
Chapter 5
Concurrent Open Shops

5.1 Introduction

The concurrent open shop scheduling permits processing more than one operation
of the same job at a time, which is the main difference from traditional open
shop scheduling. We use the abbreviation cncnt of the word concurrent to denote
concurrent open shop scheduling in the extended Graham et al. notation [14]. Thus
the problem O|cncnt|∑Ci denotes the problem of minimization total completion
time for concurrent open shops. Ahmadi et al. [1], Leung et al. [19], Wagneur
and Sriskandarajah [26], and Cheng et al. [5] provide a broad list of real-life
applications of the concurrent open shop scheduling. We list some of them below:

• Product design. A product design team whose members independently design
modules for different products. A product design is only completed once all its
modules have been designed, Ahmadi et al. [1];

• Audit. A team of accountants auditing various parts of different companies. The
audited company receives a final report once all accountants completed their
audit, Ahmadi et al. [1];

• Assembly. Assembly of a final product often needs to wait until all parts for the
assembly are available, Ahmadi et al. [1] and Framinan et al. [11];

• Lenses production. Each type of plastic lenses is produced on a dedicated
production line. The manufacturer produces lenses based on confirmed customer
orders. Each order consists of different quantities of various lens types (order
parts). After completion on different production lines the components of a
customer order are packaged and shipped to the customer as a complete order,
Ahmadi et al. [1];

• A car repair shop, Leung et al. [19];
• A paper converting facility. The facility produces paper products of different

types and sizes from large rolls of paper. Any product is produced on a dedicated
machine. Orders are received from customers; each order specifies quantities
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of different paper products. The customer receives its entire order in a single
shipment in order to reduce transportation and order handling costs, Leung et al.
[19];

• Airplane maintenance, Wagneur and Sriskandarajah [26].

This broad range of applications has been almost matched by a long list of the
terms used for concurrent open shops starting with the Coordinated Scheduling of
Customer Orders Problem or the scheduling of customer orders used by Ahmadi
and Bagchi [2], see also Ahmadi et al. [1], open shops with job overlaps used by
Wagneur and Sriskandarajah [26], concurrent open shop used by Roemer [24], or
the order scheduling used by Framinan and Perez-Gonzalez [10]. Roemer [24]
points out that the literature on the problem of scheduling customer orders and
on concurrent open shops evolved in parallel and in isolation from one another
which may have lead to some redundancy of research efforts, see Roemer [24]
for a detailed account of those concurrent research efforts. This book uses the term
concurrent open shops which seems to best reflect the concept which is not limited
to customer orders and manufacturing only.

In all those real-life situations described above the customer preference for the
objective function seems to prevail. A customer prefers to receive a complete order
fast, thus the minimization of flow time or equivalently the minimization of total
completion time, may be preferred over other objectives. At the same time it may not
be of much importance to the customer when exactly particular components of its
order are completed as long as the complete order is received fast. Similarly, a client
is interested in the arrival time of the final audit report rather than in the completion
times of partial reports for various department, like in the audit example mentioned
above. Ahmadi et al. [1] provide a comprehensive discussion of the rationale behind
the choice of objective functions for the concurrent open shop scheduling. We focus
on the following three objective functions: total completion time, number of tardy
jobs, and total tardiness in this chapter. Those functions seem to be well aligned
with the real-life applications of the concurrent open shop scheduling. In Chap. 6
we introduce a special class of concurrent open shops where some operations of a
job are required to be processed simultaneously at any time.

5.2 Complexity of Concurrent Open Shop Scheduling

We begin with concurrent open shop scheduling with 0-1 operations. The solution to
O|cncnt, pij = 0, 1|Cmax is trivial. The optimal Cmax equals the maximum machine
workload L which occurs on machines with maximum number of operations. For
any other regular objective function, optimal schedules exist among schedules with
makespan on each machine being equal to the machine’s workload. In other words
among the schedules with no idle time on any machine. When the number of
machines is part of the problem input the problem is NP-hard in the strong sense for
total completion time and thus for total tardiness, and for the number of tardy jobs.
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Somewhat surprisingly the proof of NP-hardness for O|cncnt, pij = 0, 1| ∑ Ci is
much easier than for O|pij = 0, 1| ∑ Ci , see Sect. 3.6.2. We have the following
theorem.

Theorem 5.1 The problems O|cncnt, pij = 0, 1| ∑ Ci,
∑

Ui,
∑

Ti are NP-hard
in the strong sense.

Proof The reduction is from the MAXIMUM INDEPENDENT SET problem, see
Garey and Johnson [12]. Let a simple graph G = (V ,E) and a positive integer k

be an instance of the MAXIMUM INDEPENDENT SET problem. We set the set
of jobs J = V and the set of machines M = E in the corresponding instance of
the O|cncnt, pij = 0, 1| ∑ Ci problem. The job v ∈ V has a unit-time operation on
each machine e ∈ E such that v ∈ e, and it is missing on all other machines. The
number of unit-time operations of job v equals the degree of vertex, deg(v), in G.
We are looking for a concurrent open shop schedule with the total completion time∑

Ci being at most 2|V | − k (the number of tardy jobs being at most |V | − k for
the objective

∑
Ui , and the total tardiness being at most |V | − k for the objective∑

Ti).
Without loss of generality we can limit ourselves to schedules with Cmax = 2.

The key observation is that in any such schedule all jobs that complete at time 1
form an independent set in G, and all remaining jobs finish at time 2. Thus having
larger independent set results in smaller total completion time (fewer tardy jobs, and
smaller total tardiness assuming due date d = 1 for each job).

Suppose that schedule S has total completion time not exceeding 2|V | − k.
Without loss of generality we assume that each unit-time operation starts either at 0
or at 1 in S. Let J be the set of all jobs with all their unit-time operations starting
at 0. We have Cv = 1 for each job v ∈ J . The jobs in V \ J complete at 2 each,
thus Cv = 2 for each job v ∈ V \ J . Therefore

∑
Ci = |J | + 2(|V | − |J |) =

2|V |− |J | ≤ 2|V |− k for S, which implies k ≤ |J |. The set J is independent, since
otherwise there would be a machine e = {v, u} ∈ E with v, u ∈ J , thus either v or
u would need to complete at 2 in S which leads to contradiction since both v and u

complete at 1 in S. Thus J is independent set in G of size at least k.
Now suppose U is an independent set of size at least k in G. Start each job v ∈ U

on each machines e = {v, u} ∈ E for some u ∈ V at 0. There is no conflict since
the request to start two jobs u and v from U at 0 on the same machine e implies
that e = {v, u} ∈ E which is a contradiction since U is an independent set in G.
Thus Cv = 1 for each v ∈ U . For each job u ∈ J \ U , start its unit-time operation
at 1 on each machine e = {u, v} for some v ∈ U or either at 0 or at 1 on each
machine e = {u, v} for some u ∈ J \ U . Since there are exactly two unit-time
operations of two different jobs on each machine e, a feasible concurrent schedule
can easily be obtained, see Figs. 5.1 and 5.2 for an example. Observe that Cu ≤ 2
for each u ∈ J \ U . Thus

∑
Ci ≤ |U | + 2(|V | − |U |) = 2|V | − |U | ≤ 2|V | − k

since |U | ≥ k. Hence we obtained a required schedule for an independent set of size
at least k in G. The proof for the other two objective functions

∑
Ui and

∑
Ti is

similar. ��
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Roemer [24] settles the complexity status for the minimization of total comple-
tion time on two machines by proving the following theorem.

Theorem 5.2 The problem O2|cncnt|∑ Ci is NP-hard in the strong sense.

5.3 Permutation Schedules and Minimization of Maximum
Lateness

A schedule of concurrent open shop is a permutation schedule if all operations are
scheduled without preemption, idle time, and in the same order on each machine.
Wagneur and Sriskandarajah [26], see also Mastrolilli et al. [20], prove that
optimal schedules for regular objective functions can be found among permutation
schedules.

Theorem 5.3 For each feasible schedule S of a concurrent open shop there is a
permutation schedule Sσ that completes each job not later than in S.

Proof Let S be a feasible schedule for an instance I of O|cncnt|∑ Ci . Let Ci

be completion time of job Ji in S. For S, consider m instances I1, . . . , Im, one for
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each machine in M, of the single machine maximum lateness minimization problem
1||Lmax. The instance Ih for machine Mh is made up of n jobs J1, . . . , Jn with
processing times p1,h, . . . , pn,h and due dates d1 = C1, . . . , dn = Cn respectively.
The schedule S on machine Mh, denoted by Sh, completes job i at Ci,h ≤ Ci = di

(we assume Ci,h = 0 if job Ji is missing on Mh). Thus Sh is a feasible schedule
for Ih with zero maximum lateness. Without loss of generality we assume that the
schedule is non-preemptive. Therefore the maximum lateness of an optimal solution
for Ih is non-positive as well. The optimal solution S∗

h to 1||Lmax orders the jobs in
the Earliest Due Date Order, σ , see Jackson [17]. The same argument works for
each instance Ih, h = 1, . . . , m. Thus the same EDD sequence for each Ih defines
a permutation schedule Sσ for I . Since the maximum lateness for each S∗

h is non-
positive, no job completes later in Sσ than it does in S. ��

Leung et al. [19] take this result even further to prove that the Earliest Due Date
permutation is optimal for the minimization of maximum lateness.

Theorem 5.4 The Earliest Due Date permutation is optimal for O|cncnt|Lmax.

Proof Consider an optimal schedule S for an instance I of O|cncnt |Lmax. By
Theorem 5.3 we may assume that the schedule is a permutation schedule Sσ for
some permutation of jobs σ . Suppose there exists position k, k = 1, . . . , n − 1, in
σ such that i = σ(k) and j = σ(k + 1) and di > dj so that σ is not EDD. We
call the position k a violator. Let k be the violator in Sσ with the largest value of i.
Without loss of generality assume that Sσ maximizes i, and among all permutation
schedules with maximum i has the maximum k. The exchange of i and j on machine
Mh results in permutation σ ′ such that

max{Ci,h − di, Cj,h − dj } > max{C′
i,h − di, C

′
j,h − dj }

for h = 1, . . . , m, where Ci,h and C′
i,h are completion times of job Ji on machine

Mh in Sσ and Sσ ′ respectively. Hence

max{max
h

{Ci,h − di}, max
h

{Cj,h − dj }} >

max{max
h

{C′
i,h − di}, max

h
{C′

j,h − dj }}

and the exchange reduces the maximum lateness for the pair i and j , and leaves the
maximum lateness for the remaining jobs unchanged. Therefore we get an optimal
permutation schedule Sσ ′ for I with either smaller i or the same i but larger k which
contradicts the choice of Sσ and proves the theorem. ��

The EDD solution to O|cncnt|Lmax is illustrated for an instance with n =
7 jobs and m = 5 machines given in Table 5.1. The EDD permutation is
J2, J5, J1, J4, J7, J6, J3 for the instance. The optimal schedule is given in Fig. 5.3
where Lmax = L3 = C3 − d3 = 18 − 11 = 7.
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Table 5.1 An instance of
O|cncnt|Lmax with m = 5
machines

Job (i) M1 M2 M3 M4 M5 di

1 3 2 0 0 1 7

2 1 0 4 6 0 5

3 2 0 3 3 1 11

4 0 4 4 0 3 8

5 0 0 5 1 2 6

6 4 3 0 0 3 10

7 3 0 2 0 1 9
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Fig. 5.3 Optimal schedule with the EDD permutation J2, J5, J1, J4, J7, J6, J3 for the instance in
Table 5.1

5.4 2-Approximation Algorithm for O|cncnt|∑wiCi

5.4.1 The Algorithm

In this section we present a 2-approximation algorithm for the problem
O|cncnt|∑Ci developed by Mastrolilli et al. [20]. By Theorem 5.3 the search
for optimal or approximate schedules can be limited to permutation schedules. All
such schedules have the same makespan Cmax which equals maximum machine
workload L. Thus one knows that the job in position n completes at Cmax but one
does not know which job that is, i.e., does not know σ(n). The approximation
algorithm considers all machines with the heaviest workload Cmax and selects
one of them, say Mh (possible ties are broken arbitrarily). The machine then is
used to select a job σ(n) for the position n. The selected job has the minimum
job weight to operation-processing-time on Mh ratio wi

pi,h
(again possible ties are

broken arbitrarily). The selection σ(n) affects both the machines workloads, which
are reduced by deleting job σ(n) from each machine, and the weight wi of each
remaining job i, which is reduced by wσ(n)

pσ(n),h
pi,h, prior to the next iteration. The next

iteration, in order to find the job σ(n−1) in position n−1, begins with these updated
machine workloads and job weights and proceeds exactly in the same way as for
the job in position n. The algorithm stops after n iterations once the permutation
σ(1), . . . , σ (n) has been found. Formally, the algorithm works with two main lists:



5.4 2-Approximation Algorithm for O|cncnt| ∑ wiCi 121

The list of machine workloads in iteration k, k = n, . . . , 1,

L1(k), . . . , Lm(k),

and the list of job weights in iteration k

wi(k) i ∈ J (k),

where J (k) is the set of k jobs left to schedule in iteration k. The algorithm starts
with the following machine-workload list:

L1(n) = L1, . . . , Lm(n) = Lm,

the following job weight list:

w1(n) = w1, . . . , wn(n) = wn, (5.1)

and the set of jobs

J (n) = N = J .

In iteration k, k = n, . . . , 1, the algorithm computes: The index of a machine with
the heaviest workload in that iteration

μ(k) = arg max
h

{Lh(k)};

the index of a job with the minimum job weight to operation-processing-time ratio
on that machine

σ(k) = arg min
i

{
wi(k)

pi,μ(k)

}

;

and the minimum job weight to operation-processing-time ratio on that machine

θ(k) = wσ(k)(k)

pσ(k),μ(k)

. (5.2)

The job σ(k) is then scheduled in position k on each machine. To complete the
iteration the algorithm reduces machine workloads by deleting job σ(k) from each
machine and sets

Lh(k − 1) = Lh(k) − pσ(k),h h = 1, . . . , m,

and updates the job weights by setting
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wi(k − 1) = wi(k) − θ(k)pi,μ(k) i ∈ J (k). (5.3)

Finally

J (k − 1) = J (k) \ {σ(k)},

and the next iteration starts if k > 1. Otherwise, the algorithm stops. The algorithm
runs in O(n(n + m)) time.

5.4.2 The Proof

Following Mastrolilli et al. [20], we now show that the algorithm is a 2-
approximation algorithm for O|cncnt|∑i wiCi . We begin with the following
observation about the job weights produced by the algorithm:

Observation 5.5 By (5.1) and (5.3) we have

wj(k − 1) = wj −
n∑

l=k

pj,μ(l)θ(l)

and by (5.2) and (5.3)

wσ(k)(k − 1) = 0.

The observation implies the following observation about the weight wσ(k) of the job
in position k.

Observation 5.6 For any job σ(k)

m∑

h=1

pσ(k),h

∑

S⊆N :σ(k)∈S

yS,h

= pσ(k),μ(k)yJ (k),μ(k) + · · · + pσ(n),μ(n)yJ (n),μ(n)

= pσ(k),μ(k)θ(k) + · · · + pσ(n),μ(n)θ(n)

= wσ(k) − wσ(k)(k − 1)

= wσ(k),

where

yS,h =
{

θ(k) if h = μ(k) and S = J (k) for some k = 1, . . . , n,

0 otherwise.
(5.4)
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Finally, we observe the following for the job completion times.

Observation 5.7

Cσ(k) =
∑

i∈J (k)

pi,μ(k) =
k∑

i=1

pσ(i),μ(k) k = 1, . . . , n

and

Cσ(1) ≤ · · · ≤ Cσ(n).

We are now ready to prove the main theorem of this section.

Theorem 5.8 The algorithm is a 2-approximation algorithm for O|cncnt|∑ wiCi .

Proof The following LP- relaxation of O|cncnt|∑ wiCi

LP : min
n∑

i=1

wiCi

s. t.
∑

i∈S

pi,hCi ≥ fh(S) for all h = 1, . . . , m and S ⊆ N,

where

fh(S) = 1

2

∑

i∈S

p2
i,h + 1

2

(∑

i∈S

pi,h

)2

(5.5)

was given in Chen and Hall [4], see also Mastrolilli et al. [20]. Its dual was given
in Mastrolilli et al. [20]

D : max
m∑

h=1

∑

S⊆N

fh(S)yS,h

s. t
m∑

h=1

pi,h

∑

S⊆N :i∈S

yS,h = wi for all i = 1, . . . , n,

yS,h ≥ 0 for all h = 1, . . . , m and S ⊆ N.

For the function fh(S) in both linear programs, Schulz [25] proves the following
inequality:

( ∑

i∈S

pi,h

)2 ≤
(

2 − 2

n − 1

)
fh(S) for any h = 1, . . . , m and S ⊆ N. (5.6)
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We are now ready to complete the proof. We have

n∑

k=1

wσ(k)Cσ(k) =(1)
n∑

k=1

( m∑

h=1

pσ(k),h

∑

S⊆N :σ(k)∈S

yS,h

)
Cσ(k)

=(2)
n∑

k=1

( m∑

h=1

pσ(k),h

(
yJ(k),h + · · · + yJ(n),h)

))
Cσ(k)

=
n∑

k=1

(
pσ(k),μ(k)yJ (k),μ(k) + · · · + pσ(k),μ(n)yJ (n),μ(n))

)
Cσ(k)

=
n∑

k=1

yJ(k),μ(k)

(
pσ(1),μ(k)Cσ(1) + . . . pσ(k),μ(k)Cσ(k)

)

≤(3)
n∑

k=1

yJ(k),μ(k)

(
Cσ(k)

(
pσ(1),μ(k) + . . . pσ(k),μ(k)

))

=(4)
n∑

k=1

yJ(k),μ(k)

(
pσ(1),μ(k) + . . . pσ(k),μ(k)

)2

≤(5)

(

2 − 2

n + 1

) n∑

k=1

yJ(k),μ(k)fμ(k)(J (k))

≤(6)

(

2 − 2

n + 1

) n∑

k=1

wiC
LP
i

≤(7)

(

2 − 2

n + 1

) n∑

k=1

wiC
∗
i ,

where the equality (1) follows from Observation 5.6, the equality (2) follows
from (5.4), the inequalities (3) and (4) follow from Observation 5.7, the inequality
(5) follows by (5.6), the inequality (6) holds since the solution yS,h is feasible for
the dual D, and CLP

i is an optimal solution to the primal LP , finally (7) holds since
C∗

i is an optimal solution to O|cncnt|∑ wiCi . ��
Mastrolilli et al. [20] prove that the performance guarantee of the algorithm

cannot be better than 2 − 2
n+1 .



5.4 2-Approximation Algorithm for O|cncnt| ∑ wiCi 125

5.4.3 An Example

We illustrate the algorithm run on an instance of O|cncnt|∑wiCi with n = 7 jobs
and m = 5 machines specified in Table 5.2.

In iteration k = 7 we have the following list of machine workloads in Table 5.3
thus μ(7) = 3, and the list of job weights is shown in Table 5.4 thus σ(7) = 5,
and θ(7) = 0.4. The iteration k = 6 starts with the following machine workloads
in Table 5.5. Thus μ(6) = 3, recall that the ties can be broken arbitrarily. The
weights for the remaining jobs in J (6) are given in Table 5.6. Thus σ(6) = 2 and
θ(6) = 3.4

4 = 0.85.
The iteration k = 5 starts with the machine workloads in Table 5.7. Thus μ(5) =

1.
The weights for the remaining jobs in J (5) are given in Table 5.8. Thus σ(5) = 1

and θ(5) = 3
3 = 1.

The iteration k = 4 starts with the machine workloads in Table 5.9. Thus μ(4) =
3, again ties can be broken arbitrarily.

The weights for the remaining jobs in J (4) are given in Table 5.10. Thus σ(4) =
4 and θ(4) = 3

4 = 0.75.
The iteration k = 3 starts with the machine workloads in Table 5.11. Thus

μ(3) = 1.
The weights for the remaining jobs in J (3) are given in Table 5.12. Thus σ(3) =

6 and θ(3) = 3
4 = 0.75.

Finally, the iteration k = 2 starts with the following machine workloads in
Table 5.13. Thus μ(2) = 3.

The weights for the remaining jobs in J (2) are given in Table 5.14. Thus σ(2) =
3 and θ(2) = 2.5

3 .

Table 5.2 An instance of
O|cncnt| ∑ wiCi with m = 5
machines

Job (i) M1 M2 M3 M4 M5 wi

1 3 2 0 0 1 3

2 1 0 4 6 0 5

3 2 0 3 3 1 10

4 0 4 4 0 3 8

5 0 0 5 1 2 2

6 4 3 0 0 3 7

7 3 0 2 0 1 11

Table 5.3 Machine
workloads in iteration k = 7:
μ(7) = 3

M1 M2 M3 M4 M5

Load 13 9 18 10 11

Table 5.4 Job weights and
operation processing times on
machine μ(7) = 3 in iteration
k = 7

J1 J2 J3 J4 J5 J6 J7

Weight 3 5 10 8 2 7 11

M3 0 4 3 4 5 0 2
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Table 5.5 Machine
workloads in iteration k = 6:
μ(6) = 3

M1 M2 M3 M4 M5

Load 13 9 13 9 9

Table 5.6 Job weights and
operation processing times on
machine μ(6) = 3 in iteration
k = 6

J1 J2 J3 J4 J6 J7

Weight 3 3.4 8.8 6.4 7 10.2

M3 0 4 3 4 0 2

Table 5.7 Machine
workloads in iteration k = 5:
μ(5) = 1

M1 M2 M3 M4 M5

Load 12 9 9 3 9

Table 5.8 Job weights and
operation processing times on
machine μ(5) = 1 in iteration
k = 5

J1 J3 J4 J6 J7

Weight 3 6.25 3 7 8.5

M1 3 2 0 4 3

Table 5.9 Machine
workloads in iteration k = 4:
μ(4) = 3

M1 M2 M3 M4 M5

Load 9 7 9 3 8

Table 5.10 Job weights and
operation processing times on
machine μ(4) = 3 in iteration
k = 4

J3 J4 J6 J7

Weight 4.25 3 3 5.5

M3 3 4 0 2

Table 5.11 Machine
workloads in iteration k = 3:
μ(3) = 1

M1 M2 M3 M4 M5

Load 9 3 5 3 5

Table 5.12 Job weights and
operation processing times on
machine μ(3) = 1 in iteration
k = 3

J3 J6 J7

Weight 4 3 4

M1 2 4 3

Table 5.13 Machine
workloads in iteration k = 2:
μ(2) = 3

M1 M2 M3 M4 M5

Load 5 0 5 3 2

Table 5.14 Job weights and
operation processing times on
machine μ(2) = 3 in iteration
k = 2

J3 J7

Weight 2.5 1.75

M3 3 2

Therefore the algorithm produces the following permutation:J7,J3,J6,J4,J1,J2,J5
of jobs on each machine. The schedule for this permutation is shown in Fig. 5.4; the
total weighted completion time for the schedule

∑
wiCi equals 355.
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Fig. 5.4 2-approximation solution for the instance in Table 5.2

5.5 Hardness of Approximation

This section concentrates on the hardness of approximation for the problems of min-
imization of total completion time, O|cncnt|∑Ci , total tardiness, O|cncnt|∑ Ti ,
and number of tardy jobs, O|cncnt|∑Ui , for concurrent open shops. We begin
by introducing a key inapproximability result for independent sets of uniform
hypergraphs.

A pair H = (N,E) where N is a finite set of vertices and E is a family of
subsets (hyperedges) of N each of size exactly r is called an r-uniform hypergraph.
An independent set of an r-uniform hypergraph H = (N,E) is a subset I of
vertices that does not completely include any of the hyperedges in E, i.e., e \ I 
= ∅
for each hyperedge e ∈ E. Dinur et al. [7] prove the following.

Theorem 5.9 For any γ ∈ (0, 1), δ ∈ (0, 1/2), and integer r ≥ 3 the
following problem isNP -hard. Given an r-uniform hypergraphH = (N,E) decide
whether

(i) There exists an independent set of H of size at least
(

1 − 1
r−1 − δ

)
|N |, or

(ii) Each independent set of H has size strictly less than γ |N |.

5.5.1 O|cncnt|∑Ci

Mastrolilli et al. [20] make the decision problem in Theorem 5.9 a point of departure
to prove the following limit on the approximation guarantee for polynomial-time
algorithms for O|cncnt|∑ Ci .

Theorem 5.10 The problem O|cncnt|∑Ci is NP-hard to approximate within a
factor 6

5 − ε for any ε > 0, unless P = NP .

Proof By Theorem 5.9, for any γ ∈ (0, 1), δ ∈ (0, 1
2 ), and integer r ≥ 3, there is

a class of r-uniform hypergraphs where the size of a maximum independent set is
either greater or equal

(
1− 1

r−1 −δ
)|N | or less than γ |N |, and it is NP-hard to decide
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for a given hypergraph H = (N,E) in that class whether it falls in the former or
in the latter category. If such decision could be made in polynomial time, then P =
NP which seems unlikely. In the corresponding instance f (H) of O|cncnt|∑Ci ,
we have J = N and M = E. A job v ∈ N has a unit-time operation on each
machine e ∈ E such that v ∈ e, and it is missing on any other machine.

Consider an independent set I of H . On each machine e ∈ E schedule the jobs in
e∩ I in the interval [0, |e∩ I |], and the jobs in e∩ (N \ I ) in the interval [|e∩ I |, r].
Since e \ I 
= ∅ for each e ∈ E, we have |e ∩ I | ≤ r − 1. Moreover, since each
machine’s e workload is exactly r for r-uniform hypergraphs, each job in N \ I can
be completed by r . Therefore, we can readily obtain a feasible schedule where each
job in I completes by r − 1, and each job in N \ I completes by r . Therefore, (i) in
Theorem 5.9 can be used to calculate an upper bound U on the value OPT (f (H))

of minimum total completion time for the instance f (H) with H in the category (i)

as follows. If (i) holds, then

OPT (f (H)) ≤ (r − 1)|I | + r(|N | − |I |)
= r|N | − |I |

≤ r|N | −
(

1 − 1

r − 1
− δ

)
|N |

=
(
r − 1 + 1

r − 1
+ δ

)
|N |

= U.

On the other hand, in an optimal schedule for f (H) the set of all jobs that complete
by r − 1 is an independent set IO of H , and all jobs in N \ IO complete at r .
Therefore, (ii) in Theorem 5.9 can be used to calculate a lower bound L on the
value OPT (f (H)) of minimum total completion time for f (H) with H in the
category (ii) as follows. If (ii) holds, then

OPT (f (H)) = r(|N | − |IO |) + |IO |
= r|N | − (r − 1)|IO |
> r|N | − (r − 1)γ |N |
=

(
r − (r − 1)γ )

)
|N |

= L.

Suppose A is a
( 6

5 − ε
)
-approximation algorithm for O|cncnt|∑ Ci , for some

0 < ε < 1, which runs in polynomial time. Consider the class C of r-hypergraphs
with r = 3, γ = ε

4 , δ = ε
2 . We have U = 5+ε

2 and L = 3− ε
2 . Run A on f (H) where

H ∈ C, if A(f (H)) ≤ L, then OPT (f (H)) ≤ A(f (H)) ≤ L and the condition
(ii) does not hold for H . Thus, the size of maximum independent set is greater or
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equal
(
1− 1

r−1 −δ
)|N |. If A(f (H))

6
5 −ε

> U , then OPT (f (H)) ≥ A(f (H))
6
5 −ε

> U and (i)

does not hold for H . Thus, the size of maximum independent set is less than γ |N |.
Finally there is no instance f (H) such that

L < A(f (H)) ≤ (6

5
− ε

)
U (5.7)

since

L

U
= 6 − ε

5 + ε
>

6

5
− ε (5.8)

for H ∈ C. Therefore A could distinguish between the two categories of
hypergraphs in the class C in polynomial time which leads by Theorem 5.9 to
contradiction if P 
= NP , and proves the theorem for O|cncnt|∑Ci . ��

The factor 6
5 − ε in Theorem 5.10 can be strengthened to 2 − ε under the

assumption that the Unique Games Conjecture holds, see Khot [18], and Bansal
and Khot [3] for the conjecture. The following inapproximability result of Bansal
and Khot [3] is key for the proof of the factor 2 − ε.

Theorem 5.11 Assuming the Unique Games Conjecture holds, for any δ ∈ (0, 1),
γ ∈ (0, 1), and integer r ≥ 2 the following problem is NP -hard. Given an r-
uniform hypergraph H = (N,E) decide whether

(iii) There exist disjoint subsets N1, . . . , Nr ⊆ N , satisfying |Ni | ≥ 1−δ
r

|N | and
such that |e ∩ Ni | ≤ 1 for e ∈ E and i = 1, . . . , r , or

(iv) Each independent set of H has size at most γ |N |.
This result is then used by Bansal and Khot [3] to prove the 2 − ε factor.

Theorem 5.12 Assuming the Unique Games Conjecture, O|cncnt|∑Ci is hard to
approximate within a factor 2 − ε for any ε > 0, unless P = NP .

Proof We use the same transformation f (H) as in the proof of Theorem 5.10. If
(iii) in Theorem 5.11 holds for H , then schedule job v ∈ Ni in time slot [i − 1, i]
of each machine e such that v ∈ e∩Ni . The schedule thus obtained is feasible since
the sets N1, . . . , Nr are disjoint, and |e ∩ Ni | ≤ 1 for each e ∈ E and i = 1, . . . , r .
Therefore at least 1−δ

r
|N | jobs complete at i for i = 1, . . . , r in the schedule.

Complete the schedule by scheduling the remaining jobs from N \ (
N1 ∪ · · · ∪ Nr

)

in the available unit-time slots in the interval [0, r] on each machine e. Each of
those jobs completes by r . Hence we get the following upper bound on the total
completion time OPT (f (H)) for each hypergraph H in the category (iii)

OPT (f (H)) ≤
(1 − δ

r
(1 + · · · + r) + δr

)
|N |

=
(1 − δ

2
(r + 1) + δr

)
|N |
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=
(1 + δ

2
r + 1 − δ

2

)
|N |

≤
(1 + δ

2
(r + 1)

)
|N |

= U.

If (iv) in Theorem 5.11 holds for H , the lower bound is calculated in a similar
way as for (ii) in the proof of Theorem 5.10

OPT (f (H)) ≥
(
r − (r − 1)γ )

)
|N |

= L.

Suppose there is a (2 − ε)-approximation polynomial-time algorithm A for
O|cncnt|∑Ci . Without loss of generality 0 < ε < 1. Consider the class C of
r-hypergraphs with δ ≤ 1

r+1 , γ ≤ 1
r−1 , and r ≥ 6

ε
− 1. Run A on an instance

f (H) with H ∈ C. If A(f (H)) < L, then OPT (f (H)) ≤ A(f (H)) < L

and the condition (iv) does not hold for H . Thus, H falls in the category (iii).
If A(f (H))

2−ε
> U , then OPT (f (H)) ≥ A(f (H))

2−ε
> U and (iii) does not hold for

H . Thus, the size of maximum independent set is less than γ |N | and H falls in the
category (iv). Finally there is no f (H) such that

L ≤ A(f (H)) ≤ (2 − ε)U (5.9)

since

L

U
= 2

(r − (r − 1)γ )

(r + 1)(1 + δ)
> 2 − ε (5.10)

for the class C. Therefore A could distinguish between the two categories of hyper-
graphs from C in polynomial time. This, assuming the Unique Games Conjecture
holds, leads by Theorem 5.11 to contradiction if P 
= NP and proves the theorem.��

5.5.2 O|cncnt|∑Ti , and O|cncnt|∑Ui

The problems O|cncnt|∑ Ti and O|cncnt|∑Ui are harder to approximate than
O|cncnt|∑Ci . Polynomial-time algorithms cannot guarantee approximations
within a factor (1 − c) ln m for any constant c > 0 for those two due date based
problems.

To prove this we first recall a hard to approximate SET COVER problem
which becomes a point of departure in the hardness proof for O|cncnt|∑Ui and
O|cncnt|∑ Ti . An instance of the SET COVER problem is made up of a collection
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V1, . . . , V� of subsets of a set V = {v1, . . . , vn}. The SET COVER problem is the
problem of selecting as few as possible subsets from the collection V1, . . . , V� such
that every v ∈ V is included into at least one of the selected subsets, Garey and
Johnson [12]. Feige [9] shows that the problem cannot be approximated within a
factor (1 − c) ln n for any c > 0 in polynomial time, unless NP includes slightly
superpolynomial problems. Dinur and Steurer [8] strengthen this result by proving
that the problem cannot be approximated within a factor (1−c) ln n for any c > 0 in
polynomial time, unless P = NP . The following result of Dinur and Steurer [8] is
key to showing that both O|cncnt|∑ Ui and O|cncnt|∑ Ti are hard to approximate
within a factor (1 − c) ln m for any c > 0, unless P = NP .

Theorem 5.13 Set cover is NP -hard to approximate within a factor (1−c) ln n for
any c > 0, unless P = NP .

We have the following inapproximability result for O|cncnt|∑Ui and
O|cncnt|∑ Ti .

Theorem 5.14 O|cncnt|∑Ui and O|cncnt|∑ Ti are hard to approximate within
a factor (1 − c) ln m for any c > 0, unless P = NP .

Proof Let collection V1, . . . , V� of subsets of V be an instance I of the SET
COVER problem. For each v ∈ V define the set Sv = {i : v ∈ Vi, i = 1, . . . �}
and S = {1, . . . , �}. We assume that all sets Sv have the same cardinality r =
maxv{|Sv|}. Otherwise, we can add a collection of r − |Sv| < r copies of the subset
{v} to the collection V1, . . . , V�, thus creating a regular instance Ir . The sizes of
minimum set cover are the same in both I and Ir . Each Sv corresponds to machine
Sv in the concurrent open shop. There are m = n = |V | machines in the concurrent
open shop instance IO . Each i ∈ S corresponds to a job with a unit-time operation
on each machine Sv such that i ∈ Sv and missing operations on any machine Sv

such that i /∈ Sv . There are � jobs in IO . Set di = r − 1 for each job in IO .
Let the family V be a minimum set cover. Then Sv ∩ V 
= ∅ for each v ∈ V

so that each machine has a job from V. Consider a schedule where all the jobs
from V are scheduled at the end of the schedule on each machine. Thus each job in
{1, . . . , �} \ V completes by r − 1 in the schedule, and each job in V completes at
r . Thus exactly � − |V| jobs completes by their due dates in the schedule and the
number of tardy jobs equals the size of the subset cover |V|, i.e.,

∑
Ui = |V|.

On the other hand, for a schedule with the number of tardy jobs equal to
∑

Ui

this number equals the number of jobs that complete at r in the schedule. Let S′
be the set of those jobs. Thus for each machine Sv there exists job i ∈ S′, or in
other words for each v there is Vi such that v ∈ Vi . Thus S′ is a subset cover, and∑

Ui = |S′|.
Suppose there is (1 − c) ln m-approximation polynomial-time algorithm A for

O|cncnt|∑Ui for some c > 0, then we have

∑
UA

i (IO)
∑

UOPT
i (IO)

≤ (1 − c) ln m, (5.11)
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where
∑

UA
i (IO) and

∑
UOPT

i (IO) are the numbers of tardy jobs in a schedule
produced by A and in an optimal schedule, respectively. We have

∑
UA

i (IO) =
|SA(Ir)| and

∑
UOPT

i (IO) = |SOPT (Ir )| for some set covers SA(Ir) and
SOPT (Ir ) for Ir . However, |SOPT (Ir )| is the cardinality of minimum set cover
C∗(Ir ) for Ir and thus the cardinality of minimum set cover C∗(I ) for I . Finally,
there is set cover S(I) for I such that |SA(Ir)| ≥ |S(I)|. Therefore

|S(I)|
|C∗(I )| ≤

∑
UA

i (IO)

|C∗(I )| ≤ (1 − c) ln m.

Since the number of machines m in the concurrent open shop instance IO equals
n = |V | we have

|S(I)|
|C∗(I )| ≤ (1 − c) ln n,

which proves that A is a (1 − c) ln n-approximation algorithm for the set cover
problem which runs in polynomial time. This however contradicts Theorem 5.13. ��

A similar inapproximability result was obtained by Ng et al. [22] under a stronger
than the P 
= NP assumption. The result was based on the inapproximability result
for set cover obtained by Feige [9]. Garg et al. [13] present further complexity
results for O|cncnt|∑ wiCi and its special cases.

5.6 Fixed Number of Machines and Special Cases

Cheng et al. [5] give a PTAS for the problem Om|cncnt|∑ wiCi where the
number of machines m is not part of the input. Ahmadi et al. [1] report a√

5+3√
5+1

-approximation for the two-machine problem O2|cncnt|∑wiCi, see also
Roemer [23]. Ahmadi et al. [1] propose heuristics and report computational
experiments with the heuristics for O|cncnt|∑wiCi . Cheng and Wang [6] give
a pseudopolynomial-time algorithm for the problem Om|cncnt|∑wiUi where the
number of machines m is not part of the input. This implies that Om|cncnt, pij =
0, 1| ∑ Ui is polynomial. Leung et al. [19] give a polynomial-time algorithm
Om|cncnt|∑ Ui for job-ordered open shops, see Sect. 7.4 for definition of job-
ordered open shops. We observe that O1|cncnt|∑Ui is the same as the single
machine problem 1||∑Ui which is solved by Hodgson–Moore algorithm, see
Moore [21], in O(n log n) time. Besides, we observe that operation processing
times follow the same order on each machine in job-ordered open shops. These
two observations suffice to prove that Om|cncnt|∑Ui for job-ordered open shops,
see Problem 5.5. Leung et al. [19] give an exact algorithm based on constraint
propagation and bounding approach for O|cncnt|∑ Ui and report on computational
experiments with the algorithm. Framinan and Perez-Gonzalez [10] propose
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heuristics for O|cncnt|∑ Ti and report on computational experiments with the
heuristics.

5.7 Conflict Graphs and the Classification of Open Shops

The open shop scheduling problems can be defined and classified by using the
concept of operation conflict graphs introduced in Chap. 2. The operation conflict
graph determines which two operations cannot be done in parallel in any feasible
schedule. That is, if (o, o′) is an edge in the graph, then operations o and o′ can never
be processed in parallel in a feasible schedule. The classification of open shops can
then be done according the characteristic of the set of edges of the conflict graph.
To be more precise, let O be the set of all operations Oi,h, where Ji ∈ J and
Mh ∈ M. An operation conflict graph is a simple graph C = (O,E) with the set
of vertices O and the set of edges in E linking operations in O. We suggest the
following classification depending on E. The classification can be easily extended
to other classes of E.

• Let Oh = {O1,h, . . . , On,h}, and let Kh be a clique of size n on Oh, h = 1, . . . , m.
The union E = K1 ∪ · · · ∪ Km of m disjoint cliques is a conflict graph of
concurrent open shop.

• Let Ji = {Oi,1, . . . , Oi,m}, and let Gi be a clique of size m on Ji , i = 1, . . . , n.
The union E = K1 ∪ · · · ∪ Km ∪ G1 ∪ · · · ∪ Gn of n + m cliques is a conflict
graph of open shop.

• Let R be any non-empty set of edges (Oi,h,Oj,�) such that i 
= j and h 
= �. The
union E = K1 ∪ · · · ∪ Km ∪ G1 ∪ · · · ∪ Gn ∪ (O,R) is a conflict graph of open
shop with additional resources in Chap. 2.

• Let P be any non-empty set of edges (Oi,h,Oj,�) such that h 
= �. The union
E = K1 ∪· · ·∪Km ∪ (O,P) is a conflict graph of partially concurrent open shop.
Partially concurrent open shops are studied by Ilani et al. [16] and Grinshpoun
et al. [15].

Problems

5.1 Prove Theorem 5.1 for
∑

i Ui and
∑

i Ti .

5.2 Show that the performance guarantee of the 2-approximation algorithm in
Sect. 5.4 cannot be better than 2 − 2

n+1 .

5.3 Find an optimal schedule for an instance in Table 5.2.

5.4 Proof Theorem 5.14 for O|cncnt |∑ Ti .
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5.5 Show that the problem Om|cncnt|∑ Ui is polynomial for job-ordered open
shops.

References

1. R.H. Ahmadi, U. Bagchi, T.A. Roemer, Coordinated scheduling of customer orders for quick
response. Naval Res. Logist. 52, 483–512 (2005)

2. R.H. Ahmadi, U. Bagchi, Scheduling of Multi-Job Customer Orders in Multimachine Environ-
ments (ORSA/TIMS, Philadelphia, 1990)

3. N. Bansal, S. Khot, Inapproximability of hypergraph vertex cover and applications to schedul-
ing problems, in Automata, Languages and Programming. ICALP 2010, ed. by S. Abramsky,
C. Gavoille, C. Kirchner, F. Meyer auf der Heide, P.G. Spirakis. Lecture Notes in Computer
Science, vol. 6198 (Springer, Berlin, 2010), pp. 250–261

4. Z.L. Chen, N.G. Hall, Supply chain scheduling: assembly systems. Working paper, Department
of Systems Engineering, University of Pennsylvania, 2001

5. T.C.E. Cheng, Q. Nong, C.T. Ng, Polynomial-time approximation scheme for concurrent open
shop scheduling with a fixed number of machines to minimize the total weighted completion
time. Naval Res. Logist. 58, 763–770 (2011)

6. T.C.E. Cheng, G. Wang, Customer order scheduling on multiple facilities. Working paper
no. 11/98-9, Faculty of Business and Information Systems, The Hong Kong Polytechnic
University, 1999

7. I. Dinur, V. Guruswami, S. Khot, O. Regev, A new multilayered PCP and the hardness of
hypergraph vertex cover. SIAM J. Comput. 34, 1129–1146 (2005)

8. I. Dinur, D. Steurer, Analytical approach to parallel repetition, in Proceedings of the 2014 ACM
symposium on Theory of Computing. STOC’14 (ACM, Berlin, 2014), pp. 624–633

9. U. Feige, A threshold of ln n for aproximating set cover. J. ACM 45, 634–652 (1998)
10. J.M. Framinan, P. Perez-Gonzalez, Order scheduling with tardiness objective: improved

approximate solutions. Eur. J. Oper. Res. 266, 840–850 (2018)
11. J.M. Framinan, P. Perez-Gonzalez, V. Fernandez-Viagas, Deterministic assembly scheduling

problems: a review and classification of concurrent-type scheduling models and solution
procedures. Eur. J. Oper. Res. 273, 401–417 (2019)

12. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness (W. H. Freeman, San Francisco, 1979)

13. N. Garg, A. Kumar, V. Pandit, Order scheduling models: hardness and algorithms, in Lecture
Notes in Computer Science 4855 (Springer, Berlin, 2007), pp. 96–107

14. R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and approxima-
tion in deterministic sequencing and scheduling: a survey. Ann. Discr. Math. 5, 287–326 (1979)

15. T. Grinshpoun, H. Ilani, E. Shufan, The representation of partially-concurrent open shop
problems. Ann. Oper. Res. 252, 455–469 (2017)

16. H. Ilani, E. Shufan, T. Grinshpoun, Partially concurrent open shop scheduling with integral
preemtions. Ann. Oper. Res. 259, 157–171 (2017)

17. J.R. Jackson, Scheduling a production line to minimize maximum tardiness. Management
science research project, research report 43, UCLA, 1955

18. S. Khot, On the power of unique 2-prover 1-round games, in Proceedings pf the 34th Annual
ACM Symposium on Theory of Computing (2002), pp. 767–775

19. J.Y.-T. Leung, H. Li, M. Pinedo, Scheduling orders for multiple product types with due date
related objectives. Eur. J. Oper. Res. 168, 370–389 (2006)

20. M. Mastrolilli, M. Queyranne, A.S. Schulz, O. Svensson, N.A. Uhan, Minimizing the sum of
weighted completion times in a concurrent open shop. Oper. Res. Lett. 38, 390–395 (2010)



References 135

21. J.M. Moore, An n job, one machine sequencing algorithm for minimizing the number of late
jobs. Manag. Sci. 15, 102–109 (1968)

22. C.T. Ng, T.C.E. Cheng, J.J. Yuan, Concurrent open shop scheduling to minimize the weighted
number of tardy jobs. J. Sched. 6, 405–412 (2003)

23. T.A. Roemer, A note on establishing heuristic bounds by instance construction. Technical
report, Sloan School at MIT, Cambridge, MA, 2004

24. T.A. Roemer, A note on the complexity of the concurrent open shop scheduling problem. J.
Sched. 9, 389–396 (2006)

25. A.S. Schulz, Scheduling to minimize total weighted completion time: performance guarantees
of lp-based heuristics and lower bounds, in Integer Programming and Combinatorial Optimiza-
tion, IPCO 1996, ed. by W.H. Cunningham, S.T. McCormick, M. Queyranne. Lecture Notes in
Computer Science (Springer, Berlin, 1996), pp. 301–315

26. E. Wagneur, C. Sriskandarajah, Open shops with jobs overlap. Eur. J. Oper. Res. 71, 366–378
(1993)


	5 Concurrent Open Shops
	5.1 Introduction
	5.2 Complexity of Concurrent Open Shop Scheduling
	5.3 Permutation Schedules and Minimization of Maximum Lateness
	5.4 2-Approximation Algorithm for O|cncnt|wiCi
	5.4.1 The Algorithm
	5.4.2 The Proof
	5.4.3 An Example

	5.5 Hardness of Approximation
	5.5.1 O|cncnt|Ci
	5.5.2 O|cncnt|Ti, and O|cncnt|Ui

	5.6 Fixed Number of Machines and Special Cases
	5.7 Conflict Graphs and the Classification of Open Shops
	Problems
	References


