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Abstract. Traffic flow prediction is of great importance for traffic man-
agement. However, most existing researches only focus on region flow or
road segment flow (vertex value) prediction, and the transit flow (edge
weight) prediction is largely untouched. Compared to region flow and
road segment flow prediction, transit flow prediction is more challenging
in that 1) the transit flow between pairs of regions has complex spatial-
temporal dependencies, and 2) it has larger changes over time due to
the large number of region pairs. To address these issues, in this paper
we define the transit flow as edges in directed graphs and formulate
the transit flow prediction problem as a dynamic weighted link predic-
tion problem. We propose a deep learning based method called Spatial-
Temporal Network (STN) to make an accurate prediction of the tran-
sit flow. The STN model combines graph convolutional network (GCN)
and long short-term memory (LSTM) to capture the dynamic spatial-
temporal correlations. To capture the static topological structure, the
neighborhood relation graph is adopted as an auxiliary graph to improve
the prediction accuracy, and a two-stage-skip strategy is adopted to allow
edge features reused which makes the STN focus more on the edge val-
ues compared to simple GCN modeling. We conduct the proposed STN
model and verify its effectiveness in transit flow prediction on two real-
world taxi datasets. Experiments demonstrate that our model reduces
the prediction RMSE error by approximately 15.88%–52.48% on real-
world datasets compared to state-of-the-art methods.
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1 Introduction

Fig. 1. Example of a transit flow graph in Chengdu City, China. The city map is
divided into irregular regions, each region can be described as a node and the transit
flow between a pair of regions can be described as an edge. The transit flow graph is
represented by a square matrix, where each element of the matrix indicates the transit
flow between a pair of regions.

Intelligent Transport System (ITS) plays an important role in improving our
mode of traveling and enhancing the safety of transportation, among which traf-
fic flow prediction is of great importance for traffic management. It is critical for
traffic administration to analyze the traffic condition and propose some preven-
tive measures in advance. Predicting traffic flow is also helpful for ride-sourcing
systems to address supply-demand imbalance across space and time [12]. For
example, if a system can predict the number of passengers who will leave region
A for region B, it can reallocate idle vehicles to region A accordingly so that
there are enough vehicles for the rides, which also shortens the waiting time.

Most of the existing researches on traffic flow prediction only focus on the
traffic change of flow of a region or a road segment (vertex value). But they
do not address the problem of change of flow between pairs of regions or road
segments (edge weight). As illustrated in Fig. 1, the city map of Chengdu City,
China is divided into 16 non-overlap regions, and each region can be described
as a vertex and the transit flow between a pair of regions can be described as
an edge. The transit flow graph is represented by a square matrix, where each
element of the matrix indicates the traffic flow between a pair of regions. For
example, (v1, v2) = 44 indicates that there are 44 taxis (or passengers) leaving
region 1 for region 2. So the prediction of the traffic flow between pairs of regions
is denoted as the transit flow prediction problem, which is more difficult than
the region flow prediction problem. The major challenges lie in three folds: 1)
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the transit flow has more complex spatial-temporal dependencies in nature; 2)
the transit flow between regions has larger changes over time than the region
flow; 3) the transit flow data is usually very sparse. The transit flow between
far-away regions is usually close to or equal to 0.

To tackle the aforementioned challenges, we formulate the transit flow pre-
diction problem as a dynamic weighted link prediction problem [14], where the
transit flow among all regions at a certain timeslot can be described as a directed
graph. We aim to make an accurate prediction for the transit flow graph at the
next timeslot when given the transit flow graphs of previous timeslots. In this
paper, we propose a deep-learning approach called STN (Spatial-Temporal Net-
work) to make an accurate prediction of the transit traffic flow. It integrates the
GCN [13] and LSTM [10] to capture the dynamic spatial-temporal characteris-
tics of the traffic flow in the city, and adopts the neighborhood relation graph
as an auxiliary graph to enhance the model of transit flow prediction. The main
contributions of this paper are summarized as follows:

1. We partition a city into irregular non-overlap regions based on the K-Means
clustering algorithm and represent the transit flow as directed graphs, where
nodes represent regions and edges represent transit flow of pairs of regions.
Then we formulate the transit flow graph prediction problem as a dynamic
weighted link prediction problem.

2. We propose a Spatial-Temporal Network (STN) model to predict the transit
traffic flow in the graph. The model combines GCN and LSTM to model the
dynamic spatial dependencies and temporal dependencies respectively. We
use the neighborhood relation graph as an auxiliary graph to capture the
static spatial dependencies and use a two-stage-skip strategy to allow edge
feature reusing.

3. We evaluate our STN model on two real-world taxi datasets. The results
show that our method reduces the prediction RMSE error by approximately
15.88%–52.48% on TaxiXM and TaxiCD1 compared to state-of-the-art meth-
ods, which demonstrates the effectiveness of our model in the transit flow
graph prediction.

The remainder of this paper is organized as follows. Section 2 describes the
related works. Section 3 defines several key concepts and introduces our problem.
Section 4 shows the details of our method. Section 5 introduces the datasets
and experimental settings. Section 6 presents the performance of the proposed
model and compares it with other methods in two real-world datasets. Section 7
concludes the paper and outlines some future works.

2 Related Work

Traffic flow prediction has received considerable attention in recent years. The
existing traffic flow prediction methods can be divided into two categories: 1)

1 https://gaia.didichuxing.com.

https://gaia.didichuxing.com
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traditional methods; 2) deep learning based methods. Traditional methods con-
sist of statistical based methods and machine learning methods. Statistical based
methods, such as ARIMA (Autoregressive Integrated Moving Average model)
[1], can only work on steady-state traffic conditions. Furthermore, such methods
require comprehensive prior knowledge which is hard for most researchers. Com-
pare with statistical based methods, machine learning methods, such as SVM
(Support Vector Machine) [22], and Random Forest [7], have a stronger ability
to model the complex traffic data. But these methods still cannot model the
spatial correlations and temporal correlations at the same time.

In recent years, with the rapid development of deep learning, deep neural net-
work models have been used to predict the traffic flow because of its strong ability
to capture the dynamic characteristics of traffic data [9,23]. Deep learning based
methods usually consist of several components to capture spatial dependencies
and temporal dependencies. Researchers usually apply RNN and its variants
(e.g., LSTM, GRU) [8,15], 1D CNN [17] to model the temporal correlations, use
CNN to model the spatial correlations in euclidean space [18] and use GCN to
capture the spatial correlations in non-euclidean space [23]. For example, Ma
et al. [15] proposed an LSTM based model to predict traffic speed/flow in road
segments and it showed more superior performance in capturing temporal depen-
dencies than traditional methods. Zhang et al. [19] proposed a CNN based model
DeepST to predict the region flow. It was the first time to partition a city into
I × J regular regions so that CNN can be applied to model the spatial corre-
lations. Zhao et al. [21] proposed the T-GCN model which combined GCN and
GRU to capture the spatial correlations and temporal correlations of the traffic
data on the road network simultaneously. The result showed that the combined
model T-GCN had superiority in traffic forecasting than single GCN and single
GRU.

The researches mentioned above mainly focus on region or road segment flow
(vertex value) prediction. They do not address the more challenging transit flow
(edge weight) prediction problem. Region flow and road segment flow prediction
address the changes of node features (i.e., the total in-flow and out-flow of a
region or a road segment) and don’t concern about the changes between nodes
(i.e., a flow leave a region for another region). To tackle this problem, Zhang et al.
[20] first divided the city into regular grids then proposed a fully connected and
CNN based method to predict region flow (edge vertex) and in/out flow (edge
weight) of regions simultaneously. It used fully convolutional and external factors
to capture temporal correlations and use CNN to capture spatial correlations.
Same as it [20], in this paper, we focus on in flow predictions (our model could
be applied to predictions of out flow). Different from it, first we divided the
city into non-regular grids based on K-Means. Then we used LSTM and GCN
to capture temporal-temporal correlations. Compared to CNN, GCN are more
suitable for non-euclidean spatial correlations modeling.

For traffic flow prediction researches, the existing GCN based methods [9,13]
usually assumed the relations among regions to be static and usually used fixed
matrices to represent them. In our problem, the transit flow between regions is
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dynamic and we aim to predict it in future timeslots. In region flow prediction
problem, the input of model is dynamic node feature and several static adjacency
matrix. But in transit flow prediction problem, the input of model is dynamic
transit matrix and dynamic node feature. The transit flow graph prediction
problem can be formulated as a dynamic weighted link prediction problem. But
different from the researches on conventional link prediction, which only focus
on predicting the existence of links, in this paper we also predict the weights
of links. Furthermore, conventional link prediction methods usually focus on
one relation between nodes in the modeling phase and predicting phase. But in
our approach, we adopt the neighborhood relation graph as an auxiliary graph
for the transit flow prediction, which takes advantage of static and dynamic
relationships among nodes.

3 Preliminaries

Table 1. Description of notations

Symbol Description

vi i-th node, i.e., i-th region

t t-th timeslot

et(vi, vj) The relation of node vi and vj at t-th timeslot,i.e.,the total
transit flow from region vi to region vj during t-th time
interval

V Node set

Et The relations among all nodes at t-th timeslot

Gt = (V,Et) Transit flow graph at t-th timeslot

tj Timestamp of j-th trajectory point

pj,tj j-th trajectory point

xi,t i-th node feature at t-th timeslot, i.e., the total region flow of
region vi at t-th timeslot

Xt Node features of all nodes at t-th timeslot

A The adjacency matrix

Gt′:t Transit flow graph from t’-th timeslot to t-th timeslot

Xt′:t Node features of all nodes from t’-th timeslot to t-th timeslot

Some traffic flow prediction researches divided cities into various regular regions
[18,19]. These partitions cannot work well under the complex administrative and
functional properties of cities. There are also a few researches divided cities into
irregular regions according to the road networks [11]. However, it is hard to divide
cities well due to the complexity of road networks. In this paper, we divide cities
into irregular regions based on K-Means [16], a simple clustering algorithm. First,
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we mine the origin-destination pairs from taxi trajectories. Second, we use K-
Means to get the cluster centroids from origin-destination pairs. Finally, we use
Voronoi tessellation to define the Voronoi cells based on the K-Means centroids.
As Fig. 1 shows, Voronoi tessellation divides the city into non-overlap irregular
regions. Compared to regular partition and road network based partition, K-
Means based method has two advantages; 1) origin-destination pairs reflect the
characteristics of the resident trip so it can partition a city well; 2) we can obtain
origin-destination data from taxi datasets and no additional data is needed.

In the rest of this section, we first define several key concepts then formulate
the research problem. Table 1 lists the notations used in this paper.

3.1 Transit Flow Graph

We divide a day into several uniform intervals (e.g., 1 h). Then we represent the
transit flow at t-th timeslot as a weighted graph Gt = {V,Et}, whose nodes are
regions and edges are transit flow among regions. vi ∈ V denotes the i-th region,
and et(vi, vj) denotes a traffic flow from region vi to region vj during t-th time
interval. The example of a transit flow graph is shown in Fig. 1. The time-order
transit graphs can be described as:

G = {G1, G2, ..., Gt} (1)

where Gt is the transit flow graph of t-th timeslot.

3.2 Node Flow

We define trajectory point as a historical GPS point. Each GPS point pj contains:
the region number vi and timestamp tk. A region can be described as a node,
for a node vi, the node flow during the time interval t is defined as

xi,t = {pj,tk ∈ vi ∧ tk ∈ t} (2)

where pj,tk ∈ vi means the trajectory point pj,tk lies within the region vi and
tk ∈ t means the timestamp tk is in the time interval t. We use Xt to denote
the node flow of all nodes at t-th timeslot. Then we use Xt as the dynamic node
features during the GCN stage.

3.3 Neighborhood Relation Graph

Transit flow between adjacent regions is likely to be larger than that between
non-adjacent regions. So we use the neighborhood relation graph to enhance the
relations of adjacent regions. We define an adjacent matrix to indicate whether
two regions are adjacent.

A =

{
1 region vi and region vj are adjacent
0 otherwise

(3)

For example, as Fig. 1 shows, Av0,v8 = 1, Av0,v4 = 0.
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3.4 Problem Statement

Transit flow graph prediction problem aims to learn a function f that is able to
forecast the next timeslot transit flow graph while given t′ historical transit flow
graphs, node features and a neighborhood relation graph A, it can be formulated
as:

[Gt−t′+1:t,Xt−t′+1:t, A]
f−→ [Gt+1] (4)

The transit flow between regions changes over time but the neighborhood relation
between regions is always constant. Therefore, we use neighborhood relation
graph A as an auxiliary graph to capture the static spatial dependencies of
regions.

4 Methodology

4.1 Background Technologies

Graph Convolutional Networks (GCN). The traditional convolutional neu-
ral network (CNN) can obtain local spatial features, but it can only be used
in euclidean space and is not applicable for general graphs. To address this
issue, Bruna et al. [4] proposed graph convolutional networks (GCN) which re-
define convolution operators to capture the spatial features for non-euclidean
data. GCN is defined over a graph G = (V,A), where V is the set of vertices
and A ∈ R|V |×|V | is the adjacency matrix whose entries represent the relation
between vertices. A 1-layer GCN operation is defined as:

f(X,A) = σ(ÂXW ) (5)

where X represents the node feature, Â = D̃−1/2ÃD̃−1/2 denotes the graph
Laplacian matrix, I is an identity matrix, Ã = A + IN is a matrix with self-
connection structure, D is the degree matrix, W represents the learnable weights,
σ(·) represents the activation function.

Long Short-Term Memory (LSTM). LSTM is a variant of recurrent neural
network (RNN), which is RNN with learned gating mechanisms. LSTM has 3
more gates (Input, Forget and Output) than simple RNN, which mitigates the
vanishing gradient problem and allow the model to learn longer-term dependen-
cies. For the input xt, LSTM follows these manners:

ft = σ(Wf · [ht−1, xt] + bf ) (6)

it = σ(Wi · [ht−1, xt] + bi) (7)

C̃t = tanh(WC · [ht−1, xt] + bC) (8)

Ct = ft ∗ Ct−1 + it ∗ C̃t (9)

ot = σ(Wo · [ht−1, xt] + bo) (10)

ht = ot ∗ tanh(Ct) (11)
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4.2 Spatial-Temporal Network

Figure 2(a) illustrates the framework of our proposed Spatial-Temporal Network
(STN), which has two Spatial-Temporal Blocks (ST Block) and a fusion block.
In ST block, we use a two-stage-skip strategy to improve the prediction accu-
racy. The two ST blocks have the same structure, the left one is used to get
dynamic spatial dependencies from the transit flow graph (we called dynamic
ST block) and the right one is used to get the static spatial dependencies from
the neighborhood relation graph (we called static ST block). In dynamic ST
block, we first convert the trajectories data along time into transit flow graphs
G = {G1, G2, ..., Gt}, which is a time-ordered sequence of graphs. And then the
transit flow graphs G and node features X are fed into the ST block. In static
ST block, we first get the adjacent matrix A from the regions’ neighborhood
relation. Then the adjacent matrix A and node features X are fed into the ST
block. The static ST block is an auxiliary part to predict the transit flow graph.
Finally, we use a matrix fusion block to fuse the representations get from these
two ST blocks to get the future transit flow graph Gt+1. In the rest of this
section, we will elaborate these two components of STN in detail.

(a) STN (b) ST Block

Fig. 2. The architecture of proposed model Spatial-Temporal Network (STN) and
Spatial-Temporal Block (ST Block)

Spatial-Temporal Block (ST Block). The structure of ST block is illustrated
in Fig. 2(b). This component mainly consists of two parts. The first part is GCN,
and the second part is Skip-LSTM (Fig. 3) [3]. Assuming that the input transit
flow graph is G and the node feature is X. First, we utilize GCN to explore
the topology characteristics of each graph and use LayerNorm [2] to normal-
ize the representation of each node. Then we get a new representation G′. We
concatenate G and G′, called first-stage-skip, and pass it to a Skip-LSTM net-
work to model the dynamic evolution of graphs along time. Figure 3 illustrates
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the structure of Skip-LSTM. Different from the conventional LSTM network, we
concatenate the input xt and hidden layer’s output ht of an LSTM cell together
as the final hidden layer’s output, then pass it to the next LSTM cell. We also
use LayerNorm to normalize the output of Skip-LSTM. Assuming that the out-
put of Skip-LSTM is G′

T , we concatenate G′ and G′
T , called second-stage-skip,

and pass it to a fully connected layer to create a final representation G′
ST .

The propagation rule of the Spatial-Temporal block can be summarized as
follows:

G′ = LayerNorm(GCN(G,X)) (12)

G′
T = LayerNorm(Skip − LSTM(G||G′)) (13)

G′
ST = FC(G′||G′

T ) (14)

where || represents the concatenation operation.

Fig. 3. The architecture of Skip-LSTM

Fusion Block. As Sect. 3 mentioned, the transit flow between adjacent regions
is likely to be larger than that in non-adjacent regions. The spatial properties of
transit flow are affected by the dynamic topological structure and static topolog-
ical structure by varying degrees. Inspired by this, we use a parametric-matrix-
based fusion method to fuse the two ST blocks. Assuming that the output of the
dynamic ST block is Gd

t+1 and the output of the static ST block is Gs
t+1, the

fusion method can be defined as:

Gt+1 = Wd ◦ Gd
t+1 + Ws ◦ Gs

t+1 (15)

where ◦ is Hadamard product, Wd and Ws are learnable parameters that adjust
the degrees affected by the dynamic and static spatial correlations respectively.

5 Experimental Settings

5.1 Datasets

To evaluate the effectiveness of our model, we carried out comparative experi-
ments on two real-world taxi datasets as shown in Table 2, detailed as follows:

TaxiXM. The trajectory data is taxi GPS data of Xiamen city, China from 1st
Jul. 2014 to 31st Jul. 2014. We select Xiamen island as the study area, with an
area of approximately 132.5 km2.
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TaxiCD. The trajectory data is taxi GPS data of Chengdu City, China from
1st Oct. 2016 to 30th Nov. 2016. We select an area that lies between 30.65 ◦E
to 30.72 ◦E latitude and 104.04 ◦N to 104.12 ◦N longitude as the study area,
with an area of approximately 65 km2.

In the experiments, we partitioned the Xiamen city into 32 regions and
Chengdu City into 16 regions, each region with an average area of approxi-
mately 4 km2, and divided a day into 72 timeslots, each slot is 20 min. We used
Min-Max normalization to normalize the input data. We used 80% of the data
for training, 20% for testing.

Table 2. Details of datasets

Dataset TaxiXM TaxiCD

Data type Taxi GPS Taxi GPS

Location Xiamen Chengdu

Area 132.5 km2 65 km2

Time Span 7/1/2014–7/31/2014 10/1/2016–11/30/2016

Time interval 20 min 20 min

Total time slot 2232 4392

Region number 32 16

5.2 Hyperparameters

Recalling that the task is to learn a function f : [G(t−t′+1:t),X(t−t′+1:t), A] →
[Gt+1], we aim at forecasting the next timeslot transit flow graph given previous
t′ transit flow graphs. In our experiment, we set t′ = 6 (we set t′ = 3 to 12 then
select the best result, in Sect. 6, we show the impact of input sequence length).
We implemented the STN model based on PyTorch 1.5.1, a widely used Deep
Learning Python library. In our model, we set graph convolution kernels as 64
and LSTM units as 256. During the training phase, we set batch size as 64 and
the learning rate as 0.001.

5.3 Metrics

We evaluate the performance of our model by three widely used metrics, i.e.,
Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Abso-
lute Percentage Error (MAPE). They are defined as follows:

RMSE =

√√√√ 1
n

∗
n∑

i=1

(Gi
t+1 − G̃i

t+1)/(|V | ∗ |V |) (16)

MAE =
1
n

∗ |
n∑

i=1

(Gi
t+1 − G̃i

t+1)/(|V | ∗ |V |)| (17)
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MAPE =
100%

n
∗ |

n∑
i=1

(Gi
t+1 − G̃i

t+1)
Gi

t+1

/(|V | ∗ |V |)| (18)

where Gt+1 is the actual transit flow graph, G̃i
t+1 is the predicted transit flow

graph and |V | is the total region number.

5.4 Compared Algorithms

We compare our model with the following 4 methods:

HA. Historical Average model uses the average of historical values in corre-
sponding timeslots.

XGBoost [6]. Xtreme Gradient Boosting is a powerful ensemble method. In
our experiment, we predicted the value of each edge in the transit flow graph
separately. For every edge, we predict it according to its previous t′ values.

E-lstm-d [5]. E-lstm-d is an LSTM based encoder-decoder model for conven-
tional dynamic link prediction. Our research problem needs to predict the
weights of links, so we replace the activation function Sigmoid in the model
with ReLU which is more suitable for the regression problem.

GCN-GAN [14]. GCN-GAN is a non-linear model for weighted dynamic link
prediction. GCN-GAN model combines GCN, LSTM and GAN and shows
good performance in weighted temporal link prediction task.

6 Experimental Results

6.1 Performance Comparison

Table 3. Performance comparison of different approaches for transit flow graph pre-
diction on TaxiXM and TaxiCD

Method TaxiXM TaxiCD

RMSE MAE MAPE(%) RMSE MAE MAPE(%)

HA 10.93 5.57 0.36 13.32 6.34 0.39

XGBoost 7.54 4.21 0.40 8.86 4.66 0.41

E-lstm-d 10.72 6.05 0.63 11.37 5.83 0.55

GCN-GAN 6.99 4.03 0.37 7.56 4.21 0.35

STN(ours) 5.88 3.35 0.27 6.33 3.52 0.25

Table 3 shows the STN model and other baseline methods for transit flow graph
prediction 20 min ahead on TaxiXM and TaxiCD. It can be seen that the STN
model obtains the best prediction performance under all metrics. From Fig. 4,
we can see that statistical based methods HA and machine learning method
XGBoost have time lags and LSTM-based method E-lstm-d performs badly in
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some timeslots. Therefore, they perform worse than GCN-based methods GCN-
GAN and STN. On TaxiXM, the RMSE error is reduced approximately 15.88%–
46.20%, the MAE error is reduced approximately 16.87%–44.63% and the MAPE
error is reduced approximately 25.00%–57.14% compared to other methods. On
TaxiCD datasets, the RMSE error is reduced approximately 16.27%–52.48%, the
MAE error is reduced approximately 16.39%–44.48% and the MAPE error is
reduced approximately 28.57%–54.54% compared to other methods. The results
prove the effectiveness of the STN model in transit flow graph prediction.

To explore the performance of these methods in adjacent regions and non-
adjacent regions, we select a pair of adjacent regions and a pair of non-adjacent
regions on Chengdu as a study case. Figure 4(a) is transit flow prediction between
adjacent regions and Fig. 4(b) is transit flow prediction between non-adjacent
regions. From these pictures, we observe that: 1) Statistical based method HA
and machine learning method XGBoost have time lags in both situations, which
leads to worse prediction precision than deep learning based methods GCN-GAN
and STN. 2) LSTM based method E-lstm-d performs badly in modeling the time
series with frequent changes and no fixed patterns (e.g., timeslot 10 to 50). Thus,
in our experiment, E-lstm-d shows worse than XGBoost. 3) GCN based meth-
ods GCN-GAN and STN perform well in both adjacent regions and non-adjacent
regions. And STN performs better during timeslot 10 to 50 while transit flow
changes frequently. Table 4 shows the predicted result of GCN-GAN and STN
in all adjacent regions and non-adjacent regions. Take GCN-GAN as a baseline,
STN has a higher improvement in adjacent regions than in non-adjacent regions.
For example, the MAPE error is reduced 10.52% in adjacent regions and reduced
3.44% in non-adjacent regions on TaxiCD. The reason may be that the neigh-
borhood relation graph enables the model to learn the spatial dependencies from
both dynamic topological and static topological and strengthen the relations of
adjacent regions.

Table 4. Performance comparison of GCN-GAN and STN in adjacent regions and
non-adjacent regions on TaxiXM and TaxiCD

TaxiXM TaxiCD

RMSE MAE MAPE(%) RMSE MAE MAPE

Adjacent regions GCN-GAN 13.40 9.42 0.18 13.04 9.01 0.19

STN 11.88 8.34 0.16 12.03 8.38 0.17

↓11.34% ↓11.46% ↓11.11% ↓7.74% ↓6.99% ↓10.52%
Non-adjacent regions GCN-GAN 4.81 2.74 0.31 4.24 2.32 0.29

STN 4.32 2.53 0.30 4.00 2.23 0.28

↓10.18% ↓7.66% ↓3.22% ↓5.66% ↓3.87% ↓3.44%
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(a) transit flow from region 1 to region 12 (between adjacent regions)

(b) transit flow from region 5 to region 12 (between non-adjacent regions)

Fig. 4. The results of transit flow prediction 20 min ahead on Chengdu City.

6.2 Effect of Input Sequence Length

In our method, we hope to mine the pattern and development trend of the transit
flow from the input sequence. Hence, if the input sequence length is too short,
the prediction results may not be satisfactory, but if the input sequence length
is too long, the training data will contain some noise information which will
mislead experiment results.

Fig. 5. Results of different lengths of input sequence on TaxiXM and TaxiCD.

To test how long input sequence length is needed to achieve a good per-
formance, we vary the length of input sequence and see how prediction error
changes. Figure 5 shows the results in TaxiXM and TaxiCD. In TaxiCD dataset,
we can find that if the length of input sequence is shorter than 4, our model
does not perform very well. By increasing the length of input sequence beyond
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10, the model also has bad performance. With these results, we suggest that for
robust prediction accuracy, the training data is desired to be last for least one
and a half hours and no longer than three hours.

6.3 Effect of Each Component

To investigate the effect of each component in our model, we evaluate two vari-
ants by removing the auxiliary graph and the skip connection strategy separately,
named STN-NA and STN-NS. Table 5 demonstrates the effect of different com-
ponents on the final experiment performance. We find that the skip connection
strategy affects the prediction results significantly. The RMSE error is reduced
by approximately 1.85%–5.52% on TaxiXM and TaxiCD. This may because the
skip connection strategy allows feature reusing and ensures the spatial features
learned by the GCN layer are not fewer than the original graph. Therefore, GCN
with skip connection strategy focuses more on edge values than simple GCN. The
auxiliary graph also improves the prediction result. The RMSE error is reduced
approximately 0.34%–1.40%, the MAPE error is reduced approximately 3.57%–
7.40% and the MAE error is reduced approximately 1.18%–2.49%. These results
confirm the effectiveness of the skip connection strategy and auxiliary graph.

Table 5. Effect of different components on TaxiXM and TaxiCD

TaxiXM TaxiCD

RMSE MAE MAPE(%) RMSE MAE MAPE(%)

STN-NA 5.90 3.39 0.28 6.42 3.61 0.27

STN-NS 6.18 3.47 0.28 6.70 3.70 0.26

STN 5.88 3.35 0.27 6.33 3.52 0.25

Table 6. Effect of city partition methods on TaxiXM and TaxiCD

TaxiXM TaxiCD

RMSE MAE MAPE(%) RMSE MAE MAPE(%)

Regular 5.97 3.41 0.27 6.82 3.93 0.26

K-Means 5.88 3.35 0.27 6.33 3.52 0.25

6.4 Effect of City Partition Methods

To explore the effect of different city partition methods in transit flow predicting.
We also divided the city into non-overlap regular regions, the number of which
is equals to irregular regions. Then we predict the transit flow between these
regular regions. Table 6 show the result of the effect on different city partition
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methods. We can see that the model performs better in K-Means based partition
regions both in TaxiXM and TaxiCD datasets. The result improves that origin-
destination pairs reflect the characteristics of the resident trip, so it can partition
a city well.

7 Conclusion

In this paper, we formulate the transit flow prediction problem as a dynamic
weighted link prediction problem and propose a spatial-temporal network called
STN to predict the transit traffic flow. Our model combines the GCN and Skip-
LSTM, where GCN is to model the spatial correlations and Skip-LSTM to model
the temporal correlations. The neighborhood relation graph is also adopted as
an auxiliary graph to highlight the correlations between adjacent regions and
a two-stage-skip strategy is used to reuse the edge features. The experiment
results show the effectiveness of these two components. Compared with the HA,
XGBoost, E-lstm-d and GCN-GAN models, our STN model achieves the best
prediction results under different metrics on two real-world datasets.

Actually, the traffic flow is affected by many external factors, there are still
many issues to investigate in future work. For example, we would like to involve
more knowledge or data as auxiliary graphs, e.g. functional similarity graph
and interaction graph of regions that could be extracted from historical taxi
transition records, and embed them into the proposed framework to improve the
prediction accuracy.
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