Chapter 8 ®)
Genomic Designing for Genetic oo
Improvement of Biotic Stress Resistance

in Flax

Frank M. You, Khalid Y. Rashid, and Sylvie Cloutier

Abstract Biotic stresses attributable to various pathogens such as fungi, bacteria
and viruses are external threats to plant growth, development and ultimately produc-
tivity. To date, genetic improvement of varieties continues to be the most powerful,
sustainable and eco-friendly way to overcome these continuously evolving biotic-
based threats in plans. The development of genomewide molecular markers and the
identification of quantitative trait loci and genes which are linked to biotic stress
resistance have the potential to efficiently and genetically enhance the biotic stress
resistance of varieties by marker-assisted selection, genomic selection and preci-
sion breeding via genome editing. Powdery mildew, Fusarium wilt, pasmo, and rust
are major fungal diseases threatening flax production. This chapter briefly reviews
the genomic designing for genetic improvement of biotic stress related traits in
flax, with a particular emphasis on genomic studies of pasmo resistance, including
methodology, outcomes and potential application in breeding.

Keywords Flax - Biotic stress + Genomewide association study (GWAS) -

Genomic selection (GS) - Pasmo resistance * Precision breeding + Quantitative trait
loci (QTLs)

8.1 Introduction

Flax (Linum usitatissimum L.) is a valuable source of linseed and stem fiber. Linseed,
also known as flaxseed is rich in omega(w)-3 essential fatty acids (a-linolenic acid
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or ALA), lignans, and soluble and insoluble fibers, making it one of the most healthy
plant foods (Fofana et al. 2010; Touré and Xueming 2010; Kim and Ilich 2011; Leyva
etal. 2011). Linseed oil also has various industrial uses such as soap, vehicle paints,
linoleum, printing inks, oil clothing, textiles, patent leather, shoe polish and others
(Juita et al. 2012). Flax fiber extracted from the skin of the flax stem is mainly used
for linen, the manufacture of twine and rope and as raw materials for some high
quality paper products (Deyholos 2006).

Flax has been grown worldwide, but primarily in temperate and subtropical
regions, such as Canada (linseed), China (fiber and linseed), USA (linseed), India
(linseed), Russia and Europe (fiber and linseed) and Kazakhstan (linseed) (Foulk et al.
2004; Liu et al. 2011; Worku et al. 2015; You et al. 2016b). In these growing regions,
the biotic stresses primarily involve various diseases produced by fungi, viruses
and mycoplasma like organisms, with fungal diseases including rust (Melampsora
lini), anthracnose (Colletotrichum lini), pasmoor spharella linorium (Septorialini-
cola, Mycosphaerella linicola), wilt (soil-borne fungus Fusarium oxysporum f.sp.
lini), seedling blight and root rot, and stem break and browning (Aureobasidium
pullulan var. lini or Polyspora lini) (seedborne and soil-borne fungi Rhizoctonia
solani, Fusarium spp., or Pythium spp. etc.) being predominant (https://flaxcouncil.
ca/growing-flax/chapters/diseases/). These diseases damage flax plants, affect plant
growth and development, and ultimately reduce seed and fiber yield and quality.
To control these biotic stresses, rotations with other crops such as cereals (spring
and winter wheats, barley and oat), oilseed (canola and mustard) and pulse (peas,
lentils and soybean) crops are an effective agronomic practice in Canada. Seed treat-
ment with suitable fungicides is another useful practice to kill seed borne pathogens
(Bradley et al. 2007).

Incorporating genetic differences to develop agronomic characteristics and add
long-term disease tolerance in flax has traditionally been done by conventional
breeding methods (You et al. 2016b). A successful example is the genetic improve-
ment against flax rust which has the potential to be the most destructive disease
affecting flax. The rapidity with which rust races can evolve represents a challenge
in breeding new resistant varieties. Over the last 70 years, more than 500 flax rust races
have been recorded. Fortunately, flax rust resistance to different races is controlled
by several major genes (Lawrence et al. 1995; Anderson et al. 1997; Ellis et al. 1999;
Dodds et al. 2001a, b; Lawrence et al. 2010) that have been successfully pyramided
in elite varieties by conventional breeding in Canada. Currently, all Canadian modern
cultivars are immune to the locally existing rust races.

However, resistance to other major diseases such as wilt, pasmo, and powdery
mildew is quantitative and controlled mostly by minor-effect polygenes (You et al.
2017a; He et al. 2019b), which poses a challenge to the widely used conventional
breeding methods. To date, all flax cultivars registered in Canada are moderately
resistant to powdery mildew, wilt, and pasmo (You et al. 2016b). The develop-
ment of advanced genomic tools, such as quantitative trait locus (QTL) mapping,
genomewide association study (GWAS) and genomic selection (GS) allows the rapid
identification of QTLs that control complex quantitative traits, contributing to more
efficient offspring selection and assisting candidate gene isolation whose validation
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can now be accurately performed via gene editing (GE), all of which contribute to
accelerating crop genetic improvement.

This chapter briefly introduces genomic design strategies for genetic improve-
ment of biotic stresses with special emphasis on pasmo as an example to describe
methodology, outcomes and potential applications in breeding.

8.2 Genomic Design for Genetic Improvement of Biotic
Stress Traits

With the development of QTL markers associated with biotic stress resistance,
including functional markers, conventional breeding techniques are being revolu-
tionized. Marker-assisted selection (MAS) has been used for traits controlled by
major genes such as rust (Kumar et al. 2011; Miedaner and Korzun 2012). GS has
been used for complex quantitative traits controlled by numerous polygenes such
as resistance to Fusarium wilt, powdery mildew and pasmo (He et al. 2019a), and
precision breeding using GE has been used for improving traits controlled by known
genes (Nekrasov et al. 2017). Therefore, the identification and characterization of
QTLs and causal genes are now an integral part of modern flax breeding programs.

8.2.1 Identification of QTLs

While classical quantitative or statistical genetics is capable of estimate genetic
variances of polygenes for quantitative traits at the phenotypic level (Falconer and
Mackay 1996), combining suitable genomic design with molecular markers provide a
precise way to identify individual polygenic loci or QTLs on chromosomes, estimate
their effects and predict co-located candidate genes related to the traits.

Two types of the QTL mapping strategies have been developed and successfully
used for QTL identification: linkage mapping (LM) and GWAS (Sehgal et al. 2016).
LM use segregating biparental populations, such as F,, backcross (BC), recombinant
inbred line (RIL), and doubled haploid (DH) populations, to create a recombination-
based genetic map using molecular makers that is suitable to find QTLs responsible
for the characteristics that segregate in the population (Price 2006). The statistical
methods and software tools for QTL mapping in biparental populations have been
well developed (Kulwal 2018). The major statistical methods to detect additive, domi-
nant and epistatic QTLs include simple interval mapping (SIM), composite or inclu-
sive composite interval mapping (CIM/ICIM), multiple interval mapping (MIM),
Bayesian interval mapping (BIM), and multiple trait mapping (MTM) (Kulwal 2018).
These methods are implemented in many software tools, such as R/qtl (Arends
et al. 2010), MAPMAKER/QTL (Lander et al. 1987), and QGene (Joechanes and
Nelson 2008). QTLIciMapping may be mostly recommended because it provides
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functions of both construction of genetic maps and QTL mapping for additive,
dominant, and digenic epistasis as well as interaction of QTLs with environments
for various biparental and nested association mapping (NAM) populations (Meng
et al. 2015). Traditional statistical methods primarily detect large-effect QTLs and
have limited power to identify small-effect and linked QTLs. Recently, Zhang et al.
(2020c) proposed a genomewide composite interval mapping (GCIM) for segregating
biparental populations and developed a corresponding R package with a command
line version called QTL.gCIMapping (v3.2) and a graphical user interface version
named QTL.gCIMapping.GUI (v2.0). This method has been effective in identifying
small-effect and associated QTLs in biparental populations (Wang et al. 2016b; Wen
et al. 2019, 2020).

GWAS is based on linkage disequilibrium (LD) between molecular markers and
QTLs in a diverse genetical panel, as opposed to biparental populations, in order to
overcome the limitations of the latter. Many population types can be used for GWAS,
including natural germplasm collections, diversity panels of both genetic germplasm
and breeding lines, and multi-parent breeding populations such as nested association
mapping (NAM) (Yu et al. 2008; Monir and Zhu 2018; Ren et al. 2018) and multi-
parent advanced generation intercross (MAGIC) populations (Mackay and Powell
2007; Cavanagh et al. 2008; Camargo et al. 2018; Ongom and Ejeta 2018).

GWAS advantages over linkage-based QTL mapping include high genetic vari-
ation among individuals, high density molecular markers, and high resolution of
QTLs and causal genes on chromosomes (Goutam et al. 2015; Ogura and Busch
2015). Many statistical models have been developed to identify large- and small-
effect QTLs that can simply be grouped into two categories: single- and multi-locus
models. General Linear Model (GLM) (Price et al. 2006) and Mixed Linear Model
(MLM) (Yu et al. 2006) are two traditional single-locus statistical models imple-
mented in many software tools such as TASSEL (Bradbury et al. 2007) for example.
Single-locus approaches search the genome in one dimension and measure the signif-
icant marker-trait associations one by one. To control for false positives, the stringent
Bonferroni correction for multiple tests (P value divided by the number of markers in
the model) is frequently used, usually resulting in the exclusion of many false nega-
tive loci. This drawback can be particularly acute in crop genetics for traits measured
from field experiments that are often plagued by large inherent experimental errors
(Zhang et al. 2019). Thus, these types of methods have a restricted capability to
detect polygenes with small effects that control the bulk of quantitative traits.

Multi-locus statistical methods that simultaneously test multiple markers include
early proposed models such as Multi-Locus Mixed-Model (MLMM) (Segura et al.
2012), and more recent powerful methods to identify quantitative trait nucleotides
(QTNs) with small effects. The latter include mrMLM (Wang et al. 2016a; Li
et al. 2017), FASTmrMLM (Zhang and Tamba 2018), FASTmrEMMA (Wen et al.
2018), pLARmEB (Zhang et al. 2017a), ISIS EM-BLASSO (Tamba et al. 2017), and
pKWmEB, which have been implemented in the R package “mrMLM?”, thus called
“mrMLM models” (Table 8.1). These multi-locus models use LOD score (>3), rather
than the stringent Bonferroni correction to identify significant QTNs, which substan-
tially increases the statistical power to detect small effect QTNs and reduces Type 1
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Table 8.1 Some single- and multi-locus statistical methods for genomewide association study
(GWAS)

Statistical model Threshold for significant | R package Reference
QTNs

Single-locus models

GLM Bonferroni MVP v1.0.1 Price (2006)

MLM Bonferroni MVP v1.0.1 Yu and Buckler (2006)

GEMMA Bonferroni GEMMA v0.96 | Zhou and Stephens (2012)

Multi-locus models

mrMLM LOD >3 mrMLM v3.0 Wang et al. (2016a)

FASTmrEMMA LOD >3 mrMLM v3.0 Wen et al. (2018)

ISIS EM-BLASSO |LOD >3 mrMLM v3.0 Tamba et al. (2017)

pLARmMEB LOD >3 mrMLM v3.0 Zhang et al. (2017a)

pKWmEB LOD >3 mrMLM v3.0 Ren et al. (2017)

FASTmrMLM LOD >3 mrMLM v3.0 https://cran.r-project.org/
web/packages/mrMLM/
index.html

RTM-GWAS Default® or Bonferroni RTM-GWAS? He et al. (2017)

FarmCPU Bonferroni MVP v1.0.1 Liu et al. (2016)

Bonferroni: P = 0.05 followed by Bonferroni correction for multiple tests. * A standalone software
tool. ® Default threshold for significant QTN is P = 0.05 for preselection of markers using single-
locus model and P = 0.01 for multi-locus and multi-allele models

errors and running time (Wang et al. 2016a; Li et al. 2017; Ren et al. 2017; Tamba
et al. 2017; Zhang et al. 2017a; Wen et al. 2018). FarmCPU, a multi-locus model
implemented in the MVP R package, is an exception because it still relies on the
Bonferroni correction to declare significance of association (Liu et al. 2016).

The haplotype block based multi-locus GWAS method RTM-GWAS (He et al.
2017) is implemented in a standalone software (https://github.com/njau-sri/rtm-
gwas). This two-step method first groups highly correlated SNPs into LD blocks
(called SNPLDBs) to define bi- or multi-allelic haplotypes. This is then followed
by a two-stage association analysis to identify QTNs: (1) pre-screening haplotype
markers using a single-locus model, and (2) identifying significant QTNs using a
multi-locus and multi-allele model with stepwise regression (He et al. 2017).

We have evaluated these single and multi-locus models in several studies for
agronomic traits, abiotic and biotic traits in flax and wheat (He et al. 2019b; Fatima
etal. 2020; Lan et al. 2020; Sertse et al. 2020). Our results demonstrate that the single-
locus models detected mostly large-effect QTNs, while the multi-locus models were
capable of identifying QTNs with smaller effects. Some QTNs were identified by
multiple models, but, generally speaking, the models identified different subsets
of QTNs, indicative of the uniqueness and complementarity of these algorithms
(He et al. 2019b). Therefore, both single and multi-locus models resulted in the
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identification of a more comprehensive set of QTNs that has been shown to increase
prediction ability of GS, and hence is recommended (Lan et al. 2020).

In flax, several biparental populations have been developed to identify QTLs for
biotic stress resistance. For Fusarium wilt resistance, a DH population of 143 lines
was developed from a cross between the resistant variety Linola and the susceptible
Australian flax variety Glenelg, from which two independent and additive genes were
identified under greenhouse and field conditions (Spielmeyer et al. 1998). Using a
RIL population of 160 lines derived from the resistant cultivar Aurore and the suscep-
tible cultivar Oliver, two independent and recessive genes were also identified for
wilt resistance (Edirisinghe 2016). For powdery mildew resistance, three QTLs were
detected from F3 and F4 families derived from an F, population of a cross between the
susceptible cultivar NorMan and the resistant cultivar Linda (Asgarinia et al. 2013).
Additional biparental populations have also been developed for QTL mapping of
flax biotic stress resistance, for example, a Bison/Novelty population of 704 RILs
segregating for Fusarium wilt and a Linda/Norman (LNm) population of 160 RILs
segregating for powdery mildew (unpublished). These populations have been evalu-
ated for field resistance in multiple years and locations and also re-sequenced using
a genotyping-by-sequencing method.

GWAS have been successful in identifying QTLs for agronomic and seed quality
traits in flax (Soto-Cerda et al. 2014a, 2014b; Xie et al. 2017; You et al. 2018b). The
strength and effectiveness of GWAS using the flax core collection (You et al. 2017a)
to detect QTN for biotic stress traits have been shown for pasmo (He et al. 2019b),
powdery mildew (unpublished) and Fusarium wilt (You et al. 2017b).

8.2.2 Candidate Gene Prediction

QTL mapping and GWAS are used to find causal genes underlying traits of interest.
Prediction of candidate genes linked to QTNs first requires genomewide gene scans
along chromosomes to pinpoint the co-located genes. Although QTNs can be located
within coding regions, QTL mapping and GWAS do not provide sufficient resolu-
tion to pin the QTLs to accurate intragenic locations or genetic features responsible
for controlling the traits. Most QTNs are located in intergenic regions. To infer
causal genes linked to a QTN, a logically reasonable method is to check whether
the LD correlation (r?> or D’) between the QTN and the markers on neighboring
genes is sufficiently high (e.g., >0.8) or, alternatively, to partition the whole genome
into haplotype/LD blocks based on the genomewide markers of the diversity panel
(Purcell et al. 2007; He et al. 2017; Kim et al. 2019) and then perform candidate gene
searches within haplotype blocks harboring significant QTNs. An obvious limitation
of this method is that LD blocks or correlations depend on the genetic diversity and
the structure of a population. For example, the size of LD blocks in the diversity
panel for GWAS are much smaller than that of a biparental population because the
former represents a greater number of historical recombination events of the GWAS
panel. Thus, GWAS may find a candidate gene of a higher resolution.
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A straight forward approach for prediction of candidate genes is to find related
genes on the fixed-size flanking regions within a QTL, such as a window of 100-
200 kb downstream and upstream of a QTL (Kumar et al. 2015; He et al. 2019bj;
Sertse et al. 2019; You and Cloutier 2019). The fixed window size may be estimated
through analysis of LD decay curve (You et al. 2018b). However, this method has a
disadvantage in that the fixed block size does not reflect the differential recombination
rates across the genome. Therefore, no matter the methods used to identify candidate
genes, all must be validated through functional genomics.

Resistance gene analogs (RGAs) are candidates of resistance genes in plants. They
can be identified based on known structural features. RGAs can be clustered as either
nucleotide-binding site leucine-rich repeat (NBS-LRR) or transmembrane leucine-
richrepeat (TM-LRR) (Hammond-Kosack and Jones 1997). NBS-LRR can be further
divided into toll/interleukin receptor (TIR)-NBS-LRR (TNL) or non-TNL/coiled
coil-NBS-LRR (CNL) (Hammond-Kosack and Jones 1997). Similarly, TM-LRRs
could be classified into two classes: receptor-like kinases (RLKs) and receptor-like
proteins (RLPs) (Hammond-Kosack and Jones 1997). Genome-wide RGAs can be
identified through software tools (Li et al. 2016) or manually using basic local align-
ment search tool (BLAST) against annotated gene sequences (You et al. 2018a).
Using these approaches, we identified 1327 RGAs in the flax genome which consti-
tute a useful subset to investigate co-localized QTLs associated with biotic stresses
(You et al. 2018a).

8.2.3 Genomic Selection

Genomic selection (GS) is a promising breeding selection method that employs
prediction models constructed using a training population that is both genotyped
with genomewide markers and phenotyped, to predict genomic estimated breeding
values (GEBVs) of genotyped but unphenotyped breeding lines. GS promises to
increase selection accuracy, shorten breeding cycles, and reduce breeding cost. To
date, GS has been implemented in many breeding programs to improve yield, quality,
abiotic and biotic stresses, in a wide-range of crop plants such as wheat (Rutkoski
etal. 2012, 2014, 2015; Daetwyler et al. 2014), rice (Spindel et al. 2015), flax (You
et al. 2016a; He et al. 2019a; Lan et al. 2020), and others. GS is most often used for
progeny selection in a breeding program but it can also be applied to evaluation of
germplasm and parents, and to predict general combining ability (GCA) and specific
combining ability (SCA) of crosses (Bernardo 2015; Lado et al. 2017; Yao et al.
2018). However, the performance of GS depends on (1) choosing a proper statistical
model to construct a prediction model; (2) choosing a proper marker set to construct
the prediction model; and (3) choosing a proper training population closely related
to the test populations.

To evaluate the prediction accuracy or ability of GS models, cross-validation
schemes which randomly split the whole population into several subsets (or folds) are
frequently used, e.g., five subsets would be called five-fold cross-validation scheme.
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For a given random sample, each subset or fold is in turn used for a test data set,
and the remaining four subsets are merged to be a training data set. This process is
iterated multiple times, e.g. 100 to generate a set of random samples. In this case, a
total of 500 permutations of training data sets are generated to construct GS models,
which are then used to predict GEB Vs. Each of these random sample data sets is used
for GS modeling and GEBV prediction. The prediction accuracy or ability is defined
using a Pearson’s correlation between the GEB Vs and the observed phenotypes (You
et al. 2016a).

Various genomic models have been developed to optimize prediction models for
numerous complex traits. These models include classical parametric statistics based
models such as best linear unbiased prediction (RR-BLUP) (Henderson 1975), and
genomic BLUP (GBLUP) (Daetwyler et al. 2014); Bayesian statistics based para-
metric methods such as Bayesian LASSO (BL) (Park and Casella 2008), Bayesian
ridge regression (BRR) (Campos et al. 2009), BayesA, BayesB and BayesC; and
machine learning based non-parametric methods such as support vector machine
(SVM), random forest (RF), radial basis function neural network (RBFNN) and
some deep learning methods (Gonzalez-Camacho et al. 2018; Montesinos-Lopez
et al. 2018; Fukuoka 2019; Lo-Ciganic et al. 2019; Grinberg et al. 2020; Gupta
et al. 2020). These models have been implemented in some popular software tools,
especially in some useful R packages (Table 8.2).

GS parametric statistical models are usually built on additive genetic models and
their prediction abilities differ depending on genetic architecture of the traits that are
examined. However, because some non-additive effects such as dominance and epis-
tasis interactions are common in quantitative traits, these effects are also considered
in some GS models (Varona et al. 2018). Besides genomic prediction for individual
traits, multi-trait models in GS have been evaluated (Covarrubias-Pazaran et al. 2018;
Fernandes et al. 2018; Montesinos-Lopez et al. 2019b). Providing significant genetic
correlation between the target traits, the multi-trait GS models outperform those for
individual traits. Nevertheless, construction of multi-trait models is computation-
intensive, especially for a large molecular marker and phenotypic data set. Recently,
some computation-efficient GS models and R packages have been developed for
modeling of multiple traits (Montesinos-Lopez et al. 2019a).

Although many GS models have been implemented and evaluated in a variety
of crops and traits, RR-BLUP is the most widely used because of its high-caliber
capability (Arruda et al. 2015; Rutkoski et al. 2015; Poland and Rutkoski 2016;
Dong et al. 2018; Liabeuf et al. 2018). For example, RR-BLUP effectively identified
complicated patterns with additive effects and conveyed effective genomic prediction
in wheat disease resistance (Ornella et al. 2012). RR-BLUP also has a distinct benefit
as well in the performance of computing compared with most of the alternative
statistical models (Piepho 2009; Endelman 2011; Arruda et al. 2015; Liabeuf et al.
2018).

GS was initially suggested by Meuwissen et al. (2001). The main idea behind GS
is the use of genomewide markers to train statistical models without prior knowledge
of genes or QTLs associated with the traits. With the development of high-throughput
genotyping technology, high-density genomewide molecular markers can be readily
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Table 8.2 Some popular R packages for modeling of genomic selection

R package

Features

Reference

rrBLUP

A classical and efficient
maximum—Iikelihood algorithm based
model

Endelman (2011)

BGLR

Bayesian regression models; GBLUP;
continuous and categorical traits

Perez and Campos (2014)

BWGS

A pipeline wrapper package integrating
random cross-validation, imputation and
15 statically models

Charmet et al. (2020)

BMTME

Bayesian models for multi-trait and
multi-environment

Montesinos-Lopez et al. (2019a)

sommer

GBLUP, rrBLUP, faster algorithms

Covarrubias-Pazaran (2016)

G2P

A wrapper package integrating 16
statistical models (BayesA, BayesB,
BayesC, BRR, BL, RKHS, RR, rrfBLUP,
SPLS, LASSO, BRNN, Al NR, EM,
EMM and bigRR) and four machine
learning models (RFC, RFR, SVC and
SVR) which are provided by other R
genomic selection packages;
cross-validation

https://github.com/cma2015/G2P

BGGE

Genomic selection for genotype by
environment

Granato et al. (2018)

DeepGP

A deep learning pipeline implementing
deep learning models of multilayer
perceptron networks (MLP) and
Convolutional neural network (CNN)

https://github.com/lauzingaretti/DeepGP

DeepGS

A deep learning model

https://github.com/cma2015/DeepGS

obtained and breeding populations can be genotyped at low costs. Several popular
genotyping methods are available, such as genotyping by sequencing (GBS), array-
based genotyping (e.g., iSelect 90 K array for wheat), and target sequence based
genotyping (Bekele et al. 2020; Zhang et al. 2020a). To date, most GS models
are constructed based on genomewide random markers. Though some studies have
discussed the use of QTLs as markers, only major QTLs were used and the outcome
was only a minor improvement in prediction accuracy. Our recent studies revealed
that combining single and multi-locus GWAS methods can effectively detect both
large and minor effect QTLs that can be used to build GS models, thereby significantly
improving genomic prediction accuracy (He et al. 2019a, b; Lan et al. 2020).
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8.2.4 Genome Editing (GE) and Precision Breeding

GE is a genome-engineering technology that facilitates precise and efficient targeted
modification of genomes to characterize the functions of genes and create novel
genetic resources for the genetic improvement of plants (Langner et al. 2018; Chen
et al. 2019). GE starts with the creation of site-specific double-strand breaks (DSBs)
at the target loci by sequence-specific nucleases. Then the DSBs are repaired by
the plants endogenous DNA repair mechanisms, either error-prone non-homologous
end joining (NHEJ) or homology-dependent recombination (HDR). NHEJ gener-
ates small random insertions, deletions and substitutions, preferably causing a gene
knockout, whereas HDR is able to generate accurate point mutations, deletions, or
gene knock-in especially useful for plant precision breeding but with low editing
frequencies (Langner et al. 2018). Broad-sense genome editing techniques include
reverse genetic tools such as induced mutagenesis (Rowland 1991; Chantreau et al.
2013; Fofana et al. 2017), oligonucleotide directed mutagenesis (Sauer et al. 2016),
epigenome editing (Miglani et al. 2020), transposons, RNA interference (RNA1),
and typical genome editing tools such as zinc-finger nucleases (Bibikova et al. 2002;
Shukla et al. 2009; Osakabe et al. 2010), Transcriptional Activator Like Effector
Nucleases (TALENs) (Malzahn et al. 2017), and Clustered Regularly Interspaced
Short Palindromic Repeat (CRISPR/Cas9) systems (Langner et al. 2018; Chen et al.
2019). In particular, the CRISPR/Cas9 system with CRISPR-associated protein 9
(Cas9) is presently the most commonly used approach for plant genome editing due
to its ease and robustness.

GE has been successfully applied to improve disease resistance against various
plant pathogens, such as in rice (Li et al. 2012), wheat (Wang et al. 2014; Zhang
et al. 2017b), tomato (Nekrasov et al. 2017), citrus (Peng et al. 2017), watermelon
(Zhang et al. 2020b) and virus (Chandrasekaran et al. 2016).

Fusarium wilt (Fusarium oxysporum) and powdery mildew are destructive
diseases in many crops, including flax. Examples of GE applications for these two
diseases are listed (Table 8.3). F. oxysporum is a soil-borne fungus that exists as
pathogenic and non-pathogenic strains (Leslie and Summerell 2006). Three Fusarium
mitogen-activated protein kinase (MAPK) signaling genes (FMKI, HOGI and PBS2)
are associated with plant surface hydrophobicity (sensing) and pathogenesis (Di
Pietro et al. 2001). The RNAi-mediated silencing of these three genes in F. oxys-
porum resulted in decreased mycelial growth on tomato fruits, leading to reduced
pathogenicity compared to the unsilenced fungus (Pareek and Rajam 2017). The
F. oxysporum species complex (FOSC) is an economically important group of
pathogenic filamentous fungi that are able to infect both animals and plants. Wang
et al. (2018) developed an F. oxysporum-optimized Cas9 ribonucleoprotein (RNP)
and a protoplast transformation method to generate a mutant bik/ of BIK1, a gene in
a secondary metabolite biosynthetic cluster, confirming that this polyketide synthase
was involved in the synthesis of the red pigment bikaverin.

Mildew resistance locus O (Mlo) harbors a gene associated with powdery mildew
resistance. Its wild-type alleles confer susceptibility to fungi resulting in the powdery



8 Genomic Designing for Genetic Improvement of Biotic Stress ... 321

Table 8.3 Some applications of genome editing in improving biotic stress resistance

Crop Enhanced GE method Target genes Type of Reference
disease modification
resistance

Tomato | Fusarium wilt | RNAi-mediated | FMKI, HOGI, PBS2 | Silencing Pareek and
against F. silencing Rajam
oxysporum (2017)

Cotton | Fusarium wilt | CRISPR-Cas9 | URAS, URA3, BIKI | Insertion Wang et al.
against F. (2018)
oxysporum f.
sp. vasinfectum

Wheat | Powdery TALEN, TaMLO-Al, Knockout Wang et al.
mildew against | CRISPR-Cas9 | TaMLO-B1 (2014)
Blumeria TaMLO-D1
graminis f. sp.
tritici

Tomato | Powdery CRISPR-Cas9 | Mlo Knockout, Nekrasov
mildew against deletion etal.
0. (2017)
neolycopersici

Tomato | Powdery CRISPR-Cas9 | SIPMR4 Knockout Koseoglou
mildew against (2017)
0.
neolycopersici

Tomato | Powdery RNAi-mediated | SIPMR4 Silencing Huibers
mildew against | silencing et al.
0. (2013)
neolycopersici

mildew disease (Acevedo-Garcia et al. 2014), while its homozygous knockout muta-
tions (mlo) lead to resistance to powdery mildew. Nekrasov et al. (2017) reported a
non-transgenic tomato variety resistant to powdery mildew (Oidium neolycopersici)
using the CRISPR/Cas9 technologyto edit the Mlo gene (SIMlol) which is based
on the Cas9 DNA nuclease guided to a specific DNA target by a single guide-RNA
(sgRNA). PMR4 encodes a callose synthase and its loss-of-function mutants are
resistant to powdery mildew in Arabidopsis and tomato. The CRISPR/Cas9-mediated
knockout mutants of the PMR4 ortholog (SIPMR4) in tomato showed partial resis-
tance against the powdery mildew pathogen O. neolycopersici (Koseoglou 2017).
RNA silencing of SIPMR4 also enhanced the resistance to powdery mildew in tomato
(Huibers et al. 2013).

The new technology represented by the CRISPR/Cas-based GE opens a new erain
plant precision breeding and is expected to drive the second green evolution (Chen
et al. 2019). This technology is considered a novel plant breeding technique that
could provide an alternative to the strict regulations applied to ‘genetically modified
organisms’ (GMOs). Technically, GE can be employed in precision breeding in many
ways (Chen et al. 2019): (1) knocking out genes that confer undesirable traits; (2)
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knock-in and replacement to introduce new favorable alleles without linkage drag
or generating allelic variants that do not exist naturally; (3) nucleotide editing to
alter SNPs in either coding or noncoding regions; (4) fine-tuning gene regulation
by altering gene expression, mRNA processing, and mRNA translation; and (5)
development of high-throughput mutant libraries for functional genomics and genetic
improvement.

In flax, the first application of GE aimed to develop an herbicide tolerant
version of CDC Bethune, the most popular flax variety in Western Canada,
by precisely editing the ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE SYNTHASE
(EPSPS) genes using single-stranded oligonucleotides (ssODNs) and CRISPR/Cas9
(Sauer et al. 2016). Attempts to create a new flax variety tolerant to the herbi-
cide glyphosate are being made by CIBUS (https://www.cibus.com/), a precision
gene-editing company located in San Diego, using their proprietary GE method.

8.3 QTL Identification and Genetic Improvement
for Pasmo Resistance in Flax

Pasmo disease affects flax production worldwide. This fungal disease caused by
Septoria linicola (Speg.) Garassini is widespread through all flax growing regions
and infects flax plants during the entire growth season (Halley et al. 2004). Rainfall
accumulation from June to August increases the incidence and severity of the disease
(Halley et al. 2004). High humidity and high temperature conditions during ripening
mostly promote disease incidence. The major symptoms are brown circular lesions on
leaves and brown or black banding patterns interspersed with green healthy tissues
on stems. Pasmo negatively impacts both seed yield and fiber quality (Hall et al.
2016).

Pasmo resistance is a quantitatively heritable trait. The genetic improvement of
pasmo resistance is hindered by the scarcity of highly resistant germplasm and a poor
understanding of its complex genetic architecture. To date, no flax cultivars are truly
highly resistant to pasmo (Diederichsen et al. 2008). Current flax cultivars devel-
oped in Canada are only moderately resistant and show a narrow genetic base (You
et al. 2016b). To broaden the genetic base of flax cultivars, a core collection of 407
flax accessions has been assembled from a world collection of approximately 3,500
accessions of cultivated flax maintained by Plant Gene Resources of Canada (PGRC)
(Diederichsen et al. 2012; Soto-Cerda et al. 2013). We previously evaluated pasmo
resistance of the flax core collection and found significant variation associated with
the geographical origin (You et al. 2017a). The most pasmo-susceptible accessions
originate from India and Pakistan, whereas the accessions from Europe possessed
the highest levels of resistance. Of the accessions from North America, most were
moderately susceptible and susceptible. Even though CN101536 was evaluated as
the most resistant Canadian linseed breeding line in the flax core collection, it was
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just moderately resistant to pasmo with a rating of 4.4 (You et al. 2017a). There-
fore, pyramiding additional favorable alleles into current elite varieties is considered
an efficient first step to develop highly resistant varieties. The a priori identifica-
tion of QTLs associated with pasmo resistance is not only a prerequisite to perform
such marker-assisted backcrossing but could also be applied to screen advanced flax
breeding germplasm.

8.3.1 Genetic Panel and SNP Set for GWAS

The flax core collection of 407 accessions is a diverse genetic panel. The entire
collection was re-sequenced using GBS methodology and generated 100-bp Illumina
paired-end reads to an average of 17 x genome coverage using the Illumina HiSeq
2000 platform (Illumina Inc., San Diego, USA). The reads were mapped to the
CDC Bethune reference (Wang et al. 2012) using BWA v0.6.1. The mapped reads
were analyzed as described (He et al. 2019b) and 1.7 M SNPs were obtained. These
SNPs were remapped to the chromosome-scale reference (You et al. 2018a; You and
Cloutier 2019). From this unfiltered SNP data set, 258,873 SNPs were extracted using
the following filtering criteria: minor allele frequency (MAF) > 0.05, genotyping
rate > 60% and pairwise correlation coefficients (+?) among neighboring SNPs > 0.8
(International HapMap Consortium et al. 2005; Huang et al. 2010). Imputation was
performed utilizing Beagle v.4.2 with default parameters (Browning and Browning
2007) to predict some of the 14.13% missing SNPs.

8.3.2 Pasmo Field Resistance of the Core Collection

Evaluation of flax accessions to pasmo resistance was carried out in a pasmo nursery
that was established in the 1960s. To assure sufficient pasmo infection in the nursery,
additional pasmo-infested chopped straw was spread from past growth periods as
inoculum between rows when plants were roughly 30-cm tall. In addition, a misting
system was applied to spread water for five minutes every half hour for four weeks,
except on rainy days, to ensure conidia dispersal and disease infection and develop-
ment. The 391 accessions were rated for pasmo resistance in the same nursery for
five consecutive years from 2012 to 2016 at the farm of Agriculture and Agri-Food
Canada, Morden Research and Development Centre, Morden, Manitoba, Canada.
The field trial data was adjusted using a type-2 modified augmented design (MAD2)
(Lin and Poushinsky 1985).

Pasmo severity, rated on a 0-9 scale, was evaluated based on symptoms on leaves
and stems of all plants in a single row plot. Evaluation was conducted at four growth
stages, i.e., the early (P1) and late flowering stages (P2), the green boll stage (P3), and
the early brown boll stage (P4). To group the resistance of accessions, a rating of 0-2
is categorized as resistant (R), 3—4 as moderately resistant (MR), 5-6 as moderately
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Table 8.4 Field evaluation

o . Severity score | Criteria Resistance class
criteria for pasmo severity on
a scale of 0-9 0 No symptom of pasmo R
1 <10% leaf or/and stem R
area affected
2 10-20% leaf or/and stem |R
area affected
3 21-30%Ieaf or/and stem | MR
area affected
4 31-40% leaf or/and stem | MR
area affected
5 41-50% leaf or/and stem | MS
area affected
6 51-60% leaf or/and stem | MS
area affected
7 61-70% leaf or/and stem |S
area affected
8 71-80% leaf or/and stem | S
area affected
9 >80% leaf or/and stem S
area affected

susceptible (MS), and 7-9 as susceptible (S) (Table 8.4). Statistical analyses for
pasmo ratings were previously described in You et al. (2013).

We observed that pasmo infection increased with growth stages and peaked at
the final evaluation stage every year, which followed a nearly normal distribution
(Fig. 8.1) (You et al. 2017a); thus, only the data observed at the final growth stages
(P3 or P4) was used for GWAS. Although significant correlation existed among years,
significant differences between years and significant genotype x year interactions
were also observed, indicating that the individual year data sets could be used for
GWAS to identify environment-specific QTLs.

8.3.3 QTL Identification

A total of 370 accessions from the 391 pasmo evaluated accessions, which have
both quality SNP and phenotype data, were used for GWAS. We employed three
single-locus models (GLM, MLM and GEMMA) and seven multi-locus models (six
implemented in mrMLM and one in FarmCPU) (Table 8.1) to identify QTNs from the
370 accessions with 258,873 SNPs. Six pasmo rating data sets were independently
analyzed for GWAS: five individual year data set and the 5-year average dataset.
Significant QTNs associated with the traits were detected at @ = 0.05 followed by
a Bonferroni correction (1.93 x 107 = 0.05/258,873 SNPs) for GLM, MLM and
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Fig. 8.1 Pearson correlations (upper triangle), scatter plots (lower triangle), and histograms (diag-
onal) between six pasmo severity datasets. Fitted curves are displayed in scatter plots and histograms.
**% represents significance at the <0.001 probability level. Source He et al. (2019a)

FarmCPU, and a log of odds (LOD) score threshold of 3.0 for the remaining models.
The pipeline for QTL identification and annotation is described in Fig. 8.2.

There were a total of 719 QTNs detected using the ten statistical models for the six
pasmo rating datasets. These QTNs were further filtered by removing the QTNs for
which the allele effect was not significant, and then grouped into 500 QTN clusters
or QTLs based on LDs of contiguous markers as shown in Fig. 8.3. When there was
more than one QTN in a cluster, the tag QTN with the largest QTL effect among all
QTNs in the cluster was chosen to represent the QTLs. Hereafter QTN and QTL are
interchangeably used.

Of these 500 QTNs, 14.4% (72) had large QTN effects (R> > 10%), i.e., QTNs
explaining a major portion of the phenotypic variance, while 24% (120) had minor
effect (R*> < 1%). Several notably large-effect QTNs were identified, including
Lul-9232234 (R* = 16.17%), Lu8-23104696 (R*> = 16.53%), Lu9-1896658 (R>
= 17.12%), andLu9-4333365 (R* = 23.39%).

QTN detection power varies depending on statistical models used. Single-locus
models mostly identified large-effect QTLs. Of the three single-locus models, MLM
identified only one large-effect QTN with R? = 15.02%, GEMMA identified six with
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Fig. 8.2 Pipeline of quantitative trait loci (QTLs) identification using genomewide association
study (GWAS) and annotation for flax pasmo resistance. Source Modified from He et al. (2019b)

an average R? of 11.13%, whereas GLM detected 209 QTNs that had an average R? of
5.57% and a range from 0.48 to 15.02%. Multi-locus models identified more small-
effect QTNs than single-locus models. In addition, the six mrMLM models detected
more QTNs with smaller effects (average R* of 2.80%) than FarmCPU (average R?
of 5.09%), because the high stringency of the Bonferroni correction was applied to
FarmCPU.

The stability and reliability of the QTN s identified correlated with the number of
statistical models (NSMs) and the number of pasmo phenotype datasets (NPDs) to
display significant allele effects for the QTNs (Fig. 8.4). A total of 127 QTNs were
identified by two or more statistical models, but most of them (373) were detected by
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QTN identified by ISIS-EM-BLASSO; K: 97 QTNs identified by mrMLM; L: 95 QTN s identified
by pPKWmEB; M: 118 QTNs identified by pPLARmEB

a single model. However, the effect size of QTNs was not necessarily associated with
the NSMs (Fig. 8.4a), though the large-effect QTNs Lu4-14738243, Lu9-4333365
and Lu8-14317356 were all detected by more than five or all six models (Fig. 8.4a).
Nevertheless, the effect size of QTNs significantly correlated with NPDs
(Fig. 8.4b), indicating that QTNs detected by a greater number of data sets were
more reliable and associated with larger effect than QTNs identified in fewer data sets.
Inversely, small-effect QTNs were usually identified in only one or two phenotypic
datasets (or environments), indicative of their environment-specific associations.
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Fig. 8.4 Relationship between R? (phenotypic variance explained by a QTL, %) with the number
of statistical models that detected the QTLs (a) and the number of pasmo phenotypic datasets that
showed significant allele effects for the QTLs (b)

Based on the QTN effect size and the number of pasmo phenotypic datasets that
showed significant QTN effect, two QTN subsets were generated from the 500 QTN
set associated with pasmo resistance in flax. The first subset was defined based on
134 stable QTNs that have significant QTN effects in all six phenotypic datasets
and explained 27.4-60.9% of the total variation. The second subset of 67 QTNs
represented the non-redundant and stable QTN subset, which were identified by the
construction of forward stepwise multiple regression models and retained in at least
three models. This subset contributed 31.5-64.2% of the total variation in the six
phenotypic datasets, a range comparable or moderately larger than that of the 134
QTL subset, indicating that the latter retained redundant markers.

The 500 QTN set appeared to be primarily additive for pasmo resistance. Signifi-
cant negative correlation between the number of favorable alleles (NFAs) and pasmo
ratings were observed (R? = 0.73) (Fig. 8.5), signifying that NFA is a good indicator
or criterion to evaluate pasmo resistance of accessions.

8.3.4 Candidate Genes

To find candidate resistance genes that are co-localized with the detected QTNs, we
first identified 1599 RGAs on the 15 chromosomes (Fig. 8.3, Track B), including
the 1327 initially detected in the flax pseudomolecule (You et al. 2018a). We then
performed genomewide scans along chromosomes to locate all the RGAs within a
200-kb window of the QTN’s flanking regions. A total of 372 RGAs co-locating
with 314 QTNs were thus detected. Among them, Lul-3420323, Lu2-23730537,
Lu8-22525597, Lu9-1067536, Lul0-16054459, Lul2-1874446, Lul3-2227366 and
Lul5-14719354 were located in the following RGAs per se: Lus10042324 (RLK),
Lus10030634 (RLK), Lus10015350 (TNL), Lus10028975 (TM-CC), Lus10022900
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(CNL), Lus10023329 (TN), Lus10026988 (RLK), and Lus10014810 (RLK), respec-
tively (Table 8.5, Fig. 8.3).

We further analyzed the 67 stable and large-effect QTN subset and found that 45
QTNs co-localized with 85 RGAs (Table 8.5), representing all four types, i.e., RLP,
RLK, NBS coding genes, and those encoding transmembrane coiled-coil proteins
(TM-CC) (Sekhwal et al. 2015). RLKs accounted for 36.47% of RGAs, while TNLs
for 22.35% (He et al. 2019b).

Table 8.5 Quantitative trait nucleotides (QTNs) and putative candidate genes associated with
pasmo resistance

Tag QTN Chr | Position | SNP | Favorable | Effect | R? Gene/annotation
allele
Lul1-3420323 1 3420323 |G/A |A 0.28 | 2.89 | Lus10042324/RLK?*
Lul-28707496 |1 28707496 | G/A |G —0.54 | 5.7 | Lusi0006052/RLK,
Lus10006056/RLK,
Lus10006057/RLK,
Lus10006067/RLK
Lu2-23730537 |2 23730537 |A/T |T 0.56 | 1.24 | Lus10030634/RLK?*
Lu3-19643168 |3 19643168 | G/A |G —1.97 | 12.82 | Lus10008221/TNL,
Lus10008222/TNL,
Lus10008230/RLP
Lu3-22688547 |3 22688547 |C/G |C —0.89 | 8.98 | Lus10033291/RLK
Lu4-14576826 |4 14576826 | A/IG |G 042 | 7.99 | Lus10041509/RLK,
Lus10041512/TM-CC
Lu4-14615685 |4 14615685 | A/T |A —0.65 | 10.85 | Lus10041509/RLK,
Lus10041512/TM-CC

(continued)
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Table 8.5 (continued)
Tag QTN Chr | Position | SNP | Favorable | Effect | R? Gene/annotation
allele
Lu4-17204590 |4 17204590 |C/A | A 0.64 | 5.17 | Lus10004040/RLK,
Lus10009107/TNL,
Lus10009108/TX,
Lus10009109/NBS,
Lus10020794/TM-CC
Lu4-17214936 |4 17214936 |G/T |T 0.7 5.81 | Lus10004040/RLK,
Lus10009107/TNL,
Lus10009108/TX,
Lus10009109/NBS,
Lus10020779/CNL,
Lus10020794/TM-CC
Lu5-1554121 5 1554121 | T/A |T —0.67 | 7.75 | Lus10004719/TNL,
Lus10004726/CNL,
Lus10004727/TN
Lu5-1650980 5 1650980 | C/G |C —0.81 | 6.61 | Lus10004719/TNL,
Lus10008486/RLK,
Lus10008491/RLK
Lu5-4604607 5 4604607 |A/G | A —0.56 | 6.58 | Lus10034787/TM-CC,
Lus10034790/RLK,
Lus10034795/RLK
Lu5-13500692 |5 13500692 | G/A |G —1.4 |11.9 |Lusl0029802/RLK,
Lus10029810/TX
Lu6-2081466 2081466 |T/C |C 0.68 | 8.3 |Lusl10017611/RLK
Lu6-14738507 |6 14738507 | C/T |C —2.01 | 13.34 | Lus10014441/RLP
Lu6-15455712 |6 15455712 | A/IG | A —1.42 | 9.63 | Lus10021003/RLK,
Lus10021022/RLK
Lu6-15506450 |6 15506450 | A/G | A —1.81 | 12.62 | Lus10021022/RLK
Lu7-2452981 7 2452981 |C/T |C —0.53 | 6.3 | Lusl0012159/RLK
Lu7-2453965 7 2453965 |T/C |T —0.56 | 7.03 | Lus10012159/RLK
Lu7-2491132 7 2491132 | G/A |G —0.56 | 8.05 | Lus10012159/RLK
Lu8-14317356 |8 14317356 | A/T |A —0.98 | 14.32 | Lus10016620/RLK,
Lus10016612/RLP
Lu8-16366918 |8 16366918 | C/T |C —1.38 | 10.9 | Lus10022340/RLK,
Lus10022345/RLK,
Lus10022351/CNL
Lu8-17270785 |8 17270785 | C/G |C —1.08 | 9.59 | Lus10000591/TM-CC
Lu8-17749357 17749357 |G/A |G —1.23 | 10.16 | Lus10011039/RLP,
Lus10011064/RLP

(continued)
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Table 8.5 (continued)
Tag QTN Chr | Position | SNP | Favorable | Effect | R? Gene/annotation
allele
Lu8-18251174 |8 18251174 |G/A |G —1.45 | 10.38 | Lus10007812/TNL,
Lus10007813/TNL,
Lus10007814/TNL,
Lus10007821/TNL,
Lus10007822/TNL,
Lus10007823/0THER,
Lus10007825/TNL,
Lus10007826/TNL,
Lus10007828/TNL,
Lus10007829/0THER,
Lus10007830/NL,
Lus10007831/TNL,
Lus10007836/TNL,
Lus10007852/TX
Lu8-18447612 |8 18447612 | T/C |T —1.41 | 11.66 | Lus10007790/TNL,
Lus10007795/TM-CC,
Lus10007808/TNL,
Lus10007809/NL,
Lus10007810/TNL,
Lus10007811/TNL,
Lus10007812/TNL,
Lus10007813/TNL,
Lus10008540/RLK
Lu8-22525597 22525597 | T/IC |T -0.3 2.74 | Lus10015350/TNL?
Lu8-23104696 23104696 | C/A |C —1.8 | 16.53 | Lus10018470/TX
Lu8-23142500 |8 23142500 | T/C |T —1.56 | 13.34 | Lus10018459/RLK,
Lus10018470/TX
Lu9-1067536 9 1067536 | A/C |A —0.67 | 5.06 | Lus10028975/TM-CC?
Lu9-1430465 9 1430465 |G/C |G —0.69 | 10.76 | Lus10004333/RLK
Lu9-4333365 9 4333365 |C/A |C —2.22 |23.39 | Lus10040315/TM-CC
Lu9-6270376 9 6270376 | A/G |A —0.81 | 14.34 | Lus10031043/RLK,
Lus10031058/TM-CC
Lu9-19857367 |9 19857367 | G/A |G —1.7 | 12.67 | Lus10011917/RLK
Lul0-8700793 |10 |8700793 |A/G |A —0.53 | 12.1 | Lus10039958/RLP
Lul0-16054459 |10 | 16054459 | A/G |G 031 | 1.2 | Lus10022900/CNL*
Lul1-3330783 |11 |3330783 |A/T |A —1.11 | 7.09 | Lus10042097/TM-CC
Lul2-474480 12 | 474480 C/T |T 0.51 | 8.33 | Lus10020016/CNL
Lul2-1621325 |12 |1621325 |T/A |T -1.9 9.41 | Lus10023391/RLK
Lul2-1874446 |12 |1874446 |G/A |A 0.34 | 43 |Lus10023329/TN?*
Lul2-2719326 |12 |2719326 |C/T |C —0.62 | 9.9 | Lus10006971/TM-CC
Lul2-5795458 |12 |5795458 |A/G |G 0.54 | 9.67 | Lus10037786/TM-CC
Lul2-5819991 |12 |5819991 |C/G |G 035 | 6.9 |Lus10037786/TM-CC

(continued)
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Table 8.5 (continued)

Tag QTN Chr | Position | SNP | Favorable | Effect | R? Gene/annotation
allele
Lul2-16056974 |12 | 16056974 | A/IC |A —1.26 | 11.26 | Lus10043083/RLK
Lul3-1919638 |13 | 1919638 |G/A |G —1.55 | 13.67 | Lus10026845/TX
Lul3-2227366 |13 |2227366 |T/C |C 0.41 | 1.21 | Lus10026988/RLK*
Lul3-14299019 |13 | 14299019 |A/G |G 0.39 | 8.28 | Lus10034637/RLK,
Lus10034642/RLK
Lul5-976617 15 976617 T/A | T —1.65 | 16.08 | Lus10011216/TX,
Lus10011223/RLK,
Lus10011229/TM-CC
Lul5-995626 15 995626 T/A |T —0.44 | 6.27 | Lus10011216/TX,
Lus10011223/RLK,
Lus10011229/TM-CC
Lul5-14719354 |15 | 14719354 | T/C |C 0.33 | 4.07 | Lus10014810/RLK?*

RLK: receptor-like protein kinase; RLP: receptor-like protein; TM-CC: transmembrane coiled-coil
protein; NBS: nucleotide-binding site domain; LRR: leucine-rich repeat; TIR: Toll/interleukin-1
receptor-like domain; TNL: TIR-NBS-LRRs; TN, TIR-NBS; TX, TIR—unknown.? QTNs in genes

Of note, Chr 8 contains an important genomic region associated with pasmo
resistance. A total of 49 QTNs were identified on Chr 8, and nine of them were clas-
sified stable and major QTNs with nearby candidate genes (Table 8.5). QTNs Lu8-
18251174 (R?> = 10.38%) and Lu8-18447612 (R* = 11.66%) both co-located with
TNL gene clusters. Lu8-18251174 had high LD correlations with both Lus10007830
(NL) and Lus10007831 (TNL), while Lu8-18447612 was significantly correlated
with Lus10007790 (TNL) (Fig. 8.6a). In addition, QTN Lu8-22525597 (R*> = 2.74%)
is located within TNL gene Lus/0015350 (Table 8.5 and Fig. 8.6b). Besides TNL
genes in this genomic region, the RLK gene Lus/0016620 was also found to be
significantly correlated with QTN Lu8-14317356 (R? = 14.32%) (Fig. 8.6¢).

Lus10031043 (RLK) and Lus10020016 (CNL) are two candidate genes which
co-locate with the major QTNs Lu9-6270375 and Lul2-474480, respectively.
These two genes are orthologous to Arabidopsis resistance genes AT5G20480.1
and AT3G07040.1 (RPM1), respectively (Xiang et al. 2008; Saijo et al. 2009).
AT5G20480.1 encodes a leucine-rich repeat receptor kinase (LRR-RLK) and behaves
as the receptor for bacterial pathogen-associated molecular patterns (PAMPs) EF-Tu
(EFR). The LRR-RLK EFR can recognize the bacterial epitopes elf18 that is derived
from elongation factor-Tu, and then activates the plant immune response (Saijo et al.
2009). The Pseudomonas syringae effector AvrPto has been shown to bind receptor
kinases, including Arabidopsis LRR-RLK EFR, inhibit plant PAMP-triggered immu-
nity and elicit strong immune responses (Xiang et al. 2008). RPM1 has a tripartite
nucleotide binding site at the N-terminal and a tandem array of leucine-rich repeats
at the C-terminal, and it conveys resistance to P. syringae strains that carry the avir-
ulence genes avrB and avrRpmi. The RPM1 gene confers dual pathogen specificity
that expresses either of the two unrelated P. syringae avirulence genes (Grant et al.
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Fig. 8.6 Linkage
disequilibrium plots for three
QTNss associated with pasmo
resistance (a). QTN
Lu8-18447612 (R? =
11.66%) co-located with the
gene Lus10007790 (TNL);
(b). QTN Lu8-22525597 (R2
= 2.74%) located within the
gene Lus10015350 (TNL);
(¢). QTN Lu8-14317356 (R?
= 14.32%) co-located with
the gene Lus10016620
(RLK). The values in
parentheses after QTN
names are R? values
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1995). Therefore, Lus 10031043 and Lus 10020016 are two additional candidate genes
deserving further functional analyses.

8.3.5 Genomic Evaluation of the Resistance Germplasm

Flax has two morphotypes: seed and fiber. Pasmo resistance correlates with these
morphotypes. Significant correlations between morphotype and pasmo ratings (r
= 0.49, p < 0.00001) as well as between morphotype and NFAs (r = — 0.65,
p < 0.00001) were observed in the diversity panel which comprised 80 fiber and
290 linseed accessions (Fig. 8.7). Fiber accessions generally appeared to be more
resistant to pasmo than linseed accessions. This is likely an indication that fiber flax
breeders have expended greater effort into breeding for pasmo resistance than linseed
breeders because fiber flax quality can be greatly affected by high pasmo incidence.
Aside from artificial selection by breeders, long term natural selection and probably
independent domestication of the fiber flax may also account for the differential in
pasmo resistance between the morphotypes (Fu et al. 2012).

A variety of pasmo resistance was observed in the core collection (You et al.
2017a), allowing further investigations on a genomic scale. Making use of the QTN
information of the genotypes, we identified 14 accessions with resistant phenotypes
and high numbers of favorable alleles (Table 8.6). For instance, the fiber accession
CN19001 from the Netherlands and the linseed accession CN101367from Georgia,
have average pasmo ratings of 2.0 and 1.8 and 354 and 351 favorable alleles, respec-
tively. Netherlands’s accessions CN40081 and CN33390 had the most favorable
alleles but slightly higher pasmo ratings than the previous two. It is also notable
that ten of the 14 resistant accessions are fibers. These fiber and linseed accessions
are good parents to further improve flax resistance to pasmo through direct cross
breeding through the pyramiding of favorable alleles into elite varieties.

=50 Xx=66 X =304 X =145
o — : 3 4 — :
wi
@ - L o
E wn
5 ™} -
2 e A L1 5
o E o W, o
o © a 8 ° =
£ ra £y *
© v - 8 °© 8 :
a ; =] C ]
S . H e cm—crae
£ o -
o < R T
T T - 5 T
Fibre Linseed Fibre Linseed

Fig. 8.7 Boxplots of flax morphotypes in terms of flax pasmo ratings and number of favorable
alleles in the accessions. Source Modified from He et al. (2019b)
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Table 8.6 Genetic resources resistant to pasmo disease identified by genomic and phenotypic
evaluation

Accession Country Morphotype Pasmo rating No. of favorable alleles®
CN40081 Netherlands Fiber 34 382
CN33390 Netherlands Fiber 3 381
CN101053 China Fiber 3 359
CN100929 Netherlands Fiber 2.6 356
CN18982 France Fiber 3.2 356
CN19001 Netherlands Fiber 2 354
CN101367 Georgia Linseed 1.8 351
CN18983 Netherlands Fiber 2.8 350
CN18988 France Fiber 32 346
CN101298 Russian Linseed 2.8 342
CN100939 Russian Linseed 24 328
CN101419 China Fiber 2.8 328
CN101230 China Fiber 3 310
CN101299 Russian Linseed 3 297
2 Out of 500 QTNs

8.3.6 Evaluation of Genomic Selection (GS)

For complex quantitatively heritable traits, the major purpose of genomewide QTL
identification is to provide molecular markers for breeding selection. Some large-
effect QTLs such as Lu9-4333365, Lu4-14213405, Lu5-14838893, Lu4-13813266
and Lu9-1896658, have R? values exceeding 17%, which could be useful for MAS,
but most of the QTNs identified have small allele effects, which would not be consid-
ered for MAS but could be valuable for GS. To explore the values of these QTNs in
GS, we first assessed the efficiency of various GS models to ascertain the best model
for GS of pasmo resistance. The GS models RR-BLUP, GBLUP, BL, BRR, BayesA,
BayesB, BayesC, RFR, RKHS and SVR were evaluated using the 500 QTN subset
as marker input and the five-year average pasmo rating dataset as the phenotype. The
five-fold cross-validation results revealed the same prediction ability () of 0.92 for
9/10 models, exception being RFR which had a prediction ability of 0.79 (Fig. 8.8).

We further evaluated GS models with different marker sets to determine the best
marker set in the development of GS model for pasmo resistance. Six different marker
sets were tested with the six pasmo phenotype datasets using the random five-fold
cross-validation scheme. The marker sets were three SNPdata sets (SNP-66723, SNP-
9415 and SNP-3057) and three QTL data sets (QTL-500, QTL-134 and QTL-67).
SNP-66723 was selected from the 258,873 SNP data set by a Pearson’s x 2 test with
Yate’s continuity correction to identify all SNPs related to pasmo ratings. SNP-9415
and SNP-3057 are two subsets of SNP-65723 that were selected with probability
value thresholds of 0.01 and 0.001, respectively. QTL-67, QTL-134 and QTL-500
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Fig. 8.8 Comparison of prediction ability (r) of ten genomic selection (GS) models. The GWAS-
derived 500 QTN subset (QTL-500) with the five-year average pasmo rating dataset were used for
GS model construction

represent the 500 GWAS-derived unique QTLs, the 134 statistically stable QTLs
and 67 non-redundant and stable QTL subsets, respectively. QTL-67 is contained in
QTL-134, which is in turn contained in QTL-500. RR-BLUP was used to construct
the GS models. Results showed that the GS models with QTL markers consistently
outperformed those with SNP markers for all pasmo phenotypic datasets (Fig. 8.9),
similarly to our previous results on seven breeding target traits (Lan et al. 2020).

In the three QTL marker based GS models, GS models built from QTL-500
significantly outperformed those from QTL-134 and QTL-67, indicating that at least
a portion of the minor-effect QTNs contribute positively to the development of the
GS models. The similar prediction ability of the two smaller marker sets was antic-
ipated since QTL-67 is fundamentally a non-redundant set of QTL-134. These GS
prediction results indirectly serve as a validation of the QTL identified via GWAS. In
addition, a prediction ability as high as 0.92, seen in the GS models clearly illustrates
the effectiveness of genomic prediction for pasmo resistance by employing a compre-
hensive range of stable or environment-specific QTLs with large- and small-effect
QTLs.

8.4 Future Perspectives

Resistance to diseases such as pasmo, Fusarium wilt and powdery mildew is a
complex quantitative trait in flax. The conventional approach to flax genetic improve-
ment still involves cross breeding through hybridization of two parents followed
by offspring segregation and phenotypic selection. In such conventional approach,
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Fig. 8.9 Comparison of prediction ability (r) of RR-BLUP prediction models constructed using
six different marker sets and the five-year average pasmo rating dataset using a random five-fold
cross-validation scheme. SNP-66723 is a SNP subset selected from 258,873 SNPs by a Pearson’s
x2 test with Yate’s continuity correction to identify all SNPs statistically correlated with pasmo
ratings. SNP-9415 and SNP-3057 are two subsets of SNP-65723 that were selected at different
probability thresholds. QTL-67, QTL-134 and QTL-500 represent the 500 unique QTL, the 135
stable QTL and the 67 non-redundant QTL subsets identified by GWAS, respectively. QTL-67 is
comprised within QTL-134, which is in turn comprised within QTL-500

the quantitative inheritance nature of these disease resistances impedes the rapid
pyramiding of desirable or resistant alleles/genes from donor parents into a single
plant, resulting in slow advance in resistance breeding for these biotic stresses in
flax. To date, the majority of registered flax varieties are moderately resistant to
pasmo, Fusarium wilt and powdery mildew. However, large-scale QTL identifica-
tion through linkage-based QTL mapping and GWAS has already identified a large
number of QTLs associated with biotic stresses in flax, including large-and minor
effect QTLs. QTL markers identified from the flax core collection offer the potential
to enhance selection accuracy and efficiency of cross breeding through GS. In addi-
tion, QTL markers of parents can be combined with genetic simulation to generate
virtual crosses and their offspring populations (Khan et al. 2022). Then GS can be
applied to predict GCA of parents and SCA of the virtual crosses, which facilitate
parent selection and cross making to make best crosses.

The “breeding by design” was proposed by Peleman and Voort (2003), aiming to
gather favorable alleles or QTLs associated with breeding target traits from poten-
tial genetic resources to develop superior varieties. We have identified an array of
QTN related to the traits of interest, including biotic stresses, and deciphered the
distribution of the favorable alleles on the genetic resources. We also found that the
identified QTNs were primarily additive. Therefore, this offers a genomic approach
to evaluate all genetic resources based on their genomewide QTN content. Further-
more, based on complementarity of favorable alleles among parents, suitable parents
can be selected to “design” potential superior varieties. Such varieties may contain
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all favorable alleles in one variety and can be implemented through conventional
breeding, MAS and GS.

Some candidate genes have been predicted for some of the significant QTNss,
but validation and characterization of these candidate genes via functional genomic
approaches remain challenging. Once their functions are validated and functional
markers are developed, precision breeding through gene editing technologies is
expected to be a revolutionary strategy towards rapid and accurate pyramiding of
multiple resistant genes into elite flax varieties. The impending first successful appli-
cation of GE in flax has the potential to accelerate the deployment of precision
breeding technologies in flax genetic improvement.
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