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Preface

Open shop is often defined in the literature by what it is not—flow shop. This
definition may have originated from the initial view of open shop as a manufacturing
system, where operations of a job are done in any order, without preemptions
on dedicated machines. The definition fits service operations as well. A popular
example of open shop is that of a library and its readers. Each reader is a job, and
each book is a machine. A reader wishes to read a collection of books, and reading
a book is an operation that may take different time for different readers, in any
order. A book can only be read by one reader at a time, and a reader can read at
most one book at a time. Another example is class–teacher timetabling. Though
non-preemptive open shop scheduling is a prominent part of open shop scheduling,
it is preemptive open shop scheduling that makes modern open shop scheduling
a universal approach to solving a broad range of real-life problems. Besides, the
preemptive open shop scheduling is strongly linked to graph edge coloring and
to doubly stochastic matrices, which makes it particularly attractive to study in
scheduling theory.

Excellent chapters on open shop scheduling can be found in general books on
scheduling by Pinedo [10], Błażewicz et al. [3], Tanaev et al. [13], and Brucker
[4]. Naturally, those are limited in scope. In-depth reviews are given in chapters by
Gonzalez [6], Prins [11], and Woeginger [14]. Recent literature reviews of open shop
scheduling have been published by Anand and Panneerselvam [2] and Ahmadian
et al. [1]. However, to the author’s knowledge, there has not been any monograph
focusing solely on open shop scheduling published thus far. This monograph is to fill
in the void, to present a growing portfolio of applications of open shop scheduling,
and to emphasize a great potential and need for novel theoretical results in the open
shop scheduling field.

The intended audience of the book includes, but is not limited to, sophisticated
practitioners, graduate students, and researchers in operations research, manage-
ment science, computer science, and discrete mathematics.

Open shop scheduling has branched out into a growing number of models by
adding new features, constraints, or objective functions over the years. Therefore, a
selection of topics had to be made for this book intended for fewer than 300 pages.
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viii Preface

Consequently, a balance had to be found between theory and applications, between
traditional models captured by the Graham et al. [8] notation and new models that
outgrew by far that notation, between graph theoretic approach to preemptive open
shop scheduling and non-preemptive open shop scheduling, between existing results
and open problems, and between the results that have been well-presented in the
earlier books on scheduling and those that have been somewhat under-represented
or more recent. As a result, the selection excludes some important open shop
scheduling areas such as stochastic models, heuristics and meta-heuristics, models
with machine availability, competing agents, transport delays, batch processing, and
rejection, to name just few; see Ahmadian et al. [1] for a comprehensive list.

The plan of the monograph is as follows. Chapter 1 defines notation and
terminology used in this book. It also reviews the key results on edge coloring
of bipartite multigraphs (König’s edge coloring theorem), on fractional chromatic
index (Edmonds’ theorem), on doubly stochastic matrices being a convex combi-
nation of permutation matrices (Birkhoff–von Neumann theorem), and the vector
rearrangement theorem. Those results have proved to be the most insightful and
influential for open shop scheduling. They also show an exciting diversity of
perspectives that researchers have been taking at studying open shops scheduling.

Chapter 2 deals with makespan minimization for two-machine open shop
problem. The problem is one of the first open shop scheduling problems studied
in the literature. Gonzalez and Sahni [7] and Pinedo and Schrage [9] give linear-
time algorithms for the problem. Both algorithms have been well-presented and
analyzed in books on scheduling by Pinedo [10], Błażewicz et al. [3], Tanaev et al.
[13], and Brucker [4] and reviews by Gonzalez [6] and Woeginger [14]. It is quite
remarkable that the two-machine open shop problem with n jobs can be reduced to a
two-machine open shop with three jobs only, which is shown by de Werra [15]. The
kind of reduction that results in instances of smaller sizes than the original instance
is rare in scheduling theory and combinatorial optimization. The algorithm based
on the reduction is presented in the chapter. Another quite remarkable observation
is that preemptions do not make optimal schedules shorter for the two-machine
open shop problem. The chapter shows that this highly desirable feature of optimal
schedules holds for a more general two-machine open shop scheduling problem,
where each operation requires a machine and a certain number of units, for instance,
personnel, of a scarce additional resource to be processed. We refer to this open
shop as two-machine open shop with additional renewable resources. The chapter
presents a polynomial-time algorithm for makespan minimization for this open
shop. The two-machine open shop with additional renewable resources seems to be
the most general two-machine open shop currently known for which the makespan
minimization can be done in polynomial time.

Chapter 3 considers general open shop scheduling with arbitrary number of
machines m. The makespan minimization then leads to different complexity classes
depending on whether preemptions are allowed or not. The chapter shows that
the non-preemptive case with integer processing times is NP-hard in the strong
sense even for optimal schedules not longer than 4. This consequently rules out
the existence of Polynomial-Time Approximation Scheme (PTAS) for the problem
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unless P = NP . However 2-approximation solutions are provided by dense
schedules for the non-preemptive open shop. The chapter also shows special cases
of the non-preemptive open shop that can be solved in polynomial time by the
application of the Vector Rearrangement Theorem, or by imposing additional
constraints on short schedules. The makespan minimization with preemptions can
be achieved in polynomial time by the algorithm of Gonzalez and Sahni [7]. The
problem is one of the most versatile scheduling problems in scheduling theory
and its applications. The chapter gives polynomial-time algorithm for the problem,
which is based on Birkhoff–von Neumann theorem. The preemptions permit the
problem to remain polynomial even if jobs are released at different release dates, and
the objective becomes maximum lateness. The polynomial-time algorithm for the
problem requires solving a linear program though. Open shop scheduling problems
with other objective functions remain NP-hard even for two machines and remain so
regardless of whether preemptions are allowed or not. This intractability changes for
open shops with all operations being unit-time. Those open shop problems resemble
problems with parallel identical processors. Therefore, polynomial-time algorithms
for scheduling of the latter, if any, can be turned into polynomial-time algorithms for
open shop scheduling with unit-time operations. The chapter shows how this can be
done for a number of open shop scheduling problems. This resemblance no longer
holds for open shops with 0–1 operations, i.e. where some operations are missing
(their processing times equal 0). The chapter shows that total completion time then
becomes NP-hard in the strong sense, though the makespan minimization is still
polynomial.

Chapter 4 considers open shop scheduling with multiprocessor operations.
A multiprocessor operation requires simultaneously all machines from a group
of machines for execution. The multiprocessor operations are motivated by the
University timetabling model. The model is a generalization of the well-known
class–teacher timetabling model, where in addition to lectures given by a single
teacher to a single class, there are some lectures given by a single teacher to a
group of classes simultaneously. One looks for a minimum number of periods
in which to complete all lectures without conflicts. The University timetabling
problem is NP-hard in the strong sense even if the number of groups is three, but
it is polynomially solvable for two groups. For two groups, the chapter proves
that the minimum number of periods in which to complete all lectures without
conflicts equals �T �, where T is the optimal value of an LP -relaxation of the
University timetabling problem. The LP -relaxation permits fractions of periods
in feasible solutions, and thus it minimizes makespan for the preemptive open
shop with multiprocessor operations. The proof also gives a polynomial-time
algorithm for the University timetabling problem with two groups. The chapter
then gives polynomial-time algorithms for makespan minimization in preemptive
open shops with multiprocessor operations having any fixed, possibly higher than
two, number of groups. The solutions can be rounded to provide approximate
solutions guaranteeing fixed absolute errors for the University timetabling problem.
The complexity of preemptive open shop scheduling with multiprocessor operations
remains open for arbitrary number of groups.
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Chapter 5 deals with concurrent open shop scheduling. Concurrent open shops
permit processing more than one operation of the same job at a time—a key
departure from traditional open shop that excludes such concurrent processing.
Applications of concurrent open shop scheduling are broad and range from order
scheduling, where different components of an order can be produced concurrently
on dedicated machines to be delivered as a complete order, to airplane maintenance.
Concurrent open shop scheduling naturally concentrates on total completion time-
and due date-based objective functions. The chapter provides an in-depth review
of the complexity of optimization of those objective functions that are notoriously
difficult to optimize for the concurrent open shop. The chapter shows that permuta-
tion schedules include optimal schedules for regular objective functions and that the
EDD (earliest due date) permutation minimizes maximum lateness. The permutation
schedule has the same permutation of jobs on each machine. The chapter gives 2-
approximation algorithm for total weighted completion time and shows that total
completion time is NP -hard to approximate within factor 2 − ε for any ε > 0
assuming that the Unique Games Conjecture holds. It shows that both number of
tardy jobs and total tardiness are NP -hard to approximate within factor (1− c) ln m

for any c > 0. Those results are based on recent inapproximability results for set
cover and independent set problems in r-uniform hypergraphs. The chapter also
reviews the existing literature on exact algorithms, and heuristics for concurrent
open shop scheduling.

Chapter 6 considers open shop scheduling with simultaneity constraints. The
constraints require that some operations be processed simultaneously at any time.
We show that the constraints are capable of modeling edge coloring in arbitrary
graphs, which in turn models many real-life problems. Motivated by applications
in scheduling wireless networks, we consider the problem of covering the edges
of a graph by a sequence of matchings subject to the constraint that each edge
e appears in at least a given fraction r(e) of the matchings. It can be determined
in polynomial time whether such a sequence of matchings exists or not; however,
makespan minimization of the sequence is computationally intractable in general.
We restrict our investigation to a special class of graphs, the so-called OLoP (Overall
Local Pooling) graphs shown important in an online distributed wireless network
scheduling setting. We also generalize the results to a larger class of graphs called
GOLoP graphs. In particular, we show that deciding whether a given GOLoP graph
has a matching sequence of length at most k can be done in linear time. If the answer
is affirmative, we show how to construct, in quadratic time, the matching sequence
of length at most k. Finally, we prove that, for GOLoP graphs, the length of a shortest
sequence does not exceed a constant times the least common denominator of the
fractions r(e). This leads to a pseudopolynomial-time algorithm for minimizing the
length of the sequence. We show that the constant equals 1 for OLoP graphs and,
following Seymour [12], conjecture that the constant is as small as 2 for general
graphs. This conjecture holds for all graphs with at most 10 vertices.

Chapter 7 considers proportionate open shop scheduling. Two models of pro-
portionate open shops have emerged in the literature: job-proportionate open shop,
where all operations of each job have the same processing time; and machine-
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proportionate open shops, where all operations on each machine have the same
processing time. The two models are equivalent for makespan minimization but not
for other objective functions. Somewhat surprisingly, the makespan minimization
remains NP-hard in the ordinary sense for three-machine job-proportionate open
shops. A pseudopolynomial-time algorithm has been recently given for the three-
machine case. The chapter reviews approximation algorithms for that case and
presents 7

6 -algorithm. The chapter proposes a new approach to makespan minimiza-
tion in machine-proportionate open shops with arbitrary number of machines m. The
approach uses approximation algorithms for bin packing as subroutines to improve
the solutions for the machine-proportionate open shops with n < m. The problem
is solvable in polynomial time for n ≥ m. The chapter considers total completion
time minimization for machine-proportionate open shops. The complexity status
of the problem has been a long-standing open question. The chapter shows that
the problem is NP-hard for three machines and gives a polynomial-time algorithm
for two machines. It remains, however, open whether the two-machine problem is
polynomial with respect to a succinct input encoding. Finally, the chapter reviews
sufficient conditions that make makespan minimization for ordered open shops,
and open shop scheduling with maximal, dominated, and bottleneck machines
polynomial.

Chapter 8 deals with multiprocessor open shop scheduling. Two models of open
shops with multiprocessors have emerged in the literature: single-operation machine
and multiple-operation machine models. The former replaces a single machine
in each stage of open shop by parallel machines, typically identical, but limits
processing of each operation to the machines from one stage. The latter permits
processing each operation on a set of machines possibly from different stages.
The research on those models has focused mainly on makespan minimization.
For the preemptive case, the makespan minimization can be done by a two-phase
approach. The approach first allocates operations to machines using McNaughton
algorithm or linear programming depending on the model, thus creating an instance
of preemptive open shop. The second phase then applies algorithms for makespan
minimization for preemptive open shop to find the schedule for the instance. The
chapter presents this approach for both models. The non-preemptive case is NP-
hard in the strong sense. The chapter gives a 2-approximation algorithm that works
for an arbitrary number of machines and reviews approximation schemes for a fixed
number of stages. Finally, the chapter reviews the applications of multiprocessor
open shop scheduling to health care and other areas.

Chapter 9 considers compact and cyclic compact open shop scheduling. The
compact scheduling is motivated by timetabling, and the cyclic compact scheduling
by scheduling in just-in-time systems. A compact schedule is a preemptive schedule
that requires each job to be processed in a no-wait fashion (without idle time
between its operations) and each machine to process operations in a no-idle fashion
(without idle time between operations processed by the machine). The compact
open shop schedules are traditionally recast as interval edge colorings of bipartite
graphs G. Compact schedules do not always exist, which adds to the complexity
of the makespan minimization problem. The chapter presents smallest instances
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for which compact schedules do not exist, and a number of tests to determine
whether compact schedules exist or not depending on maximum degree �(G) of
G. Such tests run in polynomial time for open shops with �(G) ≤ 4, but the
decision problem becomes NP -complete in the strong sense for �(G) = 5. The
minimization of makespan over all compact schedules has polynomial-time solution
for �(G) ≤ 3, and its complexity status remains open even for (3, 4)-biregular open
shops, where every job has length equal to 3 and each machine has workload equal
to 4. Deficiency of a schedule has been proposed as a measure of deviation of the
schedule from compactness. However, the problem of minimizing deficiency is not
only NP -hard in the strong sense but also the existing integer programming and
constraint programming models can hardly solve problems of size n + m = 10
in reasonable time. The chapter presents polynomial-time algorithms for makespan
minimization of cyclic compact schedules for open shops with �(G) ≤ 4, and
sufficient conditions that make makespan minimization for �(G) ≥ 5 solvable in
polynomial time.

Chapter 10 deals with no-wait scheduling of open shops. No-wait schedules
model the lack of intermediate storage to store jobs between operations or lack of
buffer for optical messages in optical networks. No-wait open shop scheduling does
not rule out preemptions per se. The optimal preemptive and non-preemptive no-
wait schedules may differ. We prove that preemptive no-wait scheduling to minimize
makespan is NP -hard in the strong sense for two machines. We show polynomial-
time tests to check whether or not there is a no-wait schedule with makespan
Cmax ≤ 3 or Cmax ≤ 4. The existence of a polynomial-time test for Cmax ≤ 5 is
an open question even for 0–1 operations. We characterize instances with negative
and affirmative answer to the last problem. The problem with optimal makespan
Cmax ≤ 6 is NP -hard in the strong sense even for open shops with all jobs of length
3 and each machine workload 6. This implies that no PTAS for no-wait makespan
minimization exists unless P = NP . A PTAS, however, exists for two-machine
no-wait makespan minimization. We show how to obtain no-wait schedules from
cyclic compact schedules to further exploit the results of Chap. 9. We argue that
the existing optimization and approximation algorithms have been developed under
assumption that the operations are non-preemptive and, therefore, leave a room for
research on such algorithms for preemptive case.

Chapter 11 reviews the applications of open shop scheduling. The preemptive
open shop scheduling to minimize makespan finds surprisingly many prominent
applications in telecommunications and information technology. Those include
satellite-switched time-division multiple access (SS/TDMA) method used to allo-
cate the communication bandwidth provided by a satellite link to carry traffic
between earth stations; scheduling reconfigurable data centers; scheduling crossbar
switches to guarantee 100% throughput for traffic with required traffic rates;
multimessage unicasting and multicasting; file transfer scheduling; and scheduling
and bandwidth allocation problem. The open shop scheduling also finds impor-
tant applications in scheduling theory as a key component of the two-phase
method for preemptive scheduling. The method uses algorithms, for instance, linear
programming or maximum network flow, to determine an optimal instance (or
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instances) of the preemptive open shop in the first phase. The phase depends
on a particular scheduling problem under consideration. The second phase uses
preemptive open shop schedule with minimum makespan to find a feasible schedule
for the preemptive scheduling problem.

Chapter 12 considers two-machine open shop scheduling with job-dependent
time lags. The time lags model transportation delays, intermediate processes, or
operations that are not constrained by resources but take time. The open shop
scheduling with time lags can be viewed as a generalization of no-wait open
shop scheduling. The chapter gives a new proof of NP -hardness of makespan
minimization for two-machine open shop with time lags and unit-time operations. It
presents an algorithm that runs in O(n log n) time for a special case where all time
lags are distinct. The algorithm produces ideal schedules that minimize makespan
and total completion time at the same time. The chapter then proves that the total
completion time minimization is NP -hard in the strong sense for two-machine
open shop with time lags and unit-time operations. This answers an open question
from the literature. The chapter reviews special cases solvable in polynomial time
and approximation algorithms for the makespan minimization problem with time
lags, as well as inapproximability results for the problem with exact time lags. The
chapter also discusses some open problems.

Special thanks go to my friends and colleagues, listed in random order, for their
encouragement and support: Dominique de Werra (École Polytechnique Fédérale de
Lausanne), Tamás Kis (Hungarian Academy of Sciences), Erwin Pesch (University
of Siegen), Jan Węglarz and Jacek Błażewicz (Poznań University of Technology),
Moshe Dror (University of Arizona), Krzysztof Giaro and Dariusz Dereniowski
(Gdańsk University of Technology), Denis Trystram (Université Grenoble Alpes),
Edward G. Coffman Jr. (Columbia University), and Michael Pinedo (New York
University). I am particularly indebted to Camille C. Price, Series Editor, for her
constant encouragement.

St. John’s, NL, Canada Wieslaw Kubiak
August 2021
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Chapter 1
Preliminaries

1.1 Open Shop

We begin by introducing notation, terminology, and definitions for traditional open
shop scheduling. Those will be expanded in Chap. 2 to include open shops with
additional resources, in Chap. 5 to include concurrent open shops, and in Chap. 6
to include open shops with simultaneity constraints. For the time being, we leave
details to those chapters where the motivation for the extensions becomes more
natural.

An open shop consists of set of machines (processors)M = {M1, . . . , Mm}, and
set of jobsJ = {J1, . . . , Jn}. Each job Ji is made up of m operations Oi,1, . . . , Oi,m

where operation Oi,h requires machine Mh for its execution (processing). In a
feasible schedule, the operations of a job can be executed in any order; however,
executions of any two operations of the same job may not be done in parallel. Each
machine can execute at most one job at a time. A job completes its execution as
soon as all its operations have been executed. The completion time of job Ji in a
schedule S is denoted by Ci(S). To simplify notation, we omit the schedule from
the notation whenever the schedule is clear from the context. An instance of an open
shop is specified by an n × m non-negative real matrix

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1,1 . . . p1,m

p2,1 . . . p2,m

. . . . .

. pi,h .

. . . . .

pn,1 . . . pn,m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The convention assumed in this book is that the rows of P correspond to jobs,
and the columns correspond to machines. The entry pi,h of P is processing time of

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Kubiak, A Book of Open Shop Scheduling, International Series in Operations
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https://doi.org/10.1007/978-3-030-91025-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91025-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-91025-9_1


2 1 Preliminaries

operation Oi,h. The sum of all entries in column h equals workload of machine Mh,
h = 1, . . . , m,

Lh =
n∑

i=1

pi,h. (1.1)

The sum of all entries in row i equals length of job Ji , i = 1, . . . , n,

Pi =
m∑

h=1

pi,h. (1.2)

We define the maximum machine workload

L = max
h

{Lh}, (1.3)

the longest job

P = max
i

{Pi}, (1.4)

and the maximum degree

�(P) = max{L,P }. (1.5)

We shall also refer to �(P) as the degree of instance. We define the longest operation

pmax = max
i,h

{pi,h}. (1.6)

For each instance P, there is a dual instance, which is the transpose P
T of P

P
T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1,1 . . . p1,n

p2,1 . . . p2,n

. . . . .

. ph,i .

. . . . .

pm,1 . . . pm,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Thus jobs of an instance become machines of its dual instance, and machines of the
instance become jobs of its dual instance. The input size is O(nm log pmax).

An instance may also include non-negative job release dates r1, . . . , rn, job due
dates d1, . . . , dn, and job weights w1, . . . , wn for jobs J1, . . . , Jn, respectively. The
open shop scheduling problem consists in finding an optimal feasible schedule, if
any, for each instance of the problem. The optimality depends on objective function.
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The objective functions used in this book include: makespan Cmax = maxi{Ci},
maximum lateness Lmax = maxi{Ci − di}, total completion time

∑
Ci , total

tardiness
∑

Ti = ∑
max{0, Ci − di}, number of tardy jobs

∑
Ui , where Ui = 1 if

Ci > di , and Ui = 0 if Ci ≤ di , or their weighted counterparts. A comprehensive
list of objective functions used in scheduling as well as the complexity relationships
between them can be found in the books on scheduling by Błażewicz et al. [8],
Pinedo [25], and Brucker [10]. The well-known notation used for classification
of scheduling problems introduced by Graham et al. [20] will be often used to
describe open shop scheduling problems throughout the book. The notation has
become a standard for scheduling problems and it is well-described in the books
on scheduling (Błażewicz et al. [8], Pinedo [25], and Brucker [10]), and hence it
will not be discussed in detail here.

The reader is referred to the books by Garey and Johnson [15], and Ausiello
et al. [2] for the essential concepts and results on computational complexity and
approximation algorithms and schemes used in this book.

Types of open shops discussed in this book include:

• open shop;
• open shop with additional resources;
• open shop with multiprocessor operations, where some operations require all

machines in a set of machines for execution;
• open shop with simultaneity constraints;
• proportionate open shop, where either all operations of each job have the same

processing time or all operations on each machine have the same processing time;
• multiprocessor open shop, where each machine is replaced by a set of identical

parallel machines;
• compact open shop, where no waiting time between operations of jobs is allowed,

and no idle time on machines is allowed;
• no-wait open shop, where no waiting time between operations of jobs is allowed;
• open shop with time lags, where a certain minimum time must elapse between

operations of each job.

1.2 Open Shop Scheduling and Multigraph Edge Coloring

An early research on open shop scheduling originated from the basic class–
teacher timetabling problem; see Gotlieb [19] and de Werra [12], where teachers
correspond to machines and classes to jobs: teacher Mh is required to teach class Ji

for pi,h periods of equal duration but not necessarily consecutive. Bondy and Murty
[9] describe the problem as follows:

. . . in any one period, each teacher can teach at most one class, and each class can be taught
by at most one teacher - this, at least, is our assumption Thus a teaching schedule for one
period corresponds to a matching in the graph and, conversely, each matching corresponds
to a possible assignments of teachers to classes for one period. Our problem, therefore, is
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to partition the edges of G into as few matchings as possible or, equivalently, to properly
colour the edges of G with as few colours as possible. Since G is bipartite, we know. . .

This description clearly defines the scheduling problem but also gives a method
for its solution. The method is to recast open shop as a bipartite class–teacher
multigraph and to search for a preemptive schedule where preemptions are permitted
at integer points only. The solutions can then be viewed as collections of matchings
in the bipartite multigraphs, each matching corresponding to a different color in edge
coloring, which in turn corresponds to a different unit-time period in the schedule.
Thus the focus becomes edge coloring of bipartite graphs. We now introduce a graph
theoretic notation and terminology pertinent to this approach often used in this book.

All graphs considered in this book are finite. Let G = (V ,E) be a simple graph.
For a vertex v ∈ V , let NG(v) denote the set of vertices in G that are adjacent to
v, i.e., the neighbors of v. NG(v) is called the neighborhood of vertex v. Whenever
G is clear from the context, we will drop the subscripts and write N(v) = NG(v).
The degree of a vertex v, denoted by deg(v), is the number of neighbors of v, i.e.,
deg(v) = |N(v)|. The set of edges incident to a vertex v will be denoted by δ(v).
�(G) denotes the maximum degree of G, i.e., �(G) = maxv∈V {deg(v)}. For X ⊆
V , we denote by G[X] the subgraph induced by X. We write G−v for the subgraph
obtained from G by deleting a vertex v. Similarly, for X ⊆ V , we denote by G − X

the subgraph of G obtained by deleting the set X, i.e., G − X = G[V \ X]. A
matching in a graph G = (V ,E) is a set of pairwise non-adjacent edges. The set of
all matchings in G is denoted byMG, and the set of all matchings in G containing
an edge e ∈ E(G) is denoted by MG(e). For u ∈ V (G), let MG(u) denote the
set of matchings that contain an edge incident with u, and for v ∈ V (G), v �= u,
let MG(u, v) = MG(u) ∩MG(v). If M ∈ MG(u), we say that the matching M

saturates u.
A multigraph H is a pair (G, mp), where G is a simple graph and mp : E(G) →

Z+ is a function. The value of mp(e) is the multiplicity of edge e in the multigraph
H . We define V (H) = V (G), E(H) = E(G), and MH = MG. (Thus, to
clarify, MH does not contain two matchings that differ only in the choice of
parallel edges.) For v ∈ V (H), we define degH (v) = ∑

e∈δ(v) mp(e). Moreover,
�(H) = maxv∈V (H){deg(v)} denotes the maximum degree of H .

1.2.1 Job-Machine Bipartite Multigraph

Let P be an instance of open shop with all entries being non-negative integers.
The rows correspond to jobs, and the columns correspond to machines. The
bipartite multigraph H = (G, mp) corresponding to P is defined as follows:
G = (J,M, E), where E = {(Mh, Ji) : Mh ∈ M, Ji ∈ J, and pi,h > 0}, with
the edge (Mh, Ji) ∈ E and multiplicity mp(Mh, Ji) = pi,h. To illustrate, consider
an instance
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P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1
3 1
1 4
1 1
1 2
2 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

with its corresponding bipartite multigraph shown in Fig. 1.1a. The two rep-
resentations are equivalent for open shop scheduling problems with unit-time
operations, denoted by O|pij = 1 . . . | . . ., or 0–1 operations, denoted by O|pij ∈
{0, 1} . . . | . . ., or the O|pmtn . . . | . . . . open shops with integral operation processing
times and preemptions allowed at integral points only. For those problems, the
two representations will be often used interchangeably following the literature
convention.

1.2.2 Edge Coloring

An edge coloring of a multigraph H is a mapping c : E(H) → 2Z+ such that
|c(e)| = mp(e) for all e ∈ E(H) and if e1, e2 ∈ E(H) share a vertex, then
c(e1) ∩ c(e2) = ∅. Let emax = max{z|z ∈ c(e)}. If for an edge coloring c we have
maxe∈E(H){emax} ≤ k for all e ∈ E, then we call c a k-edge coloring of H . The
smallest integer k such that H admits a k-edge coloring is called the chromatic index
of H and is denoted by χ ′(H). For k-edge coloring c, define Ei = {e : i ∈ c(e)},
i = 1, . . . , k. In edge coloring each Ei is a matching. The collection E1, . . . , Ek

of matchings can be turned into a feasible schedule with Cmax = k. To see this,
consider for instance a bipartite multigraph in Fig. 1.1a where a 10-edge coloring
is also shown. Observe that the coloring is an interval edge coloring, i.e., all edges
incident with any vertex are colored with colors making up an interval of integers.
For instance, the five edges incident with a job-vertex J3 are colored with colors in
the interval [3, 7]. We will discuss interval edge coloring, or compact open shop, in
more detail in Chap. 9. The edge coloring can be easily converted into a schedule
by scheduling the jobs incident with the edges colored with color i in the unit-
time interval [i − 1, i]; see Fig. 1.1b. The makespan of the resulting schedule equals
Cmax = 10, which is equal to the maximum vertex degree � = 10 of the multigraph.
The schedule is preemptive; however, a non-preemptive schedule can easily be
obtained, and we leave it to the reader as an exercise. The following theorem is
key to coloring edges of bipartite multigraphs.

Theorem 1.1 The edges of a bipartite multigraph G can be colored with

�(G) = max{L,P } (1.7)

colors.
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M1
M2

J1

J2 J3 J4

J5 J6

12
21

33
44

5

5

5

6

6
7

7

8

8

99

10

J1

J1

J2

J2 J3

J3

J3

J4

J4

J5

J5

J6

J6

1 2 3 4 6 7 8 9 10

M1

M2

(a)

(b)

Fig. 1.1 (a) bipartite multigraph corresponding to the open shop instance P and its 10-edge
coloring; (b) schedule corresponding to the edge coloring

This is the famous König’s edge coloring theorem (or König’s line coloring
theorem), König [23]. Remarkably, the coloring using �(G) colors can be found in
polynomial time; see Cole et al. [11], Gabow and Kariv [14], de Werra [12], and
Gonzalez and Sahni [18].

1.2.3 General Multigraph

It is well-known that χ ′(H) can be written as the optimal value of the following
integer linear program:

χ ′(H) = χ ′(G, mp) = min
w∈ZMG+

∑

M∈MH

w(M) (1.8)
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subject to
∑

M∈MH (e)

w(M) = mp(e) for all e ∈ E(H).

The variable w(M) from a solution vector w is the number of matchings in MH

used to construct a solution.
A fractional edge coloring of a graph G is a mapping f : MG → R+ such that∑
M∈MG(e) f (M) = 1 for every edge e. If for a fractional edge coloring f we have∑
M∈MG

f (M) ≤ k, we call f a fractional k-edge coloring. The smallest integer
k such that G admits a fractional k-edge coloring is called the fractional chromatic
index of G and is denoted by χ ′

f (G); see Schrijver [26].
A rate function (for a graph G) is a function r : E(G) → Q ∩ (0, 1]. Similar to

the degree of a vertex, for any v ∈ V (G), we will write r(v) = ∑
e∈δ(v) r(e). We

will think of rate functions as a continuous versions of multiplicity functions mp.
With this in mind, we introduce the following continuous version of the fractional
chromatic index. For a graph G and a weight function γ : E(G) → R+ (we will
usually take γ to be either a multiplicity function mp or a rate function r), define

χ ′
f (G, γ ) = min

w∈RMG+

∑

M∈MG

w(M) (1.9)

subject to
∑

M∈MG(e)

w(M) = γ (e) for all e ∈ E(G).

Given a multigraph H = (G, mp), define

t (H) = max

{
2|E(H ′)|

|V (H ′)| − 1
: H ′ is an induced subgraph of

H, |V (H ′)| is odd, |V (H ′)| ≥ 3

}

.

We have the following fundamental result for the fractional chromatic index of any
multigraph.

Theorem 1.2 (Edmonds [13]) χ ′
f (H) = max{�(H), t (H)}, for every multigraph

H .

1.2.4 Open Shop Scheduling and Doubly Stochastic Matrices

A square matrix is a doubly stochastic matrix if it is a non-negative matrix where
each row sums up to 1 and each column sums up to 1; see Berge [7], Asratian et al.
[1], Horn and Johnson [22], Bapat and Raghavan [4], and Marshall and Olkin [24]
for introduction to doubly stochastic matrices.
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A square matrix P is a permutation matrix if exactly one entry in each row
and each column equals 1 and all other entries are 0; see Horn and Johnson [22].
The following theorem known as Birkhoff–von Neumann theorem (see Horn and
Johnson [22]) holds.

Theorem 1.3 An n × n matrix Q is doubly stochastic if and only if it is a
convex combination of permutation matrices, i.e., there exist q permutation matrices
P1, . . . , Pq and positive real numbers λ1, . . . , λq such that

Q = λ1P1 + . . . + λqPq (1.10)

and

λ1 + . . . + λq = 1. (1.11)

Moreover, q ≤ n2 − n + 1.

The theorem offers an immediate solution to makespan minimization for pre-
emptive open shops where

(1) the number of machines m equals the number of jobs n,
(2) all machine workloads are equal and equal to all job lengths.

Processing times of operations can be real numbers, and preemptions are allowed
at any points. As an example of application of the theorem, consider the following
open shop:

P =
⎡

⎣
1 2 3
2 3 1
3 1 2

⎤

⎦ .

We have L1 = L2 = L3 = P1 = P2 = P3 = 6, and n = m = 3. We get the
following doubly stochastic matrix for the instance P

Q = 1

6
P =

⎡

⎢
⎢
⎢
⎣

1
6

1
3

1
2

1
3

1
2

1
6

1
2

1
6

1
3

⎤

⎥
⎥
⎥
⎦

.

By the Birkhoff–von Neumann theorem, Q is a convex combination of permuta-
tion matrices

Q = 1

6

⎡

⎣
1 0 0
0 0 1
0 1 0

⎤

⎦ + 1

3

⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦ + 1

2

⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦ ,
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Fig. 1.2 Schedule
corresponding to the convex
combination of permutation
matrices for a doubly
stochastic Q J1

J1

J1 J2

J2

J2

J3

J3

J3

M1

M2

M3

0 1 3 6

where λ1 = 1
6 , λ2 = 1

3 , and λ3 = 1
2 . Each permutation matrix Pi in the

convex combination represents a perfect matching of n machines with n jobs, or
an assignment of jobs to machines. The multiplier 6 × λi equals the duration of that
assignment in an open shop schedule corresponding to the convex combination. The
schedule has makespan 6(λ1 + λ2 + λ3) = Cmax = 6. The schedule is shown in
Fig. 1.2. Observe that only the switch from one permutation matrix to the other can
possibly generate preemption in the schedule obtained for the convex combination.
Thus the number of distinct points in time when preemptions occur is bounded by
the number of permutation matrices q in the convex combination. The combination
is not unique. We return to the number of permutation matrices q required by the
convex combination in Chap. 3 where we also show that the makespan minimization
for any, not just directly meeting the conditions (1) and (2), preemptive open shop
can be reduced to the application of Birkhoff–von Neumann theorem.

Gonzalez and Shani [18] consider a job–machine bipartite graph (J,M, E)

with weights pi,h > 0 for edge (Ji,Mh) ∈ E rather than the multiplicity that
by definition needs to be integer. Their algorithm, though designed to minimize
makespan of preemptive schedules, can be viewed as an algorithm for finding a
convex combination in the Birkhoff–von Neumann theorem. The algorithm runs in
O(|E|(min{|E|,m2} + m log n)) time, which is strongly polynomial. This may not
be the case for some polynomial-time algorithms for edge coloring in multigraphs.
Gonzalez [16] later proposed another algorithm for the problem that runs in O(|E|+
min{m4, n4, |E|2}) time.

Gonzalez and Shani [18] were the first who, to the best of the author’s
knowledge, used the term open shop problem. Gonzalez [17] later provided the
following explanation:

Gonzalez and Shani [18] introduced the open shop problem back in 1974 to model several
real-world applications that did not quite fit under the flow shop model.

1.2.5 Vector Rearrangement Theorem

The following theorem, also known as Compact Vector Summation Theorem,
is used in the development of polynomial-time algorithms for the makespan
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minimization of special cases of the non-preemptive open shop problem, O||Cmax
in Chap. 3. The theorem is discussed in-depth in Steinitz [28], Bárány [5] and [6],
Grinberg and Sevast’janov [21], and Woeginger [29].

Theorem 1.4 Let x1, . . . , xn be vectors in R
d such that

n∑

i=1

xi = 0 (1.12)

and

‖xi‖ ≤ 1 for i = 1, . . . , n, (1.13)

where ‖ · ‖ is a vector norm. There exists a permutation π of the vectors such that

‖xπ(1) + · · · + xπ(i)‖ ≤ d for i = 1, . . . , n. (1.14)

The permutation can be calculated in O(n2d2) steps.

For a symmetric norm, the d can be replaced by d − 1 + 1
d

in (1.14); see
Banaszczyk [3] and Sevast’janov and Banaszczyk [27].
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Theory to Applications. International Handbooks on Information Systems (Springer, Berlin,
2007)

9. J.A. Bondy, U.S.R. Murty, Graph Theory with Applications (North-Holland Publishing,
Amsterdam, 1976)

10. P. Brucker, Scheduling Algorithms (Springer, Berlin, 1995)
11. E. Cole, K. Ost, S. Schirra, Edge-coloring bipartite multigraphs in O(E log D). Combinatorica

21, 5–12 (2001)
12. D. de Werra, On some combinatorial problems arising in scheduling. INFOR 8, 165–175

(1970)



References 11

13. J. Edmonds, Maximum matching and a polyhedron with 0, 1-vertices. J. Res. Nat. Bur. Stand.
69(1–2), 125–130 (1965)

14. H.N. Gabow, O. Kariv, Algorithms for edge coloring bipartite graphs and multigraphs. SIAM
J. Comput. 11, 117–129 (1982)

15. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness (W. H. Freeman, San Francisco, 1979)

16. T. Gonzalez, A note on open shop preemptive schedules. IEEE Trans. Comput. C-28, 782–786
(1979)

17. T. Gonzalez, Open shop scheduling, in Handbook on Scheduling: Algorithms, Models, and
Performance Analysis, ed. by J.Y.-T. Leung (Chapman and Hall/CRC, 2004), pp. 6-1–6-14

18. T. Gonzalez, S. Sahni, Open shop scheduling to minimize finish time. J. ACM 23, 665–679
(1976)

19. C. Gotlieb, The construction of class-teacher time-tables, in Proc. IFIP Congress 62, Munich
(North-Holland, Amsterdam, 1963)

20. R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and approxima-
tion in deterministic sequencing and scheduling: a survey. Ann. Discr. Math. 5, 287–326 (1979)

21. V.S. Grinberg, S.V. Sevast’janow, Value of the Steinitz constant (in Russian). Funktsional.
Anal. i Prilozhen. (Functional Anal. Appl.) 14, 125–126 (1980)

22. R.A. Horn, C.R. Johnson, Matrix Analysis, 2nd edn. (Cambridge University Press, Cambridge,
2013)

23. D. König, Über graphen und ihre anwendung auf determinantentheorie und mengenlehre.
Math. Ann. 77, 453–465 (1916)

24. A.W. Marshall, I. Olkin, Inequalities: Theory of Majorization and Its Applications (Academic
Press, New York, 1979)

25. M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 5th edn. (Springer, Berlin, 2016)
26. A. Schrijver, Combinatorial Optimization. Polyhedra and Efficiency, vol. A (Springer, Berlin,

2003)
27. S.V. Sevast’janow, W. Banaszczyk, To the Steinitz lemma in coordinate form. Discrete Math.

169, 145–152 (1997)
28. E. Steinitz, Bedingt konvergente reihen und convexe systeme. J. Reine Angew. Math. 143,

128–175 (1913)
29. G.J. Woeginger, The open shop scheduling problem, in 35th Symposium on Theoretical Aspects

of Computer Science (STACS 2018), ed. by R. Niedermeier, B. Vallée. Leibniz International
Proceedings in Informatics (Dagstuhl Publishing, 2018), pp. 4:1–4:12



Chapter 2
Makespan Minimization for
Two-Machine Open Shops

2.1 Introduction

The two-machine open shop makespan minimization problem, O2||Cmax, is one of
the most gracious scheduling problems. It has been studied in the seminal papers on
open shop scheduling by Gonzalez and Sahni [11] and Pinedo and Schrage [16].
Detailed presentations of linear-time algorithms for the problem given in these two
papers can be found in books by Pinedo [17], Błażewicz et al. [2], and Brucker
[4], and in a book chapter by Gonzalez [10].

The two main observations that follow from those algorithms are that the
problems O2||Cmax and O2|pmtn|Cmax have the same value of minimum makespan
for any instance and that the value equals

Cmax = max{L,P }. (2.1)

That is, the minimum makespan equals either maximum machine workload or the
length of the longest job, whichever is greater. This holds regardless of preemptions
being allowed or not. de Werra [6] further observes that the general n-job two-
machine open shop problem reduces to just 3-job problem in linear time. This leads
to another linear-time algorithm for the problem. The algorithm will be presented in
Sect. 2.2. Those features make the two-machine open shop makespan minimization
problem quite unique in scheduling theory.

The importance of the problem has recently been further underlined by the
operation of non-adjacent vertex cloning by which some real-life networks may
evolve, in particular non-adjacent vertex cloning in wireless networks; see Chap. 6.
Through such cloning a pre-existing vertex of degree 2 is cloned, and the clone
becomes adjacent to both neighbors of the pre-existing vertex. The non-adjacent
vertex cloning is shown in Fig. 2.1 where vertex v in Fig. 2.1a is cloned in vertices
v1, v2, v3, v4, and v5 in Fig. 2.1b.
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u w

v

v1

v2

v3

v4

v5

u w

v

(a)

(b)

Fig. 2.1 (a) vertex v with deg(v) = 2; (b) clones v1, v2, v3, v4, and v5

The clones in Fig. 2.1b make up the following two-machine open shop with n =
6 jobs

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1
3 1
1 4
1 1
1 2
2 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It is to be expected that some of those desirable features of O2||Cmax problem
disappear when we extend it to include additional characteristics of operations.
The main challenge of the extension is to add the characteristics so that they stay
relevant enough for the open shop scheduling yet they preserve some key features
of O2||Cmax at the same time. Section 2.3 presents an extension of the problem
O2||Cmax. The extension requires operations to be allocated a certain number
of units of an additional renewable resource, besides a machine, in order to be
processed. All the units are released once the operation is completed in order to
be used by other operations. This generalized problem can be solved in O(n3) time,
which is shown in Sect. 2.5. The main observation is that the generalization has
the same value of minimum makespan regardless of whether preemptions are being
allowed or not. This preserves a key feature of the optimal solutions to O2||Cmax.
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2.2 A Linear-Time Algorithm for Two-Machine Open Shop

In this section we show that the problem with n jobs reduces to the problem with
three jobs; de Werra [6]. The three jobs represent a partition of the set J of n jobs
into three disjoint subsets. Thus once the optimal schedule for the three jobs has
been found, the partition can be used to find the optimal schedule for the original
n-job instance. We now present the details of this algorithm. Take any order of jobs
1, . . . , n, let

α = max{L1 =
n∑

j=1

pj,1, L2 =
n∑

j=1

pj,2, max
j

{Pj = pj,1 + pj,2}}. (2.2)

Determine the smallest i such that

i∑

j=1

(pj,1 + pj,2) ≥ α. (2.3)

Since α ≤ ∑n
j=1(pj,1+pj,2), such an i exists. Denote it by i∗. Let A = {1, . . . , i∗−

1}, B = {i∗ + 1, . . . , n}, and C = {i∗}. Define three jobs: A with processing
time pA,1 = ∑i∗−1

j=1 pj,1 and pA,2 = ∑i∗−1
j=1 pj,2 on M1 and M2, respectively,

B with processing time pB,1 = ∑n
j=i∗+1 pj,1 and pA,2 = ∑n

j=i∗+1 pj,2 on M1 and
M2, respectively, and C with processing times pC,1 = pi∗,1 and pC,2 = pi∗,2
on M1 and M2, respectively. We use the same notation for the sets as for their
corresponding jobs, but this should not cause any confusion. We show that a
schedule that minimizes makespan for the three jobs can be easily converted into
a schedule that minimizes makespan for the original n-job instance. We first show
that

α = max{pA,1 + pB,1 + pC,1, pA,2 + pB,2 + pC,2, pC,1 + pC,2}. (2.4)

We observe that L1 = pA,1 +pB,1 +pC,1, and L2 = pA,2 +pB,2 +pC,2. Thus (2.4)
holds, for max{L1, L2} ≥ maxj {Pj }. Suppose that max{L1, L2} < Pj∗ = α

for some j∗. If j∗ = i∗, then (2.4) holds. Otherwise, j∗ > i∗, which leads to
contradiction because by (2.3) it implies

2α ≤
i∗∑

j=1

(pj,1 + pj,2) + (pj∗1 + pj∗2) ≤ L1 + L2 < 2α.

Thus i∗ = j∗ and (2.4) holds. Let us now find an optimal schedule for the jobs A,
B, and C. For max{L1, L2} ≤ pC,1 + pC,2 = α, the schedule in Fig. 2.2 is optimal.

Now assume that α = max{L1, L2} > pC,1 + pC,2. For L1 ≥ L2, one of the
schedules in Figs. 2.3, 2.4, and 2.5 is optimal if the following condition is met:
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A

A B

C

M1

M2

α0

B

C

Fig. 2.2 An optimal schedule for max{L1, L2} ≤ pC,1 + pC,2 = α

A

A B CM1

M2

α0

B

Fig. 2.3 An optimal schedule for pA,1 ≥ pB,2 and pC,1 ≤ pA,2. The job C can be scheduled
anywhere in the shaded interval on M2

AB CM1

M2

α0

C B

Fig. 2.4 An optimal schedule for pB,1 ≥ pC,2 and pA,1 ≤ pB,2. The job A can be scheduled
anywhere in the shaded interval on M2

A

A BCM1

M2

α0

C

Fig. 2.5 An optimal schedule for pC,1 ≥ pA,2 and pB,1 ≤ pC,2. The job B can be scheduled
anywhere in the shaded interval on M2

(pA,1 ≥ pB,2 and pC,1 ≤ pA,2) or (pB,1 ≥ pC,2 and pA,1 ≤ pB,2) or (pC,1 ≥ pA,2
and pB,1 ≤ pC,2). If this condition is not met, i.e., the following condition is met:
(pA,1 < pB,2 or pC,1 > pA,2) and (pB,1 < pC,2 or pA,1 > pB,2) and (pC,1 < pA,2
or pB,1 > pC,2), then (pA,1 < pB,2 and pC,1 < pA,2 and pB,1 < pC,2), which
contradicts the assumption L1 ≥ L2, or (pC,1 > pA,2 and pB,1 > pC,2 and pA,1 >

pB,2) in which case the optimal schedule is shown in Fig. 2.6. For L2 ≥ L1, optimal
schedules are obtained by the symmetry between M1 and M2.

To illustrate the algorithm run, let us consider the instance Q below:
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A

A B CM1

M2

α0

B C

Fig. 2.6 An optimal schedule for pC1 > pA2 and pB1 > pC2 and pA1 > pB2

A

A

B

B C

C

J1

J1

J2

J2

J3

J3

J4

J4 J5

J5

J6

J6

M1

M1

M2

M2

0

0

6

6

10

10 16

16 20

20

Fig. 2.7 An optimal schedule for the instance Q. The schedule is obtained from the partition into
jobs A, B, and C

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 5
2 5
4 4
3 2
4 2
3 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We have α = 20 for Q. For the order J1, . . . , J6 of jobs, we have A = {J1, J2},
B = {J4, J5, J6}, and C = {J3}. The processing times of jobs A, B, and C are
equal: pA,1 = 6, pA,2 = 10, pB,1 = 10, pB,2 = 6, and pC,1 = pC,2 = 4. Thus the
schedule in Fig. 2.3 is optimal for the three jobs A, B, and C; see Fig. 2.7. Observe
that a reduction to two jobs is also possible for this instance. Take D = {J1, J5, J6}
and E = {J2, J3, J4} for which the processing times are equal: pD,1 = 11, pD,2 =
9, pE,1 = 9, and pE,2 = 11. The optimal schedule is shown in Fig. 2.8.

A natural question arises whether the number of jobs in the reduction can always
be reduced to two. The answer unfortunately is negative since there may be instances
of n jobs such that

∑n
i=1(pi1 +pi2) = 2α and such that for any subset A of the jobs

either
∑

i∈A(pi,1+pi,2) < α or
∑

i∈A(pi,1+pi,2) > α. Thus either
∑

i∈J\A(pi,1+
pi,2) > α or

∑
i∈A(pi,1 + pi,2) > α for any subset A of J . Therefore either the

job J \ A or job A would be too long to guarantee makespan α for the two-job
instance. However α is an optimal makespan for J . This proves that the reduction
to a two-job instance is not always possible. The problem to decide whether there is
a reduction to a two-job instance or not is shown NP-complete by Gribkovskaia et
al. [13]. Soper [20] uses similar ideas in yet another linear-time algorithm for the
O2||Cmax.
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J1

J1

J2

J2

J3

J3

J4

J4J5

J5

J6

J6

M1

M1

M2

M2

0

0

20

20

D

D

E

E

11

11

Fig. 2.8 An optimal schedule for the instance Q. The schedule is obtained from the partition into
jobs D and E

Van den Akker et al. [24], see also Shakhlevich and Strusevich [19], consider
the two-machine open shop problem with bounds C1 and C2 on the completion time
of machine M1 and M2, respectively. They show necessary and sufficient conditions
for a feasible schedule that meets the bounds to exist. The conditions can be checked
in linear time, and a feasible schedule, if any, can be computed in linear time.

2.3 Open Shop with Additional Renewable Resources

We now define the two-machine open shop scheduling problems with additional
renewable resources we alluded to in the introduction. There are two machines
M1 and M2 and l renewable resource types R1, . . . , Rl ; 0 ≤ s� units of resource
type R� are available at any time. The number s� is called resource capacity of
resource type R�. Operation Oi,h needs machine Mh and r�(Oi,h) ≤ s� units of
resource type R� at any time during its execution. The number r�(Oi,h) is called
resource requirement of operation Oi,h. In a feasible schedule each job is processed
by at most one machine at a time, each machine processes at most one operation
at a time, and the total number of resource requirements of operations processed
simultaneously does not exceed resource capacity for any resource type at any time.
Błażewicz et al. [3] propose a three-dot notation, res . . . , to extend the notation
of Graham et al. [12] to include scheduling problems with additional renewable
resources. The first dot represents an arbitrary number of resource types, the second
dot arbitrary resource capacities, and the third dot arbitrary resource requirements.
The arbitrary here means that those numbers are part of the problem input. By
replacing any of the dots by a positive integer, we make the corresponding part
of the input constant for all instances. For example, the notation res1.. denotes
all instances with a single additional resource type, and the other two dots mean
that the capacity of that additional resource type is a part of the input and so are
the resource requirements of operations. In Sect. 2.4 we consider the two-machine
problem O2|res . . . , pmtn|Cmax with preemptions where the number of additional
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resources, their capacities, and operation’s resource requirements are all part of the
input. Section 2.5 considers the problem O2|res1..|Cmax with a single resource type.

The resource requirements of each operation O are represented by a vector
[r1(O), . . . , rl(O)], where 0 ≤ r�(O) ≤ s� for � = 1, . . . , l, and the resource
capacities of resource types R1, . . . , Rl by a vector [s1, . . . , sl]. Though we will use
the vector representation of resource requirements and capacities to express resource
constraints in the following sections, it is worth mentioning that other equivalent
representations, e.g., conflict graphs or agreement graphs, are possible for two-
machine open shops in particular to express those constraints. Namely, the resource
requirement vectors define an operation conflict graph G = (V ,E) for two-machine
open shops with additional resources where V is the set of all operations, and
(Oi,h,Oj,k) ∈ E if and only if i = j or there is � such that r�(Oi,h)+r�(Oj,k) > s�.
On the other hand, for an operation conflict graph G = (V ,E) for operations in V

there are |V | resource types each with capacity 1. The resource type Rv corresponds
to the vertex v of G. The vertex v has a 0–1 vector of resource requirements where
the resource requirements are set to 1 for the resource types corresponding to the
vertices in N(v) ∪ {v}, where N(v) is the neighborhood of v, and they are set to 0
for the resources corresponding to the vertices in V \ (N(v) ∪ {v}). Thus operations
u and v can be processed simultaneously if and only if they are not neighbors (they
are not adjacent) in G. If they were, u would request one unit of resource Ru and
one unit of resource Rv , and v would request one unit of resource Ru and one unit of
resource Rv . Thus the total request for both Ru and Rv would equal 2, which exceeds
resource capacity 1. The two representations of resource constraints are equivalent.
Tellache and Boudhar [22] consider a similar model of constraints. They study a
job conflict graph G = (V ,E) (rather than the operation conflict graph), where V

is the set of jobs and (Ji, Jj ) ∈ E if and only if jobs Ji and Ji cannot be processed
simultaneously. For a job conflict graph G = (V ,E), Tellache et al. [23] define a
job agreement graph that is simply Ḡ = (V , Ē). Therefore clearly the translations
between different representations of the resource constraints can easily be done in
polynomial time, which allows for translations between the complexity results as
well.

2.4 A Network Flow Algorithm for O2|res . . . , pmtn|Cmax

Following Jurisch and Kubiak [14], we show a polynomial-time algorithm for the
O2|res . . . , pmtn|Cmax problem in this section. For a given instance of the problem,
we define a network G = (V ,A) as follows:

• The set of vertices, V , consists of a source s, vertices representing the oper-
ations O1,2, . . . , On,2 on machine M2, vertices representing the operations
O1,1, . . . , On,1 on machine M1, and sink t .

• The set of directed arcs with capacities, A, consists of arcs (s,Oi2) with
capacities pi,2, i = 1, . . . , n, arcs (Oi,2,Oj,1), i, j = 1, . . . , n, with unlimited
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capacity ∞ if Oi,2 and Oi,1 can be processed in parallel, i.e., if i �= j and
r�(Oi,2) + r�(Oj,1 ≤ s� for all � = 1, . . . , l, and arcs (Oj,1, t) with capacities
pj,1, j = 1, . . . , n.

Let f (i, j) be the flow through (i, j) ∈ A in a feasible solution to the max-
flow problem defined by G. We define a feasible preemptive schedule to the
corresponding open shop problem as follows:

• Schedule the operations O1,1, . . . , On,1 on machine M1 in any order.
• Schedule f (Oi,2,Oj,1) time units of operation Oi2 in parallel with Oj,1, i, j =

1, . . . , n.
• If there are time units of an operation Oi,2 left, i.e., if

∑n
j=1 f (Oi,2,Oj1) <

pi2, then schedule pi,2 − ∑n
j=1 f (Oi,2,Oj,1) time units of Oi,2 on M2 after the

completion of the last M1 operation.

This procedure converts any feasible solution to the network max-flow problem
G into a feasible solution to O2|res . . . , pmtn|Cmax with the makespan

Cmax =
n∑

i=1

pi,1 +
n∑

i=1

[pi,2 −
n∑

j=1

f (Oi,2,Oj,1)]. (2.5)

Thus when
∑n

i=1
∑n

j=1 f (Oi,2,Oj,1) is maximized in G, Cmax of the open shop
schedule is minimized.

Lemma 2.1 An optimal schedule for O2|res . . . , pmtn|Cmax can be found in
O(n3) time. The number of preemptions in the schedule does not exceed n2.

2.5 An Algorithm for O2|res 1 . .|Cmax

We now focus on the non-preemptive case of the problem with a single resource,
O2|res 1 . .|Cmax. We show that any preemptive schedule obtained in Sect. 2.4
can be turned into a non-preemptive schedule with the same makespan, and the
conversion can be done in polynomial time. To streamline the presentation of
the conversion and the algorithm for the non-preemptive case, let us simplify the
notation introduced in Sect. 2.3 and make simple observations about the preemptive
schedules first. For simplicity, we denote the resource by R and assume that s units
of R are available at any time. Operation Oi,h, i = 1, . . . , n;h = 1, 2, requires
r(Oi,h) units of R all the time during it execution. Without loss of generality, we let
r(O1,1) ≥ r(O2,1) ≥ · · · ≥ r(On,1). We shall solve this two-machine open shop
problem with a single resource, i.e., O2|res 1 . .|Cmax, in two steps:

Step 1: Solve O2|res 1 . ., pmtn|Cmax with a max-flow algorithm (Lemma 2.1) to
obtain schedule S.
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Step 2: Convert the resulting schedule S into a schedule of O2|res 1 . .|Cmax with
the same makespan.

To simplify the presentation of Step 2, we make two assumptions about schedule
S. First, without loss of generality, we may assume that neither machine is idle in S.
We can easily meet this condition by adding dummy operations on either machine,
if necessary. Second, again without loss of generality, we may assume that S meets
the following conditions:

• No operation on M1 is preempted.

(2.6)

• The operations on M1 are scheduled in descending order of their resource
requirements.

(2.7)

Thus, schedule S determines time slots and their orders. The time slots corre-
spond to time interval occupied by exactly one operation on M1. By the ith time
slot, or simply slot Ii of S, we mean the time interval [∑i−1

j=1 pj,1,
∑i

j=1 pj,1]. The
following theorem gives the details of Step 2.

Theorem 2.1 Any feasible schedule for O2|res 1 . ., pmtn|Cmax can be converted
into a feasible schedule for O2|res 1 . .|Cmax with the same makespan.

Proof The proof consists of Lemmas 2.2 and 2.3 and a recursive procedure
Process-Time-Slot. Lemma 2.2 shows how to reduce the number of preempted M2-
operations scheduled both in slot Ii and in some slots Ij , j > i to two. It also gives a
good characterization of the case with exactly two such operations in Ii . The lemma
is as follows. ��
Lemma 2.2 Let S be a schedule for which both (2.6) and (2.7) hold. The S can be
converted into a schedule S′ for which both (2.6) and (2.7) still hold; moreover,

• Cmax(S
′) = Cmax(S).

• For any i, there are at most two M2-operations scheduled in slot Ii and in some
slots Ij with j > i.

(2.8)

• If there are exactly two operations Oa,2, Ob,2, a < b, scheduled both in slot Ii

and in some slots Ij with j > i, then b > i + 1 and Ob,2 is continued in slots
Ii+1, . . . , Ib−1 only, and Ob,2 is the only operation scheduled on M2 in these
slots.
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Fig. 2.9 Proof of
Lemma 2.2: reduction of the
number of preempted
M2-operations in Ii

Ii Ib Ik

Oa2 Oa2Oa2 Ob2 Oc2

Oi1 Ob1 Ok1
... ...

... ...
...

(2.9)

Proof The proof is by induction. Let S be a schedule that meets conditions (2.6)
and (2.7), and let i be the smallest index such that (2.8) or (2.9) is not met for slot
Ii . We construct a schedule S′ that meets (2.6)–(2.9) for Ii without making any
change to Ij with j < i. First, assume that there are at least three M2-operations
Oa,2, Ob,2, and Oc,2 scheduled both in slot Ii and in some slots Ij with j > i. We
show that it is then possible to exchange parts of Ob,2 and Oc,2 from Ii with parts
of Oa,2 from slots Ij , j > i until either:

(1) Oa,2 is no longer in slots Ij with j > i; or
(2) Ob,2 or Oc,2 is no longer in Ii .

In either case, the number of M2-operations that occur both in Ii and in Ij with
j > i decreases by at least 1. Assume that a part of Oa,2 is scheduled in slot Ik with
k > i. Denote by:

• qb the length of the piece of Ob,2 in Ii ,
• qc the length of the piece of Oc,2 in Ii , and
• qa the length of the piece of Oa,2 in Ik .

We proceed as follows:

• If k = b, then exchange min{qc, qa} time units of Oc,2 from Ii with the same
number of time units of Oa,2 in Ik . If qa ≥ qc, then (2) is met.

• If k �= b, then exchange min{qb, qa} time units of Ob,2 from Ii with the same
number of time units of Oa,2 in Ik . If qa ≥ qb, then (2) is met.

This procedure is shown in Fig. 2.9. Note that the exchanges are feasible since we
have r(O1,1) ≥ . . . ≥ r(On,1). We apply this procedure to any part of Oa,2 in
slots Ij with j > i until eventually either (1) or (2) is met. Then, the number of
M2-operations scheduled in both Ii and Ij with j > i decreases by at least 1. The
procedure is repeated for Ii until the number of such M2-operations is reduced to at
most 2.

Now, assume that there are exactly two M2-operations Oa,2, Ob,2, a < b,
scheduled both in slot Ii and in slots Ij with j > i. We show that it is possible to
exchange parts of M2-operations between slots Ii, . . . , In until one of the following
holds:

(3) Either Oa,2 is not processed in any slot Ij with j > i or Ob,2 is no longer
processed in Ii .
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(4) Either Ob,2 is not processed in any slot Ij with j > i or Oa,2 is no longer
processed in Ii .

(5) Each of the two operations Oa,2 and Ob,2 is processed in Ii as well as in Ij

with j > i, but in Ii+1, . . . , Ib−1 only Ob,2 is processed on M2, and Ob,2 is not
processed in any slot Ij with j ≥ b.

In cases (3) and (4), the number of operations processed in Ii and in Ij with
j > i is reduced to 1 or 0. In all three cases (2.8) and (2.9) hold for slot Ii . In case
(5), (2.8) and (2.9) also hold for Ii+1, . . . , Ib−1. The exchange works as follows.

If b < i (or a < i), then we can exchange parts of Ob,2 (or Oa,2) in Ii with parts
of Oa,2 (or Ob,2) in slots Ij with j > i until (3) (or (4)) holds.

Now, assume that i < a < b. We show that then we can modify slots Ii, . . . , In

step by step until either (3) or (4) or (5) is met. First we attempt to extend Oa,2 in
Ii in such a way that (3) is met. This is done as follows:

First, exchange parts of Ob,2 scheduled in Ii with parts of Oa,2 scheduled in slots
Ij with j > i, j �= b (see Fig. 2.10a) until either:

• (3) is met and consequently (2.8) and (2.9) hold for Ii or
• no more parts of Oa,2 are scheduled in slots Ij with j > i, j �= b. Thus, a part

of Oa,2 is scheduled in Ib.

Again, these exchanges are feasible since r(O1,1) ≥ . . . ≥ r(On,1). Now, assume
that an operation Ox,2 with x �= b is processed in a slot Ij with i < j < b. In this
case we shift parts of:

• Ob,2 from Ii to Ij ,
• Ox,2 from Ij to Ib,
• Oa,2 from Ib to Ii ,

as shown in Fig. 2.10b until either:

• (3) is met and consequently (2.8) and (2.9) hold for Ii or
• there are no operations Ox,2 with x �= b scheduled in Ij with i < j < b.

Again, it is easy to see that these shifts are feasible. Now, assume that parts of
Ob,2 are processed in slots Ij with j > b (if they were not, then (5) would be met).
In this case, we attempt to extend Ob,2 in Ii until (4) is met. This is done as follows:

We exchange parts of Oa,2 scheduled in Ii with parts of Ob,2 scheduled in slots
Ij with j > b (see Fig. 2.10c) until either:

• (4) is met and consequently (2.8) and (2.9) hold for Ii or
• no more parts of Ob,2 are scheduled in slots Ij with j > b. In this case, (5) is

met (see Fig. 2.10d). Thus, (2.8) and (2.9) hold for slots Ii, . . . , Ib−1. ��

Lemma 2.3 shows when and how a slot and a feasible partial schedule without
preemptions and idle time can be combined into another feasible schedule without
preemptions and idle time. The lemma is as follows.
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Fig. 2.10 Proof of Lemma 2.2: the case of exactly two preempted M2-operations in Ii

Lemma 2.3 Let S be a feasible partial schedule without preemptions and idle time.
Let Ii be a slot not in S that meets the following conditions:

• For each operation Ok,2 scheduled in Ii and each operation Ol1 scheduled in S,
we have r(Ok,2) + r(Ol,1) ≤ s.

• There is at most one operation Oa,2 processed both in Ii and in S.

Then Ii and S can be merged into a feasible schedule S′ without preemptions and
idle time. ��

Proof First, assume that, in S, the operation Oa,2 starts or finishes together with an
operation on M2. Then, we can easily modify S in such a way that Oa,2 starts the
whole schedule S. By scheduling Oa,2 at the end of Ii , we obtain a feasible schedule
S′ without preemptions and idle time as shown in Fig. 2.11a.

Now, we assume that, in S, operation Oa,2 is scheduled in parallel with only one
operation Ox,1 on M1. If Oa,1 is scheduled after Oa,2 in S, then we can move Oa,2
to the left by successively exchanging it with its preceding operations until it either
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Fig. 2.11 Proof of
Lemma 2.3, insertion of slot
Ii in schedule S
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starts or finishes together with an operation on M1, or it is scheduled in parallel
with at least two operations on M1. Observer that Oa,2 can potentially be scheduled
in parallel with all M1-operations in S except Oa,1 (see Fig. 2.11b). If Oa1 is not
scheduled after Oa,2 in S, then move Oa,2 to the right. Thus, we may assume that
Oa,2 is scheduled in parallel with at least two operations Ox,1, Oz,1 in S and that
it neither starts nor finishes together with an operation on M1. We obtain a feasible
schedule by merging S and Ii as follows. Let S1 be the part of S that finishes with
Ox,1 on M1, and let S2 be the part of S that starts with Oz,1 on M1 (observe that
Oa,2 finishes S1 and starts S2 on M2). We insert Ii between S1 and S2 and apply the
following procedure to all operations Oy,2 �= Oa,2 scheduled in Ii (Fig. 2.11c):

• If Oy,1 is scheduled in S1, then we insert Oy,2 into S2 immediately after Oa,2
and shift the intermediate operations on M2 to the left.

• Otherwise, we insert Oy,2 into S1 immediately before Oa,2 and shift the
intermediate operations on M2 to the right.

Note that these shifts are feasible due to the assumption that r(Ok,2) + r(Ol,1) ≤ s

for all Ok,2 scheduled in Ii and all Ol,1 scheduled in S. After moving all operations
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Oy,2 �= Oa,2 either to the left or to the right, we obtain a feasible schedule S′ without
preemptions and idle time as required. ��

We use Lemmas 2.2 and 2.3 in the following recursive procedure for converting
a preemptive schedule into a non-preemptive schedule with the same makespan.
It returns a feasible non-preemptive schedule made of the time slots Ij , . . . , In if
called with i = j . Observe that we call the procedure recursively with index i + 1
if we reduce the number of M2-operations that are processed both in slot Ii and in
some slots Ij with j > i to 1 or 0. Otherwise, due to Lemma 2.3 the time slots
Ij+1, . . . , Ib−1 have a special structure: only operation Ob,2 is processed on M2,
and moreover Ob,2 is not processed in any slot Ij with j ≥ b. In this case, we first
insert Ii into the non-preemptive schedule made of the slots Ib, . . . , In, and then we
insert the slots Ii+1, . . . , Ib−1 one after another. The insertion can be done easily
because the properties given in Lemma 2.3 are met. ��

The following theorem is a direct consequence of Lemma 2.1 and Theorem 2.1.

Theorem 2.2 The problem O2|res 1 . .|Cmax can be solved in O(n3) time.

Proof The max-flow algorithm computes an optimal preemptive schedule in O(n3)

time. The number of operations processed both in slot Ii and in slots Ij with j > i

can be reduced to at most 2 in time O(n2). It takes O(n) time to change the schedule
so that it meets (2.8) and (2.9) for a given slot Ii . Finally, the insertion of one time
slot into a feasible partial schedule takes O(n) time. Since the number of slots is n,
an overall complexity is O(n3). ��

Procedure Process-time-slot(i)
begin

Exchange operations on M2 between time slots Ii , Ii+1, · · · , In such that the number P

of M2-operations processed both in Ii and in some slots Ij with j > i is minimal (Proof
of Lemma 2.2);
if P ≤ 1 then

S:=Process-Time-Slot (i + 1);
S:= Insert Ii into S (Proof of Lemma 2.3);

else
(P = 2; let Ob,2 with b > i be the operation scheduled in Ii , Ii+1, . . . , Ib−1(Proof
of Lemma 2.2))
S:=Process-Time-Slot(b);
FOR j := i TO b − 1 DO
S:= Insert Ij into S (Proof of Lemma 2.3);

end
return(S);

end

To illustrate the working of the procedure Process-Time-Slot, let us consider an
instance shown in Table 2.1 with s = 10. Figure 2.12a shows a preemptive schedule
S for the instance that meets conditions (2.8) and (2.9). The time slots of S are shown
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Table 2.1 An instance of
O2|res1..|Cmax

Processing times Resource requirements

Job M1 M2 M1 M2

1 4 5 10 3

2 2 5 8 0

3 4 4 7 0

4 3 2 5 2

5 4 2 2 9

6 3 2 0 5
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O31
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Fig. 2.12 Reduction of the number of preempted M2-operations in time slots in the example

in Fig. 2.12b. We cannot reduce the number of preempted M2-operations processed
in slot I1 to 1, but the condition (2.9) is satisfied for I1. Thus, we skip the slot I2
and continue with I3. We extend O4,2 by moving one unit of O1,2 to slot I5; see
Fig. 2.12c. We continue with slot I4 and extend O1,2 there; see Fig. 2.12d. After this
step, all slots meet the conditions in Lemma 2.2 and we can start to build up the
non-preemptive schedule recursively. Figure 2.13a shows the schedule obtained by
combining the slots I5 and I6. Next, slots I4 and I3 are inserted; see Fig. 2.13b and
c. Now we have to skip I2 and insert I1; see Fig. 2.13d. Finally, we obtain a feasible
non-preemptive schedule by inserting slot I2; see Fig. 2.13e. Figure 2.14 shows how
the demand for the resource changes over time in the schedule from Fig. 2.13e.
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Fig. 2.13 Recursive buildup of the schedule in the example

0

R

1

1

2

2

3

3

4

4

5

5

6

6

7

7 8

8
9

9

s = 10

time10 11 12 13 14 15 16 17 18 19 20

Fig. 2.14 The number of units of the additional resource required by the optimal schedule in
Fig. 2.13e
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2.6 Open Problems

Let R1 be the class of operation conflict graphs G = (V ,E) corresponding to the
instances of O2|res1..|Cmax. We show in Sect. 2.5 that for any G ∈ R1 optimal
preemptive and non-preemptive solutions have the same makespan. The vertex set
V of G ∈ R1 can be partitioned into two disjoint sets V1 = {O : R(O) ≤ s

2 } and
V2 = {O : R(O) > s

2 }. The set V2 is a clique in G, and the set V1, however, is
not an independent set since it may include both operations of the same job, which
creates a conflict (an edge in G). In addition, edges may exist between the vertices
in V1 and V2. The following question remains open.

Problem 2.1 Is there a class R, R1 ⊂ R, of operation conflict graphs G = (V ,E)

for which optimal preemptive and non-preemptive solutions to the two-machine
open shop have the same makespan?

Problem 2.2 Characterize the class of all operation conflict graphs G = (V ,E) for
which optimal preemptive and non-preemptive solutions to the two-machine open
shop have the same makespan.

The two-machine open shop problem with two or more resource types benefits
from preemptions. The optimal schedules with preemptions can be shorter than
those without preemptions. Jurisch and Kubiak [14] show that the problem
O2|res211|Cmax with two resource types of capacity 1 each is NP-hard, and the
problem O2|res.11|Cmax with arbitrary number of resource types of capacity 1 each
is NP-hard in the strong sense. The open shop problem with additional resources has
been studied by Błażewicz et al. [1], Cochand et al. [5], de Werra et al. [9], and
de Werra and Błażewicz [7, 8]. A review of some of those results can be found
in Kubiak et al. [15]. Recent complexity results for two-machine open shop with
additional resources can be found in Shabtay and Kaspi [18], Tellache and Boudhar
[22], and Tellache et al. [23].

Problems

2.1 The network flow algorithm for multiple resources works in O(n3) time. Can
the time be reduced to n2 for the network for a single resource type?

2.2 Prove that the problem to decide whether there is a reduction to two jobs in the
algorithm in Sect. 2.5 is NP -complete.

2.3 Define conflict and agreement graphs for the instance in Table 2.1.

2.4 Prove that the problem O2|res211|Cmax is NP-hard.

2.5 Prove that the problem O2|res.11|Cmax is NP-hard in the strong sense.
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Theory to Applications. International Handbooks on Information Systems. (Springer, Berlin,
2007)

3. J. Blazewicz, J.K. Lenstra, A.H.G. Rinnooy Kan, Scheduling subject to resource constraints:
classification and complexity. Discrete Appl. Math. 5, 11–24 (1983)

4. P. Brucker, Scheduling Algorithms (Springer, Berlin, 1995)
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Chapter 3
General Open Shop Scheduling

3.1 Complexity of Makespan Minimization

This section considers the makespan minimization for non-preemptive open shops
scheduling problem, O||Cmax. It shows that the problem is NP-hard in the strong
sense even when limited to the instances with the maximum degree of 4, i.e., the
instances with maximum machine workload not exceeding 4, and the longest job
being not longer than 4. The decision problem to determine whether there is a
schedule with makespan not exceeding 4 or not for such instances is NP-complete in
the strong sense. We assume integer processing times in this section unless explicitly
stated otherwise. The instances with maximum degree of 3 are easier to solve;
the decision problem to determine whether there is a schedule with makespan not
exceeding 3 or not can be solved in O(n3) time.

Williamson et al. [81] prove the following complexity result for general open
shop.

Theorem 3.1 The problem O||Cmax ≤ 4 is NP-complete in the strong sense even
for operation processing time values limited to 0, 1, or 2.

Proof The reduction is from a satisfiability problem. Let set V = {x1, . . . , xv} of
variables and set C = {c1, . . . , cu} of clauses make up an instance of MONOTONE-
NOT-ALL-EQUAL-3SAT problem; Garey and Johnson [33]. Let variable xi occur
ni ≥ 1 times in the clauses of C. We have ni assignment jobs Ji,1, . . . , Ji,ni

, and
2ni assignment machines MA(i, 1), . . . ,MA(i, ni) and MB(i, 1), . . . ,MB(i, ni) in
the open shop instance for variable xi . The assignment job Ji,j has two operations
of length 2 each, one processed on MA(i, j) and the other on MB(i, j). Hence
any feasible schedule with makespan 4 permits only two possible schedules for
job Ji,j shown in Fig. 3.1. In order to ensure that the schedules for all assignment
jobs Ji,1, . . . , Ji,ni

are consistent in any feasible schedule with makespan 4, the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 3.2 (a) T -configuration of xi and (b) F -configuration of xi . Observe that the consistency jobs
can be processed either in the interval [2, 3] or in the interval [3, 4] in T -configuration, and either
in the interval [0, 1] or in the interval [1, 2] in F -configuration

open shop instance also includes ni consistency jobs Zi,1, . . . , Zi,ni
for variable

xi . The consistency job Zi,j has two operations: one of length 2 processed on
assignment machine MB(i, j) and the other of length 1 processed on assignment
machine MA(i, j mod ni + 1). Thus any feasible schedule with makespan 4
permits only two possible schedules of jobs Ji,1, . . . , Ji,ni

and Zi,1, . . . , Zi,ni
on

machines MA(i, 1), . . . , MA(i, ni) and MB(i, 1), . . . , MB(i, ni) shown in Fig. 3.2.
The schedule in Fig. 3.2a will be called T -configuration of xi and the schedule in
Fig. 3.2b will be called F -configuration of xi . Therefore, any schedule of makespan
4 selects either T -configuration or F -configuration for xi . Thus we can decide
the truth assignment for xi based on the configuration for xi selected by the
schedule. Moreover, either configuration for xi leaves ni unit-time intervals, one
on each machine MA(i, 1), . . . ,MA(i, ni), for jobs other than the assignments and
consistency jobs. The T -configurations leave them in the interval [2, 4] and the F -
configurations leave them in the interval [0, 2]. Those unit-time intervals are left for
the clause jobs C1, . . . , Cu that correspond to the clauses c1, . . . , cu, respectively.
The clause job Ck corresponds to the clause ck = (xi ∨ xj ∨ xl). Now, let i′, j ′,
and l′ be the numbers of times variables xi , xj , xl , respectively, occur in the clauses
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c1, . . . , ck . The job Ck consists of three unit-time operations to be processed on
machines MA(i, i′),MA(j, j ′), and MA(l, l′). Thus, in any feasible schedule with
makespan 4 a clause job Ck has at least one operation scheduled in the interval [0, 2]
and at least one in the interval [2, 4]. Therefore, ck has at least one true variable and
at least one false variable in the truth assignment selected by the schedule. This
proves that if the schedule with makespan 4 exists for the open shop instance, then
there exists a truth assignment for V such that each clause in C has at least one true
variable and at least one false variable.

Now, for a truth assignment for V such that each clause in C has at least one
true variable and at least one false variable, we pick the T -configuration for true
xi , and F -configuration for false xi . The clause ck = (xi ∨ xj ∨ xl) has either two
true variables and one false or one true variable and two false variables in the truth
assignment, thus the job Ck can either process two of its operations in the interval
[2, 4] and one in the interval [0, 2] or process one of its operations in the interval
[2, 4] and two in the interval [0, 2] on machines MA(i, i′),MA(j, j ′), and MA(l, l′).
Therefore, each clause job completes by 4 in the schedule and the whole schedule
has makespan 4. This completes the proof. ��

Observe that the proof is done for the instances with at most three operations
per job, and at most three operations per machine. Kononov et al. [48] have further
strengthened this result by showing that the problem remains NP-complete even
if limited to the instances with at most two operations per job and at most three
operations per machine. To close the gap, we now give a polynomial-time algorithm
to test whether for an instance with at most two operations per job and at most two
operations per machine there is a schedule with makespan Cmax ≤ 4.

Theorem 3.2 The problem O||Cmax ≤ 4 with at most two operations per job and
at most two operations per machine is polynomial.

Proof Consider the bipartite multigraph G = (J,M, E) for the instances with
operation processing time values limited to 0, 1, or 2, and with at most two
operations per job and at most two operations per machine. Since Cmax ≤ 4, we
have �(G) ≤ 4. Replace each multiedge with multiplicity 2 in G by a single edge.
The resulting bipartite graph H has �(H) ≤ 2, and hence H is a collection of
even cycles and paths that can be colored with two colors 1 and 2. Delete the edges
colored with colors 1 or 2 in H from G. The resulting graph G′ has �(G′) ≤ 2
since each multiedge with multiplicity 2 in G becomes a single edge in G′. Hence
G′ is a collection of even cycles and paths that can be colored with two colors
3 and 4. Therefore we can obtain a schedule with Cmax ≤ 4. Now suppose that
operations with processing times 3 and 4 are also permitted. Each operation with
processing time 4 does not share its machine with any other operation, and it is the
only operation of some job if Cmax ≤ 4. Hence those operations are scheduled on
their own machines and can be removed from an instance without loss of generality.
Each operation with processing time 3 belongs to a job with its other operation, if
any, having processing time 1, and can only share its machine with an operation, if
any, having processing time 1. Thus the multiedge with multiplicity 3 in G can be
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replaced with a single edge as it has been done for each edge with multiplicity 2 in
G. The algorithm will then proceed as for the instances with processing times 0, 1,
or 2 and color one of the multiple edges with multiplicity 3 with either 1 or 2, and
the remaining two with 3 and 4. ��

Consider now the problem O||Cmax with operation processing time values
limited to 0, 1, or 2, and Cmax ≤ 3. Williamson et al. [81] showed that the problem
can be solved in polynomial time. We give a different proof of that fact here.

Theorem 3.3 The problem O||Cmax ≤ 3 with operation processing time values
limited to 0, 1, 2, or 3 is polynomial.

Proof The bipartite multigraph G = (J,M, E) for the instances with Cmax ≤ 3
has maximum degree �(G) ≤ 3. We first observe that a schedule with Cmax ≤ 3
exists if and only if there is 3-edge coloring of G with colors 1, 2, or 3 where each
multiedge with multiplicity 2 has one of its edges colored with color 2. We leave the
proof of the observation as an exercise; see Problem 3.5. Without loss of generality,
we may assume that each multiedge in G has multiplicity 1 or 2. Observe that the
multiedges, if any, with multiplicity 3 are colored with colors 1, 2, and 3 in any 3-
edge coloring of G. Also, any vertex incident with such a multiedge is not incident
with any other multiedge in G.

Thus it remains to test whether 3-edge coloring of G with colors 1, 2, or 3 where
each multiedge with multiplicity 2 has one of its edges colored with color 2 exists
or not. We now show such a test that runs in O(n3) time. Let X be the set of all
vertices of degree 3 incident with three edges having multiplicity 1 each in G. Let
Y be the set of all vertices incident with multiedges having multiplicity 2 in G. The
sets X and Y are disjoint, and they partition the set of all vertices of degree 3 in G.
Let M0 be the set of all edges, if any, incident with a vertex in X and a vertex in
Y from G. We now turn the bipartite multigraph G into a simple bipartite graph H

with weighted edges as follows. Each multiedge with multiplicity 2 in G is turned
into an edge with weight 2 in H . Let F be the set of all these edges in H . Since
�(G) ≤ 3, no two different edges in F share a vertex in H . Thus F is a matching
in H , and |Y | = 2|F |. Each edge with multiplicity 1 in G that is not in M0 is turned
into an edge in H with weight equal to the number of vertices in X incident with
the edge. Any edge in M0 is turned into an edge in H with weight equal to 0.

We now show that a maximum weighted matching in H has weight at least |X|+
|Y | if and only if there is a 3-edge coloring of G with colors 1, 2, or 3 where each
multiedge with multiplicity 2 has one of its edges colored with color 2.

Suppose that the maximum weighted matching M in H has weight at least |X|+
|Y |. The set of vertices incident with the edges in M includes X ∪ Y since each
vertex in the set X ∪ Y adds at most 1 to the weight and any vertex outside of
the set adds 0. The set X ∪ Y is precisely the set of all vertices of degree 3 in G.
Furthermore, F ⊆ M . Color the edges in M with color 2 in G and remove them
from G. The resulting multigraph has � ≤ 2, and thus by König’s edge-coloring
theorem, its edges can be colored with two colors 1 and 3. This gives the required
3-edge coloring of G since each multiedge of multiplicity 2 in G has one of its edges
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colored with 2. Now suppose that there is 3-edge coloring of G with colors 1, 2, or
3 where each multiedge with multiplicity 2 has one of its edges colored with color
2. Let M be the set of edges colored with color 2 in G. Thus M is a matching in
H with F ⊆ M by the property of the coloring. Moreover, for each vertex in X

there is an edge in M incident with that vertex but not with a vertex in Y . Thus M a
matching with total weight |X| + |Y | in H as required.

Therefore the test consists in checking if a maximum weighted matching in a
bipartite H has weight at least |X| + |Y | or not. This can be done in polynomial
time by the Hungarian method for instance. ��

The test given in the proof is not a polynomial-time algorithm for the problem
O||Cmax on the instances of degree 3. The design of such an algorithm is left as
Problem 3.6.

3.2 Approximate Solutions

This section considers approximation algorithms for makespan minimization for
non-preemptive open shops with more than two machines. A greedy algorithm
produces dense schedules that may be longer than the optimal schedules but no more
than twice longer; see Sect. 3.2.1. A conjecture proved for up to m = 8 machines
claims that those dense schedules actually guarantee the factor 2 − 1

m
rather than

2. On the other hand, Theorem 3.1 implies that no polynomial-time algorithm
can reduce the factor below 5

4 ; see Sect. 3.2.2. No polynomial-time algorithm that
guarantees approximation between 5

4 inclusive and 2 exclusive (or 2 − 1
m

if the
conjecture holds) has been found so far. For the problem with fixed number of
machines, a PTAS exists; see Sect. 3.2.3. This implies that for any fixed m and ε

a polynomial-time (1 + ε)-approximation algorithm exists. However, the algorithm
can still be impractical since the polynomial that bounds running time of the PTAS
is not a polynomial in either m or 1

ε
. The question whether a pseudopolynomial-time

algorithm for the problem with fixed m exists or not is open as is the existence of a
Fully Polynomial-Time Approximation Scheme (FPTAS) for the problem.

3.2.1 A Greedy 2-Approximation Algorithm

We have the following theorem due to Bárány and Fiala [9].

Theorem 3.4 A greedy algorithm for O||Cmax produces schedules that are shorter
than twice optimal makespan.

Proof Start with an empty schedule that has all machines available from t = 0 on.
For each operation Oi,h not yet scheduled, determine the earliest t such that
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1. no job is processed on Mh at t , and
2. job Ji is not processed on any machine inM \ {Mh} at t .

The greedy algorithm proposed in Bárány and Fiala [9] works as follows. Select
a not yet scheduled operation Oi,h with the smallest t , break ties arbitrarily, and
schedule it to start at t on Mh. Continue until all operations are scheduled. The
schedule S thus obtained is feasible since by (1) no operation can start on machine
Mh, h = 1, . . . , m, at t when the machine is occupied by processing another
operation at t , and by (2) no operation of job Ji can start at t if some other operation
of that job is being processed at t . Let Oi,h be the last operation scheduled on
machine Mh, h = 1, . . . , m, in S. We have Ch

max ≤ Lh+Pi−pi,h, pi,h > 0. To prove
this, we observe that Oih cannot start earlier in S since either (1) or (2) does not hold
for any t earlier than the start time s of Oi,h is S, which means that for any t < s

either a job is processed on Mh or job Ji is processed on some machine inM\{Mh}.
Thus s ≤ Lh−pi,h+Pi−pi,h, which proves Ch

max ≤ Lh+Pi−pi,h. Clearly we have
the following lower bounds on the optimal makespan C∗

max ≥ Lh and C∗
max ≥ Pi .

Hence Ch
max/C∗

max ≤ 2 − pi,h/C∗
max < 2 for each h = 1, . . . , m. Thus the greedy

algorithm produces schedule S with makespan Cmax such that Cmax/C∗
max < 2 for

each instance of O||Cmax. ��
The schedules obtained by the greedy algorithm of Bárány and Fiala [9] are

referred to as dense schedules. Chen and Strusevich [20] conjecture that those
schedules are not longer than (2 − 1

m
)C∗

max for any instance of O||Cmax, where
C∗

max is optimal makespan for the instance. They prove the conjecture for m = 3
and show instances for which dense schedules are not shorter than (2 − 1

m
)C∗

max.
Chen and Yu [21] prove the conjecture for m = 4. Chen and Yu [24] and [25] and
Chen [22] prove it for m = 5, 6. Recently Chen et al. [23] prove it for m = 7, 8.

3.2.2 No (5
4 − ε)-Approximation Algorithm Exists Unless

P=NP

Williamson et al. [81] prove the following inapproximability result. The result is a
direct consequence of Theorem 3.1.

Theorem 3.5 If P �= NP , then no polynomial-time algorithm for O||Cmax exists
with the worst case ratio less than 5

4 .

Proof Consider the set I of open shop instances defined in the proof of Theo-
rem 3.1. The problem � defined by I and the question whether I ∈ I has a schedule
with makespan not exceeding 4 or not is NP -complete, which follows immediately
from the proof of Theorem 3.1. Suppose for contradiction that there is a polynomial-
time algorithm A such that CA

max/C∗
max < 5/4 for any instance of O||Cmax. Thus, in

particular, CA
max/C∗

max < 5/4 for any instance of �. The algorithm A can be used to
solve � as follows. If CA

max ≤ 4 for instance I , then the answer for I is affirmative.
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Otherwise, if CA
max > 4 for I , then, since all processing times in I are integer, we

have CA
max ≥ 5 and integer. Thus, since C∗

max > 4CA
max/5, we get C∗

max > 4 and the
answer for I is negative. Since CA

max can be computed in polynomial time for each
I ∈ I, we have � in P . This implies P = NP since � is NP -complete and gives
contradiction. ��

3.2.3 Approximation for Fixed Number of Machines
Om||Cmax and m = 3, 4, . . .

Sevastianov and Woeginger [71] (see also Woeginger [82]) give a PTAS for
Om||Cmax where the number of machines is not a part of the input data. Theorem 3.1
implies that there is no PTAS for the problem with m being a part of the input data
if P �= NP , i.e., for the problem O||Cmax.

3.3 A Scheme for Polynomially Solvable Cases

We begin by informally describing the main idea behind one of the most frequently
studied polynomial cases first. Suppose that all machines have the same workload
Lmax. We may conjecture that an instance with sufficiently large ratio Lmax

pmax
(i.e.,

sufficiently many jobs) has a schedule with optimal makespan Cmax = Lmax and
that the schedule can be found in polynomial time. We may further conjecture
that the same holds for some lower bound Lmax

pmax
≥ b(m) common for all instances

with the same number of machines m. Next we could claim that if the conjecture
holds, then the problem O||Cmax limited to the instances that satisfy the condition
Lmax
pmax

≥ b(m) is polynomial. This idea was proposed by Bárány and Fiala [9] and
further developed in Fiala [32] and Sevast’janov [69, 72]. The conjecture may hold
for different bounds b(m), and different polynomial-time algorithms for optimal
schedules. Thus the idea actually proposes a scheme to obtain cases of the problem
O||Cmax that are polynomial.

We now give the details of an instance of this scheme proposed by Sevast’janov
[72]. We assume Lmax ≥ mpmax and m ≥ 3 (recall that the problem O2||Cmax
is polynomial for m = 2). If the former condition does not hold, then there is no
polynomial-time algorithm that minimizes makespan over all instances that satisfy
Lmax < mpmax unless P = NP . This follows from the proof of Theorem 3.1, where
Lmax = 4, pmax = 2, and m = 3u, u ≥ 1. Since Lmax ≤ npmax, we have n ≥ m.

Thus our search for polynomial-time algorithms needs to be limited to instances
with Lmax ≥ mpmax. Without loss of generality, we assume that

Lh = L for h = 1, . . . , m (3.1)
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and

pi,h ≤ 1 for i = 1, . . . , n and h = 1, . . . , m, (3.2)

for each instance with Lmax ≥ mpmax . If (3.1) is not met by machine Mh, i.e.,
Lh < Lmax, then we can increase processing times in column h of processing time
matrix P by splitting Lmax − Lh into n numbers εi,h such that pi,h + εi,h ≤ pmax.
This can easily be done since npmax ≥ Lmax. The increase in operation processing
times may increase job’s processing time to at most mpmax, which however does not
exceed Lmax by assumption. Moreover, it can be done in O(nm) time. Finally, we
can take the processing time 1

pmax
P, where P meets (3.1) to ensure that (3.2) holds.

Thus L = Lmax
pmax

. Now, for each job Ji , i = 1, . . . , n, define a vector in R
m−1

xi = (pi,1 − pi,m, . . . , pi,h − pi,m, . . . , pi,m−1 − pi,m). (3.3)

By (3.1) and (3.2), we have

x1 + . . . + xn = 0

and

‖xi‖ ≤ 1 for i = 1, . . . , n,

for the vectors x1, . . . , xn, where the symmetric norm ‖ · ‖ is defined as follows:

‖x = (x1, . . . , xn)‖ = max
�,j

{|x�|, |x� − xj |}. (3.4)

Thus the vectors in (3.3) satisfy the conditions of the Vector Rearrangement
Theorem 1.4. By this theorem, there is a permutation xπ(1), . . . , xπ(n) of those
vectors such that

‖xπ(1) + . . . + xπ(k)‖ ≤ (m − 1) − 1 + 1

m − 1
for k = 1, . . . , n. (3.5)

The bound on the right-hand side is given in Banaszczyk [6]. The permutation π

for that bound can be calculated in O(n2m2) time; see Banaszczyk and Sevast’janow
[73]. We now consider schedule S that schedules all jobs without idle time, and in
the same order Jπ(1), . . . , Jπ(n) on each machine; see Fig. 3.3 (all figures in this
proof are for m = 4, which suffices to illustrate the main ideas). The schedule S

is likely infeasible since it permits jobs to be processed simultaneously on more
than one machine at a time, and thus it needs to be modified in order to remove
this infeasibility. The modification, however, needs to be done without increasing
the schedule makespan beyond L. We now describe such a modification and give a
sufficient condition that makes the resulting schedule feasible. Both the modification
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Jπ(1) Jπ(2) Jπ(3) Jπ(n). ..

Jπ(1) Jπ(2) Jπ(3) Jπ(n). . .

Jπ(1) Jπ(2) Jπ(3) Jπ(n). . .

Jπ(1) Jπ(2) Jπ(3) Jπ(n). . .

Fig. 3.3 Schedule S for permutation π obtained by the Vector Rearrangement Theorem

and the condition rely on (3.5). Since

x1 + . . .+xk =
( k∑

j=1

(pπ(j),1 −pπ(j),m), . . . ,

k∑

j=1

(pπ(j),m−1 −pπ(j),m)
)
, (3.6)

the condition (3.5) ensures

∣
∣
∣

k∑

j=1

(pπ(j),h − pπ(j),h+1)

∣
∣
∣ ≤ m − 2 + 1

m − 1
for k = 1, . . . , n and h = 1, . . . , m − 1,

(3.7)
and

∣
∣
∣

k∑

j=1

(pπ(j),m − pπ(j),1)

∣
∣
∣ ≤ m − 2 + 1

m − 1
for k = 1, . . . , n. (3.8)

Thus we get the following upper bound on the difference between the completion
of Jπ(k) on Mh and its start on Mh+1 in S, which is equal to the completion time of
job Jπ(k−1) on Mh+1 in S

Ch,π(k) − Ch+1,π(k−1) =
k−1∑

j=1

(pπ(j),h − pπ(j),h+1) + pπ(k),h ≤ m − 1 + 1

m − 1
,

(3.9)
for h = 1, . . . , m − 1 and k = 1, . . . , n, and

Cm,π(k)−C1,π(k−1) =
k−1∑

j=1

(pπ(j),m−pπ(j),1)+pπ(k),m ≤ m−1+ 1

m − 1
. (3.10)

We take Ch,π(0) = 0, h = 1, . . . , m, in those formulas. Now define
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Δ2 Δ2 + Δ3 Δ2 + Δ3 + Δ4

Fig. 3.4 Schedule S′ obtained by delaying S on machines M2, . . . ., Mm

�h = max
k

{Ch−1,π(k) − Ch,π(k−1), 0} (3.11)

for h = 2, . . . , m. For positive �h, h = 2, . . . , m, by delaying the start of the
schedule S by �h on Mh with respect to the start of the schedule S on Mh−1 we
make each job Ji on Mh to start not earlier than the completion of Ji on Mh−1.
Observe that any further such delay preserves this condition so we could use a longer
delay, if needed, to obtain a feasible schedule. For �h = 0, each job Ji starts not
earlier on Mh than it completes on Mh−1 in S. By these observations, we get that
starting S at

�2 + . . . + �h (3.12)

instead of 0 on Mh, h = 2, . . . , m produces a feasible schedule S′; see Fig. 3.4.
The schedule S′, however, has makespan L+�2 + . . . .+�m. In order to reduce

the makespan we observe that the delays created idle interval [0,�2 + . . . + �h]
on Mh at the cost of extending the schedule to the interval [L,L + �2 + . . . + �h]
on Mh, h = 2, . . . , m; see Fig. 3.4. The idea now is to move the operations from
[L,L+�2+. . .+�h] back to [0,�2+. . .+�h] on machine Mh, h = 2, . . . , m, and
thus to reduce the makespan back to L. There are two obstacles to implementing this
idea. First, there may be a straddling operation that starts at L−δh, 0 < δh < 1, and
completes after L on Mh in S′; such a straddling operation should not be preempted
in the process and thus we need to start the schedule on Mh even later in order to
align the start time of this straddling operation with L. That would require a further
delay by δh on each Mh, . . . , Mm to avoid preemptions. Thus, starting S′

�2 + . . . + �h + δ2 + . . . + δh (3.13)

on Mh, h = 2, . . . , m, results in a feasible schedule that is aligned at L on each
machine. Second, and more difficult to overcome, obstacle is to ensure that the
schedule obtained after moving the operations from [L,L + �2 + . . . + �h + δ2 +
· · ·+δh] back to [0,�2+. . .+�h+δ2+· · ·+δh] on machine Mh, h = 2, . . . , m (see
Fig. 3.5) is feasible. Though this obstacle can possibly be overcome in a number of
ways, we show the one used in Sevast’janov [72], which is based on the following
condition sufficient to ensure feasibility of the resulting schedule:
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Fig. 3.5 If L − �1 ≥
�2 + . . .+�m +δ2 + . . .+δm,
the schedule is feasible
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L − �1 ≥ �2 + . . . + �m + δ2 + . . . + δm, (3.14)

where

�1 = max
k

{Cm,π(k) − C1,π(k−1), 0}. (3.15)

The key is to observe that delaying the start of schedule S on M1 with respect to the
start of schedule S by �1 on Mm makes each job Ji on M1 to start not earlier than
the completion of Ji on Mm. Thus moving the jobs from the interval [L,L + �2 +
. . .+�m + δ2 + . . .+ δm] to the interval [0,�2 + . . .+�m + δ2 + . . .+ δm] on Mm

and keeping their order as in S results in a feasible schedule, provided that (3.14) is
met. Now consider machine Mm−1. Move the jobs from the interval [L,L + �2 +
. . .+�m−1 +δ2 + . . .+δm−1] to the interval [0,�2 + . . .+�m−1 +δ2 + . . .+δm−1]
on Mm−1, and keep their order as in S. By the construction of S′, each job Ji starts
on Mm not earlier than it completes on Mm−1 in S′, and it does so after the move.
Moreover any job Ji in [0,�2 + . . . +�m + δ2 + . . . + δm] completes on Mm by its
start on M1. Thus by induction, we extend the feasible schedule to include machine
Mm−1, and the remaining machines. At the end, we obtain a feasible schedule with
makespan L, provided that (3.14) holds, which by (3.9), (3.10), and (3.11) gives

L ≥ m2 + 1

m − 1
. (3.16)

Therefore we obtained an optimal schedule with makespan Cmax = Lmax for any
instance of the original open shop that meets the following condition:

Lmax

pmax
≥ m2 + 1

m − 1
. (3.17)

It takes O(n2m2) steps to calculate the permutation π that ensures (3.9), (3.10),
and (3.11), and all remaining steps required to turn S into a feasible schedule with
makespan L require O(nm) steps. The condition (3.17) can be easily verified in
O(nm) steps. Therefore the overall complexity is O(n2m2). We summarize these
results in the following theorem.
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Table 3.1 Lower bounds b(m) and the computational complexity of the scheme, m′ = 2�log2 m�
in the table

Reference Lower bound b(m) on the ratio Lmax
pmax

Complexity

Bárány and Fiala [9] m2 + 2m − 1 O(n2m3)

Bárány and Fiala [9] 8m′ log2 m′ + 5m′ O(nm3)

Fiala [32] 16m′ log2 m′ + 5m′ O(n2m3)

Sevast’janov [69, 72] 16
3 m log2 m′ + 61

9 m − 7.4 O(nm2 log2 m)

Sevast’janov [72] m2 − 1 + 1
m−1 O(n2m2)

Theorem 3.6 The problem O||Cmax limited to instances that satisfy the condition
Lmax
pmax

≥ (m2 + 1
m−1 ) can be solved to optimality in O(n2m2) time. The optimal

solution has makespan Cmax = Lmax.

Other than the m2 + 1
m−1 , lower bounds b(m) on the ratio Lmax

pmax
also guarantee

polynomial-time algorithms for O||Cmax if limited to the instances with Lmax
pmax

≥
b(m). For all those instances, the optimal makespan equals Lmax. The summary of
those bounds and the complexities of the corresponding polynomial-time algorithms
are given in Table 3.1. The reader is referred to Sevastianov [70] for a survey of
application of the Vector Rearrangement Theorem to scheduling.

3.4 Other Objective Functions

Achugbue and Chin [1] show that the minimization of total completion time for
two-machine open shop, O2||∑Ci , is NP-hard in the strong sense. They also show
that the shortest processing time (SPT) schedules guarantee m-approximation of
optimal schedules. Hoogeveen et al. [45] show that the problem O||∑Ci does
not have a PTAS unless P = NP . Lenstra et al. [55] and [56] show that the
maximum lateness minimization for two-machine open shops, O2||Lmax , is NP-
hard in the strong sense. Graham et al. [39] show that the makespan minimization
for the problem with release dates, O2|ri |Cmax, is NP-hard in the strong sense,
and it remains NP-hard even for two distinct release dates O2|ri ∈ {0, r}|Cmax.
Lu and Posner [61] show that the average-case complexity for the latter problem is
polynomial when operation processing times are random variables with distributions
coming from certain classes of probability distributions. Józefowska et al. [47] show
that the minimization of number of tardy jobs is NP-hard in the ordinary sense for
a common due date, O2|di = d|∑Ui . They also give a dynamic programming
algorithm running in time O(nd2) for the problem. Koulamas and Kyparisis [49]
develop polynomial-time algorithms for some special cases of O2|di = d|∑Ui .
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3.5 Open Shop Scheduling with All Unit-Time Operations

In this section we consider open shop scheduling problem with all operations of a
job being unit-time. This implies that each job has exactly m unit-time operations,
and no operations are missing.

3.5.1 Open Shop Scheduling and Scheduling on Identical
Parallel Processors

The idea of using scheduling of jobs on parallel identical processors to scheduling
open shops was introduced by Kubiak et al. [53, p. 288], and later applied to various
open shop scheduling problems by Brucker et al. [17] and Timkovsky [79]. We
now describe the idea in detail. Consider a problem P of scheduling of n jobs on m

parallel identical processors; see Błażewicz et al. [10] for terminology and notation
for scheduling on parallel identical processors. We limit the problem to instances
with integer values of the numerical data such as release dates, processing times,
due dates, deadlines but not necessarily the weights in the objective function. We
also permit preemptions of jobs. Let Pm be the problem P limited to the instances
with all processing times equal to m, and with m processors. Let SI be the set of
all feasible schedules with preemptions at integer points for an instance I of Pm.
A schedule S ∈ SI is called open shop-like schedule if each job is scheduled for
exactly one unit of time on each of the m processor. We have the following theorem.

Theorem 3.7 For each schedule S ∈ SI , there is an open-shop like schedule SO ∈
SI with the same value of objective function as S. The schedule SO can be found in
O((n + (Cmax − n)m)m log m) steps, where Cmax is the makespan of S.

Proof Consider schedule S ∈ SI with makespan Cmax. To streamline discussion,
assume Cmax = n for the time being. We return to the case Cmax > n later. Consider
a simple bipartite graph G = (J, Y,E) for S, where J = {J1, . . . , Jn} is the set
of n jobs, Y = {1, . . . , n} is the set on n unit-time slots {[0, 1], . . . , [n − 1, n]}, and
(Ji, j) ∈ E if and only if Ji is scheduled in [j −1, j ] in S. The graph G is m-regular
since by definition of I there are exactly m different unit-time slots where Ji is
scheduled in S, thus deg(Ji) = m for each Ji , and since there are exactly m different
jobs scheduled in each unit-time slot [j − 1, j ], thus deg(j) = m. By König’s edge
coloring theorem, there are m disjoint matchings M1, . . . ,Mm that cover all edges
in E, i.e., E = M1 ∪ · · · ∪ Mm. Moreover, since G is m-regular, each matching Mi

is perfect, i.e., covers all jobs inJ and all unit-time slots in Y . Therefore, we obtain
a schedule SO where the schedule on processor i is the matching Mi , i = 1, . . . , m.
The schedule SO is open-shop like since Mi is a perfect matching of jobs in J
and unit-time slots in Y . Besides the schedule SO schedules each job in the same
unit-time slots as in S. Thus each job is scheduled on at most one processor at a
time. Therefore, SO preserves the feasibility, and the value of objective function of
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Fig. 3.6 (a) Schedule S for
parallel processors and (b)
open-shop like schedule
corresponding to S
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S. The SO can be obtained by the edge-coloring algorithm of Cole et al. [28] in
O(|E| log m) = O(nm log m) steps. Let us turn now to the case Cmax > n. Let c be
the total number of unit-time slots idle in the interval [0, Cmax] on all m processors
in S. Since c + nm = mCmax, c is a multiple of m. Add c dummy jobs to J , and
extend Y = {1, . . . , Cmax} by the set {Cmax + 1, . . . , Cmax + (m−1)c

m
}. Add c edges

connecting the dummy jobs with the unit-time slots in Y to increase the degree of
each vertex in Y to m, and finally add (m − 1)c edges between the dummy jobs and
the unit-time slots {Cmax + 1, . . . , Cmax + (m−1)c

m
} to make the resulting bipartite

graph m-regular. We can now repeat the argument used for Cmax = n earlier in the
proof. Since |E| = m(n+c), the SO can be obtained by the edge-coloring algorithm
in O((n + (Cmax − n)m)m log m) steps. ��

The approach described in the proof of Theorem 3.7 is illustrated in Fig. 3.6,
where Fig. 3.6a shows a schedule S with Cmax = 7 of n = 7 jobs a, b, c, d, e, f, g

each with processing time equal to 5 on m = 5 identical parallel processors
P1, . . . , P5. Figure 3.6b shows an open-shop like schedule SO for S. The start and
completion times are the same in both S and SO .
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The open-shop like schedules SO obtained from schedules S for the problem Pm

solve the corresponding open shop problem Om on m machines. The corresponding
open shop problem has the same number of jobs n, each job with exactly m unit-time
operations, and the objective function asPm. Moreover by the proof of Theorem 3.7,
those open-shop like schedules preserve the completion times of jobs, and thus
they preserve the value of any objective function of job completion times. On the
other hand, any feasible schedule for the open shop problem Om is also feasible
for Pm. Therefore, we can use the existing polynomial-time algorithms for non-
preemptive or preemptive scheduling on identical parallel processors, if any, to
solve the corresponding open shop scheduling problems. We show this approach
for a number of open shop scheduling problems in the following sections. Observe
that the NP -hardness of P does not imply the NP -hardness of Pm. Thus the NP -
hardness of P does not imply the NP -hardness of Om.

3.5.2 Horn’s Algorithm for P |pmtn,pi = m, ri|Lmax Turned
into an Algorithm for O|pij = 1, ri|Lmax

Horn [46] gives a polynomial-time algorithm for the minimization of maximum
lateness on identical parallel machines, P |pmtn, ri |Lmax. Each job Ji has release
date ri , due date di , and processing time pi . We assume that all data are integer in
this section. The algorithm tests for a given integer L whether there is a feasible
preemptive schedule that schedules each job Ji in the interval [ri, di + L]. We
assume non-negative L for the time being, and we later show that the assumption
is made without loss of generality. Also without loss of generality, we may assume
that ri < di + L for each job Ji since otherwise the test is obviously negative. The
test first orders the 2n ends: r1, . . . , rn, d1 + L, . . . , dn + L of those intervals in
ascending order to determine all distinct ends and their order

e1 < · · · < e�, (3.18)

where � > 1. For each interval [ek, ek+1], k = 1, . . . , �− 1, let Ek be the set of jobs
Ji such that ri ≤ ek and ek+1 ≤ di + L, i.e., [ek, ek+1] ⊆ [ri, di + L]. Thus any
part xi,k ≥ 0 of job Ji ∈ Ek can be scheduled in [ek, ek+1], provided that it is not
longer than ek+1 − ek . However the total of all parts xi,k of jobs Ji ∈ Ek scheduled
in [ek, ek+1] may not exceed m(ek+1 − ek), which is the processing capacity the m

processors provide in the interval [ek, ek+1]. Finally, all parts of job Ji need to sum
up to the job’s processing time pi . Observe that by the construction, for each job Ji

there are a(i) ≤ b(i) such that Ji ∈ Ek for each k = a(i), . . . , b(i) and Ji /∈ Ek for
each k /∈ [a(i), b(i)]. We summarize those constraints in the following system F of
linear inequalities:

0 ≤ xi,k ≤ ek+1 − ek Ji ∈ Ek, k = 1, . . . , �, i = 1, . . . , n;
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0 = xi,k Ji /∈ Ek, k = 1, . . . , �, i = 1, . . . , n;
∑

Ji∈Ek

xi,k ≤ m(ek+1 − ek) k = 1, . . . , � − 1;

b(i)∑

k=a(i)

xi,k = pi i = 1, . . . , n;

The feasibility of F for a given L can be tested in O(n3) steps by the max-flow
algorithm given in Malhotra et al. [64]. The test, if positive, gives integer values of
xi,k , i = 1, . . . , n, k = 1, . . . , � since all lower and upper bounds on the flows in F

are integer. A binary search in the interval [0,
∑

i pi] suffices to find the Lmax. That
is easy to see for the instances with maxi{ri + pi − di} ≥ 0, which result in non-
negative Lmax. For an instance I with maxi{ri + pi − di} < 0, consider an instance
Ir with r ′

i = ri + r , where r = − maxi{ri + pi − di}, and otherwise the same as
I . Thus we have maxi{r ′

i + pi − di} ≥ 0, and consequently non-negative L′
max for

Ir . Moreover, L′
max = r + Lmax. Therefore a binary search for L′

max in the interval
[0,

∑
i pi] finds Lmax. Thus regardless of the type of instance for P |pmtn, ri |Lmax,

we need a binary search in [0,
∑

i pi] for Lmax and hence O(log
∑

i pi) tests. For
pi = m, i = 1, . . . , n, the number of tests for the open shop is O(log nm), and
the algorithm requires O(n3 log nm) steps to solve P |pmtn, pi = m, ri |Lmax with
m processors. Table 3.2 gives an instance of P |pmtn, pi = m, ri |Lmax with n = 7
jobs and m = 4 machines. Figure 3.7 gives a solution to F for L = 3, and a schedule
for the solution, where

e1 = 0 < e2 = 1 < e3 = 2 < e4 = 3 < e5 = 6 < e6 = 7 < e7 = 8 < e8 = 9,

and

x1,4 = x2,4 = x4,4 = x5,4 = x7,4 = 2 and x3,4 = x6,4 = 1

are parts of jobs J1, J2, J4, J5, J7, J3, and J6, respectively, in the interval
[e4, e5] = [3, 6]. The parts become processing times in an instance of the problem
P |pmtn|Cmax, which can be solved to optimality by McNaughton algorithm [66].
The constraints in the system F guarantee that the optimal makespan equals
e5 − e4 = 3. The schedule in Fig. 3.7 is not an open-shop like, but it can be
turned into one by Theorem 3.7. Figure 3.8 gives such an open-shop like schedule
solving the corresponding instance of O|pij = 1, ri |Lmax . The schedule in Fig. 3.8
has exactly the same start and completion times for each job as the schedule in
Fig. 3.7. This also follows immediately from the proof of Theorem 3.7. Therefore
we obtained a polynomial-time algorithm for O|pij = 1, ri |Lmax that runs in
O(n3 log nm) time.
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Table 3.2 An instance of P |pmtn, ri |Lmax with m = 4 machines

Job (i) Release dates (ri ) Due dates (di ) Processing time (pi )

1 0 3 4

2 2 5 4

3 1 4 4

4 3 6 4

5 1 3 4

6 1 4 4

7 2 5 4

Fig. 3.7 A schedule for the
instance of P |pmtn, ri |Lmax
in Table 3.2
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Fig. 3.8 A schedule for the
corresponding instance of
O|pij = 1, ri |Lmax
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3.5.3 Algorithm for P |pmtn,pi = m, ri| ∑ Ci Turned into
an Algorithm for O|pij = 1, ri|∑ Ci

The problem P |pmtn, pi = p, ri |∑Ci was studied in Baptiste et al. [8]. They
prove that schedules S that complete each job on machine M1, that is, the schedules
with Ci = Ci,1, i = 1, . . . , n, where Ci is the completion time of job Ji in S and Ci,1
the completion time of job Ji on machine M1 in S, include optimal schedules. This
feature helps to conveniently express the objective function

∑
Ci as

∑
Ci,1. Since

all machines are identical, any order M1, . . . , Mm of them can be selected and fixed
by the algorithm at its start. The jobs are not preempted on a single machine though
they can be preempted between the machines; in other words, there is a single
interval, perhaps empty, for each job on each machine. The disjoint intervals on each
machine h follow the same order: the interval [S1,h, C1,h] for J1 first, followed by
the interval [S2,h, C2,h] for J2 second, . . . , and followed by the interval [Sn,h, Cn,h]
for Jn last. We assume the same order of jobs determined by the order r1 ≤ · · · ≤ rn
on each machine. For a job Ji to observe its release date ri , none of the job’s m

intervals may start prior to ri . To meet this constraint, the order of machines comes
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handy. Baptiste et al. [8] show that for the optimality it suffices to consider each
job’s Ji disjoint intervals [Si,m, Ci,m], . . . , [Si,1, Ci,1] on machines Mm, . . . ,M1,
respectively, in ascending order Si,m ≤ · · · ≤ Si,1 of their start times on machines
Mm, . . . , M1, respectively. Observe that Si,h = Si,h−1 is possible for some machine
Mh, which means that the job Ji occupies an empty interval on Mh. Therefore job
Ji respects its release date ri as long as ri ≤ Si,m. These features guarantee that the
following linear program LP with all non-negative variables finds optimal intervals
for each job on each machine:

min
∑

i

Ci,1

s. t ri ≤ Si,m i = 1, . . . , n;
∑

h

(Ci,h − Si,h) = p i = 1, . . . , n;

Si,h ≤ Ci,h i = 1, . . . , n, h = 1, . . . , m;
Ci,h ≤ Si,h−1 i = 1, . . . , n, h = 2, . . . , m;
Ci,h ≤ Si+1,h i = 1, . . . , n − 1, h = 1, . . . , m.

The coefficients of the LP are limited to the values −1, 0, or 1; thus, by Tardos
[78] the LP can be solved in O(n5m5) steps. The solution, if it includes values
that are not integer, can be turned into an integer solution with the same value of
total completion time by the network-flow approach given in Baptiste et al. [8]. It is
worth observing that though the LP solves the problem P |pmtn, pi = p, ri |∑Ci

with equal processing times, it does not solve the problem P |pmtn, ri |∑Ci with
arbitrary processing times, which is shown to be NP-hard in the strong sense in
Baptiste et al. [8].

Table 3.3 gives an instance of P |pmtn, pi = m, ri |∑Ci with n = 10 jobs and
m = 5 machines. Figure 3.9 gives a solution to the LP , and a schedule for the
solution. The jobs follow order J1, . . . , J10 on each machine, though some jobs,
like J6 and J7, are scheduled in empty interval (12, 12) on machine M1 for the
instance. The job J5 is scheduled in non-empty intervals (S5,3 = 7, C5,3 = 8) on
machine M3, (S5,2 = 8, C5,2 = 11) on machine M2, and (S5,1 = 11, C5,1 = 12) on
machine M1. The job J7 is scheduled in non-empty intervals (S7,5 = 7, C7,5 = 8)

on machine M5, (S7,4 = 8, C7,4 = 11) on machine M4, and (S7,3 = 11, C7,3 = 12)

on machine M3. The job J5 completes at C5 = C5,1 = 12, and the job J7 completes
at C7 = C7,3 = C7,2 = C7,1 = 12. All jobs, except for job J9, complete at
ri + m, and J9 completes at r9 + m + 1; thus, the schedule in Fig. 3.9 minimizes the
total completion time. We leave the proof of that as an exercise; see Problem 3.2.
The schedule in Fig. 3.9 is not an open-shop like, but it can be turned into one
by Theorem 3.7. Figure 3.10 shows such an open-shop like schedule solving the
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Table 3.3 An instance of
P |pmtn, pi = p, ri |∑Ci

with m = 5 machines

Job (i) Release dates (ri ) Processing time (pi = p)

1 0 5

2 2 5

3 3 5

4 6 5

5 7 5

6 7 5

7 7 5

8 10 5

9 10 5

10 13 5
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Fig. 3.9 A schedule for the instance of P |pmtn, pi = p, ri |∑Ci in Table 3.3
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Fig. 3.10 A schedule for the corresponding instance of O|pij = 1, ri |∑Ci

corresponding instance of O|pij = 1, ri |∑Ci . The schedule in Fig. 3.9 has exactly
the same start and completion times for each job as the schedule in Fig. 3.10, which
also follows immediately from the proof of Theorem 3.7. Therefore we obtained a
polynomial-time algorithm for O|pij = 1, ri |∑i Ci that runs in O(n5m5) time.
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3.5.4 Algorithm for P |pmtn,pi = m|∑ Ci Turned into an
Algorithm O|pij = 1|∑wiCi

We begin by considering the problem P |pmtn, pi = m|∑Ci with m parallel
identical processors. By McNaughton [66], preemptions of jobs do not reduce
total completion time and thus it suffices to solve P |pj = m|∑Ci to solve
P |pmtn, pi = m|∑Ci . To find an optimal solution to P |pj = m|∑Ci , we match
the following |J | positional weights

m, . . . , m
︸ ︷︷ ︸
m−positions

, . . . , km, . . . , km
︸ ︷︷ ︸
m−positions

, . . . ,

⌊ |J |
m

⌋

m, . . . ,

⌊ |J |
m

⌋

m

︸ ︷︷ ︸
m−positions

,

⌈ |J |
m

⌉

m, . . . ,

⌈ |J |
m

⌉

m

︸ ︷︷ ︸
r−positions

, where

|J | = � |J |
m

�+r with the |J | jobs. Any matching will do since all jobs have the same
processing time. The job Ji matched with positional weight �m is then scheduled
in the interval [(� − 1)m, �m] on any of the m identical processors. Since there are
no more than m positional weights of value �m, a feasible assignment of jobs to
processors always exist. Thus we obtain a feasible schedule where

(k+1)m∑

i=km+1

Ci = (k + 1)m (3.19)

where Cmk+1, . . . , C(m+1)k are completion times of jobs matched with mk + 1-st,

. . . , (k + 1)m-st positional weights, respectively, k = 0, . . . ,
⌊ |J |

m

⌋
. Thus the total

completion time equals

⌊ |J |
m

⌋(⌊ |J |
m

⌋

+ 1

)

m2/2 +
⌈ |J |

m

⌉

mr. (3.20)

We now show that any schedule S′ such that the �-th completion time in S′ is
different from the �-th positional weight, C� �= � �

m
�m + m, is either infeasible

or suboptimal. Consider the earliest such � in S′. Thus we have exactly m jobs
in each interval [0,m], . . . , [(� �

m
� − 1)m, � �

m
�m] each of length m. Therefore the

job that completes at C� cannot start before � �
m

�m and thus it cannot finish before
� �

m
�m + m. Therefore C� > � �

m
�m + m. This schedule S′, however, cannot be

optimal. Thus we proved not only that the algorithm provides an optimal schedule
but also that each optimal schedule is a matching of the jobs with the positional
weights. The positional weights are also completion times of jobs. By Theorem 3.7,
we obtain an optimal solution to O|pij = 1|∑Ci ; see also Adiri and Amit [2].
Consider now O|pij = 1|∑wiCi . To get an optimal schedule for this weighted
completion time problem, order the jobs in non-increasing order of their weights
w1 ≥ w2 ≥ · · · ≥ w|J | and match them with positional weights so that the position
weight in position � is matched with the job in position �. The resulting solution
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minimizes the weighted total completion time by the rearrangement inequality of
Hardy, Littlewood, and Polya [44].

Let us return to the problem P |pmtn, pi = m|∑Ci . The solution presented
earlier minimizes the total completion time but not the makespan, which equals⌈ |J |

m

⌉
m while the minimum makespan equals |J |. It was shown by Adiri and Amit

[2] that an ideal feasible schedule (see Coffman et al. [27]), which minimizes
total completion time and makespan at the same time, exists for each instance of
P |pmtn, pi = m|∑Ci and thus for each instance of O|pij = 1|∑Ci . Such ideal
schedule can be obtained by completing each of the last r jobs by m − r time units
earlier, and by delaying m−r jobs by r units of time each. Thus all jobs complete by
n, and the total completion time decreases by total r(m−r) and increases by (m−r)r

with respect to the original schedule, which still minimizes total completion time.
Thus the resulting schedule, if feasible, is ideal. We leave the proof of feasibility as
an exercise; see Problem 3.3. We illustrate this approach to obtaining feasible ideal
schedules by an example with n = 7 and m = 4. Figure 3.11a gives an optimal
solution to P |pi = m|∑Ci with total completion time equal to 40 and Cmax = 8,
and Fig. 3.11b gives an optimal solution to P |pmtn, pi = m|∑Ci with the same
value of total completion time but minimum makespan 7. The key to the approach
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Fig. 3.11 An example of ideal schedule for O|pij = 1|∑Ci
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is that the schedule in Fig. 3.11b is obtained from this in Fig. 3.11a by delaying
the job J4 by r = 3 units of time on M4, which creates a gap of length 3 on M4
(m − r = 1), and speeding up the completion of jobs J5, J6, and J7 (r = 3) by
one unit of time each. The gap on machine M4 is then used to schedule one time
unit of each job J4, J5, J6, and J7 to make the resulting ideal schedule feasible.
Generally, the McNaughton [66] wrap-around rule ensures the feasibility of the
changes. Figure 3.11c gives a resulting ideal schedule for O|pij = 1|∑Ci .

Observe that only two numbers: n and m specify an instance of the problem
O|pij = 1|∑Ci . Thus the input of the problem is of size O(log n + log m).
Therefore an algorithm running in time O(n), for instance, is no longer polynomial
but rather pseudopolynomial for the succinct input encoding; see Kubiak [52]
and Grigoriev [40] for other scheduling problems with succinct input encoding.
However, the starting and completion times of each operation in a schedule can be
computed in polynomial time even for the succinct encoding of the input data. We
leave the proof of this as an exercise; see Problem 3.3.

The problem O|pij = 1|∑wiCi is not ideal. To see this, take an instance with
n = 5 jobs where four jobs have weights 5 each, and one job has weight equal
to 1, m = 4. The optimal solution has total weighted completion time equal to
4 × 4 × 5 + 8 × 1 = 88, while any schedule with Cmax = 5 has total weighted
completion time at least 4 × 5 + 3 × 5 × 5 + 5 = 100.

Atay et al. [5] consider the problem O|pij = 1|∑Ci as a point of departure
for their unit open shops scheduling game. The game is a cooperative game subject
to an initial schedule. A coalition, i.e., a subset of jobs, can possibly improve its
total completion time in comparison to the initial schedule by means of admissible
rearrangements. Then the improvement results in a positive maximal cost saving if
the rearrangement is done optimally. The authors prove that the core of the game is
not empty.

In this context of bi-criteria open shop scheduling, we point out that Kyparisis
and Koulamas [54] study open shop scheduling with two and three machines and
arbitrary processing times to minimize total completion time subject to minimum
makespan. They identify some polynomial cases for that NP-hard in the strong sense
problem. Masuda and Ishii [65] consider both makespan and maximum lateness in
a bi-criteria preemptive open shop scheduling for two machines. The maximum
lateness can be minimized in polynomial time (see Sect. 3.7.2) and the makespan
in linear time. The authors characterize non-dominated solutions whenever both
criteria cannot be optimized at the same time. We have the following problem.

Problem 3.1 Characterize non-dominated solutions for the Masuda and Ishii [65]
bi-criteria open shop scheduling problem with m > 2 machines.
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3.5.5 Other Open Shop Scheduling Problems with All
Unit-Time Operations

Kravchenko [50] proves that the problem O|pij = 1, ri |∑Ui is NP-hard in the
strong sense. Baptiste [7] presents a dynamic program that runs in polynomial time
to solve the problem Om|pij = 1, ri |∑wiUi with fixed number of machines. Liu
and Bulfin [60] show that the problems O|pij = 1|∑Ui and O|pij = 1|∑ Ti

are polynomial. Brucker et al. [18] (see also Brucker [14]) prove that the problem
Om|pij = 1|∑wiUi is polynomial; however, the complexity status of the problem
O|pij = 1|∑wiUi remains open.

3.6 Open Shops with 0–1 Operations

The previous section showed that open shop scheduling with unit-time operations
is polynomial for a broad range of objective functions. This is due to a large
degree to the fact that each job not only has the same number of unit-time
operations as any other job but, more importantly, this number equals the number of
machines m, i.e., no operation is missing. The introduction of missing operations
with processing times 0 (we refer to such open shops as open shops with 0–1
operations) changes the open shop scheduling problem’s complexity significantly.
The problem becomes NP-hard for most objective functions though the makespan
minimization remains polynomial. The open shop scheduling problem with missing
operations often remains NP-hard even for all jobs having the same number of unit-
time operation, which is, however, less than m. We discuss the complexity in the
following subsections.

3.6.1 Makespan Minimization: Problem O|pij = 0, 1|Cmax

Each instance of the problem O|pij = 0, 1|Cmax can be represented by a simple
bipartite graph G = (J,M, E), where J is the set of jobs, M is the set of
machines, and (Jj ,Mh) ∈ E if and only if job Jj has a unit-time operation
on machine Mh. Thus by König’s edge-coloring theorem (see Theorem 1.1),
we have Cmax = {maxj {Pj }, maxh{Lh}} = �(G), and the makespan can be
computed in O(nm) time. The �(G)-edge coloring can then be computed in
time O(|E| log �(G)) by edge-coloring algorithm of Cole et al. [28]. Since
|E| ≤ nm and �(G) ≤ max{n,m}, we get an algorithm that runs in time
O(nm log max{n,m}) for O|pij = 0, 1|Cmax. Thus we obtain the following
theorem.
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Theorem 3.8 O|pij = 0, 1|Cmax can be solved in time O(nm log max{n,m}).
A polynomial-time algorithm for O|pij = 0, 1|Cmax can be also derived from
algorithms for the problem O|pmtn|Cmax; see Gonzalez and Sahni [37] or
Gonzalez [35].

3.6.2 Total Completion Time: Problem O|pij = 0, 1| ∑ Ci

Gonzalez [36] shows that allowing missing operations renders the total completion
time minimization NP-hard in the strong sense. He proves the following theorem.

Theorem 3.9 O|pij = 0, 1|∑Ci is NP-hard in the strong sense.

Proof The transformation is from 3-COLORING OF 4-REGULAR GRAPHS:
Given a 4-regular graph G = (N,E). Can the vertices of G be colored using three
different colors so that any two vertices connected by an edge in E are colored with
different colors? The question can be re-phrased as follows: Can N be partitioned
into disjoint subsets N1, N2, and N3 so that |e ∩ N�| ≤ 1 for � = 1, 2, 3, e ∈ E?
The problem is NP-complete in the strong sense; see Gonzalez [36].

We now describe an instance of O|pij = 0, 1|∑Ci corresponding to G. We start
with a general overview of the instance. Each job in the instance will have exactly
five unit-time operations on some machines—on which will depend mainly on G—
and it will be missing on all other machines. The number of jobs is three times the
number of machines m, and each machine’s workload will be exactly fifteen in the
instance. The focus will be on such schedules for the instance that execute each job
entirely either in the interval [0, 5] or [5, 10] or [10, 15]. We call those schedules
5-10-15 schedules. It is easy to verify that any 5-10-15 schedule for the instance
results in mean flow time F = 10. Furthermore, any schedule with F = 10 for the
instance is a 5-10-15 schedule. The proof of the latter claim is not trivial and quite
technical; in order to streamline the NP-hardness proof, we leave its details for later.

Here are the details of the instance. The instance has an interval selector for each
vertex vi ∈ N . The interval selector for vi consists of five machines si

1, si
2, si

3, si
4, and

si
5 and fourteen jobs j i

1, . . . , j i
14. Each job of the selector has a unit-time operation

on each of the five machines and it is missing on any other machine. The following
is the key purpose of the selector in a 5-10-15 schedule: In a 5-10-15 schedule S,
for each interval selector there are exactly five disjoint unit-time slots—one on each
of the five machines of the selector—in the interval [0, 15] where jobs that do not
belong to the selector are executed. Moreover all five unit-time slots fall entirely
in either the interval [0, 5] or [5, 10] or [10, 15] in S. Accordingly, we say that the
interval selector selects interval [0, 5] or [5, 10] or [10, 15] for vi in S.

Furthermore, the instance has a main component that consists of |E| machines
e1, . . . , e|E|, one machine for each edge of E. For each vertex vi ∈ N , there are five
vertex-jobs ai , bi , ci , di , and fi each having unit-time operations on four machines
ei1 , ei2 , ei3 , and ei4 corresponding to the edges in E incident with vi . Moreover
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each job ai , bi , ci , di , and fi has one unit-time operation on machines si
1, si

2, si
3, si

4,
and si

5 of the interval selector for vi . Those operations along with the feature of the
interval selector for vi mentioned earlier ensure that all five jobs ai , bi , ci , di , and
fi will be executed entirely in either [0, 5] or [5, 10] or [10, 15], and the selection
of the interval is consistent with the selection made by the interval selector for vi in
a 5-10-15 schedule S.

Finally, there are five copies of the main component and five copies of each
interval selector in the instance. To avoid excessive notation, we drop the notation
required to distinguish the copies. The five copies of the main component are linked
together by the edge-jobs gj , hj , xj , yj , and zj for each edge ej . Each of these
jobs has a unit-time operation on processor ej in each copy. To summarize, there
are |E| + 5n processors, and |E| + 5n + 14n jobs in each of the five copies. Thus
m = 5|E| + 25n processors and 5|E| + 95n jobs altogether in the instance. Since
we have |E| = 2n for 4-regular graphs, the instance has m = 35n processors and
105n jobs. Recall that each job has exactly five unit-time operations.

Suppose that N can be partitioned into disjoint subsets N1, N2, and N3 so that
|e ∩ N�| ≤ 1 for � = 1, 2, 3 and e ∈ E. Let E� be the set of edges in E that are not
incident to the vertices in N�, i.e., E� = {e ∈ E : N� ∩ e = ∅}. The sets E1, E2, and
E3 are pairwise disjoint, and E1 ∪ E2 ∪ E3 = E. Keeping this in mind, a 5-10-15
schedule can be obtained as follows: the vertex-jobs corresponding to the vertices
in N� are assigned to machines in E \ E� in [5(� − 1), 5�] for � = 1, 2, 3 (these
machines correspond to the edges in E that are incident with some node in N�) in
each of the five copies. The edge-jobs corresponding to edges in E� are assigned
to machines in E� in [5(� − 1), 5�] for � = 1, 2, 3 (these machines correspond
to the edges in E that are not incident with any vertex in N�) in each of the five
copies. The interval selector is set to the interval [5(� − 1), 5�] for each vertex in
N�, � = 1, 2, 3, and this setting applies to all its five copies. By König’s edge-
coloring theorem, Theorem 1.1, a feasible schedule can be obtained in the each of
the intervals [0, 5], [5, 10], and [10, 15] on m machines for the job assignment just
described. Therefore we obtain a 5-10-15 schedule for the instance.

Suppose that a 5-10-15 schedule exists for the instance. Consider the same copy
of the interval selector and the main component. Let S� be the set of vertices with
their interval selector selecting [5(� − 1), 5�] for � = 1, 2, 3. The sets are pairwise
disjoint and their union equals N . Thus it remains to prove |e ∩ S�| ≤ 1 for � =
1, 2, 3 and e ∈ E. To that end, let us consider any vertex vi ∈ S� for � = 1, 2, 3.
Exactly one unit-time operation of each job ai , bi , ci , di , and fi corresponding to
vi is executed in [5(� − 1), 5�] on the interval selector machines. Thus by definition
of 5-10-15 schedule, each job ai , bi , ci , di , and fi corresponding to vi is entirely
executed in [5(� − 1), 5�]. Consequently each machine ei1 , ei2 , ei3 , and ei4 , where
each edge ei1 , ei2 , ei3 , and ei4 is incident with vi , executes one unit-time operation of
each job ai , bi , ci , di , and fi in S. Now suppose for contradiction that |e ∩ S�| = 2
for some e and S�. Let e = (vi, vj ). Then the machine e would execute the unit-
time operation of each ai , bi , ci , di , and fi and aj , bj , cj , dj , and fj , altogether ten
unit-time operations, in [5(� − 1), 5�], which gives a contradiction and proves that
|e ∩ S�| ≤ 1 for � = 1, 2, 3 and e ∈ E (or that G has 3-coloring).
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To complete the proof, it remains to show that if F = 10 for S, then S is a 5-10-
15 schedule. Let C1 ≤ · · · ≤ Cm ≤ · · · ≤ C2m ≤ · · · ≤ C3m be the completion
times of the 3m jobs in S. Since each job has exactly five unit-time operations,
we immediately have 5 ≤ C1 ≤ C2 ≤ · · · ≤ Cm; thus,

∑m
i=1 Ci ≥ 5m. We

now show that
∑2m

i=m+1 Ci ≥ 10m and
∑3m

i=2m+1 Ci ≥ 15m. We prove the former

first. Consider Cm+1 ≤ · · · ≤ C2m. If Cm+1 ≥ 10, then
∑2m

i=m+1 Ci ≥ 10m,
and the claim holds. Assume Cm+1 < 10. Let m + 1 ≤ k < 2m be the latest
job finishing before 10 in S, i.e., Ck < 10 and Ck+1 ≥ 10. Such job exists since
C2m ≥ 10 (by König’s edge-coloring theorem 2m jobs—each having five unit-
time operations—cannot complete all their operations before 10 on m processors).
Consider total deviation

∑k
i=m+1(10 − Ci) from 10 for the jobs completing before

10 in S, and total deviation
∑2m

i=k+1(Ci − 10) from 10 for the jobs completing at

or after 10 in S. We now show that
∑k

i=m+1(10 − Ci) ≤ ∑2m
i=k+1(Ci − 10), which

proves our claim that
∑2m

i=m+1 Ci ≥ 10m. Let Ix = {� : Cm+1 ≤ C� ≤ x} be
the set of jobs that complete by x, for x = Cm+1, . . . , 9, but not before Cm+1 in
S. Observe that at least |Ix | unit-time slots are not occupied by jobs 1, . . . , 2m on
m processors in [x, x + 1] in S. We have

∑9
x=Cm+1

|Ix | = ∑k
i=m+1(10 − Ci). On

the other hand, let I be the number of unit-time slots in [0, 10] not occupied by the
jobs 1, . . . , 2m. We have I = ∑2m

i=k+1(Ci −10) (by König’s edge-coloring theorem
2m jobs—each having five unit-time operations—can complete all their operations
before 10 on m processors and leaves no time to spare in [0, 10]). Clearly, I ≥∑9

x=Cm+1
|Ix | and thus the claim holds. Similarly we prove

∑3m
i=2m+1 Ci ≥ 15m,

and we omit details. Thus we just proved that
∑m

i=1 Ci ≥ 5m,
∑2m

i=m+1 Ci ≥ 10m,

and
∑3m

i=2m+1 Ci ≥ 15m. If Cm > 5, then
∑m

i=1 Ci > 5m and
∑3m

i=1 Ci > 30m,
which contradicts that S has F = 10. Thus C1 = · · · = Cm = 5 and

∑m
i=1 Ci = 5m

in S. If Cm+1 > 10, then
∑2m

i=m+1 Ci > 10m and
∑3m

i=1 Ci > 30m, which again

leads to the contradiction. Thus Cm+1 = · · · = C2m = 10 and
∑2m

i=m+1 Ci = 10m

in S. Therefore also C2m+1 = · · · = C3m = 15 and
∑3m

i=2m+1 Ci = 15m in S.
This proves that S is a 5-10-15 schedule as required and completes the proof of
NP-hardness in the strong sense for O|pij = 0, 1|∑Ci . ��

Lushchakova and Kravchenko [62] give a polynomial-time algorithm for
O2|pi,j = 0, 1|∑wiC. Their algorithm runs in O(n log n) time.

3.6.3 Maximum Lateness: Problem O|pij = 0, 1, ri|Lmax;
and Number of Tardy Jobs: Problem O|pij = 0, 1| ∑ Ui

Kubale [51] shows that the problem O|pij = 0, 1, ri |Lmax is NP-hard in the strong
sense. To close the existing gap, to the author’s knowledge the problem has been
open thus far, we now show that the minimization of number of tardy jobs is NP-
hard in the strong sense.
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Theorem 3.10 The problem O|pij = 0, 1|∑Ui is NP-hard in the strong sense.

Proof The reduction is from the interval 6-edge coloring of (3, 6) biregular bipartite
graphs; see Sect. 9.3 for definitions of biregular bipartite graphs and the problem
itself. The problem is shown NP-complete in the strong sense by Asratian and
Casselgren [4]; see also Theorem 9.7 in this book. Let G = (J,M, E) be a (3, 6)

biregular bipartite graph. The graph makes one part of an instance of the problem
O|pij = 0, 1|∑Ui , where J is a set of n jobs and M is a set of m machines.
Observe that n = 2m in G. Each job Ji has three unit-time operations processed on
three different machines adjacent to Ji in the bipartite G. The operations of Ji on
any other machine are missing. The other part, the due dates of jobs, are set to di = 3
for any job Ji ∈ J . Finally the threshold for the number of tardy jobs

∑
Ui is set

to m. Since G is a (3, 6) biregular bipartite graph, the instance O|pij = 0, 1|∑Ui

has each machine workload equal to 6 and each job length equal to 3.
Suppose that there is an interval 6-edge coloring c of G. Then one edge incident

with each vertex inM is colored with color 1 in c. Thus there is a subset J1 ⊂ J
of m jobs such that each job in J1 has one edge incident with that job colored with
color 1. Since c is an interval coloring, each job in J1 is colored with colors 1,
2, and 3 and hence can be scheduled to complete by 3. This gives a schedule with∑

Ui = m.
Now suppose that S is a schedule for the problem O|pij = 0, 1|∑Ui with

at least m jobs that are not tardy, i.e., complete by 3. Since each job is of length
3, there are exactly m jobs that are not tardy. Let J0 be the set of all these jobs.
Thus there is an edge coloring c0 of G such that the edges incident with vertices
in J0 are colored with 1, 2, and 3 in c0. Moreover, each vertex in M has three
edges out of six edges incident with the vertices colored with 1, 2, and 3 in c0.
Let G0 = (J0,M, E0), where E0 is the set of all edges incident with vertices
in J0. The edge coloring c0 limited to G0 is an interval 3-edge coloring of G0.
Delete J0 and all edges incident to the vertices in J0 from G. The resulting graph
G3 = (J \ J0,M, E \ E0) is 3-regular bipartite graph. Hence G3 has a perfect
matching; see Bondy and Murty [11], for instance. Thus by Lemma 9.1 G3 has an
interval 3-edge coloring c1. Change the colors 1, 2, and 3 in c1 into 4, 5, and 6,
respectively, to obtain edge coloring c′ of G3. The edge coloring c0 ∪ c′ makes an
interval 6-edge coloring of G0 ∪ G3 = G. ��

3.7 Preemptive Open Shop Scheduling

3.7.1 An Algorithm for O|pmtn|Cmax

Gonzalez and Shani [37] give a polynomial-time algorithm for O|pmtn|Cmax . The
algorithm runs in O(r(min{r,m2} + m log n)) time, where r is the number of oper-
ations with positive processing times. The total number of preemptions introduced
by the algorithm does not exceed r(m − 1) + m2. Gonzalez [35] later proposes
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another algorithm that runs in O(r + min{m4, n4, r2}) time for the problem. The
algorithm introduces O(min{rn, rm, n3,m3}) preemptions. Vairaktarakis and Sahni
[80] introduce further improvements to those algorithms.

We show a polynomial-time algorithm that is based directly on Birkhoff–von
Neumann theorem for doubly stochastic matrices for the problem. Let n×m matrix
P be an instance of O|pmtn|Cmax with n jobs and m machines. Let �(P) =
{maxi{Pi = ∑

h pi,h}, maxh{Lh = ∑
i pi,h}} be the degree of the instance, where

Pi is length of job Ji and Lh is workload of machine Mh. Clearly, the degree of
the instance �(P) is a lower bound on minimum makespan for the instance P of
O|pmtn|Cmax . Let m × n matrix P

T be an instance of O|pmtn|Cmax that is dual
to the instance P. Informally speaking, jobs in P become machines in P

T , and
machines in P become jobs in P

T . Let us define (n + m) × (n + m) matrix

Q =
[
P A

B P
T

]

,

where the n × n diagonal matrix

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�(P) − P1 0 . . . 0
0 �(P) − P2 . . . 0
0 . . . 0
. . . .

. . . .

. . . .

0 0 . . . �(P) − Pn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

complements the sum of each row of P and each column of PT to �(P), and the
m × m diagonal matrix

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�(P) − L1 0 . . . 0
0 �(P) − L2 . . . 0
0 . . . 0
. . . .

. . . .

. . . .

0 0 . . . �(P) − Lm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

complements the sum of each column of P and each row of PT to �(P). The matrix
1

�(P)
Q is doubly stochastic. By Birkhoff–von Neumann theorem (see Theorem 1.3),

there are (n + m) × (n + m) permutation matrices P1, . . . ,Pq and positive real
numbers λ1, . . . , λq such that
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1

�(P)
Q = λ1P1 + · · · + λqPq, (3.21)

and λ1+· · ·+λq = 1. Moreover q ≤ (n+m)2−(n+m)+1. Let Si be an n×m matrix
obtained by deleting rows n + 1, . . . , n + m and columns m + 1, . . . , n + m from
the permutation matrix Pi , i = 1, . . . , q. Thus at most one entry equals 1 in each
row and each column of Si (and the remaining entries equal 0), for i = 1, . . . , q.
We have

1

�(P)
P = λ1S1 + · · · + λqSq . (3.22)

A schedule Si for Si is obtained by scheduling job Jj on machine Mh for
λi�(P)Sj,h units of time, where the entry Sj,h of Si equals 0 or 1. The schedule is
feasible since each job is scheduled on at most one machine in Si , and each machine
processes at most one job in Si . The makespan of Si equals Ci = λi�(P)Sj,h. The
schedules S1, . . . ,Sq can be permuted in any way to obtain a complete schedule
for P. The concatenation of the schedules for each permutation results in a feasible
schedule with makespan C1 +· · ·+Cq ≤ �(P). Observe that (3.22) guarantees that
each operation Oj,h of job Jj is processed for exactly pj,h time units on machine
Mh, j = 1, . . . , n and h = 1, . . . , m. Therefore S is a preemptive schedule for P
with makespan not exceeding �(P). Hence S is an optimal preemptive schedule for
P. The decomposition in (3.21) can be found by the Birkhoff heuristic, for instance
(see Brualdi [13] and Dufossé and Uçar [31]) in time O(r2√n + m). Please see
Chap. 11 for further discussion of the number of permutation matrices required by
Birkhoff–von Neumann theorem. We now illustrate this approach on an instance
with n = 6 jobs and m = 3 machines:

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 2 5
1 3 1
2 4 3
6 1 1
2 1 0.5

0.5 2 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We have �(P) = 14.5 for the instance; thus,
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6

6

6

6
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M1

M2

M3

M4

M5

M6

M7

M8

M9

0 14.5

Fig. 3.12 A schedule obtained for a doubly stochastic matrix 1
14.5Q

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 2 5 4.5 0 0 0 0 0
1 3 1 0 9.5 0 0 0 0
2 4 3 0 0 5.5 0 0 0
6 1 1 0 0 0 6.5 0 0
2 1 0.5 0 0 0 0 11 0

0.5 2 3 0 0 0 0 0 9
0 0 0 3 1 2 6 2 0.5
0 1.5 0 2 3 4 1 1 2
0 0 1 5 1 3 1 0.5 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The decomposition of 1
14.5Q into a convex combination of q = 17 permutation

matrices leads to the schedule in Fig. 3.12. The schedule includes three additional
jobs: red, orange, and green; and six additional machines M4, . . . ,M9 created to
obtain a doubly stochastic matrix 1

14.5Q.
We have λ1 = 1

14.5 and P1 equal to

P1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

in the decomposition, and
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1
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1 2

2
2

3

3
3 4

4

4

5

5
56

6

6

M1

M2

M3

0 14.5

3
3 6

Fig. 3.13 An optimal schedule for the instance P with Cmax = 14.5

S1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

which defines the schedule in the interval [0, 1] in Fig. 3.12. The reader is
encouraged to write down the complete convex combination for the schedule; see
Problem 3.7. The optimal schedule for Q obtained from the schedule in Fig. 3.12 is
shown in Fig. 3.13. There are three preemptions in the schedule: J3 is preempted on
M2, and J3 and J6 are preempted on M3.

Shchepin and Vakhania [74] and [75] consider the problem O|pmtn|Cmax by
imposing an upper bound on the number of preemptions. They show that the upper
bound m − 3 renders the problem NP -hard. Observe, however, that for m = 3 the
upper bound equals 0; thus, preemptions are not permitted. Therefore the problem
reduces to a non-preemptive problem O3||Cmax that is NP -hard; see Theorem 7.2.

3.7.2 An Algorithm for O|pmtn, rj |Lmax

Cho and Sahni [26] study a preemptive open shop scheduling with job release dates
and deadlines. They begin with a decision problem that asks whether there is a
feasible preemptive schedule where each job does not start before its release date
yet completes by its deadline, i.e., the problem O|pmtn, ri , d̄i |−. A binary search
similar to the one presented in Sect. 3.5.2 can turn a polynomial-time algorithm for
O|pmtn, ri , d̄i |− into a polynomial-time algorithm for O|pmtn, rj |Lmax . Thus we
focus on O|pmtn, ri , d̄i |− for the time being. The test proposed by Cho and Sahni
[26] for this decision problem is somewhat similar to the test proposed by Horn [46]
for the problem P |pmtn, ri , d̄i |−; see Sect. 3.5.2. The test first orders the 2n values:
r1, . . . , rn, d̄1, . . . , d̄n in ascending order to determine all distinct values and their
order

e1 < · · · < e�, (3.23)
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where � > 1. For each interval [ek, ek+1], k = 1, . . . , � − 1, let Ek be the set of
operations Oi,h such that ri ≤ ek and ek+1 ≤ d̄i , i.e., [ek, ek+1] ⊆ [ri, d̄i]. Thus any
part xi,h,k ≥ 0 of operation Oi,h ∈ Ek can be scheduled in [ek, ek+1] provided that
it is not longer than ek+1 −ek . Moreover, for each h = 1, . . . , m the total of all parts
xi,h,k of operations Oi,h ∈ Ek scheduled in [ek, ek+1] may not exceed ek+1 − ek ,
which is the processing capacity the machine Mh provides in the interval [ek, ek+1];
and for each i = 1, . . . , n, the total of all parts xi,h,k of operations Oi,h ∈ Ek

scheduled in [ek, ek+1] may not exceed ek+1 − ek to avoid simultaneous processing
of job Ji on different machines. The last two constraints guarantee that the solution
for the interval [ek, ek+1], k = 1, . . . , � − 1 can be turned into a feasible open shop
schedule with makespan ek+1 − ek in the interval [ek, ek+1]. Finally, all parts of
operation Oi,h need to sum up to the operation’s processing time pi,h. Observe that
by the construction, for each job Ji there are a(i) ≤ b(i) such that Oih ∈ Ek for
each k = a(i), . . . , b(i) and Oih /∈ Ek for each k /∈ [a(i), b(i)]. We summarize
those constraints in the following system F of linear inequalities:

0 ≤ xi,h,k ≤ ek+1 − ekOih ∈ Ek, k = 1, . . . , �, i = 1, . . . , n, h = 1, . . . , m;
0 = xi,h,k Oih /∈ Ek, k = 1, . . . , �, i = 1, . . . , n, h = 1, . . . , m;

∑

i:Oih∈Ek

xi,h,k ≤ ek+1 − ek k = 1, . . . , � − 1, h = 1, . . . , m;

∑

h:Oih∈Ek

xi,h,k ≤ ek+1 − ek k = 1, . . . , � − 1, i = 1, . . . , n;

b(i)∑

k=a(i)

xi,h,k = pih i = 1, . . . , n, h = 1, . . . , m.

The coefficients of the system F are limited to the values −1, 0, or 1; thus,
by Tardos [78] the system F can be solved in strongly polynomial time. To
obtain a feasible schedule for a solution to F , if one exists, we observe that
for each interval [ek, ek+1], k = 1, . . . , � − 1 the solution defines an instance
of O|pmtn|Cmax . The processing time of operation Oi,h equals xi,h,k , and
max{maxi{∑h xi,h,k}, maxh{∑i xi,h,k}} ≤ ek+1 − ek in that instance. Therefore
we can use any polynomial-time algorithm for O|pmtn|Cmax , for example, one of
those discussed in the previous section, to find a feasible open shop schedule with
Cmax ≤ ek+1 − ek for the instance in the interval [ek, ek+1]. The algorithm for
O|pmtn|Cmax needs to be called � times to find a complete schedule. This proves
that that O|pmtn, rj |Lmax can be solved in polynomial time.
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3.7.3 Complexity of Total Completion Time Minimization

Liu and Bulfin [59] prove that three-machine total completion time minimization
problem, O3|pmtn|∑Ci , is NP-hard in the strong sense. Lenstra [57] shows
that weighted total completion, O2|pmtn|∑wiCi , is NP-hard in the strong sense
for two machines. Du and Leung [30] show that for equal weights the problem,
O2|pmtn|∑Ci , is NP-hard in the ordinary sense; however, the question whether
the two-machine problem is NP-hard in the strong sense remains open. Gladky [34]
shows that adding job release dates, O2|ri, pmtn|∑Ci , renders the problem NP-
hard in the strong sense. Liaw [58] develops a dynamic programing algorithm
for O2|pmtn|∑wiCi . The algorithm runs in O(n2nP 2) time. Queyranne and
Sviridenko [68] develop a (2+ε)-approximation algorithm for O|ri, pmtn|∑wiCi .
The question whether there is a PTAS for O|pmtn|∑Ci remains open.

3.8 Exact Algorithms

Brucker et al. [15, 16] apply the ideas of Grabowski et al. [38] and Cariler and
Pinson [19] to develop first branch and bound algorithm for O||Cmax. Guéret et
al. [42] and Guéret and Prins [43] introduce improvements and refinements to the
branch and bound algorithm. Dorndorf et al. [29] propose another branch and bound
algorithm and report that their algorithm performs better than those presented earlier
in the literature. Bräsel et al. [12] propose a method to reduce the search space
for exact algorithms. Tamura et al. [77] propose a method that reduces constraint
satisfaction and optimization problems into the Boolean satisfiability problem and
apply their method to solve O||Cmax. Grimes et al. [41] and Malapert et al.
[63] propose constraint programming algorithms. Recently, Ozolins [67] gives a
dynamic programming algorithm for the problem. All those algorithms are tested
on benchmark instances that typically include those proposed by Taillard [76].
Ahmadian et al. [3] provide a recent survey of exact algorithms.

Problems

3.1 Prove that the algorithm for O|pij = 1, ri |Lmax given in Sect. 3.5.2 can be
implemented to run in time O(n3lognm).

3.2 Show that the schedule in Fig. 3.9 is optimal.

3.3 Show that ideal schedules for O|pij = 1|∑Ci always exist.

3.4 Show that the completion time of each unit-time operation in an ideal schedule
for O|pij = 1|∑Ci can be computed in O(log n + log m) time.
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3.5 In the proof of Theorem 3.3 show that a schedule with Cmax ≤ 3 exists if and
only if there is 3-edge coloring of G with colors 1, 2, or 3 where each multiedge
with multiplicity 2 has one of its edges colored with color 2.

3.6 Give a polynomial-time algorithm for O||Cmax limited to the instances with
maximum degree equal to 3.

3.7 Specify a convex combination of permutation matrices for the doubly stochastic
matrix 1

14.5Q using the schedule in Fig. 3.13.

3.8 Please eliminate any redundant constraints from the system F of linear
inequalities in Sect. 3.7.2.
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Chapter 4
Multiprocessor Operations

4.1 Introduction

In the open shop scheduling with multiprocessor operations a set of jobs J =
{J1, . . . , Jn} is scheduled on machinesM = {M1, . . . ,Mm}. The set of machines
is partitioned into p disjoint groups G�, � = 1, . . . , p. Each job consists of single-
processor and multiprocessor operations. A single-processor operation Oj,h of job
Jj requires a single machine Mh ∈M, and a multiprocessor operation Ôj,� requires
all machines from the group, G�, � = 1, 2, . . . , p simultaneously. The processing
time of Oj,h equals bjh ≥ 0, and the processing time of Ôj,� equals aj� ≥ 0. In this
chapter we depart from the notation pj,h (we use bjh instead) introduced in Chap. 1
for processing time of operation Oj,h. This is to further emphasize the presence of
individual and group operations in the open shop with multiprocessor operations.
All processing times are integers for the time being. The processing time bjh equals
0 means that Jj is missing on Mh, similarly the processing time aj� equals 0 means
that Jj is missing on G�. In a feasible schedule each machine can process at most
one operation at a time, and no two operations of the same job can be processed
simultaneously. Any operation can be preempted at any moment and resumed at
any moment later at no cost. The makespan is to be minimized.

An instance of the open shop scheduling with multiprocessor operations naturally
decomposes into two instances of open shops. One referred to as the group open
shop consists of p group machines G1, . . . ,Gp, and n jobs in Ĵ , where the
processing time of job Ĵj ∈ Ĵ on a group machine G�, � = 1, . . . , p equals
aj�. The other referred to as individual open shop consists of m machines M =
{M1, . . . ,Mm}, and n jobs in J , where the processing time of job Jj ∈ J on
an individual machine Mh ∈ M equals bj,h. For the group open shop machine
G� workload equals �(G�) = ∑

j aj� for � = 1, . . . , p, and job length equals

�(Ĵj ) = ∑
� aj� for Ĵj ∈ Ĵ . Thus by König’s edge-coloring theorem there is an
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Fig. 4.1 An instance with
� = 2 and optimal schedule
with Cmax = 3
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optimal schedule SG with makespan �(G) = max{max� �(G�), maxj �(Ĵj )} for
the group open shop. For the individual open shop machine Mh ∈ M workload
equals �(Mh) = ∑

j bjh, and job length equals �(Jj ) = ∑
h bjh for Jj ∈ J .

Thus again by König’s edge-coloring theorem there is an optimal schedule SM with
makespan �(M) = max{maxh �(Mh), maxj �(Jj )} for the individual open shop.
Both schedules, SG and SM, respectively, can be obtained in polynomial time, see
Gabow and Kariv [11] or Cole et al. [6]. Either schedule permits preemptions at
integer points only and so does their concatenation SGSM. The makespan of the
concatenation equals �(G) + �(M).

Now instead of looking at the two instances of the decomposition one at
a time let us consider the original instance. The machine Mh workload equals
Lh = ∑

j aj� + ∑
j bjh = �(G�) + �(Mh), where Mh ∈ G�, and job Jj length

Pj = ∑
� aj�+∑

h bjh = �(Ĵj )+�(Jj ). Therefore, � = max{maxj Pj , maxh Lh}
is a lower bound on the makespan of an optimal schedule. Since � ≥ �(G) and
� ≥ �(M), the algorithm that gives the concatenation SGSM is a 2-approximation
algorithm for the makespan minimization of the open shop scheduling problem with
multiprocessor operations. To illustrate consider the instance in Fig. 4.1, we have
p = 2, �(G1) = 1, �(G2) = 0, �(M1) = �(M2) = 1, �(M3) = �(M4) = 2, and
�(J2) = �(J3) = �(J4) = 2, �(J1) = 0, �(Ĵ1) = 1, �(Ĵ2) = �(Ĵ3) = �(Ĵ4) =
0. Thus �(G) = 1 and �(M) = 2 and the schedule SGSM has makespan 3. On the
other hand � = 2. Observe that a schedule with Cmax = 2 does not exist for this
instance. Such a schedule would need individual operations of four different jobs to
be scheduled in parallel on individual machines. This however contradicts the fact
that only three jobs have individual operations in the instance.

Observe also that allowing preemptions at any point, not necessarily at integer
points, may reduce schedule makespan. The schedule in Fig. 4.2 by allowing
preemptions at any point reduces the makespan from Cmax = 3 to Cmax = 7

3
for the instance in Fig. 4.2. Sections 4.2–4.9 focus on schedules with preemptions
allowed at integer points only. Those schedules are solutions to the University
timetabling problem. Section 4.10 considers preemptive schedules which solve
preemptive open shop scheduling problem with multiprocessor operations. Those
schedules allow preemptions at any points thus they do not necessarily solve the
University timetabling problem; however, they become a good point of departure
for approximate solutions, see Sect. 4.11.
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Fig. 4.2 An optimal
schedule with preemptions
allowed at any point for the
instance in Fig. 4.1
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4.2 Complexity of Short Schedules with Preemptions at
Integer Points

Asratian and de Werra [1] prove the following.

Theorem 4.1 The problem to determine if there is a schedule with Cmax ≤ 3 for
an open shop with multiprocessor operations and preemptions allowed at integer
points only is NP-complete in the strong sense even for p ≤ 4.

Proof The proof is by reduction from the following edge-coloring problem with
pre-assigned colors. Let G = (X, Y,E) be a bipartite graph with �(G) = 3, where
each vertex v ∈ X is of degree 2 or 3. Moreover each vertex v ∈ X has a set
C(v) ⊆ {1, 2, 3} of colors pre-assigned, and |C(v)| = degG(v). Can the edges
of G be colored with colors 1, 2, and 3 so that the edges incident with v ∈ X

are colored with colors in C(v)? The problem is shown NP-complete in the strong
sense in Even at al. [10], see also Asratian and Kamalian [2]. In the corresponding
open shop instance we have m = |X| machines, M = X, partitioned into four
disjoint groups G1 = {v ∈ X : C(x) = {1, 3}}, G2 = {v ∈ X : C(x) = {2, 3}},
G3 = {v ∈ X : C(x) = {1, 2}}, and G4 = {v ∈ X : C(x) = {1, 2, 3}}. The jobs
in Y are processed on machines in X so that the operations of job u ∈ Y are of
unit processing time each, and processed on machines v ∈ X adjacent with u in G.
Moreover, there is one more job, the job J , with three group operations on G1, G2,
and G3, no individual operations, and no group operation on G4 in the open shop
instance. The three group operations of the job J have unit processing time each.
Thus J = Y ∪ {J }, and Cmax = 3.

Suppose there is an edge-coloring of G with three colors 1, 2, and 3 so that the
edges incident with v ∈ X are colored with the colors in C(x). Then a schedule can
be readily obtained where each individual machine in G1 is occupied in [0, 1] and
[2, 3], each individual machine in G2 is occupied in [1, 3], each individual machine
in G3 is occupied in [0, 2], and each individual machine in G4 is occupied in [0, 3].
This allows to schedule J on G1 in [1, 2], on G2 in [0, 1], and on G3 in [2, 3] to get
a schedule with Cmax = 3, see the schedule in Fig. 4.3.

Now suppose S is a schedule with Cmax = 3. Thus job J is processed at any time
in the interval [0, 3]. Without loss of generality we can assume that group operation
of J on G2 is in [0, 1], on G1 is in [1, 2], and on G3 is in [2, 3] in S. To see this
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Fig. 4.3 Scheduling job J
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suppose that J is processed in the interval [i − 1, i] on G1, in [j − 1, j ] on G2,
and in [k − 1, k] on G3 in S. We have {i, j, k} = {1, 2, 3}. Let Oi , Oj , and Ok be
the sets of all unit-time operations, group or individual, processed in the unit-time
intervals [i − 1, i], [j − 1, j ], and in [k − 1, k], respectively, in S. Schedule each
operation from Oi in [1, 2], each operation from Oj in [0, 1], and each operation
for Ok in [2, 3]. This permutation of the three unit-time intervals gives a feasible
schedule with Cmax = 3, and the required order of processing for the operations of
job J .

Thus an individual machine v ∈ G1 processes individual operations in [0, 1] and
[2, 3]. Those operations belong to jobs u1, u2 ∈ Y . Thus the edges (v, u1), (v, u2) ∈
E incident with v will be colored with colors 1 and 3 which makes precisely the set
C(v) = {1, 3} required for vertex v. Similar argument works for any individual
machine v ∈ G2, and any individual machine v ∈ G3. Thus the edges incident with
v ∈ G2 and v ∈ G3 will be colored with colors 2 and 3, and 1 and 2 respectively.
Therefore we obtain the required edge-coloring of G. ��

de Werra et al [8] further strengthen Theorem 4.1 by proving it for three groups,
p = 3. We will omit the proof and leave it as an exercise, see Problem 4.1. However
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the schedules, if any exist, with Cmax ≤ 2 and for an arbitrary number of groups p

can be obtained in polynomial time. We have the following theorem.

Theorem 4.2 The problem to determine if there is a schedule with Cmax ≤ 2 for
an open shop with multiprocessor operations and preemptions allowed at integer
points only is polynomial.

Proof Without loss of generality we can assume that each operation o, individual or
group, has processing time 0, 1, or 2. We assume an arbitrary number of groups p.
Split each operation o with processing time 2 into two unit-time operations o′ and
o′′. The two belong to the same job and require the same machines, individual, or
group, for processing as does o. For each unit-time operation o, define αo = G� and
βo = {j} if o = Ôj,� is a group operation, and αo = {Mh} and βo = {j} if o = Oj,h

is an individual operation. Let G = (O,E) be a simple graph where O is the set
of all unit-time operations, and E is a set of edges (o, o′) such that the operations
o and o′ either share a machine, i.e., αo ∩ αo′ �= ∅, or a job, i.e., βo ∩ βo′ �= ∅.
We claim that there is a schedule with Cmax ≤ 2 if and only if the vertices of G

can be colored with at most two colors so that any two vertices connected by and
edge in E are colored with different colors. That is G is 2-colorable, Bondy and
Murty [3]. Suppose G is 2-colorable with colors 1 and 2. Schedule each operation
o ∈ O on machines in αo in the interval [0, 1] if the vertex o is colored with color
1, and in the interval [1, 2] if the vertex o is colored with color 2. The schedule
is feasible since αo ∩ αo′ = ∅ for any two operations o and o′ both scheduled in
the same time interval [0, 1] or [1, 2], i.e., no two such operations share a machine
(each machine processes at most one operation at a time). Moreover, βo ∩ βo′ = ∅
for any two operations o and o′ both scheduled in the same time [0, 1] or [1, 2], i.e.,
no two such operations belong to the same job (each job is processed by at most
one machine, individual, or group, at a time). Therefore, there is a feasible schedule
with Cmax ≤ 2. Now suppose that there is a feasible schedule S with Cmax ≤ 2.
Without loss of generality we may assume that each operation, group, or individual
completes at 1 or 2 in S. Color each o that completes at 1 with color 1, and each o

that completes at 2 with 2. Suppose for contradiction that there are operations o and
o′ connected by an edge (o, o′) ∈ E and colored with the same color i = 1 or 2 by
the coloring. Thus both are scheduled in the same time interval [i − 1, i] in S, and
since the schedule is feasible they must belong to different jobs and must not share
a machine. Therefore (o, o′) /∈ E which gives a contradiction.

Any simple graph is 2-colorable if and only if it is bipartite, Bondy and Murty
[3]. Therefore there is a schedule with Cmax ≤ 2 if and only if the graph G is
bipartite. The test whether G is bipartite or not can be done in O(|O| + |E|) time.
Therefore we just obtained a linear-time algorithm to test if there is a schedule with
Cmax ≤ 2. ��
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4.3 University Timetabling. A Polynomial-Time Algorithm
and Conjecture for Two Groups

The University timetabling studied in this chapter was first introduced by Asratian
and de Werra in [1]. The University timetabling is a generalization of the well-
known, see Gotlieb [13], de Werra [7], and Bondy and Murty [3], class–teacher
timetabling model. In the generalization, in addition to the lectures given by a single
teacher to a single class, there are some lectures given by a single teacher to a
group of classes simultaneously. We look for a minimum number of periods (period
is a unit of time allocated to a lecture and it cannot be fractional in a solution
to the timetabling problem) in which to complete all lectures without conflicts.
The University timetabling model is motivated by the situation where various
study programs share some courses which are common to all programs (classes).
Asratian and de Werra [1] point out that such situation arises at Luleå University
of Technology in Sweden and Ecole Polytechnique Fédérale de Lausanne (EPFL)
in Switzerland. At EPFL for instance groups of three or four classes are created
for courses of mathematics or physics which correspond to group-lectures. Besides
those group-lectures there are individual lectures for courses given to one class
(program) only, [1]. de Werra et al. [8] describe a similar situation at some French
autonomous universities. Later on de Werra et al. [9], and Kis et al. [15] recast the
problem as an equivalent open shop scheduling with multiprocessor operations and
preemptions allowed at integer points only.

For two groups, p = 2, de Werra et al. [9] and Kis et al. [15] observe that
a feasible schedule can be partitioned in the following four parts: part (a) consists
of multiprocessor operations on G1, and single-processor operations or idle time
on the machines in G2; part (b) consists of multiprocessor operations on both
groups G1 and G2; part (c) consists of multiprocessor operations on G2, and single-
processor operations or idle time on the machines in G1; and part (d) consists of
single-processor operations or idle time on all machines, see Fig. 4.4. The parts
(a), (b), (c), and (d) have sizes �(G1) − r , r , �(G2) − r , and w respectively for
some r and w, where �(G�) =

∑
j∈J aj,� for � = 1, 2. Therefore the total of

�(G1) + �(G2) − r + w equals the schedule makespan, and the minimization of
makespan reduces to the minimization of w − r . To simplify the notation we will
often use h instead of Mh when referring to machine Mh ∈M, and j instead of Jj

when referring to job Jj ∈ J in the remainder of this chapter.
The following integer linear program ILP with variables r , w, and yjh, xj�, for

j ∈ J , h ∈M, and � = 1, 2 was given in de Werra et al. [9] and Kis et al. [15] to
minimize the makespan for p = 2:

ILP = min(w − r). (4.1)

Subject to
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∑

j

bjh − (�(G2) − r) ≤
∑

j

yjh ≤ w h ∈ G1 (4.2)

∑

j

bjh − (�(G1) − r) ≤
∑

j

yjh ≤ w h ∈ G2 (4.3)

∑

h

yjh ≤ w j ∈ J (4.4)

0 ≤ yjh ≤ bjh h ∈M j ∈ J (4.5)

∑

j

xj1 = r (4.6)

∑

j

xj2 = r (4.7)

xj1 + xj2 ≤ r j ∈ J (4.8)

0 ≤ xj� ≤ aj� j ∈ J � = 1, 2 (4.9)

∑

h∈G1

(bjh − yjh) + aj2 − xj2 ≤ �(G2) − r j ∈ J (4.10)

∑

h∈G2

(bjh − yjh) + aj1 − xj1 ≤ �(G1) − r j ∈ J (4.11)

all variables r, w, and yjh, xj�, for j ∈ J, h ∈M, and � = 1, 2 are integers.
(4.12)

The variable yjh represents the amount of j ∈ J on h ∈ M in part (d). The
variable xj� represents the amount of j ∈ J onG�, � = 1, 2, in part (b). The variable
w is the size of (d), and the variable r is the size of (b). The constraints (4.2)–(4.5)
guarantee that the size of part (d) does not exceed w. The constraints (4.6)–(4.9)
guarantee that the size of part (b) equals r . The constraints (4.10)–(4.11) along with
the left hand side inequalities in (4.2) and (4.3) guarantee that the size of part (a)
does not exceed �(G1) − r and that the size of part (c) does not exceed �(G2) − r .

Kis et al. [15] show how to solve the ILP in polynomial time. They further
show that �LP � ≤ ILP ≤ �LP �+ 1, where LP is the value of an optimal solution
to the LP -relaxation of ILP, and conjecture that:

Conjecture 4.1 ILP = �LP �.

We prove this conjecture in this chapter. We follow the proof given
in Kubiak [16]. Observe that G1 = ∅ or G2 = ∅ results in integral
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solutions with makespan �(G2) + max{maxj {∑h bjh}, maxh{∑j bjh}} or
�(G1)+max{maxj {∑h bjh}, maxh{∑j bjh}}, respectively. Thus the conjecture
holds in this case and we assume non-empty G1 and non-empty G2 from now on
in Sects. 4.3–4.9. We begin in the next section by focusing on those solutions to
the LP -relaxation with the value of objective function �LP � that minimize r . The
goal will be to show that the minimum r must be integer. This will be shown in
Sects. 4.3–4.9. A detailed outline of the proof will be given in Sect. 4.3.2 once
necessary notation and preliminary concepts are introduced there.

4.3.1 LP Relaxation with Minimum r

Let (y∗, x∗, , r∗, w∗) be an optimal solution to the LP -relaxation of ILP. Let w∗ =
�w∗� + λw∗ and r∗ = �r∗� + λr∗ , where 0 ≤ λw∗ < 1 and 0 ≤ λr∗ < 1. Consider
the following linear program �p:

lp = min r.

Subject to

w − r = ⌈
w∗ − r∗⌉ (4.13)

�r∗� ≤ r (4.14)

∑

j

bjh − (�(G2) − r) ≤
∑

j

yjh ≤ w h ∈ G1 (4.15)

∑

j

bjh − (�(G1) − r) ≤
∑

j

yjh ≤ w h ∈ G2 (4.16)

∑

h

yjh ≤ w j ∈ J (4.17)

0 ≤ yjh ≤ bjh h ∈M j ∈ J (4.18)

∑

j

xj1 = r (4.19)

∑

j

xj2 = r (4.20)

xj1 + xj2 ≤ r j ∈ J (4.21)
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0 ≤ xj� ≤ aj� j ∈ J � = 1, 2 (4.22)

∑

h∈G1

(bjh − yjh) + aj2 − xj2 ≤ �(G2) − r j ∈ J (4.23)

∑

h∈G2

(bjh − yjh) + aj1 − xj1 ≤ �(G1) − r j ∈ J . (4.24)

All entries in the constraint matrix of �p are 0, +1, or −1, thus �p can be solved
by a strongly polynomial algorithm given in Tardos [19]. Let (y, x, r, w) be an
optimal solution to �p. The solution exists since (y∗, x∗, r∗, �w∗� + λr∗) is feasible
for �p if λw∗ ≤ λr∗ , and (y∗, x∗, r∗, �w∗� + λr∗) is feasible for �p if λw∗ > λr∗ ,
thus �p is feasible and clearly it is also bounded. Observe that �w∗� + λr∗ − r∗=
�w∗� − �r∗� = �w∗ − r∗� for λw∗ ≤ λr∗ , and �w∗� + λr∗ − r∗ = �w∗� − �r∗� =
�w∗ − r∗� for λw∗ > λr∗ .

We assume without loss of generality that the solution meets the machine
saturation condition, i.e., the upper and lower bounds in (4.15) and (4.16) are equal.
If the machine saturation is not met by the solution for some machine h, then a job
j (h) with bj (h)h = w − ∑

j bjh + (�(G2) − r), aj (h)1 = aj (h)2 = 0 should be
added to the instance for each such machine to make the solution meet the saturation
condition. Observe that by (4.13) bj (h)h is integral so the extended instance is a
valid instance of the open shop with multiprocessor operations problem. We take
yj (h)h = w −∑

j yjh in the extended solution. Observe that n = |J | ≥ |G1|+ |G2|
for the solutions that meet the saturation condition.

An integral solution (y, x, r, w) to �p is feasible for ILP, and w − r = �w∗ −
r∗� = �LP �. Moreover this solution is optimal for ILP since by definition of
LP -relaxation we have LP ≤ ILP for any feasible solution to ILP. This proves
Conjecture 4.1. Therefore it suffices to prove that there is an integral solution to �p.
To that end, we prove the following theorem in Sects. 4.3–4.9.

Theorem 4.3 The r in an optimal solution to �p is integral. Moreover, there is
optimal solution to �p that is integral.

Proof Let s = (y, x, r, w) be an optimal solution to �p. Suppose for a contradiction
that the r in s equals

r = �r� + ε,

where 0 < ε < 1. Thus by (4.13)

w = �w� + ε .

In Sects. 4.3–4.9 we show that such s cannot be optimal which leads to a contradic-
tion and proves the first part of the theorem. We then show that an optimal solution
that is integral can be found in polynomial time. An outline of the proof will be
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given at the end of the next section after we first introduce the necessary notations
and definitions. ��

4.3.2 Preliminaries

Consider the solution s = (y, x, r, w). Let B1 be the set of all jobs j with fractional
xj1, and let B2 be the set of all jobs j with fractional xj2. Clearly both sets are
non-empty because ε > 0. By (4.19) and (4.20) the fractions in B� sum up to i� + ε

(
∑

j∈B�
εj = i� + ε), where i� is a non-negative integer, for � = 1, 2.

A job j is d-tight if

∑

h

yjh = w.

Denote by D the set of all d-tight jobs.
A job j is a-tight if

∑

h∈G2

(bjh − yjh) + aj1 − xj1 = �(G1) − r.

A job j is c-tight if

∑

h∈G1

(bjh − yjh) + aj2 − xj2 = �(G2) − r.

For jobs g and k such that xg1 > 0 and xk2 > 0 define

εr(g, k) =
{

minj∈(B1∪B2)\{g,k}{r − (xj1 + xj2), ε} if (B1 ∪ B2) \ {g, k} �= ∅;
ε if B1 ∪ B2 ⊆ {g, k} .

Observe that jobs g and k with εr(g, k) > 0 can potentially be used to obtain a
solution to lp with smaller r since the reduction of both xg1 and xk2 by some small
enough ε > 0 will leave the resulting constraint (4.21) satisfied. Moreover define

εc(k) =
∑

h∈G1

ykh −
⎛

⎝
∑

h∈G1

bkh + ak2 − xk2 − �(G2) + r

⎞

⎠ ,

εa(g) =
∑

h∈G2

ygh −
⎛

⎝
∑

h∈G2

bgh + ag1 − xg1 − �(G1) + r

⎞

⎠ .
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Let G be a job–machine bipartite graph such that there is an edge between
machine h ∈M and job j ∈ J if and only if yjh > 0. The edge has multiplicity yjh

(the multiplicity may be fractional). A column I = (MI , εI ) consists of a matching
MI in G that matches all m machines in M with a subset of exactly m jobs in
J that are scheduled simultaneously in the solution s, and its multiplicity εI > 0
(the multiplicity may be fractional). That is the jobs matched in the column I are
processed simultaneously for εI time units. Let JI be the set of all jobs matched
in MI , i.e., JI = {j ∈ J : (j, h) ∈ MI for some h ∈ M}. By definition of
D we require that D ⊆ JI for a column in s. By Gonzalez and Sahni [12], see
also Gabow and Kariv [11] and Sect. 3.7.1 (Birkhoff–von Neumann theorem), part
(d) can be represented by a set of columns d(y, w) = {I1, . . . , Ip}. In the spirit
of Birkhoff–von Neumann theorem, we can recast d(y, w) as follows. Let Y be an
n × m matrix where the entry in row i and column h equals yih, and let PI be an
n × m, 0-1 matrix corresponding to column I = (MI , εI ) ∈ d(y, w). The entry in
row i and column h of PI equals 1 if and only if job i is matched with machine h in
MI . We then can decompose Y as follows:

Y = εI1PI1 + · · · + εIpPIp .

For a set X of columns let l(X) denote the total multiplicity of all columns in
X. We have l(d(y, w)) = w and l(Xj ) = ∑

h yjh ≤ w where Xj is the set of all
columns that match job j ∈ J . Let I1 = (MI1, εI1), . . . , Iq = (MIq , εIq ) be a subset
of q ≥ 1 columns from d(y, w), the set of columns Y = {(MI1, λ1), . . . , (MIq , λq)},
where 0 ≤ λ1 ≤ εI1 , . . . , 0 ≤ λq ≤ εIq and λ1 + . . . + λq = λ is called the interval
of length λ in d(y, w). Let d(y, w) \ Y be the set of all columns in d(y, w) with
columns in Y removed. For each j ∈ J we have l(Zj ) ≤ l(d(y, w) \ Y ) = w − λ

where Zj is the set of all columns that match j in d(y, w) \ Y .
Let u1, . . . , up and l1, . . . , lq be different jobs from J , and I be a column. We

say that I is of type

(∗, u1, . . . , up

∗, l1, . . . , lq

)

if {(u1, h1), . . . , (up, hp)} ⊆ MI for some machines h1, . . . , hp in G1, and
{(l1,H1) , . . . , (lq ,Hq)} ⊆ MI for some machines H1, . . . , Hq in G2. The asterisk
denotes any matching for other jobs. For convenience, we sometimes use the
following notation:

(∗, U

∗, L

)

,

where U = {u1, . . . , up} and L = {l1, . . . , lq} instead. By definition if p = 0 or
q = 0, then the asterisk alone denotes any matching on G1 or G2, respectively. We
extend this notation for convenience as follows. Let u and l be different jobs from
J , and I be a column. We say that I is of type
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Fig. 4.4 An example of solution s = (y, x, 3
2 , 7

2 ) and its corresponding schedule S (parts (a), (d),
and (c))

(∗, u

∗, l

)

if (u, h) /∈ MI for any machine h ∈ G1, and (l, H) /∈ MI for any machine H ∈ G2.
The concepts just introduced are illustrated in Fig. 4.4. The makespan of S

equals 8, and the schedule S is clearly the shortest possible. The instance itself
consists of n = 10 jobs and m = 10 machines, G1 = {M1,M2,M3,M4,M5} and
G2 = {M6,M7,M8,M9,M10}. The processing times of operations can easily be
obtained from S, for example, for job J1 we have b13 = 4, b17 = 1, a12 = 1 and all
remaining operations have processing time 0, and for job J9 we have b91 = b92 =
b93 = b95 = b98 = b99 = 1 and all remaining operations have processing time 0.
The solution s can also be easily obtained from S, for example, for job J1 we have
y13 = 3, y17 = 1

2 , x12 = 1
2 and all remaining variables are set to 0, and for job J9 we

have y91 = y92 = y93 = y98 = y99 = 1
2 and y95 = 1 all remaining variables are set

0. In S: w = 7
2 , r = 3

2 , ε = 1
2 , i1 = i2 = 1, B1 = {J1, J2, J3}, B2 = {J6, J7, J8},

and εr(g, k) = 1
2 for each pair g ∈ B1 and k ∈ B2. All jobs are d-tight; jobs

J1, J2, J3, J8, and J9 are c-tight; jobs J6, J7, and J8 are a-tight. The match-
ing M = {(M1, J3), (M2, J2), (M3, J1), (M4, J8), (M5, J6), (M6, J5), (M7, J4),

(M8, J9), (M9, J7), (M10, J10)}, and the multiplicity 1
2 make up a column (M, 1

2 )

which is the schedule S in the interval [ 3
2 , 2]. All other details of s and S should

now be clear from Fig. 4.4. We show later in Fig. 4.5 that s is not optimal for �p

since �p admits solution with r = 1 and the same makespan 8.
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4.3.3 Outline of the Proof

We now give a high level informal overview of the proof of the conjecture before
moving to its details in the remaining sections. The proof is by contradiction. The
solution s defines four open shops, one for each part (a), (b), (c), and (d). The
bipartite graph G with the edge multiplicities yjh obtained from the solution s
defines an m-machine open shop with operation processing times equal yjh for part
(d), we call this part d-open shop. The groups G1 and G2 define a two-machine
open shop with operation processing times xj1 and xj2 for part (b), we call this
part b-open shop. The group G1 and the individual machines in G2 make up a
(|G2| + 1)-machine open shop with operation processing times bjh − yjh on the
individual machines in G2 and aj1 − xj1 on the group G1 for part (a). Similarly,
the group G2 and individual machines in G1 make up a (|G1| + 1)-machine open
shop with operation processing times bjh − yjh on the individual machines in G1
and aj2 − xj2 on the group G2 for part (c). We call these two a-open shop and c-
open shop, respectively. All four open shops are interrelated since they share jobs,
individual machines, or groups, thus a local change to one affects the other open
shops as well. Notice that all open shops are defined by the solution s rather than
directly by the problem instance which normally is the case for open shops.The
open shops for (a), (d), and (c) are shown in Fig. 4.4 for illustration. The makespan
of each open shop is fractional, both r and w are fractional in s; however, the total
makespan is integral since w − r is integral in s.

Sections 4.3.4 and 4.4 give a matching-based approach to characterize those
columns in d-open shop that cannot occur in s with ε > 0 since their presence
would contradict the optimality of r . Namely, those columns, if occurred in s, could
be used along with the xj1, xj2 to find another feasible solution with parts (b) and
(d) shorter by ε, 0 < ε ≤ ε, each, and parts (a) and (c) longer by ε, 0 < ε ≤ ε,
each so that the total makespan does not change. More precisely the approach uses
the column matchings in d-open shop on G1 and G2 separately; this structure is
reflected in the notation for the column type, in order to match the former with some
xj2 and the latter with some xj1 so that we get a feasible solution with the same
makespan yet d-open shop shorter by ε. The matching-based approach leads to the
characterizations of the d-open shop given in Sects. 4.4.1 and 4.5, and the b-open
shop in Sect. 4.4.2; however, it is insufficient to prove the conjecture. Nevertheless
both characterizations are key for the subsequent sections.

Therefore we introduce a network flow-based approach to shorten the d open
shop makespan from w to �w� and the b open shop makespan from r to �r� in
order to obtain a feasible solution with the same total makespan. We show that
this approach works by constructing two network flow problems for d-open shop,
one for the case with

∑
j∈B1

εj = ε or
∑

j∈B2
εj = ε in Sect. 4.6, and the other

for the case with
∑

j∈B1
εj = i1 + ε and

∑
j∈B2

εj = i2 + ε for some positive
integers i1 and i2 in Sect. 4.7. The network flow problems have integral lower and
upper bounds on the arc flows which means they admit integral flows provided that
feasible flows exist at all. To that end we show how to construct a feasible flow for
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each network from the solution s in Sects. 4.6 and 4.8. The construction relies on
the characteristics of d-open shop given in Sects. 4.4.1 and 4.5. The characteristics
naturally focus on the sets B1 and B2 in s since any change to the four open shops
needs to involve the changes to the jobs in B1 ∪ B2. That is not all since the integral
solutions to the network flow problems give integral solutions to the d-open shop
only. Those solutions need to be subsequently extended to the other three open shops
while preserving the whole solution feasibility and the total makespan. This is also
done in Sects. 4.6 and 4.8. The extension relies on characteristics of the b-open
shop proved in Sect. 4.4.2 where we prove that B1 ∩ B2 = ∅ in s, i.e., xj1 and xj2
cannot be both fractional, and Sect. 4.5 where we prove that the product xj1xj2 = 0
for each job j ∈ J in s except for the case where B1 = {j} or B2 = {j}. The
characteristics make it possible to find integral feasible solutions for the b-, c-, and
a-open shops consistent with the network-flow solutions to the d-open shop. Finally
we show in Sect. 4.9 that the network-flow based approach leads to contradiction
since it shortens r assumed to be the shortest possible. This proves the conjecture.

4.3.4 Columns Absent from d(y,w) in s

In this section we show that for two different jobs g and k such that xg1 > 0 and
xk2 > 0 certain columns or subsets of columns must be missing from d(y, w) if
ε > 0. Though these results are contingent on εr(g, k) > 0, we show that this
condition often holds, for instance in Sect. 4.4.2 we show that this inequality holds
for each pair g ∈ B1 and k ∈ B2.

Let g and k be two different jobs such that xg1 > 0 and xk2 > 0. A (g, k)-
feasible semi-matching in G is a set of edges E = E1 ∪ E2 of G of cardinality
m = |G1| + |G2| such that

1. E1 = {(j, h) ∈ E : h ∈ G1} and E2 = {(j, h) ∈ E : h ∈ G2} are matchings.
2. There are h ∈M and (j, h) ∈ E for each j ∈ D.
3. If εa(g) = 0, then (g, h) /∈ E2 for any h ∈ G2.
4. If εc(k) = 0, then (k, h) /∈ E1 for any h ∈ G1.

If E is a matching, then a (g, k)-feasible semi-matching in G is called a (g, k)-
feasible matching in G.

We define solution (y(E), x(g, k), r(g, k), w(g, k), ε) for jobs g, k, and a (g, k)-
feasible semi-matching E, where

ε =

⎧
⎪⎪⎨

⎪⎪⎩

ε′ if εa(g) = 0 and εc(k) = 0 ;
min{ε′, εa(g)} if εa(g) > 0 and εc(k) = 0 ;
min{ε′, εc(k)} if εa(g) = 0 and εc(k) > 0 ;

min{ε′, εa(g), εc(k)} if εa(g) > 0 and εc(k) > 0 ;

(4.25)

and
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ε′ = min{εr(g, k), xg1, xk2, min
(j,h)∈E

{yjh}, min
j∈J\D{w −

∑

h

yjh}} , (4.26)

as follows:

yjh(E) =
{

yjh − ε if (j, h) ∈ E ;
yjh otherwise ; (4.27)

xj1(g, k) =
{

xg1 − ε if j = g ;
xj1 if j �= g; (4.28)

xj2(g, k) =
{

xk2 − ε if j = k ;
xj2 if j �= k; (4.29)

r(g, k) = r − ε; (4.30)

w(g, k) = w − ε . (4.31)

We have the following lemma.

Lemma 4.1 Let g and k be two different jobs such that xg1 > 0 and xk2 > 0. If
εr(g, k) > 0, then no (g, k)-feasible semi-matching E in G exists.

Proof Details can be found in Kubiak [16]. ��
Lemma 4.2 Let g and k be two different jobs such that xg1 > 0 and xk2 > 0. If

εr(g, k) > 0, then no column of type
(∗,k
∗,g

)
exists in d(y, w).

Proof If such a column I = (MI , εI ) exists, then MI is (g, k)-feasible semi-
matching E in G which contradicts Lemma 4.1. ��

We now consider another forbidden configuration of columns in d(y, w). Let
I1 = (MI1 , εI1) and I2 = (MI2, εI2) be two columns. Let g, k, a, and b be four
different jobs such that xg1 > 0, xk2 > 0, xa1 > 0, and xb2 > 0. Define solution
(y(I1, I2), x′, r ′, w′, ε), where

ε = min{εr(g, k), εr (a, b), xg1, xa1, xb2, xk2, εI1 , εI2 , min
j∈J\D{w −

∑

h

yjh}}
(4.32)

as follows:

yjh(I1, I2) =

⎧
⎪⎪⎨

⎪⎪⎩

yjh − ε if (j, h) ∈ MI1 and (j, h) ∈ MI2 ;
yjh − ε/2 if (j, h) ∈ MI1 and (j, h) /∈ MI2 ;
yjh − ε/2 if (j, h) /∈ MI1 and (j, h) ∈ MI2 ;

yjh otherwise ;
(4.33)
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x′
j1 =

{
xj1 − ε/2 if j = g or j = a ;

xj1 otherwise ; (4.34)

x′
j2 =

{
xj2 − ε/2 if j = k or j = b ;

xj2 otherwise ; (4.35)

r ′ = r − ε; (4.36)

w′ = w − ε . (4.37)

We have the following lemma

Lemma 4.3 Let g, k, a, and b be four different jobs such that xg1 > 0, xk2 > 0,
xa1 > 0, and xb2 > 0. If εr(g, k) > 0 and εr(a, b) > 0, then a column of type(∗,a,b,g,k

∗
)

does not exist in d(y, w) or a column of type
( ∗
∗,a,b,k,g

)
does not exist in

d(y, w).

Proof Details can be found in Kubiak [16]. ��
The following two corollaries follow immediately from the proof of Lemma 4.3.

Corollary 4.1 Let g, k, and a be three different jobs such that xg1 > 0, xk2 > 0,
and xa1xa2 > 0. If εr(g, a) > 0 and εr(a, k) > 0, then a column of type

(∗,a,g,k
∗

)

does not exist in d(y, w) or a column of type
( ∗
∗,a,k,g

)
does not exist in d(y, w).

Corollary 4.2 Let g and k be two different jobs such that xg1xg2 > 0, and xk1xk2 >

0. If εr(g, k) > 0, then a column of type
(∗,g,k

∗
)

does not exist in d(y, w) or a column
of type

( ∗
∗,k,g

)
does not exist in d(y, w).

4.4 Pairs of Columns Absent from d(y,w) in s

Let g and k be two different jobs such that xg1 > 0, xk2 > 0. Let Ik = (MIk
, εIk

) be

a column of type
(∗,k

∗
)
, and Ig = (MIg , εIg ) a column of type

( ∗
∗,g

)
. Without loss of

generality we assume εIk
= εIg = ε. Let G(Ig, Ik) = (MIg ∪MIk

) be a job–machine
bipartite multigraph, where an edge connects a machine h and a job j if and only
if (j, h) ∈ MIg ∪ MIk

. The degree of each machine-vertex in G(Ig, Ik) is exactly 2
and the degree of each job-vertex in G(Ig, Ik) is either 1 or 2. Thus, G(Ig, Ik) is a
collection of connected components each of which is either a job–machine path or
a job–machine cycle. We have the following lemma for Ik and Ig .

Lemma 4.4 If Ik, Ig ∈ d(y, w), and εr(g, k) > 0, then Ik is of type
( ∗
∗,k,g

)
and

Ig is of type
(∗,k,g

∗
)

and both k and g belong to the same connected component of
G(Ig, Ik).
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Proof Column Ik either has no job k on any machine (we say Ik is k-free) or it is
of type

( ∗
∗,k

)
. In the former case k is either missing from G(Ig, Ik) or it is of degree

1 in G(Ig, Ik). In the latter case Ik is either of type
( ∗
∗,k,g

)
or of type

(∗,g
∗,k

)
or it is

g-free. Since εr(g, k) > 0, by Lemma 4.2 Ik cannot be of type
(∗,g
∗,k

)
nor can Ik be

g-free. Thus Ik is of type
( ∗
∗,k,g

)
or Ik is k-free. In the latter case, by Lemma 4.2,

Ig must be of type
(∗,k
∗,g

)
. A similar argument shows that Ig is of type

(∗,k,g
∗

)
or Ig is

g-free. In the latter case, by Lemma 4.2, Ik must be of type
(∗,k
∗,g

)
. Thus we end up

with the following four cases:

1. Ik is of type
( ∗
∗,k,g

)
, and Ig is of type

(∗,k,g
∗

)
;

2. Ik is of type
( ∗
∗,k,g

)
, and Ig is g-free. By Lemma 4.2, Ig cannot be k-free. Hence

k is of degree 2 and g is of degree 1 in G(Ig, Ik);
3. Ik is k-free, and Ig is of type

(∗,k,g
∗

)
. By Lemma 4.2, Ik cannot be g-free. Hence

g is of degree 2 and k is of degree 1 in G(Ig, Ik);
4. Ik is k-free and is of type

( ∗
∗,g

)
, and Ig is g-free and is of type

(∗,k
∗
)
. Hence both

g and k are of degree 1 in G(Ig, Ik).

In Case (2), let g and k be in the same connected component P of G(Ig, Ik). Then
P is a job–machine path

g, h1, j1, . . . hi, k, hi+1, ji+1, . . . , h�, j�,

where h1 ∈ G2 and {hi, hi+1} ∩ G2 �= ∅. If hi ∈ G2, then match the jobs with the
machines as follows:

M = {(h1, j1), . . . , (hi−1, ji−1), (hi, k), (hi+1, ji+1), . . . , (h�, j�)}

in the component P . If hi ∈ G1, then there is a job ji∗ ∈ {j1, . . . , ji−1} such that
hi∗ ∈ G2 and hi∗+1 ∈ G1. Then match the jobs with the machines as follows:

M = {(h1, j1), . . . , (hi∗−1, ji∗−1), (hi∗ , ji∗), (hi∗+1, ji∗),

. . . , (hi, ji−1), (hi+1, k), . . . , (h�, j�−1)}

in the component P . Thus each machine in P is matched exactly once, each job of
degree 2 in P is matched at least once (actually each such job is matched exactly
once except job ji∗ that is matched exactly twice: with hi∗ ∈ G2 and hi∗+1 ∈
G1), g is omitted from the matching, and k is matched with a machine in G2. The
matching can easily be extended by adding matchings from the remaining connected
components of G(Ig, Ik). The result is a (g, k)-feasible semi-matching in G(Ig, Ik).
We proceed in a similar fashion in Case (3) if k and g are in the same component
P of G(Ig, Ik). In Case (4) if g and k are in the same connected component P of
G(Ig, Ik), then P is a job–machine path
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g, h1, j1, . . . hi, k,

with h1 ∈ G2 and hi ∈ G1. Then there is job ji∗ ∈ {j1, . . . , ji−1} such that hi∗ ∈ G2
and hi∗+1 ∈ G1. Match the jobs with the machines as follows:

M = {(h1, j1), . . . , (hi∗−1, ji∗−1), (hi∗ , ji∗), (hi∗+1, ji∗), . . . , (hi, ji−1)}

in the component P . Thus each machine in P is matched exactly once, each job of
degree 2 in P is matched at least once (actually each such job is matched exactly
once except job ji∗ that is matched exactly twice: with hi∗ ∈ G2 and hi∗+1 ∈ G1), g

and k are omitted from the matching. The matching can easily be extended by adding
matchings from the remaining connected components of G(Ig, Ik). The result is a
(g, k)-feasible semi-matching in G(Ig, Ik).

Let us now assume that k is in connected component Ck and g is in a connected
component Cg and Ck �= Cg . We have

1. In Case (1), k is of degree 2 and both on a machine in G1 and on a machine in G2
in Ck , and g is of degree 2 and both on a machine in G1 and on a machine in G2
in Cg .

2. In Case (2), k is of degree 2 and on h ∈ G2 in Ck , and g is of degree 1 in Cg .
3. In Case (3), g is of degree 2 and on h ∈ G1 in Cg , and k is of degree 1 in Ck .
4. In Case (4), g is of degree 1 in Cg , and k is of degree 1 in Ck .

A matching for Ck is selected so that k is matched with the machine in G2, if
k is of degree 2, or omitted from the matching, if k is of degree 1. Similarly a
matching for Cg is selected so that g is matched with the machine in G1, if g is
of degree 2, or omitted from the matching if g is of degree 1. The matching can
easily be extended by adding matchings from the remaining connected components
of G(Ig, Ik). The result is a (g, k)-feasible semi-matching in G(Ig, Ik). Thus in all
cases, except Case (1) with both k and g being in the same connected component of
G(Ig, Ik), we showed how to obtain (g, k)-feasible semi-matching M in G(Ig, Ik).
This however contradicts Lemma 4.1 since Ik, Ig in d(y, w) can be replaced by
columns I ′ = (M, ε) and I ′′ = ((MIg ∪MIk

) \M, ε) resulting into another feasible
solution to �p with the same value r of objective function but with a (g, k)-feasible
semi-matching M . ��

4.4.1 The a-, c-, and d-Tightness in s

We show that each job in B1 is both a-tight and d-tight, and each job in B2 is both
c-tight and d-tight. We begin by showing the a- and c- tightness.

Lemma 4.5 Each job g ∈ B1is a-tight and
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∑

h∈G2

ygh < w, (4.38)

and each job k ∈ B2 is c-tight and

∑

h∈G1

ykh < w. (4.39)

Proof Details can be found in Kubiak [16]. ��
We now prove d-tightness for each job in B1 ∪ B2.

Theorem 4.4 Each job in B1 ∪ B2 is d-tight.

Proof By (4.38) in Lemma 4.5, there is a column Ig of type
( ∗
∗,g

)
in d(y, w) for

each g ∈ B1. By (4.39) in Lemma 4.5, there is a column Ik of type
(∗,k

∗
)

in d(y, w)

for each k ∈ B2.
Consider job g with the largest xi1 + xi2 among the jobs i ∈ B1 ∪ B2. Suppose

g ∈ B1. If g ∈ B2\B1, then the proof proceeds in a similar way and thus it will
be omitted. Take any k ∈ B2 \ {g} or k = g if B2 = {g}. Observe that by our
choice of g, if xi1 + xi2 = r for some i ∈ (B1 ∪ B2) \ {g, k}, then xg1 + xg2 = r .
Therefore {k, i, g} ⊆ B1 ∪ B2 which leads to a contradiction by (4.19) and (4.20) if
k �= g. Otherwise, if k = g, then by (4.20) B1 ∪ B2 = {i, g} and g ∈ B1 ∩ B2. Thus
i ∈ B1 ∩ B2 and we get contradiction since i /∈ B2. Thus εr(g, k) > 0.

If k is not d-tight, then there is a column I of type
(∗,k

∗,k

)
in d(y, w). Thus, if

I �= Ig , then we get a contradiction with Lemma 4.4 applied to I and Ig . Otherwise,

if I = Ig , then I is of type
(∗,k
∗,g

)
which contradicts Lemma 4.2. Similarly, if g is

not d-tight, then there is a column I of type
(∗,g
∗,g

)
in d(y, w). Thus, if I �= Ik , then

we get a contradiction with Lemma 4.4 applied to Ik and I . Otherwise, if I = Ik ,

then I is of type
(∗,k
∗,g

)
which contradicts Lemma 4.2. Therefore the theorem holds

for each job in {g} ∪ B2. Moreover, there is a column I ′
g of type

(∗,g
∗
)
. Otherwise

all columns in d(y, w) are of type
(∗,g

∗
)

and thus Ik is of type
(∗,k
∗,g

)
for any k ∈ B2

which contradicts Lemma 4.2.
It remains to prove the theorem for each a ∈ B1 \ {g} whenever B1 \ {g} �= ∅.

Observe that if xg1 + xg2 = r , then xg2 > 0. Otherwise B1 = {g} and we get a
contradiction. Take a job k = g, if xg1+xg2 = r , or any job k ∈ B2, if xg1+xg2 < r .
W have εr(a, k) > 0. This holds since there is no i ∈ (B1 ∪ B2) \ {a, k} that
meets xi1 + xi2 = r . Suppose for a contradiction that xi1 + xi2 = r for some
i ∈ (B1 ∪B2)\{a, k}. Then xk1 +xk2 = r . Since a �= k, we have {k, i, a} ⊆ B1 ∪B2
which leads to a contradiction by (4.19) and (4.20).

Thus if a is not d-tight, then there is a column I of type
(∗,a
∗,a

)
in d(y, w). Then,

if εr(a, k) > 0 for k ∈ B2, we have either I �= Ik which leads a contradiction with

Lemma 4.4 applied to Ik and I or I = Ik which implies that I is of type
(∗,k
∗,a

)
which
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contradicts Lemma 4.2. If εr(a, k) > 0 for k /∈ B2, then k = g. Thus, if I �= I ′
g , then

we get a contradiction with Lemma 4.4 applied to I and I ′
g . Otherwise, if I = I ′

g ,

then I is of type
(∗,g
∗,a

)
which contradicts Lemma 4.2. ��

For j ∈ B1 ∪ B2 define

αj =
∑

h∈G1

yjh and βj =
∑

h∈G2

yjh.

The following two lemmas relate the fractions of xj1, xj2, αj , and βj for j ∈
B1 ∪ B2. The lemmas follow from Lemmas 4.5 and Theorem 4.4 and will prove
useful in the remainder of the proof.

Lemma 4.6 For g ∈ B1, let

xg1 = ⌊
xg1

⌋ + εg , βg = ⌊
βg

⌋ + λg, and αg = ⌊
αg

⌋ + ωg,

where 0 ≤ λg , ωg < 1 , 0 < εg < 1 for g ∈ B1. Then, ωg = εg , and λg = ε − εg

for ε ≥ εg , and λg = 1 − (εg − ε) for ε < εg .

Proof Details can be found in Kubiak [16]. ��
Lemma 4.7 For k ∈ B2, let

xk2 = �xk2� + εk and βk = �βk� + λk and αk = �αk� + ωk,

where 0 ≤ λk , ωk < 1 , 0 < εk < 1 for a job k ∈ B2. Then, λk = εk , and
ωk = ε − εk for ε ≥ εk , and λk = 1 − (εk − ε) for ε < εk .

Proof The proof is similar to the proof of Lemma 4.6 and will be omitted. ��

4.4.2 The Absence of Crossing Jobs in s

Each job k ∈ B1 ∩ B2 is called crossing. We call a job a ∈ B1 ∪ B2 an e-crossing
job, if it meets the following conditions:

• 0 < xa2 and 0 < xa1.
• Both B1 \ {a} and B2 \ {a} are not empty.

We have the following.

Theorem 4.5 Each crossing job is e-crossing.

Proof Suppose for a contradiction that job a is crossing but not e-crossing. By
Theorem 4.4 job a is d-tight and thus
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∑

h∈G2

yah +
∑

h∈G1

yah = w. (4.40)

By Lemma 4.5 job a is both a-tight and c-tight, thus

aa1 − xa1 +
∑

h∈G2

(bah − yah) = �(G1) − r (4.41)

and

aa2 − xa2 +
∑

h∈G1

(bah − yah) = �(G2) − r. (4.42)

By summing up (4.40), (4.41), and (4.42) side by side we obtain

aa1 + aa2 +
∑

h

bah − �(G1) − �(G2) + r − w = −r + xa1 + xa2 . (4.43)

Since a is not e-crossing, B1 \ {a} = ∅ or B2 \ {a} = ∅. Thus, xa1 = �xa1� + ε or
xa2 = �xa2� + ε. Therefore, the left hand side of (4.43) is integral but its right hand
side is fractional since both xa1 and xa2 are fractional. This leads to contradiction
and thus the theorem holds. ��
Theorem 4.6 For each e-crossing job a we have xa1 + xa2 < r .

Proof By contradiction. Let a be e-crossing with xa1 + xa2 = r . Let g ∈ B1 \ {a}
and k ∈ B2 \ {a}. By Theorem 4.4 and Lemma 4.5 there are columns Ik of type( ∗
∗,k

)
and Ig of type

(∗,g
∗
)

in d(y, w). By Theorem 4.4, Ik is either of type
( ∗
∗,k,g

)
or

of type
(∗,g
∗,k

)
, and Ig is either of type

(∗,g,k
∗

)
or of type

(∗,g
∗,k

)
. Suppose that Ik or Ig

is of type
(∗,g
∗,k

)
, then g �= k. Since a is e-crossing, by Theorem 4.4 this column, say

I , is either of type
(∗,a,g

∗,k

)
or of type

( ∗,g
∗,a,k

)
. The former is of type

(∗,k
∗,a

)
and the latter

of type
(∗,a
∗,g

)
. Since g �= k, a is the only job i with xi1 + xi2 = r . Thus εr(a, k) > 0

and εr(g, a) > 0. Therefore we get a contradiction with Lemma 4.2 which implies
that Ig is of type

(∗,g,k
∗

)
and Ik is of type

( ∗
∗,k,g

)
(observe that we may now have

g = k). Since a is e-crossing, by Theorem 4.4 we have Ig of type
(∗,a,g,k

∗
)

or of

type
(∗,g,k

∗,a

)
, and Ik is of type

( ∗
∗,a,k,g

)
or of type

( ∗,a
∗,k,g

)
. The Ig of type

(∗,g,k
∗,a

)
is of

type
(∗,a
∗,g

)
, and the Ik of type

( ∗,a
∗,k,g

)
is of type

(∗,k
∗,a

)
. Moreover, if g �= k, then a is

the only job i with xi1 + xi2 = r , and if k = g, then either xk1 + xk2 = r or a is
the only job i with xi1 + xi2 = r . Thus εr(a, k) > 0 and εr(g, a) > 0. Therefore,
Ig being of type

(∗,g,k
∗,a

)
or Ik being of type

( ∗,a
∗,k,g

)
contradicts Lemma 4.2. Thus it

remains to consider Ig of type
(∗,a,g,k

∗
)

and Ik is of type
( ∗
∗,a,k,g

)
. This leads to a

contradiction by Corollaries 4.1 and 4.2 since εr(g, a) > and εr(a, k) > 0. The last
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two inequalities clearly hold if a is the only job i with xi1 + xi2 = r , otherwise
g = k and k is the other job i with xi1 + xi2 = r . ��

The following corollary follows immediately from the proof of Theorem 4.6
since the assumption xi1 + xi2 < r for each i ∈ B1 ∪ B2 implies εr(g, k) > 0
for each g ∈ B1 and k ∈ B2.

Corollary 4.3 If xi1 + xi2 < r for each i ∈ B1 ∪ B2, then no job is e-crossing.

We are now ready to prove two main results of this section.

Theorem 4.7 No crossing job exists.

Proof By contradiction. Suppose a is a crossing job. Take a crossing job with the
largest xa1+xa2. By Theorem 4.5 a is e-crossing, and by Theorem 4.6 xa1+xa2 < r .
By Corollary 4.3 xi1 +xi2 = r for some i ∈ B1 ∪B2. Thus i �= a. By Theorem 4.6 i

is not e-crossing. Thus (xi1 = 0 or xi2 = 0) which implies ( B1 = {i} or B2 = {i}).
This leads to contradiction since a ∈ B1 ∩ B2 and a �= i. ��
Theorem 4.8 For each g ∈ B1 and k ∈ B2, εr(g, k) > 0.

Proof Suppose for a contradiction that εr(g, k) = 0 for some g ∈ B1 and k ∈ B2.
By Theorem 4.7, g �= k. Then r = xj1 + xj2 for some j ∈ (B1 ∪ B2) \ {g, k}.
By Theorem 4.7, j is not crossing thus {j, g} ⊆ B1 and j /∈ B2, or {j, k} ⊆ B2
and j /∈ B1. Suppose the former, the proof for the latter is similar and thus will be
omitted. We have xj2 integral. However, by Theorem 4.6 j is not e-crossing. Hence
xj2 = 0. Thus r = xj1 and B1 = {j} which gives a contradiction. ��

4.5 Characterization of d(y,w) in s

We give a characterization of d(y, w) that will be used in the remainder of the proof.

Lemma 4.8 For each g ∈ B1 and k ∈ B2 , any column I in d(y, w) is either of
type

(∗,k
∗,g

)
or of type

( ∗
∗,k,g

)
or of type

(∗,k,g
∗

)
. Moreover, for each g ∈ B1 and k ∈ B2

there is Ik of type
( ∗
∗,k,g

)
, and there is Ig of type

(∗,k,g
∗

)
in d(y, w). Finally, if there

is i ∈ B1 ∪ B2 such that xi1 + xi2 = r , then either B1 = {i} or B2 = {i}.
Proof Let g ∈ B1 and k ∈ B2. By Lemma 4.5 and Theorem 4.4 each column I in
d(y, w) is either of type

(∗,k
∗
)

or of type
( ∗
k,∗

)
. By Theorem 4.4 I is either of type

(∗,k,g
∗

)
or of type

(∗,k
∗,g

)
, or of type

( ∗
∗,g,k

)
or of type

(∗,g
∗,k

)
. By Theorem 4.8 we have

εr(g, k) > 0 and thus by Lemma 4.2 I is not of type
(∗,g
∗,k

)
. This proves the first part

of the lemma. Again, by Lemma 4.5 and Theorem 4.4 there are columns Ik of type( ∗
∗,k

)
and Ig of type

(∗,g
∗
)

in d(y, w). By Theorem 4.4 Ik is either of type
( ∗
∗,k,g

)
or of

type
(∗,g
∗,k

)
, and Ig is either of type

(∗,g,k
∗

)
or of type

(∗,g
∗,k

)
. By Theorem 4.8 we have

εr(g, k) > 0 and thus by Lemma 4.2 neither Ik nor Ig is of type
(∗,g
∗,k

)
. This proves

the second part of the lemma.
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If there is i ∈ B1 ∪B2 such that xi1 +xx2 = r . By Theorem 4.6 i is not e-crossing
thus xi1 = 0 or xi2 = 0 or B1 \ {i} = ∅ or B2 \ {i} = ∅. In all the cases, either
B1 = {i} or B2 = {i}. This completes the proof. ��
Theorem 4.9 If there is a job j such that xj1xj2 > 0, then B1 = {j} or B2 = {j}.
Proof Let xj1xj2 > 0 for a job j . Without loss of generality let j be a job with the
largest value of xj1 + xj2 among jobs with xj1xj2 > 0. Suppose for a contradiction
that B1 \ {j} �= ∅ and B2 \ {j} �= ∅. Thus if j ∈ B1 ∪ B2, then j is e-crossing. By
Theorem 4.6, xj1 + xj2 < r . Take g ∈ B1 \ {j} and k ∈ B2 \ {j}. If j /∈ B1 ∪ B2,
then both xj1 and xj2 are integral. Thus xj1 + xj2 < r . Take g ∈ B1 and k ∈ B2.
Thus we can pick three jobs g ∈ B1, k ∈ B2, and j such that xj1 + xj2 < r and
g �= j and k �= j . Moreover, by Theorem 4.7 we have g �= k. We now show that
εr(g, j) > 0 and εr(j, k) > 0. To prove the former inequality we observe that by
our choice of job j for any job i ∈ B1 ∪ B2 different from g and j , and such that
xi1 + xi2 = r must be either r = xi1 or r = xi2. Otherwise xi1xi2 > 0, thus i would
have been chosen instead of j . The proof of the latter inequality follows by a similar
argument. Thus by Corollary 4.1 a column of type

(∗,j,g,k
∗

)
does not exist in d(y, w)

or a column of type
( ∗
∗,j,k,g

)
does not exist in d(y, w). Suppose the former holds,

then by Lemma 4.8 a column of type
(∗,g,k

∗
)

exists in d(y, w). This column is either

of type
(∗,g,k

∗,j

)
or of type

(∗,j̄ ,g,k

∗.j̄

)
which implies that the column is of type

(∗,j̄
∗,ḡ

)
. This

however contradicts Lemma 4.2. For the latter, we prove in a similar fashion that a

column of type
(∗,k̄

∗,j̄

)
exists in d(y, w) which contradicts Lemma 4.2. Therefore we

get a contradiction which proves the theorem. ��

4.5.1 The Overlap

An overlap of B1 is a column I = (MI , ε) ∈ d(y, w) that matches at least two
different jobs from B1 with machines in G1. Similarly, an overlap of B2 is a column
I = (MI , ε) ∈ d(y, w) that matches at least two different jobs from B2 with
machines in G2.

Lemma 4.9 An overlap of B1 and an overlap of B2 do not occur simultaneously.

Proof Suppose for contradiction that both overlaps occur simultaneously. Then
there are different jobs a and g both from B1 done on G1 in a column Ia,g ∈ d(y, w)

of type
(∗,a,g

∗
)
, and different jobs b and k both from B2 done on G2 in a column

Ib,k ∈ d(y, w) of type
( ∗
∗,b,k

)
. By Theorem 4.7 there are no crossing jobs thus all

four jobs a, g, b, and k are different. On the other hand for g ∈ B1 and k ∈ B2, by
Lemma 4.8, any column I in d(y, w) is either of type

(∗,k
∗,g

)
or of type

( ∗
∗,k,g

)
or of

type
(∗,k,g

∗
)

. Thus Ia,g must be of type
(∗,a,k,g

∗
)
. For a ∈ B1 and b ∈ B2, again by

Lemma 4.8, any column I in d(y, w) is either of type
(∗,b
∗,a

)
or of type

( ∗
∗,b,a

)
or of
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type
(∗,b,a

∗
)
. Thus Ia,g must be of type

(∗,a,b,g
∗

)
. Therefore Ia,g is of type

(∗,a,b,k,g
∗

)
.

We show similarly that Ib,k is of type
( ∗
∗,a,b,k,g

)
. This, by Theorem 4.8, contradicts

Lemma 4.3 and proves the lemma. ��

4.6 Integral Optimal Solution to �p for
∑

j∈B1
εj = ε or

∑
j∈B2

εj = ε

In this section we prove that an integral optimal solution for �p exists if ε > 0 and∑
j∈B1

εj = ε or
∑

j∈B2
εj = ε. We first prove this assuming

∑
j∈B2

εj = ε in s
throughout this section. The proof for

∑
j∈B1

εj = ε proceeds in a similar fashion
and thus will be omitted.

Consider the following network-flow problem F with variables tjh for j and
h ∈ G2, and zjh for j and h ∈ G1. The r , w, and xj� for j ∈ J and � = 1, 2 in F
are constants obtained from the solution s = (y, x, r, w).

F = max
∑

j∈B1

∑

h∈G2

tjh.

Subject to

∑

j

tjh = �w � h ∈ G2 (4.44)

∑

h∈G2

bjh + aj1 − �(G1) + �r� − xj1 ≤
∑

h∈G2

tjh j ∈ J \ B1 (4.45)

∑

h∈G2

bjh + aj1 − �(G1) + �r� − �xj1� ≤
∑

h∈G2

tjh

≤
∑

h∈G2

bjh + aj1 − �(G1) + �r� − �xj1� j ∈ B1 (4.46)

∑

j

zjh = �w� h ∈ G1 (4.47)

∑

h∈G1

bjh + aj2 − �(G2) + �r� − �xj2� ≤
∑

h∈G1

zjh j ∈ J (4.48)

0 ≤ tjh ≤ bjh h ∈M j ∈ J (4.49)

0 ≤ zjh ≤ bjh h ∈M j ∈ J (4.50)
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∑

h∈G1

zjh +
∑

h∈G2

tjh ≤ �w� j ∈ J . (4.51)

Lemma 4.10 There is a feasible solution to F with value

∑

j∈B1

∑

h∈G2

bjh −
∑

j∈J\B1

(aj1 − xj1) − (|B1| − 1)(�(G1) − �r�) − ε. (4.52)

Proof For s, consider the set Yj of all columns of type
( ∗
∗,j

)
in d(y, w) for j ∈

B2. By Lemma 4.7, l(Yj ) = βj = �βj � + εj . If there is no overlap of B2 or∑
j∈B2

�βj � > 0, then take an interval Y ⊆ ⋃
j∈B2

Yj such that l(Y ) = ε, l(Y ∩
Yj ) ≥ εj for j ∈ B2. Otherwise, if there is overlap of B2 and

∑
j∈B2

�βj � = 0,
then take an interval Y ⊆ (

⋃
j∈B2

Yj ) ∪ Z such that l(Y ) = ε, l(Y ∩ Yj ) ≥ εj

for j ∈ B2. Here the Z is the set of all columns of type
(∗,B2∗,B1

)
in d(y, w). In order

for such Y to exist we show that l((
⋃

j∈B2
Yj ) ∪ Z) ≥ 1. By Lemma 4.9 there is

no overlap of B1, thus l(
⋃

j∈B1
Wj) = ∑

j∈B1
l(Wj ) = ∑

j∈B1
αj where Wj is

the set of all columns of type
(∗,j

∗
)

for j ∈ B1 in d(y, w). Hence by Lemma 4.6,
l(
⋃

j∈B1
Wj) = ∑

j∈B1
�αj � + ∑

j∈B1
εj . By definition

∑
j∈B1

εj = i1 + ε for
some integer i1 ≥ 0. Therefore l(

⋃
j∈B1

Wj) = i + ε for some integer i ≥ 0. Thus
l(d(y, w) \ ⋃

j∈B1
Wj) is integral since l(d(y, w)) = w, and positive. However

d(y, w) \ ⋃
j∈B1

Wj = (
⋃

j∈B2
Yj ) ∪ Z by Theorem 4.4 and Lemma 4.8. This

proves l((
⋃

j∈B2
Yj ) ∪ Z) ≥ 1, and the required Y exists.

Let Yjh be the set of columns I ∈ Y such that (j, h) ∈ MI , set γjh := l(Yjh).
Informally, γjh is the amount of j ∈ J done on h ∈M in the interval Y . We define
a truncated solution as follows: z∗

jh := yjh − γjh for h ∈ G1, and t∗jh := yjh − γjh

for h ∈ G2. By Theorem 4.4 each j ∈ B2 is d-tight thus

∑

h∈G1

γjh +
∑

h∈G2

γjh = ε j ∈ B2 (4.53)

and

∑

h∈G2

γjh = ηj ≥ εj j ∈ B2. (4.54)

We prove that this truncated solution is feasible for F and meets (4.52). ��
We first prove the following lemma.

Lemma 4.11 If
∑

j∈B2

εj = ε, then truncated solution meets (4.48). ��

Proof We have the following for the truncated solution:
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∑

h∈G1

z∗
jh =

∑

h∈G1

yjh − (ε − ηj ) j ∈ B2. (4.55)

By Lemma 4.5 each j ∈ B2 is c-tight. Thus we get

∑

h∈G1

yjh =
∑

h∈G1

bjh + aj2 − �(G2) − �xj2� + �r� + ε − εj j ∈ B2. (4.56)

Therefore by (4.55) and (4.56) we get

∑

h∈G1

z∗
jh + (εj − ηj ) =

∑

h∈G1

bjh + aj2 − �(G2) − �xj2� + �r� j ∈ B2,

and by (4.54)

∑

h∈G1

z∗
jh ≥

∑

h∈G1

bjh + aj2 − �(G2) − �xj2� + �r� j ∈ B2,

which proves (4.48) holds for j ∈ B2 in the truncated solution t∗ and z∗. For j ∈
J \ B2, xj2 is integral thus

∑

h∈G1

z∗
jh ≥

∑

h∈G1

bjh + aj2 − �(G2) − �xj2� + �r� + ε −
∑

h∈G1

γjh j ∈ J \ B2,

since ε − ∑
h∈G1

γjh ≥ 0 for j ∈ J we get

∑

h∈G1

z∗
jh ≥

∑

h∈G1

bjh + aj2 − �(G2) − �xj2� + �r� j ∈ J \ B2.

Thus (4.48) holds for j ∈ J . ��
Let t∗ and z∗ be a solution of Lemma 4.11. The t∗ and z∗ clearly meet

(4.44), (4.47), (4.49), (4.50), (4.51). By Lemma 4.11 (4.48) holds. Then (4.45) also
holds for t∗ and z∗. To show that we observe that by feasibility of s = (y, x, r, w)

we have

∑

h∈G2

bjh + aj1 − xj1 − �(G1) + r ≤
∑

h∈G2

(yjh − t∗jh) +
∑

h∈G2

t∗jh j ∈ J \ B1.

Since for t∗ we have

0 ≤
∑

h∈G2

(yjh − t∗jh) ≤ ε j ∈ J,

and xj1 is integral for J \ B1, the t∗ satisfies the (4.45).
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To prove (4.46) we observe that by Lemma 4.5 each j ∈ B1 is a-tight and thus

∑

h∈G2

bjh+aj1 −xj1 −�(G1)+r =
∑

h∈G2

(yjh−t∗jh)+
∑

h∈G2

t∗jh j ∈ B1. (4.57)

By Theorem 4.4 j ∈ B1 is d-tight. Thus by Lemma 4.2 and definition of truncated
solution we have

ε =
∑

h∈G2

(yjh − t∗jh), (4.58)

for j ∈ B1.
Thus by (4.57) and (4.58)

∑

h∈G2

bjh + aj1 − �(G1) + �r� − �xj1� + ε − ε − εj =
∑

h∈G2

t∗jh j ∈ B1.

Hence (4.46) is met by the truncated solution t∗ and z∗. Therefore the truncated
solution t∗ and z∗ is feasible for F .

To prove the lower bound on the value of objective function we observe that
by (4.57) and (4.58)

∑

h∈G2

bjh + aj1 − xj1 − �(G1) + �r� + ε − ε =
∑

h∈G2

t∗jh j ∈ B1. (4.59)

Summing up (4.59) side by side over all j ∈ B1 we get by (4.19) for (y, x, r, w)

∑

j∈B1

(
∑

h∈G2

bjh + aj1) − (r − c) − |B1|(�(G1) − �r�) =
∑

j∈B1

∑

h∈G2

t∗jh,

where c = ∑

j∈J\B1

xj1 is integral by definition of B1. Thus

∑

j∈B1

∑

h∈G2

bjh + �(G1) − �r� −
∑

j∈J\B1

(aj1 − xj1) − |B1|(�(G1) − �r�) − ε =
∑

j∈B1

∑

h∈G2

t∗jh

and

∑

j∈B1

∑

h∈G2

bjh −
∑

j∈J\B1

(aj1 − xj1) − (|B1 − 1)|(�(G1) − �r�) − ε =
∑

j∈B1

∑

h∈G2

t∗jh

as required.

Lemma 4.12 If
∑

j∈B1
εj = ε, then
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F =
∑

j∈B1

∑

h∈G2

bjh +
∑

j∈B1

(aj1 − �xj1�) − |B1|(�(G1) − �r�) (4.60)

and

∑

h∈G2

tjh =
∑

h∈G2

bjh + aj1 − �xj1� − �(G1) + �r� j ∈ B1. (4.61)

Proof By (4.59)

∑

h∈G2

bjh + aj1 − �(G1) + �r� − �xj1� − εj =
∑

h∈G2

t∗jh j ∈ B1, (4.62)

summing up side by side for j ∈ B1 and taking
∑

j∈B1
εj = ε we get

∑

j∈B1

∑

h∈G2

bjh +
∑

j∈B1

(aj1 − �xj1�) − |B1|(�(G1) − �r�) − ε =
∑

j∈B1

∑

h∈G2

t∗jh,

(4.63)
for the truncated solution t∗ and z∗, which by Lemma 4.10 is feasible for F . Let
t and z be an optimal solution for F . Since all upper and lower bounds in F are
integral, we may assume both t and z integral by the Integral Circulation Theorem,
see Lawler [17]. Thus by (4.63)

∑

j∈B1

∑

h∈G2

bjh +
∑

j∈B1

(aj1 −�xj1�)−|B1|(�(G1)−�r�) ≤
∑

j∈B1

∑

h∈G2

tjh, (4.64)

and the upper bounds in (4.46) give

∑

j∈B1

∑

h∈G2

bjh +
∑

j∈B1

(aj1 −�xj1�)−|B1|(�(G1)−�r�) ≥
∑

j∈B1

∑

h∈G2

tjh. (4.65)

Hence by (4.64) and (4.65) we get

∑

j∈B1

∑

h∈G2

bjh +
∑

j∈B1

(aj1 − �xj1�) − |B1|(�(G1) − �r�) =
∑

j∈B1

∑

h∈G2

tjh = F,

which proves (4.60) in the lemma. Finally, in order to reach this optimal value all
upper bounds in (4.46) must be reached, which proves (4.61). ��
Theorem 4.10 For

∑
j∈B2

εj = ε, an optimal solution to F can be extended to an
integral feasible solution to �p with lp = �r� < r .

Proof Let t and z be an optimal solution to F . This solution exists since by
Lemma 4.10 there is a feasible solution to F . Since all upper and lower bounds
in F are integral, we may assume both t and z integral by the Integral Circulation
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Theorem, see Lawler [17]. Thus by Lemma 4.10

∑

j∈B1

∑

h∈G2

tjh ≥
∑

j∈B1

∑

h∈G2

bjh −
∑

j∈J\B1

(aj1 − xj1) − (|B1| − 1)(�(G1) − �r�).
(4.66)

For the partial solution ((t, z), r ′ = �r�, w′ = �w�) we have (4.51) implies (4.17),
(4.49) and (4.50) imply (4.18), (4.44) implies (4.16), and (4.47) implies (4.15). To
prove the last two implications we observe that

∑

j

bjh − �(G2) + �r� ≤ �w� h ∈ G1

and

∑

j

bjh − �(G1) + �r� ≤ �w� h ∈ G2

for s. The (4.44) guarantees

∑

j

tjh = �w � h ∈ G2,

and (4.47) guarantees

∑

j

zjh = �w� h ∈ G1.

Therefore (4.16) and (4.15) are satisfied by the partial solution ((t, z), r ′ =
�r�, w′ = �w�).

Let us now extend the solution ((t, z), r ′ = �r�, w′ = �w�) by setting x∗
j2 :=

�xj2�, for j ∈ B2 and x∗
j2 := xj2 for j ∈ J \ B2. Since

∑
j∈B2

εj = ε, (4.20) is
met by this extension. Clearly (4.22) is also met for � = 2. By (4.48) we have

∑

h∈G1

bjh + aj2 − �xj2� − �(G2) + �r� ≤
∑

h∈G1

zjh j ∈ J .

Thus (4.23) is met for the extended solution ((t, z), r ′ = �r�, w′ = �w�), and x∗
j2

for j ∈ J .
We now extend this solution further by setting

x∗
j1 :=

∑

h∈G2

bjh + aj1 − �(G1) + �r� −
∑

h∈G2

tjh (4.67)
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for j ∈ B1 and x∗
j1 := xj1 for j ∈ J \ B1. To prove that (4.24) is met for the

extended solution ((t, z), r ′ = �r�, w′ = �w�), and x∗
j2, x∗

j1 for j ∈ J we need to
show that

∑

h∈G2

bjh + aj1 − x∗
j1 − �(G1) + �r� ≤

∑

h∈G2

tjh (4.68)

for each j ∈ J . By the definition (4.67) this holds for j ∈ B1. For j ∈ J \ B1 we
have xj1 integral and thus (4.68) holds since (4.45) holds. Thus (4.24) is met for the
extended solution ((t, z), r ′ = �r�, w′ = �w�), and x∗

j2, x∗
j1 for j ∈ J . Moreover

aj1 ≥ x∗
j1 ≥ 0 for each j ∈ J \ B1 and thus (4.22) holds for � = 1 in this extended

solution. It suffices to prove this for j ∈ B1.
Then, since �r� ≥ �r� − �xj1�, x∗

j1 ≥ 0 by (4.67) and the right hand side
inequality of (4.46). Moreover, aj1 ≥ �xj1�. Thus by the left hand side inequality
of (4.46)

∑

h∈G2

bjh − �(G1) + �r� ≤
∑

h∈G2

tjh

and by (4.67)

x∗
j1 =

∑

h∈G2

bjh − �(G1) + �r� −
∑

h∈G2

tjh + aj1 ≤ aj1.

Therefore (4.22) holds for � = 1 for j ∈ B1. For j ∈ J \B1 the (4.22) for � = 1 in
the extended solution ((t, z), r ′ = �r�, w′ = �w�), and x∗

j2, x∗
j1 follows from (4.22)

for � = 1 in the solution (y, x, r, w).
By definition of the extended solution ((t, z), r ′ = �r�, w′ = �w�), and x∗

j2, x∗
j1

for j ∈ J , and since by Theorem 4.7 there are no crossing jobs we have

x∗
j1 + x∗

j2 ≤ �r� (4.69)

for j ∈ J\B1. We now need to show this inequality for j ∈ B1. For these jobs by the
left hand side inequality of (4.46), and by (4.67) we get x∗

j1−�r�+�r�−�xj1� ≤ 0.
Thus x∗

j1 ≤ �xj1� for each job j ∈ B1. This unfortunately does not guarantee (4.69)
for j ∈ B1. However, we either have �xj1� + xj2 ≤ �r� for each j ∈ B1, in which
case (4.69) holds for j ∈ B1, or �xk1� + xk2 > �r� for some k ∈ B1. The latter
implies

∑
j∈B1

εj = ε, which by Lemma 4.12, implies

∑

h∈G2

tjh =
∑

h∈G2

bjh + aj1 − �(G1) + �r� − �xj1� j ∈ B1

in the optimal solution t and z to F . Thus by definition (4.67), x∗
j1 = �xj1� for j ∈

B1. Since by Theorem 4.7 there are no crossing jobs the (4.69) is satisfied. Hence it
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remains to prove that if �xk1� + xk2 > �r� for some k ∈ B1, then
∑

j∈B1
εj = ε.

For contradiction assume �xk1� + xk2 > �r� for some k ∈ B1 and
∑

j∈B1
εj > ε.

If xj1xj2 = 0 for each j ∈ J , then xk2 = 0. Thus �xk1� > �r� which implies∑
j∈B1

εj = ε and gives contradiction. Otherwise, if xi1xi2 > 0 for some i ∈ J ,
then by Theorem 4.9 we have B1 = {i} or B2 = {i}. If B1 = {i}, then

∑
j∈B1

εj = ε

which gives contradiction. Hence B2 = {i} and xj2 = 0 for each j ∈ B1. Since by
Theorem 4.7 there are no crossing jobs and xi1 is integral and positive. Thus xi1 ≥ 1,
and i �= k. By (4.19)

∑
j xj1 = ∑

j �=i xj1+xi1 = r . Hence
∑

j �=i xj1 ≤ r−1 which
gives xk1 ≤ r −1. Since xk2 = 0, we get xk1 +1+xk2 ≤ r . Thus �xk1�+xk2 ≤ �r�
which again gives contradiction. This proves that if �xk1�+ xk2 > �r� for some k ∈
B1, then

∑
j∈B1

εj = ε as required. Hence (4.21) holds for the extended solution
((t, z), r ′ = �r�, w′ = �w�), and x∗

j2, x∗
j1.

Finally we need to prove that (4.19) holds for an extended solution. By (4.67)
and (4.66)

∑

j

x∗
j1 ≤ �r� (4.70)

for the extended solution ((t, z, �r�, �w�)), and x∗
j2, x∗

j1 for j ∈ J . This solution
satisfies all constraints (4.15)–(4.18) and (4.20)–(4.24) of �p. To complete the proof
it suffices to modify the extension x∗

j1 for j ∈ J in order to ensure the equality
in (4.70) to satisfy (4.19), and to keep other constraints (4.15)–(4.18) and (4.20)–
(4.24) of �p satisfied.

If
∑

j

x∗
j1 < �r�, then take a j ∈ B1 with a positive dj = min{�xj1� − x∗

j1, �r� −
x∗
j1 − xj2}. Recall that by Theorem 4.7, xj2 is integral for each j ∈ B1. Such j

exists. To prove this existence define X = {j ∈ B1 : �xj1� = x∗
j1} and Y = {j ∈

B1 : x∗
j1 = �xj1�}. By definition (4.67) and (4.46) we have B1 = X ∪ Y , and since

∑

j

x∗
j1 < �r� <

∑

j

�xj1� (4.71)

we have Y �= ∅. Suppose for a contradiction that for each job j ∈ Y we have
�r� = x∗

j1 + xj2. Thus we have

∑

j

x∗
j1 =

∑

j∈J\B1

xj1 +
∑

j∈X

�xj1� +
∑

j∈Y

�xj1� < �r�. (4.72)

Since for each job j ∈ Y we have �r� = �xj1� + xj2, we obtain

∑

j∈J\B1

xj1 +
∑

j∈X

�xj1� + |Y |�r� −
∑

j∈Y

xj2 < �r�,
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and by (4.71) the set Y is not empty. Since
∑

j∈Y

xj2 ≤ �r� by (4.20) we get

∑

j∈J\B1

xj1 +
∑

j∈X

�xj1� + |Y |�r� < 2�r�,

and thus |Y | ≤ 1, and since Y is not empty we have |Y | = 1. However

�r� = �
∑

j

xj1� =
∑

j

�xj1� + �
∑

j∈B1

εj �,

where

�
∑

j∈B1

εj � ≤ |B1| − 1.

Thus

�r� = �
∑

j

xj1� ≤
∑

j∈J\B1

xj1 +
∑

j∈B1

�xj1� + |B1| − 1 =
∑

j∈J\B1

xj1 +
∑

j∈X

�xj1� +
∑

j∈Y

�xj1�

since |Y | = 1 which contradicts (4.72) and proves that j ∈ Y with dj = 1 exists.
Set d := min{minj,dj >0{dj }, �r� − ∑

j

x∗
j1} = 1. Then, set x∗

j1 := x∗
j1 + 1 for some

j ∈ Y with dj = 1. We have x∗
j1 ≤ min{�xj1�, �r� − xj2} and

∑

j

x∗
j1 ≤ �r� for the

new extended solution, which ensures that all constraints (4.15)–(4.18) and (4.20)–
(4.24) of �p are met in the new extended solution. Since d = 1 the

∑

j

x∗
j1 gets

closer to but does not exceed �r�. Therefore by (4.71) we finally reach an extended
solution t, z, and x∗

j2, x∗
j1 for j ∈ J that meets all (4.15)–(4.24) of �p. The solution

is integral with w′ = �w�, and r ′ = �r� which proves the lemma. ��

4.7 The Projection

Consider the following system S that defines the set of feasible solutions to the
LP -relaxation of ILP,

∑

j

bjh − (�(G2) − r) ≤
∑

j

yjh ≤ w h ∈ G1 (4.73)
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∑

j

bjh − (�(G1) − r) ≤
∑

j

yjh ≤ w h ∈ G2 (4.74)

∑

h

yjh ≤ w j ∈ J (4.75)

0 ≤ yjh ≤ bjh h ∈M j ∈ J (4.76)

∑

j

xj1 = r (4.77)

∑

j

xj2 = r (4.78)

xj1 + xj2 ≤ r j ∈ J (4.79)

0 ≤ xj� ≤ aj� j ∈ J � = 1, 2 (4.80)

∑

h∈G1

(bjh − yjh) + aj2 − xj2 ≤ �(G2) − r j ∈ J (4.81)

∑

h∈G2

(bjh − yjh) + aj1 − xj1 ≤ �(G1) − r j ∈ J . (4.82)

Now consider the system Sr obtained from S by dropping (4.77) and (4.78) and
adding the constraints (4.91), (4.92), and (4.93). We use αj1 = ∑

h∈G2
(bjh−yjh)+

aj1−�(G1) and αj2 = ∑
h∈G1

(bjh−yjh)+aj2−�(G2) for j ∈ J for convenience.

∑

j

bjh − (�(G2) − r) ≤
∑

j

yjh ≤ w h ∈ G1 (4.83)

∑

j

bjh − (�(G1) − r) ≤
∑

j

yjh ≤ w h ∈ G2 (4.84)

∑

h

yjh ≤ w j ∈ J (4.85)

0 ≤ yjh ≤ bjh h ∈M j ∈ J (4.86)

xj1 + xj2 ≤ r j ∈ J (4.87)

0 ≤ xj� ≤ aj� j ∈ J � = 1, 2 (4.88)
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∑

h∈G1

(bjh − yjh) + aj2 − xj2 ≤ �(G2) − r j ∈ J (4.89)

∑

h∈G2

(bjh − yjh) + aj1 − xj1 ≤ �(G1) − r j ∈ J (4.90)

∑

j

αj1 + (n − 1)r ≤ 0 (4.91)

∑

j

αj2 + (n − 1)r ≤ 0 (4.92)

0 ≤ r ≤ min{�(G1),�(G2)}. (4.93)

Finally consider the following projection on y,w, r .

Lemma 4.13 Let P be the polyhedron that consists of feasible solutions to Sr . Then
the projection of P on y,w, r , denoted by Q, is the set of solutions to the following
system of inequalities Q:

∑

j

bjh − (�(G2) − r) ≤
∑

j

yjh ≤ w h ∈ G1 (4.94)

∑

j

bjh − (�(G1) − r) ≤
∑

j

yjh ≤ w h ∈ G2 (4.95)

∑

h

yjh ≤ w j ∈ J (4.96)

0 ≤ yjh ≤ bjh h ∈M j ∈ J (4.97)

∑

h∈G2

(bjh − yjh) + aj1 − �(G1) ≤ 0 j ∈ J (4.98)

∑

h∈G1

(bjh − yjh) + aj2 − �(G2) ≤ 0 j ∈ J (4.99)

∑

h∈G2

(bjh − yjh) + r − �(G1) ≤ 0 j ∈ J (4.100)

∑

h∈G1

(bjh − yjh) + r − �(G2) ≤ 0 j ∈ J (4.101)
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∑

h

(bjh − yjh) + aj1 + aj2 − �(G1) − �(G2) + r ≤ 0 j ∈ J (4.102)

∑

j

αj1 + (n − 1)r ≤ 0 (4.103)

∑

j

αj2 + (n − 1)r ≤ 0 (4.104)

0 ≤ r ≤ min{�(G1),�(G2)}. (4.105)

Proof The lemma follows by the Fourier-Motzkin elimination, see Schrijver [18],
of variables xj� from the system Sr . ��

We summarize the results of this section in the following theorem and lemma.

Theorem 4.11 Let (y, r, w) be feasible for Q. There exists x such that the solution
(y, x, w, r) is feasible for S.

Proof Let s = (y, r, w) be a feasible solution for Q. By Lemma 4.13 there exist
x = (xj�), where j ∈ J and � = 1, 2, such that s = (y, x, w, r) is feasible
for Sr . Let X be the set of all such x. Take x ∈ X with minimum distance d =
|r − ∑

j xj1| + |r − ∑
j xj2|. We show that d = 0 for x. Suppose that r <

∑
j xj1

or r <
∑

j xj2. Let r <
∑

j xj1. If there is k such that αk1 + r < xk1, then set
xk1 := xk1 − λ where λ = min{xk1 − (αk + r),

∑
j xj1 − r}. The new solution is in

X and reduces d which gives a contradiction. Thus we have αj1 + r = xj1 for each
j . Therefore

∑
j αj1+nr = ∑

j xj1 ≤ r by the constraint (4.103) which contradicts
this case assumption. The proof for r <

∑
j xj2 is similar. Therefore we have r ≥∑

j xj1 and r ≥ ∑
j xj2 for the x. Suppose that r >

∑
j xj1 or r >

∑
j xj2. If

there is k such that xk1 + xk2 < r and (xk1 < ak1 or xk2 < ak2), then set xk1 + λ,
where λ = min{r − (xk1 + xk2), ak1 − xk1, d} provided xk1 < ak1. Otherwise, if
xk1 = ak1 and xk2 < ak2, set xk2 +λ, where λ = min{r − (xk1 +xk2), ak2 −xk2, d}.
The new solution is in X but has smaller d which gives a contradiction. Thus we
have xj1 + xj2 = r or (xj1 = aj1 and xj2 = aj2) for each j . We have at least one j

with xj1 +xj2 = r . Otherwise, r > min{�(G1),�(G2)} which contradicts (4.105).
On the other hand, we can have at most one j with xj1 + xj2 = r . Otherwise∑

j (xj1 + xj2) ≥ 2r and since r ≥ ∑
j xj1 and r ≥ ∑

j xj2 for the x we get
r = ∑

j xj1 and r = ∑
j xj2 which contradicts the assumption. Therefore there is

exactly one j such that xj1 +xj2 = r , and xk1 = ak1, and xk2 = ak2 for k ∈ J \{j}.
Hence �(G1)−aj1+xj1 < r or �(G2)−aj2+xj2 < r . Since �(G1)−aj1+xj1 ≤ r

and �(G2)−aj2 +xj2 ≤ r , we have �(G1)+�(G2)−aj2 +xj2 −aj1 +xj1 < 2r .
Hence �(G1) + �(G2) − aj2 − aj1 < r since xj1 + xj2 = r . However by (4.102)
and (4.97) we have aj1 + aj2 + r ≤ �(G1) + �(G2) which gives a contradiction.
Thus we have d = 0 and the solution is feasible for S. ��

We have the following lemma.
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Lemma 4.14 If (y, x, r, w) is feasible for S, then (y, r, w) is feasible for Q.

Proof If (y, x, r, w) is feasible for S, then it is also feasible for Sr . Observe
that (4.77), (4.78), and (4.80) in S imply (4.93) in Sr , the (4.77) and (4.82) in S

imply (4.91) in Sr , and the (4.78) and (4.81) in S imply (4.92) in Sr . Finally, by
Lemma 4.13 the (y, r, w) is feasible for Q. ��

The system Q is a network-flow model with lower and upper bounds on the arcs
for fixed w and r .

4.8 Integral Optimal Solution to �p for
∑

j∈Bi
εj > ε,

i = 1, 2

Consider s with
∑

j∈Bi
εj > ε for i = 1, 2. By Lemma 4.9 overlap of B1 and of B2

do not occur simultaneously. Without loss of generality let us assume no overlap of
B2.

Consider the set Yj of all columns of type
( ∗
∗,j

)
in d(y, w) for j ∈ B2. By

Lemma 4.7, l(Yj ) = βj = �βj � + εj . Take an interval Y ⊆ ⋃
j∈B2

Yj such that
l(Y ) = ε. Such Y exists since there is no overlap of B2 and

∑
j∈B2

εj > ε. Let Yjh

be the set of columns I ∈ Y such that (j, h) ∈ MI , set γjh := l(Yjh). Informally,
γjh is the amount of j ∈ J done on h ∈M in the interval Y . We define a truncated
solution as follows z∗

jh := yjh − γjh for h ∈ G1, and t∗jh := yjh − γjh for h ∈ G2,
and �r�, �w�. Thus

∑

h∈G1

γjh +
∑

h∈G2

γjh ≤ ε j ∈ J .

Theorem 4.12 For
∑

j∈Bi
εj > ε, i = 1, 2, there is a feasible integral solution to

�p with lp = �r� < r .

Proof We begin by proving that the truncated solution (y∗ = (z∗, t∗), �r�, �w�) is
feasible for Q.

The constraints (4.98) and (4.99): For s we have

∑

h∈G1

bjh + aj2 − �(G2) + r − xj2 ≤
∑

h∈G1

yjh j ∈ J

∑

h∈G2

bjh + aj1 − �(G1) + r − xj1 ≤
∑

h∈G2

yjh j ∈ J .

If r − xj1 ≥ ε and r − xj2 ≥ ε for each j ∈ J , then
∑

h∈G1
yjh − (r − xj2) ≤∑

h∈G1
z∗
jh and

∑
h∈G2

yjh − (r − xj1) ≤ ∑
h∈G2

t∗jh for each j . Hence (4.98) and
(4.99) hold for the truncated solution. Otherwise, if r − xj1 < ε or r − xj2 < ε for
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some j ∈ J , then �r� ≤ xj1 or �r� ≤ xj2 for some j . This implies
∑

j∈B1
εj = ε

or
∑

j∈B2
εj = ε which contradicts the theorem’s assumption.

The constraints (4.100) and (4.101): For s we have

∑

h∈G2

bjh + r − �(G1) + aj1 − xj1 ≤
∑

h∈G2

yjh j ∈ J,

and

∑

h∈G1

bjh + r − �(G2) + aj2 − xj2 ≤
∑

h∈G1

yjh j ∈ J .

By constraint (4.22) and definition of the truncated solution

∑

h∈G2

bjh + �r� − �(G1 ≤
∑

h∈G2

yjh − ε ≤
∑

h∈G2

t∗jh j ∈ J,

and

∑

h∈G1

bjh + �r� − �(G2 ≤
∑

h∈G1

yjh − ε ≤
∑

h∈G1

z∗
jh j ∈ J .

Hence (4.100) and (4.101) hold.
The constraints (4.102): For s by (4.23) and (4.24) we have

∑

h∈G1

(bjh − yjh) + aj2 − xj2 ≤ �(G2) − r

and

∑

h∈G2

(bjh − yjh) + aj1 − xj1 ≤ �(G1) − r,

by summing up the two side by side we get

∑

h

(bjh − yjh) + aj1 + aj2 − xj1 − xj2 ≤ �(G1) + �(G2) − 2r

or

∑

h

bjh + aj1 + aj2 − �(G1) − �(G2) + �r� ≤
∑

h

yjh − r + xj1 + xj2 − ε.

Since
∑

h yjh − ε ≤ ∑
h∈G1

z∗
jh + ∑

h∈G2
t∗jh, we have
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∑

h

yjh − r + xj1 + xj2 − ε ≤
∑

h∈G1

z∗
jh +

∑

h∈G2

t∗jh − r + xj1 + xj2.

But −r + xj1 + xj2 ≤ 0 by the constraint (4.21) and thus we get

∑

h

bjh + aj1 + aj2 − �(G1) − �(G2) + �r� ≤
∑

h∈G1

z∗
jh +

∑

h∈G2

t∗jh

which proves that (4.102) holds for y∗ = (z∗, t∗).
The constraints (4.94)–(4.95): For s by (4.15), and (4.16) we have

∑

j

bjh − �(G2) + �r� ≤
∑

j

yjh − ε ≤ �w� h ∈ G1,

and

∑

j

bjh − �(G1) + �r� ≤
∑

j

yjh − ε ≤ �w� h ∈ G2.

For the truncated solution we have
∑

j yjh = ∑
j z∗

jh + ∑
j γjh for h ∈ G1,

and
∑

j yjh = ∑
j t∗jh + ∑

j γjh for h ∈ G2. Because of the machine saturation
∑

j γjh = ε for h ∈ G1 ∪ G2. Thus

∑

j

bjh − �(G2) + �r� ≤
∑

j

z∗
jh ≤ �w� h ∈ G1,

∑

j

bjh − �(G1) + �r� ≤
∑

j

t∗jh ≤ �w� h ∈ G2,

and (4.94) and (4.95) are satisfied by the truncated solution. By the machine
saturation we have

∑
j z∗

jh = �w� for h ∈ G1, and
∑

j t∗jh = �w� for h ∈ G2.
The constraint (4.96): For s by (4.17) we have l(Xj ) ≤ l(d(y, w)) = w where

Xj is the set of all columns in d(y, w) that match j ∈ J . Since l(Y ) = ε, we get
l(Zj ) ≤ l(d(y, w)\Y ) = �w� where Zj is the set of all columns in d(y, w)\Y that
match j ∈ J . We have l(Xj ) = l((Xj ∩Y )∪ (Xj \Y )) = l(Xj ∩Y )+ l(Xj \Y ) =
l(Xj ∩Y )+l(Zj ). Hence l(Zj ) = l(Xj )−l(Xj ∩Y ) = ∑

h yjh−∑
h γjh = ∑

h y∗
jh.

Thus
∑

h y∗
jh ≤ �w� and (4.96) is satisfied by the truncated solution.

Finally, the constraints (4.103) and (4.104). First we observe that |G1| ≤ n − 1
and |G2| ≤ n − 1. Otherwise |G1| > n − 1 or |G2| > n − 1 and since by the
saturation |G1| + |G2| ≤ n we would have |G1| = 0 or |G2| = 0 which contradicts
the assumption of non-empty groups. Second, by summing up (4.23) side by side
for s over all jobs and doing the same for (4.24) we get
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∑

h∈G2

∑

j

bjh − |G2|w + (1 − n)�(G1) + (n − 1)r ≤ 0

and

∑

h∈G1

∑

j

bjh − |G1|w + (1 − n)�(G2) + (n − 1)r ≤ 0,

respectively. Since |G1| ≤ n − 1 and |G2| ≤ n − 1, we get

∑

h∈G2

∑

j

bjh − |G2|�w� + (1 − n)�(G1) + (n − 1)�r� ≤ 0

and

∑

h∈G1

∑

j

bjh − |G1|�w� + (1 − n)�(G2) + (n − 1)�r� ≤ 0.

By the machine saturation we have |G2|�w� = ∑
h∈G2

∑
j t∗jh and |G1|�w� =

∑
h∈G1

∑
j z∗

jh which proves that (4.103) and (4.104) are satisfied by the truncated
solution.

Therefore the truncated solution (y∗ = (z∗, t∗), �r�, �w�) is feasible for Q, and
by Theorem 4.11 there exists x∗ such that (y∗ = (z∗, t∗), x∗, �r�, �w�) is feasible
for S. Moreover �r∗� ≤ �r�, and �w� − �r� = �w∗ − r∗� since s = (y, x, r, w) is
feasible for �p. Thus the solution (y∗ = (z∗, t∗), x∗, �r�, �w�) is feasible for �p and
lp = �r�. For a feasible solution to Q with integral �w� and �r� all lower and upper
bounds in the network Q are integral thus we can find in polynomial time an integral
y∗. Finally for given integral and fixed �r�, �w�, and y∗ the S becomes a network-
flow model with integral lower and upper bounds on the flows. Thus we can find
in polynomial time an integral x∗ such that the integer solution (y∗, x∗, �r�, �w�) is
feasible for lp and lp = �r�. ��

Figure 4.5 gives an integral solution to ILP for the instance in Fig. 4.4. The
solution has part (b) of size �r� = 1 that consists of job J1 on G2 and job J6 on G1.
This part (b) is shorter than the part (b) in s which is of size r = 3

2 , see Fig. 4.4, and
thus s cannot be an optimal solution to �p.

4.9 The Proof of the Conjecture

We are now ready to prove Theorem 4.3 which proves the conjecture.

Proof For contradiction suppose the optimal value for �p is fractional, lp = r =
�r� + ε, where ε > 0. By Theorem 4.10 there is a feasible integral solution to �p



108 4 Multiprocessor Operations
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Fig. 4.5 An integral solution (y∗, x∗, �r� = 1, �w� = 3) for S in Fig. 4.4

with lp = �r� for
∑

j∈B1
εj = ε or

∑
j∈B2

εj = ε. By Theorem 4.12 there is a
feasible integral solution to �p with lp = �r� for

∑
j∈B1

εj > ε and
∑

j∈B2
εj > ε.

Thus there is a feasible integral solution for �p with �r� < r . Hence there is a
feasible solution to �p which is smaller than optimal r which gives contradiction
and proves the first part of the theorem. Thus optimal s has both r and w integer.
The s is feasible for S and thus it is feasible for Q by Lemma 4.14. For a feasible
solution to Q with integral w and r all lower and upper bounds in the network Q are
integral thus we can find in polynomial time an integral y. Finally for given integral
and fixed r, w and y the S becomes a network with integral lower and upper bounds
on the flows. Thus we can find in polynomial time an integral x such that the integer
solution (y, x, r, w) is feasible for lp and lp = r . ��

The question remains whether there is a simpler, perhaps more direct (not using
LP - relaxations), approach that would result in the polynomial-time algorithm
for two groups, also another natural question remains whether there is a shorter
proof of the conjecture. These two remain challenging questions worthy further
investigation.

4.10 Complexity of Open Shop Scheduling with Preemptions
Allowed at Any Points

The idea of using a linear program to find a schedule that minimizes makespan for
open shop with multiprocessor operations has been introduced in Sect. 4.3 for two
groups, p = 2. This idea has been extended in Ittig [14] to any fixed p > 2. The
extension is presented in this section. We begin with p = 3. Then any schedule S
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Table 4.1 Possible intervals types in schedule S; 0 and 1 in column G�, � = 1, 2, 3 denote
individual and group operations on machines in G�, respectively

Interval type Types of operations on machines in Interval length

G1 G2 G3

1 1 1 0 a1

2 0 0 1 a2

3 1 0 1 b1

4 0 1 0 b2

5 0 1 1 c1

6 1 0 0 c2

7 1 1 1 r

8 0 0 0 w

partitions the interval [0, Cmax] into 2p = 8 disjoint interval types, some may be
empty, listed in Table 4.1.

The interval of type (1) has group operations on both G1 and G2, thus 1 in the
columns G1 and G2, and individual operations or idle time on G3, thus 0 in the
column G3. The length of the interval of type (1) is denoted by a1. Similarly the
interval of type (2) has individual operations or idle time on both G1 and G2, thus
0 in the columns G1 and G2, and group operations on G3, thus 1 in the column
G3. The length of the interval of type (2) is a2. The other interval types should be
clear from the table by now. Some of those interval types may be empty in S, then
their lengths equal 0. The interval types can be permuted in any possible way still
giving the schedule with the same makespan as S. In order to find the schedule that
minimizes makespan we define variables as in Fig. 4.6, where the variables xi

j� and

yi
jh, for Jj ∈ J , � = 1, 2, 3 and Mh ∈M, are introduced for pair 2i − 1 and 2i of

the interval types, i = 1, 2, 3. The two interval types in each pair complement one
another; they partition the three groups into two disjoint sets. The variable 0 ≤ xi

j�

denotes the amount of job Jj group operation Ôj� processed on G� in the intervals
of types (2i − 1) and (2i), i = 1, 2, 3, and the variable 0 ≤ yi

jh denotes the amount
of job Jj individual operation Ojh processed on Mh in the intervals of types (2i−1)

and (2i), i = 1, 2, 3. The remaining amount 0 ≤ aj� − (x1
j� + x2

j� + x3
j�) of job Jj

group operation Ôj� is left for the interval of type (7), and the remaining amount
0 ≤ bjh − (y1

jh + y2
jh + y3

jh) of job Jj individual operation Ojh is left for the
interval of type (8). The remaining non-negative variables a1, a2, b1, b2, c1, c2, r ,
and w denote the lengths of the intervals (1) − (8), respectively.

The constraints for each interval need to ensure that each job is processed in
the interval for not longer than the length of the interval, and each machine is
occupied for not longer than the length of the interval. Thus the constraints ensure
that a feasible schedule can be obtained for each interval using the algorithms for
O|pmtn|Cmax discussed earlier in Sect. 3.7.1. For the interval type (1) of length a1
we thus have the following constraints:
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Fig. 4.6 The variables and interval types used in the linear program to minimize makespan

x1
j1 + x1

j2 +
∑

h∈G3

y1
jh ≤ a1 j ∈ J

for the jobs, and the following:

∑

j

x1
j1 = a1

∑

j

x1
j2 = a1

∑

j

y1
jh ≤ a1 h ∈ G3

for the machines. The constraints for the interval types (2)–(6) can be readily
obtained in a similar fashion. The reader is encouraged to write them down, see
Problem 4.2. For the interval type (7) we have

(aj1 + aj2 + aj3) −
3∑

i=1

3∑

�=1

xi
j� ≤ r j ∈ J

for the jobs, and

∑

j

aj1 −
3∑

i=1

∑

j

xi
j� = r � = 1, 2, 3
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for the groups. Finally, for the interval type (8) we have

∑

h

bjh −
3∑

i=1

∑

h

yi
jh ≤ w j ∈ J

for the jobs, and

∑

j

bjh −
3∑

i=1

∑

j

yi
jh ≤ w h ∈M

for the machines. The makespan equals a1 +a2 +b1 +b2 +c1 +c2 +r +w. However
we have the following equalities:

�(G1) = a1 + b1 + c2 + r,

�(G2) = a1 + b2 + c1 + r,

�(G3) = a2 + b1 + c1 + r,

which can be used to reduce the number of variables in the linear program. By
eliminating the variables a2, b2, and c2 we obtain the following objective for the
linear program:

min(w − 2r − a1 − b1 − c1).

Following the idea of interval types, linear programs can be obtained in polynomial
time for any fixed number p of groups. All entries in the constraint matrix of those
linear programs are 0, +1, or −1, thus the linear programs can be solved by a
strongly polynomial algorithm. This proves that the makespan minimization for
open shop scheduling problem with multiprocessor operations is polynomial for any
fixed number of groups p. Observe that the number of interval types equals 2p, and
thus it is exponential when p is part of the input. Therefore problem complexity
remains an open question for the case when p is part of the problem input. A
polynomial-time algorithm, if any exists, that would produce optimal schedules
needs to somehow limit the number of possible interval types so that the number
can be bounded by a polynomial of the input size. The question whether such a
bound exists remains open.

Problem 4.1 Is the problem of makespan minimization for preemptive scheduling
of open shop with multiprocessor operations polynomial?
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4.11 Integer Preemptions: Approximations

The solutions minimizing makespan for the open shop scheduling problem with
multiprocessor operations and preemptions allowed at any points can be rounded
in polynomial time to obtain optimal solutions with preemptions allowed at integer
points only for p = 2. We presented this approach in Sects. 4.3–4.9 where we also
proved that the minimum makespan for the latter problem equals �Cmax�, where
Cmax is the minimum makespan of the former. Though it may be tempting to think
that the approach based on rounding in polynomial results in optimal solutions for
other values of p ≥ 3, this is unfortunately not the case. We showed in Sect. 4.2
that such rounding in polynomial time is impossible unless NP = P . However,
the optimal solutions to the linear program for the problem with preemptions at
any points can be rounded to provide approximate solutions to the problem with
integral preemptions only for any fixed p. Ittig [14] has shown a polynomial-time
rounding algorithm A that gives solutions within a constant absolute error for any
fixed number of groups p.

Theorem 4.13 Let C be the makespan of the optimal solution with preemptions at
any points, and let CA be the makespan of the solution with preemptions at integer
points only obtained by the rounding algorithm A. We have

CA − C ≤ 2p · (2p−1 − 1) + 3.

Despite this constant absolute error obtained for the rounding algorithm we have the
following implication of Theorem 4.1.

Theorem 4.14 If P �= NP , then no polynomial-time algorithm for University
timetabling for p ≥ 3 exists with the worst case ratio less than 4

3 .

Proof Consider the set I of instances of University timetabling defined in the proof
of Theorem 4.1. The problem � defined by I and the question whether I ∈ I has
a schedule with makespan not exceeding 3 or not is NP -complete which follows
immediately from the proof of Theorem 4.1. Suppose for contradiction that there
is a polynomial-time algorithm B such that CB

max/C∗
max < 4/3 for any instance of

University timetabling. Thus, in particular, CB
max/C∗

max < 4/3 for any instance of
�. The algorithm B can be used to solve � as follows. If CA

max ≤ 3 for instance
I , then the answer for I is affirmative. Otherwise, if CB

max > 3 for I , then, since
all processing times in I are integer, we have CB

max ≥ 4 and integer. Thus, since
C∗

max > 3CB
max/4, we get C∗

max > 3 and the answer for I is negative. Since CB
max

can be computed in polynomial time for each I ∈ I, we have � in P . This implies
P = NP since � is NP -complete and gives contradiction. ��

These results indicate that the rounding algorithm A may give the ratios CA

C∗ ,
where C∗ is the makespan of optimal schedule with preemptions at integer points
only, close to 1 for the instances with large instance degree � ≤ C∗ and fixed p.
However the worst case ratios are not smaller than 4

3 for the instances with short
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schedules, thus small instance degree �, and arbitrary p. The inapproximability in
Theorem 4.14 holds for open shops with 0-1 operations and no preemptions.

At the beginning of this chapter, we showed that the worst case ratio equals 2 for a
simple decomposition algorithm. Asration and de Werra [1] give a polynomial-time
algorithm with the worst case ratio 7

6 ; however, their algorithm requires additional
assumptions about the �’s. Both approximations are for preemptive schedules with
preemptions at integer points.

4.12 Other Models of Multiprocessor Operations

Brucker and Krämer [5] and Brucker [4] consider a different model of open shop
with multiprocessor operations. Their model assumes the same subset of machines
Mh for each operation Oi,h regardless of the job Ji . The sets Mh, h = 1, . . . , m

may not be disjoint in which case they are called incompatible; disjoint sets are
called compatible. They consider open shops with fixed m, which is called the
number of stages. The stages form a compatibility graph with vertices corresponding
to the stages and edges between the stages that are compatible. For unit-time
operations they show that the open shop scheduling is polynomial for a number
of objective functions including makespan, total weighted completion time, and
weighted number of tardy jobs, see Brucker [4] for a complete list of results. The
makespan minimization for three stages, m = 3, and arbitrary processing times
reduces to either O2||Cmax or to O3||Cmax depending of the compatibility graph,
see Brucker and Krämer [5].

Problems

4.1 Show that the open shop scheduling with multiprocessor operations is NP-hard
in the strong sense for p = 3.

4.2 Write down complete linear program for p = 3, and for p = 4.
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Chapter 5
Concurrent Open Shops

5.1 Introduction

The concurrent open shop scheduling permits processing more than one operation
of the same job at a time, which is the main difference from traditional open
shop scheduling. We use the abbreviation cncnt of the word concurrent to denote
concurrent open shop scheduling in the extended Graham et al. notation [14]. Thus
the problem O|cncnt|∑Ci denotes the problem of minimization total completion
time for concurrent open shops. Ahmadi et al. [1], Leung et al. [19], Wagneur
and Sriskandarajah [26], and Cheng et al. [5] provide a broad list of real-life
applications of the concurrent open shop scheduling. We list some of them below:

• Product design. A product design team whose members independently design
modules for different products. A product design is only completed once all its
modules have been designed, Ahmadi et al. [1];

• Audit. A team of accountants auditing various parts of different companies. The
audited company receives a final report once all accountants completed their
audit, Ahmadi et al. [1];

• Assembly. Assembly of a final product often needs to wait until all parts for the
assembly are available, Ahmadi et al. [1] and Framinan et al. [11];

• Lenses production. Each type of plastic lenses is produced on a dedicated
production line. The manufacturer produces lenses based on confirmed customer
orders. Each order consists of different quantities of various lens types (order
parts). After completion on different production lines the components of a
customer order are packaged and shipped to the customer as a complete order,
Ahmadi et al. [1];

• A car repair shop, Leung et al. [19];
• A paper converting facility. The facility produces paper products of different

types and sizes from large rolls of paper. Any product is produced on a dedicated
machine. Orders are received from customers; each order specifies quantities
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of different paper products. The customer receives its entire order in a single
shipment in order to reduce transportation and order handling costs, Leung et al.
[19];

• Airplane maintenance, Wagneur and Sriskandarajah [26].

This broad range of applications has been almost matched by a long list of the
terms used for concurrent open shops starting with the Coordinated Scheduling of
Customer Orders Problem or the scheduling of customer orders used by Ahmadi
and Bagchi [2], see also Ahmadi et al. [1], open shops with job overlaps used by
Wagneur and Sriskandarajah [26], concurrent open shop used by Roemer [24], or
the order scheduling used by Framinan and Perez-Gonzalez [10]. Roemer [24]
points out that the literature on the problem of scheduling customer orders and
on concurrent open shops evolved in parallel and in isolation from one another
which may have lead to some redundancy of research efforts, see Roemer [24]
for a detailed account of those concurrent research efforts. This book uses the term
concurrent open shops which seems to best reflect the concept which is not limited
to customer orders and manufacturing only.

In all those real-life situations described above the customer preference for the
objective function seems to prevail. A customer prefers to receive a complete order
fast, thus the minimization of flow time or equivalently the minimization of total
completion time, may be preferred over other objectives. At the same time it may not
be of much importance to the customer when exactly particular components of its
order are completed as long as the complete order is received fast. Similarly, a client
is interested in the arrival time of the final audit report rather than in the completion
times of partial reports for various department, like in the audit example mentioned
above. Ahmadi et al. [1] provide a comprehensive discussion of the rationale behind
the choice of objective functions for the concurrent open shop scheduling. We focus
on the following three objective functions: total completion time, number of tardy
jobs, and total tardiness in this chapter. Those functions seem to be well aligned
with the real-life applications of the concurrent open shop scheduling. In Chap. 6
we introduce a special class of concurrent open shops where some operations of a
job are required to be processed simultaneously at any time.

5.2 Complexity of Concurrent Open Shop Scheduling

We begin with concurrent open shop scheduling with 0-1 operations. The solution to
O|cncnt, pij = 0, 1|Cmax is trivial. The optimal Cmax equals the maximum machine
workload L which occurs on machines with maximum number of operations. For
any other regular objective function, optimal schedules exist among schedules with
makespan on each machine being equal to the machine’s workload. In other words
among the schedules with no idle time on any machine. When the number of
machines is part of the problem input the problem is NP-hard in the strong sense for
total completion time and thus for total tardiness, and for the number of tardy jobs.
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Somewhat surprisingly the proof of NP-hardness for O|cncnt, pij = 0, 1|∑Ci is
much easier than for O|pij = 0, 1|∑Ci , see Sect. 3.6.2. We have the following
theorem.

Theorem 5.1 The problems O|cncnt, pij = 0, 1|∑Ci,
∑

Ui,
∑

Ti are NP-hard
in the strong sense.

Proof The reduction is from the MAXIMUM INDEPENDENT SET problem, see
Garey and Johnson [12]. Let a simple graph G = (V ,E) and a positive integer k

be an instance of the MAXIMUM INDEPENDENT SET problem. We set the set
of jobs J = V and the set of machinesM = E in the corresponding instance of
the O|cncnt, pij = 0, 1|∑Ci problem. The job v ∈ V has a unit-time operation on
each machine e ∈ E such that v ∈ e, and it is missing on all other machines. The
number of unit-time operations of job v equals the degree of vertex, deg(v), in G.
We are looking for a concurrent open shop schedule with the total completion time∑

Ci being at most 2|V | − k (the number of tardy jobs being at most |V | − k for
the objective

∑
Ui , and the total tardiness being at most |V | − k for the objective∑

Ti).
Without loss of generality we can limit ourselves to schedules with Cmax = 2.

The key observation is that in any such schedule all jobs that complete at time 1
form an independent set in G, and all remaining jobs finish at time 2. Thus having
larger independent set results in smaller total completion time (fewer tardy jobs, and
smaller total tardiness assuming due date d = 1 for each job).

Suppose that schedule S has total completion time not exceeding 2|V | − k.
Without loss of generality we assume that each unit-time operation starts either at 0
or at 1 in S. Let J be the set of all jobs with all their unit-time operations starting
at 0. We have Cv = 1 for each job v ∈ J . The jobs in V \ J complete at 2 each,
thus Cv = 2 for each job v ∈ V \ J . Therefore

∑
Ci = |J | + 2(|V | − |J |) =

2|V |− |J | ≤ 2|V |− k for S, which implies k ≤ |J |. The set J is independent, since
otherwise there would be a machine e = {v, u} ∈ E with v, u ∈ J , thus either v or
u would need to complete at 2 in S which leads to contradiction since both v and u

complete at 1 in S. Thus J is independent set in G of size at least k.
Now suppose U is an independent set of size at least k in G. Start each job v ∈ U

on each machines e = {v, u} ∈ E for some u ∈ V at 0. There is no conflict since
the request to start two jobs u and v from U at 0 on the same machine e implies
that e = {v, u} ∈ E which is a contradiction since U is an independent set in G.
Thus Cv = 1 for each v ∈ U . For each job u ∈ J \ U , start its unit-time operation
at 1 on each machine e = {u, v} for some v ∈ U or either at 0 or at 1 on each
machine e = {u, v} for some u ∈ J \ U . Since there are exactly two unit-time
operations of two different jobs on each machine e, a feasible concurrent schedule
can easily be obtained, see Figs. 5.1 and 5.2 for an example. Observe that Cu ≤ 2
for each u ∈ J \ U . Thus

∑
Ci ≤ |U | + 2(|V | − |U |) = 2|V | − |U | ≤ 2|V | − k

since |U | ≥ k. Hence we obtained a required schedule for an independent set of size
at least k in G. The proof for the other two objective functions

∑
Ui and

∑
Ti is

similar. ��
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Roemer [24] settles the complexity status for the minimization of total comple-
tion time on two machines by proving the following theorem.

Theorem 5.2 The problem O2|cncnt|∑Ci is NP-hard in the strong sense.

5.3 Permutation Schedules and Minimization of Maximum
Lateness

A schedule of concurrent open shop is a permutation schedule if all operations are
scheduled without preemption, idle time, and in the same order on each machine.
Wagneur and Sriskandarajah [26], see also Mastrolilli et al. [20], prove that
optimal schedules for regular objective functions can be found among permutation
schedules.

Theorem 5.3 For each feasible schedule S of a concurrent open shop there is a
permutation schedule Sσ that completes each job not later than in S.

Proof Let S be a feasible schedule for an instance I of O|cncnt|∑Ci . Let Ci

be completion time of job Ji in S. For S, consider m instances I1, . . . , Im, one for
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each machine inM, of the single machine maximum lateness minimization problem
1||Lmax. The instance Ih for machine Mh is made up of n jobs J1, . . . , Jn with
processing times p1,h, . . . , pn,h and due dates d1 = C1, . . . , dn = Cn respectively.
The schedule S on machine Mh, denoted by Sh, completes job i at Ci,h ≤ Ci = di

(we assume Ci,h = 0 if job Ji is missing on Mh). Thus Sh is a feasible schedule
for Ih with zero maximum lateness. Without loss of generality we assume that the
schedule is non-preemptive. Therefore the maximum lateness of an optimal solution
for Ih is non-positive as well. The optimal solution S∗

h to 1||Lmax orders the jobs in
the Earliest Due Date Order, σ , see Jackson [17]. The same argument works for
each instance Ih, h = 1, . . . , m. Thus the same EDD sequence for each Ih defines
a permutation schedule Sσ for I . Since the maximum lateness for each S∗

h is non-
positive, no job completes later in Sσ than it does in S. ��

Leung et al. [19] take this result even further to prove that the Earliest Due Date
permutation is optimal for the minimization of maximum lateness.

Theorem 5.4 The Earliest Due Date permutation is optimal for O|cncnt|Lmax.

Proof Consider an optimal schedule S for an instance I of O|cncnt |Lmax. By
Theorem 5.3 we may assume that the schedule is a permutation schedule Sσ for
some permutation of jobs σ . Suppose there exists position k, k = 1, . . . , n − 1, in
σ such that i = σ(k) and j = σ(k + 1) and di > dj so that σ is not EDD. We
call the position k a violator. Let k be the violator in Sσ with the largest value of i.
Without loss of generality assume that Sσ maximizes i, and among all permutation
schedules with maximum i has the maximum k. The exchange of i and j on machine
Mh results in permutation σ ′ such that

max{Ci,h − di, Cj,h − dj } > max{C′
i,h − di, C

′
j,h − dj }

for h = 1, . . . , m, where Ci,h and C′
i,h are completion times of job Ji on machine

Mh in Sσ and Sσ ′ respectively. Hence

max{max
h

{Ci,h − di}, max
h

{Cj,h − dj }} >

max{max
h

{C′
i,h − di}, max

h
{C′

j,h − dj }}

and the exchange reduces the maximum lateness for the pair i and j , and leaves the
maximum lateness for the remaining jobs unchanged. Therefore we get an optimal
permutation schedule Sσ ′ for I with either smaller i or the same i but larger k which
contradicts the choice of Sσ and proves the theorem. ��

The EDD solution to O|cncnt|Lmax is illustrated for an instance with n =
7 jobs and m = 5 machines given in Table 5.1. The EDD permutation is
J2, J5, J1, J4, J7, J6, J3 for the instance. The optimal schedule is given in Fig. 5.3
where Lmax = L3 = C3 − d3 = 18 − 11 = 7.
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Table 5.1 An instance of
O|cncnt|Lmax with m = 5
machines

Job (i) M1 M2 M3 M4 M5 di

1 3 2 0 0 1 7

2 1 0 4 6 0 5

3 2 0 3 3 1 11

4 0 4 4 0 3 8

5 0 0 5 1 2 6

6 4 3 0 0 3 10

7 3 0 2 0 1 9
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Fig. 5.3 Optimal schedule with the EDD permutation J2, J5, J1, J4, J7, J6, J3 for the instance in
Table 5.1

5.4 2-Approximation Algorithm for O|cncnt| ∑ wiCi

5.4.1 The Algorithm

In this section we present a 2-approximation algorithm for the problem
O|cncnt|∑Ci developed by Mastrolilli et al. [20]. By Theorem 5.3 the search
for optimal or approximate schedules can be limited to permutation schedules. All
such schedules have the same makespan Cmax which equals maximum machine
workload L. Thus one knows that the job in position n completes at Cmax but one
does not know which job that is, i.e., does not know σ(n). The approximation
algorithm considers all machines with the heaviest workload Cmax and selects
one of them, say Mh (possible ties are broken arbitrarily). The machine then is
used to select a job σ(n) for the position n. The selected job has the minimum
job weight to operation-processing-time on Mh ratio wi

pi,h
(again possible ties are

broken arbitrarily). The selection σ(n) affects both the machines workloads, which
are reduced by deleting job σ(n) from each machine, and the weight wi of each
remaining job i, which is reduced by wσ(n)

pσ(n),h
pi,h, prior to the next iteration. The next

iteration, in order to find the job σ(n−1) in position n−1, begins with these updated
machine workloads and job weights and proceeds exactly in the same way as for
the job in position n. The algorithm stops after n iterations once the permutation
σ(1), . . . , σ (n) has been found. Formally, the algorithm works with two main lists:
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The list of machine workloads in iteration k, k = n, . . . , 1,

L1(k), . . . , Lm(k),

and the list of job weights in iteration k

wi(k) i ∈ J (k),

where J (k) is the set of k jobs left to schedule in iteration k. The algorithm starts
with the following machine-workload list:

L1(n) = L1, . . . , Lm(n) = Lm,

the following job weight list:

w1(n) = w1, . . . , wn(n) = wn, (5.1)

and the set of jobs

J (n) = N = J .

In iteration k, k = n, . . . , 1, the algorithm computes: The index of a machine with
the heaviest workload in that iteration

μ(k) = arg max
h

{Lh(k)};

the index of a job with the minimum job weight to operation-processing-time ratio
on that machine

σ(k) = arg min
i

{
wi(k)

pi,μ(k)

}

;

and the minimum job weight to operation-processing-time ratio on that machine

θ(k) = wσ(k)(k)

pσ(k),μ(k)

. (5.2)

The job σ(k) is then scheduled in position k on each machine. To complete the
iteration the algorithm reduces machine workloads by deleting job σ(k) from each
machine and sets

Lh(k − 1) = Lh(k) − pσ(k),h h = 1, . . . , m,

and updates the job weights by setting
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wi(k − 1) = wi(k) − θ(k)pi,μ(k) i ∈ J (k). (5.3)

Finally

J (k − 1) = J (k) \ {σ(k)},

and the next iteration starts if k > 1. Otherwise, the algorithm stops. The algorithm
runs in O(n(n + m)) time.

5.4.2 The Proof

Following Mastrolilli et al. [20], we now show that the algorithm is a 2-
approximation algorithm for O|cncnt|∑i wiCi . We begin with the following
observation about the job weights produced by the algorithm:

Observation 5.5 By (5.1) and (5.3) we have

wj(k − 1) = wj −
n∑

l=k

pj,μ(l)θ(l)

and by (5.2) and (5.3)

wσ(k)(k − 1) = 0.

The observation implies the following observation about the weight wσ(k) of the job
in position k.

Observation 5.6 For any job σ(k)

m∑

h=1

pσ(k),h

∑

S⊆N :σ(k)∈S

yS,h

= pσ(k),μ(k)yJ (k),μ(k) + · · · + pσ(n),μ(n)yJ (n),μ(n)

= pσ(k),μ(k)θ(k) + · · · + pσ(n),μ(n)θ(n)

= wσ(k) − wσ(k)(k − 1)

= wσ(k),

where

yS,h =
{

θ(k) if h = μ(k) and S = J (k) for some k = 1, . . . , n,

0 otherwise.
(5.4)
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Finally, we observe the following for the job completion times.

Observation 5.7

Cσ(k) =
∑

i∈J (k)

pi,μ(k) =
k∑

i=1

pσ(i),μ(k) k = 1, . . . , n

and

Cσ(1) ≤ · · · ≤ Cσ(n).

We are now ready to prove the main theorem of this section.

Theorem 5.8 The algorithm is a 2-approximation algorithm for O|cncnt|∑wiCi .

Proof The following LP- relaxation of O|cncnt|∑wiCi

LP : min
n∑

i=1

wiCi

s. t.
∑

i∈S

pi,hCi ≥ fh(S) for all h = 1, . . . , m and S ⊆ N,

where

fh(S) = 1

2

∑

i∈S

p2
i,h + 1

2

(∑

i∈S

pi,h

)2

(5.5)

was given in Chen and Hall [4], see also Mastrolilli et al. [20]. Its dual was given
in Mastrolilli et al. [20]

D : max
m∑

h=1

∑

S⊆N

fh(S)yS,h

s. t
m∑

h=1

pi,h

∑

S⊆N :i∈S

yS,h = wi for all i = 1, . . . , n,

yS,h ≥ 0 for all h = 1, . . . , m and S ⊆ N.

For the function fh(S) in both linear programs, Schulz [25] proves the following
inequality:

(∑

i∈S

pi,h

)2 ≤
(

2 − 2

n − 1

)
fh(S) for any h = 1, . . . , m and S ⊆ N. (5.6)
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We are now ready to complete the proof. We have

n∑

k=1

wσ(k)Cσ(k) =(1)
n∑

k=1

( m∑

h=1

pσ(k),h

∑

S⊆N :σ(k)∈S

yS,h

)
Cσ(k)

=(2)
n∑

k=1

( m∑

h=1

pσ(k),h

(
yJ(k),h + · · · + yJ(n),h)

))
Cσ(k)

=
n∑

k=1

(
pσ(k),μ(k)yJ (k),μ(k) + · · · + pσ(k),μ(n)yJ (n),μ(n))

)
Cσ(k)

=
n∑

k=1

yJ(k),μ(k)

(
pσ(1),μ(k)Cσ(1) + . . . pσ(k),μ(k)Cσ(k)

)

≤(3)
n∑

k=1

yJ(k),μ(k)

(
Cσ(k)

(
pσ(1),μ(k) + . . . pσ(k),μ(k)

))

=(4)
n∑

k=1

yJ(k),μ(k)

(
pσ(1),μ(k) + . . . pσ(k),μ(k)

)2

≤(5)

(

2 − 2

n + 1

) n∑

k=1

yJ(k),μ(k)fμ(k)(J (k))

≤(6)

(

2 − 2

n + 1

) n∑

k=1

wiC
LP
i

≤(7)

(

2 − 2

n + 1

) n∑

k=1

wiC
∗
i ,

where the equality (1) follows from Observation 5.6, the equality (2) follows
from (5.4), the inequalities (3) and (4) follow from Observation 5.7, the inequality
(5) follows by (5.6), the inequality (6) holds since the solution yS,h is feasible for
the dual D, and CLP

i is an optimal solution to the primal LP , finally (7) holds since
C∗

i is an optimal solution to O|cncnt|∑wiCi . ��
Mastrolilli et al. [20] prove that the performance guarantee of the algorithm

cannot be better than 2 − 2
n+1 .
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5.4.3 An Example

We illustrate the algorithm run on an instance of O|cncnt|∑wiCi with n = 7 jobs
and m = 5 machines specified in Table 5.2.

In iteration k = 7 we have the following list of machine workloads in Table 5.3
thus μ(7) = 3, and the list of job weights is shown in Table 5.4 thus σ(7) = 5,
and θ(7) = 0.4. The iteration k = 6 starts with the following machine workloads
in Table 5.5. Thus μ(6) = 3, recall that the ties can be broken arbitrarily. The
weights for the remaining jobs in J (6) are given in Table 5.6. Thus σ(6) = 2 and
θ(6) = 3.4

4 = 0.85.
The iteration k = 5 starts with the machine workloads in Table 5.7. Thus μ(5) =

1.
The weights for the remaining jobs in J (5) are given in Table 5.8. Thus σ(5) = 1

and θ(5) = 3
3 = 1.

The iteration k = 4 starts with the machine workloads in Table 5.9. Thus μ(4) =
3, again ties can be broken arbitrarily.

The weights for the remaining jobs in J (4) are given in Table 5.10. Thus σ(4) =
4 and θ(4) = 3

4 = 0.75.
The iteration k = 3 starts with the machine workloads in Table 5.11. Thus

μ(3) = 1.
The weights for the remaining jobs in J (3) are given in Table 5.12. Thus σ(3) =

6 and θ(3) = 3
4 = 0.75.

Finally, the iteration k = 2 starts with the following machine workloads in
Table 5.13. Thus μ(2) = 3.

The weights for the remaining jobs in J (2) are given in Table 5.14. Thus σ(2) =
3 and θ(2) = 2.5

3 .

Table 5.2 An instance of
O|cncnt|∑wiCi with m = 5
machines

Job (i) M1 M2 M3 M4 M5 wi

1 3 2 0 0 1 3

2 1 0 4 6 0 5

3 2 0 3 3 1 10

4 0 4 4 0 3 8

5 0 0 5 1 2 2

6 4 3 0 0 3 7

7 3 0 2 0 1 11

Table 5.3 Machine
workloads in iteration k = 7:
μ(7) = 3

M1 M2 M3 M4 M5

Load 13 9 18 10 11

Table 5.4 Job weights and
operation processing times on
machine μ(7) = 3 in iteration
k = 7

J1 J2 J3 J4 J5 J6 J7

Weight 3 5 10 8 2 7 11

M3 0 4 3 4 5 0 2



126 5 Concurrent Open Shops

Table 5.5 Machine
workloads in iteration k = 6:
μ(6) = 3

M1 M2 M3 M4 M5

Load 13 9 13 9 9

Table 5.6 Job weights and
operation processing times on
machine μ(6) = 3 in iteration
k = 6

J1 J2 J3 J4 J6 J7

Weight 3 3.4 8.8 6.4 7 10.2

M3 0 4 3 4 0 2

Table 5.7 Machine
workloads in iteration k = 5:
μ(5) = 1

M1 M2 M3 M4 M5

Load 12 9 9 3 9

Table 5.8 Job weights and
operation processing times on
machine μ(5) = 1 in iteration
k = 5

J1 J3 J4 J6 J7

Weight 3 6.25 3 7 8.5

M1 3 2 0 4 3

Table 5.9 Machine
workloads in iteration k = 4:
μ(4) = 3

M1 M2 M3 M4 M5

Load 9 7 9 3 8

Table 5.10 Job weights and
operation processing times on
machine μ(4) = 3 in iteration
k = 4

J3 J4 J6 J7

Weight 4.25 3 3 5.5

M3 3 4 0 2

Table 5.11 Machine
workloads in iteration k = 3:
μ(3) = 1

M1 M2 M3 M4 M5

Load 9 3 5 3 5

Table 5.12 Job weights and
operation processing times on
machine μ(3) = 1 in iteration
k = 3

J3 J6 J7

Weight 4 3 4

M1 2 4 3

Table 5.13 Machine
workloads in iteration k = 2:
μ(2) = 3

M1 M2 M3 M4 M5

Load 5 0 5 3 2

Table 5.14 Job weights and
operation processing times on
machine μ(2) = 3 in iteration
k = 2

J3 J7

Weight 2.5 1.75

M3 3 2

Therefore the algorithm produces the following permutation:J7,J3,J6,J4,J1,J2,J5
of jobs on each machine. The schedule for this permutation is shown in Fig. 5.4; the
total weighted completion time for the schedule

∑
wiCi equals 355.
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C7 = 3 C3 = 5 C4 = C6 = 9 C5 = 180 C1 = 12 C2 = 13

Fig. 5.4 2-approximation solution for the instance in Table 5.2

5.5 Hardness of Approximation

This section concentrates on the hardness of approximation for the problems of min-
imization of total completion time, O|cncnt|∑Ci , total tardiness, O|cncnt|∑ Ti ,
and number of tardy jobs, O|cncnt|∑Ui , for concurrent open shops. We begin
by introducing a key inapproximability result for independent sets of uniform
hypergraphs.

A pair H = (N,E) where N is a finite set of vertices and E is a family of
subsets (hyperedges) of N each of size exactly r is called an r-uniform hypergraph.
An independent set of an r-uniform hypergraph H = (N,E) is a subset I of
vertices that does not completely include any of the hyperedges in E, i.e., e \ I �= ∅
for each hyperedge e ∈ E. Dinur et al. [7] prove the following.

Theorem 5.9 For any γ ∈ (0, 1), δ ∈ (0, 1/2), and integer r ≥ 3 the
following problem is NP -hard. Given an r-uniform hypergraph H = (N,E) decide
whether

(i) There exists an independent set of H of size at least
(

1 − 1
r−1 − δ

)
|N |, or

(ii) Each independent set of H has size strictly less than γ |N |.

5.5.1 O|cncnt| ∑Ci

Mastrolilli et al. [20] make the decision problem in Theorem 5.9 a point of departure
to prove the following limit on the approximation guarantee for polynomial-time
algorithms for O|cncnt|∑Ci .

Theorem 5.10 The problem O|cncnt|∑Ci is NP-hard to approximate within a
factor 6

5 − ε for any ε > 0, unless P = NP .

Proof By Theorem 5.9, for any γ ∈ (0, 1), δ ∈ (0, 1
2 ), and integer r ≥ 3, there is

a class of r-uniform hypergraphs where the size of a maximum independent set is
either greater or equal

(
1− 1

r−1 −δ
)|N | or less than γ |N |, and it is NP-hard to decide
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for a given hypergraph H = (N,E) in that class whether it falls in the former or
in the latter category. If such decision could be made in polynomial time, then P =
NP which seems unlikely. In the corresponding instance f (H) of O|cncnt|∑Ci ,
we have J = N and M = E. A job v ∈ N has a unit-time operation on each
machine e ∈ E such that v ∈ e, and it is missing on any other machine.

Consider an independent set I of H . On each machine e ∈ E schedule the jobs in
e∩ I in the interval [0, |e∩ I |], and the jobs in e∩ (N \ I ) in the interval [|e∩ I |, r].
Since e \ I �= ∅ for each e ∈ E, we have |e ∩ I | ≤ r − 1. Moreover, since each
machine’s e workload is exactly r for r-uniform hypergraphs, each job in N \ I can
be completed by r . Therefore, we can readily obtain a feasible schedule where each
job in I completes by r − 1, and each job in N \ I completes by r . Therefore, (i) in
Theorem 5.9 can be used to calculate an upper bound U on the value OPT (f (H))

of minimum total completion time for the instance f (H) with H in the category (i)

as follows. If (i) holds, then

OPT (f (H)) ≤ (r − 1)|I | + r(|N | − |I |)
= r|N | − |I |

≤ r|N | −
(

1 − 1

r − 1
− δ

)
|N |

=
(
r − 1 + 1

r − 1
+ δ

)
|N |

= U.

On the other hand, in an optimal schedule for f (H) the set of all jobs that complete
by r − 1 is an independent set IO of H , and all jobs in N \ IO complete at r .
Therefore, (ii) in Theorem 5.9 can be used to calculate a lower bound L on the
value OPT (f (H)) of minimum total completion time for f (H) with H in the
category (ii) as follows. If (ii) holds, then

OPT (f (H)) = r(|N | − |IO |) + |IO |
= r|N | − (r − 1)|IO |
> r|N | − (r − 1)γ |N |
=

(
r − (r − 1)γ )

)
|N |

= L.

Suppose A is a
( 6

5 − ε
)
-approximation algorithm for O|cncnt|∑Ci , for some

0 < ε < 1, which runs in polynomial time. Consider the class C of r-hypergraphs
with r = 3, γ = ε

4 , δ = ε
2 . We have U = 5+ε

2 and L = 3− ε
2 . Run A on f (H) where

H ∈ C, if A(f (H)) ≤ L, then OPT (f (H)) ≤ A(f (H)) ≤ L and the condition
(ii) does not hold for H . Thus, the size of maximum independent set is greater or
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equal
(
1− 1

r−1 −δ
)|N |. If A(f (H))

6
5 −ε

> U , then OPT (f (H)) ≥ A(f (H))
6
5 −ε

> U and (i)

does not hold for H . Thus, the size of maximum independent set is less than γ |N |.
Finally there is no instance f (H) such that

L < A(f (H)) ≤ (6

5
− ε

)
U (5.7)

since

L

U
= 6 − ε

5 + ε
>

6

5
− ε (5.8)

for H ∈ C. Therefore A could distinguish between the two categories of
hypergraphs in the class C in polynomial time which leads by Theorem 5.9 to
contradiction if P �= NP , and proves the theorem for O|cncnt|∑Ci . ��

The factor 6
5 − ε in Theorem 5.10 can be strengthened to 2 − ε under the

assumption that the Unique Games Conjecture holds, see Khot [18], and Bansal
and Khot [3] for the conjecture. The following inapproximability result of Bansal
and Khot [3] is key for the proof of the factor 2 − ε.

Theorem 5.11 Assuming the Unique Games Conjecture holds, for any δ ∈ (0, 1),
γ ∈ (0, 1), and integer r ≥ 2 the following problem is NP -hard. Given an r-
uniform hypergraph H = (N,E) decide whether

(iii) There exist disjoint subsets N1, . . . , Nr ⊆ N , satisfying |Ni | ≥ 1−δ
r

|N | and
such that |e ∩ Ni | ≤ 1 for e ∈ E and i = 1, . . . , r , or

(iv) Each independent set of H has size at most γ |N |.
This result is then used by Bansal and Khot [3] to prove the 2 − ε factor.

Theorem 5.12 Assuming the Unique Games Conjecture, O|cncnt|∑Ci is hard to
approximate within a factor 2 − ε for any ε > 0, unless P = NP .

Proof We use the same transformation f (H) as in the proof of Theorem 5.10. If
(iii) in Theorem 5.11 holds for H , then schedule job v ∈ Ni in time slot [i − 1, i]
of each machine e such that v ∈ e∩Ni . The schedule thus obtained is feasible since
the sets N1, . . . , Nr are disjoint, and |e ∩ Ni | ≤ 1 for each e ∈ E and i = 1, . . . , r .
Therefore at least 1−δ

r
|N | jobs complete at i for i = 1, . . . , r in the schedule.

Complete the schedule by scheduling the remaining jobs from N \ (N1 ∪ · · · ∪ Nr

)

in the available unit-time slots in the interval [0, r] on each machine e. Each of
those jobs completes by r . Hence we get the following upper bound on the total
completion time OPT (f (H)) for each hypergraph H in the category (iii)

OPT (f (H)) ≤
(1 − δ

r
(1 + · · · + r) + δr

)
|N |

=
(1 − δ

2
(r + 1) + δr

)
|N |
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=
(1 + δ

2
r + 1 − δ

2

)
|N |

≤
(1 + δ

2
(r + 1)

)
|N |

= U.

If (iv) in Theorem 5.11 holds for H , the lower bound is calculated in a similar
way as for (ii) in the proof of Theorem 5.10

OPT (f (H)) ≥
(
r − (r − 1)γ )

)
|N |

= L.

Suppose there is a (2 − ε)-approximation polynomial-time algorithm A for
O|cncnt|∑Ci . Without loss of generality 0 < ε < 1. Consider the class C of
r-hypergraphs with δ ≤ 1

r+1 , γ ≤ 1
r−1 , and r ≥ 6

ε
− 1. Run A on an instance

f (H) with H ∈ C. If A(f (H)) < L, then OPT (f (H)) ≤ A(f (H)) < L

and the condition (iv) does not hold for H . Thus, H falls in the category (iii).
If A(f (H))

2−ε
> U , then OPT (f (H)) ≥ A(f (H))

2−ε
> U and (iii) does not hold for

H . Thus, the size of maximum independent set is less than γ |N | and H falls in the
category (iv). Finally there is no f (H) such that

L ≤ A(f (H)) ≤ (2 − ε)U (5.9)

since

L

U
= 2

(r − (r − 1)γ )

(r + 1)(1 + δ)
> 2 − ε (5.10)

for the class C. Therefore A could distinguish between the two categories of hyper-
graphs from C in polynomial time. This, assuming the Unique Games Conjecture
holds, leads by Theorem 5.11 to contradiction if P �= NP and proves the theorem.��

5.5.2 O|cncnt| ∑Ti , and O|cncnt| ∑Ui

The problems O|cncnt|∑ Ti and O|cncnt|∑Ui are harder to approximate than
O|cncnt|∑Ci . Polynomial-time algorithms cannot guarantee approximations
within a factor (1 − c) ln m for any constant c > 0 for those two due date based
problems.

To prove this we first recall a hard to approximate SET COVER problem
which becomes a point of departure in the hardness proof for O|cncnt|∑Ui and
O|cncnt|∑ Ti . An instance of the SET COVER problem is made up of a collection
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V1, . . . , V� of subsets of a set V = {v1, . . . , vn}. The SET COVER problem is the
problem of selecting as few as possible subsets from the collection V1, . . . , V� such
that every v ∈ V is included into at least one of the selected subsets, Garey and
Johnson [12]. Feige [9] shows that the problem cannot be approximated within a
factor (1 − c) ln n for any c > 0 in polynomial time, unless NP includes slightly
superpolynomial problems. Dinur and Steurer [8] strengthen this result by proving
that the problem cannot be approximated within a factor (1−c) ln n for any c > 0 in
polynomial time, unless P = NP . The following result of Dinur and Steurer [8] is
key to showing that both O|cncnt|∑Ui and O|cncnt|∑ Ti are hard to approximate
within a factor (1 − c) ln m for any c > 0, unless P = NP .

Theorem 5.13 Set cover is NP -hard to approximate within a factor (1−c) ln n for
any c > 0, unless P = NP .

We have the following inapproximability result for O|cncnt|∑Ui and
O|cncnt|∑ Ti .

Theorem 5.14 O|cncnt|∑Ui and O|cncnt|∑ Ti are hard to approximate within
a factor (1 − c) ln m for any c > 0, unless P = NP .

Proof Let collection V1, . . . , V� of subsets of V be an instance I of the SET
COVER problem. For each v ∈ V define the set Sv = {i : v ∈ Vi, i = 1, . . . �}
and S = {1, . . . , �}. We assume that all sets Sv have the same cardinality r =
maxv{|Sv|}. Otherwise, we can add a collection of r − |Sv| < r copies of the subset
{v} to the collection V1, . . . , V�, thus creating a regular instance Ir . The sizes of
minimum set cover are the same in both I and Ir . Each Sv corresponds to machine
Sv in the concurrent open shop. There are m = n = |V | machines in the concurrent
open shop instance IO . Each i ∈ S corresponds to a job with a unit-time operation
on each machine Sv such that i ∈ Sv and missing operations on any machine Sv

such that i /∈ Sv . There are � jobs in IO . Set di = r − 1 for each job in IO .
Let the family V be a minimum set cover. Then Sv ∩ V �= ∅ for each v ∈ V

so that each machine has a job from V. Consider a schedule where all the jobs
fromV are scheduled at the end of the schedule on each machine. Thus each job in
{1, . . . , �} \V completes by r − 1 in the schedule, and each job inV completes at
r . Thus exactly � − |V| jobs completes by their due dates in the schedule and the
number of tardy jobs equals the size of the subset cover |V|, i.e.,

∑
Ui = |V|.

On the other hand, for a schedule with the number of tardy jobs equal to
∑

Ui

this number equals the number of jobs that complete at r in the schedule. Let S′
be the set of those jobs. Thus for each machine Sv there exists job i ∈ S′, or in
other words for each v there is Vi such that v ∈ Vi . Thus S′ is a subset cover, and∑

Ui = |S′|.
Suppose there is (1 − c) ln m-approximation polynomial-time algorithm A for

O|cncnt|∑Ui for some c > 0, then we have

∑
UA

i (IO)
∑

UOPT
i (IO)

≤ (1 − c) ln m, (5.11)
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where
∑

UA
i (IO) and

∑
UOPT

i (IO) are the numbers of tardy jobs in a schedule
produced by A and in an optimal schedule, respectively. We have

∑
UA

i (IO) =
|SA(Ir)| and

∑
UOPT

i (IO) = |SOPT (Ir )| for some set covers SA(Ir) and
SOPT (Ir ) for Ir . However, |SOPT (Ir )| is the cardinality of minimum set cover
C∗(Ir ) for Ir and thus the cardinality of minimum set cover C∗(I ) for I . Finally,
there is set cover S(I) for I such that |SA(Ir)| ≥ |S(I)|. Therefore

|S(I)|
|C∗(I )| ≤

∑
UA

i (IO)

|C∗(I )| ≤ (1 − c) ln m.

Since the number of machines m in the concurrent open shop instance IO equals
n = |V | we have

|S(I)|
|C∗(I )| ≤ (1 − c) ln n,

which proves that A is a (1 − c) ln n-approximation algorithm for the set cover
problem which runs in polynomial time. This however contradicts Theorem 5.13. ��

A similar inapproximability result was obtained by Ng et al. [22] under a stronger
than the P �= NP assumption. The result was based on the inapproximability result
for set cover obtained by Feige [9]. Garg et al. [13] present further complexity
results for O|cncnt|∑wiCi and its special cases.

5.6 Fixed Number of Machines and Special Cases

Cheng et al. [5] give a PTAS for the problem Om|cncnt|∑wiCi where the
number of machines m is not part of the input. Ahmadi et al. [1] report a√

5+3√
5+1

-approximation for the two-machine problem O2|cncnt|∑wiCi, see also
Roemer [23]. Ahmadi et al. [1] propose heuristics and report computational
experiments with the heuristics for O|cncnt|∑wiCi . Cheng and Wang [6] give
a pseudopolynomial-time algorithm for the problem Om|cncnt|∑wiUi where the
number of machines m is not part of the input. This implies that Om|cncnt, pij =
0, 1|∑Ui is polynomial. Leung et al. [19] give a polynomial-time algorithm
Om|cncnt|∑Ui for job-ordered open shops, see Sect. 7.4 for definition of job-
ordered open shops. We observe that O1|cncnt|∑Ui is the same as the single
machine problem 1||∑Ui which is solved by Hodgson–Moore algorithm, see
Moore [21], in O(n log n) time. Besides, we observe that operation processing
times follow the same order on each machine in job-ordered open shops. These
two observations suffice to prove that Om|cncnt|∑Ui for job-ordered open shops,
see Problem 5.5. Leung et al. [19] give an exact algorithm based on constraint
propagation and bounding approach for O|cncnt|∑Ui and report on computational
experiments with the algorithm. Framinan and Perez-Gonzalez [10] propose
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heuristics for O|cncnt|∑ Ti and report on computational experiments with the
heuristics.

5.7 Conflict Graphs and the Classification of Open Shops

The open shop scheduling problems can be defined and classified by using the
concept of operation conflict graphs introduced in Chap. 2. The operation conflict
graph determines which two operations cannot be done in parallel in any feasible
schedule. That is, if (o, o′) is an edge in the graph, then operations o and o′ can never
be processed in parallel in a feasible schedule. The classification of open shops can
then be done according the characteristic of the set of edges of the conflict graph.
To be more precise, let O be the set of all operations Oi,h, where Ji ∈ J and
Mh ∈ M. An operation conflict graph is a simple graph C = (O,E) with the set
of vertices O and the set of edges in E linking operations in O. We suggest the
following classification depending on E. The classification can be easily extended
to other classes of E.

• LetOh = {O1,h, . . . , On,h}, and letKh be a clique of size n onOh, h = 1, . . . , m.
The union E = K1 ∪ · · · ∪ Km of m disjoint cliques is a conflict graph of
concurrent open shop.

• Let Ji = {Oi,1, . . . , Oi,m}, and let Gi be a clique of size m on Ji , i = 1, . . . , n.
The union E = K1 ∪ · · · ∪ Km ∪ G1 ∪ · · · ∪ Gn of n + m cliques is a conflict
graph of open shop.

• Let R be any non-empty set of edges (Oi,h,Oj,�) such that i �= j and h �= �. The
union E = K1 ∪ · · · ∪Km ∪ G1 ∪ · · · ∪ Gn ∪ (O,R) is a conflict graph of open
shop with additional resources in Chap. 2.

• Let P be any non-empty set of edges (Oi,h,Oj,�) such that h �= �. The union
E = K1 ∪· · ·∪Km ∪ (O,P) is a conflict graph of partially concurrent open shop.
Partially concurrent open shops are studied by Ilani et al. [16] and Grinshpoun
et al. [15].

Problems

5.1 Prove Theorem 5.1 for
∑

i Ui and
∑

i Ti .

5.2 Show that the performance guarantee of the 2-approximation algorithm in
Sect. 5.4 cannot be better than 2 − 2

n+1 .

5.3 Find an optimal schedule for an instance in Table 5.2.

5.4 Proof Theorem 5.14 for O|cncnt |∑ Ti .
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5.5 Show that the problem Om|cncnt|∑Ui is polynomial for job-ordered open
shops.
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Chapter 6
Open Shop Scheduling with Simultaneity
Constraints

6.1 Open Shop with Simultaneity Constraints

The open shop with simultaneity constraints has been introduced to enrich the
features of class–teacher timetabling model in order to better reflect requirements
imposed by real-life scheduling problems; see Even et al. [12], de Werra [4], de
Werra and Erschler [5], and de Werra et al. [6]. In addition to a bipartite multigraph
G = (J,M, E) there is a set C of pairs {e, f } of non-adjacent edges in an instance
of the problem with simultaneity constraints. The problem is to find an edge coloring
c of G using as few colors as possible and such that the edges e and f in each pair
{e, f } ∈ C are colored with the same color, i.e., c(e) = c(f ) for each {e, f } ∈ C.
This last condition is called simultaneity constraints; see de Werra [4], de Werra
and Erschler [5], and de Werra et al. [6]. The constraints are quite powerful since
they make the open shop with simultaneity constraints to include the edge-coloring
problem for any multigraph as a subproblem. We prove this now.

For a multigraph (G = (V ,E), mp) with the set of vertices V = {1, . . . , n},
define a set of jobs J = {J1, . . . , Jn}, a set of machines M = {M1, . . . , Mn},
and a bipartite multigraph (J,M, F ) where for each e = (i, j) ∈ E the edges
(Ji,Mj ) and (Jj ,Mi) belong to F . Moreover, mp(e) = pi,j = mp((Ji,Mj )) =
mp((Jj ,Mi)). Finally, the pair {(Ji,Mj ), (Jj ,Mi)} ∈ C, i.e., the edges in the
pair are required to be colored with the same color. This constraint applies to all
pi,j copies of the edge (i, j). Thus we obtain an instance of an open shop with
simultaneity constraints. We need to show that there is an edge coloring of G with k

colors if and only if there is an edge coloring of (J,M, F ) with k colors that meets
simultaneity constraints.

Suppose that there is k-edge coloring of a multigraph G. The coloring is a
collection of matchings E1, . . . , Ek in G that covers each edge of G exactly once.
For each � = 1, . . . , k, define F� = {(Ji,Mj ), (Jj ,Mi) : (i, j) ∈ E�}. Each F� is a
matching in (J,M, F ). The collection of matchings F1, . . . , Fk covers each edge
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of (J,M, F ) exactly once. Thus we obtain a k-edge coloring of (J,M, F ). The
coloring meets the simultaneity constraints since each pair {(Ji,Mj ), (Jj ,Mi)} ∈ C

is colored with the same color as the edge (i, j) ∈ E.
Now, suppose that there is k-edge coloring of (J,M, F ) that meets simul-

taneity constraints in C. The coloring is a collection of matchings F1, . . . , Fk

in (J,M, F ) that covers each edge of (J,M, F ) exactly once. Because the
simultaneity constraints are met, each pair {(Ji,Mj ), (Jj ,Mi)} ∈ C belongs to
exactly one F� for some � = 1, . . . , k. Let E� be obtained by replacing each pair
{(Ji,Mj ), (Jj ,Mi)} ∈ C in F� by (i, j). Each E� is a matching in G, and the
collection E1, . . . , Ek in G covers each edge of G exactly once. Thus there is k-
edge coloring of G.

Figure 6.1 illustrates this reduction for multigraph G given in Fig. 6.1a. The
corresponding bipartite multigraph (J,M, F ) is given in Fig. 6.1b where the simul-
taneity constraints include pairs {(J1,M4), (J4,M1)} and {(J2,M3), (J3,M2)}
among others. We leave it to the reader as an exercise to write down a complete
set C. The schedule with makespan Cmax = 6 for (J,M, F ) that corresponds to
the 6-edge coloring of G is given in Fig. 6.1c. Observe that due to the simultaneity
constraints job J4 is scheduled on M1 in the interval [0, 1], and job J1 is scheduled
on M4 in the interval [0, 1]. Similarly, job J3 is scheduled on M2 in the interval
[0, 1], and job J2 is scheduled on M3 in the interval [0, 1].

By the Holyer [19] complexity result for edge coloring of graphs, the open shop
scheduling problem with simultaneity constraints is NP-hard in the strong sense.
de Werra [4] and de Werra and Erschler [5] give some polynomial cases of the
open shop scheduling problem. Coffman et al. [3], Gandhi et al. [13], and Khuller
et al. [21] apply the problem to file transfer scheduling and data migration; see
Chap. 11 for details. In this chapter, which is based on Dereniowski et al. [7], we
concentrate on a class of graphs recently introduced in the context of scheduling in
wireless networks with primary interference. The graphs are introduced in Sect. 6.2
and characterized in Sect. 6.6.1.

6.2 Wireless Networking with Primary Interference

We begin with introducing a wireless networking problem and reviewing the recent
results in this field. The problem provides the main source of motivation for the
scheduling problems we study in this chapter.

Consider a graph G = (V ,E), in which the vertices in set V represent
agents (i.e., transmitters and receivers) in a communication network, and E ⊆
{(i, j) : i, j ∈ V, i �= j} is a set of wireless connections representing pairs of
agents between which data flow can occur. At each vertex v ∈ V of the network,
information packets are received over time and these packets must be transmitted to
their destinations, which correspond in our model to the neighbors of that vertex
v (such a model is called single hop). We assume that time is slotted and that
packets are of equal size, each packet requiring one time slot of service across a
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Fig. 6.1 (a) Multigraph G with 6-edge coloring; (b) its corresponding open shop with simultaneity
constraints; (c) the schedule with Cmax = 6 that meets simultaneity constraints

link. A stochastic queue is associated with each edge in the network, representing
the packets waiting to be transmitted on this link. We assume that the stochastic
arrivals to edge (i, j) have long-term rates λij and are independent of each other.
We denote by λ the vector of the arrival rates λij for every edge (i, j).

An important issue in operating a wireless communication network is that two
connections might interfere with each other. We focus on the simplest interference
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model that can be found in the literature, which is known as the primary interference
model. This model states that two connections interfere with each other if and only
if the corresponding edges share a vertex in G. Thus, at every time slot, the set of
connections that are activated should form a matching.

A scheduling algorithm selects a set of edges to activate at each time slot and
transmits packets on those edges. The goal is to find a scheduling algorithm that,
informally speaking, keeps the sizes of the queues from growing unboundedly when
this algorithm is adopted. Clearly, if the values of the λij ’s are chosen sufficiently
large, no algorithm can attain this. Therefore, usually, one defines the stability
region �∗ of a graph G (with respect to rates λ) as

�∗ =
{
λ ∈ R

E(G) : λ < u for some u ∈ conv(MG)
}

,

where MG is the set of all matchings in G and conv(MG) is the convex hull
of the characteristic (0–1) vectors of the elements of MG (and the “<” sign
is componentwise). It should be clear that, for any λ that is not an element of
the closure of �∗, there is no algorithm that prevents the queues from growing
unboundedly. On the other hand, one may ask whether there exists a scheduling
algorithm that keeps the queues from growing unboundedly when λ ∈ �∗. Formally,
this is equivalent to the condition that the Markov chain that represents the evolution
of the queues is positive recurrent (i.e., all its states are positive recurrent) for all
arrival rates λ ∈ �∗, using the scheduling algorithm. If this condition is satisfied,
then we say that the scheduling algorithm achieves 100% throughput on G. For
more details regarding the queue evolution process under this model, see Brzezinski
et al. [2], Dimakis and Walrand [8], and Joo et al. [20].

A good first choice for a scheduling algorithm turns out to be the Maximum
Weight Matching (MWM) algorithm that selects, in each time slot, a maximum
weight matching in G, where the weights of the edges are given by the current
queue lengths. It was shown in Tassiulas and Ephremides [31] that MWM achieves
100% throughput on any graph G. However, it is not a tractable algorithm in many
situations because to find an optimal solution it needs centralized computing and full
knowledge of both the network topology and all queue lengths at every time slot.
Hence, there has been an increasing interest in simple and potentially distributed
algorithms. One example of such an algorithm is known as the Greedy Maximal
Scheduling (GMS) algorithm; see Hoepman [18] and Lin and Shroff [26]. This
algorithm effectively selects the set of links served in a greedy fashion according
to the queue lengths at these links (i.e., GMS greedily selects a maximal weight
matching). Note that GMS can be implemented in a distributed setting; see Khun
et al. [23] and Leconte et al. [24]. A drawback of using this algorithm is that, in
general, it does not achieve 100% throughput for every graph G. However, Dimakis
and Walrand [8] gave a sufficient condition on network graphs (in the primary
interference model) for which the GMS algorithm does achieve 100% throughput.
We say that a graph G is OLoP (OLoP stands for Overall Local Pooling) if,
for every subgraph G′ of G, there exists a function w : E(G′) → [0, 1] (that
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depends on G′) such that every inclusion-wise maximal matching M in G′ satisfies∑
e∈M w(e) = 1. The sufficient condition from Dimakis and Walrand [8] is the

following.

Theorem 6.1 GMS achieves 100% throughput on every OLoP graph G.

In Birand et al. [1], a complete structural characterization of all OLoP graphs was
given. We repeat this characterization in Sect. 6.6.1 for completeness.

6.3 Scheduling Links to Satisfy Link Demand and Related
Problems

We consider problems related to the following graph-theoretical question:

MATCH

Input: An undirected, simple graph G = (V ,E) and a function r : E → [0, 1] ∩Q.
Question: Does there exist a sequence of matchings M1,M2, . . . in G such that

lim inf
n→∞

|{i : e ∈ Mi, i = 1, 2, . . . , n}|
n

≥ r(e) for all e ∈ E? (6.1)

In other words, we are asking whether, for a given graph G with edge weights r(e),
there exists a (possibly infinite) sequence of matchings so that each edge e is hit by
at least a fraction r(e) of the matchings.

The problem MATCH falls into the general framework of a problem earlier
studied by Grötschel et al. in [16] and by Hajek and Sasaki in [17]. The problem
studied by these authors, which is also known as “scheduling links to satisfy link
demand” (see Sect. 6.2), is the following. For a graph G, letMG be the collection
of all its matchings. Given a graph G and a function r : E(G) → Q+, find a
function w : MG → Q that satisfies

∑
M∈MG:e∈M w(M) ≥ r(e) for all e ∈ E

and has minimum total weight
∑

M∈MG
w(M). A polynomial-time algorithm for

this problem was given in Grötschel et al. [16]. Hajek and Sasaki [17] improve this
result by giving a O(|E| · |V |5)-time algorithm. (The minimum total weight itself
can be determined in O(|V |5)-time; Hajek and Sasaki [17].)

It is not hard to see that the problem MATCH is equivalent to the question whether
the minimum total weight of the problem above is at most 1. The solution to this
latter problem, however, does not say anything about the number of matchings
required in MATCH. This motivates our interest in studying the following three
related problems in this chapter:

Problem 1 (K-MATCH) Given an undirected, simple graph G = (V ,E), a
function r : E → [0, 1] ∩ Q, and a positive integer k, do there exist k matchings
M1, . . . , Mk in G such that

|{i : e ∈ Mi}| ≥ kr(e) for all e ∈ E? (6.2)
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Problem 2 (FIND-K-MATCH) Given an undirected, simple graph G = (V ,E),
a function r : E → [0, 1] ∩ Q, and a positive integer k for which K-MATCH is
affirmative, find k matchings M1, . . . ,Mk in G that witness K-MATCH.

Problem 3 (MIN-MATCH) Given an undirected, simple graph G = (V ,E) and a
function r : E → [0, 1] ∩ Q for which K-MATCH is affirmative, find the smallest k

such that the answer to K-MATCH is affirmative.

The remainder of the chapter is organized as follows: Sect. 6.4 explains the
relationship between the problem MATCH and fractional edge coloring, and the
relationship of the problems K-MATCH and FIND-K-MATCH with edge coloring.

The computational complexity of MATCH and K-MATCH is briefly analyzed
in Sect. 6.5. We will show there that the problem K-MATCH is NP-complete for
general graphs. A natural subclass of graphs to consider is the OLoP class of graphs
defined in Dimakis and Walrand [8]. An appealing feature of OLoP graphs is
that they result in 100% throughput for some simple distributed algorithms like
the greedy maximal scheduling algorithm (Dimakis and Walrand [8]) in wireless
networks (alluded to in Sect. 6.2). Essentially, the greedy maximal scheduling
algorithm solves the FIND-K-MATCH for some k for an OLoP graph, provided that
MATCH is affirmative for the graph. However, the value of k, referred to as the
schedule length (makespan), given by the algorithm does not have to be the smallest
possible. To address the problem of schedule makespan minimization for the OLoP
class, we chose this class of graphs as an input to the problems MATCH, K-MATCH,
and FIND-K-MATCH and show that this restriction renders all three polynomial.
Birand et al. [1] provide a structural characterization of these graphs by showing
that their blocks are either K2 or K4 or are obtained from certain graphs on 7, 5,
and 3 vertices by iterative non-adjacent cloning of some vertices of degree 2. We
leave the details of the characterization of OLoP graphs to Sect. 6.6.1. We then
focus on a much broader class of graphs, and we refer to them as Generalized
OLoP(b), or GOLoP(b) graphs. The blocks of GOLoP(b) are obtained from any
connected graph on at most b vertices by iterative non-adjacent cloning of some
vertices of degree 2. We show that restricting the input to the problems MATCH,
K-MATCH, and FIND-K-MATCH to GOLoP(b) graphs with a fixed, that is not being
part of the input, b renders all three problems polynomial. Finally, realizing that
the problems MATCH, K-MATCH, and FIND-K-MATCH are only stepping stones in
schedule makespan minimization, we focus on upper bounds on schedule length for
OLoP and GOLoP(b) graphs. We show that the least common denominator d for
the rate function r is an upper bound for the former and a constant multiple of d,
where the constant depends on b but not on r , is an upper bound for the latter. We
conjecture that the constant is actually equal to 2.

In particular, the main contributions of this chapter are as follows:

1. A linear-time algorithm to solve K-MATCH and MATCH for GOLoP graphs
(Sects. 6.6.2 and 6.6.3).

2. A O(|V (G)|2) running time algorithm for FIND-K-MATCH on GOLoP graphs.
The algorithm uses O(|V (G)|) distinct matchings (Sect. 6.6.4).
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3. We show that, for OLoP graphs, the least common denominator d for the rate
function r is an upper bound for the length of the shortest sequence of matchings
that forms a solution to K-MATCH, given that the problem K-MATCH has an
affirmative answer for some k (Sect. 6.7.1).

4. We give an upper bound on the integer k for which K-MATCH has an affirmative
answer in the class of GOLoP graphs. A conjecture of Seymour [30] implies that
this bound does not exceed 2d in general. We prove that this is true for all graphs
with |V (G)| ≤ 10 (Sect. 6.7.2).

5. Using the bound from Sect. 6.7.2, we construct a pseudopolynomial-time
algorithm for the shortest schedule for GOLoP graphs (Sect. 6.7.3).

Finally, Sect. 6.8 concludes the chapter and presents some open questions.

6.4 Relationship with Edge Coloring

For a given rate function r and an integer k, we will write �kr� for the function
e �→ �kr(e)�. We have the following equivalence; see Dereniowski et al. [7] for
proof.

Claim 1 Let G be a graph, let r be a rate function for G, and let k be an integer.
The answer to K-MATCH is YES if and only if χ ′(G, �kr�) ≤ k.

We also have the following equivalence:

Claim 2 Let G be a graph, let r be a rate function for G, and let k be an integer.
The following three statements are equivalent:

1. χ ′
f (G, r) ≤ 1.

2. The answer to MATCH is YES.
3. The answer to K-MATCH is YES for some k.

6.5 Complexity of MATCH and K-MATCH for General Graphs

In this section we will consider the problems MATCH and K-MATCH from a
complexity point of view. For the former problem, we show that it is polynomial-
time solvable. Though this was already shown in Hajek and Sasaki [17], we present
here a new algorithm that improves the complexity of the one given in Hajek and
Sasaki [17], where a O(|V (G)|5)-time algorithm has been given.

Claim 3 The problem MATCH can be solved in O(|V (G)|4) time.

Proof Let P be the matching polyhedron corresponding to G (as defined by
Edmonds [9]), i.e., P = conv {eM : M ∈MG}, where eM is the |E(G)|-
dimensional 0–1 characteristic vector of M . We claim that χ ′

f (G, r) ≤ 1 if and only
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if r ∈ P. This is sufficient due to Claim 2. To prove the claim, suppose that r ∈ P.
Then, r = ∑

M∈MG
p(M)eM for some p : MG → [0, 1] with

∑
M∈MG

p(M) = 1.
It follows that {p(M)} is a feasible solution to (1.9) (see Sect. 1.2), ensuring
that χ ′

f (G, r) ≤ 1. Conversely, suppose that χ ′
f (G, r) ≤ 1. Let {p(M)} be a

solution to (1.9) (see Sect. 1.2), such that
∑

M∈MG
p(M) = 1. Such a solution can

always be obtained by sufficiently increasing p(∅) if needed. By (1.9), we have∑
M∈MG(e) p(M) = r(e) for all e ∈ E. Thus, r = ∑

M∈MG
p(M)eM , which shows

that r ∈ P. This proves the claim. Finally, the test whether r ∈ P can be done
in polynomial time using the Padberg-Rao [27] separation algorithm. Moreover,
Letchford, Reinelt, and Theis [25] proved that the test can be done in O(|V (G)|4)
time. ��

Although the complexity of MATCH is O(|V (G)|4) for general graphs, we will
see in Sect. 6.6.3 that MATCH can be solved in linear time if G is a GOLoP graph
(see Sect. 6.6.1 for the definition of a GOLoP graph). For the K-MATCH problem,
we show the following using Claim 1.

Claim 4 K-MATCH is NP-complete in the strong sense.

Proof We will use a transformation from the k-edge-coloring problem, which is
known to beNP-complete (see Holyer [19]). Consider the k-edge-coloring problem
on a graph G = (V ,E). We define a rate function r on E such that r(e) = 1

k
for

each edge e ∈ E. Thus we obtain an instance of the K-MATCH problem. Now using
Claim 1, we immediately conclude that both problems are equivalent and hence
K-MATCH is NP-complete in the strong sense. ��

6.6 GOLoP Graphs

We have seen that the problems MATCH, K-MATCH, and FIND-K-MATCH are all
computationally intractable when the input is allowed to be any graph. The current
section deals with these problems when the input is restricted to a smaller class of
graphs, namely the OLoP and GOLoP graphs. The remaining subsections consist of
showing that the problems MATCH, K-MATCH, and FIND-K-MATCH can indeed be
solved in polynomial time when the input is restricted to GOLoP graphs.

6.6.1 Characterization of OLoP Graphs; GOLoP Graphs

For a formal definition of the OLoP and GOLoP graphs, we need the following
notation. Let G = (V ,E) be a connected graph. We call x ∈ V a cut-vertex of G

if G − x is not connected. We call a maximal connected induced subgraph B of G

such that B has no cut-vertex a block of G. Let B1, B2, . . . , Bq be the blocks of G.
We call the collection {B1, B2, . . . , Bq} the block decomposition of G. It is known
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that the block decomposition is unique and that E(B1), E(B2), . . . , E(Bq) (where
E(Bi) denotes the set of edges in Bi , i = 1, . . . , q) form a partition of E (see, for
instance, West [32]). Furthermore, the vertex sets V (Bi) and V (Bj ) of every two
blocks Bi and Bj , i, j = 1, . . . , q, i �= j , intersect in at most one vertex and this
vertex is a cut-vertex of G. Block decompositions give a tree-like decomposition of
a graph in the following sense. Construct the block-cutpoint graph of G by keeping
the cut-vertices of G and replacing each block Bi of G by a vertex bi . Make each
cut-vertex x adjacent to bi if and only if x ∈ V (Bi). It is known that the block-
cutpoint graph of G forms a tree (e.g., West [32]). With this tree-like structure in
mind, we say that a block Bi is a leaf block if it contains at most one cut-vertex of
G. Clearly, if q ≥ 2, then {Bi}qi=1 contains at least two leaf blocks.

As some blocks, the complete and complete bipartite graphs will be used.
Formally, Ki , i ≥ 1, denotes the complete graph on i vertices in which every
pair of vertices is adjacent, and Ki1,i2 is a complete bipartite graph with two vertex
partitions V1 and V2 of size i1 and i2, respectively, such that u and v are adjacent for
each u ∈ V1 and v ∈ V2 and no two vertices in V1 or in V2 are adjacent in Ki1,i2 .

We start with a characterization of OLoP graphs (see Birand et al. [1]). We will
do this in terms of the block decomposition introduced above. It turns out that the
block decomposition of an OLoP graph is relatively simple in the sense that there
are only two types of blocks. The types are defined by the following two families of
graphs.

B1: Construct B1 as follows. Let H be a graph with V (H) = {c1, c2, . . . , ck},
with k ∈ {5, 7}, such that

1. c1 − c2 − · · · − ck − c1 is a cycle;
2. if k = 5, then the other adjacencies are arbitrary; if k = 7, then all other

pairs are non-adjacent, except possibly {c1, c4}, {c1, c5}, and {c4, c7}.
Then, H ∈ B1.
Now iteratively perform the following operation. Let H ′ ∈ B1, and let v ∈
V (H ′) with deg(v) = 2. Construct H ′′ from H ′ by adding a vertex v′ such
that N(v′) = N(v). v′ is called a non-adjacent clone of v. Then, H ′′ ∈ B1.
We say that a graph is of the B1 type if it is isomorphic to a graph in B1.

B2: LetB2 = {K2,K3,K4}∪
{
K2,t , K

+
2,t : t ≥ 2

}
, where K+

2,t is constructed from

K2,t by adding an edge between the two vertices on the side of the bipartition
that has cardinality 2. We say that a graph is of the B2 type if it is isomorphic
to a graph in B2.

In simple words, graphs of the B1 type are constructed as follows. Starting with
a cycle of length five or seven. Then we may add some additional edges between
vertices of the cycle, subject to some constraints. Finally, we may iteratively take
a vertex v of degree 2 and add a non-adjacent clone v′ of v. The following result
characterizes OLoP graphs.
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Claim 5 (Birand et al. [1]) Let G = (V ,E) be a graph, and let {B1, . . . , Bq} be
its block decomposition. G is an OLoP graph if and only if at most one block of G

is of the B1 type and all other blocks are of the B2 type.

It follows from Claim 5 that OLoP graphs can be constructed by starting with a
block that is either of the B1 or of the B2 type and then iteratively adding a block of
the B2 type by “glueing” it on an arbitrary vertex.

This motivates the following definition of a generalized OLoP graph. Let b ≥ 1
be an integer. A graph G is called GOLoP(b) if every block of G can be obtained
from a connected graph on at most b vertices by iteratively non-adjacent cloning
a vertex of degree two. We say that a multigraph H = (G, mp) is GOLoP(b) if
the graph G is GOLoP(b). It is not hard to see that every OLoP graph is also a
GOLoP(7) graph.

To deal with GOLoP graphs, we will frequently use the following notation. Let
G be a GOLoP graph. Let C1, . . . , Cp be maximal sets of vertices of degree two
(in G) such that |Ci | ≥ 2 and all vertices in set Ci have the same two neighbors ui

and vi . We refer to these sets as non-adjacent clones in G. Choose p maximal as
well. Consider the auxiliary graph G′ constructed from G−⋃p

i=1 Ci by adding new
vertices a1, . . . , ap such that, for i ∈ [p] = {1, . . . , p}, ai is adjacent to precisely
ui and vi , and by adding new edges uivi for all i ∈ [p]. Let W = {a1, . . . , ap}.
We call the pair (G′,W) the collapsed graph associated with G. For i ∈ [p], let
Fi = H [Ci ∪ {ui, vi}]; see Fig. 6.2.

It was shown in Birand et al. [1] that OLoP graphs have O(|V (G)|) edges. The
proof of this result generalizes easily to the setting of GOLoP(b). We include the
generalization for completeness:

Claim 6 Let b be a fixed integer, and let G be a GOLoP(b) graph. Then, |E(G)| =
O(|V (G)|).

Since finding the block decomposition of a graph G can be done in O(|V (G)| +
|E(G)|) time (see, e.g., Gross and Yellen [15]), Claim 6 has the following corollary:

Claim 7 Let b be a fixed integer, and let G be a GOLoP(b) graph. Finding the block
decomposition of G can be done in O(|V (G)|) time.

v1 = u2

u1 v2

C1 C2

Multigraph H

v1 = u2

u1 v2

a1 a2

Collapsed graph (G′, {a1, a2})
u1 v1

C1

Multigraph F1

Fig. 6.2 The multigraph H and the sets Ci (left), the corresponding collapsed graph (G′,W)

(middle), and one of the multigraphs F1, F2 (right). In this figure, we added multiple edges to
represent the values of the function mp



6.6 GOLoP Graphs 147

6.6.2 K-MATCH for GOLoP Graphs

In this section, it will be notationally more convenient to think of an edge coloring of
a multigraph H = (G, mp) as a schedule. We need to introduce a bit more notation.
A schedule (of length k) is a function S : {1, . . . , k} → MH . For e ∈ E(H), let
TS(e) = ∑k

t=1 1(e ∈ S(t)) (where 1 is the indicator function). Informally speaking,
TS(e) is the total amount of time schedule S spends on edge e. Likewise, for vertices
u, v ∈ V (H), let TS(u, v) = ∑k

t=1 1(S(t) covers both u and v) and, for a matching
M ∈ MH , let TS(M) = ∑k

t=1 1(S(t) = M). A schedule S is said to be feasible
for H if TS(e) = mp(e) for all e ∈ E(H). We state the following two observations
without a proof:

Claim 8 Let H be a multigraph, and let k be an integer. Then, χ ′(H) ≤ k if and
only if there exists a feasible schedule of length k for H .

Claim 9 Let H = (G, mp) be a multigraph, and let x be a cut-vertex of H . Let
K1, . . . , Kp be the connected components of H − x. Then,

χ ′(H) = max

[

deg(x), max
i=1,...,p

{
χ ′(H [V (Ki) ∪ {x}])

}]

.

This latter observation allows us to concentrate on the blocks of GOLoP
multigraphs. To deal with the sets of clones in GOLoP multigraphs, we start with a
lemma for bipartite multigraphs in which one side of the bipartition has exactly two
vertices (two-machine open shop).

Lemma 6.1 Let F be a bipartite multigraph on vertex sets X, Y with X = {u, v}.
Then, for τ ∈ Z+, there exists a feasible schedule S for F such that TS(u, v) = τ if
and only if

τ ≤ deg(u) + deg(v) − �(F). (6.3)

Moreover, for all τ satisfying (6.3), there exists a feasible schedule of length
deg(u) + deg(v) − τ such that TS(u, v) = τ .

Proof See Dereniowski et al. [7] for a complete proof. ��
Having dealt with the sets of clones in GOLoP multigraphs, we can now prove

the following.

Lemma 6.2 Let b be a fixed integer, and let H be a GOLoP(b) multigraph. Then,
χ ′(H) can be determined in O(|V (H)|) time.

Proof Let H = (G, mpH ). Since, by Claim 7, the block decomposition of a
GOLoP(b) graph can be found in O(|V (G)|) = O(|V (H)|) time, it follows from
Claim 9 that it suffices to prove the lemma for the blocks of H . So we may assume
that H is 2-connected.
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Let (G′,W) be the collapsed graph associated with G, and let p,C1, . . . , Cp,

F1, . . . , Fp as in the definition of the collapsed graph. By the maximality of the sets
C1, . . . , Cp, every set of clones Ci has a unique pair of common neighbors {ui, vi}.
Since ui and vi are the vertices of the graph on at most b vertices from which H was
constructed by iteratively cloning the vertices of degree two, there are at most

(
b
2

)

choices of ui and vi and, hence, p ≤ (
b
2

)
. Let T ∗

i = degFi
(ui) + degFi

(vi) − �(Fi).
For conciseness, we will write M′ for MG′ and M′(e) for MG′(e). We will

construct an integer linear programming problem whose objective value is χ ′(H)

and whose variables correspond to the matchings in G′. The idea is that the edges
uivi in matchings in G′ will play the role of pairs of edges {uic, vic

′} in matchings
in H with distinct c, c′ ∈ Ci . Consider the following integer linear programming
problem:

z∗ = min
w∈ZM′

+

∑

M∈M′
w(M) (6.4)

s.t.
∑

M∈M′(e)
w(M) = mpH (e) for all e ∈ E(G′) \

p⋃

i=1

{uiai, viai, uivi} (6.4a)

∑

M∈M′(zai )∪M′(uivi )

w(M) =
∑

c∈Ci

mpH (zc) for all z ∈ {ui, vi}, i ∈ [p] (6.4b)

∑

M∈M′(uivi )

w(M) ≤ T ∗
i for all i ∈ [p]. (6.4c)

Constructing the problem needs calculating the values of T ∗
i , which can clearly

be done in O(|Ci |) time. Since p ≤ (
b
2

)
, the problem is an integer linear

programming problem with O(1) variables and constraints. Using Eisenbrand’s
algorithm for integer linear programming in fixed dimension (Eisenbrand [11]), this
problem can be solved in O(1) time. Thus, the overall complexity of computing z∗
is O(|V (H)|).

We claim that z∗ = χ ′(H). First, to prove that z∗ ≥ χ ′(H), we claim that any
solution to (6.4) can be turned into a feasible schedule for H of length z∗ with the
help of Lemma 6.1. To see this, consider an optimal solution {w(M)}M∈M′ of (6.4).
We can, by the constraints of (6.4), construct a function S′ : {1, . . . , z∗} → M′
such that TS′(e) = mpH (e) for all e ∈ E(G′) \ ⋃p

i=1{uiai, viai, uivi}, TS′(zai) +
TS′(uivi) = ∑

c∈Ci
mpH (zc) for all z ∈ {ui, vi}, i ∈ [p], and TS′(uivi) ≤ T ∗

i for
all i ∈ [p]. S′ is not a schedule because S′ is defined on the matchings of G′ and not
on the matchings of H .

We will turn S′ into a schedule for H as follows. Let S(0) = S′. We will iteratively
construct a sequence S(1), . . . , S(p) of functions from {1, . . . , z∗} to M′ ∪MH ,
the last of which will be a schedule for H . For i ∈ [p], do the following. Let
τi = ∑

M∈M′(uivi )
w(M). By (6.4c), τi ≤ T ∗

i . It follows from Lemma 6.1 that there
exists a feasible schedule Si : {1, . . . , degFi

(ui)+ degFi
(vi)− τi} →MFi

such that
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TSi
(ui, vi) = τi . Let Zi = {t | S(i−1)(t) ∈ M′(uiai) ∪M′(viai) ∪M′(uivi)}. It

follows from (6.4b) that

|Zi | =
∑

c∈Ci

mpH (uic) +
∑

c∈Ci

mpH (vic) − τi = degFi
(ui) + degFi

(vi) − τi .

Let φi : Zi → {1, degFi
(ui)+degFi

(vi)−τi} be a bijection such that, for all t ∈ Zi ,
Si(φi(t)) covers both ui and vi if and only if uivi ∈ S(i−1)(t). Now, for all t ∈
{1, . . . , z∗}, set

S(i)(t) =
{(

S(i−1)(t) \ {uiai, viai, uivi}
) ∪ Si(φi(t)) for t ∈ Zi,

S(i−1)(t) otherwise.

Observe that TS(i) (uic) = mpFi
(uic) and TS(i) (vic) = mpFi

(vic) for all
c ∈ Ci . Moreover, TS(i) (e) = TS(i−1) (e) for all e ∈ E(H) ∪ E(G′) \
(E(Fi) ∪ {uiai, viai, uivi}).

After having done this for all i ∈ [p], let S = S(p). Then, S(t) ∈ MH for
all t ∈ {1, . . . , z∗} and TS(e) = mpH (e) for all e ∈ E(H). Thus, S is a feasible
schedule of length z∗ for H , implying by Claim 8 that χ ′(H) ≤ z∗.

To prove that χ ′(H) ≥ z∗, consider a schedule S : [χ ′(H)] → MH of length
χ ′(H). Such a schedule exists because of Claim 8. For all t ∈ [χ ′(H)], let Iu(t) ⊆
[p] (resp., Iv(t)) be the set of all indices i such that uic ∈ S(t) (resp., vic ∈ S(t))
for some c ∈ Ci . Define

S′(t) =
(
S(t) \

p⋃

i=1

E(Fi)
)

∪
( ⋃

i∈Iu(t)\Iv(t)

{uiai}
)

∪
( ⋃

i∈Iv(t)\Iu(t)

{viai}
)

∪
( ⋃

i∈Iu(t)∩Iv(t)

{uivi}
)

and, for M ∈ M′, let w(M) = TS′(M). We claim that w is a solution of (6.4).
It is straightforward to see that S′(t) ∈ M′ for all t . Next, observe that, for all
e ∈ E(G′) \ ∪p

i=1{uiai, viai, uivi},
∑

M∈M′(e)
w(M) = TS′(e) = ∣

∣
{
t : e ∈ S′(t)

}∣
∣ =

|{t : e ∈ S(t)}| = TS(e) = mpH (e).

Moreover, we have, for each zai with z ∈ {ui, vi} and i ∈ [p],
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∑

M∈M′(zai )
∪M′(uivi )

w(M) = TS′(zai) + TS′(uivi) = |{t : zc ∈ S(t), c ∈ Ci}| =

∑

c∈Ci

TS(zc) =
∑

c∈Ci

mpH (zc).

Next, observe that the schedule S implies a schedule Si for Fi . It follows from
Lemma 6.1 that TSi

(ui, vi) ≤ T ∗
i . Therefore,

∑

M∈M′(ui ,vi )

w(M) = TS′(ui, vi) = |{t : i ∈ Iu(t) ∩ Iv(t)}| = TSi
(ui, vi) ≤ T ∗

i .

This proves that w(M) is a solution to (6.4), thereby proving that z∗ ≤ χ ′(H). This
proves Lemma 6.2. ��

This resolves our second problem.

Theorem 6.2 Let b and k be fixed integers. Let G be a GOLoP(b) graph, and let r

be a rate function for G. Then K-MATCH can be solved in O(|V (G)|) time.

Proof It follows from Claim 1 that the answer to K-MATCH is YES if and only if
χ ′(G, �kr�) ≤ k. The theorem follows from Lemma 6.2. ��

6.6.3 MATCH for GOLoP Graphs

In this section, we focus on MATCH for GOLoP graphs. We will use an algorithm
that is very similar to the algorithm used for the K-MATCH problem in the previous
section. We will do this by proving continuous versions of the results from the
previous section.

By duplicating edges, Claim 9 generalizes easily to the setting of the fractional
chromatic index of weighted graphs. To be precise, we have the following.

Claim 10 Let F be a graph, let r be a rate function for E(F), and let K1, . . . , Kp

be the connected components of F − x. Then, letting ri = r|E(F |Ki) for i ∈ [p], it
holds that

χ ′
f (F, r) = max

⎡

⎣
∑

e∈δ(x)

r(e), max
i=1,...,p

{
χ ′

f (F [V (Ki) ∪ {x}], ri)
}
⎤

⎦ .

As in the previous section, it will be notationally more convenient to think of
a fractional edge coloring of a weighted graph as a schedule. Other than in the
previous section, our schedule will now be a function that is defined on a continuous-
time range. Let us make some definitions. For T ≥ 0, a schedule (of length T ) is a
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piecewise constant function S : [0, T ] →MG. For e ∈ E(G), let TS(e) = ∫ T

0 1(e ∈
S(t))dt (where 1 is the indicator function). Informally speaking, TS(e) is the total
amount of time schedule S spends on edge e. Likewise, for vertices u, v ∈ V (G),
let TS(u, v) = ∫ T

0 1(S(t) cover both u and vdt and, for a matching M ∈ MG, let

TS(M) = ∫ T

0 1(S(t) = M)dt . A schedule S is said to be r-feasible (for G) if
TS(e) = r(e) for all e ∈ E(G).

We state the following obvious result without a proof:

Claim 11 χ ′
f (G, r) ≤ t if and only if there exists an r-feasible schedule of length t

for G.

We have the following fractional version of König’s edge-coloring theorem,
which easily follows from König’s original edge-coloring theorem by standard
compactness arguments.

Claim 12 Let G be a bipartite graph, and let r be a rate function for G. Then
χ ′

f (G, r) = maxu∈V (G){r(u)}.
We start with the following continuous version of Lemma 6.1.

Lemma 6.3 Let F be a bipartite graph on vertex sets X, Y with X = {u, v}, and
let r be a rate function for H . Then there exists an r-feasible schedule S for F such
that TS(u, v) = τ if and only if 0 ≤ τ ≤ r(u) + r(v) − χ ′

f (F, r). Moreover, if
0 ≤ τ ≤ r(u) + r(v) − χ ′

f (F, r), then there exists an r-feasible schedule of length
r(u) + r(v) − τ such that TS(u, v) = τ .

The previous claim allows us to deal with the blocks of GOLoP graphs.

Lemma 6.4 Let G be a graph in GOLoP(b), and let r be a rate function for G.
Then, χ ′

f (G, r) can be determined in O(|V (G)|) time.

It now follows immediately from Claim 2 and Lemma 6.4 that MATCH can be
solved in linear time for GOLoP graphs.

Theorem 6.3 Let b ≥ 1. Let G be a GOLoP(b) graph, and let r be a rate function
for G. The problem MATCH can be solved in O(|V (G)|) time.

6.6.4 FIND-K-MATCH for GOLoP Graphs

We have described, in Sect. 6.6.2, a linear-time algorithm to verify whether the
chromatic index of a GOLoP multigraph (G, �kr�) is at most k. In this section,
we show that this algorithm can be turned into a quadratic-time algorithm to find a
schedule of length k for G with respect to r , if such a schedule exists. In order to
make the computation efficient, we store each schedule as a set of pairs (M, �),
where M is a matching in G and � is the number of occurrences of M in the
schedule.
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We start by obtaining a pseudo-scheduleZ being a collection of schedules for all
blocks of G and then show how to assemble the schedule for G using Z. We begin
with the details of Z. Let G be a graph, let B1, . . . , Bq be the blocks of G, and let
C

j

1 , . . . , C
j
pj

be the sets of non-adjacent clones in block Bj . For j ∈ [q] and i ∈
[pj ], let (Bj ′, Cj

i ) be the collapsed graph associated with Bj , and let u
j
i , v

j
i be the

common neighbors of the vertices in C
j
i . Finally, let F

j
i = G[Cj

i ∪{uj
i , v

j
i }]. Define

a pseudo-schedule for G as Z = (
(Z1, Z1

1, . . . , Z1
p1

), . . . , (Zq, Z
q

1 , . . . , Z
q
pq

)
)
,

where Zj is a schedule for Bj ′ and Z
j
i is a schedule for F

j
i . Note that each Zj

and Z
j
i is a list of pairs (M, �), with M being a matching in the relevant graph and

� being the number of occurrences of M in the corresponding schedule. Define

c(Z, x) =
∑

j∈[q]

∑

(M,�)∈Zj

and M covers x

�, for any cut-vertex x of G,

|Zj | =
∑

(M,�)∈Zj

�, for j ∈ [q],

|Z| = max

{

max
j∈[q] |Z

j |, max{c(Z, x) : x is a cut-vertex of G}
}

.

Here, |Zj | denotes the length of schedule Zj , c(Z, x) denotes the number of
matchings inZ that cover x, and |Z| denotes the length of pseudo-scheduleZ.

First we give an algorithm that computesZ of length k in linear time.

Algorithm 1: Find-pseudo-schedule
Input: A GOLoP graph G and a rate function r for E(G).
Output: Either a pseudo-scheduleZ of length at most k for G with respect to r or the

message that no such pseudo-schedule exists.

1. Find the block decomposition B1, . . . , Bq of G.
2. If any cut-vertex x ∈ V (G) satisfies

∑
e∈δ(x) �r(e)k� > k, then terminate because no

schedule of length at most k exists for G with respect to r .
3. For each j ∈ [q]:

a. Construct Hj = (Bj , �krj �), where rj = r|E(Bj ).

b. Identify the sets C
j

1 , . . . , C
j
pj

and the vertices u
j
i and v

j
i , i ∈ [pj ].

c. Solve the integer linear program (6.4) corresponding to Bj ′ to construct Zj . If the
optimal value of the IP is greater than k, terminate because no schedule of length
at most k exists for G with respect to r .

d. For i ∈ [pj ], construct a schedule Z
j
i of length deg

F
j
i

(u
j
i ) + deg

F
j
i

(v
j
i ) − τ

j
i for F

j
i

such that T
Z

j
i

(u
j
i , v

j
i ) = τ

j
i .

Before we prove the correctness of this algorithm, we need a small technical
lemma that allows us to easily construct the sets C1, . . . , Cp.
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Lemma 6.5 Let G be a graph, let c ∈ V (G) be such that degG(c) = 2, and let u, v

be the neighbors of c. Let G′ be obtained from G by non-adjacent cloning of c. If
G′ has no cut-vertex, then either min{degG′(u), degG′(v)} ≥ 3, or G′ is a 4-cycle.

Proof Let c1 �= c be a clone of c. If V (G′) = {u, v, c, c1}, then G′ is a 4-cycle
and the claim holds. So we may assume that there exists v′ ∈ V (G′) \ {u, v, c, c1}.
Because G′ is 2-connected, it follows that there exist paths P1, P2 from v′ to c1 in
G′ such that V (P1) ∩ V (P2) = {v′, c1}. Since NG′(c1) = {u, v}, it follows that one
of P1, P2 contains u and not v, and the other contains v and not u. This implies that
degG′(u) ≥ 3 and degG′(v) ≥ 3. ��

This allows us to prove the correctness and the complexity of algorithm
FIND-PSEUDO-SCHEDULE.

Lemma 6.6 Let b ≥ 1, let G be a GOLoP(b) graph and let r be a rate function
for G. Then, algorithm FIND-PSEUDO-SCHEDULE either finds a pseudo-schedule of
length at most k for G with respect to r , or determines that no such pseudo-schedule
exists. Its running time is O(|V (G)|).
Proof See Dereniowski et al. [7] for the proof. ��

Now we prove that, given a pseudo-schedule Z of length at most k, we can
assemble a sequence of at most k matchings in G. Furthermore, this sequence
requires at most O(|V (G)|) distinct matchings in G, which permits a succinct
encoding of schedule of G that specifies a list of pairs (M, �), with M being a
matching in the G and � being the number of occurrences of M in the schedule.

We begin by giving an informal description of the method. Consider a block-
cutpoint tree T of G rooted at any vertex. We start by ordering the blocks of G,
which is equivalent to ordering the vertices of T , so that for each i ≥ 1 the first i

blocks of the order induce a connected subgraph of G. This can be achieved by, for
example, taking any depth-first-search ordering of the vertices in T . Recall that Z
gives a feasible schedule, or equivalently a sequence of matchings, for each block
of G. Each matching of G is then assembled from the block matchings as follows.
We start with an empty matching M of G and then process the blocks according to
their previously fixed order to construct M iteratively. If the cut-vertex connecting
the current block with its “parent” block is an end vertex of an edge already in M ,
then we try to find a matching in the current block not saturating the cut-vertex. If
such a matching exists, then its edges are added to M . If there is no edge in M that
saturates the cut-vertex, then we take a matching, if any, in the current block that
saturates the cut-vertex and we add its edges to M . The matchings in the blocks
are obtained from the corresponding schedules for the blocks. When all blocks are
processed, then we add the matching M thus assembled to the output sequence
of matchings and simultaneously update the block schedules corresponding to the
block matchings used by M . We then proceed to the next iteration to find the next
matching of G. In Theorem 6.4 we prove that this method gives the desired sequence
of k matchings for G.
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We are now ready to give a more formal pseudo-code of an algorithm that
constructs the desired sequence of matchings from the pseudo-scheduleZ.

Algorithm 2: Recover-schedule
Input: A GOLoP graph G, the block decomposition of G, and a pseudo-scheduleZ of

length k ≤ |Z|.
Output: A schedule S for G given as a set {(M, �) : M ∈MG, � ∈ Z+}.
1. Order the blocks B1, . . . , Bq so that G

[⋃j−1
l=1 V (Bl)

]
is connected for all j ∈ [q]. Set

S := ∅.
2. While there exists j ∈ [q] such that Zj �= ∅, do the following:

a. Set M := ∅.
b. For each j ∈ [q] with Zj �= ∅, do the following:

• If j = 1, choose M1 such that (M1, �) ∈ Z1 and set �′ := �.
• If j > 1, then let xj be the unique cut-vertex of G

[⋃j−1
l=1 V (Bl)

]
that lies in V (Bj ).

If M saturates xj , then choose any Mj such that (Mj , �) ∈ Zj does not saturate xj ,
if any. If M does not saturate xj , then choose Mj that saturates xj , if any. If no Mj

saturating xj exists, then take any Mj . If no such Mj exists, go to step (2b) and
consider the next value of j ; otherwise, set �′ := min{�′, �}.

• For all i ∈ [pj ] such that Mj ∩ {uj
i v

j
i , u

j
i a

j
i , v

j
i a

j
i } �= ∅, do the following:

– If u
j
i v

j
i ∈ Mj , then choose (M

j
i , �) ∈ Z

j
i such that M

j
i covers both u

j
i and v

j
i

and set �′ := min{�′, �}.
– If u

j
i ai ∈ Mj , then choose (M

j
i , �) ∈ Z

j
i such that M

j
i covers u

j
i but not v

j
i and

set �′ := min{�′, �}.
– If v

j
i ai ∈ Mj , then choose (M

j
i , �) ∈ Z

j
i such that M

j
i covers v

j
i but not u

j
i and

set �′ := min{�′, �}.
– Set Mj :=

(
Mj \ {uj

i v
j
i , u

j
i a

j
i , v

j
i a

j
i }
)

∪ M
j
i .

• Let M := M ∪ Mj .

c. For each Mj chosen in step (2b), replace (Mj , �) with (Mj , � − �′) in Zj , and if
� − �′ = 0, then delete (Mj , � − �′) from Zj . Similarly, for each M

j
i chosen in step

(2b), replace (M
j
i , �) with (M

j
i , � − �′) in Z

j
i , and delete (M

j
i , �′ − �) from Z

j
i if

� − �′ = 0. Let S := S ∪ {(M, �′)}.

Notice that since the number of distinct matchings in Zj is constant and the
number of matchings Z

j
i is O(|V (F

j
i )|), it follows that each iteration of the main

loop can be done in O(|V (G)|) time. Thus, by Lemma 6.6 and by the fact that each
iteration “eliminates” at least one matching in a block of G, the overall complexity
of algorithm RECOVER-SCHEDULE is O(|V (G)|2).
Theorem 6.4 Let b ≥ 1, and let G be a GOLoP(b) with a rate function r . There
exists a O(|V (G)|2)-time algorithm that finds a schedule S for G. Moreover, the
number of pairwise different matchings in S is O(|V (G)|).
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Proof The schedule S is a result of the execution of FIND-PSEUDO-SCHEDULE

for G and r (which produces a pseudo-schedule Z) and the execution of
RECOVER-SCHEDULE forZ, G, and the block decomposition.

Now, observe that it follows from the ordering of the blocks B1, . . . , Bq that for
each j > 1, there exists a unique cut-vertex xj of

⋃j−1
l=1 V (Bl) that lies in V (Bj ).

To prove the correctness of this algorithm, it suffices to show that after each iteration
we have |Z| ≤ k − t , where t ∈ [k] is the sum of the multiplicities of the matchings
added to S prior to and in this iteration. We prove this by induction on the number of
iterations. The statement is clearly true at the beginning of the first iteration. Now let
Z̄ be the pseudo-schedule, and let S be the schedule at the beginning of an iteration.
Furthermore, let t = ∑

(M,�)∈S �, and letZ be the pseudo-schedule at the end of the
iteration. We denote by �′ the multiplicity of the matching chosen in the iteration.

First, suppose for a contradiction that |Zj | ≥ k − t + 1 for some j ∈ [q]. Since
by induction |Z̄j | ≤ k − t + �′, it follows that |Zj | = |Z̄j |. Hence no matching
Mj was chosen in this iteration. Thus, j > 1. This means that for some j ′ < j ,
Mj ′

saturates xj , and every matching in Z̄j saturates xj , because Z̄j �= ∅. But this
implies that c(Z̄, xj ) ≥ �′ + |Z̄j | > k − t +�′, contrary to the inductive hypothesis.
Thus, |Zj | ≤ k − t for all j ∈ [q].

Second, suppose for a contradiction that c(Z, x) ≥ k − t +1 for some cut-vertex
x of G. By induction, we have c(Z̄, x) ≤ k − t + �′. Therefore, c(Z, x) = c(Z̄, x).
This implies that none of the matchings Mj chosen in the iteration saturates x.
Therefore, all matchings M that saturate x are already included in S and hence
c(Z, x) = 0. This, however, contradicts c(Z̄, x) ≥ k − t + 1 > 0. Thus, c(Z̄, x) ≤
k − t for every cut-vertex x of G. This proves that |Z| ≤ k − t . This completes the
proof of Lemma 6.4. ��

6.7 An Upper Bound on the Schedule Length

In this section we are interested in finding, for a given graph G and rates r for which
K-MATCH is affirmative for some k, an upper bound for the length of a shortest
schedule. To get a handle on this bound, we will focus on the following property. We
say that a graph G has the lcd-property (with constant C) if for every rate function r ,
it holds that if K-MATCH has an affirmative answer for some k, then K-MATCH with
k = Cd also has an affirmative answer, where d is the least common denominator
for the rate function r . Notice that, in this definition, the value of C depends only on
the graph G and not on the rate function r . Notice also that a graph having the lcd-
property with constant C does not necessarily have the lcd-property with constant
C + 1. We do, however, have the following property.

Property 6.1 Let G be a graph having the lcd-property with constant C. Then G

also has the lcd-property with constant tC for any positive integer t .
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We first show that the lcd-property is equivalent to a property that relates the
fractional chromatic index and the chromatic index of multigraphs associated with
G.

Claim 13 Let G be a graph, and let C ≥ 1 be an integer. The following two
statements are equivalent:

1. G has the lcd-property with constant C;
2. �χ ′

f (G, mp)� = � 1
C

χ ′(G,C · mp)� for every function mp.

Proof (1) �⇒ (2): Let (G, mp) be given. Since χ ′(H) ≥ χ ′
f (H) for every

multigraph H , we have

⌈
1

C
χ ′(G,C · mp)

⌉

≥
⌈

1

C
χ ′

f (G,C · mp)

⌉

=
⌈
χ ′

f (G, mp)
⌉

.

To prove the inequality in the other direction, let p = �χ ′
f (G, mp)�. Set r = mp/p

and d = p/ gcd(p, mp). Then, d is the least common denominator of r , and we
may write p = td for some integer t ≥ 1. We have

χ ′
f (G, r) = χ ′

f

(

G,
mp

p

)

= χ ′
f (G, mp)

p
≤ 1.

Thus, by Claim 2, it follows that K-MATCH has an affirmative answer for some k.
By statement (1), K-MATCH with k = Cd has an affirmative answer. This implies
that

1

C
χ ′(G,C · mp) ≤ t

C
χ ′

(

G,
C · mp

t

)

= t

C
χ ′(G,Cdr) ≤ tCd

C
= p.

Since p is an integer, it follows that in fact � 1
C

χ ′(G,C · mp)� ≤ p. This proves that
(2) holds.

(2) �⇒ (1): Let r be such that K-MATCH has an affirmative answer for some k.
It follows from Claim 2 that χ ′

f (G, r) ≤ 1. Let d be the least common denominator
for r . It follows that χ ′

f (G, d · r) ≤ d. Therefore, by (2),

⌈
1

C
χ ′(G,Cd · r)

⌉

=
⌈
χ ′

f (G, d · r)
⌉

≤ d,

which implies that 1
C

χ ′(G,Cd · r) ≤ d, as required. ��
In Sect. 6.7.1, we will prove that every OLoP graph has the lcd-property with

constant C = 1. However, the following example shows that not every graph has
the lcd-property with constant 1.
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Fig. 6.3 (a) The Petersen graph P̃ ; (b) a 6-edge coloring of P̃2

Example 6.1 Let P̃ be the Petersen graph (see Fig. 6.3a), and let r(e) = 1
3 for each

e ∈ E(P̃ ). The answer to K-MATCH is NO for each k ≤ 3, because (P̃ , � k
3�) is

isomorphic to P̃ and χ ′(P̃ ) = 4. Note that for each k = 4, 5, 6, the multigraph
(P̃ , � k

3�) is isomorphic to P̃2, i.e., the graph obtained by replacing each edge in P̃

by two parallel edges. It is enough to argue that χ ′(P̃2) ≥ 6. This, however, follows
from the fact that each matching in the Petersen graph consists of at most 5 edges,
and consequently, E(P̃2) cannot be partitioned into at most 5 matchings, each of
size at most 5, because |E(P̃2)| = 30. Thus, the answer to K-MATCH is NO for each
k ≤ 5.

Figure 6.3b gives a 6-edge coloring of P̃2, which implies that the answer to
K-MATCH with k = 2d is YES, where d = 3 is the least common denominator
of the rates. This shows that for the Petersen graph, C ≥ 2.

With the Petersen graph in mind, the following question arises: is it true that
every graph has the lcd-property for some, graph but not rate function dependent,
constant C? And if so, what is the smallest value of C? In Sect. 6.7.2, we will prove
that the former question always has an affirmative answer, and that, for fixed b,
every GOLoP(b) graph satisfies the lcd-property with some constant that depends
only on b. Finally, with Claim 13 in mind, we point out that the following conjecture
of Seymour implies that every graph has the lcd-property with constant C ≤ 2.

Conjecture 6.1 (Seymour [30]) For every multigraph H , it holds �χ ′
f (H)� =

� 1
2χ ′(H2)�, where H2 is the multigraph obtained from H by replacing each edge

with two parallel edges.

This conjecture follows easily from the work of Plantholt and Tipnis [29] for
graphs on at most 10 vertices, which we now show.



158 6 Open Shop Scheduling with Simultaneity Constraints

Theorem 6.5 Let H = (G, mp) be a multigraph such that |V (G)| ≤ 10. Then,⌈
1
2χ ′(G, 2mp)

⌉
=

⌈
χ ′

f (G, mp)
⌉

.

Proof We first claim that is suffices to prove that χ ′(H) =
⌈
χ ′

f (H)
⌉

for any H =
(G, mp) such that |V (G)| ≤ 10 and mp(e) is even for all e ∈ E(G). Indeed, if

χ ′(G, 2mp) =
⌈
χ ′

f (G, 2mp)
⌉

, then

⌈
1

2
χ ′(G, 2mp)

⌉

=
⌈

1

2

⌈
χ ′

f (G, 2mp)
⌉⌉

=
⌈

1

2
χ ′

f (G, 2mp)

⌉

=
⌈
χ ′

f (G, mp)
⌉

,

as required. Here, we use the fact that ��x� /2� = �x/2� for all x ∈ R.
Thus, let H = (G, mp) be a multigraph such that |V (G)| ≤ 10 and mp(e) is

even for all e ∈ E(G). Suppose for a contradiction that χ ′(H) �=
⌈
χ ′

f (H)
⌉

. Thus,

by Theorem 1.2 χ ′(H) �= max{�(H), �t (H)�}. Then, it follows from Theorem 2 of
Plantholt and Tipnis [29] that there exist a multigraph H ′ = (G′, mp′) and a vertex
v ∈ V (G′) such that (i) G′ is isomorphic to the Petersen graph, (ii) H ′ is regular,
(iii) there exists a 5-cycle C in H ′ that has an odd number of edges, (iv) H is a
submultigraph of H ′, and (v) H ′ − v is a submultigraph of H . Conditions (iv) and
(v) imply that mp(e) = mp′(e) for all e ∈ E(G) \ δ(v). Now let u ∈ V (G) \ N(v)

(u exists because G′ is isomorphic to the Petersen graph). Since mp(e) is even for
all e ∈ δ(u) and H ′ is regular, it follows that degH ′(u) is even. Next, consider
the 5-cycle C. Clearly, since mp(e) = mp′(e) is even for all e ∈ E(G) \ δ(v), C

contains an edge vv′ such that mp′(vv′) is odd. But because mp′(e) is even for all
e ∈ δ(v′) \ {vv′}, this implies that degH ′(v′) is odd, a contradiction. This proves the
theorem. ��

By this theorem, all graphs with at most 10 vertices have the lcd-property with
constant C either 1 or 2.

6.7.1 OLoP Graphs

In this section, we prove that every OLoP graph has the lcd-property with C = 1.
Our approach is to prove (2) in Claim 13 with C = 1 for any OLoP graph G. That
is we need to prove the following theorem.

Theorem 6.6 For every OLoP multigraph H = (G, mp), it holds that χ ′(G, mp) =⌈
χ ′

f (G, mp)
⌉

.

Because of Claims 9 and 10, it suffices to consider blocks of OLoP graphs.
Indeed, suppose that Theorem 6.6 holds for blocks, and let x be a cut-vertex in
an OLoP multigraph H . Let K1, . . . , Kp be the connected components of H − x.
Then,
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χ ′(H) = max

[

deg(x), max
i=1,...,p

{
χ ′(H [V (Ki) ∪ {x}])

}]

= max

[

deg(x), max
i=1,...,p

⌈
χ ′

f (H [V (Ki) ∪ {x}])
⌉]

=
⌈
χ ′

f (H)
⌉

.

Thus, we concentrate on the blocks of OLoP graphs. We show that for a multigraph
H = (G, mp) such that G is a block of an OLoP graph, it holds that χ ′(H) =⌈
χ ′

f (H)
⌉

. The proof relies on the observation that all blocks of an OLoP graph,

with the exception of few small blocks with |V (H)| ≤ 5, are either bipartite or
nearly bipartite or can be easily “reduced” to a nearly bipartite graphs. We begin by
briefly reviewing the main results for nearly bipartite multigraphs that are of interest
to us.

A multigraph H = (G, mp) is called nearly bipartite if there exists a vertex
v ∈ V (G) such that G − v is bipartite.

Eggan and Plantholt [10] proved that χ ′(H) = max{�(H), �t (H)�} for
every nearly bipartite multigraph H . Thus, by Theorem 1.2 we readily obtain the
following.

Theorem 6.7 (Eggan and Plantholt [10]) If H is a nearly bipartite multigraph,

then χ ′(H) =
⌈
χ ′

f (H)
⌉

.

Moreover, the following result was shown in Plantholt [28] (see also Plantholt and
Tipnis [29]).

Theorem 6.8 (Plantholt [28]) If H is a multigraph with |V (H)| ≤ 8, then

χ ′(H) =
⌈
χ ′

f (H)
⌉

.

In the following two results, Claims 14 and 15, we will use these two theorems to
prove Theorem 6.6. We start with the easier case.

Claim 14 Every multigraph H of the B2 type satisfies χ ′(H) = ⌈
χf (H)

⌉
.

Proof Let H = (G, mp) be a multigraph of the B2 type. First, if G is isomorphic
to K2, K3, or K4, then the claim holds by Theorem 6.8. Next, if G is isomorphic
to K2,t (t ≥ 2}, then H is bipartite and the result follows by König’s edge-coloring
theorem [22]. Finally, let G be isomorphic to K+

2,t (t ≥ 2}. Let u, v be the two
vertices on the side of cardinality 2. Then H − u is isomorphic to K1,t . Hence H is
nearly bipartite and the result follows from Theorem 6.7. ��

This leaves blocks of the B1 type.

Claim 15 Every multigraph H of the B1 type satisfies χ ′(H) =
⌈
χ ′

f (H)
⌉

.

Proof First, consider a multigraph H of the B1 type with |V (H)| ≥ 6. Let us start
with the case where H is constructed from a 7-cycle.

Claim 16 If H contains a cycle of length seven, then H is nearly bipartite. ��
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Proof Consider H , and let c1 − c2 − · · · − c7 − c1 be the vertices of a cycle of
length seven in H . From the definition of graphs of the B1 type, it follows that
we may assume that all pairs of vertices ci, cj with |i − j | ≥ 2 are non-adjacent
except possibly {c1, c4}, {c1, c5}, and {c4, c7}. If both c1 and c4 have clones, then
H is a multi-cycle of length seven, and thus the result holds (for instance, H − c2
is bipartite). From the symmetry, we may assume now that no vertex is a clone of
c1. We claim that H − c1 is bipartite. Let C(ci) be the set of clones of vertex ci ,
for i = 2, . . . , 7, and let C[ci] = C(ci) ∪ {ci}. Notice that some of the sets C(ci)

are necessarily empty, since only vertices of degree 2 may admit clones. Then the
bipartition V1, V2 of H − c1 is obtained as follows: V1 = {C[c3], C[c5], C[c7]} and
V2 = {C[c2], C[c4], C[c6]}. ��

By Claim 16 and Theorem 6.7, we may assume that H is not nearly bipartite and
is constructed from a 5-cycle, say c1 −c2 −· · ·−c5 −c1. If two vertices of the cycle,
say c1 and c3, admit clones, then H − c2 is bipartite and thus H is nearly bipartite,
a contradiction. Thus, since |V (H)| ≥ 6, exactly one vertex of the cycle admits
clones. We may assume without loss of generality that c1 admits clones in H (see
Fig. 6.4a). Furthermore, the pairs {c2, c5}, {c2, c4}, and {c3, c5} are adjacent, because
otherwise H would be nearly bipartite. Notice that since c1 admits clones, the pairs
{c1, c3} and {c1, c4} are non-adjacent. Let a = mp(c2c5) and b = mp(c3c4). We
distinguish two cases:

(i) a ≥ b: Consider the graph H ′ obtained from H by deleting all edges between
c3 and c4 (see Fig. 6.4b).

(ii) a < b: Consider the graph H ′ obtained from H by deleting all edges between
c2 and c5 and deleting a edges between c3 and c4 (see Fig. 6.4c).

We obtain the following result.

Claim 17 H ′ is nearly bipartite and

χ ′(H ′) =
{

χ ′(H) if a ≥ b,

χ ′(H) − a if a < b,
and χ ′

f (H ′) =
{

χ ′
f (H) if a ≥ b,

χ ′
f (H) − a if a < b.

(a) ...

a

b

(b) ...
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Fig. 6.4 (a) The block H ; (b) H ′ when a ≥ b; (c) H ′ when a < b
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Proof Suppose that a ≥ b. Clearly χ ′(H ′) ≤ χ ′(H). Consider now an optimal edge
coloring of H ′. Notice that the colors used to color the edges (c2c5)

1, . . . , (c2c5)
a

are not used to color any other edges in H ′. Thus we obtain an edge coloring of H

from the edge coloring of H ′ by using the colors of the edges (c2c5)
1, . . . , (c2c5)

a

to color the edges (c3c4)
1, . . . , (c3c4)

b. This is possible since a ≥ b. Thus we obtain
a feasible edge coloring of H using χ ′(H ′) colors. Hence χ ′(H ′) = χ ′(H). Clearly
H ′ is nearly bipartite since, for instance, H ′ − c2 is bipartite.

Now suppose that a < b. Consider an optimal edge coloring of H . By re-coloring
some of the edges (c3c4)

1, . . . , (c3c4)
b, if necessary, we may assume that the edges

(c2c5)
1, . . . , (c2c5)

a are colored with colors that are also used to color the first a

edges of (c3c4)
1, . . . , (c3c4)

b. These colors are not used for any other edges in the
graph. Now in H ′, we may assume without loss of generality that exactly those a

edges of (c3c4)
1, . . . , (c3c4)

b have been deleted. Thus we obtain a feasible edge
coloring of H ′ with χ ′(H) − a colors. We claim that this coloring is optimal.
Indeed, if χ ′(H ′) < χ ′(H) − a, then we would obtain a feasible edge coloring
of H with strictly less than χ ′(H) colors by coloring the edges between vertices c2
and c5 as well as the added edges between vertices c3 and c4 with a new colors, a
contradiction. Clearly H ′ is nearly bipartite since, for instance, H ′ − c3 is bipartite.

The proof for the fractional chromatic index of H is similar and thus it is omitted.
This proves Claim 17. ��

Since both a and b in the definition of H ′ are integers, Claim 17 implies that

χ ′(H) =
⌈
χ ′

f (H)
⌉

, proving Claim 15 for |V (H)| ≥ 6. Finally, Claim 15 holds for

|V (H)| = 5 by Theorem 6.8. This proves the lemma. ��
We just showed that for a multigraph H = (G, mp) such that G is a block of an

OLoP graph, it holds that �χ ′
f (H)� = χ ′(H). This allows us to finish up the proof

of Theorem 6.6.

Proof of Theorem 6.6 Let H = (G, mp) be an OLoP multigraph. By Claim 9,
χ ′(G, mp) equals either the maximum cut-vertex degree or the maximum block
chromatic index. The same holds for χ ′

f (G, mp). The maximum cut-vertex degree
is integral, and by Claims14 and 15, we have �χ ′

f (B)� = χ ′(B) for each block of
H . This proves that �χ ′

f (H)� = χ ′(H) are required. ��

6.7.2 GOLoP Graphs

For any fixed integer b ≥ 1, every GOLoP(b) has the lcd-property with constant C,
where C only depends on b.

Theorem 6.9 There exists a function C(b) such that every GOLoP(b) graph has
the lcd-property with constant at most C(b).

Proof Please see Dereniowski et al. [7] for a complete proof. ��
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6.7.3 Minimizing the Schedule Length

After having found a linear (resp., a quadratic) algorithm for the problem K-MATCH

(resp., FIND-K-MATCH), a natural next problem to take on is MIN-MATCH. That
is, the problem of finding the smallest k such that the answer to K-MATCH is
affirmative. While trying to solve this problem, we run into two difficulties. The
first difficulty lies in the fact that the smallest value of k might be quite large. The
second difficulty follows from the fact that K-MATCH having an affirmative answer
does not necessarily imply that K-MATCH[k′] for k′ > k has an affirmative answer.
Thus, a straightforward binary search does not work. It seems that the best we can do
is a full search of all values of k up to the upper bound that is given by Theorem 6.9.
This leads to the following result.

Claim 18 Let b ≥ 1 be a constant integer. Let G be a GOLoP(b) graph, and let r be
a rate function for G. Then MIN-MATCH can be solved in O(|V (G)|d) time, where
d is the least common denominator of the rates.

Proof Let C = C(b) as in Theorem 6.9. Notice that C is a constant. For each
block B of G, let K(B) be the set of values k = 1, . . . , Cd such that there exists
a schedule of length k. These sets can be constructed in O(|V (G)|d) total running
time. Next, choose the smallest value k such that k ∈ K(B) for all blocks B, which
also takes O(|V (G)|d) time. ��

Although the algorithm above is efficient in the theoretical sense, we do note
that the constant C given by Theorem 6.9 is quite large. However, Conjecture 6.1
suggests that actual constant is as small as 2. Moreover, in the case of OLoP graphs,
Theorem 6.6 allows us to use C = 1.

6.8 Conclusions

While GOLoP(b) graphs are important due to their natural connection to OLoP
graphs, it would be interesting to derive the complexity results for more general
classes of graphs; Golumbic [14]. This seems to be a promising direction for further
research.

Finally, since the potential applications of the results presented in this chapter
lie in the area of wireless networks where the centralized algorithms are difficult or
impossible to implement, an interesting research direction is the investigation of the
schedule makespan minimization considered here in a distributed setting.
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Chapter 7
Proportionate and Ordered Open Shops

7.1 Introduction

The proportionate open shops have evolved along two parallel paths. The machine-
proportionate open shops can be traced back to the paper by Dror [5] who refers to
them as open shops with machine-dependent processing times. Naderi et al. [16] use
the same terminology. The idea is that each job in the machine-proportionate open
shop has the same length (total of its operation processing times), and the workload
on each machine is shared equally by all jobs. The other path, the job-proportionate
open shops was introduced by Koulamas and Kyparisis [10] who trace it back to Liu
and Bulfin [15] where the concept of ordered open shops was introduced. The idea
is that each machine in the job-proportionate has the same workload, and the same
proportion of that workload on each machine belongs to job Ji . The main focus
has been on the minimization of makespan which somewhat surprisingly turns out
NP-hard. In fact the machine-proportionate and job-proportionate open shops are
equivalent with respect to the minimization of makespan.

Dror [5], and Vakharia and Çatay [19] study total completion time for machine-
proportionate open shops with two machines.

We use the notation introduced in Koulamas and Kyparisis [10] for the job-
proportionate open shops, where O3|prpt|Cmax denotes job-proportionate open
shop makespan minimization on three-machines problem. The same notation will
be used for machine-proportionate open shops. It should be clear from the context
which model the notation refers to. The applications of proportionate open shops
are given in Chap. 5. It is worth observing that open shops with unit-time operations
discussed in Sect. 3.5 are both job-proportionate and machine-proportionate open
shops.
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7.2 Job-Proportionate Open Shops

A job-proportionate open shop is an open shop where pi,h = pi > 0 for each job
Ji , i = 1, . . . , n and machine Mh, h = 1, . . . , m. The n × m matrix of a job-
proportionate open shop is shown below

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1 . . . p1

p2 . . . p2

. . . . .

pi . . . pi

. . . . .

pn . . . pn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

All machine loads of a job-proportionate open shop are equal, L1 = · · · = Lm,
and equal to L = ∑n

i=1 pi . The proportion pi

L
of the total workload L on each

machine comes from job Ji . We assume that the jobs are ordered in non-decreasing
order of processing times p1 ≥ · · · ≥ pn, which is the same as non-decreasing
order of the workload proportions. It is worth mentioning that the processing time
matrix of job-proportional open shop admits a succinct encoding: One only needs
the processing times p1, . . . , pn and the number of machines m to specify the input.

7.2.1 Three-Machine Job-Proportionate Open Shop:
Complexity and Approximation

We study the three-machine job-proportionate open shop scheduling to minimize
makespan, O3|prpt|Cmax, in this section. Koulamas and Kyparisis [10] present
a 7

6 -approximation algorithm for this problem which is NP -hard in the ordinary
sense. We now present their result however with a different proof. For the sake of
presentation we begin by ignoring machine M2 for the time being, which machine
we chose to ignore is clearly irrelevant by definition of the job-proportionate open
shop. We also assume without loss of generality that 2p1 ≤ L. We will show no
loss of generality resulting from this assumption later in the proof. Observe also that
Koulamas and Kyparisis [10] show a polynomial-time algorithm for 2p1 +p2 ≥ L,
see Problem 7.1.

The schedule on M1 and M3 that minimizes makespan is shown in Fig. 7.1. The
schedule is feasible since each job Jj , j = 2, . . . , n is scheduled in the interval

[∑j−1
i=1 pi,

∑j

i=1 pi] on M1, and in the interval [∑j−1
i=2 pi,

∑j

i=2 pi] on M3. These
intervals are disjoint since pj ≤ p1. Moreover, the longest job J1 is scheduled in
the interval [0, p1] on M1, and in the interval [∑n

i=2 pi, L] on M3. The intervals
are disjoint since 2p1 ≤ L. We now include machine M2 back and extend the
schedule in Fig. 7.1 to include schedule on M2. The extension does not always give
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Fig. 7.1 A feasible schedule
on M1 and M3 with
makespan L

J1

J1

J2, . . . , Jn

J2, . . . , Jn

0

M1

M2

M3

?

L

Fig. 7.2 A schedule S1(j
∗)

for p2 + · · · + pj∗ ≤ p1 and
pj∗+1 + · · · + pn ≤ p1 for
some 1 < j∗ < n

J1

J1

J2, . . . , Jn

J2, . . . , Jn

0

M1

M2

M3

J1

3p1

Jj*+1 , . . . , Jn J2, . . . , Jj*

an optimal schedule; we show later that finding an optimal extension is NP -hard
in the ordinary sense; however, it does provide a 7

6 -approximation of the optimal
makespan. We now give details of the extension. For each 1 < j < n we have
either

(1)

p2 + · · · + pj ≤ p1 and pj+1 + · · · + pn ≤ p1, or (7.1)

(2)

p2 + · · · + pj > p1 and pj+1 + · · · + pn > p1, or (7.2)

(3)

p2 + · · · + pj > p1 and pj+1 + · · · + pn ≤ p1, or (7.3)

(4)

p2 + · · · + pj ≤ p1 and pj+1 + · · · + pn > p1. (7.4)

If either (7.1) or (7.2) holds for some 1 < j∗ < n, then optimal schedules S1(j
∗)

and S2(j
∗) are shown in Figs. 7.2 and 7.3, respectively.

We have Cmax = 3p1 for S1(j
∗), also Cmax = L for both equalities in (7.1).

We have Cmax = L for S2(j
∗). We observe that 2p1 > L implies (7.1) for each

1 < j < n. Thus an optimal schedule in Fig. 7.2 is optimal for 2p1 > L, which
means that the assumption 2p1 ≤ L is made without loss of generality.
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J1

J1

J2, . . . , Jn

J2, . . . , Jn

0

M1

M2

M3 J1

L

Jj*+1 , . . . , Jn J2, . . . , Jj*

Fig. 7.3 A schedule S2(j
∗) for p2 + · · · + pj∗ > p1 and pj∗+1 + · · · + pn > p1 for some

1 < j∗ < n

J1

J1

J2, . . . , Jn

J2, . . . , Jn

0

M1

M2

M3 J1

Cmax

Jj*+1 , . . . , Jn J2, . . . , Jj*

L

Fig. 7.4 A schedule S3(j
∗) for p2 + · · · + pj∗ > p1 and pj∗+1 + · · · + pn ≤ p1 for some

1 < j∗ < n

At this point it is worth observing that the existence of a partition of the multiset
{p2, . . . , pn} into two disjoint subsets with processing times summing up to p1 in
either subset ensures an optimal schedule with Cmax = 3p2 = L. The schedule
is obtained in a similar fashion like S1(j

∗). On the other hand the absence of such
a partition may result in an optimal makespan being larger than max{3p1, L}, and
also the makespan is intractable to compute. This observation naturally hints at the
minimization of makespan for the three-machine proportionate open shop being an
NP-hard problem. We return to the complexity of the three-machine problem later
once we deal with the case where for each 1 < j < n we have either (7.3) or (7.4)
satisfied.

Suppose (7.3) holds for some 1 < j∗ < n. For the largest such j∗ we have
Cmax −L < pj∗ and j∗ ≥ 3 in the schedule S3(j

∗) in Fig. 7.4. Thus Cmax −L < p3
for S3(j

∗).
If (7.4) holds for some 1 < j∗ < n, then we have Cmax − L ≤ p1 − (p2 + · · · +

pj∗) ≤ p1 − p2 in the schedule S4(j
∗) in Fig. 7.5.

We now make a key observation for (7.3) that holds for some 1 < j∗ < n. Since
p2 ≤ p1, there is 1 < i∗ < j∗ such that p2 +· · ·+pi∗ ≤ p1 and pi∗+1 +· · ·+pn >

p1. Observe that pi∗+1 + · · · + pn ≤ p1 leads to contradiction since (7.1) would
hold for 1 < i∗ < n. Therefore (7.4) holds for i∗, and we chose between shorter of
the two schedules S3(j

∗) and S4(i
∗). Similarly we make a key observation for (7.4)

that holds for some 1 < j∗ < n. Since pn ≤ p1, there is n > i∗ > j∗ such
that pi∗+1 + · · · + pn ≤ p1 and p2 + · · · + pi∗ > p1. Therefore (7.3) holds for
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J1

J1

J2, . . . , Jn

J2, . . . , Jn

0

M1

M2

M3 J1

Cmax

Jj*+1 , . . . , Jn J2, . . . , Jj*

L

Fig. 7.5 A schedule S4(j
∗) for p2 + · · · + pj∗ ≤ p1 and pj∗+1 + · · · + pn > p1 for some

1 < j∗ < n

i∗, and we chose between shorter of the two schedules S4(j
∗) and S3(i

∗). Thus we
get Cmax − L ≤ min {p3, p1 − p2} for the shorter of the two schedules in either
of the two cases. If p2 ≥ p1/2, then p1 − p2 ≤ p1/2. If p2 < p1/2, then p3 <

p1/2. Therefore, Cmax − L ≤ min {p3, p1 − p2} ≤ p1/2 for the shorter of the two
schedules in either case, and we get

C∗
max − L

C∗
max

≤ Cmax − L

max{3p1, L} ≤ 1

6
, (7.5)

where C∗
max is an optimal makespan. Thus we obtain a 7

6 -approximation algorithm
for the three-machine proportionate open shop. This proves the following theorem.

Theorem 7.1 The problem O3|prpt|Cmax has 7
6 -approximation algorithm.

We illustrate the algorithm for the following 5 × 3 job-proportionate open shop:

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

6 6 6
5 5 5
3 3 3
2 2 2
2 2 2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Each machine load is L = 18, and p2 + p3 = 8 > p1 = 6 and p4 + p5 =
4 < p1 = 6. The S3(3) schedule with Cmax = 20 is shown in Fig. 7.6. However,
p2 = 5 < p1 = 6 and p3 + p4 + p5 = 7 > p1 = 6. The S4(2) schedule with
Cmax = 19 is shown in Fig. 7.7.

Recently, Ni and Chen [17] reported a 13
12 -approximation algorithm for the job-

proportionate O3|prpt|Cmax problem. It remains open whether there is an FPTAS
for the job-proportionate open shop with fixed number of machines. Recall from
Sect. 3.2.3 that PTAS for Om||Cmax, and thus for Om|prpt|Cmax, exists. Hence
the factor 13

12 can be improved by polynomial-time algorithms. We show a different
PTAS for Om|prpt|Cmax later in Theorem 7.5.
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Fig. 7.6 A schedule S3(3) with Cmax − L = 2 ≤ p3 = 3
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Fig. 7.7 A schedule S4(2) with Cmax − L = 1 ≤ p1 − p2 = 1

Fig. 7.8 A schedule for
partition A1 and A2
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We now return to the computational complexity of O3|prpt|Cmax. The insights
obtained through our analysis of the 7

6 -approximation should now easily lead to
the NP-hardness proof. The proof is from the NP-complete PARTITION problem
where for a multiset {a1, . . . , an} of positive integers one asks whether there is a
partition into disjoint sets A1 and A2, A1 ∪ A2 = {1, . . . , n} such that

∑
i∈A1

ai =∑
i∈A2

ai = B, see Garey and Johnson [6]. We need n jobs, each with three
operations, in the open shop instance. Job Ji has processing time ai on each of
the three machines. In addition there is a long job J ∗ that has processing time B on
each of the three machines. Altogether n + 1 jobs. The Cmax = 3B.

Suppose A1 and A2 make up a partition, i.e.,
∑

i∈A1
ai = ∑

i∈A2
ai = B. Then

the schedule with Cmax = 3B is shown in Fig. 7.8.
Suppose there is a schedule with Cmax = 3B. Clearly job J ∗ is scheduled in

the interval [B, 2B] on one of the machines. Since the workload on each machine
is exactly 3B, and the operations are scheduled without preemption, the total
processing time of all operations that complete by B and after 2B on that machine
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equals B and B, respectively. Thus clearly there exists a partition. This proves
that O3|prpt|Cmax is NP-hard. Sevastyanov [18] gives a pseudopolynomial-time
algorithm for O3|prpt|Cmax. Therefore we have the following theorem.

Theorem 7.2 The problem O3|prpt|Cmax is NP -hard in the ordinary sense.

7.3 Machine-Proportionate Open Shops

7.3.1 The Job-Proportionate and Machine-Proportionate Open
Shops Are Equivalent for Makespan

A machine-proportionate open shop is an open shop where pi,h = ph > 0 for each
job Ji , i = 1, . . . , n and machine Mh, h = 1, . . . , m. The machine-proportionate
open shop is also referred to as open shop with machine-dependent processing times
in the literature, Dror [5]. The n × m matrix of a machine-proportionate open shop
is shown below

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1 . . . pm

p1 . . . pm

. . . . .

p1 . . . pm

. . . . .

p1 . . . pm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

All jobs of a machine-proportionate open shop are identical, thus all job lengths
are equal, P1 = · · · = Pn, and equal to P = ∑m

i=1 pi . The machine workloads are
however different and equal L1 = np1, . . . , Lm = npm for machines M1, . . . , Mm,
respectively. The proportion ph

P
of the total workload comes from machine Mh. We

assume that the machines are ordered in non-increasing order of processing times
p1 ≥ · · · ≥ pm, which is the same as non-increasing order of the proportions. It
is worth mentioning that the processing time matrix of machine-proportionate open
shop admits a succinct encoding: One only needs the processing times p1, . . . , pm

and the number of jobs n to specify the input.
We observe that the transpose P

T of a processing time matrix P of a job-
proportionate open shop is a processing time matrix of a machine-proportionate
open shop. Thus a job-proportionate open shop with n jobs on m machines becomes
a machine-proportionate open shop with m jobs on n machines.

Consider the makespan minimization in job-proportionate and machine-
proportionate open shops. For a feasible schedule S(P) of a job-proportionate
open shop P we have a feasible schedule S(PT ) for a machine-proportionate shop
P

T such that operation Oi,h of job Ji starts at a and completes at b on machine Mh

in S if and only if operation Oh,i of job Jh starts at a and completes at b on machine
Mi . This leads to the following observation.
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Fig. 7.9 A schedule S(PT ) corresponding to the schedule in Fig. 7.7

Observation 7.3 Let C1, . . . , Cm be completion times of machines M1, . . . , Mm,
respectively, in schedule S(P). Then C1, . . . , Cm are completion times of jobs
J1, . . . , Jm respectively in schedule S(PT ). Thus the makespans of S(P) and S(PT )

are equal.

Consider a job-proportionate open shop from the previous section, see Fig. 7.7.
We have

P
T =

⎡

⎣
6 5 3 2 2
6 5 3 2 2
6 5 3 2 2

⎤

⎦

for the corresponding machine-proportionate open shop. The operation of job Ji ,
i = 1, . . . , 5, on machine Mh, h = 1, . . . , 3 in the job-proportionate open shop
P becomes operation of job J ′

h on machine M ′
i in the machine-proportionate open

shop P
T . Thus we have three jobs J ′

1, J ′
2, and J ′

3, and five machines M ′
1, . . . , M

′
5 in

the machine-proportionate open shop. Job J ′
i has five operations having processing

times p′
i,1 = 6, p′

i,2 = 5, p′
i,3 = 3, p′

i,4 = 2, p′
i,5 = 2. For the schedule S(P) in

Fig. 7.7 we get the corresponding schedule S(PT ) in Fig. 7.9. The operation O2,3
is scheduled in the interval [0, 5] on machine M3 in S(P), and the corresponding
operation O ′

3,2 is scheduled in the same interval on machine M ′
2 in S(PT ). Similarly

the operation O5,1 is scheduled in the interval [17, 18] on machine M1 in S(P), and
the corresponding operation O ′

1,5 is scheduled in the same interval on machine M ′
5

in S(PT ). Both schedules S(P) and S(PT ) have the same makespan Cmax = 19.
However, total completion time of S(P) in Fig. 7.7 equals 5(L − 1) whereas total
completion time of S(PT ) in Fig. 7.9 equals 3L+1. Therefore, the job-proportionate
open shop scheduling may not be equivalent to the machine-proportionate open shop
scheduling for objective functions other than makespan.

An immediate consequence of Observation 7.3 is that the results obtained for the
job-proportionate open shop makespan minimization in the previous section carry
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over to the machine-proportionate open shop makespan minimization considered
in this section. In particular, the NP-hardness of three-machine makespan mini-
mization for the job-proportionate open shops implies the NP-hardness of three-job
makespan minimization for machine-proportionate open shops.

7.3.2 The n ≥ m Case Is Easy

Although it may seem somewhat surprising there exists a straightforward algorithm
that produces optimal schedules as long as the number of machines does not exceed
the number of jobs, i.e., n ≥ m, see Dror [5] for instance. In this case the
algorithm produces schedules with makespan equal to the workload of machine
M1 with the heaviest workload Cmax = np1. The algorithm, we call it the cyclic
permutation algorithm, starts with any permutation of jobs, say 1, 2, . . . , n, on
machine M1. Then it uses cyclic permutation h, . . . , n, 1, . . . , h − 1 on machine
Mh, h = 2, . . . , m. The jobs Jh, . . . , Jn, J1, . . . , Jh−1 are then scheduled in the
intervals [0, ph], [p1, p1 + ph], . . . , [(n − 1)p1, (n − 1)p1 + ph], respectively, on
machine Mh, h = 1, . . . , m. The schedule is feasible since job Ji is scheduled in the
intervals [(i − 1)p1, ip1] on M1, [ip1, ip1 + p2] on M2, . . . , [(i + h − 1)p1, (i +
h − 1)p1 + ph] on Mh, . . . , and [(i + m − 2)p1, (i + m − 2)p1 + pm] on Mm

for i ≤ n − m + 1. Those intervals do not overlap. For i > n − m + 1, job Ji

is scheduled in the intervals [(i − 1)p1, ip1] on M1, [ip1, ip1 + p2] on M2, . . . ,
[(n− 1)p1, (n− 1)p1 +pn−i+1] on Mn−i+1, in the interval [0, pn−i+2] on machine
Mn−i+2, . . . , [(m − n + i − 2)p1, (m − n + i − 2)p1 + pm] on machine Mm. Those
intervals do not overlap either for n ≥ m. Thus the algorithm produces a feasible
schedule with Cmax = np1 = L1 which is clearly optimal.

The schedule in Fig. 7.10 illustrates the output of the algorithm for a machine-
proportionate open shop with n = 7 jobs, m = 4 machines, and processing time
matrix

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 2 2 1
3 2 2 1
3 2 2 1
3 2 2 1
3 2 2 1
3 2 2 1
3 2 2 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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7.3.3 The n < m Case

By Observation 7.3 and Theorem 7.2 the machine-proportionate open shop is NP-
hard for n < m.

We can use the idea of cyclic permutations of n jobs on m machines, which
ensures optimality for n ≥ m, to the case n < m with fewer jobs than machines to
obtain approximate solutions. Just add m − n dummy jobs and run the algorithm
for the case n ≥ m with dummy jobs placed last in the cyclic permutation on
M1. Finally delete all dummy jobs from the resulting schedule to obtain a feasible
schedule for the original instance. The makespan of the schedule equals

Cmax = np1 + p2 + · · · + pm−n+1, (7.6)

which implies (2− 1
n
) max{np1, p1+· · ·+pm} ≥ Cmax ≥ max{np1, p1+· · ·+pm}.

Thus we get (2 − 1
n
)-approximation algorithm for the n < m case, see Naderi et al.

[16]. To illustrate this approach consider an example with n = 3 jobs and m = 4
where the jobs are as in the example of Fig. 7.10. The resulting schedule is shown
in Fig. 7.11.

The schedule is not optimal since a shorter schedule is shown in Fig. 7.12. The
idea behind the shorter schedule is to: first, reduce the original problem instance to a
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machine-proportionate open shop instance with possibly fewer machines �, � ≤ m,
and the same number of jobs n, then, to solve the latter, and finally to obtain a
schedule for the former with the same makespan. Since this approach may reduce
the number of machines, we may end up with � ≤ n which implies an optimal
schedule by the cyclic permutation algorithm for the latter instance, and thus an
optimal schedule for the former.

To be more specific we consider a BIN PACKING problem with each bin
capacity equals p1 and m items 1, . . . , m of sizes p1, . . . , pm, respectively, to pack
in as few bins as possible. Suppose that we can pack the items in � ≤ m bins
B1, . . . , B�. Let Ah be the set of items in bin Bh, h = 1, . . . , �. By definition the sets
are pairwise disjoint, their union includes all m items, and qh = ∑

i∈Ah
pi ≤ p1 for

j = 1, . . . , �. We assume q1 ≥ · · · ≥ q�. We thus get a machine-proportionate open
shop with � machines, M ′

1, . . . ,M
′
�, and n jobs, J ′

1, . . . , J
′
n, each having processing

time qh on machine M ′
h, h = 1, . . . , �. To illustrate we have � = 3, A1 = {1},

A2 = {2, 4} and A3 = {3}, and q1 = 3, q2 = 3, and q3 = 2, respectively, for the
example in Figs. 7.11 and 7.12. Since � = n we obtain an optimal schedule with
Cmax = 9.

Now, let S be a schedule with Cmax obtained by the cyclic permutation algorithm
for the reduced instance. We can then obtain a schedule for the original instance
by unpacking the bins and moving the original operations from each bin to the
original machines. Generally, consider bin Ah = {ph1, . . . , phk

} of job J ′
j scheduled

on machine M ′
h in the interval [a, b] in the schedule S. Unpack it, and schedule

operation Oj,h1 of Jj in [a, a+ph1 ] on machine Mh1 , . . . , and operation Oj,hk
of Jj

in [a+ph1 +· · ·+phk−1, a+ph1 +· · ·+phk
= b] on machine Mhk

. The intervals are
disjoint, thus no two operations of job Jj are overlapping in the resulting schedule.
Also the intervals occur on different machines thus after the unpacking no machine
Mh, h = 1, . . . , m, is required to process two or more operations of different jobs at
the same time. Finally observe both S and S′ have the same makespan. Therefore,
if � ≤ n, then makespan of S is np1 and so is of S′. Thus S′ is optimal. We observe
that in the example in Fig. 7.12.

We refer to the algorithm, which is actually a scheme since various algorithms
for BIN PACKING can be selected, just described as reduction-to-bin-packing
algorithm. The algorithm gives the following approximation guarantee for the
machine-proportionate open shop.

Theorem 7.4 The machine-proportionate open shop makespan minimization has a
(1 + n−1

�
)-approximation algorithm.

Proof We observe that the reduction-to-bin-packing algorithm ensures that q1 −
qj < q� for j = 2, . . . , � − 1. Thus

Cmax = nq1 + q2 + · · · + q�−n+1 ≤ q1 + (q1 + · · · + q�) + (n − 3)q�.

Since q1−q� < qj and q� ≤ qj for j = 2, . . . , �−1, we have max{q1−q�, q�} ≤ qj .
Thus

C∗
max ≥ q1 + · · · + q� ≥ q1 + (� − 2) max{q1 − q�, q�} + q�,
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Fig. 7.12 A schedule for
machine-proportionate open
shop with fewer jobs, n = 3,
than machines, m = 4
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split and move one unit to machineM4

therefore

Cmax − C∗
max

C∗
max

≤ 1 + q1 + (n − 3)q�

q1 + (� − 2) max{q1 − q�, q�} + q�

.

Assume q� ≤ q1
2 . Then max{q1 − q�, q�} = q1 − q� and we get

q1 + (n − 3)q�

q1 + (� − 2) max{q1 − q�, q�} + q�

= q1 + (n − 3)q�

(� − 1)q1 − (� − 3)q�

.

Since q1 ≥ 2q�, we have

q1 + (n − 3)q�

(� − 1)q1 − (� − 3)q�

≤ q1 + (n − 3)
q1
2

(� − 1)q1 − (� − 3)
q1
2

= n − 1

� + 1
.

Thus we get

Cmax − C∗
max

C∗
max

≤ 1 + n − 1

� + 1
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for q� ≤ q1
2 . Now assume q� >

q1
2 . Then max{q1 − q�, q�} = q� and we get

q1 + (n − 3)q�

q1 + (� − 2) max{q1 − q�, q�} + q�

= q1 + (n − 3)q�

q1 + (� − 1)q�

.

Since 2q� > q1 ≥ q� we have

q1 + (n − 3)q�

q1 + (� − 1)q�

≤ n − 1

�
.

Thus we get

Cmax − C∗
max

C∗
max

≤ 1 + n − 1

�

for q� >
q1
2 . Therefore

Cmax − C∗
max

C∗
max

≤ 1 + n − 1

�
,

which proves the theorem. ��
The advantage of the reduction-to-bin-packing algorithm will be illustrated on

the following example given in Koulamas and Kyparisis [10] for job-proportionate
open shop with n = 6 jobs and m = 3 machines

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

10 10 10
5 5 5
5 5 5
4 4 4
3 3 3
3 3 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

which becomes

P
T =

⎡

⎣
10 5 5 4 3 3
10 5 5 4 3 3
10 5 5 4 3 3

⎤

⎦ ,

for the corresponding machine-proportionate shop with n′ = 3 jobs and m′ = 6
machines. By applying a bin packing algorithm to the latter we get A1 = {1}, A2 =
{2, 3}, and A3 = {4, 5, 6}. This reduces the number of machines to � = 3 which
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Fig. 7.13 A schedule for machine-proportionate open shop with fewer jobs, n = 3, than machines,
m = 4

allows to obtain an optimal schedule for the machine-proportionate open shop in
Fig. 7.13a. By Observation 7.3, the original job-proportionate open shop has the
same optimal makespan Cmax = 30. The optimal schedule for the job-proportionate
open shop is shown in Fig. 7.13b.

We can use any approximation algorithm for the BIN PACKING problem, see
Coffman et al. [2] for a survey, or a heuristic to efficiently solve the BIN PACKING
problem which is NP-hard in the strong sense, Garey and Johnson [6].

The 7
6 -approximation of three-machine makespan minimization for job-

proportionate open shops implies the 7
6 -approximation of three-job makespan

minimization for machine-proportionate open shops.
Naderi et al. [16] give an MILP formulation of the problem for n < m. We close

this section by presenting a PTAS for Om|prpt|Cmax.

Theorem 7.5 For a fixed positive integer k and a fixed number of machines m there
is a (1 + 1

k
)-approximation algorithm for the job-proportionate open shop problem

Om|prpt|Cmax. The algorithm runs in polynomial time.

Proof Let P be an instance of the job-proportionate open shop problem
Om|prpt|Cmax with n jobs and m machines. Let PT be the corresponding instance
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of the machine-proportionate open shop problem with n′ = m jobs and m′ = n

machines. The reduction-to-bin-packing algorithm gives a (1+ n′−1
�

)-approximation

solution for P
T , where � ≤ m′. For n′−1

�
≥ 1

k
, we have k(m − 1) ≥ n. Since

both k and m are fixed, the number of jobs n is fixed. The optimal schedules
for fixed number of jobs can be computed in constant time. On the other hand if
n′−1

�
< 1

k
, we get (1 + 1

k
)- approximate solution by running the reduction-to-bin-

packing algorithm. By Observation 7.3 this solution can be converted into (1 + 1
k
)-

approximate solution for P. ��

7.4 Ordered Open Shops

Ordered open shops have been introduced by Liu and Bulfin [15]. Those open shops
require the same order of jobs on each machine (job-ordered open shops)

p1h ≥ · · · ≥ pih ≥ · · · ≥ pnh (7.7)

for each machine Mh, h = 1, . . . , m, which means essentially the same descending
order for each column of an instance P of the open shop. At the same time they
require the same order of machines (machine-ordered open shops)

pi1 ≥ · · · ≥ pih ≥ · · · ≥ pim (7.8)

for each job Ji , i = 1, . . . , n which means essentially the same descending order
for each row of an instance P of the open shop.

The following is an example of an instance of the ordered open shop:

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

10 8 7
7 6 5
6 5 5
5 4 4
3 2 2
2 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Clearly both the job-proportionate and the machine-proportionate open shops
studied in Sects. 7.2 and 7.3 are special cases of the ordered open shops. Therefore
the NP-hardness result obtained for the makespan minimization for the proportion-
ate open shops applies to the ordered open shops as well, see also Liu and Bulfin
[15] who prove that O3|ord|Cmax is NP-hard in ordered open shops.

Some special cases solvable in polynomial time have been reported for three-
machine machine-ordered open shops. The idea is to order the jobs (the rows) in
descending order of processing times on machine M1 with the heaviest workload,
and to consider column maximums
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Ah = max
i

{pih} (7.9)

for h = 1, 2, 3. For

p2,1 ≥ A2, (7.10)

i.e., the second longest operation on M1 is not shorter than the longest operation on
M2; Kyparisis and Koulamas [13] show an algorithm for makespan minimization
that runs in O(n) time.

Liu and Bulfin [15] propose a different sufficient condition for a linear-time
algorithm to minimize makespan. The condition requires that A1 and A2 occur in
different rows (belong to different jobs). Observe that their condition implies that of
Kyparisis and Koulamas [13].

7.5 Maximal Machine

We say that open shop P has a maximal machine if there is a column in P that
includes maximum value of each row. Without loss of generality we can assume
that if such a column exists in P, then it is column 1, or machine M1. Also without
loss of generality we can assume that jobs are ordered in descending order of their
processing times on M1, i.e.,

p11 ≥ p21 ≥ · · · ≥ pn1. (7.11)

Kyparisis and Koulamas [13] give a sufficient condition for O||Cmax to be
polynomially solvable for m = n. Let qi , i = 1, . . . , m, be maximum value in
the i × (m− i + 1) upper-right corner submatrix of P made up of the entries in rows
1, . . . , i and columns i, . . . , m of P. The condition is

pi1 ≥ qi (7.12)

for i = 1, . . . , m. Kyparisis and Koulamas [13] show that the optimal makespan
equals Cmax = p11 + · · · + pm1 (n − m dummy machines with 0 processing time
operations for all jobs is being added for the m < n case). For m > n, we turn to
the dual instance P

T with m′ = n < n′ = m. The optimal schedule is then obtained
for P in polynomial time by Observation 7.3.
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7.6 Dominated Machine

By definition of Adiri and Aizikowitz [1] MH dominates machine Mh if the longest
operation on Mh is not longer than the shortest operation on MH , formally

max
j

{pj,h} ≤ min
j

{pj,H }. (7.13)

For the instances of O3||Cmax with a dominated machine Adiri and Aizikowitz
[1] show how to start with an optimal schedule for O2||Cmax without a dominated
machine and extend this schedule to an optimal schedule for O3||Cmax by adding a
schedule on the dominated machine. Their algorithm runs in O(n) time.

7.7 Bottleneck Machine

A bottleneck machine needs to process an operation of each job; in other words no
job misses an operation on the bottleneck machine. The makespan minimization
for open shops with bottleneck machines is NP -hard even for three machines
since each machine in a job-proportionate open shop is a bottleneck machine.
Drobouchevitch and Strusevich [4] study O3||Cmax with at most two operations
per job, and a bottleneck machine. They show an algorithm that runs in O(n)

time for the problem. Drobouchevitch [3] further simplifies the algorithm. For
two bottleneck machines the problem reduces to O2||Cmax since then each job
has exactly two operations. By definition these two must be processed on the
two bottleneck machines, and there is nothing to schedule on the machine that is
non-bottleneck. The complexity status of the problem O3||Cmax with at most two
operations per job remains open; however, the problem O4||Cmax with at most two
operations per job is NP-hard in the ordinary sense, see Gonzalez and Sahni [7].
Kyparisis and Koulamas [14] show a polynomial-time algorithm for an arbitrary
number of machines when the bottleneck machine is a maximal machine at the
same time. Their algorithm runs in O(n + m log m) time.

7.8 Total Completion Time for Machine-Proportionate Open
Shops

The total completion time minimization for the machine-proportionate open shops is
NP-hard. This follows from the NP-hardness proof for the makespan minimization
problem in Theorem 7.2. In the proof, the makespan equals 3B if and only if
total completion time equals 9B since P1 = P2 = P3 = 3B for the three
jobs in the instance of machine-proportionate open shop. Observe that this does
not imply that the total completion time minimization problem is NP-hard for the
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8

job-proportionate open shops since Observation 7.3 may not hold for objective
functions, total completion time objective in particular, other than makespan.

We now concentrate on two-machine machine-proportionate open shop. The
problem instance is made up of n jobs, each having processing time p1 on M1 and p2
on M2. Without loss of generality p1 ≥ p2. Despite its simplicity the minimization
of total completion time for two-machine machine-proportionate open shop poses
some vexing open questions that we discuss in this section.

We assume p1 < 2p2 since the case p1 ≥ 2p2 is easy to solve, see Problem 7.3.
Optimal schedules for n = 1, 2, 3 are given in Fig. 7.14.

However, optimal schedules for n > 3 are not trivial to obtain generally. For
example, consider an instance with p2

p1
= 7

8 and n = 6, see Vakharia and Çatay
[19]. The schedule in Fig. 7.15a obtained by the greedy algorithm given in Dror [5]
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has total completion time Fa = 16p1 + 9p2 for the instance. The schedule avoids
idle time on either machine. Figure 7.15b gives a schedule proposed by Vakharia and
Çatay [19]. The schedule has total completion time Fb = 15p1+10p2 though it has
idle time on both machines. Finally, the schedule in Fig. 7.15c has total completion
time equal to Fc = 21p1 + 3p2. We have

Fc < Fb < Fa

since Fb − Fc = −6p1 + 7p2 > 0 for p2
p1

= 7
8 , and Fa − Fb = p1 − p2 > 0.

Thus neither schedule in Fig. 7.15a nor in Fig. 7.15b is optimal for the instance. The
schedule in Fig. 7.15c is an example of a no-wait schedule for an even n. The no-
wait schedules are defined in Fig. 7.16. Observe that the last three jobs for an odd n

are not per se scheduled in a no-wait fashion. The exception is made to reduce their
total completion time. For the no-wait schedule S we have total completion time
equal to

f (S) = n(n + 1)

2
p1 + n

2
p2,

for an even n, and

f (S) =
[n(n + 1)

2
− 2

]
p1 + n + 5

2
p2,

for an odd n. The no-wait schedules are interesting benchmark schedules. Besides,
the start and completion time of any job in the no-wait schedule can be computed
in O(max{log n, log p1} time. However, it remains open under what conditions the
no-wait schedules are optimal. In particular it remains open whether the schedules
are optimal for the instances with i∗ > n, where positive integer i∗ is defined as
follows:

(
1 + 1

i∗ + 1

)
p2 ≤ p1 <

(
1 + 1

i∗
)
p2. (7.14)
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7.9 Algorithm for Two Machines

We begin by characterizing optimal schedules first. The algorithm is given in
Sect. 7.9.2.

7.9.1 Characterization of Optimal Schedules

We give an algorithm for two machines in this section. We first introduce terminol-
ogy needed to characterize optimal schedules. Let S be a feasible schedule. We say
that job Ji is in M1-configuration in schedule S if the whole job Ji completes on
M1 in S. Thus, it is the operation of Ji on M1, i.e., Oj,1, that determines the job Ji

completion time in S. Similarly, we say that job Ji is in M2-configuration in S if
the whole job Ji completes on M2 in S. Thus, it is the operation of Ji on M2, i.e.,
Oj,2, that determines the job Ji completion time in S.

For i ≥ 3, let the operation in position i − 1 on M1 be scheduled in the interval
[Si−1, Ci−1], and the operation in position i on M1 be scheduled in the interval
[si, ci] on M2. If Si−1 ≤ si < ci ≤ Ci−1, then we say that there is a skip at i in S.
We have the following classification of optimal schedules for total completion time.

Lemma 7.1 Let S be an optimal schedule. Then either

• S has idle time on M1 or,
• S has no idle time on M1 but has a skip or,
• S has no idle time on M1 and (i − 1)p1 < ci < ip1, where ci is the completion

time of the operation in position i on M2, for i = 1, . . . , n.

Proof Let S be an optimal schedule without idle time on M1, and cj ≤ (j −1)p1 or
cj ≥ jp1 for some j = 1, . . . , n. (Without loss of generality assume that S is active,
i.e., each operation starts as early as other operations permit.) Take the smallest
such j . Then (k − 1)p1 < ck < kp1 for k = 1, . . . , j − 1. If cj ≤ (j − 1)p1,
then Sj−1 = (j − 2)p1 < cj−1 ≤ sj < cj ≤ (j − 1)p1 = Cj−1. Moreover,
since 2p2 > p1, we have j ≥ 3. Thus j is a skip. Now, if cj ≥ jp1 = Cj

for j , then since (j − 2)p1 < cj−1 < (j − 1)p1, we get cj − cj−1 > p1. Hence
sj −max{Sj , cj−1} ≥ p1 −p2 > 0 and thus there is idle time in [max{Sj , cj−1}, sj ]
on M2. Hence the schedule is not active since the operation in position j on M2 can
start earlier than in S. This leads to contradiction. ��

If a skip at i exists in S, then the operations scheduled in the positions following
the skip make up a tail which is easy to schedule to optimality. A tail is made up
of three mutually disjoint sets: Y—a non-empty set of jobs with operations on M1
only, X—a set of jobs with operations on M2 only, L—a set of jobs with operations
on M1 and M2, and two starting points S on M1 and s on M2, s ≤ S. Moreover,
y = |Y | > |X| = x. The schedule shown in Fig. 7.17 with each job in L being in
M1-configuration is feasible for Y ∪ X ∪ L. The job from L in position y + i on
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Fig. 7.17 A tail that starts at S on M1 and at s on M2. Each job in L is scheduled in M1-
configuration

M1 starts at S + (y + i − 1)p1 on M1, the job in position x + i on M2 completes at
s + (x + i)p2 on M2. We have s + (x + i)p2 ≤ S + (y + i − 1)p1, which ensures
feasibility since y > x and S ≥ s by definition of the skip. Total completion time of
the schedule equals

S(y + l) + (y + l)(y + l + 1)

2
p1 + s(x + l) + x(x + 1)

2
p2,

where |L| = l. No other schedule of Y ∪ X ∪ L that starts at S or later on M1, and
at s or later on M2 can have smaller total completion time. We have the following
lemma.

Lemma 7.2 If S is an optimal schedule with a skip at i, then there is an optimal
schedule S′ with a skip at i, and a tail that starts at S = Ci−1 on M1 and at s = ci

on M2.

Proof For a skip at i in an optimal S, consider the earliest such skip. Let xi−1 be
the number of jobs in M2-configuration that have one operation in some position in
{1, . . . , i − 1} on M1 (those operations complete by Ci−1 on M1), and the other in
some position in {i + 1, . . . , n} on M2. Let Xi−1 be the set of those jobs. Let yi by
the number of jobs in M1-configuration that have one operation in some position in
{1, . . . , i} on M2 (those operations complete by ci on M2), and the other in some
position in {i +1, . . . , n} on M1. Let Yi be the set of those jobs. Let c be the number
of jobs that complete by Ci−1. Each such job has one of its operations in a position in
{1, . . . , i−1} on M1 and the other in a position in {1, . . . , i} on M2. Since p1 < 2p2,
no operation starts and completes in [ci, Ci−1] . We have i − 1 = xi−1 + c and
i = yi+c. Thus yi = xi−1+1. The sets Xi−1 and Yi are disjoint. Thus the sets Xi−1,
Yi , and the set of remaining jobs L make up a tail with S = Ci−1 and s = ci . Keep
the schedule S in [0, Ci−1] on M1 and in [0, ci] on M2 unchanged and schedule jobs
in Yi on M1 in [Ci−1, Ci−1 + yip1] in any order and without idle time. Let the job
Ja be scheduled in position i − 1 on M1. If Ja /∈ Xi−1, then schedule the jobs in
Xi−1 on M2 in [ci, ci +xi−1p2] in any order. If Ja ∈ Xi−1, then schedule the jobs in
Xi−1 \ {Ja} in any order first and then job Ja last on M2 in [ci, ci + xi−1p2]. Since
Ci−1−ci ≥ 0 and p1−p2 > 0 we have Ci−1+yip1−(ci+xi−1p2) > p1. Therefore
we can schedule each of the remaining l jobs, |L| = l, in M1-configuration. The total
completion time of the tail is
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Fig. 7.19 Exchange the operations of jobs Jk1 and Ja on M2

yCi−1 + y(y + 1)

2
p1 + xi−1ci + xi−1(xi−1 + 1)

2
p2,

where y = yi + l. The resulting schedule, see Fig. 7.18, is feasible unless Xi−1 =
{Ja} and Ci−1 > ci . To complete the proof assume this condition holds.

Let k1 < k2 ∈ {1, . . . , i} be the positions on M2 with the two jobs in Yi , recall
that yi = xi−1 + 1. Let Jk1 and Jk2 be the jobs in those positions on M2. Those jobs
are in M1-configurations and occupy positions in {i + 1, . . . , n} on M1 in S. If at
least one of Jk1 and Jk2 is not done in parallel with Ja on M1 in S, then exchange
Ja with that job on M2, see Fig. 7.19. This exchange reduces the completion time
of job Ja by at least p2. Then schedule each job in Yi ∪ L in M1-configuration.
The resulting schedule is feasible since one of those jobs has an operation on M2
scheduled in position k2 ∈ {1, . . . , i} (i.e., by ci) on M2. Moreover total completion
time of jobs in Yi ∪ L is minimized by the resulting schedule and thus it does not
exceed the one in S. This however contradicts the optimality of S since the job Ja

completes earlier than in S.
If both jobs Jk1 and Jk2 on M2 are done in parallel with Ja on M1, then k1 = i−1

and k2 = i on M2, see Fig. 7.20. Consider the job Jb in position i − 2 on M2. Since
the jobs in Yi = {Jk1 , Jk2} are in M1-configuration, job Jb is in M2-configuration.
Move Jb in position i − 2 on M2 to position i − 1 on M2, move Jk1 in position i − 1
on M2 to position i on M2, and move Ja to position i − 2 on M2. These exchanges
delay the completion of job Jb by p2 but speed up the completion of Ja by at least
p2. The sets Yi , Xi−1 = ∅, and L make up a tail with S = Ci−1 and s = ci . The
schedule is optimal. ��

A tail in a schedule may also be a result of idle time on M1 even if there are no
skips in the schedule. We have the following lemma.
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Fig. 7.20 Exchange the operations of jobs Jk1 and Ja on M2

Lemma 7.3 If S is an optimal schedule with idle time in the interval [T , T + �],
� > 0, on M1, then there is a tail at s = S = T + � in S.

Proof In S, consider the earliest time T such that machine M1 is idle in the interval
[T , T + �] for some � > 0. Then there is a job Ji such that it completes at T + �

on M2 and it starts at T + � on M1. Let Ji be in position i on M2. Then positions
1, . . . , i − 1 on M2 are occupied by jobs that complete by T . Therefore there are at
least i − 1 positions on M1 by T . Suppose for contradiction that there are i or more
positions occupied by T on M1. Then T ≥ ip1 and T + � = xp1 + yp2, where
x + y = i. However, T + � = xp1 + yp2 ≤ ip1 ≤ T which gives contradiction.
Therefore, the sets Yi = {Ji}, Xi−1 = ∅, and L make up a tail that starts at s = S =
T + � in S. ��

The following lemma completes the characterization of optimal schedules.

Lemma 7.4 Let S be an optimal schedule with idle time on M1. Then there is an
optimal S′ that has no idle time on M1 but has a skip, or there is an optimal S′ with
a single idle time on M1.

Proof Let S be an optimal schedule with a skip and idle time on M1. Let i be
the earliest skip, i.e., let the operation in position i − 1 on M1 be in the interval
[Si−1, Ci−1], the operation in position i on M1 be in the interval [si, ci] on M2, and
Si−1 ≤ si < ci ≤ Ci−1. Let [T , T + �] be the earliest idle interval on M1 in S. If
T < Si−1, then the lemma holds by Lemma 7.3. If T ≥ Ci−1, then the lemma holds
by Lemma 7.2. ��

7.9.2 The Algorithm

We are now ready to present the algorithm. The algorithm relies on the characteri-
zation of optimal schedules given in Lemmas 7.1, 7.2, 7.3, and 7.4. It constructs a
directed graph G with weights on the arcs and then finds shortest paths in G. The
node of G is defined by a six-tuple (m1,m2, j, c, t = xp1 + yp2, i) where
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• i—position on M1 and M2, i = 1, . . . , n. We assume i = 0 for the initial state.
• m1—number of jobs in M1-configuration that have one operation in some

position in {1, . . . , i} on M2, and the other in some position in {i + 1, . . . , n}
on M1. We refer to these jobs as open jobs in M1-configuration.

• m2—number of jobs in M2-configuration that have one operation in some
position in {1, . . . , i} on M1, and the other in some position in {i + 1, . . . , n}
on M2. We refer to these jobs as open jobs in M2-configuration.

• j—position of the last open job in M2-configuration.
• c—number of jobs with both operations in positions in {1, . . . , i}. We refer to

these jobs as complete jobs.
• t = xp1 +yp2—completion time of the operation in position i on M2, x +y = i.

The starting node of in-degree 0 in G is (0, 0, 0, 0, 0, 0). The shortest path from
the starting note to a node (m1,m2, j, c, t = xp1 + yp2, i) in G gives an optimal
schedule of positions 1, . . . , i on M1 and M2 with (i) c jobs that complete in those
positions, (ii) m1 jobs in M1-configuration and m2 jobs in M2-configuration open
in those positions, where (iii) the last operation on M1 completes at ip1, and (iv)

the last operation on M2 completes at t , and where (v) the last open job in M2-
configuration is in position j . The path length equals total completion time of the
schedule. The G is constructed as follows. From the node

(m1,m2, j, c, t = xp1 + yp2, i)

with (i − 1)p1 < t < ip1 for n > i ≥ 1, G has an arc to each of the following
nodes:

• Completing an open job on M1, and completing an open job on M2:

– For m1 ≥ 1, m2 ≥ 2

(m1 − 1,m2 − 1, j, c + 2, t = xp1 + (y + 1)p2, i + 1),

the weight on the arc equals w = (i + 1)p1 + t + p2.
– For m1 ≥ 1, m2 = 1, and j < i

(m1 − 1,m2 − 1, 0, c + 2, t = xp1 + (y + 1)p2, i + 1),

the weight on the arc equals w = (i + 1)p1 + t + p2.
– For m1 ≥ 1, m2 = 1, and j = i

(m1 − 1,m2 − 1, 0, c + 2, t = ip1 + p2, i + 1),

the weight on the arc equals w = (i + 1)p1 + ip1 + p2.

• Completing an open job on M1, and opening a job in M1-configuration on M2
(we need n − (c + m1) ≥ 1 for such a job to exist):
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– For m1 > 0

(m1,m2, j, c + 1, t = xp1 + (y + 1)p2, i + 1),

the weight on the arc equals w = (i + 1)p1.

• Opening a job in M2-configuration on M1 (we need n − (c + m2) ≥ 1 for such a
job to exist), and completing an open job on M2.

– For m2 ≥ 2

(m1,m2, j, c + 1, t = xp1 + (y + 1)p2, i + 1),

the weight on the arc equals w = t + p2.
– For m2 = 1, and j < i

(m1,m2, 0, c + 1, t = xp1 + (y + 1)p2, i + 1),

the weight on the arc equals w = t + p2.
– For m2 = 1, and j = i

(m1,m2, 0, c + 1, t = ip1 + p2, i + 1),

the weight on the arc equals w = ip1 + p2.

• Opening a job on M1, and opening a job on M2. We need n − (c + m1) ≥ 2.

– For m2 ≥ 1

(m1 + 1,m2 + 1, j, c, t = xp1 + (y + 1)p2, i + 1),

the weight on the arc equals w = 0.
– For m2 = 0

(m1 + 1,m2 + 1, i + 1, c, t = xp1 + (y + 1)p2, i + 1),

the weight on the arc equals w = 0.

Any node

(m1,m2, j, c, t = xp1 + yp2, i)

with t ≤ (i−1)p1 for n ≥ i ≥ 3 is terminal, i.e., has out-degree 0 in G. For terminal
nodes to occur in G we need

(
1 + 1

n − 1

)
p2 ≤ p1
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which implies i∗ < n, see (7.14) for i∗. Therefore G for an instance with i∗ ≥ n

does not have terminal nodes. The shortest paths in G are used to compute optimal
schedules, by adding tails if need be.

For i = 0, . . . , n, consider the nodes n(i, t) = (0, 0, 0, i, t = xp1 + yp2, i) with
(i − 1)p1 < t < ip1 and t + p2 > ip1. Let αn(i,t) be the shortest path from the
starting node to n(i, t). Let fn(i,t) be the length of αn(i,t). Define

Fn(i,t) = fn(i,t) + (t + p2)(n − i) + (n − i)(n − i + 1)

2
p1

to account for the tail. Let

F = min
n(i,t)

{Fn(i,t)}.

For each terminal node n(m2, i, t) = (m1,m2, j, c, t = xp1 + yp2, i) with t ≤
(i − 1)p1 for n ≥ i ≥ 3. Let βn(m2,i,t) be the shortest path from the starting node to
n(m2, i, t). Let hn(m2,i,t) be the length of βn(m2,i,t). Define

Hn(m2,i,t) = hn(m2,i,t) + ip1(n− i)+ (n − i)(n − i + 1)

2
p1 +m2t + m2(m2 + 1)

2
p2

to account for the tail. Let

H = min
n(m2,i,t)

{Hn(m2,i,t)}.

Finally, consider the nodes n(t) = (0, 0, 0, n, t = xp1 + yp2, n) with (n − 1)p1 <

t < np1. Let γn(t) be the shortest path from the starting node to n(t). Let en(t) be the
length of γn(t) and

I = min
n(t)

{en(t)}.

The optimal solution has total completion time that equals min{F,H, I }.
By induction, we can prove that m1 = m2, m1 + c = i, m2 + c = i, and

x + y = i for each node (m1,m2, j, c, t = xp1 + yp2, i). The number of nodes in
G is bounded by a polynomial of n. Thus the shortest paths in G can be computed
in polynomial time, and so can be the optimal schedule after accounting for the
possible tails. However, we need to keep in mind that the problem instances can
have short inputs (succinct encoding) that require only O(max{log n, log p1}) bits,
see Kubiak [11], Kubiak et al. [12], Hochbaum and Shamir [9], Grigoriev [8], and
Dror [5] for similar type of problems. Thus the algorithm is not polynomial with
the succinct encoding of the input. We have the following two open problems.
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Problem 7.1 Can the start and completion of any job in optimal schedules be
computed in time polynomial in O(max{log n, log p1})? Can the value of minimum
total completion time be computed in time polynomial in O(max{log n, log p1})?

Problems

7.1 Show that the job-proportionate open shop scheduling to minimize makespan,
O3|prpt|Cmax, can be solved in polynomial time if L ≤ 2p1 + p2.

7.2 Show a schedule that minimizes total completion time for two-machine
machine-proportionate open shop with p1 ≥ 2p2.

7.3 Find an optimal solution for the instance in Fig. 7.15.
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Chapter 8
Multiprocessor Open Shops

8.1 Preemptive Open Shops with Multiprocessors

The open shop scheduling has been extended to open shop scheduling with
multiprocessors by replacing a single machine in each stage by a set of identical
parallel machines or by having a single machine in each stage but allowing each
operation of a job to be processed on a set of machines from different stages, see
Lawler et al. [11] (similar models are also considered by Vairaktarakis and Sahni
[20]). For these extensions machine workloads remain unknown until operations
are allocated to machines, which is a main departure from the open shop scheduling
studied in Chap. 3. The two extensions are particularly appealing for preemptive
scheduling, since the allocation of operations to machines can then be obtained in
those extensions so that the resulting maximum machine workload is a lower bound
on the schedule makespan. Moreover, the allocation can be obtained in polynomial
time. Once the allocation has been determined, one is left with an instance or a set
of instances of an open shop with preemptions. By König’s edge-coloring theorem
the open shop has makespan that equals either the processing time of the longest
job, which has not changed by the allocation, or the maximum machine workload,
which due to the allocation, equals the lower bound on the schedule makespan. A
schedule with this makespan can then be found in polynomial time by the algorithm
of Gonzalez and Sahni [8] for instance. That is in a nutshell the approach taken in
this chapter.

The open shop with multiprocessors is appealing also because of its applications.
Matta [12] studies a multiprocessor open shop scheduling in a large oncology center
where patients (jobs) need to be tested by multiple testing departments and each test
can be performed by parallel identical machines. The applications of multiprocessor
open shop scheduling are discussed in the last section.
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8.1.1 Single-Operation Machines: McNaughton Meets König

In this section we consider the problem O(P )|pmtn|Cmax with parallel identical
machines in each stage, see Lawler et al. [11]. The notation O(P ) denotes open
shop with an arbitrary number of stages and an arbitrary number of parallel identical
machines in each stage. In other words, a single machine in each stage of the
open shop O is being replaced by a set of parallel identical machines to increase
processing capacity of the stage and possibly reduce makespan in the O(P ) open
shop. The operations O1,h, . . . , On,h processed on machine Mh in the open shop
O can now be processed on any parallel machine in the set Mh that replaces the
machine (stage) Mh in the open shop O(M) with parallel machines. However, no
operation Oi,h is permitted to be processed on machines from Mh′ for h �= h′.
The numbers of parallel machines in the sets Mh may differ. Each set Mh along
with the operations O1,h, . . . , On,h makes up an instance Ih of the P |pmtn|Cmax
problem. The operation processing times p1,h, . . . , pn,h become the processing
times of the jobs in the instance Ih. Without losing much generality let us assume
integral processing times for the time being.

McNaughton [15] proposes a wrap-around rule to obtain an optimal schedule Sh

for P |pmtn|Cmax with makespan

max

{

max
i

{pi,h}, Lh

|Mh|
}

(8.1)

for the Ih. The optimal schedules S1, . . . , Sm for the instances I1, . . . , Im, respec-
tively, define an open shop with |M1| + · · · + |Mm| single-machine stages. The
number of jobs remains unchanged, yet each job may possibly have different
operations that depend on the schedules S1, . . . , Sm. However, the construction
ensures that each job Ji has the same length Pi as in the original instance. To
illustrate this approach let us consider an open shop instance in Table 8.1 where
M1 = {M1,M2}, M2 = {M3,M4,M5}, and M3 = {M6,M7}. The operations
Oi,1, i = 1, . . . , 5 can be processed on two parallel identical machines inM1. The
optimal preemptive schedule obtained by McNaughton wrap-around rule is given
in Fig. 8.1. We have L1 = 23 in the instance I1; thus the optimal makespan equals
L1/2 = 11 1

2 in the figure.

Table 8.1 An instance I of
open shop with identical
parallel machines in each
stage

Ji pi,1 pi,2 pi,3

J1 4 2 1

J2 3 5 6

J3 7 2 0

J4 4 4 3

J5 5 8 2
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O1,1 O2,1

O3,1

O3,1

O4,1 O5,1

0 21
2 61

2 111
2

M1

M2

Fig. 8.1 An optimal wrap-around schedule S1 of O1,1, . . . , O5,1 on parallel machines M1 and M2

Fig. 8.2 An optimal
wrap-around schedule S2 of
O1,2, . . . , O5,2 schedule on
parallel machines M3, M4,
and M5

O1,2 O2,2

O3,2 O4,2

O5,2

0 2 6 7 8

M3

M4

M5

The operations Oi,2, i = 1, . . . , 5 can be processed on three parallel identical
machines inM2. The optimal preemptive schedule obtained by McNaughton wrap-
around rule is given in Fig. 8.2, where we have L2 = 21 and L2/3 = 7, but p5,2 = 8.
Finally, the operations Oi,3, i = 1, . . . , 5 can be processed on two parallel machines
in M3. The optimal preemptive schedule obtained by McNaughton wrap-around
rule is given in Fig. 8.3, where L3 = 12 and L3/2 = 6. The new instance I ′ obtained
from the original instance I and the schedules S1, S2, and S3 is given in Table 8.2.
Clearly, the new instance may have the operations of each job spread between more
machines than the instance I , for example, job J3 is processed by machines M1
for 4 1

2 and M2 for 2 1
2 and M4 for 2 units of time in I ′. This gives P1 = 9, which

is the same as in I , see Table 8.1. The instance I ′ is an instance of O|pmtn|Cmax.
By König’s edge-coloring theorem the makespan of optimal preemptive open shop
schedule for I ′ equals

max

{

max
i

{Pi}, max
h

{ Lh

|Mh| }
}

. (8.2)

Compare this to the makespan of an optimal preemptive open shop with a single
machine in each stage

max{max
i

{Pi}, max
h

{Lh}}. (8.3)

An optimal schedule for the instance I ′ is given in Fig. 8.4. The schedule is
optimal for the instance I since Cmax = P5.
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Fig. 8.3 An optimal
wrap-around schedule S3 of
O1,3, . . . , O5,3 schedule on
parallel machines M6 and M7

O2,3

O1,3 O4,3 O5,3

1 4 6

M6

M7

0

Table 8.2 The instance I ′
obtained by applying the
wrap-around rule to each of
the three stages

Jj M1 M2 M3 M4 M5 M6 M7

J1 4 0 2 0 0 1 0

J2 3 0 5 0 0 5 1

J3 4 1
2 2 1

2 0 2 0 0 0

J4 0 4 0 4 0 0 3

J5 0 5 0 0 8 0 2

J1

J1

J1

J2

J2 J2

J2

J3

J3

J3

J4

J4

J4

J4

J5 J5

J5

J5

M1

M2

M3

M4

M5

M6

M7

0 21
2

6 101
2 15

Fig. 8.4 An optimal schedule for the instance I ′ in Table 8.1 obtained from I in Table 8.2

8.1.2 Multiple-Operation Machines

The model with multiple-operation machines was introduced by Lawler et al. [11].
Like in the traditional open shop job, Ji consists of operations Oi,1, . . . , Oi,m.
However, the operation Oi,h is no longer required to be processed on a single
machine Mh, as in the traditional open shop, or on parallel machines in the set
Mh, as in the open shop with identical parallel machines, but on machines in the
setMi,h. In contrast to parallel open shop some machines inMi,h may also process
operations Oj,k where h �= k, which happens whenMi,h ∩Mj,k �= ∅. This makes
it more difficult to determine the minimum maximum machine workload L∗ in an
optimal solution. We use the networkN in Fig. 8.5 to determine the smallest L, i.e.,
L∗, such that the s − t flow in N equals
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Fig. 8.5 An arc from machine Mh to operation (i, k) exists if and only if Mh ∈Mi,k

F =
n∑

i=1

m∑

h=1

pi,h.

The search for L∗ is a binary search between the lower bound

LB =
⌊∑

i,k pi,k

m

⌋

and the upper bound

UB = max
h

{Lh}, (8.4)

where

Lh =
∑

Oi,k∈oh

pi,k (8.5)
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and oh = {Oi,k : Mh ∈ Mi,k} be the set of all operations Oi,k that can be
processed on machine Mh. The binary search cannot however be limited to integers.
Fortunately, the fractions are not too small in an optimal L∗, which makes the binary
search to run in polynomial time. To see that, consider the set L of machines Mh

for which the capacity L∗ on the arc from s to Mh is attained by the s − t flow in
N . Let L has the smallest cardinality among all such flows. Then no operation Oi,k

with positive flow from Mh ∈ L to (i, k) has a positive flow f > 0 from machine
M /∈ L to (i, k). If it does, then f could be increased by some amount, and at the
same time Mh would no longer be saturated. Thus the contradiction. Let O be the
set of operations Oi,k with positive flow from some Mh ∈ L to (i, k). We have

|L|L∗ =
∑

Oi,k∈O

pi,k. (8.6)

Therefore, if L∗ is fractional, then its fraction is α
|L| for some 1 ≤ α < |L| ≤ m.

Thus the binary search runs in polynomial time. The whole algorithm however is
not strongly polynomial, see Tardos [19], since the number of steps depends on
log pmax. A strongly polynomial algorithm however can be obtained as follows. For
each h = 1, . . . , m and Oi,k ∈ oh define a non-negative variable xh,i,k to denote
the amount of operation Oi,k processed on Mh ∈ Mi,k . Let L be a variable to
denote the common bound on machine workloads. The following linear program
LP determines the smallest possible bound L, i.e., L∗

min L (8.7)

subject to

∑

Mh∈Mi,k

xh,i,k = pi,k for each operation Oi,k; (8.8)

∑

Oi,k∈oh

xh,i,k ≤ L for each machine Mh. (8.9)

The linear program is combinatorial since each variable is multiplied by 1 in
the constraints (8.8) and (8.9). Thus the numbers in the constraint matrix of
the LP are bounded by a polynomial in n and m. Tardos proposes a strongly
polynomial algorithm for combinatorial linear programs that runs in time, which
is polynomial in n and m but is independent of the length of binary encoding of
pi,k . The length of rational number p

q
is the number of bits in its binary encoding,

�log2(|p| + 1)� + �log2(|q| + 1)�, see Tardos [19] for details and Dadush et al. [6]
for recent developments.

The open shop instance corresponding to the solution is then obtained by taking
processing time
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qi,h =
∑

k:Mh∈Mi,k

xh,i,k

for the operation Oi,h. By König’s edge-coloring theorem the makespan of an
optimal preemptive open shop equals

max{max
i

{Qi}, L∗}, (8.10)

where by (8.8)

Qi =
m∑

h=1

qi,h =
m∑

h=1

∑

k:Mh∈Mi,k

xh,i,k =
m∑

k=1

∑

Mh∈Mi,k

xh,i,k =
m∑

k=1

pi,k = Pi.

(8.11)
To illustrate, consider processing times of the instance from Table 8.1. Let the

operations in the set

{O1,1,O1.2,O1,3,O2,1,O2,2,O4,2,O4,3,O5,1,O5,2,O5,3}

be processed on M1, the operations in the set

{O1,1,O1.2,O1,3,O2,1,O2,2,O2,3,O3,1,O3,2,O3,3,O4,1}

on M2, and the operations in the set

{O2,3,O3,1,O3,2,O3,3,O4,1,O4,2,O4.3,O5,1,O5,2,O5,3, }

on M3. Thus M1,1 = {M1,M2} and M3,1 = {M2,M3} for example. An optimal
solution to the LP with L∗ = 18 2

3 is shown in Table 8.3. The open shop instance I ′
corresponding to the solution is given in Table 8.4.

8.2 Non-Preemptive Open Shops with Parallel Machines

In this section we consider the problem O(P )||Cmax with single-operation
machines. The problem is NP-hard in the strong sense since it includes P ||Cmax as a
subproblem for example. Schuurman and Woeginger [17] show a 2-approximation
polynomial-time algorithm for the problem O(P )||Cmax with an arbitrary number
of stages and machines. The algorithm extends the idea of Bárány and Fiala [2].

Theorem 8.1 A greedy algorithm for O(P )||Cmax produces schedules that are
shorter than twice optimal makespan.

Proof Let
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Table 8.3 An optimal
solution to the LP

Oi,k x1,i,k x2,i,k x3,i,k

O1,1 0 4 0

O1,2 0 2 0

O1,3 0 1 0

O2,1 2 5
6

1
6 0

O2,2 4 5
6

1
6 0

O2,3 0 1 1
6 4 5

6

O3,1 0 7 0

O3,2 0 2 0

O3,3 0 0 0

O4,1 0 1 1
6 2 5

6

O4,2 2 0 2

O4,3 1 1
2 0 1 1

2

O5,1 2 1
2 0 2 1

2

O5,2 4 0 4

O5,3 1 0 1

Table 8.4 The open shop
instance I ′ obtained from the
solution in Table 8.3

Ji pi,1 pi,2 pi,3

J1 0 7 0

J2 7 2
3 1 1

2 4 5
6

J3 0 9 0

J4 3 1
2 1 1

6 6 1
3

J5 7 1
2 0 7 1

2

Lh = 1

mh

n∑

i=1

pi,h (8.12)

be the average workload for stage h = 1, . . . , m where mh = |Mh|. Start with an
empty schedule that has all machines available from t = 0 on. For each operation
Oi,h not yet scheduled, determine the earliest t such that:

1. There is at least one machine M inMh with no job processed on M at t .
2. Job Ji is not processed on any machine inM \Mh at t .

The greedy algorithm proposed in Schuurman and Woeginger [17] works as
follows. Select a not yet scheduled operation Oi,h with the smallest t , break ties
arbitrarily, and schedule it to start at t on M . Continue until all operations are
scheduled. The schedule S so obtained is feasible since by (1) no operation can
start on machine M ∈ Mh, h = 1, . . . , m at t when all machines in Mh are
occupied by processing other operations at t , and by (2) no operation of job Ji



8.2 Non-Preemptive Open Shops with Parallel Machines 201

can start at t if some other operation of job Ji is being processed at t . Let Oi,h

be the last operation scheduled on machine M ∈ Mh, h = 1, . . . , m, in S. We
have Ch

max ≤ Lh + Pi − pi,h

mh
, pi,h > 0. To see this we observe that Oih cannot

start earlier in S since either (1) or (2) does not hold for any t earlier than the start
time s of Oi,h in S, which means that for any t < s either jobs are processed on
all machines in Mh or job Ji is processed on some machine in M \Mh. Thus
s ≤ Lh − pi,h

mh
+ Pi − pi,h, which proves Ch

max ≤ Lh + Pi − pi,h

mh
. By (8.12) we

have C∗
max ≥ Lh, and clearly C∗

max ≥ Pi . Hence, Ch
max/C∗

max ≤ 2 − pi,h

mhC∗
max

< 2 for
each h = 1, . . . , m. Thus the greedy algorithm produces schedule S with makespan
Cmax such that Cmax/C∗

max < 2 for each instance of O(P )||Cmax. ��
Sevastianov and Woeginger [18] propose a PTAS for a fixed number of stages

and the number of processors in each stage bounded by a constant. Jansen and
Sviridenko [9] strengthen this result by showing a PTAS for a fixed number of
stages but allow the number of processors in each stage to be arbitrary. Kononow
and Sviridenko [10] give a PTAS for a fixed number of stages and the number
of processors in each stage bounded by a constant, but they allow operation release
dates. Chen and Strusevich [4] give a (2− 1

max{m1,m2}2 )-approximation algorithm for
two stages with m1 machines in one stage and m2 machines in the other. Naderi et al.
[16] propose a mixed integer linear program and heuristics for the total completion
time minimization problem, O(P )||∑Ci . Adak et al. [1] review mathematical
programming formulations, heuristic, metaheuristics, and test data for the open shop
with parallel machines.

Chen et al. [5] and Dong et al. [7] propose a somewhat different model. The set
of jobs J processed on m machinesM of an open shop needs to be partitioned into
k disjoint subsets J1, . . . ,Jk to be processed on sets of machines M1, . . . ,Mk ,
respectively, in order to minimize the overall makespan. Each setMh, h = 1, . . . , k,
is a copy ofM. Thus we partition an open shop into k open shops with fewer jobs
each to minimize makespan. The problem is denoted by P(O)||Cmax to underline
the difference from the open shops with parallel machines discussed earlier. Chen et
al. [5] show a 2-approximation algorithm for Pk(O2)||Cmax and 3

2 -approximation
algorithm for P 2(O2)||Cmax. Observe that once a partition of jobs between k two-
machine open shops has been given in those problems, then an optimal schedule
is easy to obtain since each of the k two-machine open shops can be scheduled
to optimality in linear time. Therefore, the key to the optimal solution for those
problems is optimal partition of jobs between two-machine open shops. Dong et al.
[7] give an FPTAS for Pk(O2)||Cmax, i.e., for partitioning a two-machine open shop
into k two-machine open shops. The k is not part of the problem input. The partition
of three-machine open shop into k three-machine open shops, Pk(O3)||Cmax, looks
more challenging since the existence of an FPT AS for Om||Cmax, m ≥ 3, is an
open question, see Woeginger [21].
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8.3 Applications

Matta and Patterson [14] and Matta [12] study a multiprocessor open shop
scheduling in a large oncology center where patients (jobs) need to be tested by
multiple testing departments all on a given day. The stages, i.e., types of tests carried
out by various testing facilities, are as follows:

• Computer tomography (CT) scan
• Magnetic resonance imaging (MRI)
• Electrocardiogram (EKG)
• Echocardiogram (ECHO)
• Positron emission tomography (PET) scan
• Bone scan
• Pulmonary function test
• Barium swallow
• Barium enema
• X-ray
• Ultrasound imaging
• Mammogram
• Bone survey
• Blood draw

Matta [12] points out that the tests can be performed in any order on any patient,
which makes her problem an instance of an open shop scheduling. Furthermore,
each test can be performed by parallel identical machines, which makes it an
instance of open shop with parallel single-operation machines. Finally, tests in any
given stage take about the same time regardless of patient’s gender, age, or illness,
which makes the problem an instance of machine-proportionate open shop. This
last claim holds since testing operations follow a well defined routine that results in
little or no variance in their processing times. For instance an X-ray takes 30 min,
while a bone scan takes 120 min regardless of the age, gender, or illness, see Matta
and Elmaghraby [13]. Other applications given in Matta and Elmaghraby [13]
include:

• A day spa
• Component tests before building a finished product
• College course registration

Vairaktarakis and Sahni [20] further expand the applications to include load
balancing, see also Bondy and Murty [3], and preventive maintenance. Zhang et
al. [22] apply a multiprocessor open shop scheduling with additional constraints to
appointment scheduling for integrated practice units.
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Chapter 9
Compact Scheduling of Open Shops

9.1 Compact Schedules

We discussed dense schedules for open shop in Chaps. 3 and 5. We now turn
our attention to compact schedules where for each job Ji there is a time interval
[Si, Si+Pi] where the job is processed—this implies no-waiting between operations
of the job—and where for each machine Mh there is a time interval [sh, sh + Lh]
where the machines process all its operations—this implies that compact schedules
forbid idle time inserted between operations on machines. The compact schedules
are motivated by compact timetabling where students do not wait for their next
class to attend, and teachers do not wait for their next class to teach, see Asratian
and Kamalian [9]. Another motivation comes from scheduling interviews for job
fairs. Bartholdi and McCroan [10] give an example of The Southeastern Public
Interest Job Fair held each year in a November weekend when 25–50 US law firms
and 100–200 law students from the Southeast come to Atlanta for job interviews.
To obtain a timetable of the meetings between the firms (machines) and the students
(jobs) one can model this problem as an open shop or bipartite graph edge-coloring
problem. However, students have normally fewer meetings than law firms, which
may result in timetables that possibly force students to wait between consecutive
interviews, and force law firms to stay idle. Thus the following question comes up
naturally: Is it possible to obtain a compact timetable where students do not wait
between interviews and law firms are not idle between interviews? If such compact
timetables exist, find the one with minimum makespan. Hansen [29] provides yet
another motivating example where a school looks for a schedule of parent–teacher
meetings in time slots so that every person’s meetings take place in consecutive time
slots.

The compact schedules may not exist for some instances of open shop, for
example, the following open shop with m = 3 machines and n = 2 jobs does
not have a compact schedule:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Kubiak, A Book of Open Shop Scheduling, International Series in Operations
Research & Management Science 325,
https://doi.org/10.1007/978-3-030-91025-9_9
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J1

J1

J1

J2

J2

J2M1

M2

M3

0 3 4 5 9

Fig. 9.1 An open shop instance with no compact schedule

Fig. 9.2 A compact schedule
for PMSW that permits
preemptions

J1

J1

J1

J1

J2

J2

J2

J2

J3

J3

J3

M1

M2

M3

0 1 4 5

PPK =
[

3 3 3
1 1 1

]

,

see Petrosyan and Khachatrian [45]. The schedule for PPK in Fig. 9.1 is compact
on each machine, and also job J1 is processed without waiting between its three
operations. Job J2, however, needs to wait between its operations on M1 and M2 in
the schedule. No feasible schedule for PPK is compact, see Problem 9.1.

Compact schedules permit preemptions as shown by the following open shop
given by Mahadev et al. [40]:

PMSW =
⎡

⎣
2 2 0
2 2 0
1 1 3

⎤

⎦ .

Figure 9.2 shows a compact schedule for PMSW , where J1 is processed in [0, 4], J2
in [1, 5], and J3 in [0, 5] and machines M1 and M2 are occupied in [0, 5], and M3
in [1, 4]. However, both J1 and J2 are preempted in the schedule.

Even for open shop instances with 0-1 operations, compact schedules may not
exist, for example, the following instance PM with n + m = 19 and � = 15:
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PM =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 1
1 1 0 1
1 1 0 1
1 1 0 1
1 1 0 1
1 0 1 1
1 0 1 1
1 0 1 1
1 0 1 1
1 0 1 1
0 1 1 1
0 1 1 1
0 1 1 1
0 1 1 1
0 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

was given by Małafiejski [24]. Other instances without compact schedules were
given by Mirumyan (n + m = 19 and � = 15), Sevast’janow (n + m = 28 and
� = 21), Erdős (n + m = 27 and � = 13), Hertz and de Werra (n + m = 21
and � = 14), see Petrosyan and Khachatrian [45], and Jensen and Toft [32] for
further details. Petrosyan and Khachatrian [45] give examples of open shops with
n + m = 20 and � = 11, and n + m = 19 and � = 12 that have no compact
schedules thus leaving the existence of such open shops for � = 4, . . . , 10 open,
see Jensen and Toft [32]. On a positive side, Giaro [22] uses computer search to
prove that each open shop with n + m ≤ 14 has a compact schedule, and recently
Khachatrian and Mamikonyan [35] extended the computer search to prove the result
for n + m ≤ 15.

9.1.1 Interval Edge Coloring

Unless explicitly stated otherwise our discussion in this chapter concentrates on an
open shop scheduling problem with 0 − 1 operations and makespan minimization.
We denote this problem as O|pi,j ∈ {0, 1}, compact|Cmax. Thus, the instances of
the open shops can be recast as simple bipartite graphs, and the search for compact
schedules can be recast as the search for interval edge coloring. The interval edge
coloring of G was introduced by Asratian and Kamalian [9] who define it as an
edge coloring of G with colors 1, . . . , t where each color is used for at least one
edge, and for each vertex the edges incident with the vertex are colored with colors
making up an interval in 1, . . . , t .

Many results that prove the existence of interval edge coloring in bipartite
graph G have been obtained by first identifying a subgraph of G, then coloring
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its edges, and finally extending the edge coloring to all edges so that the resulting
edge coloring is an interval edge coloring of G, see Theorems 9.5 and 9.4 for
instance. The main challenge in this approach is to identify the right subgraph that
is included in as many as possible bipartite graphs and ideally to prove that there
is a polynomial-time test to check for a given bipartite graph whether it includes
the required subgraph or not. The subgraphs in question have been searched for
among factors of bipartite graphs. Thus we now briefly review main terminology
and definitions concerning factors of graphs. We follow a survey of graph factors by
Plummer [46], see also Akiyama and Kano [1].

We denote the set of vertices and the set of edges of graph G by V (G) and E(G),
respectively. Graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
A subgraph H of G spans G if V (H) = V (G). Subgraph H of G that spans G

is called a factor of G, see Plummer [46]. A factor defined in terms of its vertex
degrees will be referred to as a degree factor. Hence, if a factor has all of its degrees
equal to 1, it will be referred to as 1-factor or a perfect matching. A factor defined
in terms of desired features of a subgraph other than vertex degree alone will be
referred to as a component factor. For instance, a factor is made up of paths having
endpoints in a given set of vertices.

9.2 Complexity of Short Compact Schedules

We study the complexity of the compact open shop scheduling with respect to the
value of maximum vertex degree �. That is, for a given bipartite graph G = (V =
X ∪ Y,E), one asks whether there is an interval edge coloring of G that uses �

colors or not. Giaro [21] proved that the test can be done in polynomial time for
� ≤ 4; however, the problem becomes NP -complete for any � ≥ 5.

For a bipartite G with � ≤ 2, every connected component of G is either a path
or an even cycle. Thus, each component can be edge colored alternately with two
colors. This gives the required interval edge coloring of G.

Let us now consider � = 3.

9.2.1 Test for � = 3

Giaro [21] shows the following lemma for bipartite graphs with maximum degree
� = 3 and minimum degree d at least 2.

Lemma 9.1 A bipartite graph G with � = 3 and d ≥ 2 has an interval �-edge
coloring if and only if it has a perfect matching.

Proof Suppose I is a perfect matching in G = (V ,E). Color each edge in I with
color 2. The graph H = (V ,E \ I ) has vertices with degree 1 or 2. Hence, H is
a collection of paths and even cycles; thus, each component of H can be colored
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alternately with two colors 1 and 3. Therefore, each vertex of degree 2 in G is
colored with either 1 and 2 or 2 and 3, and each vertex of degree 3 in G is colored
with 1, 2, and 3. This gives an interval 3-edge coloring of G. Now suppose there is
an interval 3-edge coloring of G with 1, 2, and 3. Since � = 3 and d ≥ 2, for each
vertex there is an edge incident with that vertex and colored with 2. All such edges
make up a perfect matching. This proves the lemma. ��

It remains to consider bipartite graphs G = (V ,E) with vertices of degree 1. Let
U ⊆ V be the set of all vertices of degree 1 in V . Take a copy Gc = (V c, Ec) of G

to create a graph H = (V ∪ V c,E ∪ Ec ∪ {(u, uc) : u ∈ U}). The new graph H is
bipartite, and informally, machines in G become jobs in Gc and jobs in G become
machines in Gc, with � = 3. If H has an interval �-edge coloring, then so does its
subgraph G. On the other hand, if G has an interval �-edge coloring, then so does
Gc. This interval edge coloring of G and Gc can be extended to an interval edge
coloring of H by coloring (u, uc) with color 2 if the edges incident with u and uc

are colored with either 1 or 3, and with color 1 if the edges incident with u and uc

are colored with 2. Therefore, an interval �-edge coloring exists in G if and only if
it exists in H . Since H meets the condition of Lemma 9.1, we can test the existence
of interval �-edge coloring in G by computing a maximum cardinality matching in
H that can be done in O(|E|√|V |) time, see Micali and Vazirani [41].

9.2.2 Makespan Minimization for Compact Open Shops with
� ≤ 3

The following result is obtained by Hansen [29], see also Giaro [21].

Lemma 9.2 A bipartite graph with � = 3 has an interval edge coloring with at
most 4 colors.

Proof Let c be an edge coloring of a bipartite graph G = (V ,E) having �(G) = 3
with a minimum number of colors. By König’s edge-coloring theorem c uses 3
colors, say 1, 2, and 3. Let F ⊂ E be the subset of edges colored with 2 or 3 by
c. We now show how to obtain interval edge coloring with at most 4 colors from c.
Let W ⊆ V be the subset of vertices incident with at least one edge in F . The graph
H = (W,F ) is bipartite with �(H) = 2. Hence, H is a collection of paths and
even cycles. Each connected component of H is colored alternately with two colors
2 and 3. Moreover, each vertex of degree 1 in H has degree 1 or 2 in G. We now
show how to extend the edge coloring of H to an interval edge coloring of G. Let
e = (v, u) ∈ E \ F :

• u, v ∈ W , and deg(u) = deg(v) = 2 in H . Color e with color 1. Thus, the three
edges incident with u and v in G become colored with 1, 2, and 3.

• u, v ∈ W , and deg(u) = 1 and deg(v) = 2 in H . If the edge incident with u in
H is colored with 2, then color e with 1. Otherwise, if the edge incident with u



210 9 Compact Scheduling of Open Shops

in H is colored with 3, then color e with 4. Thus the three edges incident with v

in G become colored with 1, 2, and 3 or 2, 3, and 4, and the two edges incident
with u in G become colored with 1, and 2 or 3 and 4.

• u, v ∈ W , and deg(u) = deg(v) = 1 in H . Then u is an endpoint of a path C in
H , and v is an endpoint of a path D in H . If C �= D, then the path C ∪D ∪{u, v}
can be colored alternately with two colors 2 and 3. Hence, the two edges incident
with u and v in G become colored with 2 and 3. If C = D, then C ∪ {u, v} is an
even cycle, which can be alternately colored with 2 and 3.

• u ∈ V \ W and v ∈ W , and deg(v) = 2 in H . Then e is colored with 1 in c so
that the three edges incident with v in G remain colored with 1, 2, and 3.

• u ∈ V \ W and v ∈ W , and deg(v) = 1 in H . Then v is an endpoint of a path
C in H . The path C ∪ {u, v} can be colored alternately with two colors 2 and 3.
Hence, the two edges incident with v in G become colored with 2 and 3.

• u, v ∈ V \ W . Then, deg(u) = deg(v) = 1 in G, and e is colored with 1.

Therefore, we obtain an interval edge coloring of G with at most 4 colors. ��
Lemmas 9.1 and 9.2 give a polynomial-time algorithm for the shortest compact

open shop schedule for open shops G with � ≤ 3. First, we observe that compact
schedules for � ≤ 2 always exist. For � = 1 or � = 2 the shortest schedule
has makespan 1 or 2, respectively, and it is easy to obtain in linear time as pointed
out at the beginning of this section. For � = 3, check whether G has a perfect
matching. This can be done in O(|E|√|V |) time. If G has a perfect matching,
then by Lemma 9.1 the shortest schedule has makespan 3, and the schedule can
easily be obtained as in the proof of that lemma. Otherwise, by Lemma 9.2, the
shortest schedule has makespan 4. The schedule can be obtained as in the proof
of Lemma 9.2. First, we obtain a proper edge coloring of G in O(|E|) time by the
algorithm of Cole et al. [17]. This gives us H and its interval edge coloring. Second,
we extend the interval edge coloring of H to the interval edge coloring of G. The
overall complexity is O(|E|√|V |).

9.2.3 Test for � = 4

Giaro [21] proposes the following test for bipartite graphs with maximum degree
� = 4 and minimum degree d at least 3.

Lemma 9.3 A bipartite graph G with � = 4 and d ≥ 3 has an interval �-edge
coloring if and only if it has a 2-factor.

Proof Suppose H = (V , F ) is a 2-factor in a bipartite G = (V ,E). Thus H is
made up of even cycles. Color each even cycle of H alternately with colors 2 and 3.
The graph G′ = (V ,E\F) has vertices with degree 1 or 2. Hence, G′ is a collection
of paths and even cycles; thus, each component of G′ can be colored alternately with
two colors 1 and 4. Therefore, each vertex of degree 3 in G is colored with either
1, 2, and 3 or 2, 3, and 4, and each vertex of degree 4 in G is colored with 1, 2, 3,
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and 4. This gives an interval 4-edge coloring of G. Now suppose there is an interval
4-edge coloring of G. Each vertex of degree 4 is colored with 1, 2, 3, and 4, and
each vertex of degree 3 is colored either with 1, 2, and 3, or 2, 3, and 4. Thus each
vertex in G is incident with an edge colored with 2 and with an edge colored with
3. Therefore, the edges colored with 2 or 3 make up a 2-factor of G. ��

It remains to consider bipartite graphs G = (V ,E) with vertices of degree 1 or
2. Let U ⊆ V be the set of all vertices of degree 1 in V . Take a copy Gc = (V c, Ec)

of G to create a graph H = (W = V ∪ V c, F = E ∪ Ec ∪ {(u, uc) : u ∈ U}).
The new graph H is bipartite with � = 4 and d = 2. If H has an interval �-edge
coloring, then so does its subgraph G. On the other hand, if G has an interval �-
edge coloring, then so does Gc. This interval edge coloring of G and Gc can be
extended to an interval edge coloring of H by coloring (u, uc) with color 2 if the
edges incident with u and uc are colored with either 1 or 3, with color 1 if the edges
incident with u and uc are colored with 2, and with color 3 if the edges incident with
u and uc are colored with 4. Therefore, an interval �-edge coloring exists in G if
and only if it exists in H . We now deal with vertices of degree 2 in H . Let T ⊆ W be
the set of all vertices of degree 2 in H . Take a copy Hc = (Wc, F c) of H to create
a graph I = (W ∪ Wc, F ∪ Fc ∪ {(u, uc) : u ∈ T }). The new graph I is bipartite
with � = 4 and d = 3. Unfortunately, it is no longer straightforward to show that
if I has an interval �-edge coloring, then so does its subgraph H . Observe that the
color on some edges (u, uc) can be right in the middle of the interval for u and uc in
the �-edge coloring of I . Thus removing the edges from {(u, uc) : u ∈ T } results
in the two copies H and Hc, but their �-edge colorings may no longer be interval
for the vertices of degree 2. However, for either copy the resulting edge colorings
meet the conditions of the following lemma proved by Giaro [21]:

Lemma 9.4 Let G be a bipartite graph with � ≤ 4. If G has a 4-edge coloring with
colors 1, 2, 3, and 4 that is interval for each vertex of degree 3 or 4, and for each
vertex of degree 2 the difference between colors of edges incident with the vertex
does not exceed 2, then G has an interval 4-edge coloring with colors 1, 2, 3, and 4.

This proves that the existence of an interval �-edge coloring of I implies the
existence of an interval �-edge coloring of H .

On the other hand, if H has an interval �-edge coloring, then so does Hc. This
interval edge coloring of H and Hc can be extended to an interval edge coloring of
I by coloring (u, uc) with color 3 if the two edges incident with u and uc are colored
with 1 and 2, with color 1 if the two edges incident with u and uc are colored with
2 and 3, and with color 2 if the two edges incident with u and uc are colored with
3 and 4. Therefore, an interval �-edge coloring exists in G if and only if exists
in I . Since I meets the condition of Lemma 9.3, we can test the existence of �-
edge coloring in G by checking whether G has a 2-factor. The test can be done in
O(|E|√|V |) time whenever � is constant by reduction to the maximum cardinality
matching problem.
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9.2.4 Makespan Minimization for Compact Open Shops with
� ≤ 4

Let us begin with bipartite graph G = (X, Y,E) having each vertex of degree 4 or
2. The G = (X, Y,E) can be partitioned into bipartite subgraphs G1 = (X, Y,E1)

and G2 = (X, Y,E2) such that E1 ∩ E2 = ∅, E1 ∪ E2 = E, and degG(v) =
2 degG1

(v) = 2 degG2
(v), see Giaro [21]. We leave the proof as an exercise in

Problem 9.3. Then the G1 = (X, Y,E1) and G2 = (X, Y,E2) are collections of
even cycles and paths. Thus the edges of G1 can be colored with colors 2 or 3,
and the edges of G2 with colors 1 or 4. This gives an interval edge coloring with
1, 2, 3, and 4 of the edges incident with each vertex of degree 4 in G. Each vertex
of degree 2 in G has the edges incident with the vertex colored with 2 and 1, or
2 and 4, or 3 and 1, or 3 and 4. Thus, the difference between the colors does not
exceed 2. Therefore, the edge coloring meets the assumptions of Lemma 9.4, which
guarantees an interval 4-edge coloring of G. This result can be extended to bipartite
graphs with each vertex of degree 4 or 2 or 1 by using the construction described in
Sect. 9.2.3. Therefore, the following lemma, see Giaro [21], holds.

Lemma 9.5 A bipartite graph G with � = 4 and no vertex of degree 3 has an
interval �-edge coloring.

Observe that Lemmas 9.3 and 9.5 do not give a polynomial-time algorithm for
the shortest compact open shop schedules for open shops G with � ≤ 4.

Lemma 9.5 indicates that the presence of vertices of degree 3 in G may be the
cause of the difficulty in getting such an algorithm. Considerable efforts have been
made to understand the difficulty, in particular for (3, 4)-biregular bipartite graphs.
A bipartite graph G = (X, Y,E) is (3, 4)-biregular if each vertex in X has degree
3 and each vertex in Y has degree 4. In other words, each job has exactly three
unit-time operations, and each machine workload equals 4 (equivalently, for dual
open shop, each job has exactly 4 unit-time operations, and each machine workload
equals 3). We shall leave details of those efforts for Sect. 9.3. It now suffices to say
that lower bound on the makespan for such graphs is 6, see Theorem 9.6. Moreover,
Theorems 9.3, 9.4, and 9.5 show sufficient conditions for (3, 4)-biregular bipartite
graphs to admit makespan 6. However, some of those conditions remain NP -
complete to check. The computational complexity status of the following problem
remains open.

Problem 9.1 Given a bipartite graph G with � = 4. Find a compact schedule, if
any, with minimum makespan or conclude that no compact schedule for G exists.

Actually, the following problem posed by Jensen and Toft [32], see also
Petrosyan and Khachatrian [45], remains open.

Problem 9.2 Is there a bipartite graph G with 4 ≤ � ≤ 10 that does not have
interval edge coloring?
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9.2.5 Test for � ≥ 5

The problem to determine whether a bipartite graph has an interval edge coloring
is shown NP -complete by Sevast’janow [49]. However, we can observe that the
NP -completeness of the problem to decide whether there is an interval �(G)-edge
coloring of a bipartite graph G follows from the Gonzalez’s [26] proof of NP -
hardness of O|pi,j ∈ {0, 1}|∑Ci , see Sect. 3.6.2 for the proof details. Actually
the proof in Sect. 3.6.2 simplifies significantly when feasible schedules are limited
to compact schedules. Moreover, the optimal compact schedules for the instances
in the proof are ideal, that is a schedule for the instance that minimizes makespan
minimizes the total completion time at the same time, and the other way round,
a schedule for the instance that minimizes the total completion time minimizes
makespan at the same time. Thus, we get NP -completeness for compact open shop
scheduling for both the makespan and the total completion time. Observe, however,
that each machine workload in the proof equals 15 and length of each job equals
5; hence, � = 15 in the bipartite graph of the open shop. Now we strengthen this
result by showing that the open shop compact scheduling remains NP -complete for
bipartite graphs with maximum degree � = 5, see Giaro [21].

Theorem 9.1 The problem to decide whether there is an interval �(G)-edge
coloring of a bipartite graph G with �(G) = 5 is NP -complete.

Proof We follow the proof given by Giaro, see also Giaro et al. [23]. The point of
departure in that proof is the bipartite edge pre-coloring extension problem where an
instance is a bipartite graph H with each vertex of degree 1 or 3, and some pendant
edges (an edge (u, e) is pendant if deg(u) = 1 or deg(v) = 1) pre-colored with 0 or
1. Can we extend this pre-coloring to an edge coloring of H using colors 0, 1, or 2?
The problem is NP -complete, see Even et al. [20], Giaro [21], and Kubale [37].

Let us first select a list of five colors L = {−2,−1, 0, 1, 2}. Though the choice
of the interval of five colors is arbitrary, it will become later clear why this particular
choice fits the proof best. Second let us consider a series of simple bipartite graphs
that will be appended to H in order to enforce the required pre-coloring on the
pendant edges of H and to enforce a 3-edge coloring of H . Let us start with a
bipartite graph G in Fig. 9.3. Any interval edge coloring of G using colors from L

uses color 0 on one edge incident with d, on one edge incident with e, and on one
edge incident with f . Thus any interval edge coloring of G using colors from L

forbids color 0 on the edge (a, u). This is the main feature of G that will be used in
the proof.

The graph G will be used as a main building block in the construction of bipartite
graphs G0, G±1, and G±2. The required features of those graphs will immediately
follow from the main feature of G. Any interval edge coloring of G0 in Fig. 9.4
using colors from L uses 0 on one edge incident with γ ; moreover, this edge must
be (γ, θ).

It then follows that any interval edge coloring of G±1 in Fig. 9.5 using colors
from L uses either −1 or 1 on the edge (σ, ω).
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Fig. 9.3 A bipartite graph G

that forbids color 0 on the
edge (a, u) in any interval
edge coloring using colors in
L
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Fig. 9.4 A bipartite graph G0 that enforces color 0 on the edge (γ, θ) in any interval edge coloring
using colors in L

Finally, a copy of G0 and two copies of G±1 can be used to construct G±2 in
Fig. 9.6 that enforces colors −2 or 2 on the edge (α, β) in any interval edge coloring
using colors in L.

Let us now return to graph H , to each vertex v of degree 3 in H append a copy
of G±1 by making ω = v and a copy of G±2 by making β = v. Thus each vertex
of degree 3 in H becomes a vertex of degree 5. That is not all, for each pendant
edge (v,w) in H , where v is of degree 1, which is pre-colored with 0 append a copy
of G0 by making γ = v and θ = w. Finally, for each pendant edge (v,w) in H ,
where v is of degree 1, which is pre-colored with 1 append a copy of G±1 by making
σ = v and ω = w. This defines graph H ′ that is bipartite and with maximum degree
� = 5.
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Fig. 9.5 A bipartite graph G±1 that enforces colors −1 or 1 on the edge (σ, ω) in any interval
edge coloring using colors in L

Suppose there is an edge coloring of H with colors 0, 1, or 2 that respects the
pre-coloring of the pre-colored pendant edges. Then the three edges incident with
any vertex v of degree 3 in H are colored by 0, 1, and 2. The remaining two edges
incident with v in H ′ come from a copy of G±1 and a copy of G±2. They can then
be colored with −1 and −2, respectively, to make an interval edge coloring of v

using the interval L. The remaining edges in the copies of G±1 and G±2 can be
colored as in Figs. 9.5 and 9.6. Any pendant edge (v,w) in H pre-colored with 0
is replaced by a copy G0 for which the interval edge coloring is shown in Fig. 9.4,
and any pendant edge (v,w) in H pre-colored with 1 is replaced by a copy G±1 for
which the interval edge coloring is shown in Fig. 9.5 with color 1 on the edge (σ, ω).
This clearly gives the required interval edge coloring of H ′ using colors from L.

Now suppose there is an interval edge coloring of H ′ using colors from L.
Consider a vertex v with degree 3 in H , thus with degree 5 in H ′. There are five
different colors on the five edges incident with v. Two of these edges come from the
copies G±1 and G±2: one with the color 1 or −1 and the other with the color 2 or
−2. The remaining three belong to graph H : one is colored with 0, one with −1 or
1, and one with 2 or −2. Thus taking the absolute value of the color gives the edge
coloring of the edges incident with v with three colors 0, 1, and 2. By definition of
H each its vertex is either degree 3 or degree 1; thus we get a proper edge coloring
of H using colors 0, 1, or 2. Finally, the interval edge coloring of the copy of G0
that replaced a pendant edge of H pre-colored with 0 gives that edge color 0, and
the interval edge coloring of the copy of G±1 that replaced a pendant edge of H

pre-colored with 1 gives that edge color 1 or −1. Thus, the absolute value of the
colors in the interval edge coloring preserves the pre-coloring of H . This proves
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Fig. 9.6 A bipartite graph G±2 that enforces colors −2 or 2 on the edge (α, β) in any interval
edge coloring using colors in L

that it is possible to extend the pre-coloring to an edge coloring of H using colors
0, 1, or 2. Thus we proved that the problem in NP -complete. ��

Theorem 9.1 implies that the problem O|pi,j ∈ {0, 1}, compact|Cmax is NP -
hard in the strong sense. A polynomial-time approximation algorithm for O|pi,j ∈
{0, 1}, compact|Cmax does not exist unless P = NP since the decision problem to
determine whether a bipartite graph has an interval edge coloring is NP -complete,
see Sevast’janow [49].
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9.3 Biregular Open Shops

We have seen in Sect. 9.1 that compact open shop schedules may not always exist,
even for quite regular open shops like PM with 15 nodes of degree 3, 3 nodes of
degree 10, and 1 node of degree 15. Actually each job in PM has exactly three
unit-time operations, three machines have workload 10 each, and one has workload
15. Thus it comes only naturally to ask whether by making open shop even more
regular we can ensure that compact schedules always exist. This has turned out a
very challenging question that despite substantial efforts remains still wide open. We
discuss this question for some biregular bipartite graphs (or biregular open shops)
in this section. A bipartite graph G = (X, Y,E) is (a, b)-biregular if each vertex in
X has degree a and each vertex in Y has degree b. An example of (2, 6)-biregular
bipartite graph is given in Fig. 9.7. We focus on (2,�)- and (3, 4)-biregular bipartite
graphs in this section and assume the set of machines X = M and the set of jobs
Y = J .

9.3.1 (2,�)-Biregular Open Shops

In the (2,�)-biregular open shop, each machine processes exactly two unit-time
operations, and each job has the same length �. The open shop has always a
compact schedule with makespan � or � + 1. The solution for an even � has
makespan � and thus it is optimal. The solution is given by Hansen [29], and it is
based on the following seminal result of Petersen [44], see Akiyama and Kano [1]
and Plummer [46].

Theorem 9.2 For every integer k ≥ 1, every 2k-regular multigraph is 2-factorable.

Let G = (M,J, E) be a (2,�)-biregular bipartite graph. By the convention,
each vertex in M has degree 2, and each vertex in J has degree �. For G, let
H = (J,E′) be a job-multigraph where (Ji, Jj ) ∈ E′ if and only if there is Mh ∈ M

such that (Ji,Mh) ∈ E and (Jj ,Mh) ∈ E. Observe that there may be multiple edges
(Ji, Jj ) since the two jobs Ji and Jj may be processed together on more than one
machine. Therefore, we label each edge (Ji, Jj ) with the machine where Ji and Jj

are processed together. The labeling is unique since each machine processes exactly
two jobs in the (2,�)-regular open shop. There are exactly |M| = �|J |

2 edges in
the job-multigraph H , and H is �-regular. For � = 2k for some integer k ≥ 1,
Theorem 9.2 ensures that there are 2-factors F1, . . . , Fk of H . The 2-factors are
edge-disjoint and F1 ∪· · ·∪Fk = H . Consider 2-factor F�, � = 1, . . . k, and replace
each edge (Ji, Jj ) in F� by two edges (Ji,Mh) and (Mh, Jj ), where Mh is the label
on (Ji, Jj ). The resulting graph G� is an even cycle in G. Thus G� can be edge
colored with two colors 2� − 1 and 2�. The two edges incident with each machine
Mh in G� are colored with 2� − 1 and 2�, and the two edges incident with each
job Jj , j = 1, . . . , n are colored with 2� − 1 and 2� in G�. Thus � edges incident
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J1 J2 J3

M1 M2 M3 M4 M5 M6 M7 M8 M9

Fig. 9.7 An instance G of (2,�)-biregular open shop with � = 6, m = 9, and n = 3

Fig. 9.8 The job
� = 6-regular graph H for G
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with each job in G are colored with colors in the interval [1,�]. This proves that
(2,�)-biregular bipartite graph G has a �-interval edge coloring for an even �.

We illustrate this approach for a (2,�)-biregular open shop G in Fig. 9.7.
The labeled �-regular job-multigraph H for G is given in Fig. 9.8. The
factorization of H results in the following three job–machine cycles: G1 =
(J1,M1, J3,M3, J2,M5, J1); G2 = (J1,M2, J3,M4, J2,M6, J1); and G3 =
(J1,M9, J3,M7, J2,M8, J1). Finally, the compact schedule for G is given in
Fig. 9.9.

For an odd �, Hanson et al. [31] and Kostochka [36] show that there always
is an interval edge coloring using no more than � + 1 colors. The case � = 3 is
considered in Lemma 9.2. Somewhat surprisingly, the proof for an odd � ≥ 5 is
much more involved than this for an even � presented earlier. The proof will not be
presented here, see Hanson et al. [31] for the proof.

9.3.2 (3, 4)-Biregular Open Shops

The (3, 4)-biregular open shops are the simplest still unsolved cases of compact
open shop scheduling. There have however been a number of sufficient conditions
that guarantee the existence of compact schedules for those open shops. Pyatkin
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Fig. 9.9 A compact schedule
for G
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[47] gives the following sufficient condition for a (3, 4)-biregular bipartite graph to
have interval edge coloring.

Theorem 9.3 Let G = (X, Y,E) be a (3, 4)-biregular bipartite graph. If G has a
3-regular subgraph H such that Y ⊆ V (H), then G has an interval 6-coloring.

Unfortunately, the problem to determine whether a (3, 4)-biregular bipartite
graph G has a 3-regular subgraph H such that Y ⊆ V (H) is NP -complete, see
Pyatkin [47]. Thus, the sufficient condition is intractable to check for a given G.
Asratian et al. [8] show that the condition proposed by Pyatkin may not be satisfied
by some (3, 4)-biregular bipartite graphs.

Yang and Li [51] give another sufficient condition for a (3, 4)-biregular bipartite
graph to have interval edge coloring.

Theorem 9.4 Let G = (X, Y,E) be a (3, 4)-biregular bipartite graph. If G has
two (2, 3)-biregular bipartite components: G1 = (Y,X1, E1) where all vertices in
Y are of degree 2 and all vertices in X1 are of degree 3, and G2 = (Y,X2, E2)

where all vertices in Y are of degree 2 and all vertices in X2 are of degree 3 such
that X1 ∪ X2 = X, X1 ∩ X2 = ∅, E1 ∪ E2 = E, and E1 ∩ E2 = ∅. Then G has an
interval 6-edge coloring.

Yang and Li [51] show that for some graphs the sufficient condition in
Theorem 9.4 can be satisfied but not the sufficient condition in Theorem 9.3, and
the other way round. The complexity of the decomposition into the required two
(2, 3)-biregular bipartite components seems open.
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M1 M2 M3 M4 M5 M6 M7 M8

J1 J2 J3 J4 J5 J6

Fig. 9.10 The red edges make up the spanning subgraph P that meets the condition of Theo-
rem 9.5, see Asratian et al. [8]

M1 M2 M3 M4 M5 M6 M7 M8

J1 J2 J3 J4 J5 J6

2 2 22 11 5 555 66

Fig. 9.11 The edge coloring of the spanning subgraph P , see Asratian et al. [8]

Asratian et al. [8] give the following sufficient condition for a (3, 4)-biregular
bipartite graph to have interval edge coloring.

Theorem 9.5 Let G = (X, Y,E) be a (3, 4)-biregular bipartite graph. If G has a
spanning subgraph made up of paths with endpoints in X and lengths (the number
of edges on the path) in {2, 4, 6, 8}, then G has an interval 6-edge coloring.

Furthermore, Asratian et al. [8] conjecture that the condition is always satisfied
for (3, 4)-biregular bipartite graphs. In an attempt to prove the conjecture, Asratian
and Casselgren [6] show that each (3, 4)-biregular bipartite graph has a spanning
subgraph made up of paths with endpoints in X; however, they do not establish any
bound on the lengths of the paths in the subgraph. Casselgren [13] further shows that
each path in the subgraph is not longer than 22. Both Asratian and Casselgren [6]
and Casselgren [13] give polynomial-time algorithms to find a spanning subgraph
made up of paths with endpoints in X.

To illustrate the application of Theorem 9.5 consider the (3, 4)-biregular bipartite
graph G in Fig. 9.10. The graph comes from Asratian et al. [8]. It satisfies the
condition of Theorem 9.5, and the spanning subgraph P is made up of two paths
of length 6 with endpoints in X = M. Figures 9.11 and 9.12 show how to obtain
an interval 6-edge coloring for G. Finally, Fig. 9.13 shows the compact schedule
for G with makespan 6. The graph G in Fig. 9.10 does not satisfy the condition of
Theorem 9.3, see Asratian et al. [8].
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Fig. 9.12 The edge coloring of the graph G − P made up of two paths, the black and the green

Fig. 9.13 The compact
schedule with Cmax = 6 for
the open shop in Fig. 9.10
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9.3.3 (a, b)-Biregular Open Shops

Hanson and Loten [30] prove the following lower bound on the number of colors
required by an interval edge coloring, if any exists, of (a, b)-biregular bipartite
graph.

Theorem 9.6 No (a, b)-biregular bipartite graph has an interval edge coloring
with fewer than a + b − gcd(a, b) colors, where gcd (a, b) is the greatest common
divisor of a and b.

Observe that the interval edge colorings in Theorems 9.3, 9.4, and 9.5 use 6
colors, which is the lower bound for (3, 4)-biregular bipartite graphs. Therefore,
the schedules obtained in those theorems, if sufficient conditions are met, minimize
makespan.

Not much is known about interval edge coloring of (a, b)-biregular open shops
with a > 3. It has been observed at the beginning of Sect. 9.2.5 that the interval
15-edge coloring of (5, 15)-biregular bipartite graph is NP -complete. In the same
vein Asratian and Casselgren [5] show:
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Theorem 9.7 The interval 6-edge coloring of a (3, 6)-biregular bipartite graph is
NP -complete.

However, Casselgren and Toft [15] prove that (3, 6)-biregular bipartite graphs
always have interval edge colorings using 7 colors.

Theorem 9.8 Every (3, 6)-biregular bipartite graph has an interval 7-edge color-
ing.

This proves that the problem O|pi,j ∈ {0, 1}, compact|Cmax is NP -hard in the
strong sense for (3, 6)-biregular open shops. Hansen [29] and Jensen and Toft [32]
conjectured.

Conjecture 9.1 Every (a, b)-biregular bipartite graph G = (X, Y,E) where all
vertices in X are of degree a and all vertices in Y are of degree b has an interval
edge coloring.

9.4 Simple Graphs or Multigraphs

A word of caution may be in order at this point. The discussion in this chapter has
mostly assumed simple graphs rather than multigraphs. This assumption is made in
Giaro [21] for instance. That is we assume 0-1 operations for open shops, rather
than preemptive operations with preemptions permitted at integer points only. It is
not however often obvious whether the results reported in the literature for simple
graphs carry automatically over to multigraphs or not. Casselgren and Toft [15]
point out that Theorem 9.8 holds for multigraphs, and also the algorithm for (2,�)-
biregular bipartite graphs can be extended to multigraphs, see Hansen [29]. That is
those results hold for operations with processing times equal 0, 1, . . . ,�. Similarly,
Asratian et al. [8] assume multigraphs in their paper. At the same time, however,
those authors show that (3, 4)-biregular bipartite multigraphs G = (X, Y,E) need
not have spanning subgraphs made up of paths with endpoints in X and lengths in
{2, 4, 6, 8} to have interval 6-edge coloring. Their example is as follows:

PA =
⎡

⎣
1 3 0 0
1 0 3 0
1 0 0 3

⎤

⎦ ,

and a compact schedule with makespan Cmax = 6 is shown in Fig. 9.14. All this
despite the fact that no spanning subgraphs made up of paths with endpoints in
X and lengths in {2, 4, 6, 8} exists in PA. On the other hand Asratian et al. [8]
conjecture that every simple (3, 4)-biregular bipartite graph has spanning subgraphs
made up of paths with endpoints in X and with lengths in {2, 4, 6, 8}. Petrosyan and
Khachatrian [45] prove Lemma 9.2 for multigraphs.
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Fig. 9.14 The compact
schedule with Cmax = 6 for
the open shop PA
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9.5 Deficiency and Spans

In a schedule S, for each job Ji , there is a time interval [Si, Ci] where the job
is processed, and for each machine Mh there is a time interval [sh, ch] where the
machine processes all its operations. Recall that a compact schedule requires Ci =
Si + Pi for each job Ji and ch = sh + Lh for each machine Mh. However, compact
schedules do not always exist, see for instance open shop instances PPK and PM

given at the beginning of this chapter. This means that Ci − Si > Pi for some job
Ji or ch − sh > Lh for some machine Mh in S. We refer to the difference d(Ji) =
(Ci − Si) − Pi as job deficiency, and to the difference d(Mh) = (ch − sh) − Lh as
machine deficiency. The job deficiency of job Ji in S is the total waiting time of the
job in [Si, Ci] from its start at Si until its completion at Ci . The machine deficiency
of machine Mh in S is the total idle time of the machine in [sh, ch] from the start of
its first operation at sh until the completion of its last operation at ch. The schedule
S deficiency is then defined as the total job and machine deficiency

d(S) =
∑

i

d(Ji) +
∑

h

d(Mh). (9.1)

For an instance P of an open shop, the deficiency d(P) equals deficiency of a feasible
schedule S of P with minimum deficiency

d(P) = min
S

d(S). (9.2)

The concept of deficiency in the context of interval graph edge coloring was first
introduced by Giaro et al. [24]. For a given graph G = (V ,E) and an edge coloring
c of G they define deficiency d(v) of vertex v ∈ V to be equal to the deficiency of
the set of colors used by c to color the edges incident with v (for a subset A of the
set of colors {1, . . . , t}, the deficiency of A is the number of integers missing from
A between the minimum and maximum of A, see Giaro et al. [24]). The deficiency
d(G, c) of c is then the total efficiency of all vertices in V . Finally, the deficiency of
the graph G equals

d(G) = min
c

d(G, c). (9.3)
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Since open shops P with 0-1 operations are equivalent to bipartite graphs G =
(J,P, E), the two definitions are equivalent for those open shops. The test whether
d(P) = 0 (or d(G) = 0) is NP -complete, see Sevast’janow [49]. The deficiency
equals 0 for graphs that have interval edge coloring, and it is positive otherwise.

The following are the results on deficiency of some special open shops and
graphs. Giaro et al. [24] show that 1 ≤ d(PM) ≤ 3, recall PM from Sect. 9.1,
and prove lower and upper bounds on deficiency of some bipartite graphs without
interval edge coloring. They also show that there exist bipartite graphs with
deficiency approaching the number of vertices. For the sake of completeness we also
mention that in a similar vein Giaro et al. [25] compute deficiency of odd cycles,
wheels, broken wheels, and complete graphs. Schwartz [48] does this computation
for k-regular graphs with k = 1, 2, 3, 4 and shows upper bounds on the deficiency
of k-regular graphs for higher values of k. The deficiency of the multigraph PPK

equals 1. Section 9.4 briefly reviews some bipartite multigraphs with deficiency
0. Petrosyan and Khachatrian [45] show that for any � ≥ 9, among bipartite
multigraphs G with �(G) = �, there is a connected bipartite multigraph with
positive deficiency.

For a graph G with d(G) > 0, Giaro et al. [25] observe that the deficiency
d(G) is the number of pendant edges whose attachment to G makes it interval edge
colorable, i.e., reduces the deficiency to 0. For open shops, a pendant edge appended
to a job-vertex is equivalent to adding one more unit-time dummy operation to the
job and a unique dummy machine where this operation is processed on. A pendant
edge appended to a machine-vertex is equivalent to adding one more unique dummy
single-operation job to be processed on the machine. To our knowledge, not much
research has been conducted on the deficiency of compact schedules for bipartite
multigraphs.

9.5.1 Spans

For a graph G with deficiency d(G) = 0, there may generally be more than one
interval edge coloring c with d(G, c) = 0. For a bipartite G that means that there
may be compact open shop schedules with different values of makespan. Those
schedules with minimum makespan are then clearly desirable since they minimize
makespan and deficiency at the same time. Thus they naturally extend the concept
of ideal schedules to makespan and schedule deficiency, see Coffman et al. [16] for
the concept of ideal schedules.

Following Giaro et al. [25], we define the minimum span of graph G, s(G), and
the maximum span of G, S(G), as the minimum and maximum number of colors
among all edge colorings c of G with deficiency d(G, c) = 0, if any, respectively.
Giaro et al. [25] show �(G) ≤ s(G) ≤ S(G) ≤ 2|V | − 4 for graphs G = (V ,E)

with at least three vertices and d(G) = 0, and �(G) ≤ s(G) ≤ S(G) ≤ |V | − 1 if
in addition G is bipartite. The computation of s(G) and S(G) for a given graph G

appears a challenging and still open problem even for bipartite G, i.e., for open
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shops. The computation is reported for special graphs in Giaro et al. [25] and
Altinakar et al. [2]. Some insight into the difficulty is given by Sevast’janov [49]
who presents a bipartite G with s(G) = 100 and S(G) = 173 but no interval k-edge
coloring with k = 101, . . . , 172.

Altinakar et al. [2] extend the definition of spans to graphs with positive
deficiency by defining the minimum span of G, s(G), and the maximum span of G,
S(G), as the minimum and maximum number of colors among all edge colorings c

with deficiency d(G, c) = d(G), respectively. They show �(G) ≤ s(G) ≤ S(G) ≤
2|V | − 4 + d(G) for graphs G = (V ,E) with at least three vertices. To the best of
our knowledge, no algorithms and computational experiments have been reported
for the computation of s(G) or S(G), specifically for bipartite graphs G, in the
literature.

9.5.2 Computation of Deficiency

Bouchard et al. [12] present a tabu search algorithm to compute graph deficiency
d(G) of G. Their computational experiments lead them to a conclusion that graphs
with odd number of vertices pose a greater challenge for their algorithm, and so do
the graphs with large distance s(G) − �(G).

Altinakar et al. [2] propose edge-based integer programming (IP) models and
a constraint programming (CP) model to calculate d(G). Their IPs could calculate
d(G) of graphs with up to 7 vertices, and their CP could calculate d(G) of graphs
with up to 8 vertices in an hour or so in their experiments. The CP outperforms
the IP in the experiments. They also point out that though often the true deficiency
value can be found quickly for a graph G, the proof that the value is indeed true
deficiency of G can take much longer. To speed up their CP model computations,
Altinakar et al. [3] propose a set of symmetry braking constraints to supplement the
model. While the extended CP model can find and prove deficiency of some graphs
in a matter of seconds, which took hours for the original CP, the symmetry braking
constraints seem still insufficient to efficiently find d(G) of graphs with 10 or more
vertices.

Bodur and Luedtke [11] propose a matching-based integer programming model
to minimize d(G, c) over all edge colorings c with k ≥ �(G) colors. By starting
with k = �(G) and systematically increasing k by 1, one can find s(G) for which
the IP gives d(G). By running computational experiments, Bodur and Luedtke
[11] compare their integer programming model with the CP model of Altinakar
et al. [2]. Both models use some additional symmetry breaking constraints. Those
experiments show that the CP model is significantly faster than the proposed IP
model for low density graphs; however, the IP provides significant reduction in
running time for high density graphs, where the density of G = (V ,E) equals

2|E|
|V |(|V |+1)

. It seems that further improvements to the IP model are needed to insure
that the IP model can solve instances with 10 or more vertices in reasonable time.
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Those models and computational experiments presented in the literature have
focused mainly on general graphs, and hardly any computational results have
been reported explicitly for bipartite graphs. Bouchard et al.’s study [12] is
an exception that it presents computational results for complete bipartite graphs.
However for those graphs, Kamalian [33, 34] proves that complete bipartite graph
Ka,b has interval k-edge coloring, and thus its deficiency equals 0, if and only if
a + b − gcd (a, b) ≤ k ≤ a + b − 1, where gcd (a, b) is the greatest common
divisor of a and b. To the best of our knowledge no algorithms have been developed
specifically for bipartite graphs or bipartite multigraphs thus far. Such algorithms
and computational experiments seem a novel avenue for further research.

Shao et al. [50] propose integer programming formulation for the interval edge
coloring and use it on instances of complete k-partite graphs to disprove some
conjectures posed by Grzesik and Khachatrian [27].

9.6 Cyclic Compact Open Shop Scheduling

The cyclic interval edge coloring was introduced by de Werra and Solot [18] who
define it as an edge coloring of G with colors 1, . . . , t where each color is used for
at least one edge, and for each vertex the edges incident with the vertex are colored
with colors making up an interval in 1, . . . , t , or the colors from {1, . . . , t} not used
to color the edges incident with the vertex make up an interval in 1, . . . , t .

For bipartite G, we refer to cyclic interval edge coloring as cyclic compact open
shop schedule (also called cylindrical open shop schedule by de Werra and Solot
[18]). Thus in a compact open shop schedule, for each job, there is a single interval
between 0 and Cmax where the job is being processed; similarly for each machine
there is a single interval between 0 and Cmax where the machine is occupied. On the
other hand in a cyclic compact open shop schedule, for each job, there is a single
interval between 0 and Cmax where the job is not being processed, or there is a single
interval between 0 and Cmax where it is; similarly for each machine there is a single
interval between 0 and Cmax where the machine is idle, or there is a single interval
between 0 and Cmax where it is occupied.

Clearly, if an interval edge coloring exists for a graph G, then so does a cyclic
interval edge coloring. The opposite however does not hold. For instance, the open
shop PM presented in Sect. 9.1 does not have an interval edge coloring, yet it
has cyclic interval edge coloring, see Nadolski [43]. A cyclic compact open shop
schedule for PM is shown in Fig. 9.15. Observe that colors used for machine-vertex
M1 make up an interval 2, . . . , 11, and those used by machine-vertex M4 make up
an interval 1, . . . , 15. The machine-vertex M2 does not use colors 2, 3, 4, 5, 6 that
make up an interval of integers, and the machine-vertex M3 does not use colors
7, 8, 9, 10, 11 that also make up an interval of integers. We can also easily verify
that the definition of cyclic compact colorings is satisfied by the schedule for every
job-vertex.
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Fig. 9.15 A cyclic compact schedule for PM

Even so, cyclic compact schedules may not exist for some open shops. The
following open shop PACP with m = 6 machines, n = 15 jobs, and � = 14 is
shown by Asratian et al. [4] not to have cyclic interval edge coloring:

PACP =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 0
1 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 1
0 1 0 0 0 1
0 1 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 1 0 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Another example is the open shop PPK presented in Sect. 9.1, see also Asratian
et al. [4].

The motivation to study cyclic interval edge coloring comes from the just-in-time
systems where it is a common practice to repeat relatively short sequences to build
a sequence for a longer time horizon, see Monden [42], Hall [28], de Werra and
Solot [19], and Kubiak [39], to obtain a closer match with demand and improve
quality in just-in-time production.
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9.6.1 Makespan Minimization for Cyclic Compact Open Shops
with � = 3

The cyclic interval edge colorings may use fewer colors than interval edge colorings
for some graphs. Consider for instance bipartite graphs G with � = 3. Lemma 9.2
shows that there always is an interval 4-edge coloring of such graphs. However,
we observe that any 3-edge coloring c of a bipartite graph G = (X, Y,E) having
�(G) = 3 is actually a cyclic interval edge coloring of G. Namely, by König’s
edge-coloring theorem, the edge coloring c uses 3 colors, say 1, 2, and 3. Thus, the
colors the coloring c uses to color the edges incident with each vertex of degree 3 or
1 make up intervals. For each vertex of degree 2, the c colors the two edges incident
with the vertex either with 1 and 2, or 2 and 3, or 1 and 3. The first two are intervals
in 1, 2, 3. The third does not use color 2 that makes up an interval in 1, 2, 3. Thus, c

is a cyclic interval 3-edge coloring of G. Nadolski [43] proves that each connected
graph G with �(G) = 3 has cyclic interval edge coloring with at most 4 colors.

9.6.2 Makespan Minimization for Cyclic Compact Open Shops
with � = 4

For bipartite graphs G with � = 4, Lemma 9.5 guarantees the existence of interval
4-edge coloring for any G without vertices of degree 3. It remains to consider
bipartite graphs G = (V ,E) with � = 4 and vertices of degree 3. Let U ⊆ V

be the set of all vertices of degree 3 in V . Take a copy Gc = (V c, Ec) of G to create
a graph H = (W = V ∪ V c, F = E ∪ Ec ∪ {(u, uc) : u ∈ U}). The graph H is
bipartite with � = 4 and no vertices of degree 3.

If H has a cyclic interval �-edge coloring, then so does its subgraph G. Namely,
for any vertex u ∈ U the edges incident with u are colored with 1, 2, 3, 4 in any
cyclic interval �-edge coloring c of H . Thus the edge (u, uc) is colored with either
1, or 2, or 3, or 4 in c, and the remaining three edges with colors 2, 3, 4, or 1, 3, 4,
or 1, 2, 4, or 1, 2, 3, respectively. Therefore, the cyclic interval edge coloring for
u ∈ U exists, which implies that G has a cyclic interval �-edge coloring. On the
other hand, if G has a cyclic interval �-edge coloring, then so does Gc. The edge
coloring of G (and Gc) can be extended to a cyclic interval edge coloring of H

by coloring (u, uc) with color 1 if the edges incident with u and uc are colored
with either 2, 3, 4, with color 2 if the edges incident with u and uc are colored with
1, 3, 4, with color 3 if the edges incident with u and uc are colored with 1, 2, 4, and
with color 4 if the edges incident with u and uc are colored with 1, 2, 3. Therefore, a
cyclic interval �-edge coloring exists for G if and only if it exists for H . The latter
exists by Lemma 9.5 since H has no vertices of degree 3. This proves that cyclic
interval �-edge coloring always exists for bipartite graphs with � = 4.

Theorems 9.6 and 9.5 show that if an interval edge coloring of a graph bipartite
with � = 4 exists, then the coloring may require more than 4 colors, for instance,
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6 colors. Therefore, the difference between minimum makespans of compact and
cyclic compact schedules may be generally greater than 1, even for open shops with
� = 4.

9.6.3 Makespan Minimization for Other Cyclic Compact Open
Shops

Asratian et al. [4] generalize the algorithms from the previous Sects. 9.6.1 and 9.6.2
in the following theorem.

Theorem 9.9 For a bipartite graph G = (X, Y,E):

• If �(G) = 2k, k ≥ 2, and each vertex v ∈ V has degree 1 or 2 or 2k − 2 or
2k − 1 or 2k, then G has a cyclic interval 2k-edge coloring.

• If �(G) = 2k − 1, k ≥ 2, and each vertex v ∈ V has degree 1 or 2 or 2k − 2 or
2k − 1, then G has a cyclic interval (2k − 1)-edge coloring or a cyclic interval
2k-edge coloring.

They further show:

Theorem 9.10 Every bipartite graph G with each vertex having degree 1 or 2 or 4
or 6 or 7 or 8 has a cyclic interval edge coloring.

Kubale and Nadolski [38] prove that the problem to determine whether a
bipartite graph G(X, Y,E) has a cyclic interval edge coloring is NP -complete.
Their proof however requires G to have a large �(G), actually larger than |E|/2.
Thus the complexity of the problem remains open for bipartite graphs G with
� = 5. However, by Theorem 9.9 if G with �(G) = 5 misses vertices of degree 3,
then it has a cyclic interval 5-edge coloring or 6-edge coloring. Thus again vertices
with degree 3 would be key for graphs used in an NP -completeness proof, if any.
Actually, the following problem posed by Asratian et al. [4] remains open.

Problem 9.3 Is there a bipartite graph G with 5 ≤ �(G) ≤ 8 that does not have
cyclic interval edge coloring?

For bipartite graphs with � = 5, Casselgren et al. [14] prove the following
theorem:

Theorem 9.11 Every (3, 5)-biregular bipartite graph has a cyclic interval 6-edge
coloring.

Casselgren and Toft [15] show:

Theorem 9.12 Every (4, 8)-biregular bipartite graph has a cyclic interval 8-edge
coloring.

Asratian et al. [7] study deficiency of cyclic compact scheduling.
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Problems

9.1 Prove that there is no compact schedule for the instance PPK .

9.2 Prove Lemma 9.4.

9.3 Let G = (X, Y,E) be a bipartite graph having each vertex of degree 4 or
2. Show that G = (X, Y,E) can be partitioned into bipartite subgraphs G1 =
(X, Y,E1) and G2 = (X, Y,E2) such that E1 ∩ E2 = ∅, E1 ∪ E2 = E, and
degG(v) = 2 degG1

(v) = 2 degG2
(v). Hit: Use the fact that G is Eulerian.

9.4 Prove that an interval edge coloring exists for any (2,�)-biregular bipartite
graph with an odd �. Show that the number of colors used in the interval edge
coloring does not exceed � + 1.
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Chapter 10
No-Wait Open Shop Scheduling

10.1 No-Wait Open Shop Schedules Can Be Preemptive

We discussed compact schedules for open shop in Chap. 9. We now turn our
attention to no-wait schedules where for each job Ji there is a time interval
[Si, Si+Pi] where the job is processed—this implies no-waiting between operations
of the job. The no-wait schedule is motivated by applications where there is:

• Limited or no intermediate storage between machines or on machines to store
jobs between consecutive operations, see Papadimitriou and Kanellakis [17]

• In hot-potato routing where a packet that arrives at a node is immediately
forwarded to another node, the routs may not be fixed as in open shop. This
occurs in optical networks because it may be difficult to buffer optical messages,
see Acampora and Shah [1] and Szymanski [21].

A list of other no-wait scheduling applications can be found in Hall and Sriskan-
darajah [11].

To begin, we need to observe that no-wait requirement does not rule out
preemptions for open shops, which is first observed in Shani and Cho [18]. To
see this consider the following two-machine open shop with n = 4 jobs and m = 2
machines

P =

⎡

⎢
⎢
⎣

4 4
3 3
2 2
1 1

⎤

⎥
⎥
⎦ .

Its optimal no-wait non-preemptive and preemptive schedules are given in Fig. 10.1a
and b, respectively.
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Fig. 10.1 An optimal non-preemptive (a), and preemptive (b) no-wait schedule for the open shop
in P

The minimization of makespan for two-machine non-preemptive open shop is
proved NP-hard in the strong sense by Shani and Cho [18]. They present proofs
for the case where no job operation is missing and for the case where some
operations of jobs may be missing. Somewhat surprisingly the proof for the latter
seems simpler. It is worth noticing that a job with one operation missing in a
two-machine no-wait open shop cannot be preempted. Thus there is no difference
between preemptive and non-preemptive schedules for such jobs. Therefore the NP-
hardness proof for no-wait non-preemptive case works for the preemptive case if
we allow missing operations, see Giaro [8]. This is however not the case for the
instances where none operation is missing, i.e., each job has exactly two operations
with positive processing times in the two-machine open shop. We prove that the no-
wait preemptive case is NP-hard in the strong sense for two-machine open shop in
the next section.

The optimal no-wait preemptive and non-preemptive schedules in Fig. 10.1
indicate that optimal schedules for these two cases may look quite different in
general. An intriguing question arises about the makespan reduction offered by
optimal no-wait preemptive schedules in comparison to optimal no-wait non-
preemptive schedules. The reduction equals 1 for the schedules in Fig. 10.1.

In general, let Cmax(I ) be the makespan of an optimal no-wait non-preemptive
schedule for an I instance of O|no-wait|Cmax and C

p
max(I ) be the makespan of

an optimal no-wait preemptive schedule for the same instance I of the preemptive
problem O|pmtn, no-wait|Cmax. The following problem remains open.

Problem 10.1 What is the upper bound on the difference Cmax(I ) − C
p
max(I ) that

holds for all instances I?
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In this chapter an instance of an open shop with n jobs and m machines will
be represented by an n × m matrix of non-negative integers P, or equivalently by
a bipartite multigraph G = (J,M, E) with the job-vertices in the set J and the
machine-vertices in the setM. Recall that the two representations are equivalent by
taking mp(Ji,Mh) = pi,h for the edge e = (Ji,Mh) ∈ E, |J | = n, and |M| = m.
We have deg(Ji) = Pi for the job Ji length, and deg(Mh) = Lh for the machine Mh

workload. Finally, �(G) = max{maxj {Pj }, maxh{Lh}}. For the open shops with
unit-time operations, the matrix P has each entry either 0 or 1, and G = (J,M, E)

is bipartite simple graph.

10.1.1 Strong NP-Hardness for Two Machines

We proof the following lemma in this section.

Lemma 10.1 The problem O2|pmtn, no − wait |Cmax is NP -hard in the strong
sense.

Proof The reduction is from 3-partition problem, see Garey and Johnson [6]. Let
non-negative integer sizes a1, . . . , a3n and B make up an instance of the 3-partition
problem. Without loss of generality we assume that all ai and B are even and
divisible by 11, and

B

4
< ai <

B

2
(10.1)

for i = 1, . . . , 3n. The instance P of the open shop is defined as follows. We have
(n − 2) half-B jobs E = {E1, . . . , En−2}, each with pi,1 = B

2 + 4 and pi,2 = 5, and
(n − 2) half-B jobs F = {F1, . . . , Fn−2}, each with pi,1 = B

2 + 4 and pi,2 = 6.
We have two full-B jobs D1 and D2, each with pi,1 = B + 4 and pi,2 = 7. The
jobs D1,D2, E1, . . . , En−2, F1, . . . , Fn−2 are called long jobs. Finally, there are
3n short jobs ω1, . . . , ω3n with pi,1 = 1 and pi,2 = ai . The makespan is set to
Cmax = n(B + 11) − 8.

Let Ai = {αi, βi, γi}, for i = 1, . . . , n, be a partition such that s(αi) = a3(i−1)+1,
s(βi) = a3(i−1)+2, and s(γi) = a3i and a3(i−1)+1 + a3(i−1)+2 + a3i = B, where
s(α) is the size of α. The required schedule for P is shown in Fig. 10.2. Observe
that by (10.1), a + b > B

2 and a < B
2 for any sizes a and b in the 3-partition

instance. Thus the job βi on M2 straddles the start of job Fi−1 on M1 for i =
2, . . . n − 1. Therefore, the M1 operation of job βi and the M1 operation of job γi

can be done after the start of job Fi−1 in parallel with M2 operation of Fi−1, and the
M1 operation of αi can be done before the start of job Fi−1 in parallel with the M2
operation of Ei−1, see Fig. 10.2. Thus the schedule is feasible, no-wait, and with
makespan Cmax = n(B + 11) − 8.

Now, let S be a no-wait schedule for P with makespan Cmax = n(B + 11) − 8.
Observe that there is no idle time in [0, Cmax] on either machine in S. Let SR be a
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Fig. 10.2 An optimal no-wait schedule for the three partition Ai = {αi, βi , γi}, i = 1, . . . , n

schedule obtained by the transformation Cmax − t , where t is a start or completion
of an operation in S. The schedule SR is feasible for P, no-wait, and it has the same
makespan as S. Let jobs J1, J2, . . . , J2(n−1) be the first, the second, . . . , and the
2(n − 1)-th long job to start in S. That is, S1 ≤ S2 ≤ · · · ≤ S2(n−1). We show that
S needs to look like the schedule in Fig. 10.2.

We first show that J1 and Jn are full-B jobs. Let t1 be the earliest moment when
J1 and J2 are processed in parallel in S. We prove now that t1 exists, t1 > 0, and J1
is a full-B job. Let J1 complete at C1 in S. Suppose for contradiction that J1 and J2
are never done in parallel, i.e., C1 ≤ S2. Assume J1 is a full-B job. Then the job J1
is processed for � = 7 time units on M2 in [0, C1] in parallel with short jobs being
done on M1 to avoid idle time in S. However, each short job has only one unit-time
operation on M1. Thus at least � ≥ 7 short jobs must start before C1. Therefore, at
least � − 1 ≥ 6 short jobs must complete before C1. Observe that no two short jobs
are being processed in parallel by C1. Because if they were, then there would be
t < C1 where two short jobs are processed in parallel. Take the earliest such t . Then
S1 > t since otherwise J1 would not be no-wait. Because of no-wait execution, one
of those short jobs finishes at T > t ≥ amin ≥ 22, the other starts at t , but then M1
is idle in [0, t] in S, which gives contradiction. Hence, for full-B job J1, we have
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a1 + . . . a�−1 + � − 1 < C1 = B + 4 + �, (10.2)

where a1, . . . , a�−1 are the processing times of M2 operations of short jobs that
finish before C1. On the other hand by (10.1) we have

a1 + . . . a�−1 >
(� − 1)B

4
, (10.3)

which leads to contradiction since

(� − 1)B

4
> B + 5 (10.4)

holds for � − 1 ≥ 6 and B ≥ 33. This proves that J1 and J2 must be done in
parallel and t1 exists. Observe that t1 > 0. Otherwise, J1 and J2 would be done in
parallel from time t1 = 0 for at least B

2 units of time, and thus one of them needs its
operation on M2 to be at least that long, which leads to contradiction, since the long
jobs have their operations on M2 not longer than 7.

We now prove that J1 cannot be a half-B job. Suppose for contradiction that J1 is
a half-B job. We first prove that J1 and J2 must be done in parallel. We use similar
arguments as we did assuming that J1 is a full-B job. Some details are different
however. Suppose for contradiction that J1 and J2 are never done in parallel. A
half-B job J1 is processed on M2 for at least � = 5 time units in parallel with short
jobs being done on M1 to avoid idle time in S. However, each short job has only
one unit-time operation on M1. Thus at least � ≥ 5 short jobs must start before C1.
Therefore at least � − 1 ≥ 4 short jobs must complete before C1. As shown earlier
no short jobs are done in parallel by C1. Thus for a half-B job J1 we have

a1 + . . . a�−1 + � − 1 < C1 = B

2
+ 4 + �. (10.5)

On the other hand by (10.1) we have

a1 + . . . a�−1 >
(� − 1)B

4
, (10.6)

which leads to contradiction since

(� − 1)B

4
≥ B

2
+ 5 (10.7)

holds for �− 1 ≥ 4 and B ≥ 33. This proves that J1 and J2 must be done in parallel
and t1 > 0 exists. Also, no job Jj , j ≥ 3 is in (0, t1).

Then for a half-B job J1 we have

a1 + · · · + a� + x = B

2
+ 4, (10.8)
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where 0 ≤ x ≤ 7 is the total time job J1 is done on M1 in parallel with J2 on M2
in [0, C1]. However by (10.1) we have B

2 < a1 + a2. Hence, since B and a are
even and divisible by 11, we have � ≤ 1. Since t1 > 0, we get � = 1. By (10.8)
and (10.1), we get B

2 > a1 ≥ B
2 − 3, which gives contradiction, since B and a are

even and divisible by 11. Thus J1 is not a half-B job, and it is a full-B job. By similar
arguments applied to SR we show that Jn is a full-B job.

We now show thatS looks like the schedule in Fig. 10.2 in the interval [0, B+11]
and [(n − 1)(B + 11) − 8, n(B + 11) − 8]. By definition of t1, jobs J1 and Jj , for
j ≥ 2, are not processed parallel in the interval [0, t1]. Thus only short jobs can be
processed in parallel with J1 on M1 in the interval [0, t1]. Let A1 = {ω1

1, . . . , ω
1
�}

be the set of short jobs processed in [0, t1]. Because of no-wait requirement, those
jobs are not processed outside of [0, t1] and thus each must complete by t1. Let
0 ≤ x ≤ 6 be the total time job J1 is done on M1 in parallel with J2 on M2 in
[0, C1]. We have

a1 + · · · + a� + x = B + 4. (10.9)

Since a1, . . . , a�, B are divisible by 11, we get a1 + · · · + a� = B and � = 3. Thus
x = 4. A similar argument can be repeated for the schedule SR . Thus t1 = B + 3,
C1 = B + 11, and the jobs J1 and J2 are processed in parallel in the interval
[B + 3, B + 11]. Since x = 4, we may assume without loss of generality that
J1 is done on M1 in parallel with J2 on M2 in [B + 3, B + 7] and J1 is done on
M2 in parallel with J2 on M1 in [B + 7, B + 11]. Similar arguments apply to SR .
Therefore S is the same as the schedule in Fig. 10.2 in the intervals [0, B + 11] and
[(n − 1)(B + 11) − 8, n(B + 11) − 8].

By now we have that all jobs J2, . . . , J2n−3 are half-B. It remains to prove that
the remainder of S looks like the schedule in Fig. 10.2 for the half-B jobs and the
remaining short jobs.

We first show that jobs J2 and J3 are scheduled in the interval [B + 11, 2B + 18]
in S as shown in Fig. 10.2. We begin by proving that J2 and J3 are not done in
parallel in S. Suppose for contradiction that the two jobs are done in parallel, and
that t2 is the earliest moment J2 and J3 are done in parallel in S. Then J2 and J3 are
done in parallel in [t2, C2] since both J2 and J3 are no-wait. We have � ≥ 1 short
jobs completed in a no-wait fashion in [C1, t2] if C1 < t2. Let z be the total time J2
is done on M1 in parallel with J3 on M2 in [C1, C2]. We have

a1 + · · · + a� + z = B

2
, (10.10)

where a1, . . . , a� are the processing times of M2 operations of short jobs in [C1, t2].
By (10.1), � = 1. Thus a1 + z = B

2 , which leads to contradiction, since z ≤ 6, and
both a1 and B are even and divisible by 11. If C1 = t2, then J2 and J3 would be
done in parallel from time t2 for at least B

2 units of time and thus one of them needs
its operation on M2 to be at least that long which leads to contradiction since long
half-B jobs have their operations on M2 not longer than 6. Therefore, J2 and J3 are
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not done in parallel, and a similar argument applied to SR shows that Jn−1 and Jn−2
are not done in parallel.

To complete this part of the proof consider job J4. Let t3 be the earliest moment
when J3 and J4 are processed in parallel in S. We now prove that t3 exists. Suppose
for contradiction that J3 and J4 are never done in parallel, i.e., C3 ≤ S4. Therefore,
the � ≥ 7 remaining time units of M2 operations of jobs J2 and J3 (both are half- B
jobs) need to be processed in parallel with some operations on M1 to avoid idle time
in S. Those operations may only come from short jobs, but each of them can deliver
only one unit-time operation on M1. Thus at least � ≥ 7 short jobs must start after
C1 but before C3. Therefore at least �−1 ≥ 6 short jobs must complete in [C1, C3].
However, since no two short jobs can be done in parallel in [C1, C3], we have

a1 + . . . a�−1 + � − 1 < C3 = B + 4 + �, (10.11)

where a1, . . . , a�−1 are the processing times of M2 operations of short jobs that
complete in [C1, C3]. On the other hand by (10.1) we have

a1 + . . . a�−1 >
(� − 1)B

4
, (10.12)

which leads to contradiction since

(� − 1)B

4
> B + 5 (10.13)

holds for �− 1 ≥ 6 and B ≥ 33. This proves that J3 and J4 must be done in parallel
and t3 exists. In the interval [C1, t3], job J2 is not done in parallel with any job Jj

where j < 2 or j ≥ 3. Thus jobs J2 and J3 can only be processed with short jobs
in parallel in [C1, t3]. Let A2 = {ω2

1, . . . , ω
2
�} be the set of short jobs processed in

[C1, t3]. Because of no-wait requirement, those jobs are not processed outside of
[C1, t3]. We get

a1 + · · · + a� + y = B + 4, (10.14)

where y ≤ 6 is the total time J3 on M1 is processed in parallel with J4 on M2 in
(t3, C3). Thus a1 + · · · + a� = B, � = 3, and y = 4. Also since � = 3, we have
{J2, J3}∩E �= ∅ and {J2, J3}∩F �= ∅. Therefore, without loss of generality, S jobs
J2 and J3 are scheduled [B + 11, 2B + 18] as shown in Fig. 10.2. Similarly jobs
Jn−1 and Jn−2 and [(n − 2)(B + 11), (n − 1)(B + 11) − 4].

We can repeat this argument for the remaining pairs of half-B jobs and thus by
induction we obtain the sets A1, . . . , An that make up the required partition. We
leave details to the reader. ��

Hall and Sriskandarajah [11] point out that an NP -hardness proof of the problem
O2|pmtn, no − wait |Cmax is given in Strusevich [20]. However, to the author’s
knowledge that proof has not been published.
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10.2 Short No-Wait Schedules: Test for Cmax ≤ 3

We develop a polynomial-time test that determines if a bipartite multigraph G =
(J,M, E) with �(G) = 3 has a no-wait schedule with makespan not exceeding 3.

Claim 19 A no-wait schedule with Cmax = 3 for G exists if and only if there is
3-edge coloring of G with colors 1, 2, or 3 where each job-vertex with degree 2 has
one of the edges incident with the vertex colored with color 2.

Proof We have the following correspondence between schedule S with Cmax = 3
for G and a 3-edge coloring C of G with colors 1, 2, or 3: job Jj ∈ J is processed
on machine Mh ∈ M in the interval [i − 1, i], i = 1, 2, 3, in S if and only if the
edge (Jj ,Mh) ∈ E is colored with color i = 1, 2, 3 in C.

If schedule S is no-wait, then each job Jj of length 2 is processed in the interval
[0, 2] or [1, 3]. Thus one of the edges incident with Jj is colored with color 2 in C.

On the other hand, if each job-vertex Jj with degree 2 has one of the edges
incident with Jj colored with color 2 in C, then Jj is processed in the interval [0, 2]
or [1, 3] in S depending on whether the two edges incident with Jj in G are colored
with 1 and 2, or 2 and 3 in C, respectively. Thus each job is no-wait in the schedule
S. ��

It remains to test whether a 3-edge coloring of G with colors 1, 2, or 3 where each
job-vertex with degree 2 has one of the edges incident with the vertex colored with
color 2 exists or not. To develop the test we first turn the multigraph G into a simple
graph H with weights on edges. Let X be the set of job-vertices of degree 2 in G,
and let Y be the set of all vertices of degree 3 in G. Clearly, these sets are disjoint.
We turn the multigraph G into a simple graph H with weighted edges by replacing
each multiedge by a single edge. Each edge in H incident with exactly one vertex
in X ∪ Y gets weight 1, each edge in H incident with exactly two vertices in X ∪ Y

gets weight 2, and each edge in H incident with two vertices that are not in X ∪ Y

gets weight 0. We have the following claim.

Claim 20 The weight of a maximum weight matching in H equals |X| + |Y | if and
only if there is 3-edge coloring of G with colors 1, 2, or 3 where each job-vertex
with degree 2 has one of the edges incident with the vertex colored with color 2.

Proof Let M be a matching in H . For e = {u, v} ∈ M , define Ae = e ∩ (X ∪ Y ).
We have |Ae| = w(e) by definition of H . Also, since M is a matching, Ae ∩Ae′ = ∅
for different edges e, e′ ∈ M . Thus |⋃e∈M Ae| = ∑

e∈M w(e).
Suppose the maximum weight matching M in H has weight |X| + |Y |. Thus

|⋃e∈M Ae| = ∑
e∈M w(e) = |X| + |Y |. On the other hand,

⋃
e∈M Ae ⊆ X ∪ Y .

Thus |⋃e∈M Ae| ≤ |X| + |Y |. Therefore,
⋃

e∈M Ae = X ∪ Y , and X ∪ Y ⊆ V (M),
where V (M) is the set of vertices incident with the edges in M . The set X ∪ Y

includes all job-vertices of degree 2 or 3 in G. Color the edges in M with color 2
in G, and remove them from G. The resulting multigraph has � ≤ 2, and thus by
König’s edge-coloring theorem, its edges can be colored with two colors 1 and 3.
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This gives the required 3-edge coloring of G since each job-vertex with degree 2
has one of the edges incident with the vertex colored with color 2.

Now suppose that there is a 3-edge coloring of G with colors 1, 2, or 3 where
each job-vertex with degree 2 has one of the edges incident with the vertex colored
with color 2. Let M be the set of edges colored with color 2 in G. The M is a
matching, and X∪Y ⊆ V (M) by definition of the coloring. Thus

⋃
e∈M Ae = X∪Y .

Therefore, |⋃e∈M Ae| = ∑
e∈M w(e) = |X| + |Y |, and thus the matching has the

total weight |X| + |Y | in H as required. ��
Therefore we need to check if a maximum weight matching in bipartite H has
weight |X| + |Y |. This can be done in polynomial time by the Hungarian method
for instance, see Lawler [13].

10.3 Short No-Wait Schedules: Test for Cmax ≤ 4

We now develop a polynomial-time test to determine if a bipartite multigraph
G = (J,M, E) has a no-wait schedule with makespan not exceeding 4. We already
developed a polynomial-time test for Cmax ≤ 3 in the previous section; thus it
remains to develop a polynomial-time test assuming that a no-wait schedule with
Cmax ≤ 3 does not exist for G. To that end for each machine-vertex Mh in G with
degree deg (Mh) < 4, we add 4 − deg (Mh) unique jobs with a single unit-time
operation on Mh. By doing so for each machine-vertex with degree less than 4 in
G, we obtain a bipartite multigraph H with each machine workload equal 4, and
�(H) = 4. We claim the following.

Claim 21 A no-wait schedule for G with Cmax = 4 exists if and only if a compact
schedule for H with Cmax = 4 exists.

Proof If a no-wait schedule S for G with Cmax = 4 exists, then by adding pendant
job-vertices to G the schedule S can be readily extended to a schedule S′ for H

where each machine is occupied in [0, 4]. Thus, since S is no-wait for G, S′ is
compact for H with Cmax = 4.

On the other hand, a compact schedule S for H is no-wait for G once all pendant
job-vertices that have been added to G are removed from S. If S has makespan
Cmax = 4, then the resulting no-wait schedule for G has makespan Cmax ≤ 4.
However, a no-wait schedule for G with Cmax ≤ 3 does not exist. Therefore, the
resulting schedule has makespan Cmax = 4. ��
By this claim we can limit the test to bipartite multigraphs G = (J,M, E) with
�(G) = 4, and with each machine-vertex of degree �(G), i.e., each machine
workload equals �(G). Therefore, the polynomial-time test from Sect. 9.2.3 can
be used to test whether or not G has a no-wait schedule with makespan Cmax = 4.
The test works for multigraphs as well, see Giaro [9].
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10.4 Short No-Wait Schedules: Cmax ≤ 5

In this section we consider the problem O|pmtn, no-wait|Cmax ≤ 5 to decide if there
is a no-wait schedule with makespan Cmax ≤ 5 for an open shop G = (J,M, E).
This problem remains open.

Problem 10.2 What is the complexity status of the O|pmtn, no-wait|Cmax ≤ 5
problem?

We now show that instances of the problem with n > m and jobs of length 3, 4, or
5 cannot have no-wait schedules with makespan 5. This follows from the following
lemma.

Lemma 10.2 For instances with more jobs than machines, i.e., n > m, if the
shortest job is of length at least 3, then a no-wait schedule with makespan Cmax = 5
does not exist.

Proof Casselgren and Toft [5] prove the following lower bound for Cmax of no-wait
schedules

⌈
n

|M|
⌉

min
j

{Pj } ≤ Cmax, (10.15)

where M is maximum matching in G = (J,M, E). Suppose for contradiction that
Cmax = 5 for some no-wait schedule. Since minj {Pj } ≥ 3, we get

⌈
n

|M|
⌉

≤ 1.

Hence, n ≤ |M|. However, |M| ≤ min{n,m} = m < n, which gives contradiction
and proves that no-wait schedule with makespan Cmax = 5 does not exist. ��

Despite this negative result, optimal no-wait schedules, though longer than 5,
can be readily obtained for some classes of open shops. For instance, consider
the (4, 5)-biregular instances G = (J,M, E), where each job is of length 4 and
each machine has workload 5. These instances meet the conditions of Lemma 10.3.
Thus the minimum makespan Cmax > 5 for G. Casselgren and Toft [5] show a
polynomial-time algorithm for obtaining optimal no-wait schedules for this class
of instances. We now briefly introduce their idea yet we recast it in open shop
scheduling context that seems particularly appealing because of its simplicity. We
illustrate this approach with an example. By König’s edge-coloring theorem the
edges of G = (J,M, E) can be colored with colors 1, 2, 3, 4, and 5. The coloring
can easily be turned into a schedule S with Cmax = 5. Please see Fig. 10.3 for an
example of such a schedule. By Lemma 10.3 not all jobs in this schedule are no-
wait, for instance job J3 in Fig. 10.3. How can one turn this schedule into a no-wait
schedule at the cost of increasing the makespan by as little as possible? The idea is
to make a copy of S and start it at 5. The resulting schedule is a concatenation SS
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Fig. 10.3 An optimal
schedule S with makespan
Cmax = 5 for an instance with
all jobs of length 4 and all
machines with workload 5
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of two copies of S, one starts at 0 and the other at 5. Hence, each job occurs twice
in SS. We refer to the copy in the interval [0, 5] as an earlier copy and to the copy
in the interval [5, 10] as a later copy. Now delete all jobs that are no-wait in S from
the later copy. These are jobs J1, J2, J5, and J10 in Fig. 10.3. Any other job Jj is
processed in two intervals [0, i] and [i + 1, 5] for some i = 1, 2, 3 in S. This holds
since the edge coloring ensures that the edges incident with Jj in G miss exactly one
color among 1, 2, 3, 4, or 5, and this cannot be 1 or 5 because otherwise Ji would
be no-wait. Delete the operations of Jj processed in [0, i] from the earlier copy of
S and the operations of Jj processed in [5 + (i + 1), 10] from the later copy of S.
Therefore, the resulting schedule has job Jj processed in the interval [i + 1, 5 + i],
which is of length 4, and thus Ji is no-wait in the resulting schedule. Since i ≤ 3, the
resulting schedule has makespan Cmax ≤ 8. The resulting schedule for S shown in
Fig. 10.3 is shown in Fig. 10.4. Somewhat surprisingly, the schedules thus obtained
are optimal since by the lower bound in (10.15) we have

4

⌈
n

|M|
⌉

≤ Cmax.

However, � n
|M| � ≥ 2 since |M| ≤ m < n for the instances with all jobs of

length 4 and all machines with workload 5. Hence, Cmax ≥ 8, which proves that
the schedules with makespan 8 are optimal for the instances. The general result of
Casselgren and Toft [5] can be formulated as follows.
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Fig. 10.4 An optimal no-wait schedule with makespan Cmax = 8 for an instance in Fig. 10.3

Lemma 10.3 If minj {Pj } = �(G) − 1, then there is a no-wait schedule with
Cmax ≤ 2�(G)−2. Moreover, if G is (�(G)−1,�(G))-biregular, then the schedule
is optimal.

Asratian and Kamalian [2] give the following sufficient condition for no-wait
schedules to exist for the instances with n ≤ m.

Lemma 10.4 If deg(Jj ) ≥ deg(Mh) for each (Jj ,Mh) ∈ E, then there is a no-
wait schedule with Cmax = �(G) such that each job Jj is scheduled in the interval
[0, deg(Jj )].

The condition is a corollary from a theorem of Geller and Hilton [7]. The idea is
that by König’s edge-coloring theorem each vertex v of degree deg(v) = �(G)

in G = (J,M, E) has the �(G) edges incident with v colored with colors
1, . . . ,�(G). Let M�(G) be the set of all edges colored with �(G) and incident
with some vertex of degree �(G). The matching M�(G) covers all job-vertices
with degree �(G). By the lemma assumptions the number of those vertices does
not exceed the number of machines m. Moreover, if w is a machine-vertex of
degree �(G), then (v,w) ∈ M�(G) for some job-vertex v of degree �(G). Thus,
|M�(G)| ≤ m. Therefore, deleting the edges inM�(G) from G results in a graph G′
of degree �(G) − 1 that meets the assumption of the lemma. Moreover, scheduling
job Jj on machine Mh for (Ji,Mh) ∈ M�(G) in the interval [�(G) − 1,�(G)]
leaves the interval [0,�(G) − 1] for G′. The induction completes the argument.
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Fig. 10.5 An optimal
no-wait schedule with
makespan Cmax = 5 for the
open shop P
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To illustrate let us consider the following open shop with n = 4 jobs and m = 5
machines

P =

⎡

⎢
⎢
⎣

1 1 1 1 1
0 1 1 1 1
1 1 1 1 0
2 0 1 0 2

⎤

⎥
⎥
⎦ .

The optimal no-wait schedule with makespan Cmax = 5 is shown in Fig. 10.5. The
vertices J1 and J4 are of degree 5, andM5 = {(J1,M5), (J4,M3)}, which fixes the
schedule in [4, 5] and reduces the open shop to

P
′ =

⎡

⎢
⎢
⎣

1 1 1 1 0
0 1 1 1 1
1 1 1 1 0
2 0 0 0 2

⎤

⎥
⎥
⎦ ,

with degree � = 4, and all job-vertices J1, J2, J3, and J4 of degree 4. The matching
M4 = {(J1,M1), (J2,M3), (J3,M4), (J4,M5)} fixes the schedule in [3, 4]. The
reader is encouraged to complete the example.

10.5 Short No-Wait Schedules: Cmax ≤ 6

In this section we consider a problem O|pmtn, no-wait|Cmax ≤ 6 to decide if there
is a no-wait schedule with makespan Cmax ≤ 6 for an open shop G = (J,M, E).
We have the following complexity result.

Theorem 10.1 The problems O|pmtn, no-wait|Cmax ≤ 6 and O|pij ∈ {0, 1},
no-wait|Cmax ≤ 6 are NP-complete in the strong sense.
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Proof By Theorem 9.7 the problem to decide whether or not there is a compact
schedule for (3, 6)-biregular bipartite graphs with makespan Cmax = 6 is NP-
complete in the strong sense. This holds for simple graphs. Each (3, 6)-biregular
bipartite graph G is a job–machine bipartite graph G = (J,M, E) where each job-
vertex has degree 3 (three unit-time operations) and each machine-vertex has degree
6 (each machine workload equals 6). Thus �(G) = 6. A no-wait schedule for G

with makespan Cmax = 6 keeps each machine busy in the interval [0, 6], and thus
it is a compact schedule for G with the same makespan. By definition a compact
schedule for G with makespan Cmax = 6 is a no-wait schedule with the same
makespan. Thus the problem O|pij ∈ {0, 1}, no-wait|Cmax ≤ 6 is NP-complete
in the strong sense. ��

10.6 No-Wait and Cyclic Compact Open Shop Scheduling

The cyclic compact schedules can be turned into no-wait schedules as follows. Let
S be a cyclic compact schedule for G = (J,M, E) with makespan Cmax. By
definition of cyclic schedules each job Jj is either processed in a single interval
[Sj , Sj + Pj ], where 0 ≤ Sj < Sj + Pj ≤ Cmax or not processed in a single
interval [Aj ,Cmax − Pj + Aj ], where 0 < Aj < Pj in S. In the former case Jj

is no-wait. In the latter Jj is processed in [0, Aj ] and [Cmax − Pj + Aj ,Cmax].
Consider the concatenation S′ = SS of two copies of a cyclic compact S. The
schedule S′ has a copy of job Jj , which is not no-wait in S, processed in the
interval [Cmax − Pj + Aj ,Cmax + Aj ]. Thus the copy, if any, is no-wait in S′.
Clearly each job Jj that is no-wait in S remains so in S′. Therefore deleting all other
copies from S′ results in a no-wait schedule for G. The makespan of the resulting
schedule equals Cmax + maxj {Aj } ≤ Cmax + �(G) − 2. This construction allows
us to use the results of Sect. 9.6 to obtain short no-wait schedules. In particular
by Theorem 9.9, open shops G = (J,M, E) with job lengths limited to 1, 2, 4,
or 5 and machine workloads not exceeding 5 have cyclic compact schedules with
Cmax = 5 or Cmax = 6. Thus there exist no-wait schedules with makespan Cmax = 8
or Cmax = 9 for those open shops.

10.7 Exact Algorithms and Approximations

A PTAS does not exist for the problem O|no − wait|Cmax. This follows from the
following theorem.

Theorem 10.2 If P �= NP , then no polynomial-time algorithm exists for the
problem O|no − wait |Cmax with the worst-case ratio less than 7

6 .

Proof Consider the set I of open shop instances defined in the proof of Theo-
rem 10.1. The problem � defined by I and by the question whether I ∈ I has
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a no-wait schedule with makespan not exceeding 6 or not is NP -complete that
follows immediately from the proof of Theorem 10.1. Suppose for contradiction that
there is a polynomial-time algorithm A such that CA

max/C∗
max < 7/6 for any instance

of O|no − wait|Cmax. Thus, in particular, CA
max/C∗

max < 7/6 for any instance of �.
The algorithm A can be used to solve � as follows. If CA

max ≤ 6 for an instance
I , then the answer for I is affirmative. Otherwise, if CA

max > 6 for I , then, since
all processing times in I are integer, we have CA

max ≥ 7 and integer. Thus, since
C∗

max > 6CA
max/7, we get C∗

max > 6 and the answer for I is negative. Since CA
max

can be computed in polynomial time for each I ∈ I, we have � in P . This implies
P = NP since � is NP -complete and gives contradiction. ��

However, a PTAS exists for O2|no − wait|Cmax, which was shown by Bansal et
al. [3]. Sidney and Sriskandarajah [19] show a 3

2 -approximation algorithm for the
two-machine problem. Their algorithm relies on the Gilmore and Gomory algorithm
[10] for a special case of the traveling salesman problem. Panwalkar and Koulamas
[16] present a further analysis of O2|no-wait|Cmax to improve the running time
of the 3

2 -approximation algorithm. They also propose a polynomial-time algorithm
for the two-machine, no-wait job-proportionate open shop. The algorithm runs in
O(n log n) time. An example of the schedule obtained by the algorithm is given in
Fig. 10.1a. All these results assume tacitly or explicitly non-preemptive schedules.
We have seen however in Fig. 10.1b that no-wait preemptive schedules cannot only
reduce optimal makespan but they can also be quite different from the optimal non-
preemptive schedules. The optimization and approximation algorithms for no-wait
preemptive schedules are largely unexplored yet interesting areas worthy further
research.

Liaw et al. [14] show a branch and bound algorithm for two-machine no-wait
open shop makespan minimization. Naderi and Zandieh [15] propose mixed integer
linear programs and metaheuristics for the problem O|no-wait|Cmax. Again both
papers assume non-preemptive schedules. Brucker et al. [4] and Kubiak et al. [12]
provide further complexity results for the no-wait open shop scheduling.

Problems

10.1 Show that each instance G = (J,M, E) with �(G) ≤ 2 has a no-wait
schedule with Cmax ≤ 2.

10.2 Complete the induction in the proof of Lemma 10.1.

10.3 Prove Lemma 10.3.

10.4 Prove that the problem O|pmtn, no-wait|Cmax ≤ 6 is NP -hard in the strong
sense.
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Chapter 11
Applications of Preemptive Open Shop
Scheduling

11.1 Introduction

Before we present more applications of open shop scheduling to real-life problems
and scheduling theory let us briefly summarize the applications discussed in
previous chapters of this book. Chapter 4 presents applications to University
timetabling, Chap. 6 presents application to scheduling wireless networks with
primary interference, Chap. 5 presents applications to product design and scheduling
customer orders among other applications of open shop scheduling where operations
of a job can be processed concurrently, Chaps. 7 and 8 present application to
scheduling large oncology centers, Chap. 9 presents application to timetabling and
just-in-time scheduling, and Chap. 10 presents applications to scheduling without
intermediate storage and optical networks. Other applications are also listed in
Ahmadian et al. [1].

This chapter introduces further applications of open shop scheduling. Those
include satellite-switched time-division multiple access method used to allocate the
communication bandwidth provided by a satellite link to carry traffic between earth
stations; scheduling reconfigurable data centers; file transfer; scheduling crossbar
switches to guarantee 100% throughput for traffic with given rates; multimessage
unicasting and multicasting; scheduling and bandwidth allocation problem; and
scheduling theory. Majority of those applications permit preemptions which allow
for polynomial-time algorithms when it comes to makespan minimization. Details
will be described in the following sections.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Kubiak, A Book of Open Shop Scheduling, International Series in Operations
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11.2 Satellite Communication

Satellite communication systems have been built to connect a large number of earth
stations. The satellite-switched time-division multiple access (SS/TDMA) method
has been used to allocate the communication bandwidth provided by a satellite
link to carry traffic between earth stations, see Inukai [30], and Lewandowski
and Liu [35] for further references to the SS/TDMA method. In a nutshell, a
satellite equipped with spot-beam antennas, and a switch periodically switches the
connections between uplink beams and downlink beams to connect beam zones. A
TDMA frame is a sequence of time slots of different durations. In each of the time
slots, a different switching mode determines a specific set of interconnections so
that the traffic between zones is routed without conflicts. The SS/TDMA time slot
assignment problem instance is defined by an n × n non-negative traffic matrix T
where tij is the amount of traffic which is to be routed from the uplink beam i to
the downlink beam j , and n is the number of spot-beams. The quantities tij may
be expressed in terms of some basic traffic units such as a number of T 1 channels,
Inukai [30], or they can be the amount of time, Inukai [30], and Dell’Amico and
Martello [18]. We let tij to be the amount of time in our discussion. The problem
is to find a switching mode matrix Si , and a time duration ti for each time slot so as
to meet the traffic demand defined by T within the shortest possible TDMA frame.
A switching mode matrix is a square n × n matrix where at most one entry in each
row and column is equal to 1, and all other entries are equal to 0. To find a solution
to the time slot assignment problem let us have a closer look at the traffic matrix T .
The total demand for its row i is equal to Ri = ∑

j tij which is the amount of time
required by the uplink beam i to transmit information to all downlink beams, and
the total demand for its column j is equal to Cj = ∑

i tij which is the amount of
time required by the downlink beam j to receive information from all uplink beams.
Clearly, the TDMA frame cannot be shorter than

α = max{max
i

{Ri}, max
j

{Cj }}.

Due to Birkhoff–von Neumann theorem we can get the frame of length α as follows.
We take the following (2n) × (2n) matrix:

D = 1

α

[
T A

B T T

]

,

where the diagonal matrix
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A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α − R1 0 . . . 0
0 α − R2 . . . 0
0 . . . 0
. . . .

. . . .

. . . .

0 0 . . . α − Rn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

complements each row sum of D to α, and the diagonal matrix

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α − C1 0 . . . 0
0 α − C2 . . . 0
0 . . . 0
. . . .

. . . .

. . . .

0 0 . . . α − Cn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

complements each column sum of D to α. By the theorem there are (2n) × (2n)

permutations matrices P1, . . . , Pq and positive numbers t1, . . . , tq such that t1 +
. . . tq = 1 and

D = t1P1 + · · · + tqPq. (11.1)

Let Si be the submatrix of the permutation matrix Pi lying in the rows 1, . . . , n and
the columns 1, . . . , n of Pi , i = 1, . . . , q. Clearly, the matrices Si are switching
modes and

T = α(t1S1 + · · · + tqSq).

Thus there are q time slots with durations αt1, . . . , αtq . Since t1 + . . . tq = 1 the
total duration is equal to α. The number of permutation matrices q ≤ n2 − n + 1,
see Horn and Johnson [29]. The decomposition in (11.1) is not unique. Gonzalez
and Sahni [26] would view the matrix T as an instance of an open shop problem
with preemptions and makespan minimization and solve the problem to optimality
by their algorithm running in time O(r(r + n log n)) where r is the number of
positive entries in T . In their solution a matching of jobs with machines would
correspond to a switching mode, and a TDMA frame would correspond to an
open shop preemptive schedule. Interestingly enough the algorithm of Gonzalez
and Sahni preceded this of Inukai [30]. The latter seems to have been designed
exclusively with the SS/TDMA time slot assignment in mind. The reader is referred
to Dell’Amico and Martello [18] for detailed comparison of the algorithms by
Gonzales and Sahni [26], and Inukai [30] in a broader historical context.
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Inukai [30] emphasizes reduction of the number q as an important sec-
ondary criterion for the SS/TDMA time slot assignment problem. Clearly, the
secondary criterion naturally carries over to the open shop with preemptions
problem, O|pmtn|Cmax. A well known upper bound on q is n2 − n + 1, see Horn
and Johnson [29]. The algorithm of Inukai reduces that bound to n2 − 2n + 2.
Farahat and Mirsky [23] prove that this bound is the best possible. Brualdi [4], and
Brualdi and Gibson [5] provide further analysis of the Birkhoff algorithm for doubly
stochastic matrices. The minimization of q is NP-hard in the strong sense which was
recently proved by Dufossé and Uçar [22]. Kulkarni et al. [33] further prove that
the minimization of q is not fixed parameter tractable, and show polynomial-time
algorithm for q = 2, 3. Dufossé et al. [21] show that a family of heuristics based on
the original proof of Birkhoff can miss optimal decompositions which was earlier
conjectured by Brualdi [4].

Lewandowski and Liu [35] extend the TDMA time slot assignment problem
to take into account the ability to demultiplex each of the uplink beams into at
most k signals, transmit each of these signals to different downlink beams, and then
multiplex up to k of these signals into each of the downlink beams. For the open
shop this means that at most k operations of each job can be processed at a time,
and at most k jobs can be processed by each machine at a time. Observe that the
single-operation machine model studied in Sect. 8.1 permits each stage to processed
several jobs at a time by allowing parallel identical machines in each stage, yet it still
requires at most one operation of each job to be processed at a time. The concurrent
open shops in Chap. 4 on the other hand allow all operations of each job to be
processed in parallel. We have the following lower bound for the makespan of the
frame:

α = max

{

max
i,j

tij , max
i

1

k
Ri, max

j

1

k
Cj

}

,

see Lewandowski and Liu [35]. de Werra [13] gives the following decomposition
of the traffic matrix T :

T = t1Z1 + . . . tqZq,

where each matrix Z1, . . . , Zq is a 0, 1 matrix with at most k 1’s in each row, and at
most k 1’s in each column, and importantly

t1 + · · · + tq = α.

The decomposition can be computed in polynomial time using network flow
algorithms, see de Werra [10, 11, 13].
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11.3 Reconfigurable Data Centers

Reconfigurable data centers and software defined networks connect servers within
a data center by optical connections, Chen et al. [8]. An advantage of such network
technology is that as traffic between servers changes over time, the network topology
can be reconfigured to better match the change and to prevent localized bottlenecks.
A traffic matrix in a reconfigurable data center represents traffic that needs to
be routed among a set of n servers. A route is a matching between senders and
receivers. The change between routes however requires moving laser pointers and
receivers that comes at a cost, Kulkarni et al. [33]. Therefore, finding a shortest
schedule for a given traffic matrix with as few as possible preemptions improves
performance of the routing algorithms.

11.4 Crossbar Switches

An input-buffered crossbar switch with n input ports and n output ports has a buffer
for each input port. In such a switch, time is slotted and synchronized so that
packets from different input buffers can be read out simultaneously within a time
slot. In a time slot, a crossbar switch sets up a connection pattern corresponding to
a permutation matrix. As a permutation matrix is a one-to-one mapping from input
ports to output ports, packets destined to the same output ports cannot be transmitted
at the same time, Chang et al. [7]. A crossbar switch scheduling algorithm needs to
guarantee 100% throughput for traffic with given rates ri,j from input i to output j .
The rates are specified by an n × n traffic rate matrix

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r1,1 . . . r1,n

r2,1 . . . r2,n

. . . . .

. ri,j .

. . . . .

rn,1 . . . rn,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The traffic rate matrix needs to be substochastic, total of each row and column
must not exceed 1, Horn and Johnson [29], in order for 100% throughput to be
achieved at all. Chang et al. [7] propose a scheduling algorithm that guarantees
100% throughput for substochastic matrices. The algorithm first finds a convex
combination of permutation matrices for a substochastic R. This stage is based on
Birkhoff–von Neumann theorem; however, algorithms for makespan minimization
for open shop with preemptions like the one by Gonzales and Sahni [26] can also
be used for this stage. The convex combination of permutation matrices is then used
by fair queueing algorithms, see Demers et al. [19] and Chapter 10 in Kubiak [32],
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to switch between permutation matrices to guarantee 100% throughput for traffic
defined by the traffic rate matrix R.

11.5 Multimessage Unicasting and Multicasting

Gonzalez [27] considers multimessage unicasting and multicasting problem where
processors communicate by sending and receiving messages over a fully connected
network. Each processor can send or receive a message; however, no processor may
send more than one message at a time, and no processor may receive more than one
message at a time. There are ti,j messages to be sent from processor i to processor j .
The problem is to find a shortest possible communication schedule for all messages
to be transmitted. This problem reduces to a preemptive open shop where each
processor i in the communication network represents a job Ji and a machine Mi ,
and the processing time of operation Oi,h equals ti,h, Gonzalez [27] and [25]. The
multimessage unicasting is a special case of multimessage multicasting where the
same message needs to be sent to many processors. The algorithms for the latter
transform the multicasting problem into a unicasting problem and apply the open
shop algorithms to solve the unicasting problem, see Gonzalez [28].

11.6 Scheduling and Wavelength Assignment problem

Bampis and Rouskas [2] study the following scheduling and wavelength assignment
problem. Consider sources s = 1, . . . , n and destinations d = 1, . . . , n and an
n × n matrix P where ps,d is the number of packets to be transmitted from s to d.
The transmission happens at a certain wavelength assigned to the destination node
d. Typically there are fewer wavelengths, m, than destination nodes, thus several
destination nodes may be assigned to the same wavelength. Hence a wavelength is
a machine. For a given assignment of destination nodes to machines, we obtain an
open shop where a source node s is a job made up of m operations corresponding to
wavelengths. The operation of job s on machine h is made up of all destinations
d assigned to the same wavelength h. Thus s transmits at wavelength h to all
destinations d with that wavelength. If it does so, it cannot use any other wavelength
machine at the same time (at most one operation of a job can be processed at a time).
To illustrate the problem consider the following source to destination matrix:
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J1

J1

J2

J2

J3

J3

J4

J4

J5

J2 J5 J1J3J4

M1

M2

M3

0 25

Fig. 11.1 A schedule and wavelength assignment

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 1 3 2 5
3 3 3 6 1
1 5 2 4 3
4 0 1 2 1
0 2 3 0 4

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Assuming three wavelengths M1, M2, and M3 and the assignment of destinations
1 and 4 to M1, 2 and 5 to M2, and 3 to M3 we obtain a three-machine open shop

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

4 6 3
9 4 3
5 8 2
6 1 1
0 6 3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The source 2 uses the wavelength M1 to transmit 3 packets to d = 1 and 6
packets to d = 4, it uses the wavelength M2 to transmit 3 packets to d = 2 and 1
packet to d = 5, and it uses the wavelength M3 to transmit 3 packets to d = 3. This
corresponds to job J2 with operations having processing time 9 on M1, processing
time 4 on M2, and processing time 3 on M3. A schedule for job J2 and the remaining
four jobs is given in Fig. 11.1.

11.7 Scheduling Theory

The application to scheduling theory have been observed in the study of the two-
phase method for preemptive scheduling in de Werra [12, 14]. We illustrate this
method using the scheduling on unrelated processors with preemptions to minimize
makespan problem, R|pmtn|Cmax. An instance of the problem is specified, like in
the open shop problem, by an n × m non-negative real matrix
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P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1,1 . . . p1,m

p2,1 . . . p2,m

. . . . .

. pi,h .

. . . . .

pn,1 . . . pn,m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

However its entries have a different meaning than in the open shop scheduling
problem. To explain the difference suppose for the time being that preemptions are
not allowed. Then each job Ji is completely processed by one of the m machines.
If that machine is machine Mh, then the job Ji processing time equals pi,h. The
remaining processing times of job Ji , or the remaining entries in row i, are then
irrelevant for the solution. Now returning to the preemptive case let us take a convex
combination pi,1xi,1+· · ·+pi,mxi,m of the processing times of job Ji , i = 1, . . . , n.
For given n convex combinations, one for each job, we obtain the following instance
of the open shop:

Px =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1,1x1,1 . . . p1,mx1,m

p2,1x2,1 . . . p2,mx2,m

. . . . .

. pi,hxi,h .

. . . . .

pn,1xn,1 . . . pn,mxn,m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where

Δ(Px) =
{

max
i

{
m∑

h=1

pi,hxi,h

}

, max
h

{
n∑

i=1

pi,hxi,h

}}

. (11.2)

The solution to the instance Px of the open shop problem O|pmtn|Cmax with
makespan Cmax = Δ(Px) can be found in polynomial time, see Sect. 3.7. The
solution solves R|pmtn|Cmax by scheduling fraction xi,h of processing time pi,h

of Ji on machine Mh. In other words job Ji has now m operations Oi,1, . . . , Oi,m

with processing times pi,1xi,1, . . . , pi,mxi,m, respectively. Thus to find an optimal
solution to R|pmtn|Cmax one needs to find the coefficients xi,h that minimize Δ(Px).
This can be done by solving a linear program, see Lawler and Labetoulle [34],
Brucker [6] and Błażewicz et al. [3]. A similar two-phase approach based on LP
and reduction to open shop works for

• The problem R|pmtn, ri |Lmax, see Lawler and Labetoulle [34], Brucker [6] and
Błażewicz et al. [3].

• The problems in Sects. 4.3 and 4.10.
• The problem O|pmtn, rj |Lmax in Sect. 3.7.2.
• The multiprocessor open shop scheduling in Chap. 8.
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11.8 Data Migration and File Transfer Scheduling

Data migration problem arises whenever large amount of data need to be rapidly
transferred to new locations within storage area networks in order to better respond
to changing demand for data. During the migration the network still needs to provide
efficient though unlikely best service. Therefore it is important to compute as short
as possible data migration schedule that produces the target data layout. Coffman
et al. [9], see also Gandhi et al. [24] and Khuller et al. [31], introduce file
transfer multigraph G = (V ,E) to model the problem. The vertices in V represent
storage devices (computers or computer centers). The labeled edges correspond
to the files to be transferred between the vertices. The label pi,j of an edge
(i, j) represents transfer time required to transfer the file between i and j . Each
vertex i completes transfers only after all edges incident with v in G complete
transfers. The key constraint is that no two edges incident with the same vertex
can be transferred at the same time. This constrain can be relaxed by increasing the
maximum number of simultaneous file transfers to more than one by increasing the
number of communication ports at vertices, see Coffman et al. [9]. The problem
can be recast as open shop scheduling with simultaneity constraints, see de Werra
[15] de Werra and Erschler [16] de Werra et al. [17], as it was shown in Chap. 6
for wireless networking with primary interference.

From a different angle, each vertex in G corresponds to machine in open shop.
Each edge (i, j) labeled with pi,j is a bi-processor job with processing time pi,j .
The job needs to be processed on machines i and j simultaneously for exactly pi,j

units of time. The problem becomes a subproblem of the problem P |fixj |Cmax with
|fixj | = 2, see Drozdowski [20], where each job is assigned a fixed subset of
parallel machines to be processed on simultaneously.

Problems

11.1 Find more applications of preemptive open shop scheduling in scheduling
theory, see Sect. 11.7.
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Chapter 12
Two-Machine Open Shop Scheduling
with Time Lags

12.1 Makespan Minimization

The open shop with job-dependent time lags has been studied for quite sometime in
the literature. The time lags model delays required between job’s operations due
to necessary transportation needed to move a job from one machine to another
for instance, or intermediate processes, or operations that are not constrained by
resources. Zhang [18] provides an interesting discussion of the time lag models
and their applications in scheduling. Most research on the open shops with time
lags has focused on two-machine open shops where each job Jj , j = 1, . . . , n,
consists of two operations Oj,1 and Oj,2 to be processed on two machines M1 and
M2, respectively, in any order. The operations Oj,1 and Oj,2 processing times equal
pj,1 ≥ 0 and pj,2 ≥ 0, respectively, and the time lag is lj ≥ 0. In a feasible
schedule either machine can process at most one job at a time, each job can be
processed by at most one machine at a time, and the later operation of job Jj in
the schedule needs to wait at least lj time units to start following the completion of
the earlier operation of job Jj in the schedule. Yu [16], and Yu et al. [17] prove
a series of strong complexity results for the makespan minimization. They prove
that the problem is NP-hard in the strong sense even if all operations are unit-time
operations. This problem is denoted by O2|pij = 1, lj |Cmax in the well-known
notation of Graham et al. [7]. We now give a different proof of that result.

Theorem 12.1 The problem O2|pij = 1, lj |Cmax is NP-hard in the strong sense.

Proof Yu [16] shows that the numerical three dimensional matching (N3DM)
problem (see Garey and Johnson [6] for the definition of the N3DM problem)
is NP-complete in the strong sense even for the instances with X = {1, . . . , n},
Y = {1, . . . , n}, a multiset of non-negative integers Z = {l1, . . . , ln}, and an integer
n < e < 2n such that

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Kubiak, A Book of Open Shop Scheduling, International Series in Operations
Research & Management Science 325,
https://doi.org/10.1007/978-3-030-91025-9_12
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λ(i)

lμ(i)i λ(i)
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M2
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1

1 n

n

. . .

. . . . . .

. . .

Fig. 12.1 A schedule for the numerical three dimensional matching

n∑

i=1

li + n(n + 1) = ne. (12.1)

The problem is to decide whether there are permutations λ and μ of the set
{1, . . . , n} such that

i + λ(i) + lμ(i) = e (12.2)

for i = 1, . . . , n. The problem is referred to as the restricted numerical three
dimensional matching (RN3DM) in Yu [16]. For an instance X = {1, . . . , n},
Y = {1, . . . , n}, Z = {l1, . . . , ln}, and n < e < 2n of the RN3DM we construct an
instance of an open shop with n jobs J1, . . . , Jn scheduled on two machines, M1 and
M2. Each job has two unit-time operations, one on M1 and the other on M2. For job
Jj the delay between its two operations is required to be at least lj , j = 1, . . . , n.
The threshold for maximum makespan equals Cmax = e.

Suppose there are permutations λ and μ that meet the condition (12.2). Schedule
job Jμ(i) in [i−1, i] on M2 and in [e−λ(i), e−λ(i)+1] on M1. We have i ≤ e−λ(i)

by (12.2). Hence the two operations of Jμ(i) are not scheduled in parallel. Thus the
jobs are scheduled in [0, n] on M2 so that the machine processes exactly one job at
a time, and since λ is a permutation, the jobs are scheduled in [e − n, e] on M1 so
that the machine processes exactly one job at a time. The delay for job Jμ(i) equals
e − λ(i) − i = lμ(i) by (12.2), i = 1, . . . , n, see Fig. 12.1. Therefore, we obtain a
feasible schedule with Cmax = e.

Now suppose there is a feasible schedule S with Cmax ≤ e. Consider job Ji in
S, its earlier operations is processed in [xi − 1, xi] on one machine and its later
operation in [Ci, Ci + 1] on the other machine. Moreover Ci − xi = �i ≥ li . Let
Cmax − Ci = yi . We have

xi + yi + �i = Cmax, (12.3)

for i = 1, . . . , n. Thus by (12.1) we get

n∑

i=1

(xi + yi) ≤ ne −
n∑

i=1

li ≤ n(n + 1). (12.4)
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To complete the proof consider the multiset {x1, y1, . . . , xi, yi, . . . , xn, yn}. For
each pair xi and yi , the xi corresponds to the completion time of one of the two
operations of Ji , and yi corresponds to the start of the other of the two operations
of Ji . The operations must be done on different machines M1 and M2 in S. Thus
xi corresponds to one machine and yi corresponds to the other. We can split the
pair xi and yi between two setsM1 andM2 depending on the machines xi and yi

correspond to. We do this for each i = 1, . . . , n to obtainM1 = {α1, . . . , αn} and
M2 = {β1, . . . , βn}. Since S is a feasible schedule bothM1 andM2 must be sets,
i.e., either must include n different positive integer numbers. Thus

n∑

i=1

αi ≥ n(n + 1)

2
, (12.5)

and

n∑

i=1

βi ≥ n(n + 1)

2
. (12.6)

However, by the construction ofM1 andM2 we have

n∑

i=1

(xi + yi) =
n∑

i=1

(αi + βi), (12.7)

which implies by (12.4), (12.5), and (12.6) that

n∑

i=1

αi = n(n + 1)

2

and

n∑

i=1

βi = n(n + 1)

2
.

This is only possible if M1 = {1, . . . , n} and M2 = {1, . . . , n}. Thus there are
permutations λ and μ of the set {1, . . . , n} such that λ(i) = xi and μ(i) = yi and
by (12.3) we have

λ(i) + μ(i) + �i = Cmax (12.8)

for i = 1, . . . , n. Therefore by (12.1)
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n(n + 1) = nCmax −
n∑

i=1

�i = ne −
n∑

i=1

li

which implies

n(e − Cmax) =
n∑

i=1

(li − �i).

Suppose for contradiction that e > Cmax or �i > li for some i = 1, . . . , n. Then
the left hand side is positive or the right hand side is negative since �i ≥ li for all
i = 1, . . . , n in S. Either case leads to contradiction, thus Cmax = e and �i = li for
all i = 1, . . . , n. Therefore by (12.8)

λ(i) + μ(i) + li = e (12.9)

for i = 1, . . . , n. This proves that there are permutations λ and μ that provide an
affirmative answer to the RN3DM problem. This completes the proof. ��

Yu [16] then goes on to prove that the problem is NP-hard in the strong sense
even if there are only two possible values l and l′ of time lags in a job-proportionate
open shop, i.e., the problem O2|pi1 = pi2, lj ∈ {l, l′}|Cmax, and it is also NP-
hard in the ordinary sense when only one value l of time lag is permitted in a job-
proportionate open shop, i.e., the problem O2|pi1 = pi2, lj = l|Cmax.

Munier-Kordon and Rebaine [11] observe that if all time lags l1, . . . , ln are
distinct, non-negative, and integral, then the problem O2|pij = 1, lj |Cmax can be
solved in O(n log n) time. Their algorithm orders the jobs in decreasing order of
their time lags, l1 > · · · > ln. Next, it schedules the earlier operation of job Ji in[� i

2� − 1, � i
2�] on M1 if i is odd, or on M2 if i is even, i = 1, . . . , n. The later

operation of Ji is scheduled in
[� i

2� + li , � i
2� + li + 1

]
on M2 if i is odd, or on M1

if i is even, i = 1, . . . , n. Hence, the later operation of Ji waits exactly li time units
to start after the completion time of the Ji’s earlier operation. In order to prove that
the schedule is feasible we observe that for 1 ≤ i < j ≤ n, we have li − lj ≥ j − i.
Thus � i

2� + li > � j
2 � + lj for li − lj > 1 or j even, and � i

2� + li = � j
2 � + lj

for li − lj = 1 and j odd. In the latter case j = i + 1 and i is even. Therefore,
for any two jobs Ji and Jj their later unit-time operations are scheduled either in
different time slots or in the same time slot but on different machines. Finally, the
latest earlier operation is scheduled in time slot

[�n
2 �−1, �n

2 �], and the earliest later
operation is scheduled in time slot

[�n
2 �+ ln, �n

2 �+ ln + 1
]
. Since ln ≥ 0, we obtain

a feasible schedule. The schedule makespan equals 1 + l1 + 1 = 2 + l1 and thus it
is clearly optimal. We observe that the total completion time of the schedule equals

F =
n∑

i=1

(⌈ i

2

⌉
+ li + 1

)
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M2

Fig. 12.2 An optimal schedule with Cmax = 10 obtained by the Munier-Kordon and Rebaine
algorithm [11]

which is optimal as well. Therefore the schedule is ideal, see Coffman et al. [4]. To
illustrate the algorithm consider a two-machine open shop with n = 7 jobs having
the following time lags l1 = 8, l2 = 7, l3 = 5, l4 = 4, l5 = 3, l6 = 1, l7 = 0. The
schedule obtained by the algorithm is shown in Fig. 12.2.

Munier-Kordon and Rebaine [11] show an algorithm that produces 5
4 -

approximate solutions for the general problem O2|pij = 1, lj |Cmax which permits
jobs with the same time lags. The algorithm relies on the algorithm developed for
distinct time lags and described earlier.

The problem O2|pi1 = pi2 = 1, lj ∈ {l, l′}|Cmax with two distinct time lag
values l and l′ can be solved in time O(n log n), Munier-Kordon and Rebaine
[11]. Their algorithm however does not run in polynomial time with respect to the
succinct input encoding which requires O(max{log n, log l, log l′}) bits to specify
the problem instance. The question whether there is a polynomial-time algorithm
with respect to the succinct input encoding remains open.

For the problems with arbitrary operation processing times, Rebaine and Struse-
vich [14] give a linear-time algorithm for the instances with short time lags, i.e.,
time lags that meet the following condition: maxj {lj } ≤ minij {pij }. Strusevich
[15] gives 3

2 -approximation algorithm for the problem O2|lj |Cmax. Zhang and van
de Velde [19] give a 2-competitive greedy online algorithm for O2|lj |Cmax.

Other complexity results and heuristics can be found in Rayward-Smith and
Rebaine [12], Dell’Amico and Vaessens [5], and Rebaine [13].

Ageev [1] considers a job-proportionate two-machine open shop with exact time
lags, i.e., the problem O2|pj1 = pj2, exact lj |Cmax, and proves that no ( 3

2 − ε)-
approximation algorithm, ε > 0, running in polynomial time exists for the problem
unless P = NP .

Theorem 12.2 If P �= NP , then no polynomial-time algorithm for O2|pj1 =
pj2, exact lj |Cmax exists with the worst case ratio less than 3

2 .

He further proves that no ( 5
4 − ε)-approximation algorithm, ε > 0, running in

polynomial time exists for the problem with two time lag values 0 an l unless P =
NP .

Theorem 12.3 If P �= NP , then no polynomial-time algorithm for O2|exact lj ∈
{0, l}|Cmax exists with the worst case ratio less than 5

4 .

Finally, Ageev [1] points out that the 3-approximate algorithm developed for
two-machine flow shop with exact delays by Ageev and Kononov [2] and Leung et
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al. [10] gives 3-approximate algorithms for O2|exact lj |Cmax. A recent literature
review is given by Khatami et al. [9]. The review focuses on scheduling with exact
time lags. It is worth observing that the open shop scheduling with exact time lags
generalizes no-wait open shop scheduling.

12.2 Total Completion Time Minimization

Brucker et al. [3] prove that weighted total completion time minimization with time
lags, the problem O2|pij = 1, li |∑wiCi , is NP-hard in the strong sense. They
prove that the same holds for the total completion time with jobs being released
possibly at different times, i.e., the problem O2|pij = 1, li , ri |∑Ci .

In this section we prove that the problem where all jobs are released at the same
time and their weights are all equal, i.e., the problem O2|pij = 1, li |∑Ci is NP-
hard in the strong sense. This result strengthens those earlier complexity results for
total completion time, and it answers a question that has been open since the paper
by Brucker et al. [3].

Theorem 12.4 The problem O2|pij = 1, lj |∑Cj is NP-hard in the strong sense.

Proof The proof is by reduction from the Restricted Numerical Three Dimensional
Matching (RN3DM) problem which is proved NP-complete in the strong sense in
Yu [16], see also Yu et al. [17]. An instance of the RN3DM problem consists of
sets X = {1, . . . , n}, Y = {1, . . . , n}, a multiset of non-negative integers Z =
{l1, . . . , ln}, and an integer n < e < 2n such that

n∑

i=1

li + n(n + 1) = ne, (12.10)

see Yu [16]. The problem is to decide whether there are permutations λ and μ of
the set {1, . . . , n} such that

i + λ(i) + lμ(i) = e (12.11)

for i = 1, . . . , n. For an instance of the RN3DM problem we construct an instance
of an open shop with 2n jobs J1, . . . , Jn and I1, . . . , In, scheduled on two machines
M1 and M2. Each job has two unit-time operations, one on M1, and the other on
M2. For job Jj the delay between its two operations is required to be at least tj :=
lj + 2n − e > 0, j = 1, . . . , n, similarly for job Ij the delay between its two
operations is required to be at least tj := lj + 2n − e > 0, j = 1, . . . , n. The
threshold for total completion time equals
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Fig. 12.3 A schedule for the permutations λ and μ that give an affirmative answer to the RN3DM

F = n(n + 1) + 2
n∑

j=1

(tj + 1) = 3n2 + n.

For permutations λ and μ such that

i + λ(i) + lμ(i) = e (12.12)

for i = 1, . . . , n: schedule Jμ(i) in [i −1, i] on M1 and in [2n−λ(i), 2n−λ(i)+1]
on M2, and Iμ(i) in [i − 1, i] on M2 and in [2n − λ(i), 2n − λ(i) + 1] on M1 for
i = 1, . . . , n. Since 2n − λ(i) − i = tμ(i) > 0 and λ is a permutation, the resulting
schedule is feasible. Furthermore, the jobs J1, . . . , Jn complete at n + 1, . . . , 2n on
M2, and the jobs I1, . . . , In complete at n + 1, . . . , 2n on M1, see Fig. 12.3. Hence
the total completion time of the schedule equals 3n2 + n which equals the threshold
F .

Now, letS be a feasible schedule with total completion time not exceeding F . We
first show that Cmax = 2n in S. To that end let xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(2n−1) ≤
xσ(2n) be the times when the earlier operations of the jobs J1, . . . , Jn, and I1, . . . , In

complete in S. Because of the delay due to time lags the total completion time of S
is at least

n∑

i=1

(xσ(2i−1) + xσ(2i)) + 2
n∑

j=1

(tj + 1), (12.13)

which does not exceed the threshold F for S. Hence

n∑

i=1

(xσ(2i−1) + xσ(2i)) ≤ n(n + 1). (12.14)

For two machines we have i ≤ xσ(2i−1) ≤ xσ(2i), i = 1, . . . , n. Thus by (12.14)
we get xσ(2i−1) = xσ(2i) = i for i = 1, . . . , n. Therefore each job J1, . . . , Jn, and
I1, . . . , In completes after time n in S. Let Cπ(1) ≤ Cπ(2) ≤ · · · ≤ Cπ(2n−1) ≤
Cπ(2n) be the completion times of the jobs J1, . . . , Jn, and I1, . . . , In in S. Clearly
Cπ(i) = n + cπ(i), for some cπ(i) ≥ 1, thus
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M1

M2

0 n

. . . . . . . . .. . .

2n

. . . . . .. . . . . .

xi yiτi

Fig. 12.4 The relationship between xi and yi for job Ji

n∑

i=1

(cπ(2i−1) + cπ(2i)) ≤ n(n + 1) (12.15)

in S. Again, for two machines we have i ≤ cπ(2i−1) ≤ cπ(2i), i = 1, . . . , n. Thus
by (12.15) we get cπ(2i−1) = cπ(2i) = i for i = 1, . . . , n. Therefore all jobs
complete by Cmax = 2n in S which is what we set out to show first. We now use
that fact in the second part of the proof. Consider job Ji in S, its earlier operation is
processed in [xi − 1, xi] on one machine and its later operation in [Ci − 1, Ci] on
the other machine. Moreover Ci − 1 − xi = τi ≥ ti in S. Let 2n − (Ci − 1) = yi .
We have

xi + yi + τi = 2n, (12.16)

for i = 1, . . . , n. Thus by (12.10) and definition of ti we get

n∑

i=1

(xi + yi) ≤ ne −
n∑

i=1

li ≤ n(n + 1). (12.17)

To complete the proof consider the multiset {x1, y1, . . . , xi, yi, . . . , xn, yn}. For
each pair xi and yi , the xi is the completion time of one of the two operations of Ji ,
and yi corresponds to the start of the other two operations of Ji , please see Fig. 12.4
for details.

The operations must be done on different machines M1 and M2 in S. Thus xi

corresponds to one machine and yi corresponds to the other. We can split the pair
xi and yi between two sets M1 and M2 depending on the machines xi and yi

correspond to. We do this for each i = 1, . . . , n to obtain M1 = {α1, . . . , αn}
andM2 = {β1, . . . , βn}. Since S is a feasible schedule bothM1 andM2 must be
sets, i.e., either must include n distinct positive integer numbers. Thus

n∑

i=1

αi ≥ n(n + 1)

2
, (12.18)

and
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n∑

i=1

βi ≥ n(n + 1)

2
. (12.19)

However, by the construction ofM1 andM2 we have

n∑

i=1

(xi + yi) =
n∑

i=1

(αi + βi), (12.20)

which implies by (12.17), (12.18), and (12.19) that

n∑

i=1

αi = n(n + 1)

2

and

n∑

i=1

βi = n(n + 1)

2
.

This is only possible if M1 = {1, . . . , n} and M2 = {1, . . . , n}. Thus there are
permutations λ and μ of the set {1, . . . , n} such that λ(i) = xi and μ(i) = yi and
thus by (12.16) we have

λ(i) + μ(i) + τi = 2n (12.21)

for i = 1, . . . , n. Therefore by (12.10)

n(n + 1) = 2n2 −
n∑

i=1

τi = ne −
n∑

i=1

li = 2n2 −
n∑

i=1

ti .

Hence τi = ti for all i = 1, . . . , n. Therefore by (12.21)

λ(i) + μ(i) + ti = 2n (12.22)

for i = 1, . . . , n, and by definition of ti

λ(i) + μ(i) + li = e

for i = 1, . . . , n. The permutations λ and μ give an affirmative answer to the
RN3DM problem which proves the theorem. ��

We observed in Sect. 12.1 that Munier-Kordon and Rebaine algorithm [11]
solves the problem O2|pij = 1, lj |∑Cj with distinct time lags in O(n log n) time.
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For the schedule obtained for O2|pij = 1, lj |∑Cj with distinct time lags total
weighted completion time equals

Fw =
n∑

i=1

(⌈ i

2

⌉
+ li + 1

)
wi,

where wi is the weight of job Ji . For the instances of O2|pij = 1, li |∑wiCi , where
the order l1 > · · · > ln implies w1 ≥ · · · ≥ wn, the schedule obtained for O2|pij =
1, lj |∑Cj with distinct time lags is optimal for O2|pij = 1, li |∑wiCi since by
the rearrangement inequality of Hardy, Littlewood, and Polya [8] the weighted sum

n∑

i=1

⌈ i

2

⌉
wi,

is minimized by matching the positions 1, 1, 2, 2, . . . ,
⌈

n
2

⌉
in non-decreasing order

with the weights w1 ≥ · · · ≥ wn in non-increasing order.
However the complexity status of O2|pij = 1, li |∑wiCi and O2|pij =

1, li , ri |∑Ci remains open for distinct time lags.
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