
XTuning: Expert Database Tuning
System Based on Reinforcement Learning

Yanfeng Chai1,2, Jiake Ge1, Yunpeng Chai1(B), Xin Wang3,
and BoXuan Zhao1

1 Key Laboratory of Data Engineering and Knowledge Engineering, MOE,
and School of Information, Renmin University of China, Beijing, China

{yfchai,gejiake,ypchai,boxuan.zhao}@ruc.edu.cn
2 College of Computer Science and Technology, Taiyuan University of Science and

Technology, Taiyuan, Shanxi, China
3 College of Intelligence and Computing, Tianjin University, Tianjin, China

wangx@tju.edu.cn

Abstract. Database performance optimization has become a hot issue in
recent years. Some works deeply reconstruct the database to achieve spec-
ified goals like throughput or latency. The others focus on the database’s
configuration knobs with reinforcement learning (RL) to improve the per-
formance without any empirical knowledge. But the exhaustive offline
training process costs plenty of time and resources due to the large ineffi-
cient configuration knobs combinations with trial-and-error methods. The
most time-consuming part of the process is not the RL network training,
but the database performance evaluation for acquiring the reward values
of target performance like throughput or latency. So we propose an expert
database tuning system (XTuning) which contains a correlation knowl-
edge model to remove unnecessary training costs and a multi-instance
mechanism (MIM) to support fine-grained tuning for diverse workloads.
The models define the importance and correlations among these configu-
ration knobs for the user’s specified target. Then we implement the mod-
els as Progressive Expert Knowledge Tuning (PEKT) algorithm with an
abstracted architectural optimization integrated into XTuning. Experi-
ments show that XTuning can effectively reduce the training time and
achieves extra performance promotion compared with the state-of-the-art
tuning methods.

Keywords: Database optimization · Auto tuning · Expert knowledge
rules · Reinforcement learning · Reduce training time

1 Introduction

Databases usually offer a larger number of configuration knobs for users. For
example, MySQL and PostgreSQL have about 200+ knobs while the key-value

This work is supported by the National Key Research and Development Program of
China (No. 2019YFE0198600), National Natural Science Foundation of China (No.
61972402, 61972275, and 61732014).

c© Springer Nature Switzerland AG 2021
W. Zhang et al. (Eds.): WISE 2021, LNCS 13080, pp. 101–110, 2021.
https://doi.org/10.1007/978-3-030-90888-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90888-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-90888-1_8

102 Y. Chai et al.

store RocksDB [7] still has more than 100+ knobs for performance tuning. There-
fore, tuning the hundreds of knobs is an impossible mission even for the very
experienced DBAs. In another word, finding the optimal knobs solution in the
huge continuous space is an NP-hard problem [14]. Existing knobs-based auto-
tuning methods usually have some weaknesses during the training process. First,
there is no fine-grained tuning mechanism for a specified workload. Second,
plenty of time (dozens of hours to days) [16] and resources are spent on the
offline performance measurements, which include many invalid knobs combina-
tions lacking in correlation and feasibility check. In fact, these costs could be
avoided with the constraint rules based on existing experiences or knowledge.
The contributions are summarized as follows:

(1) We propose an expert database tuning system (XTuning) based on rein-
forcement learning, which contains the correlation rules module based on
expert knowledge for different scenarios.

(2) We extend XTuning with Progressive Expert Knowledge Tuning (PEKT)
algorithm included an abstraction method of the architectural optimization
and multi-instance mechanism (MIM) for further performance promotion.

(3) Experiments show XTuning outperforms the SOTA auto-tuning method
CDBTune both on training time reduction and on performance promotion.

2 Related Work

We summarize existing works related to the database auto-tuning as follows:

Knobs-based Auto-tuning. BestConfig [17] uses search-based methods to find
the optimal knobs based on historical tuning data, which costs lots of time
and needs to restart the process if a new request arrives. OtterTune [14] uses
a learning-based method to recommend knobs based on the historical tuning
experience. But this method requires higher quality samples with every necessary
condition. CDBTune [16] adopts deep reinforcement learning (DRL) with a deep
deterministic policy gradient method and a try-and-error strategy to find the
optimal knobs through many performance tests. QTune [10] also utilizes a DRL
model, focusing on the SQL’s pattern for fine-grained tuning at a different level.

Knobs-based optimization will not be the final destination for auto-tuning.
With key-value stores emerging, databases like to use it as the storage engine like
Snowflake [3] and MyRocks [11]. KVStores are widely used in distributed system,
such as TiDB [8], CockroachDB [13], NebulaGraph [12], and HugeGraph [9].

Architectural Optimization. SILK [1] designs an I/O scheduler to deal with
the latency spikes by dynamically allocating I/O resources according to the oper-
ations’ priorities. ALDC [2] focuses on LSM-tree’s compaction mechanism with
controllable granularity methods to acquire specified goals. Monkey [5] focuses
on the bloom filter for performance promotion. Dostoevsky [6] further proposed a
hybrid merge policy to remove superfluous merging adaptively. Bourbon [4] uses
machine learning to build a learned index to promote the lookup performance.

XTuning: Expert Database Tuning System Based on Reinforcement Learning 103

3 Expert Knowledge-Based Tuning Architecture

Figure 1 presents the overall architecture of XTuning, and the gray arrow rep-
resents the training process. First, the external expert rules module classifies
workloads from the system module. Then it (MIM) passes the classified work-
load to the corresponding core tuning algorithm. It could support fine-grained
workloads classification methods under different scenarios while CDBTune only
supports coarse-grained way. Second, the auto-tuning module receives the clas-
sified workload and other parameters, then trains itself efficiently with internal
expert rules. They could significantly reduce the RL network training times and
enhance the practicability while others like CDBTune cost too long. Finally,
the auto-tuning module recommends knobs to the system. The above steps are
repeated until the RL algorithm converges. RL utilizes a try-and-error strategy
to explore optimal knobs’ combinations, normally ignoring some configuration
knobs that naturally have some kind of positive or negative correlations.

Fig. 1. System architecture of XTuning.

3.1 Correlation Rules Table of Knobs

As Table 1 shown, the architecture of correlation rules in XTuning is something
like a two-dimensional table. XTuning utilizes it to offer a fine-grained tuning
optimization under diverse workloads. ri→j(·) means the correlation between
knobi and knobj with positive (+), negative (−), or uncorrelated (φ).

For example, LevelDB provides two knobs for the in-memory write buffer size
and max file size. The buffer will be serialized into the disk as one or more files.
Now we assume that we already know this expert knowledge, which means the
knobwrite buffer size and the knobmax file size should conform to positive corre-
lation and knobwrite buffer size ≥ 2.0 · knobmax file size. The correlation can be
presented as (+)2.0, which leads to the least space-amplification for file systems.
But if the two knobs have the wrong correlation, this meaningless performance
testing will be skipped to reduce training time.

104 Y. Chai et al.

Table 1. Correlation rules table of knobs.

Workloadi knob1 knob2 · · · knobn−1 knobn

knob1 - - - -

knob2 r2→1(+) - - -
...

...
...

...
...

...

knobn−1 rn−1→1(−) rn−1→2(−) - -

knobn rn→1(+) rn→2(−) rn→n−1(φ) -

3.2 Knobs Correlation with Internal Expert Knowledge

In Fig. 2, the red part represents the performance testing process, which provides
the reward values to the RL network. To solve this problem, we embed an inter-
nal expert rules mechanism. Figure 2 shows that (1) If the RL outputs a knob
that conforms to the internal expert rules, it seems to be a high-performance
knob from an experiential perspective. The reward value is determined by the
performance test module (red lines). (2) If the RL outputs a knob that does
not conform to the internal expert rules, it seems to be a low-performance knob
from an experiential perspective. So the real test is not needed, and it will be
replaced by the experience reward (gray lines) for the system’s availability.

Fig. 2. Workflows of the auto-tuning module. (Color figure online)

3.3 Workloads Correlation with External Expert Knowledge

The workloads in real scenarios change dynamically. Existing auto-tuning meth-
ods like CDBTune cannot deal with these situations. In this part, we will describe
how the external expert rules work in XTuning.

Multi-instance Mechanism (MIM). In Table 2, the external expert rules
implement the classification based on the read/write ratio. XTuning trains each
network individually based on these workloads. For example, MIM is monitoring

XTuning: Expert Database Tuning System Based on Reinforcement Learning 105

the real-time status of the workload. Once it reaches the threshold, MIM will
re-select the auto-tuning modules to serve according to the next workload’s pat-
tern, and recommend high-performance knobs again. Note that (1) the internal
structure of the input and output and the auto-tuning module are fixed. There-
fore, XTuning only needs to establish a general neural network framework to
load the internal parameters of the network corresponding to different instance
models rather than to reestablish the neural network. (2) When XTuning train-
ing multiple models, the workload proportion generated by the process can meet
the random value for the corresponding model’s range. (3) MIM can gener-
ate the specified number of models according to the user’s demand. XTuning
could dynamically recommend the optimal knobs which fit the current work-
load’s status. Therefore, comparing to CDBTune’s coarse-grained model, MIM
could classify workloads with a fine-grained method for better tuning.

Table 2. Multi-instance mechanism for the fine-grained tuning.

Write (%) (0, A1] (A1, A2] (A2, A3] (Ai−1, Ai]

Instance model1 model2 model3 modeli

Read : Scan a1 : b1 a2 : b2 a3 : b3 ai : bi

Threshold Th1 Th2 Th3 Thi

Abstract Architectural Optimization as Extra Knobs. As we mentioned
in Sect. 1, We import a Fine-grained Controllable Compaction (FCC) mechanism
in LevelDB, which further improves the performance and system fluctuation by
controlling the write amplification (WA) for different read/write ratio workloads.
As shown in Eq. 1, Rm means the compaction ratio in Fine-grained Controllable
Compaction (FCC) mechanism.

∑n
i=1 Si is the current total size accumulated

and Fmax is the max file size. If the number exceeds Nmax or Rm ≥ Rth, then
the compaction will be triggered immediately. So the ratio threshold Rth can
control the compaction granularity to acquire specified performance. Therefore,
we abstract the ratio as an expert knob in PEKT to achieve further performance
promotion.

Rm =
{

(
∑n

i=1 Si)/Fmax , i < Nmax,
Rth , otherwise.

(1)

3.4 Progressive Expert Knowledge Tuning Algorithm

Next, we integrate the FCC mechanism, the internal and external expert rules
into XTuning as a progressive expert knowledge tuning algorithm (PEKT).

106 Y. Chai et al.

Algorithm 1. Progressive Expert Knowledge Tuning: Training Phase
Input:workloads sequence Wn{W1, W2, · · · , Wτ}
1: modeli ← external expert rules(Wn)
2: In each episode:
3: critical params ← Database(Wn)
4: RLi ← modeli
5: for each time step β do
6: knob ← RLi actor(params)
7: if internal expert rules(knob) ==

True or random() < ε then

8: rewardRLi ← Eval(knob)
9: else

10: rewardRLi ← Exp. reward
11: end if
12: train RLi critic(reward RL)
13: train RLi actor(score)
14: end for

External Expert Rules. (1) In Algorithm 1, the external expert rules invoke
a multi-instance mechanism to identify and classify the current workload. At the
same time, the multi-instance mechanism forces the auto-tuning module to estab-
lish the corresponding RL network instance (Line 4). (2) In Algorithm 2, when
XTuning receives the tuning signal and current operations’ type, the external
expert rules invoke the multi-instance mechanism to identify the current work-
load. Then the external expert rules inform the auto-tuning module to load the
corresponding RL network instance (Line 3) for auto-tuning (Line 4).

Algorithm 2. Progressive Expert Knowledge Tuning: Running Phase
Input:workloads sequence Wn{W1, W2, · · · , Wτ}
1: modeli ← external expert rules(Wn)
2: important params ← Database(Wn)
3: RLi ← modeli
4: knob ← RLi actor(params)

Internal Expert Rules. (1) During the training phase in Algorithm 1, internal
expert rules directly participate in and simplify the RL training process. If the
knob does not conform to the internal expert rules, the performance testing
phase will be skipped (Line 8). But there is still a tiny probability P (r < ε) to
have a random exploration for rules’ self-improvement. Rewards are set based
on the experience to reduce the training time (Line 10); (2) Internal expert rules
only serve the training period of XTuning, rather than the actual tuning period.

WO RO RWB
CDBTune 103h 106h 117h
In-XP 39h 41h 50h
Ex-XP 65h 73h 80h
PEKT 23h 27h 35h

Fig. 3. Comparison of training time cost with CDBTune, In-XP, Ex-XP and PEKT.

XTuning: Expert Database Tuning System Based on Reinforcement Learning 107

4 Experiment Study

We implement XTuning based on the CDBTune [16]. Our evaluation is based
on YCSB [15] and LevelDB for architectural optimization. We generate 5 GB of
data and 50 M operations with 5 threads for each testing round. Each key-value
pair is set to have a 16-B key and a 1-KB value.

4.1 Training Time Reduction with Expert Rules

We evaluate the different modules in XTuning with the Internal Expert Rules
(In-XP), the External Expert Rules (Ex-XP), and Progressive Expert Knowledge
Tuning (PEKT) with full features. Then we make a comparison of offline train-
ing time reduction with the above groups under three workloads (Write-Only,
Read-Only, and Read/Write-Balance). First, all three can effectively reduce the
offline training time in Fig. 3. Moreover, PEKT can reduce the offline training
time by 77.67%, 74.53%, and 70.09% under WO, RO, and RWB workloads.
Second, internal expert rules could reduce the performance testing cost with
the correlation rules to accelerate RL network training. That means In-XP still
achieves time reductions by 62.14%, 61.32%, and 57.26% under the above three
workloads. Third, due to the external expert rules (Sect. 3.3), Ex-XP still out-
performs CDBTune with time reductions by 36.89%, 31.13%, and 31.62%.

4.2 Throughput Improvement

In Fig. 4, PEKT can achieve the best performance promotion under different
read/write ratios workloads. Compared with the default configuration setting,
PEKT can promote the throughput by 3.8x ∼ 10.02x. Meanwhile, PEKT also can
achieve about 4.58% ∼ 64.26% higher throughput improvement than CDBTune.

Fig. 4. Throughput comparison under the different read/write ratios workloads.

However, PEKT merely gets a tiny superiority under RO and WO workloads
compared with the CDBTune. Because CDBTune focuses only on the two work-
loads, but PEKT utilizes the MIM for fine-grained read/write ratios workloads.
Moreover, architectural optimization in XTuning further improves the through-
put due to the FCC mechanism for controllable write amplification.

108 Y. Chai et al.

4.3 Latency Reduction

In this part, we evaluate the latency reduction under different read/write ratios
workloads. We know the fluctuation usually ruins users’ experience due to the
terrible tail latency. In Sect. 3.4, we abstracted the FFC as an extra knob to
import architectural optimization into XTuning. So PEKT could effectively
reduce the tail latency by 53.88% ∼ 94.39% and 23.47% ∼ 63.45% compared
with the Default and the CDBTune. Due to the FCC, PEKT can restrict latency
into a more reasonable range to offer a smooth user experience (Fig. 5).

Fig. 5. Latency comparison under the different read/write ratios workloads.

4.4 Architectural Optimization Performance in XTuning

First, in Fig. 6(a), PEKT reduces internal I/O size by 52.9% and 19.02% com-
pared with the Default and the CDBTune under RO workload. Second, PEKT
reduces I/O size by 75.04% and 24.74% under WR workload in Fig. 6(d). Third,
FCC effectively reduces the compaction I/O size by 80.21% and 54.01% com-
pared with the Default and the CDBTune under WO workload in Fig. 6(g).

Fig. 6. Internal compaction I/O size, count and granularity under different workloads.

XTuning: Expert Database Tuning System Based on Reinforcement Learning 109

Figure 6(c), (f), and (i) describe the internal I/O granularity under RO,
RWB, and WO workloads. The Default has the smallest compaction granularity
because of its configuration space containing no optimizations for the workloads.
Though the CDBTune can achieve close throughput performance with PEKT
under RO and WO workloads, it still cannot control the compaction granularity,
which may lead to terrible system fluctuations.

5 Conclusion

Existing auto-tuning methods usually ignore the correlations between the knobs
and the workloads. Therefore, we propose XTuning with the internal and exter-
nal expert knowledge modules to skip the unnecessary training rounds for reduc-
ing the training time with a fine-grained tuning for the complex workloads. More-
over, we integrate the architectural optimization into the XTuning, which leads
to further performance promotion with the specified demands.

References

1. Balmau, O., Dinu, F., Zwaenepoel, W., Gupta, K., Chandhiramoorthi, R., Didona,
D.: SILK: preventing latency spikes in log-structured merge key-value stores. In:
2019 USENIX Annual Technical Conference, pp. 753–766, July 2019

2. Chai, Y., Chai, Y., Wang, X., Wei, H., Wang, Y.: Adaptive lower-level driven
compaction to optimize LSM-tree key-value stores. IEEE Trans. Knowl. Data Eng.
(2020, early access). https://doi.org/10.1109/TKDE.2020.3019264

3. Dageville, B., et al.: The snowflake elastic data warehouse. In: Proceedings of the
2016 International Conference on Management of Data, pp. 215–226 (2016)

4. Dai, Y., et al.: From wisckey to bourbon: a learned index for log-structured merge
trees. In: 14th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 20), pp. 155–171 (2020)

5. Dayan, N., Athanassoulis, M., Idreos, S.: Monkey: optimal navigable key-value
store. In: SIGMOD, pp. 79–94. ACM (2017)

6. Dayan, N., Idreos, S.: Dostoevsky: better space-time trade-offs for LSM-tree based
key-value stores via adaptive removal of superfluous merging. In: Proceedings of
the 2018 International Conference on Management of Data, pp. 505–520 (2018)

7. Dong, S., Callaghan, M., Galanis, L., Borthakur, D., Savor, T., Strum, M.: Opti-
mizing space amplification in RocksDB. In: CIDR (2017)

8. Huang, D., et al.: TiDB: a raft-based HTAP database. Proc. VLDB Endowment
13(12), 3072–3084 (2020)

9. Hugegraph (2021). https://github.com/hugegraph/hugegraph
10. Li, G., Zhou, X., Li, S., Gao, B.: Qtune: a query-aware database tuning system with

deep reinforcement learning. Proc. VLDB Endowment 12(12), 2118–2130 (2019)
11. Matsunobu, Y., Dong, S., Lee, H.: Myrocks: LSM-tree database storage engine

serving facebook’s social graph. Proc. VLDB Endowment 13(12), 3217–3230 (2020)
12. Nebula graph (2021). https://github.com/vesoft-inc/nebula-graph
13. Taft, R., et al.: Cockroachdb: the resilient geo-distributed sql database. In: Pro-

ceedings of the 2020 ACM SIGMOD International Conference on Management of
Data, pp. 1493–1509 (2020)

https://doi.org/10.1109/TKDE.2020.3019264
https://github.com/hugegraph/hugegraph
https://github.com/vesoft-inc/nebula-graph

110 Y. Chai et al.

14. Van Aken, D., Pavlo, A., Gordon, G.J., Zhang, B.: Automatic database manage-
ment system tuning through large-scale machine learning. In: Proceedings of the
2017 ACM International Conference on Management of Data, pp. 1009–1024 (2017)

15. YCSB-C (2018). https://github.com/basicthinker/YCSB-C
16. Zhang, J., et al.: An end-to-end automatic cloud database tuning system using

deep reinforcement learning. In: Proceedings of the 2019 International Conference
on Management of Data, pp. 415–432 (2019)

17. Zhu, Y., et al.: Bestconfig: tapping the performance potential of systems via auto-
matic configuration tuning. In: Proceedings of the 2017 Symposium on Cloud Com-
puting, pp. 338–350 (2017)

https://github.com/basicthinker/YCSB-C

	XTuning: Expert Database Tuning System Based on Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Expert Knowledge-Based Tuning Architecture
	3.1 Correlation Rules Table of Knobs
	3.2 Knobs Correlation with Internal Expert Knowledge
	3.3 Workloads Correlation with External Expert Knowledge
	3.4 Progressive Expert Knowledge Tuning Algorithm

	4 Experiment Study
	4.1 Training Time Reduction with Expert Rules
	4.2 Throughput Improvement
	4.3 Latency Reduction
	4.4 Architectural Optimization Performance in XTuning

	5 Conclusion
	References

