
A Low-Latency Metadata Service
for Geo-Distributed File Systems

Chuangwei Lin1, Bowen Liu1, Wei Zhou1, Yueyue Xu1, Xuyun Zhang2(B),
and Wanchun Dou1(B)

1 State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, China

{lcw,liubw,zw,xuyuey}@smail.nju.edu.cn,
douwc@nju.edu.cn

2 Department of Computing, Macquarie University, Sydney, Australia
xuyun.zhang@mq.edu.au

Abstract. Geo-distributed file systems have been widely used by web ser-
vices. An increasing number of time-critical web applications have been
deployed on the cloud across geographical regions. In this circumstance,
intolerant service latency will occur when user accesses remote servers.
In view of this challenge, We design a metadata service which aims at
reducing the service invocation latency. This low-latency metadata service
is named LoLaMS. Taking advantage of the latency-aware dynamic sub-
tree partition and migration, LoLaMS is capable to handle more meta-
data service invocations in the nearby metadata server. On account of that,
the expected latency could be satisfied by LoLaMS. We implemented the
LoLaMS and deployed it in a real-word cloud environment across different
regions. The experimental results show that LoLaMS reduces the network
latency effectively while ensuring high metadata consistency.

Keywords: Distributed file system · Low latency · Metadata service ·
Wide area storage

1 Introduction

With the development of mobile edge computing, industrial Internet, Internet of
vehicles and other technologies, there are more and more applications deployed
and used across geographical regions. For users, timely data loading can improve
their experience. For some applications, such as accessing high-precision maps in
navigation systems, resource loading in VR/AR applications, data access latency
is the key to user experience. These application scenarios are latency-sensitive.
Users and servers are distributed in different regions far away.However,most previ-
ous designs for cloud storage services cannot provide users with low enough access
latency.

Distributed file system, as a kind of distributed storage service with strong
universality, has been widely used in cloud storage. More than 50% of the oper-
ations on a file system are metadata operations [12]. Therefore, low latency
metadata access is an important part of a low latency distributed file system.
c© Springer Nature Switzerland AG 2021
W. Zhang et al. (Eds.): WISE 2021, LNCS 13080, pp. 87–100, 2021.
https://doi.org/10.1007/978-3-030-90888-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90888-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-90888-1_7

88 C. Lin et al.

In most modern distributed file systems, a dedicated metadata service is
designed to manage metadata. There are two metadata management mecha-
nisms in general: a centralized mechanism and a decentralized mechanism. [25]
The centralized metadata management, including PVFS [13] GFS [6] and HDFS
[14] use a single metadata server (MDS) to manage metadata of all files and
directories. The decentralized metadata management, including CephFS [17]
and MRFS [23] use a group of MDS to manager metadata. In order to man-
age metadata in geo-distributed storage system, Granary [22] and IPFS [2] use
Distributed Hash Table (DHT) to locate metadata.

However, most of the distributed file systems such as GFS [6], HDFS [14],
Lustre [3], CephFS [17], IPFS [2] are not optimized for latency caused by geo-
graphic distance [15]. In order to reduce the latency of metadata access operation
in geo-distributed file systems, this paper proposes a low-latency metadata ser-
vice for geo-distributed file systems—LoLaMS.

LoLaMS is a distributed metadata service that provides strong consistency
(sequential consistency). For a general-purpose file system, strong consistency is
more appropriate because it can adopt most kinds of applications. This makes
it easier for existing applications to use file systems based on LoLaMS without
additional work on consistency issues for developers.

LoLaMS is a wide area networked metadata service which runs in data centers
distributed in different geographical regions. In order to reduce access latency,
LoLaMS takes advantage of the locality of data access by users. The data access
behavior of many applications is characterized by geographic locality. In another
word, users in a same area prefer to access similar data. For example, navigation
system of vehicle only queries high-precision map of its nearby area rather than
other remote areas. In file system, data is organized in a directory tree structure.
Relevant data is often placed in the same or adjacent directory. LoLaMS dynam-
ically divides the file system directory tree into subtrees based on the analysis of
user’s operation behavior. Each subtree is managed by a metadata server. The
subtree is placed in a specific position so that as many future incoming access
requests to the subtree as possible with less access latency.

We developed a prototype of LoLaMS and deployed it across 8 regions of
the world. We tested the performance of LoLaMS and compared it with HDFS
by using a real dataset. The results of the experiment show that in LoLaMS,
the latency of 78% write operates is less than 50 ms, which is 3.36× better than
HDFS. The latency of 65.6% read operates is less than 50 ms, which is 2.66×
better than HDFS.

The main contribution of this paper is threefold.

• Developed a prototype framework of geo-distributed file system. This frame-
work enables metadata to be distributed across different MDSs and ensures
strong consistency of operation. This framework enables metadata migration
to proceed correctly.

• Designed a migration method used in LoLaMS. This method records users’
operation behavior, counts the latency between users and each node. When
the latency of the user operation exceeds the pre-set threshold, the method

A Low-Latency Metadata Service for Geo-Distributed File Systems 89

calculates the subtree to migrate out and the target MDS to migrate to, then
migrates the metadata to the target MDS in a reliable manner.

• Developed a prototype of LoLaMS and deployed the prototype of LoLaMS
across 8 regions of the world. Tested the performance of LoLaMS and com-
pared it with HDFS by using a real dataset.

The remainder of this paper is organized as follows. Section 2 introduces the
framework of a geo-distributed file system. The details of the proposed low-
latency metadata service are introduced in Sect. 3. Section 4 evaluates the pro-
posed metadata service experimentally. The related works are summarized in
Sect. 5. Finally, the paper is concluded in Sect. 6.

2 The Geo-Distributed File System Framework

LoLaMS runs as a part of a geo-distributed file system. Servers of the system
include 3 roles: Manager, MDS and Datanode. MDS and Manager provide meta-
data services to Client. Figure 1 depicts the framework of the geo-distributed file
system.

Manager. A cluster of nodes (typically 3 nodes) run Manager program and
ZooKeeper [7]. Manager is used to monitor the health of individual MDSs and
deal with MDS failures. At a time, only one Manager node is active, and the
remaining Manager nodes are standby nodes. When an active Manager node
fails, ZooKeeper re-selects a standby node as the Active node. The active Man-
ager node monitors the performance of individual MDSs. Manager senses and
handles the failure when the MDS fails or goes offline. ZooKeeper ensures data
consistency between manager nodes.

Metadata Server. MDSs are responsible for managing the metadata of the file
system. MDS nodes are located in the data center or on the edge server. A client
can access any metadata server to start using the LoLaMS. In LoLaMS, there are
two types of metadata. The first type of metadata is INode, which describes the

Clients

Manager

ZooKeeperCluster

Access Interface

MDS - n
RocksDBDatanode - m

Fig. 1. The geo-distributed file system framework

90 C. Lin et al.

directory structure and file information. Each MDS only maintains and persists
the inodes within the subtree managed by the MDS. LoLaMS uses RocksDB
[5], an embeddable persistent key-value store for fast storage, to persist meta-
data on the disk. When creating or modifying a file, the client needs to write the
inode on the MDS that manages the metadata of the file. When writing an inode,
RocksDB first appends the operation to the log file on the disk, and then updates
the inode data in the memory. The second type of metadata is AuthTreeNode,
which describes how the file system directory tree is partitioned and each sub-
tree managed by which MDS. For a path, by querying the AuthTreeNode, can
know which MDS manages the directory or file. The AuthTreeNode is updated
only when a migration operation is performed. Replicas of the AuthTreeNode
are available on all MDSs and managers. The replicas on the manager are the
primary replica, and updates to the primary replica of the AuthTreeNode are
broadcast to all replicas via ZooKeeper, keeping the AuthTreeNode data con-
sistent on the system. Dynamic subtree partition [18] divides file system direc-
tory tree into multiple subtrees, each of them is managed by different MDS.
In LoLaMS, MDSs log client operations and gather latency information between
clients and MDSs. If latency higher than the threshold, MDS will use the method
described in Sect. 3 to re-partition subtree and migrate metadata.

Datanode. Datanodes store file data and perform operations on file data.

Client. Client provides a command line interface which support common file
system operations, such as mkdir and ls, which enables users to access metadata
via file path such as “/aaa/bbb/ccc”.

A client can connect to any known MDS to get a list of current online MDSs.
The client measures the latency between itself and each MDS at regular intervals
and reports latency information to all MDSs that have already connected to the
client.

When a user operates on a path, the client first checks whether it has accessed
the path before. If it has, the client directly accesses the MDS corresponding to
this path before. If not, the client connects to the MDS nearest to the user and
queries which MDS manages the directory or file that path represents.

3 A Low-Latency Metadata Service

The concept of latency in this article refers to the time elapsed from when
the client sends a request to when the client receives a response. The premise
of using the LoLaMS is that users’ access behaviour to metadata follows the
principle of locality, including temporal locality and spatial locality. LoLaMS
is a distributed service that runs across MDSs. When the MDS finds that the
user operation latency exceeds the threshold, LoLaMS selects a directory subtree
managed by this MDS and migrates it to the appropriate MDS, so as to make
the user operation latency below the threshold as much as possible, and the
target MDS is not overloaded. The goal of LoLaMS is to minimize the number
of operations whose latency exceeds the threshold.

A Low-Latency Metadata Service for Geo-Distributed File Systems 91

To formulate the goal of LoLaMS, we define

platency =
number of operations with latency < Tt

number of operations

Tt denotes latency threshold. platency denotes the proportion of operations whose
latency is less than the latency threshold among all operations.

The goal of LoLaMS can be expressed as

Maximize(platency)

The optimal method to achieve this goal is migrating metadata of inodex
to MDS which is closest to client before the client access inodex. However, it is
impossible to accurately predict every operation in a real file system.

We have the experience from the storage system that if a user has accessed
a path in the recent past, it is more likely that the user will access the path or
its adjacent paths in the recent future. If a user has accessed a path frequently
in the recent past, there is a high probability that the user will continue to visit
the path frequently in the recent future.

LoLaMS takes advantage of the locality of user access to the file system.
When timeout access to inodei occurs, LoLaMS analyzes the operation behavior
of users who visit inodei in a period of time to determine the migration of inodei
and its subdirectories.

Figure 2 shows the flow chart of subtree partition and migration method in
LoLaMS which is separated into 3 steps:

Start

 is emptyiQ

False

the wait time of inode > Tw

EndTrue

Wait until the wait
time of inode > Tw

False

Find best target mds for inode

True

Successfully found

Migrate subtree whose root is inode

True

False

. ()iinode Q front

. ()iQ push inode

Step 1

Step 2

Step 3

Fig. 2. The flow chart of subtree partition and migration method in LoLaMS.

92 C. Lin et al.

Step 1. Identify Inodes that Need to Be Optimized: If an operation
latency exceeds Tt, put the inodes that have been accessed in this operation into
a queue. Inodes in the queue are taken out for optimization in enqueue order.

Step 2. Find Best Target MDS for Inode: Find the best MDS as a migra-
tion target for the taken out INode.

Step 3. Migrate Subtree to Target MDS: Partition and migrate a subtree
from current directory trees managed by mdsi whose root is the INode which
has been found best target MDS.

Identify Inodes that Need to Be Optimized. mdsi logs the operation of
inodex from clientc and instantly check Li

c. L
i
c denotes network latency between

clientc to mdsi. If Li
c > Tt, push pair 〈inodex, timenow〉 into Qi. Qi denotes

the queue of inodes that are waiting for optimization in mdsi. timenow denotes
current time. INodes in Qi are not optimized immediately when they are pushed
into Qi. A single timeout log may be accidental. To make better optimization,
INodes in Qi have to wait for enough time to gather more logs. For each inodex
in Qi which has been waiting for enough time (denoted as Tw), try to find the
best target MDS for inodex.

Find Best Target MDS for Inode. Find the best MDS as a migration target
for selected INode. If failed, use breadth-first search to find the best target MDS
for child nodes of the current selected INode.

Algorithm 1 describes the process to find the best target MDS for inode.
Here, mdsc denotes current mds which running this algorithm. epinodet(mdsi)
means if inodet is in mdsi, the estimate proportion of operations access inodet
whose latency < Tt. p

expect
latency denotes a threshold platency expected to be achieved.

We use epinodex(mdsy) to measure whether mdsy can be a migration target of
inodex. It means estimate platency of inodex if inodex ∈ Setmdsy . Setmdsy means
the set of INodes managed by mdsy. epinodex(mdsy) reflects if inodex is managed
by mdsy, when clients repeat operations during [timenow − Ttr, timenow) , the
proportion of operations whose latency is less than Tt. Here, Ttr means the trace-
back time of operation logs. In a file system, users usually access files from top
to bottom according to the directory hierarchy. For inodes in a subtree that use
inodex as root, clients normally need to access inodex before access other inodes.
Therefore, epinodex(mdsy) is approximate to estimate platency of the subtree. If
we find a suitable MDS as migrate target for inodex, which improved platency
of inodex, then the estimate platency of the subtree is equivalently improved. If
a suitable MDS cannot be found for inodex as the migration target, a breadth-
first search will be used to find a suitable migration target for other nodes in the
subtree. If found a suitable migration target for inodez, the inodez will be the
root node to divide a new subtree. This subtree will be migrated to the target
MDS.

A Low-Latency Metadata Service for Geo-Distributed File Systems 93

Algorithm 1. The process to find the best target MDS
Require: inode: The INode need to optimize; MDS list: The list of all mds;
Ensure: state: a boolean value represents whether found target mds or not; inodet:the

root of subtree to be partitioned; mdst:the migrate target mds;
1: q.push(inode) // q denotes the queue used for breadth-first search.
2: while q NOT empty do
3: inodet = q.pop();
4: if timenow − timeinodei

lo then
5: l = list of clients accessed inodet during [timenow − Ttr, timenow)
6: countclientx = the access time from clientx during [timenow −Ttr, timenow)
7: timeinodet

lo = timenow

8: if l is empty then continue;

9: for mdsi in MDS list do
10: in threshold req = 0;
11: for clientj ∈ l do
12: if Li

j < Tt then in threshold req+=countclientj

13: epinodet(mdsi) = in threshold req/
∑

clientt∈l countclientt

14: mdst = the mds which has the largest epinodet

15: if epinodet(mdst) > pexpectlatency then return (True, inodet, mdst)
16: else q.push(childnodes of inodet)

17: return False

Migrate Subtree to Target MDS. Partition a subtree from current directory
trees managed by mdsi whose root is the INode which has been found best target
MDS. Then migrate this subtree to target MDS.

The migration process is depicted in Fig. 3. If an MDS doesn’t receive broad-
cast information due to failure, it will get the latest “UpdateAuthTree” message
through zookeeper after it returns to normal. The MDS will fetch all missing
updation transactions of AuthTree from Manager , then redo these transac-
tions. This ensures the consistency of AuthTree in the system. Thus, at any
given moment, an INode will only be managed by one MDS.

ManagerManager MDS-iMDS-i MDS-jMDS-j MDS-nMDS-n

(1) PrepareMigration

(3) Migration

(5) UpdateAuthTreeReq
(6) UpdateAuthTree

(6) UpdateAuthTree
(6) UpdateAuthTree

...

(2) OK

(4) OK

Fig. 3. Sequence diagram of migration.

94 C. Lin et al.

If mdsi intent to migrate a subtree to mdsj , the migration process is consists
of 6 phases.

1. mdsi send “PrepareMigration” message to mdsj to ask if mdsj has enough
storage space.

2. mdsj send “OK” message to mdsi to indicate that mdsj is ready to receive
the migration data. If mdsi does not receive any message from mdsj , mdsi
will find another migration target MDS.

3. mdsi send the metadata of the inodes in the subtree to mdsj through “Migra-
tion” message.

4. After mdsj receives the “Migration” message, it persists the data and then
replies “OK” message to mdsi.

5. mdsi send “UpdateAuthTreeReq” to Manager to commit the migration. In
Manager , The change of AuthTree is entered into the database as a transac-
tion.

6. The Manager send message “UpdateAuthTree” to broadcast the change of
AuthTree.

4 Experiment Evaluation

4.1 Experiment Settings

Experiment Environment. Table 1 shows the experiment environment. We eval-
uate LoLaMS using Aliyun’s elastic cloud service. We deploy 9 VMs in 8 dif-
ferent regions. These regions are: cn-beijing (China), cn-shenzhen (China), ap-
northeast (Japan), ap-southeast (Australia), us-west (US), ap-south (India), eu-
west (London), ap-southeast (Malaysia). Each VM has 2 virtual CPUs, 8 GiB
memory and 50 GiB storage. For LoLaMS, a VM in cn-beijing region is used to
deploy the Manager, 8 MDSs are deployed in 8 VMs each in a different region.
For HDFS, a VM in cn-beijing region is used to deploy the Namenode, 8 Datan-
odes are deployed in 8 VMs each in a different region.

Table 1. Experiment environment.

Item Description

Number of servers 9

Region of servers 2 in cn-beijing (China), 1 in cn-shenzhen (China), 1 in
ap-northeast (Japan), 1 in ap-southeast (Australia), 1
in us-west (US), 1 in ap-south (India), 1 in eu-west
(London), 1 in ap-southeast (Malaysia)

CPU 2 vCPU, 3.5GHz

Memory 8 GiB

Stroage 50 GiB

Operation System Ubuntu 18.04 × 64

Network bandwidth 100 Mbps

A Low-Latency Metadata Service for Geo-Distributed File Systems 95

Experiment Data. In the experiment, we use an online shopping platform
access log dataset [24] to test the read-write latency and throughput of LoLaMS
and HDFS. We take the first 100,000 access records from the dataset for the
evaluation. Each user in the dataset is mapped to a specific region. In the 8
regions, we replay the access records of the users mapped to this region in order
at the same beginning time.

4.2 Experiment Comparison Analysis

Latency Evaluation. We measured the latency between these VMs. The round-
trip time (RTT) between these regions within the range of 35 and 420 ms. The
geographical distance between data centers will inevitably cause latency. In addi-
tion, there are other factors that can influence latency, such as network condi-
tions. The average RTT between ap-south-1 and cn-shenzhen is 410 ms while the
distance between them is 4280 km. The average RTT between ap-south-1 and
us-west-1 is 249 ms while the distance between them is 13545 km. The geograph-
ical distance between ap-south-1 and us-west-1 is 3× that between ap-south-1
and cn-shenzhen, but the RTT between ap-south-1 and us-west-1 is 0.6× that
ap-south-1 and cn-shenzhen. Therefore, it is not credible to estimate the latency
between two nodes according to the geographical location, which can only be
used as the lower bound. There are other factors that can affect network latency,
such as the number of hops in routing.

Typically, end-user devices (smartphones, tablets, laptops), as well as IoT
devices, can reach an edge server with a rather low latency less than 10 ms [4].
The latency between users and clients in the same region usually no more than
50 ms. In the experiment, we set Tt in LoLaMS to 50 ms.

Table 2 shows the latency performance of LoLaMS and HDFS. The average
write latency of LoLaMS is 38.14 ms, which is 16.75% of HDFS. The average
read latency of LoLaMS is 35.98% of HDFS. In LoLaMS, the latency of 78%
write operates is less than 50 ms, which is 3.36× better than HDFS. The latency
of 65.6% read operates is less than 50 ms, which is 2.66× better than HDFS.

Table 2. Operation latency between LoLaMS and HDFS.

Metadata service Average latency (ms) Median latency (ms) platency

LoLaMS (write) 38.14 5 0.780

HDFS (write) 227.69 153 0.179

LoLaMS (read) 61.17 9 0.656

HDFS (read) 170 148 0.179

Figure 4 shows the cumulative distribution function of operation latency in
LoLaMS and HDFS. Figure 5 depicts the proportion of operation latency in
different ranges. In LoLaMS, 67.2% of write operations are completed within
10 ms, and 54.3% of reading operations are completed within 10 ms. Compared

96 C. Lin et al.

LoLaMS
HDFS

LoLaMS
HDFS

Fig. 4. Cumulative distribution function (CDF) of operation latency.

8.41%
9.46%

82.1%

8.45%
9.48%

82.1%
<=10ms
10-50ms
>50ms

(a) LoLaMS write (b) HDFS write (c) LoLaMS read (d) HDFS read

67.2%

10.9%

22%

54.3%

11.3%

34.4%

Fig. 5. The proportion of latency in different ranges.

with HDFS, LoLaMS can reduce the latency significantly. Most operations can
be completed in a short time, which can make the application run faster and
improve user experience.

For metadata write operations from clients, both LoLaMS MDS and HDFS
Namenode first append the operation to the log file on the disk. Then they
update the data in the memory. Finally, they return a confirmation to the client.
The latency of an operation comes from two parts: the processing time on the
server and the transmission time on the network. In LoLaMS, since a large part
of client operations can be completed in nearby MDS, the transmission time is
significantly reduced. This makes LoLaMS have a lower latency than HDFS.

In the experiment, the average read operation latency of LoLaMS is higher
than the average write operation latency. This is because the experiment replayed
the dataset twice. The first replay executed the records as write operations and
construct the directory structure. The second replay executed the records as
read operations. Replaying the dataset for the second time breaks the temporal
locality of the access record. Thus, fewer operations were executed on the nearby
MDS during the second replay.

Throughput Evaluation. Previous experiments show that HDFS can reach
126100 ops/s when it performs read operations on Namenode [14]. However,
in a geo-distributed environment, the bottleneck of system throughput is no
longer the single machine performance, but the network performance. Figure 6
and Fig. 7 show the operation per second of write and read operation in LoLaMS
and HDFS. LoLaMS reduces the latency significantly, which also improves the

A Low-Latency Metadata Service for Geo-Distributed File Systems 97

LoLaMS
HDFS

Fig. 6. Operation per second (OPS) of write operation.

LoLaMS
HDFS

Fig. 7. Operation per second (OPS) of read operation.

throughput of the system. The maximum throughput of HDFS is 197 ops/s for
write operations and 233 ops/s for read operations. The maximum throughput
of LoLaMS is 389 ops/s for write operations and 382 ops/s for read operations.
In terms of maximum read throughput, LoLaMS is 63.9% higher than HDFS.
For maximum read throughput, LoLaMS is 97.4% higher than HDFS. This is
due to LoLaMS’s full use of multiple metadata servers and reasonable division
of subtrees. The higher throughput also enables LoLaMS to complete the same
number of read and write requests in a shorter time than HDFS.

4.3 Evaluation Result

From the experimental results of latency evaluation, LoLaMS performs signifi-
cantly better than HDFS for the indicator platency. This shows that in LoLaMS,
more operations can be completed with lower latency. According to the Through-
put evaluation results, the Throughput of LoLaMS is higher than HDFS. This
shows that LoLaMS can handle more operations in a shorter time. For file sys-
tems in geo-distributed scenarios, LoLaMS has advantages in terms of latency
and throughput.

98 C. Lin et al.

5 Related Works

Web services have made extensive use of distributed file systems, which can
share storage for many users in the same namespace [8]. With the rise of cloud
computing and online services, more and more applications with high timeliness
are being deployed across borders. The latency induced by geographical distance,
on the other hand, is difficult to overcome. In recent years, some researches have
been done to address the latency associated with geo-graphical distribution.

Yu et al. [22] develop a distributed storage system called Granary that offers
cyber users with a dependable data storage and sharing service. Granary stores
file meta-data in a Distributed Hash Table layer and scatters big files using a raw
data storage technique. Benet [2] design a peer-to-peer distributed file system
InterPlanetary File System (IPFS) that aims to connect all computing devices
to a single file system. IPFS is a content-addressed block storage architecture
with content-addressed hyper connections that enables high throughput.

The above two studies used the method of storing metadata and file data
nearby to reduce latency. In addition, it can also reduce system latency by
caching metadata on the server side or on the client side. Yu et al. [23] pro-
posed the Metadata Replication File System(MRFS) which split metadata into
non-overlapping portions and kept on MDS, where the creation action is raised,
whereas namespace and directory information is preserved in Namespace Servers
in this system. Because it serves the majority of requests in local MDS, such
a hierarchical architecture not only achieves great scalability but also delivers
low latency. Oh et al. [9] present a geo-distributed cloud storage system called
Wiera. Wiera provides first-class dynamic support owing to network, workload,
and access pattern changes, and can actively handle dynamism at run-time. By
externalizing the policy definition, Wiera allows unmodified programs to benefit
from flexible data/storage rules. Ren et al. [11] develop SLOG that avoids the
tradeoff for workloads which contain physical region locality in data access. In
the access mode, each data particle is assigned a master region based on locality.
Reading and writing to nearby data can be done quickly without cross-regional
communication. Muhammed et al. [16] proposed an approach use erasure coding
to significantly reduce costs while successfully mitigating the associated over-
heads in wide-area latency incurred for preserving consistency.

Exsiting work mainly focus on storing file data on the nearby server or caching
metadata. While our research focus on reducing latency in metadata service with-
out sacrificing consistency. In cloud computing and edge computing, workload
migration is often used to improve the quality of experience (QoE) and the qual-
ity of service (QoS) [10,19,20]. While our idea is to improve QoS by migrating
storage workload. In this paper, we propose a geo-distributed metadata service,
LoLaMS, which uses the method of partition the directory tree dynamically and
migrating subtree to reduce latency while ensuring the consistency of metadata.
Virtualization technology has been widely used in cloud computing and edge
computing [1,21]. By combining virtualization technology, distributed file sys-
tems based on LoLaMS is expected to provide low-latency storage services for
cloud computing and edge computing.

A Low-Latency Metadata Service for Geo-Distributed File Systems 99

6 Conclusion

This paper introduces LoLaMS, a low-latency metadata service for geo-
distributed file system. LoLaMS can provide metadata service with lower latency,
without sacrificing strong consistency. The design of LoLaMS makes full use of
the temporal locality and spatial locality of the user’s access to the file system.
LoLaMS senses the user’s network latency and dynamically divides the file sys-
tem directory tree into several subtrees according to the user’s access behavior.
In the running process of LoLaMS, the division of subtree is optimized to make
as many user requests as possible be completed on the nearest MDS. The exper-
imental results show that compared with other file system metadata service,
LoLaMS can significantly reduce the access latency and improve the throughput
of the whole system.

Acknowledgements. This work was supported in part by the National Key Research
and Development Program of China under Grant No. 2020YFB1707601, the Key
Research and Development Program of Jiangsu Province under Grant No. BE2019104.
Dr Xuyun Zhang is the recipient of an ARC DECRA (project No. DE210101458)
funded by the Australian Government.

References

1. Alves, M.P., Delicato, F.C., Santos, I.L., Pires, P.F.: LW-CoEdge: a lightweight
virtualization model and collaboration process for edge computing. World Wide
Web 23(2), 1127–1175 (2020)

2. Benet, J.: IPFS-content addressed, versioned, p2p file system. arXiv preprint
arXiv:1407.3561 (2014)

3. Braam, P.: The lustre storage architecture. CoRR abs/1903.01955 (2019). http://
arxiv.org/abs/1903.01955

4. Confais, B., Lebre, A., Parrein, B.: Performance analysis of object store systems
in a fog and edge computing infrastructure. In: Hameurlain, A., Küng, J., Wag-
ner, R., Akbarinia, R., Pacitti, E. (eds.) Transactions on Large-Scale Data- and
Knowledge-Centered Systems XXXIII. LNCS, vol. 10430, pp. 40–79. Springer, Hei-
delberg (2017). https://doi.org/10.1007/978-3-662-55696-2 2

5. Facebook: Rocksdb. http://rocksdb.org/
6. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: Proceedings

of the Nineteenth ACM Symposium on Operating Systems Principles, pp. 29–43
(2003)

7. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: wait-free coordination
for internet-scale systems. In: USENIX Annual Technical Conference, vol. 8 (2010)

8. Kubiatowicz, J., et al.: Oceanstore: an architecture for global-scale persistent stor-
age. ACM SIGOPS Oper. Syst. Rev. 34(5), 190–201 (2000)

9. Oh, K., Qin, N., Chandra, A., Weissman, J.: Wiera: policy-driven multi-tiered
geo-distributed cloud storage system. IEEE Trans. Parallel Distrib. Syst. 31(2),
294–305 (2019)

10. Qi, L., Chen, Y., Yuan, Y., Fu, S., Zhang, X., Xu, X.: A QoS-aware virtual machine
scheduling method for energy conservation in cloud-based cyber-physical systems.
World Wide Web 23(2), 1275–1297 (2020)

http://arxiv.org/abs/1407.3561
http://arxiv.org/abs/1903.01955
http://arxiv.org/abs/1903.01955
https://doi.org/10.1007/978-3-662-55696-2_2
http://rocksdb.org/

100 C. Lin et al.

11. Ren, K., Li, D., Abadi, D.J.: Slog: serializable, low-latency, geo-replicated transac-
tions. Proc. VLDB Endowment 12(11), 1747–1761 (2019)

12. Roselli, D.S., Lorch, J.R., Anderson, T.E., et al.: A comparison of file system
workloads. In: USENIX Annual Technical Conference, General Track, pp. 41–54
(2000)

13. Ross, R.B., Thakur, R., et al.: PVFS: a parallel file system for linux clusters. In:
Proceedings of the 4th Annual Linux Showcase and Conference, pp. 391–430 (2000)

14. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file
system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–10. IEEE (2010)

15. Singh, H.J., Bawa, S.: Scalable metadata management techniques for ultra-large
distributed storage systems-a systematic review. ACM Comput. Surv. (CSUR)
51(4), 1–37 (2018)

16. Uluyol, M., Huang, A., Goel, A., Chowdhury, M., Madhyastha, H.V.: Near-optimal
latency versus cost tradeoffs in geo-distributed storage. In: 17th {USENIX} Sympo-
sium on Networked Systems Design and Implementation ({NSDI} 20), pp. 157–180
(2020)

17. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D., Maltzahn, C.: Ceph: a scalable,
high-performance distributed file system. In: Proceedings of the 7th Symposium
on Operating Systems Design and Implementation, pp. 307–320 (2006)

18. Weil, S.A., Pollack, K.T., Brandt, S.A., Miller, E.L.: Dynamic metadata manage-
ment for petabyte-scale file systems. In: SC’04: Proceedings of the 2004 ACM/IEEE
Conference on Supercomputing, p. 4. IEEE (2004)

19. Xu, X., et al.: Secure service offloading for internet of vehicles in SDN-enabled
mobile edge computing. IEEE Trans. Intell. Transp. Syst. 22(6), 3720–3729 (2020)

20. Xu, X., Zhang, X., Gao, H., Xue, Y., Qi, L., Dou, W.: Become: blockchain-enabled
computation offloading for IoT in mobile edge computing. IEEE Trans. Ind. Inf.
16(6), 4187–4195 (2019)

21. Yang, S., Wang, X., Wang, X., An, L., Zhang, G.: High-performance docker inte-
gration scheme based on openstack. World Wide Web 23(4), 2593–2632 (2020)

22. Yu, H., Zhang, F., Wu, Y.: Granary: a sharing oriented distributed storage system.
Future Gen. Comput. Syst. 38, 47–60 (2014)

23. Yu, J., Wu, W., Yang, D., Huang, N., et al.: MRFS: a distributed files system
with geo-replicated metadata. In: Sun, X. (ed.) ICA3PP 2014, Part II. LNCS,
vol. 8631, pp. 273–285. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11194-0 21

24. Zaker, F.: Online Shopping Store - Web Server Logs (2019). https://doi.org/10.
7910/DVN/3QBYB5

25. Zhou, J., Chen, Y., Wang, W., He, S., Meng, D.: A highly reliable metadata service
for large-scale distributed file systems. IEEE Trans. Parallel Distrib. Syst. 31(2),
374–392 (2019)

https://doi.org/10.1007/978-3-319-11194-0_21
https://doi.org/10.1007/978-3-319-11194-0_21
https://doi.org/10.7910/DVN/3QBYB5
https://doi.org/10.7910/DVN/3QBYB5

	A Low-Latency Metadata Service for Geo-Distributed File Systems
	1 Introduction
	2 The Geo-Distributed File System Framework
	3 A Low-Latency Metadata Service
	4 Experiment Evaluation
	4.1 Experiment Settings
	4.2 Experiment Comparison Analysis
	4.3 Evaluation Result

	5 Related Works
	6 Conclusion
	References

