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Abstract. In this paper, we design a cross-modal attention fusion net-
work with orthogonal latent memory (CALM) to fuse multi-modal social
media data for rumor detection. Given multimodal content features
extracted from text and images, we devise a cross-modal attention fusion
(CAF) mechanism to extract critical information underlying the modal-
ities by intra-modality attention, and model the underlying relations
among the modalities by inter-modality attention. In terms of the text,
the natural sequential characteristics are critical to semantic under-
standing, while existing sequence models suffer from losing the infor-
mation conveyed by the former words. To this end, we propose a Bi-
GRU with orthogonal latent memory to extract the sequential features
from the text, where the memory captures independent patterns. The
fused content features and the sequential features can be used for rumor
detection seamlessly. Extensive experiments conducted on two real-world
datasets show the outperformance of the proposed CALM. (e.g., F1-score
is improved from 0.823 to 0.846 on Weibo dataset).
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1 Introduction

Social media has revolutionized the way for people to acquire information, while
it may foster the propagation of fake news like rumors in turn. Some offenders
even use rumors to guide public opinion, damage the credibility of the govern-
ment and even interfere with the general election [1]. Rumor detection aims to
identify the rumors distributed on social media like platforms, where the data
usually are in multiple modalities such as text, image, and videos, etc., being
verisimilitude to the interest of most people.
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In terms of the methodologies, the early works usually focus on textual news.
For instance, Castillo et al. [4] extract message-based and topic-based features
from the textual content and exploit a decision tree method to classify posts. Yu
et al. [16] use a convolutional approach to extract key features and shape high-
level interactions from textual content of the relevant posts. Recent studies have
shown that detecting rumors in a multi-modal manner can achieve better per-
formance, especially with deep learning methods. For instance, Khattar et al. [7]
propose a novel VAE model to learn a shared representation of the modalities for
detecting rumors. Yang et al. [15] apply a Ti-CNN method to detect rumors by
extracting both explicit and latent multi-modal features within news content. In
terms of fusing the heterogeneous modalities in the context of rumor detection,
quite a few fusion strategies show impressive performance. For instance, Jin et
al. [6] propose an attention mechanism to fuse visual, textual and social context
features. Chen et al. [5] propose a self-attentive fusion mechanism to integrate
the textual features with visual features. The aforementioned approaches suf-
fer from a few deficiencies. Firstly, these methods either pay more attention to
the semantic information or sequential information in social media textual data
merely. Secondly, the existing approaches usually concatenate the multimodal
features or introduce attention mechanism to weight the importance of modali-
ties, neglecting correlations and interactions underlying the modalities.

In this paper, we design a cross-modal attention fusion network with orthogo-
nal latent memory (denoted as CALM) to detect rumors from multimodal social
media data. On one hand, we propose a cross-modal attention fusion mechanism
with intra-modality and inter-modality attentions, where intra-modality atten-
tion extracts critical information underlying the single modalities, and inter-
modality attention establishes the relations among multiple modalities. On the
other hand, we extend Bi-GRU with orthogonal latent memory to capture long-
distance temporal dependencies in the sequential models, avoiding gradient van-
ishing and exploding. In particular, orthogonal constraint on the latent memory
ensures the diversity of the underlying patterns from global viewpoint.

The main contributions are summarized as follows.

– We propose a cross-modal attention fusion framework with intra-modality
and inter-modality attentions to capture the modality-specific information
and model the underlying relations among the multiple modalities.

– We devise an orthogonal latent memory to keep diverse latent patterns from
the global viewpoint, which can be plugged in GRU-like sequential models to
capture the long-distance temporal dependencies.

– We conduct extensive experiments on two real-word datasets, which show the
outperformance of the proposed approach compared with the state-of-the-art
baselines.

The rest of this paper is organized as follows. Section 2 summarizes the related
works. Section 3 presents the proposed CALM. Section 4 shows the experiments
and analyzes the experimental results. Section 5 concludes the work.
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2 Related Work

In this section, we briefly review the works on multi-modal rumor detection and
multi-modal data fusion.

2.1 Multi-modal Rumor Detection

Social media has become the main platform for people to obtain and share
information, which may lead to the spread of rumors extremely fast in turn. The
research attention on rumor detection has shifted from text-based approaches to
multi-modal ones recently. For instance, Zhang et al. [18] employed a pre-trained
BERT model to identify rumors and used a domain classifier to remove event-
specific dependency. Zhang et al. [17] designed a knowledge-aware network and
an event memory network for social media rumors. Zhou et al. [19] exploited
multi-modal and relational information to learn the representation of articles
and predict rumors. However, the textual extractor employed by prior studies
either mainly focused on the semantic information or sequential information.

2.2 Multi-modal Data Fusion

Multi-modal data fusion aims to combine multi-aspect information from multiple
data modalities, which are critical for various machine learning tasks [8,10]. In
the context of rumor detection, quite a few multi-modal data fusion approaches
have been devised to deal with the multimodal data. For instance, Wang et
al. [14] concatenated the visual features and textual features of social media
data to get a multi-modal feature. Jin et al. [6] proposed a recurrent neural
network with an attention mechanism to fuse image and text features. Chen
et al. [5] proposed a self-attentive fusion mechanism to integrate the textual
features with visual features for detecting rumors. The aforementioned methods
can hardly discover latent correlations among the multiple modalities as the
complementarity among multimodal features has not been fully explored.

3 Methodology

3.1 Overview of the Framework

The overall framework of the proposed CALM is shown in Fig. 1, which con-
sists of four components, i.e., the visual extractor, the textual extractor, the
cross-modal attention fusion (CAF) network and the rumor detector. The visual
extractor and textual extractor extract visual and textual features from social
media data. Specifically, the textual extractor can extract both semantic features
and sequential features. Furthermore, the CAF component fuses multimodal con-
tent features extracted from text and images by inter-modality attention and
intra-modality attention. Finally, the rumor detector concatenates the learned
features as input to predict whether the social media data is rumor or non-rumor.
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Fig. 1. Overview of CALM.

3.2 Visual Extractor

The attached image v of the social media data is fed into the visual extractor. We
employ the VGG-19 network [11] to extract visual features, which has achieved
impressive performance on multiple computer visual tasks. We extract the CNN
feature for image from the fc-7 layer in VGG-19 and feed it into a fully connected
layer to reduce the dimension down to dm. The visual features V ∈ Rdm can be
obtained as follows:

V = σ (Wv · V GG (v)) (1)

where V GG (·) is the pre-trained VGG-19 model, Wv is the weight matrix of the
fully connected layer and σ (·) is the activation function used.

3.3 Textual Extractor

We divided textual extractor into two sub-modules, content feature extraction
and sequential feature extraction.

1) Content Feature Extraction. The textual input t to the textual extrac-
tor is the sequential list of words in the posts, t = [t1t2 · · · tn], where n is the
number of words in the text. Each word ti ∈ t is represented as a word embed-
ding vector, which is extracted with a pre-trained word2vec model. In order
to obtain better understanding of the language structure, we employ the Trans-
former Encoder [12] to calculate and assign weights for different words in t. With
E denotes as the encoder output, the operation can be obtained as follows:

E = TransformerEncoder (t) (2)

noted that E = [E1E2 · · · En] , where Ei is the encoder result of ti.
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More specifically, to capture the semantic features from text of the social
media data, the content feature extraction exploits Text-CNN [9] to automati-
cally capture semantic features in different granularities. Furthermore, the fea-
ture map produced by Text-CNN is fed into a fully connected layer to ensure the
semantic features have the same dimension as the visual features V . Given the
encoder output E, the semantic features T ∈ Rdm can be calculated as follows:

Tt = TextCNN (E) (3)
T = σ (Wt · Tt) (4)

where TextCNN (·) is the Text-CNN model and Wt is the weight matrix in the
fully connected layer.

Fig. 2. The details of sequential feature extraction.

2) Sequential Feature Extraction. Existing sequence models suffer from a
problem of vanishing and exploding gradients. This leads to the model learning
inefficient dependencies between words that are a few steps apart. To overcome
this problem, a latent memory network is introduced to improve Bi-GRU, which
can not only make up for the defects of the sequence models, but also output
the extra global latent patterns information shared by rumors. The details of
the sequential feature extraction are provided in Fig. 2.

More specifically, given the input E, we use a Bi-GRU to compute the hidden
state for each element and concatenate the last hidden state from both direc-
tions, denoted as Rgru ∈ R2∗dm . Subsequently, we pass the Rgru through a fully
connected layer to calculate the preliminary sequence features Fg. The operation
can be represented as follows:

Rgru = GRUbi (E) (5)
Fg = σ (Wg · Rgru) (6)
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where GRUbi (·) represents the Bi-GRU model and Wg is the weight matrix of
the fully connected layer.

Furthermore, the patterns information in memory are chosen to strengthen
the sequence features. In particular, the memory network is denoted as M ∈
Rnum×dm , where num is depended on the number of latent patterns underly-
ing the social media data. We calculate the similarity score Mscore between the
sequence features Fg and the latent patterns, which can be obtained by conduct-
ing softmax function on their dot product as follows:

Mscore = softmax
(
MT · Fg

)
(7)

Finally, we extract the closest patterns based on the similarity score and
merge the resulting patterns information Fm with the sequence features Fg

through conducting average operation. The final sequence features Tg ∈ Rdm

can be obtained as follows:

Fm = (M · Mscore) (8)
Tg = avg (Fg, Fm) (9)

where avg (·) represents the average operation.

3.4 Cross-modal Attention Fusion Network (CAF)

In terms of multi-modal feature fusion, the visual features and semantic features
are extracted by different methods, meaning it is not suitable to concatenate

Fig. 3. The architecture of CAF.
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them together directly. To this end, we devise a cross-modal attention fusion
mechanism with intra-modality and inter-modality attentions to improve tradi-
tional fusion strategy. As shown in Fig. 3, each modality should not only pay
attention to its own characteristics but also focus on other modal features. In
particular, the multi-head mechanism allows the CAF to extract information
from different feature spaces, which help the model explore different attention
patterns in a variety of angles.

1) Intra-Modality Attention. Given the multimodal content features, we
first produce a set of query, key and value pair by linear transformations for
single modality. Taking the visual features V as an example, the operation can
be obtained as follows:

VQ = Linear(V, WQ) (10)

VK = Linear(V, WK) (11)

VV = Linear(V, WV ) (12)

where ‘Linear” denotes a fully connected layer, WQ,WK ,WV ∈ Rdm×dh are the
weight matrices and dh represents the common dimension of the transformed
features obtained from multiple modalities. Similarly, the corresponding linear
transformations for the semantic features T can be represented as TQ, TK and
TV .

More specifically, we calculate the scaled dot product as the intra-modality
attention weight. Given the VQ and VK , the operation can be obtained as follows:

Vintra =

(
VQ · VK

T
)

√
dh

(13)

where Vintra represents the intra-modality attention weight for V . Correspond-
ingly, the semantic intra-modality attention weight Tintra can be calculated as
follows:

Tintra =

(
TQ · TK

T
)

√
dh

(14)

2) Inter-modality Attention. As for inter-modality attention, to model the
underlying relations among multiple modalities, we learn the inter-modality
attention weight in a similar way.

Vinter =

(
VQ · TK

T
)

√
dh

(15)

where Vinter represents the inter-modality attention weight for V .
Furthermore, the softmax function is used to normalize the intra-modality

and inter-modality attention weights. Then the visual resulting features VC can
be obtained by weighted summation over the different modalities.

VC = softmax ([Vintra, Vinter])
[
VV

TV

]
(16)
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In particular, the CAF calculates the intra-modality and the inter-modality
attentions h times respectively and concatenates the multi-head features
together. For clarity, we define that VCi

is the attention outcome in the ith

head and WQ
i ,WK

i ,WV
i are the weight matrices used in the corresponding linear

transformations. In addition, we exploit a weight matrix to reduce the dimension
for each modality. The operation can be obtained as follows:

Fv = Wo · [VC1 ⊕ VC2 ⊕ · · · ⊕ VCh
] (17)

where ⊕ denotes the concatenation operation, Wo ∈ Rh∗dh×dm is the weight
matrix and Fv represents the visual resulting features obtained from the cross-
modal attention.

Relatively, the cross-modal attention outcome for the semantic features T
can be achieved in a similar way, which is denoted as Ft.

Ft = Wo · [TC1 ⊕ TC2 ⊕ · · · ⊕ TCh
] (18)

Finally, we concatenate multimodal resulting features together and exploit a
fully connected layer to calculate the final fused content features Tf ∈ Rdm as
follows:

Tf = σ (Wf · (Fv ⊕ Ft)) (19)

where Wf is the weight matrix of the fully connected layer.

3.5 Rumor Detector

The goal of the rumor detector is to identify whether a social media data is
a rumor or non-rumor. Given the fused content features Tf and the sequence
features Tg, the rumor detector concatenates above features seamlessly and feeds
the features into two fully connected layers to output the predicted result ỹ. The
operation of the detector can be represented as follows:

ỹ = softmax (Wr2 · σ (Wr1 · (Tf ⊕ Tg))) (20)

where Wr1,Wr2 are the weight matrices of the fully connected layers.

3.6 Loss Function

In terms of loss function used, we design an orthogonal constraint to make the
latent memory keep its orthogonality and exploit a rumor detection loss function
to identify rumors.

1) Orthogonal Constraint. The orthogonal constraint aims to minimize the
pairwise cosine similarity between the patterns in the latent memory, which
ensures the variety of the patterns to improve the discriminative power of the
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memory. More specifically, given the latent memory network M , the proposed
constraint can be represented below:

Cβ (M) = β
∥
∥MT M � (1 − I)

∥
∥2

F
(21)

where 1 denotes a matrix with all elements set to 1, � represents the element-
wise product, I is the identity matrix and β is a hyperparameter.

2) Rumor Detection Loss. To identify rumors, we define a loss term L by
using cross entropy as follows:

L =
N∑

i

−[yi × log (ỹi) + (1 − yi) × log (1 − ỹi)] (22)

where ỹi is the predicted result obtained from rumor detector for the ith sample,
and yi is the corresponding ground-truth. N is the total number of social media
samples.

Finally, the loss function of CALM can be written as follows:

LCALM (θ,M) = L + Cβ (M) (23)

where θ is denoted as the parameter set of the proposed CALM.
The detailed steps of the proposed model CALM are summarized in Algo-

rithm 1.

Algorithm 1. The CALM algorithm
Input: label y = {yi}N

i=1, textual input t = {ti}N
i=1, visual input v = {vi}N

i=1, β for
orthogonal constraint, the latent memory M , learning rate lr.

1: Initialize the model parameters
2: Set the status of the model for training
3: for number of training iterations do
4: T, Tg = TextualExtractor(t, M)
5: V = VisualExtractor(v)
6: Tf = CAF(T, V )
7: ỹ = RumorDetector(Tf ⊕ Tg)
8: Compute the loss using the loss function LCALM (θ, M) with ỹ and y
9: Decay learning rate lr according to the number of the training iterations

10: end for

4 Experiments

4.1 Datasets

1) Twitter Dataset [3], is comprised of 514 images and 18,264 Tweets. We
filter out the Tweets with noise and unclear labels, resulting in 379 images and
15,629 Tweets being related 9,405 rumors and 6,224 non-rumors.
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2) Weibo Dataset [6], consists of 9,527 posts being related 4,748 rumors and
4,779 non-rumors. We split the dataset into training, validation, and testing sets
in a ratio of 7:1:2.

4.2 Baselines

We compare the proposed methods with the following baselines:

1) VQA [2], aims to answer the questions about the given images. We
improve the original VQA model to adapt to the rumor detection.
2) NeuralTalk [13], averages the outputs of RNN at each time step to obtain
the latent representations and generates corresponding description for the
given images.
3) att-RNN [6], uses the attention mechanism to fuse the visual, textual
and social context features for rumor detection.
4) EANN [14], designs three components for multimodal rumor detection,
including multimodal feature extractor, fake news detector and event discrim-
inator.
5) MVAE [7], devises a multi-modal VAE structure to obtain shared repre-
sentation and employs a binary classifier to detect rumors.
6) MFN [5], exploits a self-attentive mechanism to integrate multi-modal
information and introduces a latent topic network to detect upcoming rumors.
7) BDANN [18], employs a BERT-based approach to extract multi-modal
features and proposes a domain classifier to remove the event-specific depen-
dency. As the domain classifier requires event labels, for a fair comparison,
we remove the domain classifier in BDANN.

In terms of evaluations, accuracy, precision, recall, and F1-score are adopted.

4.3 Performance of the Approaches

Table 1 summarizes the performance of the approaches on two datasets, from
which we have some observations. 1) The multi-modal rumor detection models,
e.g., att-RNN, EANN and CALM, outperform the multimodal fusion methods
for rumor detection, such as VQA and NeuralTalk. The reason may be that
the rumor detection models make full use of information about rumor and non-
rumor events, e.g., global latent rumor patterns, event information, etc. 2) In
terms of the rumor detection approaches, CALM significantly outperforms the
baselines, benefiting from the cross-modal attention fusion mechanism to inte-
grate multi-modal information and the orthogonal latent memory to capture
robust representations.
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Table 1. Performance of the approaches on two datasets

Dataset Method Accuracy Rumors Non-Rumors

Precision Recall F1 Precision Recall F1

Twitter VQA 0.753 0.719 0.601 0.655 0.769 0.849 0.807

NeuralTalk 0.667 0.570 0.593 0.582 0.733 0.714 0.723

att-RNN 0.756 0.724 0.604 0.658 0.771 0.853 0.810

EANN 0.757 0.728 0.601 0.658 0.770 0.856 0.811

MVAE 0.805 0.869 0.588 0.702 0.782 0.943 0.855

MFN 0.808 0.850 0.616 0.715 0.791 0.931 0.855

BDANN 0.827 0.872 0.652 0.746 0.808 0.939 0.869

CALM 0.845 0.785 0.831 0.807 0.888 0.855 0.871

Weibo VQA 0.736 0.797 0.634 0.706 0.695 0.838 0.760

NeuralTalk 0.726 0.794 0.613 0.692 0.684 0.840 0.754

att-RNN 0.788 0.862 0.686 0.764 0.738 0.890 0.807

EANN 0.816 0.820 0.820 0.820 0.810 0.810 0.810

MVAE 0.824 0.854 0.769 0.809 0.802 0.875 0.837

MFN 0.803 0.811 0.806 0.808 0.794 0.800 0.797

BDANN 0.814 0.800 0.860 0.830 0.840 0.760 0.800

CALM 0.846 0.843 0.864 0.853 0.851 0.828 0.839

4.4 Ablation Study

Table 2. Performance of the variations of CALM

Dataset Method Accuracy Precision Recall F1

Twitter CALM CA 0.812 0.807 0.793 0.798

CALM LM 0.824 0.815 0.813 0.814

CALM OC 0.827 0.824 0.840 0.824

CALM 0.845 0.836 0.843 0.839

Weibo CALM CA 0.821 0.821 0.822 0.821

CALM LM 0.824 0.832 0.826 0.823

CALM OC 0.831 0.832 0.832 0.831

CALM 0.846 0.847 0.846 0.846

CALM consists of a cross-modal attention fusion (CAF) mechanism to combine
multimodal content features and an orthogonal latent memory network to keep
diverse latent patterns. For clarity, let CALM CA denote CALM without CAF
module and CALM LM denote CALM without latent memory network. Further-
more, we remove orthogonal constraint to evaluate the effectiveness of preserving
orthogonality among latent patterns, which is denoted as CALM OC. The per-
formance of the variations of CALM are summarized in Table 2, from which
we have the following observations. 1) CALM with all the components achieves
the best performance on both datasets, demonstrating the significance of each
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module. 2) We can observe that the performance of CALM drops dramatically
without the CAF module. The reason is that the CAF module extracts critical
information underlying the single modalities by intra-modality attention, and
models the underlying relations among the modalities by inter-modality atten-
tion.

4.5 Effectiveness of CALM on Multimodal Fusion

Table 3. Performance of CALM using single or multiple modalities

Dataset Method Accuracy Precision Recall F1

Twitter CALM T 0.786 0.804 0.815 0.786

CALM V 0.775 0.781 0.725 0.737

CALM 0.845 0.836 0.843 0.839

Weibo CALM T 0.816 0.819 0.818 0.816

CALM V 0.580 0.586 0.573 0.560

CALM 0.846 0.847 0.846 0.846

Table 3 summarizes the performance of CALM using single or multiple modalities
on both datasets, from which we have two-fold observations. 1) CALM uses text
and image jointly outperforms it uses either text (CALM T) or image (CALM V)
merely, indicating the necessity of multimodal fusion. 2) In terms of the single
data modality, text is more effective than images as text conveys certain semantic
information that is easy to understand by humans or machines.

4.6 Impact of the Number of Heads in CAF

Fig. 4. Impact of the number of heads in CAF.
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Figure 4 summarizes the performance of CALM with different number of heads
in the CAF module. We can find that maintaining a large number of heads may
not necessarily improve the performance on both datasets. The reason could be
that a large number of heads will increase the complexity of the model, while they
cannot capture more attentional patterns than the certain number underlying
the datasets.

4.7 Impact of the Number of Patterns in Latent Memory

Fig. 5. Impact of the number of patterns in latent memory.

Figure 5 summarizes the performance of CALM with different number of patterns
in the latent memory. We can observe that the performance of CALM can be
improved with the increasing number of patterns at the beginning, while too
many patterns will lead to poor result on both datasets. This is probably because
that the number of latent patterns underlying the datasets is limited.

4.8 Failure Cases Study

Figure 6 shows some examples that are predicted falsely by CALM, from which
we have some observations. 1) In terms of non-rumors predicted as rumors by
CALM, we can observe that the images have not shown discriminative informa-
tion and the textual descriptions seem to exaggerate the facts more or less. 2)
In terms of rumors predicted as non-rumors by CALM, we can observe that the
textual and visual contents are quite consistent and relevant, which may confuse
the model and it is even hard for humans to make identification.
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Fig. 6. Failure cases of CALM. The Tweets in orange background shows non-rumors
which are predicted as rumors, and the Tweets in blue background shows rumors that
are recognized as non-rumors. (Color figure online)

5 Conclusion

In this paper, we propose a cross-modal attention fusion network with orthog-
onal latent memory for rumor detection. Specifically, we exploit a cross-modal
attention mechanism with intra-modality and inter-modality attentions to inte-
grate the modality-critical information and fully explore potential hidden cor-
relations among the modalities. In particular, the proposed network introduces
an orthogonal latent memory to store global latent patterns information shared
by the rumor events, which can improve sequential models to capture the long-
distance temporal dependencies. The experiments conducted on two popular
datasets show the effectiveness of the proposed CALM for rumor detection.
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