
Exploiting Unblocking Checkpoint for
Fault-Tolerance in Pregel-Like Systems

Yi Yang1, Zhenhua Yang1, and Chen Xu1,2(B)

1 East China Normal University, Shanghai, China
{yiyang,zhyang}@stu.ecnu.edu.cn, cxu@dase.ecnu.edu.cn

2 Science and Technology on Parallel and Distributed Processing Laboratory (PDL),
Changsha, China

Abstract. With the explosive growth of graph size, a series of Pregel-
like systems have emerged. Typically, these systems employ checkpoint-
ing and rollback mechanisms to achieve fault-tolerance in either block-
ing or unblocking manner. The blocking checkpointing pauses the iter-
ative processing while checkpointing, whereas the unblocking check-
pointing writes the checkpoints in parallel with the iterative processing.
The unblocking checkpointing decreases the checkpointing overhead, but
incurs resource contention due to checkpointing concurrently. Hence, it
may prolong the time on execution and checkpointing. In this work,
we propose a queuing strategy to alleviate the contention. This strat-
egy employs a checkpoint queue to store all the pending checkpoints,
which allows to concurrently write a certain number of checkpoints at
most from the queue following a First-In-First-Out (FIFO) policy. To
further utilize the characteristics of checkpoint in Pregel-like systems,
we define checkpoint staleness and checkpoint tardiness, and then pro-
pose staleness/tardiness-aware skipping policy to replace the FIFO pol-
icy. Extensive experiments verified that the queuing strategy with the
skipping policy outperforms blocking and unblocking checkpointing in
Pregel-like systems.

Keywords: Graph processing · Fault tolerance · Checkpoint

1 Introduction

Graphs are widely employed in various application areas including social network
analysis and online recommendation. With the explosive growth of graph size,
the big data represented by graphs might exceed the capacity of a single machine
in terms of computation and storage, etc. To effectively process large graph
data, Pregel [10] as well as many Pregel-like systems Giraph [1] and Sedge [17]
typically scale out in a distributed way by increasing the number of compute
nodes. However, failure is common in distributed environment especially with
a large number of computational nodes [6]. Meanwhile, graph processing often
costs a long execution time, because they require iterative computations. Hence,
it is important for Pregel-like systems to effectively handle failures.
c© Springer Nature Switzerland AG 2021
W. Zhang et al. (Eds.): WISE 2021, LNCS 13080, pp. 71–86, 2021.
https://doi.org/10.1007/978-3-030-90888-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90888-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-90888-1_6


72 Y. Yang et al.

A typical fault tolerance mechanism proposed in [12] employs a reactive app-
roach to tolerate failure. This approach does not perform any operations during
normal execution. Once failure happens, this approach reloads and repartitions
the input data to recover the lost vertices as well as edges. Then, it recovers the
value of vertices by utilizing the replicas of vertices and a user-defined compensa-
tion function. This approach sacrifices the accuracy of computed result [13], even
though it achieves fault-tolerance. To keep the result accuracy, most of Pregel-
like systems adopt a proactive checkpoint-based approach to tolerate failure [16].
This approach requires the systems to periodically write checkpoints into sta-
ble storage during normal execution. Once failure happens, the systems recover
from the latest checkpoint. Usually, these Pregel-like systems (e.g., Giraph and
Hama [2]) write checkpoints in a blocking manner, which saves the state of
the system while pausing computation. Clearly, it incurs an additional overhead
on execution time. Different from the blocking checkpointing, the unblocking
checkpointing proposed in the literature writes the checkpoints in parallel with
the computation [5]. However, its adoption in Pregel-like systems remains unex-
plored. While applying the unblocking checkpointing to these systems, there
may be a resource contention problem due to concurrently checkpointing. Fur-
ther, the contention brings a negative impact on the time of overall execution
and checkpointing. In particular, resource contention may intensify the delay on
the execution when multiple checkpoints are issued simultaneously.

The goal of this work is to alleviate the resource contention incurred by
writing multiple unblocking checkpoints concurrently, so as to reduce the total
execution time. Instead of issuing checkpoints without a limitation, we propose a
queuing strategy to limit the number of concurrent unblocking checkpoints. Our
queuing strategy inserts all the pending checkpoints into a checkpoint queue,
and employs a First-In-First-Out (FIFO) policy by default. At a certain time,
this strategy limits the number of checkpoints taken from the queue, so as to
ensure that the system writes up to k checkpoints concurrently. Our experimental
results show that the unblocking checkpointing with queuing strategy decreases
the total execution time by 48.1% and 41.5% compared to the blocking and
unblocking checkpointing in the failure-free cases, respectively.

Moreover, in Pregel-like systems, the checkpoint in a later superstep is more
useful for failure recovery than the one in an earlier superstep, since recovering
from a later superstep enables the system to recompute less supersteps once fail-
ure happens. In addition, we find that the checkpoint with a shorter writing time
is more helpful for failure recovery than the one with a longer writing time, as the
one with a shorter writing time becomes available sooner. In Pregel-like systems,
this writing time can be estimated by the checkpoint size. Clearly, the FIFO pol-
icy is oblivious to the characteristics of checkpointing, which may result in more
recovery time when failure happens. Instead of FIFO policy, we first define check-
point staleness and checkpoint tardiness, and then propose staleness/tardiness-
aware skipping policy, in order to reduce the recovery time in case of failure.
Our experiments show that the staleness/tardiness-aware skipping policy saves
52.3% of recovery time as against the FIFO policy.



Exploiting Unblocking Checkpoint for Fault-Tolerance 73

In the rest of this paper, we introduce the background of Pregel-like systems
in Sect. 2. Then, we make the following contributions:

– We propose queuing strategy in Sect. 3 to alleviate the resource contention
incurred by multiple concurrent unblocking checkpointing, so as to reduce
the overall execution time.

– We propose staleness/tardiness-aware skipping policy in Sect. 4 to replace the
FIFO policy in queuing strategy, in order to reduce the recovery time.

– We implement a prototype system on Giraph and our experimental studies
in Sect. 5 demonstrate that the queuing strategy with staleness/tardiness-
aware skipping policy significantly improves the performance of the existing
unblocking checkpointing and blocking checkpointing.

In addition, we review the related work in Sect. 6 and conclude our work in
Sect. 7.

2 Background of Pregel-Like Systems

This section introduces the workflow of Pregel-like systems, and illustrates two
typical checkpointing approaches, i.e., blocking and unblocking checkpointing.

2.1 Execution Workflow

Pregel-like systems (e.g., Giraph, Seraph) adopt a vertex-centric programming
model for iterative graph processing. The communication among the vertices in
these systems is usually achieved by the message passing technique. Generally,
message passing is implemented via synchronized execution [11]. The execution
includes a sequence of iterations, called supersteps. Each superstep consists of
three phases, including computation, communication and synchronization.

In the computation phase, the state of each vertex is either active or inactive.
These active vertices handle the messages received from the last superstep and
execute the same user-defined function to update the value of vertices in parallel.
In the communication phase, each vertex sends messages to their neighbor ver-
tices. The neighbor vertices temporarily store the messages and will handle them
in the next superstep. In addition, the vertices update their states accordingly. In
the synchronization phase, the vertices that complete the communication phase
in advance have to wait for other vertices. Only when all vertices complete the
communication phase, they will enter the next superstep. The three phases are
executed iteratively till all vertices are inactive.

2.2 Checkpointing

Blocking Checkpointing. Many Pregel-like systems achieve fault tolerance
in the way of blocking checkpointing. For example, in Giraph, users specify
a checkpoint interval and the system writes checkpoints to a distributed file
system by pausing the superstep where the checkpoint is needed. This checkpoint



74 Y. Yang et al.

(a) Blocking Checkpointing

(b) Unblocking Checkpointing

Fig. 1. The process of checkpointing

consists of all vertex states, edges and messages. Once failure occurs, the system
reads the latest checkpoint for rollback. In this work, we employ Ci to indicate
the checkpoint at superstep i. Figure 1(a) shows the blocking checkpointing that
writes a checkpoint every two supersteps. At superstep 2, the system writes the
checkpoint C2 and then starts the execution of this superstep. If failure happens
at superstep 3, the system rolls back to superstep 2 and reloads C2. Clearly,
blocking checkpointing incurs a significant overhead cost on execution time.

Unblocking Checkpointing. Different from the blocking checkpointing, some
studies in high performance computing propose the unblocking checkpointing,
which writes the checkpoints in parallel with the computation [5]. By adopting
the unblocking checkpointing, the Pregel-like systems decrease the overhead of
blocking checkpointing. As shown in Fig. 1(b), the system writes C2 along with
the execution of supersteps 2, 3 and 4, which avoids the execution time overhead
incurred by writing C2.

3 Queuing Strategy

In this section, we discuss the resource contention in unblocking checkpointing,
and then propose a queuing strategy to alleviate the resource contention.

3.1 Resource Contention

Unblocking checkpointing may incur resource contention, although it decreases
the execution time compared to blocking checkpointing. The resource contention
prolongs the time of superstep execution and checkpointing, since checkpointing
is in parallel to the execution of supersteps. As shown in Fig. 1(b), the unblocking
checkpointing requires more time to write C6 and execute superstep 6, compared
to the blocking checkpointing in Fig. 1(a). Moreover, the system may write mul-
tiple checkpoints concurrently if it takes more time to write a single checkpoint
than to execute a single superstep. Writing multiple checkpoints concurrently
intensifies the resource contention, which further increases the time of superstep
execution and checkpointing.



Exploiting Unblocking Checkpoint for Fault-Tolerance 75

Fig. 2. Checkpoint queue

The overall execution time of unblocking checkpointing with resource con-
tention may still be shorter than the one of blocking checkpointing. However,
the delay of checkpointing has a negative impact on the execution time in case
of failures. In addition, since the resource contention prolongs checkpointing,
the checkpoint is more likely to be unavailable when failure happens, leading to
longer recovery time.

3.2 Checkpoint Queuing

Instead of issuing the unblocking checkpoints without a limitation, we propose a
queuing strategy to limit the number of concurrent checkpoints as a user-defined
parameter k, so as to balance the trade-off between maximizing resource usage
and alleviating resource contention [18]. The optimal choice of k is determined
by the system configuration. In our queuing strategy, all the pending checkpoints
are inserted into a checkpoint queue. When the number of checkpoints n that
the system is writing is less than k allowed by our strategy, our queuing strategy
follows a First-In-First-Out (FIFO) policy and takes the first k − n checkpoints
in the queue to write concurrently.

Figure 2 depicts how the queuing strategy works during execution when k =
1. In Fig. 2, the queuing strategy inserts the pending checkpoints C4, C6 and
C8 into the queue while writing checkpoint C2. Once the system writes the
checkpoint C2 completely, as shown in Fig. 2, the system takes the C4 in the
queue and starts writing this checkpoint. Similarly, the queuing strategy inserts
the checkpoint C10 into the queue when the system reaches superstep 10.

Algorithm 1 illustrates the implementation details of the queuing strategy.
Before executing the first superstep, the system registers a handler for the event
which is triggered when a checkpoint completes (line 2). During the execution
of supersteps, when the superstep i meets the checkpoint interval τ , the system
inserts the checkpoint Ci into the queue Q and calls the function CHECK-
POINTING (line 4 to line 5). This function gets the number of checkpoints
being written, i.e., n (line 11). When n < k, the queuing strategy removes the
first k − n checkpoints in the queue and temporarily saves these checkpoints
in list L (line 12 to 14). Finally, the system writes the checkpoints stored in L
(line 15). Moreover, to avoid the circumstance that there exists checkpoints in
the queue Q while less than k checkpoints are being written, the system trig-
gers the forementioned event and calls the function CHECKPOINTING when
it writes a checkpoint completely.



76 Y. Yang et al.

Algorithm 1. Queuing Strategy
1: initial queue Q, list L, counter c;
2: register event handler CHECKPOINTING;
3: while there are active vertices do
4: if superstep i mod τ = 0 then
5: insert Ci into Q;
6: CHECKPOINTING(Q);
7: end if
8: end while
9:

10: function CHECKPOINTING(queue Q)
11: n ← calculate the number of checkpoints being written;
12: if n < k then
13: Q ← Skipping(Q);
14: L ← first k − n checkpoints from Q;
15: write the checkpoints in L;
16: end if
17: end function
18:
19: function SKIPPING(queue Q)
20: return Q;
21: end function

4 Skipping Policy

In this section, we illustrate the staleness and tardiness of checkpoints in the
queue. Then, we design the staleness/tardiness-aware skipping policy to improve
the queuing strategy.

4.1 Checkpoint Staleness

The checkpoints in Pregel-like systems store the vertices, edges as well as mes-
sages at a certain superstep into external storage. Interestingly, the checkpoint
in a later superstep is more useful for failure recovery than the one in an earlier
superstep, since recovering from a later superstep enables the system to recom-
pute less supersteps once failure happens. For example, in Fig. 2, compared to
the checkpoint C4 at superstep 4, the checkpoint C8 at superstep 8 avoids the
recomputation from superstep 4 to superstep 7 once the failure happens. To
evaluate this property, we illustrate checkpoint staleness in Definition 1.

Definition 1. (Checkpoint Staleness). For a checkpoint Ci at superstep i, the
staleness S(Ci) of this checkpoint is the reciprocal of i, i.e., S(Ci) = 1/i.

The smaller the value of S(Ci) is, the later the superstep i is. Consequently,
the smaller staleness value indicates a more useful checkpoint for failure recovery.
The queuing strategy in Sect. 3 takes the checkpoints from the head of the queue.
Once failure happens, the system has to roll back to an earlier superstep which



Exploiting Unblocking Checkpoint for Fault-Tolerance 77

requires more recovery time, since these checkpoints at the head of the queue
have larger staleness values. Hence, the system should take out k checkpoints
with smaller staleness values, so as to take less time to recover in case of failure.
In Example 1, the system may avoid the recomputation from superstep 4 to
superstep 7 if it takes out C8 instead of C4 and C6.

Fig. 3. Checkpoint staleness

Example 1. Figure 3 illustrates the process of checkpointing considering the
checkpoint staleness. For simplicity, we assume k = 1. Clearly, we have S(C8) <
S(C6) < S(C4). Hence, after finishing writing C2, the system will skip both C4

and C6, and then start writing C8. In case of failure happens at superstep 13,
the system recomputes from superstep 8 rather than superstep 4.

4.2 Checkpoint Tardiness

In addition to the staleness, we observe that the checkpoint with a shorter writing
time is more useful for failure recovery than the one with a longer writing time.
As shown in Fig. 2 and 3, the checkpoint C4 has a shorter writing time than C8.
Clearly, the checkpoint C4 is more useful than C8 when failure happens at the
superstep 11. In this case, C8 cannot be used for recovery, since the system has
not completed C8 yet. Instead, the system rolls back to superstep 4, since C4 has
been finished at superstep 10. To evaluate this property, we define checkpoint
tardiness in Definition 2.

Definition 2. (Checkpoint Tardiness). For a checkpoint Ci at superstep i, the
tardiness T (Ci) of this checkpoint is denoted by T (Ci) = ti, where ti is the time
consumed on writing Ci.

The larger the value of T (Ci) is, the more time to write Ci the system
takes. Hence, it is possible that the checkpoint Ci is unavailable when failure
occurs, so that the system has to roll back to an earlier superstep. Considering
the checkpoint tardiness, the system should pick up checkpoints with a smaller
tardiness values, in order to spend less time to recover once failure happens. As
described in Example 2, the system owns a complete checkpoint earlier if it picks
up C4 rather than C8.

Example 2. Following Example 1, we take Fig. 4 as an example to illustrate the
checkpoint tardiness. Here, we suppose T (C4) = T (C6) < T (C8). Different from
Example 1, the system should write either C4 or C6 when considering the check-
point tardiness. As shown in Fig. 4, the system picks up checkpoint C4 and finishes



78 Y. Yang et al.

Fig. 4. Checkpoint tardiness

writing this checkpoint at superstep 10. In case of failure happens at superstep 11,
the system would recompute from superstep 4, since it has a complete checkpoint
C4. However, if the system chooses to write C8, this checkpoint has not been com-
pleted writing yet. Hence, the system has to recompute from superstep 2.

In general, the tardiness value T (Ci) of the checkpoint Ci depends on the
checkpoint size. The tardiness value increases, along with the increasing of the
checkpoint size. Hence, we employ the checkpoint size to indicate the length
of T (Ci). In Pregel-like systems, the checkpoint consists of the vertices, edges
and messages. Hence, we calculate the size of the checkpoint Ci by summing
the size of vertices Vi, edges Ei and messages Mi at superstep i. Consequently,
the tardiness value T (Ci) is estimated by the checkpoint size, i.e., T (Ci) ≈
Size(Vi) + Size(Ei) + Size(Mi).

4.3 Staleness/Tardiness-Aware Skipping

Clearly, the queuing strategy with a FIFO policy is oblivious to the checkpoint
staleness and tardiness. In particular, it is unnecessary to write the checkpoint
at the head of the queue with a large staleness and tardiness value. Alterna-
tively, the system should skip such kind of checkpoints. Here, we propose a
staleness/tardiness-aware skipping policy to replace the FIFO policy.

Ideally, the checkpoint with both smaller staleness and tardiness values
enables the system to reduce the recovery time. However, it is not always true
that checkpoint with a small staleness value also has a small tardiness value.
As in Example 2, compared to the checkpoint C4 with a staleness value of
1/4, the checkpoint C8 with a staleness value of 1/8 has a larger tardiness
value. Intuitively, once the system completes a checkpoint, it can be utilized
for failure recovery. Hence, we prefer to write a checkpoint with a small tar-
diness value, even though its staleness value is large. Instead of FIFO policy,
our staleness/tardiness-aware skipping policy first sorts the checkpoints in the
queue by tardiness value and then applies a secondary sort on the staleness value.
After that, it issues writing the first k − n checkpoints in the queue. Example 3
illustrates how the skipping policy works during execution.

Example 3. Following Example 1 and 2, the system should pick up checkpoint
C6 when both checkpoint staleness and tardiness are considered, since T (C4) =
T (C6) < T (C8) and S(C8) < S(C6) < S(C4). As shown in Fig. 5, the system



Exploiting Unblocking Checkpoint for Fault-Tolerance 79

Fig. 5. Staleness/tardiness-aware skipping policy

skips C4 and picks up C6 to write. Compared to the system picking up C4 or C8,
the system picking up C6 takes the least time to recover when failure happens
at superstep 11.

Algorithm 2 describes the implementation details of the skipping policy,
which replaces the SKIPPING function in Algorithm 1. The skipping policy
estimates the tardiness value T (Ci) (line 2) and calculates the staleness value
S(Ci) of checkpoint Ci (line 3). The checkpoint queue is sorted by a composite
key with two attributes T (Ci) and S(Ci). The sorting employs T (Ci) as the pri-
mary attribute for comparing checkpoints and S(Ci) as the secondary attribute
for comparing checkpoints with the same primary attribute (line 4). Finally, this
policy returns the queue Q (line 5).

Algorithm 2. Skipping Policy
1: function Skipping(queue Q)
2: T (Ci) ← Size(Vi) + Size(Ei) + Size(Mi);
3: S(Ci) ← 1/i;
4: sort Q by a composite key (T (Ci), S(Ci));
5: return Q;
6: end function

5 Experimental Studies

We implemented unblocking checkpointing [7,9] as well as our proposed queuing
strategy and skipping policy in Giraph. This section reports the efficiency of our
two contributions under failure-free and failure cases, respectively.

5.1 Experimental Setting

Cluster Setup. In order to run Giraph, we deploy Hadoop 2.5.1 on a seven-
node cluster. Each node has 2×4-core Intel Xeon E5606 CPUs, 100GB memory,
a 2TB HDD and 1 Gbps Ethernet. In addition, we deploy Zookeeper 3.5.5 on
this cluster for Giraph’s master election and barrier synchronization. By default,
we limit the number of map tasks executing on each node to one and allocate
76GB memory for each map task. Among these map tasks, one is the master of
Giraph and the others are the workers of Giraph.



80 Y. Yang et al.

(a) Execution Time (b) Checkpointing Time

Fig. 6. The impact of # of concurrent checkpoints (i.e., k) on queuing strategy

Workloads. We choose the Single Source Shortest Path, Connected Components
and PageRank algorithms for our experiments, since they are widely adopted to
evaluate the performance of graph processing systems [4,16,17]. For simplicity,
in the rest of this paper, we refer to the Single Source Shortest Path, Connected
Components and PageRank algorithms as SP, CC and PR, respectively. More-
over, we conducted these algorithms over two real-life social network graphs,
Twitter1 and Friendster2, of million-scale and billion-scale edges respectively.

Baselines. In our experiments, we employ the default blocking checkpointing
approach in Giraph and the unblocking checkpointing implemented in Giraph
as two baselines. In comparison to these baselines, we evaluate the efficiency
of the queuing strategy and staleness/tardiness-aware skipping policy. In the
following, to simplify the presentation, we denote the unblocking checkpoint-
ing using queuing strategy with FIFO policy as queuing strategy. Similarly,
we denote the unblocking checkpointing with both the queuing strategy and
staleness/tardiness-aware skipping policy as skipping policy.

5.2 Efficiency of Queuing Strategy

In this group of experiments, we evaluate the impact of the number of concurrent
checkpoints (i.e., k) on queuing strategy, and then compare the performance of
queuing strategy against blocking and unblocking checkpointing.

Impact of k. To evaluate the impact of k on the performance of queuing strategy,
we run three algorithms on the Twitter dataset. Figure 6 illustrates the execu-
tion time of the system and the checkpointing time. Here, we set the checkpoint
interval to one and vary the value of k from one to four. As shown in Fig. 6(a),
when the value of k increases, the execution time of the system using the queu-
ing strategy increases. Moreover, in Fig. 6(b), the checkpointing time follows the
trend of execution time. Clearly, the queuing strategy achieves the best perfor-
mance when the k = 1. Hence, we set k = 1 in subsequent experiments.

1 https://networkrepository.com/soc-twitter.php.
2 https://snap.stanford.edu/data/com-Friendster.html.

https://networkrepository.com/soc-twitter.php
https://snap.stanford.edu/data/com-Friendster.html


Exploiting Unblocking Checkpoint for Fault-Tolerance 81

(a) SP + Friendster (b) CC + Twitter (c) PR + Friendster

Fig. 7. Execution time without failure

Failure-free Cases. The change of the checkpoint interval τ has an impact
on the number of concurrent checkpointing, and therefore decides the perfor-
mance of the queuing strategy. To evaluate the performance of queuing strategy,
Fig. 7 shows the total execution time in different τ . We vary τ from one to
five. As shown in Fig. 7, the queuing strategy outperforms the blocking and the
unblocking checkpointing. For example, in Fig. 7(a), when τ = 1, the queuing
strategy decreases the overhead by 56.4% on execution time compared to the
blocking checkpointing. This is because the blocking checkpointing pauses the
execution of supersteps to write the checkpoints, which incurs significant over-
head of execution time. Likewise, compared to the unblocking checkpointing, the
queuing strategy reduces the overhead by 25.9%, since it alleviates the resource
contention by setting k = 1.

As τ increases, benefits of the queuing strategy on execution time decrease as
against the blocking checkpointing and unblocking checkpointing. However, the
queuing strategy performs at least as well as these two checkpointing approaches.
As shown in Fig. 7(b), when τ increases from one to five, the overhead reduced by
queuing strategy decreases from 52% to 29.5% compared to the blocking check-
pointing. The reason is that the increasing of τ reduces the number of checkpoints,
and the overhead of a blocking checkpoint on execution time is higher than that
of an unblocking checkpoint. Compared to the unblocking checkpointing, the exe-
cution time of queuing strategy is shorter when τ < 3. However, when τ ≥ 3, the
queuing strategy has a similar execution time as the unblocking checkpointing.
This is because the system with large τ does not write multiple checkpoints con-
currently, so that the queuing strategy is ineffective. In other words, as τ increases,
the queuing strategy eventually degenerates to unblocking checkpointing.

Failure Cases. Next, we study the performance of queuing strategy under fail-
ure cases. Figure 8 depicts the overall execution time. Here, we set τ = 1 and
vary the failed superstep from 8 to 12. As shown in Fig. 8, no matter in which
superstep failure happens, the queuing strategy outperforms the blocking check-
pointing and the unblocking checkpointing. As an example in Fig. 8(a), when
failure happens at superstep 8, the queuing strategy decreases the overhead by
48.1% as against the blocking checkpointing. Similarly, in comparison to the
unblocking checkpointing, the queuing strategy decreases the execution time by
41.5%. In addition, the unblocking checkpointing in Fig. 8(b) fails to recover



82 Y. Yang et al.

(a) SP + Twitter (b) SP + Friendster (c) CC + Twitter

(d) CC + Friendster (e) PR + Twitter (f) PR + Friendster

Fig. 8. Execution time with failure (τ = 1)

when failure happens at superstep 8 or superstep 9, since the system has not
finished writing any checkpoints.

In summary, by alleviating the resource contention, the queuing strategy
effectively reduces the overall execution time and the checkpointing time, so as
to achieve better performance than the blocking and unblocking checkpointing.
Moreover, the queuing strategy has at least the same performance as the blocking
and unblocking checkpointing even if the queuing strategy loses effect.

5.3 Efficiency of Skipping Policy

In this section, we evaluate the performance of the skipping policy against the
other checkpointing approaches under failure-free and failure cases. To further
illustrate the efficiency of skipping policy under failure cases, we discuss the
recovery time of these checkpointing approaches. Moreover, we also analyze the
impact of the checkpoint interval on the performance of these checkpointing
approaches under failure cases.

Failure-free Cases. As shown in Fig. 7, the skipping policy outperforms
other checkpointing approaches. As an example in Fig. 7(a), the skipping policy
decreases the execution time by 32%compared to the queuing strategywhen τ = 1,
since it picks up the checkpoints with smaller tardiness values instead of the check-
points with larger tardiness values, which reduces the time of resource contention.

Similar to queuing strategy, as τ increases, the benefits of skipping policy on
execution time decreases as against the blocking checkpointing and unblocking
checkpointing. Moreover, both of them eventually achieve the same performance.
For example, in Fig. 7(b), when τ ≤ 3, the skipping policy decreases the execution



Exploiting Unblocking Checkpoint for Fault-Tolerance 83

(a) SP + Friendster (b) CC + Twitter (c) PR + Twitter

Fig. 9. Recovery time (τ = 1)

time by up to 27.6% as against queuing strategy. Then, the execution time of
skipping policy is almost the same as the queuing strategy when τ > 3. The
reason is that both the skipping policy and the queuing strategy eventually
degenerate to the unblocking checkpointing.

Failure Cases. As shown in Fig. 8, in most failure cases, the skipping policy
always outperforms other checkpointing approaches, and achieves the best per-
formance. For example, in Fig. 8(c), when failure happens at superstep 8, the
skipping policy decreases the overhead by 37.1% compared to the queuing strat-
egy. The skipping policy allows writing checkpoints with smaller tardiness values
which have an impact on the recovery time. Next, in order to further evaluate
the performance of these checkpointing approaches, we analyze recovery time of
them in failure cases. Moreover, we study the impact of checkpoint interval τ on
the performance of the skipping policy under failure cases, since the experiments
in Fig. 8 only consider τ = 1.

Recovery Time. Figure 9 provides the recovery time across checkpointing
approaches when τ = 1. Due to space limitation, we take SP on Friendster
dataset, CC on Twitter dataset and PR on Friendster dataset as examples. How-
ever, similar results hold in other cases. In addition, Fig. 9(a) does not include
the results of unblocking checkpointing, because there are no available check-
points to recover for unblocking checkpointing. Clearly, the blocking checkpoint-
ing achieves the lowest overhead as against other checkpointing approaches, since
it rolls back to the latest superstep. However, since the blocking checkpointing
incurs an additional execution time overhead, the performance of queuing strat-
egy and skipping policy is still better than that of the blocking checkpointing.

In addition, the queuing strategy obtains a lower recovery overhead than
the unblocking checkpointing. For example, in Fig. 9(c), when failure happens at
superstep 12, the queuing strategy decreases the overhead by 21.3% as against
the unblocking checkpointing. The reason is because the queuing strategy speeds
up the writing of checkpoints so as to obtain a complete checkpoint at a later
superstep. Besides, the skipping policy recovers faster than the queuing strategy.
Compared to the queuing strategy, the skipping policy decreases the overhead by
up to 52.3%. The reason is that the skipping policy avoids writing the checkpoints
with larger staleness and tardiness values, which allows the system to have an



84 Y. Yang et al.

(a) SP + Friendster (b) CC + Twitter (c) PR + Friendster

Fig. 10. Execution time with failure (τ = 5)

available checkpoint at a later superstep. Therefore, the skipping policy achieves
better performance than the unblocking checkpointing and the queuing strategy.

Checkpoint Interval. Similarly, Fig. 10 takes τ = 5 as an example to illustrate
the execution time of these checkpointing approaches. Clearly, the skipping pol-
icy achieves similar performance to the unblocking and queuing strategy. More-
over, the skipping policy outperforms the blocking checkpointing. As an example
in Fig. 10(a), no matter in which superstep failure happens, the execution time of
skipping policy is similar to that of the unblocking checkpointing and the queu-
ing strategy. The reason is that the system does not write multiple checkpoints
concurrently when τ = 5, making the queuing strategy and the skipping policy
ineffective. In other words, the skipping policy and queuing strategy degenerates
to the unblocking checkpointing when τ = 5. In addition, when failure hap-
pens at superstep 8, the skipping policy saves up to 29.2% of execution time as
against the blocking checkpointing, since the blocking checkpointing pauses the
execution of supersteps while writing the checkpoints.

Generally, as a complement to the queuing strategy, the skipping policy effec-
tively avoids writing the checkpoint with a larger staleness value and tardiness
value, so as to decrease the execution time and minimize the rollback under fail-
ure cases. Moreover, even if the skipping policy loses effect, it is still no worse
than the blocking and the unblocking checkpointing as well as the queuing strat-
egy. Consequently, the skipping policy achieves the best performance.

6 Related Work

There are many studies of fault tolerance in distributed graph processing sys-
tems. The survey in [8] summarizes the techniques as checkpointing and rollback
mechanism, and message logging as well as replication.

Many Pregel-like systems such as Giraph [1] and Hama [2] employ check-
pointing and rollback mechanism to achieve fault tolerance. These systems usu-
ally adopt a blocking manner to write the checkpointing, while our work foucus
on unblocking checkpointing. To decrease the overhead of blocking checkpoint-
ing, the work in [15] proposes unblocking checkpointing for graph processing on
Flink [3]. This work focuses on the dataflow systems, whereas our work aims



Exploiting Unblocking Checkpoint for Fault-Tolerance 85

to address the issues of unblocking checkpointing on the Pregel-like systems.
Lightweight checkpointing [16] removes messages from the checkpoint and gen-
erates messages from checkpointed vertex states during recovery. Moreover, it
avoids to restore the same edges as in the previous checkpoint. Nevertheless, it
focus on decreasing the checkpointing overhead by reducing the data volume of
checkpoint and supplements our work.

By logging messages, Pregel [10] confines the recovery to the failed workers, so
as to accelerate the recovery. This technique is complementary to our proposal.
The replication-based technique [14] maintains the replicas of each vertex during
normal execution and recovers the lost vertex states from the replica once failure.
To reduce the overhead cost on checkpointing, the replication-based technique
employs the replicas instead of the checkpoints, whereas our work improves the
unblocking checkpointing.

7 Conclusions

In this paper, we present a queuing strategy with a FIFO policy to alleviate the
resource contention incurred by unblocking checkpointing, so as to reduce the
overall execution time and the writing time of checkpoints. Moreover, we exploit
the checkpoint characteristics in the Pregel-like system to improve the queuing
strategy. To utilize the characteristics, we first define checkpoint staleness and
checkpoint tardiness, and then propose staleness/tardiness-aware skipping policy
to replace FIFO policy. Our experiments illustrate that the unblocking check-
pointing with queuing strategy and staleness/tardiness-aware skipping policy
achieves better performance than the blocking and unblocking checkpointing.
Presently, we have implemented the queuing strategy and skipping policy by
extending Giraph. However, the queuing strategy and skipping policy are also
fit for other Pregel-like systems such as Pregel+ and Sedge.

Acknowledgment. This work was supported by the National Natural Science Foun-
dation of China (No. 61902128), Shanghai Sailing Program (No. 19YF1414200).

References

1. Apache giraph. https://giraph.apache.org/
2. Apache hama. https://hama.apache.org/
3. Carbone, P., et al.: Apache flinkTM: stream and batch processing in a single engine.

IEEE Data Eng. Bull. 36, 28–38 (2015)
4. Cheng, Y., et al.: Which category is better: benchmarking relational and graph

database management systems. Data Sci. Eng. 4(4), 309–322 (2019)
5. Coti, C., et al.: Blocking vs. non-blocking coordinated checkpointing for large-scale

fault tolerant MPI. In: SC, p. 127 (2006)
6. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.

In: OSDI, pp. 137–150 (2004)
7. Gonzalez, J.E., et al.: Powergraph: distributed graph-parallel computation on nat-

ural graphs. In: OSDI, pp. 17–30 (2012)

https://giraph.apache.org/
https://hama.apache.org/


86 Y. Yang et al.

8. Heidari, S., et al.: Scalable graph processing frameworks: a taxonomy and open
challenges. ACM Comput. Surv. 51(3), 60:1-60:53 (2018)

9. Low, Y., et al.: Distributed graphlab: a framework for machine learning in the
cloud. PVLDB 5(8), 716–727 (2012)

10. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: SIGMOD,
pp. 135–146 (2010)

11. McCune, R.R., et al.: Thinking like a vertex: a survey of vertex-centric frameworks
for large-scale distributed graph processing. ACM Comput. Surv. 48(2), 25:1-25:39
(2015)

12. Pundir, M., et al.: Zorro: zero-cost reactive failure recovery in distributed graph
processing. In: SoCC, pp. 195–208 (2015)

13. Vora, K., et al.: Coral: confined recovery in distributed asynchronous graph pro-
cessing. In: ASPLOS, pp. 223–236 (2017)

14. Wang, P., et al.: Replication-based fault-tolerance for large-scale graph processing.
In: DSN, pp. 562–573 (2014)

15. Xu, C., et al.: Efficient fault-tolerance for iterative graph processing on distributed
dataflow systems. In: ICDE, pp. 613–624 (2016)

16. Yan, D., et al.: Lightweight fault tolerance in pregel-like systems. In: ICPP, pp.
69:1–69:10 (2019)

17. Yang, S., et al.: Towards effective partition management for large graphs. In: SIG-
MOD, pp. 517–528. ACM (2012)

18. Yildirim, E., et al.: Prediction of optimal parallelism level in wide area data trans-
fers. IEEE Trans. Parallel Distrib. Syst. 22(12), 2033–2045 (2011)


	Exploiting Unblocking Checkpoint for Fault-Tolerance in Pregel-Like Systems
	1 Introduction
	2 Background of Pregel-Like Systems
	2.1 Execution Workflow
	2.2 Checkpointing

	3 Queuing Strategy
	3.1 Resource Contention
	3.2 Checkpoint Queuing

	4 Skipping Policy
	4.1 Checkpoint Staleness
	4.2 Checkpoint Tardiness
	4.3 Staleness/Tardiness-Aware Skipping

	5 Experimental Studies
	5.1 Experimental Setting
	5.2 Efficiency of Queuing Strategy
	5.3 Efficiency of Skipping Policy

	6 Related Work
	7 Conclusions
	References




