
Chapter 11
Applications of Preemptive Open Shop
Scheduling

11.1 Introduction

Before we present more applications of open shop scheduling to real-life problems
and scheduling theory let us briefly summarize the applications discussed in
previous chapters of this book. Chapter 4 presents applications to University
timetabling, Chap. 6 presents application to scheduling wireless networks with
primary interference, Chap. 5 presents applications to product design and scheduling
customer orders among other applications of open shop scheduling where operations
of a job can be processed concurrently, Chaps. 7 and 8 present application to
scheduling large oncology centers, Chap. 9 presents application to timetabling and
just-in-time scheduling, and Chap. 10 presents applications to scheduling without
intermediate storage and optical networks. Other applications are also listed in
Ahmadian et al. [1].

This chapter introduces further applications of open shop scheduling. Those
include satellite-switched time-division multiple access method used to allocate the
communication bandwidth provided by a satellite link to carry traffic between earth
stations; scheduling reconfigurable data centers; file transfer; scheduling crossbar
switches to guarantee 100% throughput for traffic with given rates; multimessage
unicasting and multicasting; scheduling and bandwidth allocation problem; and
scheduling theory. Majority of those applications permit preemptions which allow
for polynomial-time algorithms when it comes to makespan minimization. Details
will be described in the following sections.
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11.2 Satellite Communication

Satellite communication systems have been built to connect a large number of earth
stations. The satellite-switched time-division multiple access (SS/TDMA) method
has been used to allocate the communication bandwidth provided by a satellite
link to carry traffic between earth stations, see Inukai [30], and Lewandowski
and Liu [35] for further references to the SS/TDMA method. In a nutshell, a
satellite equipped with spot-beam antennas, and a switch periodically switches the
connections between uplink beams and downlink beams to connect beam zones. A
TDMA frame is a sequence of time slots of different durations. In each of the time
slots, a different switching mode determines a specific set of interconnections so
that the traffic between zones is routed without conflicts. The SS/TDMA time slot
assignment problem instance is defined by an n × n non-negative traffic matrix T
where tij is the amount of traffic which is to be routed from the uplink beam i to
the downlink beam j , and n is the number of spot-beams. The quantities tij may
be expressed in terms of some basic traffic units such as a number of T 1 channels,
Inukai [30], or they can be the amount of time, Inukai [30], and Dell’Amico and
Martello [18]. We let tij to be the amount of time in our discussion. The problem
is to find a switching mode matrix Si , and a time duration ti for each time slot so as
to meet the traffic demand defined by T within the shortest possible TDMA frame.
A switching mode matrix is a square n × n matrix where at most one entry in each
row and column is equal to 1, and all other entries are equal to 0. To find a solution
to the time slot assignment problem let us have a closer look at the traffic matrix T .
The total demand for its row i is equal to Ri = ∑

j tij which is the amount of time
required by the uplink beam i to transmit information to all downlink beams, and
the total demand for its column j is equal to Cj = ∑

i tij which is the amount of
time required by the downlink beam j to receive information from all uplink beams.
Clearly, the TDMA frame cannot be shorter than

α = max{max
i

{Ri}, max
j

{Cj }}.

Due to Birkhoff–von Neumann theorem we can get the frame of length α as follows.
We take the following (2n) × (2n) matrix:

D = 1

α

[
T A

B T T

]

,

where the diagonal matrix
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A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α − R1 0 . . . 0
0 α − R2 . . . 0
0 . . . 0
. . . .

. . . .

. . . .

0 0 . . . α − Rn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

complements each row sum of D to α, and the diagonal matrix

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α − C1 0 . . . 0
0 α − C2 . . . 0
0 . . . 0
. . . .

. . . .

. . . .

0 0 . . . α − Cn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

complements each column sum of D to α. By the theorem there are (2n) × (2n)

permutations matrices P1, . . . , Pq and positive numbers t1, . . . , tq such that t1 +
. . . tq = 1 and

D = t1P1 + · · · + tqPq. (11.1)

Let Si be the submatrix of the permutation matrix Pi lying in the rows 1, . . . , n and
the columns 1, . . . , n of Pi , i = 1, . . . , q. Clearly, the matrices Si are switching
modes and

T = α(t1S1 + · · · + tqSq).

Thus there are q time slots with durations αt1, . . . , αtq . Since t1 + . . . tq = 1 the
total duration is equal to α. The number of permutation matrices q ≤ n2 − n + 1,
see Horn and Johnson [29]. The decomposition in (11.1) is not unique. Gonzalez
and Sahni [26] would view the matrix T as an instance of an open shop problem
with preemptions and makespan minimization and solve the problem to optimality
by their algorithm running in time O(r(r + n log n)) where r is the number of
positive entries in T . In their solution a matching of jobs with machines would
correspond to a switching mode, and a TDMA frame would correspond to an
open shop preemptive schedule. Interestingly enough the algorithm of Gonzalez
and Sahni preceded this of Inukai [30]. The latter seems to have been designed
exclusively with the SS/TDMA time slot assignment in mind. The reader is referred
to Dell’Amico and Martello [18] for detailed comparison of the algorithms by
Gonzales and Sahni [26], and Inukai [30] in a broader historical context.
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Inukai [30] emphasizes reduction of the number q as an important sec-
ondary criterion for the SS/TDMA time slot assignment problem. Clearly, the
secondary criterion naturally carries over to the open shop with preemptions
problem, O|pmtn|Cmax. A well known upper bound on q is n2 − n + 1, see Horn
and Johnson [29]. The algorithm of Inukai reduces that bound to n2 − 2n + 2.
Farahat and Mirsky [23] prove that this bound is the best possible. Brualdi [4], and
Brualdi and Gibson [5] provide further analysis of the Birkhoff algorithm for doubly
stochastic matrices. The minimization of q is NP-hard in the strong sense which was
recently proved by Dufossé and Uçar [22]. Kulkarni et al. [33] further prove that
the minimization of q is not fixed parameter tractable, and show polynomial-time
algorithm for q = 2, 3. Dufossé et al. [21] show that a family of heuristics based on
the original proof of Birkhoff can miss optimal decompositions which was earlier
conjectured by Brualdi [4].

Lewandowski and Liu [35] extend the TDMA time slot assignment problem
to take into account the ability to demultiplex each of the uplink beams into at
most k signals, transmit each of these signals to different downlink beams, and then
multiplex up to k of these signals into each of the downlink beams. For the open
shop this means that at most k operations of each job can be processed at a time,
and at most k jobs can be processed by each machine at a time. Observe that the
single-operation machine model studied in Sect. 8.1 permits each stage to processed
several jobs at a time by allowing parallel identical machines in each stage, yet it still
requires at most one operation of each job to be processed at a time. The concurrent
open shops in Chap. 4 on the other hand allow all operations of each job to be
processed in parallel. We have the following lower bound for the makespan of the
frame:

α = max

{

max
i,j

tij , max
i

1

k
Ri, max

j

1

k
Cj

}

,

see Lewandowski and Liu [35]. de Werra [13] gives the following decomposition
of the traffic matrix T :

T = t1Z1 + . . . tqZq,

where each matrix Z1, . . . , Zq is a 0, 1 matrix with at most k 1’s in each row, and at
most k 1’s in each column, and importantly

t1 + · · · + tq = α.

The decomposition can be computed in polynomial time using network flow
algorithms, see de Werra [10, 11, 13].
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11.3 Reconfigurable Data Centers

Reconfigurable data centers and software defined networks connect servers within
a data center by optical connections, Chen et al. [8]. An advantage of such network
technology is that as traffic between servers changes over time, the network topology
can be reconfigured to better match the change and to prevent localized bottlenecks.
A traffic matrix in a reconfigurable data center represents traffic that needs to
be routed among a set of n servers. A route is a matching between senders and
receivers. The change between routes however requires moving laser pointers and
receivers that comes at a cost, Kulkarni et al. [33]. Therefore, finding a shortest
schedule for a given traffic matrix with as few as possible preemptions improves
performance of the routing algorithms.

11.4 Crossbar Switches

An input-buffered crossbar switch with n input ports and n output ports has a buffer
for each input port. In such a switch, time is slotted and synchronized so that
packets from different input buffers can be read out simultaneously within a time
slot. In a time slot, a crossbar switch sets up a connection pattern corresponding to
a permutation matrix. As a permutation matrix is a one-to-one mapping from input
ports to output ports, packets destined to the same output ports cannot be transmitted
at the same time, Chang et al. [7]. A crossbar switch scheduling algorithm needs to
guarantee 100% throughput for traffic with given rates ri,j from input i to output j .
The rates are specified by an n × n traffic rate matrix

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r1,1 . . . r1,n

r2,1 . . . r2,n

. . . . .

. ri,j .

. . . . .

rn,1 . . . rn,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The traffic rate matrix needs to be substochastic, total of each row and column
must not exceed 1, Horn and Johnson [29], in order for 100% throughput to be
achieved at all. Chang et al. [7] propose a scheduling algorithm that guarantees
100% throughput for substochastic matrices. The algorithm first finds a convex
combination of permutation matrices for a substochastic R. This stage is based on
Birkhoff–von Neumann theorem; however, algorithms for makespan minimization
for open shop with preemptions like the one by Gonzales and Sahni [26] can also
be used for this stage. The convex combination of permutation matrices is then used
by fair queueing algorithms, see Demers et al. [19] and Chapter 10 in Kubiak [32],
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to switch between permutation matrices to guarantee 100% throughput for traffic
defined by the traffic rate matrix R.

11.5 Multimessage Unicasting and Multicasting

Gonzalez [27] considers multimessage unicasting and multicasting problem where
processors communicate by sending and receiving messages over a fully connected
network. Each processor can send or receive a message; however, no processor may
send more than one message at a time, and no processor may receive more than one
message at a time. There are ti,j messages to be sent from processor i to processor j .
The problem is to find a shortest possible communication schedule for all messages
to be transmitted. This problem reduces to a preemptive open shop where each
processor i in the communication network represents a job Ji and a machine Mi ,
and the processing time of operation Oi,h equals ti,h, Gonzalez [27] and [25]. The
multimessage unicasting is a special case of multimessage multicasting where the
same message needs to be sent to many processors. The algorithms for the latter
transform the multicasting problem into a unicasting problem and apply the open
shop algorithms to solve the unicasting problem, see Gonzalez [28].

11.6 Scheduling and Wavelength Assignment problem

Bampis and Rouskas [2] study the following scheduling and wavelength assignment
problem. Consider sources s = 1, . . . , n and destinations d = 1, . . . , n and an
n × n matrix P where ps,d is the number of packets to be transmitted from s to d.
The transmission happens at a certain wavelength assigned to the destination node
d. Typically there are fewer wavelengths, m, than destination nodes, thus several
destination nodes may be assigned to the same wavelength. Hence a wavelength is
a machine. For a given assignment of destination nodes to machines, we obtain an
open shop where a source node s is a job made up of m operations corresponding to
wavelengths. The operation of job s on machine h is made up of all destinations
d assigned to the same wavelength h. Thus s transmits at wavelength h to all
destinations d with that wavelength. If it does so, it cannot use any other wavelength
machine at the same time (at most one operation of a job can be processed at a time).
To illustrate the problem consider the following source to destination matrix:
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J1

J1

J2

J2

J3

J3

J4

J4

J5

J2 J5 J1J3J4

M1

M2

M3

0 25

Fig. 11.1 A schedule and wavelength assignment

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 1 3 2 5
3 3 3 6 1
1 5 2 4 3
4 0 1 2 1
0 2 3 0 4

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Assuming three wavelengths M1, M2, and M3 and the assignment of destinations
1 and 4 to M1, 2 and 5 to M2, and 3 to M3 we obtain a three-machine open shop

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

4 6 3
9 4 3
5 8 2
6 1 1
0 6 3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The source 2 uses the wavelength M1 to transmit 3 packets to d = 1 and 6
packets to d = 4, it uses the wavelength M2 to transmit 3 packets to d = 2 and 1
packet to d = 5, and it uses the wavelength M3 to transmit 3 packets to d = 3. This
corresponds to job J2 with operations having processing time 9 on M1, processing
time 4 on M2, and processing time 3 on M3. A schedule for job J2 and the remaining
four jobs is given in Fig. 11.1.

11.7 Scheduling Theory

The application to scheduling theory have been observed in the study of the two-
phase method for preemptive scheduling in de Werra [12, 14]. We illustrate this
method using the scheduling on unrelated processors with preemptions to minimize
makespan problem, R|pmtn|Cmax. An instance of the problem is specified, like in
the open shop problem, by an n × m non-negative real matrix
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P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1,1 . . . p1,m

p2,1 . . . p2,m

. . . . .

. pi,h .

. . . . .

pn,1 . . . pn,m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

However its entries have a different meaning than in the open shop scheduling
problem. To explain the difference suppose for the time being that preemptions are
not allowed. Then each job Ji is completely processed by one of the m machines.
If that machine is machine Mh, then the job Ji processing time equals pi,h. The
remaining processing times of job Ji , or the remaining entries in row i, are then
irrelevant for the solution. Now returning to the preemptive case let us take a convex
combination pi,1xi,1+· · ·+pi,mxi,m of the processing times of job Ji , i = 1, . . . , n.
For given n convex combinations, one for each job, we obtain the following instance
of the open shop:

Px =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1,1x1,1 . . . p1,mx1,m

p2,1x2,1 . . . p2,mx2,m

. . . . .

. pi,hxi,h .

. . . . .

pn,1xn,1 . . . pn,mxn,m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where

Δ(Px) =
{

max
i

{
m∑

h=1

pi,hxi,h

}

, max
h

{
n∑

i=1

pi,hxi,h

}}

. (11.2)

The solution to the instance Px of the open shop problem O|pmtn|Cmax with
makespan Cmax = Δ(Px) can be found in polynomial time, see Sect. 3.7. The
solution solves R|pmtn|Cmax by scheduling fraction xi,h of processing time pi,h

of Ji on machine Mh. In other words job Ji has now m operations Oi,1, . . . , Oi,m

with processing times pi,1xi,1, . . . , pi,mxi,m, respectively. Thus to find an optimal
solution to R|pmtn|Cmax one needs to find the coefficients xi,h that minimize Δ(Px).
This can be done by solving a linear program, see Lawler and Labetoulle [34],
Brucker [6] and Błażewicz et al. [3]. A similar two-phase approach based on LP
and reduction to open shop works for

• The problem R|pmtn, ri |Lmax, see Lawler and Labetoulle [34], Brucker [6] and
Błażewicz et al. [3].

• The problems in Sects. 4.3 and 4.10.
• The problem O|pmtn, rj |Lmax in Sect. 3.7.2.
• The multiprocessor open shop scheduling in Chap. 8.
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11.8 Data Migration and File Transfer Scheduling

Data migration problem arises whenever large amount of data need to be rapidly
transferred to new locations within storage area networks in order to better respond
to changing demand for data. During the migration the network still needs to provide
efficient though unlikely best service. Therefore it is important to compute as short
as possible data migration schedule that produces the target data layout. Coffman
et al. [9], see also Gandhi et al. [24] and Khuller et al. [31], introduce file
transfer multigraph G = (V ,E) to model the problem. The vertices in V represent
storage devices (computers or computer centers). The labeled edges correspond
to the files to be transferred between the vertices. The label pi,j of an edge
(i, j) represents transfer time required to transfer the file between i and j . Each
vertex i completes transfers only after all edges incident with v in G complete
transfers. The key constraint is that no two edges incident with the same vertex
can be transferred at the same time. This constrain can be relaxed by increasing the
maximum number of simultaneous file transfers to more than one by increasing the
number of communication ports at vertices, see Coffman et al. [9]. The problem
can be recast as open shop scheduling with simultaneity constraints, see de Werra
[15] de Werra and Erschler [16] de Werra et al. [17], as it was shown in Chap. 6
for wireless networking with primary interference.

From a different angle, each vertex in G corresponds to machine in open shop.
Each edge (i, j) labeled with pi,j is a bi-processor job with processing time pi,j .
The job needs to be processed on machines i and j simultaneously for exactly pi,j

units of time. The problem becomes a subproblem of the problem P |fixj |Cmax with
|fixj | = 2, see Drozdowski [20], where each job is assigned a fixed subset of
parallel machines to be processed on simultaneously.

Problems

11.1 Find more applications of preemptive open shop scheduling in scheduling
theory, see Sect. 11.7.
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