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Abstract

Several validation techniques based on the cross-tabulation
matrix can be applied to validate Land Use Cover
(LUC) maps. The exercises in this chapter focus, in
particular, on the cross-tabulation techniques proposed by
Robert Gilmore Pontius Jr., who has developed many
indices and techniques in this field. Given his major
contribution to this family of validation techniques, we
have associated his name here with cross-tabulation
techniques without this in any way implying that his
scientific activity is limited to this field. The null model
(Sect. 1) is especially useful for validating simulations,
comparing the modelled map to a reference map with full
persistence. LUCC budget (Sect. 2) only focusses on
changes, which it splits into different components. This
method can be used to compare the changes we want to
validate with a reference set of changes, so providing
interesting information as to howwell our maps capture the
dynamics of the landscape. Quantity and allocation
disagreement (Sect. 3) analyse the differences between
the reference map and the map being validated using two
indices: disagreement in quantity and disagreement in

allocation. The Figure ofMerit (FoM) (Sect. 4) technique is
used to validate a set of LUC changes by comparing them
with a reference, distinguishing between different compo-
nents of agreement: correctly simulated change, wrongly
simulated or missing change. Incidents and States (Sect. 5)
allows us to identify illogical transitions in a time series of
maps by providing the number of states and transitions that
a cell undergoes over the course of the series. Intensity
analysis (Sect. 6) and Flow matrix (Sect. 7) also enable us
to validate the logic of LUC changes in a time series of
maps. Intensity analysis provides information on the speed
of changes, identifying those transitions or changes that do
not follow a logical trend, while the flow matrix enables us
to spot unstable changes in a series of maps. In this chapter,
we present examples of how these techniques can be used in
different cases: to validate single LUC maps, to validate a
series of maps with two or more time points, to validate
simulated changes against a reference map of changes and
to validate changes simulated by various models. All these
techniques are illustrated by exercises using datasets from
the Asturias Central Area and the Ariège Valley.
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1 Null Model

Description

The null model is a method specifically developed by Pon-
tius and Malanson (2005) to validate LUCC modelling
simulations. It assumes that the land use/land cover at the
simulation start time (t1) is exactly the same at the end time
(t2) and that no changes take place. The aim is to evaluate
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whether a landscape with no changes more closely resembles
the reference landscape for the year of the simulation (t2)
than the simulated landscape. In other words, we change the
date of the initial LUC map while leaving the content
unchanged. It then becomes a reference map (no change)
with which we can measure the predictive power of the
model.

If the agreement between the observed LUC at t2 and the
simulation map at t2 is higher than that between observed
LUC at t2 and the so-called null model, the simulation has
greater predictive power than the hypothesis of complete
persistence (no change). The agreement between the null
model, the simulation and the reference map is usually
assessed using common cross-tabulation techniques and
Kappa indices (see Sect. 1 in Chapter “Basic and Multiple-
Resolution Cross-Tabulation to Validate Land Use Cover
Maps” and Sect. 3 in Chapter “Metrics Based on a Cross-
Tabulation Matrix to Validate Land Use Cover Maps”).

Utility

Exercises

1. To validate simulated changes against a reference map of changes

The null model helps to measure the relative success of a
simulation compared to persistence in time. The usefulness
of this method depends on the spatiotemporal dynamics of
the study area.

The method is based on the hypothesis that a simulation is
successful if it gets better validation scores than a landscape in
which no changes occur. When simulating change in a study
area in which little change is taking place, it may be difficult to
correctly simulate these changes in the same positions as on
the reference map of changes. As a result, the null model may
provide better validation scores than the simulation, in that the
null model avoids possible errors when allocating changes
and always simulates persistence correctly. This is why the
null model is especially useful for validating whether an
LUCC model simulates persistence correctly.

QGIS Exercise

Available tools

• Processing Toolbox
GRASS
Raster (r.*)
r.kappa

• Semi-Automatic Classification Plugin
Tab: Postprocessing
Section: Cross-classification

To calculate the null model, we must use the same tech-
niques as cross-tabulation and Kappa. Please see Sect. 1 in
Chapter “Basic and Multiple-Resolution Cross-Tabulation to
Validate Land Use Cover Maps” and Sect. 3 in Chapter
“Metrics Based on a Cross-Tabulation Matrix to Validate
Land Use Cover Maps” for details about how to compute
cross-matrices and kappa indices between two raster layers.

Exercise 1. To validate simulated changes against a
reference map of changes

Aim

To find out if the prediction score obtained by the simulation
map for 2018 is higher than that obtained by the null model.

Materials

CORINE Land Cover Map Val d’Ariège 2012
CORINE Land Cover Map Val d’Ariège 2018
Simulation LCM Val d’Ariège 2018

Requisites

All maps must be rasters and must have the same resolution,
extent and projection.

Execution

Step 1

The first step is to calculate the Kappa indices measuring the
agreement between the simulation, the null model and the
reference map showing observed LUC in 2018. We use the
GRASS r.kappa raster tool to calculate the kappa values for
agreement: (i) between observed LUC in 2012 duplicated in
2018 (null model) and observed LUC in 2018 and (ii) be-
tween observed LUC in 2018 and simulated LUC in 2018.

Step 2

We then generate the cross-matrices between the simulation,
null model and reference map (CLC_2012 against
CLC_2018 and CLC_predict_2018 against CLC_2018)
using the Cross-classification tool (see Exercise 2 of Sect. 1
in Chapter “Basic and Multiple-Resolution Cross-Tabulation
to Validate Land Use Cover Maps”). This method comple-
ments the kappa agreement indices and provides additional
information about the similarity between the different maps.
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Step 3

Once the cross-tabulations are obtained, on a spreadsheet we
calculate the sum of cells on the diagonal (pixel-to-pixel
correspondence).

Results and Comments

The resulting Kappa values are 0.9849 for the simulation
(CLC_predict_2018 related to CLC_2018) and 0.9875 for
the null model (CLC_2012 related to CLC_2018). The
quantity and allocation correspondence (the proportion of
diagonal pixels in the cross-matrices) are 98.22% for the
simulation and 98.53% for the null model. Therefore, with
both techniques, the null model obtains a slightly higher
score than the simulation.

Interpretation of these results is difficult and has to be
done carefully due to the limitations of this technique and
the criticisms often levelled against it. The results show that
persistence is the dominant process (98.5% of the study area
did not change between 2012 and 2018; null model). Taking
into account that most models simulate persistence better
than change, it would be difficult to obtain a higher pre-
diction score for a study area in which so little land use
change is taking place. The low proportion of changes
makes it difficult to simulate the changes between land use
categories correctly. The slightest error diminishes the per-
formance of the simulation compared to the null model.

Other methods, such as the Figure of Merit (see Sect. 4),
can provide a better picture on how the model correctly
simulated the change.

2 LUCC Budget

Description

LUCC budget is a technique for analysing land use/cover
change (LUCC) using the cross-tabulation matrix obtained
by overlaying two maps of the same area at two different
dates. For each category, the changes are characterized in
four components: gross gains, gross losses, net change and
swap (Pontius et al. 2004).

Gross gains are the areas gained by each category, and
gross losses are the areas lost. Net change is the difference
between gains and losses. In categories in which gains and
losses are occurring in different places, swap is a measure of
the real changes taking place which are not revealed by the
net change indicator. It measures the total area in which an
equivalent amount of gains and losses have taken place, i.e.
if in one category there are gains of 5 ha in one place and
losses of 3 ha in another, the 3 ha that it losses in one place

and recoups in another are the swap (swap = 3 + 3 = 6 ha),
while the remaining 2 ha (5–3) are the net change.

Utility

Exercises

1. To validate a series of maps with two or more time points

When monitoring landscape changes, the LUCC budget
technique helps to identify the most critical land use tran-
sitions and should ultimately facilitate linking patterns to
process (Pontius et al. 2004). It also allows LUCC simula-
tion models to compare observed LUCC with simulated
LUCC in both the calibration and validation steps (Paegelow
2018). In short, LUCC budget enables a more detailed
analysis of land use change in a particular area.

QGIS Exercise

Available tools

• Processing R provider plugin
LUCCBudget.rsx R script

The components of change computed by the LUCC budget
are derived from the cross-tabulation matrix. This matrix can
be obtained by overlaying the two maps in QGIS and then
calculating the LUCC budget values using a spreadsheet
programme. However, we suggest using the LUCCBudget.
rsx R script with the QGIS Processing R provider plugin.
This script will carry out the entire LUCC budget calculation
and will generate a table containing the values for the four
components of change.

See Chapter “About this Book” for more detailed infor-
mation about how to integrate R into QGIS and how to use R
scripts such as the one applied in this exercise.

Exercise 1. To validate a series of maps with two or
more time points

Aim

To carry out LUCC budget analysis in the Ariege study area
using the CORINE Land Use maps dated 2000 and 2018.
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Materials

CORINE Land Cover Map Val d’Ariège 2000
CORINE Land Cover Map Val d’Ariège 2018

Requisites

All maps must be in raster format and have the same reso-
lution, extent and projection.

Execution

If necessary, install the Processing R provider plugin, and
download the LUCCBudget.rsx R script into the R scripts

folder (processing/rscripts). For more details, see Chapter
“About this Book”.

Step 1

Then, run the script and fill in the required parameters (names
of the two maps and the output table) as shown in Fig. 1.

Results and Comments

The script will generate the cross-tabulation or change matrix
as shown in Table 1. This matrix is saved as an intermediate
product. The script will also generate a table in CSV format
that indicates, for each category, the value of the four com-
ponents assessed by the LUCC budget technique (Table 2).

Fig. 1 Exercise 1. Step 1. LUCCBudget R script

Table 1 Result from Exercise 1. Cross-tabulation or change matrix

0 1 2 3 4 5 6

0 74,437 0 0 0 0 0 0

1 0 3,302 3 0 8 0 37

2 0 1,853 52,059 235 409 0 2

3 0 23 109 39,232 127 0 0

4 0 12 399 877 11,418 22 0

5 0 0 0 0 10 921 0

6 0 0 0 0 0 0 76
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As can be seen in Table 2, the only class in which there
are no losses, and consequently no swap is Category 6
(water). Therefore, for this category, the gross change is
equal to the net change. Similar behaviour could be expected
for Category 1 (built-up) because it is a “definitive” class
(with no return), in the sense that it is very unlikely that a
built-up area will be converted into another land cover.
However, the change matrix (Table 1) shows small areas of
transition from Category 1 (built-up) to Categories 2 (agri-
culture), 4 (scrublands) and 6 (water). These transitions are
probably erroneous changes, resulting from misclassifica-
tions in the maps. The other categories appear to be more
dynamic with both gross losses and gains and significant
swap values.

3 Quantity and Allocation Disagreement

Description

Pontius Jr. and Millones (2011) proposed a set of metrics,
obtained from the cross-tabulation matrix, which classify the
overall change detected between a pair of maps into various
components, namely, differences in the quantity of each
category and differences in their location.

When analysing a time series (or single maps evaluated
against a reference map), this method can differentiate
between the changes that are due to differences in the rela-
tive importance of certain categories (some increase and
others decrease) and those derived from changes in the
location of the elements that make up these categories. It
also identifies the categories that undergo net changes and
swaps. As regards differences in location, this method dis-
tinguishes between exchanges between classes and changes
in the location of two or more classes.

Utility

Exercises

1. To validate a series of maps with two or more time points

Quantity and allocation disagreement assess how similar a
simulation or simulation is to a reference map, differentiating
between (dis)agreement that is due to the quantities of dif-
ferent classes and (dis)agreement caused by the allocation of
these classes in different places. By providing the same
information, this method can also be used to validate an
LUC map against a reference map or to assess the LUC
changes in a time series of maps and understand whether or
not these changes follow a logical trend.

QGIS Exercise

Available tools

• Processing Toolbox
GRASS
Raster

r.cross
r.kappa

SAGA
Confusion matrix

• Pontius matrix (Excel sheet)
http://www2.clarku.edu/*rpontius/PontiusMatrix41.xlsx

• Semi-Automatic Classification plugin (SCP)
Tab: Postprocessing

Section: Cross-Classification

For more information about the use of r.cross, r.kappa,
SAGA Confusion matrix and SCP, please refer to Chapters

Table 2 Results from Exercise 1. LUCC budget components

Gains Losses Swap Net

0 0 0 0 0

1 1,888 48 96 1,840

2 511 2,499 1,023 1,987

3 1,112 258 517 854

4 554 1,310 1,108 756

5 22 10 20 12

6 38 0 0 38
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“Basic and Multiple-Resolution Cross-Tabulation to Vali-
date Land Use Cover Maps” and “Metrics Based on a Cross-
Tabulation Matrix to Validate Land Use Cover Maps”.
QGIS Raster Calculator is a generic tool performing all
kinds of raster calculations. It is intended for detailed anal-
ysis of the differences in quantity and allocation, rather than
global studies.

Exercise 1. To validate a series of maps with two or
more time points

Aim

To detect quantity and allocation changes between
CORINE LUC maps of the Ariège Valley (southern France)
between 2012 and 2018.

Materials

CORINE Land Cover Map Val d’Ariège 2012
CORINE Land Cover Map Val d’Ariège 2018

Requisites

All maps must be in raster format with the same resolution,
extent and spatial reference system (SRS).

Execution

Step 1

In order to be able to make this analysis, the CORINE LUC
map for 2018 must be polygonized. To this end, use the tool
Polygonize.

Step 2

After polygonizing the CORINE raster, the next stage is to
cross-tabulate the two maps we are going to compare. To
this end, open the SAGA confusion matrix tool and select
the CORINE LUC map for 2012 as Classification 1 layer
and the CORINE LUC map for 2018 as Classification 2
layer. Then, fill in the parameters for the following lines—
Value, Value (Maximum) and Name—into the function. Do
not change any default options (the “Report unchanged
classes” box must be ticked; output as “cells” and open the
results generated) (Fig. 2). Rather than saving these results
in a file, they can be handled as temporary layers.

Step 3

Import the SAGA-generated confusion matrix obtained in
the previous stage into a spreadsheet software such as Excel.
Then translate the obtained matrix into percentages
(Table 3). This is done by dividing each pixel score in the
original table by the total number of pixels multiplied by
100.

Step 4

Finally, use the SAGA-generated confusion matrix obtained
in Step 2 to calculate the quantity and allocation disagree-
ments in a spreadsheet software such as Excel. For a pixel
resolution of 15 � 15 m, 1 ha corresponds to 44.44 pixels.
Quantity disagreement is calculated by subtracting column
total from row total (quantity disagreement = row total –
column total) (Table 4). Allocation disagreement corre-
sponds to all not-diagonal cell values.

Results and Comments

Table 3 shows the SAGA-generated confusion matrix
reformatted in Excel and converted into a per cent of the
study area. The sum of the diagonal corresponds to the
overall persistence between 2012 and 2018. This value is
98.52%, which means that the change rate is 1.48%.

Although the net balance values (2018–2012) provided in
Table 4 mask the changes that have taken place in certain
classes, we can see from Table 3 that built-up gains (1.01%)
result almost exclusively from the conversion of agricultural
and pasture land (1.00), whose losses are partially com-
pensated by the conversion of scrubland into agriculture and
pasture (0.08). Scrubland is the only category with net losses
and no net gains.

Table 4 expresses the amount of change (2018–2012) in
ha (for a pixel resolution of 15 � 15 m; 1 ha corresponds to
44.44 pixels). As can be seen, no significant changes took
place in mineral and water areas, while losses in scrubland
were matched by gains in forest (about 400 ha) and losses in
agriculture and pasture were matched by gains in built-up
areas (about 1,000 ha).

Allocation disagreement corresponds to all not-diagonal
cell values. These may be expressed as gains (2018—in-
tersection 2012 against 2018) and losses (2012—intersection
2012 against 2018). While in some classes there are net
changes (e.g. scrubland is the only category with net losses
and no net gains), the changes in agriculture and pasture land
are almost all losses (1.05), with just a few small gains
(0.08%) from scrubland. This means that quantity dis-
agreement shows a negative net balance for agriculture and
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Fig. 2 Exercise 1. Step 2. Confusion matrix (two grids)
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pasture of about 1,037 ha (see Table 4), while allocation
disagreement shows that more agriculture and pasture land is
affected with losses of about 1,160 ha (1.04% converted into
ha) and gains of about 123 ha between 2012 and 2018.
Unlike allocation disagreement, quantity disagreement hides
the real amount of land in which changes take place (for
more details, see Sect. 2).

4 Figure of Merit (FoM) and Complementary
Producer’s and User’s Accuracy

Description

The Figure of Merit (Pontius et al. 2008) is a measure that
examines how simulated change overlaps with a reference
map of changes. A Figure of Merit of 0% means there is no
overlap, whereas a Figure of Merit of 100% means perfect
overlap. The overlap between real changes and simulated
changes leads to four possible combinations. These are the
four components of the Figure of Merit:

• MISSES (A) = the real maps show change but the sim-
ulation shows persistence.

• HITS (B) = the real maps show change and the simulation
shows change.

• WRONG HITS (C) = the real maps show change and the
simulation shows change but allocates it to the wrong
category.

• FALSE ALARMS (D) = the real maps show persistence
but the simulation shows change.

The Figure of Merit is calculated via the following ratio of
the four components: B/(A + B + C + D).

The overlap between real changes and simulated changes
also produces a fifth combination:

• CORRECT REJECTIONS (E) = the real maps show
persistence and the simulation shows persistence.

Two complementary measures can be obtained using the
same components of the Figure of Merit:

• Producer’s accuracy: A measure calculated using the ratio
B/(A + B + C), which expresses “the proportion of pixels
that the model predicts accurately as change, given that
the reference maps indicate observed change” (Pontius
et al. 2008).

• User’s accuracy: A measure calculated using the ratio B/
(B + C + D), which measures the number of pixels that
the model predicts accurately as change as a proportion of
all the changes it predicts.

Utility

Exercises

1. To validate simulated changes against a reference map of changes
2. To validate simulated changes against a reference map of changes
in a binary format
3. To validate the changes simulated by various models

The Figure of Merit and the complementary Producer’s and
User’s accuracies are very useful measures for validating the
change simulated by a model. The different components of

Table 3 Result from Exercise 1. Confusion matrix between 2018 and 2012 maps

2018

% Built-up Agriculture Forest Scrubs Mineral Water Total 2012 Losses

2012 Built-up 3.63 0.00 0.00 0.00 0.00 0.03 3.66 0.03

Agriculture 1.00 47.21 0.04 0.00 0.00 0.00 48.25 1.04

Forest 0.01 0.03 36.03 0.00 0.00 0.00 36.07 0.04

Scrubs 0.00 0.08 0.28 10.74 0.00 0.00 11.11 0.37

Mineral 0.00 0.00 0.00 0.00 0.85 0.00 0.85 0

Water 0.00 0.00 0.00 0.00 0.00 0.06 0.06 0

Total 2018 4.63 47.32 36.36 10.74 0.86 0.09 100

Gains 1.01 0.11 0.33 0.00 0.00 0.03

Table 4 Result from Exercise 1. Net change (ha) per category

Quantity disagreement (ha) 2018–2012

Built-up 1,083.04

Agriculture –1,037.43

Forest 322.58

Scrubs –406.55

Mineral 4.30

Water 33.59
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the Figure of Merit can give users a better picture of how
accurate the simulation is, e.g. if the model estimated more
or less changes than those appearing on the reference
map. They can also differentiate between quantity and
allocation errors (Pontius et al. 2018).

These measures are also highly recommended for com-
paring several simulations using a standard measure. They
can be applied, for example, to assess the congruence of
model outputs. This is a form of validation that evaluates the
agreement between simulations obtained through different
models or between simulations obtained using the same
model but parametrized in different ways. The agreement
between the simulation maps is measured and the degree of
congruence is considered an indicator of the stability of the
model and the plausibility of the simulations. The congru-
ence of model outputs provides useful information about
model robustness (Paegelow et al. 2014; Camacho Olmedo
et al. 2015).

Complementary analyses to the Figure of Merit and the
Producer’s and User’s accuracies include spatial metrics,
Kappa indices, the Land Use and Cover budget (LUCC
budget) technique and Quantity and Allocation disagreement.
These indices are described in Sects. 2 and 3 of this chapter.

QGIS Exercises

Available tools

• Processing Toolbox
SAGA

Image analysis
Confusion matrix (two grids)
Confusion matrix (polygons/grid)

Raster analysis
Cross-classification and tabulation

• Processing Toolbox
GRASS

Raster
r.cross

• Semi-Automatic Classification Plugin
Tab: Postprocessing
Section: Cross-classification
Section: Accuracy
Section: Land cover change

The Figure of Merit and the complementary Producer’s and
User’s accuracy indices are not calculated directly in QGIS.
Producer’s and User’s accuracy per category can be calcu-
lated using the SAGA Confusion matrix (two grids) and
Confusion matrix (polygons/grid) tools and in the
“Semi-Automatic Classification Plugin” (Accuracy).

Users can calculate the Figure of Merit from the
cross-tabulation matrices. As commented in Sect. 1 in

Chapter “Basic and Multiple-Resolution Cross-Tabulation to
Validate Land Use Cover Maps”, QGIS includes many tools
for cross-tabulating spatial data in the GRASS and SAGA
toolboxes. The “Semi-Automatic Classification Plugin” also
includes cross-tabulation tools.

Of all the tools available in QGIS, in this book, we rec-
ommend the “Semi-Automatic Classification Plugin”, which
is the most efficient, most stable tool of all those assessed.

Exercise 1. To validate simulated changes against a
reference map of changes

Aim

To validate the change simulated by a model against a ref-
erence map of changes for the same simulation period. The
initial map is the CORINE map for 2005 in both cases. The
changes from 2005 to 2011 are calculated for the simulation
and for the CORINE data as reference.

Materials

CORINE Land Use Map Asturias Central Area 2005
CORINE Land Use Map Asturias Central Area 2011
Simulation LCM Val d’Ariège 2018

Requisites

The maps must have the same extent, spatial resolution,
projection and legend. If they do not have the same legend,
the maps must be reclassified to meet this requirement. For a
proper validation, the latest reference map must refer to the
same date as the simulation.

Execution

Step 1

We begin by obtaining two rasters showing the areas that
changed in the study area during the period analysed and
those that remained the same. This procedure must be done
twice: once for the reference map (CORINE 2005–CORINE
2011) and once for the simulated map (CORINE 2005–
Simulation 2011).

To obtain these maps, open the “Semi-Automatic Clas-
sification Plugin” and the “Postprocessing” tab. Then select
Land cover change and fill in the required parameters: the
earlier map in the reference classification (CORINE 2005)
and the more recent map in the new classification (CORINE
2011; Simulation 2011) (Fig. 3). Leave the “Report
unchanged pixels” option unmarked so as to obtain a map
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that only shows the areas that changed during the study
period. If this option is marked, a map showing both change
and persistence areas will be obtained.

Run the tool to obtain two output maps showing the
changes on the reference map (CORINE) and the changes
simulated by the model. Both will refer to the same period
(2005–2011).

Step 2

The next stage involves cross-tabulating the two maps of
changes. To obtain these maps, open the Semi-Automatic
Classification Plugin and in the “Postprocessing” tab, select
Accuracy. Select the required parameters: classification to
assess (simulated changes) and reference raster (CORINE
05–11 changes) (Fig. 4).

Results and Comments

Step 1 produces two maps of changes, which are stored in
the folder specified by the user. The function also generates a
matrix for each pair of cross-tabulated maps. These matrices
appear in the “output” window, stored in CSV format. They
show each possible combination between the two
cross-tabulated maps and the code under which each com-
bination is represented in the output raster.

Only four transitions (new codes 3, 4, 16 and 17) are
simulated by themodel, as expressed in Table 5. Twenty-eight
transitions occur between the CORINE maps (Table 2).

Most of the changes predicted in the simulation refer to
the transition from agricultural areas (Category 0) to urban
fabric (Category 2) and to the transition from agricultural
areas to industrial and commercial areas (Category 3).
Together, they represent 1,546 of the 1,632 pixels simulated.
That is, almost 95% of the simulated pixels. In the reference
map, these transitions represent 751 and 503 pixels,
respectively, a less significant proportion of total change (in
italics in Table 6).

After completing Step 2, we now have a cross-tabulation
raster and a table showing every possible combination
between the two cross-tabulated maps (Table 7).

Following the definitions provided by Pontius et al.
(2008), in our case, HITS were only obtained in new codes
12 (old code 3 in the CORINE map of changes and old code
3 in the simulated map of changes), 18 (old codes 4 and 4)
and 55 (old codes 17 and 17). HITS are obtained when both
the reference map and the simulation show the same change
or transition, which is why they both have the same codes.

The WRONG HITS correspond to combinations where
both the reference map and the simulation show change, but
to different gaining categories. For example, new code 13
(old codes 3 and 4) refers to areas that were agricultural

Fig. 3 Exercise 1. Step 1. Semi-Automatic Classification Plugin
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areas that changed to urban fabric in the simulation and to
industrial and commercial areas in the reference map (Tables
5 and 6).

FALSE ALARMS refer to areas that are marked as per-
sistence in the reference map and as change in the simula-
tion. Examples include new code 2 (old codes 0 and 3).
Areas with that code refer to pixels that were simulated as
urban fabric in the simulation, but do not show change in the
reference map. Code 0 does not appear among the codes in
Table 6 summarizing all the possible transitions between the
original (CORINE 2005) and the reference map (CORINE
2011). It must therefore refer to persistence.

Fig. 4 Exercise 1. Step 2. Semi-Automatic Classification Plugin

Table 5 Result from Exercise 1. Variety and size of the simulated
transitions

New codes CORINE 05
category

Simulation
category

Pixel sum

3 0 2 874

4 0 3 672

16 1 2 38

17 1 3 48

Table 6 Result from Exercise 1. Size of transitions between
CORINE 2005 and CORINE 2011 maps

New codes CORINE 05
category

CORINE 11
category

Pixel sum

2 0 1 374

3 0 2 751

4 0 3 503

5 0 4 148

6 0 5 11

7 0 6 301

10 0 9 132

14 1 0 588

16 1 2 61

17 1 3 82

18 1 4 157

19 1 5 109

20 1 6 225

24 1 10 180

27 2 0 21

(continued)

Table 6 (continued)

New codes CORINE 05
category

CORINE 11
category

Pixel sum

28 2 1 22

30 2 3 26

36 2 9 4

40 3 0 51

42 3 2 11

53 4 0 211

54 4 1 327

55 4 2 89

56 4 3 21

79 6 0 44

80 6 1 111

147 11 3 88

151 11 7 657
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Table 7 Result from Exercise 1. (Dis)agreement between the simulated changes and the changes in the reference maps classified in
five categories: misses, hits, wrong hits, false alarms and correct rejections

New codes Changes CORINE 05–11 Changes simulation Pixel sum Interpretation

1 0 0 577,9491 CORRECT REJECTION

2 0 3 600 FALSE ALARMS

3 0 4 525 FALSE ALARMS

4 0 16 38 FALSE ALARMS

5 0 17 33 FALSE ALARMS

6 2 0 374 MISSES

11 3 0 543 MISSES

12 3 3 204 HITS

13 3 4 4 WRONG HITS

16 4 0 364 MISSES

17 4 3 2 WRONG HITS

18 4 4 137 HITS

21 5 0 148 MISSES

26 6 0 11 MISSES

31 7 0 280 MISSES

32 7 3 15 WRONG HITS

33 7 4 6 WRONG HITS

36 10 0 79 MISSES

37 10 3 53 WRONG HITS

41 14 0 579 MISSES

45 14 17 9 WRONG HITS

46 16 0 61 MISSES

51 17 0 76 MISSES

55 17 17 6 HITS

56 18 0 157 MISSES

61 19 0 109 MISSES

66 20 0 225 MISSES

71 24 0 180 MISSES

76 27 0 21 MISSES

81 28 0 22 MISSES

86 30 0 26 MISSES

91 36 0 4 MISSES

96 40 0 51 MISSES

101 42 0 11 MISSES

106 53 0 211 MISSES

111 54 0 327 MISSES

116 55 0 89 MISSES

121 56 0 21 MISSES

126 79 0 44 MISSES

131 80 0 111 MISSES

136 147 0 88 MISSES

141 151 0 657 MISSES

1 The result of 577,949 pixels classified as CORRECT REJECTIONS
was calculated by subtracting the 339,103 pixels of no data from the
917,052 pixels coded as 1.
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MISSES refer to the areas where the reference map shows
change but the simulation shows persistence. Examples
include code 16 (old code 4 and 0). Finally,
CORRECT REJECTION refers to the pixels marked as
persistence in the reference map that were correctly simu-
lated as persistence (new code 1, old codes 0 and 0).

In total, HITS account for 347 pixels, WRONG HITS for
89 pixels, FALSE ALARMS for 1,196 pixels and MISSES
for 4,869 pixels (Table 7). Therefore, the simulation pro-
duced a lot more FALSE ALARMS than HITS and the vast
majority of the predictions were MISSES. This makes sense
because most of the landscape remained unchanged over the
simulation period.

With all the above information, we can finally calculate
the Figure of Merit (B/(A + B + C + D)) for the model. It is
5.340%. This is a very low Figure of Merit, far below the
100% that would mean perfect overlap. However, perfect
overlap is almost impossible. In most cases, low Figures of
Merit are the norm.

We must also consider that the Figure of Merit compares
the simulated changes with all the changes in the reference
map. In our simulation, we only modelled two categories
actively (urban fabric and industrial and commercial areas).
This means that the changes in all the other categories were
not even simulated and no agreement can therefore be
expected. This limitation must be borne in mind when
evaluating the Figure of Merit.

The best way to obtain a Figure of Merit that offers
objective information about the validity of our modelling
exercise is to repeat the same exercise, focusing exclusively
on the actively modelled transitions (from agricultural and
vegetation areas to urban fabric and industrial and com-
mercial areas).

Producer’s accuracy (B/(A + B + C)) is 6.54% and
expresses the number of pixels that the model accurately
predicts as change as a proportion of total observed change.
For its part, User’s accuracy (B/(B + C + D)) measures the
number of pixels that the model predicts accurately as
change as a proportion of total predicted change, in this case
21.26%.

As regards the four simulated changes, shown in Table 5,
the Producer’s and User’s accuracy values for Categories 3
and 4 are higher than for Category 17, and are zero in
Category 16 (Table 8).

Exercise 2. To validate simulated changes against a
reference map of changes in a binary format

Aim

To validate the change simulated by a model against a ref-
erence map of changes for the same simulation period. To do
this, we overlay two maps that show change versus
non-change over the same period. The initial map in both
cases is the CORINE dataset for 2005. The changes from
2005 to 2011 are calculated for the simulation and for the
CORINE dataset as reference. In this exercise we do not
evaluate the WRONG HITS.

Materials

CORINE Land Use Map Asturias Central Area 2005
CORINE Land Use Map Asturias Central Area 2011
Simulation CORINE Asturias Central Area 2011

Requisites

The maps must have the same extent, spatial resolution,
projection and legend. If they do not have the same legend,
the maps must be reclassified so as to meet this requirement.
For a proper validation, the latest reference map must refer to
the same date as the simulation.

Execution

Step 1

The first step is to obtain two rasters showing the areas that
changed and those that remained the same over the period
being analysed: one for the reference map (CORINE 2005–
CORINE 2011) and one for the simulation (CORINE 2005–
Simulation 2011). To obtain these maps, follow the
instructions in Exercise 1 Step 1 above.

Step 2

Once the two maps have been obtained, they must be
reclassified into binary format, i.e. into a map with two
possible values: 0 (persistence) and 1 (changes). This is done
using the Reclassify by table tool.

Table 8 Results from Exercise
1. Producer's and User's accuracy
values

Categories in changes
simulation

3 4 17 16

Producer’s accuracy % 27.1638 27.2366 7.3171 0.000

User’s accuracy % 23.3410 20.3869 12.5000 -
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Figures 5 and 6 show the change areas (value 1) in black
and the persistence areas (value 0) in white, for both the
reference map (Fig. 5) and the simulation (Fig. 6).

Step 3

Finally, the two binary maps must be cross-tabulated. To do
so, open the “Semi-Automatic Classification Plugin” and, in
the “Postprocessing” tab, select the Cross-classification
option. Fill in the required parameters: classification (binary
changes from the simulation) and reference raster (binary
changes from CORINE) (Fig. 7).

Results and Comments

Once we have completed Step 3, the QGIS creates an output
raster that shows all possible combinations between the two
binary change maps. The function also generates a table
showing all possible combinations between the two input
maps. This table appears in the “output” window, stored in
CSV format. This table also lists the codes with which each
combination is represented in the output raster.

Table 9 presents the four possible combinations obtained
from the two binary maps crossed in Step 3. As 0 was used
to represent persistent areas and 1 areas that changed, new
code 1 (0/0) refers to pixels that the model correctly simu-
lated as persistence (CORRECT REJECTIONS). New code
4 (1/1) refers to pixels that the model correctly simulated as
change (HITS), while codes 2 and 3 refer to pixels in which
the model does not agree with the reference map. Code 2
(0/1) corresponds to FALSE ALARMS: the model simulated
change but the reference map shows persistence. Code 3
(1/0) stands for MISSES: the model simulated persistence
but the reference map shows change.

The sum of MISSES plus HITS (5,305 pixels) represents
the change in the reference map (CORINE) for the period
2005–2011. These pixels cover just 0.9077% of the total
study area. Very little change therefore took place in the
reference map for our study area.

HITS plus FALSE ALARMS (1,632 pixels) gives all the
pixels in which the simulation predicted change. These
pixels cover 0.2792% of the total study area. This means that
fewer changes were simulated than actually took place on

Fig. 5 Exercise 2. Step 2. Intermediate map showing the areas of
change in the reference maps

Fig. 6 Exercise 2. Step 2. Intermediate map showing the areas of
change in the simulation
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the reference map. This makes sense given that in our sim-
ulation we only simulated the transitions from agricultural
and vegetation areas to urban fabric and industrial and
commercial areas, while the reference map also considered
many other changes between all the other categories repre-
sented on the map, which were not simulated in our mod-
elling exercise.

The Figure of Merit (B/(A + B + C + D)) for our simu-
lation is very low at 6.7%. This indicates that the simulation
did not simulate most of the changes that took place in the
reference map correctly. This is partly due to the fact that we
only actively modelled two categories, while the reference
map showed the changes that took place between all cate-
gories. As a result, overlap between the two maps is
impossible in many areas. Even so, the general level of
overlap between the simulated changes and those observed
on the reference maps is still quite low. Other metrics and
tools must therefore be used in order to interpret the simu-
lation and the performance of the modelling exercise better.

The Figure of Merit in this exercise is a bit better than in
the previous one because we did not take WRONG HITS
into account. In this case, we only compared changes,

without taking into account the type of change that happened
in the simulation period.

Exercise 3. To validate the changes simulated by
various models

Aim

To compare and validate the change simulated by two
models. For this purpose, we overlay three maps that show
change versus non-change over the same interval. The initial
map in all cases is the CORINE dataset for 2005. The
changes from 2005 to 2011 are calculated for the simulation
from model 1, for the simulation from model 2 and for the
CORINE dataset as reference. WRONG HITS are not
evaluated in this exercise.

Fig. 7 Exercise 2. Step 3. Semi-Automatic Classification Plugin

Table 9 Result from Exercise 1. (Dis)agreement between the simulated changes and the changes in the reference maps classifiedin five categories:
misses, hits, wrong hits, false alarms and correct rejections

New codes Binary CORINE changes Binary simulated changes Pixel sum Interpretation

1 0 0 577,9492 CORRECT REJECTIONS

2 0 1 1,196 FALSE ALARMS

3 1 0 4,869 MISSES

4 1 1 436 HITS

2 There are 339,103 pixels of no data. If we subtract them from the
917,052 pixels coded as 1, the result is 577,949 pixels in which there
were CORRECT REJECTIONS.
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Materials

CORINE Land Use Map Asturias Central Area 2005
CORINE Land Use Map Asturias Central Area 2011
Simulation CORINE Asturias Central Area 2011
Simulation CORINE 2 Asturias Central Area 2011

Requisites

The maps must have the same extent, spatial resolution,
projection and legend. If they do not have the same legend,
the maps must be reclassified so as to meet this requirement.
For a proper validation, the latest reference map must refer to
the same date as the simulation.

Execution

Step 1

The first step is to obtain three rasters for the study area
showing the areas that changed and those that remained the
same over the period being analysed. In this way, we obtain:
(i) the map of changes for the reference map (CORINE
2005–CORINE 2011), (ii) the map of changes for the first
simulation (CORINE 2005–Simulation 1 2011) and (iii) the
map of changes for the second simulation (CORINE 2005–
Simulation 2 2011).

To obtain these maps, open the “Semi-Automatic Clas-
sification Plugin” and, in the “Postprocessing” tab, select
Land cover change. Then, fill in the required parameters: the
earliest map in the reference classification (CORINE 2005)
and the more recent maps in the new classifications

(CORINE 2011, Simulation 1 2011, Simulation 2 2011).
The three output maps will show the change areas and
the persistence areas for each of the three maps (the refer-
ence CORINE map and the two simulations) under
consideration.

Step 2

Once these three maps have been obtained, they must be
reclassified into binary maps in which persistence areas are
reclassified as 0 and change areas as 1. The maps are
reclassified using the Reclassify by table tool.

Step 3

The three binary maps must then be cross-tabulated, so as to
be able to assess the congruence between the simulations
and the reference map.

To do this, open the “Semi-Automatic Classification
Plugin” and the “Postprocessing” tab, and then select
Cross-classification. Start by cross-tabulating the two sim-
ulations you want to compare. To this end, fill in the fol-
lowing parameters: classification (binary map of changes
from simulation 1) and reference raster (binary map of
changes from simulation 2) (Fig. 8).

Step 4

The procedure is repeated again, this time cross-tabulating
the raster obtained in the previous step with the reference
map. In this case, open the tool and fill in the parameters as
follows: classification (raster obtained after running the tool

Fig. 8 Exercise 3. Step 3. Semi-Automatic Classification Plugin
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as explained in the previous step) and reference raster
(CORINE 05–11 binary map of changes) (Fig. 9).

Results and Comments

After carrying out Steps 3 and 4, QGIS creates two output
rasters. The function also generates a table for each raster,
which appears in the “output” window in CSV format. This
table shows every possible combination between the values
of the cross-tabulated maps. It also lists the codes under
which each combination is represented in the output raster.

The raster obtained in Step 3 measures the agreement
between the two simulations (Table 10). In the binary maps,
0 was used to refer to persistent areas whereas 1 referred to
areas that changed. New code 1 (previous codes 0/0)
therefore refers to the pixels in which both models predicted
persistence, while new code 4 (1/1) refers to the pixels where
both models predicted change. Finally, new codes 2 and 3

represent areas in which the simulations do not agree: one
shows persistence, whereas the other shows change.

The raster obtained in Step 4 was produced by
cross-tabulating a reference change map with the raster
obtained after cross-tabulating the change maps produced by
the two simulations. This cross-tabulation therefore produces
eight possible combinations (Table 11).

In order to interpret the results of this second
cross-tabulation correctly, we need to understand the values
of the two rasters that were cross-tabulated. In the reference
change map, 0 refers to persistent areas and 1 to areas that
changed during the period under consideration. The mean-
ings of the new codes in the raster obtained in Step 3 are
detailed in Table 9.

This enables a better interpretation of the results of the
last raster generated. New code 1 (previous codes 0/1) refers
to areas in which persistence was observed on the reference
map of changes (code 0) and was also simulated by the two

Fig. 9 Exercise 3. Step 4. Semi-Automatic Classification Plugin

Table 10 Results from Exercise
3. (Dis)agreement between the
changes in the two simulations
that have been compared

New
codes

Binary changes
from simulation 1

Binary changes
from simulation 2

Pixel
sum

Interpretation

1 0 0 581,1583 Both models predicted persistence

2 0 1 64 First model predicted
persistence/Second model predicted
change

3 1 0 1,660 First model predicted
change/Second model predicted
persistence

4 1 1 1,568 Both models predicted change

3 There are 339,103 pixels of no data. If we subtract them from the
920,261 pixels coded as 1, the result is 581,158 pixels.
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models (code 1) (see Table 9 to understand the meaning of
this code). Those cases in which the two models and the
reference map all simulated persistence are referred to as
DOUBLE REJECTIONS (Camacho Olmedo et al. 2015).

New code 4 (previous codes 0/4) refers to areas where the
two models simulated change (code 4) and the reference
change map showed persistence. These are known as
DOUBLE FALSE ALARMS.

New code 5 (1/1) corresponds to areas where both models
simulated persistence and the reference map showed change
(DOUBLE MISSES). New code 8 (1/4) refers to areas where
the two models and the reference map also showed change
(DOUBLE HITS). Finally, the other four combinations refer
to areas where each simulation shows a different agreement
with the reference map (Table 11).

These eight possible combinations are expressed as two
maps. The first map (a zoomed area is shown in Fig. 10, on
the left) shows the four possible combinations for the areas
on the CORINE map in which persistence was observed.
Pixels simulated as persistence are therefore

CORRECT REJECTIONS, while those simulated as change
areas are FALSE ALARMS. The areas that changed are
masked in white. The second map (a zoomed area is shown
in Fig. 11, on the right) shows the four possible combina-
tions for the areas on the CORINE map in which change was
observed. Pixels simulated as change are HITS, while those
simulated as persistence are MISSES. The persistence areas
are masked in white.

According to all the above results, it seems that the two
simulations are very similar in terms of predictive accuracy.
The vast majority of the pixels on the map are
DOUBLE CORRECT REJECTIONS, which means that
both models are very accurate when predicting persistence.
This makes sense in that persistence is very easy to simulate
in a highly stable area like the one we simulated. The most
challenging task is to correctly simulate change. The best

Table 11 Results from Exercise 3. (Dis)agreement between the changes in the two simulations and the changes in the reference maps

New codes Binary changes
CORINE

Cross-tabulation from binary
changes simulation from
models 1 and 2

Pixel sum Interpretation

1 0 1 576,5884 DOUBLE CORRECT
REJECTION
Both models correctly predicted
persistence

2 0 2 54 CORRECT REJECTION/FALSE
ALARMS
First model correctly predicted
persistence/Second model wrongly
predicted change

3 0 3 1,361 FALSE ALARMS/CORRECT
REJECTION
First model wrongly predicted
change/Second model correctly
predicted persistence

4 0 4 1,142 DOUBLE FALSE ALARMS
Both models wrongly predicted
change

5 1 1 4,570 DOUBLE MISSES
Both models wrongly predicted
persistence

6 1 2 10 MISSES/HITS
First model wrongly predicted
persistence/Second model
correctly predicted change

7 1 3 299 HITS/MISSES
First model correctly predicted
change/Second model wrongly
predicted persistence

8 1 4 426 DOUBLE HITS
Both models correctly predicted
change

4 There are 339,103 pixels of no data. If we subtract them from the
915,691 pixels coded as 1, the result is 576,588 pixels classified as
DOUBLE CORRECT REJECTIONS.
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Fig. 11 Result from Exercise 3. (Dis)agreement between the simu-
lations and the reference maps for the areas where change was observed

Fig. 10 Result from Exercise 3. (Dis)agreement between the
simulations and the reference maps for the areas where persistence
was observed
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models are therefore those that simulate change most
accurately.

If we focus exclusively on the areas that changed, the
accuracy is very low. 86.1451% of the pixels were
DOUBLE MISSES, while in the remaining pixels there were
HITS in one or both models. This means that in the vast
majority of cases, our models incorrectly simulated change.
These simulations cannot therefore be validated, although
other validation tools can be used to check whether the
simulated pattern is valid. In this regard, even if a hard
comparison does not show a high level of agreement between
a simulation and the reference map, the pattern of the simu-
lated changing areas may be logical or correct. The models
can therefore be considered valid in a qualitative sense.

5 Incidents and States

Description

Incidents and states are terms proposed by Pontius Jr. et al.
(2017) to characterize land use cover changes in a series of
three or more maps. States refer to the number of land uses
or land covers a pixel is assigned in the series of maps. There
can be as many states as there are maps in the series. Hao
and Gen-Suo (2014) used the term “land use classification
variety” for this metric when applying it to validate Land
Use Cover maps (MODIS Land Cover product).

Incidents refer to the number of times a pixel changes
category over the course of a time series. There can be as
many incidents as there are stages in the time series. In a
series of 5 maps, there are 4 time-stages. The series may
therefore have between 0 and 4 incidents, i.e. the pixel may
change category between 0 and 4 times. The number of
incidents can also be referred to as “Transition frequency”.

Utility

Exercises

1. To validate a series of maps with two or more time points

The number of incidents and states assigned to the pixels in a
time series of Land Use Cover maps can help us identify the
changes that take place for technical reasons, i.e. erroneous or
spurious changes which do not really happen on the ground.

When obtained from satellite imagery classification, Land
Use Cover maps usually have important sources of uncer-
tainty. Various different Land Use and Cover categories can
have very similar levels of reflectance. If the imagery is
obtained at different times of the year, or under different
atmospheric conditions, the reflectance of a pixel can vary to
a similar extent to the difference in reflectance between two

Land Use Cover categories. The same pixel could therefore
be classified under different categories over the course of the
time series. The number of incidents and states of the pixel
can potentially help us to identify these errors.

For example, in a time series of six maps, if a pixel has
five incidents, but only two states, it means that it alternates
between these two categories at each stage in the time series.
If we discover which categories are involved in the transi-
tions we can determine to what extent these changes are
logical. Incidents and states can also be used to validate a
series of simulations, when working with modelling exer-
cises to obtain scenarios for more than two time points.

QGIS Exercise

Available tools

• Processing Toolbox
GRASS
Raster
r.series

The GRASS toolbox associated with QGIS has a tool for
calculating the number of states in a time series of Land Use
Cover maps. QGIS does not provide any specific tool to
calculate the number of incidents in the time series, so this
metric must be calculated manually. This is done using the
raster calculator and a raster reclassification tool.

QGIS offers several raster calculators and reclassification
tools. Although they are all valid, in this exercise we will be
using the ones from the core QGIS toolbox.

Pontius et al. (2017) also developed a tool in Excel to
automatically calculate the incidents and states of a series of
Land Use Cover raster maps in .rst format. It is available
online free of charge.5

Exercise 1. To validate a series of maps with two or
more time points

Aim

To find out if technical changes may have taken place in the
last series of CORINE Land Cover maps produced for the
Asturias Central Area.

5 The tool is available on R. G. Pontius Jr’s personal website: http://
www2.clarku.edu/*rpontius/.
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Materials

CORINE Land Use Map Asturias Central Area 2005
CORINE Land Use Map Asturias Central Area 2011
CORINE Land Use Map Asturias Central Area 2018

Requisites

All maps must be rasters and have the same resolution,
extent and projection.

Execution

Step 1

In order to calculate the number of states per pixel, we must
open the r.series tool and select all the maps that form part of
the series of Land Use Cover maps we are analysing (“Input

raster layer(s)”). In this case, we select the three maps in our
series: CORINE Land Cover 2005, 2011 and 2018.

In the “Aggregate operation [optional]” option, select
“Diversity”. This will count the number of different cate-
gories to which a pixel is assigned over the course of the
time series.

In “Advanced parameters”, indicate the range of values of
the Land Use Cover maps introduced as input, i.e. the min-
imum and maximum values. In our case, the minimum value
for a category is 0 and the maximum value is 12 (Fig. 12).

The final stage is to indicate where the new map will be
saved.

Step 2

There is no specific tool for calculating the number of
incidents in a pixel over the course of a time series. This
operation must therefore be carried out manually. The first

Fig. 12 Exercise 1. Step 1. R.series
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Fig. 13 Exercise 1. Step 2. Raster Calculator
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step is to identify where the changes happened. For each
pixel, we must then calculate the number of times it
underwent change (or not). To carry out these operations, we
have to work with pairs of maps: first 2005 and 2011 and
then 2011 and 2018.

To identify where the changes happened, for each pair of
rasters we must subtract one raster from the other. If a pixel
does not change, the result of the subtraction will be a value
of 0 for that pixel. If the pixel changes, the result of the
subtraction will be a value other than 0.

The subtraction operation is carried out using the Raster
calculator, in which we must write the following subtraction
expression for each pair of maps:

t2map� t1map

We also need to indicate which raster is the reference map
that will be used to define the characteristics (extent, spatial
resolution and projection) of the new raster obtained after the
calculation. In this case, we will be using the first map in our
series (CORINE 2005). This must be indicated in the
“Reference layer(s) (used for automated extent, cell size and
CRS) [optional]” option (Fig. 13).

Step 3

Once the previous step has been completed, the maps
obtained must be reclassified to enable us to identify the
pixels where an incident took place (values other than 0) and
the pixels that were incident-free at each stage (0 values).

To identify all pixels in which incidents took place with a
value of 1, we reclassify all values other than 0 as 1 using the
Reclassify by table tool (Fig. 15). The first stage in the
reclassification process is to indicate the two rasters that
must be reclassified. Then, detail the reclassification criteria

using the “Reclassification table” option. In the window that
opens for selecting the reclassification criteria, add two rows
using the “Add row” button. Then, introduce the following
values (Fig. 14):

That means that all values between −999 and −1 will be
reclassified with the value 1. The same will be true for all
values between 1 and 999. If as a result of the raster sub-
traction we get bigger negative values than −999 or bigger
positive values than 999 we will need to adjust the values in
the reclassification table accordingly.

Step 4

The last step is to count the number of incidents for each
pixel over the course of the time series. This is done using
the Raster calculator, which adds together the rasters we
reclassified in the previous step using the following
expression:

Incidents C05 C11þ Incidents C11 C18 ðFig: 5Þ
The CORINE 2005 map will be used as a reference to

define the characteristics of the output raster (Fig. 16).

Results and Comments

After completing all the operations described above, two
different maps will be obtained: one with the number of states
per pixel and another with the number of incidents per pixel.

The above maps (Fig. 17) show the number of incidents
and states for a specific part of the Asturias Central Area.
Most of the areas that change over the period 2005–2018
underwent just one LUCC transition (one incident and one
state). However, we discovered a couple of cases in which
there were two incidents and two states. This means that, for

Fig. 14 Exercise 1. Step 3. Reclassification table of the Reclssify by Table tool
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Fig. 15 Exercise 1. Step 3. Reclassify by Table
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the 3 years analysed (2005, 2011 and 2018), there were two
changes or transitions, but these only involved two land uses
or covers. In other words, the area changed from its original
land use or cover in 2005 to a different one in 2011 and then
reverted to the original in 2018.

If we refer back to the original maps, we can identify the
transitions that took place. The changing area on the right
(1) (Fig. 17) underwent a transition from “Agricultural
areas” in 2005 to “Urban fabric” in 2011 and then changed
back to “Agricultural areas” in 2018. It is highly unlikely
that an agricultural cover could change to an artificial cover

and then revert to its original state a few years later. It must
therefore have been an error (technical or spurious change).

The changing area on the left (2) (Fig. 17) underwent a
transition from “Agricultural areas” in 2005 to “Vegetation
areas” in 2011, before changing back to “Agricultural areas”
in 2018. This transition, although unlikely, seems more
logical. So, before labelling it as an error or technical
change, we should confirm whether these changes really
took place in the area in question during the timeframe
analysed. This can be done by photointerpretation of aerial
imagery.

Fig. 16 Exercise 1. Step 4. Raster Calculator

Pontius Jr. Methods Based on a Cross-Tabulation Matrix … 177



6 Intensity Analysis

Description

Intensity analysis, proposed by Aldwaik and Pontius (2012),
enables us to assess the rate or intensity at which change
takes place during each time interval in a time series of LUC
maps. It also helps identify apparently random or uniform
processes. It is a three-stage analysis process, which identi-
fies: (i) periods of relatively slow/fast change; (ii) relatively
dormant/active land use categories and (iii) the transitions
that are actively avoided/targeted by a given land use cate-
gory. A series of maps with three or more time points are
needed for this analysis.

During the first stage of this process, the overall rate of land
use change over each time interval is analysed to assess
whether change was relatively fast or slow. To this end, the
average annual rate of change for each time interval is com-
pared with the average annual rate of change for the whole
period.

The second stage analyses the intensity of change at
category level within each time interval relative to the

overall change rate for the interval calculated in stage one. It
measures the gross losses and gross gains in area for each
category so as to analyse whether the category shows a
similar, stable pattern across the various time intervals in
terms of the intensity of gains and losses. These observed
intensities for each category are compared with an average
annual rate of gains/losses that would exist if the changes
within each interval were distributed uniformly over the
entire time interval. This shows which categories are rela-
tively dormant or active.

The final stage is at transition level. It examines the intensity
of a particular transition over a given time interval, taking into
account the different sizes of the categories and relative to the
results of the category-level analysis. The gains made by a
specific category may vary in size and intensity among the
different categories from which it makes these gains. By com-
paring the observed rate of gains from each category with a
uniform rate of gains that would exist if the gains were made
uniformly from among all the available categories, we can
identify those categories that are intensively avoided or tar-
geted. Losses can be analysed in a similar way.

Intensity analysis also allows us to determine whether a
particular transition occurs at a stable rate or occurs more

Fig. 17 Result from Exercise 1. Number of incidents and states for an example area of the Asturias Central Area
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intensely over a particular time interval within the series. If
the same category is targeted (or avoided) over all the dif-
ferent time intervals, then this transition is said to be
stationary.

Utility

Exercises

1. To validate a series of maps with two or more time points

Intensity analysis analyses the size and intensity of land
changes. It also checks for stationarity and takes the relative
size of the categories into account, rather than just the
absolute gains or losses they may undergo.

At the interval level, users can identify how quickly or
slowly LUC change is taking place during each time interval
as compared to the average annual rate of change over the
whole time series. At the category level, intensity analysis
allows users to identify which categories are dormant versus
active in terms of gains or losses in the size of each category.
At the transition level, when a given category makes gains or
losses, users can identify which other categories are most
intensively targeted or avoided.

QGIS Exercise

Available tools

• Aldwaik and Pontius matrix (Excel sheet)
https://sites.google.com/site/intensityanalysis/
• R Package Intensity.analysis
• Processing R provider Plugin
Intensity_analysis.rsx R script

There is not any specific tool available in QGIS to make
intensity analysis, although this has been implemented in an
R package (intensity.analysis) (Pontius and Khallaghi,
2019). Based on this package, we have developed an R
script that allows to integrate this analysis in QGIS. This
package will carry out the entire analysis and will generate
three tables containing the results at each level of analysis
(overall, category and transition) and a plot showing the
results at the interval level.

See Chapter “About this Book” for more detailed infor-
mation about how to integrate R into QGIS and how to use R
scripts such as the one applied in this exercise.

Exercise 1. To validate a series of maps with two or
more time points

Aim

To study land change in the Ariège study area using the
CORINE Land Use maps dated 2000, 2012 and 2018. The
results of this exercise can also be used to validate land
change.

Materials

CORINE Land Cover Map Val d’Ariège 2000
CORINE Land Cover Map Val d’Ariège 2012
CORINE Land Cover Map Val d’Ariège 2018

Requisites

All maps must be in raster format and have the same reso-
lution, extent and projection.

Execution

If necessary, install the Processing R provider plugin and
download the Intensity analysis.rsx R script into the R
scripts folder (processing/rscripts). See Chapter “About this
Book” of this book for further information about how to use
the QGIS R script.

Step 1

The land use maps need to be stacked into a multilayer file in
chronological order. The first map is the oldest map. The
second map is the next oldest and so on. This can be done
with the Merge tool in the Raster tab.

Step 2

Run the script and fill in the required parameters (path and
name of the time-series stack, null value, the path to the
folder where the results will be saved, the path and name of
the output plot) as shown in Fig. 18.

Results and Comments

The script will generate three files in the results folder:
IntervalLevel.csv, CategoryLevel.csv and TransitionLevel.
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csv. A plot of the interval level is also produced. Plots of
both the category and transition level have to be created
from the Excel data sheet.

The first Excel file, called IntervalLevel.csv (Fig. 19),
shows the average annual rate of change for each time
interval (in this case there are two) and the average annual
rate of change for the entire period. When the average rate
for each interval is compared with the overall average rate,
we can assess whether the interval in question was one of
slow or fast change.

The automatically generated plot is shown in Fig. 20. The
results show that land use change was more intense in the
first time period than in the second. The average change rate
over the entire period was 1.8, which means that change was
relatively fast over the first period and relatively slow over
the second.

The CategoryLevel.csv document (Fig. 21) contains
information regarding gross losses and gross gains and the

amount of loss intensities and gain intensities for each land
use category (in this case there are six categories). If these
gains or losses are compared with the average annual rate
that would exist if the change within each interval were
distributed uniformly over the entire time series, we can see
which land categories are relatively dormant/active.

This table may be used to calculate the plots at the cat-
egory level for each time interval. Figure 22 shows the result
for the first time interval.

This figure shows the intensity of change in the different
categories, regardless of their relative size within the study
area. The categories with short bars to the left of the blue line
representing average, uniform intensity are relatively inac-
tive or dormant, whereas those that extend to the right are
relatively active. For example, Category 1 showed the
highest intensity in terms of land use gains, while Category 4
underwent more intense gains and losses than the average.
At the other end of the scale, Category 3 was relatively

Fig. 18 Exercise 1. Step 2. Intensity Analysis R script

Fig. 19 Result. from Exercise 1. Average annual rate of change for each time interval and for the entire period
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dormant compared to the other land use categories, as both
gain and loss intensity are located to the left of the blue line.

Finally, the TransitionLevel.csv (Fig. 23) shows which
transitions are intensively avoided or targeted taking into
account the relative size of all the individual categories in the
landscape. It compares the observed rate of gains from each
category with a uniform rate of gains that would exist if the
gains were made uniformly from among all the available

categories, so allowing us to identify those categories that
are intensively avoided or targeted. This information may be
used to calculate different plots showing the intensity for
each transition and time interval.

Figure 24 shows the first level of information in Fig. 23,
that is, the annual transition size for gains in Category 1 in
the first interval or period of time. The vertical blue line
shows the uniform transition intensity. Categories on the left

Fig. 20 Result from Exercise 1. Time interval change intensity plot

Fig. 21 Result from Exercise 1. Gross gains and losses and amount of loss and gain intensities for each category
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Fig. 22 Result from Exercise 1. Plot of gain and loss intensities per category

Fig. 23 Results from Exercise 1. Comparison of the observed rate of gains with an uniform rate of gains, differentiating between transitions that
are intensively avoided and transitions that are intensivily targeted
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of this line tend to avoid this transition (for example, the
change from Category 3 to Category 1) while the categories
that extend to the right of the blue line tend to target this
transition (for example, the transition from Category 2 to
Category 1).

These analyses can also be used to validate land change
in a series of maps with two or more time points. If there are
large differences at the interval, category and/or transition
level between the different time intervals, this means it
would be difficult to validate the time series for simulating
future trend scenarios, as the intensity of change over the
time series has not been sufficiently stable or uniform to
provide a base for future predictions. These differences may
also be due to errors in the maps, which must be verified.

7 Flow Matrix

Description

The Flow Matrix was developed by Runfola and Pontius
(2013) to quantitatively measure the instability of annual
land use change between time intervals. The aim was to
identify anomalies relative to the total amount of change
over the time series. Flow Matrix exercises require a series
of maps with at least three time points.

The Flow Matrix is a cross-tabulation matrix that shows
the proportion of the study area that transitions from one
category to another, excluding persistence. It assumes linear
change over time during each time interval. It allows us to
calculate: (a) the annual proportion of the study area that

changes during each time interval and (b) the uniform annual
proportion of the study area that changes over the entire time
series, and the proportion of change that would have to be
reallocated to different time intervals in order for change to
be perfectly stable (R). When change is perfectly stable, R is
zero. This value increases as change becomes more unstable.

A vertical bar chart is produced showing the amount of
annual land use change during each time interval as com-
pared to the uniform annual change.

Utility

Exercises

1. To validate a series of maps with two or more time points

The Flow Matrix provides an analysis of the temporal extent
at which phenomena are stable. It can be used to find out
whether land use change takes place at a uniform rate over
the course of the entire study period or if more change takes
place during certain intervals. It can also be used to detect
errors. If one particular interval is very different from the
others in terms of its annual change rate, this may be due to
errors in the mapping or the methodology.

The Flow Matrix can also be used in the selection of par-
ticular calibration intervals when developing future historical
trend simulations, as the data should show the greatest pos-
sible uniformity in past land use change. It can also be used to
assess whether the results of a trend scenario are consistent,
i.e. whether the model simulates much more or much less
change than actually happened in the historical series.

Fig. 24 Result from Exercise 1. Graph with the annual transition size for gains in category 1 in the first period of time
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QGIS Exercise

Available tools

• Processing R provider Plugin
Stable_change_flow_matrix.rsx R script
Flow_matrix_graf.rsx R script

No specific tool is available in QGIS to calculate the Flow
Matrix. We have developed two R scripts
(Stable_change_flow_matrix.rsx and Flow_matrix_graf.rsx)
to this end. See Chapter “About this Book” for more detailed
information about how to integrate R into QGIS and how to
use R scripts such as the one applied in this exercise.

The first script will generate two tables in CSV format
with the stable and unstable data that would exist for the
whole study period, respectively. The second script will
generate two tables, in CSV format, presenting the annual
change for each interval and the uniform rate, respectively. It
also produces a plot showing this annual change and the
uniform rate for the entire time series.

Exercise 1. To validate a series of maps with two or
more time points

Aim

To study and validate land change in the Ariège Valley study
area using CORINE Land Use maps dated 2000, 2012 and
2018.

Materials

CORINE Land Cover Map Val d’Ariège 2000
CORINE Land Cover Map Val d’Ariège 2012
CORINE Land Cover Map Val d’Ariège 2018

Requisites

All maps must be in raster format and have the same reso-
lution, extent and projection.

Execution

If necessary, install the Processing R provider plugin and
download the Stable_change_flow_matrix.rsx and Flow_-
matrix_graf.rsxR scripts into the R scripts folder (processing/
rscripts). See Chapter “About this Book” of this book for
further information about how to use the QGIS R script.

Step 1

Then, run the stable and unstable change script
(stable_change_flow_matrix.rsx) and fill in the required
parameters: number of time points (in this case, 3), back-
ground value (in this case, 0), land use maps and number of
years between the time points. Make sure you save the files
in the correct folder (Fig. 25).

Step 2

Now, run the Annual Change Rates script (Flow_matrix_-
graf.rsx). Fill in the parameters as in the previous section
(Fig. 25) to generate the plot.

Results and Comments

Step 1

generates two CSV files containing the data regarding
unstable change (Fig. 26) and stable change (Fig. 27). The
first file shows the proportion of change that would have to
be reallocated to different time intervals in order for change
to be perfectly stable (R). If change is perfectly stable, then
R is zero. The R value increases as change becomes more
unstable. In our case, R is 0.06, which means that 6% of
change is unstable.

Stable change is the percentage of change that is stable in
our study area between the first and the second intervals.
This data is used to calculate the R value (R = 1 – stable
change). In this case R = 1 − 0.94; R = 0.06.

Step 2

produces a chart showing the annual amount of land use
change (expressed as a proportion of the study area) during
each time interval and the uniform rate that would exist if the
annual changes were distributed uniformly across the entire
time period. This is shown as a horizontal line in Fig. 28. It
also generates a CSV file showing the uniform change
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Fig. 25 Exercise 1. Step 1. Stable and unstable change R script

Fig. 26 Result from Exercise 1. Rate of unstable changes Fig. 27 Result from Exercise 1. Rate of stable changes
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calculation, which is also expressed as a proportion of the
study area (Fig. 29).

The tool also provides us with data about the annual land
use change during each interval, as a percentage of the study
area (Fig. 30). In our example, this is 0.19 for the first time
interval and 0.24 for the second.

These results show that land use change did not occur at
the same uniform rate over the course of the study period
and there was more change in the second interval. It should

Fig. 28 Result from Exercise 1. Graph with the annual change rate for the two time periods that have been analysed

Fig. 29 Result from Exercise 1. Rate of uniform change

186 M. Paegelow et al.



be noted than if one time interval is very different from the
others in terms of the amount of annual change (this did not
happen in our case), this may be due to potential mapping
errors.

The maps validated here could be used for simulating
future trend scenarios, as there is not much difference
between the intervals in terms of the annual rate of land use
change.
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Fig. 30 Result from Exercise 1. Annual land change rates for each time period
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