
Chapter 4
Multiprocessor Operations

4.1 Introduction

In the open shop scheduling with multiprocessor operations a set of jobs J =
{J1, . . . , Jn} is scheduled on machines M = {M1, . . . , Mm}. The set of machines
is partitioned into p disjoint groups G�, � = 1, . . . , p. Each job consists of single-
processor and multiprocessor operations. A single-processor operation Oj,h of job
Jj requires a single machine Mh ∈ M, and a multiprocessor operation Ôj,� requires
all machines from the group, G�, � = 1, 2, . . . , p simultaneously. The processing
time of Oj,h equals bjh ≥ 0, and the processing time of Ôj,� equals aj� ≥ 0. In this
chapter we depart from the notation pj,h (we use bjh instead) introduced in Chap. 1
for processing time of operation Oj,h. This is to further emphasize the presence of
individual and group operations in the open shop with multiprocessor operations.
All processing times are integers for the time being. The processing time bjh equals
0 means that Jj is missing on Mh, similarly the processing time aj� equals 0 means
that Jj is missing on G�. In a feasible schedule each machine can process at most
one operation at a time, and no two operations of the same job can be processed
simultaneously. Any operation can be preempted at any moment and resumed at
any moment later at no cost. The makespan is to be minimized.

An instance of the open shop scheduling with multiprocessor operations naturally
decomposes into two instances of open shops. One referred to as the group open
shop consists of p group machines G1, . . . ,Gp, and n jobs in Ĵ , where the
processing time of job Ĵj ∈ Ĵ on a group machine G�, � = 1, . . . , p equals
aj�. The other referred to as individual open shop consists of m machines M =
{M1, . . . ,Mm}, and n jobs in J , where the processing time of job Jj ∈ J on
an individual machine Mh ∈ M equals bj,h. For the group open shop machine
G� workload equals �(G�) = ∑

j aj� for � = 1, . . . , p, and job length equals

�(Ĵj ) = ∑
� aj� for Ĵj ∈ Ĵ . Thus by König’s edge-coloring theorem there is an
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Fig. 4.1 An instance with
� = 2 and optimal schedule
with Cmax = 3
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optimal schedule SG with makespan �(G) = max{max� �(G�), maxj �(Ĵj )} for
the group open shop. For the individual open shop machine Mh ∈ M workload
equals �(Mh) = ∑

j bjh, and job length equals �(Jj ) = ∑
h bjh for Jj ∈ J .

Thus again by König’s edge-coloring theorem there is an optimal schedule SM with
makespan �(M) = max{maxh �(Mh), maxj �(Jj )} for the individual open shop.
Both schedules, SG and SM, respectively, can be obtained in polynomial time, see
Gabow and Kariv [11] or Cole et al. [6]. Either schedule permits preemptions at
integer points only and so does their concatenation SGSM. The makespan of the
concatenation equals �(G) + �(M).

Now instead of looking at the two instances of the decomposition one at
a time let us consider the original instance. The machine Mh workload equals
Lh = ∑

j aj� + ∑
j bjh = �(G�) + �(Mh), where Mh ∈ G�, and job Jj length

Pj = ∑
� aj�+∑

h bjh = �(Ĵj )+�(Jj ). Therefore, � = max{maxj Pj , maxh Lh}
is a lower bound on the makespan of an optimal schedule. Since � ≥ �(G) and
� ≥ �(M), the algorithm that gives the concatenation SGSM is a 2-approximation
algorithm for the makespan minimization of the open shop scheduling problem with
multiprocessor operations. To illustrate consider the instance in Fig. 4.1, we have
p = 2, �(G1) = 1, �(G2) = 0, �(M1) = �(M2) = 1, �(M3) = �(M4) = 2, and
�(J2) = �(J3) = �(J4) = 2, �(J1) = 0, �(Ĵ1) = 1, �(Ĵ2) = �(Ĵ3) = �(Ĵ4) =
0. Thus �(G) = 1 and �(M) = 2 and the schedule SGSM has makespan 3. On the
other hand � = 2. Observe that a schedule with Cmax = 2 does not exist for this
instance. Such a schedule would need individual operations of four different jobs to
be scheduled in parallel on individual machines. This however contradicts the fact
that only three jobs have individual operations in the instance.

Observe also that allowing preemptions at any point, not necessarily at integer
points, may reduce schedule makespan. The schedule in Fig. 4.2 by allowing
preemptions at any point reduces the makespan from Cmax = 3 to Cmax = 7

3
for the instance in Fig. 4.2. Sections 4.2–4.9 focus on schedules with preemptions
allowed at integer points only. Those schedules are solutions to the University
timetabling problem. Section 4.10 considers preemptive schedules which solve
preemptive open shop scheduling problem with multiprocessor operations. Those
schedules allow preemptions at any points thus they do not necessarily solve the
University timetabling problem; however, they become a good point of departure
for approximate solutions, see Sect. 4.11.
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Fig. 4.2 An optimal
schedule with preemptions
allowed at any point for the
instance in Fig. 4.1
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4.2 Complexity of Short Schedules with Preemptions at
Integer Points

Asratian and de Werra [1] prove the following.

Theorem 4.1 The problem to determine if there is a schedule with Cmax ≤ 3 for
an open shop with multiprocessor operations and preemptions allowed at integer
points only is NP-complete in the strong sense even for p ≤ 4.

Proof The proof is by reduction from the following edge-coloring problem with
pre-assigned colors. Let G = (X, Y,E) be a bipartite graph with �(G) = 3, where
each vertex v ∈ X is of degree 2 or 3. Moreover each vertex v ∈ X has a set
C(v) ⊆ {1, 2, 3} of colors pre-assigned, and |C(v)| = degG(v). Can the edges
of G be colored with colors 1, 2, and 3 so that the edges incident with v ∈ X

are colored with colors in C(v)? The problem is shown NP-complete in the strong
sense in Even at al. [10], see also Asratian and Kamalian [2]. In the corresponding
open shop instance we have m = |X| machines, M = X, partitioned into four
disjoint groups G1 = {v ∈ X : C(x) = {1, 3}}, G2 = {v ∈ X : C(x) = {2, 3}},
G3 = {v ∈ X : C(x) = {1, 2}}, and G4 = {v ∈ X : C(x) = {1, 2, 3}}. The jobs
in Y are processed on machines in X so that the operations of job u ∈ Y are of
unit processing time each, and processed on machines v ∈ X adjacent with u in G.
Moreover, there is one more job, the job J , with three group operations on G1, G2,
and G3, no individual operations, and no group operation on G4 in the open shop
instance. The three group operations of the job J have unit processing time each.
Thus J = Y ∪ {J }, and Cmax = 3.

Suppose there is an edge-coloring of G with three colors 1, 2, and 3 so that the
edges incident with v ∈ X are colored with the colors in C(x). Then a schedule can
be readily obtained where each individual machine in G1 is occupied in [0, 1] and
[2, 3], each individual machine in G2 is occupied in [1, 3], each individual machine
in G3 is occupied in [0, 2], and each individual machine in G4 is occupied in [0, 3].
This allows to schedule J on G1 in [1, 2], on G2 in [0, 1], and on G3 in [2, 3] to get
a schedule with Cmax = 3, see the schedule in Fig. 4.3.

Now suppose S is a schedule with Cmax = 3. Thus job J is processed at any time
in the interval [0, 3]. Without loss of generality we can assume that group operation
of J on G2 is in [0, 1], on G1 is in [1, 2], and on G3 is in [2, 3] in S. To see this
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Fig. 4.3 Scheduling job J
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suppose that J is processed in the interval [i − 1, i] on G1, in [j − 1, j ] on G2,
and in [k − 1, k] on G3 in S. We have {i, j, k} = {1, 2, 3}. Let Oi , Oj , and Ok be
the sets of all unit-time operations, group or individual, processed in the unit-time
intervals [i − 1, i], [j − 1, j ], and in [k − 1, k], respectively, in S. Schedule each
operation from Oi in [1, 2], each operation from Oj in [0, 1], and each operation
for Ok in [2, 3]. This permutation of the three unit-time intervals gives a feasible
schedule with Cmax = 3, and the required order of processing for the operations of
job J .

Thus an individual machine v ∈ G1 processes individual operations in [0, 1] and
[2, 3]. Those operations belong to jobs u1, u2 ∈ Y . Thus the edges (v, u1), (v, u2) ∈
E incident with v will be colored with colors 1 and 3 which makes precisely the set
C(v) = {1, 3} required for vertex v. Similar argument works for any individual
machine v ∈ G2, and any individual machine v ∈ G3. Thus the edges incident with
v ∈ G2 and v ∈ G3 will be colored with colors 2 and 3, and 1 and 2 respectively.
Therefore we obtain the required edge-coloring of G. ��

de Werra et al [8] further strengthen Theorem 4.1 by proving it for three groups,
p = 3. We will omit the proof and leave it as an exercise, see Problem 4.1. However
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the schedules, if any exist, with Cmax ≤ 2 and for an arbitrary number of groups p

can be obtained in polynomial time. We have the following theorem.

Theorem 4.2 The problem to determine if there is a schedule with Cmax ≤ 2 for
an open shop with multiprocessor operations and preemptions allowed at integer
points only is polynomial.

Proof Without loss of generality we can assume that each operation o, individual or
group, has processing time 0, 1, or 2. We assume an arbitrary number of groups p.
Split each operation o with processing time 2 into two unit-time operations o′ and
o′′. The two belong to the same job and require the same machines, individual, or
group, for processing as does o. For each unit-time operation o, define αo = G� and
βo = {j} if o = Ôj,� is a group operation, and αo = {Mh} and βo = {j} if o = Oj,h

is an individual operation. Let G = (O,E) be a simple graph where O is the set
of all unit-time operations, and E is a set of edges (o, o′) such that the operations
o and o′ either share a machine, i.e., αo ∩ αo′ �= ∅, or a job, i.e., βo ∩ βo′ �= ∅.
We claim that there is a schedule with Cmax ≤ 2 if and only if the vertices of G

can be colored with at most two colors so that any two vertices connected by and
edge in E are colored with different colors. That is G is 2-colorable, Bondy and
Murty [3]. Suppose G is 2-colorable with colors 1 and 2. Schedule each operation
o ∈ O on machines in αo in the interval [0, 1] if the vertex o is colored with color
1, and in the interval [1, 2] if the vertex o is colored with color 2. The schedule
is feasible since αo ∩ αo′ = ∅ for any two operations o and o′ both scheduled in
the same time interval [0, 1] or [1, 2], i.e., no two such operations share a machine
(each machine processes at most one operation at a time). Moreover, βo ∩ βo′ = ∅
for any two operations o and o′ both scheduled in the same time [0, 1] or [1, 2], i.e.,
no two such operations belong to the same job (each job is processed by at most
one machine, individual, or group, at a time). Therefore, there is a feasible schedule
with Cmax ≤ 2. Now suppose that there is a feasible schedule S with Cmax ≤ 2.
Without loss of generality we may assume that each operation, group, or individual
completes at 1 or 2 in S. Color each o that completes at 1 with color 1, and each o

that completes at 2 with 2. Suppose for contradiction that there are operations o and
o′ connected by an edge (o, o′) ∈ E and colored with the same color i = 1 or 2 by
the coloring. Thus both are scheduled in the same time interval [i − 1, i] in S, and
since the schedule is feasible they must belong to different jobs and must not share
a machine. Therefore (o, o′) /∈ E which gives a contradiction.

Any simple graph is 2-colorable if and only if it is bipartite, Bondy and Murty
[3]. Therefore there is a schedule with Cmax ≤ 2 if and only if the graph G is
bipartite. The test whether G is bipartite or not can be done in O(|O| + |E|) time.
Therefore we just obtained a linear-time algorithm to test if there is a schedule with
Cmax ≤ 2. ��
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4.3 University Timetabling. A Polynomial-Time Algorithm
and Conjecture for Two Groups

The University timetabling studied in this chapter was first introduced by Asratian
and de Werra in [1]. The University timetabling is a generalization of the well-
known, see Gotlieb [13], de Werra [7], and Bondy and Murty [3], class–teacher
timetabling model. In the generalization, in addition to the lectures given by a single
teacher to a single class, there are some lectures given by a single teacher to a
group of classes simultaneously. We look for a minimum number of periods (period
is a unit of time allocated to a lecture and it cannot be fractional in a solution
to the timetabling problem) in which to complete all lectures without conflicts.
The University timetabling model is motivated by the situation where various
study programs share some courses which are common to all programs (classes).
Asratian and de Werra [1] point out that such situation arises at Luleå University
of Technology in Sweden and Ecole Polytechnique Fédérale de Lausanne (EPFL)
in Switzerland. At EPFL for instance groups of three or four classes are created
for courses of mathematics or physics which correspond to group-lectures. Besides
those group-lectures there are individual lectures for courses given to one class
(program) only, [1]. de Werra et al. [8] describe a similar situation at some French
autonomous universities. Later on de Werra et al. [9], and Kis et al. [15] recast the
problem as an equivalent open shop scheduling with multiprocessor operations and
preemptions allowed at integer points only.

For two groups, p = 2, de Werra et al. [9] and Kis et al. [15] observe that
a feasible schedule can be partitioned in the following four parts: part (a) consists
of multiprocessor operations on G1, and single-processor operations or idle time
on the machines in G2; part (b) consists of multiprocessor operations on both
groups G1 and G2; part (c) consists of multiprocessor operations on G2, and single-
processor operations or idle time on the machines in G1; and part (d) consists of
single-processor operations or idle time on all machines, see Fig. 4.4. The parts
(a), (b), (c), and (d) have sizes �(G1) − r , r , �(G2) − r , and w respectively for
some r and w, where �(G�) =

∑
j∈J aj,� for � = 1, 2. Therefore the total of

�(G1) + �(G2) − r + w equals the schedule makespan, and the minimization of
makespan reduces to the minimization of w − r . To simplify the notation we will
often use h instead of Mh when referring to machine Mh ∈ M, and j instead of Jj

when referring to job Jj ∈ J in the remainder of this chapter.
The following integer linear program ILP with variables r , w, and yjh, xj�, for

j ∈ J , h ∈ M, and � = 1, 2 was given in de Werra et al. [9] and Kis et al. [15] to
minimize the makespan for p = 2:

ILP = min(w − r). (4.1)

Subject to
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∑

j

bjh − (�(G2) − r) ≤
∑

j

yjh ≤ w h ∈ G1 (4.2)

∑

j

bjh − (�(G1) − r) ≤
∑

j

yjh ≤ w h ∈ G2 (4.3)

∑

h

yjh ≤ w j ∈ J (4.4)

0 ≤ yjh ≤ bjh h ∈ M j ∈ J (4.5)

∑

j

xj1 = r (4.6)

∑

j

xj2 = r (4.7)

xj1 + xj2 ≤ r j ∈ J (4.8)

0 ≤ xj� ≤ aj� j ∈ J � = 1, 2 (4.9)

∑

h∈G1

(bjh − yjh) + aj2 − xj2 ≤ �(G2) − r j ∈ J (4.10)

∑

h∈G2

(bjh − yjh) + aj1 − xj1 ≤ �(G1) − r j ∈ J (4.11)

all variables r, w, and yjh, xj�, for j ∈ J, h ∈ M, and � = 1, 2 are integers.
(4.12)

The variable yjh represents the amount of j ∈ J on h ∈ M in part (d). The
variable xj� represents the amount of j ∈ J on G�, � = 1, 2, in part (b). The variable
w is the size of (d), and the variable r is the size of (b). The constraints (4.2)–(4.5)
guarantee that the size of part (d) does not exceed w. The constraints (4.6)–(4.9)
guarantee that the size of part (b) equals r . The constraints (4.10)–(4.11) along with
the left hand side inequalities in (4.2) and (4.3) guarantee that the size of part (a)
does not exceed �(G1) − r and that the size of part (c) does not exceed �(G2) − r .

Kis et al. [15] show how to solve the ILP in polynomial time. They further
show that 
LP � ≤ ILP ≤ 
LP �+ 1, where LP is the value of an optimal solution
to the LP -relaxation of ILP, and conjecture that:

Conjecture 4.1 ILP = 
LP �.

We prove this conjecture in this chapter. We follow the proof given
in Kubiak [16]. Observe that G1 = ∅ or G2 = ∅ results in integral
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solutions with makespan �(G2) + max{maxj {∑h bjh}, maxh{∑j bjh}} or
�(G1)+max{maxj {∑h bjh}, maxh{∑j bjh}}, respectively. Thus the conjecture
holds in this case and we assume non-empty G1 and non-empty G2 from now on
in Sects. 4.3–4.9. We begin in the next section by focusing on those solutions to
the LP -relaxation with the value of objective function 
LP � that minimize r . The
goal will be to show that the minimum r must be integer. This will be shown in
Sects. 4.3–4.9. A detailed outline of the proof will be given in Sect. 4.3.2 once
necessary notation and preliminary concepts are introduced there.

4.3.1 LP Relaxation with Minimum r

Let (y∗, x∗, , r∗, w∗) be an optimal solution to the LP -relaxation of ILP. Let w∗ =
�w∗� + λw∗ and r∗ = �r∗� + λr∗ , where 0 ≤ λw∗ < 1 and 0 ≤ λr∗ < 1. Consider
the following linear program �p:

lp = min r.

Subject to

w − r = ⌈
w∗ − r∗⌉ (4.13)

�r∗� ≤ r (4.14)

∑

j

bjh − (�(G2) − r) ≤
∑

j

yjh ≤ w h ∈ G1 (4.15)

∑

j

bjh − (�(G1) − r) ≤
∑

j

yjh ≤ w h ∈ G2 (4.16)

∑

h

yjh ≤ w j ∈ J (4.17)

0 ≤ yjh ≤ bjh h ∈ M j ∈ J (4.18)

∑

j

xj1 = r (4.19)

∑

j

xj2 = r (4.20)

xj1 + xj2 ≤ r j ∈ J (4.21)
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0 ≤ xj� ≤ aj� j ∈ J � = 1, 2 (4.22)

∑

h∈G1

(bjh − yjh) + aj2 − xj2 ≤ �(G2) − r j ∈ J (4.23)

∑

h∈G2

(bjh − yjh) + aj1 − xj1 ≤ �(G1) − r j ∈ J . (4.24)

All entries in the constraint matrix of �p are 0, +1, or −1, thus �p can be solved
by a strongly polynomial algorithm given in Tardos [19]. Let (y, x, r, w) be an
optimal solution to �p. The solution exists since (y∗, x∗, r∗, �w∗� + λr∗) is feasible
for �p if λw∗ ≤ λr∗ , and (y∗, x∗, r∗, 
w∗� + λr∗) is feasible for �p if λw∗ > λr∗ ,
thus �p is feasible and clearly it is also bounded. Observe that �w∗� + λr∗ − r∗=
�w∗� − �r∗� = 
w∗ − r∗� for λw∗ ≤ λr∗ , and 
w∗� + λr∗ − r∗ = 
w∗� − �r∗� =

w∗ − r∗� for λw∗ > λr∗ .

We assume without loss of generality that the solution meets the machine
saturation condition, i.e., the upper and lower bounds in (4.15) and (4.16) are equal.
If the machine saturation is not met by the solution for some machine h, then a job
j (h) with bj (h)h = w − ∑

j bjh + (�(G2) − r), aj (h)1 = aj (h)2 = 0 should be
added to the instance for each such machine to make the solution meet the saturation
condition. Observe that by (4.13) bj (h)h is integral so the extended instance is a
valid instance of the open shop with multiprocessor operations problem. We take
yj (h)h = w −∑

j yjh in the extended solution. Observe that n = |J | ≥ |G1|+ |G2|
for the solutions that meet the saturation condition.

An integral solution (y, x, r, w) to �p is feasible for ILP, and w − r = 
w∗ −
r∗� = 
LP �. Moreover this solution is optimal for ILP since by definition of
LP -relaxation we have LP ≤ ILP for any feasible solution to ILP. This proves
Conjecture 4.1. Therefore it suffices to prove that there is an integral solution to �p.
To that end, we prove the following theorem in Sects. 4.3–4.9.

Theorem 4.3 The r in an optimal solution to �p is integral. Moreover, there is
optimal solution to �p that is integral.

Proof Let s = (y, x, r, w) be an optimal solution to �p. Suppose for a contradiction
that the r in s equals

r = �r� + ε,

where 0 < ε < 1. Thus by (4.13)

w = �w� + ε .

In Sects. 4.3–4.9 we show that such s cannot be optimal which leads to a contradic-
tion and proves the first part of the theorem. We then show that an optimal solution
that is integral can be found in polynomial time. An outline of the proof will be
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given at the end of the next section after we first introduce the necessary notations
and definitions. ��

4.3.2 Preliminaries

Consider the solution s = (y, x, r, w). Let B1 be the set of all jobs j with fractional
xj1, and let B2 be the set of all jobs j with fractional xj2. Clearly both sets are
non-empty because ε > 0. By (4.19) and (4.20) the fractions in B� sum up to i� + ε

(
∑

j∈B�
εj = i� + ε), where i� is a non-negative integer, for � = 1, 2.

A job j is d-tight if

∑

h

yjh = w.

Denote by D the set of all d-tight jobs.
A job j is a-tight if

∑

h∈G2

(bjh − yjh) + aj1 − xj1 = �(G1) − r.

A job j is c-tight if

∑

h∈G1

(bjh − yjh) + aj2 − xj2 = �(G2) − r.

For jobs g and k such that xg1 > 0 and xk2 > 0 define

εr(g, k) =
{

minj∈(B1∪B2)\{g,k}{r − (xj1 + xj2), ε} if (B1 ∪ B2) \ {g, k} �= ∅;
ε if B1 ∪ B2 ⊆ {g, k} .

Observe that jobs g and k with εr(g, k) > 0 can potentially be used to obtain a
solution to lp with smaller r since the reduction of both xg1 and xk2 by some small
enough ε > 0 will leave the resulting constraint (4.21) satisfied. Moreover define

εc(k) =
∑

h∈G1

ykh −
⎛

⎝
∑

h∈G1

bkh + ak2 − xk2 − �(G2) + r

⎞

⎠ ,

εa(g) =
∑

h∈G2

ygh −
⎛

⎝
∑

h∈G2

bgh + ag1 − xg1 − �(G1) + r

⎞

⎠ .
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Let G be a job–machine bipartite graph such that there is an edge between
machine h ∈ M and job j ∈ J if and only if yjh > 0. The edge has multiplicity yjh

(the multiplicity may be fractional). A column I = (MI , εI ) consists of a matching
MI in G that matches all m machines in M with a subset of exactly m jobs in
J that are scheduled simultaneously in the solution s, and its multiplicity εI > 0
(the multiplicity may be fractional). That is the jobs matched in the column I are
processed simultaneously for εI time units. Let JI be the set of all jobs matched
in MI , i.e., JI = {j ∈ J : (j, h) ∈ MI for some h ∈ M}. By definition of
D we require that D ⊆ JI for a column in s. By Gonzalez and Sahni [12], see
also Gabow and Kariv [11] and Sect. 3.7.1 (Birkhoff–von Neumann theorem), part
(d) can be represented by a set of columns d(y, w) = {I1, . . . , Ip}. In the spirit
of Birkhoff–von Neumann theorem, we can recast d(y, w) as follows. Let Y be an
n × m matrix where the entry in row i and column h equals yih, and let PI be an
n × m, 0-1 matrix corresponding to column I = (MI , εI ) ∈ d(y, w). The entry in
row i and column h of PI equals 1 if and only if job i is matched with machine h in
MI . We then can decompose Y as follows:

Y = εI1PI1 + · · · + εIpPIp .

For a set X of columns let l(X) denote the total multiplicity of all columns in
X. We have l(d(y, w)) = w and l(Xj ) = ∑

h yjh ≤ w where Xj is the set of all
columns that match job j ∈ J . Let I1 = (MI1, εI1), . . . , Iq = (MIq , εIq ) be a subset
of q ≥ 1 columns from d(y, w), the set of columns Y = {(MI1, λ1), . . . , (MIq , λq)},
where 0 ≤ λ1 ≤ εI1 , . . . , 0 ≤ λq ≤ εIq and λ1 + . . . + λq = λ is called the interval
of length λ in d(y, w). Let d(y, w) \ Y be the set of all columns in d(y, w) with
columns in Y removed. For each j ∈ J we have l(Zj ) ≤ l(d(y, w) \ Y ) = w − λ

where Zj is the set of all columns that match j in d(y, w) \ Y .
Let u1, . . . , up and l1, . . . , lq be different jobs from J , and I be a column. We

say that I is of type

(∗, u1, . . . , up

∗, l1, . . . , lq

)

if {(u1, h1), . . . , (up, hp)} ⊆ MI for some machines h1, . . . , hp in G1, and
{(l1,H1) , . . . , (lq ,Hq)} ⊆ MI for some machines H1, . . . , Hq in G2. The asterisk
denotes any matching for other jobs. For convenience, we sometimes use the
following notation:

(∗, U

∗, L

)

,

where U = {u1, . . . , up} and L = {l1, . . . , lq} instead. By definition if p = 0 or
q = 0, then the asterisk alone denotes any matching on G1 or G2, respectively. We
extend this notation for convenience as follows. Let u and l be different jobs from
J , and I be a column. We say that I is of type
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Fig. 4.4 An example of solution s = (y, x, 3
2 , 7

2 ) and its corresponding schedule S (parts (a), (d),
and (c))

(∗, u

∗, l

)

if (u, h) /∈ MI for any machine h ∈ G1, and (l, H) /∈ MI for any machine H ∈ G2.
The concepts just introduced are illustrated in Fig. 4.4. The makespan of S

equals 8, and the schedule S is clearly the shortest possible. The instance itself
consists of n = 10 jobs and m = 10 machines, G1 = {M1,M2,M3,M4,M5} and
G2 = {M6,M7,M8,M9,M10}. The processing times of operations can easily be
obtained from S, for example, for job J1 we have b13 = 4, b17 = 1, a12 = 1 and all
remaining operations have processing time 0, and for job J9 we have b91 = b92 =
b93 = b95 = b98 = b99 = 1 and all remaining operations have processing time 0.
The solution s can also be easily obtained from S, for example, for job J1 we have
y13 = 3, y17 = 1

2 , x12 = 1
2 and all remaining variables are set to 0, and for job J9 we

have y91 = y92 = y93 = y98 = y99 = 1
2 and y95 = 1 all remaining variables are set

0. In S: w = 7
2 , r = 3

2 , ε = 1
2 , i1 = i2 = 1, B1 = {J1, J2, J3}, B2 = {J6, J7, J8},

and εr(g, k) = 1
2 for each pair g ∈ B1 and k ∈ B2. All jobs are d-tight; jobs

J1, J2, J3, J8, and J9 are c-tight; jobs J6, J7, and J8 are a-tight. The match-
ing M = {(M1, J3), (M2, J2), (M3, J1), (M4, J8), (M5, J6), (M6, J5), (M7, J4),

(M8, J9), (M9, J7), (M10, J10)}, and the multiplicity 1
2 make up a column (M, 1

2 )

which is the schedule S in the interval [ 3
2 , 2]. All other details of s and S should

now be clear from Fig. 4.4. We show later in Fig. 4.5 that s is not optimal for �p

since �p admits solution with r = 1 and the same makespan 8.
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4.3.3 Outline of the Proof

We now give a high level informal overview of the proof of the conjecture before
moving to its details in the remaining sections. The proof is by contradiction. The
solution s defines four open shops, one for each part (a), (b), (c), and (d). The
bipartite graph G with the edge multiplicities yjh obtained from the solution s
defines an m-machine open shop with operation processing times equal yjh for part
(d), we call this part d-open shop. The groups G1 and G2 define a two-machine
open shop with operation processing times xj1 and xj2 for part (b), we call this
part b-open shop. The group G1 and the individual machines in G2 make up a
(|G2| + 1)-machine open shop with operation processing times bjh − yjh on the
individual machines in G2 and aj1 − xj1 on the group G1 for part (a). Similarly,
the group G2 and individual machines in G1 make up a (|G1| + 1)-machine open
shop with operation processing times bjh − yjh on the individual machines in G1
and aj2 − xj2 on the group G2 for part (c). We call these two a-open shop and c-
open shop, respectively. All four open shops are interrelated since they share jobs,
individual machines, or groups, thus a local change to one affects the other open
shops as well. Notice that all open shops are defined by the solution s rather than
directly by the problem instance which normally is the case for open shops.The
open shops for (a), (d), and (c) are shown in Fig. 4.4 for illustration. The makespan
of each open shop is fractional, both r and w are fractional in s; however, the total
makespan is integral since w − r is integral in s.

Sections 4.3.4 and 4.4 give a matching-based approach to characterize those
columns in d-open shop that cannot occur in s with ε > 0 since their presence
would contradict the optimality of r . Namely, those columns, if occurred in s, could
be used along with the xj1, xj2 to find another feasible solution with parts (b) and
(d) shorter by ε, 0 < ε ≤ ε, each, and parts (a) and (c) longer by ε, 0 < ε ≤ ε,
each so that the total makespan does not change. More precisely the approach uses
the column matchings in d-open shop on G1 and G2 separately; this structure is
reflected in the notation for the column type, in order to match the former with some
xj2 and the latter with some xj1 so that we get a feasible solution with the same
makespan yet d-open shop shorter by ε. The matching-based approach leads to the
characterizations of the d-open shop given in Sects. 4.4.1 and 4.5, and the b-open
shop in Sect. 4.4.2; however, it is insufficient to prove the conjecture. Nevertheless
both characterizations are key for the subsequent sections.

Therefore we introduce a network flow-based approach to shorten the d open
shop makespan from w to �w� and the b open shop makespan from r to �r� in
order to obtain a feasible solution with the same total makespan. We show that
this approach works by constructing two network flow problems for d-open shop,
one for the case with

∑
j∈B1

εj = ε or
∑

j∈B2
εj = ε in Sect. 4.6, and the other

for the case with
∑

j∈B1
εj = i1 + ε and

∑
j∈B2

εj = i2 + ε for some positive
integers i1 and i2 in Sect. 4.7. The network flow problems have integral lower and
upper bounds on the arc flows which means they admit integral flows provided that
feasible flows exist at all. To that end we show how to construct a feasible flow for
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each network from the solution s in Sects. 4.6 and 4.8. The construction relies on
the characteristics of d-open shop given in Sects. 4.4.1 and 4.5. The characteristics
naturally focus on the sets B1 and B2 in s since any change to the four open shops
needs to involve the changes to the jobs in B1 ∪ B2. That is not all since the integral
solutions to the network flow problems give integral solutions to the d-open shop
only. Those solutions need to be subsequently extended to the other three open shops
while preserving the whole solution feasibility and the total makespan. This is also
done in Sects. 4.6 and 4.8. The extension relies on characteristics of the b-open
shop proved in Sect. 4.4.2 where we prove that B1 ∩ B2 = ∅ in s, i.e., xj1 and xj2
cannot be both fractional, and Sect. 4.5 where we prove that the product xj1xj2 = 0
for each job j ∈ J in s except for the case where B1 = {j} or B2 = {j}. The
characteristics make it possible to find integral feasible solutions for the b-, c-, and
a-open shops consistent with the network-flow solutions to the d-open shop. Finally
we show in Sect. 4.9 that the network-flow based approach leads to contradiction
since it shortens r assumed to be the shortest possible. This proves the conjecture.

4.3.4 Columns Absent from d(y,w) in s

In this section we show that for two different jobs g and k such that xg1 > 0 and
xk2 > 0 certain columns or subsets of columns must be missing from d(y, w) if
ε > 0. Though these results are contingent on εr(g, k) > 0, we show that this
condition often holds, for instance in Sect. 4.4.2 we show that this inequality holds
for each pair g ∈ B1 and k ∈ B2.

Let g and k be two different jobs such that xg1 > 0 and xk2 > 0. A (g, k)-
feasible semi-matching in G is a set of edges E = E1 ∪ E2 of G of cardinality
m = |G1| + |G2| such that

1. E1 = {(j, h) ∈ E : h ∈ G1} and E2 = {(j, h) ∈ E : h ∈ G2} are matchings.
2. There are h ∈ M and (j, h) ∈ E for each j ∈ D.
3. If εa(g) = 0, then (g, h) /∈ E2 for any h ∈ G2.
4. If εc(k) = 0, then (k, h) /∈ E1 for any h ∈ G1.

If E is a matching, then a (g, k)-feasible semi-matching in G is called a (g, k)-
feasible matching in G.

We define solution (y(E), x(g, k), r(g, k), w(g, k), ε) for jobs g, k, and a (g, k)-
feasible semi-matching E, where

ε =

⎧
⎪⎪⎨

⎪⎪⎩

ε′ if εa(g) = 0 and εc(k) = 0 ;
min{ε′, εa(g)} if εa(g) > 0 and εc(k) = 0 ;
min{ε′, εc(k)} if εa(g) = 0 and εc(k) > 0 ;

min{ε′, εa(g), εc(k)} if εa(g) > 0 and εc(k) > 0 ;

(4.25)

and
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ε′ = min{εr(g, k), xg1, xk2, min
(j,h)∈E

{yjh}, min
j∈J\D{w −

∑

h

yjh}} , (4.26)

as follows:

yjh(E) =
{

yjh − ε if (j, h) ∈ E ;
yjh otherwise ; (4.27)

xj1(g, k) =
{

xg1 − ε if j = g ;
xj1 if j �= g; (4.28)

xj2(g, k) =
{

xk2 − ε if j = k ;
xj2 if j �= k; (4.29)

r(g, k) = r − ε; (4.30)

w(g, k) = w − ε . (4.31)

We have the following lemma.

Lemma 4.1 Let g and k be two different jobs such that xg1 > 0 and xk2 > 0. If
εr(g, k) > 0, then no (g, k)-feasible semi-matching E in G exists.

Proof Details can be found in Kubiak [16]. ��
Lemma 4.2 Let g and k be two different jobs such that xg1 > 0 and xk2 > 0. If

εr(g, k) > 0, then no column of type
(∗,k
∗,g

)
exists in d(y, w).

Proof If such a column I = (MI , εI ) exists, then MI is (g, k)-feasible semi-
matching E in G which contradicts Lemma 4.1. ��

We now consider another forbidden configuration of columns in d(y, w). Let
I1 = (MI1 , εI1) and I2 = (MI2, εI2) be two columns. Let g, k, a, and b be four
different jobs such that xg1 > 0, xk2 > 0, xa1 > 0, and xb2 > 0. Define solution
(y(I1, I2), x′, r ′, w′, ε), where

ε = min{εr(g, k), εr (a, b), xg1, xa1, xb2, xk2, εI1 , εI2 , min
j∈J\D{w −

∑

h

yjh}}
(4.32)

as follows:

yjh(I1, I2) =

⎧
⎪⎪⎨

⎪⎪⎩

yjh − ε if (j, h) ∈ MI1 and (j, h) ∈ MI2 ;
yjh − ε/2 if (j, h) ∈ MI1 and (j, h) /∈ MI2 ;
yjh − ε/2 if (j, h) /∈ MI1 and (j, h) ∈ MI2 ;

yjh otherwise ;
(4.33)
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x′
j1 =

{
xj1 − ε/2 if j = g or j = a ;

xj1 otherwise ; (4.34)

x′
j2 =

{
xj2 − ε/2 if j = k or j = b ;

xj2 otherwise ; (4.35)

r ′ = r − ε; (4.36)

w′ = w − ε . (4.37)

We have the following lemma

Lemma 4.3 Let g, k, a, and b be four different jobs such that xg1 > 0, xk2 > 0,
xa1 > 0, and xb2 > 0. If εr(g, k) > 0 and εr(a, b) > 0, then a column of type(∗,a,b,g,k

∗
)
does not exist in d(y, w) or a column of type

( ∗
∗,a,b,k,g

)
does not exist in

d(y, w).

Proof Details can be found in Kubiak [16]. ��
The following two corollaries follow immediately from the proof of Lemma 4.3.

Corollary 4.1 Let g, k, and a be three different jobs such that xg1 > 0, xk2 > 0,
and xa1xa2 > 0. If εr(g, a) > 0 and εr(a, k) > 0, then a column of type

(∗,a,g,k
∗

)

does not exist in d(y, w) or a column of type
( ∗
∗,a,k,g

)
does not exist in d(y, w).

Corollary 4.2 Let g and k be two different jobs such that xg1xg2 > 0, and xk1xk2 >

0. If εr(g, k) > 0, then a column of type
(∗,g,k

∗
)
does not exist in d(y, w) or a column

of type
( ∗
∗,k,g

)
does not exist in d(y, w).

4.4 Pairs of Columns Absent from d(y,w) in s

Let g and k be two different jobs such that xg1 > 0, xk2 > 0. Let Ik = (MIk
, εIk

) be

a column of type
(∗,k

∗
)
, and Ig = (MIg , εIg ) a column of type

( ∗
∗,g

)
. Without loss of

generality we assume εIk
= εIg = ε. Let G(Ig, Ik) = (MIg ∪MIk

) be a job–machine
bipartite multigraph, where an edge connects a machine h and a job j if and only
if (j, h) ∈ MIg ∪ MIk

. The degree of each machine-vertex in G(Ig, Ik) is exactly 2
and the degree of each job-vertex in G(Ig, Ik) is either 1 or 2. Thus, G(Ig, Ik) is a
collection of connected components each of which is either a job–machine path or
a job–machine cycle. We have the following lemma for Ik and Ig .

Lemma 4.4 If Ik, Ig ∈ d(y, w), and εr(g, k) > 0, then Ik is of type
( ∗
∗,k,g

)
and

Ig is of type
(∗,k,g

∗
)
and both k and g belong to the same connected component of

G(Ig, Ik).
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Proof Column Ik either has no job k on any machine (we say Ik is k-free) or it is
of type

( ∗
∗,k

)
. In the former case k is either missing from G(Ig, Ik) or it is of degree

1 in G(Ig, Ik). In the latter case Ik is either of type
( ∗
∗,k,g

)
or of type

(∗,g
∗,k

)
or it is

g-free. Since εr(g, k) > 0, by Lemma 4.2 Ik cannot be of type
(∗,g
∗,k

)
nor can Ik be

g-free. Thus Ik is of type
( ∗
∗,k,g

)
or Ik is k-free. In the latter case, by Lemma 4.2,

Ig must be of type
(∗,k
∗,g

)
. A similar argument shows that Ig is of type

(∗,k,g
∗

)
or Ig is

g-free. In the latter case, by Lemma 4.2, Ik must be of type
(∗,k
∗,g

)
. Thus we end up

with the following four cases:

1. Ik is of type
( ∗
∗,k,g

)
, and Ig is of type

(∗,k,g
∗

)
;

2. Ik is of type
( ∗
∗,k,g

)
, and Ig is g-free. By Lemma 4.2, Ig cannot be k-free. Hence

k is of degree 2 and g is of degree 1 in G(Ig, Ik);
3. Ik is k-free, and Ig is of type

(∗,k,g
∗

)
. By Lemma 4.2, Ik cannot be g-free. Hence

g is of degree 2 and k is of degree 1 in G(Ig, Ik);
4. Ik is k-free and is of type

( ∗
∗,g

)
, and Ig is g-free and is of type

(∗,k
∗

)
. Hence both

g and k are of degree 1 in G(Ig, Ik).

In Case (2), let g and k be in the same connected component P of G(Ig, Ik). Then
P is a job–machine path

g, h1, j1, . . . hi, k, hi+1, ji+1, . . . , h�, j�,

where h1 ∈ G2 and {hi, hi+1} ∩ G2 �= ∅. If hi ∈ G2, then match the jobs with the
machines as follows:

M = {(h1, j1), . . . , (hi−1, ji−1), (hi, k), (hi+1, ji+1), . . . , (h�, j�)}

in the component P . If hi ∈ G1, then there is a job ji∗ ∈ {j1, . . . , ji−1} such that
hi∗ ∈ G2 and hi∗+1 ∈ G1. Then match the jobs with the machines as follows:

M = {(h1, j1), . . . , (hi∗−1, ji∗−1), (hi∗ , ji∗), (hi∗+1, ji∗),

. . . , (hi, ji−1), (hi+1, k), . . . , (h�, j�−1)}

in the component P . Thus each machine in P is matched exactly once, each job of
degree 2 in P is matched at least once (actually each such job is matched exactly
once except job ji∗ that is matched exactly twice: with hi∗ ∈ G2 and hi∗+1 ∈
G1), g is omitted from the matching, and k is matched with a machine in G2. The
matching can easily be extended by adding matchings from the remaining connected
components of G(Ig, Ik). The result is a (g, k)-feasible semi-matching in G(Ig, Ik).
We proceed in a similar fashion in Case (3) if k and g are in the same component
P of G(Ig, Ik). In Case (4) if g and k are in the same connected component P of
G(Ig, Ik), then P is a job–machine path
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g, h1, j1, . . . hi, k,

with h1 ∈ G2 and hi ∈ G1. Then there is job ji∗ ∈ {j1, . . . , ji−1} such that hi∗ ∈ G2
and hi∗+1 ∈ G1. Match the jobs with the machines as follows:

M = {(h1, j1), . . . , (hi∗−1, ji∗−1), (hi∗ , ji∗), (hi∗+1, ji∗), . . . , (hi, ji−1)}

in the component P . Thus each machine in P is matched exactly once, each job of
degree 2 in P is matched at least once (actually each such job is matched exactly
once except job ji∗ that is matched exactly twice: with hi∗ ∈ G2 and hi∗+1 ∈ G1), g

and k are omitted from the matching. The matching can easily be extended by adding
matchings from the remaining connected components of G(Ig, Ik). The result is a
(g, k)-feasible semi-matching in G(Ig, Ik).

Let us now assume that k is in connected component Ck and g is in a connected
component Cg and Ck �= Cg . We have

1. In Case (1), k is of degree 2 and both on a machine in G1 and on a machine in G2
in Ck , and g is of degree 2 and both on a machine in G1 and on a machine in G2
in Cg .

2. In Case (2), k is of degree 2 and on h ∈ G2 in Ck , and g is of degree 1 in Cg .
3. In Case (3), g is of degree 2 and on h ∈ G1 in Cg , and k is of degree 1 in Ck .
4. In Case (4), g is of degree 1 in Cg , and k is of degree 1 in Ck .

A matching for Ck is selected so that k is matched with the machine in G2, if
k is of degree 2, or omitted from the matching, if k is of degree 1. Similarly a
matching for Cg is selected so that g is matched with the machine in G1, if g is
of degree 2, or omitted from the matching if g is of degree 1. The matching can
easily be extended by adding matchings from the remaining connected components
of G(Ig, Ik). The result is a (g, k)-feasible semi-matching in G(Ig, Ik). Thus in all
cases, except Case (1) with both k and g being in the same connected component of
G(Ig, Ik), we showed how to obtain (g, k)-feasible semi-matching M in G(Ig, Ik).
This however contradicts Lemma 4.1 since Ik, Ig in d(y, w) can be replaced by
columns I ′ = (M, ε) and I ′′ = ((MIg ∪MIk

) \M, ε) resulting into another feasible
solution to �p with the same value r of objective function but with a (g, k)-feasible
semi-matching M . ��

4.4.1 The a-, c-, and d-Tightness in s

We show that each job in B1 is both a-tight and d-tight, and each job in B2 is both
c-tight and d-tight. We begin by showing the a- and c- tightness.

Lemma 4.5 Each job g ∈ B1is a-tight and
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∑

h∈G2

ygh < w, (4.38)

and each job k ∈ B2 is c-tight and

∑

h∈G1

ykh < w. (4.39)

Proof Details can be found in Kubiak [16]. ��
We now prove d-tightness for each job in B1 ∪ B2.

Theorem 4.4 Each job in B1 ∪ B2 is d-tight.

Proof By (4.38) in Lemma 4.5, there is a column Ig of type
( ∗
∗,g

)
in d(y, w) for

each g ∈ B1. By (4.39) in Lemma 4.5, there is a column Ik of type
(∗,k

∗
)

in d(y, w)

for each k ∈ B2.
Consider job g with the largest xi1 + xi2 among the jobs i ∈ B1 ∪ B2. Suppose

g ∈ B1. If g ∈ B2\B1, then the proof proceeds in a similar way and thus it will
be omitted. Take any k ∈ B2 \ {g} or k = g if B2 = {g}. Observe that by our
choice of g, if xi1 + xi2 = r for some i ∈ (B1 ∪ B2) \ {g, k}, then xg1 + xg2 = r .
Therefore {k, i, g} ⊆ B1 ∪ B2 which leads to a contradiction by (4.19) and (4.20) if
k �= g. Otherwise, if k = g, then by (4.20) B1 ∪ B2 = {i, g} and g ∈ B1 ∩ B2. Thus
i ∈ B1 ∩ B2 and we get contradiction since i /∈ B2. Thus εr(g, k) > 0.

If k is not d-tight, then there is a column I of type
(∗,k

∗,k

)
in d(y, w). Thus, if

I �= Ig , then we get a contradiction with Lemma 4.4 applied to I and Ig . Otherwise,

if I = Ig , then I is of type
(∗,k
∗,g

)
which contradicts Lemma 4.2. Similarly, if g is

not d-tight, then there is a column I of type
(∗,g
∗,g

)
in d(y, w). Thus, if I �= Ik , then

we get a contradiction with Lemma 4.4 applied to Ik and I . Otherwise, if I = Ik ,

then I is of type
(∗,k
∗,g

)
which contradicts Lemma 4.2. Therefore the theorem holds

for each job in {g} ∪ B2. Moreover, there is a column I ′
g of type

(∗,g
∗

)
. Otherwise

all columns in d(y, w) are of type
(∗,g

∗
)

and thus Ik is of type
(∗,k
∗,g

)
for any k ∈ B2

which contradicts Lemma 4.2.
It remains to prove the theorem for each a ∈ B1 \ {g} whenever B1 \ {g} �= ∅.

Observe that if xg1 + xg2 = r , then xg2 > 0. Otherwise B1 = {g} and we get a
contradiction. Take a job k = g, if xg1+xg2 = r , or any job k ∈ B2, if xg1+xg2 < r .
W have εr(a, k) > 0. This holds since there is no i ∈ (B1 ∪ B2) \ {a, k} that
meets xi1 + xi2 = r . Suppose for a contradiction that xi1 + xi2 = r for some
i ∈ (B1 ∪B2)\{a, k}. Then xk1 +xk2 = r . Since a �= k, we have {k, i, a} ⊆ B1 ∪B2
which leads to a contradiction by (4.19) and (4.20).

Thus if a is not d-tight, then there is a column I of type
(∗,a
∗,a

)
in d(y, w). Then,

if εr(a, k) > 0 for k ∈ B2, we have either I �= Ik which leads a contradiction with

Lemma 4.4 applied to Ik and I or I = Ik which implies that I is of type
(∗,k
∗,a

)
which
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contradicts Lemma 4.2. If εr(a, k) > 0 for k /∈ B2, then k = g. Thus, if I �= I ′
g , then

we get a contradiction with Lemma 4.4 applied to I and I ′
g . Otherwise, if I = I ′

g ,

then I is of type
(∗,g
∗,a

)
which contradicts Lemma 4.2. ��

For j ∈ B1 ∪ B2 define

αj =
∑

h∈G1

yjh and βj =
∑

h∈G2

yjh.

The following two lemmas relate the fractions of xj1, xj2, αj , and βj for j ∈
B1 ∪ B2. The lemmas follow from Lemmas 4.5 and Theorem 4.4 and will prove
useful in the remainder of the proof.

Lemma 4.6 For g ∈ B1, let

xg1 = ⌊
xg1

⌋ + εg , βg = ⌊
βg

⌋ + λg, and αg = ⌊
αg

⌋ + ωg,

where 0 ≤ λg , ωg < 1 , 0 < εg < 1 for g ∈ B1. Then, ωg = εg , and λg = ε − εg

for ε ≥ εg , and λg = 1 − (εg − ε) for ε < εg .

Proof Details can be found in Kubiak [16]. ��
Lemma 4.7 For k ∈ B2, let

xk2 = �xk2� + εk and βk = �βk� + λk and αk = �αk� + ωk,

where 0 ≤ λk , ωk < 1 , 0 < εk < 1 for a job k ∈ B2. Then, λk = εk , and
ωk = ε − εk for ε ≥ εk , and λk = 1 − (εk − ε) for ε < εk .

Proof The proof is similar to the proof of Lemma 4.6 and will be omitted. ��

4.4.2 The Absence of Crossing Jobs in s

Each job k ∈ B1 ∩ B2 is called crossing. We call a job a ∈ B1 ∪ B2 an e-crossing
job, if it meets the following conditions:

• 0 < xa2 and 0 < xa1.
• Both B1 \ {a} and B2 \ {a} are not empty.

We have the following.

Theorem 4.5 Each crossing job is e-crossing.

Proof Suppose for a contradiction that job a is crossing but not e-crossing. By
Theorem 4.4 job a is d-tight and thus
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∑

h∈G2

yah +
∑

h∈G1

yah = w. (4.40)

By Lemma 4.5 job a is both a-tight and c-tight, thus

aa1 − xa1 +
∑

h∈G2

(bah − yah) = �(G1) − r (4.41)

and

aa2 − xa2 +
∑

h∈G1

(bah − yah) = �(G2) − r. (4.42)

By summing up (4.40), (4.41), and (4.42) side by side we obtain

aa1 + aa2 +
∑

h

bah − �(G1) − �(G2) + r − w = −r + xa1 + xa2 . (4.43)

Since a is not e-crossing, B1 \ {a} = ∅ or B2 \ {a} = ∅. Thus, xa1 = �xa1� + ε or
xa2 = �xa2� + ε. Therefore, the left hand side of (4.43) is integral but its right hand
side is fractional since both xa1 and xa2 are fractional. This leads to contradiction
and thus the theorem holds. ��
Theorem 4.6 For each e-crossing job a we have xa1 + xa2 < r .

Proof By contradiction. Let a be e-crossing with xa1 + xa2 = r . Let g ∈ B1 \ {a}
and k ∈ B2 \ {a}. By Theorem 4.4 and Lemma 4.5 there are columns Ik of type( ∗
∗,k

)
and Ig of type

(∗,g
∗

)
in d(y, w). By Theorem 4.4, Ik is either of type

( ∗
∗,k,g

)
or

of type
(∗,g
∗,k

)
, and Ig is either of type

(∗,g,k
∗

)
or of type

(∗,g
∗,k

)
. Suppose that Ik or Ig

is of type
(∗,g
∗,k

)
, then g �= k. Since a is e-crossing, by Theorem 4.4 this column, say

I , is either of type
(∗,a,g

∗,k

)
or of type

( ∗,g
∗,a,k

)
. The former is of type

(∗,k
∗,a

)
and the latter

of type
(∗,a
∗,g

)
. Since g �= k, a is the only job i with xi1 + xi2 = r . Thus εr(a, k) > 0

and εr(g, a) > 0. Therefore we get a contradiction with Lemma 4.2 which implies
that Ig is of type

(∗,g,k
∗

)
and Ik is of type

( ∗
∗,k,g

)
(observe that we may now have

g = k). Since a is e-crossing, by Theorem 4.4 we have Ig of type
(∗,a,g,k

∗
)

or of

type
(∗,g,k

∗,a

)
, and Ik is of type

( ∗
∗,a,k,g

)
or of type

( ∗,a
∗,k,g

)
. The Ig of type

(∗,g,k
∗,a

)
is of

type
(∗,a
∗,g

)
, and the Ik of type

( ∗,a
∗,k,g

)
is of type

(∗,k
∗,a

)
. Moreover, if g �= k, then a is

the only job i with xi1 + xi2 = r , and if k = g, then either xk1 + xk2 = r or a is
the only job i with xi1 + xi2 = r . Thus εr(a, k) > 0 and εr(g, a) > 0. Therefore,
Ig being of type

(∗,g,k
∗,a

)
or Ik being of type

( ∗,a
∗,k,g

)
contradicts Lemma 4.2. Thus it

remains to consider Ig of type
(∗,a,g,k

∗
)

and Ik is of type
( ∗
∗,a,k,g

)
. This leads to a

contradiction by Corollaries 4.1 and 4.2 since εr(g, a) > and εr(a, k) > 0. The last
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two inequalities clearly hold if a is the only job i with xi1 + xi2 = r , otherwise
g = k and k is the other job i with xi1 + xi2 = r . ��

The following corollary follows immediately from the proof of Theorem 4.6
since the assumption xi1 + xi2 < r for each i ∈ B1 ∪ B2 implies εr(g, k) > 0
for each g ∈ B1 and k ∈ B2.

Corollary 4.3 If xi1 + xi2 < r for each i ∈ B1 ∪ B2, then no job is e-crossing.

We are now ready to prove two main results of this section.

Theorem 4.7 No crossing job exists.

Proof By contradiction. Suppose a is a crossing job. Take a crossing job with the
largest xa1+xa2. By Theorem 4.5 a is e-crossing, and by Theorem 4.6 xa1+xa2 < r .
By Corollary 4.3 xi1 +xi2 = r for some i ∈ B1 ∪B2. Thus i �= a. By Theorem 4.6 i

is not e-crossing. Thus (xi1 = 0 or xi2 = 0) which implies ( B1 = {i} or B2 = {i}).
This leads to contradiction since a ∈ B1 ∩ B2 and a �= i. ��
Theorem 4.8 For each g ∈ B1 and k ∈ B2, εr(g, k) > 0.

Proof Suppose for a contradiction that εr(g, k) = 0 for some g ∈ B1 and k ∈ B2.
By Theorem 4.7, g �= k. Then r = xj1 + xj2 for some j ∈ (B1 ∪ B2) \ {g, k}.
By Theorem 4.7, j is not crossing thus {j, g} ⊆ B1 and j /∈ B2, or {j, k} ⊆ B2
and j /∈ B1. Suppose the former, the proof for the latter is similar and thus will be
omitted. We have xj2 integral. However, by Theorem 4.6 j is not e-crossing. Hence
xj2 = 0. Thus r = xj1 and B1 = {j} which gives a contradiction. ��

4.5 Characterization of d(y,w) in s

We give a characterization of d(y, w) that will be used in the remainder of the proof.

Lemma 4.8 For each g ∈ B1 and k ∈ B2 , any column I in d(y, w) is either of
type

(∗,k
∗,g

)
or of type

( ∗
∗,k,g

)
or of type

(∗,k,g
∗

)
. Moreover, for each g ∈ B1 and k ∈ B2

there is Ik of type
( ∗
∗,k,g

)
, and there is Ig of type

(∗,k,g
∗

)
in d(y, w). Finally, if there

is i ∈ B1 ∪ B2 such that xi1 + xi2 = r , then either B1 = {i} or B2 = {i}.
Proof Let g ∈ B1 and k ∈ B2. By Lemma 4.5 and Theorem 4.4 each column I in
d(y, w) is either of type

(∗,k
∗

)
or of type

( ∗
k,∗

)
. By Theorem 4.4 I is either of type

(∗,k,g
∗

)
or of type

(∗,k
∗,g

)
, or of type

( ∗
∗,g,k

)
or of type

(∗,g
∗,k

)
. By Theorem 4.8 we have

εr(g, k) > 0 and thus by Lemma 4.2 I is not of type
(∗,g
∗,k

)
. This proves the first part

of the lemma. Again, by Lemma 4.5 and Theorem 4.4 there are columns Ik of type( ∗
∗,k

)
and Ig of type

(∗,g
∗

)
in d(y, w). By Theorem 4.4 Ik is either of type

( ∗
∗,k,g

)
or of

type
(∗,g
∗,k

)
, and Ig is either of type

(∗,g,k
∗

)
or of type

(∗,g
∗,k

)
. By Theorem 4.8 we have

εr(g, k) > 0 and thus by Lemma 4.2 neither Ik nor Ig is of type
(∗,g
∗,k

)
. This proves

the second part of the lemma.
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If there is i ∈ B1 ∪B2 such that xi1 +xx2 = r . By Theorem 4.6 i is not e-crossing
thus xi1 = 0 or xi2 = 0 or B1 \ {i} = ∅ or B2 \ {i} = ∅. In all the cases, either
B1 = {i} or B2 = {i}. This completes the proof. ��
Theorem 4.9 If there is a job j such that xj1xj2 > 0, then B1 = {j} or B2 = {j}.
Proof Let xj1xj2 > 0 for a job j . Without loss of generality let j be a job with the
largest value of xj1 + xj2 among jobs with xj1xj2 > 0. Suppose for a contradiction
that B1 \ {j} �= ∅ and B2 \ {j} �= ∅. Thus if j ∈ B1 ∪ B2, then j is e-crossing. By
Theorem 4.6, xj1 + xj2 < r . Take g ∈ B1 \ {j} and k ∈ B2 \ {j}. If j /∈ B1 ∪ B2,
then both xj1 and xj2 are integral. Thus xj1 + xj2 < r . Take g ∈ B1 and k ∈ B2.
Thus we can pick three jobs g ∈ B1, k ∈ B2, and j such that xj1 + xj2 < r and
g �= j and k �= j . Moreover, by Theorem 4.7 we have g �= k. We now show that
εr(g, j) > 0 and εr(j, k) > 0. To prove the former inequality we observe that by
our choice of job j for any job i ∈ B1 ∪ B2 different from g and j , and such that
xi1 + xi2 = r must be either r = xi1 or r = xi2. Otherwise xi1xi2 > 0, thus i would
have been chosen instead of j . The proof of the latter inequality follows by a similar
argument. Thus by Corollary 4.1 a column of type

(∗,j,g,k
∗

)
does not exist in d(y, w)

or a column of type
( ∗
∗,j,k,g

)
does not exist in d(y, w). Suppose the former holds,

then by Lemma 4.8 a column of type
(∗,g,k

∗
)

exists in d(y, w). This column is either

of type
(∗,g,k

∗,j

)
or of type

(∗,j̄ ,g,k

∗.j̄

)
which implies that the column is of type

(∗,j̄
∗,ḡ

)
. This

however contradicts Lemma 4.2. For the latter, we prove in a similar fashion that a

column of type
(∗,k̄

∗,j̄

)
exists in d(y, w) which contradicts Lemma 4.2. Therefore we

get a contradiction which proves the theorem. ��

4.5.1 The Overlap

An overlap of B1 is a column I = (MI , ε) ∈ d(y, w) that matches at least two
different jobs from B1 with machines in G1. Similarly, an overlap of B2 is a column
I = (MI , ε) ∈ d(y, w) that matches at least two different jobs from B2 with
machines in G2.

Lemma 4.9 An overlap of B1 and an overlap of B2 do not occur simultaneously.

Proof Suppose for contradiction that both overlaps occur simultaneously. Then
there are different jobs a and g both from B1 done on G1 in a column Ia,g ∈ d(y, w)

of type
(∗,a,g

∗
)
, and different jobs b and k both from B2 done on G2 in a column

Ib,k ∈ d(y, w) of type
( ∗
∗,b,k

)
. By Theorem 4.7 there are no crossing jobs thus all

four jobs a, g, b, and k are different. On the other hand for g ∈ B1 and k ∈ B2, by
Lemma 4.8, any column I in d(y, w) is either of type

(∗,k
∗,g

)
or of type

( ∗
∗,k,g

)
or of

type
(∗,k,g

∗
)

. Thus Ia,g must be of type
(∗,a,k,g

∗
)
. For a ∈ B1 and b ∈ B2, again by

Lemma 4.8, any column I in d(y, w) is either of type
(∗,b
∗,a

)
or of type

( ∗
∗,b,a

)
or of
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type
(∗,b,a

∗
)
. Thus Ia,g must be of type

(∗,a,b,g
∗

)
. Therefore Ia,g is of type

(∗,a,b,k,g
∗

)
.

We show similarly that Ib,k is of type
( ∗
∗,a,b,k,g

)
. This, by Theorem 4.8, contradicts

Lemma 4.3 and proves the lemma. ��

4.6 Integral Optimal Solution to �p for
∑

j∈B1
εj = ε or

∑
j∈B2

εj = ε

In this section we prove that an integral optimal solution for �p exists if ε > 0 and∑
j∈B1

εj = ε or
∑

j∈B2
εj = ε. We first prove this assuming

∑
j∈B2

εj = ε in s
throughout this section. The proof for

∑
j∈B1

εj = ε proceeds in a similar fashion
and thus will be omitted.

Consider the following network-flow problem F with variables tjh for j and
h ∈ G2, and zjh for j and h ∈ G1. The r , w, and xj� for j ∈ J and � = 1, 2 in F
are constants obtained from the solution s = (y, x, r, w).

F = max
∑

j∈B1

∑

h∈G2

tjh.

Subject to

∑

j

tjh = �w � h ∈ G2 (4.44)

∑

h∈G2

bjh + aj1 − �(G1) + �r� − xj1 ≤
∑

h∈G2

tjh j ∈ J \ B1 (4.45)

∑

h∈G2

bjh + aj1 − �(G1) + �r� − 
xj1� ≤
∑

h∈G2

tjh

≤
∑

h∈G2

bjh + aj1 − �(G1) + �r� − �xj1� j ∈ B1 (4.46)

∑

j

zjh = �w� h ∈ G1 (4.47)

∑

h∈G1

bjh + aj2 − �(G2) + �r� − �xj2� ≤
∑

h∈G1

zjh j ∈ J (4.48)

0 ≤ tjh ≤ bjh h ∈ M j ∈ J (4.49)

0 ≤ zjh ≤ bjh h ∈ M j ∈ J (4.50)
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∑

h∈G1

zjh +
∑

h∈G2

tjh ≤ �w� j ∈ J . (4.51)

Lemma 4.10 There is a feasible solution to F with value

∑

j∈B1

∑

h∈G2

bjh −
∑

j∈J\B1

(aj1 − xj1) − (|B1| − 1)(�(G1) − �r�) − ε. (4.52)

Proof For s, consider the set Yj of all columns of type
( ∗
∗,j

)
in d(y, w) for j ∈

B2. By Lemma 4.7, l(Yj ) = βj = �βj � + εj . If there is no overlap of B2 or∑
j∈B2

�βj � > 0, then take an interval Y ⊆ ⋃
j∈B2

Yj such that l(Y ) = ε, l(Y ∩
Yj ) ≥ εj for j ∈ B2. Otherwise, if there is overlap of B2 and

∑
j∈B2

�βj � = 0,
then take an interval Y ⊆ (

⋃
j∈B2

Yj ) ∪ Z such that l(Y ) = ε, l(Y ∩ Yj ) ≥ εj

for j ∈ B2. Here the Z is the set of all columns of type
(∗,B2∗,B1

)
in d(y, w). In order

for such Y to exist we show that l((
⋃

j∈B2
Yj ) ∪ Z) ≥ 1. By Lemma 4.9 there is

no overlap of B1, thus l(
⋃

j∈B1
Wj) = ∑

j∈B1
l(Wj ) = ∑

j∈B1
αj where Wj is

the set of all columns of type
(∗,j

∗
)

for j ∈ B1 in d(y, w). Hence by Lemma 4.6,
l(

⋃
j∈B1

Wj) = ∑
j∈B1

�αj � + ∑
j∈B1

εj . By definition
∑

j∈B1
εj = i1 + ε for

some integer i1 ≥ 0. Therefore l(
⋃

j∈B1
Wj) = i + ε for some integer i ≥ 0. Thus

l(d(y, w) \ ⋃
j∈B1

Wj) is integral since l(d(y, w)) = w, and positive. However
d(y, w) \ ⋃

j∈B1
Wj = (

⋃
j∈B2

Yj ) ∪ Z by Theorem 4.4 and Lemma 4.8. This
proves l((

⋃
j∈B2

Yj ) ∪ Z) ≥ 1, and the required Y exists.
Let Yjh be the set of columns I ∈ Y such that (j, h) ∈ MI , set γjh := l(Yjh).

Informally, γjh is the amount of j ∈ J done on h ∈ M in the interval Y . We define
a truncated solution as follows: z∗

jh := yjh − γjh for h ∈ G1, and t∗jh := yjh − γjh

for h ∈ G2. By Theorem 4.4 each j ∈ B2 is d-tight thus

∑

h∈G1

γjh +
∑

h∈G2

γjh = ε j ∈ B2 (4.53)

and

∑

h∈G2

γjh = ηj ≥ εj j ∈ B2. (4.54)

We prove that this truncated solution is feasible for F and meets (4.52). ��
We first prove the following lemma.

Lemma 4.11 If
∑

j∈B2

εj = ε, then truncated solution meets (4.48). ��

Proof We have the following for the truncated solution:
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∑

h∈G1

z∗
jh =

∑

h∈G1

yjh − (ε − ηj ) j ∈ B2. (4.55)

By Lemma 4.5 each j ∈ B2 is c-tight. Thus we get

∑

h∈G1

yjh =
∑

h∈G1

bjh + aj2 − �(G2) − �xj2� + �r� + ε − εj j ∈ B2. (4.56)

Therefore by (4.55) and (4.56) we get

∑

h∈G1

z∗
jh + (εj − ηj ) =

∑

h∈G1

bjh + aj2 − �(G2) − �xj2� + �r� j ∈ B2,

and by (4.54)

∑

h∈G1

z∗
jh ≥

∑

h∈G1

bjh + aj2 − �(G2) − �xj2� + �r� j ∈ B2,

which proves (4.48) holds for j ∈ B2 in the truncated solution t∗ and z∗. For j ∈
J \ B2, xj2 is integral thus

∑

h∈G1

z∗
jh ≥

∑

h∈G1

bjh + aj2 − �(G2) − �xj2� + �r� + ε −
∑

h∈G1

γjh j ∈ J \ B2,

since ε − ∑
h∈G1

γjh ≥ 0 for j ∈ J we get

∑

h∈G1

z∗
jh ≥

∑

h∈G1

bjh + aj2 − �(G2) − �xj2� + �r� j ∈ J \ B2.

Thus (4.48) holds for j ∈ J . ��
Let t∗ and z∗ be a solution of Lemma 4.11. The t∗ and z∗ clearly meet

(4.44), (4.47), (4.49), (4.50), (4.51). By Lemma 4.11 (4.48) holds. Then (4.45) also
holds for t∗ and z∗. To show that we observe that by feasibility of s = (y, x, r, w)

we have

∑

h∈G2

bjh + aj1 − xj1 − �(G1) + r ≤
∑

h∈G2

(yjh − t∗jh) +
∑

h∈G2

t∗jh j ∈ J \ B1.

Since for t∗ we have

0 ≤
∑

h∈G2

(yjh − t∗jh) ≤ ε j ∈ J,

and xj1 is integral for J \ B1, the t∗ satisfies the (4.45).
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To prove (4.46) we observe that by Lemma 4.5 each j ∈ B1 is a-tight and thus

∑

h∈G2

bjh+aj1 −xj1 −�(G1)+r =
∑

h∈G2

(yjh−t∗jh)+
∑

h∈G2

t∗jh j ∈ B1. (4.57)

By Theorem 4.4 j ∈ B1 is d-tight. Thus by Lemma 4.2 and definition of truncated
solution we have

ε =
∑

h∈G2

(yjh − t∗jh), (4.58)

for j ∈ B1.
Thus by (4.57) and (4.58)

∑

h∈G2

bjh + aj1 − �(G1) + �r� − �xj1� + ε − ε − εj =
∑

h∈G2

t∗jh j ∈ B1.

Hence (4.46) is met by the truncated solution t∗ and z∗. Therefore the truncated
solution t∗ and z∗ is feasible for F .

To prove the lower bound on the value of objective function we observe that
by (4.57) and (4.58)

∑

h∈G2

bjh + aj1 − xj1 − �(G1) + �r� + ε − ε =
∑

h∈G2

t∗jh j ∈ B1. (4.59)

Summing up (4.59) side by side over all j ∈ B1 we get by (4.19) for (y, x, r, w)

∑

j∈B1

(
∑

h∈G2

bjh + aj1) − (r − c) − |B1|(�(G1) − �r�) =
∑

j∈B1

∑

h∈G2

t∗jh,

where c = ∑

j∈J\B1

xj1 is integral by definition of B1. Thus

∑

j∈B1

∑

h∈G2

bjh + �(G1) − �r� −
∑

j∈J\B1

(aj1 − xj1) − |B1|(�(G1) − �r�) − ε =
∑

j∈B1

∑

h∈G2

t∗jh

and

∑

j∈B1

∑

h∈G2

bjh −
∑

j∈J\B1

(aj1 − xj1) − (|B1 − 1)|(�(G1) − �r�) − ε =
∑

j∈B1

∑

h∈G2

t∗jh

as required.

Lemma 4.12 If
∑

j∈B1
εj = ε, then
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F =
∑

j∈B1

∑

h∈G2

bjh +
∑

j∈B1

(aj1 − �xj1�) − |B1|(�(G1) − �r�) (4.60)

and

∑

h∈G2

tjh =
∑

h∈G2

bjh + aj1 − �xj1� − �(G1) + �r� j ∈ B1. (4.61)

Proof By (4.59)

∑

h∈G2

bjh + aj1 − �(G1) + �r� − �xj1� − εj =
∑

h∈G2

t∗jh j ∈ B1, (4.62)

summing up side by side for j ∈ B1 and taking
∑

j∈B1
εj = ε we get

∑

j∈B1

∑

h∈G2

bjh +
∑

j∈B1

(aj1 − �xj1�) − |B1|(�(G1) − �r�) − ε =
∑

j∈B1

∑

h∈G2

t∗jh,

(4.63)
for the truncated solution t∗ and z∗, which by Lemma 4.10 is feasible for F . Let
t and z be an optimal solution for F . Since all upper and lower bounds in F are
integral, we may assume both t and z integral by the Integral Circulation Theorem,
see Lawler [17]. Thus by (4.63)

∑

j∈B1

∑

h∈G2

bjh +
∑

j∈B1

(aj1 −�xj1�)−|B1|(�(G1)−�r�) ≤
∑

j∈B1

∑

h∈G2

tjh, (4.64)

and the upper bounds in (4.46) give

∑

j∈B1

∑

h∈G2

bjh +
∑

j∈B1

(aj1 −�xj1�)−|B1|(�(G1)−�r�) ≥
∑

j∈B1

∑

h∈G2

tjh. (4.65)

Hence by (4.64) and (4.65) we get

∑

j∈B1

∑

h∈G2

bjh +
∑

j∈B1

(aj1 − �xj1�) − |B1|(�(G1) − �r�) =
∑

j∈B1

∑

h∈G2

tjh = F,

which proves (4.60) in the lemma. Finally, in order to reach this optimal value all
upper bounds in (4.46) must be reached, which proves (4.61). ��
Theorem 4.10 For

∑
j∈B2

εj = ε, an optimal solution to F can be extended to an
integral feasible solution to �p with lp = �r� < r .

Proof Let t and z be an optimal solution to F . This solution exists since by
Lemma 4.10 there is a feasible solution to F . Since all upper and lower bounds
in F are integral, we may assume both t and z integral by the Integral Circulation
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Theorem, see Lawler [17]. Thus by Lemma 4.10

∑

j∈B1

∑

h∈G2

tjh ≥
∑

j∈B1

∑

h∈G2

bjh −
∑

j∈J\B1

(aj1 − xj1) − (|B1| − 1)(�(G1) − �r�).
(4.66)

For the partial solution ((t, z), r ′ = �r�, w′ = �w�) we have (4.51) implies (4.17),
(4.49) and (4.50) imply (4.18), (4.44) implies (4.16), and (4.47) implies (4.15). To
prove the last two implications we observe that

∑

j

bjh − �(G2) + �r� ≤ �w� h ∈ G1

and

∑

j

bjh − �(G1) + �r� ≤ �w� h ∈ G2

for s. The (4.44) guarantees

∑

j

tjh = �w � h ∈ G2,

and (4.47) guarantees

∑

j

zjh = �w� h ∈ G1.

Therefore (4.16) and (4.15) are satisfied by the partial solution ((t, z), r ′ =
�r�, w′ = �w�).

Let us now extend the solution ((t, z), r ′ = �r�, w′ = �w�) by setting x∗
j2 :=

�xj2�, for j ∈ B2 and x∗
j2 := xj2 for j ∈ J \ B2. Since

∑
j∈B2

εj = ε, (4.20) is
met by this extension. Clearly (4.22) is also met for � = 2. By (4.48) we have

∑

h∈G1

bjh + aj2 − �xj2� − �(G2) + �r� ≤
∑

h∈G1

zjh j ∈ J .

Thus (4.23) is met for the extended solution ((t, z), r ′ = �r�, w′ = �w�), and x∗
j2

for j ∈ J .
We now extend this solution further by setting

x∗
j1 :=

∑

h∈G2

bjh + aj1 − �(G1) + �r� −
∑

h∈G2

tjh (4.67)
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for j ∈ B1 and x∗
j1 := xj1 for j ∈ J \ B1. To prove that (4.24) is met for the

extended solution ((t, z), r ′ = �r�, w′ = �w�), and x∗
j2, x∗

j1 for j ∈ J we need to
show that

∑

h∈G2

bjh + aj1 − x∗
j1 − �(G1) + �r� ≤

∑

h∈G2

tjh (4.68)

for each j ∈ J . By the definition (4.67) this holds for j ∈ B1. For j ∈ J \ B1 we
have xj1 integral and thus (4.68) holds since (4.45) holds. Thus (4.24) is met for the
extended solution ((t, z), r ′ = �r�, w′ = �w�), and x∗

j2, x∗
j1 for j ∈ J . Moreover

aj1 ≥ x∗
j1 ≥ 0 for each j ∈ J \ B1 and thus (4.22) holds for � = 1 in this extended

solution. It suffices to prove this for j ∈ B1.
Then, since �r� ≥ �r� − �xj1�, x∗

j1 ≥ 0 by (4.67) and the right hand side
inequality of (4.46). Moreover, aj1 ≥ 
xj1�. Thus by the left hand side inequality
of (4.46)

∑

h∈G2

bjh − �(G1) + �r� ≤
∑

h∈G2

tjh

and by (4.67)

x∗
j1 =

∑

h∈G2

bjh − �(G1) + �r� −
∑

h∈G2

tjh + aj1 ≤ aj1.

Therefore (4.22) holds for � = 1 for j ∈ B1. For j ∈ J \B1 the (4.22) for � = 1 in
the extended solution ((t, z), r ′ = �r�, w′ = �w�), and x∗

j2, x∗
j1 follows from (4.22)

for � = 1 in the solution (y, x, r, w).
By definition of the extended solution ((t, z), r ′ = �r�, w′ = �w�), and x∗

j2, x∗
j1

for j ∈ J , and since by Theorem 4.7 there are no crossing jobs we have

x∗
j1 + x∗

j2 ≤ �r� (4.69)

for j ∈ J\B1. We now need to show this inequality for j ∈ B1. For these jobs by the
left hand side inequality of (4.46), and by (4.67) we get x∗

j1−�r�+�r�−
xj1� ≤ 0.
Thus x∗

j1 ≤ 
xj1� for each job j ∈ B1. This unfortunately does not guarantee (4.69)
for j ∈ B1. However, we either have 
xj1� + xj2 ≤ �r� for each j ∈ B1, in which
case (4.69) holds for j ∈ B1, or 
xk1� + xk2 > �r� for some k ∈ B1. The latter
implies

∑
j∈B1

εj = ε, which by Lemma 4.12, implies

∑

h∈G2

tjh =
∑

h∈G2

bjh + aj1 − �(G1) + �r� − �xj1� j ∈ B1

in the optimal solution t and z to F . Thus by definition (4.67), x∗
j1 = �xj1� for j ∈

B1. Since by Theorem 4.7 there are no crossing jobs the (4.69) is satisfied. Hence it
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remains to prove that if 
xk1� + xk2 > �r� for some k ∈ B1, then
∑

j∈B1
εj = ε.

For contradiction assume 
xk1� + xk2 > �r� for some k ∈ B1 and
∑

j∈B1
εj > ε.

If xj1xj2 = 0 for each j ∈ J , then xk2 = 0. Thus 
xk1� > �r� which implies∑
j∈B1

εj = ε and gives contradiction. Otherwise, if xi1xi2 > 0 for some i ∈ J ,
then by Theorem 4.9 we have B1 = {i} or B2 = {i}. If B1 = {i}, then

∑
j∈B1

εj = ε

which gives contradiction. Hence B2 = {i} and xj2 = 0 for each j ∈ B1. Since by
Theorem 4.7 there are no crossing jobs and xi1 is integral and positive. Thus xi1 ≥ 1,
and i �= k. By (4.19)

∑
j xj1 = ∑

j �=i xj1+xi1 = r . Hence
∑

j �=i xj1 ≤ r−1 which
gives xk1 ≤ r −1. Since xk2 = 0, we get xk1 +1+xk2 ≤ r . Thus 
xk1�+xk2 ≤ �r�
which again gives contradiction. This proves that if 
xk1�+ xk2 > �r� for some k ∈
B1, then

∑
j∈B1

εj = ε as required. Hence (4.21) holds for the extended solution
((t, z), r ′ = �r�, w′ = �w�), and x∗

j2, x∗
j1.

Finally we need to prove that (4.19) holds for an extended solution. By (4.67)
and (4.66)

∑

j

x∗
j1 ≤ �r� (4.70)

for the extended solution ((t, z, �r�, �w�)), and x∗
j2, x∗

j1 for j ∈ J . This solution
satisfies all constraints (4.15)–(4.18) and (4.20)–(4.24) of �p. To complete the proof
it suffices to modify the extension x∗

j1 for j ∈ J in order to ensure the equality
in (4.70) to satisfy (4.19), and to keep other constraints (4.15)–(4.18) and (4.20)–
(4.24) of �p satisfied.

If
∑

j

x∗
j1 < �r�, then take a j ∈ B1 with a positive dj = min{
xj1� − x∗

j1, �r� −
x∗
j1 − xj2}. Recall that by Theorem 4.7, xj2 is integral for each j ∈ B1. Such j

exists. To prove this existence define X = {j ∈ B1 : 
xj1� = x∗
j1} and Y = {j ∈

B1 : x∗
j1 = �xj1�}. By definition (4.67) and (4.46) we have B1 = X ∪ Y , and since

∑

j

x∗
j1 < �r� <

∑

j


xj1� (4.71)

we have Y �= ∅. Suppose for a contradiction that for each job j ∈ Y we have
�r� = x∗

j1 + xj2. Thus we have

∑

j

x∗
j1 =

∑

j∈J\B1

xj1 +
∑

j∈X


xj1� +
∑

j∈Y

�xj1� < �r�. (4.72)

Since for each job j ∈ Y we have �r� = �xj1� + xj2, we obtain

∑

j∈J\B1

xj1 +
∑

j∈X


xj1� + |Y |�r� −
∑

j∈Y

xj2 < �r�,
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and by (4.71) the set Y is not empty. Since
∑

j∈Y

xj2 ≤ �r� by (4.20) we get

∑

j∈J\B1

xj1 +
∑

j∈X


xj1� + |Y |�r� < 2�r�,

and thus |Y | ≤ 1, and since Y is not empty we have |Y | = 1. However

�r� = �
∑

j

xj1� =
∑

j

�xj1� + �
∑

j∈B1

εj �,

where

�
∑

j∈B1

εj � ≤ |B1| − 1.

Thus

�r� = �
∑

j

xj1� ≤
∑

j∈J\B1

xj1 +
∑

j∈B1

�xj1� + |B1| − 1 =
∑

j∈J\B1

xj1 +
∑

j∈X


xj1� +
∑

j∈Y

�xj1�

since |Y | = 1 which contradicts (4.72) and proves that j ∈ Y with dj = 1 exists.
Set d := min{minj,dj >0{dj }, �r� − ∑

j

x∗
j1} = 1. Then, set x∗

j1 := x∗
j1 + 1 for some

j ∈ Y with dj = 1. We have x∗
j1 ≤ min{
xj1�, �r� − xj2} and

∑

j

x∗
j1 ≤ �r� for the

new extended solution, which ensures that all constraints (4.15)–(4.18) and (4.20)–
(4.24) of �p are met in the new extended solution. Since d = 1 the

∑

j

x∗
j1 gets

closer to but does not exceed �r�. Therefore by (4.71) we finally reach an extended
solution t, z, and x∗

j2, x∗
j1 for j ∈ J that meets all (4.15)–(4.24) of �p. The solution

is integral with w′ = �w�, and r ′ = �r� which proves the lemma. ��

4.7 The Projection

Consider the following system S that defines the set of feasible solutions to the
LP -relaxation of ILP,

∑

j

bjh − (�(G2) − r) ≤
∑

j

yjh ≤ w h ∈ G1 (4.73)
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∑

j

bjh − (�(G1) − r) ≤
∑

j

yjh ≤ w h ∈ G2 (4.74)

∑

h

yjh ≤ w j ∈ J (4.75)

0 ≤ yjh ≤ bjh h ∈ M j ∈ J (4.76)

∑

j

xj1 = r (4.77)

∑

j

xj2 = r (4.78)

xj1 + xj2 ≤ r j ∈ J (4.79)

0 ≤ xj� ≤ aj� j ∈ J � = 1, 2 (4.80)

∑

h∈G1

(bjh − yjh) + aj2 − xj2 ≤ �(G2) − r j ∈ J (4.81)

∑

h∈G2

(bjh − yjh) + aj1 − xj1 ≤ �(G1) − r j ∈ J . (4.82)

Now consider the system Sr obtained from S by dropping (4.77) and (4.78) and
adding the constraints (4.91), (4.92), and (4.93). We use αj1 = ∑

h∈G2
(bjh−yjh)+

aj1−�(G1) and αj2 = ∑
h∈G1

(bjh−yjh)+aj2−�(G2) for j ∈ J for convenience.

∑

j

bjh − (�(G2) − r) ≤
∑

j

yjh ≤ w h ∈ G1 (4.83)

∑

j

bjh − (�(G1) − r) ≤
∑

j

yjh ≤ w h ∈ G2 (4.84)

∑

h

yjh ≤ w j ∈ J (4.85)

0 ≤ yjh ≤ bjh h ∈ M j ∈ J (4.86)

xj1 + xj2 ≤ r j ∈ J (4.87)

0 ≤ xj� ≤ aj� j ∈ J � = 1, 2 (4.88)
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∑

h∈G1

(bjh − yjh) + aj2 − xj2 ≤ �(G2) − r j ∈ J (4.89)

∑

h∈G2

(bjh − yjh) + aj1 − xj1 ≤ �(G1) − r j ∈ J (4.90)

∑

j

αj1 + (n − 1)r ≤ 0 (4.91)

∑

j

αj2 + (n − 1)r ≤ 0 (4.92)

0 ≤ r ≤ min{�(G1),�(G2)}. (4.93)

Finally consider the following projection on y,w, r .

Lemma 4.13 Let P be the polyhedron that consists of feasible solutions to Sr . Then
the projection of P on y,w, r , denoted by Q, is the set of solutions to the following
system of inequalities Q:

∑

j

bjh − (�(G2) − r) ≤
∑

j

yjh ≤ w h ∈ G1 (4.94)

∑

j

bjh − (�(G1) − r) ≤
∑

j

yjh ≤ w h ∈ G2 (4.95)

∑

h

yjh ≤ w j ∈ J (4.96)

0 ≤ yjh ≤ bjh h ∈ M j ∈ J (4.97)

∑

h∈G2

(bjh − yjh) + aj1 − �(G1) ≤ 0 j ∈ J (4.98)

∑

h∈G1

(bjh − yjh) + aj2 − �(G2) ≤ 0 j ∈ J (4.99)

∑

h∈G2

(bjh − yjh) + r − �(G1) ≤ 0 j ∈ J (4.100)

∑

h∈G1

(bjh − yjh) + r − �(G2) ≤ 0 j ∈ J (4.101)



4.7 The Projection 103

∑

h

(bjh − yjh) + aj1 + aj2 − �(G1) − �(G2) + r ≤ 0 j ∈ J (4.102)

∑

j

αj1 + (n − 1)r ≤ 0 (4.103)

∑

j

αj2 + (n − 1)r ≤ 0 (4.104)

0 ≤ r ≤ min{�(G1),�(G2)}. (4.105)

Proof The lemma follows by the Fourier-Motzkin elimination, see Schrijver [18],
of variables xj� from the system Sr . ��

We summarize the results of this section in the following theorem and lemma.

Theorem 4.11 Let (y, r, w) be feasible for Q. There exists x such that the solution
(y, x, w, r) is feasible for S.

Proof Let s = (y, r, w) be a feasible solution for Q. By Lemma 4.13 there exist
x = (xj�), where j ∈ J and � = 1, 2, such that s = (y, x, w, r) is feasible
for Sr . Let X be the set of all such x. Take x ∈ X with minimum distance d =
|r − ∑

j xj1| + |r − ∑
j xj2|. We show that d = 0 for x. Suppose that r <

∑
j xj1

or r <
∑

j xj2. Let r <
∑

j xj1. If there is k such that αk1 + r < xk1, then set
xk1 := xk1 − λ where λ = min{xk1 − (αk + r),

∑
j xj1 − r}. The new solution is in

X and reduces d which gives a contradiction. Thus we have αj1 + r = xj1 for each
j . Therefore

∑
j αj1+nr = ∑

j xj1 ≤ r by the constraint (4.103) which contradicts
this case assumption. The proof for r <

∑
j xj2 is similar. Therefore we have r ≥∑

j xj1 and r ≥ ∑
j xj2 for the x. Suppose that r >

∑
j xj1 or r >

∑
j xj2. If

there is k such that xk1 + xk2 < r and (xk1 < ak1 or xk2 < ak2), then set xk1 + λ,
where λ = min{r − (xk1 + xk2), ak1 − xk1, d} provided xk1 < ak1. Otherwise, if
xk1 = ak1 and xk2 < ak2, set xk2 +λ, where λ = min{r − (xk1 +xk2), ak2 −xk2, d}.
The new solution is in X but has smaller d which gives a contradiction. Thus we
have xj1 + xj2 = r or (xj1 = aj1 and xj2 = aj2) for each j . We have at least one j

with xj1 +xj2 = r . Otherwise, r > min{�(G1),�(G2)} which contradicts (4.105).
On the other hand, we can have at most one j with xj1 + xj2 = r . Otherwise∑

j (xj1 + xj2) ≥ 2r and since r ≥ ∑
j xj1 and r ≥ ∑

j xj2 for the x we get
r = ∑

j xj1 and r = ∑
j xj2 which contradicts the assumption. Therefore there is

exactly one j such that xj1 +xj2 = r , and xk1 = ak1, and xk2 = ak2 for k ∈ J \{j}.
Hence �(G1)−aj1+xj1 < r or �(G2)−aj2+xj2 < r . Since �(G1)−aj1+xj1 ≤ r

and �(G2)−aj2 +xj2 ≤ r , we have �(G1)+�(G2)−aj2 +xj2 −aj1 +xj1 < 2r .
Hence �(G1) + �(G2) − aj2 − aj1 < r since xj1 + xj2 = r . However by (4.102)
and (4.97) we have aj1 + aj2 + r ≤ �(G1) + �(G2) which gives a contradiction.
Thus we have d = 0 and the solution is feasible for S. ��

We have the following lemma.
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Lemma 4.14 If (y, x, r, w) is feasible for S, then (y, r, w) is feasible for Q.

Proof If (y, x, r, w) is feasible for S, then it is also feasible for Sr . Observe
that (4.77), (4.78), and (4.80) in S imply (4.93) in Sr , the (4.77) and (4.82) in S

imply (4.91) in Sr , and the (4.78) and (4.81) in S imply (4.92) in Sr . Finally, by
Lemma 4.13 the (y, r, w) is feasible for Q. ��

The system Q is a network-flow model with lower and upper bounds on the arcs
for fixed w and r .

4.8 Integral Optimal Solution to �p for
∑

j∈Bi
εj > ε,

i = 1, 2

Consider s with
∑

j∈Bi
εj > ε for i = 1, 2. By Lemma 4.9 overlap of B1 and of B2

do not occur simultaneously. Without loss of generality let us assume no overlap of
B2.

Consider the set Yj of all columns of type
( ∗
∗,j

)
in d(y, w) for j ∈ B2. By

Lemma 4.7, l(Yj ) = βj = �βj � + εj . Take an interval Y ⊆ ⋃
j∈B2

Yj such that
l(Y ) = ε. Such Y exists since there is no overlap of B2 and

∑
j∈B2

εj > ε. Let Yjh

be the set of columns I ∈ Y such that (j, h) ∈ MI , set γjh := l(Yjh). Informally,
γjh is the amount of j ∈ J done on h ∈ M in the interval Y . We define a truncated
solution as follows z∗

jh := yjh − γjh for h ∈ G1, and t∗jh := yjh − γjh for h ∈ G2,
and �r�, �w�. Thus

∑

h∈G1

γjh +
∑

h∈G2

γjh ≤ ε j ∈ J .

Theorem 4.12 For
∑

j∈Bi
εj > ε, i = 1, 2, there is a feasible integral solution to

�p with lp = �r� < r .

Proof We begin by proving that the truncated solution (y∗ = (z∗, t∗), �r�, �w�) is
feasible for Q.

The constraints (4.98) and (4.99): For s we have

∑

h∈G1

bjh + aj2 − �(G2) + r − xj2 ≤
∑

h∈G1

yjh j ∈ J

∑

h∈G2

bjh + aj1 − �(G1) + r − xj1 ≤
∑

h∈G2

yjh j ∈ J .

If r − xj1 ≥ ε and r − xj2 ≥ ε for each j ∈ J , then
∑

h∈G1
yjh − (r − xj2) ≤∑

h∈G1
z∗
jh and

∑
h∈G2

yjh − (r − xj1) ≤ ∑
h∈G2

t∗jh for each j . Hence (4.98) and
(4.99) hold for the truncated solution. Otherwise, if r − xj1 < ε or r − xj2 < ε for
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some j ∈ J , then �r� ≤ xj1 or �r� ≤ xj2 for some j . This implies
∑

j∈B1
εj = ε

or
∑

j∈B2
εj = ε which contradicts the theorem’s assumption.

The constraints (4.100) and (4.101): For s we have

∑

h∈G2

bjh + r − �(G1) + aj1 − xj1 ≤
∑

h∈G2

yjh j ∈ J,

and

∑

h∈G1

bjh + r − �(G2) + aj2 − xj2 ≤
∑

h∈G1

yjh j ∈ J .

By constraint (4.22) and definition of the truncated solution

∑

h∈G2

bjh + �r� − �(G1 ≤
∑

h∈G2

yjh − ε ≤
∑

h∈G2

t∗jh j ∈ J,

and

∑

h∈G1

bjh + �r� − �(G2 ≤
∑

h∈G1

yjh − ε ≤
∑

h∈G1

z∗
jh j ∈ J .

Hence (4.100) and (4.101) hold.
The constraints (4.102): For s by (4.23) and (4.24) we have

∑

h∈G1

(bjh − yjh) + aj2 − xj2 ≤ �(G2) − r

and

∑

h∈G2

(bjh − yjh) + aj1 − xj1 ≤ �(G1) − r,

by summing up the two side by side we get

∑

h

(bjh − yjh) + aj1 + aj2 − xj1 − xj2 ≤ �(G1) + �(G2) − 2r

or

∑

h

bjh + aj1 + aj2 − �(G1) − �(G2) + �r� ≤
∑

h

yjh − r + xj1 + xj2 − ε.

Since
∑

h yjh − ε ≤ ∑
h∈G1

z∗
jh + ∑

h∈G2
t∗jh, we have
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∑

h

yjh − r + xj1 + xj2 − ε ≤
∑

h∈G1

z∗
jh +

∑

h∈G2

t∗jh − r + xj1 + xj2.

But −r + xj1 + xj2 ≤ 0 by the constraint (4.21) and thus we get

∑

h

bjh + aj1 + aj2 − �(G1) − �(G2) + �r� ≤
∑

h∈G1

z∗
jh +

∑

h∈G2

t∗jh

which proves that (4.102) holds for y∗ = (z∗, t∗).
The constraints (4.94)–(4.95): For s by (4.15), and (4.16) we have

∑

j

bjh − �(G2) + �r� ≤
∑

j

yjh − ε ≤ �w� h ∈ G1,

and

∑

j

bjh − �(G1) + �r� ≤
∑

j

yjh − ε ≤ �w� h ∈ G2.

For the truncated solution we have
∑

j yjh = ∑
j z∗

jh + ∑
j γjh for h ∈ G1,

and
∑

j yjh = ∑
j t∗jh + ∑

j γjh for h ∈ G2. Because of the machine saturation
∑

j γjh = ε for h ∈ G1 ∪ G2. Thus

∑

j

bjh − �(G2) + �r� ≤
∑

j

z∗
jh ≤ �w� h ∈ G1,

∑

j

bjh − �(G1) + �r� ≤
∑

j

t∗jh ≤ �w� h ∈ G2,

and (4.94) and (4.95) are satisfied by the truncated solution. By the machine
saturation we have

∑
j z∗

jh = �w� for h ∈ G1, and
∑

j t∗jh = �w� for h ∈ G2.
The constraint (4.96): For s by (4.17) we have l(Xj ) ≤ l(d(y, w)) = w where

Xj is the set of all columns in d(y, w) that match j ∈ J . Since l(Y ) = ε, we get
l(Zj ) ≤ l(d(y, w)\Y ) = �w� where Zj is the set of all columns in d(y, w)\Y that
match j ∈ J . We have l(Xj ) = l((Xj ∩Y )∪ (Xj \Y )) = l(Xj ∩Y )+ l(Xj \Y ) =
l(Xj ∩Y )+l(Zj ). Hence l(Zj ) = l(Xj )−l(Xj ∩Y ) = ∑

h yjh−∑
h γjh = ∑

h y∗
jh.

Thus
∑

h y∗
jh ≤ �w� and (4.96) is satisfied by the truncated solution.

Finally, the constraints (4.103) and (4.104). First we observe that |G1| ≤ n − 1
and |G2| ≤ n − 1. Otherwise |G1| > n − 1 or |G2| > n − 1 and since by the
saturation |G1| + |G2| ≤ n we would have |G1| = 0 or |G2| = 0 which contradicts
the assumption of non-empty groups. Second, by summing up (4.23) side by side
for s over all jobs and doing the same for (4.24) we get
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∑

h∈G2

∑

j

bjh − |G2|w + (1 − n)�(G1) + (n − 1)r ≤ 0

and

∑

h∈G1

∑

j

bjh − |G1|w + (1 − n)�(G2) + (n − 1)r ≤ 0,

respectively. Since |G1| ≤ n − 1 and |G2| ≤ n − 1, we get

∑

h∈G2

∑

j

bjh − |G2|�w� + (1 − n)�(G1) + (n − 1)�r� ≤ 0

and

∑

h∈G1

∑

j

bjh − |G1|�w� + (1 − n)�(G2) + (n − 1)�r� ≤ 0.

By the machine saturation we have |G2|�w� = ∑
h∈G2

∑
j t∗jh and |G1|�w� =

∑
h∈G1

∑
j z∗

jh which proves that (4.103) and (4.104) are satisfied by the truncated
solution.

Therefore the truncated solution (y∗ = (z∗, t∗), �r�, �w�) is feasible for Q, and
by Theorem 4.11 there exists x∗ such that (y∗ = (z∗, t∗), x∗, �r�, �w�) is feasible
for S. Moreover �r∗� ≤ �r�, and �w� − �r� = 
w∗ − r∗� since s = (y, x, r, w) is
feasible for �p. Thus the solution (y∗ = (z∗, t∗), x∗, �r�, �w�) is feasible for �p and
lp = �r�. For a feasible solution to Q with integral �w� and �r� all lower and upper
bounds in the network Q are integral thus we can find in polynomial time an integral
y∗. Finally for given integral and fixed �r�, �w�, and y∗ the S becomes a network-
flow model with integral lower and upper bounds on the flows. Thus we can find
in polynomial time an integral x∗ such that the integer solution (y∗, x∗, �r�, �w�) is
feasible for lp and lp = �r�. ��

Figure 4.5 gives an integral solution to ILP for the instance in Fig. 4.4. The
solution has part (b) of size �r� = 1 that consists of job J1 on G2 and job J6 on G1.
This part (b) is shorter than the part (b) in s which is of size r = 3

2 , see Fig. 4.4, and
thus s cannot be an optimal solution to �p.

4.9 The Proof of the Conjecture

We are now ready to prove Theorem 4.3 which proves the conjecture.

Proof For contradiction suppose the optimal value for �p is fractional, lp = r =
�r� + ε, where ε > 0. By Theorem 4.10 there is a feasible integral solution to �p
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Fig. 4.5 An integral solution (y∗, x∗, �r� = 1, �w� = 3) for S in Fig. 4.4

with lp = �r� for
∑

j∈B1
εj = ε or

∑
j∈B2

εj = ε. By Theorem 4.12 there is a
feasible integral solution to �p with lp = �r� for

∑
j∈B1

εj > ε and
∑

j∈B2
εj > ε.

Thus there is a feasible integral solution for �p with �r� < r . Hence there is a
feasible solution to �p which is smaller than optimal r which gives contradiction
and proves the first part of the theorem. Thus optimal s has both r and w integer.
The s is feasible for S and thus it is feasible for Q by Lemma 4.14. For a feasible
solution to Q with integral w and r all lower and upper bounds in the network Q are
integral thus we can find in polynomial time an integral y. Finally for given integral
and fixed r, w and y the S becomes a network with integral lower and upper bounds
on the flows. Thus we can find in polynomial time an integral x such that the integer
solution (y, x, r, w) is feasible for lp and lp = r . ��

The question remains whether there is a simpler, perhaps more direct (not using
LP - relaxations), approach that would result in the polynomial-time algorithm
for two groups, also another natural question remains whether there is a shorter
proof of the conjecture. These two remain challenging questions worthy further
investigation.

4.10 Complexity of Open Shop Scheduling with Preemptions
Allowed at Any Points

The idea of using a linear program to find a schedule that minimizes makespan for
open shop with multiprocessor operations has been introduced in Sect. 4.3 for two
groups, p = 2. This idea has been extended in Ittig [14] to any fixed p > 2. The
extension is presented in this section. We begin with p = 3. Then any schedule S
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Table 4.1 Possible intervals types in schedule S; 0 and 1 in column G�, � = 1, 2, 3 denote
individual and group operations on machines in G�, respectively

Interval type Types of operations on machines in Interval length

G1 G2 G3

1 1 1 0 a1

2 0 0 1 a2

3 1 0 1 b1

4 0 1 0 b2

5 0 1 1 c1

6 1 0 0 c2

7 1 1 1 r

8 0 0 0 w

partitions the interval [0, Cmax] into 2p = 8 disjoint interval types, some may be
empty, listed in Table 4.1.

The interval of type (1) has group operations on both G1 and G2, thus 1 in the
columns G1 and G2, and individual operations or idle time on G3, thus 0 in the
column G3. The length of the interval of type (1) is denoted by a1. Similarly the
interval of type (2) has individual operations or idle time on both G1 and G2, thus
0 in the columns G1 and G2, and group operations on G3, thus 1 in the column
G3. The length of the interval of type (2) is a2. The other interval types should be
clear from the table by now. Some of those interval types may be empty in S, then
their lengths equal 0. The interval types can be permuted in any possible way still
giving the schedule with the same makespan as S. In order to find the schedule that
minimizes makespan we define variables as in Fig. 4.6, where the variables xi

j� and

yi
jh, for Jj ∈ J , � = 1, 2, 3 and Mh ∈ M, are introduced for pair 2i − 1 and 2i of

the interval types, i = 1, 2, 3. The two interval types in each pair complement one
another; they partition the three groups into two disjoint sets. The variable 0 ≤ xi

j�

denotes the amount of job Jj group operation Ôj� processed on G� in the intervals
of types (2i − 1) and (2i), i = 1, 2, 3, and the variable 0 ≤ yi

jh denotes the amount
of job Jj individual operation Ojh processed on Mh in the intervals of types (2i−1)

and (2i), i = 1, 2, 3. The remaining amount 0 ≤ aj� − (x1
j� + x2

j� + x3
j�) of job Jj

group operation Ôj� is left for the interval of type (7), and the remaining amount
0 ≤ bjh − (y1

jh + y2
jh + y3

jh) of job Jj individual operation Ojh is left for the
interval of type (8). The remaining non-negative variables a1, a2, b1, b2, c1, c2, r ,
and w denote the lengths of the intervals (1) − (8), respectively.

The constraints for each interval need to ensure that each job is processed in
the interval for not longer than the length of the interval, and each machine is
occupied for not longer than the length of the interval. Thus the constraints ensure
that a feasible schedule can be obtained for each interval using the algorithms for
O|pmtn|Cmax discussed earlier in Sect. 3.7.1. For the interval type (1) of length a1
we thus have the following constraints:
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Fig. 4.6 The variables and interval types used in the linear program to minimize makespan

x1
j1 + x1

j2 +
∑

h∈G3

y1
jh ≤ a1 j ∈ J

for the jobs, and the following:

∑

j

x1
j1 = a1

∑

j

x1
j2 = a1

∑

j

y1
jh ≤ a1 h ∈ G3

for the machines. The constraints for the interval types (2)–(6) can be readily
obtained in a similar fashion. The reader is encouraged to write them down, see
Problem 4.2. For the interval type (7) we have

(aj1 + aj2 + aj3) −
3∑

i=1

3∑

�=1

xi
j� ≤ r j ∈ J

for the jobs, and

∑

j

aj1 −
3∑

i=1

∑

j

xi
j� = r � = 1, 2, 3
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for the groups. Finally, for the interval type (8) we have

∑

h

bjh −
3∑

i=1

∑

h

yi
jh ≤ w j ∈ J

for the jobs, and

∑

j

bjh −
3∑

i=1

∑

j

yi
jh ≤ w h ∈ M

for the machines. The makespan equals a1 +a2 +b1 +b2 +c1 +c2 +r +w. However
we have the following equalities:

�(G1) = a1 + b1 + c2 + r,

�(G2) = a1 + b2 + c1 + r,

�(G3) = a2 + b1 + c1 + r,

which can be used to reduce the number of variables in the linear program. By
eliminating the variables a2, b2, and c2 we obtain the following objective for the
linear program:

min(w − 2r − a1 − b1 − c1).

Following the idea of interval types, linear programs can be obtained in polynomial
time for any fixed number p of groups. All entries in the constraint matrix of those
linear programs are 0, +1, or −1, thus the linear programs can be solved by a
strongly polynomial algorithm. This proves that the makespan minimization for
open shop scheduling problem with multiprocessor operations is polynomial for any
fixed number of groups p. Observe that the number of interval types equals 2p, and
thus it is exponential when p is part of the input. Therefore problem complexity
remains an open question for the case when p is part of the problem input. A
polynomial-time algorithm, if any exists, that would produce optimal schedules
needs to somehow limit the number of possible interval types so that the number
can be bounded by a polynomial of the input size. The question whether such a
bound exists remains open.

Problem 4.1 Is the problem of makespan minimization for preemptive scheduling
of open shop with multiprocessor operations polynomial?
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4.11 Integer Preemptions: Approximations

The solutions minimizing makespan for the open shop scheduling problem with
multiprocessor operations and preemptions allowed at any points can be rounded
in polynomial time to obtain optimal solutions with preemptions allowed at integer
points only for p = 2. We presented this approach in Sects. 4.3–4.9 where we also
proved that the minimum makespan for the latter problem equals 
Cmax�, where
Cmax is the minimum makespan of the former. Though it may be tempting to think
that the approach based on rounding in polynomial results in optimal solutions for
other values of p ≥ 3, this is unfortunately not the case. We showed in Sect. 4.2
that such rounding in polynomial time is impossible unless NP = P . However,
the optimal solutions to the linear program for the problem with preemptions at
any points can be rounded to provide approximate solutions to the problem with
integral preemptions only for any fixed p. Ittig [14] has shown a polynomial-time
rounding algorithm A that gives solutions within a constant absolute error for any
fixed number of groups p.

Theorem 4.13 Let C be the makespan of the optimal solution with preemptions at
any points, and let CA be the makespan of the solution with preemptions at integer
points only obtained by the rounding algorithm A. We have

CA − C ≤ 2p · (2p−1 − 1) + 3.

Despite this constant absolute error obtained for the rounding algorithm we have the
following implication of Theorem 4.1.

Theorem 4.14 If P �= NP , then no polynomial-time algorithm for University
timetabling for p ≥ 3 exists with the worst case ratio less than 4

3 .

Proof Consider the set I of instances of University timetabling defined in the proof
of Theorem 4.1. The problem � defined by I and the question whether I ∈ I has
a schedule with makespan not exceeding 3 or not is NP -complete which follows
immediately from the proof of Theorem 4.1. Suppose for contradiction that there
is a polynomial-time algorithm B such that CB

max/C∗
max < 4/3 for any instance of

University timetabling. Thus, in particular, CB
max/C∗

max < 4/3 for any instance of
�. The algorithm B can be used to solve � as follows. If CA

max ≤ 3 for instance
I , then the answer for I is affirmative. Otherwise, if CB

max > 3 for I , then, since
all processing times in I are integer, we have CB

max ≥ 4 and integer. Thus, since
C∗

max > 3CB
max/4, we get C∗

max > 3 and the answer for I is negative. Since CB
max

can be computed in polynomial time for each I ∈ I, we have � in P . This implies
P = NP since � is NP -complete and gives contradiction. ��

These results indicate that the rounding algorithm A may give the ratios CA

C∗ ,
where C∗ is the makespan of optimal schedule with preemptions at integer points
only, close to 1 for the instances with large instance degree � ≤ C∗ and fixed p.
However the worst case ratios are not smaller than 4

3 for the instances with short
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schedules, thus small instance degree �, and arbitrary p. The inapproximability in
Theorem 4.14 holds for open shops with 0-1 operations and no preemptions.

At the beginning of this chapter, we showed that the worst case ratio equals 2 for a
simple decomposition algorithm. Asration and de Werra [1] give a polynomial-time
algorithm with the worst case ratio 7

6 ; however, their algorithm requires additional
assumptions about the �’s. Both approximations are for preemptive schedules with
preemptions at integer points.

4.12 Other Models of Multiprocessor Operations

Brucker and Krämer [5] and Brucker [4] consider a different model of open shop
with multiprocessor operations. Their model assumes the same subset of machines
Mh for each operation Oi,h regardless of the job Ji . The sets Mh, h = 1, . . . , m

may not be disjoint in which case they are called incompatible; disjoint sets are
called compatible. They consider open shops with fixed m, which is called the
number of stages. The stages form a compatibility graph with vertices corresponding
to the stages and edges between the stages that are compatible. For unit-time
operations they show that the open shop scheduling is polynomial for a number
of objective functions including makespan, total weighted completion time, and
weighted number of tardy jobs, see Brucker [4] for a complete list of results. The
makespan minimization for three stages, m = 3, and arbitrary processing times
reduces to either O2||Cmax or to O3||Cmax depending of the compatibility graph,
see Brucker and Krämer [5].

Problems

4.1 Show that the open shop scheduling with multiprocessor operations is NP-hard
in the strong sense for p = 3.

4.2 Write down complete linear program for p = 3, and for p = 4.
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