
Chapter 2
Makespan Minimization for
Two-Machine Open Shops

2.1 Introduction

The two-machine open shop makespan minimization problem, O2||Cmax, is one of
the most gracious scheduling problems. It has been studied in the seminal papers on
open shop scheduling by Gonzalez and Sahni [11] and Pinedo and Schrage [16].
Detailed presentations of linear-time algorithms for the problem given in these two
papers can be found in books by Pinedo [17], Błażewicz et al. [2], and Brucker
[4], and in a book chapter by Gonzalez [10].

The two main observations that follow from those algorithms are that the
problems O2||Cmax and O2|pmtn|Cmax have the same value of minimum makespan
for any instance and that the value equals

Cmax = max{L,P }. (2.1)

That is, the minimum makespan equals either maximum machine workload or the
length of the longest job, whichever is greater. This holds regardless of preemptions
being allowed or not. de Werra [6] further observes that the general n-job two-
machine open shop problem reduces to just 3-job problem in linear time. This leads
to another linear-time algorithm for the problem. The algorithm will be presented in
Sect. 2.2. Those features make the two-machine open shop makespan minimization
problem quite unique in scheduling theory.

The importance of the problem has recently been further underlined by the
operation of non-adjacent vertex cloning by which some real-life networks may
evolve, in particular non-adjacent vertex cloning in wireless networks; see Chap. 6.
Through such cloning a pre-existing vertex of degree 2 is cloned, and the clone
becomes adjacent to both neighbors of the pre-existing vertex. The non-adjacent
vertex cloning is shown in Fig. 2.1 where vertex v in Fig. 2.1a is cloned in vertices
v1, v2, v3, v4, and v5 in Fig. 2.1b.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Kubiak, A Book of Open Shop Scheduling, International Series in Operations
Research & Management Science 325,
https://doi.org/10.1007/978-3-030-91025-9_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91025-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-91025-9_2

14 2 Makespan Minimization for Two-Machine Open Shops

u w

v

v1

v2

v3

v4

v5

u w

v

(a)

(b)

Fig. 2.1 (a) vertex v with deg(v) = 2; (b) clones v1, v2, v3, v4, and v5

The clones in Fig. 2.1b make up the following two-machine open shop with n =
6 jobs

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1
3 1
1 4
1 1
1 2
2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

It is to be expected that some of those desirable features of O2||Cmax problem
disappear when we extend it to include additional characteristics of operations.
The main challenge of the extension is to add the characteristics so that they stay
relevant enough for the open shop scheduling yet they preserve some key features
of O2||Cmax at the same time. Section 2.3 presents an extension of the problem
O2||Cmax. The extension requires operations to be allocated a certain number
of units of an additional renewable resource, besides a machine, in order to be
processed. All the units are released once the operation is completed in order to
be used by other operations. This generalized problem can be solved in O(n3) time,
which is shown in Sect. 2.5. The main observation is that the generalization has
the same value of minimum makespan regardless of whether preemptions are being
allowed or not. This preserves a key feature of the optimal solutions to O2||Cmax.

2.2 A Linear-Time Algorithm for Two-Machine Open Shop 15

2.2 A Linear-Time Algorithm for Two-Machine Open Shop

In this section we show that the problem with n jobs reduces to the problem with
three jobs; de Werra [6]. The three jobs represent a partition of the set J of n jobs
into three disjoint subsets. Thus once the optimal schedule for the three jobs has
been found, the partition can be used to find the optimal schedule for the original
n-job instance. We now present the details of this algorithm. Take any order of jobs
1, . . . , n, let

α = max{L1 =
n∑

j=1

pj,1, L2 =
n∑

j=1

pj,2, max
j

{Pj = pj,1 + pj,2}}. (2.2)

Determine the smallest i such that

i∑
j=1

(pj,1 + pj,2) ≥ α. (2.3)

Since α ≤ ∑n
j=1(pj,1+pj,2), such an i exists. Denote it by i∗. Let A = {1, . . . , i∗−

1}, B = {i∗ + 1, . . . , n}, and C = {i∗}. Define three jobs: A with processing
time pA,1 = ∑i∗−1

j=1 pj,1 and pA,2 = ∑i∗−1
j=1 pj,2 on M1 and M2, respectively,

B with processing time pB,1 = ∑n
j=i∗+1 pj,1 and pA,2 = ∑n

j=i∗+1 pj,2 on M1 and
M2, respectively, and C with processing times pC,1 = pi∗,1 and pC,2 = pi∗,2
on M1 and M2, respectively. We use the same notation for the sets as for their
corresponding jobs, but this should not cause any confusion. We show that a
schedule that minimizes makespan for the three jobs can be easily converted into
a schedule that minimizes makespan for the original n-job instance. We first show
that

α = max{pA,1 + pB,1 + pC,1, pA,2 + pB,2 + pC,2, pC,1 + pC,2}. (2.4)

We observe that L1 = pA,1 +pB,1 +pC,1, and L2 = pA,2 +pB,2 +pC,2. Thus (2.4)
holds, for max{L1, L2} ≥ maxj {Pj }. Suppose that max{L1, L2} < Pj∗ = α

for some j∗. If j∗ = i∗, then (2.4) holds. Otherwise, j∗ > i∗, which leads to
contradiction because by (2.3) it implies

2α ≤
i∗∑

j=1

(pj,1 + pj,2) + (pj∗1 + pj∗2) ≤ L1 + L2 < 2α.

Thus i∗ = j∗ and (2.4) holds. Let us now find an optimal schedule for the jobs A,
B, and C. For max{L1, L2} ≤ pC,1 + pC,2 = α, the schedule in Fig. 2.2 is optimal.

Now assume that α = max{L1, L2} > pC,1 + pC,2. For L1 ≥ L2, one of the
schedules in Figs. 2.3, 2.4, and 2.5 is optimal if the following condition is met:

16 2 Makespan Minimization for Two-Machine Open Shops

A

A B

C

M1

M2

α0

B

C

Fig. 2.2 An optimal schedule for max{L1, L2} ≤ pC,1 + pC,2 = α

A

A B CM1

M2

α0

B

Fig. 2.3 An optimal schedule for pA,1 ≥ pB,2 and pC,1 ≤ pA,2. The job C can be scheduled
anywhere in the shaded interval on M2

AB CM1

M2

α0

C B

Fig. 2.4 An optimal schedule for pB,1 ≥ pC,2 and pA,1 ≤ pB,2. The job A can be scheduled
anywhere in the shaded interval on M2

A

A BCM1

M2

α0

C

Fig. 2.5 An optimal schedule for pC,1 ≥ pA,2 and pB,1 ≤ pC,2. The job B can be scheduled
anywhere in the shaded interval on M2

(pA,1 ≥ pB,2 and pC,1 ≤ pA,2) or (pB,1 ≥ pC,2 and pA,1 ≤ pB,2) or (pC,1 ≥ pA,2
and pB,1 ≤ pC,2). If this condition is not met, i.e., the following condition is met:
(pA,1 < pB,2 or pC,1 > pA,2) and (pB,1 < pC,2 or pA,1 > pB,2) and (pC,1 < pA,2
or pB,1 > pC,2), then (pA,1 < pB,2 and pC,1 < pA,2 and pB,1 < pC,2), which
contradicts the assumption L1 ≥ L2, or (pC,1 > pA,2 and pB,1 > pC,2 and pA,1 >

pB,2) in which case the optimal schedule is shown in Fig. 2.6. For L2 ≥ L1, optimal
schedules are obtained by the symmetry between M1 and M2.

To illustrate the algorithm run, let us consider the instance Q below:

2.2 A Linear-Time Algorithm for Two-Machine Open Shop 17

A

A B CM1

M2

α0

B C

Fig. 2.6 An optimal schedule for pC1 > pA2 and pB1 > pC2 and pA1 > pB2

A

A

B

B C

C

J1

J1

J2

J2

J3

J3

J4

J4 J5

J5

J6

J6

M1

M1

M2

M2

0

0

6

6

10

10 16

16 20

20

Fig. 2.7 An optimal schedule for the instance Q. The schedule is obtained from the partition into
jobs A, B, and C

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4 5
2 5
4 4
3 2
4 2
3 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

We have α = 20 for Q. For the order J1, . . . , J6 of jobs, we have A = {J1, J2},
B = {J4, J5, J6}, and C = {J3}. The processing times of jobs A, B, and C are
equal: pA,1 = 6, pA,2 = 10, pB,1 = 10, pB,2 = 6, and pC,1 = pC,2 = 4. Thus the
schedule in Fig. 2.3 is optimal for the three jobs A, B, and C; see Fig. 2.7. Observe
that a reduction to two jobs is also possible for this instance. Take D = {J1, J5, J6}
and E = {J2, J3, J4} for which the processing times are equal: pD,1 = 11, pD,2 =
9, pE,1 = 9, and pE,2 = 11. The optimal schedule is shown in Fig. 2.8.

A natural question arises whether the number of jobs in the reduction can always
be reduced to two. The answer unfortunately is negative since there may be instances
of n jobs such that

∑n
i=1(pi1 +pi2) = 2α and such that for any subset A of the jobs

either
∑

i∈A(pi,1+pi,2) < α or
∑

i∈A(pi,1+pi,2) > α. Thus either
∑

i∈J\A(pi,1+
pi,2) > α or

∑
i∈A(pi,1 + pi,2) > α for any subset A of J . Therefore either the

job J \ A or job A would be too long to guarantee makespan α for the two-job
instance. However α is an optimal makespan for J . This proves that the reduction
to a two-job instance is not always possible. The problem to decide whether there is
a reduction to a two-job instance or not is shown NP-complete by Gribkovskaia et
al. [13]. Soper [20] uses similar ideas in yet another linear-time algorithm for the
O2||Cmax.

18 2 Makespan Minimization for Two-Machine Open Shops

J1

J1

J2

J2

J3

J3

J4

J4J5

J5

J6

J6

M1

M1

M2

M2

0

0

20

20

D

D

E

E

11

11

Fig. 2.8 An optimal schedule for the instance Q. The schedule is obtained from the partition into
jobs D and E

Van den Akker et al. [24], see also Shakhlevich and Strusevich [19], consider
the two-machine open shop problem with bounds C1 and C2 on the completion time
of machine M1 and M2, respectively. They show necessary and sufficient conditions
for a feasible schedule that meets the bounds to exist. The conditions can be checked
in linear time, and a feasible schedule, if any, can be computed in linear time.

2.3 Open Shop with Additional Renewable Resources

We now define the two-machine open shop scheduling problems with additional
renewable resources we alluded to in the introduction. There are two machines
M1 and M2 and l renewable resource types R1, . . . , Rl ; 0 ≤ s� units of resource
type R� are available at any time. The number s� is called resource capacity of
resource type R�. Operation Oi,h needs machine Mh and r�(Oi,h) ≤ s� units of
resource type R� at any time during its execution. The number r�(Oi,h) is called
resource requirement of operation Oi,h. In a feasible schedule each job is processed
by at most one machine at a time, each machine processes at most one operation
at a time, and the total number of resource requirements of operations processed
simultaneously does not exceed resource capacity for any resource type at any time.
Błażewicz et al. [3] propose a three-dot notation, res . . . , to extend the notation
of Graham et al. [12] to include scheduling problems with additional renewable
resources. The first dot represents an arbitrary number of resource types, the second
dot arbitrary resource capacities, and the third dot arbitrary resource requirements.
The arbitrary here means that those numbers are part of the problem input. By
replacing any of the dots by a positive integer, we make the corresponding part
of the input constant for all instances. For example, the notation res1.. denotes
all instances with a single additional resource type, and the other two dots mean
that the capacity of that additional resource type is a part of the input and so are
the resource requirements of operations. In Sect. 2.4 we consider the two-machine
problem O2|res . . . , pmtn|Cmax with preemptions where the number of additional

2.4 A Network Flow Algorithm for O2|res . . . , pmtn|Cmax 19

resources, their capacities, and operation’s resource requirements are all part of the
input. Section 2.5 considers the problem O2|res1..|Cmax with a single resource type.

The resource requirements of each operation O are represented by a vector
[r1(O), . . . , rl(O)], where 0 ≤ r�(O) ≤ s� for � = 1, . . . , l, and the resource
capacities of resource types R1, . . . , Rl by a vector [s1, . . . , sl]. Though we will use
the vector representation of resource requirements and capacities to express resource
constraints in the following sections, it is worth mentioning that other equivalent
representations, e.g., conflict graphs or agreement graphs, are possible for two-
machine open shops in particular to express those constraints. Namely, the resource
requirement vectors define an operation conflict graph G = (V ,E) for two-machine
open shops with additional resources where V is the set of all operations, and
(Oi,h,Oj,k) ∈ E if and only if i = j or there is � such that r�(Oi,h)+r�(Oj,k) > s�.
On the other hand, for an operation conflict graph G = (V ,E) for operations in V

there are |V | resource types each with capacity 1. The resource type Rv corresponds
to the vertex v of G. The vertex v has a 0–1 vector of resource requirements where
the resource requirements are set to 1 for the resource types corresponding to the
vertices in N(v) ∪ {v}, where N(v) is the neighborhood of v, and they are set to 0
for the resources corresponding to the vertices in V \ (N(v) ∪ {v}). Thus operations
u and v can be processed simultaneously if and only if they are not neighbors (they
are not adjacent) in G. If they were, u would request one unit of resource Ru and
one unit of resource Rv , and v would request one unit of resource Ru and one unit of
resource Rv . Thus the total request for both Ru and Rv would equal 2, which exceeds
resource capacity 1. The two representations of resource constraints are equivalent.
Tellache and Boudhar [22] consider a similar model of constraints. They study a
job conflict graph G = (V ,E) (rather than the operation conflict graph), where V

is the set of jobs and (Ji, Jj) ∈ E if and only if jobs Ji and Ji cannot be processed
simultaneously. For a job conflict graph G = (V ,E), Tellache et al. [23] define a
job agreement graph that is simply Ḡ = (V , Ē). Therefore clearly the translations
between different representations of the resource constraints can easily be done in
polynomial time, which allows for translations between the complexity results as
well.

2.4 A Network Flow Algorithm for O2|res . . . ,pmtn|Cmax

Following Jurisch and Kubiak [14], we show a polynomial-time algorithm for the
O2|res . . . , pmtn|Cmax problem in this section. For a given instance of the problem,
we define a network G = (V ,A) as follows:

• The set of vertices, V , consists of a source s, vertices representing the oper-
ations O1,2, . . . , On,2 on machine M2, vertices representing the operations
O1,1, . . . , On,1 on machine M1, and sink t .

• The set of directed arcs with capacities, A, consists of arcs (s,Oi2) with
capacities pi,2, i = 1, . . . , n, arcs (Oi,2,Oj,1), i, j = 1, . . . , n, with unlimited

20 2 Makespan Minimization for Two-Machine Open Shops

capacity ∞ if Oi,2 and Oi,1 can be processed in parallel, i.e., if i �= j and
r�(Oi,2) + r�(Oj,1 ≤ s� for all � = 1, . . . , l, and arcs (Oj,1, t) with capacities
pj,1, j = 1, . . . , n.

Let f (i, j) be the flow through (i, j) ∈ A in a feasible solution to the max-
flow problem defined by G. We define a feasible preemptive schedule to the
corresponding open shop problem as follows:

• Schedule the operations O1,1, . . . , On,1 on machine M1 in any order.
• Schedule f (Oi,2,Oj,1) time units of operation Oi2 in parallel with Oj,1, i, j =

1, . . . , n.
• If there are time units of an operation Oi,2 left, i.e., if

∑n
j=1 f (Oi,2,Oj1) <

pi2, then schedule pi,2 − ∑n
j=1 f (Oi,2,Oj,1) time units of Oi,2 on M2 after the

completion of the last M1 operation.

This procedure converts any feasible solution to the network max-flow problem
G into a feasible solution to O2|res . . . , pmtn|Cmax with the makespan

Cmax =
n∑

i=1

pi,1 +
n∑

i=1

[pi,2 −
n∑

j=1

f (Oi,2,Oj,1)]. (2.5)

Thus when
∑n

i=1
∑n

j=1 f (Oi,2,Oj,1) is maximized in G, Cmax of the open shop
schedule is minimized.

Lemma 2.1 An optimal schedule for O2|res . . . , pmtn|Cmax can be found in
O(n3) time. The number of preemptions in the schedule does not exceed n2.

2.5 An Algorithm for O2|res 1 . .|Cmax

We now focus on the non-preemptive case of the problem with a single resource,
O2|res 1 . .|Cmax. We show that any preemptive schedule obtained in Sect. 2.4
can be turned into a non-preemptive schedule with the same makespan, and the
conversion can be done in polynomial time. To streamline the presentation of
the conversion and the algorithm for the non-preemptive case, let us simplify the
notation introduced in Sect. 2.3 and make simple observations about the preemptive
schedules first. For simplicity, we denote the resource by R and assume that s units
of R are available at any time. Operation Oi,h, i = 1, . . . , n;h = 1, 2, requires
r(Oi,h) units of R all the time during it execution. Without loss of generality, we let
r(O1,1) ≥ r(O2,1) ≥ · · · ≥ r(On,1). We shall solve this two-machine open shop
problem with a single resource, i.e., O2|res 1 . .|Cmax, in two steps:

Step 1: Solve O2|res 1 . ., pmtn|Cmax with a max-flow algorithm (Lemma 2.1) to
obtain schedule S.

2.5 An Algorithm for O2|res 1 . .|Cmax 21

Step 2: Convert the resulting schedule S into a schedule of O2|res 1 . .|Cmax with
the same makespan.

To simplify the presentation of Step 2, we make two assumptions about schedule
S. First, without loss of generality, we may assume that neither machine is idle in S.
We can easily meet this condition by adding dummy operations on either machine,
if necessary. Second, again without loss of generality, we may assume that S meets
the following conditions:

• No operation on M1 is preempted.

(2.6)

• The operations on M1 are scheduled in descending order of their resource
requirements.

(2.7)

Thus, schedule S determines time slots and their orders. The time slots corre-
spond to time interval occupied by exactly one operation on M1. By the ith time
slot, or simply slot Ii of S, we mean the time interval [∑i−1

j=1 pj,1,
∑i

j=1 pj,1]. The
following theorem gives the details of Step 2.

Theorem 2.1 Any feasible schedule for O2|res 1 . ., pmtn|Cmax can be converted
into a feasible schedule for O2|res 1 . .|Cmax with the same makespan.

Proof The proof consists of Lemmas 2.2 and 2.3 and a recursive procedure
Process-Time-Slot. Lemma 2.2 shows how to reduce the number of preempted M2-
operations scheduled both in slot Ii and in some slots Ij , j > i to two. It also gives a
good characterization of the case with exactly two such operations in Ii . The lemma
is as follows. 	

Lemma 2.2 Let S be a schedule for which both (2.6) and (2.7) hold. The S can be
converted into a schedule S′ for which both (2.6) and (2.7) still hold; moreover,

• Cmax(S
′) = Cmax(S).

• For any i, there are at most two M2-operations scheduled in slot Ii and in some
slots Ij with j > i.

(2.8)

• If there are exactly two operations Oa,2, Ob,2, a < b, scheduled both in slot Ii

and in some slots Ij with j > i, then b > i + 1 and Ob,2 is continued in slots
Ii+1, . . . , Ib−1 only, and Ob,2 is the only operation scheduled on M2 in these
slots.

22 2 Makespan Minimization for Two-Machine Open Shops

Fig. 2.9 Proof of
Lemma 2.2: reduction of the
number of preempted
M2-operations in Ii

Ii Ib Ik

Oa2 Oa2Oa2 Ob2 Oc2

Oi1 Ob1 Ok1
... ...

... ...
...

(2.9)

Proof The proof is by induction. Let S be a schedule that meets conditions (2.6)
and (2.7), and let i be the smallest index such that (2.8) or (2.9) is not met for slot
Ii . We construct a schedule S′ that meets (2.6)–(2.9) for Ii without making any
change to Ij with j < i. First, assume that there are at least three M2-operations
Oa,2, Ob,2, and Oc,2 scheduled both in slot Ii and in some slots Ij with j > i. We
show that it is then possible to exchange parts of Ob,2 and Oc,2 from Ii with parts
of Oa,2 from slots Ij , j > i until either:

(1) Oa,2 is no longer in slots Ij with j > i; or
(2) Ob,2 or Oc,2 is no longer in Ii .

In either case, the number of M2-operations that occur both in Ii and in Ij with
j > i decreases by at least 1. Assume that a part of Oa,2 is scheduled in slot Ik with
k > i. Denote by:

• qb the length of the piece of Ob,2 in Ii ,
• qc the length of the piece of Oc,2 in Ii , and
• qa the length of the piece of Oa,2 in Ik .

We proceed as follows:

• If k = b, then exchange min{qc, qa} time units of Oc,2 from Ii with the same
number of time units of Oa,2 in Ik . If qa ≥ qc, then (2) is met.

• If k �= b, then exchange min{qb, qa} time units of Ob,2 from Ii with the same
number of time units of Oa,2 in Ik . If qa ≥ qb, then (2) is met.

This procedure is shown in Fig. 2.9. Note that the exchanges are feasible since we
have r(O1,1) ≥ . . . ≥ r(On,1). We apply this procedure to any part of Oa,2 in
slots Ij with j > i until eventually either (1) or (2) is met. Then, the number of
M2-operations scheduled in both Ii and Ij with j > i decreases by at least 1. The
procedure is repeated for Ii until the number of such M2-operations is reduced to at
most 2.

Now, assume that there are exactly two M2-operations Oa,2, Ob,2, a < b,
scheduled both in slot Ii and in slots Ij with j > i. We show that it is possible to
exchange parts of M2-operations between slots Ii, . . . , In until one of the following
holds:

(3) Either Oa,2 is not processed in any slot Ij with j > i or Ob,2 is no longer
processed in Ii .

2.5 An Algorithm for O2|res 1 . .|Cmax 23

(4) Either Ob,2 is not processed in any slot Ij with j > i or Oa,2 is no longer
processed in Ii .

(5) Each of the two operations Oa,2 and Ob,2 is processed in Ii as well as in Ij

with j > i, but in Ii+1, . . . , Ib−1 only Ob,2 is processed on M2, and Ob,2 is not
processed in any slot Ij with j ≥ b.

In cases (3) and (4), the number of operations processed in Ii and in Ij with
j > i is reduced to 1 or 0. In all three cases (2.8) and (2.9) hold for slot Ii . In case
(5), (2.8) and (2.9) also hold for Ii+1, . . . , Ib−1. The exchange works as follows.

If b < i (or a < i), then we can exchange parts of Ob,2 (or Oa,2) in Ii with parts
of Oa,2 (or Ob,2) in slots Ij with j > i until (3) (or (4)) holds.

Now, assume that i < a < b. We show that then we can modify slots Ii, . . . , In

step by step until either (3) or (4) or (5) is met. First we attempt to extend Oa,2 in
Ii in such a way that (3) is met. This is done as follows:

First, exchange parts of Ob,2 scheduled in Ii with parts of Oa,2 scheduled in slots
Ij with j > i, j �= b (see Fig. 2.10a) until either:

• (3) is met and consequently (2.8) and (2.9) hold for Ii or
• no more parts of Oa,2 are scheduled in slots Ij with j > i, j �= b. Thus, a part

of Oa,2 is scheduled in Ib.

Again, these exchanges are feasible since r(O1,1) ≥ . . . ≥ r(On,1). Now, assume
that an operation Ox,2 with x �= b is processed in a slot Ij with i < j < b. In this
case we shift parts of:

• Ob,2 from Ii to Ij ,
• Ox,2 from Ij to Ib,
• Oa,2 from Ib to Ii ,

as shown in Fig. 2.10b until either:

• (3) is met and consequently (2.8) and (2.9) hold for Ii or
• there are no operations Ox,2 with x �= b scheduled in Ij with i < j < b.

Again, it is easy to see that these shifts are feasible. Now, assume that parts of
Ob,2 are processed in slots Ij with j > b (if they were not, then (5) would be met).
In this case, we attempt to extend Ob,2 in Ii until (4) is met. This is done as follows:

We exchange parts of Oa,2 scheduled in Ii with parts of Ob,2 scheduled in slots
Ij with j > b (see Fig. 2.10c) until either:

• (4) is met and consequently (2.8) and (2.9) hold for Ii or
• no more parts of Ob,2 are scheduled in slots Ij with j > b. In this case, (5) is

met (see Fig. 2.10d). Thus, (2.8) and (2.9) hold for slots Ii, . . . , Ib−1. 	

Lemma 2.3 shows when and how a slot and a feasible partial schedule without
preemptions and idle time can be combined into another feasible schedule without
preemptions and idle time. The lemma is as follows.

24 2 Makespan Minimization for Two-Machine Open Shops

Ii
Oi1 Oj1 Oa1 Ok1 Ob1 Or1

......
... ...

...
...

Ij Ia Ik Ib Ir

Oa2 Oa2 Oa2Oa2

Oa2

Ob2

Ii
Oi1 Oj1 Oa1 Ok1 Ob1 Or1

......
... ...

...
...

Ij Ia Ik Ib Ir

Oa2Oa2 Ob2 Ox2

Ii
Oi1 Oj1 Oa1 Ok1 Ob1 Or1

... ...
... ...

...
...

Ij Ia Ik Ib Ir

Oa2Oa2 Ob2 Ob2 Ob2 Ob2Ob2

Ii
Oi1 Oj1 Oa1 Ok1 Ob1 Or1

... ...
... ...

...
...

Ij Ia Ik Ib Ir

Oa2Oa2 Ob2 Ob2 Ob2Ob2

(a)

(b)

(c)

(d)

Fig. 2.10 Proof of Lemma 2.2: the case of exactly two preempted M2-operations in Ii

Lemma 2.3 Let S be a feasible partial schedule without preemptions and idle time.
Let Ii be a slot not in S that meets the following conditions:

• For each operation Ok,2 scheduled in Ii and each operation Ol1 scheduled in S,
we have r(Ok,2) + r(Ol,1) ≤ s.

• There is at most one operation Oa,2 processed both in Ii and in S.

Then Ii and S can be merged into a feasible schedule S′ without preemptions and
idle time. 	

Proof First, assume that, in S, the operation Oa,2 starts or finishes together with an
operation on M2. Then, we can easily modify S in such a way that Oa,2 starts the
whole schedule S. By scheduling Oa,2 at the end of Ii , we obtain a feasible schedule
S′ without preemptions and idle time as shown in Fig. 2.11a.

Now, we assume that, in S, operation Oa,2 is scheduled in parallel with only one
operation Ox,1 on M1. If Oa,1 is scheduled after Oa,2 in S, then we can move Oa,2
to the left by successively exchanging it with its preceding operations until it either

2.5 An Algorithm for O2|res 1 . .|Cmax 25

Fig. 2.11 Proof of
Lemma 2.3, insertion of slot
Ii in schedule S

Oi1

Oi1

Ok1

Ok1 Ol1

Ol1

Or1

Ot1

Ot1
Oa2Oa2

Or1
Oa2

...

...

...

... ...

...

...

...

S :

Ii

S :

Ox1 Oz1 Oa1
Oy2 Oa2

...
...

...

...

...
S :

Ox1 Oz1 Oa1
Oy2Oa2

...
...

...

...

...

Oa2 ...
Ol1 Ok1

Ok2 Ol2...

...Ot1

Oa2 ...Oa2Oa2

Ol1 Ok1
Ok2 Ol2...

...Ot1

S1 S2It

(a)

(b)

(c)

starts or finishes together with an operation on M1, or it is scheduled in parallel
with at least two operations on M1. Observer that Oa,2 can potentially be scheduled
in parallel with all M1-operations in S except Oa,1 (see Fig. 2.11b). If Oa1 is not
scheduled after Oa,2 in S, then move Oa,2 to the right. Thus, we may assume that
Oa,2 is scheduled in parallel with at least two operations Ox,1, Oz,1 in S and that
it neither starts nor finishes together with an operation on M1. We obtain a feasible
schedule by merging S and Ii as follows. Let S1 be the part of S that finishes with
Ox,1 on M1, and let S2 be the part of S that starts with Oz,1 on M1 (observe that
Oa,2 finishes S1 and starts S2 on M2). We insert Ii between S1 and S2 and apply the
following procedure to all operations Oy,2 �= Oa,2 scheduled in Ii (Fig. 2.11c):

• If Oy,1 is scheduled in S1, then we insert Oy,2 into S2 immediately after Oa,2
and shift the intermediate operations on M2 to the left.

• Otherwise, we insert Oy,2 into S1 immediately before Oa,2 and shift the
intermediate operations on M2 to the right.

Note that these shifts are feasible due to the assumption that r(Ok,2) + r(Ol,1) ≤ s

for all Ok,2 scheduled in Ii and all Ol,1 scheduled in S. After moving all operations

26 2 Makespan Minimization for Two-Machine Open Shops

Oy,2 �= Oa,2 either to the left or to the right, we obtain a feasible schedule S′ without
preemptions and idle time as required. 	

We use Lemmas 2.2 and 2.3 in the following recursive procedure for converting
a preemptive schedule into a non-preemptive schedule with the same makespan.
It returns a feasible non-preemptive schedule made of the time slots Ij , . . . , In if
called with i = j . Observe that we call the procedure recursively with index i + 1
if we reduce the number of M2-operations that are processed both in slot Ii and in
some slots Ij with j > i to 1 or 0. Otherwise, due to Lemma 2.3 the time slots
Ij+1, . . . , Ib−1 have a special structure: only operation Ob,2 is processed on M2,
and moreover Ob,2 is not processed in any slot Ij with j ≥ b. In this case, we first
insert Ii into the non-preemptive schedule made of the slots Ib, . . . , In, and then we
insert the slots Ii+1, . . . , Ib−1 one after another. The insertion can be done easily
because the properties given in Lemma 2.3 are met. 	

The following theorem is a direct consequence of Lemma 2.1 and Theorem 2.1.

Theorem 2.2 The problem O2|res 1 . .|Cmax can be solved in O(n3) time.

Proof The max-flow algorithm computes an optimal preemptive schedule in O(n3)

time. The number of operations processed both in slot Ii and in slots Ij with j > i

can be reduced to at most 2 in time O(n2). It takes O(n) time to change the schedule
so that it meets (2.8) and (2.9) for a given slot Ii . Finally, the insertion of one time
slot into a feasible partial schedule takes O(n) time. Since the number of slots is n,
an overall complexity is O(n3). 	

Procedure Process-time-slot(i)
begin

Exchange operations on M2 between time slots Ii , Ii+1, · · · , In such that the number P

of M2-operations processed both in Ii and in some slots Ij with j > i is minimal (Proof
of Lemma 2.2);
if P ≤ 1 then

S:=Process-Time-Slot (i + 1);
S:= Insert Ii into S (Proof of Lemma 2.3);

else
(P = 2; let Ob,2 with b > i be the operation scheduled in Ii , Ii+1, . . . , Ib−1(Proof
of Lemma 2.2))
S:=Process-Time-Slot(b);
FOR j := i TO b − 1 DO
S:= Insert Ij into S (Proof of Lemma 2.3);

end
return(S);

end

To illustrate the working of the procedure Process-Time-Slot, let us consider an
instance shown in Table 2.1 with s = 10. Figure 2.12a shows a preemptive schedule
S for the instance that meets conditions (2.8) and (2.9). The time slots of S are shown

2.5 An Algorithm for O2|res 1 . .|Cmax 27

Table 2.1 An instance of
O2|res1..|Cmax

Processing times Resource requirements

Job M1 M2 M1 M2

1 4 5 10 3

2 2 5 8 0

3 4 4 7 0

4 3 2 5 2

5 4 2 2 9

6 3 2 0 5

O11

O11

O21

O21

O31

O31

O31

O41

O41

O41

O41

O51

O51

O51

O51

O61

O61

O61

O61

O22 O22

O22 O22 O22

O22 O22

O22

O22

O32 O32

O32 O42

O42 O42

O42

O52

O52

O52

O52O12 O12

O12 O12 O12 O12

O12 O12 O12

O12 O12 O12

O12

O42

O62 O62

O62 O62

O62

O62

I1 I2

I3

I3

I4

I4

I4

I5

I5

I5

I6

I6

I6

M1

M2

1 2 30 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(a)

(b)

(c)

(d)

Fig. 2.12 Reduction of the number of preempted M2-operations in time slots in the example

in Fig. 2.12b. We cannot reduce the number of preempted M2-operations processed
in slot I1 to 1, but the condition (2.9) is satisfied for I1. Thus, we skip the slot I2
and continue with I3. We extend O4,2 by moving one unit of O1,2 to slot I5; see
Fig. 2.12c. We continue with slot I4 and extend O1,2 there; see Fig. 2.12d. After this
step, all slots meet the conditions in Lemma 2.2 and we can start to build up the
non-preemptive schedule recursively. Figure 2.13a shows the schedule obtained by
combining the slots I5 and I6. Next, slots I4 and I3 are inserted; see Fig. 2.13b and
c. Now we have to skip I2 and insert I1; see Fig. 2.13d. Finally, we obtain a feasible
non-preemptive schedule by inserting slot I2; see Fig. 2.13e. Figure 2.14 shows how
the demand for the resource changes over time in the schedule from Fig. 2.13e.

28 2 Makespan Minimization for Two-Machine Open Shops

O31

O41

O41

O51

O51

O51

O61

O61

O61

O22

O22

O42

O52

O52

O52

O12

O12

O12

O62

O62

O62

O11O31 O41 O61

O22 O32O42 O12O62

O51

O52

(a)

(b)

(c)

(d)

(e)

O11 O21O31 O41O51

O22 O32O42 O52O12O62

1 2 30 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

O61

Fig. 2.13 Recursive buildup of the schedule in the example

0

R

1

1

2

2

3

3

4

4

5

5

6

6

7

7 8

8
9

9

s = 10

time10 11 12 13 14 15 16 17 18 19 20

Fig. 2.14 The number of units of the additional resource required by the optimal schedule in
Fig. 2.13e

Problems 29

2.6 Open Problems

Let R1 be the class of operation conflict graphs G = (V ,E) corresponding to the
instances of O2|res1..|Cmax. We show in Sect. 2.5 that for any G ∈ R1 optimal
preemptive and non-preemptive solutions have the same makespan. The vertex set
V of G ∈ R1 can be partitioned into two disjoint sets V1 = {O : R(O) ≤ s

2 } and
V2 = {O : R(O) > s

2 }. The set V2 is a clique in G, and the set V1, however, is
not an independent set since it may include both operations of the same job, which
creates a conflict (an edge in G). In addition, edges may exist between the vertices
in V1 and V2. The following question remains open.

Problem 2.1 Is there a class R, R1 ⊂ R, of operation conflict graphs G = (V ,E)

for which optimal preemptive and non-preemptive solutions to the two-machine
open shop have the same makespan?

Problem 2.2 Characterize the class of all operation conflict graphs G = (V ,E) for
which optimal preemptive and non-preemptive solutions to the two-machine open
shop have the same makespan.

The two-machine open shop problem with two or more resource types benefits
from preemptions. The optimal schedules with preemptions can be shorter than
those without preemptions. Jurisch and Kubiak [14] show that the problem
O2|res211|Cmax with two resource types of capacity 1 each is NP-hard, and the
problem O2|res.11|Cmax with arbitrary number of resource types of capacity 1 each
is NP-hard in the strong sense. The open shop problem with additional resources has
been studied by Błażewicz et al. [1], Cochand et al. [5], de Werra et al. [9], and
de Werra and Błażewicz [7, 8]. A review of some of those results can be found
in Kubiak et al. [15]. Recent complexity results for two-machine open shop with
additional resources can be found in Shabtay and Kaspi [18], Tellache and Boudhar
[22], and Tellache et al. [23].

Problems

2.1 The network flow algorithm for multiple resources works in O(n3) time. Can
the time be reduced to n2 for the network for a single resource type?

2.2 Prove that the problem to decide whether there is a reduction to two jobs in the
algorithm in Sect. 2.5 is NP -complete.

2.3 Define conflict and agreement graphs for the instance in Table 2.1.

2.4 Prove that the problem O2|res211|Cmax is NP-hard.

2.5 Prove that the problem O2|res.11|Cmax is NP-hard in the strong sense.

30 2 Makespan Minimization for Two-Machine Open Shops

References

1. J. Błażewicz, W. Cellary, R. Słowiński, J. Wȩglarz, Scheduling Under Resource Constraints—
Deterministic Models (J. C. Baltzer AG, Basel, Switzerland, 1986)

2. J. Błażewicz, K. Ecker, E. Pesch, G. Schmidt, J. Wȩglarz, Handbook on Scheduling: From
Theory to Applications. International Handbooks on Information Systems. (Springer, Berlin,
2007)

3. J. Blazewicz, J.K. Lenstra, A.H.G. Rinnooy Kan, Scheduling subject to resource constraints:
classification and complexity. Discrete Appl. Math. 5, 11–24 (1983)

4. P. Brucker, Scheduling Algorithms (Springer, Berlin, 1995)
5. D. Cochand, D. de Werra, R. Słowiński, Preemptive scheduling with staircase and piecewise

linear resource availability. Z. Opns. Res. 33, 297–313 (1989)
6. D. de Werra, Graph-theoretical models for preemptive scheduling, in Advances in Project

Scheduling, ed. by R. Słowiński, J. Wȩglarz (Elsevier, Amsterdam, 1989), pp. 171–185
7. D. de Werra, J. Błażewicz, Some preemptive open shop problems with a renewable or a

nonrenewable resources. Discrete Appl. Math. 35, 205–219 (1992)
8. D. de Werra, J. Błażewicz, Addendum: some preemptive open shop scheduling problems with

a renewable or a nonrenewable resources. Discrete Appl. Math. 35, 103–104 (1993)
9. D. de Werra, J. Błażewicz, W. Kubiak, A preemptive open shop scheduling problem with one

resource. Oper. Res. Letts. 10, 9–15 (1991)
10. T. Gonzalez, Open shop scheduling, in Handbook on Scheduling: Algorithms, Models, and

Performance Analysis, ed. by J.Y.-T. Leung (Chapman and Hall/CRC, 2004), pp. 6-1–6-14
11. T. Gonzalez, S. Sahni, Open shop scheduling to minimize finish time. J. ACM 23, 665–679

(1976)
12. R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and approxima-

tion in deterministic sequencing and scheduling: a survey. Ann. Discr. Math. 5, 287–326 (1979)
13. I.V. Gribkovskaia, C.-Y. Lee, V.A. Strusevich, D. de Werra, Three is easy, two is hard: open

shop sum-bath scheduling problem refined. Oper. Res. Lett. 34, 456–464 (2006)
14. B. Jurisch, W. Kubiak, Two-machine open shops with renewable resources. Opns. Res. 45,

544–552 (1997)
15. W. Kubiak, C. Sriskandarajah, K. Zaras, A note on the complexity of openshop scheduling

problems. INFOR 29 (1991)
16. M. Pinedo, L. Schrage, Stochastic shop scheduling: a survey, in Deterministic and Stochastic

Scheduling, ed. by M.A.H. Dempster, J.K. Lenstra, A.H.G. Rinnooy Kan (Reidel: Dordrecht,
1982), pp. 181–196

17. M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 5th edn. (Springer, Berlin, 2016)
18. D. Shabtay, M. Kaspi, Minimizing the makespan in open-shop scheduling problems with a

convex resource consumption function. Naval Res. Logist. 53, 204–216 (2006)
19. N.V. Shakhlevich, V.A. Strusevich, Two machine open shop scheduling problem to minimize

an arbitrary regular penalty function. Eur. J. Oper. Res. 70, 391–404 (1993)
20. A.J. Soper, A cyclical search for the two machine flow shop and open shop to minimize finish

time. J. Sched. 18, 311–314 (2015)
21. V.S. Tanaev, Y.N. Sotskov, V.A. Strusevich, Scheduling Theory: Multi-Stage Systems (Kluwer

Academic Publishers, Dordrecht, 1994)
22. N.E.H. Tellache, M. Boudhar, Open shop scheduling problems with conflict graphs. Discrete

Appl. Math. 227, 103–120 (2017)
23. N.E.H. Tellache, M. Boudhar, F. Yalaoui, Two-machine open shop problem with agreement

graph. Theor. Comput. Sci. 796, 154 –169 (2019)
24. M. van den Akker, H. Hoogeveen, G.J. Woeginger, The two-machine open shop problem: to fit

or not to fit, that is the question. Oper. Res. Lett. 31, 219–224 (2003)
25. G.J. Woeginger, The open shop scheduling problem, in 35th Symposium on Theoretical Aspects

of Computer Science (STACS 2018), ed. by R. Niedermeier, B. Vallée Leibniz. International
Proceedings in Informatics (Dagstuhl Publishing, 2018), pp. 4:1–4:12

	2 Makespan Minimization for Two-Machine Open Shops
	2.1 Introduction
	2.2 A Linear-Time Algorithm for Two-Machine Open Shop
	2.3 Open Shop with Additional Renewable Resources
	2.4 A Network Flow Algorithm for O2| res …, pmtn|Cmax
	2.5 An Algorithm for O2| res 1 . .|Cmax
	2.6 Open Problems
	Problems
	References

