
CELA: An Accurate Learned Cardinality
Estimator with Strong Generalization
Ability and Dimensional Adaptability

Weiqing Zhou, Siyu Zhan(B), Lei Guo, and Bo Dai

University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave,
West Hi-Tech Zone, Chengdu 611731, Sichuan, China

wqzhou@std.uestc.edu.cn, {zhansy,leiguo,daibo}@uestc.edu.cn

Abstract. Accurate cardinality estimation contributes significantly to
query optimization whereas traditional approaches such as histogram-
based or sketching-based approaches relying on assumption of uniform
distribution of data and appropriate pre-set parameters, often leading to
dilemma in practical applications. In this paper, an accurate lightweight,
dimensionally adaptive, strongly generalizable learned cardinality esti-
mator for multi-dimensional range queries, CELA is proposed reflect-
ing on the characteristics of desirable cardinality estimators. For the
purpose of capturing relationship between dimensions, CELA raises a
query-oriented approach of constructing constraint matrices to apply
convolution. Experiments illustrates that CELA performs superbly on
each defined indicators far superior to PostgreSQL. Furthermore, the
strong generalization ability of CELA is demonstrated by the excellent
performance trained with continuously scaled-down training set.

Keywords: Cardinality estimation · Dynamic architecture · Deep
learning · Generalization ability · Dimensional adaptability

1 Introduction

There are many methods for database query optimization [3,9,10], and cost esti-
mation is an inextricable part of them all [7], in which cardinality estimation is
an important component. Cardinality estimation specifically refers to predict-
ing the number of records in the query results. The cardinality estimation is
so critical that it has been studied by researchers in the field of databases for
decades, but there is still much room for improvement. There are already many
widely used traditional methods. The performance of histogram-based methods
[13] depends on whether the data conform to the assumption of a uniform dis-
tribution. What’s more, advance settings for width or depth are also required.
Sketching-based methods are often applied to estimate the number of different
data, but requires extra space to store the bitmaps and carefully designed hash

Supported by the National Key R&D Program of China (grant No. 2019YFB1705601)
and the Natural Science Foundation of China (grant No. 62072075).

c© Springer Nature Switzerland AG 2021
W. Zhang et al. (Eds.): WISE 2021, LNCS 13080, pp. 111–118, 2021.
https://doi.org/10.1007/978-3-030-90888-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90888-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-90888-1_9

112 W. Zhou et al.

functions for different workloads. Machine learning and deep learning are rapidly
evolving in research and industry [1,5,6,14]. With the explosion of this technol-
ogy, some learned cardinality estimators emerges which have shown promising
results.

An exquisite, lightweight, and easy-to-train cardinality estimation model
with high generalization ability and dimensional adaptability, CELA is proposed
in this paper. Specifically, the approach for dynamic vectorization and dynamic
model architecture is proposed for adaption to queries with different dimensions.
In addition, an efficient algorithm for data generation is explored. What’s more,
three indicators for measuring the model are presented, and the performance of
CELA is tested and compared with other estimators.

2 Related Work

Cardinality estimation is a crucial part of query optimization. However, the tra-
ditional methods are helpless to cope with multi-dimensional constraints. With
the excellence of machine learning and deep learning, learned cardinality estima-
tors emerge continuously. Andreas Kipf [4] extracts features of tables, joins, and
predicates separately with fully connected networks and learn the cardinality
with MLPs after aggregation. Furthermore Lucas Woltmann [12] transforms the
query into a one-dimensional vector as input to the neural networks. Hasan [2]
seeks to estimate the joint probability distribution from samples. Nevertheless,
the researches have not yet explored in-depth specifically on the generalization
ability of models and adaptability to queries with various dimensions.

3 Vectorization

For instance, a query q, “select a1 from A where a1 > b1 and a2 = b2 and ... and
ak <bk;”, “ai>bi” is defined as the constraint on the data in dimension wi of
the query, in which the predicate pi and the qualifier bi need to be parsed. For
a query with k dimensions, k constraint triplets like <ai, pi, bi> are obtained.

Each constraint triplet is refined from the query q. Firstly, ai is processed
and a sequence is maintained to specify their order. In the constraint vector,
pi is encoded with 3 bits using one-hot and normalized bi occupies 1 bit. The
4-bit vector is then passed through a fully connected layer containing n neu-
rons and a ReLU layer resulting in a vectorized representation of n bits on wi.
The constraint matrix of size [k, n] is obtained by splicing constraint vectors in
order and adjusting the size of the matrix. Such a multi-dimensional represen-
tation, instead of a [1, k ∗ n] single-dimensional vector, allows better utilization
of convolution to capture the correlation between different attributes.

4 Model

4.1 Considerations

Cardinality estimation is a part of physical execution plan generation. The time
taken for a query from reaching the storage engine to returning the final result,

CELA: An Accurate Learned Cardinality Estimator 113

Dynamic Architecture

Dynamic Vectorization

SQL
Statments

CELA

CNN

Estimated
Cardinality

MLP

Fig. 1. The architecture of CELA.

includes the time for generating the physical plan and the time for executing
the plan in the storage engine. Therefore, the key for learned estimators is to
produce the accurate estimated results in a short time. From the above issues,
a dynamic model architecture is designed, which is lightweight and can capture
inter-dimensional relationship and have strong generalization ability.

4.2 Dynamic Vectorization

The number of bits encoded by one-hot for each constraint triplet in the query q
is denoted as EB. The number of neurons in the single-layer MLP, n is related
to the dimension k and the number of encoding bits EB. In terms of popularity,
the more dimensions, the more neurons. When the encoding is determined, n is
expected to be monotone polynomial with only one variable k. In this work, n is
specifically equal to EB ∗K and EB is 4. For high computing performance, the
size of the constraint matrix is adjusted to match data with different dimensions.
The number of elements in the constraint matrix can be calculated as EB ∗K2.
Provided that EB is a perfect square number, constraint matrix can be reshaped
to [k

√
EB, k

√
EB] as further input.

4.3 Dynamic Architecture

For the dynamic input scale brought by dynamic vectorization, a dynamic net-
work architecture is designed to accommodate varying dimensions, as well as to
avoid excessive overhead. The architecture is shown in Fig. 1, which contains two
parts, CNNs with two convolutional layers and MLPs with four layers. The out-
put channels of the two convolutional layers, Channelconv1 and Channelconv2
are set adaptively and separately shown as Formula 1 and Formula 2.

Channelconv1 = EB ∗ k (1)

Channelconv2 = EB3/2 ∗ k (2)

114 W. Zhou et al.

The output of CNNs is reshaped to a one-dimensional vector of size [1, EB5/2∗k3]
for further computation. The MLPs are also with adaptive layers according to
k. The number of neurons in each layer of the network is expressed as Formula
3–5, and the output layer contains only one neuron.

Numelmlp1 = EB ∗ FN(EB, k) = EB2 ∗ k2 (3)

Numelmlp2 = EB1/2 ∗ FN(EB, k) = EB1/2 ∗ k2 (4)

Numelmlp3 = k (5)

5 Experiment

5.1 Generating Data

The following way of generating queries is often considered. For the constraints
in the queries on each dimension, values are taken evenly within the range of
the attributes in the database. This is followed by a random selection of predi-
cates for that dimension, but the values obtained may not exist in the database
and skewed distribution may bring troubles. Therefore, the proposed algorithm
of generating data is illustrated as Table 1. The experiments are conducted on
the 4GB TPC-H workload [11] in PostgreSQL [8] and data is generated sepa-
rately according to Table 1. 211,721 samples including 102,789 training samples,
215,636 samples including 101,032 training samples and 200,936 samples includ-
ing 100,869 training samples are separately generated with 2, 3 and 4 dimensions.
It is of interest that in this work, both the training set and the test set is close
to 50%, revealing the strong generalization ability.

Table 1. Generating data.

The algorithm of generating data

Step 1 Sample randomly in the database to obtain the real records in the table;

Step 2 Extract the constraint values b1, b2, b3, . . . , bk for each of the attributes

Step 3 Select randomly one of the three predicates ,“>”, “<”and “=”, as pi, which

forms a constraint triplet <ai, pi, bi> on dimension wi for a query;

Step 4 Repeat Step 2, 3 until the constraint triplet on all dimensions is formed.;

Step 5 Repeat Steps 1–4 until a sufficient amount of data is generated

5.2 Model Training

For all three dimensions of data L1Loss is set as the loss function and the loss
in one training episode is shown in Fig. 2(a). It illustrates that the model con-
verges fast without seeing much data no matter which dimension it is trained on.
Figure 2(b) illustrates the average loss for 200 continuous episodes. Figure 2(b)
demonstrates that the loss is reduced to a low level after just one training episode,
although there is a steep drop during approximately 25 more training episodes.

CELA: An Accurate Learned Cardinality Estimator 115

(a) Loss of one training episode (b) Average loss of 200 training episodes

Fig. 2. Training loss.

5.3 Evaluation

In this work, three quantitative indicators are proposed as follow to measure
the performance of the model. First, The total number of queries for which
the estimated cardinality in the test set is exactly equal to the true cardinality
expressed as Formula 6. Second, the average error cardinality for all queries in
the test set expressed as Formula 7. Third, the average error rate of all queries
in the test set expressed as Formula 8.

EQ =
QT∑

i=1

xi, xi =

{
1, Carie = Carit

0, Carie �= Carit
(6)

Avgec =
∑QT

i=1 |Carie − Carit|
QT

(7)

Avger =
∑QT

i=1 |Carie − Carit|∑QT
i=1 Carit

(8)

From Fig. 3(a)–(c) it is seen that the proposed model outperforms the cardi-
nality estimator in PostgreSQL for each indicators a lot. The Fig. 3(d)–(f) shows
that there is only a small improvement in each dimensions after more episodes
of training not matching the overhead of training.

To demonstrate the strong generalization ability of CELA, we keep the test
set constant, continuously add 200 queries into training set, and then test the
models. From Fig. 3(g)–(i), the performance of the first few dozen models on
EQ can even approach the best performance. Shown in Fig. 3(j)–(o), about the
300th model outperforms PostgreSQL in all three dimensions, and the training
set is about 600,000 queries, 37.5% of the total data set. The fantastic results
are full proof the strong generalization ability of CELA.

Overall, the performance of the models on varying dimensions is shown in
Table 2 retaining three decimals. MSCN [4] only take predicate sets as input
to adapt to our workload, so there is no need for concatenation after average
pooling. Only the attributes need to be encoded in vectorization of LocalNN [12],
so it can be applied directly. The two recent learned estimators are selected to

116 W. Zhou et al.

(a) EQ for CELA in one
training episode.

(b) Avgec for CELA in one
training episode.

(c) Avger for CELA in one
training episode.

(d) EQ for CELA in 200
training episodes.

(e) Avgec for CELA in 200
training episodes.

(f) Avger for CELA in 200
training episodes.

(g) EQ for CELA with
2 dimensions on different
training set.

(h) EQ for CELA with
3 dimensions on different
training set.

(i) EQ for CELA with
4 dimensions on different
training set.

(j) Avgec for CELA with
2 dimensions on different
training set.

(k) Avgec for CELA with
3 dimensions on different
training set.

(l) Avgec for CELA with
4 dimensions on different
training set.

(m) Avger for CELA
with 2 dimensions on
different training set.

(n) Avger for CELA with
3 dimensions on different
training set.

(o) Avger for CELA with
4 dimensions on different
training set.

Fig. 3. Performance of CELA.

CELA: An Accurate Learned Cardinality Estimator 117

Table 2. Performance on different dimensions.

Cardinality estimator EQ Avgec Avger

Performance on 2 dims PostgreSQL 91 1,326,542.005 0.497

LocalNN 22,433 221,571.788 0.083

MSCN 22,358 184,191.273 0.069

CELA 24,585 32,362.293 0.012

Performance on 3 dims PostgreSQL 1,341 441,115.440 0.491

LocalNN 30,768 243,296.303 0.271

MSCN 28,614 158,685.886 0.177

CELA 32,810 18,378.845 0.020

Performance on 4 dims PostgreSQL 519 145,902.568 0.506

LocalNN 32,022 165,388.694 0.574

MSCN 30,897 79,541.116 0.276

CELA 35,423 4,998.175 0.017

compare with CELA. The performance of PostgreSQL on EQ is unstable, while
CELA’s performance continuously improves with dimensions and exceeds other
three estimators a lot. On Avgec and Avger, the performance of PostgreSQL is
relatively stable but poor. As the dimensions increases, the performance of both
MSCN and LocalNN decreases rapidly, and LocalNN even performs worse than
PostgreSQL, while CELA is quite stable as the dimensions increase. In summary,
there is tremendous progress brought by CELA with approximately 2.4%−−4%
error of PostgreSQL, 6.2% − −17.4% error of MSCN, 3% − −14.5% error of
LocalNN.

6 Conclusions

In this work, an accurate lightweight learned model for multi-dimensional range
queries, CELA is proposed with dynamic vectorization and model architecture
adapted to the various dimensions allowing the complexity of CELA to match
the input size. TPC-H workloads are implemented on PostgreSQL to generate
abundant data based on real records. After only one training episode, CELA
exceeds PostgreSQL, MSCN and LocalNN by far on all defined indicators and the
performance is even improved after more training episodes. For further research,
the strong generalization ability of the model is demonstrated by holding the test
set constant and reducing the training set. In conclusion, our work is valuable
and provides constructive ideas for other researches.

References

1. Ding, J., et al.: Alex: an updatable adaptive learned index. In: Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data, pp.
969–984 (2020)

118 W. Zhou et al.

2. Hasan, S., Thirumuruganathan, S., Augustine, J., Koudas, N., Das, G.: Deep learn-
ing models for selectivity estimation of multi-attribute queries. In: Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data, pp.
1035–1050 (2020)

3. Kamatkar, S.J., Kamble, A., Viloria, A., Hernández-Fernandez, L., Cali, E.G.:
Database performance tuning and query optimization. In: Tan, Y., Shi, Y., Tang,
Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 3–11. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-93803-5 1

4. Kipf, A., Kipf, T., Radke, B., Leis, V., Boncz, P., Kemper, A.: Learned cardinalities:
estimating correlated joins with deep learning. arXiv preprint arXiv:1809.00677
(2018)

5. Marcus, R., et al.: Neo: a learned query optimizer. arXiv preprint arXiv:1904.03711
(2019)

6. Marcus, R., Papaemmanouil, O.: Towards a hands-free query optimizer through
deep learning. arXiv preprint arXiv:1809.10212 (2018)

7. Markl, V., Raman, V., Simmen, D., Lohman, G., Pirahesh, H., Cilimdzic, M.:
Robust query processing through progressive optimization. In: Proceedings of the
2004 ACM SIGMOD International Conference on Management of Data, pp. 659–
670 (2004)

8. Momjian, B.: PostgreSQL: Introduction and Concepts, vol. 192. Addison-Wesley,
New York (2001)

9. Ortiz, J., Balazinska, M., Gehrke, J., Keerthi, S.S.: Learning state representations
for query optimization with deep reinforcement learning. In: Proceedings of the
Second Workshop on Data Management for End-To-End Machine Learning, pp.
1–4 (2018)

10. Panahi, V., Navimipour, N.J.: Join query optimization in the distributed database
system using an artificial bee colony algorithm and genetic operators. Concurr.
Comput. Pract. Exp. 31(17), e5218 (2019)

11. Poess, M., Floyd, C.: New TPC benchmarks for decision support and web com-
merce. ACM Sigmod Rec. 29(4), 64–71 (2000)

12. Woltmann, L., Hartmann, C., Thiele, M., Habich, D., Lehner, W.: Cardinality esti-
mation with local deep learning models. In: Proceedings of the Second International
Workshop on Exploiting Artificial Intelligence Techniques for Data Management,
pp. 1–8 (2019)

13. Xu, J., Zhang, Z., Xiao, X., Yang, Y., Yu, G., Winslett, M.: Differentially private
histogram publication. VLDB J. 22(6), 797–822 (2013). https://doi.org/10.1007/
s00778-013-0309-y

14. Yu, X., Li, G., Chai, C., Tang, N.: Reinforcement learning with tree-LSTM for join
order selection. In: 2020 IEEE 36th International Conference on Data Engineering
(ICDE), pp. 1297–1308. IEEE (2020)

https://doi.org/10.1007/978-3-319-93803-5_1
https://doi.org/10.1007/978-3-319-93803-5_1
http://arxiv.org/abs/1809.00677
http://arxiv.org/abs/1904.03711
http://arxiv.org/abs/1809.10212
https://doi.org/10.1007/s00778-013-0309-y
https://doi.org/10.1007/s00778-013-0309-y

	CELA: An Accurate Learned Cardinality Estimator with Strong Generalization Ability and Dimensional Adaptability
	1 Introduction
	2 Related Work
	3 Vectorization
	4 Model
	4.1 Considerations
	4.2 Dynamic Vectorization
	4.3 Dynamic Architecture

	5 Experiment
	5.1 Generating Data
	5.2 Model Training
	5.3 Evaluation

	6 Conclusions
	References

