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Abstract

Aged-related changes in the spine are initiated in 
the discovertebral complex and will extend to the 
adjacent vertebral bone marrow, cervical unco-
vertebral and facet joints and spinal ligaments. 
These occur in response to a wide range of 
insults, repetitive low-level mechanical trauma 
being the most important. Degenerative spinal 
stenosis represents a significant cause of pain and 
disability in the elderly population. Age-related 
changes and disc herniation may narrow the cen-
tral canal and neuroforamina, causing cord com-
pression and myelopathy, cauda equina 
compromise or individual radiculopathy.

Accurate and comprehensive interpretation 
of age-related spinal imaging findings can be 
challenging because often there is poor corre-
lation with symptoms. Imaging may confirm 
the diagnosis of spinal canal stenosis and 
identify exactly the affected levels and ana-
tomic structures involved, therefore enabling 
clinical correlation and treatment planning.

Plain film imaging remains the first line tech-
nique in the evaluation of spinal degenerative 
changes, being useful in assessing the morphol-
ogy and alignment of the vertebrae, including 
the assessment of instability where needed 
using flexion and extension lateral radiographs 
and the degree of disc/facet joint degeneration 
and reactive osteophytosis. Computer tomogra-
phy (CT) imaging provides more detailed infor-
mation on the bony components of the spinal 
degenerative process but suboptimally assesses 
protrusive disc disease. CT myelography is an 
invasive procedure mainly restricted to cases in 
which MR is contraindicated. Magnetic reso-
nance imaging (MRI) is the preferred imaging 
technique for spinal pathologies as it can clearly 
delineate the soft tissue contents of the spinal 
canal and neuroforamina to define both annulo-
protrusive and neural pathology.

Abbreviation

CSF	 Cerebrospinal fluid
CT	 Computed tomography
DCM	 Degenerative cervical myelopathy
DISH	 Diffuse idiopathic skeletal hyperostosis
DTI	 Diffusion tensor imaging
FSU	 Functional spinal unit
LF	 Ligamentum flavum
MR	 Magnetic resonance
PLL	 Posterior longitudinal ligament

1	 �Introduction

The main functions of the osseoligamentous and 
discogenic complexes of the spinal column are to 
give structural support, allow trunk mobility, 
shock absorb compressive axial forces and pro-
tect the neuraxis (Oxland 2016). The cervical 
spine is designed to allow a great range of move-
ment for the cranium, the thoracic spine to aid 
respiration via its costovertebral articulations, 
whereas the lumbar spine is primarily designed 
for weight bearing (Bland and Boushey 1990).

The basic biomechanical element of the spine 
is the functional spinal unit (FSU) composed by 
two contiguous vertebrae, the intervertebral disc, 
the facet joints and the spinal ligaments.

1.1	 �Discovertebral Complex

The discovertebral complex is an amphiarthrosis 
composed by the adjacent vertebral body end-
plates and the intervertebral disc. Its function is 
to transmit mechanical loads to the underlying 
vertebra and facilitate the motion of the spine.

The intervertebral disc is formed by the cen-
tral nucleus pulposus constrained by the periph-
eral anulus fibrosus. The nucleus pulposus, a 
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remnant of the notochord, is a gelatinous struc-
ture rich in proteoglycans and water. Aggrecan is 
the most abundant proteoglycan delivering 
osmotic properties essential to resist compres-
sion. The anulus fibrosus surrounds the nucleus 
pulposus and is composed by collagen fibres 
arranged in concentric rings called lamellae, 
with an inner fibrocartilage portion which blends 
with the nucleus pulposus. The external lamellae 
are connected to the longitudinal ligaments and 
vertebral bodies (Sharpey fibres). The lamellae 
of the anulus fibrosus are thinner posteriorly 
than anteriorly, and this anatomic disposition 
may explain the propensity for posterior disc 
herniation. It provides reinforcement during 
axial loading, bending and torsion, as well as 
maintaining the nucleus pulposus osmotic 
pressure.

The vertebral endplates are composed of a cen-
tral bony disc covered by hyaline cartilage and an 
elevated bony rim called the ring apophysis. The 
cartilaginous endplate is strongly fixed to the inter-
vertebral disc, more loosely bound to the underly-
ing subchondral vertebral bone (Hukins 1988).

The intervertebral discs are the largest non-
vascularised structures in the body, and their 
nutrition is based largely on diffusion across the 
vertebral endplates (Holm et al. 1981).

Only the outer third of the anulus fibrosus is 
innervated (Ashton et al. 1994), more abundantly 
in the posterior and posterolateral margins of the 
intervertebral disc.

Spinal degeneration occurs in response to a 
wide range of insults, mechanical trauma being 
the most important aetiologic factor, including 
chronic overuse and sequelae of vertebral frac-
ture or surgery (Gallucci et  al. 2005; Bogduk 
2012). Other causes include metabolic disease, 
e.g. diabetes mellitus and ochronosis (Aufdermaur 
et al. 1980; Robinson et al. 1998; Millucci et al. 
2017), nutritional and genetic factors.

2	 �Aging 
of the Intervertebral Disc

Increasing age is associated with disc degenera-
tion in the cervical and lumbar spine (Boden 
et al. 1990a, b; Cheung et al. 2009). The process 

of intervertebral disc aging is called interverte-
bral chondrosis, and when affects the adjacent 
vertebral body, osteochondrosis.

Notochordal cells disappear before maturity 
and are substituted by chondrocyte-like cells that 
synthetize a collagen-rich and less hydrated 
matrix (Trout et al. 1982; Hunter et al. 2003). The 
aging cartilaginous endplate sustains calcifica-
tion followed by resorption and bony replace-
ment (Bernick and Caillet 1982), disrupting 
nutrient exchange (Roberts et al. 1997).

A majority of the studies of the aging interver-
tebral disc relate to the lumbar spine, but the mor-
phology and functions of the intervertebral discs 
differ by spinal level (Mercer and Bogduk 1994) 
and so does their response to aging.

The cervical intervertebral discs show pro-
gressive disappearance of the nucleus pulposus, 
being replaced by fibrocartilage and dense fibrous 
tissue, known as “dry” disc (Bland and Boushey 
1990). During early adulthood, the cervical discs 
develop cracks and fissures that are believed to be 
physiological (Bland and Boushey 1990) and 
thought to allow rotational movement (Bogduk 
and Mercer 2000).

The aging lumbar intervertebral discs undergo 
biochemical changes with loss of water and pro-
teoglycans in the nucleus pulposus (Gower and 
Pedrini 1969) accompanied by an increase in col-
lagen within the disc (Olczyk 1992). On MRI, 
these biochemical changes translate into loss of 
intranuclear hyperintensity on T2 WI and subse-
quent loss of disc height. A number of morpho-
logical grading systems to evaluate degeneration 
of cervical (Matsumoto et  al. 1998; Miyazaki 
et al. 2008; Nakashima et al. 2015) and lumbar 
(Pfirrmann et al. 2001; Griffith et al. 2007) inter-
vertebral discs have been proposed.

These changes lead to altered biomechanics of 
the disc resulting in mechanical load transfer into 
the anulus fibrosus (Adams et al. 1996) and facet 
joints. Hence age-related changes comprise disc 
desiccation and fibrosis, disc space loss, diffuse 
annular bulging and fissuring, intradiscal fluid 
and vacuum phenomena (see below), ligamen-
tous hypertrophic changes, bone marrow changes, 
disc herniation, marginal vertebral osteophyte 
formation, malalignment and stenosis (Modic 
and Ross 2007).

Emergent Degenerative and Disc Diseases
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3	 �Anular Fissures

Anular fissures are separations between the anu-
lar fibres or separations of anular fibres from their 
insertions to the vertebrae. According to their ori-
entation, they are classified into concentric, radial 
and transverse fissures. These lesions are present 
in the majority of degenerated discs (Yu et  al. 
1988). T2 WI demonstrates localised high signal 
intensity zones (HIZ) within the anulus (Modic 
et  al. 1988a, b; Carragee et  al. 2000; Schellhas 
et al. 1996) representing fluid and granulation tis-
sue and may show enhancement on post-
gadolinium T1 WI. Its appearances may remain 
stable over years (Munter et al. 2002) and there-
fore they do not denote acute injury.

As disc degeneration evolves, vacuum phe-
nomenon, intradiscal fluid accumulation and 
intradiscal calcification may happen. Vacuum 
phenomenon refers to gas collection, mainly 
nitrogen within clefts in aged discs with intradis-
cal negative pressure.

4	 �Disc Displacement

4.1	 �Disc Bulging

Disc bulging describes the contour of the outer 
anulus extending beyond the edges of the ring 
apophyses symmetrically throughout the disc cir-
cumference, usually by less than 3 mm as seen on 
axial imaging—it is not considered a form of her-
niation. There are two types of disc bulging—dif-
fuse and asymmetric. Asymmetric disc bulging 

describes the contour of the outer anulus extend-
ing beyond the edges of the ring apophyses 
greater than 25% of the disc circumference 
(Fardon et  al. 2014) (Fig. 1). It is believed that 
disc bulging is an asymptomatic lesion (Jensen 
et al. 1994).

4.2	 �Disc Herniation

Disc herniation is defined as a localized or focal 
displacement of disc material beyond the limits 
of the intervertebral disc space (Fardon et  al. 
2014). Acute disc herniation may happen within 
age-related discogenic changes in trauma or 
heavy lifting settings due to acute increase in 
intradiscal pressure (Kushchayev et al. 2018). In 
subacute disc herniations, there is fluctuating dis-
placement of disc material according to intradis-
cal pressure variations with patient position. In 
chronic disc herniations, there is a static displace-
ment of the disc material (Kushchayev et  al. 
2018). There are no specific imaging criteria to 
differentiate between acute, subacute or chronic 
herniations (Fardon et al. 2014).

Based on the shape of the herniated disc mate-
rial, it can be categorised into protrusion, extru-
sion or extrusion with sequestration. Protrusion is 
a focal displacement of disc material involving 
less than 25% of the disc circumference; the 
greatest diameter of the herniated disc is less than 
its base at the site of herniation (Fardon et  al. 
2014). Extrusion is present when at least in one 
plane the maximum diameter of the herniated 
disc is greater than its base. Extrusion with 

ca b

Fig. 1  Schematic drawings of normal-appearing inter-
vertebral disc in axial plane (a), and diffuse (b) and asym-
metric (c) disc bulging. Black line represents the margin 

of the intervertebral disc whereas blue dashed line depicts 
the vertebral ring apophysis

N. Santamaria et al.
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sequestration is present if there is no connection 
of the herniated disc material to the parent disc 
(Fig. 2). The term ‘migration’ implies displace-
ment of disc material away from the site of extru-
sion craniocaudally or mediolaterally. Disc 
herniations may be further categorised by con-
tainment as well as referenced by size, location 
and neural relationships. Those covered by outer 
anulus fibres and/or the posterior longitudinal 
ligament are named contained or subligamentous 
disc herniations. If this covering is absent, they 
are called uncontained or transligamentous.

The location of the herniated disc may be 
expressed using anatomic landmarks in the 
axial (zones) and sagittal (levels) planes (Wiltse 
et  al. 1997). Within the transverse plane, the 
disc is divided into five zones—posterocentral, 
paracentral (subarticular), foraminal (lateral), 
extraforaminal (far lateral) and anterior (Fig. 3). 
The location of the disc herniation foresees 

ca b

fd e

Fig. 2  Schematic drawings of disc herniation classifications. Disc protrusion is demonstrated in axial (a) and sagittal 
(d) planes. Disc extrusion in axial (b) and sagittal (e) planes. Disc sequestration in axial (c) and sagittal (f) planes

Fig. 3  Schematic drawing of a lumbar vertebra showing 
the five anatomic zones of disc herniations—posterocen-
tral (1), subarticular (2), foraminal (3), extraforaminal (4) 
and anterior (5)
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which nerve is most likely to be affected; e.g. 
foraminal and extraforaminal disc herniations 
may impinge the exiting/exited nerve root 
whereas posterocentral and paracentral disc 
herniations may affect the traversing nerve root 
(Fig.  4). On the sagittal plane, the herniated 
disc may be located at the disc level, suprape-
dicular level, pedicular level or infrapedicular 
level (Fig. 5).

According to central canal compromise, the 
herniation may be classified as mild (less than 
one-third reduction of the spinal canal), moderate 
(between one-third and two-thirds reduction of 
the spinal canal) and severe (more than two-
thirds reduction of the spinal canal).

To describe the effect of the disc herniation on 
the lumbar nerves, a grading system of four cat-
egories can be used, ranging from grades 0 to 3 
(Pfirrmann et al. 2004). Grade 0 where there is no 
herniated disc neural contact; grade 1 where there 
is contact between the undisplaced nerve root and 
the herniated disc; grade 2 where there is dorsal 
displacement of the nerve root by the herniated 

disc; grade 3 where the nerve root is compressed 
between the herniated disc and other elements of 
the spinal canal.

To describe the compromise of the exiting 
nerve roots within their neuroforamina, a dichot-
omous system of no root compression and root 
compression (obliteration of the periradicular fat) 
can be used (van Rijn et al. 2005).

Disc herniations may cause neurological, vas-
cular or focal complications. Disc herniation is 
the most common cause of radicular pain (Izzo 
et al. 2015). Neurological complications are sec-
ondary to spinal cord, cauda equina or more 
peripheral nerve root impingement potentially 
warranting surgical intervention. Vascular com-
plications occur after the compression of the spi-
nal arteries and veins. Focal complications refer 
to epidural scarring developed in subacute or 
chronic disc herniations due to ongoing 
inflammation.

Disc herniations can regress spontaneously 
over time (Bozzao et al. 1992; Borota et al. 2008; 
Bush et  al. 1992) with sequestered disc hernia-

a b

Fig. 4  A 34-year-old woman with lower back pain and 
new urinary incontinence. Sagittal midline (a) and axial 
(b) T2 WI demonstrates a L4–5 posterocentral disc extru-
sion (a, white arrow) (b, star), causing left L5 nerve root 

compression (b, white arrowhead). Anular fissures and 
disc bulging at L2–3 and L3–4 are also seen (a, small 
white arrowheads). The patient underwent lumbar L4–5 
discectomy
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tions usually demonstrating greater morphologic 
decrease in size (Ahn et al. 2000). It is hypothe-
sized that there is an absorption process with neo-
vascularisation, inflammatory cell infiltration and 
phagocytosis of the disc herniated material (Ikeda 
et al. 1996).

5	 �Osteophyte Formation

Spinal osteophyte formation (spondylosis defor-
mans) is believed to represent an attempt to 
increase joint surface and reduce the pressure 
within an aging spinal joint (Bogduk 2012). 
Osteophytes arising from the anterior aspect of 
the lumbar vertebral bodies are classified into 
traction and claw osteophytes. Traction osteo-
phytes are more common than claw osteophytes, 
but both may be part of the same process. Traction 
osteophytes are a marker of spinal instability 
(Pate et al. 1988).

Osteophytes arising from the posterior end-
plates of the vertebrae contribute to central canal 
stenosis. Uncovertebral spurs may impinge upon 
the V2 segment of the vertebral artery, radicular 

artery and spinal nerve roots. Osteophytes arising 
from the facet joints are more prominent in the 
lumbar spine, and they may cause compression 
of the lateral recess and neuroforamen.

In addition to impingement of the spinal canal 
and neuroforamina, osteophytes may be com-
press neighbouring structures along the spine, 
causing dysphagia, compression of main bron-
chus and neural or vascular complications 
(Klaassen et  al. 2011; Ullman et  al. 2016). 
Endplate osteophytes and herniated discs have 
been associated with ventral dural sac tears 
resulting in spontaneous intracranial hypotension 
(Thielen et al. 2015; Hoxworth et al. 2012; Eross 
et al. 2002).

6	 �Vertebral Endplate Changes

MRI classification of degenerative changes of the 
vertebral endplates uses a six-stage system from 
normal appearances to extensive changes 
(Rajasekaran et  al. 2008). The initial aging 
changes include endplate thinning and focal 
defect without subchondral bone marrow 

Fig. 5  Schematic drawings of two lumbar vertebrae in coronal and sagittal planes illustrating suprapedicular, pedicle, 
infrapedicle and disc levels
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changes. Associated with Modic endplate 
changes, more extensive endplate damage can be 
seen with less than 25%, up to 50% or complete 
destruction of the endplate surface. Intravertebral 
herniation (Schmorl’s node) occurs when the disc 
herniates through a fracture in the endplate into 
the vertebral body with MRI demonstrating bone 
marrow oedema in the acute setting—such acute 
intravertebral herniation may be an underesti-
mated cause of back pain (Takahashi et al. 1995).

7	 �Degenerative Marrow 
Changes

Three forms of degenerative change involving 
the bone marrow adjacent to the vertebral end-
plates have been described (Modic et al. 1988a, 
b). Type 1 consists of fibrovascular tissue, type 2 
fatty bone marrow and type 3 bone sclerosis. 
Mixed types 1/2 and 2/3 may also be seen.

Modic type 1 changes are strongly associated 
with non-specific low back pain (Modic et  al. 
1988a, b) with characteristic low signal on T1 WI 
and high signal on T2 WI with enhancement on 
postcontrast imaging. These appearances may 
mimic infective spondylodiscitis or rarely malig-
nancy—characteristic morphological changes of 
the disc, endplates and adjacent soft tissues may 
help in differentiating between these conditions.

In Modic type 1 change, the disc is often nor-
mal or exhibits low signal on T2 W2 whereas in 
infectious spondylodiscitis it returns high signal 
(James and Davies 2006; Diehn 2012). Prominent 
destruction of the endplates is often characteristic 
of infective spondylodiscitis (James and Davies 
2006, Diehn 2012). Modic type 1 changes often 
reveal the claw sign on DWI, well-defined usually 
symmetrical high signal areas around the affected 
disc, whereas this sign is absent in infectious 
spondylodiscitis (Patel et al. 2014). The presence 
of perivertebral/epidural soft tissue thickening or 
collection should suggest infective spondylodisci-
tis (James and Davies 2006, Diehn 2012). Modic 
type 2 endplate change correlates with high signal 
on T1 WI and isointense to high signal on T2 WI, 
without enhancement after contrast administra-
tion. Modic type 3 endplate change demonstrates 
low signal on both T1 and T2 WI.

The proposed theories to explain Modic verte-
bral endplate changes are based on both biome-
chanical and biochemical mechanisms. The 
temporal evolution of Modic vertebral endplate 
changes is uncertain, and conversion of type 1 
into type 2 or vice versa in cases of spinal insta-
bility is possible, with mixed type changes prob-
ably representing intermediate stages.

8	 �Facet Joint Age-Related 
Changes

Facet joint osteoarthritis comprises a complex of 
joint space narrowing, erosive subchondral scle-
rosis, cartilage thinning, joint effusion, joint cap-
sule calcification and osteophytic hypertrophy of 
the articular processes with possible vacuum 
joint phenomenon and spondylolisthesis. It is 
associated with ligamentum flavum thickening.

There is a high prevalence of facet joint osteo-
arthritis in the population (Kalichman et  al. 
2008), and as L4–5 is the level of maximum 
mobility, it is the most affected level (Eubanks 
et al. 2007). This may cause stenosis of the cen-
tral spinal canal, lateral recesses and neuroforam-
ina (Modic and Ross 2007).

8.1	 �Facet Joint Syndrome

Facet joint syndrome is defined as unilateral or 
bilateral back pain radiating to one or both but-
tocks, groin and thighs stopping above the knee 
(Manchikanti et al. 2001). The prevalence of facet 
joint pain is unknown, but it has been estimated 
from 27 to 40% in patients with chronic lumbar 
back pain (Datta et  al. 2009). The diagnosis of 
facet joint syndrome based on history and clinical 
examination is difficult (Jackson 1992). The most 
common cause of facet joint pain is osteoarthritis 
(Kalichman et al. 2008); other causes include sep-
tic and inflammatory arthropathies. Pain is thought 
to be caused by inflammation from degeneration 
of the facet joints and adjacent tissues. In the dif-
ferential diagnosis, sciatica and hip or sacroiliac 
pathology need to be considered (Perolat et  al. 
2018). The initial radiographic assessment should 
include AP, lateral and oblique views of the lumbar 
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spine (Varlotta et al. 2011) and may be useful to 
detect facet joint osteoarthritis, spondylolisthesis 
and defects of the pars interarticularis. CT and 
MRI are more efficient in demonstrating facet 
osteoarthritis (Weishaupt et  al. 1999). CT better 
depicts bony anatomy (Varlotta et  al. 2011) but 
MRI is able to show synovitis and oedema of the 
articular processes of the facet joints (D’Aprile 
et al. 2006) (Fig. 6). Facet joint synovitis is dem-
onstrated after the enhancement of the capsule on 
postcontrast imaging.

Bone scans, particularly SPECT-CT, shows 
good agreement in detecting symptomatic facet 
or disc disease prior to surgery or facet injection 
(Malham et al. 2015).

8.2	 �Synovial Cysts of the Facet 
Joints

Synovial cysts are herniations of the synovium 
through the capsule of a degenerated facet joint, 
and they represent the most common cause of 

juxta-articular cysts. Their development is asso-
ciated with degenerative changes of the facet 
joints (Banning et  al. 2001; Hsu et  al. 1995; 
Pirotte et al. 2003), spinal instability and spondy-
lolisthesis (Reust et al. 1988; Parlier-Cuau et al. 
1999).

A majority of the synovial cysts are incidental 
findings (Hemminghytt et  al. 1982). They have 
been reported anywhere in the spine, but there is 
a marked lumbar predominance; the most com-
mon location is L4–5 level, followed by L5-S1 
level. They may be lateral or medial to the facet 
joint, and if there is intracanalicular growth of 
synovial cyst, it may cause compression of neural 
structures leading to back or radicular pain 
(Howington et  al. 1999) and neurological 
deficits.

On imaging, synovial cysts appear as a well-
defined mass adjacent to a degenerated facet 
joint. MRI is the preferred imaging technique and 
typically will demonstrate low signal on T1WI 
and high signal intensity on T2WI.  However, 
cysts with high proteinaceous content fluid as a 

a b
Fig. 6  Facet joint 
syndrome. Parasagittal 
T1-weighted (a) and 
STIR (b) images 
showing oedema within 
the left facet joint and 
surrounding tissues 
(white arrowheads), 
better depicted on STIR 
images
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result of internal debris or haemorrhage may 
exhibit heterogeneously high T1 and low T2 sig-
nal (Khan and Girardi 2006). Rarely they may 
present with acute haemorrhage (Cicuendez et al. 
2010). Peripheral rim enhancement may be seen 
on postcontrast imaging. CT may reveal dense 
rim or calcification of the wall or gas within the 
cyst (Wang et al. 1987) (Fig. 7).

9	 �Posterior Longitudinal 
Ligament and Ligament 
Flavum Changes

The spinal canal ligaments, posterior longitudi-
nal ligament (PLL) and ligamentum flavum (LF) 
fill a small space in the healthy spine. However, 
abnormally thickened spinal ligaments may con-
tribute to decreasing the spinal canal size.

9.1	 �Posterior Longitudinal 
Ligament Changes

PLL ossification may narrow the spinal canal 
anteriorly, particularly in the cervical spine lead-

ing to radiculopathy and myelopathy, more com-
monly affecting men in their 50s and 60s, 
especially of Japanese descent. There are four 
types of PLL ossification—continuous, segmen-
tal, mixed or localised. Multilevel effacement of 
the anterior CSF space and spinal cord compres-
sion may be observed with a low signal intensity 
band between the posterior surface of the verte-
bral bodies and the thecal sac on both T1 and T2 
WI (Luetkehans et al. 1987). Sometimes T1 WI 
demonstrates high or intermediate signal within 
the ossified lesions secondary to its fatty marrow 
content (Yamashita et al. 1990). Thin ossification 
of the PLL is difficult to identify on MRI, and 
plain X-rays and CT are more sensitive (Wong 
et al. 2011). It has been associated with diffuse 
idiopathic skeletal hyperostosis (DISH) and liga-
mentum flavum (LF) calcification (referred to as 
tandem ossification, Guo et al. 2009) and anky-
losing spondylitis.

DISH (also known as Forestier’s disease) is a 
systemic noninflammatory entity causing ossifi-
cation and calcifications of entheses and liga-
ments. It characteristically mainly involves the 
thoracic spine and consists of flowing ossifica-
tion along the anterior or right anterolateral 

a b

Fig. 7  Juxta-articular cysts. Axial T2 WI (a) demon-
strates an epidural cystic lesion (a, white arrow) adjacent 
to an osteoarthritic facet joint. The traversing right nerve 
root (a, white arrowhead) is mildly displaced. CT image 

(b, different patient) demonstrates facet joints osteoarthri-
tis and a synovial cyst arising from the right facet joint 
with a hyperdense rim and a punctate calcification (b, 
black arrow) causing stenosis of the spinal canal
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aspect of at least four contiguous vertebrae in the 
absence of intervertebral disc age–related 
changes and sacroiliitis (Resnick and Niwayama 
1976). The estimated prevalence is roughly 10% 
of those aged 50 years and over with male pre-
dominance and is largely asymptomatic. Spinal 
involvement in DISH may lead to dysphagia, 
dyspnoea, stridor, myelopathy, atlantoaxial pseu-
doarthrosis or subluxation and low-energy verte-
bral fractures (Mader 2002; Westerveld et  al. 
2009; Caron et al. 2010) (Fig. 8).

9.2	 �Ligamentum Flavum 
Hypertrophy and Cysts

Disc degeneration and facet joint arthrosis cause 
mechanical stress and spinal instability that cor-
relate with LF infolding, hypertrophy and fibrosis 
(Fukuyama et  al. 1995; Okuda et  al. 2004). LF 
thickness increases with aging (Okuda et  al. 

2004; Altinkaya et al. 2011; Twomey and Taylor 
1988) and it plays a key role in the development 
of lumbar spinal canal stenosis. The normal LF is 
2–4 mm thick. In the lower lumbar spine, the LF 
is said to be hypertrophic if it is thicker than 
5 mm (Grenier et al. 1987). As the LF is thinnest 
at midline, the reduction of canal size is most 
prominent on parasagittal images. The LF may 
suffer from ossification and calcification, and it 
may rarely lead to myelopathy (Miyasaka et al. 
1983) (Fig. 9).

LF cysts are an uncommon cause of juxta-
articular ganglion cysts (Chimento et  al. 1995) 
arising from an aged LF, mostly within the lum-
bar spine, particularly at L4–5 level. Rarely 
symptomatic, they may represent an unusual 
cause of age-related spinal stenosis. It may be 
difficult to differentiate from synovial facet joint 
cysts on imaging, but there is no communication 
with the facet joint.

10	 �Baastrup’s Disease

Baastrup’s disease (‘kissing spine’) is character-
ized by excessive abnormal contact between 
adjacent spinous processes resulting in their 
enlargement, flattening and sclerosis often with 
interspinous bursitis. Clinically there is focal 
pain alleviated during flexion and worsening dur-
ing extension (Hazlett 1964). Large interspinous 
collections may project into the posterior epi-
dural space (Chen et al. 2004).

11	 �Degenerative Intervertebral 
Instability

Degenerative intervertebral instability is due to 
the combined failure of the intervertebral com-
plex, facet joints and ligaments in maintaining 
the alignment of the involved functional spinal 
unit; and it will extend to adjacent levels, evolv-
ing from a segmental into a regional pathology. 
Patients with degenerative instability present 
with back pain exacerbated by movement, affect-
ing the cervical and lumbar spine (the thoracic 
spine is almost always spared).

Fig. 8  Sagittal midline reformatted CT of an 80-year-old 
man complaining of cervical spine tenderness and confu-
sion after collapse shows DISH (white arrow) and C6 
fracture (white star). PLL ossification is also noted (black 
arrowhead)
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The cascade of degenerative instability is 
classified into dysfunction, instability and 
restabilisation (Kirkaldy-Willis and Farfan 
1982). During the initial dysfunction phase, 
age-related changes of the intervertebral disc 
and facet joints occur. This is followed by the 
instability phase, characterised by abnormal 
motion leading to anterolisthesis or retrolisthe-
sis. On imaging Modic type 1 endplate changes, 
pedicle and isthmus bone marrow oedema, 
traction osteophytes, discal vacuum phenome-
non, facet joint effusion or intraarticular vac-
uum phenomenon (Chaput et  al. 2007), 
synovial cysts, anular fissure, and listhesis can 
be found (Kirkaldy-Willis and Farfan 1982). 
During the final restabilisation phase, there is 
decreasing mobility with rigidity development. 
On imaging marked loss of height of the disc, 
Modic type 3 end plate changes, ‘claw’ osteo-
phytes of the vertebral bodies, ‘wrap around 
bumper’ osteophytes of the facet joints, and 
Baastrup’s disease.

11.1	 �Degenerative 
Spondylolisthesis

Degenerative spondylolisthesis is the displace-
ment of one vertebra to another in the sagittal 
plane, as a result of subluxation of osteoarthritic 
facet joints (Cavanaugh et al. 1996). It is classi-
fied into two categories, dynamic and static, 
according to radiological evidence of instability 
on flexion/extension radiographs (Even et  al. 
2014), the diagnostic technique of choice. 
Ancillary findings of instability are facet joint 
effusion or osteoarthritis, facet synovial cysts and 
intradiscal vacuum phenomenon. Aged-related 
changes of the intervertebral disc can result in 
vertebral displacement in the coronal plane—lat-
eral listhesis—which together with lateral wedg-
ing of the vertebral body and asymmetric facet 
joint osteoarthrosis may cause degenerative 
scoliosis.

Cervical degenerative spondylolisthesis 
most commonly occurs at C3–4 and C4–5 lev-

a b

Fig. 9  Reformatted sagittal CT (a) and T2-weighted (b) 
images showing spinal age-related changes of an elderly 
lady resulting in stenosis of the cervical canal at C5–6 due 

to degenerative listhesis and calcification of the ligamen-
tum flavum (a, white arrowhead). There is subtle degen-
erative cervical myelopathy at C6 level (b, white arrow)
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els and may be more frequent than previously 
recognised (Jiang et  al. 2011). Different clas-
sifications have been proposed to describe cer-
vical degenerative spondylolisthesis. One of 
these systems is based on the degree of disc 
degeneration and spondylosis at adjacent lev-
els, type I or adjacent spondylolisthesis at the 
transition between a more mobile segment to a 
more rigid one and type II or spondylotic spon-
dylolisthesis related to advanced disc degener-
ation (Dean et  al. 2009). Another system 
employs maximum slippage on flexion/exten-
sion radiographs (Kawasaki et al. 2007) classi-
fied as mild (less than 2.0  mm), moderate 
(2.0–3.4  mm) and severe (3.5  mm or more). 
Degenerative retrolisthesis is more commonly 
seen in the cervical and upper lumbar levels 
(Gallucci et al. 2007).

Degenerative lumbar spondylolisthesis 
most often occurs at the L4–5 level (Kalichman 
et  al. 2008), and it is significantly more fre-
quent in women (Kauppila et  al. 1998). 
Lumbar spondylolisthesis is described 
employing the Meyerding classification 
(Meyerding 1932) based on the position of the 
posterior margin of the displaced superior 
vertebral body to the superior endplate of the 
vertebra below which is divided into four 
quarters—grade I, displacement less than 
25%; grade II, 25–50%; grade III, 50–75%; 
grade IV, 75–100%; grade V or spondylopto-
sis. Degenerative spondylolisthesis is usually 
a grade 1. Sagittal planes are useful to assess 
the resultant degree of central canal and neu-
roforaminal stenosis.

12	 �Degenerative Stenosis 
of the Spine

Spinal stenosis is the consequence of congenital 
or acquired narrowing of the spinal canal. The 
former type includes achondroplastic syn-
dromes and developmentally narrowed spinal 
canal. Acquired narrowing of the spine com-
prises degenerative changes, iatrogeny, systemic 
processes and trauma. Mixed stenosis refers to 
degenerative stenosis in patients with develop-

mentally narrowed spinal canal (Gallucci et al. 
2005), and in these cases, the contribution of 
age-related changes on a pre-existing develop-
mentally narrowed canal may cause stenosis at 
an earlier age. The aging spine may be narrowed 
anteriorly by disc bulge or herniation, osteo-
phytes or PLL ossification; posterolaterally by 
facet joint osteoarthritis and ligamentum flavum 
hypertrophy; anterolaterally in the cervical 
spine by uncovertebral joint hypertrophy which 
may compromise the cervical neuroforamina. In 
addition to the combination of these factors, 
degenerative spondylolisthesis may further 
reduce the spinal canal and neuroforaminal 
dimensions.

Stenosis of the spinal canal is a frequent 
observation in asymptomatic population with 
prevalence increasing with age (Boden et  al. 
1990a, b), and a distinction between morphologi-
cal stenosis and clinically stenosis must be drawn. 
The role of imaging techniques is to assist the 
clinician in confirming the diagnosis of spinal 
canal stenosis, identifying the affected levels and 
anatomic structures involved, and to aid in treat-
ment planning.

The symptoms are related to the location of 
stenosis—vague manifestations and ill-defined 
pain are present in central spinal stenosis 
whereas well-defined pain pattern is common 
in neuroforaminal stenosis. Cervicothoracic 
spinal stenosis can lead to spinal cord and 
radicular compression, resulting in pain, 
myelopathy, radiculopathy or myeloradiculop-
athy. Lumbar spinal stenosis causes nerve 
compression, resulting in neurogenic claudica-
tion or radicular leg pain. Neurogenic claudi-
cation refers to pain and weakness in the legs 
and calves when walking and may lessen when 
sitting, bending forward or lying down. Cauda 
equina syndrome is caused by the dysfunction 
of multiple sacral and lumbar nerve roots in the 
lumbar spinal canal with impairment of blad-
der, bowel, or sexual function, and perianal or 
“saddle” numbness. The most common aetiol-
ogy of cauda equina syndrome is spinal canal 
stenosis secondary to large central disc hernia-
tion at the L4/5 and L5/S1 level (Ahn et  al. 
2000) (Fig. 10).
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12.1	 �Degenerative Cervical Spinal 
Canal Stenosis

Degenerative stenosis of the cervical canal is sec-
ondary to disc degeneration, uncovertebral and 
facet joint osteoarthritis, thickening of the liga-
mentum flavum, and ossification of the posterior 
longitudinal ligament.

The normal developmental segmental sagittal 
diameter is the distance from the posterior verte-
bral body to the nearest point of the correspond-
ing spinolaminar line. Individuals with 
developmentally narrowed mid-cervical sagittal 
diameters smaller than 10  mm frequently have 
degenerative cervical myelopathy (DCM) and 
individuals with central canals from 13 to 17 mm 
often have symptomatic degenerative change 
often without myelopathy (Edwards and LaRocca 
1983). In patients with developmentally nar-
rowed cervical canal in addition to the restricted 
available space, there is more segmental mobility 
from C4–5 to C6–7 compared to individuals with 
normal cervical diameters, with more marked 
age-related changes at these levels (Morishita 
et al. 2009).

The pathophysiology of DCM encompasses 
static factors leading to stenosis of the cervical 
canal and dynamic factors causing repetitive cord 
damage due to spinal instability. Mechanical cord 
compression causes direct damage to the cord; 
and in addition to this ischemia, inflammation, 
and apoptosis are secondary causes of DCM 
(Baptiste and Fehlings 2006).

Clinically degenerative changes in the cervi-
cal spine may result in neck pain, myelopathy 
and radiculopathy. DCM is a clinical syndrome 
characterised by gait imbalance, loss of hand 
dexterity and sphincter dysfunction (Tetreault 
et  al. 2015) with a progressive course. It repre-
sents the most common cause of spinal cord dys-
function in adults (Kalsi-Ryan et  al. 2013; 
Fehlings et al. 2013).

Imaging in cervical degenerative stenosis is 
indicated to demonstrate the cause and level of 
stenosis and presence or absence of myelopathy. 
Previously lateral X-ray of the cervical spine has 
been employed to measure the developmental 
segmental sagittal diameter (distance from the 
posterior vertebral body to the nearest point of 
the corresponding spinolaminar line) and the ver-

a bFig. 10  Sagittal midline 
T2- (a) and T1 
(b)-weighted images of 
a young man with cauda 
equina syndrome on 
presentation after lifting 
weights. A L4–5 disc 
extrusion (white 
arrowhead) causing 
severe stenosis of the 
thecal sac (star) is 
demonstrated. Magnetic 
susceptibility artefact 
due to prior L5-S1 
discectomy noted (b, 
white arrow)
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tebral body ratio method or Pavlov ratio (the sag-
ittal diameter of the spinal canal is divided by the 
sagittal diameter of the corresponding vertebral 
body, stenotic canal if ≤0.82) (Pavlov et  al. 
1987). Flexion-extension lateral X-rays are use-
ful in demonstrating spinal instability.

MRI is the gold standard imaging method to 
assess spinal canal stenosis (Al-Mefty et  al. 
1988) and along with CT is the preferred imaging 
method to assess the dimensions of the cervical 
canal. Grading systems to describe central spinal 
canal have been proposed (Kang et  al. 2011). 
Sagittal T1 WI and FSE T2 WI, and axial T2 gra-
dient recalled echo (GRE) sequences are rou-
tinely used. Axial T2 GRE sequences can 
differentiate between disc-osteophyte complex 
and disc herniation and are useful in assessing the 
morphology of the neuroforamina. However, T2 
GRE sequences may overestimate the degree of 
neuroforaminal narrowing because of magnetic 
susceptibility artefacts (Czervionke et al. 1988).

Intramedullary signal changes may reflect a 
wide spectrum of pathological changes from 
reversible oedema to established structural 
changes (Mizuno et  al. 2003; Al-Mefty et  al. 
1988; Ohshio et al. 1993) (Fig. 11). Faint and ill-
defined intramedullary T2 high signal more likely 

reflects reversible oedema. Strong and well-
demarcated intramedullary T2 high signal is sug-
gestive irreversible gliosis or cystic necrotic 
change correlating with hypointensity on T1 
WI. Usually no postcontrast imaging in patients 
with suspected DCM is obtained; however, in a 
minority of patients (7.3%), intramedullary 
enhancement can be seen, and it has been associ-
ated with worse prognosis after decompressive 
surgery. Spinal cord enhancement is located 
between the intervertebral disc at the level of the 
maximal stenosis and the superior half of the 
lower vertebral body. Peripheral or scattered 
enhancing areas are the most prevalent pattern of 
enhancement seen on axial images. After surgery, 
the enhancement of the spinal cord may disap-
pear or decrease (Ozawa et al. 2010). Some cases 
of DCM may be misdiagnosed as inflammatory 
or neoplastic diseases, as MRI demonstrates a 
long fusiform T2-signal abnormality and enlarge-
ment of the spinal cord, with enhancement just 
caudal to the point of maximal narrowing of the 
thecal sac (Flanagan et al. 2014). There is increas-
ing interest in the evaluation of DCM with 
advanced MRI techniques—diffusion tensor 
imaging (DTI), MR spectroscopy and magnetiza-
tion transfer—and the strongest correlation with 

a b

Fig. 11  An 86-year-old woman with acute deterioration, 
subacute urinary retention and high clinical suspicion of 
cervical myelopathy. Age-related changes causing spinal 
canal stenosis and focal high signal of the spinal cord on 

T2 WI (a, arrowhead). Axial GRE T2 images at C4–5 
level (b) shows posterior disc osteophyte complex, 
myelopathy and bilateral neural foraminal stenosis
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symptoms has been found with DTI metric frac-
tional anisotropy (Martin et al. 2015).

CT scanning better depicts bone anatomy, 
osteophytes and ossification of the posterior lon-
gitudinal ligament and flavum ligament. 
Myelogram and CT myelogram are used in 
selected cases when MR is contraindicated and 
the cause or the site of neural impingement is not 
depicted on conventional CT. As well it has an 
important role in showing the site of osteophyte-
related CSF leaks (Yoshida et al. 2014).

12.2	 �Foraminal Stenosis 
in the Cervical Spine

Osteophytes at the uncovertebral joints (joints of 
Lushka) or posterior vertebral body, osteoarthri-
tis of the facet joints or lateral disc herniations 
may lead to neuroforaminal stenosis (Wainner 
and Gill 2000; Yousem et  al. 1991; Abbed and 
Coumans 2007). Uncovertebral joint hypertro-
phic spurs are the most common cause of neuro-
foraminal stenosis usually narrowing the superior 
aspect of the foramen—the nerve root sits in the 
lower aspect of the neuroforamen. Many papers 
have evaluated neuroforaminal stenosis (Park 
et al. 2013; Kim et al. 2015) but there is no uni-
versally accepted classification.

12.3	 �Degenerative Thoracic Spinal 
Canal Stenosis

Degenerative stenosis of the thoracic spine is less 
common than cervical or lumbar stenosis, as the 
thoracic spine is attached to the rib cage, thus 
limiting its motion range (Girard et al. 2004). It 
can occur associated with lumbar canal stenosis 
(Palumbo et al. 2001). Degenerative stenosis and 
disc herniations may impinge upon the spinal 
cord, causing localised back pain, myelopathy 
and sensory level. Symptomatic disc herniations 
are less frequently encountered in the thoracic 
spine than in other spinal levels (Arce and 
Dohrmann 1985). The majority of the thoracic 
herniations requiring surgery are located in the 
lower half of the thoracic spine (Oppenheim et al. 

1993; Stillerman et  al. 1998; Gille et  al. 2006; 
Cornips et al. 2011) and are typically large and 
exhibit calcification (Stillerman et  al. 1998; 
Cornips et al. 2011; Gille et al. 2006) (Fig. 12).

12.4	 �Lumbar Spinal Canal Stenosis

Degenerative stenosis of the lumbar spinal canal 
is secondary to bulging or herniated disc, osteo-
phytes, hypertrophy of the facet joints and flavum 
ligament. In patients with vertebral instability 
and listhesis, the severity of stenosis may increase 
in upright position.

As a general rule, sagittal diameter of the cen-
tral canal less than 12 mm in the lumbar spine is 
considered stenotic (Mamisch et  al. 2012), and 
less than 10 mm is considered absolute stenosis.

Lateral recess stenosis is usually secondary to 
hypertrophy of the superior articular facet, 
although any other degenerative changes may 
coexist. The lateral recess height is the distance 
between the anterior superior articular facet and 
the posterior vertebral body. The cut-off value for 
stenosis of the lateral recess height is 3  mm 
(Mamisch et al. 2012).

Foraminal stenosis is secondary to osteo-
phytes, disc bulging or herniation or 
spondylolisthesis. The cut-off value for stenosis 
of the lumbar neural foramen is 3 mm (Mamisch 
et al. 2012).

The role of imaging in patients with acute 
back pain is to exclude ‘red flag indications’—
suspicion of aortic pathology, neoplasm, infec-
tion, cauda equina syndrome, fracture or motor 
weakness (Lateef and Patel 2009). Imaging stud-
ies are to be considered in those patients who had 
no improvement of acute low back pain or radic-
ulopathy after 4–6  weeks after conservative 
management.

12.5	 �Redundant Nerve Roots 
of the Cauda Equina

Redundant nerve roots of the cauda equina is a 
frequent finding in patients with lumbar spinal 
canal stenosis. Elongated, enlarged and serpigi-
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nous nerve roots within the thecal sac are seen on 
sagittal T2 WI (Fig.  13). Its main differential 
diagnosis on MRI must done with spinal dural 
arteriovenous fistula or spinal extradural arterio-
venous fistulas, in which spinal cord oedema or 
serpentine flow voids on the dorsal surface of the 
spinal cord are seen (Jeng et al. 2015). Patients 
with redundant nerve roots on imaging have more 
severe clinical symptoms than patients without 
this imaging feature (Ono et  al. 2007). After 
decompressive surgery, the outcome of this group 
of patients may also be worse in comparison with 
no redundant nerve roots (Min et al. 2008).

13	 �Epidural Lipomatosis

Epidural lipomatosis is characterized by exces-
sive presence of fat in the spinal epidural space 
reducing the size of the thecal sac. The symptom-
atology depends on the spinal levels affected, with 

spinal cord, conus medullaris or radicular com-
pression. Epidural lipomatosis may aggravate spi-
nal canal narrowing in patients with degenerative 
spinal canal stenosis. It is most commonly found 
in patients on long-term steroid treatment but can 
be found in obese patients, patients with endocri-
nopathies and some idiopathic cases (Fogel et al. 
2005). Thoracic epidural lipomatosis is slightly 
more common than lumbar involvement (Fessler 
et al. 1992; Stern et al. 1994). In patients with tho-
racic epidural lipomatosis, the posterior epidural 
fatty tissue impinges upon the thecal sac, with 
effacement of the peri medullary CSF and flatten-
ing of the spinal cord. At the lumbar spine, the 
excessive fat tissue causes geometric thecal sac 
deformation, with polygonal, stellate or ‘Y’ sign 
(Kuhn et  al. 1994) on axial MR or CT images. 
The cause for this anatomical configuration can 
be explained due to mass effect of the hypertro-
phic epidural fat on the thecal sac and meningo-
vertebral ligaments (Geers et al. 2003).

a b

Fig. 12  An 80-year-old woman with a pacemaker and 
clinical suspicion of thoracic myelopathy. Sagittal midline 
reformatted (a) and axial (b) CT images of the spine 
showing a calcified lesion posterior to T11 vertebral body 
(a, black arrow) and ossification of the ligamentum fla-
vum (a, black star). There is gas within the calcified mate-

rial (b, white arrow) consistent with calcified thoracic disc 
herniation. Multilevel intervertebral vacuum gas phenom-
ena noted, including T10–11 disc. Lumbar degenerative 
listhesis, central canal stenosis and Baastrup’s disease (a, 
white arrowhead) are also seen
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14	 �Conclusion

Spinal degeneration occurs naturally with age 
and is exacerbated in response to different aeti-
ologies, mainly mechanical insults. They are rou-
tinely encountered in radiological examinations 
and are a common cause of pain and disability. 
Back pain is the second most common reason for 
a doctor’s visit, second only to common cold. 
The degenerative process will be initiated in the 
discovertebral complex and will spread to the 
adjacent vertebral bone marrow, cervical unco-
vertebral and facet joints and spinal ligaments. 
Age-related changes and disc herniation may 
cause stenosis of the spinal canal and neural 
foramina with subsequent cord compression and 
myelopathy, cauda equina syndrome or radicu-
lopathy. Other spinal conditions, some age-
related such as facet joint syndrome, Baastrup’s 
disease and others such as DISH and epidural 
lipomatosis have also been described. Imaging 
examinations are to be interpreted cautiously in 

relation with the clinical picture, as often there is 
poor correlation between symptoms and radio-
logical findings. Plain films, CT and MR exams 
are routinely employed in the assessment of these 
patients while more specialised exams like 
myelogram or bone scans are used in selected 
patients. MRI is the preferred imaging technique 
due to its superior soft tissue resolution; it is par-
ticularly useful in confirming suspected disc 
herniations, nerve root entrapment, cord com-
pression and spinal canal stenosis.
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