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Preface

In May 2021, the 9th Edition of the International Conference on Networked Sys-
tems NETYS 2021, was held as a virtual event. While the scope of NETYS is dis-
tributed and networked systems, the conference is known for its broad perspective on
the topic. NETYS solicits submissions from practice and theory and aims to foster the
exchange of ideas between these directions. In recent years, data management and the
associated security aspects have increasingly attracted attention in distributed systems.
With the 9th edition, NETYS decided to adjust its orientation in that direction.

The present book contains revised versions of selected contributions to NETYS
2021. The conference received 30 high-quality submissions from all around the globe
that were reviewed by a Program Committee consisting of 33 international experts
covering all branches in the spectrum of distributed and networked systems. Each paper
received at least three reviews and underwent a critical discussion of its merits. Based
on this, 15 submissions were accepted as full papers (a 50% acceptance rate) and
another two as short papers. The Program Committee also selected a Best Paper and
two Best Student Paper awards. The Best Paper was awarded to Jean-Philippe Abegg,
Quentin Bramas, and Thomas Noel for their paper Blockchain using
Proof-of-Interaction. The two Best Student Paper awards were conferred to Joseph
Oglio, Kendric Hood, Gokarna Sharma, and Mikhail Nesterenko for their paper
Byzantine Geoconsensus and to Elena Yanakieva, Michael Youssef, Ahmad Hussein
Rezae, and Annette Bieniusa for their paper On the Impossibility of Confidentiality,
Integrity and Accessibility in Highly-available File System. Joseph Oglio, Elena
Yanakieva, Michael Youssef, and Ahmad Hussein Rezae were all full-time students at
the time of submission.

The COVID-19 pandemic had a serious impact on the organization of NETYS. It
was decided not to organize the METIS Spring School that otherwise accompanies
NETYS and serves as a social platform for PhD students. The conference was
implemented as an asynchronous event and the videos of all presentations are available
at the following link: https://www.youtube.com/channel/UCuut9KIWEy6nvywXd
9HuOnA/featured.

As the program chairs of NETYS 2021, we thank the authors for their high-quality
submissions, the external reviewers for their support, and the Program Committee for
their careful evaluations and the lively discussions. All this occurred under difficult
circumstances, and we are grateful to all of you for making NETYS 2021 happen.
Special thanks go to the NETYS General Chair Mohammed Erradi (ENSIAS,
Morocco) and the General Co-chairs Ahmed Bouajjani (Université de Paris, France)
and Rachid Guerraoui (EPFL, Switzerland) for numerous helpful suggestions on the

https://www.youtube.com/channel/UCuut9KIWEy6nvywXd9HuOnA/featured
https://www.youtube.com/channel/UCuut9KIWEy6nvywXd9HuOnA/featured


organization. The Organization Committee brought the online event to life, and we
thank you for your support. Finally, we thank Springer for their help in assembling the
proceedings.

September 2021 Karima Echihabi
Roland Meyer
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On the Impossibility of Confidentiality,
Integrity and Accessibility

in Highly-Available File Systems

Elena Yanakieva(B), Michael Youssef(B), Ahmad Hussein Rezae(B),
and Annette Bieniusa(B)

TU Kaiserslautern, 67663 Kaiserslautern, Germany
{e yanakiev15,m youssef19,a rezae19,bieniusa}@cs.uni-kl.de

Abstract. Distributed file systems are at the core of many services for
sharing data among users. To keep the file contents secure from unau-
thorized access, such systems make use of custom access control policies
similar to the traditional POSIX policies.

In our work, we want to investigate the interdependence of secure
access and high-availability. To this end, we formalize the three proper-
ties related to data security, namely confidentiality, integrity and accessi-
bility (CIA). We proof the CIA impossibility showing that these proper-
ties cannot be achieved together in a highly-available partition-tolerant
setting. We further discuss a CRDT-based model that implements an
access control policy similar to the POSIX one and that guarantees con-
fidentiality and integrity while precluding accessibility only in rare situ-
ations.

Keywords: Distributed file system · Access control · Conflict-free
replicated data type · POSIX · CRDT

1 Introduction

Distributed file systems have been gaining increasing importance as collaboration
tools. In such systems, multiple users can simultaneously create, modify and
remove files and directories. Distributed systems are replicated across multiple
nodes, typically allowing clients to connect and switch between different nodes at
any given time, e.g. to compensate for node failure. Availability and consistency
is essential for user satisfaction. To increase the availability of such systems,
service providers often offer support for offline operation. However, this poses
consistency issues when clients reconnect to the network, e.g. when multiple users
have modified the same resource while being offline. Providers approach this
problem in different ways. For example, GoogleDrive and Dropbox create copies
of the files that have been concurrently modified and escalate the conflict to
the user(s) to solve, whereas MicrosoftOneDrive offers a configurable automatic
merging policy for Word, Excel, and Visio files.

c© Springer Nature Switzerland AG 2021
K. Echihabi and R. Meyer (Eds.): NETYS 2021, LNCS 12754, pp. 3–18, 2021.
https://doi.org/10.1007/978-3-030-91014-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91014-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-91014-3_1


4 E. Yanakieva et al.

An established approach for guaranteeing high availability and consistency
are conflict-free replicated data types (CRDTs) [8,9]. For example, the Inter-
Planetary File System (IPFS) provides a file system abstraction on top of a P2P
network. The directories are represented in a tree data structure, while the files
are structured into blocks. For each block, the different versions are accessible
as a directed acyclic graph (DAG). Updates add new versions to the DAG, and
branches in the graph can be conflated with new versions or by using CRDTs.

To keep their data secure from unauthorized access, users want to be able
to restrict the visibility and modifiability of their data. For example, IPFS han-
dles security by making use of cryptographic encryption of new versions and
delegates the accessibility problem to a key management subsystem. While we
acknowledge the benefits of using this approach, we argue that meta data con-
flicts can occur regardless of cryptography. We believe file system security can
also be enhanced by providing secure merging semantics on metadata level. To
our knowledge, there is little research on what additional security challenges are
posed when merging metadata associated to files, such as access control data.
In the literature, there is a strong focus on the challenge of guaranteeing the
integrity of the file content in the context of text editing, and on the integrity
of the directory structure by preventing and resolving conflicts inducing cycles
in the tree structure due to concurrent move operations [5,7,10,12]. However,
we believe that file systems offer further challenges besides the handling of file
content in a distributed setting.

In this paper, we address the problem of defining a merging mechanism for
access control policies in a highly available setting. The three main properties
of such a mechanism are confidentiality, accessibility, and integrity (CIA). Con-
fidentiality and integrity prevent unauthorized access to files and directories,
while accessibility ensures that data is accessible to authorized users.

Our main contribution is an impossibility result that shows that CIA cannot
be achieved together in a highly-available partition-tolerant setting (Sect. 4). We
further discuss the applicability and limitations of CRDTs in a distributed file
system model with focus on POSIX-like access control semantics (Sect. 5). To
validate our results, we formalize and test the model in Repliss, which depicts
non-obvious shortcomings of customary design decisions with automatically gen-
erated counterexamples (Sect. 5).

2 Foundations

File systems store, organize and present data in a hierarchical manner. Usually,
they organize files and directories in a tree-like structure with a root node being
the root directory and the files forming the leaves. Each node has a unique path
starting from the root and traversing the directory nodes. In this section, we
discuss what it means for a distributed system to be available, consistent and
secure. We further summarize the POSIX access control policy as a classical way
of defining an authorization scheme for file systems.
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2.1 Availability, Consistency, and Partition Tolerance

With the growth of digitalization and online collaboration, distributed file sys-
tems have gained greater importance in our private and work lives. To offer
customers a satisfactory and reliable user experience, system providers need
to guarantee availability and consistency of the users’ data. On the one hand,
availability requires that every request issued to a correct node must result
in a response. This implies that every request must terminate. On the other
hand, consistency requires linearizability of system operations. This implies
that there should be a total order on the operations such that it appears as if
they were executed sequentially on a single replica [4]. However, following from
the CAP theorem [3,4], these two properties cannot be guaranteed together in a
distributed setting due to the inevitable network partitioning. Consequently, a
system’s design needs to provide a trade-off between consistency and availability.

High-availability has a large impact on user satisfaction. Therefore, ongoing
research investigates concepts on how to provide high availability coupled with
the strongest possible consistency in distributed systems. For this, it is useful to
identify to which extent weaker consistency properties are sufficient to guarantee
desirable system properties. An example of such a weaker consistency notion
that allows to be coupled with high availability is strong eventual consistency
[9]. It guarantees that replicas will converge to the same state once they have
received the same updates, regardless of their order. One possible approach to
support strong eventual consistency in distributed systems is using conflict-free
replicated data types (CRDTs) [8,9]. These are a central part to our model and
will be further explained in Sect. 5.

2.2 Security in File Systems

Besides providing high availability and data consistency, it is essential that data
stored in shared distributed file systems is secure, meaning that unauthorized
access is prohibited and authorized access always succeeds. The part of the
file system that provides these guarantees is the access control subsystem. File
systems implement different policies, which specify the access requirements and
can be dynamically adapted. For developing our model, we have studied the
POSIX access control policy in detail as it is one of the broadly implemented
ones.

The POSIX system design distinguishes between three types of authorization
[2] - owner, group and other. The owner of a directory or a file is a single user; by
default, it is the user that created the entity. The group of a file or directory can
contain single or multiple users; in most systems, by default, it initially contains
only the user that created the entity. Other represents every other user that
is neither the owner nor a member of the group. Furthermore, there exist three
types of access permissions for files and directories. Read permission for a file
allows the user to open and read its contents. Write permission for a file allows
the user to modify its contents. Execute permission for a file allows users to
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run it, if it is a program. As we focus on read and write access in our setting,
this type is not relevant for our model.

Directories under POSIX semantics act differently than files. For example,
having read permissions for a directory allows the user to list its contents, but
not to interact with them. For the purpose of the paper, we focus on a simplified
model and consider only file access policies.

In addition to specifying the permissions, the access control design needs to
ensure that the access control behaves correctly even under concurrent policy
modifications and that it guarantees that unauthorized access is prohibited and
authorized one is allowed. Assuming a total order on all operations can be estab-
lished, users are authorized to access a resource if, at the time of access, they
possess read and/or write permissions for the specific resource. Respectively, a
user is unauthorized to access a resource if, at the time of access, they do not
posses read and/or write permissions for that specific resource. Furthermore, we
define a secure file system as a system that possesses the following three proper-
ties - confidentiality, integrity and accessibility1. Confidentiality ensures that
every resource is protected from unauthorized viewing, meaning unauthorized
read access will never succeed. Integrity protects resources from unauthorized
modification, meaning unauthorized write access will never succeed. Accessi-
bility guarantees that authorized access is always allowed, meaning that, if an
access is requested by an authorized user, the request must terminate with an
answer and allow the access.

3 Related Work

In this section, we present the related work that we believe is relevant for our
model in Sect. 5. We use a CRDT approach to ensure that our file system is highly
available, therefore we present the research so far on CRDT-based distributed file
systems. We further discuss access control semantics in distributed information
systems as we believe important insights can be gained that are useful for our
model.

3.1 CRDT-Based File Systems

The research done in the area of distributed file systems using CRDTs mainly
focuses on providing merging semantics for conflicts occurring during the com-
mon file system operations, such as adding, modifying, and deleting files and
directories [1,5,7,10]. To our knowledge, there is no literature that has set focus
on conflict resolution on metadata level, or specifically on access control.

When modeling a distributed file system, the goal is to define merging seman-
tics such that conflicts are not observable by the user, and manual user inter-
vention is needed as little as possible [1]. File systems are typically modeled as a
1 In information systems, this concept is typically named “availability”. To prevent

confusion, we here use a different term to distinguish it from availability as defined
above.
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tree structure: there is a dedicated root node, and every other node has a unique
path, starting from the root; directories are inner nodes, while files form the leaf
nodes [1,5,7,10]. The conflict resolution strategies mostly concentrate on oper-
ations that preserve unique names and/or identification of nodes, the structural
tree invariant, or state conflicts [7,10]. A naming conflict occurs when two files
of the same type and the same name are concurrently added to the same direc-
tory. This situation leads to having two files with the same path, which breaks
the rule of path uniqueness in the tree structure. Some works propose to merge
both files [1,7], others to rename the files and keep both, but merge directories
if it occurs on directory level [10]. A state, or an update-remove, conflict occurs
when one user concurrently removes a file while another user is modifying it.
An information-preserving resolution, in this case, is to preserve the file with its
original name [7,10]. This can be achieved by using an add wins CRDT [7].

Tao et al. [10] identified further indirect conflicts, i.e. operations that do not
modify the same data but still result in an anomaly due to invariant violation.
Examples of such conflicts are delete-while-edit or moving two directories into
each other concurrently. The first one occurs when a directory is concurrently
removed while a file inside of the directory is updated. This situation results in
the file being removed if it is not acknowledged as a conflict. The second one
causes cycles in the file system tree if not handled [7].

Kleppmann et al. [5] propose an algorithm for highly-available move opera-
tions in a distributed file system based on operation logs, in addition to CRDTs.
They suggest modeling add, move and remove operations as move operations.
Removing an element is modeled as a move to the trash node. The trash node
serves as a second root node with no parent and no children. Conflict resolution
is based on the operation log: when a previous operation arrives at the replica,
all future operations are undone and then redone. This situation leads to hav-
ing high availability because the user waits only for the local operations to be
executed.

3.2 Access Control in Distributed Systems

The problem of maintaining dynamically adaptable access control policies under
high availability is not restricted to distributed file systems. In his dissertation
[11], Matthias Weber discusses highly-available access control semantics in the
context of geo-distributed information systems. For a formal model based on
causal consistency and highly-available transactions, he proves that data mod-
ifications can be guarded by corresponding access control policies. Further, he
introduces the term lower bound for merging conflicting updates, by defining
the sets of combinations with read and write permissions structured as a lat-
tice. When a conflict between two concurrent updates arises, the greatest lower
bound of those is the set of the most restrictive combination of permissions. For
example, when updating the access rights concurrently to rw and r, the conflict
is resolved to r which is the greatest lower bound according to the lattice. Weber
shows that taking the greatest lower bound when merging conflicting updates
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on the access control policy can be expressed as a CRDT. We apply the same
notion of lower bound in our model and use a similar CRDT approach.

There are three important insights from his work that we base our model on:

1. Consistency level: The consistency level of the application’s data store
needs to comprise causal consistency, and both data and policy operations
subject to a common causality restriction (e.g., by being stored in the same
database). For example, using a CRDT store can ensure those requirements.
As a result, the protection relation between modifications to data and access
control policy can be guaranteed and data leakage can be prevented.

2. Data type: The data type representing the policy state needs to have
decreasing merge semantics in order to guarantee security. It means that when
concurrent updates to the policy happen, the greatest lower bound needs to
be taken and hence, its value can only decrease, but never increase.

3. Decide function: The decide function that determines whether a data oper-
ation is permitted under the current policy can make decisions based on the
local state, and no knowledge of the future or other replicas’ states is required.
This means that merging conflicts can be solved based on the local knowledge
and external knowledge is not needed. It is important to know that this can
be achieved, because waiting on external knowledge before making a decision
is not desirable in any system, because it lowers availability.

4 On the Impossibility of Confidentiality, Integrity
and Accessibility in Highly-Available File Systems

Security is of great importance for any file system - local or distributed - as users
desire that their data remains secure from unauthorized access, but accessible
at all times for authorized users. However, distributed file systems are subject
to the same inherent limitations as other distributed systems. In the context of
access control, the interplay of consistency, availability, and partition tolerance
becomes even more delicate if we assume that access policies are not static, but
can be dynamically changed. To highlight the additional impact on the CIA of
data under concurrent access control policy changes, we formulated a specialized
version of the CAP theorem [3,4].

Before we begin, we want to point out the close relation of confidentiality
and integrity to consistency. According to their standard definitions, these three
notions require that a total order on operations exists. In the case of consistency,
the requirement applies on all system operations; in the case of confidentiali-
ty/integrity, the requirement concerns only the access control operations. This
relation implies that if confidentiality and/or integrity cannot be met, the system
cannot be consistent. Later, we will see that the reverse is also true. A similar
relation exists between availability and accessibility. Accessibility is dependent
on availability in the sense that unavailability results in the inability to guar-
antee accessibility. If a request issued by an authorized user U to access some
resource R does not receive a response, U would be restricted from accessing
resources despite having permission to do so.
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Theorem 1. A partition-tolerant distributed file system that does not provide
(strong) consistency, cannot guarantee confidentiality, integrity, and accessibility
(CIA).

Proof. For a contradiction, assume that there exists a partition-tolerant dis-
tributed file system that does not provide (strong) consistency, but guarantees
accessibility, confidentiality, and integrity.
In the following, we assume that network partitions split the system into two
disjoint non-empty sets of nodes: N = N1 �N2. We further assume that our file
system has two users, User1 and User2, and a file, F . User1 is the owner and
the only member in the group of F and User2 belongs to Other authorization
type. F has permissions for Other set to rw (read and write).

Following from that scenario, we now distinguish between three cases.
According to the CAP theorem, a distributed system cannot be made avail-
able, strongly consistent, and tolerate network partitioning at the same time.
If the system does not provide strong consistency, it can guarantee availability.
Therefore, in the first case the system provides availability and it always returns
the last written permission when an access control request is issued. In the sec-
ond case, the system provides availability and it responds with the last written
permissions when the network is not partitioned and with an “unsuccessful”
response when the network is partitioned to any issued access control requests.
For the last case, we assume that the system does not provide availability.

create file(User1) → F

change other permission(F, None)

write file(F, User1) / successful write file(F, User2) / successful
read file(F, User2) / successful

read file(F, User2) / unsuccessful

Fig. 1. Confidentiality and Integrity violation.

Case 1. The file system provides availability, always responding with the last
locally written permission. For this case, we have depicted a valid scenario as
an abstract execution graph in Fig. 1. Operations issued by User1 are marked
in red and with a circle and operations issued by User2 are marked in blue
and with a square.
Initially, User1 creates file F , which has User1 as owner and the only member
in its group. Furthermore, by default F has rw (read and write) permission
for Other. This event is observed by all nodes. After the network partitions
into N1 (top) and N2 (bottom), User1 communicates with a node from N1

and changes Other access for F to None. Afterwards, User1 communicates
with a node from N2 and successfully writes to F without realizing that they
are operating on an earlier version of the file, where others still have full access
to its contents. Subsequently, User2 communicates with N2 and issues a read
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request for F , which succeeds, because the last written permission on N2 for
Other on F is rw. This, however, violates confidentiality, as the permission
was already changed in the system to None after the file creation and so
User2 has made an unauthorized read access to F . Furthermore, let us assume
that User2 issues next a write request on F , while communicating with N2.
Analogously, the request succeeds, because the last written permission on N2

for Other on F is rw. This result violates integrity, as the permission was
already changed in the system to None after the file creation and so User2
has actually made an unauthorized write access to F .
Continuing on the graph, we see that after the network is not partitioned
anymore, all replicas can receive the new updates and synchronize to the
same state. This leads to the request of User2 to read F to be denied (return
value is unsuccessful). This scenario serves as a counterexample to the general
assumption.

Case 2. The file system provides availability. However, instead of blocking, it
does not permit read and write operations until the system is synchronized.
In this case, any type of access is prohibited for any user, and the system
responds with “unsuccessful” to any read and/or write request. Therefore, it
is guaranteed that access from unauthorized users will not be allowed. This
fulfills confidentiality and integrity.
Nonetheless, this implies that if an authorized user wants to access the
resource, access will not be granted, thus violating accessibility. This scenario
is thus another counterexample to the general assumption.

Case 3. Finally, assume the file system does not provide availability. By our prior
observation, availability is a precondition for accessibility; thus, accessibility
will not be guaranteed in this case. From this, it follows that this case is a
further counterexample to the general assumption. ��

5 An Access Control Model for Highly-Available File
Systems

In the previous section, we showed that confidentiality, integrity and accessibility,
as defined in Sect. 2 cannot be guaranteed in a highly-available partition tolerant
file system. However, weaker notions may suffice to offer protection of shared
data. In the following section, we investigate to which degree weaker notions of
the three security properties can be guaranteed, by formalizing a distributed file
system model using CRDTs.

Instead of relying on a global total order, we follow the first observation by
Weber [11] and establish a common causal order on the access control and data
operations. Thus, a user is authorized to execute an operation at a specific point
in time if and only if an access control operation that grants the user access rights
has been issued and no access control operation that takes away these rights
has happened thereafter. The weaker notions of confidentiality, integrity and
accessibility follow from this modified definition of authorization. As a reminder,
confidentiality does not allow unauthorized read access, integrity does not permit
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unauthorized write access and accessibility allows access to every authorized
user.

We integrate these weaker security properties in a POSIX-like file system
model based on CRDTs formalized in Repliss, a testing and verification tool for
highly available applications [13]. Our full model can be found in [14]. Before dis-
cussing the formalization, we briefly explain what CRDTs are, introduce Repliss
and discuss the assumptions and the restrictions on our model.

5.1 Conflict-Free Replicated Data Types

CRDTs extend classical data types with semantics under concurrent updates
using datatype-specific conflict-resolution schemes. Common examples include
counters, sets (add-wins, remove-wins) and maps (update-wins, delete-wins).
Furthermore, CRDTs fulfill strong eventual consistency [8]. This means that two
replicas have the same state once they have received the same set of updates.

As shown in Sect. 3, CRDTs have been applied in the context of distributed
file systems. However, we believe that their application is not restricted to the
files and the directory structure, but also affects their associated metadata such
as the access control policies, comprising information on users and their access
permissions. In the following model, we observe the challenges emerging when
applying CRDTs for access control of data.

5.2 Repliss

Repliss is a testing and verification tool for highly available applications [13]. It
provides invocations that can simulate access to shared data. The tool’s main
advantage is that it offers built-in CRDTs such as Set, Map, Counter, and Flag.
The calls interact with a CRDT data storage based on the data-type specific
operations defined by the CRDTs. Repliss also defines a happens-before[6]
relation between calls or invocations that allows to reason about the application
behavior using the history of invocations. To specify a model’s safety2 properties,
one can define invariants that are assumed to hold at transaction boundaries.
The model can be then tested against those invariants. If there are any possible
scenarios when the invariants are violated, Repliss constructs counterexamples
depicting those scenarios.

In our model from Sect. 5.4, we formalize the weaker notions of the security
properties as such invariants.

5.3 Assumptions and Restrictions

The following assumptions on our formal model for the distributed file system
are derived from the traditional POSIX semantics:

2 Here, the meaning of safety is as in safety and liveness properties.
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– There exists at all times at least one administrator.
– A file has exactly one owner.
– A file has exactly one group.

In addition to these assumptions, we simplify the formal model as follows.
As mentioned in Sect. 2, we limit the model to not support directories. While we
acknowledge that directories have an effect on access control and operations on
such may present further security challenges, we believe that modeling static files
captures the most important executions and conflicts related to access control.
Simplifying the model also eases the testing process. Therefore, we have chosen
to opt them out to narrow the scope.

Next, we have limited the model to support only read and write permissions
and to exclude the execute permission commonly found on traditional POSIX
file systems. We set our focus on addressing access control for data while the
execute permissions are irrelevant for our context.

crdt files: Map_dw[NodeId,
{access_right_owner, FileAccessRights[AccessRight],
access_right_group, FileAccessRights[AccessRight],
access_right_other, FileAccessRights[AccessRight],
file_owner: Register[UserId],
file_group: Register[GroupId],
file_data: Register[UserId]}]

crdt groups: Map_dw[GroupId, {group_users: Set_rw[UserId]}}]
crdt users: Map_dw[UserId, {is_admin: Register[Bool]}}]

Fig. 2. CRDTs for files, groups and users.

5.4 Formalization

The data model we use for our Repliss model is illustrated in Fig. 2. It consists
of three Map CRDTs: files, groups and users. groups contains the current set
of groups in the system and contains the user ids of the members for each group.
users represents the set of users in the system and whether the user has admin-
istrator rights or not. files depicts the set of files currently in the system. Each
file has a unique representation NodeId, an owner file_owner, a group file_group

and data file_data. We do not model any file content, because for our discussion
here it suffices to know whether the file has been accessed to construct scenarios
that violate the invariants. Instead, we maintain as file data the id of the user that
has last accessed it. Furthermore, each file maintains three different permissions:
for owner access_right_owner, for group access_right_group and for all others
access_right_other. Each of these permissions is of type FileAccessRights and
has a value of type AccessRight, which is depicted in Fig. 3. FileAccessRights

is a custom CRDT, which we extended Repliss with. It represents the access
rights for a specific file and type of authorization. The corresponding lattice is
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defined in Fig. 3. To be able to distinguish between concurrent administrator
and user actions, the access rights are decorated with an administrator label A
which states that they were issued by an administrator, or a user label U which
states that the change was issued by a user.

In addition, there are two options when defining lattice and thus the merging
semantics as illustrated in Fig. 3. As an example, consider a setting where two
concurrent access right operations change a file’s owner access rights to Read
(UR) and to Write (UW). The restrictive approach (Lattice 1) would be to take
the lower bound of the access rights and revoke the owner’s write rights by
resolving to UNone. The other approach (Lattice 2) would be to take the upper
bound of the rights and settle for a Read-Write access for the owner URW. In
both cases, admin changes take precedence over user changes. One could argue
here that the choice here is whether to favor accessibility over confidentiality and
integrity or the other way around. However, it is important to note that in many
file system implementations, the administrators usually have separate domain
territories where they do not and must not overlap to prevent conflicting actions.
In this case, and since the access rights changes in a POSIX-like file system are
issued by one of the administrators or the owner of the file, one can opt to favor
accessibility since the execution in which conflicting assignments happen is only
applicable when two administrators are in conflict.

type AccessRight = UNone() | UR() | UW() | URW()
| ANone() | AR() | AW() | ARW()

ANone

AR AW

ARW

UNone

UR UW

URWLattice 1

UNone

UR UW

URW

ANone

AR AW

ARW Lattice 2

Fig. 3. Access rights.

Besides the CRDT data model, the Repliss model comprises operations for
creating users, groups and files, for assigning and removing users to/from a
group, for changing a file’s ownership and group, and modifying the associated
permissions, and for reading and writing a file’s data.

Furthermore, we defined invariants to reflect the weaker notions of the secu-
rity properties to test the model against. We argue that for our purposes confi-
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dentiality behaves the same as integrity. In both cases, access is requested from
the file.

Figure 4 defines the weak confidentiality property. Assume that AP is the
set containing successful policy modification invocations, R is the set containing
successful read invocations, F is the set of files, U is the set of users and its
subset RU contains only non-admin users, P is the set of permissions as defined
previously. Further, Info is a function Invocation → InvocationInfo that maps
the invocation events to the corresponding parameters. Result is a predicate
that determines whether an invocation was performed successfully. → defines
the happens-before relation.

The invariant in Fig. 4 states the following: Assume there is a read request
for file f issued by user u, and there is a policy modification that changes the
permission for the user to Write or None (i.e. removing the read access) that
happened before the read request. If there doesn’t exist another policy modifi-
cation between this policy change and the read request, then the read request
will be denied.

For brevity, we consider change_policy to act only on owner rights. The actual
policy change event would also modify the group, group permissions and other
permissions.

∀ apMod ∈ AP, read ∈ R, f ∈ F, u ∈ RU, p ∈ P :
Info(read) = read file(f, u)
∧ Info(apMod) = change policy(f, u, p)
∧ (p = W ∨ p = None)
∧ apMod → read

∧ � ∃ iapMod ∈ AP, iu ∈ U, ip ∈ P :
Info(iapMod) = change policy(f, iu, ip)
∧ iapMod → read ∧ apMod → iapMod

=⇒ ¬Result(read)

Fig. 4. Confidentiality invariant.

5.5 Results

When testing the model with Repliss, we obtained several counter examples
of executions where the invariants were violated due to event interactions that
we had not anticipated3. In this section, we discuss these results and the most
important insights from testing our model against the described invariants. We
start by describing how important it is to define operations and CRDTs in such
a way that decisions are made based on the full access control knowledge and
therefore write skews can be avoided. Finally, we discuss the difference between
taking the lower and the upper bound when merging conflicting updates.
3 The full formal model and the evaluation results are available on Github [12].
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Preventing Write Skews in Access Policy Changes. The first result
emphasizes what happens if access policy events are represented similarly to
their counterpart in a non-distributed POSIX-like file system. Normally, chang-
ing a file’s owner and changing the file’s owner permissions are two separate
operations. Modelling the events this way may however lead to an intercepting
policy change and result in an unexpected state after converging.

Figure 5 represents an execution where a file has its owner and the owner
permissions changed concurrently. The resulting state includes the new owner
with the new permissions. From the perspective of the users executing the access
policy modification operations, it seems that one desirable outcome would be to
have the new owner with the old permissions, the other would be to have the
new permissions assigned to the old owner. The actual resulting situation as
depicted in Fig. 5 is undesirable by both users.

create file(user1) → f

change owner(f, user2)

change owner permissions(f, R)

read file(f, user1) / unsuccessful

Fig. 5. Conflict between access control modifications.

Unrelated Access Control Semantics. The previous result concludes that
if an access policy modification event does not specify the expected state for all
access control CRDTs in the same transaction, the outcome can be considered
to be undefined by the issuer. To overcome this problem, each access policy
modification event can be adjusted to change the state of all CRDTs concerned
with the access policy for the file. The desired change is applied alongside re-
applying the existing state values for all CRDTs that are not to be changed. For
example, if a user wishes to change the owner of a file, the change owner event
should not only change the owner, but also confirm the owner permissions. By
extending the operations this way, we avoid write skews.

While this change solves the problem, another issue arises. Consider the
case where a file’s owner permissions are changed to prevent the owner from
reading, while concurrently the owner is changed to a new owner. In the case
where the new owner with the old permissions is assigned, there are possible
executions where the old owner can still read if the file’s group contained the
old owner alongside read access for that group. One could argue that this is the
expected behavior from the perspective that a similar execution could happen
on a centralized system, but the pessimistic approach of taking the lower bound
of permissions is not functional in such a situation since the old owner must have
been completely prevented from reading the file. The argument boils down to the
choice of domain for the targeted users in access policies. On one side, one could
say that the access policy is defined for the roles owner, group, others irrespective
of which users are assigned these roles. The other side of the argument would
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be a more refined alternative by defining the targeted roles to be the users that
are assigned to be the owner, part of a group or simply other users.

While the former is captured by the model, the latter would require an auxil-
iary CRDT that captures all of the access policy data in one data structure, and
thus allows more refined merging procedures. In conclusion, defining the access
policy in terms of more than one semantically unrelated CRDTs is not sufficient
for the refined model that targets users explicitly instead of roles.

Upper and Lower Bound Semantics. Taking the upper bound favors acces-
sibility over confidentiality and integrity. On the other hand, taking the lower
bound favors confidentiality and integrity at the cost of decreased accessibility.

In the event that a permission is changed to read-only on one side, and con-
currently write-only on the other. Taking the upper bound of read-write would
violate confidentiality for one side and integrity for the other but maintains acces-
sibility for both. Opting for the lower bound yields the permission of None which
breaks accessibility for both, but maintains both confidentiality and integrity.

6 Conclusion

Our file-system model presented in this paper underlines the importance of hav-
ing secure access control mechanisms for distributed file systems that reflect
the users’ intention and maintain the three central properties - confidentiality,
integrity and accessibility. Our paper provides an impossibility result for highly
available partition-tolerant distributed file systems guaranteeing all three secu-
rity properties.

In an attempt to verify whether weaker notions of the security properties
can be achieved in the same setting, we devise a CRDT-based file system model
formalized in Repliss. Testing the model against the weaker notions of confi-
dentiality and accessibility exposed some corner counter-cases and allowed us to
draw important insights. Firstly, it appears that there are non-trivial relations
between parts of the access control policy state which need to be considered
in the design of operations; otherwise, safety violations can be introduced. For
example, if the file’s owner and file’s owner permission have been changed concur-
rently, the system will converge to the undesirable state of the file having the new
owner with the new permissions. Secondly, having a data model with multiple
unrelated CRDTs causes the inability to define merging semantics based on all
of the access control-relevant data. Finally, we identify the correlation between
confidentiality/integrity and making more restrictive merging semantics.

6.1 Future Work

For the formal analysis presented here, we focused on operations related to files.
Directories have different access policy semantics, which introduces more conflict
cases. A typical conflict can occur as follows: Owner A of directory D changes
D’s permissions to exclude user B from accessing D’s contents. Concurrently,
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B copies a file from D to another directory E, to which B has access. This
conflict can be considered an example of confidentiality violation by transitivity
because B can now read the copied files’ content. We believe that an extension
of our model can serve as a formal basis for reasoning about implementations
and devise safe conflict resolution strategies.

We further plan to define a custom policy CRDT that combines related access
control metadata and applies merge operations that extend to all semantically
related CRDT objects. Note that Repliss currently does not support this type
of CRDTs.

Finally, it would be interesting to extend an existing distributed file system
with the implementation of our model. This is essential to validate our model a
practical setup and evaluate the administrative overhead.
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Abstract. We define and investigate consensus for a set of N processes embed-
ded in the d-dimensional plane, d ≥ 2, which we call theGeoconsensus Problem.
The processes have unique coordinates and can communicate with each other
through oral messages. Faulty processes are covered by a finite-size convex fault
area F . The correct processes know the fault area size but not its location. We
prove that the geoconsensus is impossible if all processes may be covered by at
most three areas the size of the fault area.

On the constructive side, for M ≥ 1 fault areas F of arbitrary shape
with diameter D, we present a consensus algorithm BASIC that tolerates f ≤
N − (2M + 1) Byzantine processes provided that there are 9M + 3 processes
with pairwise distance between them greater than D. We present another consen-
sus algorithm GENERIC that lifts this distance requirement. For square F with
side �, GENERIC tolerates f ≤ N − 15M Byzantine processes given that all
processes are covered by at least 22M axis aligned squares of the same size as
F . For a circular F of diameter �, GENERIC tolerates f ≤ N − 57M Byzantine
processes if all processes are covered by at least 85M circles. We then estimate
the tolerance of GENERIC for various size combinations of fault and non-fault
areas as well as d-dimensional process embeddings, where d ≥ 3.

1 Introduction

The problem of Byzantine consensus [17,24] has been attracting extensive attention
from researchers and engineers in distributed systems since its initial statement. The
problem has applications in distributed storage [1,2,5,6,16], secure communication [8],
safety-critical systems [26], blockchain [21,27,29], and Internet of Things (IoT) [18].

Pease et al. [24] defined the problem as follows. Consider a set of N processes with
unique identifiers. The processes communicate in synchronous rounds. Each process
can communicate with all other processes. Some number f < N of these processes
are faulty. The fault is Byzantine which means that the faulty process may behave arbi-
trarily. The correct processes know the number of the faults f but not the identifiers
of the faulty processes. The Byzantine Consensus Problem requires all N − f correct
processes to agree on a single value.

Pease et al. proved that the maximum number of faults f that can be tolerated by a
deterministic algorithm depends on the communication assumptions. Unauthenticated
oral messagesmay be modified upon retransmission. If only oral messages are allowed,
Pease et al. showed that a consensus algorithm may tolerate up f < N/3 faults. In
case of unforgeable authenticated written messages, the consensus is solvable with an
arbitrary number of faults f ≤ N [24]. It is shown that Byzantine consensus requires
c© Springer Nature Switzerland AG 2021
K. Echihabi and R. Meyer (Eds.): NETYS 2021, LNCS 12754, pp. 19–35, 2021.
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at least f rounds of communication [10] and O(N2) messages [12]. Faster and more
efficient solutions are possible if randomized algorithms are allowed [3,14,20].

The original Byzantine Consensus Problem requires the processes to have unique
identifiers but does not restrict their location. One way to add some location infor-
mation to the system is by limiting process communication. In the original problem
statement, any pair of processes may communicate directly. Therefore, the commu-
nication topology is a complete graph, i.e. a clique. A number of studies relax this
connectivity assumption and investigate the problem in arbitrary graphs [24,28] and
wireless networks [22]. Several papers study a related problem of Byzantine broadcast
in incomplete graphs [15,25].

Recently, Lao et al. [18] proposed a Byzantine consensus protocol for IoT and
blockchain applications, called Geographic-PBFT or simply G-PBFT, which extends
a well-known PBFT algorithm [5] to geographic setting. They considered the case of
fixed IoT devices embedded in geographic locations for data collection and process-
ing. The location data for these IoT devices can be recorded at deployment, obtained
using low-cost GPS receivers or through location estimation algorithms [4,13]. They
argued that the fixed IoT devices have more computational power than other mobile
IoT devices (e.g., mobile phones and sensors) and are less likely to exhibit Byzantine
behavior. Therefore, they exploited the geographical location information of fixed IoT
devices to reach consensus. They argued that G-PBFT avoids Sybil attacks [9], reduces
the overhead for validating and recording transactions, achieves consensus with high
efficiency and low traffic intensity. However, no formal analysis of G-PBFT is given
and it is only experimentally validated. Yet, we believe that these developments warrant
a study of Byzantine consensus in devices that are aware of their locations.

Our Contribution. In this paper, we formally define and investigate the problem of
reaching consensus among processes in fixed geographical locations. We call this vari-
ant the Byzantine Geoconsensus Problem. We retain all other parameters of the original
problem statement. However, if fault locations are not constrained, Geoconsensus dif-
fers little from the classic Byzantine consensus: the geographic location of each process
can serve as its identifier. Hence, we consider a variant where the faults are constrained
geometrically. Specifically, they are limited to a fixed-size fault area F . This limita-
tion allows more effective solutions and makes Geoconsensus an interesting problem
to study. We are not aware of prior work in Byzantine consensus where processes are
embedded in a geometric plane while faulty processes are located in a fixed area.

Let us enumerate the contributions of this paper. Denote by N the number of pro-
cesses, M the number of fault areas F , D the diameter of F , and f the number of
faulty processes. In other words, f is the number of processes covered by fault areas
F . Assume that each process can communicate with all other N − 1 processes and the
communication is through oral messages only. Assume that any process covered by a
faulty area F may be Byzantine. The correct processes know the size of each faulty
area, such as its diameter, number of edges, etc. but do not know their exact locations.
In this paper, we make the following five major contributions:

(i) We prove that Geoconsensus is not solvable deterministically if all N processes
may be covered by 3 equal size areas F and one of them may be the fault area.
This extends to the case of N processes being covered by 3M areas F with M



Byzantine Geoconsensus 21

areas being faulty. This is done by adapting the impossibility proof of Pease et
al. [24] to Geoconsensus.

(ii) We present algorithm BASIC that solves Geoconsensus tolerating f ≤ N −(2M+
1) Byzantine processes, provided that there are 9M + 3 processes with pairwise
distance between them greater than D. The idea is for each process to determin-
istically select a leader in each independent coverage area. Once the leaders are
selected, any generic Byzantine consensus algorithm can be run. We use the clas-
sic algorithm by Pease et al. [24]. Non-leader processes accept the result chosen
by the leaders.

(iii) We present algorithm GENERIC that removes the pairwise distance assumption of
BASIC and solves Geoconsensus tolerating f ≤ N − 15M Byzantine processes,
provided that all N processes are covered by 22M axis-aligned squares of the
same size as the fault area F . For GENERIC, we start with covering processes
by axis-aligned squares and studying how these squares may intersect with fault
areas of various shapes and sizes. We show that determining optimal axis-aligned
square coverage is NP-hard and provide constant-ratio approximation algorithms.

(iv) We extend GENERIC to circular F tolerating f ≤ N − 57M Byzantine processes
if all N processes are covered by 85M circles of same size as F .

(v) We further extend results of (iii) and (iv) to various shape and alignment combina-
tions of fault and non-fault areas and to d-dimensional process embeddings, d ≥ 3.

Notice that we considered only square and circular fault areas. However, our results
can be immediately extended to more complex shapes as they can be inscribed into
simple ones. Providing better bounds on more sophisticated analysis of complex shapes
beyond simple inscription is left for future research.

Geoconsensus vs. Generic Byzantine Consensus. Let us contrast the results obtained
for Geoconsensus to those of the original Byzantine Consensus Problem. The Geocon-
sensus provides potentially tighter bounds on the number of faults. The original problem
establishes the relationship only between N and f , while Geoconsensus also factors the
number of fault areas M . Thus, in the original problem, at most f < N/3 faulty pro-
cesses may be tolerated, whereas our results show that as many as f ≤ N − αM
faults can be tolerated provided that the processes are placed such that at most βM
areas (same size as F ) are needed to cover them. Here, α and β are both integers with
β ≥ c · α for some constant c.

Geoconsensus also allows to increase the speed and reduce message complexity of
the solution. The original consensus requires at least f consecutive rounds of message
exchanges and O(f · N2) messages. The algorithms presented in this paper rely on the
selection of a single leader per coverage area. Since each process knows the location of
all other processes, this selection is done without message exchanges. Then, the leaders
communicate to achieve consensus. Let N processes be covered by X areas of the
same size as fault area F . Then, in one round, at most O(X2) messages need to be
exchanged. To reach consensus the algorithm runs for O(M). Thus, in the worst case,
at most O(M · X2) < O(f · N2) messages are exchanged.

Pease et al. [24] showed that it is impossible to solve consensus through oral mes-
sages when N = 3f but provided a solution for N ≥ 3f + 1. That is, their impossibil-
ity bound is tight. In this paper, however, we were able to show that it is impossible to
solve consensus if all N processes are covered by 3M areas that are the same size as
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Table 1. Notation used throughout the paper.

Symbol Description

N ; P ; (xi, yi) Number of processes; {p1, . . . , pN}; planar coordinates of process pi
F ;D; F Fault area; diameter of F ; a set of fault areas F with |F| = M

f Number of faulty processes

PD Processes in P such that pairwise distance between them is more thanD

A (or Aj(Ri)); A Cover area that is of same shape and size as F ; a set of cover areas A

n(F ) Number of cover areas A ∈ A that a fault area F overlaps

F . Yet, for the axis-aligned squares case, the provide the solution where N processes
are covered by at least 22M areas. Narrowing the gap between the impossible and the
achievable is left for further research.

2 Notation, Problem Definition, and Impossibility

Processes. A computer system consists of a set P = {p1, . . . , pN} of N processes.
Every process pi is embedded in the 2-dimensional plane and has unique planar coor-
dinates (xi, yi). Each process is aware of coordinates of all the other processes of P
and is capable of sending a message to any of them. The sender of the message may
not be spoofed. The communication between processes is through unauthenticated oral
messages. This communication is synchronous.

Byzantine Faults. Every process is either permanently correct or faulty. The fault is
Byzantine. A faulty process may behave arbitrarily. To simplify the presentation, we
assume that all faulty processes are controlled by a unique adversary trying to prevent
the system from achieving its task.

Fault Area. The adversary controls the processes as follows. Let the fault area F be
a finite-size convex area in the plane. Let D be the diameter of F , i.e. the maximum
distance between any two points of F . The adversary may place F in any location on
the plane. A process pi is covered by F if the coordinates (xi, yi) of pi is either in the
interior or on the boundary of F . Any process covered by F may be faulty.

A fault area set or just fault set is the setF of identical fault areas F . The size of this
set is M , i.e., |F| = M . The adversary controls the placement of all areas in F . Correct
processes know the shape and size of the fault areas F . However, correct processes
do not know the precise placement of the fault areas F . For example, if F contains 4
square fault areas F with the side �, then correct processes know that each fault area is
of square with side � but do not know where they are located. Table 1 summarizes the
notation used in this paper.

Byzantine Geoconsensus. Consider the binary consensus where every correct process
is input a value v ∈ {0, 1} and must output an irrevocable decision with the following
three properties.

agreement – no two correct processes decide differently;
validity – every correct process outputs a value input to some correct process;
termination – every correct process eventually decides.



Byzantine Geoconsensus 23

Definition 1. An algorithm solves the Byzantine Geoconsensus Problem (or Geocon-
sensus for short) for fault area set F , if every computation produced by this algorithm
satisfies the three consensus properties.

Impossibility of Geoconsensus. Given a certain set of embedded processes P and sin-
gle area F , the coverage number k of P by F is the minimum number of such areas
required to cover each process of P . We show that Geoconsensus is not solvable if the
coverage number k is less than 4. When the coverage number is 3 or less, the problem
is reducible to the classic consensus with 3 sets of peers where one of the sets is faulty.
Pease et al. [24] proved the solution for the latter problem to be impossible. The intu-
ition is that a group of correct processes may not be able to distinguish which of the
other two groups is Byzantine and which one is correct. Hence, the correct groups may
not reach consensus.

Theorem 1 (Impossibility of Geoconsensus). Given a set P of N ≥ 3 processes and
an area F , there exists no algorithm that solves the Byzantine Geoconsensus Problem
if the coverage number k of P by F is less than 4.

Proof. Set N = 3 · κ, for some positive integer κ ≥ 1. Place three areas A on the
plane in arbitrary locations. To embed processes in P , consider a bijective placement
function f : P → A such that κ processes are covered by each area A. Let v and v′ be
two distinct input values 0 and 1. Suppose one area A is fault area, meaning that all κ
processes in that area are faulty.

This construction reduces the Byzantine Goeconsensus Problem to the impossibil-
ity construction for the classic Byzantine consensus problem given in the theorem in
Section 4 of Pease et al. [24] for the 3κ processes out of which κ are Byzantine. ��

3 Geoconsensus Algorithm BASIC

In this section, we present the algorithm we call BASIC that solves Geoconsensus for
up to f < N − (2M + 1),M ≥ 1 faulty processes located in fault area set F of size
|F| = M provided that P contains at least 9M + 3 processes such that the pairwise
distance between them is greater than the diameter D of the fault areas F ∈ F .

The pseudocode of BASIC is shown in Algorithm 1. It contains two parts: the leaders
selection and the consensus procedure. Let us discuss the selection of leaders. If the
distance between two processes is less than the D, they may be covered by a single
fault area F . Therefore, the leaders need to be selected such that, pairwise, they are at
least D away from each other. Finding the largest set of such leaders is equivalent to
computing the maximum independent set in a unit disk graph. This problem is known
to be NP-hard [7]. We, therefore, employ a greedy heuristic.

Denote by Is(G) a distance D maximal independent set of a planar graph G . It
is defined as a subset of processes of G such that the distance between any pair of
processes of Is is more than D, and every process of G that does not belong to Is is at
most D away from a process in Is . That is, pi ∈ Is(G) if ∀pj 	= pi ∈ Is, d(pi, pj) >
D and ∀pk ∈ G \ Is , ∃pm ∈ Is such that d(pk, pm) ≤ D. Denote by Nb(pi,D),
the distance D neighborhood of process pi. That is, pj ∈ Nb(pi,D) if d(pi, pj) ≤
D. It is known [19, Lemma 3.3] that in every distance D planar graph, there exists a
neighborhood whose induced subgraph contains an independent set of size at most 3.
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Algorithm 1: Geoconsensus algorithm BASIC.

1 Setting: A set P of N processes positioned at distinct coordinates. Each process can
communicate with all other processes and knows their coordinates. There are M ≥ 1
identical fault areas F . The diameter of a fault area is D. The locations of any area F is
not known to correct processes. Each process covered by any F is Byzantine.

2 Input: Each process has initial value either 0 or 1.
3 Output: Each correct process outputs decision subject to Geoconsensus.
4 Procedure for process pk ∈ P
5 // leaders selection
6 Let PD ← ∅, PC ← P;
7 while PC �= ∅ do
8 let P3 ⊂ PD be a set of processes such that ∀pj ∈ P3, Nb(pj , D) has distance D

independent set of at most 3;
9 let pi ∈ P3, located in (xi, yi) be the lexicographically smallest process in P3, i.e.

∀pj �= pi ∈ P3 : located in (xj , yj) either xi < xj or xi = xj and yi < yj ;
10 add pi to PD;
11 remove pi from PC ;
12 ∀pj ∈ Nb(pi, D) remove pj from PC ;

13 // consensus
14 if pk ∈ PD then
15 run PSL algorithm, achieve decision v, broadcast v, output v;
16 else
17 wait for messages with identical decision v from at least 2M + 1 processes from PD ,

output v;

The set of leaders PD ⊂ P selection procedure operates as follows. A set PC

of leader candidates is iteratively processed. At first, all processes are candidates. All
processes whose distance D neighborhood induces a subgraph with an independent set
no more than 3 are found. Among those, the process pi with lexicographically smallest
coordinates, i.e. the process in the bottom left corner, is added to the leader set PD.
Then, all processes in Nb(pi,D) are removed from the leader candidate set PC . This
procedure repeats until PC is exhausted.

The second part of BASIC relies on the classic consensus algorithm of Pease et
al. [24]. We denote this algorithm as PSL. The input of PSL is the set of 3f + 1 pro-
cesses such that at most f of them are faulty as well as the initial value 1 or 0 for each
process. As output, the correct processes provide the decision value subject to the three
properties of the solution to consensus. PSL requires f + 1 communication rounds.

The complete BASIC operates as follows. All processes select leaders in PD. Then,
the leaders run PSL and broadcast their decision. The rest of the correct processes, if
any, adopt this decision.

Analysis of BASIC. The observation below is immediate since all processes run exactly
the same deterministic leaders selection procedure.

Observation 1. For any two processes pi, pj ∈ P , set PD computed by pi is the same
as set PD computed by pj .
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Lemma 1. If P contains at least 3x processes such that the distance between any pair
of such processes is greater than D, then the size of PD computed by processes in
BASIC is at least x.

Proof. In [19, Theorem 4.7], it is proven that the heuristic we use for the leaders selec-
tion provides a distance D independent set PD whose size is no less than a third of
optimal size. Thus, x ≤ |PD|. The lemma follows. ��
Lemma 2. Consider a fault area F with diameter D. No two processes in PD are
covered by F .

Proof. For any two processes pi, pj ∈ PD, d(pi, pj) > D. Since any area F has diam-
eter D, no two processes > D away can be covered by F simultaneously. ��
Theorem 2. Algorithm BASIC solves the Byzantine Geoconsensus Problem for a fault
area set F , the size of M ≥ 1 with fault areas F with diameter D for N processes in P
tolerating f ≤ N −(2M+1) Byzantine faults provided that P contains at least 9M+3
processes such that their pairwise distance is more than D. The solution is achieved in
M + 2 communication rounds.

Proof. If P contains at least 9M + 3 processes whose pairwise distance is more than
D, then, according to Lemma 1, each process in BASIC selects PD such that |PD| ≥
3M +1. We have M ≥ 1 fault areas, i.e., |F| = M . From Lemma 2, a process p ∈ PD

can be covered by at most one fault area F . Therefore, if |PD| ≥ 3M + 1, then it is
guaranteed that even if M processes in PD are Byzantine, 2M +1 correct processes in
PD can reach consensus using PSL algorithm.

In the worst case, the adversary may position fault areas of F such that all but
2M + 1 processes in P are covered. Hence, BASIC tolerates N − (2M + 1) faults.

Let us address the number of rounds that BASIC requires to achieve Geoconsensus.
It has two components executed sequentially: leaders selection and PSL. Leaders selec-
tion is done independently by all processes and requires no communication. PSL takes
M + 1 rounds for the 2M + 1 leaders to arrive at the decision. It takes another round
for the leaders to broadcast their decision. Hence, the total number of rounds is M + 2.

��

4 Covering Processes

In this section, in preparation for describing the GENERIC Geoconsensus algorithm,
we discuss techniques of covering processes by axis-aligned squares and circles. These
techniques vary depending on the shape and alignment of the fault area F .

Covering by Squares. The algorithm we describe below covers the processes by square
areas A of size � × �, assuming that the fault areas F are also squares of the same size.
Although F may not be axis-aligned, we use axis-aligned areas A to cover processes.
Later, we determine the maximum number of such areas A, that non-axis-aligned F
may overlap.

Let A be positioned on the plane such that the coordinate of its bottom left cor-
ner is (x1, y1). The coordinates of its top left, top right, and bottom right corners are
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respectively (x1, y1 + �), (x1 + �, y1 + �), and (x1 + �, y1). Let process pi be at coor-
dinate (xi, yi). We say that pi is covered by A if and only if x1 ≤ xi ≤ x1 + � and
y1 ≤ yi ≤ y1 + �. We assume that A is closed, i.e., process pi is assumed to be covered
by A even if pi is positioned on the boundary of A.

Let us formally define the problem of covering processes by square areas, which
we denote by SQUARE-COVER. Denote by A a set of square areas A. We say that A
completely covers allN processes if each pi ∈P is covered by at least one squareA∈ A.

Definition 2 (The SQUARE-COVER problem). SupposeN processes are embedded
into a 2d-plane such that the coordinates of each process are unique. Given a number
k ≥ 1, is there a set A of cardinality k composed of identical square areas A = � × �
that completely covers these N processes?

Theorem 3. SQUARE-COVER is NP-Complete.

Proof. To prove the theorem, we demonstrate that SQUARE-COVER is reducible to
the BOX-COVER problem which was shown to be NP-Complete by Fowler et al. [11].
BOX-COVER is defined as follows: There is a set of N points on the plane such that
each point has unique integer coordinates. A closed box (rigid but relocatable) is set
to be a square with side 2 and is axis-aligned. The problem is to decide whether a set
of k ≥ 1 identical axis-aligned closed boxes are enough to completely cover all N
points. Fowler et al. provided a polynomial-time reduction of 3-SAT to BOX-COVER
such that k boxes will suffice if and only if the 3-SAT formula is satisfiable. In this
setting, SQUARE-COVER reduces to BOX-COVER for � = 2. Therefore, the NP-
Completeness of BOX-COVER extends to SQUARE-COVER. ��

A Greedy Square Cover Algorithm. Since SQUARE-COVER is NP-Complete, we
use an efficient greedy approximation algorithm to find a set A of kgreedy axis-aligned
square areas A = � × � that completely cover all N processes in P . We prove that
kgreedy ≤ 2·kopt, where kopt is the optimal number of axis-aligned squares in any algo-
rithm to cover those N processes. That is, our heuristic is a 2-approximation of the opti-
mal algorithm. We call this algorithm GSQUARE. Each process pi can run GSQUARE
independently, because pi knows all required input parameters for GSQUARE.

GSQUARE operates as follows. Suppose the coordinates of process pi ∈ P are
(xi, yi). Let xmin = min1≤i≤N xi, xmax = max1≤i≤N xi, ymin = min1≤i≤N yi,
and ymax = max1≤i≤N yi. Let R be an axis-aligned rectangle with the bottom left
corner at (xmin, ymin) and the top right corner at (xmax, ymax). It is immediate that
R is the smallest axis-aligned rectangle that covers all N processes. The width of R is
width(R) = xmax − xmin and the height is height(R) = ymax − ymin. See Fig. 1 for
illustration.

Cover rectangle R by a set R of m slabs R = {R1, R2, . . . , Rm}. The height of
each slab Ri is �, except for possibly the last slab Rm whose height may be less than �.
The width of each slab is width(R). That is this width is the same is the width of R.

This slab-covering is done as follows. Place slab R1 at the bottom of R such
that its bottom side aligns with the bottom of R and left and right sides align with
the corresponding sides of R. Slide R1 up so that the bottom-most process pmin =
(xmin, ymin) ∈ P is on the bottom side of R1. See Fig. 1 for illustration. Now consider
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Fig. 1. Selection of axis-aligned smallest enclosing rectangleR covering allN processes inP and
coverage of R by axis-aligned slabs Ri of height � and width width(R). The slabs are selected
such that the at least one process is positioned on the bottom side of each slab.

Fig. 2. Selection of axis-aligned areas Aj(R2) (shown in red) to cover the processes in the slab
R2 of Fig. 1. At least one process is positioned on the left side of each area. (Color figure online)

only the processes in R that are not covered by R1. Denote this process set by P ′. Con-
sider the bottom-most process ymin′ of P ′. Slide the next slab R2 up so that pmin′ is
on its bottom side. Continue placing slabs over R in this manner until all processes of
P are covered.

We now cover each such slab by axis-aligned square areas A = � × �. See Fig. 2
for illustration. This square-covering is done similar to slab-covering. Let Ri be a slab
to cover. Place the first area A, call it A1(Ri), on Ri such that the top left corner of A
overlaps with the top left corner of slab Ri. Slide A1(Ri) horizontally to the right until
the left-most process in Ri is positioned on the left side of A1(Ri). Now consider only
the processes in Ri not covered by A1(Ri). Slide the next area A, called A2(Ri), such
that the left-most process in Ri is positioned on the left side of A. Note that there are
no uncovered processes between A1(Ri) and A2(Ri). Continue to cover all the points
in Ri in this manner. The last square may extend past the right side of the slab. Repeat
this procedure for every slab of R.

Lemma 3. Consider any two slabs Ri, Rj ∈ R produced by GSQUARE. Ri and Rj

do not overlap, i.e., if some process p ∈ Ri, then p /∈ Rj .

Proof. It is sufficient to prove this lemma for adjacent slabs. Suppose slabs Ri and Rj

are adjacent, i.e., j = i+1. According to algorithm GSQUARE, after the location of Ri

is selected, only processes that are not covered by the slabs so far are considered for the
selection of Rj . The first such process lies above the top (horizontal) side of Ri. Hence,
there is a non-empty gap between the top side of Ri and the bottom side of Rj . ��
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Lemma 4. Consider any two square areas Aj(Ri) and Ak(Ri) selected by GSQUARE
in slab Ri ∈ R. Aj(Ri) and Ak(Ri) do not overlap, i.e., if some process p ∈ Aj(Ri),
then p /∈ Ak(Ri).

See [23] for the proof of the lemma.

Lemma 5. Consider slab Ri ∈ R. Let k(Ri) be the number of squares Aj(Ri) to
cover all the processes in Ri using GSQUARE. There is no algorithm that can cover the
processes in Ri with k′(Ri) number of squares Aj(Ri) such that k′(Ri) < k(Ri).

Proof. Assume the opposite: there exists an algorithm X that can cover processes in Ri

with a set of squares whose cardinality k′ is less than k used by GSQUARE. GSQUARE
operates such that it places each square A so that some process p lies on the left side
of this square. Consider a sequence of such processes: σ ≡ 〈p1 · · · pu, pu+1 · · · pj〉.
Consider any pair of subsequent processes pu and pu+1 in σ with respective coordinates
(xu, yu) and (xu+1, yu+1). GSQUARE covers them with non-overlapping squares with
side �. Therefore, xu + � < xu+1. That is, the distance between consequent processes
in σ is greater than �. Any pair of such processes may not be covered by a single square.
Therefore, the number of squares required by the posited algorithm X is at least as large
as the number of processes in σ. Since the number of squares placed by GSQUARE in
slab Ri is k, the number of processes in σ is also k. Therefore, the number of squares
required by X is no less than k. This contradicts our initial assumption. ��

Let kopt(R) be the number of axis-aligned square areas A = � × � to cover all
N processes in R in the optimal cover algorithm. We now show that kgreedy(R) ≤
2 · kopt(R), i.e., GSQUARE provides 2-approximation. We divide the slabs in the set R
into two sets Rodd and Reven. For 1 ≤ i ≤ m, let

Rodd := {Ri, imod 2 	= 0} andReven := {Ri, imod 2 = 0}.

Lemma 6. Let k(Rodd) and k(Reven) be the total number of (axis-aligned) square
areas A = � × � to cover the processes in the sets Rodd and Reven, respectively. Let
kopt(R) be the optimal number of axis-aligned squares A = � × � to cover all the
processes in R. kopt(R) ≥ max{k(Rodd), k(Reven)}.

Proof. Consider two slabs Ri and Ri+2 for i ≥ 1. Consider a square Aj(Ri) placed
by GSQUARE. Consider also two processes p ∈ Ri and p′ ∈ Ri+2, respectively. The
distance between p and p′ is d(p, p′) > �. Therefore, if Aj(Ri) covers p, then it cannot
cover p′ ∈ Ri+2. Hence, no algorithm can produce the number of squares kopt(R) less
than the maximum between k(Rodd) and k(Reven). ��
Lemma 7. kgreedy(R) ≤ 2 · kopt(R).

Proof. From Lemma 5, we obtain that GSQUARE is optimal for each slab Ri. From
Lemma 6, we get that for any algorithm kopt(R) ≥ max{k(Rodd), k(Reven)}. More-
over, the GSQUARE produces the total number of squares kgreedy(R) = k(Rodd) +
k(Reven). Comparing kgreedy(R) with kopt(R), we get

kgreedy(R)
kopt(R)

≤ k(Rodd) + k(Reven)
max{k(Rodd), k(Reven)} ≤ 2 · max{k(Rodd), k(Reven)}

max{k(Rodd), k(Reven)} ≤ 2.

��
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Fig. 3. The maximum overlap of an axis-aligned fault area F with the identical axis-aligned cover
squares A of same size.

Covering by Circles. Let A be the set of identical circles of diameter �. We say that A
completely covers all the processes if every process pi ∈ P is covered by at least one of
the circles in A. The problem CIRCLE-COVER of completely covering processes by
A may be formally stated similar to SQUARE-COVER in Definition 2. The following
theorem, in turn, can be proven similar to Theorem 3 for SQUARE-COVER.

Theorem 4. CIRCLE-COVER is NP-Complete.

A Greedy Circle Cover Algorithm. We call this algorithm GCIRCLE. Select the
square cover set A as produced by GSQUARE. Consider an individual square A ∈ A.
For each side of A, find a midpoint and place a circle of diameter � there. Observe that
thus placed four circles completely cover the area of the square A.

Lemma 8. Let kC
greedy(R) be the number of circles C of diameter � needed to cover all

the processes in P by algorithm GCIRCLE. Let also kC
opt(R) be the minimum number

of such circles used by any algorithm. Then, kC
greedy(R) ≤ 8 · kC

opt(R).

See [23] for the proof of the lemma.

Overlapping Fault Area. The adversary may place the fault area F in any loca-
tion in the plane. This means that F may not necessarily be axis-aligned. Algorithms
GSQUARE and GCIRCLE produce a cover set A of axis-aligned squares and circles,
respectively. The algorithm we present in the next section needs to know how many
areas in A, fault area F overlaps. We now compute the bound for this number. The
bound considers both square and circle areas A under various size combinations of
fault and non-fault areas. The lemma below is for each A ∈ A and F being either
squares of side � or circles of diameter �.

Lemma 9. For the processes of P , consider the cover set A consisting of the axis-
aligned square areas A = � × �. Place a relocatable square area F = � × � in any
orientation (not necessarily axis-aligned). F overlaps no more than 7 squares A. If the
cover set consists of circles C ∈ A of diameter � and F is a circle of diameter �, then
F overlaps no more than 28 circles C.

Proof. Suppose F is axis-aligned. F may overlap at most two squares A horizontally.
Indeed, the total width covered by two squares in A is > 2� since the squares do not
overlap. Meanwhile, the total width of F is �. Similarly, F may overlap at most two
squares vertically. Thus, F may overlap at most 4 distinct axis-aligned areas A. See
Fig. 3 for illustration.
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Fig. 4. The maximum overlap of a non-axis-aligned fault area F with the identical axis-aligned
cover squares A of the same size.

Consider now that F is not axis-aligned. F can span at most
√
2� horizontally and√

2� vertically. Therefore, horizontally, F can overlap at most three areas A. Vertically,
F can overlap three areas as well. However, not all three areas on the top and bottom
rows can be overlapped at once. Specifically, not axis-aligned F can only overlap 2
squares in the top row and 2 in the bottom row. Therefore, in total, F may overlap at
most 7 distinct axis-aligned areas. Figure 4 provides an illustration.

Let us consider circular F of size �. It can be inscribed in a square of side �. The
square may overlap at most 7 square areas A of side �. Therefore, a circular F can also
overlap at most 7 squares. One square area A can be completely covered by 4 circles
C. Hence, the circular F may overlap at most 7 × 4 = 28 circles C. ��

The first lemma below is for each A being an axis-aligned square of side � or a circle
of diameter � while F being either a square of side �/

√
2 or a circle of diameter �/

√
2.

The second lemma below considers circular fault area F of diameter
√
2�.

Lemma 10. For the processes in P , consider the cover set A consisting of the axis-
aligned squares A = � × �. Place a relocatable square area F = �/

√
2 × �/

√
2 in

any orientation (not necessarily axis-aligned). F overlaps no more than 4 squares A. If
the cover set A consists of circles C of diameter � each, and F is a circle of diameter
�/

√
2, then F overlaps no more than 16 circles C.

See [23] for the proof of the lemma.

Lemma 11. For the processes in P , consider the cover set A consisting of the axis-
aligned square areas A = � × �. Place a relocatable circular fault area F of diameter√
2�. F overlaps no more than 8 squares A. If A consists of circles C of diameter �,

then circular F of diameter
√
2� overlaps no more than 32 circles C.

See [23] for the proof of the lemma.

5 Geoconsensus Algorithm GENERIC

We are now ready to present an algorithm for solving Geoconsensus that we call
GENERIC. GENEREC follows the same logic as BASIC but uses the GSQUARE or
GCIRCLE algorithms, described in the previous section, to obtain the coverage of



Byzantine Geoconsensus 31

Algorithm 2: Geoconsensus algorithm GENERIC.

1 Setting: A set P of N processes positioned at distinct planar coordinates. Each process
can communicate with all other processes and knows the coordinates of all other
processes. The processes covered by a fault area F at unknown location may be
Byzantine. There are M ≥ 1 of identical fault areas F and processes know M .

2 Input: Each process has initial value either 0 or 1.
3 Output: Each correct process outputs decision subject to Geoconsensus
4 Procedure for process pk

5 // leaders selection
6 compute the set A of covers Aj(Ri) using either GSQUARE or GCIRCLE;
7 for every cover Aj(Ri) ∈ A do
8 Pmin ← a set of processes with minimum y-coordinate among covered by Aj(Ri);

9 if |Pmin| = 1 then
10 lj(Aj(Ri)) ← the only process in Pmin;

11 else
12 lj(Aj(Ri)) ← the process in Pmin with minimum x-coordinate;

13 // consensus
14 Let PL be the set of leaders, one for each Aj(Ri) ∈ A;
15 if pk ∈ PL then
16 run PSL algorithm, achieve decision v, broadcast v, output v
17 else
18 wait for messages with identical decision v from at least 2M + 1 processes from PL,

output v

processes in P by a set A. A is a set of axis-aligned squares separated such that at
most a bounded number of them can be covered by a fault area. A single process per
square then participates in the classic consensus.

The pseudocode for GENERIC is given in Algorithm 2. The algorithm operates as
follows. Each process pk computes a set A of covers Aj(Ri) that are of same size as
F . Then pk determines the leader lj(Aj(Ri)) in each cover Aj(Ri). The process in
Aj(Ri) with smallest y-coordinate is selected as a leader. If there exist two processes
with the same smallest y-coordinate, then the process with the smaller x-coordinate
between them is picked. If pk is selected leader, it participates in running PSL [24]
(or any other Byzantine consensus algorithm). The leaders run PSL then broadcast the
achieved decision. The non-leader processes adopt it.

Analysis of GENERIC. Let us discuss the correctness and fault-tolerance guarantees
of GENERIC. In all theorems of this section, GENERIC achieves the solution in M +2
communication rounds. The proof for this claim is similar to that for BASIC in Theo-
rem 2. Let the fault area F = � × � be a, not necessarily axis-aligned, square.

Theorem 5. Given a set P of N processes and one square area F positioned at an
unknown location such that any process ofP covered by F may be Byzantine. Algorithm
GENERIC solves Geoconsensus with the following guarantees:
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– If F = � × � and not axis-aligned and A = � × �, f ≤ N − 15 faulty processes can
be tolerated given that |A| ≥ 22.

– If F = � × � and axis-aligned and A = � × �, f ≤ N − 9 faulty processes can be
tolerated given that |A| ≥ 13.

– If F = �/
√
2 × �/

√
2 but A = � × �, then even if F is not axis aligned, f ≤ N − 9

faulty processes can be tolerated given that |A| ≥ 13.

Proof. We start by proving the first case.GSQUARE produces the cover setA of at least
|A| = 22 areas. From Lemma 9, we obtain that a square fault area F = �×�, regardless
of orientation and location, can overlap at most n(F ) = 7 axis-aligned squares A =
� × �. GENERIC runs PSL algorithm using the single leader process in each area A.
For its correct operation, PSL requires the number of correct processes to be more than
twice the number of faulty ones. This is guaranteed since at least 2 · |A|/3 + 1 =
2 · 22/3 + 1 ≥ 2 · n(F ) + 1 = 2 · 7 + 1 leader processes are correct and they can reach
consensus using PSL.

Let us address the second case. An axis-aligned square F can overlap at most
n(F ) = 4 axis-aligned squares A. Therefore, when |A| ≥ 13, we have that |A| − 9 ≥
2 · n(F ) + 1 leader processes are correct and they can reach consensus. In this case,
f ≤ N − 9 processes can be covered by F and still they all can be tolerated.

Let us now address the third case, when F = �/
√
2 × �/

√
2 but A = � × �.

Regardless of its orientation, F can overlap at most n(F ) = 4 squares A. Therefore,
|A| ≥ 13 is sufficient for consensus and total f ≤ N − 9 processes can be tolerated. ��

For the set F of multiple fault areas F with |F| = M , Theorem 5 extends as
follows.

Theorem 6. Given a set P of N processes and a set of M ≥ 1 of square areas F
positioned at unknown locations such that any process of P covered by any F may be
Byzantine. Algorithm GENERIC solves Geoconsensus with the following guarantees:

– If each F = � × � and not axis-aligned and A = � × �, f ≤ N − 15M faulty
processes can be tolerated given that |A| ≥ 22M .

– If each F = � × � and axis-aligned and A = � × �, f ≤ N − 9M faulty processes
can be tolerated given that |A| ≥ 13M .

– If each F = �/
√
2 × �/

√
2 but A = � × �, then even if F is not axis-aligned,

f ≤ N − 9M faulty processes can be tolerated given that |A| ≥ 13M .

Proof. The proof for the case of M = 1 extends to the case of M > 1 as follows.
Theorem 5 gives the bounds f ≤ N −γ and |A| ≥ δ for one fault area for some positive
integers γ, δ. For M fault areas, M separate |A| sets are needed, with each set tolerating
a single fault area F . Therefore, the bounds of Theorem 5 extend to multiple fault areas
with a factor of M , i.e., GENERIC needs M · δ covers and f ≤ N − M · γ faulty
processes can be tolerated. Using the appropriate numbers from Theorem 5 provides
the claimed bounds. ��

We have the following theorem for the case of circular fault set F , |F| = M ≥ 1.
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Theorem 7. Given a set P of N processes and a set of M ≥ 1 circles F positioned at
unknown locations such that any process of P covered by F may be Byzantine. Algo-
rithm GENERIC solves Geoconsensus with the following guarantees:

– If each F and A are circles of diameter �, f ≤ N − 57M faulty processes can be
tolerated given that |A| ≥ 85M .

– If each F is a circle of diameter
√
2� and A is a circle of diameter �, f ≤ N − 65M

faulty processes can be tolerated given that |A| ≥ 97M .
– If each F is a circle of diameter �/

√
2 and A is a circle of diameter �, f ≤ N −33M

faulty processes can be tolerated given that |A| ≥ 49M .

See [23] for the proof of the theorem.

6 Extensions to Higher Dimensions

Our approach can be extended to solve Geoconsensus in d-dimensions, d ≥ 3. BASIC
extends as is. GENERIC runs correctly so long as we determine (i) the cover set A
of appropriate dimension and (ii) the overlap bound – the maximum number of d-
dimensional covers A that the fault area F may overlap. The bound on f then depends
on M and the cover set size |A|. In what follows, we discuss 3-dimensional space. The
still higher dimensions can be treated similarly.

If d = 3, the objective is to cover the embedded processes of P by cubes of size
� × � × � or spheres of diameter �. It can be shown that the greedy cube (sphere) cover
algorithm, let us call it GCUBE (GSPHERE), provides 2d−1 = 4 (16) approximation
of the optimal cover. The idea is to appropriately extend the 2-dimensional slab-based
division and axis-aligned square-based covers discussed in Sect. 4 to 3-dimensions with
rectangular cuboids and cube-based covers. See [23] for detailed discussion. We sum-
marize the results for cubic covers and cubic fault areas in Theorem 8.

Theorem 8. Given a set P of N processes embedded in 3-d space and a set of M ≥ 1
of cubic areas F at unknown locations, such that any process of P covered by F may be
Byzantine. Algorithm GENERIC solves Geoconsensus with the following guarantees:

– If F is a cube of side � and not axis-aligned and A is also a cube of side �, f ≤
N − 55M faulty processes can be tolerated given that the cover set |A| ≥ 82M .

– If F is a cube of side � and axis-aligned andA is also a cube of side �, f ≤ N−17M
faulty processes can be tolerated given that |A| ≥ 25M .

– If F is a sphere of diameter � and A is a sphere of diameter �, f ≤ N −433M faulty
processes can be tolerated given that |A| ≥ 649M .

7 Concluding Remarks

In light of the recent development of location-based consensus protocols, such as G-
PBFT [18], we have formally defined and studied the consensus problem of processes
that are embedded in a d-dimensional plane, d ≥ 2, on fixed locations known to every
other process. We have explored both the possibility as well bounds for a solution to this
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Geoconsensus. Our results establish trade-offs between the three parameters N,M, and
f , in contrast to the trade-off between only two parameters N and f in the Byzantine
consensus literature. Our results also show the dependency of the tolerance guarantees
on the shapes and alignment of the fault areas.

Acknowledgement. This research was supported in part by National Science Foundation under
Grants No. CCF-1936450 and CAREER CNS-2045597.
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Abstract. At PODC 2014, A. Mostéfaoui, H. Moumen, and M. Raynal
presented a new and simple randomized signature-free binary consen-
sus algorithm (denoted here as MMR) that copes with the net effect of
asynchrony and Byzantine behaviors. Assuming message scheduling is
fair and independent from random numbers, MMR is optimal in several
respects: it deals with up to t Byzantine processes, where t < n/3, n
being the number of processes, O(n2) messages, and O(1) expected time.
The present article presents a non-trivial extension of MMR to an even
more fault-prone context, namely, in addition to Byzantine processes, it
considers also that the system can experience transient failures. To this
end it considers self-stabilization techniques to cope with communication
failures and arbitrary transient faults, i.e., any violation of the assump-
tions according to which the system was designed to operate.

The proposed algorithm is the first loosely-self-stabilizing Byzan-
tine fault-tolerant binary consensus algorithm suited to asynchronous
message-passing systems. This is achieved via an instructive transforma-
tion of MMR to a loosely-self-stabilizing solution that can violate safety
requirements with probability Pr = O(1/(2M )), where M is a predefined
constant that can be set to any positive integer at the cost of 3Mn+logM
bits of local memory. In addition to making MMR resilient to transient
faults, the obtained loosely-self-stabilizing algorithm preserves its proper-
ties of optimal resilience and termination, i.e., t < n/3 and O(1) expected
time. Furthermore, it only requires a bounded amount of memory.
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1 Introduction

En route to constructing robust distributed systems, rose the need for different
(possibly geographically dispersed) computational entities to take common deci-
sions. Of past and recent contexts in which the need for agreement appeared,
one can cherry-pick applications, such as service replication, cloud computing,
load balancing, and distributed ledgers. In distributed computing, the problem of
agreeing on a single value after the proposal of values by computational entities,
called nodes, is called consensus [5,34]. The most basic form of the consensus
problem is for nodes to decide between two possible values, e.g., zero or one. This
version of the problem is called binary consensus [43, Ch. 14]. This work aims to
fortify consensus protocols with fault-tolerance guarantees that are more pow-
erful than any existing known solution. Such solutions are imperative for many
distributed systems that run in hostile environments, such as Blockchain.

1.1 Problem Definition

The problem of letting all nodes to uniformly select a single value among all the
values that they propose is called consensus. When the set, V , of values that
can be proposed, includes just two values, i.e., V = {0, 1}, the problem is called
binary consensus, see Definition 1. Otherwise, it is called multivalued consensus.

Definition 1. Every node pi has to propose a value vi ∈ {0, 1}, via an invo-
cation of the proposei(vi) operation. Let Alg be an algorithm that solves binary
consensus. Alg has to satisfy safety, i.e., BC-validity and BC-agreement, and
liveness, i.e., BC-termination, requirements.

– BC-validity. The value v ∈ {0, 1} decided by a correct node is a value
proposed by a correct node.

– BC-agreement. Any two correct nodes that decide, do so with identical
decided values.

– BC-termination. All correct nodes decide.

Starting from the algorithm of Mostéfaoui, Moumen, and Raynal [41], from
now on MMR, this study proposes an even more fault-tolerant consensus algo-
rithm, which is a variant on MMR. Note that MMR provides randomized liveness
guarantees. The termination of the proposed solution satisfies BC-termination
within a constant time that depends on a predefined parameter M ∈ Z

+. How-
ever, it satisfies safety with the probability of 1 − O(2−M ). Since the number of
bits that each node needs to store is 3nM +�log M�, we note that the probability
for violating safety can be made, in practice, to be extremely small, where n is
the number of nodes in the system.

1.2 Fault Model

We study asynchronous solutions for message-passing systems where the algo-
rithm cannot explicitly access the local clock or have guarantees on the com-
munication delay. We model a broad set of benign failures that can occur to
computers and networks, e.g., due to procrastination, equivocation, selfishness,
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hostile (human) interference, deviation from the program code, etc. Specifically,
our fault model includes (i) communication failures, such as packet omission,
duplication, and reordering, as well as (ii) up to t node failures, i.e., crashed or
Byzantine. In detail, a faulty node runs the algorithm correctly but the adversary
completely controls the messages that the algorithm sends, i.e., it can modify
the content of a message, delay the delivery of a message, or omit it altogether.
The adversary’s control can challenge the algorithm by creating failure patterns
in which a fault occurrence appears differently to different system components.
Moreover, the adversary is empowered with the unlimited ability to compute and
coordinate the most severe failure patterns. We assume a known maximum num-
ber, t, of nodes that the adversary can capture. We also restrict the adversary
from letting a captured node impersonate a non-faulty one. In addition, we limit
the adversary’s ability to impact message delivery between any two non-faulty
processes by assuming fair scheduling of message arrivals.

In addition to the failures captured by our model, we also aim to recover from
arbitrary transient faults, i.e., any temporary violation of assumptions according
to which the system and network were designed to operate. This includes the
corruption of control variables, such as the program counter, packet payload, and
indices, e.g., sequence numbers, which are responsible for the correct operation
of the studied system, as well as operational assumptions, such as that at least a
distinguished majority of nodes never fail. Since the occurrence of these failures
can be arbitrarily combined, we assume that these transient faults can alter the
system state in unpredictable ways. In particular, when modeling the system,
Dijkstra [17] assumes that these violations bring the system to an arbitrary
state from which a self-stabilizing system should recover, see [3,18] for details.
Dijkstra requires recovery after the last occurrence of a transient fault and once
the system has recovered, it must never violate the task specification.

For the case of the studied problem, there are currently no known ways
to meet Dijkstra’s self-stabilizing design criteria. Loosely-self-stabilizing sys-
tems [45] require that, once the system has recovered, only rarely and briefly
can it violate the safety specifications. Although it is a weaker design criterion
than the one defined by Dijkstra, the violation occurrence can be made to be so
rare, that the risk of breaking the safety requirements of Definition 1 becomes
negligible.

1.3 Related Work

Impossibilities and Lower-Bounds. The FLP impossibility result [27] concluded
that consensus is impossible to solve deterministically in asynchronous settings in
the presence of even a single crash failure. In [26] it was shown that a lower bound
of t + 1 communication steps are required to solve consensus deterministically
in both synchronous and asynchronous environments. The proposed solution is
a randomized one. In the presence of asynchrony, transient-faults, and (non-
Byzantine) crash failures, there are known problems such as leader election and
counting the number of nodes in the system, for which there are no (randomized)
self-stabilizing solutions [2,4]. In this work, we consider weaker design criteria
than Dijkstra’s self-stabilization.



Loosely-Stabilizing Byzantine-Tolerant Binary Consensus 39

In the presence of Byzantine faults, consensus is not solvable if a third or
more of the nodes are faulty [34]. Thus, optimally resilient Byzantine consensus
algorithms, such as the one we present, tolerate t < n/3 faulty nodes. The task
is also impossible if a node can impersonate some other node in its communica-
tion with the other entities [5]. We assume the absence of spoofing attacks and
similar means of impersonation. In the presence of asynchrony, transient faults,
and Byzantine failures, the task of unison is known to be unsolvable (unless
the strongest fairness assumptions are made) [24,25]. As indicated by the above
impossibility results, the studied problem remains challenging even under ran-
domization and fairness assumptions during the recovery period.

Self-stabilizing non-Byzantine fault-tolerant solutions Lundström, Raynal, and
Schiller [38] presented the first self-stabilizing solution for the problem of binary
consensus for message-passing systems where nodes may fail by crashing. They
ensure a line of self-stabilizing solutions [28,29,36,37,39]. This line follows the
approach proposed by Dolev, Petig, and Schiller [30,31] for self-stabilization in
the presence of seldom fairness. Namely, in the absence of transient-faults, these
self-stabilizing solutions are wait-free and no assumptions are made regarding
the system’s synchrony or fairness of its scheduler. However, the recovery from
transient faults does require fair execution, e.g., to perform a global reset, see [28],
but only during the recovery period. Our work does not assume execution fairness
either in the presence or absence of arbitrary transient-faults. As in MMR, our
loosely-self-stabilizing Byzantine fault-tolerant solution assumes fair scheduling
of message arrivals and the accessibility to an independent common coin service.

reliable broadcast 
with FIFO deliverycommon coin

binary consensus

multivalued consensus 

reliable broadcast with total-order delivery

emulation of state-machine replication 

message-passing system

Fig. 1. The hybrid architecture of asyn-
chronous and synchronous components

We note the existence of other app-
roaches for recovering from transient
faults without assuming execution fair-
ness during the recovery period [1,19,
44]. However, none of these results con-
sider both Byzantine fault-tolerance and
self-stabilization.

Self-stabilizing Byzantine Fault-Tolerant
Solutions. In the context of this dual
design criteria, there are solutions for
topology discovery [21], storage [9–13],
clock synchronization [22,33,35], approximate agreement [14], asynchronous uni-
son [25] to name a few. The most relevant work is the one by Binun et al. [7,8]
and Dolev et al. [20] for a deterministic Byzantine fault-tolerant emulation
of state-machine replication. Binun et al. present the first self-stabilizing solu-
tion for synchronous message-passing systems and Dolev et al. present the first
practically-self-stabilizing solution for partially-synchronous settings. We study
another problem, which is binary consensus.

Applications. Binary consensus is a fundamental component of total order
reliable broadcast, e.g., [15,16]. In what appears as a revival of the topic,
several Blockchain consensus protocols are also using similar approaches.
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HoneyBadger [40] was the first randomized BFT protocol for Blockchain. They
employ MMR as their binary consensus protocol. The BEAT [23] suite of proto-
cols for blockchain consensus also uses the MMR.

1.4 Our Architecture of Asynchronous and Synchronous
Components

A Blockchain can be seen as a replication service for state-machine emulation in
extremely hostile environments. The stacking of reliable broadcast protocols can
facilitate this emulation, see Fig. 1. Specifically, the order of all state transitions
of the automaton can be agreed by using total order reliable broadcast. The order
of the broadcasts is agreed via multivalued consensus. Whenever multivalued
consensus is called, the latter invokes binary consensus several times.

Using Both Asynchronous and Synchronous Components. Existing solutions for
binary consensus use either randomization techniques or synchrony assumptions
in order to circumvent FLP. The system as a whole can avoid communication-
related bottlenecks by making design choices that prefer weaker synchrony
assumptions for the components that are more communication demanding. Binary
consensus protocols are inherently communication-intensive. Therefore, we select
to study the non-self-stabilizing probabilistic MMR algorithm [41] for solving
binary consensus in asynchronous message-passing-systems. MMR assumes access
to a common coin service. Ben-Or, Dolev, and Hoch [6], in short BDH, presented
a self-stabilizing synchronous solution for common coin provision.

Enhancing the Computation Model with Common Coins. A common coin ser-
vice delivers to all nodes, via the operation randomBit(r) : r ∈ Z

+, identi-
cal sequences of random bits b1, b2, . . . , br, . . . : br ∈ {0, 1}. We assume that
Pr(br = 0) = Pr(br = 1) = 1/2 and that br is independent of br′ , where
r, r′ ∈ Z

+.

Periodic Re-installation of the Common Seed and Initialization of Consen-
sus Objects. The use of the common coin service can aim at devising
a random seed that is long enough to support plenty of invocations of
binary consensus. In detail, let st be a common seed that BDH renewed at
time τ . A pseudo-random generator can use sτ for generating the sequence
bitsτ,1, bitsτ,2, . . . , bitsτ,x of unique M -bits integers, where M ∈ Z

+ is a bound
on the number of pseudo-random bits each invocation of binary consensus
might use and x ∈ Z

+ is the highest value that guarantees that the sequence
bitsτ,1, bitsτ,2, . . . , bitsτ,x, bitsτ+1,1, bitsτ+1,2, . . . , bitsτ+1,x, . . . satisfies the com-
mon coin requirements over time. We note that high x values can mitigate the
effect of BDH’s synchrony assumption on the benefits gained from selecting an
asynchronous algorithm for solving binary consensus.

Also, it is imperative to re-install the common seed repeatedly due to the
need to tolerate corruption of the common seed, after the occurrence of a tran-
sient fault. This is also imposed by the properties of pseudo-random generator
functions, which eventually cannot avoid repeating the same sequences of “ran-
dom” bits. Note that one can use the events of common seed re-installation also
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for the initialization of consensus objects. This can help to simplify the correct-
ness proof since it implies that recovery from transient faults depends only on
the termination of all operations after the occurrence of the last transient fault.
Our hybrid architecture and the assumptions made above help us to circumvent
the aforementioned impossibility results.

1.5 Our Contribution

We present a fundamental module for dependable distributed systems: a loosely-
self-stabilizing asynchronous algorithm for binary consensus for message-passing
systems that are prone to Byzantine node failures. We obtain this new algorithm
via a transformation of the non-self-stabilizing probabilistic MMR. The proposed
algorithm preserves MMR’s elegant properties, such as optimal reliance and
termination within a constant expected time (without assuming fair execution).
After the occurrence of the last transient fault, the system recovers within a
bounded time (while assuming fair execution). Unlike in MMR, each node uses
a bounded amount of memory of 3nM + �log M�, where M ∈ Z

+ and n is the
number of nodes. This implies that with a probability in O(2−M ) the safety
requirement of Definition 1 can be violated. However, by selecting a sufficiently
large value of M , the risk of violating the safety requirements becomes negligible
at affordable costs.

In the absence of transient-faults, our solution achieves consensus without
assuming execution fairness. After the occurrence of any finite number of arbi-
trary transient-faults, the system recovers within a finite time (while assuming
fairness).

To the best of our knowledge, it is the first loosely-self-stabilizing Byzantine
fault-tolerant asynchronous algorithm for solving binary consensus in message-
passing systems. As such, there is a long line of distributed applications, such as
service replication and Blockchain, that our contribution can facilitate solutions
that are more fault-tolerant than the existing implementations since they cannot
recover after the occurrence of the last transient fault.
Due to the page limit, some details are omitted and can be found in the comple-
mentary technical report [32].

2 System Settings

We consider an asynchronous message-passing system that has no guarantees on
the communication delay or access to clock-related mechanisms, e.g., timeouts.
The system consists of a set, P, of n fail-prone nodes with unique identifiers. Any
pair of nodes pi, pj ∈ P has access to a bidirectional communication channel,
channel j,i, that, at any time, has at most channelCapacity ∈ Z

+ packets on
transit from pj to pi (this is due to an impossibility [18, Chapter 3.2]).

In the interleaving model [18], the node’s program is a sequence of (atomic)
steps. Each step starts with an internal computation and finishes with a single
communication operation, i.e., a message send or receive. The state, si, of node
pi ∈ P includes all of pi’s variables and channel j,i. The term system state (or
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configuration) refers to the tuple c = (s1, s2, · · · , sn). We define an execution
(or run) R = c[0], a[0], c[1], a[1], . . . as an alternating sequence of system states
c[x] and steps a[x], such that each c[x + 1], except for the starting one, c[0], is
obtained from c[x] by a[x]’s execution.

2.1 Task Specifications

Definition 1 considers the propose(v) operation. We refine the definition of
propose(v) by specifying how the decided value is retrieved. This value is either
returned by the propose() operation, as in MMR, or via the returned value of
the result() operation, as in the proposed solution. In the latter case, the symbol
⊥ is returned as long as no value was decided. Also, the symbol Ψ indicates
a (transient) error that occurs only when the proposed algorithm exceeds the
bound on the number of iterations that it may take.

Legal Executions. The set of legal executions (LE) refers to all the executions
in which the requirements of the task T hold. In this work, TbinCon denotes the
task of binary consensus, which Definition 1 specifies, and LEbinCon denotes the
set of executions in which the system fulfills TbinCon’s requirements.

2.2 The Fault Model and Self-stabilization

Communication Failures and Fairness. We consider solutions that are oriented
towards asynchronous message-passing systems and thus they are oblivious to
the time at which the packets arrive and depart. The communication channels are
prone to packet failures, such as omission, duplication, and reordering. However,
if pi sends a message infinitely often to pj , node pj receives that message infinitely
often. We refer to the latter as the fair communication assumption. We also
follow the assumption of MMR regarding the fair scheduling of message arrivals
(also in the absence of transient faults) that does not depend on the current
coin’s value.

Arbitrary Node Failures. Byzantine faults model any fault in a node including
crashes, arbitrary behavior, and malicious behaviors. Here the adversary lets
each node receive the arriving messages and calculate its state according to the
algorithm. However, once a node (that is captured by the adversary) sends a mes-
sage, the adversary can modify the message in any way, delay it for an arbitrarily
long period or even remove it from the communication channel. Note that the
adversary has the power to coordinate such actions without any limitation about
his computational or communication power. For the sake of solvability [34,42,46],
the number, t, of Byzantine failure needs to be less than one-third of the number,
n, of nodes in the system, i.e., 3t+1 ≤ n. The set of non-faulty nodes is denoted
by Correct and called the set of correct nodes.

Arbitrary Transient Faults. We consider any temporary violation of the assump-
tions according to which the system was designed to operate. We refer to these
violations and deviations as arbitrary transient faults and assume that they can
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corrupt the system state arbitrarily (while keeping the program code intact). The
occurrence of an arbitrary transient fault is rare. Thus, our model assumes that
the last arbitrary transient fault occurs before the system execution starts [18].
Also, it leaves the system to start in an arbitrary state.

Dijkstra’s Self-stabilization. An algorithm is self-stabilizing with respect to the
task of LE, when every (unbounded) execution R of the algorithm reaches within
a finite period a suffix Rlegal ∈ LE that is legal. Namely, Dijkstra [17] requires
∀R : ∃R′ : R = R′ ◦ Rlegal ∧ Rlegal ∈ LE ∧ |R′| ∈ Z

+, where the operator ◦
denotes that R = R′ ◦ R′′ is the concatenation of R′ with R′′. The part of the
proof that shows the existence of R′ is called the convergence (or recovery) proof,
and the part that shows that Rlegal ∈ LE is called the closure proof.

Execution Fairness and Wait-Free Guarantees. We say that a system execution
is fair when every step of a correct node that is applicable infinitely often is exe-
cuted infinitely often and fair communication is kept. Self-stabilizing algorithms
often assume that their executions are fair [18]. Wait-free algorithms guarantee
that operations (that were invoked by non-failing nodes) always terminate in
the presence of asynchrony and any number of node failures. This work assumes
execution fairness during the period in which the system recovers from the occur-
rence of the last arbitrary transient fault. In other words, the system is wait-free
only during legal executions, which are absent from arbitrary transient-faults.
Moreover, the system recovery from arbitrary transient-faults is not wait-free,
but this bounded recovery period occurs only once throughout the system exe-
cution.

Loosely-Self-stabilizing Systems. Satisfying the design criteria of Dijkstra’s self-
stabilizing systems is non-trivial since it is required to eventually satisfy strictly
always the task’s specifications. These severe requirements can lead to some
impossibility conditions, as in our case of solving binary consensus without syn-
chrony assumptions [2,25,26].

To circumvent such challenges, Sudo et al. [45] proposed the design criteria
for loosely-self-stabilizing systems, which relaxes Dijkstra’s criteria by requiring
that, starting from any system state, the system (i) reaches a legal execution
within a relatively short period, and (ii) remains in the set of legal for a rela-
tively long period. The definition of loosely-self-stabilizing systems by Sudo et
al. considers the task of leader election, which any system state may, or may not,
satisfy. This paper focuses on an operation-based task that has both safety and
liveness requirements. Only at the end of the task execution, can one observe
whether the safety requirements were satisfied. Thus, Definition 3 presents a vari-
ation of Sudo et al.’s definition that is operation-based and requires criterion (i)
to hold within a finite time rather than within ‘a short period’.

To that end, Definition 2 says what it means for a system S that imple-
ments operation op() to satisfy task Top()’s safety requirements with a proba-
bility pS . Definition 2 uses the term correct invocation of operation op(). Recall
that Sect. 2.1, defines what a correct invocation of binary consensus is, i.e., it is
required that all correct processors invoke the propose() operation exactly once
during any execution that is in LEbinCon.
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Definition 2 (Probabilistic satisfaction of repeated invocations of oper-
ation op()). For a given system S that aims at satisfying task Top() in a proba-
bilistic manner, denote by IES(LEop()) the set of all infinite executions that sys-
tem S can run, such that for any R ∈ IES(LEop()) it holds that R = R1◦R2◦, . . .
is an infinite composition of finite executions, R1, R2, . . . ∈ LEop(). Moreover,
each Rx : x ∈ Z

+ includes the correct invocation of op() that always satisfies
Top()’s liveness requirements.

We say that R satisfies task Top()’s safety requirements with the probability
PrR if (i) for any x ∈ Z

+ it holds that Rx ∈ LEop() with probability PrRx
≤ PrR

and (ii) for any x, y ∈ Z
+ the event of Rx ∈ LEop() and Ry ∈ LEop() are inde-

pendent. Furthermore, we say system S satisfies task Top() with the probability
PrS if ∀R ∈ IES(LEop()) : PrR ≤ PrS .

Definition 3 (Probabilistic (operation-based) eventually-loosely-self-
stabilizing systems). Let S be a system that implements a probabilistic solu-
tion for task Top(). Let R be any unbounded execution of S, which includes
repeated sequential and correct invocations of op(), such that task Top() termi-
nates within a period of �S steps in R. Suppose that within a finite number of
steps in R, the system S reaches a suffix of R that satisfies Top()’s safety require-
ments with the probability PrS = 1−p : p ∈ o(�S). In this case, we say that system
S is eventually-loosely-self-stabilizing, where �S is the complexity measure.

Definition 3 says that any eventually-loosely-self-stabilizing system recov-
ers within a finite period. After that period, the probability to violate safety-
requirement is exponentially small. This work shows that the studied algorithm
has an eventually-loosely-self-stabilizing variation for which the probability to
violate safety can be made so low that it becomes negligible.

3 The Studied Non-self-stabilizing Solution

We present a non-self-stabilizing algorithm that serves as a stepping stone to
the proposed algorithm (Sect. 4). Algorithm 1 (Algorithm 2 in the complemen-
tary technical report [32]) has a bound, M , on the number of communication
iterations; this algorithm is a bounded version of the studied algorithm MMR.
A detailed review of MMR can be found in [32] (given as Algorithm 1 there).

Variables. Algorithm 1 uses variable r (initialized to zero) for counting the num-
ber of iterations of the do-forever loop (lines 9 to 19), which we refer to as
asynchronous (communication) round. During round r, every node pi ∈ P stores
in the set esti[r][i] its estimated decision values, where esti[0][i] = {v} stores
its own proposal and esti[M+1][i] aims to hold the decided value. Since nodes
exchange these estimates, esti[r][j] stores the last estimate that pi received from
pj . Note that esti[r][j] ⊆ {0, 1} holds a set of values and it is initialized by the
empty set, ∅. At the end of round r, node pi ∈ P tests whether it is ready to
decide after it selects a single value w ∈ esti[r][i] to be exchanged with other
nodes. In order to ensure reliable broadcast in the presence of packet loss, there
is a need to store w in auxiliary storage, auxi[r][i], so that pi can retransmit w.
Note that all entries in aux[][] are initialized to ⊥.
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Algorithm 1: Non-stabilizing Byzantine-tolerant binary consensus using
M iterations and o(1) safety violation probability; code for pi.

1 operations: propose(v) do {(est[0][i], aux[0][i] ← ({v},⊥)};
2 result() do {if (est[M+1][i] = {v}) then return v else if

(r ≥ M ∧ infoResult() �= ∅) then returnΨelse return ⊥;}
3 macros: binValues(r, x) return

{y ∈ {0, 1} : ∃s ⊆ P : |{pj ∈ s : y ∈ est [r][j]}| ≥ x};
4 infoResult() do {if (∃s ⊆ P : n−t ≤ |s| ∧ (∀pj ∈ s : aux [r][j] ∈

binValues(r, 2t+1))) then return {aux [r][j]}pj∈s else return ∅};
5 functions: decide(x) {if (est[M+1][i] = ∅ ∨ aux[M+1][i] = ⊥) then

(est[M+1][i], aux[M+1][i]) ← ({x}, x)}
6 tryToDecide(values) begin
7 if (values �= {v}) then est[r][i] ← {randomBit(r)};
8 else {est[r][i] ← {v}; if (v = randomBit(r)) then decide(v)};

9 do forever begin
10 if (est[0][i] �= ∅) then
11 r ← min{r+1,M};
12 repeat
13 foreach pj ∈ P do send

EST(True, r, est[r−1][i] ∪ binValues(r, t+1)) to pj

14 if (∃w ∈ binValues(r, 2t+1)) then aux[r][i] ← w;
15 until aux[r][i] �= ⊥;
16 repeat
17 foreach pj ∈ P do send AUX(True, r, aux[r][i]) to pj

18 until infoResult() �= ∅;
19 tryToDecide(infoResult());

20 upon EST(aJ , rJ , vJ ) arrival from pj do begin
21 est[rJ ][j] ← est[rJ ][j] ∪ vJ ;
22 if (aJ ) then send EST(False, rJ , est[rJ−1][i]) to pj ;

23 upon AUX(aJ , rJ , vJ ) arrival from pj do begin
24 if (vJ �= ⊥) then aux[rJ ][j] ← vJ ;
25 if (aJ ) then send AUX(False, rJ , aux[rJ ][i]) to pj ;

Detailed Description. Algorithm 1 includes the following three stages.

1. Invocation. An invocation of operation propose(v) (line 1) initializes esti[0][i]
with the estimated value v. No communication or decision occurs before
such an invocation occurs. These actions are only possible through the lines
enclosed in the do forever loop (lines 9 to 19). These lines are not accessible
before such an invocation, because of the condition of line 10. Each iteration
of the do forever loop is initiated with a round increment (line 11); this line
ensures that r is bounded by M .
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2. Communication. The first communication phase, which queries the estimated
binary values, is implemented in the repeat-until loop of lines 12–15. The
receiver’s side of this communication is given in the code of lines 20–22. Simi-
larly, the second communication phase, which informs about the query results
through the use of auxiliary messages, is given in the repeat-until loop of lines
20–22. Lines 23–25 are the receiver side’s actions for this phase.

3. Decision. The decision phase (line 19) is a call to tryToDecide(). Lines 6
to 8 are the implementation of tryToDecide(). This exactly maps the Try-to-
decide phase of MMR: (i) If the values set that was composed of the auxiliary
messages that were received is a single value, then this is the estimate of the
next round. (ii) If this is also the output of randomBit() then this is the value
to be decided. (iii) If values is not a single value then the estimate for the
next round is the randomBit() output. The actual decision action (line 5) is
for both est[M + 1][i] and aux[M + 1][i] to be assigned the decided value.

As specified in Sect. 2.1, result() (line 2) aims to return the decided value.
However, the ⊥ symbol is returned when no value was decided. Also, it indicates
whether r has exceeded the limit M, in which case it returns the error symbol, Ψ,
laying the ground for the proposed algorithm presented in Sect. 4 (Algorithm 2).

Bounding the Number of Iterations. Algorithm 1 preallocates O(M) of memory
space for every node in the system, where M ∈ Z

+ is a predefined constant that
bounds the maximum number of iterations that Algorithm1 may take. Lemma 1
shows that Algorithm 1 may exceed the limit M with a probability that is in
O(2−M ). Once that happens, Definition 1’s safety requirements can be violated.

Lemma 1. By the end of round r, with probability Pr(r) = 1 − (1/2)r, we have
resulti() ∈ {0, 1} : pi ∈ P : i ∈ Correct.

Proof Sketch of Lemma 1. We show that ∃v ∈ {0, 1} : ∀i ∈ Correct :
esti[r][i] = {v} holds with the probability Pr(r) = 1 − (1/2)r. Let valuesr

i

be the parameter that pi passes to tryToDecide() (line 6) on round r. If
∀k ∈ Correct : valuesr

i = {0, 1} or ∀k ∈ Correct : valuesr
i = {vk(r)} hold,

pk assigns the same value to estk[r][k], which is {randomBitk(r)}, and respec-
tively, vk(r). The remaining case is when some correct nodes assign {vk(r)} to
estk[r][k] (line 8), whereas others assigns {randomBitk(r)} (line 7).

Recall the assumption that the Byzantine nodes have no control over the
network or its scheduler. Due to the common coin properties, randomBitk(r)
and randomBitk(r′) are independent, where r �= r′. The assignments of {vk(r)}
and {randomBitk(r)} are equal with the probability of 1

2 . Thus, Pr(r) is the
probability that [∃r′ ≤ r : randomBit(r) = v(r)] = 1

2 + (1 − 1
2 ) 12 + · · · + (1 −

1
2 )r−1 1

2 = 1 − ( 12 )r.
The complete proof shows that the repeat-until loop in lines 12 to 15 cannot

block forever and all the correct nodes pi keep their estimate value esti = {v} and
consequently the predicate (valuesr′

i = {v}) at line 7 holds for round r′, where
valuesr′

i = ∪j∈s{aux i[r][j]}. With probability Pr(r) = 1 − (1/2)r, by round r,
randomBit(r) = v holds. Then, the if-statement condition of line 7 does not hold
and the one in line 8 does hold. Thus, all the correct nodes decide v. �Lemma 1
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Algorithm 2: Loosely-stabilizing Byzantine-tolerant binary consensus
using M iterations and o(1) safety violation probability; code for pi.

26 constants: initState := (0, [[∅, . . .], . . . , [∅, . . .]], [[⊥, . . .], . . . , [⊥, . . .]]);
27 operations: propose(v) do {(r, est, aux) ← initState; est[0][i] ← {v}};
28 result() do {if (est[M+1][i] = {v}) then return v else if

(r ≥ M ∧ infoResult() �= ∅) then returnΨelse return ⊥;}
29 macros: binValues(r, x) return

{y ∈ {0, 1} : ∃s ⊆ P : |{pj ∈ s : y ∈ est [r][j]}| ≥ x};
30 infoResult() do {if (∃s ⊆ P : n−t ≤ |s| ∧ (∀pj ∈ s : aux [r][j] ∈

binValues(r, 2t+1))) then return {aux [r][j]}pj∈s else return ∅;}
31 functions: decide(x) {foreachr′ ∈ {r, . . . , M+1} do if

(est[r′][i] = ∅ ∨ aux[r′][i] = ⊥) then (est[r′][i], aux[r′][i]) ← ({x}, x)}
32 tryToDecide(values) begin
33 if (values �= {v}) then est[r][i] ← {randomBit(r)};
34 else {est[r][i] ← {v}; if (v = randomBit(r)) then decide(v)};

35 do forever begin
36 if ((r, est, aux) �= initState) then
37 r ← min{r+1,M};
38 repeat
39 if (est[0][i] �= {v}) then est[0][i] ← {w} : ∃w ∈ est[0][i];
40 foreach r′ ∈ {1, . . . , r−1} : est[r′][i] = ∅ ∨ aux[r′][i] = ⊥ do
41 (est[r′][i], aux[r′][i]) ← (est[0][i], x) : x ∈ est[0][i];

42 if ((∃w ∈ binValues(r, 2t+1) ∧ (aux[r][i] = ⊥ ∨ aux[r][i] /∈
binValues(r, 2t+1))) then aux[r][i] ← w;

43 foreach pj ∈ P do send
EST(True, r, est[r−1][i] ∪ binValues(r, t+1), aux[r][i]) to pj

44 until infoResult() �= ∅;
45 tryToDecide(infoResult());

46 upon EST(aJ , rJ , vJ , uJ ) arrival from pj begin
47 est[rJ ][j] ← est[rJ ][j] ∪ vJ ; aux[rJ ][j] ← uJ ;
48 if aJ then send EST(False, rJ , est[rJ−1][i], aux[r][i]) to pj ;

4 The Proposed Self-stabilizing Solution

Algorithm 2 (Algorithm 3 in [32]) presents a solution that can recover from tran-
sient faults. We demonstrate its correctness in Sect. 5. The main concern that we
have when designing a loosely-self-stabilizing version of MMR is to make sure
that no transient fault can cause the algorithm to not terminate, e.g., block for-
ever in one of the repeat-until loops in lines 13 to 15 and 17 to 18 of Algorithm1.
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Recall that Algorithm 1 is a code transformation of MMR [41] that runs for M
iterations and violates Definition 1’s safety requirement with a probability that
is in O(2−M ). The proposed solution appears in Algorithm2. We obtain this
solution via code transformation from Algorithm1. The latter transformation
aims to offer recovery from transient faults.

Note that a transient fault can corrupt the state of pi ∈ P by, e.g., setting
esti[i] with {0, 1}. Line 39 addresses this concern. Another case of state corrup-
tion is when the round counter, ri, equals to r, but there is r′ < r and entries
esti[r′] or auxi[r′] that point to their initial values i.e., ∃r′ ∈ {1, . . . , r−1} :
esti[r′][i] = ∅ ∨ auxi[r′][i] = ⊥. Line 39 addresses this concern. Since we wish
not that the for-each condition in line 40 to hold when a correct node decides,
line 31 makes sure that all entries of est[r′] and aux[r′] store the decided value,
where r′ is any round number that is between the current round number, r, and
M+1, which is the entry that stores the decided value.

The last concern that Algorithm 2 needs to address is the fact that the repeat-
until loop in lines 17 to 18 of Algorithm1 depends on the assumption that
auxi[r][i] �= ⊥, which is supposed to be fulfilled by the repeat-until loop in
lines 13 to 15. However, a transient fault can place the program counter to point
at line 17 without ever satisfying the requirement of auxi[r][i] �= ⊥. Therefore,
Algorithm 2 combines in lines 42 to 43 the repeat-until loops of lines 13 to 15
and 17 to 18 of Algorithm1. A similar combination occurs at the upon events.

5 Correctness

We show that Algorithm 2 cannot block forever even in the presence of transient
faults and that the safety requirements of Definition 1 hold with probability
Pr(r) = 1 − (1/2)−M . Due to the page limit, the detailed version of the proof
can be found in the complementary technical report [32].

5.1 Transient Fault Recovery

We say that a system state c is resolved if ∀i ∈ Correct :
∣
∣esti[0][i]

∣
∣ ∈ {0, 1}∧�r′ ∈

{1, . . . , r−1} : esti[r′][i] = ∅ ∨ auxi[r′][i] = ⊥. Suppose that during execution
R, every pi ∈ P : i ∈ Correct invokes proposei() exactly once. In this case,
we say that R includes a complete invocation of binary consensus. Theorem1
shows recovery to resolved system states and termination during executions that
include a complete invocation of binary consensus. The statement of Theorem 1
uses the term active for node pi ∈ P when referring to the case of esti[0][i] �=
initState.

Theorem 1 shows that the system recovers within a finite time after the occur-
rence of the last arbitrary transient-fault. Recall that we assume execution fair-
ness after the occurrence of that fault (Sect. 2.2).

Theorem 1 (Convergence). Let R be an execution of Algorithm2. (i) Within
one complete asynchronous round, the system is resolved. Also, suppose that
throughout R all correct nodes are active. (ii) Eventually, for every i ∈ Correct,
it holds that the operation resulti() returns v ∈ {0, 1,Ψ}.
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Proof Sketch of Theorem 1. Lines 39 to 41 imply that Invariant (i) holds.

Lemma 2. The repeat-until loop in lines 42 to 44 cannot block forever.

Proof Sketch of Lemma 2. The proof of the lemma is by contradiction,
which Argument 4 demonstrates since line 44’s exist condition eventually holds.
Argument 1: Eventually auxi[r][i] ∈ binValuesi(r, 2t+1) holds. Suppose that
in R’s starting system state, ¬(aux[r][i] �= ⊥ ∧ aux[r][i] ∈ binValues(r, 2t+1))
holds (otherwise the proof is done). There are n−t ≥ 2t+1 = (t+1)+t cor-
rect nodes and each broadcasts EST(•, rnd = r, est = {w, •}, •) : w ∈ {0, 1}
(line 43). Therefore, ∃v ∈ {0, 1} where at least (t+1) correct nodes broad-
cast EST(•, rnd = r, est = {v, •}, •). Since every node receives EST(•, rnd =
r, est = {v, •}, •) from at least (t+1) nodes (line 48), eventually every correct
node relays v via EST(•, rnd = r, est = {v, •}, •) that line 43 sends because
v ∈ binValuesi(r, t+1).

Since n−t ≥ 2t+1 holds, (∃w ∈ binValues(r, 2t+1)) in the if-statement
condition at line 42 is eventually satisfied for any i ∈ Correct . Thus, if
(aux[r][i] = ⊥ ∨ aux[r][i] /∈ binValues(r, 2t+1)) does not hold, line 42 makes
sure it does.

Argument 2: Eventually ∃i ∈ Correct : w ∈ binValuesi(ri, 2t+1) =⇒ ∃s ⊆
Correct : t+1 ≤ |s| ∧ ∀k ∈ s : w ∈ estk[k]. We prove the argument by contra-
diction. Specifically, suppose that ∃i ∈ Correct : w ∈ binValuesi(ri, 2t+1) holds
throughout R and yet ∀s ⊆ Correct : t+1 ≤ |s| : ∃k ∈ s : w /∈ estk[k].

By lines 43 and 47, the only way in which w ∈ binValuesi(ri, 2t+1) hold in
every c′ ∈ R, is if there is c ∈ R that appears before c′, such that ∃s ⊆ Correct :
t+1 ≤ |s| : ∀k ∈ s : w ∈ estk[k]. Thus, a contradiction and the argument is true.

Argument 3: Eventually c′ ∈ R is reached in which ∃s ⊆ Correct : t+1 ≤
|s| ∧ ∀pk ∈ s : w ∈ estk[k] =⇒ ∀i ∈ Correct : w ∈ binValuesi(ri, 2t+1). By line
43, there are (t+1) correct nodes that broadcast EST(•, rnd = r, est = {w, •}, •).
Since every correct node receives w from at least (t+1) nodes (line 47), every
correct node eventually reply w via the message EST(•, rnd = r, est = {w, •}, •)
at lines 43 and 48 because w ∈ binValuesi(r, t+1). Since n−t ≥ 2t+1 holds,
(∃w ∈ binValues(r, 2t+1)) holds and the argument is true.

Argument 4: Suppose that the condition cond(i) := infoResulti() �= ∅ : i ∈
Correct does not hold in R’s starting state. Eventually, c′′ ∈ R, in which cond(i) :
i ∈ Correct holds. We prove the argument by contradiction. Specifically, sup-
pose that cond(i) never holds, i.e., �c′′ ∈ R. We note that cond(i) must hold if
binValuesi(ri, 2t+1) = {0, 1} or binValuesi(ri, 2t+1) = {v} ∧ ∃s ⊆ P : n−t ≤
|s| ∧ (∪pk∈s{aux i[r][k]}) = {w} ∧ w = v. Suppose that binValuesi(ri, 2t+1) =
{v} � {0, 1} and ∀s ⊆ P : n−t ≤ |s| =⇒ w ∈ (∪pk∈s{aux i[r][k]}) : w �= v
throughout R. A contradiction is reached by showing that eventually w ∈
binValuesi(ri, 2t+1). By lines 43 and 47, the only way in which w ∈
(∪pk∈s{aux i[r][k]}) holds in every system state c′ ∈ R, is if there is a system
state c that appear in R before c′, such that ∃pk ∈ P : auxk[r][k] = w. Note
that c′ and c can be selected such that the following is true. By Argument 1,



50 C. Georgiou et al.

auxk[r][k] ∈ binValuesk(r, 2t+1). By Argument 2, w ∈ binValuesk(ri, 2t+1) =⇒
∃s ⊆ Correct : t+1 ≤ |s| ∧ ∀pk ∈ s : w ∈ estk[k] in c. By Argument 3,
∃s ⊆ Correct : t+1 ≤ |s| ∧ ∀k ∈ s : w ∈ estk[k] =⇒ ∀i ∈ Correct : w ∈
binValuesi(ri, 2t+1) in c. Thus, a contradiction is reached (w.r.t. argument),
which implies that the argument is true. �Lemma 2

Lemma 3. Invariant (ii) holds.

Proof of Lemma 3. Lemma 2 says that the repeat-until loop in lines 42 to 44
does not block. By line 37, every iteration of the do-forever loop (lines 36 to
45) can be associated with at most one asynchronous round. Thus, line 28 and
Argument (4) of the proof of Lemma2 imply that (ri ≥ M ∧ infoResulti() �= ∅)
holds eventually and resulti() returns a non-⊥ value.

5.2 Satisfying the Task Specifications

Theorems 2 and 3 show that Algorithm 2 satisfies the task requirements
(Sect. 2.1). We say that system state c ∈ R is well-initialized if ∀i ∈ Correct :
(ri, esti, auxi) := initState holds. The proofs of theorems 2 and 3 appear in [32].
Recall that in the absence of transient-faults, our solution achieves consensus
without assuming execution fairness.

Theorem 2 (Closure). Let R be an execution of Algorithm2 that starts from
a well-initialized system state and includes a complete invocation of binary con-
sensus. Within O(r) : r ≤ M asynchronous rounds, with probability Pr(r) =
1 − (1/2)r, and for any pi ∈ P : i ∈ Correct, resulti() ∈ {0, 1}.
Theorem 3. Let R be an execution of Algorithm2 that starts in a well-
initialized system state and during which every correct node pi ∈ P invokes
proposei() exactly once. R implements a loosely-self-stabilizing solution for
binary consensus that can tolerate up to t Byzantine nodes, where n ≥ 3t + 1.
Also, within four asynchronous rounds, all correct nodes are expected to decide.

6 Discussion

We have presented a new loosely-self-stabilizing variation on the MMR algo-
rithm [41] for solving binary consensus in the presence of Byzantine failures in
message-passing systems. The proposed solution preserves the following proper-
ties of the studied algorithm: it does not require signatures, it offers optimal fault-
tolerance, and the expected time until termination is the same as the studied
algorithm. The proposed solution is able to achieve this using a new application
of the design criteria of loosely-self-stabilizing systems, which requires the satis-
faction of safety property with a probability in O(1 − 2−M ). For any practical
purposes and in the absence of transient faults, one can select M to be suffi-
ciently large so that the risk of violating safety is negligible. We believe that this
work is preparing the groundwork needed to construct self-stabilizing (Byzantine
fault-tolerant) algorithms for distributed systems, such as Blockchains.
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Abstract. A channel from a process p to a process q satisfies the ADD property if
there are constants K and D, unknown to the processes, such that in any sequence
of K consecutive messages sent by p to q, at least one of them is delivered to q
at most D time units after it has been sent. This paper studies implementations
of an eventual leader, namely, an Ω failure detector, in an arbitrarily connected
network of eventual ADD channels, where processes may fail by crashing. It first
presents an algorithm that assumes that processes initially know n, the total num-
ber of processes, sending messages of size O( log n). Then, it presents a second
algorithm that does not assume the processes know n. Eventually the size of the
messages sent by this algorithm is also O( log n). These are the first implementa-
tions of leader election in the ADD model. In this model, only eventually perfect
failure detectors were considered, sending messages of size O(n log n).

Keywords: ADD channel · Arbitrarily connected networks · Distributed
algorithm · Eventual leader · Fault-tolerance · Process crash · Synchrony ·
System model · Unknown membership · Weak channel

1 Introduction

1.1 Leader Election

This is a classical problem encountered in distributed computing. Each process pi has
a local variable leaderi, and it is required that all the local variables leaderi forever
contain the same identity, which is the identity of one of the processes. A classical
way to elect a leader consists in selecting the process with the smallest identity1. If
processes may crash, the system is fully asynchronous, and the elected leader must

1 A survey on election algorithms in failure-free message-passing systems appears in Chap. 4
of [19]. The aim is to elect a leader as soon as possible, and with as few messages as possible,
and it can be done on a ring with 1.271 n log(n) + O(n) messages [11,17].
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be a process that does not crash, leader election cannot be solved [21]. Not only the
system must no longer be fully asynchronous, but the leader election problem must be
weakened to the eventual leader election problem. This problem is denoted Ω in the
failure detector parlance [2,3]. Notice that the algorithm must elect a new leader each
time the previously elected leader crashes.

1.2 Related Work

Many algorithms for electing an eventual leader in crash-prone partially synchronous
systems have been proposed. Surveys of such algorithms are presented in [20, Chapter
17] when communication is through a shared memory, and in [21, Chapter 18] when
communication is through reliable message-passing.

In [1] there are proposed different levels of communication reliability and is its
showed that in systems with only some timely channels and a complete network it is
necessary that correct processes send messages forever even with just at most one pro-
cess crash. An algorithm for implementing Ω in networks with unknown membership is
presented in [13]. This algorithm works in a complete network and every process needs
to communicate its name to every neighbor using a broadcast protocol.

In [7] it is presented an implementation of Ω for the case of the crash-recovery
model in which processes can crash and then recover infinitely many times and channels
can lose messages arbitrarily. The case of dynamic systems is addressed in [14], and the
case where the underlying synchrony assumptions may change with time is addressed
in [9]. Stabilizing leader election in crash-prone synchronous systems is investigated
in [5].

The ADD Distributed Computing Model. This model was introduced in [22], as a
realistic partially synchronous model of channels that can lose and reorder messages
Each channel guarantees that some subset of the messages sent on it will be delivered
in a timely manner and such messages are not too sparsely distributed in time. More
precisely, for each channel there exist two constants K and D, not known to the pro-
cesses (and not necessarily the same for all channels), such that for every K consecutive
messages sent in one direction, at least one is delivered within D time units after it has
been sent.

Even though ADD channels seem so weak, it is possible to implement an eventually
perfect failure detector, ♦P , in a fully connected network of ADD channels, where
asynchronous processes may fail by crashing [22]. Later on, it was shown that it is also
possible to implement ♦P in an arbitrarily connected network of ADD channels [16].
Recall that ♦P is a classic failure detector, relatively powerful (more than sufficient to
solve consensus), stronger than Ω [2] and yet realistically implementable [3].

The algorithm in [16] works for arbitrary connected networks of ADD channels, and
sends messages of bounded size, improving on the previous unbounded size algorithm
presented in [12]. However, the size of messages is exponential in n, the number of
processes. More recently, an implementation of ♦P using messages of size O(n log n),
in an arbitrarily connected network of ADD channels was presented in [23].
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1.3 Contribution

This paper shows that it is possible to implement Ω in an arbitrarily connected network
where asynchronous processes may fail by crashing in a weaker model than the one pre-
sented in [23]. It first presents an implementation of Ω with messages of size O(log n),
reducing the message size with respect to [23].

Most of the previous works related to Ω concentrated on communication-efficient
algorithms in fully connected networks when considering the number of messages.
They were considering neither the size of the messages nor arbitrarily connected net-
works.

The proposed algorithm works under very weak assumptions, requiring only that
a directed spanning tree from the leader exists, composed of channels that eventually
satisfy the ADD property. This algorithm requires that processes know n, the number
of processes. Then, the paper shows how to extend the ideas to design an algorithm
for the case where n is unknown in arbitrarily connected networks. Initially a process
knows only its set of incident channels. Interestingly enough, eventually the size of the
messages used by this algorithm is also O(log n).

We put particular attention to the size of the messages because it plays an impor-
tant role in the time it takes for the processes to agree on the same leader, yet we
show that our algorithms elect a leader in essentially optimal time. When designing
ADD-based algorithms, it is challenging to transmit a large message by splitting it into
smaller messages, due to the uncertainty created by the fact that, while the constants
K and D do exist, a process knows neither them nor the time from which the chan-
nels forever satisfy them. This type of difficulty is also encountered in the design of
leader election algorithms under weak eventual synchrony assumptions, e.g., [1,8,23].
Also in self-stabilizing problems, where ideas similar to our hopbound technique have
been used [6], as well as in [23]. We found it even more challenging to work under the
assumption that some edges might not satisfy any property at all; our algorithm works
under the assumption that only edges on an (unknown to the processes) spanning tree
are guaranteed to comply with the ADD property.

2 Model of Computation

Process Model. The system consists of a finite set of n processes Π = {p1, p2, ..., pn}.
Every process pi has an identity, and without loss of generality we consider that the
identity of pi is its index i. As there is no ambiguity, we use indifferently pi or i to
denote the same process.

Every process pi has also a read-only local clock clocki(), which is assumed to
generate ticks at a constant rate2. Local clocks need not to be synchronized to exhibit
the same time value at the same time, local clocks are used only to implement timers.
To simplify the presentation, it is assumed that local computations have zero duration.

Any number of processes may fail by crashing. A process is correct if it does not
crash, otherwise, it is faulty.

2 However, the algorithm presented below can be adapted in the case where local clocks can
suffer bounded drifts, these drifts being known by the processes.
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Virtual Global Clock. For notational simplicity, we assume the existence of an exter-
nal reference clock which remains always unknown to the processes. The range of its
ticks is the set of natural numbers. It allows to associate consistent dates with events
generated by the algorithm.

Communication Network. It is represented by a directed graph G = (Π,E), where an
edge (pi, pj) ∈ E means that there is a unidirectional channel that allows the process
pi to send messages to pj . A bidirectional channel can be represented by two unidi-
rectional channels, possibly with different timing assumptions. process pi has a set of
input channels and a set of output channels.

The graph connectivity requirement on the communication graph G depends on the
problem to be solved. It will be stated in the Sect. 4 and 5 devoted to the proofs of the
proposed algorithms.

Basic Channel Property. It is assumed that no directed channel creates, corrupts, or
duplicates messages.

The ADD Property. A directed channel (pi, pj) satisfies the ADD property if there are
two constants K and D (unknown to the processes3) such that

– for every K consecutive messages sent by pi to pj , at least one is delivered to pj

within D time units after it has been sent. The other messages from pi to pj can be
lost or experience arbitrary delays.

Each directed channel can have its own pair (K,D). To simplify the presentation, and
without loss of generality, we assume that the pair (K,D) is the same for all the chan-
nels.

The ♦ADD Property. The eventual ADD property, states that the ADD property is sat-
isfied only after an unknown but finite period of time. Hence this weakened property
allows the system to experience an initial anarchy period during which the behavior of
the channels is arbitrary.

The Span-Tree Assumption. We consider that there is a time τ after which there is a
directed spanning tree (i) that includes all the correct processes and only them, (ii) its
root is the correct process with the smallest identity, and (iii) its channels satisfy the
♦ADD property. This behavioral assumption is called Span-Tree in the following.

Eventual Leader Election. Assuming a read-only local variable leaderi at each process
pi, the leader failure detector Ω satisfies the following properties [2,18]:

– Validity: For any process pi, each read of leaderi by pi returns a process name.
– Eventual leadership: There is a finite (but unknown) time after which the local vari-

ables leaderi of all the correct processes contain forever the same process name,
which is the name of one of them.

3 Always unknown, as the global time, also never known by the processes.
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3 Eventual Leader Election with Known Membership

This section presents Algorithm 1 that implements Ω, assuming each process knows
n. Parameter T denotes an arbitrary duration. Its value affects the efficiency of the
algorithm, but not its correctness4.

3.1 Local Variables at a Process pi

Each process pi manages the following local variables.

– in neighborsi (resp., out neighborsi) is a (constant) set containing the identities
of the processes pj such that there is channel from pj to pi (resp., there is channel
from pi to pj).

– leaderi contains the identity of the elected leader.
– timeout i[1..n, 1..n] is a matrix of timeout values and timer i[1..n, 1..n] is a matrix

of timers, such that the pair 〈timer i[j, n − k], timeout i[j, n − k]〉 is used by pi to
monitor the elementary paths from pj to it whose length is k.

– hopboundi[1..n] is an array of non-negative integers; hopboundi[i] is initialized
to n, while each other entry hopboundi[j] is initialized to 0. Then, when j �= i,
hopboundi[j] = n − k �= 0 means that, if pj is currently considered as leader
by pi, the information carried by the last message ALIVE(j, n − 1) sent by pj to
its out-neighbors (which forwarded ALIVE(j, n − 2) to their out-neighbors, etc.)
went through a path5 of k different processes before being received by pi. The code
executed by pi when it receives a message ALIVE(j,−) is detailed in Sect. 3.2.
The identifier hopbound stands for “upper bound on the number of forwarding” that
–due to the last message ALIVE(j,−) received by pi– the message ALIVE(j,−) sent
by pi has to undergo to be received by all processes. It is similar to a time-to-live
value.

– penaltyi[1..n, 1..n] is a matrix of integers such that pi increases penaltyi[j, n − k]
each time the timeri[j, n − k] expires. It is a penalization counter monitored by pi

with respect to the elementary paths of length k starting at pj and ending at pi.
– not expiredi is an auxiliary local variable.

3.2 General Principle of the Algorithm

As many other leader election algorithms, Algorithm 1 elects the process that has the
smallest identity among the set of correct processes by keeping as a candidate to be
the leader the smallest identifier received as it is explained in the following sections.
It is made up of three main sections: the one that generates and forwards the ALIVE()
messages, the one that receives ALIVE() messages and the one that handles the timer
expiration. Every section is described in detail below.

4 If T is too big, the failure detection of a process currently considered as a leader can be delayed.
On the contrary, a too small value of T can entail false suspicions of the current eventual leader
pj until the corresponding timer timer i[j] has been increased to an appropriate timeout value.

5 In the graph theory, such a cycle-free path is called an elementary path.
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Generating and Forwarding Messages. (Lines 6–9) Every T time units of clock
clocki(), a process pi sends the message ALIVE(leaderi, hopboundi[leaderi] − 1).

A message ALIVE(∗, n−1) is called generating message. A message ALIVE(∗, n−
k) such that 1 < k < n − 1, is called forwarding message (in this case it is the
forwarding of the last message ALIVE(leaderi, hopbound) previously received by pi).
Moreover, the value n − k is called hopbound value. When a process pi starts the
algorithm, it proposes itself as candidate to be leader.

A message is sent if predicate hopboundi[leaderi] > 1 of line 7 is true, The mes-
sage sent is then ALIVE(leaderi, hopboundi[leaderi] − 1).

The message forwarding is motivated by the fact that, if hopboundi[leaderi] > 1,
maybe processes have not yet received a message ALIVE(leaderi,−) whose send-
ing was initiated by leaderi and then forwarded along paths of processes (each pro-
cess having decreased the carried hopbound value) has not reached all the processes.
In this case, pi must participate in the forwarding. To this end, it sends the message
ALIVE(leaderi, hopboundi[leaderi] − 1) to each of its out-neighbors (line 8).

Let us observe that during the anarchy period during which, due to the values of
the timeouts and the current asynchrony, channel behavior and process failure pat-
tern, several generating messages ALIVE(∗, n − 1) can be sent by distinct processes
(which compete to become leader) and forwarded by the other processes with decreas-
ing hopbound values. But, when there are no more process crashes and there are enough
directed channels satisfying the ADD property, there is a finite time from which a sin-
gle process (namely, the correct process p� with the smallest identity) sends messages
ALIVE(�, n−1) and no other process pj sends the generating message ALIVE(j, n−1).

Message Reception. (Lines 10–17) When a process pi such that leaderi �= i receives
a message ALIVE(�, n − k), it learns that (a) p� is candidate to be leader, and (b) there
is a path with k hops from pj to itself.

If � ≤ leaderi, pi considers � as its current leader (line 11). Hence, if � < leaderi,
p� becomes its new leader, otherwise it discards the message. This is due to the fact that
pi currently considers leaderi as leader, and the eventual leader must be the correct
process with the smallest identity.

Then, as the message ALIVE(�, n − k) indirectly comes from leaderi = � (which
generated ALIVE(�, n−1)) through a path made up of k different processes, pi increases
the associated timeout value if the timer timer i[leaderi, hb] expired before it received
the message ALIVE(�, hb) (line 13). Moreover, whether timer i[leaderi, hb] expired or
not, pi resets timer i[leaderi, hb] (line 14) and starts a new monitoring session with
respect to its current leader and the cycle-free paths of length hb from leaderi to it.

The role of the timer timer i[�, hb] is to allow pi to monitor p� with respect to the
forwarding of the messages ALIVE(�, hb) it receives such that hb = n − k (i.e., with
respect to the messages received from pj along paths of length k).

Finally, pi updates hopboundi[leaderi]. To update it, pi computes the value of
not expiredi (line 15) which is a bag (or multiset) of cycle-free path lengths x whose
timers timeri[leaderi, n − x] is still running. To this end, the idea then is to select
the less penalized path (hence the “smallest non-negative value” at line 16). But, it is
possible that there are different cycle-free paths of lengths x1 and x2 such that we have
penaltyi[leaderi, n − x1] = penaltyi[leaderi, n − x2]. In this case, in a conservative
way, max(n − x1, n − x2) is selected to update the local variable hopboundi[leaderi].
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initialization —-Code for pi—-
(1) leaderi i; hopboundi[i] n; set timer i[i, n] to + ∞;
(2) for each j ∈ {1, · · · , n} \ {i} and each x ∈ {1, · · · , n} do
(3) timeout i[j, x] 1; set timer i[j, x] to timeout i[j, x];
(4) set penaltyi[j, x] to − 1; hopboundi[j] 0
(5) end for.

(6) every T time units of clocki() do
(7) if (hopboundi[leaderi] > 1)
(8) then for each j ∈ out neighborsi

do send ALIVE(leaderi, hopboundi[leaderi] − 1) to pj end for
(9) end if.

(10) when ALIVE(�, hb) such that � �= i is received
% from a process in in neighborsi

(11) if (� ≤ leaderi) then
(12) leaderi �;
(13) if ([timeri[leaderi, hb] expired)

then timeout i[leaderi, hb] timeout i[leaderi, hb] × 2 end if;
(14) set timeri[leaderi, hb] to timeout i[leaderi, hb];
(15) not expiredi {x | timeri[leaderi, x] not expired };
(16) hopboundi[leaderi]

max{x ∈ not expired with smallest non-negative penaltyi[leaderi, x]}
(17) end if.

(18) when timeri[leaderi, hb] expires and (leaderi �= i) do
(19) penaltyi[leaderi, hb] penaltyi[leaderi, hb] + 1;

(20) if
(

∧1≤x≤n ([timeri[leaderi, x] expired)
)
then

(21) leaderi i
(22) else same as lines 15-16
(23) end if.

Algorithm 1: Eventual leader election in the �ADD model with known membership

Timer Expiration. (Lines 18–23) Given a process pi, when the timer currently mon-
itoring its current leader through a path of length k = n − hb expires (line 18), it
increases its penaltyi[leaderi, n − k] entry (line 19).

The entry penaltyi[j, n − k] is used by pi to cope with the negative effects of the
channels which are on cycle-free paths of length k from pj to pi and do not satisfy the
ADD property. More precisely we have the following. If, while pi considers pj is its
current leader (we have then leaderi = j), and timeri[j, n − k] expires, pi increases
penaltyi[j, n − k]. The values in the vector penaltyi[j, 1..n] are then used at lines 15–
16 (and line 22) to update hopboundi[leaderi] which (if pj is the eventually elected
leader) will contain the length of an cycle-free path from pj to pi made up of ♦ADD
channels (i.e., a path on which timeri[j, n − k] will no longer expire).

Then, if for all the hopbound values, the timers currently monitoring the current
leader have expired (line 20), pi becomes candidate to be leader (line 21).

If one (or more) timer monitoring its current leader has not expired, pi recomputes
the path associated with the less penalized hopbound value in order to continue moni-
toring leaderi (line 22).
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4 Proof of Algorithm 1

This section shows that Algorithm 1 elects an eventual leader while assuming the Span-
Tree behavioral assumption.

We have to prove that the algorithm satisfies Validity and Eventual Leader Election.
For Validity, let us observe that the local variables leaderi of all the processes always
contain a process identity. Hence, we must only prove Eventual Leader Election, i.e.
we must only show that the variables leaderi of all the correct processes eventually
converge to the same process identity, which is the identity of one of them.

Due to space limitation, the proof of the lemmas are in the full version of the paper
that can be found in [15].

Lemma 1. Let pi and pj be two correct processes connected by a ♦ADD channel, from
pi to pj . There is a time after which any two consecutive messages received by pj on
this channel are separated by at most Δ = (K − 1) × T + D time units.

Given any run r of Algorithm 1, let correct(r) denote the set of processes that are
correct in this run and crashed(r) denote the set of processes that are faulty in this run.

The following lemma shows that there is a time after which there are no
ALIVE(j, n − k) messages with pj ∈ crashed(r), i.e. eventually all correct processes
stop sending the ALIVE messages from a failed process which proves that once a leader
fails, eventually all processes elect a new leader.

Lemma 2. Let pi ∈ crashed(r) and 1 ≤ a < n − 1. Given a run r there is a time after
which there are no messages ALIVE(i, n − a).

Theorem 1. Given a run r satisfying the Span-Tree property, there is a finite time after
which the variables leaderi of all the correct processes contain the smallest identity
� ∈ correct(r). Moreover, after p� has been elected, there is a finite time after which the
only messages sent by processes are ALIVE(�,−) messages.

Theorem 2. The size of a message is O(log n).

Proof. The proof follows directly from the fact that a message carries a process identity
which belongs to the set {1, · · · , n} and a hopbound number hopbound such that 2 ≤
hopbound ≤ n − 1. Since an integer bounded with n can be represented with exactly
log n bits and we have two integers bounded with n we have that the size of every
message is O(log n).

4.1 Time Complexity

Given a run r, let � denote the smallest identity such that � ∈ correct(r). Let ta be the
time given by Lemma 2, i.e. a time from which no message from crashed processes is
till in transit (they have been received or are lost). Let ta ≤ tr be the time after which:

1. All failures already happened.
2. All ♦ ADD channels satisfy their constants K and D.

After tr, let Δ be the constant given by Lemma 1.
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Lemma 3. Let pi be a correct process such that for every t > tr, hopboundi[�] =
n − k. Then, for every correct process pj such there is a ♦ ADD channel from pi to pj ,
timeoutj [�, n− (k+1)] ≤ C +2log(�Δ�) with timeoutj [�, n− (k+1)] = C before tr.

Lemma 3 states that after tr, a timeout value is increased a finite number of times.
Let tc be the time after which all timeouts have reached their maximum, namely, no
timeout is increased again. The following claims refer to the communication graph after
tc.

Lemma 4. For every correct process pi such that there is a minimum length path of
♦ ADD channels of length k from p� to pi, leaderi = � at time tc + (k × Δ).

Let D be the diameter of the underlying spanning-tree of ♦ ADD channels.

Theorem 3. For every correct process pi it takes O(D · Δ) time to have leaderi = �.

Proof. The proof is direct from Lemma 4.

4.2 Simulation Experiments

This section presents simulation experiments related to the performance predicted by
Theorem 3 of Algorithm 1. Only a few experiments are presented, a more detailed
experimental study is beyond the scope of this conference version. Our experiments
show that a leader is elected in time proportional to the diameter of the network, in two
network topologies: a ring and a random regular graph of degree 3.

Considering the constants K and D satisfied by an ♦ ADD once it stabilizes,
Lemma 1 shows that for a given T (the frequency with which the messages are sent),
then Δ = (K − 1)× T +D is an upper bound on the time of the consecutive reception
of two messages by a process. According to Theorem 3, the time to elect a leader is
proportional to the diameter of the network, where the K, D and T determine the slope
of the function.

For the (time and memory) efficiency of the experiments we assume some simpli-
fying assumptions, which seem sufficient to a preliminary illustration of the results:

– All the channels are ♦ ADD to avoid the need of a penalization array.
– All the messages are delivered within time at most D or not delivered at all. This

is sufficient to illustrate the convergence time to a leader. Additional experimental
work is needed to determine the damage done by messages that are delivered very
late.

– We selected K = 4, D = 12 and T = 1, 5, 10.

Convergence Experiments. The experiments of the ring in Fig. 1 and Fig. 2, are when
the probability of a message being lost is 1%, and 99% respectively. The case of a
random graph of degree 3 up to 50,000 nodes is in Fig. 3 when the probability of a
message being lost is 1%. These experiments verify that indeed the convergence time
is proportional to the diameter. The constants appear to be smaller than Δ, the one
predicted by Theorem 3.
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Simulation Details. We performed our simulation results in a 48 multicore machine
with 256 GB of memory, using a program based on the Discrete Event Simulator Simpy,
a framework for Python. We used the Networkx package to model graph composed of
ADD channels. For the ring simulations, experiments were performed for each n from
10 up to 400 nodes, and taking the average of 10 executions, for each value of n. For the
random regular networks, the degree selected was 3, and experiments starting with n
starting in 100, up to 10, 000, taking the average of 5 executions. The n was incremented
by 100 to reach 10,000 and from then on until 50,000 we incremented n by 10,000 each
time. A performance impediment was indeed the large amount of memory used.

Fig. 1. A ring with drop rate of 1%

The convergence time curves we
obtained for the ring experiment are
functions of the form f(x) = c · x,
where x represents the diameter of
the network, and the constant c is,
roughly, between 2.5 and 4.5 as T
goes from 1 to 10. While for the ran-
dom regular networks, we again got a
constant that doubled in size, roughly,
as T goes from 1 to 10. This behavior
seems to be better than the one pre-
dicted by Theorem 3, which says that
the constant c should have grown 10
times.

Fig. 2. A ring with drop rate of 99%

Re-Election Convergence Simula-
tion. If an elected leader fails, we
would like to know in how much time
a new leader is elected.

Note that the ♦ ADD channels can
arbitrarily delay the delivery of some
messages. This condition has a great
impact in the time it takes to Algo-
rithm 1 to change a failed leader. For
the following simulations again we
assume that all the messages are deliv-
ered within time at most D or not
delivered at all. But note that in a real-
istic scenario, we can ease the impact
of the arbitrarily delayed messages by
adding a timestamp to every message and keeping track for every neighbor of this times-
tamp. If the timestamp of the recently received message is smaller than the current one,
just ignore the message. This timestamp does not have a bound, but if we use an inte-
ger and increase it by one every second that a message is sent, this integer can hold on
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up for a century without overflowing 6. By adding an integer to the message, we keep
messages of size O(log n).

Fig. 3. A 3-regular random graph with drop rate of 1%

For the simulation of Fig. 4 we
selected K = 4, D = 12, T =
1 and the probability of a message
being lost is 1%. We performed this
simulation on a ring. The algorithm
starts at time t0 and continues its
execution till the average time in
which a leader is elected (the curve
represented in orange). In this time,
the candidate to be the leader fails
and then a timer from an external
observer is started in every process.
This timer is used to know the aver-
age time needed for each process to
discard the failed leader (curve rep-
resented in purple) and then converge to a new leader (curve represented in blue). This
experiment verify that indeed the convergence time after the current leader fails is pro-
portional to the diameter since Δ = (K − 1) × T + D = 3 + 12 = 15.

5 Eventual Leader Election with Unknown Membership

Fig. 4. Convergence time for re-election

Here, while n exists and has a fixed
value, it is no longer assumed that pro-
cesses know it. Consequently, the pro-
cesses have an “Unknown Membership”
of how many and which are the processes
in the network. Nevertheless, for conve-
nience, the proposed algorithm still uses
the array notation for storing the values
of timers, timeouts, hopbounds, etc. (in
an implementation dynamic data struc-
tures –e.g., lists– should be used).

Algorithm 2 solves eventual leader
election in the ♦ ADD model with
unknown membership, which means

that, initially, a process knows nothing about the network, it knows only its input/output
channels.

Our goal is to maintain the O(log n) bound on the size of the messages even in
this model. It seems that it is not easy to come up with a minor modification of the first
algorithm. For instance, a classic way of ensuring that forwarding the ALIVE message is
cycle-free is to include the path information in the message along which the forwarding

6 An unsigned integer can be encoded with 32 bits, so its maximum value can be 4294967296.
A year has 31536000 seconds.
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occurred, as done in the paper [16]. This would result in message sizes of exponential
size, while assuming a slightly different model, we show how to eventually stay with
O(log n) messages.

Furthermore, since we want the complexity to be O(log n) eventually, we need to
design a mechanism that works as a broadcast in which once a process pi knows a new
process name from pj , the later does not need to send to pi the same information but
only the leader information. The proposed mechanism in this paper is not the same as
the proposed in [23] since we are preventing processes to send all the known names but
eventually, only the leader information.

Since no process has knowledge about the number of participating processes, this
number must be learned dynamically as the names of processes arrives. In order to the
leader to reach every process in the network, there must be a path of ♦ ADD channels
from every correct process to the leader. It follows that an algorithm for eventual leader
election in networks with unknown membership cannot be a straightforward extension
of the previous algorithm. More precisely, instead of the unidirectional channels and
Span-Tree assumptions, Algorithm 2 assumes that (i) all the channels are bidirectional
♦ ADD channels, and (ii) the communication network restricted to the correct processes
remains always connected (namely, there is always a path –including correct processes
only– connecting any two correct processes).

In Algorithm 1, every process pi uses n to initialize its local variable hopboundi[i]
(which thereafter is never modified). In the unknown membership model, hopboundi[i]
is used differently, namely it represents the number of processes known by pi so far. So
its initial value is 1. Then, using a technique presented in [23], hopboundi[i] is updated
as processes know about each other: every time a process pi discovers a new process
identity it increases hopboundi[i].

5.1 General Principle of the Algorithm

Initially each process pi only knows itself and how many channels are connected to it.
So the first thing pi needs to do is communicate its identity to its neighbors. Once its
neighbors know about it, pi no longer sends its identity. The same is done with other
names that pi learns. For that, pi keeps a pending set for every channel connected to it
that tracks the information it needs to send to its neighbors. So initially, pi adds the pair
(new, i) to every pending set.

During a finite amount of time, it is necessary to send an ALIVE() message to every
neighbor without any constraint because the set of process names needs to be commu-
nicated to other processes. That is, information about a leader might be empty and the
message only contains the corresponding pending set.

When process pi receives an ALIVE() message from pj , this message can contain
information about the leader and the corresponding pending set that pj saves for pi.
First, pi processes the information contained in the pending set and then processes the
information about the leader.

How pi Learns New Process Names. If pi finds a pair with a name labeled as new
and is not aware of it, it stores the new name in the set knowni, increases its hopbound
value, and adds to every pending set (except to the one belonging to pj) this information
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labeled as new. In any case, pi needs to communicate pj that it already knows that
information, so pi adds this information to the pending set of pj but labeled as an
acknowledgment.

When pj receives name labeled as an acknowledgment from pi, i.e. (ack, name),
it stops sending the pair (new, name) to it, so it deletes that pair from pi’s pending set.
Eventually, it receives a pending set from pj not including (new, name), so pi deletes
(ack, name) from pj’s pending set.

How pi Processes the Leader Information. As in Algorithm 1, every process keeps
as leader a process with minimum id. Since it is assumed that all the channels are ♦
ADD, there is no need to keep a timer for every hopbound value or a penalty array. In
this case, process pi keeps the greatest n − k, i.e. hopbound value that it receives from
the process it considers to be the leader. If this value (or a greater one) does not arrive
on time, pi proposes itself as the leader. In case a smaller hopbound value of the leader
arrives, it is only taken if its timer expired.

5.2 Local Variables at Each Process pi

Each process pi manages the following local variables.

– leaderi contains the identity of the candidate leader.
– hopboundi[1..) is an array of natural numbers; hopboundi[i] is initialized to 1.
– timeouti[·] and timeri[·] have the same meaning as in Algorithm 1. So, when pi

knows pj , the pair 〈timer i[j], timeout i[j]〉 is used by pi to monitor the sending of
messages by pj (which is not necessarily a neighbor of pi).

– knowni is a set containing the processes currently known by pi. At the beginning,
pi only knows itself.

– out neighborsi is a set containing the names of the channels connecting pi to its
neighbor processes. The first time pi receives through channel m a message sent by
a process pj , pj and m become synonyms

– pendingi[1, ..., k] is a new array in which, when pi knows pj , pendingi[j] contains
the pairs of the form (label, id) that are pending to be send through channel con-
necting pi and pj . There are two possible labels, denoted new and ack.

5.3 Detailed Behavior of a Process pi

The code of Algorithm 2 addresses two complementary issues: the management of the
initially unknown membership, and the leader election.

Initialization. (Lines 1–4) Initially, each process pi knows only itself and how many
input/output channels it has. Moreover, it does not know the name of the processes
connected to these channels (if any) and how many neighbors it has (the number of
channels is higher or equal to the number of neighbors). So when the algorithm begins,
it proposes itself as the leader and in the pending sets of every channel adds its pair
(new, i) for neighbors to know it.
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(1) initialization —-Code for pi—-
(2) leaderi i; hopboundi[i] 1;
(3) knowni {i}; out neighborsi initialized to the channels of pi;
(4) for each m ∈ out neighborsi do pendingi[m] {(new, i)} end for.

(5) every T time units of clocki() do
(6) for each channel m ∈ out neighborsi (let pj be the associated neighbor) do
(7) if (hopboundi[leaderi] > 1)
(8) then send ALIVE(leaderi, hopboundi[leaderi] − 1, pendingi[j]) to pj

(9) else send ALIVE(⊥, ⊥, pendingi[j]) to pj

(10) end if
(11) end for.

(12) when ALIVE(�, hb, pending) is received from pj through channel m
% from then on: pj and m are synonyms from an addressing point of view

(13) seti ∅;
(14) for each (label, k) ∈ pending do
(15) if (label = new)
(16) then seti seti ∪ {k};
(17) if (k /∈ knowni)
(18) then knowni knowni ∪ {k}; hopboundi[i] hopboundi[i] + 1;
(19) add an entry in timeouti, timer, hopboundi;
(20) add (new, k) to every pending[p] with p �= m
(21) else if ((new, k) ∈ pendingi[m])
(22) then pendingi[m] pendingi[m] \ (new, k) end if;
(23) pendingi[m] pendingi[m] ∪ (ack, k)
(24) end if
(25) else pendingi[m] pendingi[m] \ (new, k)
(26) end if
(27) end for;
(28) for each (ack, k) ∈ pendingi[m] such that k /∈ seti do
(29) pendingi[m] pendingi[m] \ {(ack, k)} end for;
(30) if (� ≤ leaderi and � �= i)
(31) then leaderi �;
(32) if (hb ≥ hopboundi[leaderi]) ∨ (timer i[leaderi] expired)
(33) then hopboundi[leaderi] hb;
(34) if ([timeri[leaderi] expired)
(35) then timeout i[leaderi, hb] timeout i[leaderi, hb] × 2 end if;
(36) set timeri[leaderi] to timeout i[leaderi]
(37) end if
(38) end if.

(39) when (timeri[leaderi] expires) do leaderi i.

Algorithm 2: Eventual leader election in the � ADD model with unknown membership

Sending a Message. (Lines 5–11) Every T units of time, pi sends a message through
every channel m. In some cases the leader information is empty because of the condition
of line 7. But in any case, it must send a message that includes information about the
network that is included in the set pendingi[j].
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Receiving a Message. (Lines 12–38) When pi receives a message (line 12) from pro-
cess pj (through channel m), at the beginning it knows from which channel it came
and eventually knows from whom is from. When the message is received, the informa-
tion included in pending (lines 14–29) is processed, and then the leader information is
processed (lines 30–38).

Processing New Information. (Lines 14–29) The input parameter set pending
includes pairs of the form (label, id), where label ∈ {new,ack} and id is the name
of some process. When pi processes the pairs that it received from pj there can be
two kind of pairs. The first is a pair with label new (line 15), which means that pj is
sending new information (at least for pj) to pi. When this information is actually new
for pi (line 17) then, it stores this new name, increases its hopbound entry and adds
to every pending set(but not the one from which it received the information) this new
information (line 20).

In case that pi already knows the information labeled as new for pj (line 21), then
pi needs to check if it is included in the pending set to pj this information as new too.
If that is the case, then it deletes from pending[m] this pair (line 22). In any case, pi

adds to the pending set the pair (ack, k) for sending through the channel from where
this message was received (line 23).

If pi receives the pair (ack, k) (line 25), then it deletes the pair (new, k) from the
set pendingi[m], because the process that sent this pair, already knows k.

Processing the Leader Related Information. (Lines 30–38) If the leader related infor-
mation is not empty, pi processes it. As in the first algorithm, if the identity of the pro-
posed leader is smaller than the current one, then it is set as pi’s new leader (line 31).
Then, it processes the hopbound. If the recently arrived hopbound is greater than the
one currently stored, then the recently arrived is set as the new hopbound (line 33).
If the timer for the expected leader expired, it needs more time to arrive to pi, so the
timeout is increased (line 35) and the timer is set to timeout (line 36).

Deleting Pairs. (Lines 21, 25 and 28) If some process pi wants to send some informa-
tion k to pj , it adds to the pending set of pj the pair (new, k). When pj receives this
pair, it looks if this is already in its set, in that case, it deletes the pair from pi’s pending
set (line 21). Then, pj adds an (ack, k) to the pending set of pi. As soon as pi receives
this pair from pj , it deletes from pj’s pending set the pair (new, k) (line 25). So when
pj receives a pending set from pi without the pair (new, k), it means that pi already
received the acknowledgment message, so pj deletes (ack, k) from pi’s pending set
(line 28).

Timer Expiration. (Line 39) When the timer for the expected leader expires, pi pro-
poses itself as the leader.

Notice that, when compared to Algorithm 1, Algorithm 2 does not use the local
arrays penaltyi[1..n, 1..n] employed to monitor the paths made of non-ADD channels.
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6 Underlying Behavioral Assumption and Proof of Algorithm 2

In the following we consider that there is a time τ after which no more failures occur,
and the network is such that (i) all the channels are bidirectional ♦ADD channels, and
(ii) the communication network restricted to the correct processes remains always con-
nected. Assuming this, this section shows that Algorithm 2 eventually elects a leader
despite initially unknown membership. All the proofs of this algorithm are in full ver-
sion of this paper that can be found on [15].

7 Conclusion

The ♦ADD model has been studied in the past as a realistic, particularly weak commu-
nication model. A channel from a process p to a process q satisfies the ADD property
if there are two integers K and D (which are unknown to the processes) and a finite
time τ (also unknown to the processes) such that, after τ , in any sequence of K con-
secutive messages sent by p to q at least one message is delivered by q at most D time
units after it has been sent. Assuming first that the correct processes are connected by a
spanning tree made up of ♦ ADD channels, this article has presented an algorithm that
elects an eventual leader, using messages of only size O( log n). Previous algorithms in
the ♦ADD model implemented an eventually perfect failure detector, with messages of
size O(n log n). In addition to this, the article has presented a second eventual leader
election algorithm in which no process initially knows the number of processes. This
algorithm sends larger messages, to be able to estimate n, but only for a finite amount
of time, after which the size of the messages is again O( log n). We conjecture that
it is necessary, that the process identities are repeatedly communicated to the potential
leader. Although we proved that our algorithms elect a leader in time proportional to the
diameter of the graph, many interesting question related to performance remain open.
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Abstract. Safra’s distributed termination detection algorithm employs
a logical token ring structure within a distributed network; only passive
nodes forward the token, and a counter in the token keeps track of the
number of sent minus the number of received messages. We adapt this
classic algorithm to make it fault-tolerant. The counter is split into coun-
ters per node, to discard counts from crashed nodes. If a node crashes, the
token ring is restored locally and a backup token is sent. Nodes inform
each other of detected crashes via the token. Our algorithm imposes no
additional message overhead, tolerates any number of crashes as well as
simultaneous crashes, and copes with crashes in a decentralized fashion.
Experiments with an implementation of our algorithm were performed
on top of two fault-tolerant distributed algorithms.

1 Introduction

Termination detection is a fundamental problem in distributed systems which
was introduced independently in [9] and [12]. Termination can be announced
when all nodes in the network have become passive and no messages are in
transit. Distributed termination detection is applied in e.g. workpools, routing,
diffusing computations, self-stabilization, and checking stable system properties
such as deadlock and garbage in memory. Many (mostly failure-sensitive) termi-
nation detection algorithms have been proposed in the literature, see [17,18].

In Safra’s algorithm [7,10] a token repeatedly visits all nodes in the network
via a predetermined logical ring structure; a node passes on the token when it
is passive. Each node keeps track of the number of outgoing minus incoming
messages, and these counts are accumulated in the token. Nodes that receive a
message are colored black, as the count in the token may be unreliable, if the
message overtook the token in the ring. The black color is transferred to the
token at its next visit. If the token returns to the initiator without a black color
and with counter 0, the initiator can announce termination.

Safra’s algorithm imposes only little message overhead when nodes remain
active over a long period of time, unlike termination detection algorithms for
which every message needs to be acknowledged (e.g. [9]). Additionally, it does
not require idle messages to be sent out when nodes become passive and does not
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run into underflow issues, as opposed to weight-throwing schemes ([19,22]). In
[6] an optimized version of Safra’s algorithm was proposed, that does not always
color receiving nodes black and detects termination within a single round trip
of the token after actual termination has occurred.

We propose a fault-tolerant algorithm based on an improved version of Safra’s
algorithm [6]. A node crash is handled locally by its predecessor in the ring; a new
token is issued, as the old token may have been lost in the crash. A numbering
scheme in the token makes sure only a single token is being passed on; if the
old token was not lost in the crash, the new token will be dismissed. Only the
message exchange between alive nodes is counted. For this purpose the counter
at the nodes and in the token is split into N counters, with N the number of
nodes in the network. Nodes have a failure detector and inform each other of
crashes through the token, so that they uniformly count the message exchange
with the same set of nodes. A node reporting a new crash makes sure the token
completes another round trip, to avoid inconsistent message counts in the token.

Next to the aforementioned strong points of Safra’s algorithm, our fault-
tolerant variant has some additional advantages compared to existing fault-
tolerant termination detection algorithms, which will be discussed in Sect. 2.
(Following [11,21], we call the distributed algorithm for which termination is
checked basic and the termination detection algorithm the control algorithm.)
First, the basic algorithm can be decentralized, meaning there can be multiple
initiator nodes. Second, if the initiator of our termination detection algorithm
crashes before sending out the first token, this role is automatically taken over by
its predecessor. Thus our algorithm can cope with any number of node crashes,
and it is robust against simultaneous node crashes. Third, only one additional
message is required for each crash, and no relatively expensive schemes like leader
election or taking a global snapshot are employed. The price to pay is that, in
the absence of stable storage, the bit complexity of a message is Θ(N), compared
to Θ(1) for the failure-sensitive version of Safra’s algorithm. Considering current
network technologies, with Gbits/second throughput and microseconds latency,
this token size incurs a tolerable overhead in network load, especially since the
token is only forwarded by idle nodes.

We tested our algorithm in a multi-threaded emulation environment and
performed experiments on two fault-tolerant distributed algorithms from the
literature. Compared with the failure-sensitive version of Safra’s algorithm, our
algorithm exhibits a satisfactory performance, in the sense that it imposes no
additional message overhead. Of course it does impose some overhead, by adding
extra concurrency at each node and additional synchronization. However, even
with a large number of failures, profiling of our experiments shows that the
execution time of the basic algorithm remains the dominant factor for the overall
performance. The two basic distributed algorithms employed in our experiments
are quite different in nature, which suggests this conclusion holds more generally,
admittedly only up to the network sizes we analyzed.

Developing our algorithm was a delicate matter. Still, owing to a correctness
proof (omitted here) in combination with many test runs with an implementa-
tion, we can confidently claim that our algorithm correctly detects termination.



Fault-Tolerant Termination Detection with Safra’s Algorithm 73

2 Related Work

We discuss some existing fault-tolerant termination detection algorithms, mainly
from a functional point of view. Only [16] reports on performance results based on
an actual implementation. Generally a complete network topology and a perfect
failure detector are required, as such assumptions are essential for developing a
fault-tolerant termination detection algorithm, see [20].

Lai and Wu [15] presented a fault-tolerant variant of the Dijkstra-Scholten
algorithm [9] for centralized basic algorithms, meaning there is a single initiator
node. Active nodes are in the tree, rooted in the initiator, which announces
termination when the tree has disappeared. In the event of a crash, all alive nodes
communicate with the designated root node, causing a sequential bottleneck.

Lifflander et al. [16] proposed a series of algorithms based on [9] that avoid the
bottleneck of [15]. These algorithms are resistant to single-node failures but are
only probabilistically tolerant to multi-node failures and incur additional control
messages even in crash-free executions. In case of a crash the tree is reconstructed
locally. If two nodes fail concurrently, the algorithms may not be able to recover.
The algorithm then detects that this is the case. Failure of the root node cannot
be handled. Performance results are reported based on an experimental setup,
consisting of three mock-up parallel algorithm implementations. Results show
acceptable processing time overhead. Message overhead results are not reported.

Tseng [22] developed a fault-tolerant variant of weight-throwing [19] for cen-
tralized basic algorithms. Nodes donate part of their weight to the basic messages
they send. The receiver claims that weight on receipt. A node that becomes
passive returns its weight to the leader, who announces termination when it
is passive and reclaimed its original weight. The number of control messages
increases linearly with the number of basic messages. The algorithm is vulnera-
ble to underflow of weight values and control messages require space to represent
floats at high precision. A global snapshot is taken when a new crashed node is
detected. When the leader crashes, an election scheme is employed.

In Venkatesan’s algorithm [23] a leader node is in charge of announcing ter-
mination. If the leader crashes, an election is held. The local stacks at the nodes
must be continuously replicated by the leader and its backup Upon learning of
a crashed node, the leader simulates the state of every node in the system to
determine whether it has terminated.

Hursey and Graham [14] developed a termination detection scheme for their
fault-tolerant ring-based MPI application. Their algorithm relies on a leader
election scheme and fault-tolerant primitives provided by MPI.

Mittal et al. [20] introduced a general framework for transforming any failure-
sensitive termination detection algorithm into a fault-tolerant variant that can
cope with any number of node crashes. The basic idea is to restart termination
detection after each node crash. When applied to existing failure-sensitive algo-
rithms, the resulting fault-tolerant algorithms have a significant overhead in
control messages, even when no nodes become passive or crash.
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3 System Model

We assume a fully asynchronous message-passing system with no shared memory
or global clock. Messages may arrive in any order and delays are unbounded but
finite. The N nodes are logically organized in a ring and are assigned unique,
totally-ordered IDs. Failures are permanent; once a node crashes, it halts and
never recovers. Like most fault-tolerant distributed algorithms in the literature,
we require that the underlying physical network provides reliable bidirectional
communication channels between each pair of nodes.

Nodes are either active or passive. An active node can send/receive basic
messages, perform internal events, or become passive when it terminates locally.
A passive node cannot send basic messages or perform internal events and only
becomes active upon receipt of a basic message. Termination may be announced
while basic messages from crashed nodes are in transit. It is therefore required
that passive nodes never become active by the receipt of a basic message sent by a
node they know has crashed. An execution of the basic algorithm has terminated
if all alive nodes are passive and for all basic messages in transit, the destination
node either has crashed or knows that the sender has crashed. The termination
detection problem consists of two parts: Liveness: if the system has terminated,
this is eventually detected by an alive node; and Safety: when termination is
detected, the system terminated at some point in the past.

A perfect failure detector [4] is required to solve termination detection in the
presence of failures [13,20]. Such a failure detector, which never falsely suspects
that a node crashed, and eventually detects each node crash, can be built if there
is a known upper bound on network latency.

4 Safra’s Algorithm

Safra’s (failure-sensitive) termination detection algorithm [7,10] generalizes the
Dijkstra-Feijen-van Gasteren algorithm [8] from synchronous to asynchronous
message passing networks. We give a detailed description of Safra’s algorithm,
including improvements from [6]. This will serve as a basis for the description of
our fault-tolerant version later on.

Safra’s algorithm is centralized, with node 0 as initiator. The basic algorithm
however is allowed to be decentralized and does not need to be ring-based. A
token t circulates the ring, starting at the initiator of the control algorithm when
it becomes passive for the first time, and being forwarded by the other nodes once
they are passive. The field count t in t represents the number of basic messages
in transit during the round trip of t. Each node i records in count i the number
of basic messages it sent minus the number of basic messages it received, since
the last time it forwarded the token. Each time t is received by a node i, count i
is added to count t, and count i is reset to zero. Upon return of t to the initiator,
after it has become passive, termination is detected if count t is zero.

The token can during its round trip underestimate the number of basic mes-
sages in transit, if the receipt of a message is accounted for in the token before
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the send of this message. To recognize this, colors black and white are used.
Initially all nodes are white, and when the initiator sends out a fresh token, the
token is white. When a node i receives a basic message m, it may be that the
send of m was not yet recorded in count t. Therefore upon receipt of m, i marks
itself black. When t visits a black node, t becomes black and the node white;
from then on t remains black for the rest of the round trip. When the initiator
has received back t, has become passive, and has added the value of count 0 to
count t, it decides whether termination can be detected. If t is black or count t
is not zero, the initiator sends out a fresh white token again. Otherwise, it can
safely announce that the execution of the basic algorithm has terminated.

Two enhancements of Safra’s algorithm to reduce detection delay were given
in [6]. One inefficiency is that a basic message always blackens its receiver. Actu-
ally an inconsistent snapshot can only exist when the receipt of a message is
recorded before its send. This can happen when a basic message overtakes the
token, meaning that it is sent after the sender was visited by the token, but
reaches the receiver before it is visited by the token. A second inefficiency of the
original algorithm is that termination is only detected at the initiator. Another
enhancement allows detection to occur at any node. When multiple nodes can
detect termination, there is a second situation in which an inconsistent snapshot
can occur. When both the sender and the receiver of a message are ahead of
the token, but the receiver will be visited by the token before the sender, it is
possible for the receiver to detect termination before the sender is visited. (This
case is omitted in [6], which may result in erroneous detection.)

To deal with the aforementioned scenarios, a sequence number seq i is intro-
duced at every node i, starting at zero. When a node forwards the token, it
increases its sequence number by one, so that nodes in the visited region have a
higher sequence number from those in the unvisited region. A node piggybacks
its sequence number seqm to every basic message m it sends. Using the sequence
number, an offending message can be detected if it has a higher sequence number
than the receiver, or they both have the same sequence number but the sender
has a higher ID than the receiver. Since multiple nodes can detect termination,
an offending message should not only blacken the receiver but also all subsequent
nodes in the ring up to (but not including) the sender. At all these nodes, the
token represents an inconsistent snapshot. So none should detect termination.

The field black t in the token is now a node ID, expressing that all nodes
the token visits from now up to (but not including) black t are black. When the
token is sent by the initiator for the first time, black t = N − 1, so that all nodes
from 1 up to N − 1 are initially considered black. Hence termination can only
be detected after the token has visited all nodes at least once. Likewise, black i

at a node i represents that all nodes that the token visits from i up to black i

are black. Initially black i = i at all nodes i, meaning that i considers all nodes
white. If a node i receives a basic message m of which the send may not have been
accounted for in the token, then black i is set to the furthest node from i among
black i and the sender of m. The function furthest i(j, k) computes whether node
j or k is furthest away from i in the ring. It is defined by:
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k if i ≤ j ≤ k or k < i ≤ j or j ≤ k < i; and j otherwise.

If the token reaches a node i, it must wait until i is passive. Then i adds
the value of count i to the value of count t. If i is white, meaning that black t =
black i = i, it can determine termination in the same way the initiator does in
Safra’s algorithm: check whether the value of count t is zero. If i is black or detects
no termination, it forwards the token to its successor. Before doing so, it sets
black t to furthest i(black t, black i) if this value is not i, or else to (i + 1) mod N .
The latter means the successor of i in the ring will consider the token white.
Finally, i sets count i to zero and black i to i and increases seq i by one.

Algorithms 1–4 present the pseudocode of the four procedures available at
each node i for the improved version of Safra’s algorithm: initialization, sending/
receiving a basic message m to/from a node j (SBM/RBM) , and receiving a
token (RT). Subscript i of a procedure name represents the node where the
procedure is performed. Action send(m, j) denotes that message m is sent to node
j, and the Boolean field passive i is true only when node i is passive. Procedures
are executed without interruption, except that while waiting to become passive,
in line 1 of RT, a node is allowed to perform SBM and RBM calls.

Algorithm 1: Initialization i

1 count i ← 0; black i ← i; seq i ← 0;
2 if i = 0 then
3 wait(passive 0);
4 count t ← count 0; black t ← N − 1; send(t, 1); count 0 ← 0; seq 0 ← 1;

Algorithm 2: SendBasicMessage i (m, j)
1 seqm ← seq i; send(m, j); count i ← count i + 1;

Algorithm 3: ReceiveBasicMessage i (m, j)
1 if seqm = seq i + 1 ∨ (j > i ∧ seqm = seq i) then
2 black i ← furthest i(black i, j);
3 count i ← count i − 1;

Algorithm 4: ReceiveToken i

1 wait(passive i);
2 count t ← count t + count i; black i ← furthest i(black i, black t);
3 if count t = 0 ∧ black i = i then
4 Announce;
5 black t ← furthest i(black i, (i + 1) mod N);
6 send(t, (i + 1) mod N);
7 count i ← 0; black i ← i; seq i ← seq i + 1;
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5 Fault-Tolerant Version

From now on we assume nodes may spontaneously and permanently crash. It
is customary to assume for fault-tolerant distributed algorithms that there is a
bidirectional channel between each pair of distinct nodes (see e.g. [21]), because
else a node failure may result in disconnected subnetworks. Actually, it suffices
if at any time a channel can be established between any two alive nodes.

Mittal et al. [20] showed that a perfect failure detector is required to solve
termination detection in the presence of failures. In a fully asynchronous setting,
such a detector cannot be built. A practical compromise is to assume an upper
bound on the network latency. Each node sends out heartbeat messages at reg-
ular time intervals. When a node i has not received a heartbeat from another
node j within some time interval, then i permanently considers j as crashed.

Each node i stores the identities of crashed nodes in one of the sets Crashed i

and Report i. The latter contains the identities that i has not yet reported to
the other alive nodes by means of the token; this will be explained below.

Since counts of messages to and from crashed nodes need to be discarded, the
token contains N counters, one per node; moreover, each node needs to count
its message exchange with each other node separately and from the start of the
execution run (instead of since the last token visit). So we split the field count i
for each node i into a sequence [count 0i , . . . , count

N−1
i ]. For each node j, the field

count ji stores the number of basic messages i has sent to j minus the number of
basic messages i has received from j. (The fields count ii are redundant as they
always carry the value zero.) If (the failure detector of) i detects that a node
j has crashed, then i permanently disregards the value of count ji . Likewise, to
separately keep track of the counters at the different nodes in the token, the
field count t is split into a sequence [count 0t , . . . , count

N−1
t ]. If these counters

were lumped together into a single counter count t, and say a node i sent a basic
message to a node j which then crashed, there might be no way of telling whether
or not j received this message and updated count ij and count t.

If a node i learns from its failure detector that some other node j crashed, it
must share this information with the other alive nodes via the token. Else there
would be the risk that although i from now on disregards count ji , some other
alive node k may still take into account count jk, which could lead to a premature
termination detection at k. For this purpose the token contains a set Crashed t.
When i forwards the token with j ∈ Crashed t, it adds j to Crashed i, to avoid
that it announces the same crashed node multiple times.

Each node i keeps track of its successor next i in the ring; initially (i+1) mod
N . Each time i detects next i has crashed, the value of this field is changed
into i’s nearest alive successor. We must ensure that the token is not lost; this
could happen if the token was traveling to or being handled by next i at the
moment it crashed. Therefore, after having determined its new successor next i′,
i forwards the token once again, to next i′. For this purpose i stores the last token
it forwarded. These local variables are updated as soon another token (with a
higher sequence number) arrives.

In case next i forwarded the token before crashing, next i′ will receive the same
token twice. Therefore the token has a sequence number seq t, which is increased
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by one at each consecutive round trip of the token. In the first round seq t = 1.
Each node i keeps track of the highest sequence number it has passed on so far
in seq i (initially seq i = 0), and ignores incoming tokens with seq t ≤ seq i. The
last node in the ring, initially N − 1, increases the sequence number every time
it forwards the token. If it crashes, this task is taken over by its predecessor. A
node i can determine whether it is the last node by checking if next i < i.

As in the failure-sensitive variant of Safra’s algorithm, black t and black i

express which nodes are considered black, and when the token is sent by the
initiator for the first time, black t = N −1 to guarantee it visits all nodes at least
once. If a node receives an offending basic message, it colors all nodes in the ring
between itself and the sender black. If the failure detector of a node i reports a
crashed node and, at the next token visit, i does not detect termination, then i
colors all other nodes black, as they must all be visited by the token.

The pseudocode of the procedures at each node is given in Algorithms 5–
10. Again, the procedures should be executed without interruption, except that
while waiting to become passive, in line 2 of procedure ReceiveToken, a node may
perform SendBasicMessage, ReceiveBasicMessage and FailureDetector calls.

In the initialization phase, nodes provide their local variables with initial
values; node 0 holds the token. At sending/receiving a basic message to/from
a noncrashed process, the sender/receiver updates the corresponding counter.
Basic messages received from a crashed node in Report i may still be accounted
for by i in the control algorithm, to allow for termination detection at the next
token visit to i. If the receipt of a message is accounted for in the token before
its send, the receiver colors the nodes up to the sender black.

Algorithm 5: Initialization i

1 for j = 0 to N − 1 do
2 count ji ← 0; count jt ← 0;
3 black i ← i; seq i ← 0; next i ← (i + 1) mod N ;
4 Crashed i ← ∅; Crashed t ← ∅; Report i ← ∅;
5 if i = 0 then
6 black t ← N − 1; seq t ← 1; ReceiveToken 0;
7 else
8 black t ← i;

Algorithm 6: SendBasicMessage i (m, j)

1 if j /∈ Crashed i ∪ Report i ∪ Crashed t then
2 seqm ← seq i; send(m, j); count ji ← count ji + 1;

Algorithm 7: ReceiveBasicMessage i (m, j)

1 if j /∈ Crashed i then
2 if seqm = seq i + 1 ∨ (j > i ∧ seqm = seq i) then
3 black i ← furthest i(black i, j);
4 count ji ← count ji − 1;
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Algorithm 8: ReceiveToken i

1 if seq t = seq i + 1 then
2 wait (passive i); black i ← furthest i(black i, black t);
3 Crashed t ← Crashed t \ Crashed i;
4 Crashed i ← Crashed i ∪ Crashed t;
5 Report i ← Report i \ Crashed t;
6 if black i = i ∨ Report i = ∅ then
7 count it ← 0;
8 for all j ∈ {0, . . . , N−1} \ Crashed i do
9 count it ← count it + count ji ;

10 if black i = i then
11 sum i ← 0;
12 for all j ∈ {0, . . . , N−1} \ Crashed i do
13 sum i ← sum i + count jt ;
14 if sum i = 0 then
15 Announce;
16 if next i ∈ Crashed t then
17 NewSuccessor i;
18 if next i < i then
19 seq t ← seq t + 1;
20 if Report i 	= ∅ then
21 Crashed t ← Crashed t ∪ Report i; black t ← i;
22 Crashed i ← Crashed i ∪ Report i; Report i ← ∅;
23 else
24 black t ← furthest i(black i,next i);
25 send(t,next i); black i ← i; seq i ← seq i + 1;

Procedure ReceiveToken i (RTi) is executed when a token arrives at node i.
It only proceeds if i did not receive an instance of this token before (line 1).
It then waits until it becomes passive, because in the meantime the values of
count ji , black i and Report i may still change.

Once passive, black i is set to the furthest of black i and black t (line 2). Then,
the set Crashed t is relieved of the nodes that i reported through the token
before (line 3). The remaining nodes in Crashed t are copied to Crashed i,
because they will be reported when i forwards t (line 4). Report i is relieved
of nodes in Crashed t (line 5). The values count ji for nodes j /∈ Crashed i are
accumulated in count it (lines 7–9); but only if i is white or Report i is empty
(line 6), because then it may be employed in termination detection at i (in lines
10–15) or at other nodes, respectively. If i is white (line 10), the values count jt
for nodes j /∈ Crashed i are accumulated in sum i (lines 11–13); if this sum is
0, i announces termination (lines 14–15). If no termination is detected, i checks
whether its successor is in Crashed t; if so, NewSuccessor i is called to select
another successor (lines 16–17). Next, i checks whether it is the last node in the
ring, and if so increases the sequence number of t by 1 (lines 18–19). If Report i

is nonempty (line 20), then it is added to Crashed t, so that t will report these
crashed nodes to all alive nodes; black t is set to i, to ensure that the token visits
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all nodes up to i again before termination can be detected, as all alive nodes
must first achieve a consistent view on the set of crashed nodes (line 21). Next
all nodes in Report i are moved to Crashed i (line 22). If Report i is empty,
then black t is set to furthest i(black i,next i) (lines 23–24). Finally, i forwards t
to next i, colors itself white, and increases seq i by one (line 25).

FailureDetector i (FDi) is invoked if i’s failure detector reports that a node
j crashed (crashed(j) in line 1). If i was not yet aware of this crash (line 2),
then j is added to Report i (line 3), so that this crash will be reported to
other nodes via the token. If j is the successor of i in the ring, NewSuccessor i is
invoked to compute a new successor of i (lines 4–5). A backup token (possibly
updated compared to the original token) is sent to the new successor (line 11),
if i received the token at least once (first disjunct in line 6); the second disjunct
in line 6 ensures a backup token is sent when the initiator crashes before ever
becoming passive. Report i is added to Crashed t (line 7); nodes in Report i

are not transposed to Crashed i yet, because the backup token may be discarded
in favor of the original token. By black t ← i (in line 8) it is guaranteed that the
backup token visits all nodes up to i again before termination can be detected,
as all alive nodes must take into account the crash of j. If no alive node has an
identity greater than i, then seq t is increased by one (lines 9–10).

Algorithm 9: FailureDetector i

1 crashed(j);
2 if j /∈ Crashed i ∪ Report i then
3 Report i ← Report i ∪ {j};
4 if j = next i then
5 NewSuccessor i;
6 if seq i > 0 ∨ next i < i then
7 Crashed t ← Crashed t ∪ Report i;
8 black t ← i;
9 if next i < i then

10 seq t ← seq i + 1;
11 send(t,next i);

Algorithm 10: NewSuccessor i

1 next i ← (next i + 1) mod N ;
2 while next i ∈ Crashed i ∪ Report i do
3 next i ← (next i + 1) mod N ;
4 if next i = i then
5 wait(passive i);
6 Announce;
7 if black i 	= i then
8 black i ← furthest i(black i,next i);

NewSuccessor i (NSi) computes i’s new successor after next i crashed. First,
next i is changed into (next i + 1) mod N (line 1). Then, it is repeatedly checked
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whether the new value of next i is a crashed node (line 2), and if so its value is
increased by one, modulo N (line 3). After the value of next i has stabilized, i
checks whether it is the only remaining alive node in the network (line 4), and if
so, waits until it has become passive to announce termination (lines 5–6). Else,
if black i 	= i, then black i is set to furthest i(black i,next i) (lines 7–8).

Fig. 1. Example run on a faulty network of three nodes

Example 1. We consider one possible run of our fault-tolerant algorithm on a
ring of three nodes in Fig. 1. Initially all nodes are active, all counters carry the
value 0, and black i = i and seq i = 0 for i = 0, 1, 2. Node 0 sends basic messages
m and m′ to node 1, node 1 sends basic message m′′ to node 2, and node 2
sends basic message m′′′ to node 1 (all with their node ID and sequence number
0 attached); count 10 is set to 2, and count 21 and count 12 are set to 1. Nodes 0
and 2 now become passive. Node 0 sends the token to node 1 (with count 0t = 2,
count 1t = count 2t = 0, black t = 2, seq t = 1 and Crashed t = ∅), and crashes.
This leads to Fig. 1a where the cross at node 0 represents that it has crashed,
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the sequences of count values at alive nodes are placed between square brackets,
and empty Crashed and Report sets at nodes have been omitted.

In Fig. 1b, node 2 detects node 0 crashed and sets Report 2 to {0}; from now
on node 2 ignores count 02. Since next 2 = 0, node 2 makes node 1 its new successor.
Since 1 < 2, node 2 sends a backup token to node 1 (with count 1t = count 2t = 0,
black t = 2, seq t = 1 and Crashed t = {0}). Node 1 receives m from node 0
and sets count 01 to −1; since the sender of m is 0 < 1 and seqm = 0 = seq 1,
black 1 remains unchanged; moreover, node 1 receives m′′′ from node 2 and sets
count 21 to 0; since the sender of m′′′ is 2 > 1 and seqm′′′ = 0 = seq 1, black 1 is
set to 2. Then, in Fig. 1c, node 1 receives the backup token from node 2 and
sets Crashed 1 to {0}. It becomes passive, passes on the token to node 2 with
count 1t set to count 21 = 0, and sets both black 1 and seq 1 to 1. Node 1 does not
detect termination since black t = 2. Next, node 1 receives the original token
from node 0, which is dismissed. Node 2 receives the token and sets Crashed 2

to {0} and Report 2 to ∅. It does not detect termination because it sets count 2t
to count 12 = 1, and count 1t + count 2t = 0 + 1 > 0. It passes on the token to node
1 with black t = 1 and seq t = 2, and sets black 2 to 2 and seq 2 to 1.

When the token arrives, node 1 sets Crashed t to ∅, computes count 1t = 1,
passes on the token to node 2 with black t = 2, and sets black 1 to 1 and seq 1 to 2.
In the meantime node 2 receives m′′ from node 1 and sets count 12 to 0; since the
sender of m′′ is 1 < 2 and seqm′′ = 0 < seq 2, black 2 remains unchanged. Node
2 becomes passive again. When the token arrives, node 2 computes count 1t +
count 2t = 0 + 0 = 0. Since also black t = 2, it announces termination. Finally
node 1 ignores message m′ from node 0, because 0 ∈ Crashed 1.

6 Implementation and Experimental Results

We applied a Java implementation of SafraFT to a fault-tolerant version of
the Chandy-Misra routing algorithm [5] (CM) and the Afek-Kutten-Yung self-
stabilizing spanning tree algorithm [1] (AKY)1. They form a good test bench
because detecting termination is of importance for both algorithms while their
messaging behaviors are distinct. Their implementations are on top of the Ibis
distributed programming platform [2]. Experiments were conducted on the DAS-
4 supercomputer [3]. Multiple network nodes were run on each DAS-4 compute
node to achieve decently sized networks, up to 2000 network nodes. When more
network nodes are placed on a single compute node, profiling shows this starts to
influence the outcome of experiments. For this reason the experiments with the
CM and AKY algorithms were limited to 2000 network nodes. Before each run
a certain percentage of nodes, up to 90%, was randomly selected to crash after
performing a certain number of events. As an aside, the experiment unveiled a
delicate implementation issue. Updates of token variables in the ReceiveToken
procedure must be atomic because otherwise incorrect behavior may occur if a
node receives a backup token while handling the token.

1 https://github.com/PerFuchs/safra-termination-detection-fault-tolerant.

https://github.com/PerFuchs/safra-termination-detection-fault-tolerant
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Moreover, we abstractly emulated activity of a basic algorithm and network
behavior under randomized execution scenarios2. The emulation experiments
were performed on a single compute node of DAS-4. We used networks of 16,
48 and 144 nodes and two probability distributions (uniform and Gaussian)
for the randomized choices. We emulated a decentralized basic algorithm, with
half of the nodes initially active. For each version, network size and probability
distribution we performed a test with no nodes crashing and, for SafraFT only,
a test for each 20% interval ([1, 20], [21, 40], etc.) of crashing nodes. We repeated
each test 1000 times, for a total of 42,000 runs (two probability distributions,
three network sizes, and six intervals for SafraFT; one interval [0, 0] for SafraFS).

Emulation results in Fig. 2 (Emu, left) confirm that SafraFT imposes no
additional control message overhead, in the absence of crashes, compared to
SafraFS. Both variants tend to require the same number of token steps to detect
termination after it has occurred (Tpost), incurring on average half a round of
extra token steps (Rpost). They also require the same number of token steps
before termination (Tpre). This is to be expected since in the absence of crashes,
the operation of SafraFT is almost identical to that of SafraFS. These results
are stable across the two probability distributions used in the emulator.

Performance results of emulations have to be taken with a grain of salt.
In practice workloads do not always follow a smooth probability distribution,
thread-scheduling policies as well as the hardware platform may to introduce
biases, and basic algorithms may exhibit behavior to deal with actual node
crashes. Still these synthetic results give some indication of the performance
overhead SafraFT may impose, and importantly the large number of emulations
helped to further increase confidence in the correctness of this algorithm.

Fig. 2. Top: Tokens sent on crash-free networks. Uniform, Gaussian distributions
denoted by u, g. Bottom: Detection delay, in token rounds after termination.

The CM/AKY results in Fig. 2 (Real, right) also show that SafraFT incurs no
extra control message overhead on crash-free runs. Compared to the emulation
results, there is a small increase in Rpost. For emulation, Tpre is considerably
larger than for CM/AKY. This difference can be attributed to the generally
2 https://github.com/gkarlos/FTSEmu.

https://github.com/gkarlos/FTSEmu
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higher workload of the emulated basic algorithm compared to CM/AKY. For
instance, the initiator of the CM algorithm does not take part in the computation
after the initial broadcast, and thus is mostly passive. Moreover, in CM, nodes
send estimate messages to their neighbors but not to their parent. This leaves
more nodes passive compared to the randomized activities of the emulator.

Fig. 3. Tokens sent by SafraFT on faulty networks in the emulator. Uniform, Gaussian
distributions denoted by u, g.

Figure 3 shows the effect of crashes on emulation runs of SafraFT. The total
number of token steps (T) and Tpost decrease roughly in a linear fashion as
failures increase, because when nodes crash, fewer nodes remain to forward the
token, and our emulations of basic algorithms do not react to crashes.

Fig. 4. Tokens sent by SafraFT with 1–5 and 90% crashed nodes in the emulator and
CM/AKY experiments. Uniform, Gaussian distributions denoted by u, g.

Such a decrease is not to be expected for real-world distributed algorithms.
A node crash may cause active nodes to activate other nodes, or the workload of
the crashed node may be reassigned to other alive nodes, extending the trip of the
token. A significant increase of Tpre is indeed observed for CM/AKY in Fig. 4 if
many nodes (90%) crash, compared to if 1–5 nodes crash. By contrast, crashes
have little effect on emulated basic algorithms, for reasons discussed before. Tpre

remains roughly the same for small networks and actually shows a decrease on the
largest one, due to the fact that the overall activity produced by the emulator on
16 and 48 nodes is relatively small compared to that of 144 nodes.
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Table 1 shows the sum of processing times (pt), detection overhead (ov), and
time to detect termination after it happened (tt), for SafraFS and SafraFT, when
applied to CM and AKY. For N ≤ 1000, pt-FS and pt-FT grow roughly linear
to N . An analysis of processing times shows that the main factor in the higher
time consumption of SafraFT, compared to SafraFS, is the growth in token size
when N increases. The outlier N = 2000, for SafraFS but especially SafraFT,
turned out to be caused by our experimental setup. Each physical compute node
may simultaneously host up to 100 network nodes, depending on N . Each of
these instances uses multiple threads. Altogether there are at least four times as
many threads as cores on each machine. This leads to threads being preempted
by the operating system, which happens more often for threads that try to send
large messages (and in SafraFT, the token size grows linearly with N).

Table 1. CM/AKY results of SafraFS/FT on crash-free networks. Times in s.

N Crash-Free CM Crash-Free AKY

pt-FS/FT ov-FS/FT tt-FS/FT pt-FS/FT ov-FS/FT tt-FS/FT

50 0.02/0.03 4.8/7.4% 0.01/0.01 0.04/0.05 4.1/ 5.7% 0.01/0.01

250 0.12/0.24 3.7/7.1% 0.03/0.10 0.15/0.26 6.1/10.5% 0.02/0.08

500 0.26/0.64 2.4/5.7% 0.06/0.34 0.30/0.52 6.4/11.1% 0.05/0.18

1000 0.59/1.15 2.2/4.3% 0.12/0.54 0.68/1.46 4.9/10.6% 0.11/0.70

2000 1.43/2.66 1.2/2.2% 0.23/1.05 1.63/6.03 3.4/12.7% 0.30/3.85

A relatively large part of the overall processing time is spent on detecting
termination because CM and AKY complete their tasks relatively quickly. For
basic algorithms that take a long time to complete, the time taken for termina-
tion detection can be expected to be negligible. The processing time overhead of
termination detection (between 2.2% and 12.7% in all runs for SafraFT) would
reduce significantly for long-running jobs, owing to the fact that Safra’s algo-
rithm tends to impose only little control message overhead, unlike termination
detection algorithms in which every basic message is acknowledged (e.g. [9]).
Remarkably, for CM the overhead of SafraFT decreases when N grows, while
for AKY it increases. The reason is that the number of times nodes become
passive grows significantly slower, in terms of N , for CM than for AKY.

Table 2. CM/AKY results of SafraFT on faulty networks. Times in s.

N Faulty CM Faulty AKY

pt-1-5 pt-90 tt-1-5 tt-90 pt-1-5 pt-90 tt-1-5 tt-90

50 0.06 0.11 0.02 0.01 0.07 0.11 0.01 0.002

250 0.29 0.52 0.10 0.04 0.29 0.60 0.07 0.01

500 0.71 1.18 0.30 0.08 0.65 1.48 0.19 0.03

1000 1.59 2.43 0.70 0.11 1.91 4.40 0.42 0.10

2000 5.11 6.88 2.22 0.31 4.25 9.93 1.70 0.17
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Table 2 shows the sum of the processing times at all nodes and the time to
detect termination after it happened for SafraFT, applied to CM and AKY,
when 1 to 5 nodes (1–5) and when 90% of the nodes (90%) crash. When more
nodes crash, the processing time increases, due to backup tokens, while the time
to detect termination decreases, because there are fewer alive nodes.

7 Conclusion

We presented a fault-tolerant algorithm for distributed termination detection
based on an improved version of Safra’s algorithm. In our fault-tolerant variant
message counters are maintained per node, so that counts to and from crashed
nodes can be discarded. If a node crashes, the ring structure is restored locally
and a backup token is sent. Strong points are: little message overhead when nodes
remain active for a long time; robust against any number of and simultaneous
node crashes; only one additional message per crash; the basic algorithm can
be decentralized; no leader election scheme; no underflow issues. Compared to
other algorithms, our algorithm generates far fewer, but larger control messages.
For overall performance, fewer messages tend to be better, since more messages
mean more processing at each node, as well as at the network stack.

Experiments indicate our algorithm imposes no significant extra overhead in
control messages compared to its failure-sensitive counterpart. Despite the O(N)
bit complexity of the token, the available throughput and low latency of current
network technologies, as well as the low message complexity of our algorithm,
may render our approach feasible for large networks. This needs to be validated
in experiments with real-life distributed networks under realistic and diverse
workloads on many machines.

Testing the behavior of fault-tolerant distributed algorithms on very large
networks turned out to be challenging. Emulating basic algorithms by means
of unrestricted randomization results in executions that refuse to terminate on
large networks and do not faithfully mimic all aspects of real-life distributed
algorithms. Moreover, in experiments on top of two actual algorithms, allocating
multiple network nodes on a single compute node influences the results. These
challenges may partly explain why [16] is the only related paper we are aware of
to report experimental results, for networks of up to 2048 nodes.

Next to performing realistic experiments for larger networks, future work is
to develop a version of our fault-tolerant algorithm in the presence of stable
storage. In that case the memory overhead of splitting the counter in the token
can be avoided, at the cost of storing message counts in stable storage.

Acknowledgement. Ceriel Jacobs provided valuable feedback on the design and
implementation of our algorithm.
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Abstract. Flooding is a fundamental concept in distributed computing.
In flooding, typically, a node forwards a message to its neighbors for the
first time when it receives a message. Later if the node receives the same
message again, it simply ignores the message and does not forward it.
The nodes store a “message record” to ensure that the same message is
not forwarded again.

Hussak and Trehan [STACS’20] introduced amnesiac flooding where
nodes do not require to keep the message record. They established a
surprising result that the amnesic flooding of a single (k = 1) message
starting from some source node always terminates in bipartite graphs
in e rounds and in non-bipartite graphs in e < j ≤ e + D + 1 rounds,
where e is the eccentricity of the source node and D is the diameter of
the graph. Recently, Hussak and Trehan [arXiv’20] introduced dynamic
amnesiac flooding initiated in possibly multiple rounds with possibly
multiple (k > 1) messages from possibly multiple source nodes. They
showed that the partial-send case where a node only sends a message to
neighbours from which it did not receive any message in the previous
round and the ranked full-send case where a node sends some highest
ranked message to all neighbors from which it did not receive that mes-
sage in the previous round, both terminate. However, they showed that
the unranked full-send case, where a node sends some random message
(not necessarily the highest ranked message) to all the neighbors from
which it did not receive that message in the previous round, does not
terminate.

In this paper, we show that the unranked full-send case also termi-
nates, provided that diameter D is known to graph nodes. We further
show that the termination time is D · (2k− 1) rounds in bipartite graphs
and (2D + 1) · (2k − 1) rounds in non-bipartite graphs.

1 Introduction

Flooding is one of the fundamental and most useful primitives in distributed
computing. In flooding, the task is to disseminate message(s) from source nodes
c© Springer Nature Switzerland AG 2021
K. Echihabi and R. Meyer (Eds.): NETYS 2021, LNCS 12754, pp. 88–94, 2021.
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to all the nodes of the network. Suppose a distinguished source node has a
message θ initially. The goal is to disseminate θ to all the nodes of the network. In
a synchronous, round-based distributed network, flooding is typically performed
as follows: In the first round, the distinguished source node sends θ to all its
neighbors. From the next round onwards, when a node receives θ for the first
time, it sends a copy of θ to its neighbors (except the neighbors from which it
receives θ). If it receives θ again, it doesn’t do anything. This essentially requires
each node in the network to maintain a “message record” of θ to indicate whether
that node has seen θ in some previous round. If a node receives θ and it has
a record that it has seen θ before, then it does not forward θ. This ensures
that the node never floods θ twice. It is well-known that this classic flooding
process always terminates and the number of rounds until termination is D + 1,
the diameter of the network. The message record is of size at least 1 bit for a
message.

Moving from single message flooding to multiple message flooding, the flood-
ing approach for a single message has to be applied to each of the messages
separately. Therefore, each node has to have the message record of at least 1
bit per message, i.e., Ω(k) bits for k > 1 messages, which may be a problem for
resource-constrained devices [23,24].

Hussak and Trehan [11] asked an interesting question for the single message
flooding starting from a distinguished source node: What will happen if nodes do
not keep the record of the message θ? Will the flooding process still terminate?
Not keeping a record means that message travels on its own without depending
on a message record. Not having a message record simplifies client-server appli-
cation design as well as makes it scalable due to the fact that servers do not
need to keep track of session information [25]. It will also provide fault tolerance
even when network nodes crash.

Intuitively, if the nodes do not keep any record, they may forward the message
again and again when received in subsequent rounds. Thus, the absence of a
message record raises the possibility that θ may be circulated infinitely. Hussak
and Trehan [11] formally studied flooding without the message record, calling
it amnesiac flooding, and showed that the single message (k = 1) flooding that
starts from a distinguished source node terminates in bipartite graphs in e rounds
and in non-bipartite graphs in e < j ≤ e + D + 1 rounds, where e is eccentricity
of the source node. Using two rounds to initiate flooding with the second round
dependant on the first, termination time was improved to e + 1 rounds in any
(non-bipartite) network by Turau [24], reducing the e+D+1 rounds of [11] by D
rounds. However, the dependency on the first two rounds makes the result from
Turau [24] not truly amnesiac compared to Hussak and Trehan [11]. Interestingly,
the result of Turau [24] matches the termination time of classic flooding, since
e ≤ D, and the termination time of classic flooding is D+1 rounds. In the recent
followup work, Hussak and Trehan [12] showed that the same termination time
of e rounds in bipartite graphs and e ≤ j ≤ e + D + 1 rounds in non-bipartite
graphs can be achieved for a single message θ starting from multiple source nodes
concurrently. Essentially, Hussak and Trehan [12] showed that the proofs of [11]
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for the single source case carry over with simple modifications mainly to the
definitions for the multiple source case. Turau [25] gave an alternative detailed
proof.

Recently in [12], Hussak and Trehan considered dynamic amnesiac flooding
of multiple k > 1 messages, where the messages may be initiated in possibly
different rounds (i.e., not necessarily in the same first round) by different source
nodes in the graph. Dynamic flooding arises in different real-world applications.
One prominent example is disaster monitoring [25] where a distributed system
of sensors is deployed to monitor a disaster event. As soon as sensors detect
an event which may happen at different times for different sensors, they start
flooding this information in the network. Furthermore, one source node may
initiate multiple (different) messages (the source nodes may not be all different,
i.e., 1 ≤ k′ < k source nodes for k messages). They considered the following
three cases (problems) of dynamic amnesiac flooding in the synchronous message
passing setting where each node receives messages from neighbors, performs
internal computation, and sends messages to neighbors in synchronized rounds:

– partial-send: a node only sends a message to its neighbors from which it did
not receive any message in the previous round.

– ranked full-send: a node sends some highest ranked message to all neighbors
from which it did not receive that message in the previous round.

– unranked full-send: a node sends some random message (not necessarily the
higest ranked message) to all neighbors from which it did not receive that
message in the previous round.

Hussak and Trehan [12] showed that both the partial-send and ranked full-
send problems terminate, but the unranked full-send problem does not terminate.

In this paper, we establish that the unranked full-send problem also termi-
nates, provided that diameter D is known to network nodes. We further prove
the termination time for the unranked full-send problem in both bipartite and
non-bipartite graphs.

Overview of the Model and Results. Let the communication network be
modeled as an undirected and unweighted but connected graph G = (V,E),
where V is the network nodes and E ⊆ V × V is the edges of G. Every node is
assumed to have a unique identifier (e.g., its IP address). The nodes are allowed
to communicate through the edges of the graph G. We consider a synchronous
message passing1 network, where computation proceeds in synchronous rounds
with a node performing the following three tasks in each round: (i) receive mes-
sages from its neighbors, (ii) perform local computation, and (iii) send messages
to its neighbors. No message is lost in transit. The messages are assumed to have
unique IDs (which may not necessarily be consecutive and the smallest message
ID may not be 1). A message θ is called globally i-th ranked if and only if the
ID of θ is i-th largest among the IDs of all the messages in the set. The (global)

1 In the asynchronous message passing framework, it was shown by Hussak and Trehan
[11] that amnesiac flooding does not terminate.
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rank of the messages is not known to graph nodes (i.e., the unranked problem),
otherwise it becomes the ranked problem which terminates.

We prove the following theorem for the unranked full-send problem.

Theorem 1. (unranked full-send). Given a set {θ1, . . . , θk} of k > 1 mes-
sages positioned on 1 ≤ k′ ≤ k nodes of a network G initiated at possibly dif-
ferent rounds, the unranked full-send problem terminates in bipartite graphs in
D · (2k − 1) rounds and in non-bipartite graphs in (2D + 1) · (2k − 1) rounds2

with each node storing O(log(max{k,D})) bits, provided that the diameter D is
known to the graph nodes.

Theorem 1 is interesting and important since it was shown in Hussak and
Trehan [12] that the unranked full-send problem does not terminate.

Comparison to Amnesiac and Classic Flooding. We first compare our
result to amnesiac flooding and then to classic (non-amnesiac) flooding. Nodes do
not need to store any information in the amnesiac flooding definition of Hussak
and Trehan [11]. However, the assumption of graph nodes knowing D in our
algorithm is a stronger condition than the amnesiac flooding definition of [11].
This is because knowing D requires each graph node to keep �log D� bits record
in memory. Therefore, the storage requirement for any algorithm knowing D is at
least Ω(log D) bits. The total storage O(log(max{k,D})) bits at each node in our
algorithm is due to the fact that it also uses a wait variable which needs O(log k)
bits. Therefore, our algorithm provides a trade-off between two parameters k and
D regarding memory; O(log D) bits when k = O(D) and O(log k) bits otherwise.
Nodes need to store record of each message in classic (non-amnesiac) flooding,
i.e., at least Ω(k) bits memory to flood k different messages. Therefore, the
memory requirement in our algorithm is a significant reduction on the memory
requirement at graph nodes compared to classic flooding when k > Ω(log D).

The above comparison to amnesiac and classic flooding shows that our algo-
rithm provides a ‘weak’ variant of amnesiac flooding, that is, it reduces storage
requirement of classic flooding but does not completely remove it as in amnesiac
flooding [11,24]. An interesting direction for future research is whether a weaker
assumption than D is enough to make the unranked full-send problem terminate.
Finally, we prove the termination time of our algorithm using the single message
termination time of [11]. One interesting property of our algorithm is that if
a better termination time is available for the single message flooding, then the
termination time improves proportionally.

Techniques. Suppose all messages are initiated in the beginning of round 1.
Knowing D, the proposed algorithm asks messages to start their flooding process
in the interval of (2D + 1) rounds, i.e., at rounds 1, (2D + 1) + 1, 2 · (2D + 1) +
1, . . . , (k−1)·(2D+1)+1. Suppose the source nodes of k > 1 messages θ1, . . . , θk

2 If eccentricity e1, e2, . . . , ek′ of the k′ source nodes is known instead of D, then the
bounds translate to emax · (2k − 1) in bipartite graphs and (2emax + 1) · (2k − 1)
in non-bipartite graphs with memory O(log(max{k, emax})) bits, where emax :=
max1≤l≤k′ el.
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know the rank (ID) of all the messages, say, 1, . . . , k, with message θi having
rank i. Let us call this rank order as global rank. Knowing the global rank, θi

can immediately decide how long to wait before starting the flooding process.
Since it is known that a single message θi finishes flooding in (2D + 1) rounds
[11] (e ≤ D), all k messages finish flooding by k · (2D + 1) rounds. That is, the
ranked full-send problem terminates in k · (2D + 1) rounds.

The challenge to overcome is when the source nodes do not know the global
rank of the messages (the unranked problem). We devise an algorithm that takes
into account local ranks of the messages (i.e., the positions in the ranks of the
messages at a node) in deciding the wait time for the messages. Except the
globally lowest ranked message, the wait time assigned at round 1 may not be
equal to its wait time knowing its global rank. The algorithm asks locally lowest
ranked messages to start amnesiac flooding at round (κ − 1) · (2D + 1) + 1,
κ ≥ 1 following the single message algorithm of Hussak and Trehan [11]. If the
message that starts flooding at round (κ − 1) · (2D + 1) + 1, κ ≥ 1, is globally κ
ranked, we show that it terminates by round κ · (2D + 1); otherwise during the
round between (κ − 1) · (2D + 1) + 2 and κ · (2D + 1) + 1 (inclusive), it finds
that its global rank is higher than κ and starts waiting increasing its wait time
proportional to its local rank at that time. We will also show that the wait time
update stops at round (κ′ −1) · (2D)+1 for the globally κ′ ranked message. This
altogether guarantees that the algorithm terminates in k · (2D + 1) rounds for
k > 1 messages.

Finally, we show that this approach extends to the case of messages initiated
at different rounds with termination time at most (2k−1)·(2D+1). For bipartite
graphs, the only change is replacing (2D+1) with D so that the bound becomes
(2k − 1) · D.

Related Work. Hussak and Trehan [11] were the first to consider amnesiac
flooding. They showed that amnesiac flooding of a single message θ starting from
a distinguished source node in the beginning of round 1 terminates in e rounds
in bipartite graphs and in e + D + 1 rounds in non-bipartite graphs, e ≤ D.
They showed in [12] that this result also holds even when a single message θ
starts flooding in the beginning of round 1 from multiple source nodes. In the
asynchronous setting, they showed that amnesiac flooding does not terminate
even for a single message starting from a source node. Recently, Hussak and
Trehan [12] introduced dynamic amnesiac flooding initiated in multiple rounds
by possibly multiple source nodes with possibly multiple messages. They showed
that the partial-send and ranked full-send problems terminate but the unranked
full-send problem does not terminate. In this paper, we show that the unranked
full-send problem also terminates, provided that D is known.

Turau [24] improved the result of Hussak and Trehan [11] such that the
amnesiac flooding terminates in e+1 rounds, even in non-bipartite graphs. This
result is interesting since this termination time matches the classic flooding ter-
mination time of D + 1, since e ≤ D. This result also applies to the single
message starting flooding from multiple source nodes in the beginning of round
1. However, the assumption behind this result – the second round depending on
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the first – makes this result not truly amnesiac. Turau [24] also proved that the
problem of selecting κ source nodes with minimal termination time is NP-hard.
Particularly, Turau showed that unless NP = P there is no approximation algo-
rithm for amnesiac flooding with approximation ratio 3/2− ε. For asynchronous
systems, Turau proved that deterministic amnesiac flooding is only possible if a
large enough part of the message can be updated by each node. Very recently,
Turau [25] provided an alternative detailed proof for the single message flooding
starting from multiple source nodes in the beginning of round 1. Specifically,
Turau showed that, for every non-bipartite graph G and every set V ′ of source
nodes that start flooding simultaneously, there exists a bipartite graph G(V ′)
such that the execution of amnesiac flooding on both graphs G and G(V ′) is
strongly correlated and termination times coincide. This led to bounds that are
independent of the diameter as well as it allowed to determine source nodes
for which amnesiac flooding terminates in minimal time. Turau also gave tight
lower and upper bounds for the time complexity in special cases of |V ′| = 1 and
|V ′| > 1. In fact, the case of |V ′| > 1 was reduced to the case of |V ′| = 1.

Flooding is a fundamental concept used in solving a diverse set of funda-
mental problems in distributed computing, e.g., leader election [14,15], span-
ning tree construction [2,13,16,17,21], shortest paths computation [9,10,20],
aggregation [5], routing [18], etc. Flooding of multiple messages is a must in
many distributed applications, e.g., k-information dissemination or gossiping
[1,3–5,7,16,17,19,22].

Amnesiac flooding uses the most recent edges from which the message is
received to a node to decide which neighboring edges of that node are used to
flood the message from that node. This concept finds applications and uses in
social networks [6], broadcasting [8], and client-server application design [25].
More details in [11,12,23–25].
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Abstract. We consider swarms of luminous myopic robots that run in
synchronous Look-Compute-Move cycles. These robots evolve in a finite
grid and are disoriented, i.e., they have neither global compass nor a
common chirality. In this context, we propose optimal solutions for the
perpetual exploration of a finite grid. Precisely, we investigate optimality
in terms of the visibility range, number of robots, number of colors. In
more detail, under the optimal visibility range one, we give an algorithm
which is optimal w.r.t. the number of robots: it uses three robots and
three colors. Under visibility two, we design an algorithm that uses five
robots and only one color, i.e., robots are oblivious.

Keywords: Luminous myopic robots · Perpetual exploration · Finite
grid · Exclusiveness

1 Introduction

We consider swarms of luminous robots [16], i.e., autonomous robots endowed
with visibility sensors, motion actuators, and lights of different colors. Those
robots operate in synchronous Look-Compute-Move cycles, where they first sense
the environment (Look), then choose a destination and update their light color
(Compute), and finally move to the chosen destination (Move).

Our goal is to investigate the computational power of such robot swarms.
Hence, we consider luminous robots with limited capabilities. First, they are
myopic, i.e., they are only able to sense their surroundings within a bounded
visibility range. Furthermore, they are fully disoriented since they have neither a
global compass nor a common chirality. Finally, except from their lights, robots
have neither persistent memories nor communication capabilities.
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We are interested in coordinating such weak robots to solve a infinite global
task called the perpetual exploration. Given a space which is partitioned into
locations, it requires each of these locations to be visited infinitely often by at
least one robot. Here, we conveniently discretize the space by a finite graph,
where nodes represent locations and edges represent the possibility for a robot
to move from one location to another.

In this paper, we look for optimal exclusive solutions to the perpetual explo-
ration of a finite grid, both in terms of visibility range and number of robots.
Exclusiveness [1] requires any two robots to never simultaneously occupy the
same position nor traverse the same edge.

Related Work. The exploration problem is a problem that has been extensively
investigated. Various topologies have been considered, e.g., lines [13], rings [2,7,
10,14,15], trees [12], torus [9], finite [3,8] and infinite grids [4,5]. In particular, it
is shown in [4] that, without a common chirality, exploring an infinite grid with
oblivious1 synchronous robots is impossible under visibility range one, whatever
be the number of robots. This latter result is established by proving that, under
these settings, robots are not able to move from an arbitrary distance. Hence, it
also applies to grid of unbounded size.

In finite graphs, many papers [7–10,12–14] consider the terminating version
of the exploration (henceforth called terminating exploration), which requires
that all robots eventually stop moving after all nodes have been visited. The
perpetual exploration requires each location to be visited infinitely often by all
or a part of robots. Perpetual exploration of finite graphs has been, for example,
considered in [2,3,6].

A large part of the literature deals with “non-myopic” robots, i.e., robots
with an unbounded visibility range allowing them to sense the whole graph
and the positions of all the robots; see [2,3,8–10,12–14]. In such a context,
robots are always assumed to be anonymous and oblivious. Exploration algo-
rithms satisfying exclusiveness are proposed in both finite [2,3,6] and infinite
graphs [4,5].

Chirality is usually assumed in the 2D Euclidean plan; see for example [11].
However, recently, few works dedicated to discrete environment, e.g., in (infinite)
graphs [4], investigated the exploration problem assuming robots which have a
common chirality. Chirality is important when dealing with optimal solutions.
For example, with visibility range one and few colors (O(1)), five (resp. six)
synchronous robots are necessary and sufficient to explore an infinite grid with
(resp. without) the common chirality assumption [4,5].

A recent work [6] studies the exploration problem in finite grid, with myopic,
synchronous, and luminous robot (like our model here), yet assuming robots
agree on a common chirality. In a nutshell, it is shown in [6] that two robots
with three colors and a common chirality are necessary and sufficient to solve
the problem under visibility range one. Moreover, under visibility range two and
assuming a common chirality, three robots are necessary and sufficient when
robots have only one color.
1 Oblivious robots have no state and cannot remember past actions.
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Table 1. Summary of our results.

Visibility # Robots # Colors Algorithm

1 2 Finite Impossible (Theorem 1)

1 3 3 Vone33

2 5 1 Vtwo51

Contribution. To the best of our knowledge, the present work is the first study
of the (perpetual) exclusive exploration with myopic (luminous) robots in finite
grids with robots without chirality.

Our contribution is threefold. We prove that, under any finite visibility range,
the perpetual exploration is not solvable using only two robots, whatever be
the finite number of available colors. Then, we present a perpetual exploration
algorithm that is optimal in terms of visibility range (1) and number of robots (3).
Moreover, this algorithm only requires 3 colors per robots. Finally, we propose an
algorithm that requires five oblivious robots, i.e., each of those five robots needs
only one color (the optimal), yet assuming visibility range two. Nevertheless,
following results in [4], visibility range two is the smallest range where a solution
with oblivious robots is possible. Table 1 summarizes our contributions.

Roadmap. Section 2 is devoted to the computational model and definitions. In
Sect. 3, we prove our impossibility result. We present our algorithm in Sects. 4
and 5. We make concluding remarks in Sect. 6.

2 Model

We consider a set of n > 0 robots located on a finite grid made of L ≥ n lines
and C ≥ n columns,2 i.e., robots evolve in an undirected graph G(V,E) where
V = {(i, j) : i ∈ [0, C − 1], j ∈ [0,L − 1]} and E = {{(i, j), (k, l)} : (i, j) ∈
V ∧ (k, l) ∈ V ∧ |i − k| + |j − l| = 1}. The size of the grid is then L × C. Grid
coordinates are used for the analysis only, i.e., robots cannot access them.

We assume a discrete time where, at each round, the robots synchronously
perform a Look-Compute-Move cycle. In the Look phase, a robot gets a snapshot
of the subgraph induced by the nodes within distance Φ ∈ N

∗ from its position.
Φ is called the visibility range of the robots. The snapshot is not oriented in any
way as the robots do not agree on a common North. However, it is implicitly ego-
centered since the robot that performs a Look phase is located at the center of
the subgraph in the obtained snapshot. Then, each robot computes a destination
(either Up, Left, Down, Right or Idle) based only on the snapshot it received.
Finally, it moves towards its computed destination.

We forbid any two robots to occupy the same node simultaneously. A node
is occupied when a robot is located at this node, otherwise it is empty. Robots
2 The requirement on the numbers of lines and columns is only made for the sake of

simplicity.
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may have lights with different colors that can be seen by robots within distance
Φ from them. We denote by Cl the set of all possible colors.

The state of a node is either the color of the light of the robot located at this
node, if it is occupied, or ⊥ otherwise. In the Look phase, the snapshot includes
the state of the nodes (within distance Φ). During the compute phase, a robot
may decide to change the color of its light.

In all our algorithms, we also prevent any two robots from traversing the same
edge simultaneously. Since we already forbid them to occupy the same position
simultaneously, this means that we additionally prevent robots from swapping
their position. Algorithms verifying this property are said to be exclusive. How-
ever, to be as general as possible, we do not make this additional assumption in
our impossibility results.

Configurations. A configuration C in a grid G(V,E) is a set of pairs (p, c), where
p ∈ V is an occupied node and c ∈ Cl is the color of the robot located at p. A
node p is empty if and only if ∀c, (p, c) /∈ C. We sometimes just write the set of
occupied nodes when the colors are clear from the context.

Views. We denote by Gr the globally oriented view centered at the robot r, i.e.,
the subset of the configuration containing the states of the nodes at distance
at most Φ from r, translated so that the coordinates of r is (0, 0). We use this
globally oriented view in our analysis to describe the movements of the robots
(see, for example, Fig. 1): when we say “the robot moves Up”, it is according
to the globally oriented view. However, since robots do not agree on a common
North, they have no access to the globally oriented view. When a robot looks at
its surroundings, it instead obtains a snapshot. To model this, we assume that
the local view acquired by a robot r in the Look phase is the result of an arbi-
trary indistinguishable transformation on Gr. The set IT of indistinguishable
transformations contains:

1. the rotations of angle 0 (to have the identity), π/2, π and 3π/2, centered at
r,

2. the mirroring (robots cannot distinguish between clockwise and counterclock-
wise), and

3. any combination of rotation and mirroring.

Here, we assume that robots are self-inconsistent, meaning that different
transformations may be applied at different rounds.

It is important to note that when a robot r computes a destination d, it is
relative to its local view f(Gr), which is the globally oriented view transformed
by some f ∈ IT . So, the actual movement of the robot in the globally oriented
view is f−1(d). For example, if d = Up but the robot sees the grid upside-down
(f is the π-rotation), then the robot moves Down = f−1(Up). In a configuration
C, VC(i, j) denotes the globally oriented view of a robot located at (i, j).

A robot is said to be isolated when the only robot in its view is itself.
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Algorithm. An algorithm A is a tuple (Cl , Init , T ) where Cl is the set of pos-
sible colors, Init is a mapping from any considered grid to a non-empty set of
initial configurations in that grid, and T is the transition function V iews →
{Idle,Up,Left , Down, Right}×Cl , where V iews is the set of local views. When
the robots are in Configuration C, a configuration C ′ obtained after one round
satisfies: for all ((i, j), c) ∈ C ′, there exists a robot in C with color c′ ∈ Cl and
a transformation f ∈ IT such that one of the following conditions holds:

– ((i, j), c′) ∈ C and f−1(T (f(VC(i, j)))) = (Idle, c),
– ((i − 1, j), c′) ∈ C and f−1(T (f(VC(i − 1, j)))) = (Right, c),
– ((i + 1, j), c′) ∈ C and f−1(T (f(VC(i + 1, j)))) = (Left, c),
– ((i, j − 1), c′) ∈ C and f−1(T (f(VC(i, j − 1)))) = (Up, c), or
– ((i, j + 1), c′) ∈ C and f−1(T (f(VC(i, j + 1)))) = (Down, c).

We denote by C �→ C ′ the fact that C ′ can be reached in one round from C (n.b.,
�→ is then a binary relation over configurations). An execution of Algorithm A
in a grid G is then a sequence (Ci)i∈N of configurations such that C0 ∈ Init(G)
and ∀i ≥ 0, Ci �→ Ci+1.

Perpetual Finite Grid Exploration. An execution (Ci)i∈N in a grid G = (V,E)
achieves the Perpetual Finite Grid Exploration (PFGE) if for every node u ∈ V
and for every time t, there exists a time t′ ≥ t such that u is occupied in Ct′ .

An algorithm A that uses n robots solves the Perpetual Finite Grid Explo-
ration (PFGE) problem if for every finite grid G = (V,E) with at least n lines
and n columns and every initial configuration C0 ∈ Init(G), we have every exe-
cution of A in G starting from C0 that achieves the PFGE.

An Algorithm as a Set of Rules. We write an algorithm as a set of rules, where
a rule is a triplet (V, d, c) ∈ V iews × {Idle,Up,Left , Down, Right} × Cl .

We say that an algorithm (Cl , Init , T ) includes the rule (V, d, c), if T (V ) =
(d, c). By extension, the same rule applies to indistinguishable views, i.e., ∀f ∈
IT , T (f(V )) = (f(d), c). Consequently, we forbid an algorithm to contain two
rules (V, d, c) and (V ′, d′, c′) such that V ′ = f(V ) for some f ∈ IT . Hence, an
algorithm corresponds to a set of rules if each destination is the result of applying
one of its rules.

As an illustrative example, consider the rule R1 given in Fig. 1. This rule is
defined for robots having a visibility range of two. This rule means that, when
a blue robot B sees two robots with color R, one on top and one in diagonal,
then the blue robot is dictated to move Up. By extension the same rule applied
if the view is rotated by π, but in that case, the destination would be Down.

In the same figure, Rule R2 is a rule where the three black nodes represent
a part of the outer boundary of the grid, that we call a wall in the remaining of
the paper. In our algorithms, we often define similar rules that apply regardless
of the presence of a wall in some part of the view. Thus, to avoid defining several
time rules with very similar views, we propose a notation to represent several
rules in just one picture. For example, Rule R3 in Fig. 1 has three nodes hatched
with vertical lines, which means that the rule applies regardless of the presence of
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a wall located at those nodes. In practice, every rule that contains such vertical
(resp. horizontal) hatched lines, represents a set of rules obtained by replacing
each of those lines either by walls, or by empty nodes. For example, Rule R3 in
Fig. 1 is a concise representation of Rules R1 and R2.

Notice also that, due to the absence of orientation and chirality, a rule
(V, d, c) may be ambiguous, meaning that there exists f ∈ IT such that
T (V ) 	= f−1(T (f(V ))). In the figures, we illustrate such ambiguities by depict-
ing the possible destinations with several arrows. For example, Fig. 2 shows an
ambiguous rule where the robot has a symmetric view. Hence depending on the
transformation f chosen by the adversary, the robot moves either left or right
when executing this rule.

R1 R2 R3

R R

B

R R

B

R R

B

Fig. 1. Examples of rules.

R

B

Fig. 2. Example of
an ambiguous rule.

Algorithms Having Locally-Defined Initial Configurations. In a given grid, the
set of possible initial configurations of an algorithm can be reduced to a singleton.
In such a case, the scalability and flexibility of the algorithm is weak. To be more
general, we propose algorithms with locally-defined sets of initial configurations.
Configurations in a locally-defined set of initial configurations are defined by one
and the same pattern which fixes the colors and relative positions of the robots.
Hence, for a given grid, every two possible initial configurations are equal up to
a translation applied to all robot positions and the set of all possible initial
configurations is closed by such translations.

3 Impossibility Results

It has been shown in [6] that the PFGE problem is not solvable using only one
robot for any finite visibility range. We now extend this result by proving that
the PFGE problem is also not solvable using two robots if they have a visibility
range of one. Hence, throughout this section, we assume two robots under
visibility range one.

First, we observe that in large enough grids, if robots travel a long distance
without seeing any wall, or seeing one and the same wall without reaching its
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corner, then they must execute a periodic sequence of movements. Indeed, the
maximum number of distinct relative positions and colors two robots endowed
with |Cl| colors can have is the number of 2-combination with repetitions B =((|Cl|

2

))
= |Cl|(|Cl|+1)

2 . Thus, if robots travel a distance at least B without seeing
a wall, or seeing one and the same wall without reaching its corner, then they
are actually executing a periodic sequence of movements. Of course, the value
of B depends on the algorithm, yet it is always finite. Notice also that |Cl| > 1,
since it has been shown in [6] that two oblivious robots with visibility range 1
are not sufficient to solve the PFGE problem. Hence, B ≥ 3.

The above observations are important to prove our impossibility results. First,
we use them to show that once robots move far away from the wall, their move-
ments are restricted. In more detail, they can only move in straight line; see
Lemmas 1 and 2.

Lemma 1. Let A be an algorithm solving the PFGE problem with two robots. If
there exists an execution of A containing a configuration C where the two robots
are at distance at least 2B from any wall and, from C, the robots perform a
periodic sequence of movements with no ambiguous rules, then the robots move
in a straight line until reaching a wall.

Sketch of proof: When a robot executes unambiguous rules, it can only move
from or towards the other robots, hence remains on the same line. Indeed, any
view containing another robot has an axis of symmetry passing through the
other robot (recall that we assume visibility range 1), and the destination of an
unambiguous rule must be on the axis as well. 
�

Lemma 2. Let A be an algorithm solving the PFGE problem with two robots.
If there exists an execution of A containing a configuration C where robots are
at distance at least 2B from any wall and, from C, robots perform a periodic
sequence of movements, then this sequence does not include any ambiguous rule.

Sketch of proof: Every time robots execute an ambiguous rule, robots are making
a turn, and the adversary can decide on which side the robots are turning. If
the periodic sequence of movements contains an ambiguous move, the robots
will make at least one turn per period, hence the adversary can make the robots
remain in the same square grid of size B (the period of the sequence is at most
B). While doing so, the robots do not see any wall, and do not explore the whole
grid. 
�

Due to the limited visibility range, the two robots cannot be to far from each
other, as stated in the following three lemmas.

Lemma 3. Robots are always at distance at most 6 for each other.

Lemma 4. No exploration algorithm can reach a configuration where the two
robots are at distance at least 3, one robot sees no wall, and the other sees zero
or one wall.
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Lemma 5. If both robots see no wall, then they should be at distance one from
each other.

The next Lemma states that, if two robots are on the same line, this line
must be an axis of symmetry of their views and they cannot break this symmetry
without executing an ambiguous rule (due to the lack of chirality agreement).
Hence, the adversary can decide on which side of the axis it will keep the robots.

Lemma 6. Let A be an algorithm solving the PFGE problem using two robots.
Let C be a configuration where the two robots are on the same line L. Let R be
a set of nodes delimiting a rectangle for which L is an axis of symmetry. Let
R1 ⊂ R such that the union of R1 and the symmetric of R1, with respect to L,
is equal to R. Then, from C, a configuration where a robot is located at a node
in R1 is reachable.

We now prove our main lemma, which states that the robots cannot move
further than a distance of 4B from all walls. To achieve this, we need two addi-
tional definitions. A corner box is the set of nodes forming a square of size 2B
including a corner of the grid. We say robots are in a T -configuration when they
are adjacent, only one is adjacent to a wall, and they are both at distance at
most 3B from another wall.

Lemma 7. If A solves the PFGE problem with two robots, then, if at a given
time t > B, a robot is in a corner box or if robots are in a T -configuration, then
there exists an execution after C such that a robot ends up a time t′ > t either
in a corner box or in a T -configuration, and between time t and t′ the robots
remain at distance at most 4B from a wall.

Proof. We consider a grid of size greater than 4B, otherwise the lemma is proven
regardless of what the robots are doing (a robot is infinitely often in a corner
box and any wall at distance 4B).

Then, assume a robots is in a corner box in a configuration C (the case where
robots are in a T -configuration is treated in the last paragraph of this proof) at
a given time t > B. To explore the grid, the robots must leave the corner box.
Indeed, if a robot stays forever in a corner box, then both robots remain as
distance at most 2B + 6 (by Lemma 3) from that corner and, since, B ≥ 3,
2B + 6 < 4B meaning that some node are only finitely often visited. We denote
by W1 and W2 the two walls adjacent to the corner contained in the corner box
where a robot was located in C; see Fig. 3. Without the loss of generality, we
assume that at a given time t0, the last robot, say r, leaving the corner box of
size 2B is at distance 2B + 1 from W1, and so at distance at most 2B from W2.

Claim 1: After leaving the corner box from a given side, either (i) the robots
move until reaching the wall opposite to W1, in a T -configuration, while
remaining at distance 2B from Wall W2, or (ii) end up in a line L parallel
and at distance at most 4B to W1, while remaining at distance at most 2B+1
from Wall W2.
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2B

2B

corner box

W1

W2

r

case (i)

case (ii)

L

corner box

W1

W2

Rcorner
1

Rright
1

Fig. 3. The different cases in Lemma 7.

From the previous claim, we saw that two cases can occur; see Fig. 3. In the
first case, the lemma is proven.

In the second case, robots end up in a line L parallel to W1 at time a given
t1 ≥ t0, while remaining at distance at most 2B + 1 < 4B from wall W2. We
consider the set of nodes R1 = Rcorner

1 ∪ Rright
1 where Rcorner

1 is the segment of
nodes at distance 2B from the wall W1 and with distance to W2 in the interval
[0, 2B+1], and Rright

1 is the segment of nodes at distance 2B+1 from W2 and at
distance from W1 in the interval [2B, d1], where d1 is the distance of the robots
to W1; see Fig. 3 (from the previous Claim, d1 ≤ 4B). The union of R1 with its
symmetric with respect to L delimits a rectangle (dotted line in the figure) so
that, using Lemma 6, there exists an execution such that a robot reaches R1.

If a robot reaches Rcorner
1 , then a robot reaches a corner box and the lemma is

proven. If a robot reaches Rright
1 , then the robots have traveled a distance at least

B without seeing a wall, hence are executing a periodic sequence of movements.
The sequence cannot contain an ambiguous rule (by Lemma 2) because the
robots are at distance at least 2B from any wall, so they are moving in a straight
line (by Lemma 1), and they end up in the wall opposite to W2 and reach a T -
configuration, while remaining at distance at most 4B from W1.

We now consider the case where robots are in a T -configuration in configu-
ration C. Then, they are on a line L perpendicular to a wall, say W2. Using a
similar argument, we know that either the robot enter the closest corner box, or
move in a straight line to the opposite wall until they reach a T -configuration.


�

We can now prove our impossibility result.

Theorem 1. The PFGE is not solvable with a only two robots with visibility
range 1, for any bounded number of colors.

Proof. Assume that algorithm A solves the PFGE problem and consider a grid of
size 9B×9B. Since the robots should explore the entire grid, a robot is eventually
in a corner box. Using Lemma 7 repeatedly, we can construct a execution from
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L F L F

Fig. 4. Move in a straight line.

F L

L

Fig. 5. Beginning of the exploration of
a line.

F L
X

X
F

X

F X
FL

L F

Fig. 6. Sequence of configurations during a turn around.

there where the two robots remain at distance at most 4B from any wall. Hence,
nodes at distance more than 4B from all the walls are not visited anymore, a
contradiction. 
�

4 Visibility Range One: Vone33

In this section, we present an algorithm, denoted by Vone33 , which assumes visi-
bility range one (the optimal) and uses three robots endowed with three colors.
By Theorem 1, Vone33 is optimal in terms of number of robots. We encourage
the reader to take a look at the online animation illustrating the behavior of
Vone33 [17] while reading the following explanation.

The algorithm defines three roles for the robots using the colors: L (leader), F
(follower), X (landmark). The roles are not fixed, robots will alternate between
several roles along the execution. Moreover, in few particular situations, roles
will not exactly correspond to their default meanings.

Initially, the three robots are aligned, two of them have color L while the
third one has color F ; moreover the two robots with color L are adjacent. In
the following, we denote this pattern by LLR. Since initial configurations are
locally-defined, the possible initial configurations are then all those containing
the pattern LLR.

Since we assume the synchronous model and we consider the perpetual explo-
ration, the execution is necessarily eventually periodic. So, from an initial con-
figuration, the goal is to lead robots to a configuration Cp from which they will
start to perform periodic journeys around the grid. We first explain how periodic
journeys are built. Then, we will see how robots can easily reach a configuration
of the journey starting from any initial configuration.

The main idea of the algorithm is to make the leader and the follower move
and explore a given line while the landmark robot remains idle to keep track of
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F L
X

X
F

X

F X
F

F X
L

Fig. 7. Turn around.

F

X X L

X

F
X

X
L

X L

L F

L

F
L

L
X

F

F

L
F

F

X

X

Fig. 8. Up and turn.

L F

L

F

X

F

F

X

X

L
X L

X

F

L

F L

L

Fig. 9. Up and turn. This sequence occurs when the robots are not in a corner. The
case when the robots are in a corner is presented in Fig. 11.

the next line to explore. Every time a line is explored, the three robots, including
the landmark robot, move “up” by one row (assuming, for illustration purpose,
that robots are visiting a line from left to right). Then, once the robots reach a
corner, they change their direction and repeat the same process.

It is easy to make move the leader and the follower on the same direction
to explore a line: the leader moves away from the follower while the follower,
as suggested by its name, follows the leader. The rules executed by those two
robots to move along a straight line are presented in Fig. 4.

During the line exploration by the leader and the follower, the landmark
robot is left beside a wall on a line adjacent to the line traversed by the two
other robots; refer to Fig. 5. When the leader and the follower reach the other
wall, the idea is to make them move back and cross the same line again since
they do not have any sense of direction. For this purpose, they need to swap
their respective positions. This is done as follows: the first robot that detects the
wall is the leader, in this case, it moves to an adjacent empty node (except for
the last line, there is a symmetry and so the scheduler chooses which direction
to take) and changes its color to X. In the next round, the follower reaches the
wall and observes the landmark, i.e., the previous leader. Since the follower sees
only one other robot, it detects that they are moving back to traverse the same
line in the other direction. So, the follower moves back to its previous position
followed by the landmark. Moreover, the follower becomes the leader while the
landmark becomes a follower. Finally, they both start moving straight on the
opposite direction. The rules executed during the moving back process are those
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F

F

X F

X

L

F

F

L

F

Fig. 10. Last corner preparation - rules.

given in Fig. 7 plus the first rule of Fig. 9 (this latter will also be used when
switching to an upper line).

When the leader and follower reach again the wall again, the leader can
observe this time that a robot (the landmark robot) is located on a different line
in the neighborhood of the wall. Hence, an orientation can be defined to indicate
the next line to be explored i.e., the line containing the only unoccupied node
adjacent to the one hosting the leader. The idea is to make the robots move to the
next line in such a way they can repeat the previous behavior. The lines of the
grid are then explored in a given direction one by one until robots reach the last
line. The rules that are executed to make a line change, when the landmark robot
is reached, are presented in Fig. 8. Figure 9 shows the sequence of configurations
occurring during a line change.

Given an orientation of the grid, assume without the loss of generality that
the robots are exploring the grid line by line in a given direction. As the grid is
finite, eventually the robots reach the last line with respect to the current explor-
ing direction. When this happens, the robots change the exploring direction by
a clockwise angle of π. The robots then exhibit the same behavior as previously:
they explore the lines of the grid with respect to the new orientation. Note that
this change of direction is initiated by the first robot to join the last line (the
leader) as it is located at a corner. The change of direction is done through
several rules that are presented in Fig. 10, while the sequence of configurations
composing this process are presented in Fig. 11.

Assume initially the robots are all adjacent to a wall (remember that they
are aligned and their colors are respectively F , L and L). Then, we have defined
few rules in order for the robot to reach, after one round, a configuration of
the periodic journey. After that, robots behave exactly as previously explained.
Starting from any other initial configuration, the goal is to move straight toward
a wall. Once the leader robots see the wall, it moves to an unoccupied node and
the reached configuration is exactly the same as the first one of an “up and turn”
sequence. Hence after that, the periodic journeys start. The rules used by the
robots to do this are shown in Fig. 13.

For the grids with 3 lines or 3 columns, a specific rule is needed as any “up
and turn” sequence is considered to be done at a corner. The rule is shown
in Fig. 14 and the sequence of movements when the grid has only 3 lines or 3
columns is shown in Fig. 15 (the specific rule is used in the fifth round of the
sequence).
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X
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L
L

L F
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X

L
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F

L

Fig. 11. Corner turn. After the sequence, the exploration continues as before, but
everything is rotated by a clockwise angle of π.

X L

F

F
X F F

X

L
X X

L

L

F
L

F

L

Fig. 12. First “up and turn” after the corner turn.

L L F L L L L F L L
F

Fig. 13. Rules used by the robots to reach the wall starting
from a configuration where they shape an LLF pattern.

F F
L

Fig. 14. Rules used by
robots to handle grid
with only 3 columns.

Theorem 2. Vone33 solves the perpetual exploration problem with three robots,
having three colors and visibility range one.

Sketch of proof: Using our simulation tool, we were able to prove that our algo-
rithm is correct for any grid n × m, with m,n ∈ {3, 4}. Then, we have shown
that when a group of robots is traveling along a row, adding a column does
not change the relative position of the robots when they reach a wall. Similarly,
adding a row does not change the relative position of the robots when they reach
a corner. The sequence of movement performed in a corner does not depend on
the size of the grid, so that, regardless of the size of the grid, the robots explore
the entire grid in a perpetual manner. 
�

5 Visibility Range Two : Vtwo5
1

We now outline our second algorithm, Algorithm Vtwo51 , which requires five
oblivious robots (i.e., they all have the same fixed color) and visibility range of
2. Again, we encourage the reader to follow the explanation of the algorithm
while looking at the animations available online [17].
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X F F
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X

F F
L
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F L

Fig. 15. Sequence of configurations when the grid has only 3 columns.

R

R R

R R

Fig. 16. Initial relative positions.

The initial relative position of robots in
Vtwo51 is given in Fig. 16. Starting from an ini-
tial configuration, the principles of the algo-
rithm are similar, yet simpler, than for the pre-
vious one. Indeed, the robots remain grouped
together, and they move from left to right,
without making any rotation when reaching
a wall. Every time the group of robots reaches a wall, they perform a turn
sequence to move back to the opposite wall, one row above or below, depending
on the current orientation of the group (see Fig. 19 for a turn one row below).
After moving straight (see Fig. 17) to the opposite wall, everything is mirrored,
so they do the same. They move back an forth until they reach the top wall.
After following the top wall (using a specific periodic sequence of movements,
see Fig. 18), they make a special turn in order to move back and forth in the
other direction.

R

R R

R R

Fig. 17. Move in a straight
line.

R

R R

R R

R

R R

R R

R

R R

R R

Fig. 18. Follow the wall.

The proof of the next theorem is similar to that of Theorem 2.



Optimal Exclusive Perpetual Grid Exploration 109

R

R R

R R

R

R R

R

R

R R

R R

R

R R

R R

R

R

R R

R R

R

R R

R R

Fig. 19. Turn around.
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Fig. 20. Turn at a corner.

Theorem 3. Vtwo51 solves the perpetual exploration problem with five oblivious
robots under visibility range two.

6 Conclusion

We have investigated the perpetual exclusive exploration of a finite grid by a
swarm of myopic luminous synchronous robots that have neither a common
sense of direction nor a common chirality. In these settings, We have proposed
optimal solutions with respect to either the number of robots, the visibility range,
and the number of colors.

In more detail, we have first shown that if robots have only a visibility range
one, then the problem is not solvable with two robots, regardless of the number
of colors. Then, we have proposed Vone33 which uses three robots and three colors.
This algorithm is optimal both in terms of visibility range and number of robots.

Next, under visibility range two, we gave Algorithm Vone51 . This latter
requires five oblivious robots, i.e., five robots that use the minimal number of
color (one). Following the impossibility result of [4], visibility range two is the
smallest range admitting a solution in our settings.

The immediate open questions related to this work are about determining
whether Vone33 is also optimal with respect to the number of colors and whether
Vone51 is optimal with respect to the number of robots. Finally, it would be inter-
esting to extend our study to other topologies such as torus-shaped networks.

References

1. Baldoni, R., Bonnet, F., Milani, A., Raynal, M.: Anonymous graph exploration
without collision by mobile robots. Inf. Process. Lett. 109(2), 98–103 (2008)

2. Blin, L., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Exclusive perpetual ring
exploration without chirality. In: Lynch, N.A., Shvartsman, A.A. (eds.) Distributed
Computing, DISC 2010. LNCS, vol. 6343, pp. 312–327. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15763-9 29

https://doi.org/10.1007/978-3-642-15763-9_29


110 A. Rauch et al.

3. Bonnet, F., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Asynchronous exclusive
perpetual grid exploration without sense of direction. In: Fernàndez Anta, A.,
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Abstract. Providing recommendation to agents (e.g. people or organi-
zations) regarding whom they should collaborate with in order to reach
some objective is a recurring problem in a wide range of domains. It can
be useful for instance in the context of collaborative machine learning,
grouped purchases, and group holidays. This problem has been mod-
eled by hedonic games, but this generic formulation cannot easily be
used to provide efficient algorithmic solutions. In this work, we define a
class of hedonist games that allows us to provide an algorithmic solu-
tion to a wide class of collaboration recommendation problems by means
of a clustering algorithm. We evaluate our algorithm, theoretically and
experimentally, and show that it performs better than other well-known
clustering algorithms in this context.

1 Introduction

In this work, we aim to provide an algorithmic solution for people or organiza-
tions who wish to collaborate towards some task (buying, machine-learning...)
but do not want to cooperate with members whose individual objectives are too
different from their own. This problem can be modeled as a set of rational agents
that may or may not form coalitions depending on the utility they might derive
from such coalitions. More specifically, we consider a model, inspired by prescrip-
tive decision theory [17], in which an agent obtains a utility that is positively
correlated with the size of the group it belongs to (the larger the better), and neg-
atively correlated with his/her distance from the group’s barycenter (the closer
the better). Such a model can capture various practical collaboration problems.
In collaborative machine learning, for instance, learners with similar but differ-
ent tasks may or may not collaborate with each other, depending on the effect
of this collaboration on the efficiency of their learning process. In grouped pur-
chases, potential buyers will search for other people with similar buying habits
to save money by placing grouped orders, but will not benefit if the products
they buy deviate too much from their preferred options. Similarly, when plan-
ing organized vacations, most people want to save money with group rates, but
not at the cost of visiting too many places they are not interested in. We also
consider the case where people want to be in large enough groups but not too
large.
c© Springer Nature Switzerland AG 2021
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An algorithm that solves this problem should provide collaboration recom-
mendations (e.g. with whom each agent should perform a grouped order) that
agents find acceptable and from which they do not deviate. Since, in this con-
text, the relative utility of different options for an agent depends on the choices
of other agents, it is crucial to prevent situations where a few agents reject the
recommendation, as this could lead to a complete collapse of the solution. The
departure of a dissatisfied agent can decrease the group’s value for other agents,
which may in turn leave the group, etc.

In economic terms, this problem can be modeled as a hedonic game [7],
but this formalization tends unfortunately to be too general to allow for effec-
tive algorithmic solutions. Existing algorithms that solve generic hedonic games,
summarized in [4], need to constrain them by requiring the existence of some
kind of equilibrium (Nash equilibrium or a similar definition), which is not guar-
anteed by the generic definition of hedonic games and may not exist in practice.
In our work, we instead consider a more restricted class of games, and we provide
a solution that also works in cases where no kind of equilibrium exists.

Hedonic games designed for specific problems have been proposed in the past,
for example in [15], but the practical problems they consider do not apply to our
context. In particular, these works tend to adopt a formalization that ensures the
existence of some kind of equilibrium, while we want solutions for cases where
no equilibrium exists.

Our insight is that the hedonic games corresponding to our coalition forma-
tion problem can be interpreted as a clustering problem. We want to identify
groups of close and numerous agents, which is essentially a clustering task. How-
ever, commonly used clustering algorithms, while technically applicable, are not
adapted to this particular task. To address this gap, this paper proposes a novel
clustering algorithm, that is specifically designed to address the task we want to
solve.

We begin this paper with a formal definition of the class of hedonic games we
use to model collaboration. We then propose AUCCCR (pronounced “okr”, IPA:

), a clustering algorithm able to provide solutions to the considered problem.
We present a theoretical and experimental evaluation of our algorithm on both
synthetic and real data. From this evaluation, we conclude that our algorithm
respects individual agents interests better than other clustering algorithms.

2 Our Approach

2.1 Problem Statement and Formalization

We consider a set of agents a0, ..., am ∈ A that seek to form groups so that every
agent in a group effectively benefits from belonging to this group. We represent
agents’ preferences using an �-dimensional real vector given by a projector func-
tion, p : A → R�, which allows us to measure the similarity/distance between
agents. In our model, the benefit from being in a group depends on two factors:
the size of the group (the larger the better), and the similarity between an agent
and the (average of) the group (the more similar the better). In practice, the
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chosen projector function is likely to associate each agent a vector of real values
taken from a database. For example (what is used in our experiments) statistics
on review for holiday destinations or annual spending in different types of goods.

More concretely, we define a utility function Up(a, g) that expresses the inter-
est of an agent, a, in a group, g, using a projector, p, as the product of two factors:
(i) the value of the group (function v), which grows with the group’s size; and (ii)
a decreasing function (n(...)) of the distance between an agent and the group’s
barycenter (as measured by a distance function d(...)). This is formally captured
by the following formula:

Up(a, g) : A × P(A) → R+ = n
(
d
(
p(a), baryp(g)

)) × v(#g) (1)

Where P(A) is the power set of A, #g is the size of group g, baryp(g) is
the barycenter of group g with projector p, and the functions d, v, and n are
defined as follows: d(x, y) : Rl × Rl → R is the distance between x and y; v(n) :
N → [1,+∞[ is the value of a group of size n (increasing, v(1) = 1); and
n(d) : R+ → [0, 1] is the normalizer for an agent at distance d from its group’s
barycenter (decreasing, n(0) = 1). In the following we will also use g(a) to denote
the group of agent a. These definitions associate a utility value of 1 with an agent
that remains alone (since the interest of joining a group with a barycenter at
distance 0 and consisting of 1 element (itself) is n(0) × v(1) = 1 × 1).

Given A, p(), d(), n() and v(), the group formation problem we seek to
solve consists in finding a partition of A (i.e. set of groups), that maximizes the
sum of every agent’s utility, while minimizing (or even eliminating) the benefit
individual agents could gain by either changing group or remaining alone (to
ensure the solution’s stability). Table 1 summarizes these notations and defines
the variables and parameters appearing in Algorithm 1.

2.2 Algorithm

The algorithm we propose (Algorithm 1) uses a greedy clustering procedure sim-
ilar to k-means [11] at its core (lines 13–17), but extends it with additional search
heuristics that take into account the specificity of the group formation problem
(Sect. 2.1). We use a k-means++ initialization [3] to bootstrap the algorithm
(lines 2–7), in which each group is initialized with one single random agent,
whose probability of being chosen increases with its distance from already ini-
tialized groups (line 5).

Once initialized, the process uses two nested loops: an inner loop (lines 12–
18) that optimizes group sizes, but keeps their barycenters fixed, and an outer
loop (lines 9–21) that updates barycenters (line 19) whenever group sizes have
stabilized. This is in contrast to k-means which only uses one optimization loop,
and is due to the fact that we need to take group sizes into account.

At each iteration of the inner loop, agents compute their utility for each
group (taking into account their potential move) and choose their best option
assuming other agents do not move (line 16). An agent may choose to be on
its own (represented by a choice of ⊥ for its group). Since groups are initially
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Table 1. Symbols used in algorithm

Ident Description

�a, b� The range of integers from a to b (inclusive)

#A Size of set A

d.invertkv() Key-value inverted version of dictionary d

rand(A) Random (uniform) element of A

rand(A, d) Random element of A with distribution d

d(x, y) Distance between x and y

bary(g) Barycenter of group g

p(a) Projector function

A Set of agents

k Number of clusters

dmin2 k-means++ distribution

grp Groups

ngrp New groups (in building)

size Groups’ sizes

nsize New groups’ sizes (in building)

bgrp Estimated best groups for each agent (inner loop)

val Affectation’s value (sum of utilities)

nval New affectation’s (just built) value (sum of utilities)

empty, the first iteration of the inner loop differs slightly from the following ones:
in particular, we artificially force the variable storing the size of each group to
#A, the total number of agents (line 11). This makes all groups look equal in
terms of size during this first iteration, and agents initially migrate to the group
with the closest barycenter (line 16), irrespective of this group’s actual size. Only
in subsequent iterations of the inner loop are the group sizes of iteration i used in
iteration i + 1 (using the variables nsize and size, which are updated at lines 13
and 17). This dual-loop architecture is necessary because the size of the group
influences the utility of agents, unlike in k-means.

The outer loop (lines 9–21) updates the variable ngrp at line 19 with the new
groups returned by the inner loop. This causes the next inner-loop iteration to
use the new barycenters when computing group assignments on line 16. Note
that this algorithmic structure causes barycenters to remain fixed throughout
each iteration of the inner loop.

The termination conditions of the inner and outer loops (lines 18 and 21)
determine when the algorithm stops and come in two variants (shown in red and
blue in the pseudo-code). Conditions in ♣red♣ belong to the base variant, in
which the loop termination conditions are based on the absence of changes in
groups (or more precisely in the size of groups at line 18 for the inner loop, and
in the composition of these groups at line 21 for the outer loop). This variant
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Algorithm 1: Clustering algorithm
1 function cluster(A, p, k) is
2 ra ← rand(A); ngrp[0] ← {ra}; // k-means++ init

3 foreach a ∈ A do dmin2 [a] ← d(p(a), p(ra))2 ;
4 for 1 � i < k do
5 na ← rand(A, dmin2 ); ngrp[i] ← {na};
6 foreach a ∈ A do
7 dmin2 [a] ← min(d(p(a), p(na))2, dmin2 [a]);

8 ♠nval ← #A♠;
9 repeat // main loop

10 ♠val ← nval♠;
11 grp ← ngrp; ngrp.clear(); nsize ← [#A...#A];
12 repeat
13 size ← nsize; nsize ← [0...0];
14 foreach a ∈ A do

15 bgrp[a] ← argmaxi∈⊥∪�0,k−1�

[
n
(
d
(
p(a), bary(

16 grp[i] ∪ a)
)) × v(size[i] + 1a/∈grp[i])

]
;

17 nsize[bgrp[a]] + +;

18 until ♣nsize = size♣ ♠ ∑
nsize �

∑
size♠;

19 ngrp ← bgrp.invertkv();

20 ♠nval ← ∑
a∈A n

(
d
(
p(a), bary(ngrp.group(a))

)) × v(#ngrp.group(a))♠;

21 until ♣ngrp = grp♣ ♠nval � val♠;
22 return grp;

ensures that a converged state is a Nash equilibrium, but does not guarantee
that the algorithm does converge (notably in the obvious case where there is no
such equilibrium). By contrast, lines and conditions in ♠blue♠ belong to the
variant that guarantees convergence, by using termination conditions that are
based on the variation of numeric values: at line 18, when the number of nodes
in non-singleton group stops decreasing, and at line 21, when the overall utility
(sum of agents utilities) of the solution (measured by nval) stops improving.

Like k-means, Algorithm 1 requires a hyper-parameter k, the number of
groups, to operate. To determine k, we use a greedy control loop (not shown)
which increases k until no significant gain in terms of global utility (the sum of
every agent’s utility) is achieved. To reduce the randomness of this process (since
our clustering algorithm is randomized), each k value is further tried prc times,
and the control loop only terminates once no gain in utility has been achieved
over a pre-configured number mmt of iterations (a momentum mechanism).

3 Theoretical Analysis

Here we prove the essential property of the clustering algorithm presented in
Algorithm 1 in its base variant.
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Proposition 1 (Nash equilibrium). Let us consider a game where each
agent’s (player’s) possible choices consist in choosing any of k different groups,
or choosing to remain alone (choosing ⊥). In particular, let Up(a, g) represent
the payoff of each agent, a, for choosing group g, and 1 represent the payoff for
not choosing any group. Algorithm 1 (base) outputs, if it exists, a (weak) Nash
equilibrium for this game.

Proof (Nash equilibrium). Let us assume that the algorithm terminates: we want
to prove that it returns a Nash equilibrium.

To this end, we consider the last iteration of the outer loop guarded by
ngrp = grp (lines 9–21) and, in this iteration, the last iteration of the inner
loop guarded by nsize = size (lines 12–18). During this last inner loop iteration,
variable grp is identical to the output of the algorithm, as the last update of
grp is before the inner loop on line 11. Moreover, at the end of each iteration
of the inner loop, nsize contains the sizes of the groups in ngrp. As a result, at
the end of the last iteration of the two loops, variable size corresponds to the
sizes of the groups in grp since ngrp = grp and nsize = size. This is also true
each time line 16 is executed during the last iteration of the inner loop as size is
only updated at line 13. This means that at line 16, each agent selects its best
group based on the current group assignment (grp) and on the current group
sizes (size) by maximizing the utility we defined in Eq. 1. Moreover, this does
not change the current group assignments since grp = ngrp, meaning that the
assignment in grp indeed constitutes a Nash equilibrium. �	

Since the existence of a Nash equilibrium for this game is not guaranteed, it
is possible that Algorithm 1’s base variant does not terminate. Now, we prove
that Algorithm 1’s guaranteed convergence variant, for which we do not have an
equilibrium proof, will always terminate.

Proposition 2 (Convergence). Algorithm 1 (guaranteed convergence) always
terminates.

Proof (Convergence). Among the control structures used in Algorithm 1’s guar-
anteed convergence variant, the two repeat...until loops are the only ones that
do not trivially terminate (for loops terminate trivially). For the inner loop,
we replaced nsize = size by nsize.sum() � size.sum() as termination condition.
This implies that, during the loop, size.sum()’s values are a strictly decreasing
natural (N) sequence. Such a sequence cannot be infinite, thus, the inner loop
terminates. For the outer loop, we replaced ngrp = grp by nval � val as termi-
nation condition. This implies that, during the loop, val ’s values are a strictly
increasing real sequence. Moreover, those values are given by a formula taking
as parameter an affectation of a finite number of agents in a finite number of
groups. The possible inputs for this formula for a given execution of the algo-
rithm (fixed parameters) are a finite set. This implies that the possible values for
val (output of this formula) are also a finite set (for a given execution of the algo-
rithm). Thus, val ’s values are a strictly increasing sequence of elements of a finite
set (the order is given by the classical order for real number). Such a sequence
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cannot be infinite, thus, the outer loop terminates. We can now conclude that
our algorithm will always terminate. �	

We note that Algorithm 1’s guaranteed convergence variant is not guaranteed
to produce a Nash equilibrium. Such an equilibrium may simply not exist, but
even if it exists, the algorithm is not guaranteed to find it. Due to the end condi-
tion of its outer loop, Algorithm 1’s guaranteed convergence variant, while still
based on agents’ self-interest, is more centered on attaining general optimality
(maximizing the sum of all agents utilities) than Algorithm 1’s base variant.

An important difference between our algorithm and generic approaches to
solve hedonic games presented in [4] lies in the inner loop of our algorithm, which
allows groups to grow to a point that is better for every agent even in situations
where individual rational decisions could not. Let us consider four agents, A, B,
C and D. n(x) = 1

1+x , v(x) = x, p’s values in R2, p(A) = [0, 0], p(B) = [0, 2.5],
p(C) = [2.5, 0] and p(D) = [2.5, 2.5] (a square). In this example, having all agents
in a single group, G, is the best solution. ∀a∈{A,B,C,D}Up(a,G) = 4

1+2.5
√

2/2 > 1.
But this situation could not be reached from groups consisting of a single agent
by individual rational decisions, since the best interest one single agent could
get from grouping with another agent would be 2

2.25 < 1, so no agent would
want to group with any other. With our algorithm, if we start with a group
G = {A}, due to making computations based on the potential maximum size of
a group rather than its actual size, the individual interest of B and C for joining
this group would be estimated at 4

2.25 > 1 and the group G will be updated to
G = {A,B,C}. On the second run of the inner loop, with the barycenter of G
being at [2.5/3, 2.5/3], the estimated interest for D to join G would be 4

1+2.5
√

2/2 > 1.
We end up with G = {A,B,C,D}.

4 Experimentation

In this section, we evaluate Algorithm 1, in its guaranteed convergence variant
(noted AUCCCR) and see how much, in practice, it deviates from the Nash
equilibrium property of the base variant.1

4.1 Experimental Set-Up

Competitors. We compare our algorithm with two reference clustering algo-
rithms: OPTICS [2] and k-means [11] (with a k-means++ [3] initialization). All
three algorithms are guaranteed to terminate.

Hyperparameters and Loss Functions. For all algorithms, we use the usual
Euclidean distance for d in Rk. For AUCCCR, we use n(x) = 1

1+x as the normal-
ization function, and v(x) =

√
x as the group value function (see Sect. 2.1). We

1 Our code is available at https://gitlab.inria.fr/abouchra/distributed neural netw
orks.

https://gitlab.inria.fr/abouchra/distributed_neural_networks
https://gitlab.inria.fr/abouchra/distributed_neural_networks
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Fig. 1. Clusters found in various synthetic cases

further set the number of trials to prc = 20, and the momentum to mmt = 5. k-
means’ parameter k is searched for the same way as for AUCCCR. For OPTICS,
which is not randomized and, as such, does not suffer from the same instabil-
ity in its output, the procedure used to select the proper minimum reachability
distance is equivalent but with prc = mmt = 1.

Datasets. We perform this evaluation on two kinds of datasets: synthetic
datasets generated using three different mixtures of Gaussian distributions (a
bi-Gaussian, a 3-Gaussian, and a Gaussian Star), and two real datasets related
to leisure travel, and group buying (BuddyMove [14], and Wholesale [9]). We
describe each dataset in more detail in the relevant subsections below.

Metrics. We use the following three metrics to measure the performance of
each algorithm:

– The losses of agents (summed among all agents).
– The share of agents having losses.
– The global utility of agents (sum of all utilities).

A good group formation algorithm (according to our definition of this problem)
should deliver a close-to-maximum global utility, along with a low sum of agents’
losses, and a low rate of losing agents (in the ideal case these last two metrics
should have value 0).
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In addition to the above metrics, we also display the results of example runs
(in the case of random synthetic data, using the same data for all algorithms). In
these, a color identifies a cluster, gray points represent isolated agents (or agents
in a cluster of size 1). Results are averaged over 10 runs; error bars indicate the
standard deviation.

4.2 Synthetic Data

We first evaluate our algorithm on R2 data generated using a combination of
Gaussian distributions (Gaussian mixtures). We choose Gaussians because those
distributions are usually considered good models of characteristic distributions
in real populations. We generate a fixed number of points, using a mixture of
Gaussian distributions that are combined according to some predetermined ratio
(probability for points to be generated according to each distribution).

Gaussian Mixtures. We use three different Gaussian-mixtures generators:

– Bi-Gaussian: two (0, 0)-centered Gaussian distributions with 1 and 8 as
standard deviations and a 0.5–0.5 ratio (same probability for each distribu-
tion), 100 points.

– 3 Gaussians: three Gaussian distributions, (−6, 0), (0, 0) and (0, 6)-centered
with 1.5 as standard deviations and a 0.33–0.33–0.33 ratio (same probability
for each distribution) 200 points.

– Gaussian Star: five Gaussian distributions, (0, 0), (−10,−10), (−10, 10),
(10,−10) and (10, 10)-centered with 5 for the (0, 0) and 2 for others as stan-
dard deviations and a 0.5–0.125–0.125–0.125–0.125 ratio, 300 points.

Additionally, we use a single Gaussian with 2 as standard deviation for the
size constraint test.

Results. Example runs for the three distributions are shown in Fig. 1. The
performance of each algorithm in terms of global utility, sum of agents’ losses,
and rate of losing agents is shown in Figs. 2, 3 and 4.

In more detail, looking at the Bi-Gaussian mixture (Fig. 2), we see that AUC-
CCR yields a lower global utility, but also that its output is very close to a Nash
equilibrium (close to 0 losses), while k-means and OPTICS have more than 25%
of agents experiencing losses. Looking at example runs (Fig. 1, first line), we
observe that k-means and OPTICS tend to produce a single global cluster, max-
imizing its overall utility but causing losses for individual agents that lie far away
from the barycenter. By contrast, our algorithm is able to take better care of
individual interests, because it allows agents to stay on their own (by choosing
⊥ as their group in the algorithm).

Turning to the 3-Gaussian mixture (Fig. 3), we note that AUCCCR and k-
means both perform well in terms of global utility, better than OPTICS, likely
due to OPTICS’ density-centered design being ineffective for this kind of distri-
bution. In particular, OPTICS experiences difficulties distinguishing close but
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Fig. 2. Metrics in Bi-Gaussian for all algorithms

Fig. 3. Metrics in 3 Gaussians for all algorithms

clearly distinct distributions. Losses are overall limited, but AUCCCR clearly
outperforms k-means and, even more markedly, OPTICS.

Finally, for the Gaussians Star (Fig. 4), all algorithms deliver similar results
in terms of global utility (albeit slightly lower ones for AUCCCR on average).
The gap is much larger on losses, with AUCCCR clearly leading. Looking at
sample runs, AUCCCR seems to be able to identify relatively precisely the five
Gaussians mixed in the input data, in contrast to k-means and OPTICS.

From these metrics we can conclude that AUCCCR causes very low individual
losses for agents compared to both, k-means and OPTICS (the tendency is less
marked in 3 Gaussians). We also see that the global utility achieved by AUCCCR
is very close to what is obtained with k-means and OPTICS (slightly lower in
Bi-Gaussian).

Size Constraint. To evaluate the ability of our algorithm to manage cases
where very large clusters are not desirable (agents want to be in a sufficiently
large group but not too large) we take a simple case, with a single Gaussian, in
which our usual v(x) =

√
x function would make a single cluster (with all agents

in it) optimal. We then change v(x) so that too large clusters are not optimal.
We test two different functions, both equal to

√
x for x � 20, but for x > 20

the first function is constant
√

20 while the second is decreasing
√

20

1+
|20−x|

20

(both functions are continuous). The number 20 is an arbitrary choice and can
be considered as a target size for clusters.

Results are shown in Fig. 5. We can see that, with the proper v(x) function,
AUCCCR can integrate size constraints.
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Fig. 4. Metrics in Gaussians Star for all algorithms

Fig. 5. Clusters with AUCCCR and different v(x)

4.3 Real Data

We now apply our algorithm and its two competitors on two real datasets: Bud-
dyMove and Wholesale.

Datasets. The BuddyMove [14] dataset consists of statistics from users of a
travel review website. For each user, the dataset provides the number of reviews
written for each of 6 classes of destination (e.g. religious sites, parks, etc.). From
these data, we derive for each user the share of reviews written for each destina-
tion class. This can be interpreted as the relative interest of a user for each kind
of destination. This could help provide for instance recommendations to users
on whom they should go with for group travels, based on the similarity of their
preferences.

The Wholesale [9] dataset consists of statistics from customers of a wholesale
vendor. For each customer, the dataset indicates the annual spending for each
of 6 classes of products (e.g. fresh, frozen, etc.). From these data, we derive for
each customer the share of reviews written for each product class. This result
could for instance be used to provide recommendations to customers on whom
they should collaborate with to make grouped orders more directly, removing
the wholesale distributor from the circuit (short circuit distribution), based on
which kinds of product they usually order.
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Fig. 6. Clusters found in real-world datasets

Scale. We introduce an additional hyperparameter when working with real
datasets: scale. The scale describes how “far” a given distance is considered
by the algorithm and can be seen as parameter of the projector function p we
presented earlier. The distances naturally present in the dataset must be given
an absolute cardinal signification for the algorithm, the right choice is up to the
user, we variate it to see how this choice affects the results. For example, if the
scale is 10, a distance of 1 will be computed as 10 for computation. As the scale
grows, the distance between points will be considered longer by the algorithm.

Results. Sample runs for BuddyMove and Wholesale are presented in Fig. 6.
Both datasets include 6 features, the views we provide are reduced to two dimen-
sions. For this, we use the scikit-learn [13] Python library, which implements var-
ious algorithms that can perform non-linear dimension reduction. The specific
algorithm we use is MDS (Multi-Dimensional Scaling) [5].

On BuddyMove, with AUCCCR, we obtain three clusters containing about
30 agents each, with 150 agents remaining alone. k-means and OPTICS put all
agents in a single large cluster.

On Wholesale, with AUCCCR, we got one cluster of 100, one of 200 and
100 agents remaining alone. k-means gave two clusters of 200, OPTICS put
everyone in a 400 cluster.

Metrics for the two dataset are presented in Figs. 7 (BuddyMove) and 8
(Wholesale). Note that in Fig. 7 the lines for k-means and OPTICS are super-
posed.

In these graphs, we see that AUCCCR maintains very low losses for the whole
scale range while k-means and OPTICS both have higher losses that quickly
increase as scale increases. In terms of global utility, AUCCCR is comparable
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Fig. 7. Metrics in Buddymove for different scales by different algorithms

Fig. 8. Metrics in Wholesale for different scales by different algorithms

to k-means and OPTICS for Wholesale and for low scale values on BuddyMove,
but it achieves lower global utility for high scale values in this latter dataset.

In the details, for BuddyMove, k-means and OPTICS behave identically.
For a low scale, users are considered close and all algorithms will detect a single
cluster but, as the scale increases, the results start diverging. AUCCCR, contrary
to its competitor, seeks to avoid individual losses; as we can see, losses are very
low for AUCCCR, especially at large scales, while, for other algorithms, losses
increase dramatically. For a scale of 130, AUCCCR has nearly 0 agents losses
while k-means and OPTICS have 30%. This comes at the cost of a reduced
global utility, which slowly drops until it nearly hits 1 (equivalent to everyone
alone) at 130. For midrange values, we see that AUCCCR has nearly no losses
with a still high average global utility (1.5 for AUCCCR, compared to 1.7 for
its competitors; this lower value being due to the small size of clusters possible
with minimal individual losses) while k-means and OPTICS cause between 15%
to 20% of agents to experience losses.

For Wholesale, at low scale, users are considered close and all algorithms
will detect a single cluster but, as the scale increases, the results become very
different. AUCCCR, contrary to the reference algorithms, will prevent individual
losses; as we can see, losses are close to 0 for AUCCCR, especially for large
scales, while, for other algorithms, losses increase dramatically. For a scale of 60,
AUCCCR has nearly 0 agents losses while k-means has >30% and OPTICS has
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>40%. The global utility remains similar to that of k-means and greater than for
OPTICS for the lower half of scale values, only higher values have a utility lower
than that of OPTICS but still very close to both, OPTICS and k-means. For
midrange values, we see that AUCCCR has nearly no losses with a global utility
close to that of k-means and higher than OPTICS, while reference algorithms
have around 10% of losses.

4.4 General Analysis of Results

On our synthetic data tests, we showed that our algorithm is more efficient for
cluster identification than classical clustering algorithms. It also appeared that,
as intended, our algorithm causes much lower individual losses to agent than
other algorithms. While it is not possible to completely remove losses in the
absence of a Nash (or similar) equilibrium for mathematical reasons, our algo-
rithm manages to keep such losses low, reducing the risk of agent unsatisfaction
and collapse. Our algorithm also exhibits good performance on the two real
datasets, Buddymove and Wholesale, proving its applicability to real use cases.

5 Related Work

Hedonic games as a theoretical model were originally proposed in the economic
community by [7]. More recently, this field has been studied by the algorithmic
community. The authors of [4] summarize algorithmic studies of these games.
Existing algorithmic solutions all rely on some kind of equilibrium (similar to
Nash equilibrium) which may not exist in real applications.

In addition to those general researches on hedonic games, some researchers
have considered using hedonic games to solve practical problems. For example,
[15] worked on collaboration between roadside units in Intelligent Transporta-
tion Systems. [1] considered hedonic games in the context of Fog Computing.
Application of these games to edge computing is also proposed in [18]. These
games can also be applied to energy networks, as suggested by [12]. Each of these
articles presents its own model and algorithm, to solve the specific problem they
are considering.

The most well-known clustering algorithm is k-means [11]. A lot of variants
have been proposed, notably k-means++ [3], which improves its initialization.
There are also variants of k-means with size constraints [10,16] or density [6] but
such variants can only find clusters with similar characteristics (size/density)
leading to results unwanted for our application (the graphs in [10] show this
clearly). Another well-known clustering algorithm is OPTICS [2], which can be
seen as an improved DBSCAN [8]; both OPTICS and DBSCAN are density-
based (k-means is distance-based).

6 Conclusion

In this work, we defined a new class of hedonic games for providing cooperation
recommendation, and proposed an algorithm to solve such games. We experi-
mentally compared our algorithm to classical clustering algorithms that could
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also have been used for the same recommendation problem, and showed that our
algorithm yields results that exhibit close to no losses and are thus similar to
a Nash equilibrium (which does not necessarily exist in the general case) than
other algorithms.
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Abstract. Proof-of-Work is originally a client-side puzzle proposed to
prevent spam or denial of service attacks. In 2008, Satoshi Nakamoto used
it as an election mechanism (or equivalently, to replace a centralized time
server) in the first Blockchain: Bitcoin. In the same year, another spam
prevention algorithm was proposed, based on a guided-tour puzzle, but
received only little attention.

The main motivation of our work is to see if a Blockchain protocol
can use the guided-tour puzzle like Bitcoin uses Proof-of-work.

In this paper we extend the guided tour puzzle to a new Puzzle called
Proof-of-Interaction and we show how it can replace, in the Bitcoin pro-
tocol, the Proof-of-Work algorithm. We show that it uses a negligible
amount of computational power compared to Bitcoin, and scales very
well in term of number of messages. We analyze the security of our pro-
tocol and show that it is not subject to selfish mining. However, our
protocol currently works only when the nodes in the network are known,
but we discuss how this assumption could be weakened in future work.

Keywords: Blockchain · Proof of interaction · Distributed systems ·
Consensus algorithm

1 Introduction

A Blockchain is a Distributed Ledger Technology (DLT) i.e., a protocol executed
by a set of nodes to maintain a data-structure where data can only be appended
in blocks. It is maintained in a distributed manner by many participants, who
may not trust each-other, and some of which can be faulty or malicious. In order
for this data-structure to be consistent among the participants, a protocol is
used to ensure that every one agrees on the next block that is appended into the
Blockchain.

The most famous example of such protocol, Bitcoin [18], uses the Proof-
of-Work to elect a single participant that is responsible for appending the next
block. In more details, Proof-of-work is a client-puzzle that is executed by all the
nodes in the network. Finding a solution of the puzzle requires a large amount of
computational power but is easily verifiable. The first node that finds a solution
is the one that is allowed to append a block to the chain of block. The difficulty of
the puzzle increases with the total computational power of the network in order
c© Springer Nature Switzerland AG 2021
K. Echihabi and R. Meyer (Eds.): NETYS 2021, LNCS 12754, pp. 129–143, 2021.
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to limit the chance of having multiple concurrent elected nodes. This implies
that the total power consumption increases linearly with the total computational
power of the participants. According to the latest estimates, the Bitcoin network
consumes more than the Czech Republic [7,11] (and just account for less than
70% of all the Proof-of-work based Blockchains).

There have been many attempts to avoid using Proof-of-work based agree-
ment, but usually adding other constraints [22] (eg., small number of nodes,
hardware prerequisite, new security threats).

In this paper, we propose to use a new client-puzzle called Proof-of-
Interaction to define a new energy-efficient Blockchain protocol.

Related Work. Proof-of-work [4] (PoW) is a method initially intended for pre-
venting spamming attacks. It was then used in the Bitcoin protocol [18] as a
way to prove that a certain amount of time has passed between two consecutive
blocks. Another way to see the aim of the Proof-of-work in the Bitcoin protocol is
as a leader election mechanism, to select who is responsible for writing the next
block in the blockchain. This leader election has several important properties,
including protection against Sybil attacks [9] and against denial-of-service [16].
Also, it has a small communication complexity. However, the computational
race consumes a lot of energy. The majority of current Blockchain protocols uses
Proof-of-Work, with different hashing functions [17].

In 2012, S. King and S. Nadal [14] proposed the Proof-of-Stake (PoS), an
alternative for PoW. This leader election mechanism requires less computational
power but has security issues [5,12] (eg., Long range attack and DoS). Intel pro-
posed another alternative to PoW, the Proof-of-Elapsed-Time (PoET) [1]. This
solution requires Intel SGX as a trusted execution environment. Thus, Intel
becomes a required trusted party to make the consensus work, which might
imply security concerns [8] and is against blockchain idea to remove third par-
ties. Other mechanisms where proposed such as Proof-of-Activity and Proof-of-
Importance [3], which are hybrid protocols or protocols using properties from
the network itself.

Vote-based protocols refer to the family of Byzantine Agreement protocols,
such as PBFT [6]. Such protocols do not use client-puzzle, hence are energy-
efficient. They can handle a large amount of transactions but must be executed
in a known network, and do not scale well with the number of nodes due to their
communication complexity.

The previous paper most related to our work was presented just prior the
publication of Bitcoin in 2008, by M. Abliz and T. Znati [2]. They proposed
A Guided Tour Puzzle for Denial of Service Prevention, which is another spam
protection algorithm. This mechanism has not yet been used in the Blockchain
context, and is at the core of our new Proof-of-Interaction. The idea was that,
when a user wants to access a resource in a server that is heavily requested, the
server can ask the user to perform a tour of a given length in the network. This
tour consists of accessing randomly a list of nodes, own by the same provider as
the server. After the tour, a user can prove to the server that it has completed
the task and can then retrieve the resource. The way we generate our tour in
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our Proof-of-Interaction is based on the same idea. We generalized the approach
of M. Abliz and T. Znati to work with multiple participants, and we made the
tour length variable.

Contributions. The contribution of this paper is twofold. First, we propose a
better alternative to Proof-of-Work, called Proof-of-Interaction, which requires
negligible computational power. Second, we show how it can be used to create an
efficient Blockchain protocol that is resilient against selfish mining, but assumes
for now that the network is known.

Paper Structure. Section 2 presents the model and illustrates the problem with
naive approaches. This also helps to understand how our protocol is built. Then
we present the Proof-of-Interaction protocol, that could be used outside of the
Blockchain context. Then, in Sect. 4 we explain how we use this proof mechanism
to create a Blockchain protocol. In Sect. 5, we analyze the security properties of
our protocol. Finally, we conclude and discuss possible extensions in Sect. 6.

2 Preliminaries

2.1 Model

The network, is a set N of n nodes that are completely connected. Each node has
a pair of private and public cryptographic keys. Nodes are uniquely identified by
their public keys (i.e., the association between the public keys and the nodes is
common knowledge). Each message is signed by its sender, and a node cannot
fake a message signed by another (non-faulty) node.

We denote by signu(m) the signature by node u of the message m, and
verifu(s,m) the predicate that is true if and only if s = signu(m). For now, we
assume the signature algorithm is a deterministic one-way function that depends
only on the message m and on the private key of u. This assumption might be
very strong as, with common signature schemes, different signature could be
generated for the same message, but there are ways to remove this assumption
by using complex secret generation and disclosure schemes, not discussed in this
paper, so that each signature is in fact a deterministic one-way function. The
function H is a cryptographic, one-way and collision resistant, hash function [19].

As for the Bitcoin protocol, we assume the communication is partially syn-
chronous i.e., there is a fixed, but unknown, upper bound Δ on the time for
messages to be delivered.

The size of a set S is denoted with |S|.

2.2 Guided Tour

The guided tour defined by M. Abliz and T. Znati [2] can be summarized as
follow. When a resource server is under DOS attack, it responds to a given
request by a random seed hash h0, a set S of n servers and a length L. The
client has to solve a puzzle in order to complete its request to the resource
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server. To solve the puzzle, the client makes L requests to the servers in S in
a specific order. The index, in S, of the first server to request is deduced from
h0. Let i0 ∈ [0, n − 1] such that i0 ≡ h0 mod n. Then, the client sends message
h0 to the i0-th server in S. The server responds with hash h1. Then then client
computes i1 ∈ [0, n − 1] such that i1 ≡ h1 mod n, and sends message h1 to
the i1-th server in S, and so on. This continues until hash hL is obtained. hL is
a proof that the tour as been completed, and is sent to the resource server to
obtain the requested resource. Thanks to a secret shared among all the servers,
the resource server is able to check that hash hL is indeed the expected proof
for the initial seed h0. This idea is interesting because the whole tour depends
only on the initial value, and cannot be performed in parallel because each hash
hi cannot be found until hi−1 is known. We then present a naive approach on
how it can be used as a distributed client-puzzle.

2.3 Naive Approach

We give here a naive approach on how asking participants to perform a tour
in the network can be used as a leader election mechanism to elect the node
responsible for appending the next block in a Blockchain.

When a node u0 wants to append a block to the blockchain, it performs
a random tour of length L in the network retrieving signatures of each par-
ticipants it visits. The first node u1 to visit is the hash of the last block
h0 = last block hash of the blockchain modulo n (if we order nodes by their
public keys, the node to visit is the i-th with i = h0 mod n). u1 responds with
the signature s1 = signu1

(h0). The hash h1 = H(s1), modulo n, gives the second
node u2 to visit, and so on. This idea is similar to the guided tour of M. Abliz
and T. Znati [2], and here the whole tour depends only the hash of the last block.
Given h0, anyone can verify that the sequence of signatures (s1, s2, . . . , sL) is a
proof that the tour has been properly performed. If each node in the network
performs a tour, the first node to complete its tour is elected broadcast its block,
containing the proof, to the other nodes to announce it.

However, here, each node has to perform the same tour, which could be
problematic. An easy fix is to select the first node to visit, not directly using
the hash of the last block, but also based on the signature of the node initiating
the tour, h0 = H(signu0

(last block hash)). Now, given h0, the sequence of
signatures (signu0

(h0), s1, s2, . . . , sL) proves that the tour has been properly
performed by node u0. Each tour, performed by a given node, is unique, and a
node cannot compute the sequence of signature other than by actually asking
each node in the tour to sign a message. Indeed, the next hop of the tour depends
on the current one.

Here, one can see that it could be a good idea to also make the tour dependent
on the content of the block node u0 is trying to append. Indeed, using only the
last block to generate a new proof does not protect the content of the current
block, i.e., the same proof can be used to create two different blocks. To prevent
this behavior, we can assume that h0 = H(signu0

(last block hash) ·M) (· being
the concatenation operator) where M is a hash of the content of the block node
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u0 is trying to append. In practice, it is the root of the Merkel tree containing
all the transactions of the block. Here, the proof is dependent on the content of
the block, which means that if the content of the block changes the whole proof
needs to be computed again.

From there, we face another issue. Each node performs a tour of length L, so
each participant will be elected roughly at the same time, creating a lots of forks.
To avoid this, we can make the tour length variable. We found two ways to do so.
The first one is not to decide on a length in advance, and perform the tour until
the hash of k-th signature is smaller than a given target value, representing the
difficulty of the proof. In this way, every interaction with another node during a
tour can be seen as a tentative to find a good hash (like hashing a block with a
given nonce in the PoW protocol). The target value can be selected so that the
average length of the tour is predetermined. However doing so, since the proof
does depend on the content of the block, u0 can change the content of the block,
by adding dummy transactions for instance, so that the tour stops after one
hop1. The other way to make the tour length variable is to use a cryptographic
random number generator, seeded with signu0

(last block hash), to generate the
length L. Doing so, the length depends only on u0 and on the previous block.
Then a tour of length L is performed as usual.

To complete the scheme, we add other information to the message sent to
the visited node so that they can detect if we try to prove different blocks in
parallel. We also make u0 sign each response before computing the next hop, so
that the tour must pass through u0 after each visit. Finally, we will see why it is
important to perform the tour, not using the entire network, but only a subset
of it.

3 The Proof-of-Interaction

In this section we define the most important piece of our protocol, which is, how
a given node of the network generates a proof of interaction. Then, we will see
in the next section how this proof can be used as an election mechanism in our
Blockchain protocol.

3.1 Algorithm Overview

We present here two important algorithms. One that generates a Proof-of-
Interaction (PoI), and one that checks the validity of a given PoI.

Generating a Proof-of-Interaction. Consider we are a node u0 ∈ N that
wants to generate a PoI. Given a fixed dependency value denoted d, the user u0

wants to prove a message denoted m. The user has no control over d but can
chose any message to prove.

1 There are some ways to limit this attack, but we believe it will remain an important
attack vector.
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Fig. 1. u0 interacts randomly with a sub-
set S of the nodes

Fig. 2. u0 interacts with a sequence of
nodes to construct a PoI. In this exam-
ple, the dependency is the hash of the
previous block.

The signature by u0 of the dependency d, denoted s0 = signu0
(d), is used

to generate the subset S of nS = min(20, n/2) nodes to interact with

S = {S0, S2, . . . , SnS−1} = createServices (N , s0) .

S is generated using the pseudo-random Algorithm createServices, and
depends only on d and on u0. From s0, we also derive the length of the tour
L = tourLength(D, s0), where D is a probabilistic distribution that corresponds
to the difficulty parameter. tourLength is a random number generator, seeded
with s0 that generates a number according to D. Using D one can easily change
the average length of the tour for instance.

Now u0 has to visit randomly L nodes in S to complete the proof, as illus-
trated in Fig. 1. To know what is the first node u1 we have to visit, we first hash
the concatenation of s0 with m to obtain h0 = H(s0 · m). This hash (modulo
|S|) gives the index i in S of the node we have to visit, i ≡ h0 mod |S|. So
we send the tuple (h0, d,m) to node u1 = Si, which responds by signing the
concatenation, s1 = signu1

(h0 · d · m).
To know what is the second node u2 we have to visit, we sign and hash the

response from u1 to obtain h1 = H(signu0
(s1)), so that u2 = Sj ∈ S with

j = h1 mod |S|. Again, we send the tuple (h1, d,m) to u2, which responds by
signing the concatenation, s2 = signu2

(h1 ·d ·m). We sign and hash the response
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from u1 to obtain h2 = H(signu0
(s2)) and find the next node we have to visit,

and so on (see Fig. 2). This continues until we compute signu0
(sL), after the

response of the L-th visited node.
The Proof of Interaction (PoI) with dependency d of message m by node u0

and difficulty D is the sequence

(s0, s1, signu0
(s1), s2, signu0

(s2), . . . , sL, signu0
(sL)).

Checking a Proof-of-Interaction. To check if a PoI (s0, s1, s′
1 . . . , sk, s

′
k) from

user u, is valid for message m, dependency d and difficulty D, one can first
check if s0 is a valid signature of d by u0. If so, we can obtain the set S =
createServices(N , s0) of interacting nodes, the length L = tourLength(D, s0),
and the hash h0 = H(s0 · m). From h0 and S, we can compute what is the first
node u1 and check if s1 is a valid signature from u1 of (h0 · d · m), and if s′

1 is
a valid signature of s1 from u0. Similarly, one can check all the signatures until
s′
k. Finally, if all signatures are valid, and k = L, the PoI is valid.

3.2 Algorithm Details

The pseudo code of our algorithms are given below.
The algorithm createServices is straightforward. We assume that we have a

random number generator (RNG)—defined by the protocol hence the same for all
the nodes in the network—that we initialize with the given seed. The algorithm
then shuffles the input array using the given random number generator. Finally,
it simply returns the first nS elements of the shuffled array.

Algorithm createServices: create a pseudo-random subset of nodes
Input: N , the set of nodes
h, a seed
Output: S, a subset of nodes

1 RNG.seed(h)
2 S ← shuffled(N,RNG)
3 S ← S.slice(0, nS)
4 return S

The main part of the algorithm generatePoI consists in a loop, that performs
the L interactions. The algorithm requires that each node in the network is
executing the same algorithm (it can tolerates some faulty nodes, as explained
later). The end of the algorithm shows what is executed when a node receives
a message from another node. The procedure checkMessage may depends on
what the PoI is used for. In our context, the procedure checks that the nodes
that interacts with us does not try to create multiple PoI with different messages,
and use the same dependency as everyone else. We will see in details in the next
section why it is important.
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Algorithm generatePoI: Program executed by u0 to generate the PoI
Input: d, the dependency (hash of last block of the blockchain)
m, the message (root of the merkle tree of the new block)
D, difficulty of the PoI
N , the set of nodes in the network
Output: P , a list of signatures {s0, s1, s′

1, s2, s
′
2, . . . , sk, s

′
k}

1 P ← [ ]
2 s0 ← signu0

(d)

3 S ← createServices(N, s0)
4 L ← tourLength(D, s0)
5 P.append(s0)
6 current hash ← H(s0 · m)
7 for L iterations do
8 next hop ← current hash%|S|
9 s ← sendSnext hop(current hash, d,m)

10 P.append(s)
11 s ← signu0

(s)

12 P.append(s)
13 current hash ← H(s)

14 return P

15 When Receive (h, d,m) from u do
16 if checkMessage(u, h, d,m) then
17 Reply signu0

(h · d · m)

Algorithm checkMessage: Check the message received from node u

Input: u, the sender of the request
h, difficulty of the PoI
d, the dependency (hash of last block of the blockchain)
m, the message (root of the merkle tree of the new block)
Output: whether to accept or not the request

1 if d is the hash of the latest block of one of the longest branches then
2 if Received[(u, d)] exists and is not equal to m then
3 penalties (u)
4 return false

5 Received[(u, d)] = m
6 return true

7 else
8 if unknown d then
9 Ask block d

10 return false
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The algorithm checkPoI that checks the validity of a PoI is checking that each
signature from the proof is valid and respects the proof generation algorithm.

Algorithm checkPoI: Program executed by anyone to check the validity
of a PoI
Input: P , a proof-of-interaction
u, creator of the proof
d, the dependency (hash of last block of the blockchain)
m, the message (root of the merkle tree of the new block)
D, difficulty of the PoI
N , the set of nodes in the network
Output: whether P is a valid PoI or not

1 if not verifu(P[0],d) then
2 return false

3 S ← createServices(N,P [0]);
4 L ← tourLength(D,P [0]);
5 if L ∗ 2 + 1 �= |P | then
6 return false

7 current hash ← H(P [0] · m);
8 for i = 0; i < L; i + + do
9 next hop ← current hash%|S|;

10 if not verifSnext hop
(P [2 ∗ i + 1], current hash · d · m) then

11 return false

12 if not verifu(P [2 ∗ i + 2], P [2 ∗ i + 1]) then
13 return false

14 current hash ← H(P [2 ∗ i + 2]);

15 return true

Proof-of-Interactions Properties. Now we show that the Proof-of-
Interaction has several properties that are awaited by client-puzzle protocols [21].

Computation guarantee: The proof can only be generated by making each
visited node sign a particular message in the correct order. The sequence
of visited node depends only on the initiator node, on the dependency d,
and on the message m, and cannot be known before completing the tour.
Furthermore, a node knows the size of his tour before completing it, which
means that the node knows before doing his tour how much messages it needs
to exchange and how much signatures it will do to have a correct proof.

Non-parallelizability: A node cannot compute a valid PoI for a given depen-
dency d and message m in parallel. Indeed, in order to know what is the
node of the i-th interaction, we need to know hi−1, hence we need to know
si−1. si−1 is a signature from ui−1. So we can interact with ui only after we
receive the answer from ui−1 i.e., interactions are sequential.



138 J.-P. Abegg et al.

Granularity: The difficulty of our protocol is easily adjustable using the param-
eter D. The expected time to complete the proof is 2×mean(D)×Com where
Com is the average duration of a message transmission in the network, and
mean(D) is the mean of the distribution D.

Efficiency: Our solution is efficient in terms of computation for all the par-
ticipants. The generation of one PoI by one participant requires mean(D)
hashes and mean(D) signatures in average for the initiator of the proof,
and mean(D)/n signatures in average for another node in the network. The
verification requires 2D + 1 signature verification and mean(D) hashes in
average. The size of the proof is also linear in the difficulty, as it contains
2mean(D) + 1 signatures.

4 Blockchain Consensus Using PoI

In this section we detail how we can use the PoI mechanism to build a Blockchain
protocol. The main idea is to replace, in the Bitcoin protocol, the Proof-of-
work by the Proof-of-interactions, with some adjustments. We prove in the next
section that it provides similar guarantees to the Bitcoin protocol.

Block Format. First, like in the Bitcoin protocol, transactions are stored in
blocks that are chained together by including in each block, a field containing
the hash of the previous block. In Bitcoin, a block includes a nonce field so
that the hash of the block is smaller than a target value (hence proving that
computational power has been used) whereas in our protocol, the block includes
a proof of interaction where the dependency d is the hash of the previous block,
and the message m is the root of the Merkel tree storing the transactions of the
current block. Like for the transactions, the block header could contains only
the hash of the PoI, and the full proof can be stored in the block data, along
with the sequence of transactions.

Block Generation. Now we explain how the next block is appended in the
blockchain. Like in Bitcoin, each participant gathers a set of transactions (not
necessarily the same) and when the last block is received, wants to append a
new block to the blockchain. To do so, each node tries to generate a PoI with
the hash of the last block as dependency d, the root of the Merkel tree of the
transactions of their own block as message m, and using the last block difficulty
D. We assume the difficulty D is characterized by its mean value mean(D),
which is the number that is stored into the block. Like in Bitcoin, the difficulty
can be adjusted every given period, depending on the time it takes to generate
the last blocks.

Participants have no choice over d so the length of their tour, and the subset
S of potential visited nodes is fixed for each participants (one can assume that it
is a random subset). Each participant is trying to complete its PoI the fastest as
possible, and the first one that completes it, has a valid block. The valid block is
broadcasted into the network to announce to everyone that one have completed
a PoI for its new block. When a node receives a block from another node, it
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checks if all the transactions are valid and then checks if the PoI is valid. If so, it
appends the new block to its local blockchain and starts generating a PoI based
on this new block.

First, one can see that this could lead to forks, exactly like in the Bitcoin
protocol, where different part of the networks try to generate PoI with differ-
ent dependencies. Thus, the protocol dictates that only one of the longest chain
should be used as a dependency to generate a PoI. This is defined in the proce-
dure checkMessage. When a node receives a message from another node, it first
checks if the dependency matches the latest block of one of the longest chain. If
not, the request is ignored.

Incentives. Like in Bitcoin, we give incentives to nodes that participate to the
protocol. The block reward (that could be fixed, decreasing over time, or just
contains the transactions fees) is evenly distributed among all the participants
of the PoI of the block. This implies that, to maximize their gain, nodes should
answer as fast as possible to all the requests from the other nodes currently
generating their PoI, to increase their chance of being part of the winning block.

Also, it means that we do not want to answer a request for a node that is not
up to date i.e., that is generating a PoI for a block for which there is already a
valid block on top, or for a block in a branch that is smaller than longest one.

Preventing Double-Touring Attacks. What prevents a node to try to gener-
ate several PoI using different variation of its block? If a node wants to maximize
its gain (without even being malicious, but just rational) it can add dummy
transactions to its current block to create several versions of it. Each version can
be used to initiate the generation of a PoI using different tours. However, he has
to send the message m every times he interacts with another node. If the length
of the tour is long enough, the probability that two different tours intersect is
very high. In other words, a node that receives two messages from the same node,
with the same dependency d, but different values of m will raise the alarm. To
prevent double-touring, it is easy to add an incentive to discourage nodes from
generating several blocks linked to the same dependency. To do so, we assume
each participant has locked a certain amount of money in the Blockchain, and if
a node u has a proof that another node has created two different blocks with the
same dependency (i.e., previous block), then the node u can claim as reward the
locked funds of the cheating node. In addition, it can have other implications
such as the exclusion of the network. We assume that the potential loss of being
captured is greater than the gain (here the only gain would be to have a greater
probability to append its own block).

Difficulty Adjustment. The difficulty could be adjusted exactly like in Bitcoin.
The goal is to chose the difficulty so that the average time B to generate a block
is fixed. Here, the difficulty parameter D gives a very precise way to obtain a
delay B between blocks and to limit the probability of fork at the same time.
If Com denotes the average duration of a transmission in the network, then we
want the expected shortest tour length among the participants to be �B/Com�.
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For instance, it is known that the average minimum of n independent random
variables uniformly distributed on the interval (a, b) is

b + na

n + 1
.

Thus, if D is the uniform distribution between 1 and �B/Com�(n + 1) − 1, then
the length of the shortest tour among all the participants will be �B/Com� in
average.

Every given period (eg., 2016 blocks as in Bitcoin), the difficulty could be
adjusted using the duration of the last period (using the timestamps included
in each block) to take into account the possible variation of Com, so that the
average time to generate a block remains B.

Communication Complexity. A quick analysis shows that each node sends
messages sequentially, one after receiving the answer of the other. At the same
time, it answers to signature requests from the other nodes. In average, a node
is part of nS tours. Hence the average number of messages per unit of time is
constant i.e., nS + 1 every Com. Then, the total amount of messages, per unit
of time, in the whole network is linear in n.

5 Security

This section discusses about common security threats and how our PoI-based
Blockchain handles them. We assume that honest nodes will always follow our
algorithms but an attacker can have arbitrary behavior, while avoiding receiving
any penalty (which could remove him from the network). We assume that an
attacker can eavesdrop every messages exchange between two nodes but he can
not change them. Also, assume that an attacker A cannot forge messages from
another honest node B.

Crash Faults. A node crashes when it completely stops its execution. The main
impact is that it does not respond to the sign requests of other nodes. This can
be an issue because at each step of the PoI generation, the initiator node could
wait forever the response of a crashed node. Crashed nodes are handled by the
fact that a node only has to interact with a subset S of the whole network N ,
computed using the service creation function, createServices. Hence, if a node
crashes, only a fraction of the PoI that are being generated will be stuck waiting
for it. All the nodes whose Service sets S do not contains crash faults are able to
generate their PoI entirely. Since each set S is of size nS = min(n/2, 20), we have
that, if half of the nodes crash, the probability a given set S contains a crashed
node is 1− (

1
2

)nS . So that the probability p that at least one set S contains only
correct nodes is

p = 1 −
(

1 −
(

1
2

)nS
)n

One can see that the probability p tends quickly (exponentially fast) to 1 as n
tends to infinity. For small values of n, the probability is greater than a fixed non-
null value. In the rare event that all the sets S contain at least a crashed node,
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then the protocol is stuck until some crashed nodes reboot and are accessible
again.

Finally, we recall that honest nodes are incentivized to answer, because they
get a reward when they are included in the next block’s PoI. Hence, honest nodes
will try be back again as fast as possible.

Selfish mining. Selfish mining [10] is an attack where a set of malicious nodes
collude to waste honest nodes resources and get more reward. It works as follow.
Once a malicious node finds a new block, it only shares it with the other malicious
nodes. All malicious nodes will be working on a private chain without revealing
their new block, so that honest nodes are working on a smaller public branch
i.e., honest nodes are wasting resources to find blocks on a useless branch. When
honest nodes find a block, the malicious nodes might reveal some of their private
blocks to discard honest blocks and get the rewards.

In Bitcoin, selfish mining is a real concern as attackers having any fraction
of the whole computational power could successfully use this strategy [20].

Interestingly, our PoI-based Blockchain is less sensible to such attack. Our
algorithm gives a protection by design. Indeed, when generating a PoI, a node
has to ask to a lots of other nodes to sign messages containing the hash of
the previous block, forcing it to reveal any private blocks. Other nodes in the
network will request the missing block before accepting to sign the message. In
other words, it is not possible to generate a PoI alone. Moreover, if a node is
working on a branch that is smaller than the legitimate chain and ask for the
signature of an honest node, the latter will tell the former to update its local
Blockchain, thus preventing him from wasting resources.

Shared Mining. During the PoI, a node will most of the time be waiting for
the signature of another node. So the network delay has the highest impact on
the block creation time. To remove this delay, a set of malicious nodes can share
theirs private keys between each other and try to create a set S where every
nodes are malicious. If one malicious node of the pool succeeds, it can compute
the proof locally without sending any messages. It will generate the PoI faster
than honest nodes and have a high chance to win.

We defined earlier that each node of the network is known. Which mean
that each node is a distinct entity. For this attack to succeed, entities need to
share their private keys. This is a very risky move because once you give your
private key to someone, he can create transactions in your name without your
authorization. This risk alone should discourage honest nodes to do it, even if
they want to maximize their gain.

We can still assume that a small number of malicious nodes do know each
other and collude to perform this attack. We show now that this attack is hard
to perform. S only depends on the previous block and on the identity of the
initiator of the proof, so the nodes have no control over it. S consists of nS nodes
randomly selected among the network. So if there are F malicious friends on the
network, there is on average the same fraction (n/F ) of malicious friends in S as
in N . However, the probability for the tour to contains only malicious friend is
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very low. Indeed, with F malicious friends on the network, the probability that
the entire tour consists of malicious friends is (n/F )mean(D) in average.

When a malicious node initiates a PoI for a given message, it can see whether
the tour contains an honest node or not, so it might be tempted to change the
content (by reordering the transaction or inserting dummy transactions) of its
block until the tour contains only his malicious friends. However, even if there
is a fraction (n/F ) = 0.1 of malicious friends in the network (hence in S), and
if mean(D) = 100, for instance, then the probability that a given tour contains
only malicious friends is 10−100. To find a tour with only malicious friends, an
initiator would have to try in average 10100 different block content, which is not
feasible in practice.

6 Conclusion and Possible Extensions

We have presented an new puzzle mechanism that requires negligible work from
all the participants. It asks participants to gather sequentially a list of signa-
tures from a subset of the network, forcing them to wait for the response of each
visited node. This mechanism can be easily integrated into a Blockchain pro-
tocol, replacing the energy inefficient Proof-of-work. The resulting Blockchain
protocol is efficient and more secure than the Bitcoin protocol as it is not sub-
ject to selfish-mining. Also, it does not have the security issues found in usual
PoW replacements such as Proof-of-stack or Proof-of-elapsed time. However, it
currently works only in networks where participants are known in advance. The
design of our Blockchain protocol makes it easy to propose a possible extension
to remove this assumption.

The easiest way to allow anyone to be able to create blocks, is to select as
participants the n nodes that locked the highest amount of money. This technique
is similar to several existing blockchain based on protocols that work only with
known participants (such as Tendermint [15] using an extension of PBFT [6])
or where the nodes producing blocks are reduced for performance reasons (such
as EOS [13] where 21 producer nodes are elected by votes from stakeholders).
We believe a vote mechanism from stakeholders can elect the set of participants
executing our protocol. The main advantage with our solution is that the number
of participants can be very high, especially compared to previously mentioned
protocols.
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Abstract. The race to solve the so-called Blockchain trilemma (i.e.,
decentralization, scalability, and security) has resulted in a multitude of
solutions, each providing at most two of the three features. Moreover,
existing blockchain systems still represent several technical hurdles in
terms of computation effectiveness and energy consumption, especially
in large-scale networks. In this paper, we design LighTx a cost-effective
and scalable transaction transfer system that aims to reach agreement
in public peer-to-peer networks at a low cost.

LighTx leverages a Byzantine Reliable Broadcast (BRB) primitive to
transmit and validate transactions in a logarithmic communication cost
with respect to the number of nodes. We additionally deploy a Proof-
of-Bandwidth-based reputation system to mitigate the threats enforced
by Sybil attack in public networks. We assess the performance of our
system and demonstrate a considerable transaction rate of hundreds of
transactions per second and low latency in the order of few seconds while
providing defense against Byzantine adversaries.

Keywords: Byzantine reliable broadcast · Proof-of-bandwidth ·
Reputation score · Sybil attack

1 Introduction

In 2008, Satoshi Nakamoto presented Bitcoin [31], a digital cryptocurrency
implemented as a decentralized public peer-to-peer network. At its core,
Blockchain was designed to transfer transactions while preventing double-
spending and was soon after used to manage other kinds of data for different
applications. Blockchain achieves consensus among peers via cryptographic puz-
zles solving known as Proof-of-Work (PoW) that challenges a computationally
bounded adversary from gaining control over the network.
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Despite being a major asset, PoW by its very nature incorporates a serious
handicap; the excessive energy consumption induced by mining activity and the
time required for transaction validation results in high costs and low scalabil-
ity. On the other hand, decisions are only made by miners dedicating a mas-
sive computing power for the mining activity. To fasten transactions validation,
miners gather in cooperating mining pools, leading the system to be partially
centralized. Moreover, popular blockchain systems lack fairness among users as
they allow unfair participation opportunities for miners with limited resources.
Decisions are made by users with high computational power using PoW [31] or
important stake deposit in the Proof-of-Stake (PoS) [35].

Two known approaches emerged to resolve these concerns and improve the
performance of the inherent agreement protocol. One approach focuses on vari-
ants of Nakamoto consensus [1,4,35], while the other adopts voting-based con-
sensus protocols such as [2,9–11,26]. Both approaches succeeded to some extent
to eliminate the issue of high energy consumption posed by PoW-based protocols
and the constraints of stakes holding in [35], due to miners selection via compet-
itive voting mechanisms. However, these approaches face other challenges such
as significant communication overhead and Sybil attack vulnerability.

System openness and decentralization are tied one to another. Decentral-
ization improves security by avoiding central entities prone to become a single
point of failure while storing critical data. By contrast, openness comes with
new challenges, mainly the Sybil attack [13]. Sybil attack refers to an adversary
that forges a large number of fake identities to undermine network services. Sybil
defense involves rigorous verification of the genuine identities of nodes and deter-
mines if we can trust their participation to propagate and validate transactions,
in order to maintain the system robustness.

This work aims to create a lightweight version of blockchain that meets
application-level demands without a central party or synchrony assumptions. We
seek to demonstrate a scalable and reliable system in public networks by deploy-
ing low-cost techniques and with no need for computation-intensive consensus
protocols. We suggest LighTx, a cost-effective and scalable transaction logging
system that makes use of BRB primitive [19] to concurrently and securely com-
mit transactions. Inheriting the properties of the underlying broadcast abstrac-
tion and supplied with identification and routing mechanisms, LighTx disposes
of consensus complexities and converges to a trade-off between reliability and
scalability guarantees to fit into application demands. We further deploy for pub-
lic environments, a lightweight Proof-of-bandwidth (PoB) jointly with a reputa-
tion system to provide Sybil defense. This is achieved by leveraging the concept
of trust transitivity in peer-to-peer systems inspired by [21].

The rest of the paper is organized as follows: In Sect. 2, we present an overview
of the existing consensus families. In Sect. 3, we describe the system and threat
models. Then, in Sect. 4, we describe our permissionless LighTx that builds
upon a BRB abstraction jointly with a PoB-based reputation system to detect
Sybil nodes and mitigate their impact. In Sect. 5, we report the experimental
results. We discuss related work in Sect. 6. Finally, we conclude in Sect. 7.
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2 Background

Consensus protocol, as one of the core components of blockchain, directly affects
the scalability of the system. In this section, we review the guarantees offered
by both deterministic and probabilistic consensus and then we give an overview
of Byzantine Reliable Broadcast and mention its limitations.

2.1 Deterministic vs. Probabilistic Consensus

Deterministic algorithms are restricted by impossibility results [16] and lower
bound limits [27] with the presence of faulty processes and asynchrony assump-
tions. An alternative that makes it possible to achieve consensus is to enable
randomization among nodes. Randomized consensus ensures rather probabilistic
liveness properties (every operation eventually completes), but guarantees the
same safety properties (nothing wrong happens) [3]. Namely, randomized algo-
rithms can be much simpler and provably faster and provide a better defense to
thwart an adversarial behavior [24].

Reliable broadcast abstraction [8] presents in the same context a convenient
tool to reliably propagate a message through a network of nodes, such that all
nodes deliver the message even with the existence of faulty nodes. In real terms,
existing broadcast protocols make use of quorum-based techniques. Conceptu-
ally, quorum schemes require the confirmation of the majority of participants
to deliver a message (i.e., the values proposed by participating nodes have to
intersect in at least one correct node to enable the system to make a decision)
[5,28,29]. Their communication complexity is quadratic [5,20], while optimized
versions were barely able to reach a linear complexity [6].

2.2 Byzantine Reliable Broadcast Abstraction

BRB Specifications. Byzantine Reliable Broadcast (BRB) [19] is a broad-
cast primitive that falls in the category of randomized algorithms. BRB aims to
transmit a message over a network of nodes, such that the same version of the
message is delivered by all correct nodes. By making use of BRB abstraction,
we achieve consensus at logarithmic communication cost. Being a probabilistic
approach helps bypassing the impossibility result of agreement in the presence
of one faulty process [16] by guaranteeing probabilistic properties rather than
deterministic ones. Moreover, the peer sampling method used by BRB to sample
communicating peers enables each node to pick a sample of peers (following Pois-
son distribution) to collect feedback for message delivery, instead of expecting
confirmation from a majority quorum.

This sampling approach is considered a key feature for a scalable design
as it allows reduced messages exchange to validate a transaction. The samples
are significantly smaller in size compared to quorums. The importance of this
feature becomes evident as the network grows bigger and the difference between
quorums and samples sizes gets flagrant. That results also in a low latency
due to the minimal messages exchange. Indeed, a node does not have to wait
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for the responses of the majority to deliver or discard a message. Rather, it
communicates only with some selected peers that will reflect the status of the
network. Also, unlike in PoW and PoS systems where validators are privileged
based on their dedicated resources (E.g., computation power, stake), adopting
BRB enables all nodes to be potential validators. Nodes collect confirmation from
their communication samples to validate a transaction, giving equal chances to
all users to participate in the agreement process.

BRB represents an appealing workaround to replace consensus and solve the
double-spending problem by ensuring three major properties: (1) Validity : If
a correct sender sends a message, all correct processes eventually deliver the
broadcast message. (2) Consistency : Every correct process delivers the same
message if it delivers one at all and (3) Totality : If any correct process delivers
some message, every correct process eventually delivers that message.

BRB Sub-protocols. BRB abstraction consists of three nested sub-protocols.
First Murmur that propagates a transaction m across the network via a gen-
erated Erdös-Rényi random graph [15]. Upon delivery of m by Murmur, comes
Sieve that ensures the consistency of the broadcast transaction. Sieve delivers m
only when enough nodes have witnessed the same m. Then Contagion provides
secure delivery by all correct nodes through a feedback mechanism that first
verifies if enough nodes are ready for delivering m, before effectively delivering
it [19].
Murmur represents the starting of the broadcast operation by creating an
instance of a gossip-based algorithm that distributes a message m (broadcast
by the sender) over the network. Upon initialization, each node subscribes to a
randomly picked gossip sample. The sender then signs m and sends it to members
of its gossip sample. Upon receipt of a gossip message m, the recipient verifies
the identity of the sender by verifying the signature and delivers the message,
then in turn, dispatches it to members of its gossip sample (Fig. 1). During this
gossip process, nodes may receive several copies of the broadcast message m from
different nodes as they are included in multiple gossip samples of many other
nodes. Murmur delivers only the first received gossip message and discard the
others.
Sieve represents an instance of consistent broadcast. This means that Sieve
guarantees that each correct node delivers the same message, if it delivers one
at all, even with the presence of a faulty sender. Upon initialization, each node
subscribes to a randomly picked echo sample. Sieve proceeds when a message
m is delivered by the lower layer (i.e.,Murmur); a node pi echoes the gossiped
message m to all nodes in its subscription set. When pi collects enough echoes
associated to m from its echo sample, it delivers m (Fig. 2).

Contagion. Besides consistency property inherited from Sieve, Contagion com-
plements the previous blocks by ensuring totality. These combined properties
imply the equivalent of agreement.

Upon initialization, each node subscribes to its ready and delivery samples.
When a message m is delivered by the lower layer (i.e., Sieve), Contagion sends
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Fig. 1. Murmur

Node pi receives a EchoSub
from node pj

pi adds pj 
 to its Echo subscription set

Node pi receives a echo(m) from node pj

pi verifies the sender identity

pi received enough echo(m)?Deliver m Wait for
more echo(m)

Sieve initialization

No
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Fig. 2. Sieve

a ready message to nodes of its subscription set and waits to receive feedback
messages from its ready and delivery samples. When node pi receives enough
confirmations for a message m from its ready sample, it becomes ready for m
too. Contagion delivers the first message m for which a node p collected enough
ready messages from its delivery sample (Fig. 3).

BRB Limitations. As we described the broadcast primitive, we identified two
main constraints we had to address for building our system. First, the broad-
cast algorithm generates one broadcast instance to deliver a single transaction.
In BRB, every submitted transaction is carried by a single broadcast instance.
This helps you to differentiate between multiple send operations and inconsis-
tent message dissemination (in the case of a Byzantine sender). However, this
feature imposes a constraint in concurrent environments where all nodes attempt
to submit multiple transactions. When concurrent transactions are issued, nodes
receive concurrently different BRB messages of all broadcast transactions with-
out being able to identify their broadcast instances. Therefore, it becomes chal-
lenging to handle exchanged messages in each broadcast transaction and asso-
ciate them with their corresponding transactions.
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On the other hand, BRB requires additional mechanisms to prove robustness
in high churn networks. BRB tends to be more suitable for private networks [19]
and claims that in an open environment with slow churn, the issue could be
approached in the same fashion as in private networks to deal with the effect
of openness. Nevertheless, in open environments, robustness challenges get even
harder, through the exposure to dynamic malicious users. A Sybil attacker can
spread and vote for inconsistent transactions. This requires proper inspection
of the real identity of nodes in order to preserve system robustness in networks
with churn.

3 Problem Definition

3.1 System Model

We consider a public asynchronous fully connected message-passing system that
provides direct communication between each pair of nodes. The term node and
process are used interchangeably. The system builds upon the following assump-
tions:

Nodes. Nodes are denoted p1, .. , pn. We assume that each node is associated
to an account and each account has a single owner. We identify a transaction
issued by pi to pj as a transfer of a digital asset from the account of pi to
the account of pj . We consider a straightforward probability sampling strategy,
by deploying a sampling oracle Ω that, at each execution, generates randomly
selected samples (i.e. subsets with parametrized sizes) of nodes among the total
population of nodes. All nodes have direct access to the sampling service to pick
their samples. We leverage existing encryption and authentication primitives:
digital signature, SSL certificates and hash functions, which are known to be
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hard to break. Then we assume that adversaries cannot break cryptographic
primitives.

Links. We consider authenticated reliable point-to-point communication links
[8]. In principle, reliable links guarantee delivery and no message duplication.
Given any message m sent from a node pi to a node pj , m is delivered to pj
exactly once. Authentication is deployed to ensure no creation property (i.e., to
prevent malicious nodes from creating and propagating a message and pretending
it originates from the original sender). Such a link abstraction is implemented
by lower-level transport protocols.

Churn. Participating nodes are recommended to dedicate all their bandwidth
resources for the application, especially during assessment phase. This is due
to the fact that the bandwidth will be shared arbitrarily between the set of
running applications on their devices. Consequently, it results in undesired fluc-
tuated measurements caused by this bandwidth usage. Thus, we can track the
bandwidth changes and assert that they reflect the behavior of the nodes in
the application. We also assume that nodes have bounded bandwidth resources,
but they are not required to be homogeneous in terms of bandwidth capacity,
since the system only relies on detecting bandwidth fluctuations and not the
bandwidth capacity.

Nodes newly joining the network are not assigned any reputation score; rep-
utation scores are only assigned after interacting with new nodes and recording
their bandwidth measurements. New-comers (includes recently active nodes) get
their scores either by referring to previously calculated global scores (measured
by the network) or by proceeding to a new PoB phase.

We also assume a set of high-ranked nodes, we call Pre-trusted, that a node
can trust their opinion about the network status. Members of the Pre-trusted set
can be chosen on different bases. For instance, choosing the first nodes joining
the network [21], or dynamically choosing highly reputable nodes based on their
history [25,37]. We opt for a hybrid approach to assess bandwidth metric via
both proactive and reactive assessment. First, proactively, by launching the PoB
mechanism periodically (The period τ is a system parameter that is determined
at application level). And reactively, by responding to the network changes, in
terms of network size and transaction submission rate. During a measurement
phase, we consider the system to be of static size.

3.2 Threat Model

We consider that nodes may experience Byzantine failures (i.e. nodes fail in an
arbitrary manner that may deviate in any conceivable way from the algorithm
[8]). Byzantine nodes are represented by f computationally unbounded malicious
nodes that may collude to interfere with the algorithm. We also assume that
Byzantine nodes cannot compromise authentication primitives.

Scenario (1): We define a Byzantine node as a node that acts maliciously
by presenting conflicting or inconsistent messages with the objective to carry



LighTx: A Lightweight Proof-of-Bandwidth Transactions Transfer System 151

out a double-spending. Double-spending occurs when a transaction uses the
same input as another transaction that has already been spent. Concretely, the
transaction is spent twice.

Scenario (2): We consider Sybil adversaries who declare multiple fake identities
in the network and thus gain a majority opinion to send out inconsistent trans-
actions. A Sybil attacker may also collude with other Byzantine nodes on the
network, who may falsely report each other’s scores. When dealing with power-
ful adversaries (e.g., nationwide or global adversaries), we need to deploy more
advanced probing techniques that enable nodes to quantify the dedicated band-
width resources of their peers and thus detect fluctuations caused by adversarial
behavior. At the current stage, the analysis of appropriate probing techniques
has not yet been studied.

4 LighTx

4.1 Beyond BRB

The design of LighTx draws primarily on BRB abstraction [19]. We customize
BRB via setting up a routing mechanism for messages identification management
to support concurrency in transactions submission. When concurrent transac-
tions are broadcast, nodes need to link the issued BRB messages to their corre-
sponding transactions. For this purpose we identify broadcast channels for each
created transaction and create a routing entity at each node to map each broad-
cast instance to its corresponding message. Algorithm 1 describes the routing
mechanism in LighTx.

The sender s initiates a broadcast operation by creating a broadcast instance
brb identified with a unique broadcast channel identifier brbid, then adds the new
pair {brbid : brb} to the routing table (line 3). Next, the sender broadcasts the
transaction labelled with its broadcast channel ID using the BRB primitive as
described in [19] (line 4). The broadcast channel ID is generated by combining
the broadcast instance hash code with the current timestamp. When a broad-
cast operation is triggered, the broadcast instance is created, by the sender s,
associated with its broadcast channel ID. The broadcast channel ID is unique
across all nodes.

Upon receipt of any BRB message, the receiver consults its routing table. If
the routing table contains the broadcast channel ID of the received BRB mes-
sage, the corresponding broadcast instance handles the BRB message (line 3).
Otherwise, a new broadcast instance will be added to the routing table to han-
dle messages originating from this broadcast channel (line 5). Once the broad-
cast channels are identified, the message processing continues following the BRB
primitive (line 3).

4.2 Proof-of-Bandwidth Scheme

To resolve the issues posed by Sybil attack while maintaining the major fea-
ture BRB offers which is scalability, we propose a lightweight PoB-based rep-
utation system to prevent malicious peers from performing a Sybil attack and
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Algorithm 1. LighTx routing

1: Initiate BRB broadcast:
2: create broadcast instance brb with broadcast channel ID < brbid >
3: routingTable ← {brbid : brb}
4: brb.broadcast < tx|brbid > � The sender

1: Upon receipt of BRB message with brbid � All nodes
2: brb ← Routing(brbid)
3: proceed BRB broadcast process with broadcast instance brb

1: function Routing(brbid)
2: if routingTable contains brbid then
3: return getValue(brbid)
4: else
5: routingTable.add(brbid : new brb)
6: return getValue(brbid)
7: end if
8: end function

thus, manipulating transactions validation. Unlike the famed Proof-of-Work [31],
nodes are not exhausted by investing a huge amount of energy and CPU power
to prove their identities. We utilize bandwidth measurement, then inject the
collected measurements into a reputation system. The reputation scores of the
network are aggregated until they converge to a global score in few rounds. The
concept drives from the intuition that transmitted transactions should be propor-
tional to the used bandwidth resources. A genuine identity should reflect stable
bandwidth measurement records, whilst a node running multiple fake identities
will have fluctuating bandwidth measurements caused by flow interference, high
load and medium occupancy.

Bandwidth Measurements. As a first step, we set up a bandwidth evaluation
method, to measure the available bandwidth of peers. Over multiple rounds, we
perform bandwidth measurements and track bandwidth changes of the evaluated
nodes. Multiple bandwidth estimation techniques and tools exist in the literature
depending on application usage. Most of the bandwidth estimation techniques
are based on probe messages. We adopt the one-way-delay method [23] as it
represents a low overhead compared to other existing methods [22,33].

Receivers may misbehave by faking timestamps of the probe messages. How-
ever, given that the adversary does not know about the measured round trip
time (RTT) on the sender side. Also, given that probe messages are sent on
various throughput speed, then inducing random timestamps to the probe reply
comes against the peer itself. Therefore, measuring a stable bandwidth capacity
would be preferred.

Local Scores Assignment. Bandwidth measurements are performed over r
rounds. Each node keeps track of the r bandwidth values collected over r rounds
in a vector BW for each of its assessed peers. When the measurement phase
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is finished, peers initially assign local scores to their peers. Each assessed node
will be assigned an initial local score ω

(0)
ij . We set ω

(0)
ij to be equal to the mean

μ
BW0

over all the assessed peers in the first measurement round. Then, scores
are updated based on the variance of the measurements taken over r rounds and
the maximum assessed bandwidth of each peer. If the variance of the measure-
ments is negligible, the initial scores are maintained. When the fluctuations are
considerable, the new score takes into account the variance of bandwidth mea-
surement and the maximum measured bandwidth. That implies that nodes with
high bandwidth are heavily penalized when they show some anomalies, since
they are more likely to have a big impact on the system if they are malicious.
We can translate the score update by Expression 1.

ωij =

{
ω
(0)
ij − σBW j

.BWjmax
: if σBW j

> α

ω
(0)
ij : otherwise

(1)

Where ωij is the updated local score, ω
(0)
ij is the initial local score, σBW is

the variance of bandwidth measurements measured over r rounds, BWmax is
the maximum bandwidth capacity measured of node pj and α is fluctuations
tolerance factor which indicates the degree of bandwidth fluctuations that can be
allowed without penalty. Algorithm2 describes the Proof-of-Bandwidth scheme
and the local scores update during assessment phase.

4.3 Reputation System

Score Aggregation. To support the Proof-of-Bandwidth mechanism we setup
a reputation system to evaluate every single node on the network. Our approach
is inspired by EigenTrust [21] that builds upon the notion of transitive trust.
Nodes consider the opinion of remote nodes they trust, by collecting their local
reputation scores. Based on the remote evaluation, each node aggregates the
reputation score from its own local scores and the scores received from remote
nodes, then shares it back with nodes that trust him. By iteratively repeating
this process for a certain number of rounds, it converges to the eigenvector of the
score matrix. Each node in the system converges to a global reputation score,
based on which they can make a decision on the malicious nodes.

As all nodes do not have the same measurement records, their local scores
can widely vary. The local scores should be normalized to limit the impact of an
adversary arbitrarily giving high local reputation scores to other malicious peers,
or a low reputation score to honest ones and poison the view of the network.
Therefore, we first normalize the local reputation scores in a range between zero
and one. We define mij as the normalized score assigned by node pi to node pj
in Eq. 2.

mij =
max(ωij , 0)∑
max(ωij , 0)

(2)

To aggregate scores, each node requests the peers it evaluated for their local
scores, weights their opinions and take them into consideration to compute the
global score value by iterating over the matrix of normalized scores M .
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Algorithm 2. Proof-of-Bandwidth

1: Parameters. α : Fluctuation tolerance factor
2: R : Number of rounds

1: procedure Probe()
2: for each node pi do
3: for r rounds do
4: Send ProbeMessage to nodes of BRB samples
5: end for
6: end for
7: end procedure

1: function ScoreUpdate(σBW , BWmax)
2: if σBW > α then
3: return ω

(0)
ij − σBW .BWmax

4: else
5: return ω

(0)
ij

6: end if
7: end function

1: Upon receipt of a ProbeMessage
2: if BW < R then
3: BW.add(BWi)
4: else
5: BWmax = Max(BW )
6: Calculate variance σBW of BW
7: ω

(0)
ij = μBW0

8: ωij = ScoreUpdate(σBW , BWmax, α)
9: end if

In the first iteration, we compute the score vector m′ by multiplying the local
score matrix M with the remote score vector m (Eq. 3). Then, for each iteration,
pi updates its global score vector m′′ = M.m′ = M (2).m to m(n) = M (n).m until
no changes are observed when updating the global score vector. At this stage,
the network converges to one global vector which corresponds to the principal
eigenvector of matrix M .

m′ = M.m (3)

Byzantine Resilient Score Aggregation. To avoid the impact of sinks (i.e.
nodes who share very low scores about other nodes, influencing their global
scores), we use vector −→ρ , that is a distribution over the set of pre-trusted peers
P (a priori trusted set of nodes). We define ρi the elements of vector −→ρ a follows:

ρi =
{ 1

|P | : if i ∈ P

0 : otherwise
(4)

The use of vector −→ρ is claimed by [7,21] to lead to faster convergence, so we
use the vector −→ρ as the start vector for the score aggregation. We also include−→ρ in the later computation to weight pre-trusted peers by a damping factor
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d [7] (as described by Eq. 5). Introducing this damping factor d aims to break
malicious collectives, by injecting some randomness into the data received from
other peers when measuring global scores. Since all the scores should be summed
together, the global scoring measured from other peers is “reduced” by the factor
d to prevent the other nodes from inflating the scores. The 1 − d factor is to
compensate the probability of the first part, by adding some confidence to the
set of pre-trusted nodes.

M (k+1) = d.Mm(k) + (1 − d)−→ρ (5)

We describe the distributed version of the score aggregation in Algorithm 3.

Algorithm 3. reputation system

1: Parameters. Ai : Nodes evaluated by node pi

2: Bi : Nodes who evaluated node pi

3: φ : Convergence precision
4: d : Damping factor

5: for Each node pi do
6: Query all nodes pj ∈ Ai for mji and m

(0)
j = ρj

7: repeat
8: m

(k+1)
i = d(m1im

(k)
1 + m2im

(k)
2 + .. +mnim

(k)
n ) + (1 − d)ρi

9: send mijm
(k+1)
i to all nodes pj ∈ Bi

10: wait for all nodes pj ∈ Ai to return their mjim
(k+1)
j

11: until |m(k+1)
i − m

(k)
i | < φ

12: end for

5 Evaluation

In this section, we assess the performance of our system. Our prototype was
implemented in Java language. The code is available in https://github.com/
ImaneElabid/LighTx

Experimental Setup. All experiments are conducted on a computer running
Windows 10 OS, with Intel(R) Xeon(R) W-2123 CPU 3.60 GHz and 32.0G of
RAM. For the sake of simplicity, we withdraw link authentication property to
dispose of authentication certificate setups. We use therefore, TCP as transport
protocol. In what follows, we detail the circumstances of the experiment and
analyze the results. In the correct execution model, a sender s broadcasts a
transaction and distributes it among the network. We assume that all nodes of
the network behave correctly.

Communication Complexity. All samples sizes are set to be equal and log-
arithmic in size with respect to the number of nodes. With this setting, we
vary the number of nodes from 10 to 250 nodes and we measure the number
of received messages per process for each broadcast instance. Figure 4a depicts
that contrarily to quorum-based BRB, the number of messages of LighTx using

https://github.com/ImaneElabid/LighTx
https://github.com/ImaneElabid/LighTx
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Fig. 4. LighTx performance efficiency.

sample-based BRB does not increase with the total number of nodes. This is
because each node communicates only with members of its samples (of loga-
rithmic size). Even with such a minimal message exchange, LighTx achieves
agreement.

Latency. For the system latency, we measure the time elapsed between the
broadcast and the delivery operation. We plot the delivery time averaged over
multiple runs. Figure 4c shows that latency increases with the number of nodes.
For example, we see that it takes on average 12 seconds to deliver a consistent
transaction over a network of 250 nodes. Note that part of the latency augmenta-
tion is generally due to external causes, such as concurrency and multi-threading
issues related to hardware limitation. In our simulation environment, as the sys-
tem grows bigger, concurrency issues become glaring. We presume that these
external delays can be considerably reduced in a distributed architecture.

Data Rate. The obtained transaction rate is shown in Fig. 4b where we note
that the application reaches a throughput of more than 500 tps when the number
of nodes is relatively small (e.g., < 30). Transaction rate decreases with the
number of nodes, but remains clearly higher compared to Bitcoin which can
only handle around 7 tps [12] or Ethereum that reaches 20 tps [36].
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Adversarial Execution. In a centralized model of our reputation system, the
network converges to global trusts within few rounds (about 5 rounds, see Fig. 5a)
the decentralized version of the algorithm. In this simulation, in a network of 100
nodes having equal bandwidth resources, we assess bandwidth usage to validate
one transaction. We record the bandwidth measurements of all nodes on the
network, while varying kid the number of identities created by a Sybil attacker.
Figure 5b shows the difference between honest nodes bandwidth records and a
Sybil node records as we increase the fake identities kid of a Sybil attacker. We
note that as kid grows, the ability to detect Sybil nodes increases, as they become
overloaded with the different flows they receive and that lowers their transmission
rate. Concretely, a Sybil node pk should run a large number of fake identities
kid to take over the network. pk in this case, communicates simultaneously with
Savg.kid (where Savg is the average size of communication samples).
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6 Related Work

With the wide adoption of Blockchain technology, the necessity to conceive alter-
natives to optimize Blockchain systems in various aspects, such as performance,
energy-efficiency and security has become of paramount importance. Lately, new
families of consensusless algorithms are emerging. AT2 [18] proposes multiple
protocols for assets transfer based on BRB abstraction to build an asset transfer
system abandoning the expenses of consensus. AT2 also refers to the idea of a
Proof-of-Bandwidth protocol but does not describe any comprehensive practical
solution. [34] combines traditional consensus and Nakamoto’s consensus [31] to
come up with a cost-effective protocol that makes use of gossip protocols with
recurrent sampling. [34] however, has a communication complexity of O(kn)
where (k << n) is a security parameter.

Other alternatives opting for randomization to achieve agreement, such as
HoneyBadgerBFT [30] and BEAT [14], stress on the security aspect by setting
extensive use of cryptographic operations (i.e., erasure coding and threshold
encryption). They manage indeed to reduce communication complexity (linear
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at the best case) and enhance system security. However, they result in a non-
negligible computation overhead. Algorand [17] is also a recent cryptocurrency
that confirms transactions with latency on the order of a minute while scaling
to thousands of users. Algorand uses a new Byzantine Agreement (BA) proto-
col to reach consensus. The consensus protocol used by Algorand consists of a
synchronous protocol that incorporates a PoS system with a Byzantine fault
tolerance agreement.

Solutions such as off-chain blockchain [32] have emerged to solve the scal-
ability problem. The Lightning Network is an off-chain [32] that establishes
payment channels for micro-payments that do not require to be included in
the blockchain one by one. Consequently, payment networks can achieve higher
transaction throughput and lower latency than blockchain. However, they also
suffer from security challenges and impractical trust assumptions.

None of the aforementioned achieve consensus in logarithmic communication
cost and provide a low computation and communication overhead when dealing
with the threat enforced by Sybil attack.

7 Conclusion

In this paper, we have presented LighTx a cost-effective solution for transac-
tions recording based on an adapted BRB primitive where solving consensus
is no longer necessary. By customizing the broadcast primitive to support the
concurrency of transactions submission, we have designed a transaction transfer
system, inheriting BRB scalability and robustness. We also detailed our pro-
posal to enable LighTx in open environments while alleviating the impact of
Sybil nodes. Our approach leveraging a Proof-of-Bandwidth based reputation
system demonstrates appealing results for adversaries detection. In future work,
we intend to formally analyze the practical use of LighTx as a cryptocurrency
system.
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Abstract. The Tangle is the data structure used to store transactions
in the IOTA cryptocurrency. In the Tangle, each block has two par-
ents. As a result, the blocks do not form a chain, but a directed acyclic
graph. In traditional Blockchain, a new block is appended to the heaviest
chain in case of fork. In the Tangle, the parent selection is done by the
Tip Selection Algorithm (TSA). In this paper, we make some important
observations about the security of existing TSAs. We then propose a new
TSA that has low complexity and is more secure than previous TSAs.

1 Introduction and Background

A Distributed Ledger Technology (DLT) is a distributed protocol executed by
a set of nodes to maintain an append-only data structure. In Bitcoin, the data-
structure is a chain of blocks, containing transactions. Blocks are appended one
after the other to form a chain. Each block requires some amount of computa-
tional power, called weight, to be created. In Bitcoin (and other Proof-of-Work
Blockchains), a new block is added to the heaviest branch i.e., the branch that
maximizes the sum of the weights of the blocks it contains. This behavior is at
the core of the security of Bitcoin.

In this brief announcement, we are interested in the data structure called the
Tangle, used to store transactions in the IOTA cryptocurrency, and especially in
the algorithm used to append new data. We make some important observations
about the security of such algorithms and how previous algorithms do not satisfy
them. We then propose a new algorithm that is more secure and more efficient
than previous solutions.

The Tangle. The Tangle is a data-structure where each block of transactions,
called site, is linked to two previous sites (using hash pointers), called parents.
The genesis site is the only site without parents. Thus, sites form a Directed
Acyclic Graph (DAG) of sites. A site is said to confirm all its ancestors in the
Tangle. A tip of the Tangle is a site which has no child i.e., which is not confirmed
by any site.

We consider a network composed of connected nodes that generate and broad-
cast new sites. Each node has a local copy of the tangle that is updated when a
new site is appended.

In order to append a transaction in the Tangle, a node must perform a
Proof-of-Work i.e., solving a cryptographic puzzle requiring a certain amount of
c© Springer Nature Switzerland AG 2021
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computational power. The weight of a site represents this work and we assume
each site has a weight of 1. Then, the cumulative weight of a site is defined [6]
as the sum of its own weight with the weight of its descendants (the sites that
confirm it).

Tips Selection Algorithm (TSA). When a site is added to the Tangle, its
parents are selected by a Tip Selection Algorithm (TSA). The TSA must select
two tips (unconfirmed sites) that are not conflicting (informally, two transactions
are conflicting if accepting both would produce a double spend). The TSA is a
fundamental component of the protocol because it implicitly indicates how the
nodes agree on the current state of the Tangle. Indeed, if two tips are conflicting,
the TSA indicates which one is considered correct (and should be extended by
appending a new site to it) or orphaned (by ignoring it).

Since each node in the network maintains its own version of the Tangle, a site
can end up having multiple children. Indeed, due to the latency in the network,
the TSA could chose a site which is a tip locally, but that is already confirmed
in another version. The Tangle whitepaper [6] presents two TSAs1:

– Uniform TSA: Each parent is chosen uniformly at random among all the tips.
– Markov Chain Monte Carlo (MCMC): the selection of each parent is done

by using a random walk. A walker starts from a given site (e.g., the genesis),
moves from site to child site, and stops when it reaches a tip. The probability
of moving to a child site, depends on its cumulative weight (see [6] for more
details).

The Double Spending Attack. In the Tangle, an attacker that wants to dou-
ble spend must generate two conflicting transactions and first broadcast only one
of them. When the first transaction is considered well-confirmed (i.e., the honest
nodes think the probability to reverse it is small enough), then the attacker can
broadcast the second transaction and append a lots of sites (forming a parasite
chain [2,6]) so that the first transaction is discarded.

2 Related Work and Motivations

Related Work. The Uniform TSA was initially proposed for its simplicity.
One of its advantages is that tips are quickly confirmed [5,6]. However, it is easy
to see that it offers no protection against double spending attacks. Indeed, an
attacker just has to generate more tips than the current number of honest tips
to have a higher probability to be selected by honest nodes. Hence, even very
old transactions could be canceled easily.

The MCMC algorithm was the first to offer protection against double spend-
ing attacks. Indeed, the older a transaction is, the harder it is to cancel it [1,6].
However, the MCMC requires computing the cumulative weight of every sites in

1 A third one is briefly presented but is actually just a variation of the MCMC that
we present here.
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the tangle (which has worst-case quadratic complexity in the number of sites),
and its security depends on a parameter α which also influences the number of
tips that are left behind [5] (i.e., tips that are never confirmed). In other words,
better security implies less stability, and usability.

The efficiency and the security of the MCMC has been improved with
MCMCrw [1], by using a simpler version of the cumulative weight (which has
linear complexity in the number of tips). MCMCrw obtains a better trade-off
security/stability than standard MCMC. G-IOTA [3] and E-IOTA [4] are two
extensions of IOTA that proposed mechanisms to limit the number of left-behind
tips, while still using MCMC for its security.

All the previously proposed TSAs mixes in the same algorithm the security
and the stability aspects. Our goal is to give an algorithm that separates these
two aspects.

The last version of the IOTA whitepaper [7] has a similar approach. It pro-
poses to use a completely distinct algorithm to resolve conflicts so that the TSA
is not concerned by the security aspect. However, the security of the proposed
consensus algorithm has not yet been formally studied. Our goal is to improve
previously defined TSAs, using the same model as the original Tangle whitepa-
per, which has been formally defined [2,6].

Motivations. Our motivation comes from three important observations.

Observation 1. If, between two conflicting transactions, one is considered mali-
cious2 with higher probability than the other, does it make sense to choose the
malicious transaction as parent with non-zero probability ?

Regardless of the algorithm used to compare conflicting transactions, we believe a
transaction that is considered malicious should never be selected as parent, even
with small probability. Otherwise, a fraction of the honest nodes will support
the malicious transactions and help the adversary. So, we think a secure TSA
should resolves conflicts in a deterministic manner, using another algorithm
that we call the Conflict Resolving Algorithm (CRA).

Observation 2. The uniform random tip selection is the algorithm that offers
the best confirmation time and produces the smallest number of tips on average.
However it offers poor security guarantees.

The main reason Uniform random TSA is not used in practice is because it offers
poor security guarantees. Indeed, it is very easy for a malicious node to generate
a small number of transactions to give a high probability for an old transaction
to be selected as parent. However, when there is no conflicts, transactions are
confirmed very quickly and no transaction is left over. Thus, there is no issue
in using the uniform random TSA, after that the set of non-conflicting tips has
been deterministically selected.

2 Here malicious just means that it conflicts with a transaction that is considered
correct.
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Observation 3. MCMC offers good security guarantees at the price of slower
confirmation time and higher number of tips on average.

Again, if an algorithm provides a good way to discriminate conflicting trans-
actions, then there in no reason not to use it for this purpose. Then, another
algorithm can be used to randomly select parents among the non-conflicting
remaining tips efficiently. The security of MCMC is due to the fact that a random
walker has a greater probability to move towards sites with higher cumulative
weight. However, we think there is no need to do it for all the sites, but instead,
it should be done only when comparing conflicting sites.

3 A New Secure TSA: The Two-Step TSA

Model. Given a Tangle, S denotes the set of sites. For any subset C of sites, we
say that C is conflict-free if all the sites in C are pairwise non-conflicting. We
now give a more precise definition of tips that takes into account conflicts. We
say a conflict-free set C is a set of tips, if there is no sites s ∈ S and t ∈ C such
that s confirms t and C ∪ {s} is conflict-free. This means that, if a tip in C is
confirmed by some site in s ∈ S, then s does conflict with another site in C. For
a site s, w(s) denotes its cumulative weight.

The 2-Steps TSA. Our 2-Step TSA first resolves conflicts between sites and
then dispatch parents among conflict-free sites.

Our Conflict Resolver Algorithm (CRA) takes a Tangle and returns a maxi-
mal conflict-free set of tips C such that, for any pair of conflicting sites s1 and
s2, if s1 is confirmed by some site in C, then w(s1) ≥ w(s2) i.e., the conflict-free
set of tips that confirms only the heaviest site in case of conflicts, and is maximal
in the sense that no more site can be added to the set without creating conflicts.

Fig. 1. In this example, the white square
is considered correct and the black one is
discarded.

Fig. 2. In this example, the new site can
merge both branches.

Our Tip Dispatcher Algorithm (TDA) takes a set of conflict-free tips C and
returns two tips p1 and p2 selected uniformly at random among C, with p1 and
p2 distinct if |C| ≥ 2.

In Fig. 1 we see a tangle and two conflicting transactions (the two squares).
Our CRA first discriminates between the two and considers the white square to
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be correct and discards the black sites (all the sites confirming the black square).
The output of the CRA is the set C containing three conflict-free tips. Then our
TDA dispatches the two parents without discriminating between the old and
the recent sites. The goal of the TDA is to confirm as many sites as possible,
reducing the number of left-over sites.

Security. Using our algorithm, if the honest nodes agree on a conflict-free set
of tips, then they all extend the tangle in the same way, increasing the weight
of the same set of sites. In other words, for any discarded site, there is a site,
considered correct, whose weight increases for each new honest site.

This implies that, if an adversary wants to discard a site that is considered
correct, it has to generate sites at a higher rate than the honest nodes (which is a
necessary assumption anyway [2]). It means that, like in Bitcoin, the probability
of creating a successful double spending attack on a site decreases exponentially
fast with its weight.

This property is not obtained by previous TSAs. For instance, if a parasite
chain has probability 1/3 to be selected by the MCMC, then an honest node will
append one third of its transactions in the parasite chain (assuming they are
independent), which is not the intended behavior. In addition, 1/3 of the honest
transactions globally will end up selecting the parasite chain as the correct one.
A third of the honest nodes plus the malicious node then represents half of the
computational power, so that it becomes even easier for the malicious node to
increase the probability of selecting its parasite chain.

Using our TSA, the parasite chain is never selected if its cumulative weight
is smaller than another branch of the tangle. This implies that a malicious node
that wants to double spend has to create a parasite chain on its own and is not
helped by honest nodes.

Another interesting property of our TSA is that it does not automatically
consider correct a site that is located on the main branch. Instead, it compares
conflicting sites independently on where they are located on the tangle. Doing
so, we can confirm a separate branch that could look like a parasite chain, but
is in fact older and might contain honest transactions as well, for instance if it
was generated offline. Indeed, we do not want to discard an entire chain just
because a conflicting site appears on top of the main chain. Figure 2 illustrates
the situation. We see that the white square has a greater cumulative weight
compared to the black square, so only the site confirming the black square (there
is no such site in this example) are discarded, creating two tips (the parents of
the black-square site). We then have a chance to merge the two branches with a
new site (the star-shaped one) using our TDA.

In this situation the MCMC would choose the main branch with greater
probability and would almost never merge both branches since the MCMC would
never stops its random walk to a parent of black square because it is not a tip.

Performances. Despite using the cumulative weight, which is computed in
Θ(n) time for a given site, our algorithm can have constant complexity in most
situations.
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After receiving the Tangle from its peers, a node can compute the conflict-
free set of tips C with the CRA, while storing the cumulative weight of each
site for later use. After that, every time the node has to generate a site s, the
TSA will return two parents p1 and p2 among C and there is no need to run
the CRA again for the next site as the new conflict-free set of tips is simply
C ∪ {s} \ {p1, p2}. Similarly, for each incoming site s, if s confirms a site in C,
then we know s is considered correct and we can update C by adding s and
removing the confirmed tips. So if all the nodes are honest, after the first run of
the CRA, every execution of the TSA has constant-time complexity.

However, if an incoming site confirms a site sm, considered malicious, and
conflicting a site sc considered correct, then we can increment the weight of sm
by one and compare it to the previously computed weight of sc. If the weight
of sm is still smaller than the weight of sc, we can safely ignore the new site
as running the CRA again will not change our current conflict-free set of sites
C. If the weight of sm becomes greater than the previously computed weight of
sc, then we have to update the weight of sc and do the comparison again. We
believe other optimizations could be performed in this case as well.

Concluding Remarks. We propose a new paradigm for constructing secure
and efficient TSAs. We observed that existing TSAs can be improved by spliting
the parent selection into a conflict resolving phase and tip dispatcher phase. We
believe this work will open new research on the security and the performances
of TSAs.
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Abstract. In SMT solver based verification, the program to be verified
is often given in an intermediate verification language such as Boogie.
We present a program transformation that aims at splitting mathemat-
ical arrays (i.e., maps, which are typically used to model arrays and
specifically the heap) into different partitions, so that the resulting ver-
ification conditions are easier to solve (due to the need of fewer case
splits when analysing the effect of reads and writes over the same array).
Our method takes the similar role of classical preprocessing steps based
on alias analysis; the difference is that it works on any (mathematical)
map, as opposed to a data structure that is known to present a chunk
of memory managed by some compiler. Having to forfeit the benefits of
general assumptions about memory (e.g., allocate-before-use), we need
to deal with additional difficulties but obtain a more general technique.
In particular, our technique can be applied to arbitrary programs in
the intermediate verification language, including programs that are not
directly derived from a program in a production-type programming lan-
guage, like C or Java. We have implemented a prototypical version of
the program transformation in order to demonstrate that it can lead to
up to exponential reductions in execution time for the Ultimate software
verification tool, despite the cost of performing the initial static analysis.

1 Introduction

We present a program transformation to split the map variables in a program into
as many different maps as possible (given the results of an initial static analysis
which conservatively approximates the program’s semantics). The benefit of the
program transformation is that the verifier can be freed of some of the burden of
proving independence of map operations since map operations on different maps
are (trivially) independent.

Our method is designed as a source-to-source transformation of programs in
a logics-based intermediate verification language. By “logics-based” we mean in
particular that the native data types of the language represent mathematical
objects that are to be reasoned about using formal logics, as opposed to the
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data types of production-type languages, like C or Java, which represent chunks
of memory of the computer that the program is executed on.

Translation into such a language is a common intermediate step taken by
symbolic verifiers, e.g., Dafny, Ultimate Automizer, Ultimate Taipan, SMACK,
SeaHorn, JayHorn, and many more [2,3,8,10,11,13]. This step allows the ver-
ifier to separate the modelling of the input language (often a production-type
language like C or Java) from the application of verification techniques that are
independent of the particularities of the input language. To guarantee this strict
separation of concerns, it is essential to make the intermediate language fully
self-contained, in particular no hidden assumptions may be carried over from the
source language, since they would break the interchangeabilty of techniques that
can be applied to programs in the intermediate language. A prominent example
for programs in an intermediate verification language that have no direct corre-
spondence to the verification input anymore are path programs, as presented and
used in [1] and [7]. That our technique consumes programs in an intermediate
verification language is a crucial difference to techniques that achieve a similar
splitting of maps but depend on assumptions from the semantics of their input
language, like the partitioned memory model presented by Wang et al. whose
static analysis is specific to C programs [19], as well as other approaches that
separate the heap of a C program in order to speed up verification [9,18,19].

Map data types in particular are a common tool for modelling dynamic
memory in languages like C and Java. For instance, the verifiers in the Ulti-
mate framework model the heap of a C program as one large integer-indexed
map. Since this means that all heap accesses in the C program are translated
to accesses of the same map variable in the intermediate program, very long
chains of store operations occur naturally and induce a significant burden on
the reasoning engine inside the verifier. This becomes problematic when there
are many reads over such long store chains, since for inferring the outcome of
each read operation, the verifier needs to determine which of the stores can be
responsible for the value of the map at the read position. This leads to a lot of
case splits which can slow down verification massively, as shown for example by
Wang et al. [19] along with the effectiveness of partitioning memory to alleviate
the problem.

Structure of the Paper. Since the correctness of our program transformation is
justified by the independence of groups of map accesses, we will first give a formal
definition of when two accesses are semantically independent. Based on this, we
will define an interface to a static analysis such that the static analysis can be
used to conservatively infer independence of map accesses for a given program.
Based on such an analysis result, we will define the program transformation
itself and show its correctness through a proof of bisimulation between the input
program and the output program. We will use a scalable benchmark program to
give an example of the reduction in verification time that that the transformation
can obtain, despite the cost of performing the initial static analysis.



Separating Map Variables 171

Our technical contributions are as follows.

– We formally introduce the independence property which enables the desired
program transformation (in the context for of the intermediate programming
language).

– We define an instrumentation of a program with auxiliary variables such that
an existing static analysis can infer the independence property.

– We define a program transformation that takes as input a program and the
inferred independence property and returns a new program. In the new pro-
gram statements use different map variables according to the inferred inde-
pendence property. We prove of the transformation by showing bisimulation-
equivalence with the original program.

– We present an experiment for a scalable benchmark program.

2 Example

The left hand side of Fig. 1 shows an example program given in the Boogie [12]
verification language. While the program models a program in the C program-
ming language we want to stress that our technique cannot rely on any metainfor-
mation specific to C, like the meaning of the malloc procedure, or the absence of
access to uninitialized memory cells. Map semantics in Boogie follow McCarthy’s
theory of arrays [14], which is also used in SMT solvers.

The example program is artificial. Its purpose is to necessitate a large number
of non-interference checks in a program of minimal size. So the main obstacle to
verification is the necessity of proving non-interference between the map updates.

In the example, dynamically allocated memory is modeled by the two map
variables mem and valid. The map mem stores the contents of the memory. The
map valid stores which memory cells are allocated. C’s malloc function is mod-
eled by the procedure malloc, which returns a memory location that is not
currently in use. (For simplicity we assume that all memory blocks are of size
1).

The procedure main starts by allocating two pointers and storing them to
variables p and q. The contents of both memory locations p and q are initialized
to 0. Then, the value at location p is incremented nondeterministically often, and
the value at location q is decremented nondeterministically often. The assert
statements express that, at the end of the program the values in memory at p
and q contain a non-negative or a non-positive value respectively.

As an intermediate goal to correctness, a solver must prove that the oper-
ations on memory cells p and q do not interfere. A typical CEGAR-based, or
bounded model checking-based, solver will need to do this for every spurious
counterexample.

Our technique provides a preprocessing such that the solver can instead prove
correctness of the transformed program on the right hand side of Fig. 1. In the
transformed example, the map mem has been replaced by two maps mem 1 and
mem 2. Memory accesses at p are modeled by accessing mem 1, memory accesses
at q are modeled by accessing mem 2. That way the solver does not need to
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Fig. 1. Example of a program and its transformation. The program serves also as the
basis of our scalable benchmark suite. The value of the variable mem is a mathematical
map. It is used to model the memory. The program transformation makes the inde-
pendence of the two statements in the loop apparent. Intuitively, the two statements
use the map mem differently. The transformation introduces diffent maps for different
uses.

prove non-interference between the increment and decrement operations for each
spurious counterexample, which typically results in a dramatic speedup.

3 Preliminaries

We fix our notation for syntax and semantics of map manipulating programs.

Program Syntax. We distinguish two types of variables, map variables and base
variables. Map variables are named a, b, . . .. We use i, j, . . . for base variables
that are used as map indices in the current context and x, y, . . . for all-purpose
base variables. We use constant (or literal) expressions named lit, lit1, lit2, . . ..
We use a special variable pc ∈ Variables called the program counter. We use
typewriter font for program variables (e.g., i, x) and italics for mathematical
variables (e.g., i,x).

Expressions in our programs can have one of three types.

Expressions of base type: ebase ::= lit | x | a[i]
Expressions of map type: emap ::= a | a[i:=x] | (const lit)

Boolean expressions: ebool ::= x==y | !ebool | ebool && ebool | ebool || ebool
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The set of all commands is generated by the following grammar. We refer to
this set by Command. We refer to individual commands by the letters c, c′.

c ::= x:=ebase | a:=emap | havoc x | havoc a | assume ebool

The commands assignments, as well as the havoc and assume commands which
are common in verification languages. The set of program locations, Loc, is a
set of distinct identifiers {�, �′, �0, �1, . . .}. A statement is a triple of a source
program location, a command, and a target program location, i.e., Statement =
Loc×Command× Loc. We use the letter σ for statements. Let σ = (�, c, �′) be a
statement, then we refer to the source location of σ by src(σ). In contexts where
the locations are not important we omit them from the statement and write only
the command. We call statements whose command is of the form a:=a[i:=x]
map write statements, and we call statements whose command is of the form
x:=a[i] map read statements. To highlight that a statement’s command is a
map write (read), we name the statement σwr (σrd).

For our program transformations, we will also use sequential composition
statements of the form (�, σ1;σ2; . . . ;σn, �′), where σ1, σ2, . . . are commands.
The meaning of this notation is that the transformed program contains the loca-
tions �1, �2, . . ., which appear nowhere else in the program, and the statements
(�, σ1, �1), (�, σ2, �1), . . . , (�n−1, σn, �).

A program P is given as a control flow graph whose edges are statements.
Formally: P = (Loc, Σ, �0), where Loc is a set of locations, Σ ⊆ Statement is a
set of statements, and �0 ∈ Loc is the initial location. For technical reasons we
do not allow incoming control flow edges at the initial location. A program P
induces a set of program variables, Var, which are all the variables that occur
in any of the statements of P . We sometimes refer to only the basic variables
Varbase ⊆ Var or only the map variables Varmap ⊆ Var. We call the subset of Σ
that contains all the map write (read) statements Σwr (Σrd). From now on we
assume the program P is given as described here.

We do not allow equating maps in assume statements (assume a==b). In our
experience this restriction does not matter in practice. Furthermore, we only
allow equalities between (base) variables, not between expressions. This is not a
proper restriction.

We will abbreviate a:=a[i:=x] as a[i]:=x. We may omit the case when
the store is over a different map, like a:=b[i:=x], from case distinctions, since
it can be simulated by a map update followed by a map assignment; in this
case a:=b followed by a[i]:=x. Also, we omit chains of stores applied to one
map variable; again this omission does not change the expressiveness of the
programming language.

Program Semantics. For simplicity of presentation we consider only two sorts,
namely some fixed non-empty set that is the base sort, and the set of all functions
from that set into itself, this is the sort of our map variables. We denote the base
sort Sort and the map sort Sort→ Sort.

A state in our program is a mapping from program variables to values from
our set of sorts. The base variables, like x and i are assigned values from Sort.
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The map variables, like a, are assigned values from sort Sort→ Sort. The Boolean
sort {true, false} occurs only during evaluation of Boolean expressions. The
program counter variable pc is a special case, its value denotes the location
� ∈ Loc that the execution is currently in.

We use the (semantic) map update operator ·[· �→ ·] : (Sort→ Sort) × Sort ×
Sort → (Sort→ Sort): Let a be a map, then a[i �→x] is the map that returns the
value a(j) for all arguments j �= i and the value x for the argument i.

For expressions e we give an evaluation function ·[[·]] : States× Expressions →
(Sort∪(Sort→ Sort)), which, given a valuation of the variables, assigns a value to
e: Every literal has one value in Sort it is associated with; the literal evaluates to
that value regardless of state. A variable is evaluated by looking up its value in
the state. A map variable’s value is a map, a map access at some index evaluates
to the application of the evaluated map value to the evaluated index value. The
semantics of the store operator is given as the above-mentioned map update
operator. A constant map expression with some argument lit evaluates to a map
whose value is lit at every position. The Boolean operators are evaluated as usual.
Formally:

s[[lit]] def= lit s[[v]] def= s(v)

s[[a[i]]] def= s[[a]](s[[i]]) s[[a[i:=x]]] def= s[[a]][s[[i]] �→s[[x]]]

s[[(const lit)]] def= λx. lit s[[e==e’]] def=

{
true if s[[e]] = s[[e’]]
false otherwise

Note in particular that equality is defined both for expressions of both the base
sort and the map sort, where the semantic equality of maps is defined as usual,
i.e., two maps are equal when they map every input element to the same output
element.

The concrete post operator post : 2States × Statement → 2States is given as
follows.

post(S, (�, x:=ebase , �′)) def= {s[pc �→�′][x �→s[[ebase]]] | s ∈ S, s(pc) = �}
post(S, (�, a:=emap , �′)) def= {s[pc �→�′][a �→s[[emap]]] | s ∈ S, s(pc) = �}
post(S, (�, havoc x , �′)) def= {s[pc �→�′][x �→v] | s ∈ S, s(pc) = �, v ∈ Sort}
post(S, (�, havoc a , �′)) def= {s[pc �→�′][a �→v] | s ∈ S, s(pc) = �,

v ∈ Sort→ Sort}
post(S, (�, assume e , �′)) def= {s[pc �→�′] | s ∈ S, s(pc) = �, s[[e]] = true}

post(S, (�, c ; c’ , �′)) def= post(post(S, (�, c , �)), (�, c’ , �′))

An execution e is a sequence of statements and states in alternation, i.e.,

e = s0. σ0. . . . . σn−1. sn.

Every execution starts in an initial state, i.e., a state s0 where the program
counter pc is assigned the initial location �0. Furthermore, the sequence must be
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consecutive, i.e., for all i from 0 to n − 1, the state si+1 must be contained in
the set of post states of the state si under the statement σi, i.e.,

si+1 ∈ post({si}, σi).

Note that the common condition that for two consecutive statements σi, σi+1 in
an execution the source location of σi+1 must match the destination location of
σi is, maybe not obviously, implied by the above condition due to the program
counter value being part of our program states. The empty executions are special
cases; an empty execution s0 consists of an initial state only. We can write every
non-empty execution as e. σ. s where e is an execution. We denote the set of all
executions Executions.

The reachable states are all states s such that there is an execution that ends
in s.

Reach def= {s | ∃e ∈ Executions. e = e′s}

4 Dependency Analysis

Our program transformation is based on an analysis of the dependencies between
the statements in the program P . In this section, we describe a property that
makes explicit which map update statements may be responsible for the value
of a map at some index at some program location. For this, we introduce the
relation LstWr (read: “last writes”) that contains for a potential read in the
program all the map updates that are relevant for that read in some execution
of the program. Note that the relation LstWr is an adaptation of the reaching
definitions relation, which is textbook knowledge [15] – but only for programs
without maps.

Last Write Relation. LstWr The relation LstWr ⊆ Σwr×Σrd relates all map write
statements σwr to all the map read statements σrd such that σwris responsible for
the value that is read in σrd in some execution.

Definition 1 (Last Writes Relation LstWr). The Last Write relation
LstWr ⊆ Σwr × Σrd contains a pair (σwr, σrd), where the command in σwr is
of the form a[i]:=x, and the command in σrd is of the form y:=b[j], whenever
there is an execution e and a value v such that v is written by σwr and is read
by σrd, i.e., if e fulfills the following linear time property.

♦ (pc = src(σwr) ∧ x = v ∧ ♦ (pc = src(σrd) ∧ b[j] = v))

In this definition we assume that every value that is written to a map during
an execution is unique; this can be accommodated by providing each value with
a timestamp. Furthermore, in this definition a and b may or may refer to the
same program variables, the same holds for, i and j and x and y.
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Alternative Characterisation of the Last Writes Relation. LstWr We provide an
alternative characterisation of the Last Writes relation LstWr. This characterisa-
tion will lead to an instrumentation of the program that will allow us to compute
an relation LstWr

#
that overapproximates the Last Writes relation.

We next define the function lw which, given a position i, given a map a, and
given an execution e, returns the write statement σwr that is responsible for the
value that the map a has at position i in the last state of the execution e. For
technical reasons we will use the symbol ⊥ (to cater for the case where the map
a has not been written at position i in execution e).

Formally, we define the function lw : Varmap×Sort×Executions → Σwr∪{⊥} by
induction over the length of the execution e. (As explained above, an execution
of length 0 is of the form s0 where s0 is an initial state, and an execution of
length n + 1 is of the form e. σ. s where σ is a statement and s is a state.)

lw(a, j, s0)
def= ⊥

lw(a, j, e. havoc a. s) def= ⊥
lw(a, j, e. a:=(const lit). s) def= ⊥

lw(a, j, e. a[i]:=x. s) def=

{
a[i]:=x if s[[i]] = j

lw(a, j, e) if s[[i]] �= j

lw(a, j, e. a:=b. s) def= lw(b, j, e)

lw(a, j, e. σ. s) def= lw(a, j, e) if e. σ. s matches none of the above

Intuitively, the definition of lw(a, j, e) traces the value of the map a at index
j back within the execution e until it hits the map write statement that is
responsible for the fact that a has that value at position j at the end of e. This
write statement is returned by lw. If the execution consists only of an initial state
s0, or the last statement was a havoc statement with argument a, or when a has
been set to a constant map by the last statement, then no value in a depends on
a map write statement, so lw returns the symbol ⊥. If the last statement in the
execution has been a write to map a, then LstWr checks whether the write was at
position j. If that is the case, the last write is returned, otherwise lw recurses on
the prefix of the execution where the write statement and its successor state have
been dropped. If the last statement in the execution assigned another map b to
a, the lw recurses on the execution prefix, and it looks for writes on b instead of
writes on a. Otherwise, the last statement in the execution had no influence on
values in a, so it is evaluated recursively on the prefix without the last statement
and state.

As above, the Last Writes relation LstWr relates all the write statements
σwr to all the read statements σrd, such that there is an execution where σwr

is responsible for the value that σrd reads. From the function lw we build the
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explicit characterization of the relation LstWr ⊆ Σwr × Σrd as follows.

LstWr
def= {(σwr, σrd) | σrd = (�, x:=a[i], �′)

∧ ∃ e. s ∈ Executions. s[[pc]] = � ∧ s[[i]] = i ∧ lw(a, i, e. s) = σwr

∧ σwr �= ⊥}

5 Computing Dependencies

In this section, we present an instrumentation of the program P such that the
Last Writes relation LstWr can be expressed in terms of the set of reachable
states of the instrumented program PLstWr.

5.1 Instrumentation

We introduce an auxiliary map variable a-lw for every map-variable a that
occurs in the program P . The values of the maps that are assigned to a-lw are
not values from our base sort Sort, but instead are symbols that refer to write
statements that occur in P .

Intuitively, the transformation is designed in such a way that the fresh lw-
maps capture the results of the lw-function for each program location. We con-
struct the transformation in three steps. We begin by defining a transformer
τ c
LstWr : Command → Command for some commands whose transformation result

does not depend on their location in the program.
If the command c is a havoc to map variable a, or if c assigns a constant map

to a, then a-lw is assigned a constant map that contains the symbol ⊥ at all
positions. This represents that no write statement has an influence on any value
in the map a after the command c has been executed. If c assigns the value of
a map variable to another map variable, then the analogous assignment is done
on the respective lw-maps. This expresses that all map write statements that
have an influence on a also have an influence on b after the command c has
been executed. In all other cases, the transformation τ c

LstWr leaves the command
c unchanged.

τ c
LstWr(havoc a) def= havoc a; a-lw:=(const ⊥)

τ c
LstWr(a:=(const lit)) def= a:=(const lit); a-lw:=(const ⊥)

τ c
LstWr(b:=a)

def= b:=a; b-lw:=a-lw

τ c
LstWr(c)

def= c where none of the other cases apply

From τ c
LstWr we construct the transformer τσ

LstWr : Statement → Statement,
which transforms the map write statements. Whenever a map variable a is writ-
ten to at index i, then a-lw is written at the same index, but with a special
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value that identifies the updating statement. Statements that are not map write
statements are left unchanged by τσ

LstWr.

τσ
LstWr(σwr)

def= (�, a[i]:=x; a-lw[i]:=σwr , �
′)

where σwr = (�, a[i]:=x , �′)

τσ
LstWr((�, c, �

′)) def= (�, τ c
LstWr(c), �

′) where (�, c, �′) �∈ Σwr

From the above-described transformers, we can now construct the statement
tranformer used for the actual instrumentation, τLstWr : Statement → Statement.
The statement originating at the initial location �0 constitutes a special case.
Since at the initial location no map writes have been executed, we set every
lw-variable to a constant map containing the symbol ⊥. (Note that we assume
that the initial location has no incoming statements.) The transformation for all
other statements just uses the above-defined τσ

LstWr.

τLstWr((�0, c, l))
def= a-lw:=(const ⊥);

. . .

z-lw:=(const ⊥);

c′

where τσ
LstWr((�0, c, l)) = (�0, c′, �) and Varmap = {a, . . . , z}

τLstWr((�, c, �′)) def= τσ
LstWr((�, c, �

′)) where � �= �0

We are now ready to define the instrumented program PLstWr. We define
the instrumented program PLstWr through applying the transformation function
τLstWr to each statement in Σ. Formally:

PLstWr
def= (Loc, {τLstWr(σ) | σ ∈ Σ}, �0)

We can now express the Last Write relation LstWr through the set of reach-
able states of the instrumented program PLstWr.

Proposition 1. The Last Writes relation LstWr, as defined in Sect. 4, is identi-
cal to the relation that relates a map write statement σwr to a map read statement
σrd of the form (�, x:=a[i], �′) if there is a state s in the set of reachable states of
the instrumented program PLstWr such that the program counter pc points to the
source location of σrd, �, and the value that s assigns to the map read expression
a-lw[i] is the write statement σwr. Formally:

LstWr = {(σwr, σrd) | σrd = (�, x := a[i], �′)
∧ ∃s ∈ Reach(PLstWr). s[[pc]] = � ∧ s[[a]]-lw[i] = σwr

∧ σwr �= ⊥}
The proof can be given as an induction over the length of executions and is

this is relatively straightforward.
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We state the following lemma for later reference (proof of Theorem 1 in
Sect. 6).

Lemma 1. P and PLstWr are bisimulation-equivalent.

The proof of this lemma is obvious from the fact that the additional com-
mands introduced by the transformation are ghost code.

5.2 Computing an Overapproximation of the Last Writes Relation
LstWr

We have seen that the relation LstWr can be expressed through the set of reach-
able states of the instrumented program PLstWr. The set of reachable states is
not computable in general. Thus, we apply a static analysis that computes an
overapproximation of the set of reachable states.

The static analysis must be able to handle programs that manipulate maps.
An example is a static analysis based on the Map Equality Domain [4]. This
domain is useful to infer equalities and disequalities between expressions which
can involve maps.

We have implemented an extension of the Map Equality Domain. The exten-
sions supports constraints of the form x ∈ {lit1, lit2} which allows us to succinctly
express constraints like a-lw[i] ∈ {σ1, σ2}. Here, σ1 and σ2 are literals (referring
to the corresponding statements). All literals are pairwise different. Thus, these
constraints allow us to infer constraints like a-lw[i] �= σ3. Such constraints are
crucial to infer independence of statements.

From now on, we use LstWr
#

to refer to the overapproximation of the rela-
tion LstWr computed by applying the above-described static analysis to the
instrumented program PLstWr. The static analysis always computes an overap-
proximation of the set of reachable states of PLstWr. Thus, the relation LstWr

#
is

an overapproximation of the Last Writes relation LstWr. We state the following
remark for later reference (in Lemma 2).

Remark 1. The relation LstWr
#

is an overapproximation of the Last Write rela-
tion LstWr, i.e.,

LstWr
# ⊇ LstWr.

6 Program Transformation

In this section we introduce the program transformation that transforms the pro-
gram P , given the relation LstWr

#
, which approximates the Last Write relation

LstWr of program P .
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6.1 Computing a Partition of the Map Write Statements

First, we define the relation R ⊆ Σwr × Σwr that relates all write statement that
map influence the same read statement. Two write statements σwr and σ′

wr are
related by R if there exists a read statement σrd such that the relation LstWr

#

relates both σwr to σrd and σ′
wr to σrd. Formally:

R
def= {(σwr, σ

′
wr) | ∃σrd ∈ Σrd. LstWr

#
(σwr, σrd) ∧ LstWr

#
(σwr, σrd)}

Based on the relation R, we define the relation r ⊆ Σwr ×Σwr as the smallest
equivalence relation that contains the relation R. This equivalence relation r
induces a partition over the set Σwr, i.e., a set W ⊆ 2Σwr of subsets of the set
Σwr such that the disjoint union of the subsets is identical to the original set Σwr.
Thus, the set W consists of disjoint subsets {W1, . . . ,Wn} of the set of all write
statements Σwr. The partition W has the property that for every two blocks W1

and W2 in W, we know that if we take one write statement σwr from W1 and
another write statement σ′

wr from W2, then σwr and σ′
wr are independent in the

sense that they never have an influence on the same read statement.
For technical reasons, we add a the singleton consisting only of the symbol

⊥ to W. Its use will become clear in the next subsection.

6.2 Program Transformation

We introduce a map variable a W for each W ∈ W. If for example the write
statements a[i]:=x and a[j]:=y appear in different blocks W1 and W2, then
we will replace the map variable a with two different variables a W1 and a W2

in these statements accordingly. (There is a subtle point regarding the fact that
W is a mathematical object while a variable name consists of characters, which
we neglect here.)

We use the notation LstWr
#−1[σrd] to denote the preimage of LstWr

#
with

respect to some read statement σrd ∈ Σrd, i.e.,

LstWr
#−1[σrd]

def= {σwr | (σwr, σrd) ∈ LstWr
#}.

The transformation updates the statements of program P using the trans-
formation τ : Statement → Statement as described in the following. The trans-
formation result τ(σ) depends on the statement type of σ. If σ writes to map
variable a, it is transformed to a statement that does the same update to map
variable a W , i.e., to the map variable corresponding to the block in the parti-
tion W ∈ W that contains σ. If σ reads from a map variable a, there are two
cases. Either LstWr

#
at the read location yields the empty set. This means that

it is guaranteed that the read position has never been written to in any execution
that reaches σ. In this case, σ is transformed to a read from the map variable
a {⊥} instead of a. Otherwise, by construction of the partition W, LstWr must
yield a set that falls completely into a block W in the partition W. In that case,
σ is transformed to a read from the map variable a W instead of a. If σ assigns
a map variable a to a map variable b, it is transformed to a series of assignments
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that assign for each block in the partition W ∈ W the variable a W to the vari-
able b W . A havoc to a map variable a is translated to havoc on all variables
a W for every block W in the partition W, followed by an assume statement
that ensures that all maps a W have been set to the same value. In all other
cases, the transformation leaves σ unchanged. Formally:

τ((�, a[i]:=x, �′)) def
= (�, a W[i]:=x, �′)

where (�, a[i]:=x, �′) ∈ W

τ((�, x:=a[i] , �′)) def
= (�, x:=a {⊥}[i] , �′)

if LstWr
#−1[(�, x:=a[i] , �′)] = ∅

τ((�, x:=a[i] , �′)) def
= (�, x:=a W[i] , �′)

if LstWr
#−1[(�, x:=a[i] , �′)] �= ∅

and LstWr
#−1[(�, x:=a[i] , �′)] ⊆ W

τ((�, b:=a , �′)) def
= (�, b W1:=a W1; ...; b Wn:=a Wn , �′)

where W = {W1, . . . , Wn}
τ((�, havoc a , �′)) def

= (�, havoc a W1; ...; havoc a Wn;

assume a W1== ... ==a Wn , �′)

where W = {W1, . . . , Wn}
τ((�, a:=(const lit) , �′)) def

= (�, a W1:=(const lit); ...;

a Wn:=(const lit) , �′)

where W = {W1, . . . , Wn}
τ(σ)

def
= σ if σ matches none of the above cases

We construct the transformed program P ′ by replacing all statements σ in
P by their transformed version τ(σ). Formally:

P ′ def= (Loc, {τ(σ) | σ ∈ Σ}, �0)

6.3 Correctness of the Transformation

In this subsection, we show that the transformation is correct, i.e., that the
program P and the transformed program P ′ are bisimulation-equivalent. Given
Lemma 1 it is sufficient to prove the following Lemma.

As an aside: it does not seem obvious to us how to give a bisimulation between
the programs P and P ′ directly.

Lemma 2. The programs PLstWr and P ′ are bisimulation-equivalent.

Proof. We define a bisimulation relation ∼ between PLstWr and P ′ as follows.
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The states s ∈ StatesP and t ∈ StatesP ′ are bisimilar, i.e., s ∼ t, iff

∀x ∈ Varbase. s[[x]] = t[[x]] (1)

and

∀a ∈ Varmap. ∀i ∈ Varbase.

(s[[a-lw[i]]] = ⊥ =⇒ ∀W ∈ W. s[[a[i]]] = t[[a W[i]]]) (2a)

∧ (∃W ∈ W. s[[a-lw[i]]] ∈ W =⇒ s[[a[i]]] = t[[a W[i]]]) (2b)

That ∼ is a bisimulation can be proven via induction over the types of program
statements. For a detailed proof, we refer to the longer preprint version of this
paper [5]. �
Theorem 1 (Bisimulation). P and P ′ are bisimulation-equivalent.

Proof. This follows by transitivity of bisimulation-equivalence from Lemmas 1
and 2. �

7 Implementation in Ultimate

We implemented our program transformation in the Ultimate program analysis
framework1. The intermediate representation we support is the most expressive
one used by Ultimate, namely the so-called interprocedural control flow graph
(short: ICFG). In this section we elaborate on how our approach can be lifted
from the minimal program representation we chose for our formal presentation
to Ultimate’s program representation.

Multidimensional Maps. In order to support maps of higher dimensions, we
adapt the relation LstWr and the corresponding analysis. This is done by having
not one but several lw-maps for each map variable in the original program. For an
n-dimensional map variable a we would introduce n lw-maps a-lw-1 to a-lw-n
where a-lw-1 is one-dimensional a-lw-2 is two-dimensional and so forth.

Procedures. In order to support procedures, two features are relevant: Map-
valued parameters must be passed between procedures, and it must be possible
to compute procedure summaries that describe the effect of a procedure on global
map variables (in fact having one of these features would be enough in terms of
expressiveness, but Ultimate supports both). Both of these features are enabled
by our support for (by-value) assignments between maps.

8 Experiments on a Scalable Benchmark Suite

In this section, we will investigate whether our approach is applicable in principle.
We will use a small benchmark suite which is specifically tailored to expose the
case split explosion problem.
1 https://github.com/ultimate-pa/ultimate.

https://github.com/ultimate-pa/ultimate
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Fig. 2. The Ultimate Automizer toolchain without and with the program transforma-
tion as a preprocessing step, and the Ultimate Automizer toolchain in isolation applied
after the program transformation, on a benchmark suite whose programs are scaled-up
versions of the example program in Sect. 2. The timeout (TO) is set to 1800 s.

We obtain the bechmark suite by scaling up the example program from
Sect. 2. The example program manipulates the map variable mem on the two
index variables p and q. We obtain new program by adding another two variables
and adding the corresponding statements which manipulate the map variable
mem on two new variables in the same way as the existing statements do for p
resp. q. We can iterate the process and thus obtain a scalable benchmark suite
whose programs have 2, 4, 6, . . . index variables.

Setup. We ran our experiments on a dedicated benchmarking system, each
benchmark task was limited to 2 CPU cores at 2.4 GHz and 20 Gigabytes of
RAM. We ran two toolchains and took three measurements. One toolchain,
called “Automizer without”, is the standard verification toolchain of the program
verifier Ultimate Automizer. The toolchain computes an ICFG from the input
program and then run’s Automizer’s verification algorithm on the ICFG. The
second toolchain, called “Automizer with”, applies our transformation after com-
puting the interprocedural control flow graph and before running Automizer’s
verification algorithm. A third kind of measurements, denoted “Automizer after”,
are the timings of only the verification algorithm in the toolchain “Automizer
with”, i.e., how long the verification of the transformed program takes.

Results. In Fig. 2 we display the results of our experimental evaluation. The
x-axis of the plot represents the different example programs, identified by the
number of map index variables. The y-axis represents the time taken by each
toolchain. We ran three toolchains: The Ultimate Automizer program verifier,
Ultimate Automizer where before the verification run, the transformation is
applied, and a toolchain where Automizer was run on the already transformed
programs.
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We observe that the timings of Automizer on the transformed programs are
nearly constant in the number of used map index variables – the timings range
from 0.9 s to 8.8 s. This means that the only real difficulty in our programs lies
in deriving the non-interferences between the map accesses. Furthermore, we
can see that the Automizer fails to scale well when it needs to derive the non-
interferences itself: It fails to prove all examples with 10 or more map index
variables. The toolchain that includes our transformation shows a significantly
improved scaling behaviour even though the transformation (in particular the
static analysis it is based on) is not cheap.

9 Related Work

There are several works resembling our approach of splitting map variables
in that they propose computing non-interference properties between memory
regions to simplify the verification conditions that are handed to an SMT solver.
Rakamaric and Hu [18], as well as Wang et al. [19] propose a memory model
that uses maps which are separated according to the results of an up-front alias
analysis. Gurfinkel and Navas [9] propose a related but different memory model.
In their setting, the heap state is passed between procedures through local map
variables. They propose a memory model with a partitioning that is context-
sensitive to improve precision. In contrast to our work, these papers all rely on
C semantics for their input program, so they do not apply to arbitrary map
manipulating programs.

Our relation LstWr and the corresponding property is reminiscent of a large
field of work that is concerned with inferring guarantees about data dependencies
between program parts in the presence of arrays, e.g., [6,16,17]. These papers
propose various approaches of finding data dependencies in programs with arrays
in different precisions, for different fragments and for different applications. None
of them is aimed at symbolic program verification as our work is. To our knowl-
edge, our property is the only one that accounts for maps, the crucial difference
being the presence of by-value assignments of map variables.

10 Conclusion

We have investigated the theoretical foundations for a novel research question
which may be relevant for the practical potential of intermediate verification
languages. The question concerns a preprocessing step for intermediate verifi-
cation languages which takes the similar role that alias analysis plays in the
verification for programming languages. We have presented a preliminary solu-
tion in the form of a program transformation. We have integrated the program
transformation into a toolchain. A preliminary experimentation on a small (and
somewhat artificial) shows that the program transformation can be effective.
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Abstract. We study the synthesis of inductive half spaces (IHS). These
are linear inequalities that form inductive invariants for Petri nets,
capable of disproving reachability or coverability. IHS generalize classic
notions of invariants like traps or siphons. Their synthesis is desirable for
disproving reachability or coverability where traditional invariants may
fail.

We formulate a CEGAR-loop for the synthesis of IHS. The first step is
to establish a structure theory of IHS. We analyze the space of IHS with
methods from discrete mathematics and derive a linear constraint system
closely over-approximating the space. To discard false positives, we pro-
vide an algorithm that decides whether a given half space is indeed induc-
tive, a problem that we prove to be coNP-complete. We implemented the
CEGAR-loop in the tool Inequalizer and our experiments show that
it is competitive against state-of-the-art techniques.

1 Introduction

A major task of today’s program verification is to formulate and prove safety
properties. Such a property describes the desirable and undesirable behavior of
a program, often expressed in terms of safe and unsafe states. A safety property
is satisfied if all executions of a program explore only safe states. Phrased differ-
ently, it is violated if an unsafe state is reachable via an execution. Testing reach-
ability is usually a rather complex problem and often undecidable [8,28,51,53].

To restore decidability, the behavior of a program is often over-approximated.
Intuitively, an over-approximation describes a property that holds for all reach-
able states but fails for unsafe states. Hence, over-approximations act like a
separator between reachable and unsafe states and provide a proof for the non-
reachability of the latter. Computing over-approximations is often achieved by
generating a type of invariant [4,18,29,50]. The challenge is to find a type that
admits an efficient generation and is expressive enough to separate reachable
from unsafe states. Inductive invariants are a prominent example [3,10,26]. If an
inductive invariant holds for some state, then it also holds for any successor after
a step of an execution. Hence, if it is satisfied initially, it holds for all reachable
states.
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We generate inductive invariants for Petri nets, a well-established model
of concurrent programs [43,45]. Here, safety verification is usually expressed
in terms of the Petri net reachability or coverability problem. The former is
known to be ACKERMANN-complete [11,12,36,37], the latter is EXPSPACE-
complete [6,38,47]. Despite the ongoing algorithmic development, in particular
for coverability [24,30,31,48,54], computational requirements of solving both
problems often exceeds practical limits. This has led to the development of clas-
sic Petri net invariants like traps, siphons, or place invariants [45] that may help
to solve both problems more efficiently. Typically, these invariants are based on
linear dependencies of places or transitions and can be synthesized easily by
incorporating tools and solvers from linear programming.

The trade-off for the efficient synthesis is that the expressiveness of clas-
sic invariants is limited and often not sufficient to prove non-reachability of a
marking. We study inductive half spaces (IHS) [49,52], a type of invariants with
increased expressiveness. IHS generalize many of the classical Petri net invari-
ants [52] and preserve their linear nature. For instance, any trap or siphon can be
expressed as an IHS. However, the synthesis of IHS remained an open problem.
An IHS consist of a tuple (k, c), where k is a vector over the places of the Petri
net and c is an integer. The corresponding half space is a subset of the space
of markings, containing all markings m satisfying the inequality k · m ≥ c. It is
called inductive if the markings that are in the half space do not leave it after
firing a transition.

Our main contribution is a method for the synthesis of inductive half spaces.
More precise, we compute IHS that separate an initial marking m0 from a final
marking mf , proving the latter non-reachable. The task is formalized in the
linear safety verification problem LSV(R). Given m0 and mf , it asks for an IHS
(k, c) such that k ·m0 ≥ c and k ·mf < c. The problem was first considered in [49]
for continuous Petri nets. The synthesis of IHS is much easier in the continuous
case. In fact, an entire subclass we call non-trivial inductive half spaces does not
occur in this setting. So far, LSV(R) has not been considered in its full generality
and decidability is still unknown.

Fig. 1. The CEGAR loop.

We provide a semi-decision procedure
for LSV(R) using counter example guided
abstraction refinement (CEGAR) [9], a
state-of-the-art technique in program ver-
ification. We illustrate the approach in
Fig. 1. Suppose we are given a Petri net N ,
an initial marking m0, and a marking mf

for which we want to disprove reachability
from m0. Our approach attempts to syn-
thesize an IHS that separates mf from the
reachable markings of N . It begins by con-
structing a formula φ of linear constraints
from the given information and passes it to an SMT-solver. Roughly, φ describes
necessary conditions for solutions of LSV(R). For each solution (k, c) of LSV(R),
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the vector k is a solution of φ. Hence, if the SMT-solver does not find a solution
to φ, then no separating IHS exists. Otherwise we find a vector k of a half space
candidate. The candidate is inductive for each transition t separately: there exists
a ct ∈ Z such that (k, ct) is inductive for t. However, there might be no common
c ∈ Z such that (k, c) is inductive for all transitions. In order to synthesize such
a c, we developed a constant generation algorithm (cga). If cga is successful,
we have found a separating IHS (k, c). Otherwise, k does not admit a suitable
constant c and we apply a refinement. We set φ = φ∧¬mul(k), where ¬mul(k) is
a linear constraint that excludes all multiples of k and repeat the above process.
Note that the loop may not terminate. But if it does, we obtain an answer to
LSV(R).

To realize the CEGAR-loop, we make the following main contributions.

– We develop a structure theory of inductive half spaces. It decomposes the
space of IHS into trivial and non-trivial half spaces. While the synthesis
of trivial IHS is simple, the synthesis of non-trivial ones is challenging. By
employing techniques from discrete mathematics, we can determine necessary
conditions for non-trivial IHS and construct the required formula φ.

– We present two algorithms: the inductivity checking algorithm (ica) and the
constant generation algorithm (cga). The former determines whether a given
half space is inductive, a problem that we prove coNP-complete. This answers
an open question from [52]. ica combines structural properties of IHS with
dynamic programming. cga synthesizes a constant c for a solution k of φ
such that (k, c) is an IHS. cga is an instrumentation of ica. Its termination
argument is an interesting connection between IHS and the Frobenius number.

– We implemented the CEGAR-loop in the tool Inequalizer. Employing it,
we disproved reachability and coverability for a benchmark of widely used
concurrent programs. The results are compared to algorithms implemented
in Mist [44] and show Inequalizer to be competitive.

Related Work. The reachability problem of Petri nets is a central problem
of theoretical computer science. Its complexity was finally resolved after 45
years: it is ACKERMANN-complete. The upper bound is due to Leroux and
Schmitz [37]. The authors refined classical upper bounds like Kosaraju’s [33],
Mayr’s [39,40], and Lambert’s [34]. Hardness was first considered by Lipton [38].
He proved reachability EXPSPACE-hard. Czerwinski et al. [11] improved the
lower bound to non-elementary. The gap was closed by Leroux, Czerwinski, and
Orlikowski [12,36].

Many safety verification tasks can be phrased in terms of coverability. The
EXPSPACE-completeness of coverability was determined by Rackoff [47] and Lip-
ton [38]. Despite this, efficient algorithms keep getting developed [31]. Modern
approaches are based on forward or backward state space exploration [21,23,30,
32,54]. A method that has drawn interest are unfoldings [15,16,35,41]. Notably,
Abdulla et al. [1] solve coverability by constructing an unfolding that represents
backwards reachable states. They analyze it using an SMT-formula.

Profiting from advances in SMT-solving, deriving program properties by con-
straint solving has become popular [1,14,26,27]. In [46], ranking functions are
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synthesized by solving linear inequalities. Synthesis methods for Petri nets involv-
ing SMT-solving often simplify by using continuous values. In [14], Esparza et
al. generate inductive invariants disproving co-linear properties. IHS were first
considered by Sankaranarayanan et al. [49]. The authors synthesize IHS over con-
tinuous Petri nets. Compared to these, we generate a larger class of invariants:
non-trivial IHS do not occur in [49] but are necessary for discrete nets (see Fig. 2).
The discrete structure of IHS was examined by Triebel and Sürmeli [52]. The
authors show that IHS generalize notions like traps, siphons, and place invari-
ants.

Outline. In Sect. 2, we introduce necessary notions around Petri nets. The struc-
ture of IHS is examined in Sect. 3. In Sect. 4, we formulate the SMT-formula
in the CEGAR loop. The algorithms ica and cga are given in Sect. 5. Experi-
mental results are presented in Sect. 6. For brevity, we omit a number of formal
proofs. They can be found in the extended version of the paper [7].

2 Linear Safety Verification

We introduce the linear safety verification problems for Petri nets. They formal-
ize the question of whether there exists an inductive half space which disproves
reachability or coverability of a certain marking. To this end, we formally intro-
duce half spaces and the necessary notions around Petri nets.

Petri Nets. A Petri net is a tuple N = (P, T, F ), where P is a finite set of
places, T is a finite set of transitions, and F : (P × T ) ∪ (T × P ) → N is a flow
function. We denote the number of places |P | by n. The places are numbered.
For convenience, we use a place pi and their numeric value i interchangeably:
Given a vector x ∈ N

n, we denote its i-th component as both x(i) and x(pi). For
a transition t ∈ T , we define vectors t−, t+ ∈ N

n. The i-th component of t−, with
pi ∈ P , is defined to be F (pi, t), written t−(i) = t−(pi) := F (pi, t). Similarly,
t+(i) = t+(pi) := F (t, pi). The vector tΔ captures the difference tΔ := t+ − t−.

The semantics of a Petri net N is defined in terms of markings. A marking
m is a vector in N

n. Intuitively, it puts a number of tokens in each place. A
marking is said to enable a transition t if m(p) ≥ t−(p) for each place p ∈ P ,
written m ≥ t−. The set of all markings that enable t is called the activation
space of t and is denoted by Act(t). Note that Act(t) = {t− + v | v ≥ 0}. If
m ∈ Act(t), then t can be fired, resulting in the new marking m′ = m + tΔ.
This constitutes the firing relation, written as m[t〉m′. We lift the relation to
sequences of transitions σ = t1 . . . tk ∈ T ∗ where convenient, writing m[σ〉m′.
A marking mf is called reachable from a marking m0 if there is a sequence of
transitions σ such that m0[σ〉mf . We use post∗(m0) to denote the markings
reachable from m0 and pre∗(mf ) are the markings from which mf is reachable.
The upward closure of mf is ↑mf = {m ∈ N

n | m ≥ mf}. A marking mf is
coverable from m0, if there is a sequence of transitions σ and an m ∈ ↑mf such
that m0[σ〉m.
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(Inductive) Half Spaces. We describe sets of markings by means of half spaces.
Let N = (P, T, F ) be a Petri net, k ∈ Z

n a vector, and c ∈ Z an integer.
The half space defined by k and c is Sol(k, c) = {m ∈ Z

n | k · m ≥ c}. Here,
k · m =

∑
p∈P k(p) · m(p) is the usual scalar product. We also refer to the tuple

(k, c) as half space. Note that we could also define half spaces via k·m ≤ c. This is
of course equivalent since k ·m ≥ c if and only if −k ·M ≤ −c. We are interested
in half spaces that are inductive in the sense that they cannot be left by firing
transitions. A half space (k, c) is t-inductive if for any m ∈ Act(t) ∩ Sol(k, c) we
have m+ tΔ ∈ Sol(k, c). A half space (k, c) is inductive if it is t-inductive for all
t ∈ T . We use IHS as a shorthand for inductive half space.

A half space (k, c) is not t-inductive if and only if it contains a marking m
with k ·m ≥ c that enables t, i.e. m ≥ t−, and from which we leave the half space
by firing t: k · (m+ tΔ) < c. Since m ≥ t− if and only if there is an x ∈ N

n with
m = t− + x, we can state inductivity in terms of an infeasibility requirement:
Theorem 1. A half space (k, c) is t-inductive iff there is no vector x ∈ N

n with

c ≤ k · x + k · t− < c − k · tΔ.

Theorem 1 provides a way of disproving inductivity of a half space by finding a
suitable vector x. It is a key ingredient of cga and ica.

Fig. 2. Petri net with places p1, p2 and
transitions u, t, v. Edges are entries of the
flow function F . We omit the label 1.

Fig. 3. Geometric interpretation of the
half space (k, c) in Z

2. It is induc-
tive and separates m0 from mf . (Color
figure online)

Example. We provide some geometric intuition. Consider the Petri net in Fig. 2.
Focus on transition t. The vectors describing t are t− = (2, 1) (incoming edges),
t+ = (1, 2) (outgoing edges), and tΔ = (−1, 1). The activation space of t is
Act(t) = {(2, 1) + (x, y) | x, y ∈ N}. It is visualized by the yellow area in Fig. 3.
Let m0 = (3, 1) and mf = (0, 4). Consider the half space defined by k = (3, 2)
and c = 9. In Fig. 3, it is indicated by the diagonal line k ·x = c, x ∈ R

2. The set
of integer vectors above it is Sol(k, c). Clearly, m0 ∈ Sol(k, c) and mf /∈ Sol(k, c),
the half space separates the markings. The markings in Act(t) ∩ Sol(k, c) are
colored blue in Fig. 3. The half space is t-inductive: if m ∈ Act(t) ∩ Sol(k, c),
firing t does not lead to a marking below the line. As we will see in Sect. 3, (k, c)
is also u and v-inductive. Hence, it proves non-reachability of mf from m0.
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Linear Safety Verification. Our goal is to find inductive half spaces that dis-
prove reachability or coverability. Given a Petri net N and two markings m0,mf ,
we study two corresponding algorithmic problems: the linear safety verification
problem LSV(R) for reachability and its coverability variant LSV(C).

LSV(R): Is there an IHS (k, c) with m0 ∈ Sol(k, c) and mf /∈ Sol(k, c)?
LSV(C): Is there an IHS (k, c) with m0 ∈ Sol(k, c) and ↑mf ∩ Sol(k, c) = ∅?

The reader familiar with separability will note that disproving reachability
of mf from m0 amounts to finding a separator between post∗(m0) and pre∗(mf ).
A separator is a set S ⊆ N

n so that post∗(m0) ⊆ S and S ∩ pre∗(mf ) = ∅. The
difference between separability and linear safety verification is that separators
are neither required to be half spaces nor required to be inductive.

The choice for half spaces and inductivity is motivated by the constraint-
based approach to safety verification that we pursue. Half spaces can be given in
terms of (k, c), a format that is computable by a solver. Inductivity yields a local
check for separation. Indeed, if (k, c) is inductive and m0 ∈ Sol(k, c), we already
have post∗(m0) ⊆ Sol(k, c). Similarly, if (k, c) is inductive and mf /∈ Sol(k, c),
then pre∗(mf ) ∩ Sol(k, c) = ∅. This means Sol(k, c) is indeed a separator. But
there are separators that are neither half spaces nor inductive. To see the latter,
consider a transition that is not enabled in post∗(m0) but in a separator S. Firing
the transition may lead to a marking outside of S and violate inductivity.

While reachability and coverability are decidable for Petri nets, decidability
of LSV(R) and LSV(C) is unknown. Our approach semi-decides both problems.

3 Half Spaces

In order to synthesize inductive half spaces, we consider the structure of the
space of IHS in more detail. Our goal is to derive a linear constraint system that
closely approximates the structure of the space. The system can then be passed
to an SMT-solver to synthesize candidates for IHS.

Since IHS require inductivity for all transitions, their structure can be convo-
luted. Therefore, we do not immediately consider complete inductivity. Instead,
we first focus on half spaces that are inductive for a single transition. We derive
linear constraints describing these half spaces. They are combined in Sect. 4 in
order to obtain the desired SMT-formula for the space of all IHS.

The set of half spaces that are inductive for a given transition splits into
two parts: the trivial half spaces and the non-trivial ones. We first focus on
the former. Trivial half spaces were already described in [49,52]. They satisfy
one of three conditions that immediately imply inductivity and can be easily
synthesized. We provide a formal definition below.

The first condition for triviality describes the fact that the vector k and
the transition t point into the same direction. The half space (k, c) is oriented
towards transition t if k · tΔ ≥ 0. Since the scalar product provides information
about the angle between k and tΔ, the condition means that firing transition
t moves a marking in the half space further away from the border. To give an
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example, consider the half space (k, c) with k = (3, 2) from Fig. 3. It is oriented
towards transitions u and v. We have uΔ = (−1, 2) and vΔ = (1, 1), so k · uΔ

and k · vΔ are both non-negative. The half space is not oriented towards t since
tΔ = (−1, 1). Firing t means moving closer to the border of the half space.

It easy to see that a half space which is oriented towards a transition t
is actually t-inductive. This observation is a first step in the synthesis of IHS.
In fact, note that generating a half space (k, c) that separates two markings m0

and mf and that is oriented towards t amounts to finding a solution (k, c) of the
linear constraint system k · m0 ≥ c ∧ k · mf < c ∧ k · tΔ ≥ 0.

The second condition for triviality uses the fact that for k ≥ 0, the function
k ·m is monotone on markings. We call a half space (k, c) monotone for transition
t if k ≥ 0 and k · (t− + tΔ) ≥ c. Note that with larger markings, k · m grows.
This means if the smallest marking in the half space enabling t, namely t−, stays
within the half space after firing t, the same holds for all larger markings. The
requirement is captured in the inequality k · (t−+ tΔ) ≥ c. Hence, monotone half
spaces are inductive and can be synthesized as solutions of k ≥ 0∧k·(t−+tΔ) ≥ c.

The last condition is dual to monotonicity. A half space (k, c) is antitone for
transition t if k ≤ 0 and k · t− < c. The latter requirement describes that t−

does not lie in the half space. Since k ≤ 0 this means that Act(t)∩ Sol(k, c) = ∅.
Hence, antitone half spaces are inductive. Moreover, they can be generated as
solutions to the linear constraints k ≤ 0 ∧ k · t− < c. We summarize:

Definition 1. A half space (k, c) is trivial wrt. t if one of the following holds:
(k, c) is oriented towards t, (k, c) is monotone for t, or (k, c) is antitone for t.

Theorem 2. ([52]) If (k, c) is trivial with respect to t then it is t-inductive.

Of course, not all non-trivial half spaces are t-inductive. As an example,
consider the half space from Fig. 3. Recall that k = (3, 2) and c = 9. If we
replace c by c′ = 8, we get that (k, c′) is a non-trivial half space that is not
t-inductive. We have k · t− = 8 = c′ but k · (t− + tΔ) = 7 < c′. Hence, when
firing t from t−, we leave (k, c′). This has two implications. First, we need an
algorithm to test whether a non-trivial half space is indeed inductive. Second,
we cannot hope for a simple synthesis as for trivial half spaces. The former is
resolved by the algorithm ica which we show in Sect. 5. For the latter, we develop
an independent structure theory in the subsequent section.

3.1 Non-trivial Half Spaces

We consider half-spaces that are non-trivial but inductive. These are neither
oriented towards the transition of interest, nor monotone, nor antitone. Our first
insight is a structural theorem, which strongly impacts their synthesis. We show
that a non-trivial IHS (k, c) cannot have both positive and negative entries in k.
This means we can limit the synthesis to k ≥ 0 or k ≤ 0 for non-trivial IHS.

Theorem 3. Let (k, c) be a half space that is not oriented towards a transition
t but t-inductive. Then, we have k ≥ 0 or k ≤ 0.
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The proof of the theorem relies on the notion of syzygies known from commu-
tative algebra [25]. We adapt it to our setting. A syzygy of k is a vector s ∈ Z

n

with k ·s = 0. This means that adding a syzygy to a marking m does not change
the scalar product with k. We have k · m = k · (m + s). Hence, if m ∈ Sol(k, c),
we get that m + s ∈ Sol(k, c) for all syzygies s of k. We proceed with the proof.

Proof. Assume (k, c) is t-inductive and not oriented towards t but there are
i = j with k(i) > 0 and k(j) < 0. We show that (k, c) cannot be t-inductive
which contradicts the assumption. The idea is as follows. We set u(i) = � c

k(i)�
and u(�) = 0 for � = i. Note that u ∈ Sol(k, c). From u, we construct a vector
v ∈ Z

n that lies in Sol(k, c) but v + tΔ /∈ Sol(k, c). Note that v might not be
a proper marking. By adding non-negative syzygies to v, we obtain a marking
m ∈ Act(t) ∩ Sol(k, c) with m + tΔ /∈ Sol(k, c). Hence, (k, c) is not t-inductive.

The vector v is defined by v = u + � c−k·u
k·tΔ � · tΔ ∈ Z

n. Since (k, c) is not
oriented towards t, we have k · tΔ < 0. Hence, v is well-defined. By �x� ≥ x − 1,
we obtain the following inequality showing that v ∈ Sol(k, c):

k · v ≥ k · u +
(c − k · u

k · tΔ
− 1

) · k · tΔ = c − k · tΔ ≥ c.

Similarly, by �x� ≤ x, we obtain that v + tΔ /∈ Sol(k, c):

k · (v + tΔ) ≤ k · u +
c − k · u

k · tΔ
· k · tΔ + k · tΔ = c + k · tΔ < c.

Note that v is not yet a counter example for t-inductivity. Indeed, we cannot
ensure that v is a marking that enables t. But we can construct such a marking
by adding syzygies to v. For a place p ∈ P let ep denote the p-th unit vector.
This means ep(p) = 1 and ep(q) = 0 for q = p. For any place p, we construct a
syzygy sp defined as follows. If k(p) > 0, we set sp = −k(j) · ep + k(p) · ej . If
k(p) < 0, we set sp = −k(p) · ei + k(i) · ep. For the case k(p) = 0, we simply set
sp = ep. Note that for all places p, we have sp ≥ 0 and k · sp = 0.

The syzygies sp allow for adding non-negative values to each component of
v without changing the scalar product with k. Hence, there exist μp ∈ N such
that v +

∑
p∈P μp · sp ≥ t−. By setting m = v +

∑
p∈P μp · sp, we get a marking

in Act(t) that satisfies k ·m = k ·v ≥ c and k · (m+ tΔ) = k · (v+ tΔ) < c. Hence,
m proves that (k, c) is not t-inductive which is the desired contradiction. ��

The theorem allows us to assume k ≥ 0 or k ≤ 0 when synthesizing non-
trivial half spaces. However, we cannot hope for a compact linear constraint
system like we have for trivial half spaces. The reason is as follows. Assume
we have a constraint system L(k, c) of polynomial size describing the space of
t-inductive non-trivial half spaces. Each solution of L(k, c) corresponds to such
a half space and vice versa. We can then decide, in polynomial time, whether
a given half space (k, c) is t-inductive. Indeed, an algorithm would first decide
whether (k, c) is trivial or non-trivial. In the former case, t-inductivity follows.
In the latter case, the algorithm checks if (k, c) is a solution to L(k, c). All steps
can be carried out in polynomial time. However, the algorithm would contradict
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the coNP-hardness of checking t-inductivity which we prove in Sect. 5. Hence,
L(k, c) cannot exist.

Although a concise constraint system for the space of non-trivial IHS seems
out of reach, we can give a close linear approximation. To this end, we derive
two necessary conditions for non-trivial IHS that can be formulated in terms
of linear constraints. The first one is given in the following lemma. The proof
follows from Theorem 3 and from inverting the constraints for trivial half spaces.

Lemma 1. A t-inductive half space (k, c) that is non-trivial for t either satisfies
(a) k ≥ 0 and k · t− < c − k · tΔ or (b) k ≤ 0 and k · t− ≥ c.

The lemma provides geometric intuition to separate non-trivial from trivial
half spaces. If (k, c) is non-trivial, Sol(k, t)∩Act(t) is a strict non-empty subset of
the activation space Act(t). This stands in contrast to the trivial case. Here, (k, c)
is either oriented towards t or the following holds. If (k, c) is monotone, we have
Sol(k, t)∩Act(t) = Act(t) and if (k, c) is antitone, we have Sol(k, t)∩Act(t) = ∅.

We employ Lemma 1 to derive a further necessary condition for non-trivial
half spaces. It provides a lower bound for the absolute values of the vector k.

Lemma 2. Let (k, c) be a t-inductive half space that is non-trivial for t. For all
entries k(i) of k, with |k(i)| denoting their absolute values, we have:

k(i) = 0 ∨ |k(i)| ≥ −k · tΔ (5)

The idea behind the lemma is the following. If the absolute value of an entry
of k is too small then we can construct a vector x ∈ N

n such that k · x + k · t−

lies between c and c−k · tΔ −1. This violates the condition stated in Theorem 1.

4 Generating Invariants

We capture the conditions from Sect. 3 in an SMT-formula φ. It consists of linear
constraints and describes necessary properties of IHS. A solution to φ is a vector
k that potentially forms an IHS. To keep the constraints in the formula linear,
we cannot generate a corresponding constant c immediately. Instead, we replace
c by bounds imposed by LSV(R) and LSV(C). We generate candidates for c in a
second synthesis step with the algorithm cga, given in Sect. 5.

Recall that in LSV(R), we are interested in finding an inductive half space
(k, c) that separates an initial marking m0 from a marking mf . Phrased dif-
ferently, we want m0 ∈ Sol(k, c) and mf /∈ Sol(k, c). The former implies that
k ·m0 ≥ c, the latter implies k ·mf < c. The inequalities yield that k ·m0 > k ·mf

and impose two bounds on c, namely c ∈ [k ·mf +1, k ·m0]. We apply the bounds
to the constraints obtained for trivial half spaces and derive the following condi-
tions:

k · m0 > k · mf (0)

k · tΔ ≥ 0 (1)

k ≤ 0 ∧ k · t− < k · m0 (2)

k ≥ 0 ∧ k · t− > k · mf − k · tΔ (3)
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Each of the conditions (1), (2), and (3) models a type of trivial half spaces. For
instance, (1) describes half spaces that are oriented towards t. Together with (0),
we ensure t-inductivity for some c within the bounds. To describe non-trivial half
spaces, we employ Theorem 3 and Lemma 2. We derive the following constraints:

k ≥ 0 ∨ k ≤ 0 (4) ∀i k(i) = 0 ∨ |k(i)| ≥ −k · tΔ (5)

We collect all the constraints in the SMT-formula φt in order to find the
desired inductive half space. Note that the half space must be separating (0).
Moreover, it is either trivial, so it satisfies one out of (1), (2), and (3), or it is
non-trivial and satisfies (4) and (5). We construct the formula accordingly:

φt := (0) ∧ ((1) ∨ (2) ∨ (3) ∨ ((4) ∧ (5))).

As mentioned above, it is not possible to construct a linear constraint system
of polynomial size that captures all t-inductive half spaces and yields k and c.
However, φt is a tight approximation. In fact, its solutions are precisely those
vectors k that can form a t-inductive half space which separates m0 from mf .

Lemma 3. There exists a constant c ∈ Z such that (k, c) is a t-inductive half
space with k · m0 ≥ c and k · mf < c if and only if k is a solution to φt.

Our goal is to synthesize an IHS that separates m0 from mf . Since IHS
are t-inductive for all transitions t, we set φ :=

∧
t∈T φt. The SMT-formula φ

describes the desired approximation of the space of IHS. It is a main ingredient
of our CEGAR loop outlined in Fig. 1. According to Lemma 3, solutions to φ
are those vectors k that admit a constant ct for each transition t so that (k, ct)
is t-inductive. The problem is that these ct may be different for each t. Hence,
φ generates half space candidates and it is left to find a single value c such that
(k, c) is t-inductive for each t. We can compute all possible values for c with the
algorithm cga that we present in Sect. 5. Once a common c is found, we have
synthesized the desired IHS. Otherwise, the CEGAR loop starts the refinement.

If a solution k of φ does not have a suitable constant c to form an IHS, then
neither does any multiple of k. This means we can exclude all multiples in future
iterations of the CEGAR loop. Let mul(k) be the formula satisfied by a k′ ∈ Z

n

if and only if there exists an a ∈ N such that a · k = k′. Then, the refinement
performs the update φ := φ ∧ ¬mul(k). The following lemma states correctness.

Lemma 4. Let k′ := a · k with a ∈ N. If (k′, c) is an IHS, then so is (k, � c
a�).

The presented CEGAR approach generates inductive half spaces. In order to
semi-decide LSV(R), our approach needs to yield an IHS whenever we are given
a yes-instance. This means we need to ensure that any candidate vector k is
generated by the SMT-solver at some point so that we do not miss possible IHS.
This is achieved by adding a constraint imposing a bound on the absolute values
of the entries of k. If the formula becomes unsatisfiable, the bound is increased.
It remains to show how our semi-decider for LSV(R) can be adapted to LSV(C).



Petri Net Invariant Synthesis 197

Coverability. Recall that a solution k of φ satisfies Condition (0). It ensures the
existence of a value c such that k · m0 ≥ c and k · mf < c, meaning m ∈ Sol(k, c)
and mf /∈ Sol(k, c). While this is sufficient for disproving reachability, it is not
for coverability. When we solve LSV(C), we need to additionally guarantee that
↑mf ∩ Sol(k, c) is empty. It turns out that this requirement can be captured by
a simple modification of φ. We only need to ensure that k is negative.

Theorem 4. Let (k, c) be a half space (not necessarily inductive) such that mf /∈
Sol(k, c). Then we have ↑mf ∩ Sol(k, c) = ∅ if and only if k ≤ 0.

The intuition is as follows. If k ≤ 0 does not hold, then we can start with
m := mf and put tokens into a place i with ki > 0 until k · m ≥ c. This means
k ≤ 0 is sufficient and necessary. Each solution k of φ satisfies mf /∈ Sol(k, c) for
some c. In order to disprove coverability, we apply Theorem 4 and add constraint
k ≤ 0 to φ. This ensures that any synthesized IHS separates m0 from ↑mf .

5 Checking Inductivity

We present the algorithms ica and cga. The former decides t-inductivity for
a given half space (k, c) and transition t. The latter is an instrumentation of
ica capable of synthesizing all constants c such that (k, c) is t-inductive, if only
the vector k is given. cga constitutes the remaining bit of our CEGAR loop.
Finally, we show that deciding t-inductivity is an coNP-complete problem. The
proof once again employs a connection to discrete mathematics.

5.1 Algorithms

We start with the inductivity checker (ica). Given a half space (k, c) and a
transition t, we need to decide whether (k, c) is t-inductive. If (k, c) is trivial
with respect to t, then inductivity follows from Theorem 2. Hence, we assume
that (k, c) is non-trivial. The idea of ica is to algorithmically check the constraint
formulated in Theorem 1 via dynamic programming. Roughly, we search for a
value k ·m, where m ∈ ACT (t), that lies in the target interval [c, c−k · tΔ −1]. If
such a value can be found, (k, c) is not t-inductive. Otherwise, it is t-inductive.

To describe ica, we adapt Theorem 1. Let K := {k(i) | i ∈ [1, n]} contain
all entries of a given vector k. We consider sequences k1 . . . k� ∈ K∗ over values
of k. Note that ki does not denote the i-th entry of k but the i-th element in
the sequence. Then, (k, c) is t-inductive precisely if there is no sequence k1 . . . k�

with

c ≤ k · t− +
�∑

i=1

ki < c − k · tΔ. (6)

ica is stated as Algorithm1. It searches for a sequence in K∗ satisfying (6).
Recall that we assumed (k, c) to be non-trivial. According to Theorem 3, k does
not contain both positive and negative entries. ica starts at k · t− and iteratively
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Algorithm 1: Inductivity Checker (ica)
1 queue.add(k · t−);
2 reached[k · t−]:= True;
3 repeat
4 current:=queue.remove();
5 if c ≤ current < c − k · tΔ then
6 return Not inductive;
7 for k ∈ K do
8 if (current+ k < c − k · tΔ ∧ k ≥ 0)
9 ∨(current+ k ≥ c ∧ k ≤ 0) then

10 if ¬reached[current+ k] then
11 queue.add(current+ k);
12 reached[current+ k]:=True
13 until queue.isEmpty ;
14 return Inductive

adds values of K until it either reaches the target interval [c, c−k ·tΔ−1] or finds
that no value in it is reachable. To this end, ica employs dynamic programming.
This avoids recomputing the same value and speeds up the running time. An
example of a run of ica is illustrated in Fig. 4. If the currently reached value lies
below the target interval, then at least one value of K has yet to be added. Once
we overshoot the target interval, we can exclude the current value and go to the
next one in the queue. When we hit the interval, we can report non-inductivity.

In the extended paper, we show that ica is correct. Moreover, we prove that
it runs in pseudopolynomial time. This means polynomial in the values k,c, and
t, or exponential in their bit size. Note that this does not contradict the coNP-
hardness of checking t-inductivity which we prove in Sect. 5.2.

Fig. 4. Example run of Algorithm 1 (ica) in the case k ≥ 0. It starts at value k · t−.
The algorithm adds values of K until it either overshoots the target interval or hits it.

Constant Generation. Given a vector k and a transition t, ica can be instru-
mented to compute all values c such that (k, c) is t-inductive. We refer to the
instrumentation as constant generation algorithm (cga). cga computes all nec-
essary sums k · t− +

∑�
i=1 ki with k1 . . . ki ∈ K∗ and returns all c such that

[c, c− k · tΔ − 1] does not contain any of the sums. Intuitively, we fit the interval
between them. Note that each of the returned values c satisfies the characteriza-
tion of t-inductivity as stated in (6). We show that cga is correct and terminates.
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For termination, we need the so-called Frobenius number [5]. Let a ∈ N
n be a

vector such that gcd(a) = gcd(a(1), . . . , a(n)) = 1. Here, gcd denotes the greatest
common divisor. The Frobenius number of a is the largest integer that cannot
be represented as a positive linear combination of a(1), . . . , a(n). The number
exists and is bounded by amax · amin, where amax is the largest and amin the
smallest entry of a [5]. Note that this means that each value x ≥ amax · amin can
be represented as a positive linear combination x = a · m with m ∈ N

n.
This has implications for cga. Assume we are given k ≥ 0 with gcd(k) = 1.

Possible values of c such that (k, c) is t-inductive cannot exceed k ·t−+kmax ·kmin.
Otherwise, [c, c−k·tΔ−1] contains a linear combination of the form k·t−+∑�

i=1 ki

which breaks Requirement (6). The argument can be generalized to gcd(k) ≥ 1:

Theorem 5. Let (k, c) be a non-trivial t-inductive half space and let kmax, kmin

denote the entries of k with maximal and minimal absolute value.

1. If k ≥ 0, we have c < kmax · kmin + k · t−.
2. If k ≤ 0, we have c ≥ −kmax · kmin + k · t−.

The theorem enforces termination and correctness of cga. In fact, we only
need to compute sums k · t− +

∑�
i=1 ki with k1 . . . ki ∈ K∗ up to the limit given

in the theorem and still find all values c such that (k, c) is t-inductive. Since the
limit is polynomial in the values of k and t, cga runs in pseudopolynomial time.

We employ cga within our CEGAR loop. Assume we have a solution k to
our SMT-formula φ. It is left to decide whether there exists a c ∈ N such that
(k, c) is an IHS. We apply cga to k and each transition t. This yields a set
Ct containing all ct such that (k, ct) is t-inductive and separates m0 from mf .
Hence,

⋂
t∈T Ct contains all c such that (k, c) is an IHS that separates m0 from

mf . Algorithmically, we only need to test the intersection for non-emptiness.

5.2 Complexity

We prove that deciding t-inductivity for a transition t is coNP-complete. Mem-
bership follows from a non-deterministic variant of ica. Further analysis shows
that the problem is also fixed-parameter tractable and in coCSL, where CSL is
the class of languages accepted by context-sensitive grammars. For unary input,
it is in coNL and—if the dimension of k is fixed—in L. We provide details in the
extended paper. The interesting part is coNP-hardness for which we establish a
reduction from the unbounded subset sum problem [22].

Theorem 6. Checking t-inductivity of a half space (k, c) is coNP-complete.

Before we elaborate on the reduction, we introduce the unbounded subset sum
problem (USSP). An instance consists of a vector w ∈ N

n and an integer d ∈ N.
The task is to decide whether there exists a vector x ∈ N

n such that w · x = d.
The problem is NP-complete [22]. To prove Theorem 6, we reduce from USSP to
the complement of checking t-inductivity. This yields the desired coNP-hardness.
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Proof. Let (w, d) be an instance of USSP. We construct a half space (k, c) and
a Petri net with a transition t such that (k, c) is not t-inductive if and only if
there is an x ∈ N

n such that w ·x = d. We rely on the inductivity criterion from
Theorem 1. The main difference between this criterion and USSP is that the
latter requires reaching a precise value d, while the former requires reaching an
interval. The idea is to define an appropriate half space (k, c) and a transition t
such that in the corresponding interval only one value might be reachable.

We set k = w. Note that we can assume that d is a multiple of gcd(k).
Otherwise, (w, d) is a no-instance of USSP since each linear combination w · x
is a multiple of gcd(k). By using the Euclidean algorithm, we can compute an
a ∈ Z

n such that k · a = gcd(k) in polynomial time [2]. We construct a Petri
net with n places and one transition t with t−(i) := a(i) if a(i) > 0, t+ := −a if
a(i) < 0, and 0 otherwise. It holds tΔ = −a. Set c = d+ k · t−. It is left to show
that (k, c) is not t-inductive if and only if (w, d) is a yes-instance of USSP.

Assume that (k, c) is not t-inductive. Then there exists a vector x ∈ N
n such

that c ≤ k ·x+k · t− < c−k · tΔ. By plugging in the above definitions, we obtain
that d ≤ k · x < d + gcd(k). Since d, d + gcd(k), and k · x are all multiples of
gcd(k), we obtain that d = k · x = w · x. Hence, (w, d) is a yes-instance of USSP.

For the other direction, let w ·x = d. We obtain that d ≤ k ·x < d+gcd(k). As
above, we can employ the definitions and derive that c ≤ k ·x+k · t− < c−k · tΔ.
This shows non-inductivity of (k, c) and proves correctness of the reduction. ��

6 Experiments

We implemented the CEGAR loop in our Java prototype tool Inequalizer [17].
It employs Z3 [42] as a back-end SMT-solver. The tool makes use of incremental
solving as well as minimization, a feature of Z3 that guides the CEGAR loop
towards more likely candidates of IHS. Incremental solving reuses information
learned from previous queries to Z3 and minimization prioritizes solutions with
minimal values. Before Inequalizer starts the CEGAR loop, it uses an SMT-
query to check whether there is a separating IHS (k, c) that is trivial for all
transitions. We use minimization to get half spaces that are non-trivial with
respect to fewer transitions. The reason is that non-trivial half spaces are harder
to find and typically only few values for c ensure inductivity in this case. Before
we show the applicability of Inequalizer on larger benchmarks, let us consider
the Petri net in Fig. 2. When executing Inequalizer, we find that there are
no trivial separating IHS. Using incremental solving, Inequalizer performs
three iterations of the CEGAR loop and returns the non-trivial separating IHS
with k = (53, 52) and c = 209. When enabling minimization, we only require two
iterations and obtain k = (8, 5), c = 22. The difference in iterations is due to that
we expect minimization to choose vectors k that are trivial for many transitions.
This increases the chance of finding a suitable c. On the other hand, incremental
solving improves the running time in executions with more iterations.

We evaluated Inequalizer for LSV(C) on a benchmark suite and compared
it to various methods for coverability implemented in Mist [13,19,20,23,44].
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Table 1. Inequalizer vs. Mist.

Benchmark |P | |T | Inequalizer Mist

backward ic4pn tsi eec eec-cegar

BasicME 5 4 0.6 0.1 0.1 0.1 0.1 0.1

Kanban 16 14 0.7 0.1 0.2 0.8 0.1 0.2

Lamport 11 9 T/O 0.1 0.1 0.1 0.1 0.1

Manufacturing 13 6 0.6 1.9 0.1 0.1 0.1 0.1

Petersson 14 12 T/O 0.2 0.1 0.1 0.1 0.1

Read-write 13 9 0.5 0.1 1 0.1 0.9 0.5

Mesh2x2 32 32 1.2 0.3 0.1 48.6 0.8 0.2

Mesh3x2 52 54 2.1 2.2 0.2 T/O T/O 2.2

Multipool 18 21 0.8 0.3 2 2.2 1 2.3

Results are given in Table 1. The experiments were performed on a 1,7GHz
Intel Core i7 with 8GB memory. The running times are given in seconds. For
entries marked as T/O, the timeout was reached. The running times of Inequal-
izer are similar to Mist although the former has a small overhead from gen-
erating the SMT-query. In each of the listed Petri nets, the unsafe marking
is not coverable. Except for the mutual exclusion nets Petersson and Lam-
port, Inequalizer reliably finds separating IHS. Surprisingly, each found IHS
is trivial. We suspect that the cases where Inequalizer timed out are actually
negative instances of LSV(C).

The experiments show that many practical instances admit trivial IHS, which
we synthesize using only one SMT-query. To test the generation of non-trivial
IHS, we ran Inequalizer on a list of nets that do not admit trivial ones.
The results are presented in the extended version of the paper and show that
Inequalizer finds non-trivial IHS within few iterations of the CEGAR loop.

7 Conclusion and Outlook

We considered an invariant-based approach to disprove reachability and cover-
ability in Petri nets. The idea was to synthesize an inductive half space that
over-approximates the reachable markings of the net and separates them from
unsafe markings. For the synthesis, we established a structure theory of IHS and
derived an SMT-formula which approximates the space of IHS using linear con-
straints. We provided two algorithms, ica and cga. The former decides whether
a half space is inductive, the latter generates suitable constants that guarantee
inductivity. The SMT-formula and the algorithm cga were then combined in a
CEGAR loop which attempts to synthesize IHS. We implemented this into our
tool Inequalizer. It combines SMT-queries with efficient heuristics and was
capable of solving practical instances in our experiments.

While our experiments required only trivial IHS, theoretical studies in the
extended paper suggest that we can expect many instances to require non-trivial
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IHS. We plan a more detailed study of which practical instances require non-
trivial IHS in future work. We expect that further structural studies of IHS
will improve the efficiency of the CEGAR loop. This may lead to a tighter
approximation of the space of IHS or to an improved refinement step eliminat-
ing more than multiples. It is also an intriguing question whether the problems
LSV(R) and LSV(C) are decidable. To tackle this, we are currently examining
equivalence classes and normal forms of half spaces and their connection to well-
quasi orderings.
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Abstract. We discuss our proposal of a formalism for representing
classes of graphs based on tree automata. We aim at a formalism and an
entailment algorithm that could be used in verification of pointer pro-
grams, that would be efficient, have well defined completeness guarantees,
and be general. We believe that building the formalism on top of tree
automata will make it possible to use existing advanced tree automata
implementation techniques. We sketch the basic ideas behind the for-
malism and an entailment decision procedure, and outline some related
research challenges.

1 Introduction

The recent 20 years have seen a rise of many approaches to verification of pointer
programs, aka shape analysis, up to their industrial deployment (e.g. the tech-
nique of [5] in Facebook’s Infer). The existing approaches are mainly distin-
guished by the formalism used to describe sets of memory configurations (shape
graphs), which are essentially graphs with nodes being memory locations and
edges being pointers. The dominant position, previously held by frameworks such
as [28,32], is currently occupied by more automated and scalable approaches
based on separation logic (SL) [4,6,31] such as symbolic memory graphs [8],
on forest automata [13], and on graph grammars [14]. These approaches clearly
identified the importance of local reasoning and modularity in reasoning about
memory configurations as the key to scalability.

One of the major bottlenecks in the field is extending the techniques to
more complex data structures: with anything beyond relatively simple variants
of lists and trees, the existing approaches struggle with scalability and preci-
sion or require a non-trivial users assistance. None of the existing formalisms for
describing shape graphs have all the following desirable properties. 1. Expres-
siveness: the ability to talk about variants variants lists, trees, structures such as
skip-lists, threaded trees, their combinations and overlayer variants. 2. Local rea-
soning : running a program statement on the abstract domain should have only
a local effect, it should be possible to reason locally about the affected parts.
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3. Effectiveness: satisfiability and entailment should be efficiently decidable, as
well as additional graph operations needed, e.g., in (higher-order) bi-abduction
[5,25]. 4. Abstraction and generalization learning mechanisms: the ability to
learn abstractions of inductive invariants with controlled precision.

Separation logic approaches provides the first two qualities, expressiveness
and local reasoning, but lacks in the other two. Earlier verification methods are
not sufficiently general their decision procedures handle mostly just lists. The
approaches such as [11,21,30] are rather restricted and incomplete, while the
general approaches [23,27] are theoretical and far from being efficiently imple-
mentable. The recent works [9,10,24,29] finally came with an entailment for a
large fragment of separation logic. These algorithms have not yet been tried
within actual verification of pointer programs but are promising not only in the
context of separation logic.

SL approaches so far lack ways to automatically learning shape invariants
without a help of user-predefined patterns. The higher-order bi-abduction [25] is
a notable exception: it is capable of learning extremely complex shape invariants
such as B+ trees, skip-lists, or threaded trees. It is, however, very sensitive to
how the code is written (since it is, in a sense, transforming the recursive code to
inductive shape predicates) and hence quite fragile, easily failing on seemingly
easy examples such as natural implementations of a doubly-linked list reversal.

Outside separation logic, especially the approach based on Forest automata
[12,13,18,19] has been shown viable [15–17]. It allows for some degree of local
reasoning, it is efficient as it allows to utilise advanced algorithms for tree
automata (such as simulation reduction or antichain language inclusion). The
main distinguishing advantage is its compatibility with abstraction schemes from
abstract regular model checking [15] with counterexample guided refinement
loop. The formalism however suffers from some deficiencies, such as that express-
ible classes shape graphs are limited and that it is not closed under union.

We discuss here our ongoing work on developing a new graph formalism in the
spirit of Forest automata that would remedy their weaknesses. We present main
ideas on which such formalism can be built. First, we explain how graphs can be
encoded into trees and tree automata (as a variation on tree decomposition of
graphs [7] and also the formalism used in [20,22]). We then discuss basic ideas for
an entailment procedure for the formalism. We believe that this new formalism
can eventually combine local reasoning of separation logic and forest automata,
strong entailment procedures of [9,10,24,29], efficiency of tree automata [1–3,26],
and powerful abstraction schemes of regular model checking.

2 Representing Graphs with Trees and Tree Automata

We will first discuss encoding of graphs as variations on tree decompositions,
similar to that used in [20] and also [22].

A Σ-labeled graph is a pair g = (V,E) where V is a finite set of nodes,
E ⊆ V × Σ × V is a set of Σ-labeled edges. A graph g = (V,E) is deterministic
if for every node n ∈ V and every label a ∈ Σ, there is at most one node n′ ∈ V
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Fig. 1. Figure shows circular doubly-linked list (a) and its tree decompositions. In the
decompositions (b), the variables v, x, y, z represent the nodes 1, 2, 3, 4 (in this order)
of the list. The figure shows that it is possible to transform the right decomposition in
(b) to the left one using transformations shown in (c) and (d). Figure (c) illustrates the
reconnection operation. It shows the decomposition obtained by reconnection applied
to the right-handed side decomposition of (b) where the bag b0 is reconnected below
the bag b′

0. The figure also shows the primed variables introduced by the reconnec-
tion to prevent inference of reconnected pipes with pipes along the reconnection path.
Analogously, (d) show result of rotation applied to (c) where the bags b1 and b′

1 were
rotated. The operation changes orientation of edge between them and also introduces
the new primed variables for each existing variable, e.g., (x′)′ for x′ and since x′ already
exists, x′′ is created for x.

such that (n, a, n′) ∈ E. Unless stated otherwise, we will assume all graphs
deterministic.

A tree decomposition of a labeled graph g over a finite set of variables Vars
and alphabet Σ is a tree t = (B,E). Nodes B of t are Σ-labeled graphs called bags.
Nodes of a bag are variables from Vars. Edges of t are labelled by partial map-
pings ρ : Vars → Vars called parameter assignments. The tree-width of a decom-
position, tw(t), is the maximum cardinality of a parameter assignment in it. A
node occurrence in t is a pair (x, b) ∈ Vars ×B where either x is a node of a bag
b ∈ B (i.e., x ∈ b) (so called an active occurrence) or x belongs to the image of the
parameter assignment on the edge targeting b (then it is a passive occurrence),
i.e., x ∈ img(ρ) such that (b, ρ, b′) is an edge of t and ρ is a label of the edge. The
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alias relation ∼ is the smallest equivalence of occurrences such that if (b, ρ, b′) ∈
E and x′ = ρ(x) then (x, b) ∼ (x′, b′). The Σ-labeled graph represented by t is the
graph gt = (V t, Et) where the nodes V t are the equivalence classes of ∼, called
pipes, and Et = {([(x, b)]∼, a, [(x′, b)]∼) | (x, a, x′) is an edge of the graph b ∈
B} (that is, every edge (x, a, x′) of every graph b ∈ B gives rise to
an edge ([(x, b)]∼, a, [(x′, b)]∼) of the represented graph gt).

An example of a graph (representing circular doubly-linked list data struc-
ture) and its tree decomposition is shown in Fig. 1(a) and (b).

We will work with the following restrictions of graphs and tree decomposi-
tions. If a bag b has an edge originating at x, then the pipe [(x, b)]∼ is allocated
at b. A backbone decomposition corresponds to an (unoriented) tree backbone of
the graph. It has three defining properties: 1. Every bag b allocates exactly one
graph node. 2. Every graph node is allocated only once. 3. The tree is connected
in the sense that every tree edge corresponds to a graph edge (regardless the
edge orientation). That is, for every two adjacent bags, one of them, say b, has
an edge adjacent with x, and the other, b′, has an active occurrence (b′, z) with
(b, x) ∼ (b′, z).

Last, assuming a backbone decomposition, we define so called pipe child rela-
tion �. Two pipes p and p′ of a decomposition t are in the relation p � p′ iff p
is allocated in node b and p′ in node b′ such that (b, a, b′) ∈ E for some a.

A set of tree decompositions can be represented by a tree automaton. Intu-
itively, a node of a tree represents a node in the tree decomposition, and the
label of each tree node records the bag and the labels on the decomposition
edges leading from the node to its children.

3 Towards Entailment

The idea for deciding entailment is to use tree automata language inclusion algo-
rithms (such as [1–3,26]) over tree automata encodings of tree decompositions.
The difficulty here is that a single graph has multiple decompositions and the
tree automata may accept only some of them, hence simple language inclusion
check may underapproximate the inclusion of sets of represented graphs (entail-
ment). We therefore propose means of saturating the tree automata languages
with all possible tree decompositions of the represented graphs. Conceptually,
we will define a small set of operations which is complete for tree decomposi-
tions, that is, allows to transform a decomposition into any other decomposition
of the same graph. The two tree automata under the entitlement accept decom-
positions with certain maximum tree width t, that can be easily determined.
The entailment procedure will apply the decomposition operations symbolically
over the tree automata until they are saturated with all tree decompositions of
the represented graphs with the tree width up-to t. Computing the language
inclusion of thus saturated automata is then a sound algorithm for entailment.

We will now outline the operations. These operations are essentially meant
to complete the rotation operation of [22].
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Reconnection. The operation of reconnection is parameterised by two peer
bags b and b′ of the decomposition that allocate pipes p and p′, respectively
(they are peer bags, i.e. not on the same branch of the tree). Its purpose is
to create an equivalent decomposition with the child relation on graph nodes
being the same up to that p becomes a child of p′ in the new decomposition.
The operation is implemented as a function reconnect(b, b′, t) that transforms
a tree decomposition t = (B,E) into t′ as follows. First, the pipes that are
reaching b in t must be in t′ sent to b′ through the path between b and b′,
called the reconnection path. Let ρ1, . . . , ρk be the sequence of edge labels
appearing on the reconnection path. Take every label ρi of an edge on the
reconnection path with 2 < i ≤ k, and replace it by ρ′

i = ρi ∪ {x′ �→ x′ |
x ∈ img(ρ1)}. The primed variables must be such that they do not appear
anywhere on the reconnection path, neither in the graph bags nor in the
variable renamings (they may be fresh variables). This is to stretch the pipes
reaching b through the reconnection path towards b′. Replace also ρ2 by ρ′

2 =
ρ2 ∪ {x′ �→ y | ρ1(y) = x}. This binds the new primed part of the pipes with
the original pipes reaching n. Last, replace the edge leading to b by (b′, ρ′

1, b)
where ρ′

1 = {x′ �→ x | x ∈ img(ρ1)}. This makes b a child of b′ and connects
the new primed pipes to the corresponding original pipes of b.
An example of the operation is shown in Fig. 1(c) where the righ-handed side
decomposition t0 from Fig. 1(b) is rotated by reconnect(b0, b′

0, t0).
Rotation. The rotation operation is parameterised by two bags b and b′ of the

decomposition. The operation inverts the edges in the path π between b and
b′. Then it redirects the incoming edge of b to b′. Intuitively, it takes a subtree
with the root b, changes the root to b′ and inverts the edges in the subtree. It
yields an equivalent tree decomposition with respect to child relation which
is inverted between pipes allocated in the nodes of the path π.
The operation is implemented as a function rotation(b, b′, t). At the tree level,
it works as follows. Consider the path π : b = b1, . . . , bn = b′. Remove each
edge (bi, ρ, bi+1), where 1 ≤ i ≤ n, between nodes in π from E and add
(bi+1, ρ, bi) to E. Moreover, we replace the edge (m, ρ, b) ∈ E by the edge
(m, ρ, b′) to E. The labels along the rotated path are changed in the following
way. Replace the label ρ1 of the edge (m, ρ1, b

′) by ρ1 = {x �→ x′ | x ∈
dom(ρ1)}. Replace each label ρi in the path π by ρi = ρi ∪ {x′ �→ x′ | x′ ∈
img(ρ′

1)} for 2 ≤ i ≤ b. Finally, replace the label ρb over the edge leading to
b by ρ′

b = ρb ∪ {x′ �→ x | x′ ∈ img(ρ′
1)}.

An example of the operation is shown in Fig. 1(d) where the decomposition
t1 from Fig. 1(c) is rotated by rotation(b1, b′

1, t1).
Phase. The operations from one tree decomposition to an equivalent one

may take unboundedly many operations. We will devide them into phases.
One phase can still perform unboundedly many operations, but the set is
restricted: the reconnection paths of all reconnections must be node disjoint.
Formally, a phase is characterised by a set of operation parameters, pairs
of nodes {(b1, b′

1), . . . , (bk, b
′
k)} of a decomposition t such the for any two

1 ≤ i, j ≤ k, i 	= j, the operation paths between bi and b′
i and between bj and

b′
j are node disjoint. A result of the phase is any decomposition which arises
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by performing the appropriate operation on (bi, b′
i) for each i (in any order).

An example of two phases are show in Figs. 1(c) and (d) where the right-
handed side decomposition from Fig. 1(b) is transformed in the left-handed
side decomposition of the same figure in these two phases.

An important consequence of the disjointness of the reconnection paths is
that all the operations can be implemented while only doubling the number of
variables and the tree-width of the original decomposition. Particularly, all the
operations can use the same set of fresh primed versions of the variables Vars
on the operation path without fearing a conflict with the names of the existing
pipes.

Lemma 1. One phase at most doubles the number of variables.

We conjecture that the number of phases needed depends on only on the
tree-width:

Conjecture 1. An equivalent decomposition t′ can be obtained from t in a num-
ber of phases that depends only on max(tw(t), tw(t′)).

Next, we discuss implementation of a phase over tree automata (TA) repre-
sentation. We design phase over TA in such way that its results is an automaton
that encodes all possible results of phase applied at any possible decomposition
represented by the original automaton. We will briefly sketch the basic idea of
the operation.

Namely, saturation with reconnections can be implemented by a tree trans-
ducer. Seen as a top-down machine, it oscillates between two routines, idle, and
reconnecting. In the idle state, it is just traversing the tree. At any node r, it
may non-deterministically chose to start reconnecting. When reconnecting, it
non-deterministically selects two peer descendants of r, nodes b and b′, and per-
forms the reconnection on them. The reconnection, roughly, involves adding of
primed versions of existing pipes on the path from b to b′ and reconnecting the
subtree of b below b′. After that, the reconnecting phase stops and the transducer
continues traversing the tree in the idle phase. The requirement in the definition
of phase on the disjointness of the reconnection maths makes this doable—when
reconnecting, the transducer needs to worry only about one reconnection path
at a time. Saturation with rotations can be then implemented similarly as in
[21].

We conjecture, based partially on Lemma 1, that such implementation of a
phase over tree automata representation is cheap:

Conjecture 2. The implementation of a tree automata phase at most doubles
the number of variables and leads to an automaton that is of a polynomial size
assuming a fixed tree-width of the original automaton.

Based on Conjecture 1 and 2, the saturation of a tree automata representation
with all decompositions until a fixed tree-width t can be done in a time that is
polynomial (when the t is fixed). Recall that deciding entailment between two
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TA representations, we saturate both of them up to the maximum tree-width
t (in fact, it is enough to use the maximum tree with of the automaton that
is supposed to entail), and then we compute language inclusion between the
saturated automata. Since language inclusion of tree automata is EXPTIME-
complete, Conjectures 1 and 2 give an entailment algorithm singly exponential,
assuming a fixed maximum tree-width t.

4 Conclusions and Future Work

We have presented basic outline of a formalism for representing shape graphs
based on tree automata. The ideas should lead to an entailment algorithm, and
conjectures that, if true, would imply that the algorithm is relatively fast assum-
ing fixed maximum tree-width of the graph representations.

We plan to perfect these ideas and to prove Conjectures 1 and 2. The conjec-
tures are somewhat optimistic, but not in a direct contradiction with the recent
2-EXPTIME-hardness result of [9]. If the conjectures turn out to be false, we
wish to search for (1) restrictions under which they are true, and/or (2) to prove
termination of the described entailment algorithm regardless its complexity. Our
long term plan is to develop a shape analysis framework based on this formalism
and entailment check in the spirit of [19] and also [25].
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Abstract. Monadic second-order logic of one successor (S1S) is a logic
for specifying ω-regular languages in a concise way. In this paper, we
revisit the classical decision procedure based on translating S1S for-
mulae into Büchi automata and employ state-of-the-art algorithms for
their manipulation, in particular complementation and size reduction.
We compare our implementation to the one based on loop-deterministic
finite automata and observe cases where the classical approach scales
better.

1 Introduction

The study of formalisms allowing reasoning about ω-regular languages still
attracts a lot of attention. For instance, ω-regular languages are often used
for specifying properties of reactive systems via the formalisms of linear-time
temporal logics such as LTL [1] or QPTL [2]. In addition to that, ω-regular lan-
guages have also been used for formal verification of programs [3] and, recently,
in the context of automated theorem proving, for reasoning about properties of
Sturmian words [4,5]. A prominent logic allowing to describe the whole class
of ω-regular properties is monadic second-order logic of one successor (S1S).
The decidability of S1S was proven by Büchi in 1962 by introducing a con-
nection of the logic with automata over infinite words called Büchi automata
(BAs) [6]. S1S offers immense succinctness for the price of nonelementary worst-
case complexity.

The many applications of ω-regular languages, often represented using BAs,
together with BAs’ nice theoretical properties have attracted a lot of attention
towards developing efficient algorithms for their manipulation. Unlike the ones
for automata over finite words, algorithms for BAs are often much more involved.
In particular, the problem of efficiently complementing BAs has been approached
from several sides [2,7–29] and so has been the problem of BA reduction [30–33].

In this paper we revisit the original automata-based decision procedure for
S1S and exploit state-of-the-art approaches for handling BAs, in particular
approaches for their reduction and techniques of complementation, to obtain
an efficient decision procedure. We summarize our observations with the imple-
mentation, identify the bottlenecks, and provide an experimental comparison
with an approach deciding S1S based on deterministic-loop automata [34].
c© Springer Nature Switzerland AG 2021
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2 Preliminaries

Functions, Words, and Alphabets. We use ω to denote the first infinite ordinal
ω = {0, 1, . . .}. An (infinite) word α over alphabet Σ is represented as a function
α : ω → Σ where the i-th symbol is denoted as αi. We abuse notation and
sometimes also represent α as an infinite sequence α = α0α1 . . . We use Σω to
denote the set of all infinite words over Σ.

Büchi Automata. A (nondeterministic) Büchi automaton (BA) over Σ is
a quadruple A = (Q, δ, I, F ) where Q is a finite set of states, δ is a transi-
tion function δ : Q × Σ → 2Q, and I, F ⊆ Q are the sets of initial and accepting
states respectively. We sometimes treat δ as a set of transitions of the form
p

a→ q, for instance, we use p
a→ q ∈ δ to denote that q ∈ δ(p, a). A run of A

from q ∈ Q on an input word α is an infinite sequence ρ : ω → Q that starts
in q and respects δ, i.e., ρ(0) = q and ∀i ≥ 0: ρ(i) αi→ ρ(i + 1) ∈ δ. Let inf(ρ)
denote the states occurring in ρ infinitely often. We say that ρ is accepting iff
inf(ρ) ∩ F �= ∅. A word α is accepted by A if there is an accepting run ρ of A
from some initial state, i.e., ρ(0) ∈ I. The set L(A) = {α ∈ Σω | A accepts α}
is called the language of A.

Simulation. The (maximum) direct simulation on A is the relation 
di ⊆ Q×Q
defined as the largest relation s.t. p 
di q implies (i) p ∈ F ⇒ q ∈ F and (ii)
p

a→ p′ ∈ δ ⇒ ∃q′ ∈ Q : q
a→ q′ ∈ δ ∧ p′ 
di q′ for each a ∈ Σ.

3 Monadic Second-Order Logic of One Successor (S1S)

In this section we briefly introduce monadic second-order logic of one successor,
denoted as S1S, used for expressing ω-regular properties of linear structures.

3.1 Syntax and Semantics

In this paper we build S1S formulae from atomic formulae of the form (i) 0 ∈
X, (ii) X ⊆ Y , (iii) X = Succ(Y ), and (iv) Sing(X) where X and Y are
second-order variables. Formulae are then obtained as a Boolean combination of
atomic formulae and existential quantification. Other connectives and universal
quantification can be obtained as a syntactic sugar, e.g., we can define ϕ → ψ
to denote ¬ϕ ∨ ψ and ∀X.ϕ to denote ¬∃X.¬ϕ.

S1S formulae are interpreted over the set of natural numbers. In particular,
second-order variables range over (possibly infinite) subsets of ω. For an S1S
formula ϕ(X) with free variables X an assignment is a mapping σ : X → 2ω. The
satisfaction of an atomic formula ϕ by an assignment σ, denoted as σ � ϕ, is
inductively defined as follows: (i) σ � 0 ∈ X iff 0 is in σ(X), (ii) σ � X ⊆ Y
iff σ(X) is a subset of σ(Y ), (iii) σ � X = Succ(Y ) iff σ(X) = {y + 1 | y ∈
σ(Y )}, and (iv) σ � Sing(X) iff |X| = 1. Satisfaction of an S1S formula by σ is
then defined inductively as usual. Formula ϕ is called satisfiable if there is an
assignment σ such that σ � ϕ.
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Fig. 1. BAs for atomic formulae.

3.2 Encoding Models as Words

The first step towards automata-based decision procedure is an encoding of
assignments as words. In the following, we fix a formula ϕ with free variables X.
A symbol ξ over X is a mapping ξ : X → {0, 1}, e.g., ξ = {X:0, Y :1}. We use ΣX

to denote the set of all symbols over X. Furthermore, for a set of variables Y, we
define the projection of ξ wrt. Y as πY(ξ) = ξ|X\Y. An assignment σ of ϕ is then
encoded as the word ασ over ΣX s.t. for each variable X ∈ X and for each i ∈ ω
the following two conditions hold (i) if i ∈ σ(X) then ασ

i contains X:1 and (ii) if
i /∈ σ(X) then ασ

i contains X:0. The language of the formula ϕ is then defined
as L(ϕ) = {ασ | σ is a model of ϕ}.

3.3 Automata-Based Decision Procedure

The automata-based decision procedure for S1S takes an input formula ϕ and
inductively builds the BA Aϕ accepting the same language as ϕ. Checking satisfi-
ability of ϕ is then equivalent to testing whether L(Aϕ) �= ∅. The automaton Aϕ

is defined as follows: (i) If ϕ is an atomic formula, then Aϕ is a predefined BA (see
Fig. 1). (ii) If ϕ = ψ1∧ψ2, then, in the first step, both Aψ1 and Aψ1 are adjusted
to accept the original models extended to symbols over ΣX1∪X2 (X1 and X2 are
the free variables of ψ1 and ψ2 respectively). This step is called cylindrification
and can be implemented by modifying the transition functions of Aψ1 and Aψ1 .
In particular, for Aψ1 , each transition over a symbol ξ is replaced by multiple
transitions over all symbols ξ′ ∈ ΣX1∪X2 s.t. πX1(ξ

′) = ξ. The BA Aϕ is then
obtained as Aϕ = A′

ψ1
∩ A′

ψ2
where A′

ψ1
and A′

ψ2
are cylindrified BAs and ∩

is the standard operation of intersection of two BAs. (iii) If ϕ = ψ1 ∨ ψ2 then
Aϕ = A′

ψ1
∪A′

ψ2
where A′

ψ1
and A′

ψ2
are cylindrified BAs and ∪ is the standard

operation of union over BAs. (iv) If ϕ = ¬ψ, then Aϕ = A�
ψ where A� denotes

the BA accepting Σω\L(A). (v) If ϕ = ∃X.ψ, then Aϕ = πX(Aψ) where πX(A)
is the BA obtained from A by modifying its transition function, applying π{X}
on the symbol of each transition.

Handling of First-Order Variables. Although the definition of S1S presented
in Sect. 3.1 uses second-order variables only, first-order variables (denoted by
lowercase letters) can be handled using the support of the Sing predicate as
follows: ∃x. ϕ is transformed into ∃X.ϕ∧Sing(X) and ∀x. ϕ is transformed into
∀X.Sing(X) → ϕ.
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4 Implementation of the Decision Procedure

In this section, we focus on details related to our prototype implementation of
the S1S decision procedure. The implemented tool, called Alice, is written in
Python and is publicly available on GitHub1.

Automata-Based Decision Procedure. Alice implements the classical decision
procedure as described in Sect. 3.3. In particular, it uses the two-copy product
construction for intersection and performs union by simply uniting the input
automata (making sure they have disjoint sets of states). BA complementation
(corresponding to using negation in the input formula) is performed either by
Schewe’s optimal construction [10, Sect. 3] improving the original rank-based
construction [11,23] or by determinization-based complementation implemented
within Spot [35]. Although the used complementation algorithms meet the lower
bound of BA complementation 2O(n log n), the complexity is still a bottleneck
of the decision procedure. Note that development of efficient complementation
algorithms for BAs is still a hot topic of current research [8,13]. In order to
avoid the state explosion during complementation, we keep the automata as
small as possible using (i) lightweight reductions, such as quotienting wrt. the
direct simulation equivalence, i.e., two states p, q are merged if p 
di q and
q 
di p, or disconnecting little brother states [33], i.e., if there are transitions
p

a→ q and p
a→ r with q 
di r, we can remove the transition p

a→ q from
the automaton, and (ii) heavyweight reductions, based on a 10-step lookahead
simulation relation combined with advanced transition pruning, implemented in
the tool Rabit [30].

Alphabet Handling. When working with BAs, the number of states is not the only
issue. Recall from Sect. 3.2 that if we consider a formula with n free variables,
there are 2n symbols that can occur in the corresponding automaton. For this
reason we implement symbolic handling of symbols using a “don’t care” flag
(denoted by “?”). For instance two transitions p

ξ1→ q and p
ξ2→ q where ξ1 =

{X:1, Y :0} and ξ2 = {X:1, Y :1} are represented by a single transition p
κ→ q

where κ = {X:1, Y :?}. In future, we might consider handling alphabets via
binary decision diagrams in the similar way as Mona [36].

5 Experimental Evaluation

In this section, we compare our tool with, to the best of our knowledge, the
only other existing implementation of a decision procedure for S1S, which is
based on loop-deterministic finite automata (denoted as L-DFA) [34]. The
evaluation uses a benchmark that consists of 26 hand-crafted S1S formulae
obtained from [34]. We compared the approaches with respect to the number

1 https://github.com/barbora4/projektova-praxe.

https://github.com/barbora4/projektova-praxe
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Table 1. Comparison of Alice and L-DFA on S1S formulae. In addition to the atomic
formulae from Sect. 3.1, Alice also considers x < y to be atomic.

Formula Alice-Rank Alice-Spot-Light Alice-Spot L-DFA

1. (x ∈ Y ∧ x /∈ Z) ∨ (x ∈ Z ∧ x /∈ Y ) 2 5 2 9

2. ¬∃x.((x ∈ Y ∧ x /∈ Z) ∨ (x ∈ Z ∧ x /∈ Y )) 1 1 1 9

3. after(X, Y ) := ∀x.(x ∈ X → ∃y.(y > x ∧ y ∈ Y )) 5 3 3 9

4. fair(X, Y ) := after(X, Y ) ∧ after(Y, X) 24 5 5 9

5. ∀X.(fair(X, Y ) → fair(Y, Z)) OOM 29 21 14

6. suc(x, y) := x < y ∧ ∀z.(¬x < z ∨ ¬z < y)) 3 4 3 10

18. offset(X, Y ) := ∀i∀j.(suc(i, j) ∧ i ∈ X → j ∈ Y ) 2 2 2 11

19. offset(X, Y ) ∧ offset(Y, Z) ∧ offset(Z, X) 8 8 8 107

20. offset(V, W ) ∧ offset(W, X) ∧ offset(X, Y ) ∧
offset(Y, Z) ∧ offset(Z, V )

32 32 32 2331

22. insm(i, j, U, V, W ) := (j ∈ U → i ∈ V ∨ i ∈ W ) 8 13 8 15

23. ∀i∀j(suc(i, j) → insm(i, j, U, V, Z) ∧
insm(i, j, V, X, Y ) ∧ insm(i, j, X, Y, V ) ∧
insm(i, j, Y, Z, X) ∧ insm(i, j, Z, U, Y ))

OOM TO TO 198

26. ∀x∀y.(x < y ∧ y ∈ X ∧ y ∈ Y ) ∧ ∀x∀y.(x <

y ∧ y ∈ X ∧ y /∈ Y ) ∧ ∀x∀y.(x < y ∧ y /∈ X ∧ y ∈
Y ) ∧ ∀x∀y.(x < y ∧ y /∈ X ∧ y /∈ Y )

21 11 11 18

of states of the automaton Aϕ (either BA or L-DFA) corresponding to the
formula ϕ.2

In the comparison, we use the following three settings of our tool: Alice-
Rank denotes the setting with Schewe’s complementation and reduction
by Rabit, Alice-Spot denotes Spot’s complementation and reduction by
Rabit, and, lastly, Alice-Spot-Light denotes Spot’s complementation and
lightweight reduction. The timeout (TO) was set to 1 h. Selected results are in
Table 1.

Discussion. Our tool usually gives better results than L-DFA in terms of state
count, as shown in Table 1. In particular, for the case of Alice-Spot, the state
counts of the resulting automata were in the vast majority of cases lower than for
L-DFA. There were only two worse cases, one of them being formula 23 that did
not finish in a day (complementing an automaton having 33 states). Furthermore,
parametric formulae 18–20 are worth noticing; the number of states of L-DFA
grows much faster than in our case. If we compare the variants Alice-Rank
and Alice-Spot, the setting Alice-Spot gives overall better results—e.g., for
formula 5, Alice-Rank ran out of memory (OOM), yet Alice-Spot yields an
automaton having 21 states. On the other hand, lightweight reduction behaves
surprisingly well: Alice-Spot outperforms Alice-Spot-Light just in 7 cases
(most significantly on formulae 7, 9, and 22).

By analyzing the results, we found that the bottleneck of our approach is
indeed BA complementation—it caused all the TOs and OOMs in the bench-

2 We do not compare other measurements such as the execution time or the sum of
sizes of all automata obtained during the construction of Aϕ, because we were not
able to obtain the L-DFA tool and [34] does not provide these values.
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mark. For instance the TO in result of Alice-Spot for formula 23 is caused by
complementing a BA with 33 states. To keep the sizes of automata small, their
reduction is a crucial operation. Therefore, as a future work, we would like to
investigate state-of-the-art techniques for BA complementation and identify the
most suitable approach in connection with advanced minimization techniques.
Although Alice often produces smaller automata than L-DFA, the number of
states is not the only possible measure: with a missing run time the comparison
is incomplete, since dealing with BAs is usually harder than dealing with DFAs.

As far as we know, Alice is the only off-the-shelf publicly available S1S
solver. We intend to use it in the following settings: (i) educational (stu-
dents input S1S formulae and observe the corresponding BAs) and (ii) research
(we wish to study the structure of the created BAs and search for potential
heuristics).

Acknowledgment. This work has been supported by the Czech Science Foundation
project 19-24397S and the FIT BUT internal project FIT-S-20-6427.
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complementation. In: Lin, A.W. (ed.) APLAS 2019. LNCS, vol. 11893, pp. 447–467.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34175-6 23

9. Chen, Y., et al.: Advanced automata-based algorithms for program termination
checking. In: Foster, J.S., Grossman, D. (eds.) Proceedings of the 39th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2018, Philadelphia, PA, USA, 18–22 June 2018, pp. 135–150. ACM (2018)

https://doi.org/10.1007/BFb0015772
https://doi.org/10.1007/BFb0015772
https://doi.org/10.1007/978-3-319-08867-9_53
https://doi.org/10.1007/978-3-540-39724-3_10
https://doi.org/10.1007/978-3-540-39724-3_10
https://doi.org/10.1007/978-3-030-34175-6_23


Deciding S1S: Down the Rabbit Hole and Through the Looking Glass 221
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tation constructions. Log. Methods Comput. Sci. 9 (2013)

17. Blahoudek, F., Heizmann, M., Schewe, S., Strejček, J., Tsai, M.-H.: Complementing
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Abstract. Stateless Model Checking (SMC) and Dynamic Partial
Order Reduction (DPOR) are prominent techniques that are often used
together to verify safety properties of concurrent programs under a vari-
ety of different memory models. Although existing SMC/DPOR imple-
mentations excel at verifying parallel algorithms, they scale extremely
poorly once barriers are used to synchronize the participating threads.

In response, we develop BAM (Barrier-Aware Model-checker), a
DPOR extension that explores exponentially fewer executions for pro-
grams that employ synchronization schemes involving barriers. We have
implemented BAM in a verification tool for C programs, and show that
it greatly outperforms the state-of-the-art for programs with barriers.

1 Introduction

Barriers (as in e.g., pthread barrier [24]) are synchronization primitives used
to ensure that the execution of a program will continue only after all threads
have reached a certain point (“a barrier”). Their usage is best understood with
an example:

barrier init(b, N);
m[1] := ... ;
barrier wait(b);
n[1] := ... ;

...

m[N ] := ... ;
barrier wait(b);
n[N ] := ... ;

(Barrier-N-Sync)

In this program, the main thread first initializes a barrier object to N , indi-
cating that N threads will meet together (“rendezvous”) at the barrier. Each
thread calculates a part of the array m, and waits for all the other threads using
a barrier wait call: no thread gets past barrier wait until all threads have
executed their respective barrier wait call. After all threads have met at the
barrier, each thread continues and calculates a part of the array n, which (poten-
tially) uses the array m that was calculated in the previous step. Such iterative
parallel computations are common in scientific applications, e.g., simulations.

More generally, barriers are useful when we want to wait for the threads to
perform some calculations before continuing. Upon continuation, all calculations
performed by one thread will be visible to all other threads. In contrast to joining
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the threads, using barriers does not cause the threads to be terminated, but
rather blocked; this can be crucial for performance reasons.

But while the usage of barriers is straightforward, verifying programs with
barriers is not always so. Suppose that we want to verify the Barrier-N -Sync

program from above automatically, and that we want to use Stateless Model
Checking (SMC) [12,21] coupled with Dynamic Partial Order Reduction
(DPOR) [1,11] to do so. This combination has been proven to scale very well
for parallel programs [13,17,22], and also takes into account the effects of the
underlying weak memory model [2–4,14,16].

Alas, all existing SMC/DPOR techniques explore an exponential number of
executions for this program, as they examine all possible orderings in which
different threads arrive at the barrier (see Sect. 2). Even worse, they do so even
though the order in which the threads rendezvous is irrelevant. In fact, the
order in which threads reach the barrier is not even observable by the user
program; the only thing that is observable according to the pthread barrier

documentation [24], is whether a thread was the last one to reach the barrier.
However, for the programs we are aware of, even that condition is never used.

Leveraging this insight, we develop BAM (Barrier-Aware Model-checker), a
memory-model-agnostic DPOR extension that reconciles SMC/DPOR with bar-
riers. By avoiding the exploration of executions that only differ in the order in
which threads execute barrier wait, BAM explores exponentially fewer execu-
tions than state-of-the-art SMC/DPOR tools. Concretely, we make the following
contributions:

In Sect. 3, we introduce BAM, an SMC/DPOR extension that does not order
calls to barrier wait, and yet models barrier semantics correctly: all instruc-
tions executed after a rendezvous at a barrier will see the effects of all instruc-
tions executed before the rendezvous.

In Sect. 4, we implement BAM as an extension of the state-of-the-art GenMC

model checker [16], and show that BAM is exponentially faster than vanilla
GenMC in programs with barriers.

We start with an overview of how barriers are handled by the state-of-the-art
stateless model checkers. To simplify the presentation, we assume a model of
sequential consistency (SC) [20]. Our results carry over to all other axiomatic
memory models.

2 State-of-the-Art

Why is it that SMC/DPOR experiences an exponential slowdown in programs
with barriers? To answer this question, we first have to review the fundamentals
of SMC/DPOR.

2.1 SMC and DPOR

SMC verifies a program by checking all of its thread interleavings. For exam-
ple, for the w+r+w program below, an SMC algorithm would enumerate all 6
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interleavings of the program, and validate that all of them satisfy the desired
properties.

x := 1 r := x y := 1 (w+r+w)

Of course, enumerating interleavings does not scale as programs become
larger. Hence, SMC is usually coupled with Dynamic Partial Order Reduction
(DPOR) [1,11,16], which avoids exploring an interleaving if an equivalent one
has already been explored. DPOR considers two interleavings equivalent if one
can be obtained from the other by swapping adjacent, non-conflicting instruc-
tions. While many notions of conflict have been proposed in the literature [1,8–
10,16], the simplest one considers two instructions as conflicting if they access
the same memory location, and at least one of them is a write. For w+r+w,
the only conflicting instructions are x := 1 and r := x. Thus, a DPOR algorithm
would verify the program by exploring only 2 interleavings: one where x := 1 is
executed before r := x, and one where the order is reversed.

SMC/DPOR provides an excellent solution for verifying concurrent programs
as it does not explicitly store the states of the program that have already been
visited, and its notion of conflict has been extended to weak memory models [2–
4,14,16,25]. In particular, SMC/DPOR scales very well for programs with few
conflicts, such as parallel algorithms. We will not go into details of how SMC/D-
POR works, as SMC/DPOR has been thoroughly studied in the literature, and
the exact details are not important for this paper. Instead, we only provide a
high-level overview of DPOR later on (see Sect. 3.4), and refer interested readers
to Kokologiannakis et al. [16].

2.2 Barriers in SMC/DPOR

The reason why barriers and SMC/DPOR do not work well together is that
barriers inhibit DPOR. Existing DPOR algorithms consider barrier wait calls
conflicting, and thus explore an exponential number of interleavings, even for a
barrier program doing the bare minimum:

barrier init(b, N);
barrier wait(b); ... barrier wait(b);

(Barrier-N)

For Barrier-N , an SMC/DPOR algorithm would explore N ! executions, effec-
tively rendering DPOR a useless addition to SMC.

To understand why barriers are considered conflicting operations by DPOR,
however, we have to examine how barriers are implemented. Typically, barri-
ers are implemented using condition variables or futexes: a thread executing
barrier wait acquires a lock, manipulates a variable indicating the number
of threads that have reached the barrier, and then waits on a futex/condition
variable. Such implementations, however, while standard for barrier libraries,
are suboptimal for model checking: each barrier wait call would boil down to
many different instructions, thus unnecessarily increasing the number of different
events a model checker would have to generate.
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Fig. 1. Implementation of barrier init and barrier wait.

Since we are only interested in verifying programs that use barriers, we
can get away with a much more abstract barrier implementation, such as the
one in Fig. 1. We model each barrier init(b, N) as a plain write that initial-
izes a shared variable b to N , and each barrier wait(b) as an atomic read-
modify-write (RMW) instruction followed by an assume instruction. For the
barrier wait call, the RMW instruction decrements b each time it is called,
apart from when the value read is 1, at which point it resets is back to N (so
that the barrier can be subsequently reused). For the same call, the assume reads
b and blocks the calling thread if the value read was different than N .

Given this implementation, it becomes clear that programs like Barrier-N

lead to an exponential blowup in the state space. Since the RMW instructions
all write to the same location (b), they are considered conflicting, and so the
model checker will examine all their N ! possible orderings. In addition to these
N ! executions, some state-of-the-art DPOR implementations, such as GenMC

[16], may also consider an exponential number of blocked executions (see Sect. 4).

3 BAM: Barrier Model Checking

We now present BAM and explain how it improves over baseline DPOR for
programs with barriers. After presenting the key idea behind BAM (Sect. 3.1),
we provide a formal framework in which the executions of a program can be
modeled, and show how BAM’s modeling of barriers leads to exponential savings
when verifying programs with barriers, while at the same time maintaining the
guarantees that barriers provide (Sect. 3.3).

3.1 Key Idea

We note that, although the barrier implementation effectively records the order
in which different thread call barrier wait by counting the number of threads
that have joined the barrier, programs that use barriers do not care about this
order. In fact, even though barrier implementations typically provide a distinct
value returned by the barrier wait call that resets the barrier to its initial
value, the user programs we are aware of do not make use of that.

We further observe that programs using barriers typically initialize the bar-
rier to the number of threads in the system, and so there is never a case with
more parallel calls to barrier wait than the barrier’s initial value. Intuitively,
this is because the standard scenario for barrier synchronization is to arrange
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a rendezvous between all threads participating in a parallel computation. With
that in mind, it does not really make sense to initialize a barrier with a value
smaller than the number of threads calling barrier wait, as that would imply
that only some threads will be unblocked after reaching the barrier, while the
others will remain blocked.

The key insight behind BAM is that, for programs satisfying the two condi-
tions described above, tracking the order between barrier wait calls is unneces-
sary. BAM models barrier wait calls as dummy events that are not considered
conflicting, thus enabling the underlying DPOR algorithm to consider fewer exe-
cutions. More specifically, when a thread executes barrier wait it simply checks
how many threads have reached the barrier: if not all threads have arrived, the
thread blocks; otherwise all program threads unblock and continue their exe-
cution. Notice that, when all threads unblock, all the instructions before the
respective barrier wait statements will have been executed, thereby satisfying
the fundamental guarantee provided by barriers i.e., instructions executed after
the threads have rendezvoused will see the effects of the instructions executed
before the rendezvous.

Let us now make the above idea formal in the framework of axiomatic memory
models.

3.2 Execution Graphs

Although the executions of a concurrent program under SC are usually thought
of as interleavings, we model them using execution graphs [7]. Execution graphs
allow for a flexible formalization that can easily be extended to weak memory
models, but also, as we will shortly see, abstract away the notion of a “conflict”
used by the DPOR algorithm.

Execution graphs have two basic components:

(i) a set of events (nodes), modeling the memory accesses performed by the
program, and

(ii) some relations on these events (edges).

Standard relations included in all memory models are the program order (po) and
reads-from (rf) relations: po relates events in the same thread according to their
serial execution order, while rf relates reads to writes they are reading from. In
this paper, we also assume the existence of a happens-before (hb) relation, a strict
partial order that includes po, and which models ordering due to synchronization
between events.

Let us now formally describe events and execution graphs.

Definition 1. An event, e ∈ Event, is either an initialization event 〈init l〉 ∈
Event0 ⊆ Event for a location l ∈ Loc or a thread event 〈t, i, lab〉 where t ∈ Tid

is a thread identifier, i ∈ Idx
△

= N is a serial number inside each thread, and
lab ∈ Lab is a label that takes one of the following forms:

– Read label: R(l, v) where l ∈ Loc is the location accessed, and v ∈ Val
△

= Z is
the value read.
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– Write label: W(l, v) where l ∈ Loc is the location accessed, and v ∈ Val is the
value written.

– Read-modify-write label: RMW(l, v1, v2) where l ∈ Loc is the location accessed,
v1 is the value read, and v2 ∈ Val is the value written. This label models a
single atomic RMW operation.

– Error label: error, denoting a safety violation.

The functions tid, idx, loc, valr, valw return (when applicable) the thread
identifier, serial number, location, read-value and written-value of an event,
respectively.

Given the above representation of events, we induce the program order, which
is a strict partial order on events given by:

po
△

= Event0 × (Event \ Event0) ∪
{

〈〈t1, i1〉, 〈t2, i2〉〉 t1 = t2 ∧ i1 < i2
}

Intuitively, initialization events precede all non-initialization events, while events
in the same thread are ordered according to their serial numbers.

Definition 2. An execution graph G consists of:

1. a set G.E of events that includes initialization events for all locations accessed
by the program, and

2. a relation G.rf ⊆ G.E× G.E, called the reads-from relation, that relates each
write event to the same-location reads that read from it.

We write G.R, G.W to denote the set of events of the respective type (RMW events
belong both to G.R and G.W), and use subscripts to further restrict these sets (e.g.,
G.Wx = {w ∈ G.W | loc(w) = x}).

Definition 3 (Well-formedness). An execution graph G is well-formed if the
following hold for G.rf:

1. rf only relates writes and reads with matching locations and values, i.e., for
every 〈w, r〉 ∈ G.rf it is w ∈ G.W, r ∈ G.R, loc(w) = loc(r) and valw(w) =
valr(r),

2. rf is functional on its range, i.e., if 〈w1, r〉, 〈w2, r〉 ∈ G.rf it is w1 = w2, and
3. each read reads a value, i.e., ∀r ∈ G.R. ∃w. 〈w, r〉 ∈ G.rf.

The semantics of a program P is simply given by the set of well-formed
execution graphs that satisfy a consistency predicate dictated by the memory-
model. For instance, sequential consistency (SC) [20] can be defined using a
coherence order as follows.

Definition 4 (Coherence order). A relation co is a coherence order for an
execution G iff co is a strict partial order, co ⊆

⋃

l∈Loc
G.Wl × G.Wl, and for

every location l ∈ Loc, co is total on G.Wl.

Definition 5 (SC). G is sequentially consistent, written consSC(G), iff there
is a coherence order co for G such that hb

△

= po∪ rf∪ co∪ fr is acyclic, where
fr

△

= {(a, b) | a 6= b ∧ ∃c. (c, a) ∈ rf ∧ (c, b) ∈ co} is the from-reads relation.
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Fig. 2. Execution graphs of w+r+w under SC.

Fig. 3. Execution graphs of Barrier-N for N = 2.

As an example, Fig. 2 shows the two sequentially consistent execution graphs
of w+r+w. Notice that each of these graphs corresponds to multiple inter-
leavings. In effect, the graphs subsume the notion of a conflict used by DPOR
algorithms; each linearization of hb in these graphs yields a possible interleaving.
Thus, an SMC/DPOR algorithm can alternatively be seen as a procedure that
verifies a program by enumerating its execution graphs.

As a further example, Fig. 3 shows the sequentially consistent executions
of Barrier-N for N = 2 with the conventional modeling of barriers shown
in Fig. 1. The two execution graphs on the left are blocked because one assume

condition is violated. By contrast, the two graphs on the right satisfy the assume
conditions and are thus non-blocked. SMC/DPOR algorithms will thus have to
generate at least the two non-blocked executions, though actual implementations
typically generate all four (blocked and non-blocked) executions.

3.3 BAM: Keeping Barriers Unordered

To model barriers, we extend the definition of events (Definition 1) to allow for
a new kind of label modeling calls to the barrier wait operation:

– Barrier-wait label: B(l) where l ∈ Loc is the barrier location accessed.

We write G.B for all the barrier events of an execution graph G. Barrier events
do not participate in the rf relation of execution graphs.
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Fig. 4. BAM: Execution graphs of Barrier-N-Sync for N = 2.

Keeping barriers unordered by rf achieves an exponential reduction in the
number of execution graphs of programs like Barrier-N , as all four graphs of
Fig. 3 would correspond to the following single execution graph.

W(b, 2)

B(b) B(b)

Treating barrier events as dummy events is inadequate because barrier wait

calls also provide some synchronization guarantees. Specifically, every event po-
before a barrier call is guaranteed to happen before every event po-after a barrier
call in the same rendezvous. Recall the Barrier-N -Sync program from Sect. 1:

m[1] := ... ;
barrier wait(b);
n[1] := ... ;

...

m[N ] := ... ;
barrier wait(b);
n[N ] := ... ;

(Barrier-N-Sync)

Here, merely treating B events as dummy events is unsound. As B events do not
contribute to hb between different threads, each thread will only see its own cal-
culation of a single part of m. By contrast, had we used the conventional barrier
representation, the rf edges across threads would ensure that the calculation of
m is visible when n is calculated.

To solve this problem, we extend the definition of execution graphs (Defini-
tion 2) with a new component:

– a partial equivalence relation G.sbr, called same-barrier-round, that relates
barrier events that synchronize with each other in a rendezvous. Events
related by G.sbr act on the same (barrier) location.

We will use the sbr relation to enforce synchronization between the events exe-
cuted before the threads meet at the barrier, and the events executed after the
rendezvous at the barrier. But before presenting how barrier synchronization
works, we assume two basic conditions about the sbr relation.

Given a graph G and a barrier location b initialized with value N (i.e., there
is a unique write w ∈ G.E such that lab(w) = W(b, N), and that 〈w, n〉 ∈ G.hb,
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for all n ∈ G.Bb), we further require that G.sbr satisfy the following conditions:

|G.Bb \ dom(G.sbr)| < N (sbr-must-meet)

∀e ∈ G.Bb. |succG.sbr(e)| = N ∨ succG.sbr(e) = succG.po(e) = ∅ (sbr-block)

where succr(e) denotes the set {e′ | 〈e, e′〉 ∈ r}, i.e., set of successors of e in r.
The sbr-must-meet condition captures the basic guarantee provided by the

barrier implementation that once N barrier wait calls are issued, then they
will meet in a rendezvous round. A consistent graph can therefore contain at
most N − 1 barrier calls that do not belong to any barrier round.

The purpose of the sbr-block condition is twofold. First, it dictates that
exactly N calls to barrier wait participate in the same barrier round. That is,
each event e either belongs in the same round with N events or does not have
any events in the same round. Second, it dictates that no thread is allowed past
a barrier wait call before all threads rendezvous at the barrier. In other words,
if an event does not participate in a (full) barrier round, it is blocked and has
no po-successors in the graph. This condition renders graphs like the one below
for Barrier-N -Sync and N = 2 invalid:

W(b, 2)

W(m[1], ...)

B(b)

W(n[1], ...)

As soon as all threads reach the barrier, all corresponding barrier events
become part of sbr, and events past the barrier may be added.

We next discuss how barrier synchronization contributes to the happens-
before (hb) relation. We extend the (model-specific) definition of hb with sbr; po
and po; sbr. That is, a barrier happens before the po-successors of any barri-
ers it synchronizes with and after their po-predecessors. Since hb is transitive,
this means that all events that are po-before a given barrier round happen
before all events that are po-after the same barrier round. For example, for
the Barrier-N -Sync program (cf. Fig. 4), all events po-after the highlighted
barrier round will also be hb-after the events that are po-before the highlighted
barrier round.

Synchronization ensures that the barrier wait events related by sbr belong
to the same barrier round. To see how this is achieved, consider the program
below where two threads rendezvous at a barrier twice:

barrier init(b, N);
barrier wait(b);
barrier wait(b);

barrier wait(b);
barrier wait(b);

(Barrier2-N)

For this example, graphs like the one below, where sbr includes barrier wait

events from different rounds of the same barrier acquisition, are invalid:
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W(b, 2)

B(b)

B(b)

B(b)

B(b)

sbr sbr

The reason why this graph is invalid, is that G.sbr; G.po is included in G.hb.
This condition implies that, e.g., the second barrier event of the first thread is
hb-before itself (since we can take an sbr; po step), which contradicts the fact
that hb is a strict partial order.

Finally, let us end this section by formalizing the conditions under which
BAM can be used (see Sect. 3.1). These are expressed by the notion of barrier
well-formedness, as described below.

Definition 6 (Barrier Well-formedness). An execution graph G is barrier-
well-formed on a barrier location b if G.Bb = ∅ or if the following hold.

1. There is a unique write event w0 ∈ G.E \ Event0 with loc(w0) = b.
2. w0 is a plain write event: lab(w0) = W(b, N) for some N ∈ N.
3. w0 is hb-before all Bb events: 〈w0, e〉 ∈ G.hb for all e ∈ G.Bb.
4. For all S ⊆ G.Bb with |S| > valw(w0), there exist e, e′ ∈ S s.t. 〈e, e′〉 ∈ G.hb.

Barrier well-formedness ensures that there is a unique initializing write for
each barrier location, and that no more threads than the barrier’s initializing
value call barrier wait concurrently. Note that the latter precludes the usage
of BAM in programs like the following:

barrier init(b, 2);
barrier wait(b); barrier wait(b); barrier wait(b);

That said, as already mentioned, we do not expect such programs to show up
often in practice, as they are built on the (not very useful) premise that some
subset of the threads meeting at the barrier will continue past the barriers, while
the rest will remain blocked.

3.4 BAM: Extending DPOR for Barriers

We now explain how DPOR can be extended to accommodate for BAM.
Algorithm1 shows the general structure of a DPOR algorithm with BAM’s

extensions highlighted . Verify verifies a program P by enumerating its execu-
tion graphs, and ensuring that none of them contains an error label. Verify

achieves this by repeatedly calling VisitOne (Line 4): the latter will explore
one full execution of P, and at the same time populate an environment Γ (ini-
tially empty; cf. Line 2) with alternative exploration options. These exploration
options will be subsequently explored by Verify (Line 5).

VisitOne is the workhorse of the DPOR algorithm. At each step, as long
as G remains consistent according to the memory model (Line 7), VisitOne

uses nextP(G) to extend the current graph G by an event a from a non-blocked
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Algorithm 1. Dynamic Partial Order Reduction

1: procedure Verify(P)
2: 〈G, Γ 〉 ← 〈G0, ∅, Γ0〉
3: do

4: VisitOne(P, G, Γ )
5: while 〈G, Γ 〉 ← pop(Γ )

6: procedure VisitOne(P, G, Γ )
7: while consm(G) ∧ a ← nextP(G) do

8: G.E ← G.E ∪ {a}
9: if a ∈ error then exit(“error”)

10: if a ∈ G.R then CalcRfs(G, Γ, a)
11: if a ∈ G.W then CalcRevisits(G, Γ, a)
12: if a ∈ G.B then

13: N ← valw(w) where w ∈ G.Wloc(a)

14: S ← G.Bloc(a) \ dom(G.sbr)
15: if |S| = N then G.sbr ← G.sbr ∪ {〈e, e′〉 | e ∈ S, e′ ∈ S}

thread. A thread is considered blocked if it contains a barrier event that is not
in the domain of G.sbr. (By construction, such events are po-maximal.) When
there are no more events to add, then G is complete, and VisitOne returns.

Depending on the type of an added event a, VisitOne takes appropriate
action. Specifically, if a denotes an error (e.g., an assertion violation), it is
reported to the user and the verification terminates (Line 9). If a is a read, then
we need to find an appropriate rf edge for it from G. To that end, VisitOne

calls CalcRfs (Line 10), which will calculate possible rf options for a, set one,
and push the rest to Γ . If a is a write, it needs to revisit existing reads of the same
location in G, because a was not present in the graph when VisitOne was con-
sidering possible reads-from options for these reads. To that end, VisitOne calls
CalcRevisits (Line 11), which extends Γ with such alternative explorations.

If a is a barrier-wait event, BAM-specific code takes over. First, BAM finds
this barrier’s initializing value N (Line 13). Well-formed programs contain a
unique initialization of barrier, and so their execution graphs have a unique
write event w to each barrier location. Then, BAM collects in the set S all
barrier events to the same location as a that are not related by G.sbr (Line
14. This set contains a as well as all blocked events to the same location. If the
number of such events is N , then they form a rendezvous and are thus added to
G.sbr, which has the effect of unblocking the waiting threads (Line 15).

As can be seen, BAM can be seamlessly integrated into existing DPOR
algorithms. The additional work performed—a linear scan over the graph—does
not incur any overhead as it is dominated by the DPOR’s consistency checks.
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4 Evaluation

4.1 Implementation

We have implemented BAM as an extension of the state-of-the-art stateless
model checker GenMC [16]. GenMC operates at the level of LLVM-IR, and
can verify C/C++ programs under different (weak) memory models such as
RC11 [19] and IMM [23]. We have made our implementation publicly available
at https://github.com/MPI-SWS/genmc.

4.2 Experiments

In what follows we compare BAM against the baseline GenMC implementation.
We do not directly compare BAM against other tools as 1) most other tools do
not offer built-in support for barriers and would thus yield similar results to the
baseline GenMC encoding, and 2) GenMC has been extensively compared with
other model checking tools in the past (e.g., [16,18]).

Instead, we set out to show that BAM yields exponential benefits compared
to the baseline GenMC implementation for programs with barriers, while at the
same time imposes zero overhead.

Experimental Setup. We conducted all experiments on a Dell PowerEdge M620
blade system, with two Intel Xeon E5-2667 v2 CPUs (8 cores @ 3.3GHz) and
256GB of RAM, running a custom Debian-based distribution. We used LLVM 7
for GenMC (v0.5.3). All reported times are in seconds, unless explicitly noted
otherwise. We set the timeout limit to 30min.

Benchmarks. We evaluate the effectiveness of BAM using a variety of synthetic
benchmarks, ranging from simple benchmarks containing a single rendezvous
round with no additional computation to benchmarks that involve multiple ren-
dezvous rounds. The results are reported in Tables 1 and 2. As expected, BAM

achieves exponential gains over GenMC for all these benchmarks, and scales
very well to larger programs. By contrast, the baseline GenMC implementation
frequently times out, especially on benchmarks with multiple rendezvous rounds.

Let us first focus on Table 1. Starting with barrier, we see that GenMC

explores exponentially more executions than BAM, most of which correspond
to blocked executions. Indeed, as explained in Sect. 2.2, since the barrier wait

operations are considered conflicting, GenMC explores an exponential number
of executions for this benchmark. In fact, GenMC explores (N !)2 executions for
barrier(N), of which (N !)2 − N ! are blocked.

These numbers might come off as a surprise at first, since it would suffice
for GenMC to explore precisely (N !) executions, and no blocked executions.
The discrepancy is due to the modeling of barrier wait calls. As described in
Sect. 2.2 and Fig. 1, each barrier wait comprises an RMW operation, but also
an assume(b == N) statement that re-reads the value of the barrier, and ensures
that the value read is N . This second read, however, has another N ! consistent

https://github.com/MPI-SWS/genmc
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Table 1. Synthetic benchmarks containing only barrier operations

Executions Blocked Time

GenMC BAM GenMC BAM GenMC BAM

barrier(4) 24 1 552 0 0.02 0.01

barrier(5) 120 1 14280 0 0.21 0.01

barrier(6) 720 1 517680 0 7.03 0.01

barrier2(4) 576 1 36816 0 0.74 0.01

barrier2(5) 14400 1 5156880 0 114.63 0.01

barrier2(6) � 1 � 0 � 0.01

barrier3(4) 13824 1 907152 0 26.07 0.01

barrier3(5) � 1 � 0 � 0.01

barrier3(6) � 1 � 0 � 0.01

barrier(N): N threads rendezvous at a barrier.
barrier2(N): N threads rendezvous twice at a barrier.
barrier3(N): N threads rendezvous thrice at a barrier

rf options, which GenMC subsequently has to explore. And at this point, one
may wonder: isn’t it possible to pack the assume statement into the atomic block,
and use the value already read for b for the assume? Unfortunately, the answer is
no. Although we will not go into further details here, we mention in passing that
the second read statement is necessary under weak memory models to ensure
synchronization between the events before and after the barrier rendezvous.

The differences between GenMC and BAM are magnified once we consider
benchmarks with multiple rendezvous rounds. Starting with 4 threads, GenMC

explores 5 orders of magnitude more executions than BAM for barrier2, and 6
orders of magnitude more for barrier3. As the number of threads increases, the
performance gap between GenMC and BAM increases even more, despite the
fact that most of the executions that GenMC explores are blocked; as it turns
out, the cost of enumerating blocked executions quickly becomes exorbitant.

We move on to Table 2, which contains some typical use cases of barriers.
The observations here are similar to the ones made for Table 1. The simplest
case is that of barrier-det that includes a single rendezvous round and only
local computations. GenMC scales similarly to the barrier benchmark, but
takes much more time because of the higher cost per execution. By contrast, the
number of threads has a negligible effect to BAM’s execution time.

The other three benchmarks use multiple rendezvous rounds to synchro-
nize some computations, while still maintaining a high cost per execution. As
expected, this makes GenMC quickly time out. In addition, observe that in the
case of barrier-lock and barrier-count barriers are used to synchronize com-
putations that have additional sources for an exponential number of executions.
As the state space of these benchmarks is large to begin with (even disregarding
barriers), GenMC quickly exceeds the time limit, while BAM is able to scale
to a larger number of threads. We note that the blocked executions that BAM
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Table 2. Benchmarks with realistic barrier use cases

Executions Blocked Time

GenMC BAM GenMC BAM GenMC BAM

barrier-det(3) 6 1 30 0 107.34 17.87

barrier-det(4) 24 1 552 0 424.04 17.87

barrier-det(5) � 1 � 0 � 17.89

barrier-transc(3) 46656 1 671790 0 18min 0.02

barrier-transc(4) � 1 � 0 � 0.02

barrier-transc(5) � 1 � 0 � 0.02

barrier-lock(3) 1296 36 7140 105 0.70 0.03

barrier-lock(4) 331776 576 4340784 3100 417.58 0.42

barrier-lock(5) � 14400 � 143385 � 18.99

barrier-count(3) 55296 64 715878 0 88.33 0.04

barrier-count(4) � 4992 � 0 � 2.57

barrier-count(5) � 2276352 � 0 � 28

barrier-det(N): Given a matrix M , calculates the determinant of M4.
The calculation of M4 is split among N threads, which rendezvous after
calculating M2.
barrier-transc(N): N threads calculate the transitive closure of a matrix
via a fixpoint. They rendezvous twice per fixpoint iteration.
barrier-lock(N): N threads test a simple lock implementation: after they
rendezvous at a barrier, the threads concurrently attempt to enter their
critical section, and mutual exclusion is checked.
barrier-count(N): Contains N threads, with each thread i waiting at
barriers bk, where i ≤ k ≤ N . Counts the number of threads getting
through at each round

explores in barrier-lock are not due to barriers, but rather due to spinloops
that can block in the lock implementation under test.

We end this section with a remark on scalability. While it can be argued
that scaling up to a large number of threads is unimportant (since e.g., these
benchmarks are symmetric), this is not always the case. Often, concurrent imple-
mentations tune their behavior depending on the number of threads spawned,
and concurrency bugs cannot be manifested with a few threads. Being able to
verify programs that employ a large number of threads can therefore be crucial.

5 Summary and Related Work

We presented BAM, a DPOR extension that explores exponentially fewer exe-
cutions than state-of-the-art stateless model checkers for programs that use syn-
chronization barriers. BAM is based on the key insight that, for most programs,
the order in which different threads rendezvous at the barrier is irrelevant, and
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thus barrier wait statements can be seen as non-conflicting operations by the
underlying DPOR algorithms.

After the inception of SMC with tools like Verisoft [12] and Chess [21], a
growing number of different DPOR techniques has been proposed [1–6,8–11,14–
16,18]. Some of these extend DPOR to weak memory models (e.g., [2,3]), others
achieve a coarser equivalence partitioning (e.g., [6,8,15]), while others do both
(e.g., [4,16]).

While we are not aware of any other technique that extends DPOR for pro-
grams that use barriers, the two works that are closer to ours are CDPOR [6]
and LAPOR [15], as they both extend DPOR to scale for particular classes of
programs. CDPOR exploits conditional independence between atomic blocks: if
the execution of two concurrent atomic blocks leads to the same state under some
conditions C̄, then the two blocks are deemed independent whenever C̄ holds.
Thus, if each barrier wait is modeled as an atomic block, CDPOR would be
able to explore only 1 execution in programs like Barrier-N , assuming that the
atomic blocks are proven (unconditionally) independent. Proving independence
for CDPOR, however, is done using an SMT solver, which might not always
be able to prove independence. Alternatively, such conditions would have to be
provided manually by the user. LAPOR exploits a similar key idea to BAM

and avoids exploring executions that only differ in the order that two critical
sections were executed, assuming that these critical sections do not have any
conflicting events.
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Abstract. To optimize the performance of some of our systems run-
ning on non-uniform memory architecture (NUMA) servers with Arm
processors, we have implemented multiple versions of the HMCS lock,
an advanced NUMA-aware lock that has been identified in the literature
as particularly scalable.

This is a highly non-trivial task because of the many implementation
choices for interlocked operations, alignment, and memory barrier place-
ment, affecting not only the lock’s performance but also its correctness.
The published HMCS lock does not discuss choices that affect perfor-
mance, but it does present a choice of barriers. We observe that this
choice is wrong, leading to hangs on Kunpeng Arm servers. We repair
the barriers and implement the first formally-verified HMCS lock with
VSync, an automated formal verification and optimization tool for weak
consistency. We explain the barrier bugs in detail and report our expe-
rience of barrier optimizations for Arm servers.

Keywords: Consistency models · Verification · Optimization ·
NUMA-aware locks

1 Introduction

Arm is making inroads on many-core servers [4,11]. To achieve a high level of
parallelism, these many-core servers are implemented as non-uniform memory
architectures (NUMA) in which CPUs are clustered on NUMA nodes. In these
architectures, communication between CPUs within a single node is much faster
than across nodes. Software therefore needs to ensure locality to scale well, i.e.,
avoid communication across NUMA nodes.

One strategy to achieve locality is through so-called NUMA-aware locks,
which favor CPUs within the same NUMA node when passing the lock. Among
these, we have chosen the NUMA-aware HMCS lock [6], which has been shown
to be very scalable [5,9]. We have implemented the NUMA-aware HMCS lock on
c© Springer Nature Switzerland AG 2021
K. Echihabi and R. Meyer (Eds.): NETYS 2021, LNCS 12754, pp. 240–260, 2021.
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Arm with the goal of improving the performance of Huawei products running on
Kunpeng Arm servers. Implementing the HMCS lock for use in industry involved
two main challenges.

The first challenge is the weak consistency. To improve single-core perfor-
mance, Arm CPUs commit and propagate memory operations out-of-order: for
example, memory operations issued after a cache miss can be performed while
the missing cache line is being fetched. Such optimizations can be fatal to the
HMCS lock, which relies on the order of a few crucial memory operations. To
avoid bugs, one needs to selectively turn these optimizations off through so-called
memory barriers; these include stand-alone explicit fences (e.g., DMB) as well as
implicit barriers attached to the memory operations (e.g., LDAR and STLR). Turn-
ing off the optimizations everywhere is relatively easy, e.g., by using sequentially
consistent C11 atomics to insert barriers for every memory access. The excessive
use of barriers, however, does degrade performance. Therefore, experts attempt
to identify precisely the operations that need to be executed in-order, and insert
only barriers needed to enforce those orders. Indeed, the original HMCS lock
paper “shows the fences necessary for the HMCS lock on systems with pro-
cessors that use weak ordering” [6, p. 218], as identified by its authors. Our
investigation reveals that these fences are wrong, potentially leading to hangs
on Arm, Power, and RISC-V. We have reproduced the hang on a Kunpeng Arm
server.

The second challenge is performance-tuning. We investigate two main factors
that influence the performance of the HMCS lock: (1) the implementation of
atomic SWAP and CAS operations and (2) the placement of barriers. These atomic
operations can be implemented on Arm either through built-in interlocked SWP
and CAS instructions (introduced in Arm’s LSE extension [8]), which perform the
operation in memory, or with load/store-exclusive LDXR/STXR instruction pairs,
which perform the operation inside the CPU. For barrier placement there are
similarly various implementation choices, e.g., between fences and implicit bar-
riers. As the performance implications of these choices are not well-understood,
the best choice needs to be identified by trial-and-measure.

In this paper, we show how to solve both challenges with the help of VSync
[15], a formal verification and optimization tool for weak consistency. We gener-
ate formally verified barrier placements with VSync (Fig. 2). Since precise Arm
support is not yet implemented in VSync, our barriers are verified against the
slightly weaker IMM (intermediate memory model [16]) model, which forms the
least common denominator of several weak consistency models including Arm,
Power, and RISC-V. Thus the verified barriers are correct but not optimal for
Arm. In fact, VSync detects a second hang and a mutual exclusion violation
on IMM, but we manually verify that these bugs cannot occur on Arm weak
consistency.

In the following, we present the HMCS algorithm (Sect. 2) and discuss the
set of barriers necessary for its correctness (Sect. 3), showing what goes wrong
if some barriers are omitted. We then briefly describe our verification and opti-
mization setup (Sect. 4). Finally, we measure the performance impact of the
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implementation choices mentioned above as well as the conservative barriers
introduced by VSync (Sect. 5) on a microbenchmark and on LevelDB [7].

In summary, we make the following contributions:

– We have discovered a bug in the fences proposed in the HMCS lock from the
literature, and present a formally verified fix.

– We propose various barrier optimizations for the HMCS lock and investigate
their impact on performance.

– We present the following insights:
• Barriers optimizations make little difference for scalability; sequentially

consistent C11 atomics are good enough for Arm.
• If barrier optimizations are desired, they should be left to an automatic

tool like VSync.
• Arm’s interlocked instructions (LSE) degrade performance.

2 Background

Fig. 1. NUMA topology and lock trees for 96-core Kunpeng Arm server

2.1 HMCS Lock

The HMCS lock is a tree of MCS locks, configured to model the NUMA topology
tree of the target machine; in our case, we consider a Kunpeng 920 Arm server
with four NUMA nodes (24 CPUs each), organized in two packages. As illus-
trated in Fig. 1, the lock tree for this topology is a binary tree of depth DEPTH=3.
We now explain the MCS lock, which is the main component of the HMCS lock,
and the acquire and release protocols of the HMCS lock. The code of the HMCS
lock is shown in Fig. 2.

MCS Lock. The MCS lock [14] forms a queue so that threads enter the critical
section in a FIFO manner. Acquiring and releasing the MCS lock are performed
by the AcqReal<1> and RelReal<1> functions in Fig. 2. A thread enqueues its
QNode, which contains a status field that is used as means of communication
with its predecessor. Before enqueueing, a thread sets its status to � (Line 14),
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1 enum LockStatus {

2 �=UINT64_MAX -1,

3 �=0x1 ,

4 �=0x0 ,

5 n ∈ [2 : THRESHOLD]

6 };

7

8 Acquire(HNode *L, QNode *I){

9 AcqReal <DEPTH >(L, I);

10 ---- ACQUIRE FENCE ----

11 }

12

13 AcqReal <1>( HNode *L, QNode *I){

14 I->status = �; I->next = ⊥;

15 ---- RELEASE FENCE ARMIMM ----

16 QNode *pred;

17 pred = SWAPsc(& L->tail , I);

18 if (!pred) {

19 I->status = �;

20 } else {

21 pred ->next =rel I ;

22 while (I->statusacq == �);

23 }

24 }

25

26 AcqReal <d>(HNode *L, QNode *I) {

27 I->status = �; I->next = ⊥;

28 ---- RELEASE FENCE ----

29 QNode *pred;

30 pred = SWAPsc(& L->tail , I);

31 if (pred) {

32 pred ->next =rel I;

33 LockStatus curStatus;

34 do curStatus = I->statusacq

35 while (curStatus == �);

36 ---- ACQUIRE FENCE IMM ----

37 if (curStatus < �) return;

38 }

39 I->status = 1;

40 AcqReal <d-1>(L->parent , & L->N);

41 }

42

43 Release(HNode *L , QNode *I){

44 ---- RELEASE FENCE ----

45 RelReal <DEPTH >(L, I);

46 }

47

48 ReleaseHelper(HNode *L, QNode *I,

49 LockStatus st) {

50 QNode *succ = I->nextacq;

51 ---- ACQUIRE FENCE IMM ----

52 if (succ) {

53 succ ->status =rel st;

54 } else {

55 if (CASsc(& L->tail , I, ⊥))

56 return;

57 while ((succ = I->next) == ⊥);

58 succ ->status =rel st;

59 }

60 }

61

62 RelReal <1>( HNode *L, QNode *I){

63 ReleaseHelper(L, I, �);

64 }

65

66 RelReal <d>( HNode *L , QNode *I){

67 uint64_t curCount = I->status;

68 if (curCount == THRESHOLD[d]) {

69 RelReal <d-1>(L->parent , & L->N);

70 ---- RELEASE FENCE ----

71 ReleaseHelper(L, I, �);

72 return;

73 }

74 QNode *succ = I->nextacq;

75 ---- ACQUIRE FENCE IMM ----

76 if (succ) {

77 curCount += 1;

78 succ ->status =rel curCount;

79 return;

80 }

81 RelReal <d-1>(L->parent , & L->N);

82 ---- RELEASE FENCE ----

83 ReleaseHelper(L, I, �);

84 }

Fig. 2. Pseudo-code of the HMCS Lock from [6] except for barrier placement and
cosmetic changes

then it advances the tail pointer (Line 17). If it finds a predecessor p it waits in
Line 22 for p to give the signal status = �; otherwise it unlocks itself (Line 19)
and enters the critical section. Once it is done, it releases the lock. If it is the
tail (i.e., it has no successor), it does so by setting the tail pointer to ⊥ (Line
55). Otherwise, if it has a successor s, it signals s by setting the status of s to
� (Line 53 or Line 58).

HMCS Lock Acquisition. The critical section is protected by the root lock l0
at depth d = 1. To initiate the lock acquisition protocol, the HMCS lock client
calls Acquire on the leaf lock that belongs to the NUMA on which the thread
is running; e.g., in Fig. 1 a thread bound to CPU[0] calls Acquire on l2. This
calls AcqReal<3> on l2, which recursively calls AcqReal<2> on l1 (l2’s parent)
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(d) (Fig. 3c) with hb shown and sw
omitted

Fig. 3. Execution graphs

and AcqReal<1> on l0 (l1’s parent). Note that this means a) all threads in the
queue of a leaf lock are on the same NUMA node, b) all threads in the queue of
a lock at depth d = 2 are in the same package but different NUMA nodes, and
c) all threads in the queue of lock l0 are in different packages. Enqueueing at
any MCS lock in the tree requires a QNode. Each thread Ti has its own QNode Ni

with which it enqueues at its leaf lock. Each lock l protects a QNode l.N which
is used to enqueue at the parent of l. For example, if T1 is running on NUMA
node 0, it uses N1 to enqueue at l2. Once it owns that lock, it can use l2.N to
enqueue at l1, and so on.

HMCS Lock Release. Invoking Release initiates the release protocol. This recur-
sively calls RelReal<3>, RelReal<2> and RelReal<1>. The lock can be passed at
any depth d ∈ {1, 2, 3}, if a successor is found at depth d. To maximize through-
put, the lock should be passed within the NUMA node, i.e., at depth d = 3.
However, this would lead to starvation in the other NUMA nodes. THRESHOLD[d]
defines the maximum number of times a lock is passed at depth d ∈ {2, 3}. If
THRESHOLD[d] has been reached, the lock owner sets the status of the succes-
sor at depth d to �. This signals to the successor that the lock is passed at a
depth d′ < d. In contrast, when a successor is found and THRESHOLD[d] is not
reached, the lock is passed directly to the successor by setting its status to
n ∈ [2 : THRESHOLD[d]], counting the number of times the lock was acquired at
depth d.

2.2 Weak Consistency and Execution Graphs

A standard way to define weak consistency models is through execution graphs
such as those in Fig. 3. Nodes in these graphs represent events such as reads
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(R, Rsc, Racq), fences (Facq and Frel), and writes (W, Wsc, Wrel), and edges
specify various relations between these events, such as moe (modification order
external) and rfe (reads-from external) edges which indicate the order in which
reads and writes to the same location are committed, and po (program order)
edges which indicate the order in which instructions are issued (but not necessar-
ily committed). In this paper, we only give high-level explanations for differences
between Arm and IMM; motivated readers will find more detailed explanations
in Appendix A. A weak consistency model is defined by the execution graphs it
permits. For IMM and Arm, this is done by forbidding graphs in which any event
“happens before” itself, where “happens before” is defined by model-specific rela-
tions that indicate the order in which events happen. The difference between the
models can be explained in terms of when one event “happens before” another
according to the model.

Arm has one “happens before” relation (called ob, ordered-before), which
respects among other things: a) the order in which writes are committed (moe),
b) the order between a write and a read that observes the write (rfe), c) fences
such as DMB.ISH (implied by a release fence (Frel) in the code), and d) control
dependencies from a read influencing the position of control, e.g., through an
if-condition, to a write occurring after the condition (written ctrl in graphs). In
Figs. 3(a) and 3(b), this means that Event a “happens before” itself on Arm.

On IMM, there are two “happens before” relations, both weaker than that
of Arm. A graph is forbidden if an event “happens before” itself according to
either relation. The first is the acyclic relation (ar) which critically does not
respect moe. According to this relation, Event a “happens before” itself only in
Fig. 3(a), not in Fig. 3(b). The second relation (which is nameless in IMM, but
which we will call hbIMM) respects moe, but critically ignores control dependen-
cies; thus according to this relation, Event a “happens before” itself neither in
Figs. 3(a) and 3(b). Indeed, none of the other events “happen before” themselves
in Fig. 3(b) with either definition, and Fig. 3(b) is consistent on IMM.

Unfortunately, behaviors like that in Fig. 3(b) lead to various bugs in the
HMCS lock. To forbid this behavior on IMM, one has to add an acquire fence
Facq along the ctrl edge (Fig. 3(c)). The existing Frel fence synchronizes-with
(sw) this Facq, creating a happens-before (hb) edge from Event a to Event
f (Fig. 3(d)); together with the moe edge in the opposite direction, Event a
“happens before” itself according to hbIMM. Thus Fig. 3(c) is inconsistent on
IMM.

3 Barriers on Arm and IMM

Figure 2 shows two formally verified barrier placements: one uses the highlighted
implicit barriers, and the other uses the highlighted fences. Both use sequen-
tially consistent (sc) SWAP and CAS operations. Further barrier optimizations on
these operations are possible but bring no performance benefit (see hmcs-amo in
Fig. 10, or a detailed discussion in Appendix B) and are thus not shown.
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Fig. 4. Bug on Arm and IMM: Non-terminating execution due to missing fences at
Events b and h

In addition to the fences already presented in [6], VSync introduces fences at
Lines 36, 75 and 51 (for IMM) and Line 15 (for IMM and Arm) to solve three
bugs. In the following sections we discuss these in more detail.

3.1 Termination Violation

To simplify the discussion of the hang we consider only an HMCS lock L with
maximum depth one (DEPTH = 1), with two threads T1 and T2. We first discuss
the desired behavior in which the lock is passed correctly. Initially thread T1

owns the lock and is about to release it, while thread T2 is attempting to acquire
the lock. T2 first prepares its node (Line 14), writing � to its status to indicate
that it does not yet have permission to enter the critical section. It proceeds to
append itself to the queue by moving the tail pointer (Line 17) and updating
T1’s next pointer (Line 21). T1 sees its successor in Line 50 or after failing to set
the tail pointer to ⊥ in Lines 55 and 57. Subsequently T1 will set T2’s status
to �, indicating that T2 can enter the critical section (Line 58).

On Arm, T2’s initialization to its own node can happen after it informs T1

that it has a successor. In this case T1 can unlock T2 before T2 initializes its node
(locking itself again). An execution graph for this case is shown in Fig. 4. Perhaps
surprisingly, the SWAP operation in Line 17 does not prevent this reordering even
if it is sequentially consistent (note that the original presentation in [6] does
not mention whether the atomic SWAP and CAS operations have any ordering
semantics). The reason for this is that sequentially consistent atomic operations
are compiled to LDAXR/STLXR instruction pairs which generate the Events c and
d. Intuitively speaking, Arm only preserves the order 1) between Event c and
subsequent events, 2) between Event d and preceding events, and 3) between all
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T2 T1

W(l3.N.status, �)[L.27] a:

Frel[L.28] b:

Rsc(l1.tail, l2.N)[L.30] c:

Wsc(l1.tail, l3.N)[L.30] d:

W(l2.N.next, l3.N)[L.32] e:

R(l3.N.status, �)[L.35] f:

po

po

po
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po

R(l2.N.next, l3.N)[L.74] g:

Facq[L.75] h:

W(l3.N.status, n)[L.78] i:

po

po

moe

rfe

sw

ctrl

Fig. 5. Bug on IMM: Non-terminating execution

sequentially consistent events on the same processor. But, it does not preserve
the order between Event a and Event c, or Event d and Event e. Thus the
events can be committed in the order c, e, a, d. In this commit order, the node
initialization (Event a) happens after T2 informs T1 (Event e).

We repair the bug by adding a Frel fence in Line 15 in AcqReal<1>. With
this fence, the Events a, b, e, g and i map directly to the events in Fig. 3(b).
Thus (with the fence) the buggy execution becomes inconsistent on Arm, and
the bug can not occur anymore. On IMM we additionally need to add an Facq

fence at Event h. With both fences, the events Events a, b, e and g to i map
directly to the events in Fig. 3(c), showing that the bug is fixed also on IMM.

Note that for higher depths d > 1, the corresponding Frel fence already exists
(in Line 28), but the corresponding Facq fence is also missing. Indeed VSync
reports the analogous termination bug (Fig. 5) at greater depths. Analogously
to before, we can see that this bug only exists on IMM and that it can be fixed
by inserting the Facq fence in Line 75.

3.2 Mutual Exclusion Violation

This bug only occurs with three threads T1, T2 and T3 on separate NUMA nodes,
as indicated in Fig. 6. In a nutshell, T2 enqueues behind T3 at l0 with the QNode
l1.N, which was previously used by T1 (Fig. 7(b)). When T1 entered the critical
section (Fig. 7(a)), it had no predecessor and therefore set the status of l1.N
to � (Line 19). Due to a missing fence, this operation is only propagated to
T2 after T2 enqueued behind T3, giving T2 the false signal that it can enter the
critical section even though T3 is still holding the lock (Fig. 7(c)).

A more detailed execution leading to the bug is shown in Fig. 8. Note that
Events d, e, g, i and l map to the events in Fig. 3(b), implying that the bug is
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Fig. 6. Assignment of threads to NUMAs

Fig. 7. Mutual exclusion violation on IMM due to a missing acquire fence.
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Fig. 8. Bug on IMM: Mutual exclusion violation execution graph.
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Fig. 9. The client code for verifying and optimizing HMCS with VSync

not possible on Arm. On IMM it can be fixed like indicated in Figs. 3(c) and
3(d) by adding Facq at Event j.

4 Verifying and Optimizing HMCS with VSync

Vsync [15] is a fully automated verification and optimization tool that accepts
(bounded) concurrent C/C++ programs as input. In its verification mode, it
exhaustively enumerates all the possible executions of the input program fol-
lowing the GenMC model checking algorithm [12], and checks that these are
terminating, memory-safe, and satisfy all user-supplied assertions. In its opti-
mization mode, it uses an iterative algorithm to find minimal barrier placements
that ensure program correctness (i.e., successful verification).

Like all model checkers, VSync does not verify locks abstractly: one must
provide client code that uses the lock appropriately. A reasonable client must
visit all functions and paths of a lock. For example, if in our client we configured
HMCS with maximum depth = 1, the verification would cover only AcqReal<1>
and RelReal<1>, and if we created only one thread then we would miss all
concurrency bugs.

Verification time is generally super-exponential in the number of threads and
acquire/release calls. We thus need to find the minimum number of threads with
which we can still generate all bug-prone execution graphs. In general, finding
this number is an open problem. We simply choose the maximum number of
threads for which verification time is within reason. We experimentally justify
this bound by adding an additional thread and observe that no additional bugs
are found by VSync.

Our client code is shown in Fig. 9: it uses three threads, maximum DEPTH = 3,
and thresholds THRESHOLD[d] = 2. We choose this maximum DEPTH = 3 because
it covers the case where a lock (at depth d = 2) has both children and a parent.
We assign threads to NUMA nodes as in Fig. 6. Each thread in our client acquires
the lock, increments a shared variable, and then releases the lock. One thread
(T1) repeats this twice. This way we cover the case of a thread entering the
critical section twice. With this setup, verification with VSync takes 10 s. Adding
a fourth thread T4 on NUMA 0 (respectively, NUMA 3) increases verification
time to 1300 s (respectively, 2800 s).
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To verify mutual exclusion, we assert that our shared counter has the
expected value after all threads are done (assert(counter==4)). If any exe-
cution graph of the client violates this assertion or indicates a non-terminating
run of the program (such as the graphs in Figs. 4, 5 and 8), VSync prints that
graph in text form. We note that debugging such graphs is non-trivial.

A simpler and more elegant way to use VSync is to implement the lock with
only sequentially consistent memory operations (without fences). This ensures
that there will be no bugs related to the consistency model. VSync then optimizes
these barriers and reports to the user which barriers can be relaxed and/or
removed. With our client code with three threads, optimization takes one second.
With four threads, optimization takes less than 100 s.

5 Performance Evaluation

We evaluated HMCS on our Arm server and studied implementation choices
that we expect are affecting performance. In particular, we tackle the following
questions:

– Do the Large System Extensions (LSE) of Armv8.1 bring the promised per-
formance improvements?

– Is there a performance penalty of unnecessary barriers, e.g., those introduced
by VSync when optimizing for IMM rather than Arm?

– Do implicit barriers provide better performance than fences?

5.1 Experimental Setup

Environment. We ran the experiments on a Huawei TaiShan 200 (Model 2280) [1]
with two HiSilicon Kunpeng 920-4826 processors [2] (2 packages), each of them
with 48 Armv8.2 64-bit cores organized in 2 NUMA nodes and running at
2.6 GHz. The experiments reported in this section were conducted on openEuler
20.09 [3]. We reproduced similar results on Ubuntu 18.04 LTS.

Benchmarks. We conducted userspace experiments with LevelDB (readrandom
benchmark) [7] and with a custom microbenchmark. In the microbenchmark,
each thread repeatedly acquires a pthread mutex lock, increments a shared
counter (causing a cache miss), and releases the mutex. In each experiment, we
vary the number of threads and the lock implementation. We interpose calls to
pthread functions with LD PRELOAD in order to replace the lock implementation
without modifying the benchmarks—in a similar fashion as [10]. We run each
experiment for 3 s, repeat the experiment 10 times, and report the median
throughput (number of iterations per second). We pin threads to cores from
core 95 downwards, always keeping core 0 free to serve other OS tasks.
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Lock Variants. We compare the following variants of the HMCS-lock in regard
to barrier/fence placements:

– hmcs-arm with a minimal set of fences required for Arm,
– hmcs-imm with a minimal set of fences required for IMM,
– hmcs-sc in which all racy accesses use sequentially consistent implicit barriers,
– hmcs-vsync with VSync-optimized implicit barriers, and
– hmcs-amo with optimized barriers on CAS and SWAP in hmcs-vsync.

We use the mcs lock with optimized barriers as a baseline. To avoid false
sharing and ensure reliable results, we also cache-align and pad the shared data
structures (QNode and HNode). All locks are implemented using C11 atomics
(stdatomic.h).

5.2 Experimental Results for Low Contention

We start by exploring the performance of the HMCS variants with our
microbenchmark running a single thread (see Fig. 10).

Fig. 10. Low contention scenario: single-threaded microbenchmark with several HMCS
variants compiled with and without LSE instructions.

LSE Versus LDXR /STXR. HMCS variants that employ LSE instructions perform
poorly in comparison to those that employ the conventional LDXR/STXR pair.
The current hardware implementation of LSE degrades the performance of all
HMCS variants. For example, in the case of hmcs-vsync, the throughput of the
LSE version is 27% of the LDXR/STXR throughput. We also observe that LSE
implementations tend to have a higher variance than the LDXR/STXR implemen-
tations (see standard deviation reported on Fig. 10).

Due to the importance of the single-thread scenario, we only consider the
implementations with LDXR/STXR in the remainder of the evaluation.
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Performance Penalty of No Optimization. The performance of hmcs-sc shows
that exclusively employing sequentially consistent implicit barriers incurs a con-
siderable cost under low contention. As we will see below, the performance of
hmcs-sc is comparable to the other variants under high contention.

Performance Penalty of Targeting IMM. We observe that hmcs-arm has 16%
higher throughput than hmcs-imm, implying that the additional fences required
by IMM impact the performance negatively. In contrast, the additional implicit
barriers in hmcs-vsync do not reduce throughput compared to hmcs-amo, which
has been manually optimized for Arm. This suggests that the performance
penalty of using IMM as the verification target depends on the type of barriers
and not simply on the number of additional barriers required by IMM.

Implicit Barriers Versus Fences. Automatically-selected implicit barriers per-
form better than fences: hmcs-vsync shows 49% higher throughput than hmcs-
imm, and 28% higher throughput than hmcs-arm. Note that replacing fences
with implicit barriers reduces the code length, which in turn can shorten single-
threaded runs and improve the instruction cache usage. To validate that the
shorter code length is not the source of the improved performance of hmcs-vsync
over hmcs-arm, we create a variant based on hmcs-vsync, in which we introduce
a NOP instruction for every removed fence (NOP and fences have the same length
in Arm); we call this variant hmcs-nop. Figure 10 shows a negligible difference
between hmcs-vsync and hmcs-nop, corroborating the claim that implicit bar-
riers improve performance for single threaded code [13]. Nevertheless, whether
implicit barriers or fences perform better for multiple threads may depend on
the benchmark, as we will see below.

The reason for this discrepancy is not clear; besides micro-architectural
implementation details, a possible reason may lie in the weak consistency model
of Arm itself. For the correctness of the HMCS lock, the order between spe-
cific loads and subsequent memory operations needs to be enforced. On the
Kunpeng 920 server, these loads can be implemented either as a load with a
trailing DMB LD instruction (acquire fence), or as LDAR/LDAXR load instructions
with implicit acquire barriers. Both are unsatisfactory. The DMB LD instruction
needlessly orders all previous loads with subsequent operations. The LDAR/LDAXR
instructions needlessly order all previous stores with implicit release barriers with
that load. These non-comparable unnecessary ordering constraints might be the
reason both implementation choices are sometimes the better choice. Armv8.3
(not supported on Kunpeng 920) introduces the LDAPR load instruction, which
only introduces the necessary order. Perhaps the comparison between implicit
barriers and fences would be more clear-cut with this instruction.

5.3 Experimental Results for High Contention

We now explore higher contention scenarios with our microbenchmark and with
LevelDB benchmark. In the following experiments, we consider hmcs-arm, hmcs-
vsync, hmcs-sc, and mcs.
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Fig. 11. Microbenchmark with 2 to 95 threads and
different lock implementations.

Fig. 12. Speedup histogram of
hmcs-arm over hmcs-vsync for
the microbenchmark with 1 to
95 threads.

Figure 11 shows the performance of our benchmark running with 2 to 95
threads. (Single-threaded runs were evaluated in Sect. 5.2, and one core is left
free to handle interrupts, which are otherwise a source of noise.) We assign
threads to cores sequentially.

After filling a complete NUMA node (with 24 threads), the performance of
mcs drops considerably; for example at 95 threads, mcs throughput is about
45% of hmcs-vsync throughput. The performance spike with 4 threads is due to
the higher cache locality achieved when threads share the same L3 cache region.
Kunpeng 920 processors split the L3 cache in regions shared by groups of 4 cores.
The spike with 28 threads is caused by the interplay of the HMCS policy to keep
the lock in the NUMA node and the fact that 4 cores of the second NUMA
node share the same L3 cache region. HMCS enforces that both NUMA nodes
have the same share of the lock with a user-configured threshold (see Sect. 2.1).
Therefore, the first NUMA node executes half of the benchmark iterations with
24 cores, whereas the second NUMA node executes the other half with 4 threads
and few L3 cache misses, improving the overall throughput. The spike repeats
at lower intensities when the other NUMA nodes only use 4 cores.

The different HMCS variants perform in most configurations less than 10%
apart. Figure 12 shows the histogram of speedups of hmcs-arm over hmcs-vsync
for 2 to 95 threads. The single case around 0.89 is with 49 threads, where hmcs-
arm is slower than hmcs-vsync. The single case around 1.20 is with 2 threads,
where hmcs-arm is faster than hmcs-vsync: this is caused by the slowpath of
MCS lock release, which is triggered more often with hmcs-vsync and 2 threads.
For the other cases, we observe that hmcs-arm tends to be slightly slower than
hmcs-vsync, but the difference is below 8%.
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Fig. 13. LevelDB benchmark with 1 to 95 threads
and different lock implementations.

Fig. 14. Speedup histogram of
hmcs-arm over hmcs-vsync for
the LevelDB benchmark with 1
to 95 threads.

Figure 13 shows the performance of the LevelDB benchmark running 1 to 95
threads. The benchmark contains parallel work and can scale up to around 8
threads. Up to 9 threads, mcs performs up to 20% faster than hmcs-vsync, but
continuously degrades its throughput when more than 24 threads are running
(or more than one NUMA node is used in the application). For example at 95
threads, the mcs throughput is 47% of hmcs-vsync throughput. Between 10 and
24 threads, hmcs-vsync and mcs are at most 6% apart.

Figure 14 shows again the histogram of speedups of hmcs-arm over hmcs-vsync
for 1 to 95 threads. In the range from 1 to 5 threads, hmcs-vsync performs up to
4% faster than hmcs-arm. With 6 threads or more, hmcs-arm performs up to 5%
faster than hmcs-vsync.

Finally, hmcs-vsync performs up to 8% faster than hmcs-sc in the range from
1 to 10 threads. With 11 threads or more, the hmcs-vsync throughput is between
0.99 to 1.03 times the hmcs-sc throughput.

6 Discussion

Already with sequentially consistent barriers, the NUMA-aware HMCS lock con-
siderably outperforms the MCS lock at high levels of contention. At these lev-
els, the performance impact of barrier optimization is negligible. On the other
hand, incorrect optimizations can lead to heisenbugs. For this reason, we recom-
mend simply using sequentially consistent barriers on all racy accesses, and not
worrying about weak consistency. In cases of low contention, however, barrier
optimizations can show substantial performance improvements. In these cases,
the automatic and formally verified optimizations by VSync outperform manual
optimizations (both our own and the repaired fences from the literature). This
shows that barrier optimization, if desired, should be left to the machine.
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A Arm vs. IMM Consistency Model

obs ⊇ rfe ∪ moe (1)
dob ⊇ ctrl; [W ] (2)
bob ⊇ po; [Frel];po (3)
lob ⊇ dob ∪ bob (4)
ob ⊇ obs ∪ lob ∪ ob;ob (5)
ob is irreflexive (6)

Fig. 15. A Subset of the Arm Consistency Model. The key derived relation is ordered-
before (ob), which is irreflexive in consistent graphs.

F ⊇ Frel ∪ Facq (7)
deps ⊇ ctrl (8)
ppo ⊇ [R]; deps; [W] (9)
bob ⊇ [F ];po ∪ po; [F ] (10)
ar ⊇ rfe ∪ bob ∪ ppo (11)
ar is acyclic (12)

release ⊇ [Frel];po (13)
sw ⊇ release; rfe;po; [Facq] (14)
hb ⊇ po ∪ sw ∪ hb;hb (15)
eco ⊇ rfe ∪ moe (16)

hb; eco is irreflexive (17)

Fig. 16. A Subset of the IMM Consistency Model. Key relations are the acyclic relation
(ar) which is acyclic in consistent graphs, as well as synchronizes-with (sw), extended
coherence order (eco), and happens-before (hb), where hb; eco is irreflexive in con-
sistent graphs.

A standard way to define weak consistency models is through execution graphs.
Nodes in these graphs represent events such as reads and writes, and edges
specify various relations between these events, e.g., the order in which reads and
writes to the same location are committed. Memory models are defined by a) the
edges that exist in the graph and b) restrictions on these edges. For brevity, we
introduce only the event and edge types of Arm and IMM that are relevant to
the bugs we mention in this paper. We consider write events WX(loc, val), read
events RX(loc, val), and fence events FX , where X ∈ { sc,acq, rel, rlx } is the so
called mode of the event, loc is the shared memory location on which the event
operates, and val is the value written or read in the event. The mode denotes
the type of memory barrier (if any) represented by the event: rlx indicates that
no barrier is present, acq represents acquire, rel release, and sc sequentially
consistent barriers. Mode rlx is the default mode and omitted.
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We consider the following types of fundamental edges:

– rfe (read from external) edges WX(x, a) rfe−→ RY (x, a) connect a write event
of a thread to a read event of another thread that reads from it.

– moe (modification order external) edges WX(x, a) moe−→ WY (x, b) connect
write events (writing to the same location) of different threads indicating the
order in which they were committed.

– po (program order) edges connect events of the same thread in the order in
which they are issued by the program.

– ctrl (control dependency) edges connect a read RX(x, a) that influences a
condition (e.g., if- or while-condition) evaluation to every event of the same
thread that is issued after the condition.

– event-type self-loops e [E]−→ e for event type E ∈ { R, W, Frel, Facq } connect
every event e of type E to itself.

Other edges are derived from these fundamental edges according to the rules
of the consistency model (Figs. 15 and 16). For instance, the edge a moe−→ e in
Fig. 3(b) implies an eco edge a eco−→ e on IMM (with Eq. (16)). Such derived
rules are often defined with the composition operator ‘;’, which for arbitrary
edge types R and S is defined by

a
R;S−→ c ⇐⇒ a R−→ b S−→ c

The meaning of barriers is defined by the derived edges they imply; for example,
the meaning of Frel (which maps to the full DMB.ISH fence) on Arm is defined
through the ob edge it implies between preceding and subsequent operations
(with Eqs. (3) to (5)).

In Figs. 15 and 16 we have collected the rules of IMM and Arm consistency
that are relevant to our discussion. In [16] it is shown that Arm consistency
implies IMM consistency; thus any bug on Arm is also present on IMM, and
verification on IMM implies correctness on Arm. The converse is not true, and
bugs on IMM are not always bugs on Arm. Indeed, some of the bugs identified
by VSync on the HMCS lock on IMM are not bugs on Arm. The key difference
relevant to these bugs is that moe edges imply an ob edge on Arm, but do not
imply an ar edge on IMM. Thus they contribute to ob cycles but not to ar
cycles.

We illustrate the implications at hand of the execution graphs in Fig. 3. In
Fig. 3(a), we have an rfe edge from Event e to Event a; in Fig. 3(b), we instead
have an moe edge from Event e to Event a. Other than those events and the
edge between them, the graphs are the same. Thus in both graphs, the following
imply ob edges:

– a po−→ b
[Frel]−→ b po−→ c (Eqs. (3) to (5))

– c rfe−→ d (Eqs. (1) and (5))

– d ctrl−→ e [W]−→ e (Eqs. (2), (4) and (5))
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The only edge missing for an ob cycle is e ob−→ a. This edge is implied by the
e rfe−→ a edge in Fig. 3(a) and the e moe−→ a edge in Fig. 3(b) (with Eqs. (1) and
(5)). Note that due to transitivity (Eq. (5)) the cycle a ob−→ . . . ob−→ a implies a
reflexive edge a ob−→ a, which contradicts the irreflexivity of ob (Eq. (6)). Thus
both graphs are inconsistent on Arm.

On IMM, the following imply ar-edges:

– a po−→ b
[Frel]−→ b and b

[Frel]−→ b po−→ c (Eqs. (7), (10) and (11))
– c rfe−→ d (Eq. (11))

– d [R]−→ d ctrl−→ e [W]−→ e (Eqs. (8), (9) and (11))

Analogous to before, only an e ar−→ a is missing for an ar cycle. In Fig. 3(a) this
edge is implied by the e rfe−→ a edge with Eq. (11), and this graph is inconsistent
on IMM. But in Fig. 3(b), the moe edge does not contribute an ar edge. Indeed,
there is no ar cycle in Fig. 3(b), which is consistent on IMM. Unfortunately,
two of the bugs detected by VSync on IMM appear only in graphs that look
like Fig. 3(b). These bugs therefore only appear on IMM, but can not appear on
Arm.

We proceed to discuss how to fix these bugs on IMM. Consider the third graph
(see Fig. 3(c)) which is almost identical to the second (see Fig. 3(b)). We only
added a Facq fence between the d and f. Adding this fence does not eliminate the
ob-cycle we inferred previously, and this graph is also inconsistent with Arm.
On IMM we derive the following edges:

– b
[Frel]−→ b po−→ c rfe−→ d po−→ e

[Facq]−→ e thus b sw−→ e (Eqs. (13) and (14))
– a hb−→ b, b hb−→ e and e hb−→ f thus a hb−→ f (Eq. (15))
– f eco−→ a (Eq. (16))

As shown in (Fig. 3(d)) we end up with a hb−→ f eco−→ a and thus a hb;eco−→ a. But the
hb;eco relation is irreflexive (Eq. 17). We conclude that this graph is inconsistent
with IMM. In other words, due to the Facq fence the execution with the bug
cannot occur on IMM.

B Optimizing Barriers on Atomic Operations

The implicit sc barriers on CAS and SWAP in Fig. 2 are not optimal. VSync reports
that they are already too strong for IMM, and indeed they can be optimized
further for Arm. The exact optimization depends on the variant. Manual anal-
ysis shows that when using fences, all barriers on the atomic operations can be
removed. When using implicit barriers, release barriers on Lines 17 and 30 are
needed to avoid non-termination (with similar bugs as those in Sect. 3.1) and
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Table 1. Possible optimizations on Arm for atomic operations when using fences or
implicit barriers.

SWAP [Line 17] SWAP [Line 30] CAS [Line 55]

Fences - - -

Implicit sc rel rel

Implicit (LSE) rel; Facq rel rel

acquire and release barriers are needed on Line 17 resp. Line 55 to ensure that
operations in the critical section can not leak out of the lock (resulting in loss of
mutual exclusion). The resulting barriers are shown in Table 1. That table also
shows a variant that may be more optimal when using interlocked LSE instruc-
tions. Unlike load/store-exclusive pairs, on which sc implicit barriers do not act
like a full barrier (see discussion in Sect. 3.1), LSE interlocked operations have
been strengthened in a recent change to Arm specifications to provide the same
semantics for sc implicit barriers as a DMB.ISH (see Eq. (10)) through the rule

bob ⊇ po; ([A]; amo; [L]);po

where amo relates a the read event of an atomic memory operation (such as
SWP) to its write event, and [A] and [L] are event-type self-loops for acquire
resp. release events. This contrasts the earlier definition in [17], in which LSE
instructions provide the same ordering guarantees as load/store-exclusive pairs.

However, this stronger ordering is not necessary for the HMCS lock, and
thus we optimize barriers further by relegating the acquire barrier to a trailing
fence. This variant is what is denoted by hmcs-amo in Sect. 5. As demonstrated
in Fig. 10, this optimization does not currently improve performance compared
to hmcs-vsync (which uses sc barriers on atomic operations). Perhaps if LSE
operations become more efficient for low-contention cases in the future, these
optimizations will become more interesting.

For the sake of completeness we also implement a variant hmcs-armamo which
applies the optimization to hmcs-arm, i.e., in which as described in Table 1 all
implicit barriers on atomic operations are removed. Performance results (without
LSE) are shown in Figs. 17 and 18. While minor improvements can be measured
in the microbenchmark, these improvements also do not translate to the larger
benchmark.
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Fig. 17. Performance of AMO-optimizations with fences on microbenchmark

Fig. 18. Performance of AMO-optimizations with fences on LevelDB
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