) = −ti,j,k +
r

∑

l=1

u(l−1)q2+iv(l−1)q2+jw(l−1)q2+k

with the vector of unknowns x� = [u� v� w�] and sizes m = q6 and n = 3q2r.
This problem can immediately be related to the construction of fast multiplica-
tion of two q × q matrices using r essential multiplications.

Solving Brent equations (more precisely, finding exact solutions with mini-
mum possible r) is known as extremely hard and, in general, unsolved problem,
even for small q ≥ 3. In [3], a specific symmetry was revealed for Brent equa-
tions with q = 3, which allows to considerably reduce the number of unknowns
involved. In view of these results, we propose the following semi-analytical gen-
eralization of Brent equations:

ti,j,k ==
p−1
∑

t=0

L
∑

l=1

(QtXlQ
−t)i1,i2(Q

tXπ(l)Q
−t)j1,j2(Q

tXσ(l)Q
−t)k1,k2 (29)

where L = l0 + 3l1, π and σ are permutations such that σ = π2 and π3 is an
identity; without loss of generality one can use

l = (1 2 3 . . . l0 l0 + 1 l0 + 2 l0 + 3 . . . l0 + 3l1),

π(l) = (1 2 3 . . . l0 l0 + 2 l0 + 3 l0 + 1 . . . l0 + 3l1 − 2),

σ(l) = (1 2 3 . . . l0 l0 + 3 l0 + 1 l0 + 2 . . . l0 + 3l1 − 1),

Q is a fixed matrix parameter such that Qp = Iq or Qp = −Iq and Qt 	= Iq for
1 < t < p. This equation contains only n = Lq2 = q2r/p scalar unknowns but
presents a Canonical Decomposition of the rank r = Lp. Considering q = 3, we
can choose

l0 = 3, l1 = 1, p = 4, Q =

⎡

⎣

1 0 0
0 0 −1
0 1 0

⎤

⎦ ,
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so that m = 729, n = 54 and r = 24. Hence, the number of unknowns is 12 times
smaller compared to standard Brent equations. Moreover, Eq. (29) can be very
efficiently solved by Algorithm 1 for several quasirandomly generated starting
vectors. The results shown in Table 1 correspond to the solution of Eq. (29) with
Q−1 replaced by Q� and Q included into the vector of unknowns, so that n = 63.

Unfortunately, r = 24 is not the optimum rank for this case, since the min-
imum value for q = 3 is known to be at least r = 23, see [13]. However, it may
happen that (29) can be solved for larger sizes q with better results for r.

4 Concluding Remarks

In the present paper, a nonlinear least squares solver is developed which is
based on derivative-free computations and is formally applicable to all types
of least squares problems with sufficiently smooth residual function. Key feature
of the algorithm is the use of quasirandom rectangular preconditioners for the
construction of an approximate Krylov subspaces containing descent directions.
Moreover, the proposed version of the algorithm is well suited for an efficient
implementation on modern high-performance computers. The results of numer-
ical testing on several hard-to-solve problems have confirmed the efficiency and
robustness of the derivatibe-free Preconditioned Subspace Descent method.

Acknowledgement. The author thanks the anonymous referee for insightful com-
ments and suggestions which allow to significantly improve the exposition of the paper.
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Abstract. The work considers three problems of searching for two dis-
joint subsets among a finite set of points in Euclidean space. In all three
problems, it is required to maximize the minimal size of these subsets so
that in each cluster, the total intra-cluster scatter of points relative to
the cluster center does not exceed a predetermined threshold. In the first
problem, the centers of the clusters are fixed points of Euclidean space
and are given as input. In the second one, centers are unknown, but they
belong to the initial set. In the last problem, the center of the cluster is
the arithmetic mean of all its elements. Earlier works considered prob-
lems with constraints on the quadratic intra-cluster scatter.

Quadratic analogs of the first two problems were proven to be NP-hard
even in the one-dimensional case. For the third analog, the complexity
remains unknown. The main result of the work are proofs of NP-hardness
of all considered problems even in the one-dimensional case.

Keywords: Euclidean space · Clustering · Max-min problem ·
NP-hardness · Bounded scatter

1 Introduction

The subject of research is three problems of finding two disjoint subsets in a finite
set of points in Euclidean space. These problems model the applied problems of
finding disjoint subsets in a collection of objects so that each subset consists
of objects similar in the sense of a certain criterion. Such applied problems are
often encountered in many applications such as pattern recognition and machine
learning [4], data mining [2], data cleaning [13].

In all three problems, it is required to maximize the size of the minimum
cluster in terms of cardinality so that in each cluster, the total intra-cluster
scatter of points relative to the center (for each problem the center is determined
in its own way) of the cluster does not exceed a predetermined threshold.

Considered problems have a simple interpretation in terms of searching for
two groups of similar objects and filtering out foreign objects (see the next
section).

The purpose of the research is to substantiate the NP-hardness of all three
considered problems.
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2 Formulations and Related Problems

The problems under consideration are formulated as follows.

Problem 1. Given an N-element set Y = {y1, . . . , yN} of points in Euclidean
space R

d, points z1, z2, and a real number A ∈ R+.
Find non-empty disjoint subsets C1, C2 ⊂ Y such that the minimal size of a

subset is maximal. In other words,

min (|C1|, |C2|) → max, (1)

where
F1 (Ci) = F (Ci, zi) :=

∑

y∈Ci

‖y − zi‖2 ≤ A, i = 1, 2, (2)

‖v‖2 =
√

v2
1 + . . . + v2

d for each v = (v1, . . . , vd) ∈ R
d.

Problem 2. Given an N-element set Y = {y1, . . . , yN} ⊂ R
d and a real number

A ∈ R+.
Find non-empty disjoint subsets C1, C2 ⊂ Y and points u1, u2 ∈ Y such

that (1) holds and C1, C2 satisfy

F2 (Ci, ui) = F (Ci, ui) ≤ A, i = 1, 2. (3)

Problem 3. Given an N-element set Y = {y1, . . . , yN} ⊂ R
d and a real number

A ∈ R+.
Find non-empty disjoint subsets C1, C2 ⊂ Y such that (1) holds and C1, C2

satisfy
F3 (Ci) = F (Ci, ȳ(Ci)) ≤ A, i = 1, 2,

where ȳ(Ci) = 1
|Ci|

∑
y∈Ci

y, i = 1, 2, are the centroids (geometric centers) of the

clusters Ci.
In all three problems, it is required to maximize the size of the minimum

cluster such that in each cluster, the total intra-cluster scatter of points relative
to the center (for each problem the center is determined in its own way) of the
cluster does not exceed the predetermined threshold A.

In Problem 1, the centers are arbitrary but given as input. In Problem 2,
the centers are unknown but belong to the input set (that is, the centers are
medoids [7]). In Problem 3, the center of the cluster is the centroid (the arith-
metic mean of all cluster’s elements).

As in the problems considered in [1], as a threshold A for the scatter, one
can use α-fraction of the maximum scatter within this instance, i.e., one can put
A = αFmax, where Fmax is the maximum value described above. For example,
in Problem 3, one can put Fmax =

∑
y∈Y

‖y − ȳ(Y)‖2. The concentration of points

in subsets Ci can be controlled by adjusting the value of α between 0 and 1.
Problems 1–3 have a fairly simple applied interpretation. There is a table

with the data containing the results of measurements of a set of characteristics
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for a set of objects (in the problem statement, the set Y corresponds to the
table). The set of measured objects contains two disjoint groups of homogeneous
objects (subsets C1, C2) and a group of outliers (Y \ (C1 ∪ C2)). The character-
istics measured for elements of a homogeneous group have some scatter due to
the measurement technology. The value of this scatter is bounded by the spec-
ified threshold value A. The goal is to find two groups of homogeneous objects
containing the largest number of admissible elements and separate the group of
outliers.

Previously, problems were considered with a restriction on the quadratic intr-
acluster variation. For the quadratic analogs of the first two problems (that is,
problems where in (2) and (3) there is the sum of the squared norms), NP-
hardness is known [8]. The issue of the complexity of similar problems but with
other restrictions on the desired subsets remained open. Also note that the com-
plexity of the quadratic analog of Problem 3 (that is, the problem in which the
center of the cluster is its centroid) remains unknown.

The main result of the paper is a proof of NP-hardness of Problems 1–3 even
in the one-dimensional case. From this, as is known [5], it follows that there are
no known exact polynomial algorithms for these problems unless P = NP .

Note that the NP-hardness in the one-dimensional case is not typical for
all clustering problems. For example, let’s recall the well-known NP-complete
M -Variance problem (see, e.g., [9] and references therein).

M-Variance Problem. Given a set Y = {y1, . . . , yN} ⊂ R
d and a positive

integer M > 1.
Find a set C ⊂ Y of cardinality M such that

∑

y∈C
‖y − ȳ(C)‖2 → min .

In the one-dimensional case, it is shown [11] that this problem is solvable in
polynomial time O(N log N).

There is also a more general property. In [10], the following problem was
considered.

K-Means and Given J-Centers Problem. Given an N -element set Y =
{y1, . . . , yN} ⊂ R

d, positive integers K ∈ N and a tuple {c1, . . . , cJ} of points
from R

d.
Find a partition of Y into K + J clusters C1, . . . , CK ,D1, . . . ,DJ such that

F (C1, . . . , CK ;D1, . . . ,DJ ) =
K∑

k=1

∑

y∈Ck

‖y − ȳ(Ck)‖2 +
J∑

j=1

∑

y∈Dj

‖y − cj‖2 → min .

Its one-dimensional case was proven to be solvable in O(KJN2) time, i.e.,
such multicluster generalization of the M -Variance problem is also polynomially
solvable.

One of the properties that allow one to construct efficient algorithms for the
one-dimensional case of the above-mentioned problems is that in these problems,
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the convex hulls of the optimal clusters do not contain elements of the original
set that do not belong to the cluster itself. For the one-dimensional case of
M -Variance it means that the minimum segment containing all the points of the
cluster C, at the intersection with the original set, is equal to the cluster itself.

This property does not hold for Problems 1–3 considered in this paper. We
will demonstrate this for Problem 3.

Consider the set Y = {3, 8, 18, 25, 27, 43, 91, 98} and put A = 111.

Fig. 1. Admissible solution with |C1| = |C2| = 4.

Fig. 2. Invalid solution with disjoint convex hulls of the clusters.

There is an admissible solution in which each cluster contains 4 elements of
the original set—Fig. 1. However, a solution that satisfies the non-intersection
property of the convex hulls of the clusters is not valid since its scatter is 119—
Fig. 2. Therefore, there is no admissible solution satisfying the above property
in which |C1| = |C2| = 4, since such a solution, up to the re-assignment of C1, C2,
is unique. Thus, for certain values of the threshold A, for any optimal (in the
sense of the maximality of the minimum cardinality) solution, the property of
non-intersection of the convex hulls of the clusters does not hold.

The NP-hardness in the one-dimensional case makes the problems considered
in this paper “more difficult” than the other problems described in this section.

Finally, we note that the problems under consideration are not equivalent
to any of the known clustering geometric problems—k-means (k-MSSC) [3], k-
median [14], k-center [12], k-center clustering with outliers [6]. One of the main
differences between these problems and Problems 1–3 is the previously described
property of non-intersection of the convex hulls of the optimal clusters.

3 Computational Complexity Analysis

We will assume that Y, C1, and C2 are multisets, which means that it is allowed
to include the same element multiple times.
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3.1 Problem 1

Problem 1 in the form of a decision problem is given below.

Problem 1A. Given an N-element set Y = {y1, . . . , yN} ⊂ R
d, points z1, z2 ∈

R
d, and numbers A ∈ R+, M ∈ N. Question: are there non-empty disjoint

subsets C1, C2 ⊂ Y such that

min (|C1|, |C2|) ≥ M (4)

and
F1 (Ci) =

∑

y∈Ci

‖y − zi‖2 ≤ A, i = 1, 2. (5)

Theorem 1. Problem 1A is NP-complete even in the one-dimensional case.

Proof. It is obvious that Problem 1A (as well as Problems 2A and 3A, which
will be formulated below) in the one-dimensional case belongs to the class NP .
The NP-completeness is proved by constructing a polynomial reduction of the
already known [5] NP-complete Problem PARTITION to Problem 1A (a sim-
ilar scheme of the proof will be applied to subsequent Theorems 2, 3).

Problem PARTITION is formulated as follows.

Problem PARTITION. Given a 2K-element set X ⊂ N. Question: is there a
partition of X into subsets S1, S2 such that

|S1| = |S2| = K, S1 ∪ S2 = {x1, . . . , x2K},
∑

x∈S1

x =
∑

x∈S2

x. (6)

Note that [5] considers the PARTITION problem in which there is no
condition for equal cardinalities of the subsets S1, S2. But it is not difficult
to understand that the original PARTITION problem is reduced to the one
under consideration by adding N zeros, where N is the number of elements in
the original problem.

Consider an arbitrary instance of Problem PARTITION:

X = {x1, . . . , x2K}.

We construct the following instance of Problem 1A (Fig. 3): Y =

{x1, . . . , x2K}, M = K, A = 1
2

2K∑
j=1

xj , z1 = z2 = 0.

It is obvious that this reduction is polynomial.
Next, we show that in the constructed instance of Problem 1A, multisubsets

that satisfy inequalities (4) and (5) exist if and only if in Problem PARTITION
exists a partition into multisubsets such that equality (6) holds. ⇐: Let a solution
to the constructed example of Problem PARTITION exist. In other words,
there are sets of indices I1, I2, such that Si = {xk : k ∈ Ii}, i = 1, 2, are the
solution to Problem PARTITION.
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Fig. 3. Reduction for Problem 1A.

Define the following sets:

Ci = {xk : k ∈ Ii}, i = 1, 2. (7)

Now we show that C1, C2 are the solution to Problem 1A. To do this, we
should prove that conditions (4) and (5) are satisfied. Condition (4) is satisfied
by construction (7) of multisubsets Ci.

Let’s compute F1 (Ci), i = 1, 2:

F1 (Ci) =
∑

y∈Ci

‖y − zi‖2 =
∑

y∈Ci

|y − zi| =
∑

y∈Ci

y =
1
2

2K∑

j=1

xj = A, i = 1, 2.

Consequently, condition (5) is also satisfied, and C1, C2 are multisubsets
required in Problem 1A.

⇒: Suppose that C1, C2 are the solution to Problem 1A. It means that there
are sets of indices I1, I2 such that |I1| = |I2| = K, I1 ∪ I2 = {1 . . . 2K}, and
Ci = {xk : k ∈ Ii}, i = 1, 2.

Then the following inequality holds:

F1(Ci) =
∑

k∈Ii

xk ≤ A =
1
2

2K∑

j=1

xj . (8)

If we define multisubsets Si = {xk : k ∈ Ii}, i = 1, 2, then we will get that∑
y∈S1

y =
∑

y∈S2

y.

This holds because:

∑

y∈S1

y +
∑

y∈S2

y =
∑

k∈I1

xk +
∑

k∈I2

xk =
∑

k∈I1∪I2

xk =
2K∑

j=1

xj . (9)

Combining (8) and (9) gives that multisubsets Si, i = 1, 2, are the solution
to Problem PARTITION. ��

3.2 Problem 2

Now let’s analyze the complexity of Problem 2A. Firstly we formulate Problem
2 in the form of a decision problem.
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Problem 2A. Given an N-element set Y = {y1, . . . , yN} ∈ R
d and numbers

A ∈ R+, M ∈ N. Question: are there non-empty disjoint subsets C1, C2 ⊂ Y and
points u1, u2 ∈ Y such that

min (|C1|, |C2|) ≥ M (10)

and
F2 (Ci, ui) =

∑

y∈Ci

‖y − ui‖2 ≤ A, i = 1, 2. (11)

Theorem 2. Problem 2A is NP-complete even in the one-dimensional case.

Proof. Given an arbitrary instance X = {x1, . . . , x2K} of Problem PARTI-
TION, we construct the following instance of Problem 2A (Fig. 4). We put

Y = {−B, . . . ,−B︸ ︷︷ ︸
2S1

, 0, . . . , 0︸ ︷︷ ︸
2S2

, y1, . . . , y2K}, M = S1 + S2 + K,

where S1 = 4K, S2 = 8K + 2, D = max{ 1
2S, 2maxk xk} + 1, S =

2K∑
i=1

xk,

B = KD + 1
2S + 1, A = S1B + KD + 1

2S, yi = xi + D, i = 1 . . . 2K.

Fig. 4. Reduction for Problem 2A.

We will show that required multisubsets exist in the constructed instance of
Problem 2A if and only if Problem PARTITION has a solution.

⇐: Suppose that required multisubsets in Problem PARTITION exist, i.e.,
there exist sets of indices Ii, i = 1, 2, such that |I1| = |I2| = K, I1 ∪ I2 =
{1 . . . 2K} and multisubsets Si = {xk : k ∈ Ii}, i = 1, 2, are the solution to
Problem PARTITION. We define multisubsets for Problem 2A as follows:

Ci = {−B, . . . ,−B}︸ ︷︷ ︸
S1

∪{0, . . . , 0}︸ ︷︷ ︸
S2

∪{yk = xk + D}︸ ︷︷ ︸
k∈Ii

, i = 1, 2.

Firstly notice that |C1| = |C2| = S1 + S2 + |I1| = M , this means that restric-
tion (10) is satisfied.

Put ui = 0, i = 1, 2. Let’s compute F2(Ci, ui):

F2(Ci, ui) = S1B + S2 · 0 +
∑

k∈Ii

yk = S1B + KD +
∑

k∈Ii

xk. (12)
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Using the fact that Si, i = 1, 2, are the solution to Problem PARTITION,
we can continue the equality (12):

F2(Ci, ui) = S1B + KD +
1
2
S = A.

Thus, the constructed sets Ci, i = 1, 2, are the solution to Problem 2A.
⇒: Now suppose that the multiset Y in Problem 2A has required multisubsets

C1, C2 which satisfy conditions (10) and (11).
Note that from (10) and the fact that |Y| = 2M = 2S1 +2S1 +2K, it follows

that |C1| = |C2| = S1 + S2 + K.
Let us show that the following properties of the sets C1, C2 are true.

1. Each set Ci contains exactly S1 elements −B.
2. Each set Ci contains exactly S2 elements 0.
3. Each set Ci contains exactly K elements from {y1, . . . , y2K}.

Note that it is enough to prove any two of the above statements, and the
last one will follow from them. Let us prove the first two facts in the following
statements.

Proposition 1. Each set Ci contains exactly S1 elements −B.

Proof. The proof is by reductio ad absurdum. Suppose that quantity of elements
−B in multisubset C1 is greater that S1, i.e.,

C1 = {−B, . . . ,−B}︸ ︷︷ ︸
Q≤2S1

∪{0, . . . , 0}︸ ︷︷ ︸
Z≤2S2

∪{yk = xk + D}︸ ︷︷ ︸
k∈I1,|I1|=L≤2K

,

where Q ≥ S1 + 1 and Z + L = S1 + S2 + K − Q (since |C1| = S1 + S2 + K).
Let’s consider all the options that u1 can take.

If u1 ≥ 0:

F2(C1, u1) ≥ QB ≥ (S1 + 1)B = S1B + B

= S1B + KD +
1
2

2K∑

j=1

xj + 1 > S1B + KD +
1
2

2K∑

j=1

xj = A.

If u1 = −B:

F2(C1, u1) ≥ (Z + L)B = (S1 + S2 + K − Q)B
≥ (S1 + S2 + K − 2S1)B = (5K + 2)B > (4K + 1)B > A.

We have proved that for all possible values of u1, F2(C1, u1) > A. In other
words, our assumption that was made at the beginning of the proposition proof
is false. This implies that each multisubset Ci contains exactly S1 element −B
(similarly, it can be proved that the case when C2 contains more than S1 elements
is unrealizable). �
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Proposition 2. Each set Ci contains exactly S2 elements 0.

Proof. Assume that multisubset C2 contains more zero elements than C1. There-
fore, taking into account Proposition 1, C1 has following form:

C1 = {−B, . . . ,−B}︸ ︷︷ ︸
S1

∪{0, . . . , 0}︸ ︷︷ ︸
Z≤S2−1

∪{yk = xk + D}︸ ︷︷ ︸
k∈I1,|I1|=L≤2K

,

where Z ≤ S2 − 1, L + Z = S2 + K (which follows from Statement 1). It follows
from these two relations that L ≥ K + 1. Now let’s consider all options that u1

can take.
If u1 = −B:

F2(C1, u1) = ZB +
∑

i∈I1

(yi + B)

= (Z + L)B +
∑

i∈I1

yi > (Z + L)B + Lmin
k

yk ≥ (S2 + K)B + (K + 1)D

= (9K + 2)B + (K + 1)D > 4KB + (K + 1)D = S1B + KD + D

= S1B + KD + max{1
2

2K∑

j=1

xj , 2max
k

xk} + 1 > S1B + KD +
1
2

2K∑

j=1

xj = A.

If u1 = 0: F2(C1, 0) ≥ S1B + (K + 1)D = S1B + KD + D > A.
If u1 = yj :

F2(C1, u1) = S1(B + yj) + Zyj +
∑

i∈I1

|yi − yj | = S1B + (S1 + Z)yj +
∑

i∈I1

|yi − yj |

> S1B + S1D > S1B + (K + 1)D > A.

In this way, for all possible values of u1, we get that F2(C1, u1) > A,—it means
that our assumption that multisubset C2 contains more zero elements than C1 is
false. Therefore, each Ci contains exactly S2 zero elements. �

From Propositions 1 and 2, it follows that multisubsets Ci have the following
structure:

Ci = {−B, . . . ,−B}︸ ︷︷ ︸
S1

∪{0, . . . , 0}︸ ︷︷ ︸
S2

∪{yk = xk + D}︸ ︷︷ ︸
k∈Ii, |Ii|=K

, i = 1, 2.

Proposition 3. Suppose that C is a multisubset of Y, i.e., C has the following
structure:

C = {−B, . . . ,−B︸ ︷︷ ︸
N1

, 0, . . . , 0︸ ︷︷ ︸
N2

, ỹ1 ≤ . . . ≤ ỹN3},

where B > 0, ỹi ≥ 0. If conditions N2 + N3 > N1, N1 + N2 > 4N3, 3
2 min

k
ỹk >

max
k

ỹk are satisfied, then F2(C, u) as a function of u ∈ Y achieves its minimum
at u = 0.
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Proof. Firstly, we notice that if u /∈ C, then there exists element u∗ ∈ C such
that F2(C, u∗) ≤ F2(C, u). It can be obtained from the following relation:

F2(C, u) =
∑

z∈C
|z − u| =

∑

u<z∈C
|z − u| +

∑

u≥z∈C
|z − u|

=
∑

u<z∈C
(z − u) +

∑

u≥z∈C
(u − z) =

∑

z∈C
z − 2

∑

u≥z∈C
z −

∑

z∈C
u + 2

∑

u≥z∈C
u

=
∑

z∈C
z − 2

∑

u≥z∈C
z − (|C| − 2|{z ∈ C : z ≤ u}|) · u.

If u is located between two adjacent elements of C or lies outside the mini-
mum segment containing the entire set C, then all terms except the last one are
constant, and the sign of expression in brackets defines to which element of C
point u should be moved for reducing the value of F2. Therefore, we can assume
that u ∈ C.

Denote by S̃ =
N3∑
k=1

ỹk the sum of all nonnegative elements, by S̃i =
i∑

k=1

ỹk—

the sum of elements with indices 1, . . . , i. Firstly, we compute F2(C, u) for all
possible values of u ∈ C.
If u = −B: F2(C,−B) = (N2 + N3)B + S̃.
When u = 0 we get that F2(C, 0) = N1B + S̃.
And the last case u = ỹi:

F2(C, ỹi) = N1(B + ỹi) + N2ỹi +
i−1∑

j=1

(ỹi − ỹj) +
N3∑

j=i+1

(ỹj − ỹi)

= N1B + (N1 + N2)ỹi + (i − 1)ỹi − S̃i−1 + (S̃ − S̃i) − (N3 − i)ỹi
= N1B + (N1 + N2 + i − 1 − N3 + i)ỹi + S̃ − S̃i − S̃i−1

= N1B + (N1 + N2 + 2i − N3)ỹi + S̃ − 2S̃i.

If we show that F2(C,−B) > F2(C, 0) and F2(C, ỹi) > F2(C, 0), then the
current proposition will be proved.

Indeed, F2(C,−B)−F2(C, 0) = (N2+N3−N1)B > 0 since N2+N3−N1 > 0.
The second inequality is proved in a similar way:

F2(C, ỹi) − F2(C, 0) = (N1 + N2 + 2k − N3)ỹi − 2S̃i

> (N1 + N2 − N3)min
k

ỹk − 2N3 max
k

ỹk > (4N3 − N3)min
k

ỹk − 2N3 max
k

ỹk

= 2N3(
3
2

min
k

ỹk − max
k

ỹk) > 0.

Thus, the proposition is proved. �

Note that the requirements of Proposition 3 are satisfied for each multisubset
Ci, as S2 + K = 9K + 2 > 4K = S1, S1 + S2 = 12K + 2 > 4K, and 3

2 min
k

yk ≥
1
2D + D > max

k
xk + D = max

k
yk. Consequently, centers u1, u2 can be set equal

to zero.
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Compute F2(Ci, ui):

F2(Ci, ui) = S1B +
∑

k∈�i

yk = S1B + KD +
∑

k∈Ii

xk ≤ S1B + KD +
1
2
S.

As a result we get that
∑
k∈Ii

xk ≤ 1
2S, i = 1, 2. Recalling that

∑
k∈I1

xk +

∑
k∈I2

xk = S, we get
∑

k∈I1

xk =
∑

k∈I2

xk =
1
2
S. So we showed that Si = {xk : k ∈

Ii}, i = 1, 2, is the solution to Problem PARTITION. ��

3.3 Problem 3

Problem 3 in the form of a decision problem is given below.

Problem 3A. Given an N-element set Y = {y1, . . . , yN} ∈ R
d, numbers A ∈ R+

and M ∈ N. Question: are there non-empty disjoint subsets C1, C2 ⊂ Y such that

min (|C1|, |C2|) ≥ M (13)

and
F3 (Ci) = F (Ci, ȳ(Ci)) ≤ A, i = 1, 2. (14)

Theorem 3. Problem 3A is NP-complete even in the one-dimensional case.

Proof. Given an arbitrary instance X = {x1, . . . , x2K} of Problem PARTI-
TION, we construct the following instance of Problem 3A (Fig. 5). In Prob-
lem 3A, we put Y = {−B,−B, y1, . . . , y2K}, M = K + 1, where

B =
1
2

2K∑

i=1

yi, yi = xi + D, D =
1

2 (K + 1)
·
2K∑

i=1

xi, A =
2K∑

i=1

yi.

Next, we show that in the constructed instance of Problem 3A, multisubsets
that satisfy inequalities (13) and (14) exist if and only if in Problem PARTI-
TION, there exists a partition into multisubsets such that equality (6) holds.

⇐: Suppose that the required multisubsets exist in Problem PARTITION,

i.e., there exist S1 and S2 such that |S1| = |S2| and
∑

x∈Si

x = 1
2

2K∑
k=1

xk, i = 1, 2.

For S1 and S2 there exist sets I1, I2 of indices such that

Si = {xk : k ∈ Ii}, i = 1, 2. (15)

Define the multisubsets for Problem 3A as Ci = {yk : k ∈ Ii} ∪ {−B},
k = 1, 2, and prove that conditions (13) and (14) are satisfied.

Indeed, min (|C1|, |C2|) = min (|I1|, |I2|) = K + 1 ≥ M ; therefore, (13) is
satisfied.
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Fig. 5. Reduction for Problem 3A.

To check condition (14), we first compute the centroids C̄i := ȳ(Ci):

(K + 1) C̄i = −B +
∑

k∈Ii

yk = −1

2

2K∑

k=1

yk +
∑

k∈Ii

yk

= −1

2

2K∑

k=1

xk − KD +
∑

k∈Ii

xk +KD = 0, i = 1, 2. (16)

The former equation follows from (15) and definitions of yi and B. From
(16), it follows that the centroids of multisubsets C1, C2 are equal to zero. Then
we estimate the left-hand side of (14):

F3 (Ci) =
∑

y∈Ci

|y − C̄i| =
∑

y∈Ci

|y| = B +
∑

k∈Ii

|yk|

=
1
2

2K∑

k=1

xk + KD +
∑

k∈Ii

(xk + D) =
2K∑

k=1

xk + 2KD = A.

Therefore, condition (14) is also satisfied, and the required multisubsets in
Problem 3A exist.

⇐: Now suppose that the multiset Y in Problem 3A has required multisubsets
C1, C2 which satisfy conditions (13) and (14).

Firstly let’s show that every Ci contains supplemented element −B. Assume
that both elements −B are contained in one multisubset Ci. We may assume
that i = 1. Then C1 has the following form:

C1 = {−B,−B} ∪ {yi : i ∈ I1}, |I1| = K − 1.

Now, if we recall the definition of F3(C1), we get that:

F3(C1) = 2|B + C̄1| +
∑

k∈I1

|yk − C̄1|. (17)

Firstly find out the sign of the centroid C̄1.

(K + 1)C̄1 = −2B +
∑

k∈I1

yk

= −S − 2KD + (K − 1)D +
∑

k∈I1

xk < −S − (K + 1)D + S = − (K + 1)D ≤ 0.
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As we can see, C̄1 ≤ 0 and therefore absolute values in the second sum of
the right-hand side of (17) equal yk − C̄1, because yk ≥ 0 by construction. This
implies that (17) can be extended:

F3(C1) = 2
(C̄1 + B

)
+

∑

k∈I1

(
yk − C̄1

)
= C̄1 (3 − K) + 2B +

∑

k∈I1

yk

=
3 − K

K + 1

(
−2B +

∑

k∈I1

yk

)
+ 2B +

∑

k∈I1

yk = 2
K − 1
K + 1

2K∑

i=1

yi +
4

K + 1

∑

k∈I1

yk

= 2
(

1 − 2
K + 1

) 2K∑

i=1

yi +
4

K + 1

∑

k∈I1

yk > 2
(

1 − 2
K + 1

) 2K∑

i=1

yi. (18)

Assuming without loss of generality that K > 3, we continue (18):

F3(C1) > 2
(

1 − 2
3 + 1

) 2K∑

i=1

yi =
2K∑

i=1

yi = A.

Therefore, if both elements −B are contained in C1, then F3(C1) > A. This
is a contradiction with the assumption that C1, C2 satisfy condition (14). Thus,
every multisubset Ci contains one element −B.

Let Ci = {−B} ∪ {yk : k ∈ Ii}, i = 1, 2. We show that Si = {xk : k ∈ Ii}
is the solution to the initial Problem PARTITION instance. Suppose it isn’t,
i.e., the sum of the elements of one Si is greater than the sum of the elements

of the other. Without loss of generality, assume that
∑

x∈S2

x > 1
2

2K∑
i=1

xi. We shall

prove that F3(C2) > A.

F3(C2) = |B + C̄2| +
∑

k∈I2

|yk − C̄2|. (19)

Let’s estimate C̄2:

(K + 1) C̄2 = −B +
∑

k∈I2

yk =
∑

k∈I2

xk − 1
2
S < S − 1

2
S =

1
2
S.

Therefore, C̄2 < 1
2(K+1)S = D. Then ∀k ∈ {1, ..., 2K}: yk ≥ C̄2 due to the

definition of yk. It follows that in (19) |yk − C̄2| = yk − C̄2. Using this estimate
for C̄2, (19) can be specified:

F3 (C2) =
(
B + C̄2

)
+

∑

k∈I2

(
yk − C̄2

)
= (1 − K) C̄2 − B +

∑

k∈I2

yk

= −1 − K

1 + K
B +

1
2

2K∑

i=1

yi +
2

1 + K

∑

k∈I2

yk =
1
2

2K

K + 1

2K∑

i=1

yi +
2

1 + K

∑

k∈I2

yk

>
1
2

2K∑

i=1

yi
2K

K + 1
+

1
1 + K

2K∑

i=1

yi =
2K∑

i=1

yi = A.
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This means that F3(C2) > A; therefore, assumption
∑

k∈I2

xk > 1
2

2K∑
i=1

xi is

incorrect, i.e.,
∑

k∈I2

xk ≤ 1
2

2K∑
i=1

xi. Inequality
∑

k∈I1

xk ≤ 1
2

2K∑
i=1

xi can be proved

similarly. Recalling that
∑

k∈I1

xk+
∑

k∈I2

xk =
2K∑
i=1

xi, we get that
∑

k∈I1

xk =
∑

k∈I2

xk.

Consequently, the required multisubsets S1 and S2 in Problem PARTITION
exist. ��

Thus, NP-hardness in the one-dimensional case of Problems 1–3 is proved.

Corollary 1. Problems 1–3 are NP-hard for every fixed dimension d of
Euclidean space.

Corollary 2. Problems 1–3 are NP-hard when the dimension d is a part of the
input.

For such constraints that are considered in the paper, it would be natural to
consider Problem 4, where the center of a cluster is its median.

Problem 4. Given an N-element set Y = {y1, . . . , yN} ⊂ R
d and a real number

A ∈ R+.
Find non-empty disjoint subsets C1, C2 ⊂ Y such that (1) holds and C1, C2

satisfy
F4 (Ci) = F (Ci,mi) :=

∑

y∈Ci

‖y − mi‖ ≤ A, i = 1, 2, (20)

where mi is a point minimizing
∑
y∈Ci

‖y − x‖ over x ∈ R
d.

In the one-dimensional case, this problem is equivalent to Problem 2. That
follows from the fact that in this case, there is a point in Ci which minimizes∑
y∈Ci

||y−x|| over x ∈ R
d (similarly to the beginning of the proof of Proposition 3

in Theorem 2).
Also note that all statements in the article are valid if we replace the l2 norm

by any norm that is equivalent to l2 in the one-dimensional case, for example by
the l1 (Manhattan) norm.

4 Conclusion

The paper shows NP-hardness of three previously unexplored maximin search
problems of disjoint sets in a finite set of points in Euclidean space. It is shown
that all three problems are NP-hard even in the one-dimensional case. An impor-
tant direction of further research is the construction of efficient approximate
algorithms and approximation schemes, as well as the search for subclasses of
these problems that allow the construction of efficient exact algorithms.

Acknowledgments. The study presented was supported by the Russian Foundation
for Basic Research, project 19-01-00308, 19-07-00397, and by the Russian Academy of
Science (the Program of basic research), project 0314-2019-0015.



Max-Min Problems of Searching for Two Disjoint Subsets 245

References

1. Ageev, A.A., Kel’manov, A.V., Pyatkin, A.V., Khamidullin, S.A., Shenmaier, V.V.:
Approximation polynomial algorithm for the data editing and data cleaning prob-
lem. Pattern Recogn. Image Anal. 27(3), 365–370 (2017). https://doi.org/10.1134/
S1054661817030038

2. Aggarwal, C.C.: Data Mining: The Textbook. Springer, Switzerland (2015)
3. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-of-

squares clustering. Mach. Learn. 75(2), 245–248 (2009). https://doi.org/10.1007/
s10994-009-5103-0

4. Bishop, C.M.: Pattern Recognition and Machine Learning. ISS, Springer, New York
(2006)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman, San Francisco (1979)

6. Hatami, B., Zarrabi-Zadeh, H.: A streaming algorithm for 2-center with outliers
in high dimensions. Comput. Geom. 60, 26–36 (2017). https://doi.org/10.1016/j.
comgeo.2016.07.002

7. Kaufman, L., Rousseeuw, P.J.: Clustering by means of medoids. In: Dodge, Y.
(ed.) Statistical Data Analysis based on the L1 Norm, pp. 405–416. North-Holland,
Amsterdam (1987)

8. Kel’manov, A., Khandeev, V., Pyatkin, A.: NP-hardness of some max-min clus-
tering problems. In: Evtushenko, Y., Jaćimović, M., Khachay, M., Kochetov, Y.,
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Abstract. Decentralized optimization methods have been in the focus
of optimization community due to their scalability, increasing popularity
of parallel algorithms and many applications. In this work, we study
saddle point problems of sum type, where the summands are held by
separate computational entities connected by a network. The network
topology may change from time to time, which models real-world network
malfunctions. We obtain lower complexity bounds for algorithms in this
setup and develop near-optimal methods which meet the lower bounds.

Keywords: Saddle-point problem · Distributed optimization ·
Decentralized optimization · Time-varying network · Lower and upper
bounds

1 Introduction

Distributed algorithms are an important part of solving many applied optimiza-
tion problems [21,22,31]. They help to parallelize the computation process and
make it faster. In this paper, we focus on the distributed methods for the saddle
point problem:

min
x∈X

max
y∈Y

f(x, y) :=
1
M

M∑

m=1

fm(x, y). (1)

In this formulation of the problem, the original function f is divided into M
parts, each of part fm is stored on its own local device. Therefore, only the
device with the number m knows information about fm. Accordingly, in order
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to obtain complete information about the function f , it is necessary to estab-
lish a communication process between devices. This process can be organized in
two ways: centralized and decentralized. In a centralized approach, communica-
tion takes place via a central server, i.e. all devices can send some information
about their local fm function to the central server, the server collects informa-
tion from the devices and does some additional calculations, and then can send
new information or request to the devices. Then the process continues. With this
approach, one can easily write centralized gradient descent for distributed sum
minimization: minx g(x) := 1

M

∑M
m=1 gm(x). All devices compute local gradients

in the same current point and then send these gradients to the server, in turn, the
server averages the gradients and makes a gradient descent step, thereby obtain-
ing a new current point, which it sends to the devices. Centralized methods for
(1) are discussed in detail, for example, in [5]. However, centralized approach
has several problems, e.g. synchronization drawback or high requirements to the
server. Possible approach to deal with these drawbacks is to use decentralized
architecture [3]. In this case, there is no longer any server, and the devices are
connected into a certain communication network and workers are able to com-
municate only with their neighbors and communications are simultaneous. The
most popular and frequently used communication methods are the gossip proto-
col [7,13,24] and accelerated gossip protocol [30,32]. In the gossip protocol, nodes
iteratively exchange data with their immediate neighbors using a communication
matrix and in this way the information diffuses over the network. Decentralized
algorithms are already widely developed for minimization problems, but not for
saddle point problems. Meanwhile, saddle-point problems have a lot of applied
applications, including those that require distributed computing. These are the
already well-known and classic matrix game and Nash equilibrium [9,26], as well
as modern problems in adversarial training [2,10], image deconvolution [8] and
reinforcement, statistical learning [1,11].

This paper closes some of the open questions in decentralized saddle point
problems.

1.1 Our Contribution

In particular, our contribution can be briefly described as follows

Lower Bounds. We present lower bounds for decentralized smooth strongly-
convex-strongly-concave and convex-concave saddle-point problems on the time-
varying networks. The lower bounds are derived under the assumption that the
network is always a connected graph.

Near-Optimal Algorithm. The paper constructs a near-optimal algorithm that
meets the lower bounds. The analysis of the algorithm is carried out for smooth
strongly-convex-strongly-concave and convex-concave saddle-point problems

See our results in the column “time-varying” of Table 1.
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1.2 Related Works

Our work is one of the first dedicated to decentralized saddle problems over time-
varying networks. Among other works, we can highlight the following paper [4].
This work looks at a more general time-varying setting and suggests a new
method. The upper bounds for their method are worse than for our method. We
also mention papers on related topics:

Decentralized Saddle Point Problems
The next work is devoted to centralized and decentralized distributed saddle
problems [5]. It carries out lower bounds and optimal algorithms in the case
when the communication network is constant (non-time-varying). See Table 1
for comparison our results for time-varying topology and results from [5] for
constant network.

Also note the following works devoted to decentralized min-max problems.
In [19,27] one can find algorithms for saddle point problems on fixed network.
In paper [27], it is near-optimal. Lower and upper bounds for decentralized min-
max problems under data similarity condition are given in [6]. [18] studies the
convergence of a decentralized methods for stochastic saddle point problems with
homogeneous data on devices (all local functions fm are the same).

Minimization on Time-Varying Networks
Decentralized methods are built upon combining iterations of classical first-order
methods with communication steps. In the case of time-varying networks, a non-
accelerated communication procedure is employed. Paper [24] can be named
as an initial work on decentralized sub-gradient methods, and [23] proposed
DIGing – the first-order minimization algorithm with linear convergence over
time-varying networks. After that, PANDA, which is a dual method capable
of working over time-varying graphs, was proposed in [20]. Analysis of DIGing
and PANDA assumes that the underlying network is B-connected, that is, the
union of B consequent networks is connected, while the network is allowed to
be disconnected at some steps. Considering the time-varying graphs which stay
connected at each iteration, decentralized Nesterov method [29] has an acceler-
ated rate under the condition that graph changes happen rarely enough, ADOM
[16] and ADOM+ [15] are first-order optimization methods which achieve lower
complexity bounds [15]. APM-C [28], Acc-GT [17] are accelerated methods over
time-varying graphs, as well. The mentioned results are devoted to minimization
algorithms and can be generalized to saddle-point problems. In this paper we
generalize lower bounds of [15] to min-max problems and obtain an algorithm
which reaches them up to a logarithmic factor.

2 Preliminaries

We use 〈z, u〉 :=
∑d

i=1 ziui to denote standard inner product of z, u ∈ R
d. It

induces �2-norm in R
d in the following way ‖z‖ :=

√〈z, z〉. We also introduce
the following notation projZ(z) = minu∈Z ‖u − z‖ – the Euclidean projection
onto Z.
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Table 1. Lower and upper bounds for distributed smooth stochastic strongly-convex–
strongly-concave (sc) or convex-concave (c) saddle-point problems in centralized and
decentralized cases. Notation: L – smothness constant of f , μ – strongly-convex-
strongly-concave constant, R2

0 = ‖x0 −x∗‖2
2 +‖y0 −y∗‖2

2, D – diameter of optimization
set, χ – condition number of communication graph (in time-varying case maximum of
all graphs), K – number of communication rounds. In the case of upper bounds in the
convex-concave case, the convergence is in terms of the ”saddle-point residual”, in the
rest – in terms of the (squared) distance to the solution.

Time-varying network Constant network [5]

Lower

sc Ω
(
R2

0 exp
(
− μK

256Lχ

))
Ω

(
R2

0 exp
(
− μK

128L
√

χ

))

c Ω
(

LD2χ
K

)
Ω

(
LD2√

χ

K

)

Upper

sc Õ
(
R2

0 exp
(
− μK

8Lχ

))
Õ

(
R2

0 exp
(
− μK

8L
√

χ

))

c Õ
(

LD2χ
K

)
Õ

(
LD2√

χ

K

)

We work with the problem (1), where the sets X ⊆ R
nx and Y ⊆ R

ny are
convex sets. Additionally, we introduce the set Z = X × Y, z = (x, y) and the
operator F :

Fm(z) = Fm(x, y) =
( ∇xfm(x, y)

−∇yfm(x, y)

)
. (2)

This notation is needed for shortness.

Problem Setting. Next, we introduce the following assumptions:

Assumption 1(g). f(x, y) is L - smooth, if for all z1, z2 ∈ Z
‖F (z1) − F (z2)‖ ≤ L‖z1 − z2‖. (3)

Assumption 1(l). For all m, fm(x, y) is Lipschitz continuous with constant Lmax,
it holds that for all z1, z2 ∈ Z

‖Fm(z1) − Fm(z2)‖ ≤ Lmax‖z1 − z2‖. (4)

Assumption 2(s). f(x, y) is strongly-convex-strongly-concave with constant μ, if
for all z1, z2 ∈ Z

〈F (z1) − F (z2), z1 − z2〉 ≥ μ‖z1 − z2‖2. (5)

Assumption 2(c). f(x, y) is convex-concave, if f(x, y) is strongly-convex-
strongly-concave with 0.

Assumption 3. Z – compact bounded, i.e. for all z, z′ ∈ Z
‖z − z′‖ ≤ D. (6)
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All assumptions are standard in the literature.

Network Setting. In each moment of time (iteration) t, the communication net-
work is modeled as a connected, undirected graph graph G(t) � (V, E(t)), where
V := {1, . . . ,M} denotes the vertex set–the set of devices (does not change in
time) and E(t) := {(i, j) | i, j ∈ V} represents the set of edges–the communica-
tion links at the moment t; (i, j) ∈ E(t) iff there exists a communication link
between devices i and j in moment t.

As mentioned earlier, the gossip protocol is the most popular communica-
tion procedures in decentralized setting. This approach uses a certain matrix
W . Local vectors during communications are “weighted” by multiplication of a
vector with W . The convergence of decentralized algorithms is determined by
the properties of this matrix. Therefore, we introduce the following assumption:

Assumption 4. We call a matrix W (t) a gossip matrix at the moment t if it
satisfies the following conditions: 1) W (t) is an M × M symmetric, 2) W (t) is
positive semi-definite, 3) the kernel of W (t) is the set of constant vectors, 4)
W (t) is defined on the edges of the network at the moment t: Wij(t) 
= 0 only if
i = j or (i, j) ∈ E(t).

Let λ1(W (t)) ≥ . . . ≥ λM (W (t)) = 0 be the spectrum of W (t), and define
condition number χ = maxt χ(W (t)) = maxt

λ1(W (t))
λM−1(W (t)) . Note that in practice

we use not the matrix W (t), but W̃ (t) = I − W (t)
λ1(W (t)) , since this type of matrices

are used in consensus algorithms [7]. To estimate the convergence speed, we
introduce

ρ = max
t

λ2(W̃ (t)) = max
t

[
1 − λM−1(W (t))

λ1(W (t))

]
= max

t

[
1 − 1

χ(W (t))

]

= 1 − 1
maxt χ(W (t))

= 1 − 1
χ

.

3 Main Part

We divide our contribution into two main parts, first we discuss lower bounds
for decentralized saddle point problems over time-varying graphs. In the second
part, we present an algorithm that achieves the lower bounds (up to logarithmic
factors and numerical constants).

3.1 Lower Bounds

Before presenting lower bounds, we must restrict the class of algorithms for
which our lower bounds are valid. For this we introduce the following black-box
procedure.

Definition 1. Each device m has its own local memories Mx
m and My

m for the
x- and y-variables, respectively–with initialization Mx

m = My
m = {0}. Mx

m and
Mx

m are updated as follows:
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• Local computation: Each device m computes and adds to its Mx
m and

My
m a finite number of points x, y, each satisfying

x ∈ span
{
x′ , ∇xfm(x′′, y′′)

}
, y ∈ span

{
y′ , ∇yfm(x′′, y′′)

}
, (7)

for given x′, x′′ ∈ Mx
m and y′, y′′ ∈ My

m.
• Communication: Based upon communication round among neighbouring

nodes at the moment t, Mx
m and My

m are updated according to

Mx
m := span

⎧
⎨

⎩
⋃

(i,m)∈E(t)
Mx

i

⎫
⎬

⎭ , My
m := span

⎧
⎨

⎩
⋃

(i,m)∈E(t)
My

i

⎫
⎬

⎭ . (8)

• Output: The final global output at the current moment of time is calculated
as:

x ∈ span

{
M⋃

m=1

Mx
m

}
, y ∈ span

{
M⋃

m=1

My
m

}
.

This definition includes all algorithms capable of making local gradient
updates, as well as exchanging information with neighbors. Notice that the pro-
posed oracle builds on [30] for minimization problems over networks.

Theorem 1. For any L and μ , there exists a saddle point problem in the form
(1) with Z = R2d(where d is sufficiently large) and non-zero solution y∗. All local
functions fm of this problem are L-smooth, μ-strongly-convex-strongly-concave.
Then, for any χ ≥ 1, there exists a sequence of gossip matrices W (t) over the
connected (at each moment) graph G(t), satisfying Assumption 4 with condition
number χ, such that any decentralized algorithm satisfying Definition 1 and using
the gossip matrices W (t) produces the following estimate on the global output
z = (x, y) after K communication rounds:

‖zK − z∗‖2 = Ω

(
exp

(
− 256μ

L − μ
· K

χ

)
‖y∗‖2

)
.

The idea of finding lower bounds is to construct an example of “bad” func-
tions and the “critical” location of these functions on the nodes. In papers [5,6],
lower bounds for decentralized saddle point problems (but on fixed communi-
cation networks) were already investigated. Examples of “bad” functions and
their analysis can be taken from these works. An example of “bad” time-varying
topology of the node connection is a star with a changing center. Obtaining lower
bounds using such varying networks for minimization problems was obtained in
[15]. To prove Theorem 1 we need to combine results [5] and [15].

The following statement interprets Theorem 1 in terms of the number of local
computations on each device and the number of communications between them.
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Corollary 1. In the setting of Theorem 1, the number of communication rounds
required to obtain a ε-solution is lower bounded by

Ω

(
χ

L

μ
· log

(‖y∗‖2
ε

))
.

Additionally, we can get a lower bound for the number of local calculations on
each of the devices:

Ω

(
L

μ
· log

(‖y∗‖2
ε

))
.

Also we want to find lower bounds for the case of (non strongly) convex-
concave problems, one can use regularization and consider the following objective
function

f(x, y) +
ε

4D2
· ‖x − x0‖2 − ε

4D2
· ‖y − y0‖2,

which is strongly-convex-strongly-concave with constant μ = ε
2D2 , where ε is a

precision of the solution and D is the diameter of the sets X and Y. The resulting
new SPP problem is solved to ε/2-precision in order to guarantee an accuracy
ε in computing the solution of the original problem. Therefore, we can easily
deduce the lower bounds for convex-concave case

Ω

(
χ

LD2

ε

)
communication rounds and Ω

(
LD2

ε

)
local computations.

See Table 1 to compare with lower bounds for constant networks.

3.2 Near-Optimal Algorithm

In this part, we present an Algorithm that achieves lower bounds (up to loga-
rithmic terms). Our Algorithm uses an auxiliary procedure for communication.
This is a classic procedure - Gossip Algorithm.

Algorithm 1. Gossip Algorithm (Gossip)
Parameters: Vectors z1, ..., zM , communic. rounds H.
Initialization: Construct matrix z with rows zT

1 , ..., zT
M .

Choose z0 = z.
for h = 0, 1, 2, . . . , H do

zh+1 = W̃ (h) · zh

end for
Output: rows z1, ..., zM of zH+1 .

The essence of the Gossip is very simple. Initially, there are vectors z1 and
zM , which are stored on their devices. Our goal is to get a vector close to the
z̄ = 1

M

∑M
m=1 zm vector on all devices. At each iteration, each device exchange
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local vectors with its neighbors, and then modify its local vector by averaging
local vector and vectors of neighbors with weights from the matrix W (h).

We are now ready to present our main algorithm. It is based on the classical
method for smooth saddle point problems - Extra Step Method (Mirror Prox)
[12,25]. With the right choice of H, we can achieve averaging of all vectors with
good accuracy. In particular, we can assume that zk

1 ≈ . . . ≈ zk
M . For more

details about the choice of H and a detailed analysis of the algorithm (taking
into account that in the general zk

1 
= . . . 
= zk
M ), see in the full version of the

paper.

Algorithm 2. Time-Varying Decentralized Extra Step Method (TVDESM)
Parameters: Stepsize γ ≤ 1

4L
, number of Gossip steps H.

Initialization: Choose (x0, y0) = z0 ∈ Z, z0
m = z0.

for k = 0, 1, 2, . . . , do
Each machine m computes ẑ

k+1/2
m = zk

m − γ · Fm(zk
m)

Communication: z̃
k+1/2
1 , . . . , z̃

k+1/2
M =Gossip(ẑ

k+1/2
1 , . . . , ẑ

k+1/2
M , H)

Each machine m computes z
k+1/2
m = projZ(z̃

k+1/2
m ),

Each machine m computes ẑk+1
m = zk

m − γ · Fm(z
k+1/2
m )

Communication: z̃k+1
1 , . . . , z̃k+1

M =Gossip(ẑk+1
1 , . . . , ẑk+1

M , H)
Each machine m computes zk+1

m = projZ(z̃k+1
m )

end for

The analysis of Algorithm 2 is derived from the analysis of classical extrastep
method. We study the convergence properties of sequence {z̄k}∞

k=0, where
z̄k = 1

M

∑M
m=1 zk

m. Note that z̄k is not held at any agent; instead, this quantity is
only used in the analysis. Algorithm 2 employs gossip averaging after each extra-
step. Therefore, the method uses an approximate value of F (z̄k) when performing
updates, and the approximation error is driven by the number of gossip iterations
H. The analysis of Algorithm 2 comes down to studying extrastep method which
uses inexact values of F at each iteration. Given a target accuracy ε, we choose
the number of gossip iterations H proportional to ε. Since Gossip (Algorithm
1) is a linearly convergent method, H is proportional to log(1/ε). As a result, we
have a log2(1/ε) term in the number of communication rounds of Algorithm 2.

Theorem 2. Let {zk
m}K

k≥0 denote the iterates of Algorithm 2 for solving problem
(1) after K communication rounds. Let Assumptions 1(g,l) and 4 be satisfied.
Then, if γ ≤ 1

4L , we have the following estimates in
• μ-strongly-convex–strongly-concave case (Assumption 2(s)):

‖z̄K+1−z∗‖2=Õ
(

‖z0 − z∗‖2 exp
(

− μK

8Lχ

))
,

• convex–concave case (Assumption 2 and 3):

gap(z̄K+1
avg ) = Õ

(
LΩ2

zχ

K

)
,
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where z̄t = 1
M

M∑
m=1

zt
m, z̄k+1

avg = 1
M(k+1)

k∑
t=0

M∑
m=1

z
t+1/2
m and

gap(z) = max
y′∈Y

f(x, y′) − min
x′∈X

f(x′, y).

Corollary 2. In the setting of Theorem 2, the number of communication rounds
required for Algorithm 2 to obtain a ε-solution is upper bounded by

Õ
(

χ
L

μ

)

in μ-strongly-convex–strongly-concave case and

Õ
(

χ
LD2

ε

)

in convex-concave case. Additionally, one can obtain upper bounds for the number
of local calculations on each of the devices:

O
(

L

μ
· log

(‖z0 − z∗‖2
ε

))

in μ-strongly-convex–strongly-concave case and

O
(

LD2

ε

)

in convex-concave case.

Corollary 2 illustrates that Algorithm 2 achieves lower bounds both for
convex-concave and μ-strongly-convex-strongly-concave cases up to a logarith-
mic factor (the lower bounds are determined in Corollary 1). It can be observed
that the complexity bounds are constituted of two factors: χ representing net-
work connectivity and L/μ of LD2/ε corresponding to the objective function.
This effect is typical for decentralized optimization (see i.e. [30]). On the con-
trary to distributed minimization tasks, the dependence on function condition
number L/μ is unimprovable for min-max problems (i.e. this factor cannot be
enhanced to

√
L/μ). Moreover, the dependence on χ cannot be improved to

√
χ,

since we focus on time-varying networks [15].

4 Conclusion

In conclusion, we briefly summarize the contributions of this paper and discuss
the directions for future work. Our findings consist of two parts: lower bounds
and optimal (up to a logarithmic factor) algorithms.

First, we derived the lower bounds for the classes of convex-concave and
strongly-convex-strongly-concave min-max problems over time-varying graphs.
The graph is assumed to be connected at each communication round. However,
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we studied only one class of time-varying networks. Other classes are connected
to different assumptions on the network structure. In particular, in B-connected
networks [23] the graph can be disconnected at some times, but the union of any
B consequent graphs must be connected. Yet another possible assumption is the
randomly changing graph with a contraction property of W in expectation [14].
Developing lower bounds for min-max problems for these two classes is an open
question in decentralized optimization.

Second, we proposed a near-optimal algorithm with a gossip subroutine
resulting in squared logarithmic factor. Developing an algorithm without an
additional logarithmic factor would close the gap in theory and result in a more
practical algorithm with less parameters to fine-tune. Possible directions for
developing such an algorithm are generalizations of dual-based approaches for
minimization [16,20] and gradient-tracking [20,23].

Finally, the comparison of our algorithm to existing works requires additional
numerical experiments, which is left for future work.
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Abstract. We study the problem of decentralized optimization with
strongly convex smooth cost functions. This paper investigates accel-
erated algorithms under time-varying network constraints. In our app-
roach, nodes run a multi-step gossip procedure after taking each gra-
dient update, thus ensuring approximate consensus at each iteration.
The outer cycle is based on accelerated Nesterov scheme. Both compu-
tation and communication complexities of our method have an optimal
dependence on global function condition number κg. In particular, the
algorithm reaches an optimal computation complexity O(

√
κg log(1/ε)).

Keywords: Distributed optimization · Time-varying network

1 Introduction

In this work, we study a sum-type minimization problem

f(x) =
1
n

n∑

i=1

fi(x) → min
x∈Rd

. (1)

Convex functions fi are stored separately by nodes in a communication net-
work, which is represented by an undirected graph G = (V,E). This type of
problems arise in distributed machine learning, drone or satellite networks, sta-
tistical inference [1] and power system control [2]. The computational agents
over the network have access to their local fi and can communicate only with
their neighbors, but still aim to minimize the global objective in (1).
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The basic idea behind approach of this paper is to reformulate problem (1)
as a problem with linear constraints. Let us assign each agent in the network a
personal copy of parameter vector xi and introduce

X = (x1 . . . xn)� ∈ R
n×d, F (X) =

n∑

i=1

fi(xi).

Now we equivalently rewrite problem (1) as

min
X

F (X) =
n∑

i=1

fi(xi) s.t. x1 = . . . = xn. (2)

This reformulation increases the number of variables, but induces additional con-
straints at the same time. Problem (2) has the same optimal value as problem (1).

Let us denote the set of consensus constraints C = {x1 = . . . = xn}. Also,
for each X ∈ R

n×d denote average of its columns x = 1
n

∑n
i=1 xi and introduce

its projection onto the constraint set:

X =
1
n
1n1�

nX = ΠC(X) = (x . . . x)�,

where 1n = (1 . . . 1)� is a vector consisting of n ones. Note that C is a linear
subspace in R

n×d, and therefore projection operator ΠC(·) is linear.
Decentralized optimization methods aim at minimizing the objective function

and maintaining consensus accuracy between nodes. The optimization part is
performed by using gradient steps. At the same time, keeping every agent’s
parameter vector close to average over the nodes is done via communication
steps. Alternating gradient and communication updates allows both to minimize
the objective and control consensus constraint violation.

In a centralized scenario, there exists a server that is able to communicate
with every agent in the network. In particular, a common parameter vector is
maintained at all of the nodes. However, in decentralized setting it is only possi-
ble to ensure that agent’s vectors are approximately equal with desired accuracy.
The algorithm studied in this paper runs a sequence of communication rounds
after every optimization step. We refer to this series of communications as a
consensus subroutine. Such information exchange allows to reach approximate
consensus between nodes after each gradient update, while the accuracy is con-
trolled by the number of communication rounds.

On the one hand, a method that employs a consensus subroutine after each
gradient update mimics a centralized algorithm. The difference is that in pres-
ence of a master node all computational entities have an opportunity to hold
strictly equal copies of the variable, while in decentralized case consensus con-
straints are satisfied only with nonzero accuracy. On the other hand, consensus
subroutine may be interpreted as an inexact projection onto the constraint set
C, which is done in a number of iterations. Each of iterations represented by a
communication round. Therefore, our approach fits the inexact oracle framework
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that has been studied in [3,4]. We note that a similar approach to decentralized
optimization is studied in [5], but this paper studies only time-static graphs.

We aim at building a first-order method with trajectory lying in neighbor-
hood of C. A simple example would be GD with inexact projections.

Xk+1 ≈ ΠC(Xk − γ∇F (Xk)) = X
k − γ∇F (Xk), (3)

where ∇F (Xk) = (∇f1(xk
1) . . . ∇fn(xk

n))� denotes the gradient of F .
Algorithm with update rule 3 can be viewed as a gradient descent with an

inexact oracle. If the oracle was exact, the update rule would write as

X
k+1

= X
k − γ∇F (X

k
),

thus making the method trajectory stay precisely in C. In this particular example,
inexact gradient ∇F (Xk) approximates exact gradient ∇F (X

k
).

Throughout the paper, 〈·, ·〉 denotes the inner product of vectors or matrices.
Correspondingly, by ‖·‖ we denote a 2-norm for vectors or Frobenius norm for
matrices.

1.1 Related Work

A decentralized algorithm makes two types of steps: local updates and informa-
tion exchange. The complexity of such methods depends on objective condition
number κ and a term χ representing graph connectivity (namely, the eigengap
of a graph-associated communication matrix).

Local steps may use gradient [6–12] or sub-gradient [13] computations. In
primal-only methods, the agents compute gradients of their local functions and
alternate taking gradient steps and communication procedures. Under cheap
communication costs, it may be beneficial to replace a single consensus iteration
with a series of information exchange rounds. Such methods as MSDA [14], D-NC
[15] and Mudag [11] employ multi-step gossip procedures.

Typically, non-accelerated methods need O(κχ log(1/ε)) iterations to yield a
solution with ε-accuracy [16]. Nesterov acceleration may be employed to improve
dependence on κ or χ and obtain algorithms with O(

√
κχ log(1/ε)) complexity.

In order to achieve this, one may distribute accelerated methods directly [9,11,
12,15,17] or use a Catalyst framework [18]. Accelerated methods meet the lower
complexity bounds for decentralized optimization [14,19,20].

Consensus restrictions x1 = . . . = xn may be treated as linear constraints,
thus allowing for a dual reformulation of problem (1). Dual-based methods include
dual ascent and its accelerated variants [14,21–23]. Primal-dual approaches like
ADMM [24,25] are also implementable in decentralized scenarios.

In [7], the authors developed algorithms for non-convex objectives and pro-
vided lower complexity bounds for non-convex case, as well.

Time-varying networks open a new venue in research. Changing topology
requires new approaches to decentralized methods and a more complicated the-
oretical analysis. The first method with provable linear convergence was proposed
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in [6]. Such primal algorithms as Push-Pull Gradient Method [8] and DIGing [6]
are robust to network changes and have theoretical guarantees of convergence
over time-varying graphs. Recently, a dual method for time-varying architectures
was introduced in [26].

1.2 Summary of Contributions

This paper focuses on smooth strongly convex objectives. Our analysis is
bounded to the following

Assumption 1. For every i = 1, . . . , n, function fi is differentiable, μi-strongly
convex and Li-smooth (μi, Li > 0).

Under this assumption it holds

– (local constants) F (X) is μl-strongly convex and Ll-smooth on R
n×d, where

μl = min
i

μi, Ll = max
i

Li.

– (global constants) F (X) is μg-strongly convex and Lg-smooth on C, where
μg = 1

n

∑n
i=1 μi, Lg = 1

n

∑n
i=1 Li.

The global conditioning may be significantly better than local (see i.e. [14] for
details). The analysis shows that performance of Algorithm 2 depends on global
constants. Our approach uses multi-step gossip averaging, and the analysis is
based on the inexact oracle framework.

The proposed algorithm (Algorithm 2) requires O(√κgχ log2(1/ε)) commu-
nication rounds, where κg denotes the (global) condition number of f and χ is a
term characterizing graph connectivity, which is defined later in the paper. For
a static graph, χ = 1/γ, where γ denotes the normalized eigengap of communi-
cation matrix associated with the network. Our result has an accelerated rate
on function condition number (the number of iterations depends on

√
κg, not

κg) and is derived for time-varying networks.
Our complexity estimate includes the condition number κg, i.e. global strong

convexity and smoothness constants instead of local ones. If the data among the
nodes is strongly heterogeneous, it is possible that κl 
 κg, where κl is the local
condition number [14,19,27]. Therefore, the method with complexity depending
on κg may perform significantly better. A recently proposed method Mudag [11]
has a complexity depending on √

κg, as well, but the method is designed for
time-static graphs.

The lower bound for number of communications is Ω(
√

κlχ log(1/ε)) [14].
Our result is obtained for time-varying graphs and has a worse dependence on
χ. On the other hand, we derive a better dependence on condition number, i.e.
we use κg instead of κl. However, this by no means breaks the lower bounds.
First, our result includes log2(1/ε) instead of log(1/ε). Second, a function in
[14] on which the lower bounds are attained has κg ∼ κl. Namely, for the bad
function it holds κg � κl/16 (see Appendix A.1 in [14] for details).
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2 Inexact Oracle Framework

In this section, we describe the inexact oracle construction for the objective
function f .

2.1 Preliminaries

Initially we recall the definition of (δ, L, μ)-oracle from [4]. Let h(x) be a convex
function defined on a convex set Q ⊆ R

m. We say that (hδ,L,μ(x), sδ,L,μ(x)) is a
(δ, L, μ)-model of h(x) at point x ∈ Q if for all y ∈ Q it holds

μ

2
‖y − x‖2 � h(y) − (hδ,L,μ(x) + 〈sδ,L,μ(x), y − x〉) � L

2
‖y − x‖2 + δ. (4)

2.2 Inexact Oracle for F

Consider x, y ∈ R
d and define X = (x . . . x)�, Y = (y . . . y)� ∈ C. Let X ∈ R

n×d

be such that ΠC(X) = X and
∥∥X − X

∥∥2 � δ′.

Lemma 1. Define

δ =
1
2n

(
Ll

2

Lg
+

2Ll
2

μg
+ Ll − μl

)
δ′, (5)

fδ,L,μ(x,X) =
1
n

[
F (X) +

〈∇F (X),X − X
〉

+
1
2

(
μl − 2Ll

2

μg

)∥∥X − X
∥∥2

]
,

gδ,L,μ(x,X) =
1
n

n∑

i=1

∇fi(xi).

Then (fδ,L,μ(x,X), gδ,L,μ(x,X)) is a (δ, 2Lg, μg/2)-model of f at point x, i.e.

μg

4
‖y − x‖2 � f(y) − fδ,L,μ(x,X) − 〈gδ,L,μ(x,X), y − x〉 � Lg ‖y − x‖2 + δ.

Proof. We aim at obtaining estimates for F (Y) similar to (4). First, we get a
lower bound on F (Y).

F (Y) � F (X) +
[〈∇F (X),X − X

〉
+

μl

2

∥∥X − X
∥∥2

]
+

[〈∇F (X),Y − X
〉
+

μg

2

∥∥Y − X
∥∥2

]

=
[
F (X) +

〈∇F (X),X − X
〉
+

μl

2

∥∥X − X
∥∥2

]
+

〈∇F (X),Y − X
〉

+
〈∇F (X) − ∇F (X),Y − X

〉
+

μg

2

∥∥Y − X
∥∥2

. (6)

Let us lower bound the term
〈∇F (X) − ∇F (X),Y − X

〉
using Young inequality

〈a, b〉 � ‖a‖2

2p + p
2 ‖b‖2 , p > 0.

〈∇F (X) − ∇F (X),Y − X
〉

� − 1
2p

∥∥∇F (X) − ∇F (X)
∥∥2 − p

2

∥∥Y − X
∥∥2

� −Ll
2

2p

∥∥X − X
∥∥2 − p

2

∥∥Y − X
∥∥2

.
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Returning to (6) and noting that
〈∇F (X),Y − X

〉
=

〈∇F (X),Y − X
〉
, we get

F (Y) �
[
F (X) +

〈∇F (X),X − X
〉

+
1
2

(
μl − Ll

2

p

) ∥∥X − X
∥∥2

]

+
〈∇F (X),Y − X

〉
+

μg − p

2

∥∥Y − X
∥∥2

(7)

Second, we get an upper estimate on F (Y).

F (Y) �
[
F (X) +

〈∇F (X),X − X
〉
+

Ll

2

∥∥X − X
∥∥2

]
+

[〈∇F (X),Y − X
〉
+

Lg

2

∥∥Y − X
∥∥2

]

=

[
F (X) +

〈∇F (X),X − X
〉
+

Ll

2

∥∥X − X
∥∥2

]
+

〈∇F (X),Y − X
〉

+
〈∇F (X) − ∇F (X),Y − X

〉
+

Lg

2

∥∥Y − X
∥∥2

. (8)

Analogously, we estimate the term
〈∇F (X) − ∇F (X),Y − X

〉
with Young

inequality.

〈∇F (X) − ∇F (X),Y − X
〉

� 1
2q

∥∥∇F (X) − ∇F (X)
∥∥2

+
q

2

∥∥Y − X
∥∥2

� Ll
2

2q

∥∥X − X
∥∥2

+
q

2

∥∥Y − X
∥∥2

, q > 0.

Plugging it into (8) and once again using
〈∇F (X),Y − X

〉
=

〈∇F (X),Y − X
〉

yields

F (Y) �
[
F (X) +

〈∇F (X),X − X
〉

+
1
2

(
μl − Ll

2

p

) ∥∥X − X
∥∥2

]

+
〈∇F (X),Y − X

〉
+

Lg + q

2

∥∥Y − X
∥∥2

+
1
2

(
Ll

2

q
+

Ll
2

p
+ Ll − μl

)∥∥X − X
∥∥2

(9)

Consequently, smoothness and strong convexity constants for inexact oracle are
L = Lg+q, μ = μg−p, respectively. Choosing q and p allows to control condition
number L/μ. Letting q = Lg, p = μg/2 leads to

L = 2Lg, (10a)
μ = μg/2. (10b)

Noting that

F (X) = nf(x), F (Y) = nf(y),
∥∥Y − X

∥∥2
= n ‖y − x‖2 ,

〈∇F (X),Y − X
〉

= n 〈gδ,L,μ(x), y − x〉
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and combining (7) and (9) leads to

μ

2
‖y − x‖2 � f(y) − fδ,L,μ(x,X) − 〈gδ,L,μ(x,X), y − x〉 � L

2
‖y − x‖2 + δ,

which concludes the proof.

3 Algorithm and Results

We take Algorithm 2 from [28] as a basis for our method. The algorithm is
designed for the inexact oracle model and achieves an accelerated rate.

Consensus Subroutine
We consider a sequence of non-directed communication graphs

{Gk =
(V,Ek)

}∞
k=0

and a sequence of corresponding mixing matrices
{
Wk

}∞
k=0

associ-
ated with it.

We impose the following

Assumption 2. Mixing matrix sequence
{
Wk

}∞
k=0

satisfies the following
properties.

– (Decentralized property) If (i, j) /∈ Ek, then [Wk]ij = 0.
– (Double stochasticity) Wk1n = 1n, 1�

nW
k = 1�

n .
– (Contraction property) There exist τ ∈ Z++ and λ ∈ (0, 1) such that for every

k � τ − 1 it holds
∥∥Wk

τX − X
∥∥ � (1 − λ)

∥∥X − X
∥∥ ,

where Wk
τ = Wk . . .Wk−τ+1.

Algorithm 1. Consensus
Require: Initial X0 ∈ C,

number of iterations K.
for k = 0, . . . , K − 1 do

Xk+1 = WkXk

end for
return XK

The contraction property in Assumption 2
generalizes several assumptions in the literature.

– Time-static connected graph: Wk = W. In
this classical case we have λ = 1 − σ2(W),
where σ2(W) denotes the second largest sin-
gular value of W.

– Sequence of connected graphs: every Gk is con-
nected. In this scenario λ = 1 − sup

k�0
σ2(Wk).

– τ -connected graph sequence (i.e. for every
k � 0 graph Gk

τ = (V,Ek ∪ Ek+1 ∪ . . . ∪
Ek+τ−1) is connected [6]). For τ -connected
graph sequences it holds 1 − λ = sup

k�0
σmax(Wk

τ − 1
n1n1�

n ).

A stochastic variant of this contraction property is also studied in [29].
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During every communication round, the agents exchange information accord-
ing to the rule

xk+1
i = wk

ii +
∑

(i,j)∈Ek

wk
ijx

k
j .

In matrix form, this update rule writes as Xk+1 = WkXk. The contraction
property in Assumption 2 is needed to ensure linear convergence of Algorithm 1
to the average of nodes’ initial vectors, i.e. to x0. In particular, the contraction
property holds for τ -connected graphs with Metropolis weights choice for Wk,
i.e.

[Wk]ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1/(1 + max{dk
i , dk

j }) if (i, j) ∈ Ek,

0 if (i, j) /∈ Ek,

1 −
∑

(i,m)∈Ek

[Wk]im if i = j,

where dk
i denotes the degree of node i in graph Gk.

Algorithm and Result. We are now in position to introduce the decentralized
algorithm of interest.

Algorithm 2. Decentralized AGD with consensus subroutine
Require: Initial guess X0 ∈ C, constants L, μ > 0, U0 = X0, α0 = A0 = 0
1: for k = 0, 1, 2, . . . do
2: Find αk+1 as the greater root of

(Ak + αk+1)(1 + Akμ) = L(αk+1)2

3: Ak+1 = Ak + αk+1

4: Yk+1 =
αk+1Uk + AkXk

Ak+1

5: Vk+1 = μYk+1+(1+Akμ)Uk

1+Akμ+μ
− αk+1∇F (Yk+1)

1+Akμ+μ

6: Uk+1 = Consensus(Vk+1, T k)

7: Xk+1 =
αk+1Uk+1 + AkXk

Ak+1

8: end for

In the next theorem, we provide computation and communication complexi-
ties of Algorithm 2.

Theorem 3. Define

D1 =
Ll

Lg
1/2μg

[
8
√

2Ll

∥∥u0 − x∗∥∥
(

Lg

μg

)3/4

+
4
√

2 ‖∇F (X∗)‖√
n

(
Lg

μg

)1/4
]

,

D2 =
Ll

Lg
1/2μg

[
3
√

μg + 4
√

2n

(
Lg

μg

)1/4
]

(11)

.
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For a fixed ε > 0 introduce

δ′ =
nε

32
μg

3/2

Lg
1/2Ll

2
, D = δ′

(
D1√

ε
+ D2

)2

and Tk = T =
τ

2λ
log

D

δ′ .

Then Algorithm 2 requires

N = 2

√
Lg

μg
log

(∥∥u0 − x∗∥∥2

2εLg

)
(12)

gradient computations at each node and

Ntot = N · T = 2

√
Lg

μg

τ

λ
· log

(
2Lg

∥∥u0 − x∗∥∥2

ε

)
log

(
D1√

ε
+ D2

)
(13)

communication steps to yield XN such that

f(xN ) − f(x∗) � ε,
∥∥∥XN − X

N
∥∥∥
2

� δ′.

We provide the proof of Theorem 3 in Appendix A.
The number of gradient computations in (12) reaches the lower bounds for

non-distributed optimization up to a constant factor. Number of communica-
tion steps includes an additional multiplicator of τ/λ, which characterizes graph
connectivity.

4 Numerical Experiments

We consider the logistic regression problem with L2 regularizer:

f(x) =
1
n

n∑

i=1

log (1 + exp(−bi 〈ai, x〉)) +
θ

2
‖x‖22

Here a1, . . . , an ∈ R
d denote the data points, b1, . . . , bn ∈ {−1, 1} denote class

labels and θ > 0 is a penalty coefficient. We run experiments on a least-squares
task:

f(x) =
1
2
‖Ax − b‖22.

The blocks of data matrix A and vector b are distributed among the agents in
the network.

The simulations are run on LIBSVM datasets [30]. Among benchmark meth-
ods are EXTRA [10], DIGing [6], Mudag [11] and APM-C [31].

Logistic regression is carried out on a9a data-set, inner iterations are set to
T = 5 for Mudag and DAccGD. Generation of random geometric graph goes on
20 nodes.

Figures 1 and 2 show that DAccGD outperforms its competitors both in the
number of gradient steps and communication steps. On the other hand, DAccGD
has a relatively worse consensus accuracy.
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Fig. 1. a9a (logistic regression), 100 nodes

Fig. 2. Cadata (least squares), 20 nodes

5 Conclusion

This paper studies an inexact oracle-based approach to decentralized optimiza-
tion. The paper focuses on a specific case of strongly convex smooth functions,
but the inexact oracle framework introduced in [3] is also applicable to non-
strongly convex functions. The development of this framework in [28] also enables
to generalize the results of this article to composite optimization problems and
distributed algorithms for saddle-point problems and variational inequalities.

Another interesting application of inexact oracle approach lies in stochastic
decentralized algorithms. Consider a class of L-smooth μ-strongly convex objec-
tives with gradient noise of each fi being upper-bounded by σ2. For this class of
problems, lower complexity bounds write as [32]

O(
√

L/μχ log(1/ε)) stochastic oracle calls per node

O

(
max

(
σ2

mμε
,
√

L/μ

)
log(1/ε)

)
communication steps.

At the moment, there exist methods that are optimal either in the number of
oracle calls or in the number of communication steps. Several algorithms in the
literature achieve lower bounds for stochastic oracle calls per node but do not
meet the lower bounds for communication rounds. On the other hand, there
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are methods that achieve the optimal communication complexity but are sub-
optimal in the number of oracle calls. We believe that approach of this paper
combined with a specific batch-size choice described in [33] allows to develop a
decentralized algorithm reaching both optimal complexities.

Supplementary Material

A Proof of Theorem 3

First, note that Algorithm 2 comes down to the following iterative procedure
in R

d.

y
k+1

=
αk+1uk + Akxk

Ak+1

u
k+1

= arg min
z∈Rd

{
α

k+1

(〈
1

n

n∑
i=1

∇f(y
k+1
i ), z − y

k+1

〉
+

μ

2

∥∥∥z − y
k+1

∥∥∥2
)

+
1 + Akμ

2

∥∥∥z − u
k
∥∥∥2

}

x
k+1

=
αk+1uk+1 + Akxk

Ak+1

A.1 Outer Loop

Initially we recall basic properties of coefficients Ak which immediately follow
from Lemma 3.7 in [28] (for details see the full technical report of this paper
[34]).

Lemma 2. For coefficients Ak, it holds

1. AN � 1
L

(
1 +

√
μ

2L

)2(N−1)

2.

∑k
i=1 Ai

Ak
� 1 +

√
L

μ
.

Lemma 3. Provided that consensus accuracy is δ′, i.e.
∥∥∥Uj − U

j
∥∥∥
2

�
δ′ for j = 1, . . . , k, we have

f(xk) − f(x∗) �
∥∥u0 − x∗∥∥2

2Ak
+

2
∑k

j=1 Ajδ

Ak

∥∥uk − x∗∥∥2 �
∥∥u0 − x∗∥∥2

1 + Akμ
+

4
∑k

j=1 Ajδ

1 + Akμ

where δ is given in (5).

Proof. First, assuming that
∥∥∥Uj − U

j
∥∥∥
2

� δ′, we show that Yj ,Uj ,Xj lie

in
√

δ′-neighborhood of C by induction. At j = 0, we have
∥∥∥X0 − X

0
∥∥∥ =

∥∥∥U0 − U
0
∥∥∥ = 0. Using Aj+1 = Aj + αj , we get an induction pass j → j + 1.
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∥∥∥Yj+1 − Y
j+1

∥∥∥ � αj+1

Aj+1

∥∥∥Uj − U
j
∥∥∥ +

Aj

Aj+1

∥∥∥Xj − X
j
∥∥∥ �

√
δ′

∥∥∥Xj+1 − X
j+1

∥∥∥ � αj+1

Aj+1

∥∥∥Uj+1 − U
j+1

∥∥∥ +
Aj

Aj+1

∥∥∥Xj − X
j
∥∥∥ �

√
δ′

Therefore, g(y) = 1
n

∑n
i=1 ∇f(yi) is a gradient from (δ, L, μ)-model of f , and the

desired result directly follows from Theorem 3.4 in [28].

A.2 Consensus Subroutine Iterations

We specify the number of iteration required for reaching accuracy δ′ in the
following Lemma, which is proved in the extended version of this paper [34].

Lemma 4. Let consensus accuracy be maintained at level δ′, i.e.
∥∥∥Uj − U

j
∥∥∥
2

�
δ′ for j = 1, . . . , k and let Assumption 2 hold. Define

√
D :=

(
2Ll√
Lμ

+ 1
) √

δ′ +
Ll

μ

√
n

(∥∥u0 − x∗∥∥2
+

8δ′
√

Lμ

)1/2

+
2 ‖∇F (X∗)‖√

Lμ

Then it is sufficient to make Tk = T = τ
2λ log D

δ′ consensus iterations in order

to ensure δ′-accuracy on step k + 1, i.e.
∥∥∥Uk+1 − U

k+1
∥∥∥
2

� δ′.

A.3 Putting the Proof Together

Let us show that choice of number of subroutine iterations Tk = T yields

f(xk) − f(x∗) �
∥∥u0 − x∗∥∥2

2Ak
+

2
∑k

j=1 Ajδ

Ak

by induction. At k = 0, we have
∥∥∥U0 − U

0
∥∥∥ = 0 and by Lemma 3 it holds

f(x1) − f(x∗) �
∥∥u0 − x∗∥∥2

2A1
+

2A1δ

A1
.

For induction pass, assume that
∥∥∥Uj − U

j
∥∥∥
2

� δ′ for j = 0, . . . , k. By Lemma 4,

if we set Tk = T , then
∥∥∥Uk+1 − U

k+1
∥∥∥
2

� δ′. Applying Lemma 3 again, we get

f(xk+1) − f(x∗) �
∥∥u0 − x∗∥∥2

2Ak+1
+

2
∑k+1

j=1 Ajδ

Ak+1

Recalling a bound on Ak from Lemma 2 gives

f(xN ) − f(x∗) �
L

∥∥u0 − x∗∥∥2

2

(
1 +

√
μ

2L

)−2(N−1)

+ 2

(
1 +

√
L

μ

)
δ

①= Lg

∥∥u0 − x∗∥∥2
(

1 +
1
2

√
μg

2Lg

)−2(N−1)

+ 2

(
1 + 2

√
Lg

μg

)
δ
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Here in ① we used the definition of L, μ in (10): L = 2Lg, μ = μg

2 . For ε-accuracy:

Lg

∥∥u0 − x∗∥∥2
(
1 +

1

2

√
μg

2Lg

)−2(N−1)

� ε

2
−→ N � 1 + 2

√
Lg

2μg
log

(
2Lg

∥∥u0 − x∗∥∥2

ε

)

2

(
1 + 2

√
Lg

μg

)
δ � ε

2
−→ δ′ � nε

2

(
1 + 2

√
Lg

μg

)−1 (
Ll

2

(
1

Lg
+

2

μg

)
+ Ll − μl

)−1

It is sufficient to choose

N = 2

√
Lg

μg
log

(
2Lg

∥∥u0 − x∗∥∥2

ε

)

δ′ =
nε

2
· 1
2

· 1
2

√
μg

Lg
·
(

4
Ll

2

μg

)−1

=
nε

32
μg

3/2

Lg
1/2Ll

2

Let us estimate the term D
δ′ under log.

√
D

δ′ =

(
2Ll√

Lμ
+ 1

)
+

Ll

μ

√
n

⎛
⎜⎝

∥∥∥u0 − x∗
∥∥∥2

δ′ +
8

√
Lμ

⎞
⎟⎠

1/2

+
2

∥∥∇F (X∗)
∥∥

√
Lμ

√
δ′

� 3Ll√
Lgμg

+
2Ll

√
n

μg

⎛
⎝

√√√√ ∥∥u0 − x∗∥∥2

nε
· 32Lg

1/2Ll
2

μg
3/2

+

√
8√

Lgμg

⎞
⎠ +

2
∥∥∇F (X∗)

∥∥√
Lgμg

·
√

32
√

nε

Lg
1/4Ll

μg
3/4

=
3Ll√
Lgμg

+
8
√
2Ll

2Lg
1/4

∥∥∥u0 − x∗
∥∥∥

μg
7/4√

ε
+

4
√
2Ll

√
n

Lg
1/4μg

5/4
+

4
√
2

∥∥∇F (X∗)
∥∥ · Ll

Lg
1/4μg

5/4√
nε

=
Ll

Lg
1/2μg

⎡
⎣3

√
μg +

8
√
2Ll

∥∥∥u0 − x∗
∥∥∥

√
ε

(
Lg

μg

)3/4

+ 4
√
2n

(
Lg

μg

)1/4

+
4
√
2

∥∥∇F (X∗)
∥∥

√
nε

(
Lg

μg

)1/4
⎤
⎦

=
D1√

ε
+ D2,

where D1,D2 are defined in 11. Finally, the total number of iterations is

Ntot = N · T = 2

√
Lg

μg
log

(
2Lg

∥∥u0 − x∗∥∥2

ε

)
· τ

2λ
· 2 log

√
D

δ′

= 2

√
Lg

μg

τ

λ
· log

(
2Lg

∥∥u0 − x∗∥∥2

ε

)
log

(
D1√

ε
+ D2

)
.
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Abstract. The paper proposes a game model with an additive convo-
lution of two criteria, describing public and personal interests. The first
(general) criterion depends on strategies of all players and represents
losses from the intensity of their activity. The second (particular) crite-
rion for each player is a function of his strategy and reflects the income
from his activities. The negative definite quadratic form is taken as a
general criterion. The particular criterion of each player is linear, which
is quite natural for the formalization of the income function. It turns
out that the resulting game with linear-quadratic payoff functions has
good properties, in particular, the independence of the leader’s strategy
in the Stackelberg equilibrium from the parameters of the follower’s lin-
ear functions (in contrast to the Nash equilibrium). This property means
that the leader does not need accurate information about the follower’s
objective function, and his strategy has the property of robustness.

Keywords: Stackelberg equilibrium · Nash equilibrium · Public
goods · Linear-quadratic payoff function

1 Introduction

The Stackelberg equilibrium [1,2], proposed by the author for the analysis of
duopoly, subsequently found wide application in various branches of mathemati-
cal economics and control theory. Among the most famous works we can mention
the theory of contracts [3–5], which was awarded the Nobel Prize. In Russian
studies, Stackelberg’s idea was developed in the information theory of hierarchi-
cal systems [6–8] and the theory of active systems [9]. These theories consider
control problems without feedback (direct Stackelberg problem) and with feed-
back (inverse Stackelberg problem), dynamic games, hierarchical games with an
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ambiguous lower-level response and incomplete information, general methods of
two-level optimization, etc.

Stackelberg equilibrium methods are computationally very complex. Most
of the work in the literature has been based on simple structure or specific
models. The inverse Stackelberg game is difficult to solve even for one leader -
one follower [10]. Full characterization of the problem with multiple leaders and
followers includes two-level optimization, MPEC or EPEC [11–14]. Therefore,
research related to the construction of classes of models that have a practical
interpretation, for which solutions can be found in a constructive form, seem
promising.

One of the important areas of application of game theory and, in particular,
the principle of hierarchical management, are the problems of public goods, the
most urgent of which are currently the problems of ecology [15–17].

The public goods game is a classic model in economics. The pervasive and
profound “tragedy of the commons” [18] is that social well-being will be optimal
if all players cooperate, which, however, cannot be achieved in the Nash equilib-
rium, since the individual player will benefit more from the free rider role. Such
problems occur widely, for example, overgrazing of common land, overfishing in
the ocean, carbon emissions [15,16]. These game issues have received a lot of
attention from researchers from various fields, such as economics, biology, poli-
tics, management technology, etc. (see, for example, [17]). Various mechanisms
are introduced, such as reward and punishment, evolution, spatial structure,
threshold, etc. (see, for example, [19–23]). In [24,25] a hierarchical structure is
presented and its influence on social welfare (cooperation) in a discrete public
goods game and the Prisoner’s Dilemma Game (public goods game for two per-
sons) is investigated. The architectural structure is naturally determined by the
number of levels. In [26] the equilibrium and the optimal structure in a contin-
uous game of public goods with common hierarchical structures are formulated
by the inverse Stackelberg game. The author studies the influence of hierarchical
structures on outcome, especially the social welfare of the public goods game.
The reverse Stackelberg game with general hierarchical structures is investigated
analytically for a specific game model.

Related works include a study of the problem of pricing Internet services
with one leader and one follower [27], on the problem of tolls and the energy
market [28,29], on the optimal affine function of a leader and an algorithm of
optimal nonlinear functions with one leader - one follower [30,31].

In game-theoretic models of this type of problems, the payoff functions of the
players are a convolution of two criteria, describing public and personal interests.
In this paper, a game model is proposed that uses an additive convolution of two
criteria. The first criterion depends on the strategy of all players and represents
losses from the intensity of their activity. The second criterion for each player is a
function of his strategy and reflects the income from his activities. It is assumed,
that the first (general) criterion has a single global maximum, and without loss
of generality, we can assume that this maximum is located at the origin with
the criterion value equal to zero (there is no loss in the absence of activity). In
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the model, considered below, the negative definite quadratic form is taken as a
general criterion. This, of course, significantly limits the generality of considera-
tion, however, a certain basis is the mathematical fact that a twice differentiable
function in the vicinity of the global maximum is well approximated by a neg-
ative definite quadratic form. The second (particular) criterion of each player
is linear, which is quite natural for the formalization of the income function.
The Stackelberg equilibrium is considered as a solution to the emerging game. It
turns out, that the resulting game with linear-quadratic payoff functions has a
number of good properties, the most interesting of which is the independence of
the leader’s strategy in the Stackelberg equilibrium from the parameters of the
follower’s linear function (in contrast to the Nash equilibrium). This property
means that the leader does not need accurate information about the follower’s
objective function, which in reality is difficult to obtain, and his strategy has the
property of robustness.

2 The Two-Persons Game Model

So, the objective functions of the players are of the form

F (x, y) =
1
2

〈x,Ax〉 + 〈x,By〉 +
1
2

〈y, Cy〉 + 〈p, x〉 ,

G (x, y) =
1
2

〈x,Ax〉 + 〈x,By〉 +
1
2

〈y, Cy〉 + 〈q, y〉 ,

where n-dimensional vector x is the strategy of the player with the payoff func-
tion F , the m-dimensional vector y is the strategy of the player with the pay-

off function G, D =
(

A B
BT C

)
is a symmetric negative definite matrix of size

(n + m) × (n + m). The functions F and G are strictly concave by the set of
variables, so they have unique global maxima, respectively, (x1, y1) and (x2, y2).

Theorem 1. The optimal leader strategy in the game with payoff functions
F (x, y) and G (x, y) is the choice of controlled variables of the global maximum
of its function, i.e. xF = x1, yG = y2. Wherein, at equilibrium points and points
of absolute maxima of the payoff functions the equality holds

F
(
xF , yF

)
+ G

(
xF , yF

)
= F

(
x1, y1

)
+ G

(
x1, y1

)

= F
(
xG, yG

)
+ G

(
xG, yG

)
= F

(
x2, y2

)
+ G

(
x2, y2

)
.

Proof. If the leader chooses the strategy x and communicates it to the follower,
the latter maximizes its payoff function and from the condition that the gradient
G

′
y of the function G by variables y is equal to zero we have BTx + Cy + q = 0.

The matrix C is obviously negative definite, therefore it is not degenerate and
the follower’s optimal response is
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y (x) = −C−1(BTx + q).

Then

F (x, y(x)) =
1
2

〈x,Ax〉 − 〈
BTx,C−1

(
BTx + q

)〉

+
1
2

〈
BTx + q, C−1

(
BTx + q

)〉
+ 〈p, x〉

=
1
2

〈x,Ax〉 − 1
2

〈
BTx − q, C−1

(
BTx + q

)〉
+ 〈p, x〉

=
1
2

〈x,Ax〉 − 1
2

〈
BTx,C−1BTx

〉
+

1
2

〈
q, C−1q

〉
+ 〈p, x〉 .

Equating gradient F (x, y(x)) as a complex function from x to zero, we have

Ax + p − BC−1BTx = 0. (1)

Conditions for the global maximum of the function F are F
′
x = F

′
y = 0, so we

have
Ax + p + By = 0, BTx + Cy = 0. (2)

Since the matrix D is not degenerate, from the system (2) we have
(

x1

y1

)
= D−1

(−p
0

)
, (3)

that is, the function F has a unique global maximum. On the other hand, express-
ing y from the second equation of the system (2) y = −C−1BTx and substituting
into the first, we obtain the same Eq. (1) for x. So the matrix E1 = A−BC−1BT

is not degenerate (however, this is a well-known fact for negative definite block
matrices) and

xF = x1 = −E−1
1 p. (4)

wherein y1 = −C−1BTx1 and

yF = −C−1
(
BTxF + q

)
= −C−1

(
BTx1 + q

)
= y1 − C−1q.

Conditions for the global maximum of the function G are G
′
x = G

′
y = 0, so we

have
Ax + By = 0, BTx + Cy + q = 0. (5)

From the system (5) we have
(

x2

y2

)
= D−1

(
0

−q

)
, (6)
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i.e., the function G has a unique global maximum, and similarly to the previous

yG = y2 = −E−1
2 q, (7)

where E2 = C − BTA−1B.
Further, obviously, we have the equality

F (x, y) + G (x, y) = 〈x,Ax〉 + 〈x,By〉 + 〈p, x〉
+

〈
BTx, y

〉
+ 〈y, Cy〉 + 〈q, y〉 =

〈
F

′
x(x, y), x

〉
+

〈
G

′
y(x, y), y

〉
.

(8)

As F
′
x

(
x1, y1

)
= 0, and G

′
y

(
x1, y1

)
= F

′
y

(
x1, y1

)
+ q = q, then F

(
x1, y1

)
+

G
(
x1, y1

)
=

〈
q, y1

〉
. As G

′
y

(
xF , yF

)
= 0, then F

(
xF , yF

)
+ G

(
xF , yF

)
=〈

F
′
x(xF , yF ), xF

〉
. Considering that xF = x1, yF = y1 − C−1q, we have

F
′
x

(
xF , yF

)
= AxF + p + ByF = Ax1 + p + B

(
y1 − C−1q

)
= −BC−1q.

Then F
(
xF , yF

)
+ G

(
xF , yF

)
= − 〈

BC−1q, x1
〉

= −
〈
q, C−1BTx

1
〉

=
〈
q, y1

〉
.

Thus, we have proved the first equality of the statement of the theorem:

F
(
xF , yF

)
+ G

(
xF , yF

)
= F

(
x1, y1

)
+ G

(
x1, y1

)
=

〈
q, y1

〉
.

It can be proved similarly that

F
(
xG, yG

)
+ G

(
xG, yG

)
= F

(
x2, y2

)
+ G

(
x2, y2

)
=

〈
p, x2

〉
.

Now we will show, that
〈
p, x2

〉
=

〈
q, y1

〉
.

Using (3), (6) and the expression for the inverse matrix

D−1 =
1

|D|

⎛
⎜⎜⎝

D11

D12

. . .
D1 n+m

D21

D22

. . .
D2 n+m

. . .

. . .

. . .

. . .

Dn+m 1

Dn+m 2

. . .
Dn+m n+m

⎞
⎟⎟⎠ ,

where Dij is the cofactor of the corresponding element of the matrix D, we have

〈
q, y1

〉
= − 1

|D|
m∑
j=1

qj

n∑
i=1

piDi n+j ,

〈
p, x2

〉
= − 1

|D|
n∑

i=1

pi

m∑
j=1

qjDn+j i.

Whence, taking into account the symmetry of the matrix D we have
〈
p, x2

〉
=〈

q, y1
〉
. The theorem is proved.
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From the first result of Theorem 1 it follows, that the leader and the follower
does not need information about the individual parameters p and q in the payoff
function of the other player, while choosing their optimal strategies. This is an
important property from a practical point of view, since such information is
practically unavailable, and an attempt to clarify it faces a possible bluff.

From the second result of Theorem 1 it follows that if one player prefers the
equilibrium (xF , yF ), then the other prefers (xG, yG). Therefore, depending on
the parameters of the payoff functions, either a struggle for leadership or for
the opportunity to be a follower can arise, and both cases can take place. To
determine the benefits of leadership, we define the difference between the values
of the payoff function F in points (xF , yF ) and (xG, yG).

Obviously, the following representation of the players payoff functions takes
place

F (x, y) = 1
2

[〈
F

′
x (x, y) , x

〉
+

〈
F

′
y (x, y) , y

〉
+ 〈p, x〉

]
= 1

2

[〈
F

′
x (x, y) , x

〉
+

〈
G

′
y (x, y) , y

〉
− 〈q, y〉 + 〈p, x〉

]
,

G (x, y) = 1
2

[〈
G

′
x (x, y) , x

〉
+

〈
G

′
y (x, y) , y

〉
+ 〈q, y〉

]
= 1

2

[〈
F

′
x (x, y) , x

〉
+

〈
G

′
y (x, y) , y

〉
− 〈p, x〉 + 〈q, y〉

]
,

(9)

whence, when substituting the values of the arguments, we obtain the value of
the specified difference

F
(
xF , yF

) − F
(
xG, yG

)

=
1
2

[〈(
A−1 − E−1

1

)
p, p

〉
+

〈(
C−1 − E−1

2

)
q, q

〉] − 〈
C−1BTE−1

1 p, q
〉
.

Further, we will make sure with examples that it can be both positive and
negative.

Now let’s find the Nash equilibrium in this game. It satisfies the system of
equations

Ax + By + p = 0, BTx + Cy + q = 0 . (10)

From the system (10) we have, that the Nash equilibrium exists, is unique
and is equal to (

xN

yN

)
= D−1

(−p
−q

)
,

and from (8) it follows that F
(
xN , yN

)
+ G

(
xN , yN

)
= 0.

Since the Nash equilibrium is strict, the leader’s payoff is obviously not less
than his result at the Nash equilibrium. The follower can receive both more and
less than in the Nash equilibrium. As the examples show, both can take place
for the follower.
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3 The n-Persons Game Model

Let us generalize the considered model for a game with an arbitrary number of
players. We will consider the strategies of the players as scalar quantities. The
strategy of the k-th player will be denoted by xk. The objective functions of the
players are of the form

Fk (x) =
1
2

〈x,Ax〉 + pkxk, k = 1, . . . , n.

Here x = (x1, . . . , xk, . . . , xn), A is a symmetric negative definite matrix.
Let the players choose their strategies sequentially in numerical order and

k-th player by the time of its turn knows the choice of strategies by the players
with numbers 1, . . . , k − 1 and the sequence, in which the players with numbers
k + 1, . . . , n will make their moves. It is also assumed, that when choosing a
strategy, all players are guided by the general principle of behavior: to maxi-
mize their payoff function, taking into account the corresponding reaction of the
players of the next levels.

Theorem 2. The optimal strategy of the k-th player in the game with a sequence
of moves is to choose the controlled variable xk in the maximum point of its
payoff function Fk (x) by the arguments, remaining free at the time of his move
xk, xk+1, . . . , xn, for known fixed values of the arguments x1, . . . , xk−1.

Proof. Let us carry out the proof by induction on the number of players. For
n = 1 the statement of the theorem means simple optimization, and for n = 2
was proved above. Suppose the theorem is true for the number of players n−1 and
will proof for n. If the first player chooses the strategy x1, then we have the game
with n − 1 players, in which, according to the inductive assumption, the players
choose their strategies x0

2, x
0
3, . . . , x

0
n from the conditions for the maximum of

their payoff functions with respect to free arguments. So these strategies satisfy
the following systems of linear equations

{
a21x1 + a22x

0
2 + a23x

(2)
3 + · · · + a2nx

(2)
n + p2 = 0,

ai1x1 + ai2x
0
2 + ai3x

(2)
3 + · · · + ainx

(2)
n = 0, i = 3, . . . , n.

{
a31x1 + a32x

0
2 + a33x

0
3 + a34x

(3)
4 + · · · + a3nx

(3)
n + p3 = 0,

ai1x1 + ai2x
0
2 + ai3x

0
3 + ai4x

(3)
4 + · · · + ainx

(3)
n = 0, i = 4, . . . , n.

. . . . . . . . .{
an−1 1x1 + an−1 2x

0
2 + · · · + an−1 n−1 x0

n−1 + an−1 n x
(n−1)
n + pn−1 = 0,

an1x1 + an2x
0
2 + · · · + an n−1x

0
n−1 + annx

(n−1)
n = 0.

an1x1 + an2x
0
2 + · · · + annx0

n + pn = 0.

Since the matrix A is negative definite, the determinants of these systems,
which are corner minors of the matrix A, are nonzero.
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Therefore, the strategies x0
2, x

0
3, . . . , x

0
n are ultimately single-valued functions

of the argument x1.
Let us calculate the derivatives of these functions. From the first system we

have dx0
2(x1)
dx1

= A12
A11

, where Aij is the cofactor of the corresponding element aij

in the determinant |A|. Let us suppose, that

dx0
i (x1)
dx1

=
A1i

A11
, i = 2, 3, . . . , k.

Let us denote by Mk the minor of the matrix A, obtained by deleting the first
k rows and the first k columns, and by M̃k – determinant derived from minor
Mk replacing each element of its first column ai k+1 by expression

ai1A11 + ai2A12 + · · · + aikA1k, i = k + 1, . . . , n.

Then we have from (k + 1)-th system

dx0
k+1(x1)
dx1

= − 1
A11

· M̃k

Mk
.

Using the well-known property of determinants, we have for i = k + 1, . . . , n
equality

ai1A11 +ai2A12 + · · ·+aikA1k = −(ai k+1A1 k+1 +ai k+2A1 k+2 + · · ·+ainA1n).

Substitute the right-hand side of this equality in M̃k. Taking into account
that determinants with proportional columns are equal to zero, we have

M̃k = −A1 k+1 Mk,
dx0

k+1(x1)
dx1

=
A1 k+1

A11
.

Thus, we have proved by induction that

dx0
i (x1)
dx1

=
A1i

A11
, i = 2, 3, . . . , n.

The first player chooses his strategy x1 as to achieve the maximum of the
function

f (x1) = F1

(
x1, x

0
2 (x1) , . . . , x0

n (x1)
)
.

We calculate the total derivative of the function f (x1):

df (x1)
dx1

=
∂F1

(
x1, x

0
2 (x1) , . . . , x0

n (x1)
)

∂x1

+
n∑

i=2

∂F1

(
x1, x

0
2 (x1) , . . . , x0

n (x1)
)

∂xi
·dx0

i (x1)
dx1
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= a11x1 +
n∑

i=2

ai1x
0
i (x1) + p1 +

n∑
i=2

A1i

A11
(a1ix1 +

n∑
j=2

ajix
0
j (x1))

=
1

A11
·
⎡
⎣x1

n∑
i=1

a1iA1i + p1A11 +
n∑

j=2

(
x0
j (x1)

n∑
i=1

ajiA1i

)⎤
⎦

=
1

A11
· (x1 |A| + p1A11) .

Equating this derivative to zero, we have x1 = −p1A11
|A| .

Since the necessary and sufficient condition for the negative definiteness of a
matrix is the alternation of the signs of its major minors, then d2f(x1)

dx2
1

= |A|
A11

< 0,
i.e. f (x1) is strictly concave quadratic function.

Hence f (x1) reaches its global maximum at the point x0
1 = −p1A11

|A| , i.e. x0
1

is the optimal strategy of the first player. It is easy to make sure that x0
1 satisfies

the system of equations
{

a11x
0
1 + a12x

(1)
2 + a13x

(1)
3 + · · · + a1nx

(1)
n + p1 = 0,

ai1x
0
1 + ai2x

(1)
2 + ai3x

(1)
3 + · · · + ainx

(1)
n = 0, i = 2, . . . , n,

so x0
1 is the first coordinate of the point of the global maximum of the function

F1 (x1, x2, . . . , xn), QED.
The Nash equilibrium in the given n-persons game also exists, is unique and is
determined from the system of linear equations

Ax = −p, p = (p1, . . . , pn).

The solution of this system has the form xN = −A−1p. The values of the
players payoff functions in the Nash equilibrium are

Fk

(
xN

)
=

1
2

〈
A−1p, p

〉
+ pkx

N
k , k = 1, . . . , n,

and the total value

n∑
k=1

Fk

(
xN

)
=

(n

2
− 1

) 〈
A−1p, p

〉
.

Since the matrix A−1 is negatively definite, the total value is equal to zero
for n = 2 (as already shown above) and negative for n ≥ 3.

Naturally, finding the Nash equilibrium requires all players to know the
parameters of the payment functions of other players.
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4 Some Special Cases

Let us illustrate the results obtained for n = 2 in the case of one-dimensional
strategies (Example 1) and for n = 3 (Example 2).

Example 1. Consider a practical situation, where two fishing companies operate
in the same water basin. With an abundance of fish resources, their incomes
linearly depend on the volume of production. When resources are depleted, their
costs begin to increase superlinearly.
Let’s the payoff functions are

F (x, y) =
1
2
ax2 + bxy +

1
2
cy2 + px,

G (x, y) =
1
2
ax2 + bxy +

1
2
cy2 + qx.

For quadratic form 1
2ax2 + bxy + 1

2cy2 necessary and sufficient conditions for
negative definiteness have the form a < 0, c < 0, ac − b2 > 0.

The coordinates of the equilibrium points according to Stackelberg, according
to Nash and global maxima are equal:

xF = x1 = − cp

ac − b2
, yF = y1 − q

c
=

bp

ac − b2
− q

c
,

xG = x2 − p

a
=

bq

ac − b2
− p

a
, yG = y2 = − aq

ac − b2
,

xN =
bq − cp

ac − b2
, yN =

bp − aq

ac − b2
.

Using formulas (9), we obtain the values of the payoff functions at the Stack-
elberg equilibriums:

F
(
xF , yF

)
=

q2

2c
− cp2

2 (ac − b2)
, G

(
xF , yF

)
=

cp2 + 2bpq

2 (ac − b2)
− q2

2c
,

F
(
xG, yG

)
=

aq2 + 2bpq

2 (ac − b2)
− p2

2a
, G

(
xG, yG

)
=

p2

2a
− cp2

2 (ac − b2)
,

and

F
(
xF , yF

) − F
(
xG, yG

)
= G

(
xG, yG

) − G
(
xF , yF

)

=
|a| b2q2 − 2acbpq + |c| b2p2

2ac (ac − b2)
.

As mentioned above, these differences can be either positive or negative. For
example, for a = c = −4, b = 3, p = q = 1 we have
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|a| b2q2 − 2acbpq + |c| b2p2 = 36 − 2 · 48 + 36 < 0,

so it is advantageous to be the follower (to receive information).
If a = c = −4, b = 3, p = 1, q = 4 we have |a| b2q2 − 2acbpq + |c| b2p2 =

576 − 2 · 48 · 4 + 36 > 0, so it is beneficial to be the leader.
The values of the payoff functions at the Nash equilibrium are:

F
(
xN , yN

)
=

aq2 − cp2

2 (ac − b2)
, G

(
xN , yN

)
=

cp2 − aq2

2 (ac − b2)
.

Further,

F
(
xF , yF

)
= F

(
xN , yN

)
+

b2q2

2|c|(ac − b2)
= F

(
x1, y1

) − q2

|c| ,

G
(
xG, yG

)
= G

(
xN , yN

)
+

b2p2

2|a|(ac − b2)
= G

(
x2, y2

) − p2

|a| ,

so, the value of the leader’s payoff function is strictly greater than at the Nash
equilibrium (for b �= 0), and strictly less than the global maximum.

For the follower, F
(
xG, yG

) ≥ F
(
xN , yN

)
, if 2|a|bpq ≥ b2p2, G

(
xF , yF

) ≥
G

(
xN , yN

)
, if 2|c|bpq ≥ b2q2. Besides,

F
(
xF , yF

)
+ G

(
xF , yF

)
= F

(
xG, yG

)
+ G

(
xG, yG

)
=

bpq

ac − b2
,

that is, the “public good” in the Stackelberg equilibrium can be either more or
less than in the Nash equilibrium.

Example 2. Consider a similar example with three companies. Let the payoff
functions have the form

Fk (x) =
1
2

〈x,Ax〉 + pkxk, k = 1, 2, 3,

where A =

⎛
⎝−2 −1 1

−1 −2 1
1 1 −2

⎞
⎠, p = (2, 1, 1).

We have A−1 =

⎛
⎝− 3

4
1
4 − 1

4
1
4 − 3

4 − 1
4− 1

4 − 1
4 − 3

4

⎞
⎠, A−1p = (− 3

2 ,− 1
2 ,− 3

2 ),
〈
A−1p, p

〉
= −5.

Thus, xN = −A−1p = (32 , 1
2 , 3

2 ),
∑3

k=1 Fk

(
xN

)
=

(
3
2 − 1

) 〈
A−1p, p

〉
= − 5

2 .
Wherein F1

(
xN

)
= 1

2 , F2

(
xN

)
= −2, F3

(
xN

)
= −1.

Depending on the order of moves, we have six variants of the Stackelberg
equilibrium. Consider one of them for the order of moves 1 → 2 → 3. Solv-
ing the corresponding systems of linear equations, we have for the given order
the Stackelberg equilibrium xS = (32 , 1

6 , 4
3 ), F1

(
xS

)
= 11

12 , F2

(
xS

)
= − 23

12 ,
F3

(
xS

)
= − 9

12 . In this case, for all participants, the Stackelberg equilibrium
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is preferable to the Nash equilibrium. Moreover, the total result is also negative:∑3
k=1 Fk

(
xS

)
= − 7

4 .
For comparison, we find the maximum of the total function

∑3
k=1 Fk (x).

It is equal to 5
6 and is reached at the point xmax = (12 , 1

6 , 1
2 ). However, the

achievement of such result is possible only in a cooperative version of the game,
when “grand coalition” is formed and catch quotas are established.

5 Conclusion

In our opinion, the proposed game model with linear-quadratic payment func-
tions, despite its specific form, can be considered as a meaningful description of
the problem of providing public goods. First of all, these can be environmen-
tal problems, such as pollution of common water bodies, emissions of harmful
substances in the region, depletion of public resources, etc. Both the Nash equi-
librium and the Stackelberg equilibrium can be considered as a solution. At first
glance, the Nash equilibrium is more natural and easier to implement, but it
requires a general knowledge of all the parameters of the model and is not pro-
tected from bluffs. A remarkable property of the considered model is that the
Stackelberg equilibrium is protected from bluffs, since in determining the optimal
strategy by each player, one does not need to know the individual parameters
of the payment functions of the other players. At the same time, the results
obtained make it possible to reduce the complex problem of multilevel optimiza-
tion to solving ordinary extreme problems.
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Equilibrium in the Piece-Wise Constant
Pricing

Igor Bykadorov(B)

Sobolev Institute of Mathematics, 4 Koptyug Avenue, 630090 Novosibirsk, Russia

Abstract. We consider a stylized distribution channel in the structure
“manufacturer-retailer-consumer” under the assumption that the whole-
sales and retail discounts are piece-wise constant. Earlier, we demonstrate
the strict concavity of the profit of the manufacturer w.r.t. wholesale
discount levels and strict concavity of the profit of retailer w.r.t. retail
discount levels. This allows studying the equilibrium. The main result of
the paper is: for the case of constant wholesale discount and piece-wise
constant retail discount, the Stackelberg equilibrium under the leader-
ship of the manufacturer can be calculated in closed form.

Keywords: Retailer · Piece-wise constant prices · Wholesale
discount · Retail discount · Equilibrium

1 Introduction

Typically, economic agents stimulate production and sales through communica-
tions, as well as various types of influence on pricing. Moreover, in the structure
of “producer - retailer - consumer,” various types of discounts are often used.

One of the first work in this direction can be considered the paper [1], see
also [2]. Among many works on this subject, let us note [3–8].

In the presented paper, we study dynamic marketing model. At every
moment, the manufacturer stimulates retailer by wholesale discount as the man-
ufacturer’s control, while the retailer stimulates sales by retail discount as the
retailer’s control.

In [9], the maximization of manufacturer’s profit with respect to the wholesale
discount under constant and fixed retail discount is studied. Analogously, in [10],
the maximization of retailer’s profit with respect to the retailer discount under
constant and fixed retail discount is studied. In the both cases, the result optimal
control are continuous. Thus, the corresponding prices (wholesale and retail) are
continuous. This results are elegant mathematically, but they seem inadequate
economically. In practice, the prices are piece-wise constant.

We assume that these discounts are piece-wise constant; moreover, time
switches of discount levels are fixed and known1.

In [11,12] we demonstrate (under rather realistic conditions) the strict con-
cavity of the profit of the manufacturer with respect to wholesale discount levels
1 It seems realistic, cf. [11].
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and strict concavity of the profit of retailer with respect to retail discount levels.
This allows to move on to the next stage of research: to study the equilibrium
(Nash and Stackelberg) in the structure “manufacturer-retailer-consumer”.

In the presented paper, we start to study the equilibrium. The first question is
very relevant and non-trivial: is it possible to calculate the equilibrium explicitly,
i.e., in closed form?

It seems that in the general case the answer to this question is “no”. It is all
the more interesting to identify cases when the answer to this question is “yes”.

We study the case when the wholesale discount is constant while the retail
discount is piece-wise constant. This simplification seems promising, since it
keeps the wholesale price constant, while only the retail price turns out to be
piece-wise constant. At the same time, this situation seems realistic in the case
when the manufacturer is a “large” firm, and retailers are relatively “small”.

The main result of the paper is (see Proposition 5 and (30), (31)):
For the case of constant wholesale discount and piece-wise constant retail

discount, the Stackelberg equilibrium under the leadership of the manufacturer
can be calculated in closed form.

The paper is organized as follows. In Sect. 2.1 repeat the material of Sect. 2
of [12]: we formulate the model and consider the case of piece-wise constant
wholesale and retail discounts. In Section we study the case of constant wholesale
discount and piece-wise constant retail discount. More precisely, we study the
Stackelberg equilibrium under the leadership of manufacturer. Here we get the
form of equilibrium retail discount as the function of wholesale discount (see
Lemma 1). Also we get the main result: the equilibrium can be calculated in
closed form (see Proposition 5). In Sect. 4 we discuss the obtained results. In
Sect. 5 we present the example for the case of one switch. Section 6 contains the
proofs of Lemma 1 and Proposition 5. Section 7 concludes.

2 Model

In this section, we remind briefly the model [9–12].
Let us consider a vertical distribution channel.
On the market, there are manufacturer (“firm”), retailer and consumer. The

firm produces and sells a single product. To increase its profits, the firm uses the
services of a retailer.

Let

– [t1, t2] be the sales period2,
– p be the unit price in a situation where the firm sells the product directly (i.e.,

bypassing the retailer) to the consumer, p > 0;
– c0 be the unit production cost.

2 We assume that the product is “seasonal” (cf. [9]), thus the sales period is rather
small.
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2.1 Basic Model

Wholesale Discount and Wholesale Price. To stimulate the retailer to
sell the goods, the firm provides the wholesale discount α(t) ∈ [A1,A2] ⊂ [0, 1].
Thus, the wholesale price of the goods is

pw(t) = (1 − α(t))p. (1)

Retail Discount, Retail Price, and Retailer’s Profit per Unit. In turn,
the retailer directs the retail discount (“pass-through”), i.e., a part β(t) ∈
[B1,B2] ⊂ [0, 1] of the discount α(t) to reduce the market price of the com-
modity. Thus, the retail price of the goods is equal to

(1 − β(t)α(t))p. (2)

Then the retailer’s profit per unit from the sale is the difference between retail
price and wholesale price, i.e., α(t)(1 − β(t))p.

Accumulated Sales, Retailer’s Motivation. Let

– x(t) be the accumulated sales during the period [t1, t],
– M(t) be the motivation of the retailer.

Motion Equations. We assume that accumulated sales x(t) and the motivation
of the retailer M(t), satisfy the differential equations

Ṁ(t) = γẋ(t) + ε (α(t) − α) ,

ẋ(t) = −θx(t) + δM(t) + ηα(t)β(t),

where γ > 0, ε > 0, θ > 0, δ >, η > 0; see [11] for details3.

Profits. At the end of the selling period, the total profit of the firm is4

Πm =

t2∫

t1

(pw(t) − c0) ẋ(t)dt =

t2∫

t1

(q − α(t)p) ẋ(t)dt,

where q = p − c0. The total profit of the retailer is

Πr = p

t2∫

t1

ẋ(t)α(t)(1 − β(t))dt.

3 Parameter α ∈ [A1, A2] takes into account the fact that the retailer has some expec-
tations about the wholesale discount: the motivation is reduced if the retailer is
dissatisfied with the wholesale discount, i.e., if α(t) < α; on the contrary, the moti-
vation increases if α(t) > α.

4 Since the sales period is rather small (“seasonal” products).
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Model. Let M > 0 be the initial motivation of the retailer.
Thus, the Manufacturer-Retailer Problem is

Πm −→ maxα

Πr −→ maxβ

ẋ(t) = −θx(t) + δM(t) + ηα(t)β(t),
Ṁ(t) = γẋ(t) + ε (α(t) − α) ,
x(t1) = 0, M(t1) = M,
α(t) ∈ [A1,A2] ⊂ [0, 1],
β(t) ∈ [B1,B2] ⊂ [0, 1].

The above problem is the optimal control problem, where

– x(t) and M(t) are the state variables,
– α(t) and β(t) are the controls.

In [9,10], the partial cases of this problem were studied:

– in [9], the maximization of Πm w.r.t. wholesale discount under constant and
fixed retail discount is studied;

– in [10], the maximization of Πr w.r.t. retail discount under constant and fixed
wholesale discount is studied.

In the both cases, the result optimal control are continuous. Thus, the corre-
sponding prices (wholesale and retail) are continuous. This results are elegant
mathematically, but they seem inadequate economically. In practice, the prices
are piece-wise constant.

2.2 The Case: Wholesale Discount and Pass-Through Are
Piece-Wise Constant

Let I = {1, . . . n + 1} and for some t1 = τ0 < τ1 < . . . < τn < τn+1 = t2

α (t) = αi , β (t) = βi , t ∈ (τi−1, τi) , i ∈ I,

where αi , βi , i ∈ I, are the discount levels. Then, due to continuity of state
variables,

x (t) = xi (t) , M (t) = Mi (t) , t ∈ [τi−1, τi] , i ∈ I,

where xi (t) and Mi (t) are the solutions of the systems5

ẋi(t) = −θxi(t) + δMi(t) + ηαiβi,

Ṁi(t) = γẋi(t) + ε (αi − α) ,
xi (τi) = xi−1 (τi) ,
Mi (τi) = Mi−1 (τi) ,
t ∈ [τi−1, τi] , i ∈ I.

5 Note that x1 (τ0) = 0 while M1 (τ0) = M..
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We get6

Πr = p ·
∑
i∈I

(1 − βi) αi (xi (τi) − xi (τi−1)) , (3)

Πm = p ·
∑

i∈I\{n+1}
(αi+1 − αi) xi (τi) + (q − αn+1p) x (t2) . (4)

Therefore, we need the expressions for xi (τi) . Let a = θ − γδ. Under rather
natural condition (the concavity of cumulative sales for constant wholesale price,
see details in [9,10]), we assume

a > 0. (5)

Let us define the functions7

K (t) =
δM

a
·
(
1 − ea(t1−t)

)
+

αδε

a2
·
(
1 − ea(t1−t) + a (t1 − t)

)
, (6)

Hi (t) =
η

a
·
(
1 − ea(τi−1−t)

)
, t ≥ τi−1 , i ∈ I, (7)

Li (t) = − δε

a2
·
(
1 − ea(τi−1−t) + a (τi−1 − t)

)
, t ≥ τi−1 , i ∈ I. (8)

Proposition 1. (See [11]) For t ∈ [τi−1, τi] , i ∈ I,

xi (t) = K (t) + (Hi (t) βi + Li (t)) αi

+
i−1∑
j=1

((Hj (t) − Hj+1 (t)) βj + Lj (t) − Lj+1 (t)) αj .

Further, let us recall the result about the strict concavity of retailer’s profit
Πr with respect to the retail discount levels.

Proposition 2. (See [11]) The retailer’s profit Πr is strictly concave with
respect to the retail discount levels βi, i ∈ I.

As to the manufacturer’s profit Πm, in [12] we demonstrate the strict concavity
of Πm, with respect to the wholesale discount levels, but only when the retail
discount is constant.

6 Now we study not the optimal control problem, but the optimization problem with
the variables αi , βi , i ∈ I.

7 Due to (5), these functions are well defined.
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3 The Case: Wholesale Discount Is Constant,
Pass-Through Is Piece-Wise Constant

Let
α (t) = α, t ∈ [t1, t2] ,

and for some t1 = τ0 < τ1 < . . . < τn < τn+1 = t2

β (t) = βi , t ∈ (τi−1, τi) , i ∈ I.

Then, due to continuity of space variables,

x (t) = xi (t) , M (t) = Mi (t) , t ∈ [τi−1, τi] , i ∈ I,

where xi (t) and Mi (t) are the solutions of the systems8

ẋi(t) = −θxi(t) + δMi(t) + ηαβi,

Ṁi(t) = γẋi(t) + ε (α − α) ,
xi (τi) = xi−1 (τi) ,
Mi (τi) = Mi−1 (τi) ,
t ∈ [τi−1, τi] , i ∈ I.

We get

Πr = pα ·
∑
i∈I

(1 − βi) (xi (τi) − xi (τi−1)) , (9)

Πm = (q − αp) x (t2) . (10)

Now, Proposition 1 has the form (the definition of K (t) ,Hi (t) , Li (t) see in
(6)–(8))

Proposition 3. For t ∈ [τi−1, τi] , i ∈ I

xi (t) = K (t) +

⎛
⎝Hi (t) βi + L1 (t) +

i−1∑
j=1

(Hj (t) − Hj+1 (t)) βj

⎞
⎠ · α.

Moreover, since

∂2Πm

∂α2
= −2p ·

⎛
⎝Hi (t) βi + L1 (t) +

i−1∑
j=1

⎛
⎝Hj (τj) ·

n+1∏
l=j+1

eTl

⎞
⎠ · βj

⎞
⎠ < 0,

where

Ti = (τi−1 − τi) a < 0, i ∈ I, (11)

we get the strict concavity of retailer’s profit (10) with respect to the wholesale
discount, i.e., the following Proposition holds.

Proposition 4. The manufacturer’s profit (10) is strictly concave with respect
to the wholesale discount level α.

Proposition and Proposition allow us to study the equilibrium.
8 Note that x1 (τ0) = 0 while M1 (τ0) = M .
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3.1 Stackelberg Equilibrium Under the Leadership of Manufacturer

Let us consider the manufacturer and the retailer as the two players of a Stack-
elberg game. Moreover, let us consider the manufacturer as the channel leader:
in this case we assume that she can only choose a constant trade discount during
the whole sales period. This way we formulate the following Stackelberg game:

Game ML: maximize (10) where, for each fixed α ∈ [A1,A2], the values
βi, i ∈ I, are the optimal solution of the problem: maximize (9) subject to βi ∈
[B1,B2].

One has for every i ∈ I

∂Πr

∂βi
= pα ·

(
xi (τi−1) − xi (τi) +

∑
k∈I

∂

∂βi
(xk (τk) − xk (τk−1)) (1 − βk)

)
. (12)

Let us consider the system

∂Πr

∂βi
= 0, i ∈ I, (13)

as the system of linear algebraic equations with respect to βi, i ∈ I. Then the
solution of this system depends on α. Let us denote the solution of (13) as

β1 (α) , . . . , βn+1 (α) . (14)

Lemma 1. The solution (14) can be expressed via α as

βi (α) =
Ai

α
+ Bi , i ∈ I, (15)

where Ai and Bi are some constants.

Proof. See Sect. 6.1.

Lemma 1 allows to get the main result of the paper.

Proposition 5. For the case of constant wholesale discount and piece-wise con-
stant retail discount, the Stackelberg equilibrium under the leadership of the man-
ufacturer can be calculated in closed form.

Proof. See Sect. 6.2.

4 Discussion

The derived closed form description of the Stackelberg equilibrium looks very
appealing as it leads to instant computational time, which is very good. More-
over, simple solutions are always nice from analytic point of view – those can be
better understood and explained to even non-professionals.

But the natural question arises: why we study the leadership of the manufac-
turer? What is “economically adequate”: the leadership of the manufacturer or
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the leadership of the retailer? Moreover, it seems that “in reality” the leadership
of the retailer is more adequate.

In [13] we studied the case of the constant discounts (both wholesale and
retail) and get that if the expression

K =
δM

a
·
(
1 − e(t1−t2)a

)
+

αδε

a2
·
(
1 − e(t1−t2)a + (t1 − t2) a

)

(cf. (6)) is negative, then both manufacturer and retailer want to be leader (the
struggle to be leader); while if K is positive then both manufacturer and
retailer want to be follower (the struggle to be follower). May be, the similar
situation can be in the case of piece-wise constant discounts? In any case case,
we plan to study the case of the retailer’s leadership in the future.

5 Example: The Case n = 1

Let n = 1, (t1 − τ1) a = (τ1 − t2) a = T. Then system (13) is
⎧⎪⎨
⎪⎩

− 2
1 − r

· β1 + β2 = C1 (α)

β1 − 2
1 − r

· β2 = C2 (α)

where
r = eT ,

C1 (α) =

K (τ1)
α

+L1 (τ1)

(1 − r) H1 (τ1)
+ 1 ,

C2 (α) =

K (τ2) − K (τ1)
α

+L1 (τ2) − L1 (τ1)

(1 − r) H1 (τ1)
.

We get

β1 (α) = − 1 − r

(1 + r) (3 − r)
· (2 · C1 (α) + (1 − r) · C2 (α)) , (16)

β2 (α) = − 1 − r

(1 + r) (3 − r)
· ((1 − r) · C1 (α) + 2 · C2 (α)) . (17)

Since

x2 (τ2) = K (τ2) + ((H1 (τ2) − H2 (τ2)) β1 + H2 (τ2) β2 + L1 (τ2)) · α

= K (τ2) + (H1 (τ1) (rβ1 + β2) + L1 (τ2)) · α,

we get due to (16) and (17)

x̃2 (τ2) = K (τ2) + (H1 (τ1) (rβ1 (α) + β2 (α)) + L1 (τ2)) · α



296 I. Bykadorov

= K (τ2) +
(

− 1 − r

(3 − r)
· H1 (τ1) (C1 (α) + (2 − r) · C2 (α)) + L1 (τ2)

)
· α

=
(1 − r) · K (τ1) + K (τ2) + ((1 − r) · (L1 (τ1) − H1 (τ1)) + L1 (τ2)) · α

3 − r
.

Further,
Π̃m = (q − pα) x̃2 (τ2) .

Hence
∂Π̃m

∂α
= −px̃2 (τ2) + (q − pα) · ∂x̃2 (τ2)

∂α

= −p · (1 − r) · K (τ1) + K (τ2)
3 − r

+ (q − 2pα) · (1 − r) · (L1 (τ1) − H1 (τ1)) + L1 (τ2)
3 − r

.

So

∂Π̃m

∂α
= 0 ⇐⇒ α =

q

2p
− 1

2
· (1 − r) · K (τ1) + K (τ2)
(1 − r) · (L1 (τ1) − H1 (τ1)) + L1 (τ2)

.

and the Stackelberg equilibrium under the leadership of manufacturer (ML) is9

αML =
q

2p
− 1

2
· (1 − r) · K (τ1) + K (τ2)
(1 − r) · (L1 (τ1) − H1 (τ1)) + L1 (τ2)

βML
1 = β1

(
αML

)
= − 1 − r

(1 + r) (3 − r)
· (

2 · C1

(
αML

)
+ (1 − r) · C2

(
αML

))

βML
2 = β2

(
αML

)
= − 1 − r

(1 + r) (3 − r)
· (

(1 − r) · C1

(
αML

)
+ 2 · C2

(
αML

))

Further,

x̃2 (τ2) =
p ((1− r) · K (τ1) + K (τ2)) + q ((1− r) · (L1 (τ1)− H1 (τ1)) + L1 (τ2))

2p (3− r)

q − pαML =
p ((1− r) · K (τ1) + K (τ2)) + q ((1− r) · (L1 (τ1)− H1 (τ1)) + L1 (τ2))

2 ((1− r) · (L1 (τ1)− H1 (τ1)) + L1 (τ2))

Π̃m =
(p ((1− r) · K (τ1) + K (τ2)) + q ((1− r) · (L1 (τ1)− H1 (τ1)) + L1 (τ2)))

2

4p (3− r) ((1− r) · (L1 (τ1)− H1 (τ1)) + L1 (τ2))
.

9 Of course, it is equilibrium only if αML ∈ [A1, A2], β
ML
1 ∈ [B1, B2], β

ML
2 ∈ [B1, B2].

Otherwise, we need to consider the “boundary conditions”.
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6 Proofs

6.1 Proof of Lemma 1

One has that

∂Πr

∂βi
= 0, i ∈ I, (18)

if and only if the conditions

xi (τi) − xi (τi−1) =
∑
k∈I

∂

∂βi
(xk (τk) − xk (τk−1)) (1 − βk) , i ∈ I, (19)

hold.
We get

xi (τi) = K (τi) +

⎛
⎝Hi (τi) βi + L1 (τi) +

i−1∑
j=1

⎛
⎝

i∏
l=j+1

rl

⎞
⎠ Hj (τi) · βj

⎞
⎠ · α (20)

and

xi (τi−1) = K (τi−1) +

⎛
⎝L1 (τi−1) +

i−1∑
j=1

⎛
⎝ i−1∏

l=j+1

rl

⎞
⎠ Hj (τi−1) · βj

⎞
⎠ · α, (21)

where

ri = eTi , i ∈ I, (22)

while Ti, i ∈ I, are defined in (11).
Hence

xi (τi) − xi (τi−1) = K (τi) − K (τi−1)

+

⎛
⎝Hi (τi)

⎛
⎝βi −

i−1∑
j=1

⎛
⎝ i−1∏

l=j+1

rl

⎞
⎠ (1 − rj) · βj

⎞
⎠ + L1 (τi) − L1 (τi−1)

⎞
⎠ · α

and

∂

∂βi
(xk (τk) − xk (τk−1)) =

⎧⎪⎪⎨
⎪⎪⎩

Hi (τi) · α, k = i

Hk (τk) (ri − 1)
k−1∏

l=i+1

rl · α, k ≥ i + 1
(23)

Now, let us substitute (20), (21) and (23) in (19).
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We get that the conditions (18) hold if and only if the conditions

K (τi) − K (τi−1)

+

⎛
⎝Hi (τi)

⎛
⎝βi −

i−1∑
j=1

⎛
⎝ i−1∏

l=j+1

rl

⎞
⎠ (1 − rj) · βj

⎞
⎠ + L1 (τi) − L1 (τi−1)

⎞
⎠ · α

=

(
Hi (τi) (1 − βi) − (1 − ri)

n+1∑
k=i+1

(
k−1∏

l=i+1

rl

)
Hk (τk) (1 − βk)

)
· α, i ∈ I,

hold. Let us rewrite these conditions as

i−1∑
j=1

⎛
⎝(1 − rj)

i−1∏
l=j+1

rl

⎞
⎠ · βj − 2βi +

n+1∑
j=i+1

(
(1 − rj)

j−1∏
l=i+1

rl

)
· βj

=
K (τi) − K (τi−1)

Hi (τi)
· 1
α

+
L1 (τi) − L1 (τi−1)

Hi (τi)
+

n+1∑
j=i+1

(
(1 − rj)

j−1∏
l=i+1

rl

)
, i ∈ I.

In what follows, let us assume that10

τ0 − τ1 = τ1 − τ2 = . . . = τn−1 − τn = τn − τn+1,

i.e., that11

Ti = T, i ∈ I.

and
ri = eT = r, i ∈ I,

Then
Hi (τi) =

η

a
· (

1 − eT
)

= H1 (τ1) .

Thus, the conditions (18) are equivalent to the conditions

i−1∑
j=1

r(i−j−1) · βj − 2
(1 − r)

· βi +
n+1∑

j=i+1

r(j−i−1) · βj = Ci (α) , i ∈ I, (24)

where

Ci (α) =
K (τi) − K (τi−1)
(1 − r) H1 (τ1)

· 1
α

+
L1 (τi) − L1 (τi−1)

(1 − r) H1 (τ1)
+

n∑
j=i

rj−i, i ∈ I. (25)

10 The general case can be considered analogously, but with more complicated technical
calculations.

11 The constants Ti, i ∈ I, and ri, i ∈ I, are defined in (11) and (22) respectively.
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Let us consider (24) as the system of linear algebraic equations of βi, i ∈ I.
The matrix of the system is

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 2
1 − r

1 r · · · rn−1

1
. . . . . . . . .

...

r
. . . . . . . . . r

...
. . . . . . . . . 1

rn−1 · · · r 1 − 2
1 − r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

One has

D =
1 + r

1 − r
· F · G · FT , (27)

where

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −r 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
...

. . . . . . −r
0 · · · · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 2
1 + r

1 0 · · · 0

1 −2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . 1

0 · · · 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Moreover

G = J · S · JT , (28)

where

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · · · · 0
n

n + 1
1

. . .
...

n − 1
n + 1

n − 1
n

1
. . .

...
...

...
. . . . . . . . .

...
...

...
. . . . . . 1 0

1
n + 1

1
n

· · · · · · 1
2

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 + n · (1 − r)
1 + r

· 1
n + 1

0 · · · · · · 0

0 −n + 1
n

. . . . . .
...

...
. . . . . . . . .

...
...

. . . −3
2

0

0 · · · · · · 0 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Since
det F = det J = 1,

we get due to (27) and (28)

det D =
(

1 + r

1 − r

)n+1

· det S,

i.e.,

det D = (−1)n+1

(
1 + r

1 − r

)n+1

· 2 + n · (1 − r)
1 + r

�= 0. (29)

Due to (29), system (24) has unique solution (14).
To finish the proof, it is sufficient

– to note that matrix (26) does not depend on α,
– to take into consideration the form of (25).

6.2 Proof of Proposition 5

One has, see (10), Πm = (q − pα) xn+1 (t2) . Hence

Π̃m = (q − pα) x̃n+1 (t2) ,

where12

x̃n+1 (t2) = K (t2) +

⎛
⎝n+1∑

j=1

(Hj (t2) − Hj+1 (t2)) βj (α) + L1 (t2)

⎞
⎠ · α,

Hn+2 (t2) = 0.

Due to Lemma 1, see (15),

x̃n+1 (t2) = K (t2)

+
n+1∑
j=1

(Hj (t2) − Hj+1 (t2)) Aj +

⎛
⎝n+1∑

j=1

(Hj (t2) − Hj+1 (t2)) Bj + L1 (t2)

⎞
⎠ α.

We get

∂Π̃m

∂α
= −p · K (t2) +

n+1∑
j=1

(qBj − pAj) (Hj (t2) − Hj+1 (t2)) + q · L1 (t2)

−2p ·
⎛
⎝n+1∑

j=1

(Hj (t2) − Hj+1 (t2)) Bj + L1 (t2)

⎞
⎠ α.

12 βj (α) , i ∈ I, are as in (15).
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Hence
∂Π̃m

∂α
= 0 ⇐⇒

⇐⇒ α =

−p · K (t2) +
n+1∑
j=1

(qBj − pAj) (Hj (t2) − Hj+1 (t2)) + q · L1 (t2)

2p ·
⎛
⎝n+1∑

j=1

(Hj (t2) − Hj+1 (t2)) Bj + L1 (t2)

⎞
⎠

.

Thus,

αML =
q

2p
− 1

2
·

K (t2) +
n+1∑
j=1

(Hj (t2) − Hj+1 (t2)) Aj

L1 (t2) +
n+1∑
j=1

(Hj (t2) − Hj+1 (t2)) Bj

(30)

and due to (15)

βML
i = βi

(
αML

)
=

Ai

αML
+ Bi, i ∈ I,

i.e., see (30)

βML
i =

Ai

q

2p
− 1

2
·

K (t2) +
n+1∑
j=1

(Hj (t2) − Hj+1 (t2)) Aj

L1 (t2) +
n+1∑
j=1

(Hj (t2) − Hj+1 (t2)) Bj

+ Bi , i ∈ I. (31)

If αML ∈ [A1,A2] and βML
i ∈ [B1,B2] , i ∈ I, then αML, βML

i , i ∈ I, is the
Stackelberg equilibrium under the leadership of manufacturer.

Otherwise, we need to consider the “boundary conditions”: in these cases,
αML ∈ {A1,A2} and/or for some i ∈ I, βML

i ∈ {B1,B2} .

7 Conclusion

In this paper, we study a stylized vertical control distribution channel in the
structure “manufacturer-retailer-consumer”. More precisely, we consider the sit-
uation when the wholesale discount and pass-through are piece-wise constant.
The switching times are assumed to be known and fixed.

The main result of the paper is the following: for the case of constant whole-
sale discount and piece-wise constant retail discount, the Stackelberg equilibrium
under the leadership of the manufacturer can be calculated in closed form.

As for the topics of further research, we plan to study the possibility of
calculating in closed form:
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– the Nash equilibrium;
– the Stackelberg equilibrium under the leadership of the retailer;
– the equilibrium when not only the retail discount is piece-wise constant, but

also the manufacturer discount is piece-wise constant.
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Abstract. On the basis of the portfolio theory, a multicriteria invest-
ment Boolean problem of minimizing lost profits is formulated. The prob-
lem considered is to find a set of all extreme portfolios. The quality of
such portfolios is assessed by examining stability of the set of extreme
portfolios to perturbations of Savage’s minimax risk criterion parame-
ters. The lower and upper bounds on the radius of the strong stability
are obtained under the assumption that arbitrary Hölder’s norms are
specified in the three spaces of the problem’s initial data. The case of
the investment problem with linear criteria is considered separately. For
this case, the attainability of the bounds is proven.
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1 Introduction

As mentioned in [17], assessing the quality of decisions while selecting project
portfolios becomes an inherent part of the decision-making process when the
project parameters are inaccurate or uncertain. Many business and management
decisions are made in an uncertain and risky environment caused by the influence
of various factors, such as an inadequacy of the mathematical models used by
real processes, measurements errors or rounding, etc.

Many problems of making multipurpose decisions in management, planning,
and design can be formulated as multicriteria (multiobjective) problems of con-
tinuous and/or discrete optimization. While classical portfolio optimization mod-
els deal with continuous variables [3,24], we propose a discrete analogue based
on binary decision variables which encode decision maker’s choices about what
assets should or should not be included in optimal portfolios. The usage of Sav-
age’s criterion [30] as optimization objective decreases the investment risk in the
worst market situation.

The term stability is commonly used for the phase of an algorithm at which a
solution (or a set of solutions) of the problem has been already found, and addi-
tional calculations are performed in order to investigate how this solution depends
on changes in the problem’s data. In 1923, Jacques Hadamard recognized the
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problem of stability as one of the central in mathematical research. He postu-
lated that in order to be well-posed, a mathematical problem should satisfy three
properties: solution existence, uniqueness as well as solution stability, i.e. contin-
uous dependency on the data [4]. Problems that are not well-posed in the sense of
Hadamard are usually termed ill-posed. Despite the fact that multiple objective
discrete optimization problems may not formally satisfy the property of solution
uniqueness, carefully considering stability is believed necessary and important.

Despite the existence of numerous approaches to stability analysis of optimiza-
tion problems, two major directions can be pointed out: quantitative and qualita-
tive. In the first direction, many authors focus on studying different types of sta-
bility and deriving optimality conditions for them (see e.g. [8,10,11,14,20,21]).
The second direction is focused on obtaining quantitative estimates of permissi-
ble changes in the problem’s initial data that retains some invariance property of
optimal solutions, and on the development of computational algorithms for large
classes of single objective [1,23] and multiobjective [13,18,19] discrete optimiza-
tion problems. The key concept here is the stability radius that determines numeri-
cal bounds and conditions when an optimal solution retains its optimal properties.
For example, [7] contains a survey of the results describing analytical expressions
and bounds for calculating the stability radii of the multicriteria integer program-
ming model with linear criteria. Sometimes, instead of stability radius, other mea-
sures of stability are scrutinized when the perturbations in the initial data exceed
the level determined by the stability radius, and the perturbed initial data are
outside the stability region. In this case, the concept of the stability and accuracy
function is used to evaluate the quality of the chosen solution. Being originally
proposed in [22] for multicriteria linear combinatorial optimization problem, later
some of the results were generalized under game theoretic framework [26], and for
scheduling problems [27].

A relatively new direction in research is to analyze stability for multicriteria
investment problems. In [9], some bounds on the stability radii of one Pareto
optimal portfolio were obtained in the cases where the three-dimensional space
of the problem parameters is equipped with different combinations of linear
and Chebyshev norms. The case of general lp norm is analyzed in [16]. Most
recently, the performances of the stability function and the optimality threshold
are shown in the case study using global risk assessments for projects partic-
ipating in the Belt and Road Initiative. The computation results demonstrate
the ability through the stability function to evaluate the quality and optimal
properties of feasible project portfolios [17].

Our current work continues research towards a similar direction, with focus
on a different optimality principle, namely, the so-called extreme solutions and
their stability are investigated. The paper is organized as follows. In Sect. 2,
we introduce basic concepts and formulate the problem. In this section we also
introduce a type of stability named strong stability, i.e. a situation when for any
admissible perturbation there exists at least one extreme portfolio preserving
its own optimality. Section 3 contains auxiliary technical statements required for
the proof of the main result. As a result of the parametric analysis, in Sect. 4 the
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lower and upper bounds on strong stability radius are obtained in the case with
arbitrary Hölder’s norms are specified in the three spaces of the problem’s initial
data. Separately, a particular case where all the criteria are linear is considered
in Sect. 5.

2 Problem Formulation and Basic Definitions

Consider a multicriteria discrete variant of the investment optimization problem
with the following parameters specified below. Let

Nn = {1, 2, . . . , n} be a variety of alternatives (investment assets);
Nm be a set of possible financial market states (market situations, scenarios);
Ns be a set of possible risks;
rijk be a numerical measure of economic risk of type k ∈ Ns if investor

chooses project j ∈ Nn given the market state i ∈ Nm;
R = [rijk] ∈ Rm×n×s be a matrix specifying risks;
x = (x1, x2, . . . , xn)T ∈ En be an investment portfolio, where E = {0, 1},

xj =
{

1, if investor chooses project j,
0, otherwise;

X ⊂ En be a set of all admissible investment portfolios, i.e. those whose
realization provides the investor with the expected income and does not exceed
his/her initial capital;

Rm be a financial market state space;
Rn be a portfolio space;
Rs be a risk space.
In our model, we assume that the risk measure is addictive, i.e. the total risk

of one portfolio is a sum of risks of the projects included in the portfolio. The
risk of each project can be measured, for instance, by means of the associated
implementation cost.

The risk factor is an essential attribute of the functioning of the financial
market. Extensive literature is devoted to methods of quantitative assessment of
economic risks, their classification and characterization. Recently, experts pro-
pose quantifying risks through the prism of five R: Robustness, Redundancy,
Resourcefulness, Response and Recovery [5]. It leads to the necessity of multi-
criteria decision making tools.

Assume that the efficiency of a chosen portfolio (Boolean vector) x ∈
X, |X| ≥ 2, is evaluated by a vector objective function

f(x,R) = (f1(x,R1), f2(x,R2), . . . , fs(x,Rs)),

each partial objective represents minimax Savage’s risk criterion [30].

fk(x,Rk) = max
i∈Nm

rikx = max
i∈Nm

∑
j∈Nn

rijkxj → min
x∈X

, k ∈ Ns,
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where Rk ∈ Rm×n is the k-th cut R = [rijk] ∈ Rm×n×s with rows

rik = (ri1k, ri2k, . . . rink) ∈ Rn, i ∈ Nm.

Following the criterion of a bottleneck [2], an investor in the conditions of eco-
nomic instability and uncertainty of the market state is extremely cautious, opti-
mizing the total risk of the portfolio in the most unfavorable situation, namely
when the risk is maximum. Such caution is appropriate because any investment
is the exchange of a certain current value for a possibly uncertain future income.
Obviously, this approach is dictated by the safest and most protective rule pre-
scribing to assume the worst.

The problem of finding extreme portfolios is referred to as the multi-
criteria investment Boolean problem with Savage’s risk criteria and denoted
Zm

s (R), s,m ∈ N. The set of extreme portfolios is defined as follows:

Em
s (R) = {x ∈ X : ∃k ∈ Ns ∀x′ ∈ X (fk(x,Rk) ≤ fk(x′, Rk))} .

This set can equivalently be written as follows:

Em
s (R) = {x ∈ X : ∃k ∈ Ns (Ek(x,Ck) = ∅)} ,

where
Ek(x,Ck) = {x′ ∈ X : fk(x,Rk) > fk(x′, Rk)} , k ∈ Ns.

Thus, the choice of extreme portfolios can be interpreted as finding best
solutions for each of s criteria, and then combining them into one set. The
vector composed of optimal objective values constitutes the ideal vector that is
of great importance in theory and methodology of multiobjective optimization
[25,31]. This also justifies our particular interest in studying some properties of
extreme solutions. Obviously, Em

1 (R), R ∈ Rm×n is the set of optimal solutions
for scalar problem Zm

1 (C).
Given the assumption that X is finite, the following statements are true for

any R ∈ Rm×n×s :

Em
s (R) = Sm

s (R)\ (Pm
s (R)\Lm

s (R)) = Lm
s (R) ∪ (Sm

s (R)\Pm
s (R)) ,

Em
s (R) ∩ Pm

s (R) = Lm
s (R), Lm

s (R) ⊆ Em
s (R) ⊆ Sm

s (R), Lm
s (R) ⊆ Pm

s (R) ⊆ Sm
s (R),

where Pm
s (R) is the Pareto set [29], Sm

s (R) is the S set [28], Lm
s (R) is lexico-

graphic set [25,28]. These sets are defined as follows:

Pm
s (R) =

{
x ∈ X : � ∃x0 ∈ X

(
f(x,R) ≥ f(x0, R) & f(x,R) �= f(x0, R)

)}
,

Sm
s (R) =

{
x ∈ X : � ∃x0 ∈ X ∀k ∈ Ns

(
fk(x,Rk) > fk(x0, Rk)

)}
,

Lm
s (R) =

⋃
π∈Πs

L(R, π).

Here

L(R, π) =
{

x ∈ X : ∀x′ ∈ X

(
f(x,R) ≤

π
f(x′, R)

)}
,
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Πs is the set of all s! permutations of numbers 1, 2, ..., s; π = {π1, π2, ..., πs} ∈
Πs, is a binary relation ≤

π
between two vectors y = (y1, y2, ..., ys) and y′ =

(y′
1, y

′
2, ..., y

′
s) belonging to Rs and defined as:

y ≤
π

y′ ⇔ (y = y′) ∨ (∃u ∈ Ns ∀l ∈ Nu−1 (yπu
< y′

πu
& yπl

= y′
πl

)
)
,

where N0 = ∅. Evidently, all the sets above are nonempty for any R ∈ Rm×n×s.
We will perturb the elements of matrix R by adding elements of the perturb-

ing matrix R′ ∈ Rm×n×s. Thus the perturbed problem Zm
s (R + R′) of finding

extreme solutions has the following form:

f(x,R + R′) → min
x∈X

.

The set of extreme portfolios in the perturbed problem is denoted by Em
s (R+R′).

Recall that Hölder’s norm lp (also known as p-norm) in vector space Rn is
the number

‖a‖p =

⎧⎨
⎩

(∑
j∈Nn

|aj |p
)1/p

if 1 ≤ p < ∞,

max{|aj | : j ∈ Nn} if p = ∞,

where a = (a1, a2, ..., an)T ∈ Rn.
In the spaces Rn,Rm and Rs we define three Hölder’s norms lp, lq and lt,

where p, q, t ∈ [1,∞]. So, the norm of matrix R ∈ Rm×n×s is the following
number

‖R‖pqt = ‖(‖R1‖pq, ‖R2‖pq, ..., ‖Rs‖pq)‖t,

with cuts
‖Rk‖pq = ‖(‖r1k‖p, ‖r2k‖p, ..., ‖rmk‖p)‖q, k ∈ Ns.

For any numbers p, q, t ∈ [1,∞] the following inequalities are valid:

‖rik‖p ≤ ‖Rk‖pq ≤ ‖R‖pqt, i ∈ Nm, k ∈ Ns. (1)

Following [7], the strong stability (in terminology [8] T1-stability) radius of
Zm

s (R), s,m ∈ N, with Hölder’s norms lp, lq and lt in spaces Rn,Rm and Rs,
respectively, is defined as:

ρ = ρm
s (p, q, t) =

{
supΞpqt if Ξpqt �= ∅,

0 if Ξpqt = ∅,

Ξpqt = {ε > 0 : ∀R′ ∈ Ωpqt(ε) (Em
s (R) ∩ Em

s (R + R′) �= ∅)}, and
Ωpqt(ε) = {R′ ∈ Rm×n×s : ‖R′‖pqt < ε} is the set of perturbing matrices

R′ with cuts R′
k ∈ Rm×n, k ∈ Ns;

Em
s (R+R′) is the set of extreme solutions for the perturbed problem Zm

s (R+
R′);

‖R′‖pqt is the norm of matrix R′ = [r′
ijk].

Thus the strong stability radius of the problem Zm
s (R) is an extreme level

of independent perturbations of elements of matrix R ∈ Rm×n×s, such that for
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each such perturbation there exists a portfolio that is optimal both in Zm
s (R+R′)

and Zm
s (R).

Obviously, if Em
s (R) = X, then Em

s (R)∩Em
s (R+R′) �= ∅ for any perturbing

matrix R′ ∈ Ωpqt(ε), where ε > 0. So, the strong stability radius is not bounded
in this case above. For this reason, the problem with Em

s (R) = X\Em
s (R) �= ∅,

is called non-trivial.

3 Auxiliary Statements and Lemmas

Let v be any of the above-numbers p, q.t. For the number v, let v∗ be a number
conjugated to v and defined as:

1/v + 1/v∗ = 1, 1 < v < ∞. (2)

We also set v∗ = 1 if v = ∞, and v∗ = ∞ otherwise.
We assume that v and v∗ are taken from [1,∞], and they satisfy 2. In addition

to the above, we assume that 1/v = 0 and v = ∞.
Further we will use the well-know Hölder’s inequality [15]:

|aT b| ≤ ‖a‖v‖b‖v∗ (3)

that is true for any two vectors a and b of the same dimension.
It is easy to see that for any a = (a1, a2, ..., an)T ∈ Rn with

|aj | = α, j ∈ Nn,

the following equality holds
‖a‖v = αn1/v (4)

for any v ∈ [1,∞],
The following two lemmas can easily be proven.

Lemma 1. Given two portfolios x, x0 ∈ X, two market states i, i′ ∈ Nm and a
fixed risk k ∈ Ns, the following statement is true for any p, q ∈ [1,∞]:

rikx − ri′kx0 ≥ −‖Rk‖pq‖(‖x‖p∗ , ‖x0‖p∗)‖ν ,

where Rk ∈ Rm×n is the k-th cut of matrix R ∈ Rm×n×s with rows
r1k, r2k, ..., rmk, ν = min{p∗, q∗}.

Proof. Let i �= i′. Then, using Hölder’s inequality (3), we get

rikx − ri′kx0 ≥ −(‖rik‖p‖x‖p∗ + ‖ri′k‖p‖x‖p∗)

≥ ‖(‖rik‖p, ‖ri′k‖p)‖q ‖(‖x‖p∗ , ‖x0‖p∗)‖q∗

≥ −‖Rk‖pq ‖(‖x‖p∗ , ‖x0‖p∗)‖q∗ ≥ −‖Rk‖pq ‖(‖x‖p∗ , ‖x0‖p∗)‖ν .

For i = i′, using (1), and Hölder’s inequality (3) we deduce

rikx − ri′kx0 ≥ −‖rik‖p ‖x − x0‖p∗ ≥ −‖Rk‖pq ‖x − x0‖p∗

≥ −‖Rk‖pq ‖(‖x‖p∗ , ‖x0‖p∗)‖q∗ ≥ −‖Rk‖pq ‖(‖x‖p∗ , ‖x0‖p∗)‖ν .
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Lemma 2. Given cardinal numbers s and m, optimal portfolio x0 ∈ Em
s (R) and

perturbing matrix R′ ∈ Rm×n×s with cuts R′
k ∈ Rm×n, assume that for some

index l ∈ Ns the following equality holds:

Em
s (R) ∩ El(x0, Rl + R′

l) = ∅. (5)

Then we have
Em

s (R) ∩ Em
s (R + R′) �= ∅. (6)

Proof. if x0 ∈ Em
s (R +R′), then the lemma is trivial. If x0 �∈ Em

s (R +R′). Then
there exists a portfolio x∗ ∈ Em

s (R + R′) such that x∗ ∈ El(x0, Rl + R′
l). Then

due to (5), we conclude that x∗ ∈ Em
s (R). This implies the validity of (6). ��

4 Strong Stability Radius Bounds

For non-trivial problem Zm
s (R), we introduce the following notation

ϕ = ϕm
s (p, q) = min

x�∈Em
s (R)

min
k∈Ns

max
x′∈X\{x}

gk(x.x′, Rk)
‖(‖x‖p∗ , ‖x′‖p∗)‖ν

,

ψ = ψm
s (p, q) = max

x′∈Em
s (R)

max
k∈Ns

min
x�∈Em

s (R)

gk(x, x′, Rk)
‖(‖x‖p∗ , ‖x′‖p∗)‖ν

,

χ = χm
s (p, q, t) = n1/pm1/qs1/t min

x�∈Em
s (R)

max
k∈Ns

max
x′∈Em

s (R)

gk(x, x′, Rk)
‖x − x′‖1 ,

where
gk(x, x′, Rk) = fk(x,Rk) − fk(x′, Rk), k ∈ Ns,

ν = min{p∗, q∗}.

Theorem 1. Given s,m ∈ N and p, q, t ∈ [1,∞], for the strong stability
radius ρm

s (p, q, t) of s-criteria non-trivial problem Zm
s (R), the following bounds

are valid:
0 < max{ϕ, ψ} ≤ ρm

s (p, q, t) ≤ min{χ, ‖R‖pqt}.

Proof. Since,

∀x �∈ Em
s (R) ∀k ∈ Ns ∃x0 ∈ X (fk(x,Rk) > fk(x0, Rk)),

the following inequality is evident

ϕ > 0,

i.e. the lower bound and the radius itself ρm
s (p, q, t) are positive numbers.

Now we show that

ρ = ρm
s (p, q, t) ≥ ϕs(p, q) = ϕ. (7)
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Let the perturbing matrix R′ = [r′
ijk] ∈ Rm×n×s with cuts R′

k, k ∈ Ns, be
taken from the set Ωpqt(ϕ). According to the definition of the number ϕ, and
due to inequality (1), we obtain

∀x �∈ Em
s (R) ∀k ∈ Ns ∃x0 ∈ X\{x}

(
gk(x, x0, Rk)

‖(‖x‖p∗ , ‖x0‖p∗)‖ν
≥ ϕ > ‖R′‖pqt ≥ ‖R′

k‖pq

)
.

Thus, due to Lemma 1, for any criterion k ∈ Ns there exists a portfolio
x0 �= x such that

gk(x, x0, Rk + R′
k) = fk(x,Rk + R′

k) − fk(x0, Rk + R′
k)

= max
i∈Nm

(rik + r′
ik)x − max

i∈Nm

(rik + r′
ik)x0

= min
i∈Nm

max
i′∈Nm

(rikx + r′
ikx − ri′kx0 − r′

i′kx0) (8)

≥ fk(x,Rk) − fk(x0, Rk) − ‖R′
k‖pq ‖(‖x‖p∗ , ‖x0‖p∗)‖ν

= gk(x, x0, Rk) − ‖R′
k‖pq ‖(‖x‖p∗ , ‖x0‖p∗)‖ν > 0,

where r′
ik is the i-th row of the k-th cut R′

k of the matrix R′. This implies
x �∈ Em

s (R + R′) if x �∈ Em
s (R).

Summarizing, we conclude that any non-optimal portfolio in Zm
s (R) remains

non-optimal in Zm
s (R + R′), i.e. the following inclusion holds

∅ �= Em
s (R + R′) ⊆ Em

s (R).

Hence, Em
s (R) ∩ Em

s (R + R′) �= ∅ for any perturbing matrix R′ ∈ Ωpqt(ϕ), i.e.
inequality (7) is true.

Further, we prove the lower bound

ρ = ρm
s (p, q, t) ≥ ψm

s (p, q, r) = ψ. (9)

Since the problem Zm
s (R) is non-trivial, we have

∃x′ ∈ Em
s (R) ∃k ∈ Ns ∀x �∈ Em

s (R) (fk(x,Rk) ≥ fk(x′, Rk)).

Therefore ψ > 0.
As in the case considered above, let R′ = [r′

ijk] ∈ Rm×n×s be a perturbing
matrix taken from the set of perturbing matrices Ωpqt(ψ). Then according to the
definition of ψ, there exist x0 ∈ Em

s (R) and l ∈ Ns such that for any portfolio
x �∈ Em

s (R) due to (1) the following inequalities hold

ql(x, x0, Rl)
‖(‖x‖p∗ , ‖x0‖p∗)‖ν

≥ ψ > ‖R′‖pqt ≥ ‖R′
l‖pt.
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Then using (8) (for k = l), we obtain that for any x �∈ Em
s (R) and any R′ ∈

Ωpqt(ψ) the following inequalities are valid

ql(x, x0, Rl + R′
l) ≥ ql(x, x0, Rl) − ‖R′

l‖pq‖(‖x‖p∗ , ‖x0‖p∗)‖ν > 0.

Therefore, we have
Em

s (R) ∩ El(x0, Rl + R′
l) = ∅.

Thus, due to Lemma 2, the inequality (6) is true for any perturbing matrix
R′ ∈ Ωpqt(ψ), i.e. inequality (9) holds.

Further, we prove the upper bound

ρ = ρm
s (p, q, t) ≤ χm

s (p, q, t) = χ. (10)

According to the definition of χ and due to assumption about problem’s
non-triviality, we have

∃x0 = (x0
1, x

0
2, ..., x

0
n)T �∈ Em

s (R) ∀k ∈ Ns ∀x ∈ Em
s (R)

(
χ‖x0 − x‖1 ≥ n1/pm1/qs1/tgk(x0, x,Rk)

)
. (11)

Let ε > χ, and let the elements of perturbing matrix R0 = [r0ijk] ∈ Rm×n×s

with cuts R0
k, k ∈ Ns, be defined as:

r0ijk =

{
−δ if i ∈ Nm, x0

j = 1, k ∈ Ns,

δ if i ∈ Nm, x0
j = 0, k ∈ Ns,

where δ satisfies
χ < δn1/pm1/qs1/t < ε. (12)

From the above according to (4), we get

‖r0ik‖p = δn1/p, i ∈ Nm, k ∈ Ns,

‖R0
k‖pq = δn1/pm1/q, k ∈ Ns,

‖R0‖pqt = δn1/pm1/qs1/t,

R0 ∈ Ωpqt(ε).

In addition, all the rows r0ik, i ∈ Nm, of any k-th cut R0
k, k ∈ Ns, are constructed

identically and composed of δ and −δ. So, setting c = r0ik, i ∈ Nm, k ∈ Ns, we
deduce

c(x0 − x) = −δ‖x0 − x‖1 < 0

that is true for any portfolio x �= x0. Using (11) and (12), we conclude that for
any portfolio x ∈ Em

s (R) and any risk k ∈ Ns, the following statements are true:
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gk(x0, x,Rk + R0
k) = fk(x0, Rk + R0

k) − fk(x,Rk + R0
k)

= max
i∈Nm

(rik + c)x0 − max
i∈Nm

(rik + c)x = max
i∈Nm

rikx0 − max
i∈Nm

rikx + c(x0 − x)

= gk(x0, x,Rk) + c(x0 − x) ≤
(
χ(n1/pm1/qs1/t)−1 − δ

)
‖x0 − x‖1 < 0.

This implies x �∈ Em
s (R +R0) for x ∈ Em

s (R). Thus, for any ε > χ there exists a
perturbing matrix R0 ∈ Ωpqt(ε) such that Em

s (R) ∩ Em
s (R + R0) = ∅, i.e. ρ < ε

for any ε > χ. Hence, inequality (10) is true.
Finally, we show

ρm
s (p, q, t) ≤ ‖R‖pqt. (13)

Let x0 = (x0
1, x

0
2, ..., x

0
n)T �∈ Em

s (R) and ε > ‖R‖pqt. Let fix δ satisfying
condition

0 < δn1/pm1/qs1/t < ε − ‖R‖pqt. (14)

We introduce an auxiliary matrix V = [vijk] ∈ Rm×n×s with cuts Vk, k ∈ Ns,
defined as follows:

vijk =

{
−δ if i ∈ Nm, x0

j = 1, k ∈ Ns,

δ if i ∈ Nm, x0
j = 0, k ∈ Ns.

Using (4), we obtain

‖Vk‖pq = δn1/pm1/q, k ∈ Ns,

‖V ‖pqt = δn1/pm1/qs1/t. (15)

It is easy to see that all rows of Vk, k ∈ Ns, are identical and composed of δ and
−δ. So, we get

fk(x0, Vk) − fk(x, Vk) = −δ‖x0 − x‖1 < 0, k ∈ Ns, (16)

for any x �= x0, and in particular for x ∈ Em
s (R).

Further, let R0 ∈ Rm×n×s be a perturbing matrix with cuts R0
k, k ∈ Ns,

defined as:
R0

k = Vk − Rk, k ∈ Ns, (17)

i.e. R0 = V − R. Using (14) and (15), we deduce

‖R0‖pqt ≤ ‖V ‖pqt + ‖R‖pqt = δn1/pm1/qs1/t + ‖R‖pqt < ε,

i.e. R0 ∈ Ωpqt(ε).
Additionally, using (16) and (17) for any index k ∈ Ns, we have

gk(x0, x,Rk + R0
k) = fk(x0, Rk + R0

k) − fk(x,Rk + R0
k)

= fk(x0, Vk) − fk(x, Vk) = −δ‖x0 − x‖1 < 0,

i.e. x �∈ Em
s (R + R0) for x ∈ Em

s (R). Summarizing, we get

∀ε > ‖R‖pqt ∃R0 ∈ Ωpqt(ε)
(
Em

s (R) ∩ Em
s (R + R0) = ∅) .

The last implies (13). ��
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From Theorem 1 we obtain the following result specifying the lower and
upper bounds on the strong stability radius for the case of same Hölder’s norm
lp is used in all the three spaces.

Corollary 1. For s,m ∈ N and p ∈ [1,∞], the strong stability radius ρm
s (p, p, p)

of s-criteria non-trivial problem Zm
s (R) has the following valid lower and upper

bounds:

0 < ϕm
s (p, p) = min

x�∈Em
s (R)

min
k∈Ns

max
x′∈X\{x}

gk(x, x′, Rk)

‖x + x′‖1/p∗
1

≤ ρm
s (p, p, p)

≤ (nms)1/p min
x�∈Em

s (R)
max
k∈Ns

max
x′∈Em

s (R)

gk(x, x′, Rk)
‖x − x′‖1 = χm

s (p, p, p).

5 The Case of Linear Criteria

For m = 1, our problem transforms into s-criteria problem of Boolean linear
programming. It is convenient to write it in the following form:

Z1
s (R) : Rx = (R1x,R2x, ..., Rsx)T → min

x∈X
,

for x = (x1, x2, ..., xn)T ∈ X ⊆ En. Here R = [rijk] ∈ Rs×n is a matrix with
rows Rk ∈ Rn, k ∈ Ns.

The case (m = 1) can be interpreted as a situation in which the financial
market is stable and there is no concern for the investors. As previously, in space
of portfolios (investment projects) Rn and in space of risks Rs two Hölder’s
norms are considered lp and lt, p, t ∈ [1,∞]. The strong stability radius of the
problem Z1

s (R) is denoted by ρ1s(p, t). Given p, t ∈ [1,∞], s ∈ N, we denote

ϕ̂ = ϕ̂1
s(p) = min

x�∈E1
s(R)

min
k∈Ns

max
x′∈X\{x}

Rk(x − x′)
‖x − x′‖p∗

,

ψ̂ = ψ̂1
s(p) = max

x′∈E1
s(R)

max
k∈Ns

min
x�∈E1

s(R)

Rk(x − x′)
‖x − x′‖p∗

,

χ̂ = χ̂1
s(p, t) = n1/ps1/t min

x�∈E1
s(R)

max
k∈Ns

max
x′∈E1

s(R)

Rk(x − x′)
‖x − x′‖1 ,

‖R‖pt = ‖(‖R1‖p, ‖R2‖p, ..., ‖Rs‖p)‖t.

Theorem 2. For p, t ∈ [1,∞], s ∈ N, the strong stability radius ρ1s(p, t) of s-
criteria non-trivial Boolean linear problem Z1

s (R), R ∈ Rs×n, has the following
valid lower and upper bounds:

0 < max{ϕ̂, ψ̂} ≤ ρ1s(p, t) ≤ min{χ̂, ‖R‖pt}.
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Proof. From Theorem 1 the validity of upper bounds follows directly. Addition-
ally, since ϕ, ψ, χ are positive as shown in Theorem 1, the numbers ϕ̂, ψ̂, χ̂
are also positive.

First we prove inequality

ρ1s(p, t) ≥ ϕ̂1
s(p) = ϕ̂. (18)

Let R1 ∈ Rs×n be an arbitrary perturbing matrix with rows R′
k ∈ Rn, k ∈

Ns, and the norm

‖R′‖pt = ‖(‖R′
1‖p, ‖R′

2‖p, ..., ‖R′
s‖p)‖t < ϕ̂,

i.e. R′ ∈ Ωpt(ϕ̂). Then according to the definition of ϕ̂ and due to (1), we have

∀x �∈ E1
s (R) ∀k ∈ Ns ∃x0 ∈ X\{x}

(
Rk(x − x0)
‖x − x0‖p∗

≥ ϕ̂ > ‖R′‖pt ≥ ‖R′
k‖p

)
.

Applying Hölder’s inequality (3) for any index k ∈ Ns, we get

(Rk+R′
k)(x−x0) = Rk(x−x0)+R′

k(x−x0) ≥ Rk(x−x0)−‖R′
k‖p‖x−x0‖p∗ > 0.

So, for any x �∈ E1
s (R+R′) we have x �∈ E1

s (R). Thus, any non-optimal portfolio
in Z1

s (R) remains non-optimal in Z1
s (R + R′), i.e. E1

s (R + R′) ⊆ E1
s (R). Hence,

E1
s (R) ∩ E1

s (R + R′) �= ∅ for any R′ ∈ Ωpt(ϕ̂), i.e. (18) holds.
Now we prove inequality

ρ1s(p, t) ≥ ψ̂1
s(p) = ψ̂. (19)

Let R′ ∈ Ωpt(ψ̂) be an arbitrary perturbing matrix with rows R′
k, k ∈ Ns. Then

according to the definition of ψ̂, there exist x0 ∈ E1
s (R) and l ∈ Ns, such that

x �∈ E1
s (R). Using (1) we deduce

Rl(x − x0)
‖x − x0‖p∗

≥ ψ̂ > ‖R′‖pt ≥ ‖R′
l‖p.

Applying Hölder’s inequality (3), we get

(Rl +R′
l)(x−x0) = Rl(x−x0)+R′

l(x−x0) ≥ Rl(x−x0)−‖R′
l‖p‖x−x0‖p∗ > 0.

Thus, E1
s (R) ∩ El(x0, Rl + R′

l) = ∅. Then due to Lemma 2, inequality (6), and
also inequality (19), holds for any perturbing matrix R′ ∈ Ωpt(ψ̂). ��

From Theorem 2 we obtain the following result specifying the lower and upper
bounds on the strong stability radius ρ1s(∞,∞) for the case of same Hölder’s
norm l∞ is used in all the two spaces.

Corollary 2. Given p = t = ∞ and s ∈ N, the strong stability radius ρ1s(∞,∞)
of non-trivial s-criteria problem of Z1

s (R), R ∈ Rs×n, has the following valid
lower and upper bounds:

0 < ϕ̂1
s(∞) = min

x/∈E1
s (R)

min
k∈Ns

max
x′∈X\{x}

Rk(x − x′)
‖x − x′‖1

≤ ρ1s(∞,∞) ≤ χ̂1
s(∞,∞) = min

x/∈E1
s (R)

max
k∈Ns

max
x′∈E1

s(R)

Rk(x − x′)
‖x − x′‖1 .
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Now we present some results which illustrate attainability of the bounds
specified in Theorem 2. First note that from Theorem 2 the well-known formula
follows for p = t = ∞ and s = 1:

ρ11(∞,∞) = ϕ̂1
1(∞) = χ̂1

1(∞,∞) = min
x/∈E1

1(R)
max

x′∈E1
1(R)

RT (x − x′)
||x − x′||1 > 0,

where R ∈ Rn.
The next theorem specifies a class of problems with attainable lower bounds.

Theorem 3. Given p, t ∈ [1,∞] there exists a class of problems Z1
1 (R) such

that for the strong stability radius ρ11(p, t) the following formula holds:

ρ11(p, t) = χ̂1
1(p, t) = ||R||pt. (20)

Proof. According to Theorem 2, in order to prove (20), it suffices to show that

ρ11(p, t) ≥ χ̂1
1(p, t) = ||R||pt.

Let X = {x0, x1, x2, ..., xn} ⊂ En, where x0 = (0, 0, ..., 0)T ∈ En, xj = ej ,
j ∈ Nn. Here ej is a unit column vector of space Rn, i.e. ej is j-column of
identity n × n matrix. Assume

R = (−α,−α, ...,−α) ∈ Rn, α > 0.

Then we obtain
Rx0 = 0, Rxj = −α, j ∈ Nn,

x0 /∈ E1
1(R), xj ∈ E1

1(R), j ∈ Nn,

χ̂1
1(p, t) = ||R||pt = n1/pα. (21)

We introduce a perturbing row R′ = (r′
1, r

′
2, ..., r

′
n) that is taken from the set

Ωpt(n1/pα), i.e. ||R′||pt ≤ n1/pα.
Proving by contradiction it is easy to show that there exists at least one

index l ∈ Nn with |r′
l| < α. Therefore, we have (R + R′)(x0 − xl) = α − r′

l > 0,
i.e. x0 /∈ E1

1(R + R′) for any R′ ∈ Ωpt(χ̂1
1(p, t)). Since, x0 /∈ E1

1(R) we have
ρ11(p, t) ≥ χ̂1

1(p, t). Using (21) we finally conclude ρ11(p, t) = χ̂1
1(p, t) = ||R||pt =

n1/pα. ��
Finally, we show that both upper and lower bounds specified in Theorem 2

can be attained in scalar case.

Theorem 4. Given p, t ∈ [1,∞], there exists a class of problems Z1
1 (R) such

that for the strong stability radius ρ11(p, t) the following formula holds:

ρ11(p, t) = ϕ̂1
1(p) = ψ̂1

1(p) = χ̂1
1(p, t) = ||R||pt.

Proof. Let X = {x0, x1} ∈ Rn ⊂ En, where x0 = (0, 0, ..., 0)T , x1 =
(1, 1, ..., 1)T . Assume R = (1, 1, ..., 1) ∈ Rn. Then we get x0 ∈ E1

1(R), x1 /∈
E1

1(R). Therefore, χ̂1
1(p, t) = ||R||pt = n1/p. Using (2) we deduce ϕ̂1

1(p) =
ψ̂1
1(p) = n1/p. Hence, ρ11(p, t) = ϕ̂1

1(p) = ψ̂1
1(p) = χ̂1

1(p, t) = ||R||pt = n1/p.
��
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6 Conclusion

As a summary, it is worth mentioning that the bounds proven in Theorems 1–4,
are theoretical due to their analytical and enumerating structures. Even for a
single objective case, the difficulty of exact value calculation for various types of
stability radii is a long-standing challenge originally pointed out in [1]. In prac-
tical applications, one can try to get reasonable approximation of the bounds
using some meta-heuristics, e.g. evolutionary algorithms or Monte-Carlo simu-
lation. This could become a possible subject for future investigations. Another
possibility to continue research in this direction is to specify some particular
classes of problems where computational burden can be drastically reduced due
to a unique structure of the set of efficient outcomes.

Conflict of Interest. The authors declare that they have no conflict of interest.
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Abstract. Analysis of a production network graph allows to determine
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cept of economic development, these industries are the main drivers of
economic growth. We discuss this concept in terms of a tractable model.
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based on the solution of Fenchel duality problem of resource allocation.
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1 Introduction

One of the most actual questions of the development of modern complicate
economies is as following. Which industries are more important drivers of the eco-
nomic growth? This question is especially relevant for the developing economies.
The elaboration of government programs of stimulating of economic growth is
closely related to the state support of the central industries.

The problem of determining of industry centrality measure in an econ-
omy is connected to ambiguity of the concept of centrality in network models.
In recent decades, production relations have become much more complicated.
Therefore, the approaches related to the analysis of single-product aggregated
models of GDP dynamics have lost their relevance. For example, in terms of
such approaches, the influence of an industry on the total output of the econ-
omy is determined by the amount of revenue of the industry only and does not
depend on its position in the supply chain [11]. Crises of the late 19th and early
20th centuries showed that it is important to take into account the intersectoral
interactions in supply networks.

In [1] the approach for centrality definition in the case of exchange networks
of a general type was developed, that led to the concept of eigenvector central-
ity (Bonacich centrality). Generalization of this approach led to the concept of
influence vector, that allows to analyze the macroeconomical impact of microeco-
nomical shocks in production networks [4–6,12]. The influence vector coincides
with the definition of the PageRank vector of a graph and characterizes the
industry as more important if it is connected with other important industries
[1,13]. Acemouglu et al. in [4–6] considered a connection of centrality measures
(including the concept of influence vector) with the problem of the propagation
of random shocks in production networks. They considered the economic balance
model that describes interactions between different sectors with Cobb-Douglas
production technologies.

Other ways of interpretation of industry centrality lead, for example, to the
idea of networks clustering, that is based on the allocation of triangles of different
types in a given network (for ex., see [14,15].

A. Shananin [7,8] suggested a generalization of the approach of [4–6], that
allows to analyze the stability of intersectoral linkages more completely. Using
the Young transform and the Fenchel duality theorem, a method for analyzing
of a competitive equilibrium in models of a nonlinear intersectoral balance with
concave positively homogeneous production functions and utility function of
the final consumer was developed. On the base of such approach the adequate
centrality measure of industries can be calculated, which takes into account the
influence of a final consumption. That is an advantage of the nonlinear model
[7,8]. In this work we use the technique from [7,8] to analyze the centrality in
production network according to the statistical data of input-output balances
of the economy of Republic of Kazakhstan 2016–2019. We compare the results
with centrality measures of the first and second-degrees, evaluated on the base
of classical Leontief model of linear inter-industry balance, that was the main
stream of intersectoral analysis in the second part of XX century.
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2 Model of Nonlinear Intersectoral Balance

Consider a set of m pure industrial sectors connected into a production network.
The output of any given sector can be either consumed or used by other sectors
as intermediate goods for production. Let Xj

i is the amount of commodity of
sector i used in production of a good j (intermediate input). Denote Xj =(
Xj

1 , . . . , X
j
m

)
. Each sector j has a production function Fj

(
Xj , lj

)
depending on

intermediate inputs Xj and n primary production factors lj =
(
lj1, . . . , l

j
n

)
that

are not produced by the considered group of sectors. The production functions
of the sectors are assumed to have neoclassical properties, i.e., they are concave,
monotonically nondecreasing, and continuous functions on Rm+n

≥0 , that vanish at
the origin Fj (0, 0) = 0. Additionally, the functions Fj

(
Xj , lj

)
are assumed to be

positively homogeneous of degree one. We denote the class of all such functions
by Φm+n.

Let X0 =
(
X0

1 , . . . , X0
m

)
be the vector of final consumption. The demand of

the final consumers is described by the utility function F0

(
X0

) ∈ Φm. Assume

that the inputs of primary production factors lj =
(
lj1, . . . , l

j
n

)
are bounded from

above by a vector l = (l1, . . . , ln) ≥ 0. The problem is to find an optimal dis-
tribution of these resources between the sectors in order to maximize the utility
function of final consumers with balance constraints on the primary production
factors and the outputs from the sectors:

F0

(
X0

) → max (1)

Fj

(
Xj , lj

) ≥
m∑

i=0

Xi
j , j = 1, . . . , m (2)

m∑
j=1

lj ≤ l (3)

X0 ≥ 0, X1 ≥ 0, . . . , Xm ≥ 0, l1 ≥ 0, . . . , lm ≥ 0. (4)

We assume that the considered set of sectors is productive, i.e., there exist

X̂1 ≥ 0, . . . , X̂m ≥ 0, l̂1 ≥ 0, . . . , l̂m ≥ 0

such that

Fj

(
X̂j , l̂j

)
>

m∑
i=0

X̂i
jj = 1, ...,m.

It is easy to prove that, if the set of sectors is productive and l = (l1, . . . , ln) > 0,
then the optimization problem (1)–(4) satisfies to the Slater condition.

Since the production functions Fj

(
Xj , lj

) ∈ Φm+n are positively homoge-
neous we need an additional condition on primary production factors inputs to
guarantee the existence of the limited optimal solution of (1). Denote
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A(l) =
{
X0 =

(
X0

1 , . . . , X0
m

) ≥ 0
∣∣X0

j ≤ Fj

(
Xj , lj

) − ∑m
i=1 Xi

j , j = 1, . . . , m;∑m
j=1 lj ≤ l, X1 ≥ 0, . . . , Xm ≥ 0, l1 ≥ 0, . . . , lm ≥ 0

}
.

We assume that there exists l̂ ∈ Rn
>0 such that the set A

(
l̂
)

is bounded. Then
the set A (l) is bounded, convex and closed for any l ∈ Rn

≥0.

Proposition 1 ([9]). A set of vectors
{

X̂0, X̂1, ..., X̂m, l̂1, ..., l̂m
}
, satisfying

constraints (2)–(4) is a solution of the optimization problem (1)–(4) if and
only if there exist Lagrange multipliers p0 > 0, p = (p1, ..., pm) ≥ 0 and
s = (s1, ..., sn) ≥ 0 such that
(
X̂j , l̂j

)
∈ Arg max{pjFj

(
Xj , lj

) − pXj − slj | Xj ≥ 0, lj ≥ 0}, j = 1, . . . , m

(5)

pj

(
Fj

(
X̂j , l̂j

)
− X̂0

j −
m∑

i=1

X̂i
j

)
= 0, j = 1, . . . , m (6)

sk

⎛
⎝lk −

m∑
j=1

l̂jk

⎞
⎠ = 0, k = 1, ..., n (7)

X̂0 ∈ Arg max{p0F0(X0) − pX0 |X0 ≥ 0}. (8)

Thus, the equilibrium market-type mechanisms are the optimal mechanisms
of distribution of intermediate goods and primary production factors in produc-
tion network.

We interpret the Lagrange multipliers p = (p1, . . . , pm) corresponding to the
balance constraints on the sectoral outputs (2) as the prices of these outputs,
while the Lagrange multipliers s = (s1, . . . , sn) corresponding to the balance
constraints on primary production factors (3) as the prices of these factors. Dual
description of the technology of industry j is the cost function qj (p, s), that is
the Young transform of the production function Fj

(
Xj , lj

)

qj (p, s) = inf
{

pXj + slj

Fj (Xj , lj)

∣∣Xj ≥ 0, lj ≥ 0, Fj

(
Xj , lj

)
> 0

}
.

The cost function qj (p, s) matches the prices of inputs (p, s) with the production
cost of a unit of production in industry j. The dual function to the utility function
F0

(
X0

)
is the consumer price index

q0 (q) = inf
{

qX0

F0 (X0)

∣∣X0 ≥ 0, F0

(
X0

)
> 0

}
.

Note that q0 (p) ∈ Φm, qj (p, s) ∈ Φm+n (j = 1, . . . , m). Since the Young trans-
form is involuted (see [10, p.232]), we have

F0

(
X0

)
= inf

{
qX0

q0 (q)

∣∣ q ≥ 0, q0 (q) > 0
}

,
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Fj

(
Xj , lj

)
= inf

{
pXj + slj

qj (p, s)

∣∣ p ≥ 0, s ≥ 0, qj (p, s) > 0.

}
.

Note that in the case of Cobb-Douglas production function FKD (X1, · · · ,Xn) =
AXα1

1 . . . Xαn
n , where A > 0, α1 > 0, . . . , αn > 0, α1 + · · · + αn = 1, the Young

transform gives the following cost function

qKD (p1, ...pn) =
1

FKD (α1, ..., αn)
pα1
1 ...pαn

n .

Optimal value of the functional (1) depending on l (that is the right part of
constraint (3)) is called the aggregate production function FA (l). Note that
FA (l) ∈ Φn.

The Young transform of the aggregate production function FA (l) determines
the aggregate cost function

qA (s) = inf
{

sl

FA (l)

∣∣∣ l ≥ 0, FA (l) > 0.

}
.

We have qA (s) ∈ Φn and

FA (l) = inf
{

sl

qA (s)

∣∣∣s ≥ 0, qA (s) > 0
}

.

Theorem 1 ([7,8]). The aggregate cost function qA (s) can be written as follows.

qA (s) = sup
{

q0 (p)
∣∣∣ p = (p1, . . . , pm) ≥ 0, qj (s, p) ≥ pj , j = 1, . . . , m

}
. (9)

Moreover, if Lagrange multipliers to the problem (1)–(4) p̂ = (p̂1, . . . , p̂m) ≥ 0,
ŝ = (ŝ1, . . . , ŝm) ≥ 0 satisfy (5)–(8), then p̂ = (p̂1, . . . , p̂m) ≥ 0 is the solution of
the problem (9) for fixed values ŝ = (ŝ1, . . . , ŝm) ≥ 0. Note that if p̂(ŝ) ≥ 0 is the
solution of the right hand side of (9), then the value of aggregate cost function
qA (ŝ) equals to the value of consumer price index q0 (p̂(ŝ)).

Consider the case of Cobb-Douglas production and utility functions. Let

F0 (X) = α0X
a0
1

1 . . . X
a0
m

m , Fj (X, l) = αjX
aj
1

1 . . . X
aj
m

m l
bj1
1 . . . l

bjn
n , j = 1, ...,m,

where

α0 > 0,
m∑

i=1

a0
i = 1, a0

i ≥ 0, i = 1, . . . , m,

m∑
i=1

aj
i +

n∑
k=1

bj
k = 1, j = 1, . . . , m; αj > 0, aj

i ≥ 0, i = 1, . . . , m, j = 1, ...,m,

bj
k ≥ 0, k = 1, . . . , n, j = 1, ...,m.
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Assume that each industry uses at least one primary production factor, i.e.
∑n

k=1 bi
k > 0, i = 1, . . . , m. Consider the matrices A =

∥∥∥aj
i

∥∥∥
i=1,...,m

j=1,...,m
, B =

∥∥∥bj
k

∥∥∥
j=1,...,m

k=1,...,n
. Denote by E the identity m × m-matrix. Denote

a0 =
(
a0
1, . . . , a

0
m

)T
, aj =

(
aj
1, . . . , a

j
m

)T

, bj =
(
bj
1, . . . , b

j
n

)T

, j = 1, . . . , m.

Since
∑m

i=1 aj
i < 1, j = 1, . . . , m, it follows that the non-negative matrix A is

productive.
Due to the Young transform the consumer price index q0 (p) satisfies

q0 (p) =
1

F0 (a0)
p

a0
1

1 . . . p
a0
m

m

and the cost function of industry j satisfies

qj (p, s) =
1

Fj (aj , bj)
p

aj
1

1 . . . p
aj
m

m s
bj1
1 . . . s

bjn
n .

Denote

(E − A)−1 = (ωkj)
j=1,...,n
k,...,n , d =

(
ln

(
F1

(
a1, b1

))
, . . . , ln (Fm (am, bm))

)T
,

(10)
μ = (μ1, . . . , μm) = − (

E − AT
)−1

d, λ = q0 (eμ1 , . . . , eμm) . (11)

Recall that the matrix A is productive. Then the convex programming problem

q0 (p) → max (12)

qj (p, s) ≥ pj , j = 1, . . . , m, (13)

pj ≥ 0, j = 1, . . . , m, (14)

has the solution
pj = eμjs

cj1
1 . . . s

cjn
n , j = 1, . . . , m, (15)

where C =
∥∥∥cj

k

∥∥∥
j=1,...,m

k=1,...,n
=

(
E − AT

)−1
BT . The aggregate cost function can be

written as qA (s) = λsγ1
1 . . . sγn

n , where γ = (γ1, . . . , γn)T = CT a0 and γ1 + · · · +
γn = 1 (see [7,9]).

Proposition 2. The elasticity of consumer price index on the productivity αj

of industry j equals to

− αj

qA

∂qA

∂αj
=

n∑
k=1

a0
kωkj . (16)

Proof. Note that

αj

qA

∂qA

∂αj
=

αj

λ

∂λ

∂αj
=

αj

q0 (eμ1 , . . . , eμn)

n∑
k=1

a0
kq0 (eμ1 , . . . , eμn)

∂μk

∂αj
= −

n∑
k=1

a0
kωkj .
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3 Analysis of Stability of Inter-industry Balances with
Cobb-Douglas Production Functions in the Economy of
Republic of Kazakhstan

In this section we apply our nonlinear inter-industry balance model to look
at the stability of interconnections implied by the symmetric Input - Output
tables of the economy of Kazakhstan 2016–2019 published by the Agency for
Strategic planning and reforms of the Republic of Kazakhstan (https://stat.gov.
kz). The Kazakhstan input-output matrix we use corresponds to the symmetric
table “Supply of goods and services in basic prices” that is the Commodity-
by-Commodity matrix, which comprises 68 commodities (pure industries). The
nomenclature of the industries remains stable in 2016–2019. This table contains a
financial flow data that reflects production and distribution of resources between
the various components of intermediate and final demand.

The symmetric input-output table has three quadrants. The first one is
∥∥∥Zj

i

∥∥∥,
where i = 1, . . . , m, j = 1, . . . , m. It corresponds to the intermediate domestic
demand of industries (m = 68). The value Zj

i denotes the amount of money
that industry i received from industry j for the resources produced in industry i
and supplied to the industry j. The second quadrant of the table consists of the
column vectors of final consumption of the products of pure industries. For the
tables of Kazakhstan, final consumption includes the column vectors as follows:
final consumption households, final consumption of public administration bodies,
final consumption of non-profit organizations serving households (NPOs), gross
fixed capital formation, changes in working capital stocks, acquisition minus
disposal of valuables, export of goods and services. Let k be the number of
columns of the second quadrant. Denote the elements of the second quadrant by∥∥∥Zj

i

∥∥∥, where i = 1, . . . , m, j = m+1, . . . , m+k. The third quadrant information
on the primary production factors used in the economy. In particular, it includes
the table contains the data on net taxes on products, on the components of gross
value added and import. Recall that the economy uses n primary production
factors. Denote the elements of the third quadrant of the table by

∥∥∥Zj
i

∥∥∥, where
i = m, . . . , m + n, j = 1, . . . , m. We consider two types of primary production
factors: import and labor. Thus, we use only two rows from the third quadrant
of initial table: import and gross value added, that is connected to the labor
supply, i.e. n = 2.

We aggregate the final consumption of the products of all pure industries
into one column vector Z0 =

(
Z0
1 , . . . , Z0

m

)
, Z0

i =
∑m+k

j=m+1 Zj
i , i = 1, . . . , m.

The sum of elements of Z0 is

A0 =
m∑

i=1

m+k∑
j=m+1

Zj
i .

https://stat.gov.kz
https://stat.gov.kz
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Denote the sum of elements of the column j of the obtained table by

Aj =
m+n∑
i=1

Zj
i , j = 1, ...,m.

Value Aj equals to the element j of the last row Resources at basic prices of
the initial symmetric input-output table, i.e. the total sum of production factors
(intermediate inputs and primary factors) consumed by pure industry j including
import of product j. Note that at the same time Aj is the total consumption of
product j in the economy (the last column of the initial symmetric input-output
table). Denote

aj
i = Zj

i

Aj
, i = 1, . . . , m, j = 1, . . . , m,

bj
i =

Zj
m+i

Aj
, i = 1, . . . , n, j = 1, . . . , m,

a0
i = Z0

i

A0
, i = 1, . . . , m.

(17)

Obviously we have

m∑
i=1

aj
i +

n∑
t=1

bj
t = 1, aj

i ≥ 0, bj
t ≥ 0, j = 1, . . . , m, i = 1, . . . , m, t = 1, . . . , n,

(18)
m∑

i=1

a0
i = 1, a0

i ≥ 0, i = 1, . . . , m. (19)

We assume that non-negative matrix
∥∥∥aj

i

∥∥∥
j=1,...,m

i=1,...,m
is productive. That is true if

Z0 > 0.
Let the Cobb-Douglas production function of the industry j is defined by

Fj

(
Xj , lj

)
= Aj

⎛
⎝

m∏
i=1

(
Xj

i

Zj
i

)aj
i

⎞
⎠

⎛
⎝

n∏
i=1

(
lji

Zj
m+i

)bji
⎞
⎠ , j = 1, . . . , m, (20)

the Cobb-Douglas utility function of the final consumer is defined by

F0

(
X0

)
=

m∏
i=1

(
X0

i

)a0
i , (21)

the vector of supply of primary production factors is defined by

l = (l1, . . . , ln) , li =
m∑

j=1

Zj
m+i, i = 1, . . . , n.

Note that

{X̂0
i = Z0

i , i = 1, . . . , m; X̂j
i = Zj

i , j = 1, . . . , m, i = 1, . . . , m;
l̂jt = Zj

m+tj = 1, . . . , m, t = 1, . . . , n}
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is a solution of convex programming problem (1)–(4) (see [9]). Thus, the con-
structed problem (1)–(4) explains observed source data (input-output table).

Note that (17)–(20) implies Fj

(
aj , bj

)
= 1, j = 1, . . . , m, and (21) implies

F0

(
a0

)
= 1. Thus, d = 0 and μ = 0 in (10), (11).

Our model of optimal resource allocation allows us to analyze inter-industry
financial flows of goods and services under various scenarios of changing of exter-
nal conditions. In particular, we can analyze the stability of inter-industry bal-
ance tables. We select the base year and identify the model of nonlinear inter-
industry balance with Cobb-Douglas production functions according to the sym-
metric input-output table of Kazakhstan for this year. To make a forecast, we use
the data on the final consumption of products of industries Ẑ0 =

(
Ẑ0
1 , . . . , Ẑ0

m

)

in the forecast year. The data is available in the symmetric table of Supply of
goods and services in basic prices for the forecast year. Then the sum of spend-
ing of the final consumer take on a new value Â0 =

∑m
i=1 Ẑ0

i , and the utility
function of the final consumer is as follows.

F̂0

(
X0

)
=

m∑
i=1

Ẑ0
i

(
X0

1

Ẑ0
1

)â0
1

· · ·
(

X0
m

Ẑ0
m

)â0
m

,

where â0
i = Ẑ0

i

Â0
, i = 1, . . . , m.

To analyze the stability of inter-industry connections, we need also a vector
of price indices of primary production factors ŝ =

(
ŝ1, . . . , ŝn

)
in the forecast

year in relation to the base year.
Due to the Young transform the new consumer price index q̂0 (p) has the

form
q̂0 (p) =

1
F̂0 (â0)

p
â0
1

1 . . . p
â0
m

m .

Then (12)–(15) implies that the vector of price indexes of industries p̂ =

(p̂1, . . . , p̂m) equals to p̂j = eμj ŝ
cj1
1 . . . ŝ

cjn
n , j = 1, . . . , m and gives a solution

of the convex programming problem

q̂0 (p) → max

qj (p, ŝ) ≥ pj ≥ 0, j = 1, . . . , m.

Proposition 1 implies that the new values of symmetric table of inter-industry
balance are equal to

Ẑj
i = aj

i Ŷ
j , Ẑj

m+t = bj
t Ŷ

j , j = 1, . . . , m, i = 1, . . . , m; t = 1, . . . , n,

where Ŷ j is the output of the industry j. The vector of outputs Ŷ =(
Ŷ 1, . . . , Ŷ m

)
is obtained from the equality Ŷ = (E − A)−1

Ẑ0.
Now we can compare the constructed forecast of the inter-industry balance

tables with the known statistical data. Thus, the stability of inter-industry
connections can be analyzed. This helps us to understand if it is possible to
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use the inter-industry balance tables for medium-term analysis of economic
development.

Note that the material flows of products in prices against a base year equal
to

X̂0
i =

Ẑ0
i

p̂i
, X̂j

i =
Ẑj

i

p̂i
, l̂jt =

Ẑj
m+t

ŝt
, i = 1, . . . , m; j = 1, . . . , m; t = 1, . . . , n.

Since, we have d = 0, μ = 0 in (10) and (11), then by (15) the price indexes

vector is p̂j = ŝ
cj1
1 . . . ŝ

cjn
n .

We choose 2016 as the base year. The vector of final consumption Ẑ0 =(
Ẑ0
1 , . . . , Ẑ0

m

)
is a column of corresponding initial input-output table of Kaza-

khstan (2016–2019). As we noted above, we consider two types of primary
production factors: import and labor. We identify the corresponding vector of
price indexes ŝ = (ŝ1, ŝ2) against the base year (2016) on data of dynamics of
tenge-dollar exchange rate and the consumer price index that is available at the
section “Main socio-economic indicators of the Republic of Kazakhstan” Bureau
of National Statistics (https://stat.gov.kz/official/dynamic). The result of iden-
tification of ŝ is shown in Table 1.

Table 1. Price indexes

2016 2017 2018 2019

Tenge/$ exchange rate index to the base year 1,000 0,953 1,007 1,119

Consumer price index to the base year 1,000 1,071 1,128 1,189

Based on our nonlinear inter-industry balance model, we calculate a forecast
of input-output tables until 2019. We interpret the obtained results by comparing
with the statistics of Kazakhstan given by the four vectors of dimension m = 68:

– gross output of the economy (Y)
– gross value added (VA)
– import (Import)
– the elasticity of consumer price index on the productivity αj of industry j,

that we calculate from our model in (16) (Elasticity).

We consider the angle (in radians) between the corresponding vectors as a mea-
sure of proximity between the predicted and actual values of the indicators. On
Fig. 1 we show the results of the model forecast to 2019 (from 2016) and statis-
tics 2019 for the first three vectors: Y, VA, Import. The results are given for the
first 10 industries with the highest gross output. Figure 2 shows the result of the
model forecast and statistics for the elasticity of consumer price index on produc-
tivity of the same industries. Table 2 shows the angles (in radians) between the
forecast vectors and the corresponding statistics. The conducted estimates show

https://stat.gov.kz/official/dynamic
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that the nonlinear inter-industry balance model with Cobb-Douglas production
functions can be considered as a tool for predicting the average characteristics of
the input-output table system. The indicators of gross output, gross value added
and the elasticity of consumer price index give approximately the same accuracy
of the forecast in the period under review for the statistics of Kazakhstan. A sig-
nificant weakening of the forecast force for the import vector is probably due to
the violation of the hypothesis about the constant structure of producers’ inputs
in the period. The reason for this is a significant change in the exchange rate of
the foreign currency in 2016–2019 (see Table 1).

4 The Analysis of Industries Centrality in Production
Network of Kazakhstan

In this section we analyze the centrality of industries of Kazakhstan economy by
ranking the elements of linkages vectors of the first- and second-order degrees,
which we will compute according to the direct requirements matrix (Leontief
matrix) of Kazakhstan. The direct requirements matrix gives the equivalent of
the matrix A in our model. We compare the results with ranking of the elasticity
of consumer price index on the productivity of industry j, that is calculated in
(16). The advantage of our approach to determination of centrality industries
(by the elasticity (16) ranking) is that we take into account the influence of the
structure of final consumption. The elasticity value allows us to evaluate how
the change of productivity in the industry affects the price level in the economy.
This approach is close to the mechanism of propagation of productivity shocks
from micro- to macro-economic level, proposed in [4]. We use the same input-
output matrixes of Kazakhstan 2016–2019 as in the previous section and define
a Leontief matrix of direct requirements A = ‖aj

i‖ by (17). Below there are the
results of the ranking of the first 10 industries by the degree of centrality in
accordance with different criteria.

Fig. 1. Forecast and statistics (billions tenge), 2019
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Fig. 2. Forecast and statistics of elasticity, 2019

Figures 3,4 show the results of ranking of industries of Kazakhstan economy
by linkages of the first degree (direct costs) di =

∑m
j=1,j �=i aij , i = 1, . . . , m and

the second degree (take into account indirect costs) ddi =
∑m

j=1

∑m
k=1 aikakj ,

i = 1, . . . , m, respectively. Figure 5 plots the result of ranking of industries by
the elasticity of consumer price index on the productivity evaluated by (16).
Ranking of industry centrality is based on 2019. The analysis of the obtained
results shows that the rating by the elasticity of industries centrality of the
Republic of Kazakhstan is the most stable in the period 2016–2019 (Fig. 5). All
the three approaches detect the service sector as one of the key sectors of the
economy of Kazakhstan. However, the evaluation method significantly affects
the rating of central industries. In the case of centrality measure by linkages of
the first-and second-degrees, the central industry is the Wholesale trade. If we
consider the elasticity of consumer price index by productivity as a measure of
centrality (Fig. 5), then the most central industry is Crude oil. This difference
can be explained by the fact that the centrality of elasticity takes into account
the structure of final demand in the economy. In this situation, the impact of
export volumes on the centrality of the industry is significant. This result seems
to be economically justified.

Table 2. Angles (in radians) between forecast vector and statistic vector

Y Import VA Elasticity centrality

2017 0,0656 0,1025 0,0654 0,0660

2018 0,0653 0,2523 0,0611 0,0693

2019 0,0625 0,2398 0,0745 0,0718
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Fig. 3. First-order centrality

Fig. 4. Second-order centrality
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Fig. 5. Elasticity centrality

5 Conclusion

The diversification of industrial relations and the change in the structure of
production networks in modern economies have led to the need to develop
approaches to forecasting the components of the intersectoral balances and
detecting industries that are drivers of economic growth.

On the base of the nonlinear inter-industry balance model with Cobb-Douglas
production function we propose a new approach to analyzing the stability of
interconnections implied by the input-output matrix of economy. We show that
the nonlinear model allows to construct an adequate centrality measure of indus-
tries, which takes into account influence of a final consumption.

In our work on the example of the 2016–2019 Kazakhstan input-output table,
we obtain a rough empirical grounding for the applying of our nonlinear inter-
industry balance model to forecast the aggregate characteristics of input-output
tables. Due to the assumptions of our model the forecast is valid if the structure
of production costs is stable and if the forecast values of final consumption and
price indices for primary production factors are given.

The model forecast of industry centrality by the elasticity of consumer price
index on the productivity of the industry is more adequate in conditions of
variability of finite demand.

On the base of Kazakhstan input-output matrix we show that the approach
to detecting of the industry centrality based on the classical Leontief model
(linkages of the first-and second-degrees) has a less accurate result compared
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with the centrality measure by the elasticity of consumer price index on the
productivity of the industry that we evaluate in terms of our model.

A nonlinear model of inter-industry balance with Cobb-Douglas production
functions assumes the constancy of the structure of financial costs of producers.
The evolution of production networks leads to the emergence of new connections
in production networks as a result of changes in the productivity of central
industries. As a result, the proportions of financial costs of producers may change
and the systems of the central sectors of the economy may be rebuilt. Therefore,
the transition in nonlinear inter-industry models from Cobb-Douglas production
functions to more general CES functions allows to increase the predictive power
of such type of models. That is a potential area for our future research.
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Abstract. Restoration of the 3D structure of a protein from the sequence
of its amino acids (“folding”) is one of the most important and challenging
problems in computational biology. The most accurate methods require
enormous computational resources due to the large number of variables
determining a protein’s shape. Coarse-grained models combining several
protein atoms into one unified globule partially mitigate this issue. The
paper studies one of these models where globules are located in the nodes
of the two-dimensional triangular lattice. In this model, folding is reduced
to the discrete optimization problem: find positions of protein’s globules to
maximize the number of contacts between them. We consider a standard
procedure that finds an exact solution to this problem. It first generates an
H-core—a set of positions for hydrophobic globules, which is followed by
mapping of protein’s hydrophobic globules to these positions by the con-
straint satisfaction techniques. We propose a way to avoid unnecessary
enumeration by skipping infeasible H-cores prior to mapping. Another
contribution of our paper is a procedure that automatically generates con-
straints to simplify finding the feasible mapping of proteins globules to
the lattice nodes. Experiments show that the proposed techniques tremen-
dously accelerate the problem’s solving process.

Keywords: Protein · HP-models · H-core · Constraint satisfaction ·
Discrete optimization

1 Introduction

Protein folding is the physical process by which a protein chain acquires its
native 3-dimensional structure (conformation). The folding process has been
studied for the last 50 years by numerous researchers worldwide. Modeling of
the folding process implies answering a question: “Is it possible to predict a
protein’s conformation having only its formula?”.

A protein is a chain of amino acid residues. There are only 20 types of amino
acids from which a protein can be built. An amino acid has a backbone (three
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main atoms – one nitrogen and two carbons) and a side-chain connected to the
first carbon of the backbone (see Fig. 1). For clarity, this carbon is named Cα.
Amino acids differ by their side-chains, while their backbones are the same.

Fig. 1. The basic structure of an amino acid. N , Cα, and C atoms are the main
backbone atoms. R is the side-chain.

The most accurate way of predicting protein conformation is minimization
of an all-atom potential [1]. The idea behind this approach implies that the tar-
get protein acquires the conformation with the minimal potential energy value.
Several different force fields and potentials exist. The major disadvantage of
this approach is a large number of degrees of freedom and complex non-linear
multiextremal objective function. As a result, the problem is known to be very
challenging [2,3].

One possible way to mitigate this issue is provided by coarse-grained models
[4–6]. These models are based on simplified geometry, consisting in grouping
several atoms into one particle. Accuracy of these models is usually limited by the
atom grouping resolution level. They can provide a good initial approximation
of the native conformation, but further steps are required to obtain the target
conformation.

The highest level of geometry simplification is achieved in HP -model [7].
In this model, residues are considered as single particles (“unified atoms”). All
protein residues are split into two groups—hydrophobic (H) and polar (P ).
Hydropathy is one of the key aspects that drive the folding process. Hydrophobic
side-chains tend to ‘hide’ inside the protein, while polar (hydrophilic) side-chains
stay on its surface. This mechanism leads to the creation of a robust core with
all hydrophobic side-chains inside (see Fig. 2).

The initial protein sequence of amino acid codes can be converted to a
sequence of ‘H’ and ‘P ’ letters. This is called an HP -sequence . In the paper,
long HP -sequences are presented in a diminished form, e.g. H2(PH)2 instead
of HHPHPH. The number over a single monomer or a subsequence in brackets
implies the number of successive repeats of the corresponding base.
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Fig. 2. Example of an HP -sequence H2(PH)7 planar conformation. Black and white
dots represent hydrophobic (H) and polar (P ) monomers, respectively. Red dashed
lines represent H − H contacts. The group of all black nodes comprises the H-core.
(Color figure online)

In HP -model, positions of all monomers are constrained to nodes of some
2- or 3-dimensional lattice. In what follows, we consider only planar structures
and thus 2-dimensional lattices. The goal function is simply the number of H−H
contacts. This number should be maximized to achieve a maximally dense H-
core. Positions of remaining atoms are not regarded as important in this model.
A protein conformation that provides the maximal possible number of H − H
contacts is called optimal.

The standard approach to constructing optimal conformations [8] in HP -
models is a two-stage process. At the first stage, H-monomers in a pro-
tein sequence are assembled into a maximally dense H-core structure without
accounting for any constraints related to the protein sequence. Then, at a second
phase, an attempt to fit the whole protein chain into this structure is performed.
If the attempt is successful, the algorithm terminates with the found conforma-
tion as an output. Otherwise, the next H-core is tried. If all maximally dense
H-cores are examined without success, configurations with less number of H−H
contacts are considered. The process is continued until the first successful fitting
attempt.

Normally, there exist many different H-cores with the same number of H −
H contacts. The complete enumeration of all such configurations is very time-
consuming. In this paper, we propose a way of avoiding unnecessary enumeration
by skipping infeasible H-cores prior to fitting. We have developed a set of rules
that help identify such configuration by a fast checking procedure.
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Another contribution of our paper is a procedure that automatically gener-
ates constraints that significantly simplify the fitting phase of the folding process.
We showed that the proposed techniques may result in a reasonable fitting time
decrease.

The paper is organized as follows. Section 2 provides the problem statement.
In Sect. 3, H-Core filtering criteria are discussed. Section 4 introduces a list of
constraints and several sets of domains for H- and P -monomer’s coordinates. In
Sects. 5 and 6, experimental results are presented and discussed.

2 Basic Definitions and Problem Statement

In HP-model, a protein is represented as a sequence of hydrophobic (H) and
polar (P) monomers. In a sequel, we use the following notation:

– S is the HP -sequence under consideration (target HP -sequence);
– nS is the length of S;
– nH is the number of H-monomers in sequence S;
– Si, i ∈ 1 . . . , nS is the ith monomer in this sequence.

Monomers are located in the nodes of a 2-D lattice. A 2-D lattice is a
countable set L of points on a plane such that u + v ∈ L for any u, v ∈ L. A
simple way of representing a lattice is using a minimal set of vectors NL that
encode all its points [8]. Every node u of the lattice can be represented as a
linear combination with non-negative integral coefficients of vectors from NL:

L = {u ∈ R
2|u =

∑

v∈NL

cv · v, cv ∈ Z
+}.

NL sets for squared and triangular lattices are listed in Table 1.

Table 1. NL sets for squared and triangular 2D lattices

Lattice Square Triangular

NL vectors (0, 1), (0, –1), (1, 0), (–1, 0) (1, 0), (–1, 0), (0, 1), (0, –1), (–1, 1), (1,–1)

In this paper, the triangular lattice is used as it provides a more accurate
approximation (see [9] for a detailed explanation). The conformation of the target
sequence is defined by mapping M = {M1, . . . ,MnS

}, where Mi = (xi, yi) is
the position (lattice node) of monomer Si. This mapping should preserve the
connectivity of the protein, i.e. the successive monomers should be connected by
the vectors from NL:

Mi+1 − Mi ∈ NL, i = 1, . . . , nS − 1.

Such mappings are called valid.
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In what follows we use the notion of a distance between two lattice nodes.
The distance ρ(c, c′) between two lattice nodes c and c′ is defined as follows:

ρ(c, c′) = min

{
t|c +

t∑

i=1

vi = c′, vi ∈ NL, i = 1, . . . , t

}
.

Informally, ρ(c, c′) is the minimal number of steps along the lattice nodes
required to reach c′ from c.

Two nonsuccessive monomers are in contact if they are located in the neigh-
boring nodes of the lattice. Formally, a contact between monomers i, j =
1, 2, ..., nS is defined as Mi − Mj ∈ NL. It should be noticed that in a valid
mapping, two monomers that are successive along the HP -sequence are always
in contact.

A goal function in HP -model is the number of H − H contacts. It can be
formally written as follows:

ES(M) =
∑

1≤i+1<j≤nS

Δ(Mi,Mj) · e(Si, Sj), where (1)

Δ(Mi,Mj) =

{
1, if Mi − Mj ∈ NL,

0, otherwise,

e(Si, Sj) =

{
−1, if Si = ‘H ′ and Sj = ‘H ′,
0, otherwise.

Having the goal function, we can formulate the main problem as follows:
⎧
⎪⎨

⎪⎩

ES(M) −→ min,

Mi − Mi−1 ∈ NL, i = 2, ..., nS ,

Mi �= Mj , i, j = 1, ..., nS , i �= j.

Constraints in the general problem definition imply that two monomers can-
not be located in the same lattice node, and monomers that are successive along
the sequence must be located in neighboring nodes.

Due to an enormous number of possible mappings of the target HP -sequence
to the lattice, the attempts to directly find an optimal conformation are imprac-
tical. In [8], it was observed that only positions of H-monomers influence the
number of contacts while the positions of P -monomers are irrelevant. Thus, the
authors have proposed a natural two-stage approach. At the first stage, the
positions of H-monomers in a lattice are determined thereby forming a so-called
H-core. Then, a valid mapping M is constructed in such a way that H-monomers
are placed to the positions of the H-core. The latter procedure is called fitting.

To maximize the number of contacts, the maximally dense H-cores are tried
first. If the fitting attempts fail, H-cores with the less number of contacts are
tried.
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Formally, an H-core H is a subset of nH lattice points. We restrict our
consideration only to connected H-cores. An H-core H is connected if any of its
nodes can be reached by a path along the lattice having all intermediate nodes
belonging to H. In other words, for any nodes c, c′ ∈ H there exists a finite path
c1, . . . , ck, where c1 = c, ck = c′, ci ∈ H, i = 1, . . . , k and ci+1 − ci ∈ NL, i =
1, . . . , k−1. Focusing only on connected H-cores makes sense because connection
of several distinct components may only increase the number of H −H contacts,
which is preferable for the problem.

Based on the discussed definitions, we can formulate two subproblems that
naturally appear when the approach from [8] is applied. The first subproblem is
to develop an efficient algorithm for enumerating H-cores with a given number of
contacts. Not all H-cores with the same number of contacts may be feasible for
the target HP -sequence. Avoiding principally infeasible H-cores tremendously
reduces the number of generated H-cores. This can dramatically decrease the
whole fitting time.

According to the approach under consideration, H-cores generated at the
first stage are submitted to the second stage to find positions of the protein
monomers. The commonly adopted technique to do the latter is constraint satis-
faction [10,11]. Constraint satisfaction is a problem of finding a solution which is
a set of variable values subject to a given set of constraints. The efficiency of con-
straint satisfaction largely depends on the tightness of the imposed constraints.
This entails the second subproblem: introducing a set of additional constraints
to accelerate the constraint satisfaction algorithm.

Below we address both subproblems. We propose an approach that signifi-
cantly reduces the amount of generated H-cores by skipping infeasible configu-
rations and introduce additional constraints for accelerating the fitting phase.

3 Efficient H-Core Enumeration

3.1 H-Core Node Depth

In this section, a classification of H-core nodes is suggested. In further discussion,
let us consider only connected H-cores.

An H-core can be treated as a graph with N vertices (points) and K edges
(contacts). According to the lattice constraints, contact is possible only between
neighboring nodes, thus, its corresponding graph can only be planar in a 2-D
lattice.

Nodes of an H-core may be classified by their buriedness (distance to the
closest lattice point that is outside the H-core). Let us define the H-core node
depth.

Definition 1. Depth d(c) of a node c ∈ H is the minimal distance to a lattice
node c̃ such that c̃ /∈ H, i.e.

d(c) = min {ρ(c, c̃) | c̃ ∈ L, c̃ /∈ H}.
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Nodes of such H-core can be split into two groups by the following definition.

Definition 2. Let H be an H-core. A node c ∈ H is inner if its depth d(c) > 1.
Otherwise, c is called boundary.

As a corollary from Definition 2, degrees of inner vertices of the corresponding
graph are equal to |NL|, which is the cardinality of the set NL. Degrees of
boundary vertices are smaller than |NL|.

Depth computing is performed with the procedure outlined in Algorithm 1.
Initially, the depths of all nodes are set to infinity. In the algorithm, the list of
node depths is denoted as depths. At the first step of the algorithm, degrees of
all nodes are computed and placed to degrees variable. A node with the minimal
degree cs is selected. Its depth is set equal to 1. After that, the function from
Algorithm 1 is executed: UpdateDepths(cs).

Function UpdateDepths(c0):
neighbors := {c ∈ H, c − c0 ∈ NL}
updated nodes := [ ]
for c̃ ∈ neighbors do

if degrees[c̃] < |NL| then
if depths[c̃] > 1 then

depths[c̃] := 1
updated nodes := updated nodes + [c̃]

else
if depths[c̃] > depths[c0] + 1 then

depths[c̃] := depths[c0] + 1
updated nodes := updated nodes + [c̃]

end

end
for c ∈ updated nodes do

UpdateDepths(c)
end

Algorithm 1: H-core node depth computation

The algorithm is considered to be fast enough for applications. In the most
widely used benchmark for 2-D triangular lattice [12], the greatest number of
H-monomers is only 42. As shown in Fig. 3 (right), depth computation for 100
nodes takes less than 0.1 s, which is obviously a satisfying result.

Figure 3 (left) presents an example of an H-core for N = 36 H-monomers.
H − H contacts of this H-core are shown as red dashed lines.

Let us denote the set of indices of H-monomers in an HP -sequence S
as hS = {i for i ∈ 1, . . . , nS ifSi = ‘H ′}. The respective set of P -monomers’
indices is denoted as pS = {i for i ∈ 1, . . . , nS ifSi = ‘P ′}. Having that, let us
denote the distance from an H-monomer Si to the closest P -monomer
along the HP -sequence as dP (i) = minj∈pS

|i − j|. For a P -monomer Sj , the cor-
responding distance to the closest H-monomer is denoted as dH(j) Having
Definition 1, we can formulate the following theorem:
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Fig. 3. Sample H-core for N = 36 (left). Depths are annotated, dashed lines are
contacts. Time scaling of the node depth computation algorithm (right).

Theorem 1. Let S be an HP -sequence and H be an H-core. An H-monomer
Si can be mapped only to nodes c ∈ H such that d(c) ≤ dP (i).

Proof. Assume that there exists an H-monomer Sj located in a point c0 ∈
H, d(c0) > dP (j). Possible lattice nodes for the closest P -monomer along the
chain are located not farther than dP (j) steps from c0 along the lattice. Accord-
ing to the assumption, these nodes belong to H. But P -monomers cannot be
located in H-core nodes. Thus, we obtained a contradiction. The theorem is
proved.

Fig. 4. Fittings for sequences PH4P (left), H2(PH)7 (right). Black points represent
H-monomers, white points are P -monomers. Depths are annotated, dashed lines are
contacts. The first monomer of the chain is marked as ‘ST’. (Color figure online)

Theorem 1 provides a correct estimation for depths of feasible H-core nodes.
For instance, if S has k adjacent H-monomers, they may be located in nodes
whose depth is less than their respective dP (i)’s. An example of such S fitting can
be found in Fig. 4 (left). PH4P sequence has two H-monomers with dP (S3) =
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dP (S4) = 2, but the target H-core has only points c ∈ H : d(c) = 1. An example
of a node depth and dP (Si) equality for one H-monomer Si can be found in
Fig. 4 (right). In H2(PH)7 sequence, the first H-monomer has dP (S1) = 2. In
the target H-core, it is located in the only node c with d(c) = 2.

A meaningful corollary can be derived from Theorem 1.

Corollary 1. (from Theorem 1)
If an H-core H has a node c0 ∈ H, d(c0) > maxi∈hS

dP (i), S cannot be fit
into H.

Corollary 1 suggests a way of filtering H-cores that are infeasible for the
target HP -sequence in principal. Thus, having this rule, we can get a fast infea-
sibility verdict without applying constraint satisfaction techniques.

The ideas of Theorem 1 can be applied to P -monomers. Let HS be the
surface of an H-core H, i.e. HS = {c |c ∈ H, d(c) = 1}.

Theorem 2. Let S be an HP -sequence, H be an H-core. A P -monomer Si can
be mapped only to lattice nodes c such that c /∈ H and minh∈HS

(ρ(c, h)) ≤ dH(i).

Proof. (The proof is identical to the proof of Theorem 1)

3.2 H-Core Perimeter

The ideas suggested in Sect. 3.1 can be generalized for all H-cores with N nodes
and K contacts.

It is possible to build a graph on H-core nodes, considering contacts as edges.
According to lattice requirements, this graph is always planar as it has no cross-
ing edges. Thus, its edges and vertices split the plane into regions called faces.
Let F be the number of faces in an H-core’s graph. Notice that the space outside
the graph is also a face called outer face.

In what follows, we consider only connected H-cores without pendant ver-
tices, i.e. vertices with degree 1. This is not a severe limitation as most practically
meaningful protein chains can be folded in H-cores without pendant vertices.
An H-core without pendant vertices occupies some polygon on a plane. Define
the perimeter RH of an H-core as the number of edges in the boundary of this
polygon.

Statement 1. Let H be an H-core with N nodes and K contacts. Its perimeter
can be computed as RH = 3N − K − 3.

Proof. Since an H-core graph is planar, due to Euler’s formula for planar graphs
[13]:

N − K + F = 2. (2)

The boundary of the outer face of the H-core graph has RH edges. All other
faces have 3 edges in their boundaries as we consider a triangular lattice. Since
each edge (contact) belongs to exactly two faces we have:

2K = 3(F − 1) + RH .
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From (2) we easily get an expression for F :

F = 2 − N + K.

Thus,

RH = 2K − 3(F − 1) = 2K − 3(1 − N + K) = 3N − K − 3.

This completes the proof.

Having the formula for H-core perimeter, we can calculate the number of its
inner nodes.

Statement 2. Let H be an H-core without pendant vertices. Let it have N
nodes and K contacts. The number of its inner nodes can be computed as Nin =
K − 2N + 3.

Proof. Let H be an H-core with N nodes and K contacts. Obviously, all outer
nodes of H contribute in its perimeter RH . Then, all other nodes are inner:

Nin = N − RH

Using formula from Statement 1, we get:

Nin = N − RH = N − (3N − K − 3) = K − 2N + 3.

This completes the proof.

Having formula from Statement 2, we can compute the exact number of inner
nodes for any H-core with N nodes and K contacts, assuming it has no pendant
vertices. This can be done analytically, without full enumeration of these H-cores
and looping over their nodes. That provides another H-core filtering criterion.

Corollary 2. (from Theorem 1)
Let S be an HP -sequence, H be an H-core. Let H have Nin inner nodes.

Then, if Nin > |{i | dP (Si) > 1, i ∈ hS}|, S cannot be fit into H.

The condition in Corollary 2 implies that the number of nodes c ∈ H, d(c) > 1
is greater than the number of H-monomers located farther than 1 from the
respective closest P -monomers. In this case, some inner H-core positions would
be unreachable by H-monomers.

Let a set of H-cores with the same N and K be denoted as (N,K) flavor .
Then, if the condition in the Corollary 2 is true, we can avoid checking all H-cores
in (N,K) flavor.
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4 HP -Sequence Fitting Constraints

In the folding method under consideration, after an H-core is generated, the
HP -sequence is fit into it with constraint satisfaction techniques. The first set
of constraints is derived from obvious geometric observations:

1. Different monomers cannot be mapped into the same position: Mi �=
Mj , i, j = 1, . . . , nS , i �= j.

2. Monomers that are adjacent along the HP -sequence must be located in neigh-
boring nodes of the lattice: Mi − Mi−1 ∈ NL, i = 2, . . . , nS .

3. H-monomers can be located only in nodes of the target H-core H, while
P -monomers must be located outside it:

{
Mi ∈ H, if Si = H

Mi /∈ H, otherwise
, i = 1, ..., nS .

Theorems 1 and 2 allow us to inroduce additional constraints:

4. According to Theorem 1, an H-monomer Si, i ∈ hS cannot be located in
H-core nodes that are deeper than dP (i): Mi ∈ {c |c ∈ H, d(c) ≤ dP (i)}.

5. According to Theorem 2, a P -monomer Si, i ∈ pS cannot be located in
nodes of lattice L that are not farther from H-core surface HS than dH(i):
Mi ∈ {c |c ∈ L, c /∈ H,minh∈HS

ρ(c, h) ≤ dH(i)}.

Besides constraints, constraint satisfaction techniques require setting
domains for problem variables. Narrowing these domains usually accelerates the
solution process and therefore is desirable. Monomer positions Mi are repre-
sented as pairs of two variables (xi, yi). Below we outline four possible ways to
define these domains.

Domain Set 1
If Si is hydrophobic it is mapped to the positions of an H-core. Thus, xi ∈
{x|(x, y) ∈ H}, i ∈ hS . Similarly, yi ∈ {y, (x, y) ∈ H}, i ∈ hS . P -monomers
are restricted to nodes that are not farther than nS from the H-core H: xi ∈
{x |(x, y) ∈ L, (x, y) /∈ H, minh∈H ρ((x, y), h) ≤ nS}, i ∈ pS . Domains for yi,
i ∈ pS are set in the same way.

Domain set 1 accounts only for basic geometric observations. Tighter bounds
can be obtained if a more deep analysis of monomers’ positions is performed.

Domain Set 2
The maximal possible offset of a P -monomer from H is computed as dmax

H =
maxi∈pS

dH(i). Therefore, domains of Mi, i ∈ pS , of P -monomers are bound to
lattice points with

xi ∈ {x |(x, y) ∈ L \ H, min
h∈H

ρ((x, y), h) ≤ dmax
H }, i ∈ pS .

Domains for yi, i ∈ pS are defined on the same way.
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Further domain contraction is obtained if we consider each monomer indi-
vidually and apply Theorems 1, 2.

Domain Set 3
For each H-monomer Si, i ∈ hS , its domain is set as follows:

xi ∈ {x |(x, y) ∈ H : d((x, y)) ≤ dP (i)},
yi ∈ {y |(x, y) ∈ H : d((x, y)) ≤ dP (i)}.
Accordingly, domains for P -monomers Si, i ∈ pS , are:
xi ∈ {x |(x, y) ∈ L \ H,minh∈HS

ρ((x, y), h) ≤ dH(i)},
yi ∈ {y |(x, y) ∈ L \ H,minh∈HS

ρ((x, y), h) ≤ dH(i)}.
Some CSP solvers admit vector variables. For such solvers, a pair of point

coordinates is considered as a single variable and different domains for xi

and yi coordinates can be replaced with sets of possible lattice nodes for Mi,
i = 1, . . . , nS . Such domain definitions make constraints 3—5 redundant. Fortu-
nately, the solver python-constraint [14] used in our study enables vector vari-
ables, and we add the following domain set to a comparison.

Domain Set 4
Domain for every H-monomer Si, i ∈ hS , is set as follows.

Mi ∈ {c |c ∈ H : d(c) ≤ dP (i)}.
Accordingly, domains for P -monomers Si, i ∈ pS , are:
Mi ∈ {c |c ∈ L \ H,minh∈HS

ρ(c, h) ≤ dH(i)}.

5 Results

The main contribution of the paper are two criteria for filtering H-cores that are
principally infeasible for the target HP -sequence. Additionally, several sets of
intelligent constraints for this problem were suggested. Utilizing them leads to
a significant speed-up while solving the Constraint Satisfaction Problem (CSP).

The developed methodology was implemented in Python programming lan-
guage. A third-party Python module python-constraint [14] was used for solving
Constraint Satisfaction Problem (CSP). Experiments were run on MacBook Pro
2020 machine, equipped with the 2 GHz Intel Core i5-1038NG7 CPU and 16 Gb
of RAM.

Table 2. Configurations for CSP solver.

Configuration Constraints Domain set

1 1—5 1

2 1—5 2

3 1—5 3

4 1, 2 4

The two-stage algorithm under consideration was tested in several configu-
rations outlined in Table 2. Two HP -sequences were taken for comparing these
configurations:
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1. ((HP )2PH)2PH2P 2;
2. H2(PH)7.

Running times for configurations 1—4 are listed in Table 3. Optimal configura-
tions for both sequences are shown in Fig. 5.

Table 3. Running times for test HP -sequences and solver configurations, seconds

Sequence Configuration 1 Configuration 2 Configuration 3 Configuration 4

((HP )2PH)2PH2P 2 15.34 1.42 1.05 0.01

H2(PH)7 – 680 283 0.01

Fig. 5. Resulting optimal H-cores for sequences ((HP )2PH)2PH2P 2 (left) and
H2(PH)7 (right).

Time evaluation exceeded the limit for the second sequence and solver con-
figuration 1. In Table 3, the corresponding cell is left empty. Data in the table
demonstrates that utilizing solver configuration 4 leads to a tremendous decrease
in the fitting time. This is likely to be a result of avoiding checks of constraints
3—5, which are always true for the selected variable domains.

H-core filtering criteria were tested at a longer sequence:
((HP )2PH)2PH2P (PH)2 [12]. This sequence has N = 10 H-monomers,

which results in Nin = 1 for the most dense H-core. At the same time, this node
cannot be reached by any H-monomer of this sequence (according to Corol-
lary 2). Thus, the number of contacts must be reduced. Avoiding all H-cores
with the maximal number of contacts might save nearly half of the whole time
needed to find a solution. The distribution of time for this problem is presented
in Fig. 6 (left). In this experiment, solver configuration 4 was used. This experi-
ment demonstrates that usage of the developed filtering criteria can significantly
decrease the overall fitting time.
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Fig. 6. Breakdown of time spent on searching an optimal H-core for sequence
((HP )2PH)2PH2P (PH)2 (left). The resulting configuration for H-core with 17 con-
tacts (right). Black and white dots represent H- and P -monomers, respectively.

6 Conclusion

The paper addresses a highly important and very challenging computational
problem: protein folding. We considered a coarse-grained 2-D lattice protein
model. The folding is treated as a combinatorial optimization problem with the
number of contacts between hydrophobic monomers as an objective. We focused
on one of the possible approaches to solving this problem when the structure
of the folded protein is obtained in two stages. At the first stage, an H-core is
generated. At the second stage, H-monomers from the sequence are mapped to
nodes of the H-core preserving the integrity of the protein chain. The latter is
done via constraint satisfaction techniques.

We developed methods to accelerate both stages. A methodology for avoiding
principally infeasible H-cores that significantly reduced the H-core enumeration
phase was proposed. Also, we introduced a set of sophisticated constraints that
entail a significant speedup of the fitting stage. Experiments showed a remarkable
efficiency of the proposed approach.

In the future, a more deep investigation of the connection between a protein
sequence and its H-core structure is planned. Based on discovered H-core prop-
erties, new efficient exact and approximate folding algorithms can be developed.
With such algorithms at hand, long peptide chains can be folded in a reasonable
time.

References

1. Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the
OPLS all-atom force field on conformational energetics and properties of organic
liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)

2. Pardalos, P.M., Shalloway, D., Xue, G.: Optimization methods for computing
global minima of nonconvex potential energy functions. J. Glob. Optim. 4(2), 117–
133 (1994)



350 A. Ignatov and M. Posypkin

3. Pardalos, P.M., Shalloway, D., Xue, G.: Global minimization of nonconvex energy
functions: molecular conformation and protein folding. In: Molecular Conformation
and Protein Folding: DIMACS Workshop, March 20–21, vol. 23 (1996)

4. Levitt, M.: A simplified representation of protein conformations for rapid simula-
tion of protein folding. J. Mole. Biol. 104(1), 59–107 (1976)
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Application of Second-Order
Optimization Methods to Solving
the Inverse Coefficient Problems
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Abstract. The inverse problem of determining the thermal conductivity
coefficient depending on temperature is considered and investigated. The
consideration is based on the initial boundary value problem for the non-
stationary heat equation. The work is devoted to obtaining the necessary
conditions for non-uniqueness of the considered inverse problem solution
in the n-dimension case, and also to examine the possibility of applying
the Fast Automatic Differentiation Technique to solve this problem by
second-order methods. The examples of solving the inverse coefficient
problem confirm the accuracy and efficiency of the proposed algorithm.

Keywords: Inverse coefficient problems · Heat equation · Numerical
algorithm · Fast automatic differentiation · Levenberg-Marquardt
algorithm

1 Introduction

Inverse coefficient problems are of great interest and have been considered for a
long time (see, e.g., [1–7]). At the same time, much attention is paid not only to
the theoretical study of these problems, but also to the development of numerical
methods for solving them.

An algorithm for the numerical solution of the thermal conductivity coeffi-
cient identification problem for one-dimensional and two-dimensional unsteady
heat equation was proposed by the authors in previous papers publicised in jour-
nal Comp. Math. and Math. Phys. (56 (10); 58 (10); and 58 (12)). It is based
on the Fast Automatic Differentiation technique (FAD-technique, see [8]), which
allowed to successfully solve a number of complex optimal control problems for
dynamic systems.

In [9] we compare three approaches for calculation the gradient of a complex
function of many variables. Comparison was based on a complex function that
represents the energy of a system of atoms whose interaction potential is the
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Tersoff potential. The results of that work show the superiority of the FAD-
technique in comparison to the approach that is based on analytical formulas.
In the present paper we compare the gradient method and a second-order opti-
mization method, which uses formulas that have been obtained in the current
work for the first time and by means of the FAD-technique.

In the developed algorithm the inverse coefficient problem was reduced to
the following variational problem: it is required to find such dependence of the
thermal conductivity coefficient on the temperature, at which the temperature
field and heat fluxes at the boundary of the object, obtained as a result of solving
the primal problem, differ little from the data obtained experimentally.

The gradient descent method was usually used for numerical solution of the
obtained optimization problems. It is well known that for gradient methods
to work effectively, one needs to know the exact value of the gradient of the
cost function. The use of the FAD-technique in the proposed algorithm made it
possible to achieve this goal: the gradient of the cost function was calculated with
machine accuracy. However, in the neighborhood of the solution, the gradient
method converges slowly. Taking into account this fact, in the present paper an
algorithm for solving inverse coefficient problems by second-order methods is
proposed. It is also based on the FAD-technique.

The most popular second-order method is Newton’s method. It requires cal-
culating and reversing the Hessian at each iteration, which is often quite complex
and requires a lot of machine resources.

One of the varieties of the Newton method is the Newton-Gauss method.
This iterative method is intended for solving the least squares problem. There
is no need to calculate and reverse the matrix of second derivatives here, but a
Jacobi-type matrix is built. Its elements are the gradient components of each of
the quadratic terms of the cost functional. In this case, the convergence rate of
the Newton-Gauss method is close to the quadratic one.

The advantage of the Newton-Gauss method is its simplicity of implementa-
tion. However, its application to solving specific problems has revealed a num-
ber of problems associated with incorrect operation and slowing down conver-
gence. The study of these problems led to a modification of the Newton-Gauss
method—the Levenberg-Marquardt algorithm. This algorithm differs from the
Newton-Gauss method by introducing a special regularization parameter. The
Jacobi-type matrix mentioned above, as well as the gradient, requires high accu-
racy in determining its elements.

The accuracy of calculating the elements of a Jacobi-type matrix has an
essential effect on the convergence of the Levenberg-Marquardt method.

The purpose of this paper is to study the possibility of applying and effi-
ciency of the Levenberg-Marquardt algorithm to the solution of inverse coeffi-
cient problems. It is essential that in the proposed approach, the elements of the
Jacobi-type matrix are calculated with machine accuracy due to the use of the
FAD-technique.

This paper is also devoted to the proving of necessary conditions for non-
uniqueness of the inverse problem solutions.
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2 Mathematical Formulation of the Problem

We consider a restricted domain Q ⊂ Rn with piecewise-smooth boundary S =
∂Q. This domain is filled with the substance being investigated. The distribution
of the temperature field in Q at each time moment is described by the following
initial boundary value (mixed) problem:

C(x)
∂T (x, t)

∂t
= divx(K(T (x, t))∇xT (x, t)), x ∈ Q, 0 < t ≤ Θ, (1)

T (x, 0) = w0(x), x ∈ Q, (2)
T (x, t) = ws(x, t), x ∈ S, 0 ≤ t ≤ Θ. (3)

Here x = (x1, ..., xn) are the Cartesian coordinates; t is time; T (x, t) is the
temperature of the material at the point with the coordinates x at time t; C(x)
is the volumetric heat capacity of the material; K(T ) is the thermal conductivity;
w0(x) is the given temperature at the initial time t = 0; ws(x, t) is the given
temperature on the boundary of the object. The volumetric heat capacity C(x)
of a substance is considered as known function of the coordinates.

If the dependence of the thermal conductivity K(T ) on the temperature T
is known, then we can solve the mixed problem (1)–(3) to find the temperature
distribution T (x, t) in G = Q × (0, Θ]. We will call problem (1)–(3) the direct
problem. The inverse coefficient problem is reduced to the following variational
problem: find the dependence K(T ) on T under which the temperature field
T (x, t), obtained by solving the mixed problem (1)–(3), is close to the field
Y (x, t) obtained experimentally, and the heat flux

(
−K(T (x, t))∂T (x,t)

∂n

)
on the

boundary of the domain is close to the experimental data P (x, t). The quantity

Φ(K(T )) =

Θ∫

0

∫

Q

[T (x, t) − Y (x, t)]2 · μ(x, t)dx dt

+

Θ∫

0

∫

S

β(x, t)
[
−K(T (x, t))

∂T (x, t)
∂n

− P (x, t)
]2

ds dt + ε

b∫

a

(K ′(T ))2dT (4)

can be used as the measure of difference between these functions. Here, ε ≥ 0,
β(x, t) ≥ 0, μ(x, t) ≥ 0 are given weight parameters; Y (x, t) is a given tempera-
ture field; P (x, t) is a given heat flux at the boundary S of the domain Q, ∂T

∂n is
the derivative of the temperature along the outer normal to the boundary of the
domain; [a; b] is the interval where the function K(T ) will be restored. The last
term in functional (4) is used to obtain a smooth solution of variational problem
with moderate perturbations of experimental data.

3 Non-uniqueness of the Solution of Inverse Problem

An analysis of results obtained by solving a large number of formulated inverse
coefficient problems has shown that these problems can have a non-unique
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solution. Whether or not the solution of the inverse problem is unique depends
substantially on the given experimental field Y (x, t). The following result
presents the necessary condition for Y (x, t) when the formulated inverse coeffi-
cient problem has a non-unique solution.

Theorem 1. Let Y (x, t) ∈ C2,1
x,t (G) ∩ C1(G) be a solution of the direct prob-

lem (1)–(3) for two admissible thermal conductivities K1(T ) ∈ C1([a, b]) and
K2(T ) ∈ C1([a, b]) , T ∈ [a, b]. Then the following assertions are true:

(a) There exists a function R(T ) ∈ C([a, b]) such that

ΔxY (x, t) = R(Y (x, t)) · |∇xY (x, t)|2,
(b) For such a function Y (x, t), the inverse problem has infinitely many solutions

K(T ).

Proof. Let K1(T ) ∈ C1([a, b]) and K2(T ) ∈ C1([a, b]) be two different functions,
and let Y (x, t) ∈ C2,1

x,t (G)∩C1(G) be a function in the reachability domain that is
a solution to the direct problem (1)–(3) for K(T ) = K1(T ) and K(T ) = K2(T ).

The function Y (x, t) simultaneously satisfies two equations

C(x)
∂Y (x, t)

∂t
= divx(K1(Y (x, t)) · ∇xY (x, t)), (x, t) ∈ G,

C(x)
∂Y (x, t)

∂t
= divx(K2(Y (x, t)) · ∇xY (x, t)), (x, t) ∈ G.

By subtracting the first equation from the second one, we see that the function
w(T ) = K2(T ) − K1(T ) satisfies the condition (5)

divx(w(Y (x, t)) · ∇xY (x, t)) = 0, (x, t) ∈ G. (5)

Assuming that the field Y (x, t) and the sought function w(T ) are smooth enough,
we obtain an equation satisfied by w(T ), namely,

w′(Y ) ·
n∑

k=1

(
∂Y (x, t)

∂xk

)2

+w(Y ) ·
n∑

k=1

(
∂2Y (x, t)

∂x2
k

)
= 0, (x, t) ∈ G. (6)

A function w(Y ) which is not identically zero can be determined by (6) only in
the case when the function

B(x, t) =

n∑
k=1

(
∂2Y (x,t)

∂x2
k

)

n∑
k=1

(
∂Y (x,t)

∂xk

)2 =
ΔxY (x, t)

|∇xY (x, t)|2

can be represented as a composition of the one-variable function R(z) and the
function Y (x, t), i.e., B(x, t) = R(Y (x, t)). It is under this condition that the
solution of the formulated inverse coefficient problem (1)–(4) is not unique. More-
over, under this condition, Eq. (6) has an infinite number of solutions.
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To illustrate what was said above, we consider the case when the experimental
temperature field Y (x, t) is a sufficiently smooth function and monotonically
depends on a linear combination of spatial coordinates and time, i.e.,

Y (x, t) = f

(
n∑

k=1

αkxk + γt

)
= f(ξ),

where ξ =
n∑

k=1

αkxk + γt and αk, γ are given constants such that
n∑

k=1

α2
k > 0

(otherwise, the field Y (x, t) ≡ Const is of no interest). In this case, we obtain

B(x, t) = B(ξ) = f ′′(ξ) · (f ′(ξ))−2

and Eq. (6) becomes

w′(Y ) · (f ′(ξ))2 + w(Y ) · f ′′(ξ) = 0.

After introducing the new function ϕ(ξ) = w(Y ) = w(f(ξ)), this equation is
transformed into

ϕ′(ξ)f ′(ξ) + ϕ(ξ)f ′′(ξ) = 0.

Integrating this equation, we obtain

ϕ(ξ)f ′(ξ) = Const. (7)

Determining function ϕ(ξ) from Eq. (7) and taking the inverse transform ξ =
η(Y ) yields the sought functions w(Y ).

4 Application of the FAD-Technique for Solving Optimal
Control Problem by Second-Order Methods

The optimal control problem formulated above was solved numerically. One of
the main elements of the proposed numerical method for solving inverse coeffi-
cient problem is the solution of the mixed problem (1)–(3). Spatial and time grids
(generally non-uniform) were introduced for numerical solution of the problem.
In each node of the calculation area Q×[0, Θ] all the functions are determined by
their point values. In previous works two finite-difference schemes (a two-layer
implicit scheme with weights, and implicit alternating directions scheme) were
used to approximate the thermal conductivity equation.

The temperature interval [a, b] on which the function K(T ) will be restored
is defined as the set of values of the given functions w0(x) and ws(x, t), i.e. the
boundaries of the segment [a, b] were assigned as the minimum and maximum
values of the indicated functions. This interval is partitioned by the points T̃0 =
a, T̃1, T̃2, . . . , T̃M = b into M parts (they can be equal or of different lengths).
Each point T̃m (m = 0, . . . , M) is connected with a number km = K(T̃m). The
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function K(T ) to be found is approximated by a continuous piecewise linear

function with the nodes at the points
{

(T̃m, km)
}M

m=0
, so that

K(T )=km−1 +
km − km−1

T̃m − T̃m−1

(T −T̃m−1) for T̃m−1 ≤ T ≤ T̃m, m = 1, . . . M.

If the temperature at the point fell outside the boundaries of the interval [a, b],
then the linear extrapolation was used to determine the function K(T ).

We illustrate the application of the FAD-technique for solving the optimiza-
tion problem by second-order methods using the example of the inverse coef-
ficient problem for the one-dimensional heat equation (Q ⊂ R1). In [10] this
problem was considered under the assumption that the heat flux was known
only on the left boundary of the domain. Here this problem will be considered
in a more general case.

A layer filled with material of width L is considered. The distribution of the
temperature field at each instant of time is described by the initial boundary
value problem (1)–(3), where Q = (0, L), and the boundary S consists of two
points: x = 0 and x = L.

To solve the problem numerically, the domain [0, L]× [0, Θ] was decomposed
by the grid lines {x̃i}I

i=0 and {t̃j}J
j=0 into rectangles. At each node (x̃i, t̃

j) of
G all the functions are determined by their point values (e.g., T (x̃i, t̃

j) = T j
i ).

To approximate the heat equation a two-layer implicit scheme with weights was
used and resulting system of nonlinear algebraic equations is solved iteratively
using the Gaussian elimination (see [10]).

Here, we give only the canonical form of these finite-difference equations,
which will be needed further for using the FAD-technique:

T j
i = bj

i

(
K(T j

i ) + K(T j
i+1)

)
(T j

i+1 − T j
i ) − aj

i

(
K(T j

i ) + K(T j
i−1)

)
(T j

i − T j
i−1)

+T j−1
i + cj

i

(
K(T j−1

i ) + K(T j−1
i+1 )

)
(T j−1

i+1 − T j−1
i )

−dj
i

(
K(T j−1

i ) + K(T j−1
i−1 )

)
(T j−1

i − T j−1
i−1 ) ≡ Ψ j

i ,

aj
i = στ j/(Cihi−1(hi + hi−1)), bj

i = στ j/(Cihi(hi + hi−1)),

cj
i = (1 − σ)τ j/(Cihi(hi + hi−1)), dj

i = (1 − σ)τ j/(Cihi−1(hi + hi−1)),

σ – weight parameter, hi = x̃i+1 − x̃i, τ j = t̃j − t̃j−1, i = 1, I − 1, j = 1, J .
The cost functional (4) was approximated by a function F (k0, k1, . . . , kM ) of the
finite number of variables using the rectangles method:

Φ(K(T )) ≈ F =
J∑

j=1

I−1∑
i=1

(
(T j

i − Y j
i )2μj

ihiτ
j
)

+
J∑

j=1

(
βj
0 · τ j

[
σ

2h0

(
K(T j

0 ) + K(T j
1 )

)
(T j

1 − T j
0 )
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+
1−σ

2h0

(
K(T j−1

0 )+K(T j−1
1 )

)
(T j−1

1 −T j−1
0 ) − C0h0

2τ j
(T j

0 − T j−1
0 )−P j

0

]2
)

+
J∑

j=1

(
βj

I · τ j

[
σ

2hI−1

(
K(T j

I ) + K(T j
I−1)

)
(T j

I−1 − T j
I )

+
1−σ

2hI−1

(
K(T j−1

I )+K(T j−1
I−1 )

)
(T j−1

I−1 −T j−1
I ) − CIhI−1

2τ j
(T j

I − T j−1
I−1 )−P j

I

]2
)

+ ε

M∑
m=1

(km − km−1)2

(T̃m − T̃m−1)
. (8)

The second-order iterative methods converge well in the neighborhood of the
solution, but at the beginning of the iterative process it is recommended to use
some gradient method. Taking into account this fact, we present a formula for
calculating the gradient of the cost function F (k0, k1, . . . , kM ), which here is
more complex than in [10].

The adjoint problem for computation the conjugate variables pj
i (i = 1, I − 1,

j = 1, J) was similar in form to that presented in [10]. The only difference was
that the derivatives ∂F/∂T j

i (i = 1, I − 1, j = 1, J) were computed in a different
manner, since in [10] another simpler cost functional was used. In the present
case, these derivatives were calculated using the formulas:

∂F

∂T j
1

= Gj
1 +

Dj

h0

(
βj
0τ

jAjσ + βj+1
0 τ j+1Aj+1(1 − σ)

)
,

∂F

∂T j
i

= Gj
i , (i = 2, I − 2,

∂F

∂T j
I−1

= Gj
I−1 +

Ej

hI−1

(
βj

Iτ
jBjσ + βj+1

I τ j+1Bj+1(1 − σ)
)

,

where
Gj

i = 2(T j
i − Y j

i )μj
ihiτ

j ,

Dj
i = K(T j

0 ) + K(T j
1 ) + K ′(T j

1 )T j
1 − K ′(T j

1 )T j
0 ,

Ej
i = K(T j

I ) + K(T j
I−1) + K ′(T j

I−1)T
j
I−1 − K ′(T j

I−1)T
j
I ,

K ′(T ) = (km − km−1)/(T̃m − T̃m−1) (index m is determined by the condition
T̃m−1 ≤ T ≤ T̃m),

βJ+1
0 = βJ+1

I = τJ+1 = AJ+1 = BJ+1 = 0,

Aj =
[

σ

2h0

(
K(T j

0 ) + K(T j
1 )

)
(T j

1 − T j
0 )

+
1−σ

2h0

(
K(T j−1

0 )+K(T j−1
1 )

)
(T j−1

1 −T j−1
0 ) − C0h0

2τ j
(T j

0 − T j−1
0 )−P j

0

]
,
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Bj =
[

σ

2hI−1

(
K(T j

I ) + K(T j
I−1)

)
(T j

I−1 − T j
I )

+
1−σ

2hI−1

(
K(T j−1

I )+K(T j−1
I−1 )

)
(T j−1

I−1 −T j−1
I ) − CIhI−1

2τ j
(T j

I − T j−1
I )−P j

I

]
.

According to the FAD-technique, the components of function gradient (8)
with respect to the components {km}M

m=0 are calculated by formula:

∂F

∂km
=

J∑
n=0

I∑
l=0

⎛
⎝

J∑
j=1

I−1∑
i=1

∂Ψ j
i

∂K(Tn
l )

· pj
i

⎞
⎠ · ∂K(Tn

l )
∂km

+
J∑

j=0

(
∂F

∂K(T j
0 )

∂K(T j
0 )

∂km
+

∂F

∂K(T j
1 )

∂K(T j
1 )

∂km

)

+
J∑

j=0

(
∂F

∂K(T j
I )

∂K(T j
I )

∂km
+

∂F

∂K(T j
I−1)

∂K(T j
I−1)

∂km

)

+ 2λε
(km − km−1)

(T̃m − T̃m−1)
− 2νε

(km+1 − km)

(T̃m+1 − T̃m)
, m = 0,M. (9)

where

λ =
{

0, m = 0,
1, m = 1,M,

ν =
{

0, m = M,
1, m = 0,M − 1,

Ψ j
i —right part of the canonical form of equations for calculation temperature

field,
∂K(Tn

l )
∂km−1

= 1 − Tn
l − T̃m−1

T̃m − T̃m−1

,
∂K(Tn

l )
∂km

=
Tn

l − T̃m−1

T̃m − T̃m−1

(index m is determined by the condition T̃m−1 ≤ Tn
l ≤ T̃m),

∂F

∂K(T j
0 )

=
∂F

∂K(T j
1 )

=
T j
1 − T j

0

h0

(
βj
0τ

jAjσ + βj+1
0 τ j+1Aj+1(1 − σ)

)
,

∂F

∂K(T j
I )

=
∂F

∂K(T j
I−1)

=
T j

I−1 − T j
I

hI−1

(
βj

Iτ
jBjσ + βj+1

I τ j+1Bj+1(1 − σ)
)

.

The sums Hn
l =

J∑
j=1

I−1∑
i=1

∂Ψj
i

∂K(Tn
l )p

j
i was calculated in the same way to that pre-

sented in [10].
Further, to use second-order methods to solve the optimization problem,

note that the cost function (8) is the sum of N squares of scalar functions, i.e.
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Φ(K(T )) ≈ F =
N∑

n=1
W 2

n , where N = (I − 1)J + 2J + M . Scalar functions Wn,

n = 1, N allow one to build a vector-function with components

Wn =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

W̃ ij
n = (T j

i − Y j
i ) ·

√
μj

ihiτ j , n = i+(j−1)(I−1), i = 1, I−1, j = 1, J,

W̃ j
n = Aj ·

√
βj
0τ

j , n = j + (I − 1)J, j = 1, J,

W̃ j
n = Bj ·

√
βj

Iτ
j , n = j + I · J, j = 1, J,

W̃m
n =

√
ε(km−km−1)√
(˜Tm− ˜Tm−1)

n = (I + 1)J + M, m = 1,M.

Note, that functions Wn, (n = 1, N), are complex functions, which in the
general case depend on the components of the control vector (k0, k1, . . . , kM )T

and on the phase variables T j
i . The control vector components {km}M

m=0 and
phase variables T j

i (i = 0, I, j = 0, J) are connected between themselves by
the system of equations (3.1), which is given in [10]. With the help of the FAD-
technique for each complex function Wn, (n = 1, N) we will find its gradient
with respect to the components k0, k1, . . . , kM .

The adjoint problem for computation of the conjugate variables pj
i , (i =

1, I − 1, j = 1, J) corresponding to the cost function Wn, (n = 1, N) was similar
in form to that presented in [10]. The only difference was that the derivatives
∂F/∂T j

i must be replaced by derivatives ∂Wn/∂T j
i , that are calculated by the

formulas:
for all n = 1, 2, ..., (I − 1)J

∂Wn

∂T l
p

=
∂W̃ ij

n

∂T l
p

=

{√
μl

phpτ l, p = i, l = j,

0, otherwise,

for all n = (I − 1)J + 1, ..., (I − 1)J + J

∂Wn

∂T l
p

=
∂W̃ j

n

∂T l
i

=

⎧
⎨
⎩

√
βl
0τ

l · σDl/(2h0), i = 1, l = j,√
βl
0τ

l · (1 − σ)Dl/(2h0), i = 1, l = j − 1,
0, otherwise,

for all n = (I − 1)J + J + 1, ..., (I − 1)J + 2J

∂Wn

∂T l
p

=
∂W̃ j

n

∂T l
i

=

⎧
⎪⎪⎨
⎪⎪⎩

√
βl

Iτ
l · σEl/(2hI−1), i = I − 1, l = j,√

βl
Iτ

l · (1 − σ)El/(2hI−1), i = I − 1, l = j − 1,

0, otherwise,

for all n = (I − 1)J + 2J + 1, ..., (I − 1)J + 2J + M

∂Wn

∂T j
i

=
∂W̃m

n

∂T j
i

= 0, i = 1, I − 1, j = 1, J.
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According to the FAD-technique, the components of the gradient of functions
Wn (n = 1, N) with respect to the components {km}M

m=0 are calculated by
formulas:
for all n = 1, 2, ..., (I − 1)J

∂Wn

∂km
=

∂W̃ rs
n

∂km
= Λm

√
μs

rhrτs,

for all n = (I − 1)J + 1, ..., (I − 1)J + J

∂Wn

∂km
=

∂W̃ s
n

∂km
= Λm

√
βs
0τ

s +
√

βs
0τ

s
σ(T s

1 − T s
0 )

2h0

(
∂K(T s

0 )
∂km

+
∂K(T s

1 )
∂km

)

+
√

βs
0τ

s
(1 − σ)(T s−1

1 − T s−1
0 )

2h0

(
∂K(T s−1

0 )
∂km

+
∂K(T s−1

1 )
∂km

)
,

for all n = (I−1)J +J +1, ..., (I−1)J +2J the derivatives W̃ s
n/km are calculated

in a similar way,
for all n = (I − 1)J + 2J + 1, ..., (I − 1)J + 2J + M

∂Wn

∂km
=

∂W̃ s
n

∂km
=

{
Λm +

√
ε

˜Tm− ˜Tm−1
, s = m,

Λm, otherwise,

∂Wn

∂km−1
=

∂W̃ s
n

∂km−1
=

{
Λm−1 −

√
ε

˜Tm− ˜Tm−1
, s = m,

Λm−1, otherwise,

Λm =
J∑

l=0

I∑
p=0

⎛
⎝

J∑
j=1

I−1∑
i=1

∂Ψ j
i

∂K(T l
p)

· pj
i

⎞
⎠ · ∂K(T l

p)
∂km

.

It should be noted that the conjugate variables pj
i that appear in these formulas

are different for each n = 1, N , and the corresponding adjoint problem is solved
in each case separately for all n = 1, N .

Finally, it is possible to build the Jacobian Ω = {Ωnm} of a vector function−→
W . The matrix Ω consists of N rows and (M + 1) columns. Each n-th row of
this matrix consists of (M + 1) elements: Ωnm = ∂Wn

∂km
, (n = 1, N,m = 0,M).

This matrix was obtained for the most general case: temperature field and the
heat fluxes on both ends of the layer are experimentally obtained. If any weight
parameters in the cost functional are zero, then in vector function {W}N

n=1 the
corresponding rows are also missing.

It is important to note that the elements of the Jacobian thus obtained are
calculated with machine accuracy. For solving the optimization problem the
Levenberg–Marquardt algorithm was used as the method of the second order
of convergence. According to this algorithm the control vector

−→
k = {k}M

m=0
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changes at each subsequent iteration (s + 1) by the formula:
−→
k s+1 =

−→
k s + −→r s.

The direction of descent −→r s is determined from the following system of linear
algebraic equations:

[
ΩT (

−→
k s)Ω(

−→
k s) + λs · diag

(
ΩT (

−→
k s)Ω(

−→
k s)

)] −→r s = −ΩT (
−→
k s)

−→
W (

−→
k s).

The studies related to the choice of constants λs at each step of descent were
carried out. For the considered here inverse problems they were calculated by
the formula:

λs = α · max
0≤m≤M

(
diag

(
ΩT (

−→
k s)Ω(

−→
k s)

))
,

where α is some non-negative constant, which was selected for each example
individually.

5 Numerical Results

The effectiveness of proposed method was tested on all examples that were con-
sidered in [10]. Initially, until the functional fell by several orders, they were
solved using the gradient method. Furthermore, the above indicated algorithm
was used, with the help of which it was enough to perform just several iterations
to obtain a solution of the optimization problem. The thermal conductivity coef-
ficient in all considered examples was restored with precision 10−12 in norm C.

A comparative analysis of the results of solving the problem using the gra-
dient method and the second-order method mentioned above is presented here
for the following two examples. In the studies it was assumed that L = 1,
Θ = 1, C(x) ≡ 1, the parameter ε in the cost functional (4) was equal to zero.
When solving primal and conjugate problems, a uniform grid with parameters
I = 150 (number of intervals along the x-axis), J = 3000 (number of intervals
along the t-axis) was used, which provided sufficient accuracy for calculating the
temperature field and the field of conjugate variables. Parameter σ was equal to
0.6. The initial control for the methods used was the same.

1. The problem of finding the thermal conductivity coefficient is considered with
the following input data

w0(x) =
√

2(1.5 − x), 0 ≤ x ≤ 1,

w1(t) =
√

2(1.5 + t), w2(t) =
√

2(0.5 + t), 0 ≤ t ≤ 1,

Y (x, t) =
√

2(1.5 + t − x), 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,

a = 1, b =
√

5.

The inverse problem with this input data has an analytical solution, since the
function Y (x, t) =

√
2(1.5 + t − x) is a solution of the mixed problem (1)–(3)

with the indicated above parameters and K(T ) = T 2. It was assumed that
in the cost functional (4) the weight function μ(x, t) is equal to zero, and
β(x, t) = 1 (the thermal conductivity coefficient is restored by the heat flux
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on the boundary). The segment [a, b] was divided into M = 40 intervals. The
function K(T ) = 4.0 was selected as the initial control. The cost functional at
the initial control was equal to F0 = 1.284.

When solving the problem with the help of the gradient method, about 20000
iterations were required. The cost functional decreased to Fopt = 1.216 · 10−21,
and the gradient value at optimal control reached the value 10−14 in the norm
C. The thermal conductivity coefficient was determined with accuracy 10−10.

When solving the problem using the Levenberg-Marquardt method, only 12
iterations were required. In this case, the problem was solved twice as fast. The
constant α that appears in the Levenberg-Marquardt method was equal to 10−6.
The cost functional was reduced to the value Fopt = 1.767 · 10−25, the gradient
value at optimal control reached the value 10−15 in the norm C. The thermal
conductivity coefficient was determined with accuracy 10−12.

2. The effectiveness of the Levenberg-Marquardt method was also tested using
the example with the following parameters:

w0(x) = 2x, w1(t) = 0, w2(t) = 2, a = 0, b = 2.

The “experimental” temperature field was defined as the solution of the direct
problem (1)–(3) with

K(T ) =
{

1, T < 1,
3, T ≥ 1.

On the first q subintervals it was assumed K(T ) = 1, on the subintervals
(q + 2), (q + 3), ..., (2q + 1) it was assumed K(T ) = 3, and on the subinterval
(q + 1) the function K(T ) is a linear function varying from 1 to 3. The entire
segment [a, b] was divided into 79 intervals (M = 2q + 1 = 79).

It was assumed that in the cost functional (4) the weight function μ(x, t) = 1,
and β(x, t) = 0 (the coefficient of thermal conductivity is restored by a given
temperature field). The function K(T ) = T was selected as the initial control.
The cost functional at the initial control was equal to F0 = 9.504 · 10−3.

When solving the problem using the gradient method, about 550000 iter-
ations were performed. The cost functional was reduced to the value Fopt =
7.338 · 10−24, the gradient value at optimal control reached the value 5 · 10−16 in
the norm C. The thermal conductivity coefficient was determined with accuracy
10−8.

When solving the problem using the Levenberg-Marquardt method, only 11
iterations were performed. The problem was solved 8.5 times faster than using
the gradient method. The constant α that appears in the method Levenberg-
Marquardt was equal to 10−3. The cost functional was reduced to the value
Fopt = 5.953 · 10−29, the gradient value at optimal control reached the value
2 · 10−16 in the norm C. The thermal conductivity coefficient was determined
with accuracy 10−13.

Solutions of this optimization problem were additionally performed in such
a way that the solution obtained by the gradient method was used as the ini-
tial approximation for the Levenberg-Marquardt method. With the help of the
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Levenberg-Marquardt method it was possible to carry out 3 iterations. The cost
functional decreased to Fopt = 6.021 · 10−29 and the gradient value at optimal
control was equal to 2 · 10−16. The thermal conductivity coefficient was deter-
mined with accuracy 10−13.

6 Conclusions

Based on results obtained in this paper, the following conclusions can be made.
On the one hand, using the Levenberg-Marquardt method requires additional

effort related to obtaining formulas for calculating the Jacobi matrix, additional
memory for working with this matrix, and additional machine time. In this
respect, gradient methods look preferable.

On the other hand, these additional costs are more than repaid. First, it
should be noted that obtaining the formulas using the FAD-technique for cal-
culating the elements of the Jacobi matrix is much simpler than obtaining the
formulas for the gradient of the cost function. Second, the machine time required
to obtain a solution of optimization problem is significantly reduced when using
the Levenberg-Marquardt method. Finally, using second-order methods, it is
possible to obtain a more accurate solution than using first-order methods.

The best results, as shown by our experience in solving optimization prob-
lems, can be obtained by combining the first and second order methods, namely:
at the first stage, when the functional is significantly reduced and the gradient
of the functional is large, it is advisable to use gradient methods, and then, when
the functional gradient becomes close to zero, to continue the minimization of
the functional using second-order methods.
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