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Abstract Based on research conducted during the last decade, it is becoming clear
that the human microbiota plays an important role in the maintenance of human
health. Recently, it has become clear that the human microbiota plays a role not only
in physical health but also in mental health, which will be the focus of this chapter.
Data suggest that, depending on the diversity and community composition of the
human microbiota, the microbiota can either contribute to negative mental health
outcomes or promote stress resilience. Here we will focus on the mechanisms
through which the human microbiota influences mental health outcomes, with a
focus on impacts on brain structure and function. In the context of these mecha-
nisms, we will consider the consequences in humans of the large-scale transition
from a hunter-gatherer existence or rural lifestyle to an urban lifestyle and the
implications for functioning of the microbiota-gut-brain axis, brain structure and
function, and mental health. Finally, we will consider the role of the human
microbiota in vulnerability and resilience to stress-related psychiatric disorders,
including anxiety disorders, affective disorders, and trauma- and stressor-related
disorders, including posttraumatic stress disorder, and the mechanisms involved.

Keywords Anxiety · Depression · Gut-brain axis · Microbiota · Microbiota-gut-
brain axis · Posttraumatic stress disorder

1 Introduction

The human body harbors communities of microorganisms at many locations includ-
ing all mucosal and epithelial linings that cover the body’s internal and external
surfaces [1, 2]. These communities of organisms have been termed microbiota, and
they are known to play a role in regulating many facets of host health. Where the

J. D. Sterrett · N. D. Andersen · C. A. Lowry (*)
Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
e-mail: John.Sterrett@colorado.edu; Nathan.D.Anderson@colorado.edu;
Christopher.Lowry@colorado.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. A. W. Rook, C. A. Lowry (eds.), Evolution, Biodiversity and a Reassessment
of the Hygiene Hypothesis, Progress in Inflammation Research 89,
https://doi.org/10.1007/978-3-030-91051-8_10

267

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91051-8_10&domain=pdf
mailto:John.Sterrett@colorado.edu
mailto:Nathan.D.Anderson@colorado.edu
mailto:Christopher.Lowry@colorado.edu
https://doi.org/10.1007/978-3-030-91051-8_10#DOI


term microbiota is used to describe the organisms making up the community, the
term microbiome refers to the entire “theater of activity” from microorganisms,
including genetic material and metabolites [3]. Due to the inability of many micro-
organisms to be cultured, many microbiota are typically assessed via the microbiome
through whole genome shotgun sequencing or sequencing of the 16S ribosomal
RNA gene region, while the molecular products of these microorganisms are
assessed using metabolomics, proteomics, and transcriptomics. Mammals have
historically coexisted symbiotically with their microbiota, forming the “holobiont,”
or the combination of a eukaryotic organism with its microbial colonies [4, 5]. How-
ever, due to increased sanitization and urbanization, altered dietary patterns,
use/overuse of antibiotics, and lifestyle changes, human microbiota have experi-
enced disruptions characterized by decreased biodiversity and a loss of contact with
specific immunoregulatory organisms with which humans coevolved [6–10]. These
immunoregulatory organisms, such as the saprophytic soil bacterium Mycobacte-
rium vaccae NCTC 11659, the unique human milk oligosaccharide degrader
Bifidobacterium longum subspecies infantis (B. infantis), and even the parasitic
helminth Schistosoma mansoni, modulate the host immune system in order to
coexist, which is proposed to be important for the maintenance of health under the
Old Friends hypothesis [11–14].

With reduced exposure to immunoregulatory organisms, we have seen an
increased prevalence of immune, allergic, and inflammatory disorders, and an
increasing body of research suggests a causal link [12, 15]. Importantly, the height-
ened prevalence of chronic low-grade immune activation, as well as immune and
inflammatory disorders, has contributed to increased rates of psychiatric conditions,
as the physiological state of the body impacts brain neurophysiology, ultimately
affecting behavior [7, 16]. The altered risk of psychiatric conditions is evident when
studying stress responses from rural versus urban participants, as individuals who
grow up in urban environments without daily close contact with animals have
exaggerated immune and autonomic nervous system responses to psychosocial
stressors, relative to the rural participants [17]. Microbiota-mediated modulation of
psychiatric states occurs through a number of distinct mechanisms, including
(1) afferent neural signaling; (2) altered immune signaling from the periphery to
the brain; (3) humoral mechanisms involving effects of microbially derived metab-
olites, altered host metabolism, or altered host endocrine signaling; and (4) influenc-
ing the gut-blood and blood-brain barriers. Here we will discuss each of these
mechanisms in turn, as well as our rapidly increasing understanding of their role
in determining mental health outcomes. Figure 1 outlines mechanisms covered in
this review.
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2 Neural Signaling

The gut microbiota has been heavily implicated in the modulation of the central
nervous system (CNS) structure and function. Given the speed of neural transmis-
sion, direct signaling to the CNS by nerves innervating mucosal surfaces that are in
direct contact with microbiomes is the fastest means of microbiota-brain signaling.
Though much research has focused on mediation of the gut-brain axis by the vagus
nerve, methods for studying vagal signaling have unaddressed drawbacks, and other
understudied neural pathways are also potentially important for microbiota-CNS
signaling. Examples of non-vagal neural signaling include spinal afferents from
areas such as the skin, gut, airways, and lungs and cranial nerve afferents from
nasal and oral microbiota.

2.1 Vagal Afferents

The vagus nerve has long been implicated in communication from the gut microbiota
to the brain [18]. The efferent arm of the vagus nerve, as a portion of the autonomic
nervous system, controls heart rate, respiration, digestive tract function, as well as
immune function [19]. Importantly, however, over 80% of vagus nerve fibers are
afferent, transmitting information to the brain, whereas 10–20% are efferent
[20]. Neurons from the vagal afferent pathway innervate much of the digestive
system, including a large portion of the enteric nervous system (ENS) [21]. Addi-
tionally, they have receptors for many gut peptides and microbial metabolites. A
prime example is the expression of toll-like receptor (TLR) 4 on vagal afferent
neurons, allowing them to detect the common bacterial antigen lipopolysaccharide
(LPS) [22]. Moreover, vagal afferent neurons also express TLR2 (which detects
components of gram-positive bacteria such as acylated lipopeptides, peptidoglycan,
and lipoteichoic acids) and TLRs 3 and 7 (which detect viral mRNA) [23–25]. Affer-
ent vagal fibers terminate almost exclusively in the brainstem nucleus of the solitary
tract, which can relay signals to neural systems within the brain. The afferent vagal
fibers originating in different organ systems innervate different subregions of the
nucleus of the solitary tract, suggesting that different organ systems, i.e., the large
intestine versus the bronchopulmonary system, can have different effects on brain
structure and function [26].

2.2 What Have We Learned from Vagotomies?

Vagotomies, or surgical procedures that cut or remove portions of the vagus nerve,
date back to 1814, when Benjamin Brodie observed that a vagotomy prevented
mucous secretion in the stomach after arsenic insertion into a thigh wound of a dog
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[27]. In the years since, vagotomies have seen widespread use in clinical practice and
are presently being phased out due to the creation of therapeutic interventions with
fewer side effects [28]. Currently, vagotomies are often used in animal models to
study vagus-mediated aspects of the periphery-brain axis signaling [28].

Notably, Konsman et al. [29] demonstrated that vagotomy blocks behavioral
depression in response to peripheral inflammation in rats. Vagotomies in mice
prevented a broad spectrum of neurophysiological, endocrine, and behavioral
responses following 28 days of chronic oral Lactobacillus rhamnosus JB-1 supple-
mentation, including (a) decreased gamma aminobutyric acid (GABA)B1b mRNA
expression in the cingulate cortex and prelimbic cortex; (b) increased GABAB1b

mRNA expression in the hippocampus, amygdala, and locus coeruleus; (c) reduced
GABAAα2 mRNA expression in the prefrontal cortex and amygdala; (d) increased
GABAAα2 mRNA expression in the hippocampus; (e) blunted stress-induced
increases in plasma corticosterone concentrations; and (f) reduced anxious and
depressive behavior [30]. Similarly, Sgritta et al. [31] showed that vagotomies
prevented the stress resilience effects of 28 days of oral L. reuteri MM4-1A
(ATCC-PTA-6475) in mice.

Vagotomies also have been shown to blunt neuroactive cytokine signaling and
alter behavior following experimentally induced peripheral inflammation. For exam-
ple, Laye et al. [32] demonstrated that a vagotomy blocks interleukin (IL)-1βmRNA
expression in the hypothalamus and hippocampus (but not the pituitary gland) in
mice in response to peripheral LPS injection. Luheshi et al. [33] also demonstrated
that vagotomy in mice blocks decreased social exploration but does not prevent fever
following intraperitoneal IL-1β injection. Wieczorek et al. [34] showed that the
effects of peripheral IL-1β and LPS injection in mice (including decreased appetite
and locomotor activity, increased plasma adrenocorticotropic hormone and cortico-
sterone concentrations, and altered serotonin and tryptophan metabolism in the
brain) were somewhat attenuated by vagotomy. However, the attenuation was
“marginally significant,” leaving room for other mechanisms, such as immune
activity. This is supported by Van Dam et al. [35], who showed that vagotomy in
rats did not block the LPS injection-induced increase of IL-1β-immunoreactive cells
in areas where the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier
(BCSFB) are weak, such as the circumventricular organs and choroid plexus,
respectively. Ji et al. [36] additionally demonstrated that vagotomy in rats increased
monocyte chemoattractant protein 1 (MCP-1; also known as C-C motif chemokine
ligand 2 [CCL2]) in the dorsal motor nucleus of the vagus nerve, suggesting that the
vagotomies also impact monocyte chemotaxis. Overall, vagotomies have demon-
strated that the vagus nerve is involved in signaling from the peripheral nervous
system (PNS) to the brain, and it is involved in altering behavior and
neuroinflammation, but it does not fully control all relevant immune responses.
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2.3 What Have We Learned from Vagal Stimulation Studies?

Vagal stimulation methods (vagal nerve stimulation, VNS), in contrast to vagoto-
mies, have initially been studied as tools for altering brain structure and function in
the context of neurological disorders such as epilepsy [37]. The observed effects of
VNS on monoamines in the brains of individuals and animals with epilepsy
prompted more research on the effects of VNS on anxiety, affective disorders, and
trauma- and stressor-related disorders. Overall, it has been found that in animal
models VNS decreases anxious and depressive behavior and increases extinction of
conditioned fear (a hallmark of resilience to trauma and stress) partially via periph-
eral muscarinic receptor activity. Vagal activity can be modulated by certain
microbes; for example, intestinal injection of Lactobacillus johnsonii La1 in rats
increases gastric vagal nerve activity [38]. Given that the vagus nerve innervates the
gut and the vagus nerve can be stimulated by microbes, it follows that stimulation of
the vagus nerve by the microbiota could modulate physiological and behavioral
responses relevant to psychiatric disorders.

Noble et al. [39] demonstrated that VNS generally reduces anxious behavior in
rats exposed to 2 days of auditory fear conditioning, as evaluated by elevated plus-
maze behavior. Furmaga et al. [40] found that the anxiolytic effects of VNS in rats
require activation of serotonergic and noradrenergic neurons, as administration of
5,7-dihydroxytryptamine and 6-hydroxydopamine (serotonergic and noradrenergic
neuron neurotoxins, respectively) to the lateral ventricles blocked the anxiolytic
effects of 2 weeks of VNS. Additionally, Noble et al. [41] demonstrated that
blocking peripheral muscarinic receptors (of the parasympathetic nervous system)
via intraperitoneal administration of the muscarinic receptor antagonist methyl
scopolamine reverses the anxiolytic effects of 2 weeks of VNS in rats, indicating a
role of peripheral signaling via the parasympathetic nervous system in VNS’s
anxiolytic effects. When combined with the facts that VNS attenuates the systemic
inflammatory response to endotoxin in rats and that VNS attenuates
neuroinflammation in response to LPS in mice, the necessity of parasympathetic
nervous system activation for anxiolytic effects demonstrates that VNS’s effects are
at least partially dependent on peripheral inflammatory responses, not solely direct
afferent signaling [42, 43].

VNS has also been found to exhibit antidepressant-like effects in rats undergoing
chronic stress. Two weeks of VNS in rats increased the expression of
5-hydroxytryptamine (5-HT) receptor 1A in the dorsal raphe nucleus and nucleus
tractus solitarius, along with the expression of 5-HT1B receptor and brain-derived
neurotrophic factor (BDNF) in the hippocampus, and it prevented decreases in
expression of hippocampal 5-HT1B receptor and BDNF induced by 2 weeks of
chronic restraint stress [44, 45]. Notably, the modulation of hippocampal 5-HT1B

receptor and BDNF expression by VNS was accompanied by decreased depressive
behavior in the rats who underwent chronic restraint stress [44, 45]. Moreover, the
increase in hippocampal BDNF expression was blocked by injection of
5,7-dihydroxytryptamine into the dorsal raphe nucleus, demonstrating that effects
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of VNS on BDNF expression are dependent on 5-HT signaling in the dorsal raphe
nucleus [44, 45]. Furmaga [40] also found that 5,7-dihydroxytryptamine adminis-
tration to the lateral ventricles blocked the antidepressant effects of VNS, but
6-hydroxydopamine administration did not, indicating involvement of serotonergic
but not noradrenergic neurons in VNS’s antidepressant-like behavioral responses, as
assessed by forced swim test performance.

In addition to the ability of VNS to decrease anxiety-like behaviors and induce
antidepressant-like behavioral responses, VNS has been shown to enhance fear
extinction in mice and rats. For example, Noble et al. [46] found that VNS every
other day for 12 days during the extinction phase of a posttraumatic stress disorder
(PTSD) model (involving a single prolonged stressor followed by auditory fear
conditioning) enhanced fear extinction and decreased PTSD-like symptoms. Fur-
thermore, Souza et al. [47] showed that the effects of 5 days of VNS in rats follow an
inverse U-shaped curve, where 0.4 and 0.8 mA VNS enhance fear extinction, but
efficacy declines at 1.6 mA. Moreover, Noble et al. [41] demonstrated that 2 weeks
of VNS in rats enhances fear extinction, and this was not blocked by intraperitoneal
administration of the muscarinic receptor antagonist methyl scopolamine, indicating
that peripheral signaling of the parasympathetic nervous system is involved in
VNS’s anxiolytic effects, as described above [39–41], but not its effects on fear
extinction. Overall, VNS in animal models has shown to affect anxious, depressive,
and PTSD-like behavior in a dose-dependent manner, via both serotonergic signal-
ing and modulation of peripheral muscarinic receptor activity.

2.4 Epistemology of Vagal Signaling
in the Microbiota-Brain Axis

Though vagotomies and vagal stimulation studies inform researchers about the
relevance of the vagus nerve in the gut-brain axis, we must be critical of how they
actually affect host physiology. Importantly, the vagus nerve is not solely composed
of afferent fibers: up to 20% of vagal nerve fibers are efferent [20]. Thus, cutting the
vagus nerve will indisputably have effects on non-CNS host physiology via altered
efferent signaling. For example, Kessler et al. [48] demonstrated that a vagotomy
modulates the immune system of septic mice, increasing the risk of death and
elevating serum concentrations of tumor necrosis factor (TNF) and IL-6. Moreover,
Di Giovangiulio et al. [49] demonstrated that vagotomized mice have increased
susceptibility to dextran sulfate sodium (DSS)-induced colitis, along with decreased
colonic lamina propria and mesenteric lymph node regulatory T cell (Treg)
populations, indicating that vagotomies decrease peripheral immune regulation in
mice. This suggests that previously mentioned immune changes in neural tissue are
not purely a result of afferent signaling; vagal efferent modulation of the peripheral
immune system is involved in these changes as well. Previously discussed research
on vagal stimulation complements this, as it was demonstrated that VNS’s anxiolytic
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effects are dependent on peripheral signaling of the parasympathetic nervous system,
and VNS suppresses immune and inflammatory responses to endotoxin and LPS
exposure.

Due to the technological limitations of vagotomies (which affect both afferent and
efferent fibers), it cannot be concluded from vagotomy or VNS studies that the
results are solely due to afferent vagal signaling. To elucidate the roles of afferent
and efferent vagal signaling, techniques such as selective optogenetic stimulation of
afferent vagal fibers as demonstrated by Booth et al. [50] and efferent vagal fibers as
demonstrated by Fontaine et al. [51] must be utilized in mechanistic studies. In
conclusion, one should consider that the vagus nerve contains both afferent and
efferent fibers before deriving causality from vagotomy- and vagal stimulation-based
studies.

2.5 Non-vagal Afferents

Though the vagus nerve is perhaps the most studied direct afferent pathway relaying
signals from the microbiota to the brain, it is not the only one. Other pathways
include cutaneous spinal afferents, the remaining cranial nerves, and interoceptive
afferent signals that travel in sympathetic nerve bundles. More thorough discussion
of the effects of interoceptive signaling can be found in the human research section
of this chapter.

2.5.1 Spinal Afferents from the Skin and Bronchopulmonary System

Emerging research in preclinical and human studies supports the hypothesis that
activation of afferent spinoparabrachial and spinothalamic pathways from the skin
and bronchopulmonary system, including activation by microbial inputs, modulates
serotonergic signaling in the brain [11, 52]. For example, subcutaneous injection of
M. vaccae NCTC 11659, which has been shown to alter serotonergic signaling in the
dorsal raphe nucleus of the brainstem and to prevent stress-induced anxiety-like
defensive behavioral responses, is hypothesized to exert these effects via
spinoparabrachial and spinothalamic pathways, though the direct neural mechanisms
involved have yet to be determined [11, 53–55]. Kim and Yosipovitch [56] review
the ability of the skin microbiota to contribute to interoceptive stimuli (particularly
itch) that are likely relayed to the brain via spinoparabrachial and spinothalamic
pathways and are also modulated by the amygdala, which is sensitized by chronic
stress and hyperactive in germ-free (GF) mice. However, direct mechanistic studies
on these pathways from the skin microbiota to the amygdala are lacking.

Additionally, Hale et al. [26] identified that bronchopulmonary inflammation in
mice (which is linked to the lung microbiome [57]) activated both spinal and vagal
pathways. Given that bronchopulmonary microbiome literature is still in a nascent
stage, it’s not yet possible to draw a clear link between bronchopulmonary
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microbiome and psychiatric outcomes via interoceptive signaling, but this should be
considered a target for future research.

2.5.2 Cranial Nerve Signaling

Cranial nerves innervating the oral, nasal, and skin microbiota have the ability to
impact neuropsychiatric outcomes. However, like other afferent signaling, the
mechanisms of non-vagal cranial nerve afferents’ effects on brain structure and
function are understudied in animal models. This is despite the fact that some
microbial taxa that are thought to be relevant to mental health, e.g., mycobacteria,
appear to be restricted, or at least highly overrepresented, in oral and nasal compart-
ments, relative to the gut microbiota [58, 59]. Although trigeminal nerve stimulation
has been studied as a treatment modality for reducing major depressive disorder
(MDD) symptoms in humans, the mechanisms through which trigeminal nerve
stimulation affects behavior have not been thoroughly evaluated in animal models
[60]. Additionally, studying trigeminal nerve activity and stimulation faces similar
challenges as studying the vagus nerve since it is a combination of afferent and
efferent fibers. Studies in animals have shown that microbes can traffic to the brain
via the trigeminal nerve, as Riviere et al. [61] demonstrated trafficking of Trepo-
nema, a spirochaete bacterium with various subspecies that cause the diseases
syphilis, bejel, and yaws, to the brain via the trigeminal nerve in mice.

The trigeminal nerve is not the only direct microbial trafficking pathway to the
CNS; the olfactory nerves also allow the spread of herpes simplex virus 1 from the
nasal mucosa to the CNS in rodent models [62]. Olfactory bulbectomy is a mouse
model of depression that results in similar immunologic changes seen in MDD-,
PTSD-, and anxiety-vulnerable populations, along with alterations to neuronal
signaling [63]. Importantly, Ozcan et al. [64] demonstrated that olfactory
bulbectomy in mice causes neuronal loss and morphological changes in the dorsal
raphe nucleus, a major source of serotonergic innervation of forebrain circuits
controlling stress-related behaviors and stress resilience. Of note, microbes can
activate painful stimuli via olfactory sensory neurons. For example, mouse olfactory
sensory neurons express the formyl peptide receptors (FPRs) that detect n-formyl
peptides, which are produced by bacteria such as Escherichia coli [65, 66]. Impor-
tantly, FPRs activate nociceptive neurons during infection with E. coli or Staphylo-
coccus aureus in mice [67]. Microfold cells in the nasal epithelium and upper
respiratory tract sense microbial antigens and could also be responsible for triggering
immune responses that activate cranial or spinal afferents [68]. Overall, the conver-
gence of multiple pathways by which microorganisms in the skin, mouth, lungs, and
gut activate spinal afferents with integration in somatosensory and affective CNS
regions suggests that multiple microbiota act on non-vagal cranial or spinal afferent
nerves to impact neuropsychiatric outcomes. The paucity of research in these areas,
however, must be addressed by future studies.
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3 The Microbiota-Immune Axis Modulates Brain Structure
and Function

3.1 The Microbiota Modulates the Immune System

Multiple microbial ecosystems such as the gut and skin microbiota are known to
modulate the immune system, which, in turn, plays a role in stress resilience and the
risk of development and persistence of symptoms of stress-related psychiatric
disorders, including anxiety disorders, affective disorders, and trauma- and
stressor-related disorders such as PTSD [15, 69–75]. Immune-mediated effects on
brain structure and function can occur in various ways, such as by cytokines from the
periphery passing into the CNS; by immune cells passing through the BBB, BCSFB,
or circumventricular organs into the CNS; or by neural afferents in the periphery
relaying signals to the CNS [76]. It should also be noted that the effects of microbial
exposure on the immune system do not require the microbes to be alive or to
colonize the microbiota. Pseudocommensals, as they have been termed, are organ-
isms that pass through the gut without colonizing it and exhibit strong immunomod-
ulatory effects [77]. Exposure to living, dead, and even partial microbes has strong
roles for regulation of the immune-brain axis in the context of mental health.

3.2 Sickness Behavior: An Insight into
the Immune-Behavior Axis

Most who have dealt with infections, vaccines, broken bones, or other physical
trauma are familiar with the associated psychological symptoms, such as reduced
appetite, malaise, increased pain sensitivity, social withdrawal, and difficulty con-
centrating. These symptoms are collectively known as sickness behavior and,
interestingly, overlap heavily with the symptoms of MDD [71, 78]. Generally,
sickness behavior is induced by physiological or psychological stressors, ranging
from chronic psychosocial stress to broken bones or signals of infection, such as
elevated LPS [55, 79–81]. The stressors trigger a systemic immune response in both
humans and rodents, notably including the systemic release of the proinflammatory
milieu, IL-6, IL-1β, and TNF, along with interferons (IFN) such as IFN-γ [79, 82]. A
portion of these proinflammatory cytokines and the immune cells they prime pass
into the CNS and activate microglia (the brain’s resident immune cells) and astro-
cytes to alter tryptophan-serotonin pathways, increase reactive oxygen species/
reactive nitrogen species ROS/RNS concentrations, decrease BDNF, and contribute
to excitotoxicity via altered glutamate signaling [76]. Additionally, increased BBB
permeability by the proinflammatory state further allows the trafficking to occur.
Together, these changes elicit increased anxious or depressive symptoms and
decreased neuroplasticity and stress resilience, providing a window into how cyto-
kines impact mental health and behavior [76]. Research suggests that sickness
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behavior via the outlined immune response was evolutionarily advantageous to
prevent the spread of diseases and to support healing [83]. However, in modern
societies where psychological stressors are much more common than predator
attacks, we may often be at odds with sickness behavior, with chronic low-grade
inflammation and immune activation likely contributing to the increase in mental
health disorders seen globally [84].

3.3 Cytokines and Brain Structure and Function

A large body of research demonstrates associations between altered proinflammatory
cytokines, including elevated circulating IL-6, C-reactive protein (CRP), TNF,
and IL-1β, and impaired stress resilience, as reviewed by Raison et al. [83] and by
Maier and Watkins [85]. In addition to being able to alter BBB permeability, IL-6,
IL-1β, and TNF can pass into the CNS through saturable transport mechanisms or
through gaps in the BBB [86]. Once in the brain, IFNs, IL-1β, and TNF affect
monoamine signaling, including serotonin, noradrenaline, and dopamine, as well as
glutamate in humans and rodents (for review, see [76]). Serotonin signaling is altered
by induction of indoleamine 2,3-dioxygenase (IDO), which is upregulated by IFN-γ,
IL-1β, and TNF [87]. In both humans and rodents, IDO diverts the metabolism of
tryptophan to kynurenine, decreasing the production of serotonin and poten-
tially increasing the production of neurotoxic quinolinic acid [76, 88]. In rats,
quinolinic acid activates N-methyl-D-aspartate (NMDA) receptors (a subset of glu-
tamate receptor) while also stimulating astrocyte glutamate release and inhibiting
reuptake [89]. These effects are further amplified by proinflammatory cytokines
directly decreasing astrocyte glutamate reuptake and increasing glutamate release,
which contributes to excitotoxicity in human cell lines and in vivo in rats [76, 90,
91].

IL-1β and TNF additionally activate p38 mitogen-activated protein kinase (p38
MAPK) in mice, increasing expression and function of serotonin reuptake trans-
porters [92]. Furthermore, elevated proinflammatory cytokines can decrease seroto-
nin, norepinephrine, and dopamine synthesis via destruction of tetrahydrobiopterin,
a cofactor for tryptophan hydroxylase and tyrosine hydroxylase, by ROS
[93, 94]. Under the monoamine hypothesis of MDD, increased serotonin reuptake
and decreased serotonin, norepinephrine, and dopamine synthesis contribute to
MDD. Overall, elevated proinflammatory cytokine concentrations in the periphery
and CNS alter monoamine signaling and contribute to excitotoxicity, altering brain
structure and function, which modulates stress resilience. Given that microbial
exposure can alter circulating cytokine concentrations (see Sect. 3.5) and chronic
low-grade inflammation is a risk factor for stress-related psychiatric disorders, it is
evident that cytokines are a potential mechanism by which microbiota modulate
stress resilience [16].
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3.4 Cellular Access to the Brain

3.4.1 Stress Creates a Proinflammatory Repertoire of Circulating
Immune Cells

Upon being exposed to a psychological or physiological stressor, the immune cell
profile of the body is shifted toward a proinflammatory state, generally increasing the
quantities of proinflammatory cytokines produced in response to exposure to
proinflammatory microbial antigens such as LPS. Additionally, chronic, lower-
grade stress also pushes the immune cell repertoire toward a proinflammatory state
characterized by resistance to glucocorticoids (GCs). Of note, repeated social defeat
in mice increases CD14 and CD86 expression on macrophages [95], and the chronic
subordinate colony housing model induces GC resistance of Th2 lymphocytes and a
decrease in Tregs [55, 81, 96].

Psychosocial stressors also lead to upregulated expression of TLR4 in mice,
increasing the likelihood of nuclear factor-kappa B (NF-κB) priming of peripheral
immune cells, including macrophages and monocytes [97, 98]. Wan et al. [99]
demonstrated a positive feedback cycle, where NF-κB increases TLR4 expression,
increasing sensitivity to LPS and further upregulating NF-κB in THP-1 cells
(a human monocytic cell line). Activation of TLR4 and NF-κB during this cycle
primes monocytes to a proinflammatory state, characterized by increased IL-6,
pro-IL-1β, and TNF production [76]. Additionally, in mice, repeated sympathetic
nervous system activation by stressors increases systemic norepinephrine and
encourages myelopoiesis, resulting in a less mature and more inflammatory popula-
tion of immune cells (particularly bone marrow-derived monocytes) in circulation
[100, 101]. Due to the shift of the circulating immune cell repertoire to a
proinflammatory state that is induced by stress, chronically stressed individuals
may exhibit heightened sensitivity to disrupted microbial communities and increased
epithelial permeability at locations such as the gut mucosa. Thus, interventions
focused on increasing microbiota community health to improve the functioning of
the microbiota host-epithelia barrier may prevent or attenuate activation of the
immune system that can contribute to impaired stress resilience.

3.4.2 Stress and Microbes Modulate the Inflammatory State
of Microglia in the Central Nervous System

Thion et al. [102] showed that absence of a microbiota during development or
disrupted microbiota community structure by antibiotic exposure results in altered
microglia transcriptome in a sex-specific manner in mice. Notably, mice with GF
mothers have altered expression of microglial immune response genes indicative of
immaturity beginning in utero, with an increased expression of the genes Ly86 and
Aoah, which are involved in the response to LPS [102]. These changes affected
males more strongly in utero but had more lasting effects into adulthood in female
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mice, highlighting sex-specific modulation of behavior-relevant immune activity
[102]. Moreover, treatment with an antibiotic cocktail containing ampicillin, strep-
tomycin, colistin, and amphotericin for 1 week induced changes in microglial gene
expression, including decreased concentrations of the anti-inflammatory and immu-
nosuppressive genes Nfkbia (NF-κB inhibitor 1 alpha), Tsd22d3 (glucocorticoid-
induced leucine zipper, GILZ), and Ddit4 (DNA damage inducible transcript 4) in
both male and female adult mice [102]. Moreover, Boehme et al. [103] found that
12 weeks of consumption of a fructooligosaccharide-enriched inulin prebiotic alters
microbiome composition and prevents an age-related increase in the fraction of
activated microglia in mice. Together, these data demonstrate that (1) the lack of a
microbiota impairs microglia development; (2) disruption of the microbiota alters the
inflammatory reactivity of microglia; and (3) microbiota-bolstering techniques such
as prebiotic administration are able to attenuate microglial reactivity.

Additionally, psychosocial stress can alter microglial gene expression; Wohleb
et al. [95] demonstrated that repeated social defeat in mice increases CD14, CD86,
and TLR4 expression on microglia. Moreover, Frank et al. [104] demonstrated that
inescapable shock (an acute stress model) induces microglial priming in rats. Rats
exposed to inescapable shock had increased concentrations of major histocompati-
bility complex II (MHCII) and decreased neuronal glycoprotein CD200 in vivo,
along with heightened production of IL-1β in response to stimulation with LPS
ex vivo 24 h after inescapable shock exposure [104]. Increased MHCII and
decreased CD200 contributing to microglial reactivity and increased IL-1β after
LPS challenge demonstrate this ex vivo. Stress-induced microglial priming and
stress-induced increases in anxiety-like defensive behavioral responses, assessed
24 h following stress exposure, are prevented by prior immunization withM. vaccae
NCTC 11659 [104], demonstrating that microbial exposures have the potential to
increase stress resilience. Overall, microbial exposure modulates the state of
microglia in the murine brain, conferring resilience against stress-induced microglial
changes and resulting neuroinflammation and altered behavior.

3.4.3 Stress Causes Immune Cell Trafficking into the Brain

Multiple lines of evidence suggest that exposure to chronic stressors can increase
immune cell trafficking into the brain. Repeated social defeat stress causes an
increase in brain chemoattractant production in mice, causing GC-insensitive mono-
cytes from the bone marrow to traffic to the brain [83, 105]. To elaborate, repeated
social defeat causes the release of C-C motif chemokine ligand (CCL) 2 from
cytokine-stimulated astrocytes in the brain, attracting CCL2 receptor (CCR2)+/
CX3CR1+ monocytes; consistent with a significant role for CCL2 signaling, this
monocyte trafficking to the brain is largely blocked in CCR2 knockout mice
[76, 106]. Furthermore, monocytes trafficking into the brain due to peripheral
inflammation produce TNF upon arrival, increasing the proinflammatory cytokine
load in the brain [107, 108]. Upon arrival in the brain, monocytes differentiate into
brain resident macrophages, which are capable of proinflammatory responses
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stronger than those from microglia [105, 109]. Overall, systemic inflammation from
psychosocial or physiological stressors primes the circulating immune cell repertoire
to a proinflammatory state and induces trafficking to the brain, resulting in impaired
stress resilience and anxious behavior via cytokine release.

3.4.4 The Choroid Plexus Is a Gatekeeper of Immune Cell Access
to the Brain

The brain is enveloped by three layers of meninges, the dura mater, arachnoid mater,
and the pia mater. The choroid plexus resides in the innermost layer of the meninges
(pia mater), which is in close contact with the cerebral cortex and spinal cord. Within
the choroid plexus (CP), the blood-cerebrospinal fluid barrier (BCSFB) is charac-
terized by fenestrated capillaries [110]. Upon passing through the fenestrated capil-
laries into the parenchyma of the CP, circulating lymphocytes, accompanied by
(antigen-presenting) dendritic cells (DCs), await translocation into the CSF
[110]. This exposure of lymphocytes to DCs immediately before crossing into the
CSF can be critical for encouraging a proinflammatory lymphocyte bias if the DCs
are presenting antigens that promote proinflammatory responses [111]. In cases of
infection or hyperpermeable host-microbiota epithelia (at any location harboring a
microbiota), high relative abundances of microbial antigens presented by DC could
prime lymphocytes to a proinflammatory state prior to entering the CNS. Notably,
Th17 lymphocytes, increased by IL-1β, are a chink in the BCSFB’s armor, which is
particularly important given that microbial exposure alters Th17 lymphocyte con-
centrations through multiple mechanisms [84, 112]. Even in an uninflamed brain,
CCR6+ Th17 lymphocytes can cross the BCSFB at the CP [113]. After crossing,
their interactions with DC in the subarachnoid space activate a proinflammatory
cascade that can damage BCSFB tight junction integrity [113]. This
proinflammatory cascade is associated with the release of vascular cell adhesion
molecule (VCAM) 1, a driver of lymphocyte trafficking [114, 115]. Thus, a Th17
lymphocyte bias from systemic or peripheral inflammation characterized by
increased IL-1β can result in a permeabilized BCSFB at the CP and further lympho-
cyte trafficking into the CNS. Moreover, Kertser et al. [116, 117] demonstrated that
severe psychological stress in mice impairs CP BCSFB function, allowing increased
leukocyte trafficking in a manner dependent on GC signaling. Blocking GC recep-
tors restores BCSFB immune surveillance by increasing Treg trafficking and atten-
uates posttraumatic behavioral deficits. When combined with Baruch and Schwartz’s
[118] review of how CNS-specific CD4+ T cells shape brain function via the CP, this
research suggests a role of the Th17/Treg balance (an identified therapeutic target in
autoimmune conditions) in maintaining the BCSFB for proper stress resilience
[119]. Notably, exposure to microbial old friends, such as the helminth
S. mansoni, regulates the Th17/Treg balance, highlighting the importance of micro-
organisms in protecting the BCSFB to prevent proinflammatory lymphocyte traf-
ficking, which can impair stress resilience downstream [84].
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Pathogens (naked or attached to or inside immune cells) can trigger cells in the CP
to relay inflammatory signals to the brain or even cross the CP and enter the CNS.
For example, Listeria monocytogenes enters the CNS via a “Trojan horse” method,
passing across the BCSFB inside peripheral mononuclear phagocytes [120]. Like-
wise, Streptococcus suis can enter the CNS via a “Trojan horse” method inside
polymorphonuclear neutrophils [121]. Another example is that death following
infection with SARS-CoV-2 is associated with CP inflammation, increased CCL2
and CXCL2 expression in the brain, and increased CP to cortex proinflammatory
signaling associated with microglial activation [122]. These proinflammatory
responses occur via SARS-CoV-2 binding at the CP but without SARS-CoV-2
actually entering the brain [122], but antigens including the M1 spike protein from
SARS-CoV-2 have been shown to cross the BBB in mice, outlining a potential
mechanism by which proinflammatory cascades could be triggered from within the
CNS [123]. Though it is impossible to know how SARS-CoV-2 infection alters CP
inflammation and CCL2 and CXCL2 expression in individuals who survive the
infection, this suggests that viral exposure can modulate the inflammatory state of
the CP and that infection may confer long-term risk for impaired cognition and
depression. Schwerk et al. [124] have reviewed the evidence that because some
pathogens can cross the BCSFB at the CP, the CP responds to pathogen challenge by
increasing cytokine and chemokine production and BCSFB permeability to encour-
age leukocyte trafficking into the brain. In the case of pathogens in the brain, the
response of the CP to increase leukocyte trafficking is protective against the patho-
gens, but it also has the unfortunate “side effects” of impairing cognition and
decreasing stress resilience by encouraging proinflammatory cytokine production
in the CNS [124]. Notably, exposure to dysbiotic microbiota with overgrowth of
pathogens or pathobionts such as Neisseria meningitidis or E. coli or disruption of
the host-microbiota epithelial barriers has the potential to trigger these “side effects,”
highlighting the importance of maintaining diverse microbiota that are resilient to
pathogen overgrowth and microbiota that support healthy epithelial barriers
[124]. The CP serves as a gatekeeper of immune access to the brain, but modulation
of immunophenotypes by a microbiota encouraging inflammation and a Th17-
dominant lymphocyte repertoire as well as pathogen infection (which could be
somewhat prevented by a diverse microbiota) can impair the BCSFB, resulting in
decreased stress resilience.

3.5 Impacts of Microbial Exposure
on the Immune-Brain Axis

The ability of stressors to modulate the immune-brain axis raises the question of
what can be done to intervene. One potential means of regulating the immune system
to confer stress resilience is through microbial exposure. It’s important to note that
effects of microbe-immune system interactions on brain structure and function do
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not rely on microbe colonization or even live/whole microbes. Prime examples of
this include the ability of immune stimulation by LPS injection or by subcutaneous
or intratracheal administration of heat-killed M. vaccae to activate serotonergic
neurons in the dorsal raphe nucleus, conferring stress resilience in mice [125]. Initial
research demonstrated that subcutaneous injection with heat-killedM. vaccaeNCTC
11659 activated a subset of serotonergic neurons in the dorsal raphe nucleus in mice,
improving performance in the forced swim test [11]. Since then, a series of follow-up
studies has demonstrated immunoregulatory effects ofM. vaccae NCTC 11659. For
example, Reber et al. [55] demonstrated that M. vaccae NCTC 11659 immunization
prevents stress-induced colitis and anxiety in response to the chronic subordinate
colony (CSC) housing model, a validated model of PTSD [81]. Additionally,
Amoroso et al. [58] demonstrated that M. vaccae NCTC 11659 prevents stress-
induced aggravation of dextran sulfate sodium-induced colitis in mice, likely
through the induction of Tregs [126]. Moreover, M. vaccae NCTC 11659 improved
stress resilience, stabilized the gut microbiome, and attenuated proinflammatory
physiological responses to a “two-hit” stress exposure mouse model of circadian
disruption followed by acute social defeat [54]. Further research demonstrated the
ability of a novel lipid derived from M. vaccae NCTC 11659, 10(Z )-hexadecenoic
acid, to act on peroxisome proliferator-activated receptor alpha (PPARα) to decrease
IL-6 mRNA and protein expression following LPS challenge in freshly isolated
murine peritoneal macrophages [127]. In this research, 10(Z )-hexadecenoic acid also
attenuated LPS activation of TLR4, resulting in less NF-κB downstream signaling.

Similarly, exposure to other microbe-derived lipids, such as conjugated linoleic
acids (CLAs) from Lactobacillus spp. and Bifidobacterium spp., can be
immunomodulatory. For example, Miyamoto et al. [128] demonstrated that
10-hydroxy-cis-12-octadecenoic acid prevents TNF-induced gut epithelial dysfunc-
tion. Additionally, oral supplementation of CLA has been shown to prevent
age-related deficits in BDNF and synaptic function in an aged mouse model of
depression risk [129]. The attenuation of hallmarks of age-related depression path-
ophysiology was found to be mediated by nuclear erythroid-related factor 2 (NRF2),
a transcription factor important for anti-inflammatory response regulation [130]. Due
to NRF2’s roles, including inhibition of NF-κB, NRF2 and NRF2-modulating
phytochemicals have been identified as a potential pharmacological target for
inflammatory disorders [130]. Hashimoto [131] reviews the role of NRF2 in affec-
tive disorders, including evidence such as (a) lower NRF2 expression in the pre-
frontal cortex (PFC) and CA3 and dentate gyrus (DG) regions of the hippocampus in
mouse models of depression, (b) depressive-like behavior in NRF2 knockout mice,
and (c) decreased BDNF in the PFC, CA3, and DG. Overall, a variety of living and
dead microbes (i.e., postbiotics, see Salminen et al. [132] for elaboration) as well as
their metabolites can activate the host immune system to confer stress resilience.
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4 The Microbiome, the Blood-Brain Barrier,
and Neuropsychiatric Outcomes

4.1 Blood-Brain Barrier Integrity Influences
Neuropsychiatric Outcomes

The BBB is an important component of the CNS in maintaining proper cognitive and
behavioral function. The BBB functions as a primary gatekeeper, controlling which
molecules pass between the circulatory system and the CNS [133]. Though the BBB
was initially described as a static barrier, current research has characterized it as a
highly dynamic and sensitive system of inter-woven brain microvascular endothelial
cells (BMECs), neurons, pericytes, astrocytes, and smooth muscle cells stitched
together by protein complexes [134]. These components, combined with circulating
blood cells, comprise neurovascular units (NVU), which are responsible for
maintaining hemodynamic homeostasis in response to cerebral hypo- or hyperemia
and for the regulation of molecular and cellular transport into the brain [135].

It is becoming clear that the gut microbiota influences BBB structure and
function. Although not all of the underlying mechanisms are fully understood,
evidence suggests a number of distinct mechanisms are involved. For example,
there are many microbial metabolites that can affect BBB permeability including
bacterial metabolites such as short-chain fatty acids (SCFAs), trimethylamine n-
oxide (TMAO), and modified bile acids, along with host-derived signaling mole-
cules induced by the microbiota, such as cytokines, hormones, and ROS. Notably,
there is complex interplay between the host and microbiota for the production of
these molecules, as some (e.g., SCFA) are purely microbe-derived; some (e.g.,
TMAO) are microbe-derived and host-altered, meaning the host modifies the struc-
ture of the molecule to convert them to a bioactive form (e.g., oxidizing TMA to
form TMAO). Some (e.g., secondary bile acids) are host-derived but microbe-
altered, meaning that the microbiota is involved in converting them to their bioactive
form; and others (e.g., cytokines, hormones, ROS) are host-derived and structur-
ally unaltered by microbes, but their quantities in the host are altered by microbes.

Allostatic load placed on the BBB by a dysbiotic microbiota, trauma, or sickness
across a lifetime can lead to BBB dysfunction, which is associated with increased
risk for affective and stress-related disorders in humans or anxiety-like/depressive-
like behavior in murine models [136, 137]. Additionally, chronic psychosocial stress
can cause BBB disruption in mice, and the resulting molecular changes to the BBB
further contribute to decreased stress resilience [136, 138]. Upon BBB disruption by
stress and/or peripheral inflammation, macrophages and monocytes primed to a
proinflammatory state by microbial antigens and proinflammatory cytokines in
circulation can more easily traffic into the CNS, contributing to anxious and
depressive-like behavior [76, 105, 139]. Thus, maintenance of the BBB by a variety
of host- and microbe-derived metabolites is important for maintaining stress
resilience.
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4.2 Bacterial Metabolites Influence Blood-Brain Barrier
Integrity

4.2.1 Short-Chain Fatty Acids (SCFA)

The human digestive system lacks many enzymes that are required to break down
complex plant fibers, and transit time in the gastrointestinal tract is too short to allow
the complete breakdown of resistant starches. These fibers and resistant starches pass
through the small intestine into the colon (or large intestine), where they are
fermented by the members of the gut microbiota. One major product of this
fermentation is a class of molecules known as short-chain fatty acids: fatty acids
up to six carbons (C) in length. Ninety-five percent of SCFAs produced are acetate
(2C), propionate (3C), and n-butyrate (4C), which generally exist in a ratio of 60:
20:20, respectively, in the stool [140, 141].

As the major energy substrate for the cecocolonic epithelium, butyrate has been
the subject of much research, which has uncovered important roles in maintaining
host health [142]. One important mechanism by which butyrate maintains host
health is through regulating epithelial function, which has historically been primarily
studied at the gut epithelium. Decreased butyrate concentration in the gut results in
changes to intermediary metabolism (decreased NADH/NAD(+), oxidative phos-
phorylation, and ATP) within colonocytes that confer catabolic processes, leading to
poor colonocyte health [142]. Furthermore, butyrate’s mechanisms for modulating
epithelial function include non-energetic mechanisms. For example, it acts as a
histone deacetylase (HDAC) inhibitor throughout the body, regulating cell prolifer-
ation and resistance to oxidative stress, and also acts through its binding to immu-
nomodulatory G protein-coupled receptor (GPR) 41 and GPR43 expressed on
enteroendocrine cells in the gut [143–145]. GPR41 and GPR43 are also referred to
as free fatty acid receptor (FFAR) 2 and FFAR3, respectively. They have high
affinity for butyrate and propionate but low affinity for acetate [145].

The benefits of SCFAs for epithelial function are not localized exclusively to the
gut. FFAR3, found on vascular endothelial cells in the brain, responds to physio-
logically relevant quantities of propionate to protect the BBB from lipopolysaccha-
ride (LPS)-induced tight junction disruption and damage from oxidative stress in
human cell lines in vitro [146]. Braniste et al. [147] demonstrated that oral butyrate
administration in GF mice decreased BBB permeability to the same extent that
exposure to a pathogen-free microbiota did. Additionally, this decrease in BBB
permeability was thought to be mediated by increased expression of occludin pro-
teins, which also mediate the effects of the microbiota on epithelial function in the
gut and testis and are known as key modulators of tight junction function in the BBB
[148–150]. Moreover, butyrate exerts protective effects on the BBB via the immune
system, as it induces Treg proliferation and inhibits NF-κB production
[151, 152]. Tregs are associated with protection against BBB damage following
stroke and traumatic brain injury in mice [153, 154], and inhibition of NF-κB blocks
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a proinflammatory cascade of cytokines that disrupts BBB integrity (discussed in
cytokine section below).

Although acetate is known to readily cross the BBB in humans, not much is
known about its direct actions on the BBB in humans or mice [155]. Additionally,
the effects of other less abundant SCFAs on the BBB are not well characterized,
though they are known to have effects in other areas of the body. For example,
similar to butyrate, valerate (5C, also referred to as pentanoate) has demonstrated
activity as a HDAC inhibitor in lymphocytes in mice, assessed both in vivo and
in vitro, yet its direct impacts on the BBB remain unknown [156]. Future studies
should further evaluate the mechanisms through which other SCFAs act on immune
and BBB function.

4.2.2 Trimethylamine N-Oxide

Another class of molecule known to modulate the BBB is TMAO. TMAOs are
derived from quaternary amines such as choline, carnitine, and lecithin sourced from
the diet [157]. Such amines are converted to trimethylamine (TMA) in the gut by
Anaerococcus, Clostridium, Escherichia, Proteus, Providencia, and Edwardsiella
and then absorbed and oxidized to form TMAO in the liver [158, 159]. TMAO has
been studied for its impact on endothelial function in humans and animal models, as
reviewed by Naghipour et al. [160] and Tang et al. [161], and recently some studies
have uncovered roles of TMAO in modifying the BBB. Hoyles et al. [162] and
McArthur et al. [163] have shown that low doses of TMAO exert protective effects
on the BBB in in vitro human cell culture and in vivo animal models, likely through
effects on actin cytoskeletons and tight junctions. However, Liu and Huang [164]
demonstrated that chronically elevated TMAO concentrations in the plasma of
poststroke patients were associated with the development of impaired cerebrovas-
cular function, and their follow-up rat model demonstrated an impaired BBB
following high TMAO diets. Current research on TMAO’s effects on the BBB
cannot draw a full story of dose responsiveness but, to date, suggests the potential
of a U-shaped dose response curve of TMAO-BBB interactions.

4.2.3 Secondary Bile Acids

For years, bile acids, synthesized from cholesterol in the liver, were primarily
considered as facilitators of lipid digestion and absorption in the gut. However,
research emerging over the past two decades has demonstrated their function as
signaling molecules throughout the body, with receptors in endocrine glands, adi-
pocytes, skeletal muscles, immune organs, and the nervous system [165]. Addition-
ally, when passing through the digestive tract, bile acids can be deconjugated and
decarboxylated by specific gut bacteria to form secondary bile acids, increasing the
diversity of the bile acid repertoire [166]. These unconjugated and uncharged bile
acids can be passively absorbed in the colon, where they are directed toward hepatic
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portal circulation [166]. In humans, less than 10% of absorbed bile acids make it past
enterohepatic circulation to systemic circulation, resulting in a plasma concentration
between 5 and 15μmol/L [166]. Highly elevated bile acid concentrations in the blood
can result in disruptions of the BBB in rats and guinea pigs, likely due to cell
membrane damage from the same detergent properties that make bile acids useful in
digestion [167, 168]. The effects of lower concentrations of bile acids, however, may
not be generalizable across all types of bile acids. For example, in rats, the
unconjugated secondary bile acids chenodeoxycholic acid and deoxycholic acid at
low relative abundances increase phosphorylation of occludin tight junction pro-
teins, disrupting barrier function, whereas other secondary bile acids,
ursodeoxycholic acid and glycol-ursodeoxycholic acid, exert protective effects on
the cerebrovascular epithelium in human cell lines [166, 169]. It is important to
consider that the beneficial effects of certain secondary bile acids on the BBB could
be mediated by a hormetic response. That is, secondary bile acids that improve BBB
integrity could do so by causing acute physiological damage that induces BBB
proliferation in response. Secondary bile acids that have been shown to exert
protective effects at low concentrations may not be protective when chronically
elevated or at high concentrations, but research to date has not fully elucidated these
effects.

4.3 Host Signaling Molecules Whose Quantities Are Altered
by the Microbiome Influence Blood-Brain Barrier
Integrity

4.3.1 Cytokines

The gut, skin, and oral microbiota are well known to regulate immune function
(as reviewed in Lowry et al. [7], Kau et al. [170], Park and Lee [171], and Idris et al.
[172]), which affects the integrity of the BBB (as reviewed by Banks and Erickson
[173]). While proper regulation of immune function can lead to maintenance of BBB
integrity, immune dysregulation can lead to BBB disruption via increased
proinflammatory cytokine production. Of note, dysbiotic gut microbiota states
associated with inflamed gut mucosa can upregulate production of the cytokines
TNF, IL-6, and IL-1β, leading to increased BMEC permeability [174, 175]. Likewise,
dysbiotic states or the presence of extracellular RNA from pathogens in the oral
mucosa can increase TNF, IL-6, and IL-1β abundances in mice and human macro-
phages (in vitro), widening tight junctions of the BBB via decreasing claudin-5
protein expression [176, 177]. Moreover, TNF production in mice encourages
neutrophil trafficking to the CNS, encouraging BBB permeability by releasing
chemokine ligands (CXCL) 1, 2, 3, and 8 and other metabolites such as ROS
[178, 179]. This breach further enables proinflammatory cytokine and immune cell
trafficking into the brain [179]. However, the master regulator of proinflammatory
cytokine production NF-κB, which upregulates IL-6, IL-1β, and TNF production, is
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inhibited by butyrate, blunting the inflammatory milieu mentioned above
[180]. Overall, the milieu of proinflammatory cytokines triggered by gut, oral, and
skin inflammation impairs BBB integrity, but a diverse gut microbiota capable of
promoting immunoregulation and producing SCFA can exert protective effects on
the BBB, conferring stress resilience [181].

4.3.2 Hormones

In addition to cytokines, hormones also play a role in maintaining BBB integrity.
Interest in the impacts of estrogen and testosterone on BBB integrity was sparked
after a study showed sex differences in lateral striatal artery vulnerability mediated
by estrogen and testosterone in mice [182]. Since then, research has shown that
estrogen is a strong regulator of BBB integrity, protecting against tight junction
disruption by inducing estrogen receptor α and nuclear receptor corepressor to
downregulate matrix metalloproteinase (MMP) transcription in rats in vivo and
in vitro [183, 184]. Thoroughly reviewed in Baker et al. [185], the gut microbiota
is a primary modulator of circulating estrogen in animals and humans. Bacteria in the
mammalian gut secrete β-glucuronidase, which deconjugates estrogens and
phytoestrogens, conjugated in bile, to their active and absorbable forms
[185]. Dysbiotic states of the gut microbiota with low richness and bacterial biomass
decrease β-glucuronidase production, altering the estrobolome, which can exert
direct effects on the BBB [185]. Wilson et al. [186] demonstrated that these effects
may also be modulated by serum gonadotropins, which are dysregulated in GF
mice [148].

Altered estrogen concentrations could also exert indirect effects on the BBB via
the vaginal microbiome. Increased estrogen at puberty is associated with enhanced
glycogen deposition at the vaginal mucosa, shifting the vaginal microbiome toward a
Lactobacillus-dominated community [187]. As could occur with low estrogen con-
centrations, a non-Lactobacillus-dominated vaginal microbiome is associated with
production of the previously mentioned proinflammatory milieu of IL-1β, IL-6, and
TNF in humans, but this has not been studied thoroughly in murine models
[188]. Notably, though diverse microbial exposure is important for training the
immune system and protecting against infection in skin, oral, and gut microbiota,
high vaginal microbiome diversity is associated with high pH and resultant pathogen
susceptibility in humans [189, 190].

In addition to estrogen, testosterone is also modulated by the microbiota and has
effects on the BBB. Chronically low testosterone concentrations in gonadectomized
mice result in increased BBB permeability when compared to testosterone-
supplemented gonadectomized mice roughly 2 months after castration [191]. The
increase in BBB permeability was associated with astrocyte and microglia activa-
tion, along with increased hypothalamic expression of IL-1β and TNF, which were
almost completely attenuated in testosterone-supplemented mice, suggesting indi-
rect effects of testosterone on BBB function [191]. Notably, though testosterone
often decreases with age, Poutahidis et al. [192] demonstrated that 3–9 months of
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daily Lactobacillus reuteri ATCC PTA 6475 consumption prevented age-related
decline of testosterone concentrations and testicular size in mice in an IL-17-
dependent manner. Moreover, early life antibiotic exposure decreases Leydig cell
testosterone function through both microbiome- and non-microbiome-mediated
mechanisms [193, 194]. This is mirrored in humans as well, where microbiome
diversity positively correlates with testosterone concentrations [44, 45].

Another hormone known to exert protective effects on the BBB and to be
influenced by the microbiota is vitamin D (also known as 1,25-OH-cholecalciferol
or calcitriol in its active form). This is important for BBB integrity because human
BMECs express vitamin D receptors with detectable abundance of both mRNA and
protein [195]. In vitro treatment with activated vitamin D prevents the decrease in
occludens-1 and claudin-5 and the increase of intercellular adhesion molecule-1 and
NF-κB caused by TNF exposure [195]. Direct binding to vitamin D receptors
associated with the BBB is postulated to be a mechanism for this, as human
BMECs express vitamin D receptors at both the mRNA and protein levels
[195]. These findings suggest that vitamin D is another hormone mediating
microbiota-BBB interactions.

4.3.3 Reactive Oxygen/Nitrogen Species

ROS and RNS are present in moderate concentration across most cells, acting as
signaling molecules via oxidative modification of biological molecules [196]. How-
ever, high concentrations of ROS and RNS are associated with increased oxidative
damage to tissues including the BBB [196, 197]. Specifically, MMPs, which act as
proteolytic enzymes degrading extracellular proteins, are activated by high ROS and
RNS concentrations in humans and animal models [197]. This is achieved directly
via oxidation or S-nitrosylation of MMPs and indirectly by upregulation of the
proinflammatory cytokine milieu IL-1β, IL-6, and TNF [197].

Mitochondria are major sources of ROS in the human body, as they produce ROS
in the electron transport chain [198]. Microbial metabolites impact host mitochon-
drial function, resulting in altered ROS production, as reviewed by Ballard and
Towarnicki [198]. A particular example from Wikoff et al. [199] demonstrated that
GF mice have many dysregulated metabolic pathways, such as indole metabolism,
which affect mitochondrial membrane potential, conferring altered organism-wide
ROS concentrations [198].

Furthermore, SCFAs can alter ROS concentrations. Hoyles et al. [146] demon-
strated that ROS production in response to proinflammatory stimuli in human
BMECs in vitro was ameliorated by propionate treatment. Butyrate also exerts
neuroprotective effects in vitro in human cell lines and in vivo in mice by stimulating
mitochondrial biogenesis, which is widely associated with improved mitochondrial
function, often defined as more efficient electron transport chain production of
adenosine-50-triphosphate and less aggressive production of ROS [200, 201]. Overall,
since systemic ROS can lead to BBB damage, modulating mitochondrial biogenesis
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may be another mechanism by which butyrate exerts protective effects on the BBB.
Mitochondrial biogenesis will be revisited in more detail later in this chapter.

4.4 Circumventricular Organs

The third and fourth ventricles of the brain are associated with circumventricular
organs (CVOs), including the subfornical organ, the area postrema, the organum
vasculum of lamina terminalis (OVLT), the median eminence, the posterior pitui-
tary, and the pineal gland, all of which lack a BBB. Because of their lack of a BBB,
CVOs are particularly sensitive to and points of entry into the brain for contents of
the circulatory system. This includes cells, cytokines, microorganisms, prions, and
autoantibodies [202]. CVOs and disrupted (or “leaky”) sections of the BBB allow
humoral access for immune cells and cytokines to the CNS [76]. As a result of their
access and sensitivity to circulatory system contents, CVOs play critical roles in
regulation of immune access to the CNS and other processes that can affect mental
health [7].

5 The Microbiota, Neuroplasticity, and Mitochondrial
Function

It is important to note that neural architecture in the brain is not static; dynamic
restructuring of neural connections throughout life occurs in normal, healthy humans
[203]. The processes surrounding neuronal growth and restructuring are referred to
as neuroplasticity and include neurogenesis, neuronal death, synapse formation and
synaptic pruning, dendritic remodeling, and axonal sprouting and pruning
[203]. Though most prevalent during early stages of life, neurogenesis occurs in
healthy adults and is associated with learning and adaptation to new stimuli
[203, 204]. In humans, neurogenesis is widely accepted to occur in two areas: the
subgranular zone of the dentate gyrus with incorporation into the hippocampus and
the subventricular zone with incorporation into the olfactory bulb [205–207].

Though olfactory bulb neurogenesis is not directly linked to psychiatric out-
comes, one can reference the fact that olfactory bulb deficits, such as through
olfactory bulbectomy (previously mentioned as an animal model for depression),
downregulate hippocampal neurogenesis [208]. This is likely at least partially
mediated by altered serotonin signaling, given that (a) neuronal death in the dorsal
raphe nucleus following olfactory bulbectomy permanently impairs hippocampal
serotonin signaling, (b) serotonin signaling encourages hippocampal neurogenesis,
and (c) selective serotonin reuptake inhibitor (SSRI) treatment restores hippocampal
neurogenesis following olfactory bulbectomy [209–212]. Activation of serotonergic
neurons in the dorsal raphe nucleus via microbial exposure (e.g., as shown by
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M. vaccae NCTC 11695 exposure [11]) may reduce stress susceptibility, but the
effects of microbial exposure on neurogenesis via the dorsal raphe nucleus have not
been studied directly [213].

5.1 Brain-Derived Neurotropic Factor
as a Microbiota-Mediated Modulator of Neuroplasticity

BDNF is a key modulator of neuroplasticity in human and rodent brains, with roles
in neuronal cell growth, survival, and function, conferring emotion and cognitive
behavioral roles [214, 215]. Importantly, BDNF concentrations in regions of the
brain including the hippocampus and brainstem can be altered by the gut microbiota.
To establish a baseline, Sudo et al. [216] demonstrated that GF mice have decreased
hippocampal BDNF receptor expression when evaluated following stressor expo-
sure. Furthermore, Gareau et al. [217] showed that GF mice experience a reduction
in BDNF and deficits in nonspatial and working memory after being stressed, which
was mirrored in mice infected with Citrobacter rodentium and ameliorated upon
17 days of daily treatment with L. rhamnosus (R0011) and L. helveticus (R0052). In
contrast to other GF studies, Neufeld et al. [218] found increased BDNF in the
granule cell layer of dentate gyrus of the hippocampus of GF female mice, which
was associated with anxiolytic behavior. Bercik et al. [219] showed that oral
treatment with broad-spectrum antibiotics in nonstressed mice increased hippocam-
pal BDNF protein expression and exploratory behavior, along with decreasing
amygdala BDNF protein expression, changes that are associated with altered fear
learning [220]. Notably, given that BDNF is released during and plays a critical role
in the response to stressors, and given that the effects of BDNF are site-specific, a
decrease in BDNF in stressed, GF mice does not necessarily contradict increased
abundances of BDNF in the hippocampus of unstressed, GF or antibiotic-treated
mice; there appears to be a complex interaction between microbial exposure and site-
specific BDNF release in response to stress, and mechanisms have not been fully
elucidated [221].

Gut mucosal infection from Trichuris muris was shown to increase peripheral
inflammation, decrease hippocampal BDNF mRNA, and increase anxiety-like
behaviors [222]. Notably, the decrease in BDNF was not attenuated by administra-
tion of anti-inflammatory agents; however, treatment with the probiotic B. longum
NCC3001 (ATCC BAA-999) did attenuate BDNF expression and behavioral alter-
ations without altering concentrations of proinflammatory cytokines. This suggests
that BDNF expression is largely controlled by mechanisms unrelated to inflamma-
tion. Likewise, Savignac et al. [223] demonstrated that prebiotic feeding increases
BDNF in central regions of the brain via gut hormones such as peptide YY in rats.
Notably, the SCFA butyrate is another trigger for BDNF release, which has been
shown to occur via both HDAC inhibition and decreased methylation of the Bdnf
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gene [224, 225]. Overall, BDNF concentrations in the murine brain are altered by the
microbiota through mechanisms separate from inflammatory cytokines.

5.2 Microbiota-Immune Mediation of Neuroplasticity

As previously discussed, microbiota alter the host immune system, which is impor-
tant, as neuroplasticity is also regulated by immune mechanisms [226]. For example,
in mice, low (physiological) concentrations of IL-1β are critical for long-term
potentiation and memory formation, but excess IL-1β leads to impaired memory
[227, 228]. Similar to the U-shaped effect of IL-1β, varying concentrations of IL-4,
IL-6, and TNF appear to have differential effects on neuroplasticity under different
conditions [226, 229]. Though chronically elevated IL-6 inhibits adult hippocampal
neurogenesis, acute IL-6 responses are important for neuroplasticity in response to
stressors, such as brain injury and ischemia in mice and gerbils [230, 231]. Likewise,
TNF is involved in neurogenesis, but chronically elevated concentrations are not
typically associated with increased cognitive function in animal models or humans
[226, 232]. In addition to their direct effects on neurogenesis, IL-6 and TNF may
play stronger roles by regulating inflammation in the CNS. For example, Cheng et al.
[233] demonstrated that though chronic unpredictable mild stress decreases hippo-
campal BDNF and 5-hydroxytryptamine receptor 1 alpha, which is associated with
increased hypothalamic IL-1β, IL-6, and TNF, along with depressive behavior,
administration of Amuc_1100 (an outer membrane protein of the mucin degrader
Akkermansia muciniphila) attenuates these changes. Amuc_1100 has been shown by
Wang et al. [234] to act on TLR2, which Cheng et al. [233] postulate to be the
mechanism of its effects on immune, serotonin, and BDNF signaling in the brain.
Generally speaking, chronic elevation of proinflammatory cytokines in the CNS—
which can be caused by microbiota-induced immunodysregulation discussed in the
immune section of this chapter—is associated with decreased neuroplasticity, as the
proinflammatory cytokines downregulate BDNF production in both animal models
and humans [83, 235].

5.3 Mitochondrial Health and Neuroplasticity

It should be noted that the microbiota alters mitochondrial biogenesis, structure, and
function [236–238], that mitochondria are involved in neuroplasticity, and that
mitochondrial dysfunction is seen in multiple psychiatric disorders, including anx-
iety disorders, MDD, bipolar disorder, and PTSD as well as in rodent
models designed to model endophenotypes of these conditions [239–243]. Regula-
tion of key transcription factors for mitochondrial biogenesis by the gut microbiota
(reviewed by Clark and Mach [236]) can modulate cellular differentiation in the
CNS as well as axon outgrowth and synaptic plasticity. Undifferentiated human
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senescent-induced pluripotent stem cells and embryonic stem cells exhibit an anaer-
obic state characterized by oxidative damage, low mitochondrial ATP abundance,
and low mitochondrial biomass [244]. However, in these human cell lines, as the
cells differentiate, mitochondrial biomass increases, and the cells shift toward a more
aerobic state [244].

Increased mitochondrial mass not only supports neuron growth and cell differ-
entiation via higher ATP concentration in the cell but also through the production of
mitochondrial uncoupling protein 4, which decreases ROS production and mito-
chondrial calcium accumulation in rats [245]. Moreover, mitochondria are necessary
for axon outgrowth. In rat hippocampal cell lines, depletion of mitochondria pre-
vents axon growth even when ATP concentrations are maintained, suggesting an
importance of mitochondrial function and mitochondrial biogenesis in neural
remodeling [246].

Additionally, BDNF stimulates mitochondrial mobilization in neurons, which is
crucial for synaptic plasticity and axon growth in rat hippocampal cell lines
[247]. BDNF is stimulated by peroxisomal proliferator-activating receptor (PPAR)
α and γ [248, 249]. Moreover, PPARs are postulated to have a role in the prevention
of anxious and depressive behaviors through neuroplasticity-, mitochondria-, and
inflammation-mediated mechanisms, as PPARs are major negative regulators of
NF-κB expression [250, 251]. Notably, PPARγ has been identified as a therapeutic
target for neurological diseases in which mitochondrial dysfunction is implicated,
but much of the research to date has focused on animal models, and in humans, it has
focused on other diseases [252].

Intriguingly, Loupy et al. [253] demonstrated that subcutaneous injection of
M. vaccae NCTC 11659 in rats prevents stress-induced downregulation of PPARγ
in the liver, which can potentially attenuate negative downstream impacts of stress
exposure on BDNF and neuroplasticity subsequent to induction of proinflammatory
cascades. Furthermore, Smith et al. [127] demonstrated that 10(Z )-hexadecenoic
acid activates PPARα signaling in vitro, repressing the proinflammatory cascade that
can prevent downstream neurogenesis and mitochondrial biogenesis. Additionally,
in mice, intestinal PPAR signaling is also activated by SCFA produced by the gut
microbiota, and it is upregulated upon 8 weeks of consumption of a prebiotic blend
containing fructooligosaccharide, galactooligosaccharide, inulin, and anthocyanins
in mice [254]. Moreover, Lactobacillus probiotics (8 weeks of L. casei Shirota in
mice and 14 weeks of L. reuteri GMNL-263 in rats) attenuate the decreased PPAR
expression seen in extremely high fructose-containing, nonalcoholic fatty liver
disease-inducing diets in mice, highlighting another mechanism by which microbial
exposure decreases risk of psychiatric conditions via inflammation, mitochondrial
health, and neuroplasticity [255, 256]. Overall, the microbiota modulates mitochon-
drial structure and function via regulation of transcription factors, BDNF, and
PPAR, conferring modulation of stress resilience via neuroplasticity.
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6 Meningeal Immunity

Research suggests involvement of the meninges for maintenance of well-being and
modulation of CNS inflammation, psychiatric diseases, and neurodegeneration. For
in-depth reviews, see the studies by Kipnis and colleagues, including Norris and
Kipnis [257]; Alves de Lima et al. [258]; and Kipnis [259]. Overall, the meninges
contain a vast repertoire of CNS-privileged immune cells that participate in the
neuroimmune response to injury as well as neurodegeneration and brain function.
However, much research on meningeal immunity has focused on brain injury and
neurodegenerative diseases, though some emerging research has connected menin-
geal immunity to social behavior in mice [260]. Thus, more research is needed on the
interactions between meningeal immunity and anxiety disorders, affective disorders,
and trauma- and stressor-related disorders.

7 Human Clinical Research

There is strong evidence for the impact of microbial exposure on psychiatric out-
comes in human clinical studies. Many of these studies have demonstrated disrupted
microbiota-brain axes (including neural and immune mechanisms), along with
altered BBB integrity, brain structure, and neuroplasticity in individuals with psy-
chiatric conditions. Additionally, they have found that microbiota-targeted interven-
tions through modalities such as prebiotic/probiotic/postbiotic administration are
feasible, tolerable, and safe, and many of these trials show that microbial exposure
interventions are effective for ameliorating changes seen to the microbiota-brain
pathways and for decreasing symptoms of psychiatric conditions. Studies investi-
gating the microbiomes of persons with these disorders are outlined in Table 1.

7.1 Microbiota-Brain Signaling in Humans: Neural
Signaling

Evidence suggests that interoceptive signals (including vagal and spinal afferents),
to which microbes can contribute, play an important role in determining mental
health outcomes in humans [274]. To note, interoceptive dysfunction is implicated in
anxiety disorders; affective disorders, including MDD; and PTSD, and it is both an
outcome of and a contributor to mental health conditions [274]. Additionally, the
contributions of interoception to mental health conditions are not limited to painful
interoception. Even non-painful interoception can contribute to behavior via vagal
and spinal afferents with integration occurring in CNS regions including the auto-
nomic ganglia, spinal cord, brainstem (including nucleus of the solitary tract,
parabrachial nucleus, and periaqueductal gray), thalamus, hypothalamus, and
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Table 1 Characterization of the gut microbiome in humans with generalized anxiety disorder,
major depressive disorder, and posttraumatic stress disorder

Study
Participants and
study design

Alpha
diversity

Composition
(beta diversity) Altered taxa

Generalized anxiety disorder

Jiang et al.
[261]

N ¼ 76 # (GAD) Significant dif-
ference in
unweighted
UniFrac
distance

Phylum level
GAD (n ¼ 40) " Bacteroides

vs. " Fusobacteria

healthy controls
(n ¼ 36)

# Firmicutes

Genus level
" Bacteroidetes

" Fusobacterium

" Ruminococcus gnavus

# Faecalibacterium

# Eubacterium rectale

# Sutterella

# Lachnospira

# Butyricicoccus

Chen et al.
[262]

N ¼ 60 # (GAD) Significant dif-
ference in
unweighted and
weighted
UniFrac
distances

Phylum level
GAD (n ¼ 36) " Tenericutes

vs. # Firmicutes

healthy controls
(n ¼ 24)

Family level
" Bacteroidaceae

" Enterobacteriaceae

" Burkholderiaceae

# Prevotellaceae

Genus level
" Bacteroides

" Escherichia-Shigella

# Prevotella 9

# Dialister

# Subdoligranulum

Major depressive disorder

Mason et al.
[263]

N ¼ 70 No differ-
ence seen
across any
psychiatric
conditions

No difference
seen across any
psychiatric
conditions

# Clostridium leptum
(MDD compared to
healthy controls)

Comorbid
MDD + GAD
(n ¼ 38)

# Total bacterial load per
gram of stool (comorbid
MDD + GAD compared
to healthy controls)vs.

MDD (n ¼ 14)

vs.

GAD (n ¼ 8)

vs.

healthy con-
trols (n ¼ 10)

(continued)
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Table 1 (continued)

Study
Participants and
study design

Alpha
diversity

Composition
(beta diversity) Altered taxa

Jiang et al.
[264]

N ¼ 76 " (active
MDD)

No difference
(both groups)

Phylum level

Active MDD
(n ¼ 29)

No differ-
ence
(responded
MDD)

Active MDD:

vs. " Bacteroides

treatment-
responded
MDD (n ¼ 17)

" Proteobacteria

vs. " Fusobacteria

healthy controls
(n ¼ 30)

# Firmicutes

# Actinobacteria

Responded MDD:

" Bacteroides

" Proteobacteria

# Firmicutes

# Fusobacteria

# Actinobacteria

Family level
Active MDD:

" Acidaminococcaceae

" Enterobacteriaceae

" Fusobacteriaceae

" Porphyromonadaceae

" Rikenellaceae

# Bacteroidaceae

# Erysipelotrichaceae

# Lachnospiraceae

# Prevotella

# Ruminococcaceae

# Veillonellaceae

Responded MDD:

" Acidaminococcaceae

" Enterobacteriaceae

" Porphyromonadaceae

" Rikenellaceae

" Bacteroidaceae

# Ruminococcaceae

# Veillonellaceae

(continued)
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Table 1 (continued)

Study
Participants and
study design

Alpha
diversity

Composition
(beta diversity) Altered taxa

Huang et al.
[265]

N ¼ 54 # (MDD) Difference evi-
dent from
weighted
UniFrac PCoA,
no statistical
testing
performed

Phylum level
MDD (n ¼ 27) # Firmicutes

vs.

healthy con-
trols (n ¼ 27)

Lin et al. [266] N ¼ 20 Mentioned
in methods,
no results
reported

Difference evi-
dent from
weighted
UniFrac PCoA,
no statistical
testing
performed

Phylum level
1 timepoint
from drug-naïve
MDD partici-
pants (n ¼ 10)
prior to receiv-
ing
escitalopram
followed by
2 timepoints
while receiving
escitalopram

" Firmicutes

# Bacteroides

Genus level
" Prevotella

" Klebsiella

" Streptococcus

vs.

healthy con-
trols (n ¼ 10)

Aizawa et al.
[267]

N ¼ 100 N/A N/A # Bifidobacterium

MDD (n ¼ 43) # Lactobacillus

vs. (absolute cell counts, not
relative abundances)healthy con-

trols (n ¼ 57)

Kelly et al.
[268]

N ¼ 77 # (MDD) Significant dif-
ference in Bray-
Curtis,
unweighted
UniFrac, and
weighted
UniFrac
distances

Family level
MDD (n ¼ 34) "

Thermoanaerobacteraceae

vs. # Prevotellaceae

healthy controls
(n ¼ 33)

Genus level
" Paraprevotella

# Prevotella

# Dialister

Zheng et al.
[269]

N ¼ 121 No
difference

Difference evi-
dent from
weighted and
unweighted
UniFrac PCoA,
no statistical
testing
performed

Phylum level
MDD (n ¼ 58;
drug-naïve
n ¼ 39)

" Actinobacteria

vs. # Bacteroidetes

healthy con-
trols (n ¼ 63)

(continued)
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Table 1 (continued)

Study
Participants and
study design

Alpha
diversity

Composition
(beta diversity) Altered taxa

Naseribafrouei
et al. [270]

N ¼ 55 No
difference

N/A Order level
MDD (n ¼ 37) # Bacteroidales

vs.

healthy con-
trols (n ¼ 18)

Yang et al.
[271]

N ¼ 311 Bacteria Bacteria Bacteria (phylum level)
MDD (n ¼ 156) No

difference
Significant dif-
ference in bac-
terial Bray-
Curtis distance

" Bacteroidetes

vs. # Firmicutes

healthy controls
(n ¼ 155)

Viruses Viruses Viruses
# (MDD) No significant

difference in
viral Bray-
Curtis distance

" Escherichia phage
ECBP5

# Clostridium phage
phi8074-B1

# Klebsiella phage vB
KpnP SU552A

Posttraumatic stress disorder

Hemmings
et al. [272]

N ¼ 30 No
difference

No difference Phylum level
PTSD (n ¼ 18) # Actinobacteria

vs. # Lentisphaerae

trauma-exposed
controls
(n ¼ 12)

# Verrucomicrobia

Population:
South African
citizens

Bajaj et al.
[273]

N ¼ 93 # (PTSD) N/A Family level
PTSD (n ¼ 29) # Ruminococcaceae

vs. # Lachnospiraceae

controls
(n ¼ 64)

Population:
military Vet-
erans with
cirrhosis

Notes: Due to the likelihood of false positives, taxa identified below the family level were not
included in this table if authors did not correct for multiple testing or if those taxa made up <1% of
the microbiome. Studies were only included if participants were grouped based on clinical diagnosis
of the psychiatric condition. If studies included multiple timepoints during treatment, results
reported in this table only include those from the timepoint(s) prior to treatment. “N/A” indicates
that the study did not mention assessing the outcome
GAD generalized anxiety disorder, MDD major depressive disorder, PTSD posttraumatic stress
disorder

The Influence of the Microbiota on Brain Structure and Function:. . . 297



somatosensory cortex [275, 276]. There is a strong overlap of interoceptive neural
integration regions with affective regions, and, importantly, interoceptive feedback
may confer psychological alterations to vigilant behavior, the magnitude of reactions
to stressors, and perception of stress magnitude [274]. Over time, interoceptive
overstimulation leads to altered physiological stress axes with effects such as
hypersecretion of cortisol, reduced sensitivity of negative feedback by GC, and a
sympathetic bias of the autonomic nervous system resulting in impaired stress
resilience through constant activation of “fight or flight” systems [277]. Given that
microbial organisms shape the host’s interactions with the “outside” in locations
including the skin, nasal cavity, mouth, lungs, and gut, microbiota surely impact
interoceptive stimuli, conferring potential to alter mental health outcomes through
this mechanism.

A prime example of interoceptive overstimulation from a microbiota is irritable
bowel syndrome (IBS). In the case of dysbiotic microbiota associated with IBS,
increased sensory input from the gut mucosa alters CNS structure. Labus et al. [278]
found altered volume of somatosensory brain regions in participants with IBS. Of
particular interest, they demonstrated that increased volumes of the somatosensory
regions evaluated were observed with higher relative abundances of Clostridia and
lower relative abundances of Bacteroidia, characteristic of the subgroup of IBS
participants who experienced early life trauma. Additionally, Mayer et al. [279]
characterized an increased viscerosensory input to the brain and sensitization of the
dorsal horn of the spinal cord as contributors to altered brain structure in IBS
patients. Together, the microbial alterations associated with dysbiosis contribute to
decreased gray matter volume in the insula and prefrontal cortex and to altered white
matter tracts in the thalamus and basal ganglia [280, 281]. These changes to brain
structure confer increased risk of neurodegeneration and chronic pain, and they are
associated with both childhood and adult onset of MDD [282–284].

Additionally, spinal afferents from mucosal and cutaneous surfaces, such as the
gut, lungs, and skin, regulated by local microbiota, contribute to psychiatric disorder
risk. Evidence suggests [285–288] that activation of spinothalamic and
spinoparabrachial pathways from the skin in humans may have antidepressant
effects [282, 283, 284, 285], but these pathways have not been studied in the context
of the skin microbiota and should be considered a target for future research.

Vagal afferents, which can come from multiple locations including the gut and
lungs, have also been shown to modulate brain structure and psychiatric symptoms
in humans. For example, Tillisch et al. [289] demonstrated that consumption of a
probiotic fermented milk product modifies resting state networks, likely via vagal
afferents signaling to the nucleus tractus solitarius and spinal afferents ascending to
the periaqueductal gray. This resulted in alterations to brain connectivity associated
with improved responses to emotional stimuli and decreased chronic pain signaling,
thus conferring stress resilience and decreased symptoms associated with MDD.
This is complemented by multiple clinical trials demonstrating efficacy and tolera-
bility of transcutaneous vagal stimulation in patients with MDD, as reviewed by
Kong et al. [290].
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Other cranial nerves, such as the trigeminal and olfactory nerves, have addition-
ally been shown to modulate psychiatric outcomes in humans. Notably, trigeminal
nerve stimulation has been demonstrated as a potential treatment modality for
reducing MDD symptoms, and olfactory nerve dysfunction is implicated in MDD
[60, 291, 292]. Given that these nerves innervate the oral and nasal mucosa and can
be stimulated by microbes, it follows that the oral and nasal microbiota have the
potential to modulate mental health outcomes via non-vagal cranial nerves as well.
However, these pathways are understudied but could be a focus of future research
and could be targeted for development of novel alternative treatments for psychiatric
conditions.

Emerging research suggests that metabolites from the gut microbiome can acti-
vate neural circuits in the brain in humans. For example, Osadchiy et al. [293]
showed that gut microbial indole metabolites (produced from tryptophan by genera
such as Clostridium, Burkholderia, Streptomyces, Pseudomonas, and Bacillus),
including indole, indoleacetic acid, and skatole, correlate with activity and connec-
tivity in the extended reward network of the brain in healthy humans. They were
notably associated with activation of and connections in the amygdala-nucleus
accumbens and amygdala-anterior insula circuits, which are known to be altered in
humans with treatment-resistant depression and PTSD [294, 295]. However,
research on the ability of microbiome-derived indole metabolites to act on mono-
amine and reward circuit signaling in the brain is sparse, especially in the context of
psychiatric disorders in humans, and this merits future research.

7.2 Microbiota-Brain Signaling in Humans: Immune-Brain
Interactions

Similar to microbiota-neural signaling, microbiota-immune system signaling has
also been shown to be involved in modulating brain structure and neuropsychiatric
outcomes in humans. Again, immune modulation has been shown to be a contributor
to development of the psychiatric conditions, an outcome of stressors, and a potential
therapeutic for psychiatric conditions.

7.2.1 Cytokines

It has been demonstrated (and extensively covered in the preclinical section of this
chapter) that microbial exposure can alter circulating cytokine concentrations. Mod-
ulation of cytokines is particularly notable, as circulating concentrations of
proinflammatory cytokines are elevated in anxiety disorders, affective disorders,
and PTSD in humans. Hou et al. [296] found that individuals with generalized
anxiety disorder (GAD) have elevated serum concentrations of proinflammatory
cytokines TNF and IFN-γ, as well as decreased IL-10. Additionally, Hou et al.
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[193, 194] found that treatment with SSRIs lowers serum CRP, IL-1α, IL-6, IL-8,
IL-12, and IFN-γ and that elevated baseline CRP and IL-6 are positive predictors of
SSRI treatment responsivity.

Moreover, cytokine concentrations are disrupted in MDD. Zou et al. [297] found
that antidepressant drug-naïve individuals with MDD have elevated serum IL-1β,
IL-10, and TNF compared to nondepressed individuals and that IL-1β and TNF
abundances positively correlate with the severity of depressive symptoms. Alesci
et al. [298] found disruption of the circadian rhythm of plasma IL-6 in MDD
patients. Furthermore, a genetic link can be drawn between proinflammatory cyto-
kines and psychiatric outcomes, as polymorphisms of the IL-1β gene are associated
with symptomatology and responsiveness to antidepressant treatment [299]. Addi-
tionally, immune reactivity is attenuated during MDD treatment, as Kéri et al. [300]
found that decreasing symptoms during cognitive behavioral therapy were associ-
ated with decreased TLR4-dependent priming of peripheral blood mononuclear cells
in depressed patients. On a predictive level, elevated serum concentrations of
proinflammatory cytokines including IL-6 and CRP are predictive of development
of depressive or common mental health symptoms over the course of 12 years in
adults [301, 302] and over the course of 9 years (from age 9 to 18) in children
[303, 304].

Individuals with PTSD also exhibit elevated concentrations of proinflammatory
cytokines. Wang et al. [305] found that individuals with PTSD from a deadly
earthquake event have elevated serum IL-1β and TNF concentrations, along with
elevated total proinflammatory cytokine scores (based on serum concentrations
of IL-1β, IL-2, IL-6, IL-8, IFN-γ, and TNF). Likewise, Lindqvist et al. [306]
found that the proinflammatory cytokine milieu (including IFN-γ, TNF, and the
sum of IL-1β, IL-6, CRP, IFN-γ, and TNF concentrations) is elevated in individuals
with combat-related PTSD independent of depression symptoms and early life
stress. Moreover, Gola et al. [307] demonstrated that ex vivo cultured peripheral
blood mononuclear cells (PBMCs) of study participants with PTSD had increased
spontaneous production of IL-1β, IL-6, and TNF.

Altered cytokine concentrations have been shown to change neurotransmitter
activity in the brain, conferring behavioral deficits and impaired neuroplasticity.
Magnetic resonance spectroscopy showed increased glutamate in the basal ganglia
and dorsal anterior cingulate cortex (dACC) in individuals receiving IFN-α treat-
ment and in depressed individuals; however, these changes are not conserved across
all depressed individuals, likely due to the heterogeneity of the diagnosis [308–
310]. Altered glutamate signaling in individuals diagnosed with MDD is well
supported by preclinical studies and is thought to contribute to excitotoxicity and
decreased BDNF, impairing neuroplasticity and neurogenesis [76]. Additionally,
concentrations of plasma proinflammatory cytokines can be predictive of PTSD
development. Prime examples include Schultebraucks et al. [75] demonstrating that
blood CRP concentration prior to military deployment is one of the top predictors of
PTSD development following deployment and Pervanidou et al. [311] demonstrat-
ing that elevated serum IL-6 concentrations the morning following a motor vehicle
accident are predictive of PTSD development 6 months later. Overall, it is evident
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that cytokine concentrations are altered in anxiety disorders, MDD, and PTSD, that
proinflammatory cytokines can alter neural signaling, that higher concentrations of
proinflammatory cytokines subside during treatment for anxiety disorders and
MDD, and that levels of proinflammatory cytokines are predictive of the develop-
ment of psychiatric symptoms and disorders.

7.2.2 Leukocyte Populations

Similar to cytokine concentrations, populations of circulating leukocytes can be
altered by microbial exposure in humans, as has been thoroughly characterized
through the study of the “farm effect,” reviewed by Vercelli and colleagues
[312, 313]. As can be seen in the meta-analysis by Segerstrom and Miller [314],
acute psychological stressors additionally induce a plethora of changes to immune
cell populations in humans. Many of these changes, such as increased neutrophils,
natural killer cells (along with increased natural killer cell function), and large
granular lymphocytes and T helper cells as a percentage of leukocytes, correlate
with the duration of the acute stressor [314].

To complement knowledge of the impacts of stressors on leukocyte populations
in humans and the associations between leukocyte populations and anxious behav-
iors in stressed animal models, military Veterans with anxiety (according to DSM-III
criteria) have elevated lymphocyte and T cell counts [315]. Additionally, individuals
with panic disorder have increased abundances of natural killer cells, B lympho-
cytes, human leukocyte antigen DR isotype-presenting cells, and B lymphocytes
presenting human leukocyte antigen DR surface markers [316]. Leukocyte
populations are also altered in individuals with MDD. Ekinci and Ekinci [317]
found an elevated neutrophil to lymphocyte ratio in depressed individuals who had
attempted suicide, compared to healthy controls. Likewise, Schleifer et al. [318]
found a decreased number of lymphocytes, along with decreased reactivity of the
lymphocytes, in hospitalized depressed individuals.

Schultebraucks et al. [75] demonstrated that plasma basophil (referred to as large
granular lymphocytes by Segerstrom and Miller) and monocyte abundances prior to
military deployment to Afghanistan are predictive of PTSD development. Addition-
ally, Schultebraucks et al. [75] also found that eicosanoids, which promote neutro-
phil stimulation and chemotaxis, are significant predictors of PTSD development.
Human research, however, has yet to establish a causal link between leukocyte
populations and altered risk for the development of PTSD. Altered leukocyte
populations could co-occur with a past history of psychological trauma and stressors
(as demonstrated by Segerstrom and Miller [314]) modifying neural circuitry inde-
pendent of the immune system. Due to the lack of human studies that assess the
ability of immunoregulatory interventions to prevent development of PTSD in
traumatized or stressed individuals, we must rely partially on preclinical research
for our knowledge in this area. Given the alterations in leukocyte populations
following acute stress and the ability of leukocyte abundances to predict PTSD
development, along with the preclinical evidence that immunoregulation via
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microbial exposure attenuates immune responses to stress and the resulting impaired
stress resilience, it should be noted that leukocyte populations have potential to play
a strong role in modulating neuropsychiatric outcomes. Future research should
investigate the long-term effects of immunoregulatory interventions, such as probi-
otic trials or nature exposure, in preventing the development of psychiatric disorders.

7.2.3 Brain Barriers and Leukocyte Trafficking

The CP, a key point of cellular trafficking into the CNS, has been demonstrated to be
disrupted in individuals with psychiatric disorders. This is relevant because, as
discussed above, a proinflammatory state of the immune system has been shown
to alter BCSFB integrity at the CP in preclinical models. Such proinflammatory
immune states (such as an increased population of Th17 cells that impairs BCSFB
integrity, encouraging lymphocyte trafficking to the brain) can be modulated by
microbial exposure. Additionally, in individuals with poor BCSFB integrity,
microbiota with low diversity and therefore low resistance to pathogen overgrowth
could allow pathogen translocation across epithelial barriers (e.g., the gut mucosa)
and invasion of the CNS, triggering neuroinflammation that impairs stress resilience.

Turner et al. [319] demonstrated a downregulation in mRNA transcripts related to
cytoskeleton and extracellular matrix maintenance in the CP of individuals with
MDD postmortem, suggesting impaired BCSFB function. Lizano et al. [320] found
consistent enlargement of the CP across a spectrum of psychiatric illnesses. These
changes to the CP are complemented by the findings of Schiweck et al. [321], who
found elevated T helper cells, particularly Th17, in peripheral blood mononuclear
cell suspensions from individuals with MDD and high suicide risk, demonstrating
the Th17 bias that has been shown to drive BCSFB permeability in preclinical
studies.

Additionally, BBB dysfunction is associated with increased risk for affective and
stress-related disorders in humans [136, 137]. Reviewed by Patel and Frey [322],
BBB disruption is implicated in multiple clinical studies of psychiatric conditions,
and many metabolites altered by the microbiota can modulate BBB integrity.

Although preclinical studies have firmly established that disruptions to the
BCSFB and BBB integrity allow leukocytes and cytokines to traffic into the CNS,
this has not been studied in vivo in humans. Though the disruptions are associated
with affective and stress-related disorders, no human interventions have investigated
modulation of the BCSFB/BBB to decrease symptoms or risk of anxiety disorders,
MDD, or PTSD. In fact, to date, no human trials have investigated microbiota-
targeted interventions for improving the integrity of the BCSFB and BBB to
modulate mental health outcomes.

Microbiota-mediated modulation of vitamin D, which exerts protective effects on
the BBB in preclinical models, could prove a promising intervention in humans.
Circulating vitamin D concentration is associated with gut microbiota composition
and has been clearly demonstrated to affect microbiome composition via vitamin D
receptors in the human gut [323, 324]. Interestingly, 9 weeks of daily L. reuteri
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NCIMB 30242 supplementation increased circulating vitamin D concentrations,
indicating a bidirectional relationship between the microbiome and vitamin D
[325]. However, the effects of increased vitamin D concentration from probiotic
supplementation on the BBB with implications for mental health outcomes have not
been studied. Overall, studies investigating the microbiota-BBB axis as a modulator
of mental health in humans are sparse and could be a direction for future research.

7.2.4 Probiotic Interventions

To date, many probiotic trials have been carried out to assess impacts on psychiatric
outcomes, often involving strains of Lactobacillus or Bifidobacterium [326]. Based
on the meta-analysis by Amirani et al. [326], these studies typically show decreased
depressive symptoms and decreased markers of systemic inflammation, such as
CRP. Additionally, probiotics have been shown to modulate immune activity and
chemotaxis proteins in humans; a randomized control trial of 12 weeks of supple-
mentation with L. rhamnosus strain GG and Bifidobacterium animalis subsp. lactis
strain Bb12 found decreased acute-phase reactant protein von Willebrand factor
(vWF) and increased abundances of monocyte chemotactic protein-1 (MCP-1; also
known as CCL2) and BDNF, suggesting immunomodulatory properties [327].

Of note, immunomodulatory probiotic trials targeting stress resilience have been
repeatedly shown to be safe, feasible, and tolerable. Probiotic supplementation with
L. reuteri DSM 17938, a gut microbe capable of CLA biosynthesis, was demon-
strated to be a safe, feasible, and potentially effective intervention for military
Veterans with co-occurring PTSD andmild traumatic brain injury [328, 329]. Results
from the pilot study by Brenner et al. [328] showed a trend for decreased CRP, along
with attenuated autonomic nervous system responses to the Trier Social Stress Test
after 8 weeks of supplementation with L. reuteri DSM 17938. Moreover, Browne
et al. [330] showed that 4 weeks of daily supplementation with a multispecies
probiotic with multiple immunomodulatory taxa (B. bifidum W23, Bifidobacterium
lactisW51, B. lactisW52, Lactobacillus acidophilusW7, Lactobacillus brevisW63,
L. casei W56, Lactobacillus salivarius W24, Lactococcus lactis W19, and L. lactis
W58) geared toward reducing maternal anxiety symptoms was safe and tolerable in
pregnant women. Wallace and Milev [331] also demonstrated that 8 weeks of daily
supplementation with Lactobacillus helveticus R0052 and Bifidobacterium longum
R0175 in treatment-naïve individuals with MDD was safe, tolerable, and able to
improve affective symptoms. However, most randomized, controlled clinical trials
targeting affective and stress-related conditions in human participants to date
(including the three above) have only been pilot studies. Though there will be
more pilot studies in the future to determine the safety of new probiotics in humans,
other studies need to build off of existing pilot studies to create clinical guidelines for
microbe-based interventions in humans with psychiatric disorders. Table 2 outlines
the outcomes of probiotic interventions in individuals with GAD, MDD, and PTSD.
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7.3 Neurogenesis and Mitochondrial Function in Humans

As discussed in Sect. 5 of this chapter, microbes can modulate many host signaling
molecules involved in neuroplasticity, such as cytokines, BDNF, and PPARs. This is
particularly relevant for psychiatric disorders in humans, as decreased hippocampal
neuroplasticity (typically evaluated under the assumption that increases in hippo-
campal volume indicate increases in neurogenesis) is generally associated with
anxiety disorders, MDD, and PTSD [339, 340]. Particularly, though decreased
neurogenesis does not have an incredibly strong relationship with the development
of psychiatric disorders, it is strongly associated with the maintenance of psychiatric
disorders in humans [340–342]. To elaborate, the ability to increase hippocampal
volume via neurogenesis appears important in recovery from MDD and PTSD, as
individuals who recover experience increases in hippocampal volume compared to
those who do not recover.

Mitochondrial dysfunction, which can be modulated by the microbiota, is also
seen in multiple psychiatric disorders, including anxiety disorders, MDD, bipolar
disorder, and PTSD [239, 241–243]. Moreover, Shapira-Lichter et al. [343] demon-
strated that IL-6 is responsible for changes in mood and memory following surgery,
suggesting that cytokines, which are altered by microbial exposure, play roles in
mood and memory formation.

However, few studies have investigated the impacts of probiotics on neurogenesis
and brain mitochondrial function in humans in the context of stress-related psychi-
atric disorders. One randomized, double-blinded clinical trial by Haghighat et al.
[344] did show that 12 weeks of consumption of a synbiotic (prebiotic/probiotic
blend) containing fructooligosaccharides, galactooligosaccharides, inulin,
L. acidophilus T16, B. bifidum BIA-6, B. lactis BIA-7, and B. longum BIA-8
decreased anxiety and depressive symptoms and increased BDNF in a subgroup of
individuals with MDD, but further human research is lacking. Overall, neurogenesis
and mitochondrial function have been found to be impaired in individuals with
stress-related psychiatric disorders, but human research on microbiota modulation of
these issues is sparse, and more research is highly warranted.

8 The Case for Non-probiotic Interventions Under the Old
Friends and Biodiversity Hypotheses

Moving toward a larger-scale focus, Lowry et al. [7] outlined a case for reduced
microbial exposure and environmental microbial diversity across modernized soci-
eties contributing to the increased global mental health burden via impaired immu-
noregulation. Throughout history, mammals have been in close contact with dirt and
mud (and thus the microbes contained in them), but urban “concrete jungles” are far
from ideal for growth of the microbes with which we evolved, such as environmental
mycobacteria [345]. However, soil bacteria aren’t the only important microbes.
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Commensal microbes with immunoregulatory properties, such as B. infantis,
B. longus, and B. brevis, have decreased in both urban and wealthy populations
due to behavioral and dietary changes including cesarean section delivery, early-life
antibiotic use, and increased formula feeding, resulting in increased immune-
mediated inflammatory diseases [346–348]. Though probiotic-driven recolonization
with these bacteria is possible under the proper conditions, such as colonization of
B. infantis EVC001 probiotic colonization during breastfeeding as demonstrated by
O’Brien et al. [349], most probiotics do not colonize and should not be treated as a
permanent way to reintroduce bacteria [350]. This is not to say that probiotics are
useless—in fact, as previously outlined, they have demonstrated therapeutic poten-
tial in psychiatric disorders. It is important to note, though, that they do not serve a
permanent role replacing the taxa that have been lost due to urbanization.

Additionally, it should be noted that supplementation with one or even multiple
microbes will not “solve” every host’s dysbiotic microbiota and improve host health.
Consistent with the Anna Karenina principle, which states that while “happy fam-
ilies are all alike,” in this case, perhaps through high diversity and functional
redundancy, “every unhappy family is unhappy in its own way,” there are many
ways that microbial community health can fall apart, resulting in immune
dysregulation and impaired stress resilience [351, 352]. Unfortunately, the multitude
of microbiota changes seen in disease and the difficulty of predicting community
changes from interventions make individualized microbiome-targeted approaches
largely prohibitive at present [353]. Thus, perhaps the best microbial approach to
decrease immune-mediated psychiatric disorders is not through probiotic cocktails
but through using environmental and lifestyle interventions to improve key compo-
nents of microbiota stability, functional diversity, and functional redundancy
[354]. Functional diversity (having microbes that perform many functions) and
redundancy (multiple taxa perform the same function) make communities resilient
to perturbations that would otherwise lead to disruption [354]. Establishing func-
tional diversity and redundancy at an early age through increasing environmental
microbe exposure, social interaction, and dietary diversity could create long-lasting
benefits to microbiome stability with conferred enhancement of psychosocial stress
resilience [355]. Interestingly, Bastiaanssen et al. [356] demonstrated that
microbiome volatility, quantified as the magnitude of changes in community com-
position (beta diversity) over multiple sampling timepoints within the same individ-
ual, is associated with stress and altered behavior in both humans and murine
models. Ten days of chronic social defeat stress increased microbiome volatility in
mice, and in humans, microbiome volatility correlated with perceived stress. Though
no causal link has yet been identified for microbiome volatility impairing psycho-
social stress resilience, it could be hypothesized that stress-induced volatility puts
microbiota at risk of community disruption, increasing likelihood of pathogen
colonization or pathobiont overgrowth, such as the increase in Helicobacter spp.
caused by the CSC paradigm in mice [96]. These changes could confer
immunodysregulation, whereas increased community resilience (through functional
diversity and redundancy) has the ability to prevent this disruption.
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Over time, individuals’ microbiota homogenize with the built environment and
undergo microbial transfer via social interaction, emphasizing the importance of
diverse environmental microbes and socialization [357, 358]. Additionally, nature
exposure can play an important role in microbe-mediated immunoregulation, as
Roslund et al. [359] demonstrated that transferring forest floor soil to a preschool
playground increased microbiome diversity, Treg, and plasma IL-10:IL-17A ratios
(see chapter on “Distortion of the Microbiota of the Natural Environment by Human
Activities” in this volume). Moreover, diversity of plants in the diet is associated
with gut microbiome richness and composition, as demonstrated by the American
Gut Project [360]. Approaches to increase microbial diversity, and therefore stabil-
ity, can result in sustained diverse microbial exposure and prevent pathogen-
mediated immune disruption.

9 Nutritional Psychiatry

Nutritional psychiatry, or the field of modulating psychiatric disorder symptoms
through dietary changes, is accumulating evidence supporting its use in clinical
settings. Evidence supporting the link between diet and mental health has been found
in both epidemiological studies and clinical interventions. Due to the ability of diet
to modulate the gut microbiota and the ability of the gut microbiota to modulate
mental health symptoms, the diet-mental health link may be at least partially
mediated by the microbiome.

9.1 Epidemiological Data Link Poor Diet Quality to Poor
Mental Health

Epidemiological studies have shown associations of anxiety and depression with
proinflammatory diets, such as diets high in added sugar and saturated fats, and some
evidence suggests associations between diet quality and PTSD. Masana et al. [361]
demonstrated an association between high consumption of saturated fats and added
sugars and anxiety symptoms in adults over 50 years of age with no underlying
cardiovascular or chronic diseases. Likewise, Jacka et al. [362] found that low diet
quality (constructed from dietary quantities of fried foods, refined grains, sugary
products, and beer) was associated with low psychological well-being based on
General Health Questionnaire-12 scores across 20- to 93-year-old women. Addi-
tionally, Jacka et al. [362] found that consumption of more traditional diets charac-
terized by high consumption of fruits, vegetables, meats, fish, and whole grains was
associated with lower rates of anxiety and depression. Westover and Marangell
[363] found a strong and significant cross-nation correlation between kilocalories
of sugar consumption per capita per day and annual rates of MDD (with a Pearson
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correlation of 0.948). Moreover, the meta-analysis by Psaltopoulou et al. [364]
showed an association between adherence to a Mediterranean diet (high in fruits,
vegetables, whole grains, nuts, and unsaturated fatty acids) and lower risk of
depression. High adherence to the Mediterranean diet touted a strong association
with lower depression risk independent of age, but moderate adherence was associ-
ated with a decreased depression risk that was slightly attenuated as age increased.
This is also supported by the systematic review and meta-analysis by Lassale et al.
[365], which showed that Mediterranean diet adherence was associated with
decreased risk of depression across four longitudinal studies, that a low Dietary
Inflammatory Index was associated with decreased risk of depression across four
longitudinal studies, and that higher Healthy Eating Index and Alternative Healthy
Eating Index scores were associated with lower risk of depression. Additionally, a
systematic review demonstrated an association between PTSD and lower diet
quality, where individuals with PTSD were more likely to have low diet quality
than individuals without PTSD [366].

However, epidemiological studies do have limitations and cannot be used to
establish causality in the development of psychiatric disorders. This is highlighted
by Kim et al. [367] demonstrating that in 51,965 female participants in the Nurses’
Health Study II PTSD sub-study, after the onset of PTSD, participants had a lower
improvement in dietary quality over a 20-year follow-up period compared to partic-
ipants without PTSD symptoms. These changes to diet quality occurred after the
onset of PTSD, suggesting that behavioral changes from PTSD symptoms, which
overlap with the symptoms of GAD and MDD, may be impacting diet quality.

9.2 Whole Dietary Interventions Alter the Microbiome
and Decrease Depressive Symptoms

Whole dietary patterns are associated with microbiome composition, which can
impact risk for anxiety, depression, and PTSD through mechanisms previously
outlined. Whole dietary interventions can improve symptoms of MDD as well.
However, little clinical research has shown an effect of whole dietary interventions
on anxiety, and few studies have evaluated the effects of whole dietary interventions
on PTSD.

Cotillard et al. [368] found that unsupervised clustering of dietary data revealed
wide-scale dietary patterns associated with large differences in microbiome compo-
sition, highlighting that dietary patterns may be more relevant for microbiome
composition than quantities of individual foods in the diet. For example, following
a flexitarian diet (with a flexible dietary pattern rich in various plants and occasion-
ally including animal products) rather than a standard Western diet (with high
consumption of processed and fried foods along with saturated fats and added
sugars, with low diversity of plants consumed) may have larger effects on
microbiome composition than meeting certain quantities of fiber. Likewise, Johnson
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et al. [369] found that dietary choices, but not the individual quantities of conven-
tional nutrients, were associated with microbiome composition. Additionally, the
American Gut Project identified that individuals who consume more than 30 species
of plants per week have altered gut microbiome composition, along with increased
microbiome diversity and CLA (independent of estimated dietary CLA consump-
tion) compared to those who consume less than 10 unique plant species per week,
highlighting the importance of diversity in dietary patterns [360]. Across multiple
other studies, habitual diet and vegetable intake is associated with gut microbiome
composition, which was found to mediate changes to host leukocyte profiles [370–
372] Thus, whole dietary interventions instead of specific nutrient-based interven-
tions may be an effective microbiome-mediated means of improving mental health
symptoms.

To complement the existing research on whole dietary patterns associating with
microbiome composition, a randomized controlled trial of a 1-year Mediterranean
diet intervention in individuals 65–79 years of age across multiple nations resulted in
modified gut microbiome composition and metabolites such as SCFAs, and it
decreased serum concentrations of CRP and IL-17 [373]. On a shorter scale,
David et al. [374] demonstrated that just 4 days of whole dietary interventions
(plant-based diets or animal-based diets) rapidly and reproducibly altered the gut
microbiome, including its gene expression and production of metabolites such as
SCFAs and the secondary bile acid deoxycholic acid.

In a randomized controlled trial of young adults with depressive symptoms and
poor diet quality, Francis et al. [375] demonstrated that just a 3-week wide-scale
dietary intervention developed by a dietitian (to encourage adherence to a
Mediterranean-style diet; increase dietary consumption of anti-inflammatory dietary
components such as omega-3 fatty acids, turmeric, and cinnamon; and to decrease
consumption of refined carbohydrates, processed meats, and soft drinks) decreased
self-reported depression symptoms compared to controls who did not receive the
intervention. Notably, the decrease in self-reported depression symptoms was
maintained 3 months after the intervention ended, suggesting long-term effects of
short-term, whole dietary interventions. Moreover, the meta-analysis of 16 whole
dietary interventions by Firth et al. [376] found that dietary interventions reduce
depressive symptoms even in individuals who are not clinically depressed. These
effects were conserved across studies that used active and inactive controls, and
females tended to experience stronger improvements in depressive symptoms.
However, no studies to date have evaluated microbiome changes that are associated
with improved depressive symptoms during whole dietary interventions, which
should be considered an important objective for future research.

The meta-analysis by Firth et al. [376] additionally investigated symptoms of
anxiety, and they concluded that there was no significant effect across 11 studies,
potentially due to the heterogeneity of studies and dietary interventions. No studies
to date have evaluated the effects of whole dietary interventions on PTSD symptoms,
suggesting a target for future research.

Overall, dietary patterns alter the microbiome and decrease symptoms of depres-
sion, but existing evidence does not support their efficacy for reducing symptoms of
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anxiety and PTSD. Aside from any potential effects on the microbiome-gut-brain
axis, at the very least, dietary interventions should be investigated for their ability to
improve quality of life via decreasing the risk of chronic diseases such as cardio-
vascular disease in individuals with psychiatric conditions, given that individuals
with psychiatric disorders have poorer diet quality than individuals without psychi-
atric disorders.

10 Clinical Implications and Conclusions

There is a plethora of ways that microbial exposures impact mental health, including
(but not limited to) modulation of the gut mucosa, direct activation of neural
afferents, and modulation of immune signaling, metabolic signaling, blood-brain
barrier integrity, leukocyte trafficking, cytokine production, neuroplasticity, and
neural circuits. These effects can be induced by host exposure to live microorgan-
isms, dead microorganisms, and even metabolites of microorganisms at sites such as
the lungs, mouth, nasal cavity, skin, and digestive tract. The list of mechanisms
linking microbial exposures and neuropsychiatric outcomes is vast, and many
studies to date have demonstrated portions of these mechanisms. The variety of
mechanisms is complemented by a large number of studies showing altered
microbiome-host pathways in individuals with mental health conditions.

Despite the strong promise of this field, due to study limitations evidence does not
currently allow many of these mechanistic pathways to be traced from the point of
microbial exposure to behavioral outcomes. Thus, an emphasis on study design that
will inform mechanisms involved is an important objective for future studies. Given
that the relationship between the microbiota and CNS is bidirectional, researchers
should be cautious about implying causality, and it is essential that they design
studies with the ability to assess vertical mechanisms from microbes to behavior,
rather than a horizontal approach of identifying all altered microbes associated with a
disease or all altered host metabolites associated with microbiome disruption.

Moreover, given the high dimensionality, multicollinearity, and compositionality
of microbiome data, researchers should be cautious performing and interpreting
single taxa hypothesis tests and differential abundance tests, which are often built
upon unverifiable assumptions [377–379]. With these limitations, bias toward pos-
itive result reporting, and the speed at which microbiome data are being generated, it
is likely that microbiota-gut-brain axis research is destined for a similar fate as
nutritional epidemiology, where almost every identified food is associated with
strong alterations to cancer risk in single studies but effect sizes shrink in meta-
analyses [380]. Ratio-based biomarker use (see [379]) is a promising method, but
researchers should also develop a thorough understanding (or work with researchers
with a thorough understanding) of ecological theory to assess subcommunities and
networks of microbes. That being said, network analyses based solely on
co-occurrence pose their own issues, as spurious correlations do not imply relation-
ships between microbes. Thus, multi-omics approaches using tools that incorporate
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previous mechanistic knowledge, such as those outlined in Vehlow et al. [381],
should be used to increase the number of lines of evidence supporting network-based
analyses. Additionally, artificial gastric digestive systems are being developed and
provide a means for larger system microbiome study in vivo. As this synthetic
microbiome research (i.e., in vitro research utilizing artificial digestive systems, for
review see Mabwi et al. [382]) improves, investigating direct relationships between
previously unculturable microbes will improve our working knowledge of microbial
community ecology. Finally, low-hanging fruit for improving study design includes
working with biostatisticians to determine adequate sample size for clinical trials
(despite challenges associated with conducting human subject research) and proper
negative and positive controls.

Notably, many studies, including Wallace and Milev [331], Brenner et al. [328],
and Browne et al. [330], have demonstrated that probiotic interventions targeting
psychiatric outcomes are safe, feasible, and acceptable. Additionally, meta-analyses
have concluded that randomized controlled trials of pre- and probiotic interventions
targeting psychiatric outcomes are generally effective to a degree in patients both
with and without psychiatric conditions [383–388]. However, results are inconsis-
tent, likely due to low power, a lack of standardized methodology, and inconsistent
reporting across studies to such a degree that some meta-analyses have concluded no
effect from probiotic interventions [384, 389]. Some incongruencies include differ-
ential effects of probiotics in healthy individuals versus individuals with a diagnosis
of anxiety disorder, affective disorder, or trauma- and stressor-related disorder, the
ability of studies to improve mental health scores without crossing clinical cutoffs
for diagnosis, and the presence of comorbid conditions (such as IBS) in participants
[387, 388]. Though a great body of research supports their use, the field is not yet at a
point where clinical protocols can be outlined for pre-/probiotic interventions
targeting psychiatric outcomes.

Additionally, though probiotics increase exposure to specific microbes that have
been identified as beneficial, they may not influence all factors that contribute to
healthy microbiota. Alternative options such as nature exposure and dietary inter-
ventions increase microbiome diversity, alter microbiome composition, and are safe
and feasible [359, 360, 373, 390]. Moreover, these changes are associated with
increased microbiome stability and immunoregulation, both of which confer stress
resilience. Furthermore, there are costs (money and time) associated with individual
dietary and probiotic interventions. These costs pose barriers for marginalized
groups, furthering public health disparities in underrepresented communities where
trauma often already runs rampant [391]. Thus, environmental interventions should
be framed as a necessary approach to improving public mental health and stress
resilience; they would particularly benefit historically oppressed communities, who
already experience higher rates of psychiatric conditions, immune dysregulation,
and impaired microbial exposure [7, 391]. On a wide scale, public health interven-
tions aimed at increasing exposure to nature and its abundance of microorganisms
serve a role for improving population-wide stress resilience that consumer-available
probiotics cannot fill.
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The unseen cost of paving paradise is that modern housing, sanitization, and work
environments have alienated a large portion of the population from the native
biodiversity of microorganisms with which they would have historically had sym-
biotic contact. Given the evidence that microbial exposure heavily impacts psychi-
atric disorder risk through neural, immune, and metabolic mechanisms, interventions
are necessary. Promising interventions include pre-/probiotics, dietary interventions,
and nature exposure, and current research supports the strong promise of this field.
However, the field is not yet at a point to establish clinical guidelines, and more
research must be performed with the goal of translating the already outlined mech-
anisms to humans with the aim of prevention or treatment of stress-related psychi-
atric disorders.
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